
Lecture 6. Applications 2: Weingarten Surfaces, etc.

This lecture will consist entirely of examples drawn from geometry, so that you can get some feel for
the variety of applications of the Cartan-Kähler Theorem.

6.1. Weingarten surfaces

Let x : N → R
3 be an immersion of an oriented surface and let u : N → S2 be the associated oriented

normal, sometimes known as the Gauss map. Recall that we have the two fundamental forms

I = dx · dx, II = −du · dx.

The eigenvalues of II with respect to I are known as the principal curvatures of the immersion. On the open
set N∗ ⊂ N where the two eigenvalues are distinct, they are smooth functions on N . The complement N \N∗

is known as the umbilic locus. For simplicity, I am going to suppose that N∗ = N , though many of the
constructions that I will do can, with some work, be made to go through even in the presence of umbilics.

Possibly after passing to a double cover, we can define vector-valued functions e1, e2 : N → S
2 so

that e1 × e2 = u and so that, setting ηi = ei · dx, we can write

dx = e1 η1 + e2 η2 ,

−du = e1 κ1 η1 + e2 κ2 η2 ,

where κ1 > κ2 are the principal curvatures. The immersion x defines a Weingarten surface if the principal
curvatures satisfy a (non-trivial) relation of the form F (κ1, κ2) = 0. (For a generic immersion, the functions κi

satisfy dκ1∧dκ2 �= 0, at least on a dense open set.) For example, the equations κ1+κ2 = 0 and κ1κ2 = 1
define Weingarten relations, perhaps better known as the relations H = 0 (minimal surfaces) and K = 1,
respectively.

I want to describe a differential system whose integral surfaces are the Weingarten surfaces. For un-
derlying manifold M , I will take G × R

2 where G is the group of rigid motions of 3-space as described in
Example 3.7 (I will mantain the notation established there) and the coordinates on the R

2 factor will be κ1

and κ2. Consider the ideal I = 〈 θ0, θ1, θ2, Υ 〉, where

θ0 = ω3 , θ1 = ω31 − κ1 ω1 , θ2 = ω32 − κ2 ω2 , Υ = dκ1 ∧ dκ2 .

Exercise 6.1: Explain how every Weingarten surface without umbilic points gives rise to an integral 2-
manifold of (M, I) and, conversely why every integral 2-manifold of (M, I) on which ω1∧ω2 is nonvanishing
comes from a Weingarten surface in R

3 by the process you have described.

Now let’s look a little closer at the algebraic structure of I. First of all, by the structure equations

dθ0 = dω3 = −ω31 ∧ω1 − ω32 ∧ ω2

= −(θ1 + κ1 ω1) ∧ ω1 − (θ2 + κ2 ω2) ∧ω2

= −θ1 ∧ω1 − θ2 ∧ω2 .

Then, again, by the structure equations

dθ1 = dω31 − dκ1 ∧ω1 − κ1 dω1

= −ω32 ∧ ω21 − dκ1 ∧ω1 + κ1 (ω12 ∧ω2 + ω13 ∧ω3)
= −(θ2 + κ2 ω2) ∧ ω21 − dκ1 ∧ω1 + κ1 (−ω21 ∧ω2 + ω13 ∧ θ0)
≡ −dκ1 ∧ω1 − (κ1−κ2)ω12 ∧ω2 mod {θ0, θ1, θ2}.

A similar computation gives

dθ2 ≡ −(κ1−κ2)ω21 ∧ω1 − dκ2 ∧ω2 mod {θ0, θ1, θ2}.
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Thus, setting π1 = dκ1, π2 = (κ1−κ2)ω21, and π3 = dκ2, we have

I = 〈 θ0, θ1, θ2, π1 ∧ω1+π2 ∧ω2, π2 ∧ω1+π3 ∧ ω2, π1 ∧π3 〉alg

Now, on the open set M+ ⊂ M where κ1 > κ2, the 1-forms

ω1, ω2, θ0 , θ1, θ2, π1, π2, π3

are linearly independent and are a basis for the 1-forms. For any e ∈ TM+ we can write its components in
this basis as

ωi(e) = ai , (i = 1, 2),
θj(e) = tj , (j = 0, 1, 2),
πk(e) = pk , (k = 1, 2, 3).

The vector e spans a 1-dimensional integral element E if and only if it is nonzero and satisfies t0 = t1 = t2 = 0.

Exercise 6.2: Explain why this shows that all of the elements in V1(I) are ordinary.

Now, assuming e spans E ∈ V1(I), the polar space H(E) is then defined as the set of vectors v that
annihilate the 1-forms θi and the three 1-forms

e (π1 ∧ ω1+π2 ∧ω2) = p1 ω1 + p2 ω2 − a1 π1 − a2 π2

e (π2 ∧ ω1+π3 ∧ω2) = p2 ω1 + p3 ω2 − a1 π2 − a2 π3

e (π1 ∧π3) = − p3 π1 + p1 π3 .

Clearly, for any ‘generic’ choice of the quantities (a1, a2, p1, p2, p3), these three 1-forms will be linearly
independent, so that H(E) will have dimension 2. (Remember that M+ has dimension 8.) In this case, the
flag

(
0, E, H(E)

)
will be regular with characters (s0, s1, s2) = (3, 3, 0). From the description of the generality

of solutions given in the last Lecture, it follows that the ‘general’ Weingarten surface depends on 3 constants
and 3 functions of one variable.

Exercise 6.3: Describe the set of E2 ⊂ V2(I) on which ω1∧ω2 is nonzero. Show that this is not a smooth
submanifold of G2(TM) and describe the singular locus. Show, however, that every E2 ∈ V r

2 (I) on which
ω1∧ω2 is nonzero does contain a regular flag.

Exercise 6.4: Describe which curves
(
x(t), e1(t), e2(t), e3(t), κ1(t), κ2(t)

)
in M+ represent regular 1-

dimensional integral manifolds of I.

Exercise 6.5: Suppose that you want to prescribe the relation F (κ1, κ2) = 0 beforehand and then describe
all of the (umbilic-free) surfaces in R

3 that satisfy F (κ1, κ2) = 0. How would you set this up as an exterior
differential system? What are its characters?

6.2. Orthogonal Coordinates on 3-manifolds

Suppose now that N3 is a 3-manifold and that g : TN → R is a Riemmanian metric, i.e., a smooth
function on TN with the property that, on each TxN , g is a positive definite quadratic form. A coordinate
chart (x1, x2, x3) : U → R

3 is said to be g-orthogonal if, on U ,

g = g11 (dx1)2 + g22 (dx2)2 + g33 (dx3)2,

i.e., if the coordinate expression g = gij dxi dxj satisfies gij = 0 for i different from j. This is three
equations for the three coordinate functions xi. I now want to describe an exterior differential system whose
3-dimensional integral manifolds describe the solutions to this problem.

First, note that, if you have a solution, then the 1-forms ηi = √
gii dxi form a g-orthonormal coframing,

i.e.,
g = η1

2 + η2
2 + η3

2.
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This coframing is not the most general coframing, though, because it satisfies

η1 ∧ dη1 = η2 ∧ dη2 = η3 ∧ dη3 = 0,

since each ηi is a multiple of an exact 1-form. Conversely, any g-orthonormal coframing (η1, η2, η3) that
satisfies ηi∧dηi = 0 for i = 1, 2, 3 is locally of the form ηi = Ai dxi for some functions Ai > 0 and xi, by the
Frobenius Theorem. (Why?)

Thus, up to an application of the Frobenius Theorem, the problem of finding g-orthogonal coordinates
is equivalent to finding g-orthonormal coframings (η1, η2, η3) satisfying ηi∧dηi = 0. I now want to set up an
exterior differential system whose integral manifolds reprsent these coframings.

To do this, let π : F → N be the g-orthonormal coframe bundle of N , i.e, a point of F is a quadruple f =
(x, u1, u2, u3) where x = π(f) belongs to N and ui ∈ TxN are g-orthonormal. This is an O(3)-bundle over N
and hence is a manifold of dimension 6. There are canonical 1-forms ω1, ω2, ω3 on F that satisfy

ωi(v) = ui

(
π′(v)

)
, for all v ∈ TfM with f = (x, u1, u2, u3).

These 1-forms have the ‘reproducing property’ that, if η = (η1, η2, η3) is a g-orthonormal coframing
on U ⊂ M , then regarding η as a section of F over U via the map

ση(x) =
(
x, (η1)x, (η2)x, (η3)x

)
,

we have σ∗
η(ω1, ω2, ω3) = (η1, η2, η3).

Exercise 6.6: Prove this statement. Prove also that π∗(∗1) = ω1∧ω2∧ω3, and that a 3-dimensional
submanifold P ⊂ F can be locally represented as the graph of a local section σ : U → F if and only
if ω1∧ω2∧ω3 is nonvanishing on P .

Consider the ideal I = 〈ω1∧dω1, ω2∧dω2, ω3∧dω3 〉. The 3-dimensional integral manifolds of I on which
ω1∧ω2∧ω3 is nonvanishing are then the desired local sections. We now want to describe these integral
manifolds.

First, it is useful to note that, just as for the orthonormal (co-)frame bundle of Euclidean space, there
are unique 1-forms ωij = −ωji that satisfy the structure equations

dωi = −
3∑

j=1

ωij ∧ωj .

The 1-forms ω1, ω2, ω3, ω23, ω31, ω12 are then a basis for the 1-forms on F .
By the structure equations, an alternative description of I is

I = 〈ω2 ∧ ω3 ∧ω23, ω3 ∧ω1 ∧ω31, ω1 ∧ω2 ∧ ω12 〉.

Let G3(TF, ω) denote the set of tangent 3-planes on which ω1∧ω2∧ω3 is nonvanishing. Any E ∈ G3(TF, ω)
is defined by equations of the form

ω23 − p11 ω1 − p12 ω2 − p13 ω3 = 0
ω31 − p21 ω1 − p22 ω2 − p23 ω3 = 0
ω12 − p31 ω1 − p32 ω2 − p33 ω3 = 0

Such a plane E is an integral element of I if and only the coefficients pij satisfy p11 = p22 = p33 = 0, which
shows that V3(I) ∩ G3(TF, ω) consists entirely of ordinary integral elements. (Why?) Since I is generated
in degree 3, each 1-plane or 2-plane is an ordinary integral element of I. Moreover, since I is generated
by three 3-forms, it follows that for any E2 ∈ V2(I), the codimension of H(E2) in TpF is at most 3. In
particular, every such E2 has at least one extension to a 3-dimensional integral element, so that r(E2) ≥ 0
for every E2 ∈ V2(I).
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If the metric g is real analytic, then the Cartan-Kähler Theorem applies and it follows that there will
be 3-dimensional integral manifolds of I and that, in fact, the generic real analytic surface in F lies in such
an integral manifold.

This would be enough to solve our problem, but it is useful to determine the explicit condition that
makes a surface in F be a regular integral manifold. To do this, we need to determine V r

2 (I). Now, suppose
that E2 is spanned by two vectors a and b and set ai = ωi(a) and bi = ωi(b). A vector v will lie in the polar
space of E2 if and only if it is annihilated by the three 1-forms

(a ∧ b) (ω2 ∧ω3 ∧ω23) ≡ (a2b3−a3b2)ω23

(a ∧ b) (ω3 ∧ω1 ∧ω31) ≡ (a3b1−a1b3)ω31

(a ∧ b) (ω1 ∧ω2 ∧ω12) ≡ (a1b2−a2b1)ω12

⎫⎪⎬
⎪⎭ mod {ω1, ω2, ω3} .

In particular, r(E2) = 0 and H(E2) = E3 lies in G3(TF, ω) when all of the numbers

{(a2b3−a3b2), (a3b1−a1b3), (a1b2−a2b1)}
are nonzero.

Exercise 6.7: Show that this computation leads to the following geometric description of the regular integral
surfaces of I. A regular integral surface can be seen as a surface S ⊂ M and a choice of a g-orthonormal
coframing η = (η1, η2, η3) along S such that none of the ηi∧ηj (i �= j) vanish on the tangent planes to
the surface S. By the Cartan-Kähler Theorem, a real analytic coframing satisfying this nondegeneracy
condition defined along a real analytic surface S can be ‘thickened’ uniquely to a real analytic coframing in
a neighborhood of S in such a way that each of the ηi become integrable (i.e., locally exact up to multiples).

6.3. The existence of local Lie groups

As you know, every Lie group G has an associated Lie algebra structure on the tangent space g = TeG.
This Lie algebra structure is a skewsymmetric bilinear pairing [, ] : g×g → g that satisfies the Jacobi identity[

u, [v, w]
]
+

[
v, [w, u]

]
+

[
w, [u, v]

]
= 0

for all u, v, w ∈ g. One way this shows up in the geometry of G (there are many ways) is that, as discussed
in Lecture 2, the canonical left invariant 1-form η on G satisfies the Mauer-Cartan equation dη = −1

2 [η, η].
We have already seen Cartan’s Theorem, which says that any g-valued 1-form ω on a connected and

simply connected manifold M that satisfies dω = −1
2 [ω, ω] is of the form ω = g∗η for some g : M → G, unique

up to composition with left translation. This implies, in particular, that there is at most one connected and
simply connected Lie group associated to each Lie algebra.

I now want to consider the existence question: Suppose that we are given a Lie algebra, i.e., a vector
space g over R with a skewsymmetric bilinear pairing [, ] : g× g → g that satisfies the Jacobi identity. Does
there exist a Lie group G with Lie algebra g? Now, the answer is known to be ‘yes’, but it’s rather delicate
because of certain global topological issues that I don’t want to get into here. What I want to do instead
is use the Cartan-Kähler Theorem to give a quick, simple proof that there exists a local Lie group with Lie
algebra g.

What this amounts to is showing that there exists a g-valued 1-form η on a neighborhood U of 0 ∈ g with
the property that η0 : T0g → g is the identity and that it satisfies the Maurer-Cartan equation dη = −1

2 [η, η].

Exercise 6.8: Assuming such an η exists, prove that there exists some 0-neighborhood V ⊂ U and a
smooth (in fact, real analytic) map µ : V × V → U satisfying

(1) (Identity) µ(0, v) = µ(v, 0) = v for all v ∈ V ,
(2) (Inverses) For each v ∈ V , there is a v∗ ∈ V so that µ(v, v∗) = µ(v∗, v) = 0.
(3) (Associativity) For u, v, w ∈ V , µ

(
µ(u, v), w

)
= µ

(
u, µ(v, w)

)
when both sides make sense,

and so that, if Lv is defined by Lv(u) = µ(v, u), then (Lv)′
(
ηv(w)

)
= w for all w ∈ Tvg = g.

To prove the existence of η, we proceed as follows: First identify g with R
n by choosing linear coor-

dinates x = (xi). Now, let M = GL(n, R) × R
n, with u : M → GL(n, R) and x : M → R

n being the
projections onto the first and second factors. Now set

Θ = d(u dx) + 1
2

[
u dx, u dx

]
=

(
Θi

)
.
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Exercise 6.9: Show that the Jacobi identity implies that (in fact, is equivalent to the fact that)
[
ψ, [ψ, ψ]

]
=

0 for any g-valued 1-form ψ. Conclude that Θ satisfies dΘ = 1
2

[
Θ, u dx

]
− 1

2

[
u dx, Θ

]
.

From this exercise, it follows that the ideal I generated by the n component 2-forms Θi is generated
algebraically by these 2-forms.

Exercise 6.10: If u = (ui
j), then show that there exist (linearly independent) 1-forms πi

j satisfying

πi
j ≡ dui

j mod {dx1, . . . , dxn}

for which Θi = πi
j∧dxj.

The existence of η will be established if we can show that there exists an n-dimensional integral mani-
fold N ⊂ M of I passing through p = (In, 0) on which the n-form dx1∧ · · ·∧dxn is nonvanishing.

To do this, consider the integral element En ⊂ TpM defined by the equations πi
j = 0, and let Ek ⊂ En

be defined by the additional equations dxj = 0 for j > k for 0 ≤ k ≤ n. Since the πi
j are linearly independent,

it follows that
H(Ek) = { v ∈ TpM πi

j(v) = 0 for 1 ≤ j ≤ k },

so c(Ek) = nk for 0 ≤ k ≤ n. Thus, for the flag F = (E0, . . . , En), we have

c(F ) = 0 + n + 2n + · · ·+ (n−1)n = 1
2
n2(n−1).

On the other hand an n-plane E ∈ Gn(TM, x) is defined by equations of the form

πi
j − pi

jk dxk = 0

and it will be an integral element if and only if the 1
2n2(n−1) linear equations pi

jk = pi
kj hold. Consequently,

Cartan’s Test is satisfied and the flag is regular. The Cartan-Kähler Theorem now implies that there is an
integral manifold of I tangent to En. QED

Exercise 6.11: If you are familiar with the proof of this theorem that uses only ODE techniques (see, for
example, [Helgason]), compare that proof with this one. Can you see how the two are related?

6.4. Hyper-Kähler metrics

This example is somewhat more advanced that the previous ones. I’m including it for the sake of those
who might be interested in seeing how the Cartan-Kähler theorem can be used to study more advanced
problems in differential geometry.

A hyper-Kähler structure on a manifold M4n is a quadruple (g, I, J, K) where g is a Riemannian metric
and I, J, K : TM → TM are g-parallel and orthogonal skewcommuting linear transformations of TM that
satisfy

I2 = J2 = K2 = −1, IJ = −K, JK = −I, KI = −J.

In other words (I, J, K) define a right quaternionic structure on the tangent bundle of M that is orthogonal
and parallel with respect to g.

Suppose we have such a structure on M . Set

ω1(v, w) = g(Iv, w), ω2(v, w) = g(Jv, w), ω3(v, w) = g(Kv, w).

Then these three 2-forms are g-parallel and hence closed. Moreover, these three 2-forms are enough data
to recover I, J , K and even g. For example, I is the unique map that satisfies ω3(Iv, w) = −ω2(v, w) and
then g(v, w) = ω1(v, Iw).

There remains the question of ‘how many’ such hyper-Kähler metrics there are locally. One obvious
example is to take M = H

n with its standard metric and let I, J , and K be the usual multiplication (on the
right) by the obvious unit quaternions. However, this is not a very interesting example.
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Two of these 2-forms at a time can indeed be made flat in certain coordinates: If we set Ω = ω2 − i ω3,
it is easy to compute that

Ω(Ix, y) = Ω(x, Iy) = iΩ(x, y)

for all tangent vectors x, y ∈ TpM . Thus, Ω is a closed 2-form of type (2, 0) with respect to the complex
structure I. Moreover, it is easy to compute that Ωn is nowhere vanishing but that Ωn+1 = 0. It follows
from the complex version of the Darboux Theorem that every p ∈ M has a neighborhood U on which there
exist complex coordinates z1, . . . , z2n that are holomorphic for the complex structure I and for which

Ω = dz1 ∧ dzn+1 + dz2 ∧ dzn+2 + · · ·+ dzn ∧ dz2n.

These coordinates are unique up to a holomorphic symplectic transformation. Meanwhile, the 2-form ω1 in
these coordinates takes the form

ω1 =
√
−1
2 uij̄ dzi ∧ dz̄j

where U = (uij̄) is a positive definite Hermitian matrix of functions that satisfies the equation tU Q U = Q
where

Q =
(

On In
−In On

)
.

One cannot generally choose the coordinates to make U be the identity matrix. Indeed, this is the necessary
and sufficient condition that the hyper-Kähler structure be locally equivalent to the flat structure mentioned
above.

Conversely, if one can find a smooth function U on a domain D ⊂ C
2n with values in positive defi-

nite Hermitian 2n-by 2n matrices satisfying the algebraic condition tU Q U = Q as well as the differential
condition that the 2-form

ω1 =
√
−1
2 uij̄ dzi ∧ dz̄j

be closed, then setting

ω2 − i ω3 = dz1 ∧ dzn+1 + dz2 ∧ dzn+2 + · · ·+ dzn ∧ dz2n

defines a triple (ω1, ω2, ω3) on D that determines a hyper-Kähler structure on D.
This suggests the construction of a differential ideal whose integral manifolds will represent the desired

functions U . First, define

Z = {H ∈ GL(2n, C) H = tH̄ > 0, tH Q H = Q }.

Exercise 6.12: Show that Z can also be described as the space of matrices H = tĀA with A ∈ Sp(n, C) =
{A ∈ GL(2n, C) tAQ A = Q } and hence that Z is just the Riemannian symmetric space Sp(n, C)/Sp(n),
whose dimension is 2n2+n. In particular, Z is a smooth submanifold of GL(2n, C).

Now define M = Z × C
2n and let H = (hij̄) : M → Z be the projection onto the first factor and z :

M → C
2n be the projection onto the second factor. Let I be the ideal generated by the (real) 3-form

Θ =
√
−1
2 dhij̄ ∧ dzi ∧ dz̄j = d

( √
−1
2 hij̄ dzi ∧ dz̄j

)
.

Obviously I is generated algebraically by Θ, since Θ is closed. One integral manifold of Θ is given by the
equations H = I2n, which corresponds to the flat solution. We want to determine how general the space of
solutions is near this solution.

First, let me note that the group Sp(n, C) acts on M preserving Θ via the action

A · (H, z) =
(
tĀH A, Ā−1z

)
.

The additive group C
2n also acts on M via translations in the C

2n-factor, and this action also preserves Θ.
These two actions combined generate a transitive action on M preserving Θ, so the ideal I is homogeneous.
Thus, we can do our computations at any point, say p = (I2n, 0), which I fix from now on.
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Let E4n ⊂ TpM be the tangent space at p to the flat solution H = I2n. Let F = (E0, . . . , E4n) be any
flag. Because I is generated by a single 3-form, it follows that

c(Ek) ≤
(

k

2

)

for all k. (Why?) On the other hand, since the codimension of E4n in TpM is 2n2+n = dimZ, equality
cannot hold for k > 2n+1.

Now, I claim that there exists a flag F for which c(Ek) =
(
k
2

)
for k ≤ 2n+1 while c(Ek) = 2n2+n

when 2n+1 < k ≤ 4n. Moreover, I claim that Cartan’s Test is satisfied for such a flag, i.e., V4n(I) ∩
G4n(TM, z) is a smooth submanifold of G4n(TM, z) of codimension

c(F ) = c(E0) + · · ·+ c(E4n−1) =
4
3
n(2n − 1)(2n + 1).

Consequently, such a flag is regular.
Since sk(F ) = k−1 for 0 < k ≤ 2n+1 and sk(F ) = 0 for k > 2n+1, the description of the generality

of solutions near the flat solution now shows that the solutions depend on 2n ‘arbitrary’ functions of 2n+1
variables and that a solution is determined by its restriction to a generic (real analytic) submanifold of
dimension 2n+1. Since the symplectic biholomorphisms depend only on arbitrary functions of 2n variables
(why?), it follows that the generic hyper-Kähler structure is not flat. In fact, as we shall see in the next
lecture, this calculation will yield much more detailed information about the local solutions.

I’m only going to sketch out the proof of these claims and leave much of the linear algebra to you.
The first thing to do is to get a description of the relations among the components of dHp. Computing

the exterior derivatives of the defining relations H = tH̄ and tH Q H = Q gives

dH = tdH, t(dH)Q H + tH Q dH = 0.

Evaluating this at p = (I4n, 0), gives

dHp = tdHp,
t(dHp)Q + Q dHp = 0,

so it follows that

dHp =
(

α β
β̄ −ᾱ

)

where α = tᾱ and β = tβ are n-by-n matrices of complex-valued 1-forms. Writing zi = ui and zi+n = vi

for 1 ≤ i ≤ n, it follows that

Θp =
√
−1
2 αij̄ ∧

(
dui ∧ dūj − dvj ∧ dv̄i

)
+

√
−1
2

(
βij ∧ dui ∧ dv̄j + β̄ij ∧ dvi ∧ dūj

)

Now the only relations among the α-components and the β-components are αij̄ − αjı̄ = βij − βji = 0.
Using this information, you can verify the computation of the c(Ek) simply by finding an E2n+1 ⊂ E4n for
which c(E2n+1) = 2n2+n, since this forces all the rest of the formulae for c(Ek). (Why?) (Such an E2n+1

shouldn’t be hard to find, since the generic element of G2n+1(E4n) works.)
Now, to verify the codimension of V4n(I), note that any E∗

4n ⊂ TpM that is transverse to the Z factor
can be defined by equations of the form

αij̄ = Aij̄k duk − Ajı̄k dūk + Bij̄k dvk − Bjı̄k dv̄k

βij = Pijk duk + Qijk̄ dūk + Rijk dvk + Sijk̄ dv̄k

where the coefficients are arbitrary subject to the relations Pijk = Pjik, Qijk̄ = Qjik̄, Rijk = Rjik, Sijk̄ =
Sjik̄. Now you just need to check that the condition that Θp vanish on E∗

4n is exactly 4
3n(2n+1)(2n−1)

linear relations on the coefficients A, B, P , Q, R, and S.

Exercise 6.13: Fill in the details in this proof.
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