
Lecture 7. Prolongation

Almost all of the previous examples have been carefully chosen so that there will exist regular flags, so
that the Cartan-Kähler theorem can be applied. Unfortunately, this is not always the case, in which case
other methods must be applied. In this lecture, I’m going to describe those other methods.

7.1. When Cartan’s Test fails.

We have already seen one case where the Cartan-Kähler approach fails, in the sense that it fails to find
the integral manifolds that are actually there. That was in Exercise 3.1, where M = R

3 and the ideal was

I = 〈 dx ∧dz, dy ∧ dz 〉.

Although there are 2-dimensional integral manifolds, namely the planes z = c, no 2-dimensional integral
element is the terminus of a regular flag. It’s not too surprising that this should happen, though, because
the ideal

I ′ = 〈 dx ∧ dz, dy ∧ (dz−y, dx) 〉
which is virtually indistinguisable from I in terms of the algebraic properties of the spaces of integral elements
does not have any 2-dimensional integral manifolds. Some finer invariant of the ideals must be brought to
light in order to distinguish the two cases.

Now, the above examples are admittedly a little artificial, so you might be surprised to see that they
and their ‘cousins’ come up quite a bit.

Example 7.1: Surfaces in R
3 with constant principal curvatures. You may already know how to solve

this problem, but let’s see what the näıve approach via differential systems will give. Looking back at the
discussion of surface theory in Lecture 5, you can see that if we want to find the surfaces in R

3 with principal
curvatures equal to some fixed constants κ1 and κ2 (distinct), then we should look for integral manifolds of
the ideal I on G that is generated by the three 1-forms

θ0 = ω3 , θ1 = ω31 − κ1 ω1 , θ2 = ω32 − κ2 ω2 .

Now, if you compute the exterior derivatives of these forms, you’ll get

dθ0 ≡ 0
dθ1 ≡ −(κ1−κ2)ω12 ∧ ω2

dθ2 ≡ −(κ1−κ2)ω21 ∧ ω1

⎫⎪⎬
⎪⎭ mod {θ0, θ1, θ2}.

So
I = 〈 θ0, θ1, θ2, (κ1−κ2)ω12 ∧ω2, (κ1−κ2)ω21 ∧ω1 〉)alg .

Now there are two cases: One is that κ1 = κ2, in which case I is Frobenius.

Exercise 7.1: Explain why the integral manifolds in the case κ1 = κ2 correspond to the planes in R
3

when κ1 = κ2 = 0 and to spheres in R
3 when κ1 = κ2 �= 0.

In the second case, where κ1 �= κ2, you’ll see that the 2-dimensional integral elements on which ω1∧ω2

is non-zero (and there are some) never contain any regular 1-dimensional integral elements, just as in our
‘toy’ example.

Exercise 7.2: Describe V2(I) when κ1 �= κ2. Show that there is a unique 2-dimensional integral element
of I at each point of G on which ω1∧ω2 is nonvanishing. Explain why this shows, via Cartan’s Test, that
such integral elements cannot be the terminus of a regular flag.

Exercise 7.3: Redo this problem assuming that the ambient 3-manifold is of constant sectional curvature c,
not necessarily 0. You may want to recall that the structure equations in this case are of the form

dωi = −ωij ∧ωj , dωij = −ωik ∧ ωkj + c ωi ∧ωj .

Does anything significant change?
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Exercise 7.4: Set up an exterior differential system to model the solutions of the system uxx = uyy = 0
(where u is a function of x and y). Compare this to the analogous model of the system uxx = uxy = 0. In
particular, compare the regular integral curves of the two systems and their ‘thickenings’ via the Cartan-
Kähler Theorem.

Exercise 7.5: What can you say about the surfaces in R
3 with the property that each principal curvature κi

is constant on each of its corresponding principal curves?

7.2. Prolongation, systems in good form

In each of the examples in the previous subsection, we found an exterior differential system for which
the interesting integral manifolds (if there are any) cannot be constructed by thickening along a regular flag.
Cartan proposed a process of ‘regularizing’ these ideals which he called ‘prolongation’. Intuitively, prolon-
gation is just differentiating the equations you have and then adjoining those equations as new equations in
the system. You can see why such a thing might work by looking at the following situation:

We know how to check whether the system

zx = f(x, y), zy = g(x, y)

is compatible. You just need to see whether or not fy = gx, a first order condition on the equations that is
by looking at the exterior ideal generated by the 1-form ζ = dz−f(x, y) dx−g(x, y) dy. On the other hand,
if you consider the system

zxx = f(x, y), zyy = g(x, y),

the compatibility condition is not revealed until you differentiate twice, i.e, fyy = gxx. Now, it’s not clear
how to get to this condition by looking at the ideal on xyzpqs-space generated by

θ0 = dz − p dx− q dy

θ1 = dp − f(x, y) dx − s dy

θ2 = dq − s dx− g(x, y) dy

because the exterior derivatives of these forms will only contain first derivatives of the functions f and g.
And, sure enough, Cartan’s Test fails for this system.

However, if you differentiate the given equations once, you can see that they imply

zxxy = fy(x, y), zxyy = gx(x, y)

which suggests looking at the ideal on xyzpqs-space generated by

θ0 = dz − p dx− q dy

θ1 = dp− f(x, y) dx − s dy

θ2 = dq − s dx − g(x, y) dy

θ3 = ds− fy(x, y) dx− gx(x, y) dy.

Now, this ideal is Frobenius if and only if fyy = gxx, so the obvious compatibility condition is the necessary
and sufficient condition for there to exist solutions to the original problem.

Exercise 7.6: What can you say about the solutions of the system

zxx = z zyy = z?

A systematic way to ‘adjoin derivatives as new variables’ for the general exterior differential sys-
tem (M, I) is this: Suppose that you are interested in studying the n-dimensional integral manifolds of (M, I)
whose tangent planes lie in some smooth submanifold (usually a component)

Z ⊂ Vn(I) ⊂ Gn(TM).
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As explained in Lecture 2, every such integral manifold f : N ↪→ M has a canonical lift to a submanifold f(1) :
N ↪→ Z defined simply by

f(1)(p) = f ′(TpN) ⊂ Tf(p)M.

Now, f(1) : N ↪→ Z ⊂ Gn(TM) is an integral manifold of the contact system C and is transverse to the
projection π : Z → M . Conversely, if F : N → Z ⊂ Gn(TM) is an integral manifold of the contact system C
that is transverse to the projection π, then F = f(1) where f = π ◦ F , and so, a fortiori , the tangent spaces
of the immersion f : N → M all lie in Z ⊂ Vn(I). (In particular, f : N → M is an integral manifold of I.)

Let I(1) ⊂ Ω∗(Z) denote the exterior ideal on Z induced by pulling back C on Gn(TM) via the inclu-
sion Z ⊂ Gn(TM). The pair

(
Z, I(1)

)
is known as the Z-prolongation of I. Our argument in the above

paragraph has established that the integral manifolds of I whose tangent planes lie in Z are in one-to-one
correspondance with the integral manifolds of

(
Z, I(1)

)
that are transverse to the projection π : Z → M .

Usually, there is only one component of V o
n (I) of interest anyway. In this case, it is common to refer to

it as M (1) ⊂ V o
n (I) and then simply say that

(
M (1), I(1)

)
is the prolongation of I, imprecise though this is.

Example 7.2: The toy model again. Look at the EDS(
R

3, 〈 dx ∧dz, dy ∧ dz〉
)
.

There is exactly one 2-dimensional integral element at each point, namely, the 2-plane defined by dz = 0.
Since these 2-dimensional integral elements define a Frobenius system on R

3, there is a unique integral
surface passing through each point of R

3.
It’s instructive to go through the above prolongation process explicitly here: Using coordinates (x, y, z),

consider the open set G2

(
TR

3, (x, y)
)

consisting of the 2-planes on which dx∧dy is nonzero. This 5-manifold
has coordinates (x, y, z, p, q) so that E ∈ G2

(
TR

3, (x, y)
)

is spanned by{
∂

∂x
+ p(E)

∂

∂z
,

∂

∂y
+ q(E)

∂

∂z

}
.

In these coordinates, the contact system C is generated by the 1-form

θ = dz − p dx− q dy.

Now, Z = V2(I) ⊂ G2

(
TR

3, (x, y)
)

is defined by the equations p = q = 0, so pulling back the form θ to
this locus yields that (x, y, z) are coordinates on Z and that I(1) = 〈 dz 〉, an ideal to which the Frobenius
Theorem applies.

Exercise 7.7: Repeat this analysis for the EDS(
R

3, 〈dx ∧dz, dy ∧ (dz − y dx) 〉
)
.

Frequently, M has a coframing (ω1, . . . , ωn, π1, . . . , πs) (i.e., a basis for the 1-forms on M) and one is
interested in the n-dimensional integral manifolds of some I on which the 1-forms (ω1, . . . , ωn) are linearly
independent. Let Vn(I, ω) denote the integral elements on which ω = ω1∧ . . .∧ωn is nonvanishing. The usual
procedure is then to describe Vn(I, ω) as the set of n-planes defined by equations of the form

πa − pa
i ωi = 0

where the pa
i are subject to the constraints that make such an n-plane be an integral element. In this way,

the pa
i become functions on Vn(I, ω). Moreover, the contact ideal C pulls back to Vn(I, ω) to be generated

by the 1-forms
θa = πa − pa

i ωi ,

thus giving us an explicit expression for the ideal I(1) as

I(1) = 〈 θ1, . . . , θs 〉.
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Example 7.3: Constant principal curvatures. Look back at Example 7.1, with κ1 �= κ2, where we found
an ideal

I = 〈ω3, ω31−κ1 ω1, ω32−κ2 ω2, (κ1−κ2)ω12 ∧ ω2, (κ1−κ2)ω21 ∧ω1 〉alg.

There is a unique 2-dimensional integral element at each point of G, defined by the equations

ω3 = ω31−κ1 ω1 = ω32−κ2 ω2, = ω12 = 0.

Thus V2(I) is diffeomorphic to G. By the same reasoning employed above, we have that

I(1) = 〈ω3, ω31−κ1 ω1, ω32−κ2 ω2, ω12 〉

Computing exterior derivatives and using the structure equations, we find that

I(1) = 〈ω3, ω31−κ1 ω1, ω32−κ2 ω2, ω12, κ1κ2 ω1 ∧ω2 〉.

Now we can see a distinction: If κ1κ2 �= 0, then this ideal has no 2-dimensional integral elements at all,
and hence no integral surfaces. On the other hand, if κ1κ2 = 0 (i.e., one of the κi is zero), then I(1) is a
Frobenius system and is foliated by 2-dimensional integral manifolds.

Exercise 7.8: Repeat this analysis of the surfaces with constant principal curvatures for the other 3-
dimensional spaces of constant sectional curvature. What changes? (You may want to look back at Exercise
7.3, for the structure equations.)

I want to do one more example of this kind of problem so that you can get some sense of what the
process can be like. (I warn you that this is a rather involved example.)

Example 7.4: Restricted Principal Curvatures. Consider the surfaces described in Exercise 7.5, i.e., the
surfaces with the property that each principal curvature κi is constant along each of its corresponding prin-
cipal curves. A little thought, together with reference to the discussion of Weingarten surfaces in Lecture 6
should convince you that these surfaces are the integral manifolds in M = G×R

2 of the ideal

I = 〈 θ0, θ1, θ2, π1 ∧ω1+π2 ∧ ω2, π2 ∧ω1+π3 ∧ω2, π1 ∧ω2, π3 ∧ ω1 〉alg .

(I am maintaining the notation established in Lecture 6.1.) Now, each 2-dimensional integral element on
which ω1∧ω2 is non-vanishing is defined by equations of the form

θ0 = θ1 = θ2 = π1 − p1 ω2 = π2 − p1 ω1 − p2 ω2 = π3 − p2 ω1 = 0.

where p1 and p2 are arbitrary parameters. I’ll leave it to you to check that these integral elements are not
the terminus of any regular flag. Consequently, we cannot apply the Cartan-Kähler Theorem to construct
examples of such surfaces.

It is computationally advantageous to parametrize the integral elements by q1 = p1/(κ1−κ2) and q2 =
p2/(κ1−κ2) rather than by p1 and p2 as defined above, so that is what we will do. (This change of scale
avoids having to divide by (κ1−κ2) several times later.)

Now, following the prescription already given, construct
(
M (1), I(1)

)
as follows: We let M (1) = M ×R

2,
with p1 and p2 being the coordinates on the R

2-factor and set

I(1) = 〈 θ0, θ1, θ2, θ3 , θ4, θ5 〉

where
θ3 = π1 − p1 ω2 = dκ1 − p1 ω2

(κ1−κ2) θ4 = π2 − p1 ω1 − p2 ω2 = (κ1−κ2)ω21 − p1 ω1 − p2 ω2

θ5 = π3 − p2 ω1 = dκ2 − p2 ω1
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or, in terms of the qi, we have
θ3 = dκ1 − (κ1−κ2)q1 ω2 ,

θ4 = ω21 − q1 ω1 − q2 ω2 ,

θ5 = dκ2 − (κ1−κ2)q2 ω1 .

Now, it should not be a surprise that

dθ0 ≡ dθ1 ≡ dθ2 ≡ 0 mod θ0, θ1, θ2, θ3, θ4, θ5

(you should check this if you are surprised). Moreover, using the structure equations and the definitions of
the forms given so far, we can compute that

dθ3 ≡ −(κ1−κ2) dq1 ∧ω2

dθ4 ≡ − dq1 ∧ω1 − dq2 ∧ω2 − (q1
2+q2

2+κ1κ2)ω1 ∧ω2

dθ5 ≡ −(κ1−κ2) dq2 ∧ω1

where the congruences are taken modulo θ0, θ1, θ2, θ3, θ4, θ5. It follows from this computation that the
2-dimensional integral elements on which the 2-form ω1∧ω2 is nonzero are all of the form

θ0 = · · · = θ5 = 0

dq1 − (q3 + q1
2 + 1

2
κ1κ2)ω2 = 0

dq2 − (q3 − q2
2 − 1

2
κ1κ2)ω1 = 0

for some q3. Thus, there is a 1-parameter family of such integral elements at each point. Unfortunately,
none of these integral elements are the terminus of a regular flag, so the Cartan-Kähler Theorem still cannot
be applied.

There’s nothing to do now, but do it again: We now parametrize the space of these integral elements
of

(
M (1), I(1)

)
as M (2) = M (1) × R with q3 being the coordinate on the R-factor and we consider the ideal

I(2) = 〈 θ0, θ1, θ2, θ3, θ4 , θ5, θ6 , θ7 〉

where
θ6 = dq1 − (q3 + q1

2 + 1
2
κ1κ2)ω2,

θ7 = dq2 − (q3 − q2
2 − 1

2
κ1κ2)ω1.

Now we get
dθ0 ≡ · · · ≡ dθ5 ≡ 0 mod θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7

(again, this should be no surprise), but we must still compute dθ6 and dθ7. Well, using the structure
equations, we can do this and we get

dθ6 ≡ −θ8 ∧ ω2,

dθ7 ≡ −θ8 ∧ ω1,

}
mod θ0, . . . θ7

where
θ8 = dq3 + (q3+q1

2+ 1
2
κ1

2)q2 ω1 − (q3−q2
2−1

2
κ2

2)q1 ω2 .

(Whew!) At this point, it is clear that there is only one 2-dimensional integral element of I(2) on which ω1∧ω2

is nonzero at each point of M (2) and it is defined by

θ0 = θ1 = θ2 = θ3 = θ4 = θ5 = θ6 = θ7 = θ8 = 0.

Thus M (3) = M (2) and we can take

I(3) = 〈 θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 〉
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As before, it is clear that

dθ0 ≡ · · · ≡ dθ7 ≡ 0 mod θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 .

What is surprising (perhaps) is that

dθ8 ≡ 0 mod θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 !

In other words, I(3) is a Frobenius system! Consequently, M (3), a manifold of dimension 11 (count it up) is
foliated by 2-dimensional integral manifolds of I(3).

Now this rather long example is meant to convince you that the process of prolongation can actually
lead you to some answers. Unfortunately, although we now know that there is a 9-parameter family of such
surfaces (i.e., the solutions depend on s0 = 9 constants), we don’t know what the surfaces are in any explicit
way.

Exercise 7.9: Show that cylinders, circular cones and tori of revolution where the profile curve is a standard
circle are examples of such surfaces. How do you know that this is not all of them? Does every such surface
have at least a 1-parameter family of symmetries?

Exercise 7.10: Note that the forms θ0, . . . , θ8 are well defined on the locus κ1−κ2 = 0. Show that any leaf
of I(3) that intersects this locus stays entirely in this locus. What do these integral surfaces mean? (After
all, an umbilic surface does not have well-defined principal curvatures.)

Exercise 7.11: What would have happened if, instead, we had looked for surfaces for which each principal
curvature was constant on each principal curve belonging to the other principal curvature? Write down the
appropriate exterior differential system and analyse it.

7.3. The Cartan-Kuranishi Theorem

Throughout this section, I am going to assume that all the ideals in question are generated in positive
degrees, i.e., that they contain no nonzero functions. This is just to simplify the statements of the results.
I’ll let you worry about what to do when you have functions in the ideal.

Let
(
M, I

)
be an EDS and let Z ⊂ V o

n (I) be a connected open subset of V o
n (I). We say that Z is

involutive if every E ∈ Z is the terminus of a regular flag. Usually, in applications, there is only one such Z
to worry about anyway, or else the ‘interesting’ component Z is clear from context, in which case we simply
say that (M, I) is involutive.

The first piece of good news about the prolongation process is that it doesn’t destroy involutivity:

Theorem 8: (Persistence of Involutivity) Let
(
M, I

)
be an EDS with I0 = (0) and let M (1) ⊂ V o

n (I)
be a connected open subset of V o

n (I) that is involutive. Then the character sequence
(
s0(F ), . . . , sn(F )

)
is

the same for all regular flags F = (E0, . . . , En) with En ∈ M (1). Moreover, the EDS
(
M (1), I(1)

)
is involutive

on the set M (2) ⊂ Vn

(
I(1)

)
of elements that are transverse to the projection π : M (1) → M and its character

sequence
(
s
(1)
0 , . . . , s

(1)
n

)
is given by

s
(1)
k = sk + sk+1 + · · ·+ sn .

Exercise 7.12: Define
(
M (k), I(k)

)
by the obvious induction, starting with

(
M (0), I(0)

)
= (M, I) and show

that

dimM (k) = n + s0 +
(

k+1
1

)
s1 +

(
k+2

2

)
s2 + · · ·+

(
k+n

n

)
sn .

Explain why M (k) can be interpreted as the space of k-jets of integral manifolds of I whose tangent planes
lie in M (1).

Now Theorem 8 is quite useful, as we will see in the next lecture, but what we’d really like to know is
whether prolongation will help with components Z ⊂ Vn(I) that are not involutive. The answer is a sort of
qualified ‘yes’:
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Theorem 9: (Cartan-Kuranishi) Suppose that one has a sequence of manifolds Mk for k ≥ 0 together
with embeddings ιk : Mk ↪→ Gn(TMk−1) for k > 0 with the properties

(1) The composition πk−1 ◦ ιk : Mk → Mk−1 is a submersion,
(2) For all k ≥ 2, ιk(Mk) is a submanifold of Vn(Ck−2, πk−2), the integral elements of the contact

system Ck−2 on Gn(TMk−2) transverse to the fibers of πk−2 : Gn(TMk−2) → Mk−2.
Then there exists a k0 ≥ 0 so that for k ≥ k0, the submanifold ιk+1(Mk+1) is an involutive open subset
of Vn

(
ι∗kCk−1

)
, where ι∗kCk−1 is the EDS on Mk pulled back from Gn(TMk−1).

A sequence of manifolds and immersions as described in the theorem is sometimes known as a prolon-
gation sequence.

Now, you can imagine how this theorem might be useful. When you start with an EDS (M, I) and
some submanifold ι : Z ↪→ Vn(I) that is not involutive, you can start building a prolongation sequence by
setting M1 = Z and looking for a submanifold M2 ⊂ Vn(ι∗C0) that is some component of Vn(ι∗C0). You
keep repeating this process until either you get to a stage Mk where Vn(ι∗Ck−1) is empty, in which case
there aren’t any integral manifolds of this kind, or else, eventually, this will have to result in an involutive
system, in which case you can apply the Cartan-Kähler Theorem (if the system that you started with is real
analytic).

The main difficulty that you’ll run into is that the spaces Vn(I) can be quite wild and hard to describe.
I don’t want to dismiss this as a trivial problem, but it really is an algebra problem, in a sense. The other
difficulty is that the the components M1 ⊂ Vn(I) might not submerse onto M0 = M , but onto some proper
submanifold, in which case, you’ll have to restrict to that submanifold and start over.

In the case that the original EDS (M, I) is real analytic, the set Vn(I) ⊂ Gn(TM) will also be real
analytic and so has a canonical stratification into submanifolds

Vn(I) =
⋃

β∈B

Zβ .

One can then consider the family of prolongations (Zβ, I(1)
β ) and analyse each one separately. (Fortunately,

in all the interesting cases I’m aware of, the number of strata is mercifully small.)
Now, there are precise, though somewhat technical, hypotheses that will ensure that this prolongation

Ansatz , when iterated and followed down all of its various branches, terminates after a finite number of steps,
with the result being a finite (possibly empty) set of EDSs

{
(Mγ , Iγ) γ ∈ Γ

}
that are involutive. This

result (with the explicit technical hypotheses) is due to Kuranishi and is known as the Cartan-Kuranishi
Prolongation Theorem. (Cartan had conjectured/stated this result in his earlier writings, but never provided
adequate justification for his claims.) In practice, though, Kuranishi’s result is used more as a justification
for carrying out the process of prolongation as part of the analysis of an EDS, when it is necessary.

Exercise 7.13: Analyse the system

∂nz

∂xn
= f(x, y),

∂nz

∂yn
= g(x, y),

and explain why you’ll have to prolong it (n−1) times before you reach either a system with no 2-dimensional
integral elements or one that has 2-dimensional integral elements that can be reached by a regular flag. In
the latter case, do you actually need the full Cartan-Kähler Theorem to analyse the solutions?

Exercise 7.14: Analyse the system for u(x, y, z) given by

∂2u

∂x2
− ∂2u

∂y2
= u,

∂2u

∂y2
− ∂2u

∂z2
= u.

Show that the natural system generated by four 1-forms you would write down on R
11 to model the solutions

is not involutive but that its first prolongation is. How much data do you get to specify in a solution?
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