
Lecture 3. Integral Elements and the Cartan-Kähler Theorem

The lecture notes for this section will mostly be definitions, some basic examples, and exercises. In
particular, I will not attempt to give the proofs of the various theorems that I state. The full details can be
found in Chapter III of Exterior Differential Systems.

Before beginning the lecture proper, let me just say that our method for constructing integral manifolds
of a given exterior differential system will be to do it by a process of successively ‘thickening’ p-dimensional
integral manifolds to (p+1)-dimensional integral manifolds by solving successive initial value problems. This
will require some tools from partial differential equations, phrased in a geometric language, but it will
also require us to understand the geometry of certain ‘infinitesimal’ integral manifolds known as ‘integral
elements’. It is to this study that I will first turn.

3.1. Integral elements and their extensions

Let (M, I) be an EDS. An n-dimensional subspace E ⊂ TxM is said to be an integral element of I if

φ(v1, . . . , vn) = 0

for all φ ∈ In and all v1, . . . , vn ∈ E. The set of all n-dimensional integral elements of I will be de-
noted Vn(I) ⊂ Gn(TM).

Our main interest in integral elements is that the tangent spaces to any n-dimensional integral mani-
fold Nn ⊂ M are integral elements. Our ultimate goal is to answer the ‘converse’ questions: When is an
integral element tangent to an integral manifold? If so, in ‘how many’ ways?

It is certainly not always true that every integral element is tangent to an integral manifold.

Example 3.1: Non-existence. Consider

(M, I) =
(
R, 〈x dx 〉

)
.

The whole tangent space ToR is clearly a 1-dimensional integral element of I, but there can’t be any 1-
dimensional integral manifolds of I.

For a less trivial example, do the following exercise.

Exercise 3.1: Show that the ideal I1 = 〈 dx∧dz, dy∧(dz − y dx) 〉 has exactly one 2-dimensional integral
element at each point, but that it has no 2-dimensional integral manifolds. Compare this with the ideal
I2 = 〈 dx∧dz, dy∧dz 〉.

Now, Vn(I) is a closed subset of Gn(TM). To see why this is so, let’s see how the elements of I
can be used to get defining equations for Vn(I) in local coordinates. Let (x, u) : U → R

n+s be any local
coordinate chart and let (x, u, p) : Gn(TX, x) → R

n+s+ns be the canonical extension described in Lecture 2.
Every E ∈ Gn(TX, x) has a well-defined basis

(
X1(E), . . . , Xn(E)

)
, where

Xi(E) =
∂

∂xi
+ pa

i (E)
∂

∂ua
.

(This is the basis of E that is dual to the basis dx1, . . . , dxn) of E∗.) Using this basis, we can define a
function φx on Gn(TX, x) associated to any n-form φ by the rule

φx(E) = φ
(
X1(E), . . . , Xn(E)

)
.

It’s not hard to see that φx will be smooth as long as φ is smooth.

Exercise 3.2: Prove this last statement.

With this notation, Vn(I) ∩ Gn(TX, x) is seen to be the simultaneous zero locus of the set of func-
tions {φx φ ∈ In}. Thus Vn(I) ∩ Gn(TX, x) is closed. It follows that Vn(I) is a closed subset of Gn(TX),
as desired.
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Exercise 3.3: Describe V1(I) and V2(I) for

i. (M, I) =
(
R

4, 〈 dx1∧dx2 + dx3∧dx4 〉
)
.

ii. (M, I) =
(
R

4, 〈 dx1∧dx2, dx3∧dx4 〉
)
.

iii. (M, I) =
(
R

4, 〈 dx1∧dx2 + dx3∧dx4, dx1∧dx4 − dx3∧dx2 〉
)
.

Now, there are some relations among the various Vk(I). An easy one is that if E belongs to Vn(I), then
every p-dimensional subspace of E is also an integral element, i.e, Gp(E) ⊂ Vp(I). This follows because I is
an ideal. The point is that if E′ ⊂ E were a p-dimensional subspace and φ ∈ Ip did not vanish when pulled
back to E′, then there would exist an (n−p)-form α so that α∧φ (which belongs to I) did not vanish when
pulled back to E.

Exercise 3.4: Prove this last statement.

On the other hand, obviously not every extension of an integral element is an integral element. In fact,
from the previous exercise, you can see that the topology of the space of integral elements of a given degree
can be surprisingly complicated. However, describing the integral extensions one dimension at a time turns
out to be reasonably simple:

Let E ∈ Vk(I) be an integral element and let (e1, . . . , ek) be a basis for E ⊂ TxM . The set

H(E) = { v ∈ TxM κ(v, e1, . . . , ek) = 0, ∀κ ∈ Ik+1} ⊆ TxM

is known as the polar space of E, though it probably ought to be called the extension space of E, since a
vector v ∈ TxM lies in H(E) if and only if either it lies in E (the trivial case) or else E+ = E + Rv lies
in Vk+1(I). In other words, a (k+1)-plane E+ containing E is an integral element of I if and only if it lies
in H(E).

Now, from the very definition of H(E), it is a vector space and contains E. It is traditional to define
the function r : Vk(I) → {−1, 0, 1, 2, . . .} by the formula

r(E) = dimH(E) − k − 1.

The reason for subtracting 1 is that then r(E) is the dimension of the set of (k+1)-dimensional integral
elements of I that contain E, with r(E) = −1 meaning that there are no such extensions. When r(E) ≥ 0,
we have

{E+ ∈ Vk+1(I) E ⊂ E+ } 
 P
(
H(E)/E

)

 RP

r(E).

Exercise 3.5: Compute the function r : V1(I) → {−1, 0, 1, 2, . . .} for each of the examples in Exercise 3.3.
Show that V3(I) is empty in each of these cases. What does this say about r on V2(I)?

3.2. Ordinary and Regular Elements

Right now, we only have that Vk(I) is a closed subset of Gn(TX) and closed subsets can be fairly nasty
objects in the eyes of a geometer. We want to see if we can put a nicer structure on Vk(I).

First, some terminology. If S ⊂ C∞(M) is some set of smooth functions on M , we can look at the
common zero set of S, i.e.,

ZS = { x ∈ M f(x) = 0, ∀f ∈ S }.

Of course, this is a closed set, but we’d like to find conditions that will make it be a smooth manifold. One
such case is provided by the implicit function theorem: Say that z ∈ ZS is an ordinary zero of S if there is
an open neighborhood U of z in M and a set of functions f1, . . . , fc ∈ S so that

(1). df1∧df2∧ · · ·∧dfc �= 0 on U , and
(2). ZS ∩ U = { y ∈ U | f1(y) = · · · = fc(y) = 0 }.

By the implicit function theorem, ZS ∩U is an embedded submanifold of U of codimension c. Let Zo
S ⊂

ZS denote the set of ordinary zeros of S.
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Exercise 3.6: Show that ZS and Zo
S depend only on the ideal generated by S in C∞(M). Also, show

that for z ∈ Zo
S , the integer c described above is well-defined, so that one can speak without ambiguity of

the codimension of Zo
S at z.

This idea can now be applied to the Vn(I). Say that E ∈ Vn(I) is an ordinary integral element if it is
an ordinary zero of the set

Sx = {φx φ ∈ In}

for some local coordinate chart (x, u) : U → R
n+s with E in Gn(TM, x).

Exercise 3.7: Show that on the intersection Gn(TM, x)∩Gn(TM, y), the two sets of functions Sx and Sy

generate the same ideal. Conclude that this notion of ordinary does not depend on the choice of a coordinate
chart, only on the ideal I.

Let V o
n (I) ⊂ Vn(I) be the set of ordinary integral elements of dimension n. By the implicit function

theorem, the connected components of V o
n (I) are smooth embedded submanifolds of Gn(TM). They may

not be closed or even all have the same dimension, but at least they are smooth manifolds and are cut out
‘cleanly’ by the condition that the n-forms vanish on them.

Exercise 3.8: Find an example of an integral element that is not ordinary. Now find a non-trivial example.

Exercise 3.9: Check to see whether or not all the integral elements you found in Exercise 3.3 are ordinary.

Even the ordinary integral elements aren’t quite as nice as you could want. For example, the function r :
Vn(I) → {−1, 0, 1, . . .} might not be locally constant on V o

n (I).

Example 3.2: Polar Jumping. Look back to the first ideal given in Exercise 3.1. There, V1(I1) = G1(TR
3)

because I1
1 = (0). Now a 1-dimensional integral element E based at (x, y, z) will be spanned by a vector

e1 = a
∂

∂x
+ b

∂

∂y
+ c

∂

∂z

where not all of a, b, and c vanish. Using the definition of the polar space, we see that

v = f
∂

∂x
+ g

∂

∂y
+ h

∂

∂z

lies in H(E) if and only if dx∧dz(v, e1) =
(
dy∧(dz − y dx)

)
(v, e1) = 0, i.e.,

c f − a h = −yb f − (c − y a) g + b h = 0.

These two linear equations for (f, g, h) will be linearly independent, forcing H(E) = E and r(E) = −1, unless
c − y a = 0, in which case the two equations are linearly dependent and dimH(E) = 2, so that r(E) = 0.

We say that an ordinary integral element E ∈ V o
n (I) is regular if r is locally constant in a neighborhood

of E in V o
n (I). Denote the set of regular integral elements by V r

n (I) ⊂ V o
n (I).

The regular integral elements are extremely nice. Not only do they ‘vary smoothly’, but their possible
extensions ‘vary smoothly’ as well.

Exercise 3.10: Show that V r
n (I) is a dense open subset of V o

n (I). Hint: Show that if E ⊂ TxM is regular,
then one can choose a fixed set of (n+1)-forms, say κ1, . . . , κm ∈ In+1, where m is the codimension of H(E)
in TxM , so that

H(E∗) = { v ∈ TxM κµ(v, e1 , . . . , ek) = 0, 1 ≤ µ ≤ m }

for all E∗ in a neighborhood of E in V o
n (I). This shows that it is open. To get denseness, explain why r is

upper semicontinuous and use that.

One more bit of terminology: An integral manifold Nk ⊂ M of I will be said to be ordinary if all of
its tangent planes are ordinary integral elements and regular if all of its tangent planes are regular integral
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elements. Note that if N ⊂ M is a connected regular integral manifold of I then the numbers r(TxN) are
all the same, so it makes sense to define r(N) = r(TxN) for any x ∈ N .

3.3. The Cartan-Kähler Theorem

I can now state one of the fundamental theorems in the subject. A discussion of the proof will be
deferred to the next lecture. Here, I am just going to state the theorem, discuss the need for the hypotheses,
and do a few examples. In the next lecture, I’ll try to give you a feeling for why it works.

Theorem 4: (Cartan-Kähler) Let (M, I) be a real analytic EDS and suppose that
(1) P ⊂ M is a connected, k-dimensional, real analytic, regular integral manifold of I with r(P ) ≥ 0 and
(2) R ⊂ M is a real analytic submanifold of codimension r(P ) containing P and having the property

that TpR ∩ H(TpP ) has dimension k+1 for all p ∈ P .
There exists a unique, connected, (k+1)-dimensional, real analytic integral manifold X of I that satisfies P ⊂
X ⊂ R.

The sudden appearance of the hypothesis of real analyticity is somewhat unexpected. However the PDE
results that the enter in the proof of the Cartan-Kähler theorem require this assumption and, as will be seen,
the theorem is not even true without this hypothesis in the generality stated.

Example 3.3: The importance of regularity for existence. Consider the case of Exercise 3.1. For either of
the ideals, the line L defined by x = z = 0 is an integral curve of the ideal with the property that r(TpL) = 0
for all p ∈ L. However, I1 has no integral surfaces while I2 has the integral surface z = 0 that contains L. In
both cases, however, L is an ordinary integral manifold but not a regular one, so the Cartan-Kähler Theorem
does not apply.

Example 3.4: The importance of regularity for existence. Consider the case of Exercise 3.3,ii. The line L
defined by x2 = x3 = x4 = 0 is a non-regular integral curve of this ideal, and has r(TpL) = 1 for all p ∈ L,
with the polar space H(TpL) being spanned by the vectors

∂

∂x1
,

∂

∂x3
,

∂

∂x4
.

for all p ∈ L. If you take R to be the 3-plane defined by x3 = 0, then TpR ∩H(TpL) has dimension 2 for all
p ∈ L, but there is no integral surface X of I satisfying L ⊂ X ⊂ R, even though there are integral surfaces
of I that contain L.

Example 3.5: The meaning of R. The manifold R that appears in the Cartan-Kähler Theorem is
sometimes known as the ‘restraining manifold’. You need it when r(P ) > 0 because then the extension
problem is actually underdetermined in a certain sense. (I’ll try to make that precise in the next lecture.)
However, you can see a little bit of why you need it by looking at the case of Exercise 3.3, (i). There, you
should have computed that all of the integral elements E ∈ V1(I) = G1(TR

4) are regular, with r(E) = 1.
This means that every integral element has a 1-dimensional family of possible extensions to a 2-dimensional
integral element. Suppose, for example, that you start with the curve P ⊂ R

4 defined by the equations x2 =
x3 = x4 = 0. Then it is easy to compute that H(TpP ) is spanned by the vectors

∂

∂x1
,

∂

∂x3
,

∂

∂x4
.

for all p ∈ P . In particular, any (real analytic) hypersurface R given by an equation x4 = F (x1, x2, x3)
where F satisfies F (x1, 0, 0) = 0 will satisfy the conditions of the Theorem. If we pull the ideal I back to
this hypersurface and use x1, x2, x3 as coordinates on R, then the ideal on R is generated by the 2-form

dx1 ∧ dx2 + dx3 ∧ (F1 dx1 + F2 dx2) =
(
dx1 + F2 dx3

)
∧

(
dx2 − F1 dx3

)
Of course, this is a closed 2-form on R and its integral surfaces are swept out by integral curves of the vector
field

X = −F2
∂

∂x1
+ F1

∂

∂x2
+

∂

∂x3
.
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(Why?). Thus, to get the integral surface X, we take the union of these integral curves that pass through
the initial curve P . Clearly, x1 and x3 are independent coordinates on a neighborhood of P in X, so X can
also be written locally as a graph

x2 = f(x1, x3), x4 = g(x1, x3).

where f and g are functions that satisfy f(x1, 0) = g(x1, 0) = 0. The condition that these define an integral
surface then turns out to be that there is another function h so that

x2 =
∂h

∂x1
(x1, x3), x4 =

∂h

∂x3
(x1, x3).

On the other hand, any such function works as long as its first partials vanish along the line x3 = 0. This
shows why you don’t usually get uniqueness without a restraining manifold.

Example 3.6: The importance of real analyticity. Consider the case of Exercise 3.3, (iii). You’ll probably
recognize this as the ideal generated by the real and imaginary parts of the complex 2-form

(
dx1 − i dx3

)
∧

(
dx2 + i dx4

)
,

so the 2-dimensional integral manifolds are complex curves in R
4 
 C

2. Now, if you have done the exercises
up to this point, you know that all of the 1-dimensional elements E ∈ V1(I) = G1(TM) are regular and
satisfy r(E) = 0, so that each one can be extended uniquely to a 2-dimensional integral element. The
Cartan-Kähler theorem then says that any real analytic curve in M lies in a unique connected, real analytic
integral surface of I (i.e., a complex curve). As you know, a complex curve is necessarily real analytic when
considered as a surface in R

4. Now suppose that you had a curve described by

x2 = f(x1), x3 = 0, x4 = g(x1),

where f and g are smooth, but not real analytic. Then I claim that there is no complex curve that can
contain this curve, because if there were, it could be described locally in the form x2 + i x4 = F (x1 − i x3)
where F is a holomorphic function of one variable. However, setting x3 = 0 in this equation shows that the
original curve would be described by x2 + i x4 = F (x1), which is absurd because the real and imaginary
parts of a holomorphic function are themselves real analytic.

Example 3.7: Linear Weingarten Surfaces, again. I now want to return to Example 1.4 and compute
the integral elements, determine the notions of ordinary and regular, etc., and see what the Cartan-Kähler
Theorem tells us about the integral manifolds.

For example, I claim that, for the EDS
(
M, 〈θ, Υ1〉

)
, the space V1(I) is a smooth bundle over M , whose

fiber at every point is diffeomorphic to RP
3, that V1(I) consists entirely of regular integral elements, and

that r(E) = 0 for all E ∈ V1(I). By the Cartan-Kähler Theorem, it will then follow that every real analytic
integral curve of I lies in a unique real analytic integral surface.

Now, the integral curves of I are easy to describe: They are just of the form
(
x(t), u(t)

)
, where x :

(a, b) → R
3 is a space curve and u : (a, b) → S2 is a unit length curve with u(t) · x′(t) = 0. The condition

that this describe an immersed curve in M is, of course, that x′ and u′ do not simultaneously vanish.
We have already said that the integral surfaces of I are ‘generalized’ minimal surfaces, so what the

Cartan-Kähler Theorem says in this case is the geometric theorem that every real analytic ‘framed curve’,(
x(t), u(t)

)
in space lies on a unique, oriented minimal surface S for which u(t) is the unit normal.

Exercise 3.11: Use this result to show that every nondegenerate real analytic space curve is a geodesic on
a unique connected minimal surface. Also, use this result to prove the existence of a minimal Möbius band.
(You’ll have to think of a trick to get around the non-orientability of the Möbius band.)

Now, here is how this computation can be done. The principal difficulty in working with M = R
3×S2 is

that, unlike R
4 and other simple manifolds that we have been mostly dealing with, there is no obvious basis
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of 1-forms in which to compute. However, we can remedy this situation by regarding M as a homogeneous
space of the group G of rigid motions of R

3. Recall that

G =
{[

1 0
b A

]
b ∈ R

3, A ∈ SO(3)
}

.

and that G acts on R
3 by [

1 0
b A

]
· y = Ay + b.

Writing out the columns of the inclusion map g : G → GL(4, R) as

g =
[

1 0 0 0
x e1 e2 e3

]
,

we have the structure equations

d

[
1 0 0 0
x e1 e2 e3

]
=

[
1 0 0 0
x e1 e2 e3

] ⎛
⎜⎝

0 0 0 0
ω1 0 ω12 −ω31

ω2 −ω12 0 −ω32

ω3 ω31 ω32 0

⎞
⎟⎠ ,

i.e., the classical structure equations

dx = ej ωj , dei = ej ωji

where ωi and ωij = −ωji satisfy

dωi = −ωij ∧ωj , dωij = −ωik ∧ ωkj.

Now, consider the map π : G → M = R
3 × S2 given by

π(g) = (x, e3).

This map is a smooth submersion and its fibers are the circles that are the left cosets of the circle subgroup H
consisting of matrices of the form ⎛

⎜⎝
1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎞
⎟⎠ .

Now, the 1-forms ω1, ω2, ω3, ω12, ω31, ω32 are a convenient basis for the left-invariant 1-forms on G, so we
should be able to express the pullbacks of the various forms we have constructed on M in terms of these.

Exercise 3.12: Prove the formulae:

π∗θ = ω3 ,

π∗Υ0 = ω1 ∧ω2 ,

π∗Υ1 = −1
2

(
ω31 ∧ ω2 + ω1 ∧ω32

)
,

π∗Υ2 = ω31 ∧ ω32 .

In particular, it follows from this exercise that

π∗(〈θ, Υ1〉
)

= 〈ω3, ω31 ∧ω2 + ω1 ∧ ω32〉
= 〈 ω3, ω31 ∧ω1+ω32 ∧ω2, ω31 ∧ω2+ω1 ∧ω32 〉alg.
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Now, let E ⊂ T(x,u)M be a 1-dimensional integral element of 〈θ, Υ1〉 = 〈θ, dθ, Υ1〉alg. I want to compute the
polar space H(E). If e1 ∈ E is a basis element, then

H(E) = { v ∈ T(x,u) θ(v) = dθ(v, e1) = Υ1(v, e1) = 0 },

so, a priori, the dimension of H(E) could be anywhere from 2 (if the three equations on v are all linearly
independent) to 4 (if the three equations on v are all multiples of θ(v) = 0, which we know to be nontrivial).
To see what actually happens, fix a g ∈ G so that π(g) = (x, u) and choose vectors ẽ1 and ṽ in TgG so
that π∗(ẽ1) = e1 and π∗(ṽ) = v. Define ai = ωi(ẽ1) and aij = ωij(ẽ1) and define vi = ωi(ṽ) and vij = ωij(ṽ).
Then by the formulae from the exercise, we have

θ(v) = ω3(ṽ)
= v3

dθ(v, e1) = −(ω31 ∧ ω1 + ω32 ∧ω2)(ṽ, ẽ1)
= a31 v1 + a32 v2 − a1 v31 − a2 v32

−2Υ1(v, e1) = (ω31 ∧ω2 + ω1 ∧ω32)(ṽ, ẽ1)
= a32 v1 − a31 v2 + a2 v31 − a1 v32

Now, unless a1 = a2 = a31 = a32 = 0, these are three linearly independent relations for (v1, v2, v3, v31, v32).
However, since e1 is nonzero, we cannot have a1 = a2 = a31 = a32 = 0 (Why?). Thus, the three relations
are linearly independent and it follows that H(E) has dimension 2 for all E ∈ V1(I), as I wanted to show.

Exercise 3.13: Show that the same conclusion holds for all of the ideals of the form I = 〈 θ, Υ1 +
c Υ0 〉. Thus, every real analytic framed curve

(
x(t), u(t)

)
lies in a unique (generalized) surface S with mean

curvature H = c. Do the same for the ideal I = 〈 θ, Υ2 − c2 Υ0 〉, and give a geometric interpretation of this
result.

However, it is not always true that every integral element is regular, even for the linear Weingarten
ideals.

Example 3.8: Surfaces with K = −1. Consider I = 〈 θ, Υ2 +Υ0 〉, whose integrals correspond to surfaces
with K ≡ −1. If you go through the same calculation as above for this ideal, everything runs pretty much
the same until you get to

θ(v) = ω3(ṽ)
= v3

dθ(v, e1) = −(ω31 ∧ω1 + ω32 ∧ ω2)(ṽ, ẽ1)
= a31 v1 + a32 v2 − a1 v31 − a2 v32

(Υ2 + Υ1)(v, e1) = (ω31 ∧ω32 + ω1 ∧ω2)(ṽ, ẽ1)
= a2 v1 − a1 v2 + a32 v31 − a31 v32

These three relations on (v1, v2, v3, v31, v32) will be independent except when (a31, a32) = ±(a2,−a1),
when the last two relations become dependent. For such integral elements E ∈ V1(I), we have r(E) = 1 but
for all the other integral elements, we have r(E) = 0.

Exercise 3.14: Show that if
(
x(t), u(t)

)
is an integral curve of θ, then its tangent vectors are all irregular

if and only if x : (a, b) → R
3 is an immersed space curve of torsion τ = ±1 and u(t) is its binormal (up to a

sign). Thus, these are the framed curves for which we cannot say that there exists a surface with K = −1
containing the curve with u as the surface normal along the curve. Even if there exists one, we cannot claim
that it is unique.

Exercise 3.15: Determine which of the ideals I = 〈 θ, a Υ2 + b Υ1 + c Υ0〉 (where a, b, and c are constants,
not all zero) have irregular integral elements in V1(I).
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