
Lecture 4. The Cartan-Kähler Theorem: Ideas in the Proof

4.1. The Cauchy-Kowalewski Theorem

The basic PDE result that we will need is an existence and uniqueness theorem for initial value problems
of a very special kind. You are probably familiar with the ODE existence and uniqueness theorem: If D ⊂
R×R

n is an open set and F : D → R
n is a smooth map, then for any (t0, u0) ∈ D, the initial value problem

u′(t) = F
(
t, u(t)

)
, u(t0) = u0

has a solution u : I → R
n on some open interval I ⊂ R containing t0, this solution is smooth, and this

solution is unique in the sense that, if ũ : Ĩ → R
n is another solution for some interval Ĩ containing t0,

then ũ = u on the intersection Ĩ ∩ I. Of course, smoothness of F is a much more restrictive assumption
than one actually needs; one can get away with locally Lipschitz, but the idea of the theorem is clear.

When one comes to initial value problems for PDE, the theorem we will need is the oldest known such
result.

Theorem 5: (Cauchy-Kowalewski) Suppose that D ⊂ R × R
n × R

s × R
ns is an open set and suppose

that F : D → R
s is real analytic. Suppose that U ⊂ R

n is an open set and that φ : U → R
s is a real analytic

function with the property that its ‘1-graph’{ (
t0, x, φ(x),

∂φ

∂x
(x)

)
x ∈ U

}

lies in D for some t0. Then there exists a domain V ⊂ R × R
n for which {t0}×U ⊂ V and a real analytic

function u : V → R
s satisfying

∂u
∂t

(t, x) = F
(
t, x, u(t, x),

∂u
∂x

(t, x)
)
, for (t, x) ∈ V

u(t0, x) = φ(x), for x ∈ U .

Moreover, u is unique as a real analytic solution in the sense that any other such (Ṽ , ũ) with ũ real analytic
satisfies ũ = u on any component of Ṽ ∩ V that meets {t0}×U .

This may seem to be a complicated theorem, but it basically says that if the equation and initial data
are real analytic and they have domains so that the initial data make sense, then you can find a solution u
by expanding it out in a power series

u(t, x) = φ(x) + φ1(x)(t−t0) + 1
2φ2(x)(t−t0)2 + · · · .

The equation will allow you to recursively solve for the sequence of analytic functions φk and the domains
of convergence of the functions F and φ give you estimates that allow you to show that the above series
converges on some domain V containing {t0}×U . (In fact, proving convergence of the series is the only really
subtle point.)

Without the hypothesis of real analyticity, this theorem would not be true. The problem can fail to
have a solution or can have more than one solution. There are even examples with F smooth for which there
are no solutions to the equation at all, whatever the initial conditions.

In any case, it is traditional to refer to a system of PDE written in the form

∂u
∂t

= F
(
t, x, u, v,

∂u
∂x

,
∂v
∂x

)
as a system in Cauchy form, ‘underdetermined’ if there are ‘unconstrained’ functions v present. In this case,
we can always reduce to the determined case by simply specifying the functions v ‘arbitrarily’ (subject to
the condition that the equations still make sense after the specification).
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4.2. Equations not in Cauchy form.

Many interesting equations cannot be put in Cauchy form by any choice of coordinates. For example,
consider the equation familiar from vector calculus curlu = f where f is a known vector field in R

3 and u is
an unknown vector field. Certainly, by inspection of the equations

∂u2

∂x3
− ∂u3

∂x2
= f1 ,

∂u3

∂x1
− ∂u1

∂x3
= f2,

∂u1

∂x2
− ∂u2

∂x1
= f3

it is hard to imagine how one might solve for all of the u-partials in some direction. This appears even more
doubtful when you realize that there is no hope of uniqueness in this problem: If u is a solution, then so
is u + gradg for any function g. Even worse, assuming that f is real analytic doesn’t help either since it is
also clear that there can’t be any solution at all unless div f = 0.

Of course, this is a very special equation, and we know how to treat it by ordinary differential equations
means (e.g., the proof of Poincaré’s Lemma).

Example 4.1: Self-Dual Equations. A more interesting problem is to consider the so-called ‘self-dual
equations’ in dimension 4. Remember that there is the Hodge star operator ∗ : Ωp(Rn) → Ωn−p(Rn), which
is invariant under rigid motions in R

n and satisfies ∗∗α = (−1)p(n−p) α. In particular, when n = 4 and p = 2,
the 2-forms can be split into the forms that satisfy ∗α = α, the self-dual 2-forms Ω2

+(R4), and the forms that
satisfy ∗α = −α, the anti-self-dual 2-forms Ω2

−(R4). For example, every φ ∈ Ω2
+(R4) is of the form

φ = u1 (dx2 ∧ dx3+dx1 ∧ dx4)

+ u2 (dx3 ∧ dx1+dx2 ∧ dx4) + u3 (dx1 ∧ dx2+dx3 ∧ dx4).

The equation dφ = 0 then represents four equations for the three unknown coefficients u1, u2, u3. Obviously,
this overdetermined system cannot be put in Cauchy form. This raises the interesting question: How can
one describe the space of local solutions of these equations? Well, let’s look at the equations. They can be
written in the form

0 =
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
,

∂u1

∂x4
=

∂u2

∂x3
− ∂u3

∂x2
,

∂u2

∂x4
=

∂u3

∂x1
− ∂u1

∂x3
,

∂u3

∂x4
=

∂u1

∂x2
− ∂u2

∂x1
.

Setting aside the first one, the remaining equations are certainly in Cauchy form and we could solve them
(at least near x4 = 0) for any real analytic initial conditions

ui(x1, x2, x3, 0) = f i(x1, x2, x3), for i = 1, 2, 3.

Unfortunately, there’s no reason to believe that the resulting functions will satisfy the first equation. Indeed,
unless the functions f i satisfy

0 =
∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3
,

the resulting ui can’t satisfy the first equation.
However, suppose that we choose the f i on R

3 to satisfy the above equation on R
3 (and to be real

analytic, of course). Then do we have a hope that the resulting ui will satisfy the remaining equation? In
fact, we do, for they will always satisfy it! Here is how you can see this: Define the ‘error’ to be

E =
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
.
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By the choice of f , we know that E(x1, x2, x3, 0) = 0. Moreover, by the above equations and commuting
partials, we have

∂E

∂x4
=

∂

∂x1

(
∂u1

∂x4

)
+

∂

∂x2

(
∂u2

∂x4

)
+

∂

∂x3

(
∂u3

∂x4

)

=
∂

∂x1

(
∂u2

∂x3
− ∂u3

∂x2

)
+

∂

∂x2

(
∂u3

∂x1
− ∂u1

∂x3

)
+

∂

∂x3

(
∂u1

∂x2
− ∂u2

∂x1

)
= 0.

Of course, this implies that E(x1, x2, x3, x4) = 0, which is what we wanted to be true.
Thus, the solutions to the full system are found by choosing initial conditions f i to satisfy the single

equation on R
3

0 =
∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3
.

Of course, this can be regarded as an equation in Cauchy form, now underdetermined, by writing it in the
form

∂f3

∂x3
= −∂f1

∂x1
− ∂f2

∂x2
.

By Cauchy-Kowalewski, we can solve this equation uniquely by choosing f1 and f2 as arbitrary real analytic
functions and then choosing the initial value f3(x1, x2, 0) as a real analytic function on R

2.

Exercise 4.1: Show that you don’t need to invoke the Cauchy-Kowalewski Theorem for this problem
on R

3 and you also don’t need real analyticity to solve the initial value problem. However, show that any
solutions ui on R

4 to the self-dual equations are harmonic and so must be real analytic. What does this tell
you about the need for Cauchy-Kowalewski in the system for the ui?

The upshot of all this discussion is that, although the system can’t be put in Cauchy form, it can be
regarded as a sequence of Cauchy problems. Moreover, this sequence has the unexpectedly nice property
that, when you solve one of the Cauchy problems then use the solution as initial data for the next Cauchy
problem, the satisfaction of the first set of equations is ‘propagated’ by the equations at the next level.

Exercise 4.2: Consider the overdetermined system

zx = F (x, y, z)
zy = G(x, y, z)

z(0, 0) = z0

for z as a function of x and y. Show that if you set it up as a sequence of Cauchy problems, first

wx(x) = F
(
x, 0, w(x)

)
, w(0) = z0

and then use the resulting function w to consider the equation

zy(x, y) = G
(
x, y, z(x, y)

)
, z(x, 0) = w(x),

then the resulting solutions will satisfy the equation zx = F (x, y, z) for all choices of z0 only if F and G
satisfy the condition needed for the system 〈dz − F (x, y, z) dx− G(x, y, z) dy〉 to be Frobenius.

Exercise 4.3: Go back to the equation curl u = f and show that you can write that as a sequence of
Cauchy problems. Show also that they won’t have this ‘propagation’ property unless div f = 0.

Exercise 4.4: Now consider the equation curlu = u+f . Of course, this equation can’t be put in Cauchy form
either, since it differs from the previous one only by terms that don’t involve any derivatives. However, show
now that when you apply the divergence operator to both sides, you get, not a condition on f , but another
first order equation on u. Show that you can write this system of four equations for the three unknowns as
a sequence of Cauchy problems and that this system does have the good ‘propagation’ property. How much
freedom do you get in specifying the initial data to determine a solution?
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Exercise 4.5: Back to the self-dual equations: Now consider the ui as free coordinates and set M = R
4×R

3

with coordinates x1, x2, x3, x4, u1, u2, u3. Define the 3-form

Φ = du1 ∧ (dx2 ∧ dx3+dx1 ∧ dx4)

+ du2 ∧ (dx3 ∧ dx1+dx2 ∧ dx4) + du3 ∧ (dx1 ∧ dx2+dx3 ∧ dx4).

Explain why the 4-dimensional integral manifolds in M of I = 〈Φ〉 on which dx1∧dx2∧dx3∧dx4 �= 0 can be
thought of locally as representing closed self-dual 2-forms. Describe V4(I)∩G4(TM, x). Are these ordinary
or regular integral elements? What about V3(I) ∩ G3

(
TM, (x1, x2, x3)

)
?

With all these examples in mind, I can now describe how the proof of the Cartan-Kähler Theorem
goes: Remember that we start with a real analytic EDS (M, I) and P ⊂ M a connected, k-dimensional, real
analytic, regular integral manifold of I with r = r(P ) ≥ 0. For each p ∈ P , the dimension of H(TpP ) ⊂ TpM
is r+k+1 and the generic subspace S ⊂ TpM of codimension r will intersect H(TpP ) is a subspace S∩H(TpP )
of dimension k + 1. Thus, choosing the ‘generic’ codimension r submanifold R ⊂ M that contains P will
have the property that TpR∩H(TpP ) has dimension k+1 and so will be an integral element. So now suppose
that we have a real analytic R containing P and satisfying this genericity condition. We now want to find a
(k+1)-dimensional integral manifold X satisfying P ⊂ X ⊂ R.

Because of the real analyticity assumption, it’s enough to prove the existence and uniqueness of X in a
neighborhood of any point p ∈ P , so fix such a p and let e1, . . . , ek be a basis of TpP . Choose κ1, . . . , κm ∈
Ik+1 so that

H(TpP ) = { v ∈ TpM κµ(v, e1, . . . , ek) = 0, 1 ≤ µ ≤ m }

where m = dimTpM − (r+k+1). Because of the regularity assumption, the forms κ1, . . . , κm can be used
to compute the polar space of any integral element E ∈ Vk(I) that is sufficiently near TpP .

Now R has dimension m+k+1 and, when you pull back the forms κµ to R, they are ‘independent’ near p
because we assumed TpR ∩H(TpP ) to have dimension k+1. When you write them out in local coordinates,
they become a system of m PDE in Cauchy form for extending P to a (k+1)-dimensional integral manifold
of the system J = 〈κ1, . . . , κm〉, and P itself provides the initial condition. Thus, the Cauchy-Kowalewski
Theorem applies: there is a unique, connected, real analytic X of dimension k+1 satisfying P ⊂ X ⊂ R that
is an integral manifold of J .

Now, all of the k-forms in I vanish when pulled back to P , but we need them to vanish when pulled
back to X. Here, finally, is where the assumption that I be differentially closed comes in, as well as the need
for the integral elements to be ordinary in the first place. What we do is show that the differential closure
condition plus the ordinary assumption allows us to write down a system in Cauchy form for the coefficients
of the k-forms in I pulled back to X. This system has ‘zero’ initial conditions since P is an integral manifold
of I and to have all of the coefficients be zero is a solution of the system. By the uniqueness part of the
Cauchy-Kowalewski Theorem, it follows that ‘zero’ is the only solution, i.e., that all of the k-forms of I
must vanish on X. However, this, coupled with the vanishing of the κµ and the fact that they determine the
integral extensions (at least near p) forces all of the tangent spaces to X to be integral elements of I, i.e.,
forces X to be an integral manifold of the whole ideal I.

Well, that, in outline, is the proof of the Cartan-Kähler Theorem. The full details are in Chapter III of
the EDS book. I encourage you to look at them at some point, probably after you have been convinced, by
seeing its applications, that the Cartan-Kähler Theorem is worth knowing.

Exercise 4.6: How would you describe the 2-forms on R
5 that are both closed and coclosed? What I’m

asking for is an analysis of the local solutions to the equations dα = d(∗α) = 0 for α ∈ Ω2(R5). If you
think you have a handle on this, you might want to go ahead and try the general case: dα = d(∗α) = 0
for α ∈ Ωp(Rn).
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4.3. Integral Flags and Cartan’s Test

In light of the Cartan-Kähler Theorem, there is a simple sufficient condition for the existence of an
integral manifold tangent to E ∈ Vn(I).

Theorem 6: Let (M, I) be a real analytic EDS. If E ∈ Vn(I) contains a flag of subspaces

(0) = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E ⊂ TpM

where Ei ∈ V r
i (I) for 0 ≤ i < n, then there is a real analytic n-dimensional integral manifold P ⊂ M passing

through p and satisfying TpP = E.

The proof is the obvious one: Just apply the Cartan-Kähler Theorem one step at a time, noting
that, because V r

k (I) is an open subset of Vk(I), any k-dimensional integral manifold of I that is tangent
to Ek ∈ V r

k (I) will perforce be a regular integral manifold in some neighborhood of p.

Now this is a nice result but it leaves a few things to be desired. First of all, this sufficient condition is
not necessary. As we will see, there are quite a few cases in which the integral manifolds we are interested
in cannot be constructed by the above process, simply because the integral elements to which they would
be tangent are not the terminus of a flag of regular integral elements. Second, as things stand, it is a lot of
work to check whether or not a given integral element is the terminus of a flag of regular integral elements.

Exercise 4.7: Look back at the two ideals of Exercise 3.1. Show that in neither case does any E ∈ V2(Ii)
contain a E1 ∈ V r

1 (Ii). Now, I1 has no 2-dimensional integral manifolds anyway. For I2, however, ...

Exercise 4.8: For Exercise 4.5, determine which integral elements of I are the terminus of a flag of regular
integral elements.

As you can see, computing with flags of subspaces can be a bit of work. I am now going to describe
a simplification of this process that will make these computations almost routine. First, though, some
simplifications and terminology.

A flag of integral elements

(0) = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E ⊂ TpM

where Ei ∈ V r
i (I) for 0 ≤ i < n and En ∈ Vn(I) will be known as a regular flag for short. (Note that the

terminus En of a regular flag is not required to be regular and, in fact, it can fail to be. However, it does
turn out that En is ordinary.)

Note that the assumption that E0 = 0p ⊂ TpM be regular implies, in particular, that is it ordinary, i.e.,
E0 is an ordinary zero of the set of functions I0 ⊂ Ω0(M). Now, the set V o

0 (I) is a smooth submanifold
of G0(TM) = M .

Exercise 4.9: Explain why any n-dimensional integral element E ⊂ TpM with p ∈ V o
0 (I) must be tangent

to V o
0 (I). Is this necessarily true if p does not lie in V o

0 (I)?

Obviously, every integral manifold of I that is constructed by the ‘regular flag’ approach will lie in V o
0 (I)

anyway. Thus, at least on theoretical grounds, nothing will be lost if we simply replace M by V o
0 (I), i.e.,

restrict to the ordinary part of the zero locus of the functions in I. I am going to do this for the rest of this
section. This amounts to the blanket assumption that I0 = (0), i.e., that I is generated in positive degree.

Now, corresponding to any integral flag

(0) = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E ⊂ TpM

(regular or not), there is the descending flag of corresponding polar spaces

TpM ⊇ H(E0) ⊇ H(E1) ⊇ · · · ⊇ H(En−1) ⊇ H(En) ⊇ En .
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It will be convenient to keep track track of the dimensions of these spaces in terms of their codimension
in TpM . For k < n, set

c(Ek) = dim(TpM) − dimH(Ek) = n + s − k − 1 − r(Ek)

where dimM = n+s. It works out best to make the special convention that c(En) = s. (In practice, it
is usually the case that H(En) = En, in which case, the above formula for c(Ek) works even when you
set k = n.) Since dimH(Ek) ≥ dimEn = n, we have c(Ek) ≤ s. Because of the nesting of these spaces, we
have

0 ≤ c(E0) ≤ c(E1) ≤ · · · ≤ c(En) ≤ s.

For notational convenience, set c(E−1) = 0. The Cartan characters of the flag F = (E0, E1, . . . , En) are the
numbers

sk(F ) = c(Ek) − c(Ek−1) ≥ 0.

They will play an important role in what follows.
I’m now ready to describe Cartan’s Test , a necessary and sufficient condition for a given flag to be

regular. First, let me introduce some terminology: A subset X ⊂ M will be said to have codimension at
least q at x ∈ X if there is an open x-neighborhood U ⊂ M and a codimension q submanifold Q ⊂ U
so that X ∩ U is a subset of Q. In the other direction, X will be said to have codimension at most q
at x ∈ X if there is an open x-neighborhood U ⊂ M and a codimension q submanifold Q ⊂ U containing x
so that Q ⊂ X ∩ U .

Theorem 7: (Cartan’s Test) Let (M, I) be an EDS and let F = (E0, E1, . . . , En) be an integral flag
of I. Then Vn(I) has codmension at least

c(F ) = c(E0) + c(E1) + · · ·+ c(En−1)

in Gn(TM) at En. Moreover, Vn(I) is a smooth submanifold of Gn(TM) of codimension c(F ) in a neigh-
borhood of En if and only if the flag F is regular.

This is a very powerful result, because it allows one to test for regularity of a flag by simple linear
algebra, computing the polar spaces H(Ek) and then checking that Vn(I) is smooth near En and of the
smallest possible codimension, c(F ). In many cases, these two things can done by inspection.

Example 4.2: Self-Dual 2-Forms. Look back at Exercise 4.5. Any integral element E ∈ V4(I)∩G4(TR
7, dx)

is defined by linear equations of the form

πa = dua − pa
i (E) dxi = 0.

In order that Φ vanish on such a 4-plane, it suffices that the pa
i (E) satisfy four equations:

p1
1+p2

2+p3
3 = p1

4−p2
3+p3

2 = p2
4−p3

1+p1
3 = p3

4−p1
2+p2

1 = 0

It’s clear from this that V4(I) ∩ G4(TR
7, dx) is a smooth manifold of codimension 4 in G4(TR

7). On the
other hand, if we let Ek ⊂ E be defined by the equation dxk+1 = dxk+2 = · · · = dx4 = 0 for 0 ≤ k < 4, then
it is easy to see that

H(E0) = H(E1) = Tp(M)
H(E2) = {v ∈ Tp(M) π3(v) = 0 }
H(E3) = {v ∈ Tp(M) π1(v) = π2(v) = π3(v) = 0 }
H(E4) = {v ∈ Tp(M) π1(v) = π2(v) = π3(v) = 0 }

so c(E0) = c(E1) = 0, c(E2) = 1, c(E3) = 3, and c(E4) = 3. Since c(F ) = 0+0+1+3 = 4, which is the
codimension of V4(I) in G4(TR

7), Cartan’s Test is verified and the flag is regular.
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Exercise 4.10: Show that, for E ∈ V4(I) ∩ G4(TR
7, dx), every flag is regular. (Hint: Rotations in R

4

preserve the self-dual equations.)

Exercise 4.11: Write the exterior derivative d : Ω1(R4) → Ω2(R4) as a sum d+ +d− where d± : Ω1(R4) →
Ω2

±(R4). Show that if a 1-form λ satisfies d+λ = 0, then locally it can be written in the form λ = df + ψ,
where ψ is real analytic. Use this result to show that if d+λ = 0, then there exist non-vanishing self-dual
2-forms Υ satisfying dΥ = λ∧Υ. (Hint: You will want to recall that any closed self-dual or anti-self-dual
2-form is real analytic and also that if Υ is self-dual while Λ is anti-self dual, then Υ∧Λ vanishes identically.
What can you say about the local solvability of the equation dΥ = λ∧Υ for Υ ∈ Ω2

+(R4) if you don’t
have d+λ = 0? (I don’t expect a complete answer to this yet. I just want you to think about the issue. We’ll
come back to this later.

Example 4.3: Special Lagrangian Manifolds in C
n. Let M = C

n with standard complex coordi-
nates z1, . . . , zn. Write zk = xk + i yk, as usual. Let I be the ideal generated by the Kähler 2-form

ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn

and the n-form
Φ = Im(dz1 ∧ · · · ∧ dzn)

= dy1 ∧ dx2 ∧ · · · ∧ dxn + dx1 ∧ dy2 ∧ · · · ∧ dxn + · · ·
+ dx1 ∧ dx2 ∧ · · · ∧ dyn + (higher order terms in {dyk})

The n-dimensional integral manifolds of I are known as special Lagrangian. They and their generalizations
to the special Lagrangian submanifolds of Kähler-Einstein manifolds are the subject of much interest now
in mathematical physics.

Consider the integral element E ∈ Vn(I) based at 0 ∈ C
n defined by the relations

dy1 = dy2 = · · · = dyn = 0.

Let Ek ⊂ E be defined by the additional relations dxj = 0 for j > k. Then, for k < n−1, the polar
space for Ek is easily seen to be defined by the relations dyj = 0 for j ≤ k. In particular, c(Ek) = k
for k < n−1. However, for k = n−1, the form Φ enters into the computation of the polar equations, showing
that H(En−1) = En. Consequently, c(En−1) = n. It follows that Vn(I) must have codimension at least

0 + 1 + · · ·+ (n−2) + n = 1
2(n2−n+2).

On the other hand, on any nearby integral element E∗, the 1-forms dxi are linearly independent, so it can
be described by relations of the form

dya − pa
i dxi = 0.

The condition that ω vanish on E∗ is just that pa
i = pi

a, while the condition that Φ vanish on E∗ is a
polynomial equation in the pa

i of the form

0 = p1
1+p2

2+ · · ·+pn
n + (higher order terms in {pa

i }).

This equation has independent differential from the equations pa
i = pi

a at the integral element E (defined
by pa

i = 0). Consequently, Vn(I) is smooth near E and of codimension 1
2
(n2−n+2) in Gn(TC

n). Thus, by
Cartan’s Test, the flag is regular.

4.4. The notion of generality of integral manifolds

It is very useful to know not only that integral manifolds exist, but ‘how many’ integral manifolds exist.
I now want to make this into a precise notion and give the answer.

Suppose that F = (E0, E1, . . . , En) is a regular flag of a real analytic EDS (M, I). By the Cartan-Kähler
Theorem, there exists at least one real analytic integral manifold Nn ⊂ M containing the basepoint p of En

and satisfying TpN = En. Set

ck =

{ 0 for k = −1;
c(Ek) for 0 ≤ k < n; and
s for k = n.
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and define sk = ck − ck−1 for 0 ≤ k ≤ n.
Choose a real analytic coordinate system

(x, u) = (x1, . . . , xn, u1, . . . us) : U → R
n+s

centered on p ∈ U with the following properties:
(i) N ∩ U ⊂ U is defined by ua = 0.

(ii) Ek ⊂ En is defined by dxj = 0 for j > k.
(iii) H(Ek) is defined by dua = 0 for a ≤ ck when 0 ≤ k < n.

Exercise 4.12: Explain why such a coordinate system must exist.

Define the level λ(a) of an integer a between 1 and s to be the smallest integer k ≥ 0 for which a ≤ ck.
Note that 0 ≤ λ(a) ≤ n. Note that there are exactly sk indices of level k.

Now, let C denote the collection of real analytic integral manifolds of (U, I) that are ‘near’ N in the
following sense: An integral manifold N∗ belongs to C if it can be represented by equations of the form

ua = F a(x1, . . . , xn)

where the F a are real analytic functions defined on a neighborhood of x = 0 and, moreover, these functions
and their first partial derivatives are ‘sufficiently small’ near x = 0. (‘Sufficiently small’ can be made precise
in terms of a connected neighborhood of the flag F = (E0, . . . , En) in the space of regular flags.)

If the index a has level k, define the function fa on a neighborhood of 0 in R
k by

fa(x1, . . . , xk) = F a(x1, . . . , xk, 0, . . . , 0).

Then fa is a function of k variables. (By convention, we will sometimes refer to a constant as a function
of 0 variables.) We then have a mapping

N∗ �−→ {fa}1≤a≤s.

A close analysis of the proof of the Cartan-Kähler Theorem then shows that this correspondance between
the elements of C and collections of ‘small’ functions {fa}1≤a≤s consisting of

s0 constants,
s1 functions of one variable,
s2 functions of two variables,

...
sn functions of n variables.

is one-to-one and onto.

Example 4.4: Self-Dual 2-Forms again. Looking at the self-dual 2-forms example, one sees the real
analytic functions

f1(x1, x2) = u3(x1, x2, 0, 0)

f2(x1, x2, x3) = u1(x1, x2, x3, 0)

f3(x1, x2, x3) = u2(x1, x2, x3, 0)

can be specified arbitrarily and that there is only one solution with any such triple of functions f i as it’s
‘initial data’.

Exercise 4.13: Consider the EDS (R2n, 〈dx1∧dy1+ · · ·+dxn∧dyn〉) whose n-dimensional integral manifolds
are the Lagrangian submanifolds of R

2n. Compare and contrast the Cartan-Kähler description of these
integral manifolds near the n-plane N defined by y1 = y2 = · · · = yn = 0 with the more common description
as the solutions of the equations

yi =
∂f

∂xi

where f is an arbitrary differentiable function of n variables. Is there a contradiction here?
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