
Lecture 9. Applications 3: Geometric Systems Needing Prolongation

9.1. Orthogonal coordinates in dimension n.

In this example, I take up the question of orthogonal coordinates in general dimensions, as opposed to
dimension 3, as was discussed in Lecture 5.

Let N be a manifold of dimension n endowed with a Riemannian metric g. If U ⊂ N is an open set, a
coordinate chart (x1, . . . , xn) : U → R

n is said to be orthogonal if, on U ,

g = g11 (dx1)2 + g22 (dx2)2 + · · ·+ gnn (dxn)2,

i.e., if the coordinate expression g = gij dxi dxj satisfies gij = 0 for i different from j. This is
(
n
2

)
equations

for the n coordinate functions xi. When n > 3, this is an overdetermined system and one should not expect
there to be solutions. Indeed, very simple examples in dimension 4 show that there are metrics for which
there are no orthogonal coordinates, even locally. (I’ll say more about this below.)

I want to describe an EDS whose n-dimensional integral manifolds describe the solutions to this problem.
Note that, if you have a solution, then the 1-forms ηi = √

gii dxi form an orthonormal coframing, i.e.,

g = η1
2 + η2

2 + · · ·+ ηn
2.

This coframing is not the most general orthonormal coframing, though, because it satisfies ηi∧dηi = 0
since each ηi is a multiple of an exact 1-form. Conversely, any g-orthonormal coframing (η1, . . . , ηn) that
satisfies ηi∧dηi = 0 for i = 1, . . . , n is locally of the form ηi = Ai dxi for some functions Ai > 0 and xi, by
the Frobenius Theorem. (Why?)

Thus, up to an application of the Frobenius Theorem, the problem of finding g-orthogonal coordinates
is equivalent to finding g-orthonormal coframings (η1, . . . , ηn) satisfying ηi∧dηi = 0. I now want to set up
an exterior differential system whose integral manifolds reprsent these coframings.

To do this, let π : F → N be the g-orthonormal coframe bundle of N , i.e, a point of F is of the
form f = (x, u1, . . . , un) where x = π(f) belongs to N and ui ∈ TxN are g-orthonormal. This is an O(n)-
bundle over N and hence is a manifold of dimension n +

(
n
2

)
. There are the canonical 1-forms ω1, . . . , ωn

on F that satisfy
ωi(v) = ui

(
π′(v)

)
, for all v ∈ TfM with f = (x, u1, . . . , un).

These 1-forms have the ‘reproducing property’ that, if η = (η1, . . . , ηn) is a g-orthonormal coframing
on U ⊂ N , then regarding η as a section of F over U via the map

ση(x) =
(
x, (η1)x, . . . (ηn)x

)
,

we have σ∗
η(ω1, . . . , ωn) = (η1, . . . , ηn).

Exercise 9.1: Prove this statement. Prove also that a n-dimensional submanifold P ⊂ F can be locally
represented as the graph of a local section σ : U → F if and only if ω1∧ · · ·∧ωn is nonvanishing on P .

Consider the ideal I = 〈ω1∧dω1, . . . , ωn∧dωn 〉 defined on F . The n-dimensional integral manifolds of I
on which ω1∧ · · ·∧ωn is nonvanishing are then the desired local sections. We now want to describe these
integral manifolds, so we start by looking at the integral elements.

Now, by the classical Levi-Civita existence and uniqueness theorem, there are unique 1-forms ωij = −ωji

that satisfy the structure equations

dωi = −
n∑

j=1

ωij ∧ωj .

The 1-forms ωi, ωij (i < j) are then a basis for the 1-forms on F .
By the structure equations, an alternative description of I is

I =

〈
ω1 ∧

( n∑
j=1

ω1j ∧ωj

)
, . . . , ωn ∧

( n∑
j=1

ωnj ∧ωj

) 〉
.
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Let Gn(TF, ω) denote the set of tangent n-planes on which ω1∧ · · ·∧ωn is nonvanishing. Any E ∈ Gn(TF, ω)
is defined by equations of the form

ωij =
n∑

k=1

pijk ωk

Such an n-plane will be an integral element if and only if the pijk = −pjik (which are n
(
n
2

)
in number) satisfy

the equations

0 = ωi ∧
( n∑

j=1

ωij ∧ωj

)
= ωi ∧

( n∑
j,k=1

pijk ωk ∧ωj

)
for i = 1, . . . , n.

Exercise 9.2: Show that these conditions imply that pijk = 0 unless k is equal to i or j and then that
every integral element is defined by equations of the form

ωij = pij ωi − pji ωj

where the n(n−1) numbers { pij i �= j } are arbitrary. Explain why the pii don’t matter, and conclude that
the codimension of the space Vn(I, ω) in Gn(TF, ω) is

n

(
n

2

)
− n(n − 1) = 1

2
n(n − 1)(n − 2).

Now, to check Cartan’s Test, we need to compute the polar spaces of some flag in E = En. We already
know from Lecture 5 that there are regular flags when n = 3, so we might as well assume that n > 3 from
now on. I am going to argue that, in this case, there cannot be a regular flag, so Cartan-Kähler cannot be
applied and we must prolong.

Let F = (E0, E1, . . . , En) be any flag. Because I is generated by n 3-forms, it follows that c(E0) =
c(E1) = 0 and that c(E2) ≤ n. Moreover, because En has codimension 1

2
n(n − 1), it follows that c(Ek) ≤

1
2n(n − 1) for all k. Combining these, we see that

c(F ) ≤ c(E0) + · · ·+ c(En−1) ≤ 0 + 0 + n + (n − 3) · 1
2
n(n − 1).

When n > 3, this last number is strictly less than 1
2
n(n−1)(n−2), the codimension of Vn(I, ω) in Gn(TF, ω)

that we computed above. Thus Cartan’s Test shows that the flag F is not regular.
Thus, if we want to find solutions, we will have to prolong. We make a new manifold F (1) = F ×R

n(n−1),
with { pij i �= j } as coordinates on the second factor, and define I(1) to be the ideal generated by the

(
n
2

)
1-forms

θij = ωij − pij ωi + pji ωj .

Of course, if we are going to study the algebraic properties of this ideal, we are going to have to know dθij

and this will require that we know dωij. Now, the second structure equations of Cartan are

dωij = −
n∑

k=1

ωik ∧ωkj + 1
2

n∑
k,l=1

Rijkl ωk ∧ωl ,

where the functions Rijkl are the Riemann curvature functions.
Now, using this, if you compute, you will get

dθij ≡ 1
2

n∑
k,l=1

Rijkl ωk ∧ωl − πij ∧ ωi + πji ∧ωj mod {θkl}k<l

for some 1-forms πij (i �= j), with πij ≡ dpij mod {ω1, . . . , ωn}.
Right away, this says that there is trouble: If there is a point f ∈ F for which there exist (i, j, k, l)

distinct and Rijkl(f) �= 0, then the prolonged ideal will not have any integral elements passing through f on
which ω1∧ . . .∧ωn is nonzero. (Why not?)
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Now, it turns out that the functions Rijkl with (i, j, k, l) distinct are all identically zero if and only if the
Weyl curvature of the metric g vanishes, i.e., (since n ≥ 4) if and only if g is conformally flat. Since orthogonal
coordinates don’t care about conformal factors (why not?), if we are going to restrict to the conformally flat
case, then we might as well go whole hog and restrict to the flat case, i.e., the case where Rijkl = 0 for all
quadruples of indices. In this case, the structure equations of I(1) become

dθij ≡ −πij ∧ωi + πji ∧ωj mod {θkl}k<l

for some 1-forms πij (i �= j), with πij ≡ dpij mod {ω1, . . . , ωn}.
Exercise 9.3: Use these structure equations to show that

(
F (1), I(1)

)
is involutive, with Cartan characters

(s0 , s1, · · · , sn) = (1
2n(n − 1), 1

2n(n − 1), 1
2n(n − 1), 0, 0, . . . , 0).

In particular, the last nonzero Cartan character is s2 = 1
2
n(n−1). Explain the geometric meaning of this

result: How much freedom do you get in constructing local orthogonal coordinates on R
n?

Exercise 9.4: (somewhat nontrivial) Using the above analysis as starting point, show that the Fubini-Study
metric g on CP

2 does not allow any orthogonal coordinate systems, even locally.

9.2. Isometric Embedding of Surfaces with Prescribed Mean Curvature

Consider a given abstract oriented surface N2 endowed with a Riemannian metric g and a choice of a
smooth function H . The question we ask is this: When does there exist an isometric embedding x : N2 → R

3

such that the mean curvature function of the immersion is H? If you think about it, this is four equations
for the map x (which has three components), three of first order (the isometric embedding condition) and
one of second order (the mean curvature restriction).

Since H2−K = (κ1−κ2)2 ≥ 0 for any surface in 3-space, one obvious restriction coming from the Gauss
equation is that H2 − K must be nonnegative, where K is the Gauss curvature of the metric g. I’m just
going to treat the case where H2 − K is strictly positive, though there are methods for dealing with the
‘umbilic locus’ (I just don’t want to bother with them here). In fact, set r =

√
H2 − K > 0.

The simplest way to set up the problem is to begin by fixing an oriented, g-orthonormal cofram-
ing (η1, η2), with dual frame field (u1, u2). We know that there exists a unique 1-form η12 so that

dη1 = −η12 ∧ η2, dη2 = η12 ∧ η1, dη12 = K η1 ∧ η2 .

Now, any solution x : N → R
3 of our problem will define a lifting f : N → F (the oriented orthonormal

frame bundle of R
3) via

f =
[

x x′(u1) x′(u2) x′(u1)×x′(u2)
]

Of course, this will mean that
f∗ω3 = 0
f∗ω1 = η1

f∗ω1 = η2

f∗ω31 = h11 η1 + h12 η2

f∗ω32 = h12 η1 + h22 η2

where h11 + h22 = 2H . We also know, by the uniqueness of the Levi-Civita connection, that

f∗ω12 = η12

and the Gauss equation tells us that h11h22 − h12
2 = K. This is two algebraic equations for the three hij.

Because H2 − K = r2 > 0, these can be solved in terms of an extra parameter in the form

h11 = H + r cosφ

h12 = r sinφ

h22 = H − r cosφ .
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This suggests setting up the following exterior differential system for the ‘graph’ of f in N×F . Let M =
N × F × S1, with φ being the ‘coordinate’ on the S1 factor and consider the ideal I generated by the five
1-forms

θ0 = ω3

θ1 = ω1 − η1

θ2 = ω2 − η2

θ3 = ω12 − η12

θ4 = ω31 − (H+r cosφ) η1 − r sin φ η2

θ5 = ω32 − r sin φ η1 − (H−r cosφ) η2

It’s easy to see (and you should check) that

dθ0 ≡ dθ1 ≡ dθ2 ≡ dθ3 ≡ 0 mod {θ0, θ1, θ2, θ3, θ4, θ5}.

The interesting case will come when we look at the other two 1-forms. In fact, the formula for these is simply

dθ4 ≡ rτ ∧ (sin φ η1 − cosφ η2)
dθ5 ≡ −rτ ∧ (cos φ η1 + sin φ η2)

}
mod {θ0, θ1, θ2, θ3, θ4, θ5}

where, setting dr = r1 η1 + r2 η2 and dH = H1 η1 + H2 η2 ,

τ = dφ − 2 η12 − r−1(r2 + H2 cos φ − H1 sin φ) η1

+ r−1(r1 − H1 cosφ − H2 sinφ) η2 .

It is clear that there is a unique integral element at each point of M and that it is described by θ0 = · · · =
θ5 = τ = 0. Thus, M (1) = M and

I(1) = 〈 θ0, θ1, θ2, θ3, θ4, θ5, τ 〉.

To get the structure of I(1) is is only necessary to compute dτ now and the result of that is

dτ ≡ r−2
(
C cosφ + S sin φ + T

)
η1 ∧ η2 mod {θ0, θ1, θ2, θ3, θ4, θ5, τ}

where the functions C, S, and T are defined on the surface by

C = 2r1H1 − 2r2H2 − rH11 + rH22 ,

S = 2r2H1 + 2r1H2 − 2rH12 ,

T = 2r4 − 2H2r2 + r(r11+r22) − r1
2 − r2

2 − H1
2 − H2

2 .

and I have defined Hij and rij by the equations

dH1 = −H2 η12 + H11 η1 + H12 η2 ,

dH2 = H1 η12 + H12 η1 + H22 η2 ,

dr1 = −r2 η12 + r11 η1 + r12 η2 ,

dr2 = r1 η12 + r12 η1 + r22 η2 .
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Exercise 9.5: Why do such functions Hij and rij exist? (What you need to explain is why H12 and r12

can appear in two places in these formulae.)

Clearly, there are no integral elements of I(1) except along the locus where C cosφ + S sin φ + T = 0,
so it’s a question of what this locus looks like.

First, off, note that if T 2 > S2 + C2, then this locus is empty. Now, this inequality is easily seen not to
depend on the choice of coframing (η1, η2) that we made to begin with. It depends only on the metric g and
the function H . One way to think of this is that the condition T 2 ≤ S2 + C2 is a differential inequality any
g and H satisfy if they are the metric and mean curvature of a surface in R

3.
Now, when T 2 < C2 +S2 , there will be exactly two values of φ (mod 2π) that satisfy C cos φ+S sin φ+

T = 0, say φ+ and φ−, thought of as functions on the surface N . If you restrict to this double cover φ = φ±,
we now have an ideal I(1) on an 8-manifold that is generated by seven 1-forms. In fact, θ0 , . . . , θ5 are clearly
independent, but now

τ = E1 η1 + E2 η2

where E1 and E2 are functions on the surface Ñ ⊂ N×S1 defined by the equation C cosφ+S sin φ+T = 0.
Wherever either of these functions is nonzero, there is clearly no solution. On the other hand, if E1 = E2 = 0
on Ñ , then there are exactly two geometrically distinct ways for the surface to be isometrically embeded
with mean curvature H . If you unravel this, you will see that it is a pair of fifth order equations on the
pair (g, H). (The expressions T and S2+C2 are fourth order in g and second order in H . Why?)

Exercise 9.6: (somewhat nontrivial) See if you can reproduce Cartan’s result that the set of surfaces
that admit two geometrically distinct isometric embeddings with the same mean curvature depend on four
functions of one variable. (In the literature, such pairs of surfaces are known as Bonnet pairs after O. Bonnet,
who first studied them.)

Another possibility is that T = C = S = 0, in which case I(1) becomes Frobenius.

Exercise 9.7: Explain why T = C = S = 0 implies that the surface admits a one-parameter family (in
fact, a circle) of geometrically distinct isometric embeddings with mean curvature H .

Of course, this raises the question of whether there exist any pairs (g, H) satisfying these equations.
One way to try to satisfy the equations is to look for special solutions. For example, if H were constant,
then H1, H2, H11, H12, and H22 would all be zero, of course, so this would automatically make C = S = 0
and then there is only one more equation to satisfy, which can now be reëxpressed, using K = H2 − r2, as

T = r2
(
∆g ln(H2 − K) − 4K

)
= 0

where ∆g is the Laplacian associated to g.
It follows that any metric g on a simply connected surface N that satisfies the fourth order differential

equation ∆g ln(H2 − K) − 4K = 0 can be isommetrically embedded in R
3 as a surface of constant mean

curvature H in a 1-parameter family (in fact, an S1) of ways. In particular, we have Bonnet’s Theorem:
Any simply connected surface in R

3 with constant mean curvature can be isometrically deformed in an circle
of ways preserving the constant mean curvature.

However, the cases where H is constant give only one special class of solutions of the three equations C =
S = T = 0. Could there be others?

Well, let’s restrict to the open set U ⊂ N where dH �= 0, i.e., where H1
2 + H2

2 > 0. Remember, the
original coframing (η1, η2) we chose was arbitrary, so we might as well use the nonconstancy of H to tack
this down. In fact, let’s take our coframing so that the dual frame field (u1, u2) has the property that u1

points in the direction of steepest increase for H , i.e., in the direction of the gradient of H . This means that,
for this coframing H2 = 0 and H1 > 0.

The equations C = S = 0 now simplify to

H12 = (r2/r)H1, H11 − H22 = (2r1/r)H1 .

Moreover, looking back at the structure equations found so far, this implies that dH = H1 η1 and that there
is a function P so that

H1
−1dH1 = (rP + r1/r) η1 + (r2/r) η2, ,

−η12 = (r2/r) η1 + (rP − r1/r) η2 .
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The first equation can be written in the form

d
(
ln(H1/r)

)
= rP η1.

Differentiating this and using the structure equations we have so far then yields that dP∧η1 = 0, so that
there is some λ so that dP = λ η1. On the other hand, differentiating the second of the two equations above
and using T = 0 to simplify the result, we see that the multiplier λ is determined. In fact, we must have

dP = (r2H2 + H1
2 − r4 − r4P 2) η1 .

Differentiating this relation and using the equations we have found so far yields

0 = 2r−4
(
H1

2 + r2H2
)
r2 η1 ∧ η2 .

In particular, we must have r2 = 0. Of course, this simplifies the equations even further. Taking the
components of 0 = dr2 = r1η12 + r11 η1 + r22 η2 together with the equation T = 0 allows us to solve for r11,
r12, and r22 in terms of {r, H, r1, H1, P }.

In fact, collecting all of this information, we get the following structure equations for any solution of
our problem:

dη1 = 0
dη2 = (rP − r1/r) η1 ∧ η2

dr = r1 η1

dH = H1 η1

dr1 = (2r3 − 2H2r + r1rP − 2r1
2/r − H1

2/r) η1

dH1 = H1(rP + r1/r) η1

dP = (r2H2 + H1
2 − r4 − r4P 2) η1

These may not look promising, but, in fact, they give a rather complete description of the pairs (g, H) that
we are seeking. Suppose that N is simply connected. The first structure equation then says that η1 = dx
for some function x, uniquely defined up to an additive constant. The last 5 structure equations then say
that the functions (r, H, r1, H1, P ) are solutions of the ordinary differential equation system

r′ = r1

H ′ = H1

r′1 = (2r3 − 2H2r + r1rP − 2r1
2/r − H1

2/r)
H ′

1 = H1(rP + r1/r)

P ′ = (r2H2 + H1
2 − r4 − r4P 2)

Obviously, this defines a vector field on the open set in R
5 defined by r > 0, and there is a four parameter

family of integral curves of this vector field. Given a solution of this ODE system on some maximal x-interval,
there will be a function F uniquely defined up to an additive constant so that

F ′ = (rP − r1/r).

Now by the second structure equation, we have d(e−F η2) = 0, so that there must exist a function y on the
surface N so that η2 = eF dy. Thus, in the (x, y)-coordinates, the metric is of the form

g = dx2 + e2F (x) dy2

where (r, H, r1, H1, P, F ) satisfy the above equations.
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Exercise 9.8: Explain why this shows that the space of inequivalent solutions (g, H) with H nonconstant
can be thought of as being of dimension 4. Also, note that the metric g has a symmetry, namely translation
in y. Can you use this to understand the circle of isometric embeddings of (N, g) into R

3 with mean
curvature H? (Hint: Look back at the EDS analysis we did earlier and apply Bonnet’s Theorem.

Exercise 9.9: Redo this analysis for isometric immersion with prescribed curvature in a 3-dimensional
space form of constant sectional curvature c. Does anything significant change?

Exercise 9.10: (somewhat nontrivial) Regarding the equations S = C = T = 0 as a set of three partial
differential equations for the pair (g, H), show that they are not involutive as they stand, carry out the
prolongation process and show how the space of integral manifolds breaks into two distinct pieces because
the space of integral elements has two distinct components at a certain level of prolongation. Show that one
of these (the one corresponding to the case where H is constant) goes into involution right away, but that
the other (corresponding to the Bonnet surfaces that we found above) takes considerably longer.

Exercise 9.11: (also somewhat nontrivial) Suppose that we want to isometrically embedd (N2, g) into R
3

in such a way that a given g-orthogonal coframing (η1, η2) defines the principal coframing. Set up the exterior
differential system and carry out the prolongations to determine how many solutions to this problem there
are in general and whether there are any special metrics and coframings for which there is a larger than
expected space of solutions.
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