Lecture 6. Applications 2: Weingarten Surfaces, etc.

This lecture will consist entirely of examples drawn from geometry, so that you can get some feel for
the variety of applications of the Cartan-Kahler Theorem.
6.1. WEINGARTEN SURFACES

Let  : N — R? be an immersion of an oriented surface and let u : N — S? be the associated oriented
normal, sometimes known as the Gauss map. Recall that we have the two fundamental forms

I=dx - dx, I=—du-dx.

The eigenvalues of II with respect to I are known as the principal curvatures of the immersion. On the open
set N* C N where the two eigenvalues are distinct, they are smooth functions on N. The complement N\ N*
is known as the umbilic locus. For simplicity, I am going to suppose that N* = N, though many of the
constructions that I will do can, with some work, be made to go through even in the presence of umbilics.

Possibly after passing to a double cover, we can define vector-valued functions ej,es : N — S? so
that e; x e3 = u and so that, setting 7’ = e; - dx, we can write

dr=e1 m+e 12,

—du =e; k1M + €2 K272,

where k1 > ko are the principal curvatures. The immersion = defines a Weingarten surface if the principal
curvatures satisfy a (non-trivial) relation of the form F'(x1, ko) = 0. (For a generic immersion, the functions x;
satisfy driadrs # 0, at least on a dense open set.) For example, the equations k;+re = 0 and k1K = 1
define Weingarten relations, perhaps better known as the relations H = 0 (minimal surfaces) and K = 1,
respectively.

I want to describe a differential system whose integral surfaces are the Weingarten surfaces. For un-
derlying manifold M, I will take G x R? where G is the group of rigid motions of 3-space as described in
Example 3.7 (I will mantain the notation established there) and the coordinates on the R? factor will be
and k9. Consider the ideal Z = (6, 01,62, Y ), where

Op=w3, 01 =ws3 —Kiwi, br=wsr—kawa, T =drinrdks.

Exercise 6.1: Explain how every Weingarten surface without umbilic points gives rise to an integral 2-
manifold of (M, Z) and, conversely why every integral 2-manifold of (M,Z) on which wyrws is nonvanishing
comes from a Weingarten surface in R? by the process you have described.

Now let’s look a little closer at the algebraic structure of Z. First of all, by the structure equations

d90 = d(U3 = —W31 AW1 — W32 AW2
= —(91 + K1 wl) AWl — (92 + RQ(UQ) AWa

= —91 AW — 92 ANW2 .
Then, again, by the structure equations

d91 = d(U31 — dﬁl AWl — K1 dwl
= —w32 Awa1 — dR1 Awr + K1 (W12 Awe + w1z Aws)
= — (02 + Kawa) Awa1 — dk1 Awr + K1 (—wa1 Aws +wig Abp)

= —dﬁl ANW1 — (Hl—ﬁg)wlg N W2 mod {90, 91, 92}
A similar computation gives
d92 = —(Rl—ﬁg)WQl AW — dﬁg AN W2 mod {90, 91, 92}
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Thus, setting 71 = dr1, T2 = (k1—k2)wa1, and w3 = dka, we have
1= <90,91,92, T AWL+To AW, T2 AWL+T3 AW, T1 AT3 >alg
Now, on the open set M+ C M where k1 > Ko, the 1-forms
w1, we, Oy, 01, 02, w1, T2, T3

are linearly independent and are a basis for the 1-forms. For any e € TM™ we can write its components in
this basis as

wile) =a;, (i=1,2),

9]'(6) =1, (.7 =0,1, 2);

mx(e) =pk, (k=1,2,3).
The vector e spans a 1-dimensional integral element F if and only if it is nonzero and satisfies to = t; = t3 = 0.

Exercise 6.2: Explain why this shows that all of the elements in V;(Z) are ordinary.

Now, assuming e spans F € Vi(Z), the polar space H(FE) is then defined as the set of vectors v that
annihilate the 1-forms 6; and the three 1-forms

e— (M Awi+Te Awg) = prwi + Paws — a1 T — Az T2
64(7T2/\w1+7rg/\w2)=p2w1+p3w2 — Qa1 Ty — A2 T3

ea(m amg) = — D371 +p17s.

Clearly, for any ‘generic’ choice of the quantities (a1, ag, p1, p2, p3), these three 1-forms will be linearly
independent, so that H(F) will have dimension 2. (Remember that M ™ has dimension 8.) In this case, the
flag (0, E, H(E)) will be regular with characters (so, s1, s2) = (3,3, 0). From the description of the generality
of solutions given in the last Lecture, it follows that the ‘general’ Weingarten surface depends on 3 constants
and 3 functions of one variable.

Exercise 6.3: Describe the set of E2 C V2(Z) on which wjaws is nonzero. Show that this is not a smooth
submanifold of G3(T'M) and describe the singular locus. Show, however, that every Fy € VJ'(Z) on which
wiAws is nonzero does contain a regular flag.

Exercise 6.4: Describe which curves (z(t),e1(t), e2(t), es(t), k1(t), ka(t)) in M™T represent regular 1-
dimensional integral manifolds of Z.

Exercise 6.5: Suppose that you want to prescribe the relation F'(k1, k2) = 0 beforehand and then describe
all of the (umbilic-free) surfaces in R? that satisfy F (k1,k2) = 0. How would you set this up as an exterior
differential system? What are its characters?

6.2. ORTHOGONAL COORDINATES ON 3-MANIFOLDS

Suppose now that N2 is a 3-manifold and that ¢ : TN — R is a Riemmanian metric, i.e., a smooth
function on T'N with the property that, on each TN, g is a positive definite quadratic form. A coordinate
chart (z', 22, 2%) : U — R® is said to be g-orthogonal if, on U,

g = g11 (dz")® + ga2 (dz?)* + g33 (da®)?,

i.e., if the coordinate expression g = g;;dz’dx’ satisfies g;; = 0 for i different from j. This is three
equations for the three coordinate functions x*. I now want to describe an exterior differential system whose
3-dimensional integral manifolds describe the solutions to this problem.
First, note that, if you have a solution, then the 1-forms 7n; = ,/g;; dz* form a g-orthonormal coframing,
i.e.,
g=m>+n?+n.
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This coframing is not the most general coframing, though, because it satisfies
m ndny =2 Adng = nz ndnz =0,

since each 7; is a multiple of an exact 1-form. Conversely, any g-orthonormal coframing (11,72, 73) that
satisfies n;adn; = 0 for i = 1,2, 3 is locally of the form n; = A; dz; for some functions A; > 0 and %, by the
Frobenius Theorem. (Why?)

Thus, up to an application of the Frobenius Theorem, the problem of finding g-orthogonal coordinates
is equivalent to finding g-orthonormal coframings (71, 72, 73) satisfying n;adn; = 0. I now want to set up an
exterior differential system whose integral manifolds reprsent these coframings.

To do this, let 7 : FF — N be the g-orthonormal coframe bundle of N, i.e, a point of F'is a quadruple f =
(x,u1, uz, uz) where z = 7(f) belongs to N and u; € T; N are g-orthonormal. This is an O(3)-bundle over N
and hence is a manifold of dimension 6. There are canonical 1-forms w1, ws, w3 on F that satisfy

wi(v) = u; (7' (v)), for all v € Ty M with f = (z, u, ug, u3).

These 1-forms have the ‘reproducing property’ that, if n = (11, 72,73) is a g-orthonormal coframing
on U C M, then regarding n as a section of F' over U via the map

0'77(.23) = (J?, (771)%) (772)9c; (773)96);

we have U;(wl,(UQ,LUg) = (N1,M2,13)-

Exercise 6.6: Prove this statement. Prove also that 7*(x1) = wjrwsaws, and that a 3-dimensional
submanifold P C F can be locally represented as the graph of a local section o : U — F if and only
if wyAw2Aws is nonvanishing on P.

Consider the ideal 7 = (wyAdwy, wandws, wsndws ). The 3-dimensional integral manifolds of Z on which
wiAwzAwsg is nonvanishing are then the desired local sections. We now want to describe these integral
manifolds.

First, it is useful to note that, just as for the orthonormal (co-)frame bundle of Euclidean space, there
are unique 1-forms w;; = —wj; that satisfy the structure equations

3
dwi = — E Wij AWy .
j=1

The 1-forms wq, ws, w3, w3, w31, w2 are then a basis for the 1-forms on F.
By the structure equations, an alternative description of 7 is

7= <LU2/\(U3/\(U23, W3 AWl ANW31, W1 /\(4)2/\(4)12>.

Let G3(TF,w) denote the set of tangent 3-planes on which wjawsAws is nonvanishing. Any E € G3(TF,w)
is defined by equations of the form

w23 — Pp11wi — pr2wz —pizwz =0
w31 — P21 W1 — P2 wz — pagw3z =0

W12 — pP31w1 — Pp3aw2 —p3zw3z =0

Such a plane E is an integral element of Z if and only the coefficients p;; satisfy pi1 = pa2 = p33 = 0, which
shows that V3(Z) N G5(TF,w) consists entirely of ordinary integral elements. (Why?) Since Z is generated
in degree 3, each 1-plane or 2-plane is an ordinary integral element of Z. Moreover, since Z is generated
by three 3-forms, it follows that for any E; € V2(Z), the codimension of H(FEs) in T,F is at most 3. In
particular, every such Fs has at least one extension to a 3-dimensional integral element, so that r(F3) > 0
for every Ey € V5(Z).



If the metric g is real analytic, then the Cartan-Kéhler Theorem applies and it follows that there will
be 3-dimensional integral manifolds of Z and that, in fact, the generic real analytic surface in F' lies in such
an integral manifold.

This would be enough to solve our problem, but it is useful to determine the explicit condition that
makes a surface in F' be a regular integral manifold. To do this, we need to determine V5 (Z). Now, suppose
that E9 is spanned by two vectors a and b and set a; = w;(a) and b; = w;(b). A vector v will lie in the polar
space of Fs if and only if it is annihilated by the three 1-forms

(a A b) - ((UQ ANW3 /\(4)23) = (agbg—agbg) w23
(a/\ b) — ((U3 A W1 /\(4)31) = (agbl—albg) w31 mod {wl, w2, (U3} .
(a A b) — (w1 N W2 /\(4)12) = (albg—agbl) w12

In particular, r(Es) = 0 and H(F3) = E3 lies in G3(TF,w) when all of the numbers
{(agbz—asbs), (asbi—a1bs), (a1ba—asb1)}
are nonzero.

Exercise 6.7: Show that this computation leads to the following geometric description of the regular integral
surfaces of Z. A regular integral surface can be seen as a surface S C M and a choice of a g-orthonormal
coframing n = (11, 72,7n3) along S such that none of the n;an; (i # j) vanish on the tangent planes to
the surface S. By the Cartan-Ké&hler Theorem, a real analytic coframing satisfying this nondegeneracy
condition defined along a real analytic surface S can be ‘thickened’ uniquely to a real analytic coframing in
a neighborhood of S in such a way that each of the 7; become integrable (i.e., locally exact up to multiples).

6.3. THE EXISTENCE OF LOCAL LIE GROUPS

As you know, every Lie group G has an associated Lie algebra structure on the tangent space g = T.G.
This Lie algebra structure is a skewsymmetric bilinear pairing [,] : g x g — g that satisfies the Jacobi identity

[u, [v,w]] + [v, [w,u]] + [w, [u,v]] =0

for all u,v,w € g. One way this shows up in the geometry of G (there are many ways) is that, as discussed
in Lecture 2, the canonical left invariant 1-form 7 on G satisfies the Mauer-Cartan equation dn = —%[77, 7).

We have already seen Cartan’s Theorem, which says that any g-valued 1-form w on a connected and
simply connected manifold M that satisfies dw = —% [w, w] is of the form w = g*n for some g : M — G, unique
up to composition with left translation. This implies, in particular, that there is at most one connected and
simply connected Lie group associated to each Lie algebra.

I now want to consider the existence question: Suppose that we are given a Lie algebra, i.e., a vector
space g over R with a skewsymmetric bilinear pairing [,]: g x g — g that satisfies the Jacobi identity. Does
there exist a Lie group G with Lie algebra g? Now, the answer is known to be ‘yes’; but it’s rather delicate
because of certain global topological issues that I don’t want to get into here. What I want to do instead
is use the Cartan-Kéahler Theorem to give a quick, simple proof that there exists a local Lie group with Lie
algebra g.

What this amounts to is showing that there exists a g-valued 1-form 7 on a neighborhood U of 0 € g with
the property that g : Tog — g is the identity and that it satisfies the Maurer-Cartan equation dn = —% [n,7].

Exercise 6.8: Assuming such an 7 exists, prove that there exists some 0-neighborhood V' C U and a
smooth (in fact, real analytic) map p: V x V — U satisfying

(1) (Identity) p(0,v) = p(v,0) =wv for allv € V,

(2) (Inverses) For each v € V| there is a v* € V so that u(v,v*) = u(v*,v) = 0.

(3) (Associativity) For u,v,w € V, pu(p(u,v), w) = p(u, u(v, w)) when both sides make sense,
and so that, if L, is defined by L, (u) = p(v,u), then (Ly)'(1n,(w)) = w for all w € T,g = g.

— ~—

To prove the existence of 7, we proceed as follows: First identify g with R™ by choosing linear coor-
dinates x = (z). Now, let M = GL(n,R) x R", with u : M — GL(n,R) and x : M — R" being the
projections onto the first and second factors. Now set

O =d(udx) + 3 [udx,udx| = ().



Exercise 6.9: Show that the Jacobi identity implies that (in fact, is equivalent to the fact that) [¢, [¢, ¢]] =
0 for any g-valued 1-form . Conclude that © satisfies dO = % [@, udx] — % [u dx, @].

From this exercise, it follows that the ideal 7 generated by the n component 2-forms ©? is generated
algebraically by these 2-forms.

Exercise 6.10: If u = (u!), then show that there exist (linearly independent) 1-forms 7/ satisfying
7) = du’ mod {dz', ..., dz"}

for which % = W;Adﬂ?j .

The existence of n will be established if we can show that there exists an n-dimensional integral mani-
fold N C M of T passing through p = (I,,,0) on which the n-form dz'a - - - rdz™ is nonvanishing.

To do this, consider the integral element E, C T, M defined by the equations 7r§- =0,and let E, C E,
be defined by the additional equations da/ = 0 for j > k for 0 < k < n. Since the 7r§- are linearly independent,
it follows that

H(Ep)={veT,M|ri(v)=0for 1 <j<k},

so ¢(Ey) = nk for 0 < k < n. Thus, for the flag F = (FEy, ..., E,), we have
o(F)=04+n+2n+---+(n—1)n = in*(n-1).
On the other hand an n-plane E € G,,(T'M, x) is defined by equations of the form
7r§- — pé-k dz* =0

and it will be an integral element if and only if the %nQ (n—1) linear equations p;'- w = Dh ; hold. Consequently,
Cartan’s Test is satisfied and the flag is regular. The Cartan-Kéhler Theorem now implies that there is an
integral manifold of 7 tangent to F,. QED

Exercise 6.11: If you are familiar with the proof of this theorem that uses only ODE techniques (see, for
example, [Helgason]), compare that proof with this one. Can you see how the two are related?

6.4. HYPER-KAHLER METRICS

This example is somewhat more advanced that the previous ones. I'm including it for the sake of those
who might be interested in seeing how the Cartan-K&hler theorem can be used to study more advanced
problems in differential geometry.

A hyper-Kihler structure on a manifold M" is a quadruple (g, I, J, K) where g is a Riemannian metric
and I,J, K : TM — TM are g-parallel and orthogonal skewcommuting linear transformations of T'M that
satisfy

I’=J"=K?= -1, IJ=-K, JK=-I, KI=-J

In other words (I, J, K) define a right quaternionic structure on the tangent bundle of M that is orthogonal
and parallel with respect to g.
Suppose we have such a structure on M. Set

wi(v,w) = g(ITv, w), wa(v,w) = g(Jv,w), ws(v,w) = g(Kv,w).

Then these three 2-forms are g-parallel and hence closed. Moreover, these three 2-forms are enough data
to recover I, J, K and even g. For example, I is the unique map that satisfies ws(Iv, w) = —ws (v, w) and
then g(v,w) = w1 (v, Iw).

There remains the question of ‘how many’ such hyper-Kéahler metrics there are locally. One obvious
example is to take M = H" with its standard metric and let I, J, and K be the usual multiplication (on the
right) by the obvious unit quaternions. However, this is not a very interesting example.
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Two of these 2-forms at a time can indeed be made flat in certain coordinates: If we set ) = wy — i ws,
it is easy to compute that
Qlz,y) = Uz, Iy) = iQ(z,y)

for all tangent vectors =,y € T,M. Thus, Q is a closed 2-form of type (2,0) with respect to the complex
structure I. Moreover, it is easy to compute that Q" is nowhere vanishing but that Q*t! = 0. It follows
from the complex version of the Darboux Theorem that every p € M has a neighborhood U on which there
exist complex coordinates z', ..., 22" that are holomorphic for the complex structure I and for which

Q=dz' Adz"T +dz? Ad2" T2 4+ -+ d2™ A dZP

These coordinates are unique up to a holomorphic symplectic transformation. Meanwhile, the 2-form w; in
these coordinates takes the form
V=1

w1 = Y5 ugy dz' AdZ

where U = (u;;) is a positive definite Hermitian matrix of functions that satisfies the equation ‘U QU = Q

where o .
Q= ( ~I, On> '

One cannot generally choose the coordinates to make U be the identity matrix. Indeed, this is the necessary
and sufficient condition that the hyper-Kéhler structure be locally equivalent to the flat structure mentioned
above.

Conversely, if one can find a smooth function U on a domain D C C*" with values in positive defi-
nite Hermitian 2n-by 2n matrices satisfying the algebraic condition 'U QU = Q as well as the differential
condition that the 2-form

w1 = —V2_1 iz dz' A dz’

be closed, then setting
wy —iws =dzt Adz" T+ d2? Ad2"T? 4+ d2 A dZ

defines a triple (w1, ws,ws3) on D that determines a hyper-Kéhler structure on D.
This suggests the construction of a differential ideal whose integral manifolds will represent the desired
functions U. First, define

Z={HcGL(2n,C)|H="H>0, " HQH=Q }.

Exercise 6.12: Show that Z can also be described as the space of matrices H =*A A with A € Sp(n,C) =
{A € GL(2n,C) |'AQ A = @ } and hence that Z is just the Riemannian symmetric space Sp(n,C)/Sp(n),
whose dimension is 2n?+n. In particular, Z is a smooth submanifold of GL(2n, C).

Now define M = Z x C*" and let H = (hi;) : M — Z be the projection onto the first factor and z :
M — C*" be the projection onto the second factor. Let Z be the ideal generated by the (real) 3-form

0= @dhij/\dzi/\dij:d(@hij dzi/\dzj)-

Obviously 7 is generated algebraically by O, since © is closed. One integral manifold of © is given by the
equations H = I5,,, which corresponds to the flat solution. We want to determine how general the space of
solutions is near this solution.

First, let me note that the group Sp(n,C) acts on M preserving © via the action

A-(H, z)=("AHA, A '2).

The additive group C*" also acts on M via translations in the C*"-factor, and this action also preserves ©.
These two actions combined generate a transitive action on M preserving O, so the ideal 7 is homogeneous.
Thus, we can do our computations at any point, say p = (Izy, 0), which I fix from now on.
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Let E4, C T,M be the tangent space at p to the flat solution H = Iy,. Let F = (Ey, ..., E4,) be any
flag. Because 7 is generated by a single 3-form, it follows that

o(Ek) < (];)

for all k. (Why?) On the other hand, since the codimension of Ey, in T,M is 2n?+n = dim Z, equality
cannot hold for k£ > 2n+1.

Now, I claim that there exists a flag F' for which ¢(Fy) = (g) for k < 2n+1 while ¢(Ey) = 2n’+n
when 2n+1 < k < 4n. Moreover, I claim that Cartan’s Test is satisfied for such a flag, i.e., V4,(Z) N
G4n(TM, z) is a smooth submanifold of G4,(T'M,z) of codimension

c(F) =c(Eo) + -+ c(Ein—1) = %n(Zn —1)(2n+1).

Consequently, such a flag is regular.

Since si(F) = k—1 for 0 < k < 2n+1 and sx(F) = 0 for k > 2n+1, the description of the generality
of solutions near the flat solution now shows that the solutions depend on 2n ‘arbitrary’ functions of 2n+1
variables and that a solution is determined by its restriction to a generic (real analytic) submanifold of
dimension 2n+1. Since the symplectic biholomorphisms depend only on arbitrary functions of 2n variables
(why?), it follows that the generic hyper-Kéhler structure is not flat. In fact, as we shall see in the next
lecture, this calculation will yield much more detailed information about the local solutions.

I’'m only going to sketch out the proof of these claims and leave much of the linear algebra to you.

The first thing to do is to get a description of the relations among the components of dH,. Computing
the exterior derivatives of the defining relations H = *H and ‘H Q H = QQ gives

dH ="'dH, YdHYQH +'HQdH = 0.
Evaluating this at p = (I4,,0), gives

dH, ="'dH,,  '(dH,)Q+ QdH, =0,

(5 2)

where o = & and 8 = ! are n-by-n matrices of complex-valued 1-forms. Writing z* = u’ and zt" = ¢?
for 1 <i < n, it follows that

so it follows that

0, = Ll aia (dul adi? — dv? pdv?) + Y52 (B adu’ A dv? + Bij adv' A di)

Now the only relations among the a-components and the B-components are o;; — &z = Bi; — B = 0.
Using this information, you can verify the computation of the ¢(E}y) simply by finding an Fs, 1 C Ey, for
which ¢(F2,41) = 2n?+n, since this forces all the rest of the formulae for ¢(Ex). (Why?) (Such an Es, 1
shouldn’t be hard to find, since the generic element of Ga,41(F4,) works.)

Now, to verify the codimension of V4, (Z), note that any E}, C T,M that is transverse to the Z factor
can be defined by equations of the form

iz = Aigi du’ — Ajzy, dii”* + Bigy, dv* — B, dv*
Bij = Pk du® + Q5 du® + Rijp dv* + S, 7, do*

where the coefficients are arbitrary subject to the relations Pijx = Pjik, Q5 = Qjigs Rijk = Rjik, Sijr =

S;ir- Now you just need to check that the condition that ©, vanish on Ej, is exactly 3n(2n+1)(2n—1

linear relations on the coefficients A, B, P, @), R, and S.
Exercise 6.13: Fill in the details in this proof.



