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Abstract We perform complete group classification of the general class of quasi lin-
ear wave equations in two variables. This class may be seen as a broad generalization
of the nonlinear d’Alembert, Liouville, sin/sinh-Gordon and Tzitzeica equations. In
this way we derived a number of new genuinely nonlinear invariant models with
high symmetry properties. In particular, we obtain four classes of nonlinear wave
equations admitting five-dimensional invariance groups. Applying the symmetry
reduction technique we construct multi-parameter families of exact solutions of these
equations.

1. Introduction

It was Sophus Lie who was the first to utilize group properties of differential
equations in order to actually solve them (to construct their exact solutions). He
computed the maximal invariance group of the one-dimensional heat conductivity
equation and utilized this symmetry to construct its explicit solutions. Saying it the
modern way, he performed symmetry reduction of the heat equation. Nowadays
symmetry reduction is one of the most powerful tools for solving nonlinear partial
differential equations (PDEs).
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The majority of fundamental equations of mathematical and theoretical physics
admit wide symmetry groups. It is the rich symmetry that enables developing a
variety of efficient methods for mathematical analysis of linear differential equations.
However, linear equations give mathematical description of physical, chemical or
biological processes in a first approximation only. To provide a more detailed and
precise description a mathematical model has to incorporate nonlinear terms. What
is more, some important mathematical physics equations have no linearized versions
at all. A well-known example is the system of Yang–Mills equations.

Hyperbolic type second-order nonlinear PDEs in two independent variables
are utilized to describe different types of wave propagation. They are also used
in differential geometry, in various fields of hydro- and gas dynamics, chemical
technology, super conductivity, crystal dislocation to mention only a few applications
areas. However the list of models (equations) is surprisingly narrow. By the most
part it is comprised by the Liouville, sine/sinh-Gordon, Goursat, d’Alembert and
Tzitzeica equations and a couple of others. From the group-theoretical viewpoint
the popularity of these very models is due to the fact that they have non-trivial Lie or
Lie–Bäcklund symmetry. By this very reason they are either integrable by the inverse
problem methods (see, e.g.,[1–3]) or are linearizable [4–6]) and completely integrable
[7, 8].

In this connection it seems to be a very important problem to select from the
reasonably extensive class of nonlinear hyperbolic type PDEs those enjoying the best
symmetry properties. Saying ‘reasonably extensive’ we mean that this class should
contain the above enumerated equations as particular cases, on the one hand, and
it should contain a wide variety of new invariant models of potential interest for
applications, on the other. The list of the so obtained invariant equations will contain
candidates for realistic nonlinear mathematical models of the physical and chemical
processes enumerated above.

The history of group classification methods goes back to Lie. The first paper on
this subject is [9], where Lie proves that a linear two-dimensional second-order PDE
may admit at most a three-parameter invariance group (apart from the trivial infinite-
parameter symmetry group, which is due to linearity).

The modern formulation of the problem of group classification of PDEs was
suggested by Ovsyannikov in [10]. He developed the regular method (we will refer to
it as to the Lie–Ovsyannikov method) for classifying differential equations with non-
trivial symmetry and performed complete group classification of a class of nonlinear
heat conductivity equations. In a number of subsequent publications more general
types of nonlinear heat equations were classified (a review of these results can be
found in [11]).

Analysis of the papers on group classification of PDEs reveals that the majority
of them deal with equations whose arbitrary elements (functions) depend on one
variable only. The reason for this fact is that application of Lie–Ovsyannikov method
to PDEs, which contain arbitrary functions of several variables, is not always possible.
To achieve a complete classification one either needs to specify the transformation
group realization or somehow restrict arbitrariness of functions contained in the
equation under study.

Recently, we developed the efficient approach enabling to overcome this difficulty
for low dimensional PDEs [12, 13]. Utilizing it we have obtained the ultimate solution
of the problem of group classification of the general quasi-linear heat conductivity
equations in two independent variables.
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In this paper we apply the approach mentioned above to perform group classi-
fication of the most general quasi-linear hyperbolic type PDE in two independent
variables.

2. Group Classification Algorithm

We begin this section by formulating the problem to be solved. Then we briefly
review the already known results. Finally we give a short description of our approach
to group classification of PDEs (for the detailed account of the necessary facts, see
([13])).

While classifying a given class of differential equations into subclasses, one can
use different classifying features, like linearity, order, the number of independent
or dependent variables, etc. In group analysis of differential equations the principal
classifying features are symmetry properties of equations under study. This means
that classification objects are equations together with their symmetry groups. This
point of view is based on the well-known fact that any PDE admits a (possibly trivial)
Lie transformation group. And what is more, any transformation group corresponds
to a class of PDEs, which are invariant under this group. So that performing
group classification of a class of PDEs means describing all possible (inequivalent)
pairs (PDE, maximal invariance group), where PDE should belong to the class of
equations under consideration.

We perform group classification of the following class of quasi-linear wave
equations:

ut t = uxx + F(t, x,u,ux). (1.1)

Here F is an arbitrary smooth function, u = u(t, x). Hereafter we adopt notations
ut =

∂u
∂t , ux =

∂u
∂x
,ut t =

∂2u
∂t2 , . . . .

Our aim is describing all equations of the form (1.1) that admit non-trivial symme-
try groups. The challenge of this task is in the word all. If, for example, we fix the form
of a desired invariance group, then the classification problem simplifies immensely.
A slightly more cumbersome (but still tractable with the standard Lie–Ovsyannikov
approach) is the problem of group classification of equation with arbitrary functions
of at most one variable.

As equations invariant under similar Lie groups are identical within the group-
theoretic framework, it makes sense to consider non-similar transformation groups
[14, 15] only. The important example of similar Lie groups is provided by Lie
transformation groups obtained one from another by a suitable change of variables.
Consequently, equations obtained one from another by a change of variables have
similar symmetry groups and cannot be distinguished within the group-theoretical
viewpoint. That is why, we perform group classification of (1.1) within a (locally
invertible) change of variables preserving the class of PDEs (1.1).

The problem of group classification of linear hyperbolic type equation

ut x + A(t, x)ut + B(t, x)ux + C(t, x)u = 0 (1.2)

with u = u(t, x), was solved by Lie [9] (see, also, [16]). In view of this fact, we consider
only those equations of the form (1.1) which are not (locally) equivalent to the linear
equation (1.2).
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As we have already mentioned in Introduction, the Lie–Ovsyannikov method of
group classification of differential equations has been suggested in [10]. Utilizing this
method enabled solving group classification problem for a number of important one-
dimensional nonlinear wave equations:

ut t = uxx + F(u); [17] − [19]

ut t = [ f (u)ux]x; [20] − [22]

ut t = f (ux)uxx; [22, 23]

ut t = F(ux)uxx + H(ux); [24]

ut t = F(uxx); [22]

ut t = um
x uxx + f (u); [25]

ut t + f (u)ut = (g(u)ux)x + h(u)ux; [26]

ut t = ( f (x,u)ux)x. [27]

Analysis of the above list shows that the most of arbitrary elements (= arbi-
trary functions) depend on one variable. This is not coincidental, indeed, the
Lie–Ovsyannikov approach works most efficiently for the case when arbitrary ele-
ments are functions of one variable only. The reason for this fact is that the obtained
system of determining equations is still over-determined. So that it can be effectively
solved using the same technique that is applied to compute maximal symmetry group
of PDEs containing no arbitrary elements.

The matter becomes much more complicated for the case when arbitrary elements
are functions of two (or more) arguments. By this very reason group classifications of
nonlinear wave equations

ut t + λuxx = g(u,ux); [28, 29]

ut t = [ f (u)ux + g(x,u)]x; [30]

ut t = f (x,ux)uxx + g(x,ux) [31]

are not complete.
We suggest the new approach to problem of group classification of low dimen-

sional PDEs in [12, 13]. This approach is based on Lie–Ovsyannikov infinitesimal
method and classification results for abstract finite-dimensional Lie algebras. It
enabled obtaining the complete solution of group classification problem for the
general heat equation with a nonlinear source

ut = uxx + F(t, x,u,ux).

Later on, we performed complete group classification of the most general quasi-linear
evolution equation [32–34]

ut = f (t, x,u,ux)uxx + g(t, x,u,ux).

A starting point of our analysis is a well-known fact that solutions va = (τa,

ξa, ηa), a = 1, . . . ,n of the determining equations (we denote them as DE) for
symmetry operators

Q = τ(t, x,u)∂t + ξ(t, x,u)∂x + η(t, x,u)∂u
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admitted by (1.1) span a Lie algebra `. So without any loss of generality we can
replace DE with the (possibly infinite) set of systems of PDEs{

DE,

[Qi , Q j ] = Ck
i j Qk,

or, equivalently, 

DE,

Qiτ j − Q jτi = Ck
i j τk,

Qiξ j − Q jξi = Ck
i j ξk,

Qiη j − Q jηi = Ck
i j ηk.

In the above formulas the indices i, j,k take the values 1, . . . ,n (n ≥ 1 is a dimension
of the corresponding Lie algebra), Ck

i j are structure constants of the Lie algebra ` and
Qa = τa(t, x,u)∂t + ξa(t, x,u)∂x + ηa(t, x,u)∂u.

If we solve the (over-determined) system of PDEs given above for all possible
dimensions n ≥ 1 of all admissible Lie algebras, `, then the problem of group
classification of Equation (1.1) is completely solved. In other words the problem of
group classification of the general wave equation (1.1) reduces to integrating over-
determined systems of PDEs in question for all n = 1, 2, . . . ,n0, where n0 is the
maximal dimension of the Lie algebra admitted by the equation under study. More
formally, our algorithm for group classification of the class of PDEs (1.1) consists of
the following steps (for more details, see [34]):

I. Using the infinitesimal Lie method we derive the system of determining
equations for coefficients of the first-order operator that generates symmetry
group of Equation (1.1) (Note that the determining equations which explicitly
depend on the function F and its derivatives are called classifying equations).
Integrating equations that do not depend on F we obtain the form of the most
general infinitesimal operator admitted by Equation (1.1) under arbitrary F .
Another task of this step is calculating the equivalence group E of the class of
PDEs (1.1).

II. We construct all realizations of Lie algebras An of the dimension n ≤ 3 in the
class of operators obtained at the first step within the equivalence relation
defined by transformations from the equivalence group E . Inserting the so
obtained operators into classifying equations we select those realizations that
can be symmetry algebras of a differential equation of the form (1.1).

III. We compute extensions of the realizations constructed at the previous step
to realizations of higher dimensional (n > 3) Lie algebras. Since extending
symmetry algebras results in reducing arbitrariness of the function F , at some
point this function will contain either arbitrary functions of one variable or
arbitrary constants. At this point, we apply Lie–Ovsyannikov classification
method to derive the maximal symmetry group of the equation under study
thus completing its group classification.

Performing the above enumerated steps yields the complete list of inequivalent
equations of the form (1.1) together with their maximal (in Lie’s sense) symmetry
algebras.
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We say that the group classification problem is completely solved if it has been
proved that

1) The constructed symmetry algebras are maximal invariance algebras of the
equations under consideration;

2) The list of invariant equations contains only inequivalent ones, namely, no
equation can be transformed into another one from the list by a transformation
from the equivalence group E .

3. Preliminary Group Classification of Equation (1.1)

The first step of the algorithm is looking for the infinitesimal operator of symmetry
group of Equation (1.1) in the form

Q = τ(t, x,u)∂t + ξ(t, x,u)∂x + η(t, x,u)∂u, (2.1)

where τ, ξ, η are smooth functions defined on an open domain � of the space V =

R2
× R1 of independent R2

= 〈t, x〉 and dependent R1
= 〈u〉 = u(t, x) variables.

Operator (2.1) generates one-parameter invariance group of Equation (1.1) iff its
coefficients τ, ξ, η, ε satisfy the equation (Lie’s invariance criterion)

ϕt t
− ϕxx

− τ Ft − ξFx − ηFu − ϕx Fux

∣∣∣∣
(1.1)

= 0, (2.2)

where

ϕt
= Dt (η)− ut Dt (τ )− ux Dt (ξ),

ϕx
= Dx(η)− ut Dx(τ )− ux Dx(ξ),

ϕt t
= Dt (ϕ

t )− ut t Dt (τ )− ut x Dt (ξ),

ϕxx
= Dx(ϕ

x)− ut x Dx(τ )− uxx Dx(ξ)

and Dt , Dx are operators of total differentiation with respect to the variables t, x. As

customary, by writing
∣∣∣∣
(1.1)

we mean that one needs to replace ut t and its differential

consequences with the expression uxx + F and its differential consequences.
After a simple algebra we represent (2.2) in the form of system of four PDEs:

(1) ξu = τu = ηuu = 0,

(2) τt − ξx = 0, ξt − τx = 0,

(3) 2ηtu + τx Fux = 0,

(4) ηt t − ηxx − 2uxηxu + [ηu − 2τt ]F − τ Ft − ξFx

−ηFu − [ηx + ux(ηu − ξx)]Fux = 0. (2.3)

It follows from Equation (1) that τ = τ(t, x), ξ = ξ(t, x), η = h(t, x)u + r(t, x). In
the sequel we differentiate between the cases Fuxux 6= 0 and Fuxux = 0.

Case Fuxux 6= 0. It follows from (3) that τx = ht = 0. Taking into account these
equations and also Equation (2), we obtain τ = λt + λ1, ξ = λx + λ2, h = h(x),
where λ, λ1, λ2 are arbitrary real constants.
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Case Fuxux = 0. If this is the case, then F = g(t, x,u)ux + f (t, x,u), where f and g
are arbitrary smooth functions.

Given the condition gu 6= 0, it follows from (3) that τx = ht = 0. So that taking into
account Equation (2) we arrive at the already known expressions for τ, ξ, h.

If gu = 0, then fuu 6= 0, since otherwise (1.1) becomes linear.
Let g ≡ 0. It follows from (3) that η = h(x)u + r(t, x). Equation (4) now reads as

rt t − rxx − 2h′ux + [h − 2τt ] f − τ ft − ξ fx − [hu + r ] fu = 0.

As functions τ, ξ, h, r, f do not depend on ux , we have h′
= 0. Hence η = mu +

r(t, x), where m is an arbitrary real constant. Furthermore, if g = g(t, x) 6= 0, then
it is straightforward to verify that system of Equations (3), (4) is equivalent to the
following equations:

2ht = −τxg, 2hx = −τt g − τgt − ξgx,

(ht t − hxx)u + rt t − rxx + f [h − 2τt ] − τ ft − ξ fx − [hu + r ] fu − (hxu + rx)g = 0.

Integrating Equation (2) yields τ = ϕ(θ)+ ψ(σ), ξ = −ϕ(θ)+ ψ(σ), where ϕ,ψ

are arbitrary smooth functions of θ = t − x, σ = t + x. So we prove the following
assertion.

THEOREM 1. Provided Fuxux 6= 0, the maximal invariance group of Equation (1.1)
is generated by the following infinitesimal operator:

Q = (λt + λ1)∂t + (λx + λ2)∂x + [h(x)u + r(t, x)]∂u, (2.4)

where λ, λ1, λ2 are real constants and h = h(x), r = r(t, x), F = F(t, x,u,ux) are func-
tions obeying the constraint

rt t − rxx −
d2h
dx2

u − 2
dh
dx

ux + (h − 2λ) F

−(λt + λ1) Ft − (λx + λ2) Fx − (hu + r) Fu

−(rx +
dh
dx

u + (h − λ)ux) Fux = 0. (2.5)

If F = g(t, x,u)ux + f (t, x,u), gu 6= 0, then the maximal invariance group of
Equation (1.1) is generated by infinitesimal operator (2.4), where λ, λ1, λ2 are real
constants, and h, r, g, f are functions satisfying the system of two equations

−2h′
− λg = (λt + λ1)gt + (λx + λ2)gx + (hu + r)gu,

−h′′u + rt t − rxx + (h − 2λ) f = (λt + λ1) ft + (λx + λ2) fx

+(hu + r) fu + g(h′u + rx). (2.6)

Next, if F = g(t, x)ux + f (t, x,u), q 6≡ 0, fuu 6= 0, then the infinitesimal operator of
invariance group of Equation (1.1) reads as

Q = τ(t, x)∂t + ξ(t, x)∂x + (h(t, x)u + r(t, x))∂u,
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where τ, ξ, h, r, g, f are functions satisfying the system of PDEs

τt − ξx = 0, ξt − τx = 0,

2ht = −τxg, 2hx = −τt g − τgt − ξgx,

(ht t − hxx)u + rt t − rxx + f (h − 2τt )− τ ft

−ξ fx − (hu + r) fu − (hxu + rx)g = 0.

Finally, if F = f (t, x,u), fuu 6= 0, then the maximal invariance group of Equation (1.1)
is generated by the infinitesimal operator

Q = [ϕ(θ)+ ψ(σ)]∂t − [ϕ(θ)− ψ(σ)]∂x + [ku + r(t, x)]∂u,

where k ∈ R, θ = t − x, σ = t + x and functions ϕ,ψ, r, f and constant k satisfy the
following equation:

rt t − rxx + [k − 2ϕ′
− 2ψ ′

] f − (ϕ + ψ) ft +

+(ϕ − ψ) fx − (ku + r) fu = 0, ϕ′
=

dϕ
dθ
, ψ ′

=
dψ
dθ
.

Summing up the above considerations we conclude that the problem of group
classification of Equation (1.1) reduces to the one of classifying equations of the more
specific forms

ut t = uxx + F(t, x,u,ux), Fuxux 6= 0; (2.7)

ut t = uxx + g(t, x,u)ux + f (t, x,u), gu 6= 0; (2.8)

ut t = uxx + g(t, x)ux + f (t, x,u), g 6= 0, fuu 6= 0; (2.9)

ut t = uxx + f (t, x,u), fuu 6= 0. (2.10)

Consider the last two equations. Using the change of variables

t̄ = t − x, x̄ = t + x, u = v(t̄, x̄)

we reduce them to the equations

vt̄ x̄ =
1

4
f (t̄, x̄, v),

vt̄ x̄ = −
1

4
g(t̄, x̄)(vt̄ − vx̄)+

1

4
f (t̄, x̄, v). (2.11)

Now making the change of variables

t̃ = t̄, x̃ = x̄, ṽ(t̃, x̃) = 3(t̄, x̄)v,

where 3 = exp
[
−

1
4

∫
g(t̄, x̄)dx̄

]
, we transform (2.11) to become

ṽt̃ x̃ =

(
1

4
g −3−13t̄

)
ṽx̃ −

1

4
g3−13t̃ ṽ +

1

4
3−13x̄gṽ +3−1 f.

Hence we conclude that the following assertion holds true.
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ASSERTION 1. The problem of group classification of Equations (2.9), (2.9) is
equivalent to the one of classifying equations

ut x = g(t, x)ux + f (t, x,u), gx 6= 0, fuu 6= 0; (2.12)

ut x = f (t, x,u), fuu 6= 0. (2.13)

Note that the constraint gx 6= 0 is essential, since otherwise (2.12) is locally
equivalent to (2.13).

Summing up we conclude that the problem of group classification of (1.1) reduces
to classifying the more particular classes of PDEs (2.7), (2.8), (2.12), (2.13). In what
follows, we provide full calculation details for Equations (2.9) and (2.10) only. The
reason is just to save space and still be able to present all details of the algorithm.

First, we consider Equations (2.8), (2.12), (2.13).

4. Group Classification of Equation (2.8)

According to Theorem 1 the invariance group of Equation (2.8) is generated by
infinitesimal operator (2.4). And what is more, the real constants λ, λ1, λ2 and
functions h, r, g, f satisfy Equation (2.6). System (2.6) is to be used to specify both
the form of nonlinear term (2.8) (i.e., the functions f , g) and the functions h, r and
constants λ, λ1, λ2 in (2.4). It is called the system of classifying equations.

Efficiency of the Lie method for calculation of maximal invariance group of PDE
relies essentially on the fact that routinely the corresponding system of determining
equations is over-determined. This is clearly not the case, since we have only
one equation for four (!) arbitrary functions and three of the latter depend on
two variables. By this reason the straightforward application of Lie–Ovsyannikov
algorithm is not possible.

Next, we compute the equivalence group E of Equation (2.8). This group is gener-
ated by invertible transformations of the space V preserving the differential structure
of Equation (2.8) (see, e.g., [14]). Saying it another way, a group transformation
from E

t̄ = α(t, x,u), x̄ = β(t, x,u), v = U(t, x,u),
D(t̄, x̄, v)
D(t, x,u)

6= 0,

should reduce (2.8) to an equation of the same form

vt̄ t̄ = vx̄x̄ + g̃(t̄, x̄, v)vx̄ + f̃ (t̄, x̄, v), g̃v 6= 0

with possibly different f̃ , g̃.
Ovsyannikov prove [14] that it is possible to modify the Lie’s infinitesimal

approach to calculate the equivalence group in the essentially same way as the
invariance group. We omit simple intermediate calculations and present the final
result.

ASSERTION 2. The maximal equivalence group E of Equation (2.8) is

t̄ = kt + k1, x̄ = εkx + k2, v = X(x)u + Y(t, x), (3.1)

where k 6= 0, X 6= 0, ε = ±1,k,k1,k2 ∈ R, and X,Y are arbitrary smooth functions.
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This completes the first step of the algorithm.

4.1. Preliminary Group Classification of Equation (2.8)

First, we describe equations of the form (2.8) which admit one-parameter invariance
groups.

LEMMA 1. There exist transformations (3.1) that reduce operator (2.4) to one of the
six forms:

Q = m(t∂t + x∂x), m 6= 0; Q = ∂t + β∂x, β ≥ 0;

Q = ∂t + σ(x)u∂u, σ 6= 0; Q = ∂x;

Q = σ(x)u∂u, σ 6= 0; Q = θ(t, x)∂u, θ 6= 0. (3.2)

Proof can be found in [35].

THEOREM 2. There are exactly five inequivalent equations of the form (2.8) that
admit one-parameter transformation groups. They are listed below together with one-
dimensional Lie algebras generating their invariance groups (note that we do not
present the full form of invariant PDEs and just give the functions f and g)

A1
1 = 〈t∂t + x∂x〉 : g = x−1g̃(ψ,u),

f = x−2 f̃ (ψ,u), ψ = t x−1, g̃u 6= 0;

A2
1 = 〈∂t + β∂x〉 : g = g̃(η,u), f = f̃ (η,u),

η = x − βt, β ≥ 0, g̃u 6= 0;

A3
1 = 〈∂t + σ(x)u∂u〉 : g = −2σ ′σ−1 ln |u| + g̃(ρ, x),

f = (σ ′σ−1)2u ln2
|u| − σ ′σ−1g̃(ρ, x)u ln |u| − σ−1σ ′′u ln |u| + u f̃ (ρ, x),

ρ = u exp(−tσ), σ 6= 0;

A4
1 = 〈∂x〉 : g = g̃(t,u), f = f̃ (t,u), g̃u 6= 0;

A5
1 = 〈σ(x)u∂u〉 : g = −2σ ′σ−1 ln |u| + g̃(t, x), f = (σ ′σ−1)2u ln2

|u|

−(σ−1σ ′′
+ σ−1σ ′g̃(t, x))u ln |u| + u f̃ (t, x), σ ′

6= 0.

Proof can be found in [35].
In a sequel we will need the following technical lemma.

LEMMA 2. There are no realizations of semi-simple Lie algebras by operators of the
form (2.4).

Proof. To prove the lemma it suffices to check that there are no realizations of
the lowest order simple Lie algebras by operators (2.4). The commutation relations
defining these algebras are [36]:

so(3) = 〈e1, e2, e3〉 : [e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1;

sl(2,R) = 〈e1, e2, e3〉 : [e1, e2] = 2e2, [e1, e3] = −2e3, [e2, e3] = e1.
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We start by noting that one of the basis operators e1, e2, e3 can be reduced to one
of the five operators (3.2) (see, Lemma 1). We consider in detail the case of operator

t∂t + x∂x (3.3)

only, since the remaining cases are handled in a similar way.
Let the basis operator e1 of the algebras so(3) and sl(2,R) be of the form (3.3).

Computing the commutator of e1 and Q of the form (2.4) yields the relation

[e1,Q] = −λ1∂t − λ2∂x + [xh′u + xrx + trt ]∂u.

To satisfy the first two commutation relations for each of the algebras under study,
the basis operators e2, e3 have to be of the form

α1∂t + α2∂x + (γ (x)u + µ(t, x))∂u,

where α1, α2 ∈ R, γ and µ are smooth functions. It is straightforward to verify that
these operators cannot satisfy the third commutation relation for either algebra
sl(2,R) and so(3).

The lemma is proved.

THEOREM 3. There are no nonlinear equation (2.8) invariance algebras of which are
isomorphic to semi-simple Lie algebras or contain them as subalgebras.

Proof. Suppose the inverse. Let (2.8) be an equation the invariance algebra of
which contain a subalgebra that is semi-simple Lie algebra L. Then by properties of
semi-simple Lie algebras there exist linear combinations of the basis elements of L
forming the basis of either so(3) or sl(2,R). However, due to Lemma 2 there are
no realizations of the algebras so(3), sl(2,R) by operators (2.4). We arrive at the
contradiction which proves the theorem.

It follows from Theorem 3 and Levi–Maltsev theorem (see, e.g., [36, 37]) that
nonlinear equation (2.8) can admit invariance algebras of the dimension higher than
one provided, (i) these algebras are isomorphic to real solvable Lie algebras, or (ii)
their finite dimensional subalgebras are real and solvable. Using this fact and also the
concept of compositional row for solvable Lie algebras we can perform hierarchical
classification of invariant equations starting from the lowest dimensional solvable
Lie algebras and increasing dimension by one till we exhaust all possible invariant
equations. We start by considering two-dimensional solvable Lie algebras.

There exist two inequivalent two-dimensional solvable Lie algebras [37, 38]

A2.1 = 〈e1, e2〉 : [e1, e2] = 0;

A2.2 = 〈e1, e2〉 : [e1, e2] = e2.

To construct all possible realizations of the above algebras we take as the first basis
element one of the realizations of one-dimensional invariance algebras obtained
above. The second operator is looked for in the form (2.4). In the case of commutative
algebra A2.1 there is no difference between operators e1 and e2, while for the algebra
A2.2 these operators require separate analysis. We give full computation details for
the case when one of the basis elements is of the form A1

1 given in Theorem 2.
Algebra A2.1. Let the operator e1 be of the form (3.3) and the operator e2 read as

(2.4). It follows from the relation [e1, e2] = 0 that λ1 = λ2 = xh′
= 0, trt + xrx = 0.
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Consequently, we can choose the basis elements of the algebra under study in
the form 〈t∂t + x∂x, (mu + r(ψ))∂u〉, where m ∈ R, ψ = t x−1. Provided m = 0 the
operator e2 becomes r(ψ)∂u. As established earlier, this realization does not satisfy
the determining equations. Hence, m 6= 0. Making the change of variables

t̄ = t, x̄ = x, v = u + m−1r(ψ)

reduces the basis operators in question to the form t̄∂t̄ + x̄∂x̄, mv∂v. That is why we
can restrict our considerations to the realization 〈t∂t + x∂x,u∂u〉.

The second determining equation from (2.6) after being written for the operator
u∂u takes the form ugu = 0, whence it follows that this realization does not satisfy the
determining equations. So the realization A1

1 cannot be extended to a realization of
the two-dimensional algebra A2.1.

Algebra A2.2. If operator e1 is of the form (3.3), then it follows from [e1, e2] = e2

that λ = λ1 = λ2 = 0, xh′
= h, trt + xrx = r.

Next, if the operator e2 reads as (3.3), then we get from [e1, e2] = e2 the erroneous
equality 1 = 0.

So the only possible case is when e2 = (mxu + xr(ψ))∂u, m 6= 0, ψ = t x−1, which
gives rise to the following realization of the algebra A2.2: 〈t∂t + x∂x, xu∂u〉. This
algebra is indeed invariance algebra of an equation from the class (2.8) and the
functions f and g read as

g =−2x−1 ln |u| + x−1g̃(ψ), f = x−2u ln2
|u| − x−2g̃(ψ)u ln |u| + x−2u f̃ (ψ), ψ= t x−1.

Analysis of the remaining realizations of one-dimensional Lie algebras yields 10
inequivalent A2.1- and A2.2-invariant equations (see the assertions below). What is
more, the obtained (two-dimensional) algebras are maximal symmetry algebras of
the corresponding equations.

THEOREM 4. There are at most four inequivalent A2.1-invariant nonlinear equation
(2.8). Below we list the realizations of A2.1 and the corresponding expressions for f
and g.

1) 〈∂t , σ (x)u∂u, 〉 : g = −2σ ′σ−1 ln |u|,

f = (σ ′σ−1)2u ln2
|u| − σ−1σ ′u ln |u| + u f̃ (x), σ ′

6= 0;

2) 〈∂t , ∂x〉 : g = g̃(u), f = f̃ (u), g̃u 6= 0;

3) 〈∂x, ∂t + u∂u〉 : g = g̃(ω), f = exp(t) f̃ (ω), ω = exp(−t), g̃ω 6= 0;

4) 〈σ(x)u∂u, ∂t −
1

2
kσ(x)ψ(x)u∂u〉 : g = −2σ ′σ−1 ln |u| + kt + g̃(x),

f = (σ ′σ−1)2u ln2
|u| − σ−1σ ′′u ln |u| − σ−1σ ′(kt + g̃(x))u ln |u|

+u
[

1

2
kσ ′σ−1t +

1

4
k2t2

+
1

2
kg̃(x)+ f̃ (x)

]
,

k 6= 0, σ ′
6= 0, ψ =

∫
σ−1dx.
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THEOREM 5. There exist at most six inequivalent A2.2-invariant nonlinear equation
(2.8). Below we list the realizations of A2.1 and the corresponding expressions for f
and g.

1) 〈t∂t + x∂x,k−1
|x|

ku∂u〉 : g = x−1(−2k ln |u| + g̃(ψ)),

f = x−2u(−k2 ln2
|u| + kg̃(ψ) ln |u| + k(k − 1) ln |u| + f̃ (ψ)),

k 6= 0, ψ = t x−1
;

2) 〈∂t + β∂x, exp(β−1x)u∂u〉 : g = −2β−1 ln |u| + g̃(η),

f = β−2u ln2
|u| − (β−2

+ β−1g̃(η))u ln |u| + u f̃ (η),

β > 0, η = x − βt;

3) 〈−t∂t − x∂x, ∂t + β∂x〉 : g = η−1g̃(u), f = η−2 f̃ (u), β ≥ 0,

η = x − βt, g̃u 6= 0;

4) 〈−t∂t − x∂x, ∂t + mx−1u∂u〉 : g = x−1(2mψ + g̃(ω)),

f = x−1
[−2mψu − 2mψ − 2 − g̃(ω)+ exp(mψ)g̃(ω)],

m> 0, ω = u exp(−mψ), ψ = t x−1, g̃ω 6= 0;

5) 〈∂x, exu∂u〉 : g = −2 ln |u| + g̃(t), f = u ln2
|u|

−u ln |u|(1 + g̃(t))+ u f̃ (t);

6) 〈−t∂t − x∂x, ∂x〉 : g = t−1g̃(u), f = t−2 f̃ (u), g̃u 6= 0.

4.2. Completing Group Classification of (2.8)

As the invariant equations obtained in the previous subsection contain arbitrary
functions of at most one variable, we can use the standard Lie–Ovsyannikov approach
to complete group classification of (2.8). We give the computation details for the case
of the first A2.1-invariant equation. The remaining cases are handled in a similar way.

Putting g = −2σ ′σ−1 ln |u|, f = (σ ′σ−1)u ln2
|u| − σ−1σ ′′u ln |u|+u f̃ (x),σ = σ(x),

σ ′
6= 0 we rewrite the first determining equation to become:

−2h′
+ 2λσ ′σ−1 ln |u| = −2(λx + λ2)(σ

′σ−1)′x ln |u| − 2hσ ′σ−1
− 2rσ ′σ−1u−1.

As h = f (x), σ = σ(x), r = r(t, x), λ, λ2 ∈ R, the above relation is equivalent to the
following ones:

h′
= σ ′σ−1h, r = 0, λσ ′σ−1

= −(λx + λ2)(σ
′σ−1)′.

If σ is an arbitrary function, then λ = λ2 = r = 0, h = Cσ, C ∈ R and 〈∂t , σ (x)u∂u〉

is the maximal symmetry algebra of the equation under study. Hence extension of
symmetry algebra is only possible when the function ψ = σ ′σ−1 is a (non-vanishing
identically) solution of equation

(αx + β)ψ ′
+ αψ = 0, α, β ∈ R, |α| + |β| 6= 0.

If α 6= 0, then utilizing displacements by x we can get β = 0, so that ψ = mx−1, m 6=

0. Integrating the remaining determining equations we get

g = −2mx−1 ln |u|, f = mx−2
[mu ln2

|u| − (m − 1)u ln |u| + nu], m 6= 0, m,n ∈ R.
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The maximal invariance algebra of the obtained equation is the three-dimensional
Lie algebra 〈∂t , |x|

mu∂u, t∂t + x∂x〉 isomorphic to A3.7.

Next, if α = 0, then β 6= 0 and what is more ψ = m, m 6= 0. If this is the case we
have

g = ln |u|, f =
1

4
u ln2

|u| −
1

4
u ln |u| + nu, n ∈ R.

The maximal invariance algebra of the above equation reads as

〈∂t , ∂x, exp

(
−

1

2
x
)

u∂u〉.

It is isomorphic to A3.2.

Similarly we prove that the list of inequivalent equations of the form (2.8)
admitting three-dimensional symmetry algebras is exhausted by the equations given
below. Note that the presented algebras are maximal. This means, in particular, that
the maximal symmetry algebra of Equation (2.8) is at most three-dimensional.

A3.2-invariant equations

1) ut t = uxx + ux ln |u| +
1
4 u ln2

|u| −
1
4 u ln |u| + nu (n ∈ R) : 〈∂t , ∂x, exp

(
−

1
2 x

)
u∂u〉;

2) ut t = uxx + m[ ln |u| − t]ux +
m2

4 u[(ln |u| − t)(ln |u| − t − 1)] + nu(m> 0,

n ∈ R) : 〈∂x, ∂t + u∂u, exp
(
−

1
2 mx

)
u∂u〉.

A3.4-invariant equations

1) ut t = uxx + x−1
[2 ln |u| + mx−1t + n]ux + x−2u ln |u|

+(mx−1t + n − 2)x−2u ln |u| +
1
4 m2x−4t2u +

1
2 m(n − 3)x−3tu + px−2u

( m 6= 0, n, p ∈ R) : 〈t∂t + x∂x, x−1u∂u, ∂t −
m
2 x−1 ln |x|u∂u〉.

A3.5-invariant equations

1) ut t = uxx + |u|
mux + n|u|

1+2m (m 6= 0, n ∈ R) : 〈∂t , ∂x, t∂t + x∂x − m−1u∂u〉;

2) ut t = uxx + euux + ne2u (n ∈ R) : 〈∂t , ∂x, t∂t + x∂x − ∂u〉;

3) ut t = uxx − x−1
[2 ln |u| − mx−1t − n]ux + x−2u ln2

|u|

−x−2(mx−1t + n)u ln |u| + ux−2
[m

4 x−2t2
+

m
2 (n − 1)x−1t + p

]
(m,n, p ∈ R) : 〈t∂t + x∂x, xu∂u, ∂t +

m
4 x−1u∂u〉.

A3.7-invariant equations

1) ut t = uxx − 2mx−1ux ln |u| + mx−2
[mu ln2

|u| − (m − 1)u ln |u| + nu]

(m 6= 0, 1; n ∈ R) : 〈∂t , |x|
mu∂u, t∂t + x∂x〉;

2) ut t = uxx − x−1
[2k + ln |u| − mx−1t − n]ux + k2x−2u ln2

|u|

−kx−2
[mtx−1

+ k + n − 1]u ln |u| +
1
2 m(k − 2 + n)t x−3u

+
1
4 m2t2x−4u + px−2u (|k| 6= 0, 1; m 6= 0,n, p ∈ R) :

〈t∂t + x∂x, |x|
ku∂u, ∂t +

m
2(1+k) x

−1u∂u〉.

This completes group classification of nonlinear equation (2.8).
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5. Group Classification of Equation (2.12)

Omitting the intermediate calculation details we give the determining equations for
symmetry operators admitted by Equation (2.12).

ASSERTION 3. The maximal invariance group of PDE (2.12) is generated by the
infinitesimal operator

Q = τ(t)∂t + ξ(x)∂x + [h(t)u + r(t, x)]∂u, (4.1)

where τ, ξ, h, r, f, g are smooth functions satisfying the conditions

rt x + f [h − τt − ξx] = grx + τ ft + ξ fx + [hu + r ] fu,

ht = τt g + τgt + ξgx. (4.2)

ASSERTION 4. The equivalence group E of (2.12) is formed by the following
transformations of the space V:

(1) t̄ = T(t), x̄ = X(x), v = U(t)u + Y(t, x), T′ X ′U 6= 0;

(2) t̄ = T(x), x̄ = X(t), v = 9(x)8(t, x)u + Y(t, x), T′ X ′9 6= 0,

8(t, x) = exp[−

∫
g(t, x)dt], gx 6= 0. (4.3)

Given the arbitrary functions g and f Equation (4.2) holds only when τ = h = ξ =

r = 0. This means that in the generic case the maximal invariance group of Equation
(2.12) is the trivial group of identical transformations.

We begin symmetry classification of (2.12) by constructing equations that admit
one-dimensional invariance algebras.

LEMMA 3. There exist transformations (4.3) reducing operator (4.1) to one of the
seven canonical forms

Q = t∂t + x∂x; Q = ∂t ; Q = ∂x + tu∂u;

Q = ∂x + εu∂u, ε = 0, 1; Q = tu∂u,

Q = u∂u, Q = r(t, x)∂u, r 6= 0. (4.4)

Proof. Transformations (4.3) reduce operator Q (4.1) to become

Q̃ = τT ′∂t̄ + ξX ′∂x̄ + [(τU ′
+ Uh)u + τYt + ξYx + Ur ]∂v. (4.5)

Provided σ · ξ 6= 0, we can choose non-vanishing identically solutions of the
equations

τT ′
= T, ξX ′

= X, τU ′
+ hU = 0, τYt + ξYx + Ur = 0
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as T, X,U,Y thus getting operator Q̃ (4.5) in the form Q̃ = t̄∂t̄ + x̄∂x̄. If τ 6= 0,
and ξ = 0, then taking the solutions of the equations

τT ′
= 1, τU ′

+ hU = 0 (U 6= 0), τYt + Ur = 0

as T,U,Y reduces operator (4.1) to the form Q̃ = ∂t̄ . If τ = 0, ξ 6= 0, then under
h′

6= 0 we get the operator Q̃ = ∂x̄ + t̄v∂v . Next, if h′
= 0, we arrive at the operator

Q̃ = ∂x̄ + εv∂v, where either ε = 0 or ε = 1.
Finally, the case τ = ξ = 0, gives rise to the operators Q̃ = t̄v∂v, Q̃ = v∂v, Q̃ =

r(t̄, x̄)∂v. Rewriting them in the initial variables we get the operators listed in the
statement of lemma. The lemma is proved.

THEOREM 6. There exist at most three inequivalent nonlinear equation (2.12)
that admit one-dimensional invariance algebras. The form of functions f, g and the
corresponding symmetry algebras are given below.

A1
1 = 〈t∂t + x∂x〉 : g = t−1g̃(ω), f = t−2 f (u, ω), ω = t x−1, g̃ω 6= 0, fuu 6= 0;

A2
1 = 〈∂t 〉 : g = g̃(x), f = f̃ (x,u), g̃′

6= 0, f̃uu 6= 0;

A3
1 = 〈∂x + tu∂u〉 : g = x + g̃(t), f = et x f̃ (t, ω), ω = e−t xu, f̃ωω 6= 0.

Proof. If Equation (2.12) admits one-parameter transformation group, then the
latter is generated by infinitesimal operator (4.1). According to Lemma 3 there
exist equivalence transformations (4.3) reducing this operator to one of the seven
canonical operators (4.4). Now we need to solve determining Equation (4.2) for
each of these operators. The first three operators yield invariant equations and
corresponding symmetry algebras given in the statement of theorem. The next two
operators give rise to inconsistent equations.

Finally, the remaining operators yield that the functions f and g are linear in u,
which means that the corresponding invariant equations are linear.

It is straightforward to verify that for the case of arbitrary functions f̃ , g̃ the
corresponding one-dimensional algebras are maximal in Lie’s sense.

The theorem is proved.
We proceed now to analyzing Equation (2.12) which admit two-dimensional

symmetry algebras.

THEOREM 7. There exist at most three inequivalent nonlinear equation (2.12) that
admit two-dimensional symmetry algebras, all of them being A2.2-invariant equations.
The forms of functions f and g and the corresponding realizations of the Lie algebra
A2.2 are given below

A1
2.2 = 〈t∂t + x∂x, t2∂t + x2∂x + mut∂u〉 (m ∈ R) :

g = [mt + (k − m)x]t−1(t − x)−1, k 6= 0,

f = |t − x|
m−2

|x|
−m f̃ (ω),

ω = u|t − x|
−m

|x|
m, f̃ωω 6= 0;
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A2
2.2 = 〈t∂t + x∂x, t2∂t + mtu∂u〉 (m ∈ R) :

g = t−2
[kx + mt], k 6= 0, f = |t |m−2

|x|
−m f̃ (ω),

ω = |t |−m
|x|

mu, f̃ωω 6= 0;

A3
2.2 = 〈t∂t + x∂x, x2∂x + tu∂u〉 :

g = (t x)−1(mx − t) (m ∈ R), f = x−2 exp(−t x−1) f̃ (ω),

ω = u exp(t x−1), f̃ωω 6= 0.

To prove the theorem we need to extend realizations Ai
1 (i = 1, 2, 3) to realizations

of the algebras A2.1, A2.2 by operators (4.1). We skip the calculation details.
Note that if the functions f̃ are arbitrary, then the invariance algebras given in the

statement of Theorem 7 are maximal.
Now we can complete the group classification presented in Theorem 7 utilizing

the Lie–Ovsyannikov classification routine. Consider in some detail the case of A1
2.2-

invariant equations (the remaining cases are treated in a similar way). The second
determining equation from Equation (4.2) reads now as

(t − x)2ht = t−1τt [m(t − x)2+kx(t − x)] + τ [−t−2m(t − x)2 − 2kt−1x + kt−2x2
] + kξ.

(4.6)
Differentiating right- and left-hand sides of (4.6) twice by x yields

ht = (m − k)(t−1τt − t−2τ)+ kξ ′′.

Hence we get ξ ′′′
= 0 and

ξ = λ1x2
+ λ2x + λ3, λ1, λ2, λ3 ∈ R,

h = (m − k)t−1τ + λ1kt + λ4, λ4 ∈ R.

With account of the above facts we obtain from (4.6) that τ = λ1t2
+ λ2t + λ3. So it

follows from (4.6) that the coefficients of infinitesimal operator (4.1), which generates
symmetry group of A1

2.2-invariant equation, read necessarily as

τ = λ1t2
+ λ2t + λ3,

ξ = λ1x2
+ λ2x + λ3,

h = mλ1t + (m − k)λ3t−1
+ (m − k)λ2 + λ4, λ1, λ2, λ3, λ4 ∈ R.

Consequently, the first determining equation from (4.2) takes the form

(aω + b) f̃ω − a f̃ = c, (4.8)

where a,b, c ∈ R, |a| + |b| 6= 0. On the other hand, it follows from (4.8)

(aω + b) f̃ωω = 0,

whence fωω = 0. We arrive at the contradiction which proves that there is no
extension of the realization A1

2.2 in question to a higher dimensional invariance
algebra of the Equation (2.12). Analyzing A2

2.2- and A2
2.3-invariant equations we

arrive at the same conclusion.
Consequently, there are no nonlinear equations of the form (2.12) whose maximal

invariance algebras are solvable Lie algebras of the dimension higher than two. Next,
as the algebra sl(2,R) contains two-dimensional subalgebra isomorphic to A2.2, there
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are no nonlinear equation (2.12), whose invariance algebras are either isomorphic to
sl(2,R) or contain it as a subalgebra. Finally, we verify that there are no realizations
of the algebra so(3) by operators (4.1).

Summing up the above reasonings we arrive at the following assertion.

THEOREM 8. A nonlinear equation (2.12) having non-trivial symmetry properties is
equivalent to one of the equations listed in Theorems 6 and 7.

This completes group classification of the class of nonlinear PDEs (2.12).

6. Group Classification of Equation (2.13)

As earlier, we present the results of the first step of our group classification algorithm
skipping derivation details.

ASSERTION 5. Invariance group of Equation (2.13) is generated by the infinitesimal
operator

Q = τ(t)∂t + ξ(x)∂x + (ku + r(t, x))∂u, (5.1)

where k is a constant and τ, ξ, r, f are functions satisfying the relation

rt x + [k − τ ′
− ξ ′

] f = τ ft + ξ fx + [ku + r ] fu. (5.2)

ASSERTION 6. Equivalence group E of the class of Equation (2.13) is formed by the
following transformations:

(1) t̄ = T(t), x̄ = X(x), v = mu + Y(t, x),

(2) t̄ = T(x), x̄ = X(t), v = mu + Y(t, x), T ′ X ′m 6= 0. (5.3)

Note that given an arbitrary f it follows from (5.2) that τ = ξ = k = r = 0, i.e., the
group admitted is trivial. To obtain equations with non-trivial symmetry we need to
specify properly the function f . To this end we perform classification of equations
under study admitting one-dimensional invariance algebras.

LEMMA 4. There exist transformations from the group E (5.3) which reduce (5.1)
to one of the four canonical forms:

Q = ∂t + ∂x + εu∂u (ε = 0, 1);

Q = ∂t + εu∂u (ε = 0, 1);

Q = u∂u, Q = g(t, x)∂u (g 6= 0).
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Proof. Utilizing transformations (1) from (5.3) we reduce the operator Q to one
of the following forms:

Q = ∂t̄ + ∂x̄ + εv∂v (ε = 0, 1) :

Q = ∂t̄ + εv∂v (ε = 0, 1);

Q = ∂x̄ + εv∂v (ε = 0, 1);

Q = v∂v, Q = g(t̄, x̄)∂v (g 6= 0).

Next we note that the change of variables t̃ = x̄, x̃ = t̄, ṽ = v which is of the form (2)
from (5.3) transforms the second operator into the third one. Rewriting the obtained
operators in the initial variables completes the proof.

THEOREM 9. There exist exactly two nonlinear equations of the form (2.13) admitting
one-dimensional invariance algebras. The corresponding expressions for function f
and invariance algebras are given below.

A1
1 = 〈∂t + ∂x + εu∂u〉 (ε = 0, 1) : f = eεt f̃ (θ, ω), θ = t − x, ω = e−εt u; f̃ωω 6= 0;

A2
1 = 〈∂t + εu∂u〉 (ε = 0, 1) : f = eεt f̃ (x, ω), ω = e−εt u, f̃ωω 6= 0.

To prove the theorem, it suffices to select those operators from the list given in
Lemma 4 that can be invariance algebra of nonlinear equation of the form (2.13).
To this end we need to solve Equation (5.2) for each of the operators in question.

The first two operators yield A1
1- and A2

1-invariant equations. The last two opera-
tors gives rise to linear invariant equation (2.13), which are not taken into account.

What is more, if the function f̃ is arbitrary, then the algebras A1
1 and A2

1 are
maximal invariance algebras of the corresponding equations.

Next, we classify nonlinear equations admitting symmetry algebras of the dimen-
sion higher than one. We begin by considering equations whose invariance algebras
contain semi-simple subalgebras. It turns out that the class of operators (5.1) contain
no realizations of the algebra so(3). Furthermore it contains the four inequivalent
realizations of the algebra sl(2,R) given below.

(1)

〈
∂t ,

1

2
e2t∂t ,−

1

2
e−2t∂t

〉
;

(2)

〈
∂t ,

1

2
e2t (∂t + ∂u),−

1

2
e−2t (∂t − ∂u)

〉
;

(3)

〈
∂t ,

1

2
e2t (∂t + x∂u),−

1

2
e−2t (∂t − x∂u)

〉
;

(4)

〈
∂t + ∂x,

1

2
e2t∂t +

1

2
e2x∂x,−

1

2
e−2t∂t −

1

2
e−2x∂x + ε[e−2x

− e−2t
]∂u

〉
, ε = 0, 1.

Before starting analysis of sl(2,R)-invariant equations we briefly review the group
properties of the Liouville equation

ut x = λeu, λ 6= 0. (5.4)
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It is a common knowledge that the maximal invariance group of this equation is the
infinite-parameter group generated by the following infinitesimal operator [39]:

Q = h(t)∂t + g(x)∂x − (h′
+ g′)∂u,

where h and g are arbitrary smooth functions. Note that due to this fact the Liouville
equation can be linearized by a non-local change of variables (see, e.g., [11, 40, 41]).

After a simple algebra we obtain that realizations (1), (3), (4) with ε = 1 cannot be
invariance algebras of a nonlinear equation of the form (2.13). Realization (2) is the
invariance algebra of equation

ut x = f̃ (x)e−2u, f̃ 6= 0,

which reduces to Equation (5.4) via the change of variables

t = t, x = x, u = −
1

2
(v − ln | f̃ |), v = v(t, x).

Finally making use of the change of variables

t̄ = e−2t , x̄ = e−2x, v = u

we rewrite (4) under ε = 0 to become

〈∂t + ∂x, t∂t + x∂x, t2∂t + x2∂x〉.

The corresponding invariant equation reads as

ut x = (t − x)−2 f̃ (u), f̃uu 6= 0. (5.5)

If the function f̃ is arbitrary, then the above presented realization is the maximal in-
variance algebra of the equation under study. Using the Lie–Ovsyannikov algorithm
we establish that extension of symmetry is only possible when f̃ = λeu

+ 2.However
the corresponding equation is reduced to the Liouville equation by the change of
variables

t = t, x = x, u = v(t, x)+ 2 ln |t − x|.

Thus the only inequivalent nonlinear equation (2.13) whose invariance algebras
contain semi-simple subalgebras are given in (5.4) and (5.5), where f̃ is an arbitrary
smooth function of u.

To complete group classification of Equation (2.13) we need to describe equations
whose invariance algebras are solvable Lie algebras of the dimension higher than
one. We begin with those realizations of two-dimensional Lie algebras A2.1, A2.2,
which can be admitted by nonlinear equation (2.13).

It turns out that the class of operators (5.1) contains one inequivalent realization
of the algebra A2.1 which meets the invariance requirements, namely,

〈∂t + ε1u∂u, ∂x + ε2u∂u〉 (ε1 = 0, 1; ε2 = 0, 1).

The corresponding invariant equation reads as

ut x = exp(ε1t + ε2x) f̃ (ω), ω = u exp(−ε1t − ε2x). (5.6)

Analysis of Equation (5.6) with arbitrary f (ω) shows that under ε1 + ε2 6= 0 the above
realization is its maximal invariance algebra. Provided ε1 = ε2 = 0 the equation takes
the form

ut x = f (u) (5.7)
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and its maximal invariance algebra is the three-dimensional Lie algebra of the
operators

〈∂t , ∂x, t∂t − x∂x〉,

which is isomorphic to A3.6.

It is a common knowledge (see, e.g., [17–19]) that (5.7) admits extension of its
symmetry if it is equivalent either to the Liouville equation (5.4) or to the nonlinear
d’Alembert equation

ut x = λ|u|
n+1, λ 6= 0, n 6= 0,−1. (5.8)

The maximal invariance algebra of (5.8) is the four-dimensional Lie algebra

〈t∂t −
1

n
u∂u, x∂x −

1

n
u∂u, ∂t , ∂x〉.

It is isomorphic to the algebra A2.2 ⊕ A2.2.

Extension of symmetry algebra of Equation (5.6) with ε1 = 1, ε2 = 0, is only
possible when:

ut x = λe−mt
|u|

m+1, λ 6= 0, m 6= 0,−1; (5.9)

ut x = λet exp(ue−t ), λ 6= 0. (5.10)

The maximal invariance algebra of (5.9) is the four-dimensional Lie algebra of
operators

〈∂t + u∂u, emt∂t , ∂x, x∂x −
1

m
u∂u〉,

which is isomorphic to A2.2 ⊕ A2.2. Note that the change of variables

t̄ = e−mt , x̄ = x, u = v(t̄, x̄)

reduces the above equation to the form (5.8).
The maximal invariance algebra of (5.10) is spanned by the operators

〈∂t + u∂u, ∂x, x∂x − et∂u〉

and is isomorphic to A1 ⊕ A2.2.

Analyzing A2.2-invariant equations we arrive at the following conclusion. The class
of operators (5.1) contains six inequivalent realizations of the algebra A2.2 which
meet the invariance requirements

(1) 〈−t∂t + x∂u, ∂t 〉;

(2) 〈−t∂t − x∂x, ∂t + ∂x〉;

(3) 〈−t∂t − x∂x + u∂u, ∂t + ∂x〉;

(4) 〈−t∂t + ∂u, ∂t 〉;

(5) 〈−t∂t − x∂x − u∂u, ∂t 〉;

(6) 〈−t∂t − x∂x, ∂t 〉. (5.11)

Equation invariant under realization (1) reads as

ut x = exp(x−1u). (5.12)

Its maximal symmetry algebra is the three-dimensional Lie algebra

〈−t∂t + x∂u, ∂t , x∂x + u∂u〉
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isomorphic to A2.2 ⊕ A1. Note that the change of variables

t̄ = x, x̄ = et , u = v(t̄, x̄)

reduces (5.12) to the form (5.10).
Equation invariant under the second realization of A2.2 is of the form (5.5). We

have already obtained this equation while describing sl(2,R)-invariant equations.
Realizations (3) and (4) give no new invariant equations as well.
New invariant equation are obtained when we consider the fifth realization from

(5.10). It has the form

ut x = x−1 f̃ (ω), ω = x−1u.

If the function f̃ is arbitrary, then the realization in question is the maximal
invariance algebra of the above equation. Further extension of symmetry properties
is only possible if f̃ (ω) = λ|ω|

m+1 which gives the following invariant equation:

ut x = λ|x|
−m−2

|u|
m+1, λ 6= 0, m 6= 0,−1,−2.

Its maximal symmetry algebra is the three-dimensional Lie algebra having the basis

〈∂t , t∂t + x∂x + u∂u, x∂x +
m + 1

m
u∂u〉.

This algebra is isomorphic to A2.2 ⊕ A1.

We sum up the above results in the following assertion.

THEOREM 10. The Liouville equation ut x = λeu, λ 6= 0, has the highest symmetry
among Equations (2.13). Its maximal invariance algebra is infinite-dimensional and
spanned by the following infinite set of basis operators:

Q = h(t)∂t + g(x)∂x − (h′(t)+ g′(x))∂u.

Here h and g are arbitrary smooth functions. Next there exist exactly nine inequivalent
equations of the form (2.13) maximal invariance algebras of which have dimension
higher that one. These equations and their invariance algebras are given in Table 1.

7. Group Classification of Equation (2.7)

The first step of the algorithm of group classification of (2.7)

ut t = uxx + F(t, x,u,ux), Fuxux 6= 0

has been partially performed in the second chapter. It follows from Theorem 1 that
the invariance group of Equation (2.7) is generated by infinitesimal operator (2.4).
What is more, the real constants λ, λ1, λ2 and real-valued functions h = h(x), r =

r(t, x), F = F(t, x,u,ux) obey relation (2.5). The equivalence group of the class of
Equation (2.7) is formed by transformations (3.1).

The above enumerated facts enable using the results of group classification of
Equation (2.8) in order to classify invariant equations of the form (2.7). In particular,
using Lemmas 1 and 2 it is straightforward to verify that the following assertions
hold true.
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Table 1 Invariant equation (2.13)

Number Function f Symmetry operators Invariance algebra type

1 et f̃ (ω), ω = ue−t , f̃ωω 6= 0 ∂t + u∂u, ∂x A2.1
2 et+x f̃ (ω),

ω = ue−t−x, f̃ωω 6= 0
∂t + u∂u, ∂x + u∂u A2.1

3 (t − x)−3 f̃ (ω),
ω = (t − x)u, f̃ωω 6= 0

−t∂t − x∂x + u∂u, ∂t + ∂x A2.2

4 x−1 f̃ (ω), ω = x−1u,
f̃ωω 6= 0

−t∂t − x∂x − u∂u, ∂t A2.2

5 (t − x)−2 f̃ (u), f̃uu 6= 0 ∂t + ∂x, t∂t + x∂x,

t2∂t + x2∂x

sl(2, R)

6 exp(x−1u) −t∂t + x∂u, ∂t , x∂x + u∂u A2.2 ⊕ A1
7 λ|x|

−m−2
|u|

m+1, λ 6= 0,
m 6= 0,−, 1 − 2

∂t , t∂t −
1
mu∂u,

x∂x +
m+1

m u∂u

A2.2 ⊕ A1

8 f̃ (u), f̃uu 6= 0 ∂t , ∂x,−t∂t − x∂x A3.6
9 λ|u|

n+1, λ 6= 0,n 6= 0,−1 t∂t −
1
n u∂ux∂x −

1
n u∂u∂t , ∂x A2.2 ⊕ A2.2

THEOREM 11. There are at most seven inequivalent classes of nonlinear equation
(2.7) invariant under one-dimensional Lie algebras.

Below we give the full list of the invariant equations and the corresponding
invariance algebras.

A1
1 = 〈t∂t + x∂x〉 : F = t−2G(ξ,u, ω), ξ = t x−1, ω = xux;

A2
1 = 〈∂t + k∂x〉 (k> 0) : F = G(η,u,ux), η = x − kt;

A3
1 = 〈∂x〉 : F = G(t,u,ux);

A4
1 = 〈∂t 〉 : F = G(x,u,ux);

A5
1 = 〈∂t + f (x)u∂u〉 ( f 6= 0) :

F = −t f ′′u + t2( f ′)2u − 2t f ′ux + et f G(x, v, ω),

v = e−t f u, ω = u−1ux − f ′ f −1 ln |u|;

A6
1 = 〈 f (x)u∂u〉 ( f 6= 0) : F = − f −1 f ′′u ln |u|

−2 f −1 f ′ux ln |u| + f −2( f ′)2u ln2
|u| + uG(t, x, ω),

ω = u−1ux − f ′ f −1 ln |u|;

A7
1 = 〈 f (t, x)∂u〉 ( f 6= 0) : F = f −1( ft t − fxx)u + G(t, x, ω),

ω = ux − f −1 fxu.

Note that if the functions F and G are arbitrary, then the given algebras are maximal
(in Lie’s sense) symmetry algebras of the respective equations.
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THEOREM 12. An equation of the form (2.7) cannot admit Lie algebra which has a
subalgebra having a non-trivial Levi factor.

With account of the above facts we conclude that nonlinear equation (2.7) admit
a symmetry algebra of the dimension higher than one only if the latter is a solvable
real Lie algebra. That is why, we turn to classifying Equation (2.7) whose invariance
algebras are two-dimensional solvable Lie algebras.

As the calculations are similar to those performed in the third section, we present
the final result only. Namely, we give the form of invariant equations and the
corresponding realizations of the two-dimensional invariance algebras.

I. A2.1-invariant equations

A1
2.1 = 〈t∂t + x∂x, u∂u〉 : F = x−2uG(ξ, ω),

ξ = t x−1, ω = u−1xux;

A2
2.1 = 〈t∂t + x∂x, σ (ξ)∂u〉 (σ 6= 0, ξ = t x−1) :

F = x−2
[σ−1((1 − ξ 2)σ ′′

− 2ξσ ′)u + G(ξ, ω)],

ω = ξσ ′u + σ xux;

A3
2.1 = 〈∂t + k∂x, u∂u〉 (k> 0) : F = uG(η, ω),

η = x − kt, ω = u−1ux;

A4
2.1 = 〈∂t + k∂x, ϕ(η)∂u〉 (k> 0, η = x − kt, ϕ 6= 0) :

F = (k2
− 1)ϕ′′ϕ−1u + G(η, ω), ω = ϕux − ϕ′u;

A5
2.1 = 〈∂t + k∂x, ∂x + u∂u〉 (k> 0) :

F = eη G(ω, v), η = x − kt, ω = ue−η, v = u−1ux;

A6
2.1 = 〈∂t , ∂x〉 : F = G(u,ux);

A7
2.1 = 〈∂x, u∂u〉 : F = uG(t, ω), ω = u−1ux;

A8
2.1 = 〈∂x, ϕ(t)∂u〉 (ϕ 6= 0) :

F = ϕ−1ϕ′′u + G(t,ux);

A9
2.1 = 〈∂t , ∂u〉 : F = G(x,ux);

A10
2.1 = 〈∂t , f (x)u∂u〉 ( f 6= 0) :

F = −u−1u2
x + uG(x, ω);

ω = u−1ux − f ′ f −1 ln |u|;
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A11
2.1 = 〈∂t + f (x)u∂u, g(x)u∂u〉 (δ = f −1 f ′

− g−1g′
6= 0) :

F = −g−1g′′u ln |u| − 2g−1g′ux ln |u|

+g−2(g′)2u ln2
|u| − 2 f δtux + 2 f δg′g−1tu ln |u|

+ f 2δ2t2u + f (g−1g′′
− f −1 f ′′)tu + uG(x, ω),

ω = u−1ux − g′g−1 ln |u| − t f δ;

A12
2.1 = 〈∂t + f (x)u∂u, et f ∂u〉 ( f 6= 0) :

F = [ f 2
− t f ′′

+ t2( f ′)2]u − 2t f ′ux + et f G(x, ω),

ω = e−t f (ux − t f ′u);

A13
2.1 = 〈 f (x)u∂u, g(x)u∂u〉 (δ = f ′g − g′ f 6= 0) :

F = −u−1u2
x − δ−1δ′ux

+δ−1
[ f ′′g′

− g′′ f ′
]u ln |u| + uG(t, x);

A14
2.1 = 〈ϕ(t)∂u, ψ(t)∂u〉 (ϕ

′ψ − ϕψ ′
6= 0) :

F = ϕ−1ϕ′′u + G(t, x,ux), ϕ
′′ψ − ϕψ ′′

= 0.

II. A2.2-invariant equations

A1
2.2 = 〈t∂t + x∂x, xu∂u〉 : F = x−2u ln2

|u|

−2x−1ux ln |u| + t−2uG(ξ, ω), ξ = t x−1
;

ω = xu−1ux − ln |u|;

A2
2.2 = 〈t∂t + x∂x, tϕ(ξ)∂u〉 (ϕ 6= 0, ξ = t x−1) :

F = t−2(1 − ξ 2)ϕ−1ξ(2ϕ′
+ ξϕ′′)u + t−2G(ξ, ω),

ω = xϕux + ξϕ′u;

A3
2.2 = 〈∂t + k∂x, exp(k−1x)u∂u〉 (k> 0) :

F = k−2u ln2
|u| − 2k−1ux ln |u| − k−2u ln |u|

+uG(η, ω), η = x − kt, ω = u−1ux − k−1 ln |u|;

A4
2.2 = 〈∂t + k∂x, etϕ(η)∂u〉 (η = x − kt, k> 0, ϕ 6= 0) :

F =
(
(k2

− 1)ϕ′′ϕ−1
− 2kϕ′ϕ−1

+ 1
)

u + G(η, ω),

ω = ϕux − ϕ′u, ϕ′
=

dϕ
dη

;
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A5
2.2 = 〈−t∂t − x∂x, ∂t + k∂x〉 (k> 0) :

F = η−2G(u, ω), η = x − kt, ω = uxη;

A6
2.2 = 〈−t∂t − x∂x + mu∂u, ∂t + k∂x〉 (k> 0, m 6= 0) :

F = |η|−2−mG(v, ω), η = x − kt,

ω = u|η|m, v = ux|η|
m+1

;

A7
2.2 = 〈∂x, exu∂u〉 : F = u ln2

|u| − u ln |u| − 2ux ln |u|

+uG(t, ω), ω = u−1ux − ln |u|;

A8
2.2 = 〈∂x, exϕ(t)∂u〉 (ϕ 6= 0) :

F = (ϕ−1ϕ′′
− 1)u + G(t, ω), ω = ux − u;

A9
2.2 = 〈−t∂t − x∂x, ∂x〉 : F = t−2G(u, tux);

A10
2.2 = 〈−t∂t − x∂x + ku∂u, ∂x〉, (k 6= 0) :

F = |t |−2−kG(v, ω), v = |t |ku, ω = |t |k+1ux;

A11
2.2 = 〈∂t , et∂u〉 : F = u + G(x,ux);

A12
2.2 = 〈−t∂t − x∂x, ∂t 〉 : F = x−2G(u, ω), ω = xux;

A13
2.2 = 〈∂t + f (x)u∂u, e(1+ f )t∂u〉 ( f 6= 0) :

F = −
(
t f ′′

− t2( f ′)2 − (1 + f 2)
)

u − 2t f ′ux

+et f G(x, ω), ω = e−t f (
ux − f ′(t + f −1)u

)
;

A14
2.2 = 〈−t∂t − x∂x, ∂t + kx−1u∂u〉 (k> 0);

F = −2ktx−3u + k2t2x−4u + 2ktx−2ux

+x−2 exp(ktx−1)G(v, ω), v = exp(−kx−1t)u,

ω = xu−1ux + ln |u|;

A15
2.2 = 〈k(t∂t + x∂x), |x|

k−1
u∂u〉 (k 6= 0, 1) :

F = −k−2(1 − k)x−2u ln |u| − 2k−1x−1ux ln |u|

+k−2x−2u ln2
|u| + x−2uG(v, ω),

v = t x−1, ω = xu−1ux − k−1 ln |u|;

A16
2.2 = 〈k(t∂t + x∂x), |t |k

−1
ϕ(ξ)∂u〉 (k 6= 0, 1, ϕ 6= 0,

ξ = t x−1) : F = [k−1(k−1
− 1)+ 2ξ(k−1

− ξ 2)ϕ−1ϕ′

+ξ 2(1 − ξ)2ϕ−1ϕ′′
]t−2u + t−2G(ξ, ω),

ω = xϕux + ξϕ′u.
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In the above formulas G stands for an arbitrary smooth function. As customary
the prime denotes derivative of a function of one variable.

7.1. Group Classification of Equation

ut t = uxx − u−1u2
x + A(x)ux + B(x)u ln |u| + uD(t, x)

Before analyzing Equation (2.7) admitting algebras of the dimension higher than two
we perform group classification of the equation

ut t = uxx − u−1u2
x + A(x)ux + B(x)u ln |u| + uD(t, x). (6.1)

Here A(x), B(x), D(t, x) are arbitrary smooth functions. Note that class of PDEs
(6.1) contains A13

2.1-invariant equation. What is more important this class contains a
major part of equations of the form (2.7), maximal symmetry algebras of which have
dimension three or four. We make use of this fact to simplify group classification of
Equation (2.7).

LEMMA 5. If the functions A, B and D are arbitrary, then maximal invariance algebra
of PDE (6.1) is the two-dimensional Lie algebra equivalent to A13

2.1 and (6.1) reduces
to A13

2.1-invariant equation. Next if the maximal symmetry algebra of an equation of the
form (6.1) is three-dimensional (denote it as A3), then this equation is equivalent to one
of the following ones:

I. A3 ∼ A3.1, A3 = 〈∂t , f (x)u∂u, ϕ(x)u∂u〉,

A= −σ−1σ ′, B = σ−1ρ, D = 0, σ = f ′ϕ − fϕ′
6= 0,

ρ = ϕ′ f ′′
− ϕ′′ f ′

;

II. A3 ∼ A3.1, A3 = 〈 f (x)u∂u, ϕ(x)u∂u, ∂t + ψ(x)u∂u〉,

A= −σ−1σ ′, B = σ−1ρ,

D = tσ−1
[σ ′ψ ′

− ψρ − σψ ′′
],

σ = f ′ϕ − ϕ′ f 6= 0, ρ = f "ϕ′
− ϕ′′ f ′,

f ′ψ − fψ ′
6= 0, ϕ′ψ − ϕψ ′

6= 0;

III. D = x−2G(ξ), ξ = t x−1, G 6= 0 :

1) A3 ∼ A3.2, A3 = 〈t∂t + x∂x,u∂u, |x|
1−nu∂u〉,

A= nx−1 (n 6= 1), B = 0;
2) A3 ∼ A3.3, A3 = 〈t∂t + x∂x,u∂u,u ln |x|∂u〉, A= x−1, B = 0;

3) A3 ∼ A3.4, A3 = 〈t∂t + x∂x,
√

|x|u∂u,
√

|x| ln |x|u∂u〉,

A= 0, B =
1
4 x−2

;

4) A3 ∼ A3.9, A3 = 〈t∂t + x∂x,
√

|x| cos( 1
2β ln |x|)u∂u,

√
|x| sin( 1

2β ln |x|)u∂u〉, A= 0, B = mx−2, m> 1
4 , β =

√
4m − 1;

5) A3 ∼ A3.7, A3 = 〈t∂t + x∂x, (
√

|x|)1+βu∂u, (
√

|x|)1−βu∂u〉,

A= 0, B = mx−2,m< 1
4 ,m 6= 0, β =

√
1 − 4m;

6) A3 ∼ A3.8, A3 = 〈t∂t + x∂x, cos(
√

m ln |x|)u∂u,

sin(
√

m ln |x|)u∂u〉, A= x−1, B = mx−2,m> 0;

7) A3 ∼ A3.6, A3 = 〈t∂t + x∂x, |x|
√

|m|u∂u, |x|
−

√
|m|u∂u〉,

A= x−1, B = mx−2, m< 0;

8) A3 ∼ A3.4, A3 = 〈t∂t + x∂x, (
√

|x|)1−nu∂u, (
√

|x|)1−n

× ln |x|u∂u〉, A= nx−1(n 6= 0, 1), B =
1
4 (n − 1)2x−2

;
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9) A3 ∼ A3.9, A3 = 〈t∂t + x∂x, (
√

|x|)1−n cos( 1
2β ln |x|)u∂u,

(
√

|x|)1−n sin( 1
2β ln |x|)u∂u〉, A= nx−1(n 6= 0, 1),

B = mx−2(m> 1
4 (n − 1)2), β =

√
4m − (n − 1)2;

10) A3 ∼ A3.7, A3 = 〈t∂t + x∂x, (
√

|x|)1−β−nu∂u, (
√

|x|)1−n+β

×u∂u〉, A= nx−1(n 6= 0, 1), B = mx−2

(m< 1
4 (n − 1)2,m 6= 0), β =

√
(n − 1)2 − 4m.

IV. D = G(t),

1) A3 ∼ A3.3, A3 = 〈∂x,u∂u, xu∂u〉,

A= B = 0;

2) A3 = A3.2, A3 = 〈∂x,u∂u, exu∂u〉,

A= −1, B = 0;

3) A3 ∼ A3.8, A3 = 〈∂x, cos (x)u∂u, sin (x)u∂u〉,

A= 0, B = 1;

4) A3 ∼ A3.6, A3 = 〈∂x, exu∂u, e−xu∂u〉,

A= 0, B = −1;

5) A3 ∼ A3.4, A3 = 〈∂x, exp
(

1
2 x

)
u∂u, exp

(
1
2 x

)
xu∂u〉,

A= −1, B =
1
4 ;

6) A3 ∼ A3.7, A3 = 〈∂x, exp
(

1
2 (1 + β)x

)
u∂u, exp

(
1
2 (1 − β)x

)
u∂u〉,

A= −1, B = m (m< 1
4 ), m 6= 0, β =

√
1 − 4m;

7) A3 ∼ A3.9, A3 = 〈∂x, exp
(

1
2 x

)
cos( 1

2βx)u∂u, exp
(

1
2 x

)
sin( 1

2βx)u∂u〉,

A= −1, B = m (m> 1
4 ), β =

√
4m − 1;

V. D = G(η), η = x − kt,k> 0,

1) A3 ∼ A3.3, A3 = 〈∂t + k∂x,u∂u, xu∂u〉,

A= B = 0;

2) A3 = A3.2, A3 = 〈∂t + k∂x,u∂u, exu∂u〉,

A= −1, B = 0;

3) A3 ∼ A3.8, A3 = 〈∂t + k∂x, cos (x)u∂u, sin (x)u∂u〉,

A= 0, B = 1;

4) A3 ∼ A3.6, A3 = 〈∂t + k∂x, exu∂u, e−xu∂u〉,

A= n, B = −1;

5) A3 ∼ A3.4, A3 = 〈∂t + k∂x, exp
(

1
2 x

)
u∂u, exp

(
1
2 x

)
xu∂u〉,

A= −1, B =
1
4 ;

6) A3 ∼ A3.7, A3 = 〈∂t + k∂x, exp
(

1
2 (1 + β)x

)
u∂u, exp

(
1
2 (1 − β)x

)
u∂u〉,

A= −1, B = m (m< 1
4 ), m 6= 0, β =

√
1 − 4m;

7) A3 ∼ A3.9, A3 = 〈∂t + k∂x, exp
(

1
2 x

)
cos( 1

2βx)u∂u,

exp
(

1
2 x

)
sin( 1

2βx)u∂u〉, A= −1, B = m (m> 1
4 ) β =

√
4m − 1.

Proof. Inserting the expression

F = −u−1u2
x + A(x)ux + B(x)u ln |u| + uD(t, x)

into classifying Equation (2.5) we get the system of determining equations for the
functions h(x), r(t, x) and constants λ, λ1, λ2:

r = 0, (λx + λ2)A′
+ λA= 0,

(λx + λ2)B′
+ 2λB = 0, h′′

+ Ah′
+ Bh = −(λt + λ1)Dt − (λx + λ2)Dx − 2λD.

(6.2)
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First, we consider the case of arbitrary functions A, B, D. The left-hand side of
the fourth equation from Equation (6.2) depends on x only. Since D is arbitrary, the
relation Dt 6≡ 0 holds. Hence it immediately follows that the constants λ, λ1, λ2 must
be equal to zero. As a consequence, the fourth equation becomes the linear ordinary
differential equation for the function h = h(x)

h′′
+ Ah′

+ Bh = 0. (6.3)

The general solution of the above equation reads as

h = C1 f (x)+ C2ϕ(x), C1,C2 ∈ R,

( f (x), ϕ(x)) being the fundamental system of solutions of the equation

y′′
+ Ay′

+ By = 0, y = y(x). (6.4)

Inserting the expression for h into (6.3) yields

A= −σ−1σ ′, B = σ−1(ϕ′ f ′′
− f ′ϕ′′),

where σ = ϕ f ′
− ϕ′ f 6= 0, which proves the first part of the lemma.

Suppose now that D = 0. If at least one of the functions A or B is arbitrary, then
λ = λ2 = 0 and the function h is a solution of (6.3). This completes the proof of the
case I of the second part of the lemma statement.

Provided functions Aand B are not arbitrary, it follows from the second and third
equations of (6.2) that one of the following relations

1) A= B = 0;

2) A= n, B = m, m,n ∈ R, |n| + |m| 6= 0;

3) A= nx−1, B = mx−2, m,n ∈ R, |n| + |m| 6= 0 (6.5)

holds. With these conditions the maximal invariance algebra of (6.1) has the dimen-
sion higher than three. Consequently, without any loss of generality we can suggest
that D 6= 0. Integrating the equation

(λt + λ1)Dt + (λx + λ2)Dx + 2λD = H(x),

under D 6= 0 yields the following (inequivalent) expressions for the function D(t, x) :

D = x−2G(ξ)+ x−2
∫

xH(x)dx, ξ = t x−1
;

D = G(η)+ k−1
∫

H(x)dx, η = x − kt, k> 0;

D = G(t)+
∫

H(x)dx,

D = t H(x)+ H̃(x). (6.6)

The change of variables

t = t, x = x, u = θ(x)v(t, x), θ 6= 0, (6.7)

where θ is a solution of equation

θ−1θ ′′
− θ−2(θ ′)2 + Aθ−1θ ′

+ B ln |θ | +3(x) = 0,
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preserves the form of Equation (6.1). We use this fact to simplify the form of the
function D

D = x−2G(ξ), ξ = t x−1
;

D = G(η), η = x − kt, k> 0;

D = G(t),

D = t H(x). (6.8)

If the function D is given by the one of the first three expressions, then H(x) ≡ 0
and h satisfies (6.3).

Given the condition D = t H(x), we have

h′′
+ Ah′

+ Bh = −λ1 H, (λx + λ2)H ′
+ 3λH = 0.

So that the maximal invariance algebra of the corresponding Equation (6.1) is three-
dimensional iff λ = λ2 = 0, which yields the case II of the second part of the lemma
statement.

Turn now to the case when D = x−2G(ξ), ξ = t x−1. Then the (non-vanishing
identically) function G obeys the equation

(λ2ξ − λ1)G ′
+ 2λ2G = 0. (6.9)

If G is an arbitrary function, then λ1 = λ2 = 0. In addition we have λ 6= 0 (otherwise
the maximal invariance algebra is two-dimensional). Hence we get

x A′
+ a = 0, xB′

+ 2B = 0.

Consequently, the functions A and B are given by either first or third formula from
(6.5). Analyzing these expressions yields 10 cases of the case III of the second part of
the lemma statement.

If the function G is not arbitrary, then integrating Equation (6.9) we get

G = p, p ∈ R, p 6= 0;

G = p(ξ − q)−2, p 6= 0, q ≥ 0.

Given the condition G = p the parameter λ2 vanishes. Hence in view of the require-
ment for the maximal algebra to be three-dimensional it follows that λ vanishes as
well. This yields the case when A and B in (6.1) are arbitrary functions (the case
I of the second part of lemma statement). If G = p(ξ − q)−2, p 6= 0, then λ1 =

λ2q. Hence we conclude that the maximal invariance algebra of the corresponding
Equation (6.1) is three-dimensional iff the functions A, B are given by formulas 3)
from (6.5) (which implies that λ1 = λ2 = 0) and we get the case III of the second
part of the lemma statement. Next if A, B are given by formulas 2 from (6.5) (which
implies that λ = 0, D = p(t − qx)−2), then we arrive at the case IV (under q = 0) or
the case V (under q > 0) of the second part of the lemma statement.

Turn now to the case D = G(η), η = x − kt, k> 0. If these relations hold, then

λ(ηG ′
+ 2G)+ (λ2 − kλ1)G ′

= 0.

Hence it follows that if G is an arbitrary function of η, then λ = 0, λ2 = kλ1. That is
why, the maximal invariance algebra of (6.1) is three-dimensional iff either A= B =

0 or the functions A, B are given by formulas 2 from (6.5). Thus we have derived all
equations listed in the case V of the second part of the lemma statement.
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The cases when either G = p (p 6= 0) or G = pη−2 (p 6= 0) yield no new invariant
equation (6.5).

Consider now the last possible case D = G(t). If this is the case, then the equation

(λt + λ1)G ′
+ 2λG = 0

holds. Hence if follows that if G is an arbitrary function, then λ = λ1 = 0. Conse-
quently, the maximal invariance algebra of Equation (6.1) is three-dimensional iff
A, B are given by the formula 2 from (6.5). This yields all invariant equations from
the case IV of the second part of the assertion of the lemma. If either of the relations
G = p (p 6= 0) or G = pt−2 (p 6= 0) hold, then no new invariant equations admitting
three-dimensional maximal invariance algebras can be obtained.

To complete the proof of the lemma we need to establish non-equivalence of
the obtained invariant equations. To this end it suffices to prove that there are
no transformations from the group E , reducing their invariance algebras one into
another.

As we have already mentioned in Section 3 there exist nine non-isomorphic three-
dimensional solvable Lie algebras A3.i = 〈e1, e2, e3〉 (i = 1, 2, . . . , 9). We analyze in
some detail the case of the algebra A3.3. The list of invariant equations and algebras
contains three algebras which are isomorphic to A3.3, namely,

L1 = 〈t∂t + x∂x,u∂u,u ln |x|∂u〉;

L2 = 〈∂x,u∂u, xu∂u〉;

L2 = 〈∂t + k∂x,u∂u, xu∂u〉 (k> 0).

Denote the basis elements of the algebra L2 as e1, e2, e3. Suppose that there is a
transformation ϕ from the group E transforming L2 into L3. In other words we
suppose that there exist constants αi , βi , δi ∈ R (i = 1, 2, 3) such that the relations

ϕ(e1) =

3∑
i=1

αi ẽi , ϕ(e2) =

3∑
i=1

βi ẽi , ϕ(e3) =

3∑
i=1

δi ẽi

and

4 =

∣∣∣∣∣∣
α1 α2 α3

β1 β2 β3

δ1 δ2 δ3

∣∣∣∣∣∣ 6= 0

hold. In the above formulas ẽ1 = ∂t + k∂x, ẽ2 = v∂v, ẽ3 = xv∂v. Equating the coeffi-
cients of linearly independent operators ∂t , ∂x, ∂v yields that α1 = β1 = δ1 = 0.Hence
we get the contradictory equation 4 = 0. This means that realizations L2 and L3 are
non-isomorphic. Analogously, we prove that L1 and L2 (as well as L1 and L3) are
non-isomorphic.

The remaining algebras are considered in a similar way. The Lemma is proved.
In what follows we will use the results on classification of abstract four-dimensional

solvable real Lie algebras A4 = 〈e1, e2, e3, e4〉 [42, 43]. There are 10 decomposable

4A1 = 3A1 ⊕ A1 = A3.1 ⊕ A1, A2.2 ⊕ 2A1 = A2.2 ⊕ A2.1 = A3.2 ⊕ A1,

2A2.2 = A2.2 ⊕ A2.2, A3.i ⊕ A1 (i = 3, 4, . . . , 9);
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and 10 non-decomposable four-dimensional solvable real Lie algebras (note that we
give below non-zero commutation relations only).

A4.1 : [e2, e4] = e1, [e3, e4] = e2;

A4.2 : [e1, e4] = qe1, [e2, e4] = e2,

[e3, e4] = e2 + e3, q 6= 0;

A4.3 : [e1, e4] = e1, [e3, e4] = e2;

A4.4 : [e1, e4] = e1, [e2, e4] = e1 + e2,

[e3, e4] = e2 + e3;

A4.5 : [e1, e4] = e1, [e2, e4] = qe2,

]e3, e4] = pe3, −1 ≤ p ≤ q ≤ 1, p · q 6= 0;

A4.6 : [e1, e4] = qe1, [e2, e4] = pe2 − e3,

[e3, e4] = e2 + pe3, q 6= 0, p ≥ 0;

A4.7 : [e2, e3] = e1, [e1, e4] = 2e1,

[e2, e4] = e2, [e3, e4] = e2 + e3;

A4.8 : [e2, e3] = e1, [e1, e4] = (1 + q)e1,

[e2, e4] = e2, [e3, e4] = qe3, |q| ≤ 1;

A4.9 : [e2, e3] = e1, [e1, e4] = 2qe1,

[e2, e4] = qe2 − e3, [e3, e4] = e2 + qe3, q ≥ 0;

A4.10 : [e1, e3] = e1, [e2, e3] = e2,

[e1, e4] = −e2, [e2, e4] = e1.

THEOREM 13. Equation ut t = uxx − u−1u2
x has the widest symmetry group amongst

equations of the form (6.1). Its maximal invariance algebra is the five-dimensional Lie
algebra

A1
5 = 〈∂t , ∂x, t∂t + x∂x, xu∂u,u∂u〉.

There are no equations of the form (6.1) which are inequivalent to the above equation
and admit invariance algebra of the dimension higher than four. Below we give all
inequivalent equation (6.1) admitting four-dimensional together with their symmetry
algebras.

I. D = 0,

1) A4 ∼ A3.6 ⊕ A1, A4 = 〈∂t , ∂x,u ch(βx)∂u,u sinh(βx)∂u〉,

A= 0, B = −β2, β 6= 0;

2) A4 ∼ A3.8 ⊕ A1, A4 = 〈∂t , ∂x,u cos(βx)∂u,u sin(βx)∂u〉,

A= 0, B = β2, β 6= 0;

3) A4 ∼ A2.1 ⊕ A2.2, A4 = 〈∂t , ∂x,u∂u, e−xu∂u〉, A= 1, B = 0;

4) A4 ∼ A3.4 ⊕ A1, A4 = 〈∂t , ∂x, e−xu∂u, xe−xu∂u〉, A= 2, B = 1;
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5) A4 ∼ A3.9 ⊕ A1, A4 = 〈∂t , ∂x,ue−x cos(βx)∂u,ue−x sin(βx)∂u〉,

A= 2, B = m,m> 1, β =
√

m − 1;

6) A4 ∼ A3.7 ⊕ A1, A4 = 〈∂t , ∂x,ue−xch(βx)∂u,ue−x sinh(βx)∂u〉,

A= 2, B = m, m> 1, m 6= 0, β =
√

1 − m;

7) A4 ∼ A4.2, A4 = 〈∂t , t∂t + x∂x,
√

|x|u∂u,u
√

|x| ln |x|∂u〉,

A= 0, B =
1
4 x−2

;

8) A4 ∼ A4.5, A4 = 〈∂t , t∂t + x∂x, |x|
1
2 +βu∂u, |x|

1
2 −βu∂u〉, A= 0,

B = mx−2, m< 1
4 , m 6= 0, β =

√
1
4 − m;

9) A4 ∼ A4.6, A4 = 〈∂t , t∂t + x∂x,√
|x| cos(β ln |x|)u∂u,

√
|x| sin(β ln |x|)u∂u〉, A= 0, B = mx−2, m> 1

4 , β =√
m −

1
4 ;

10) A4 ∼ A4.3, A4 = 〈∂t , t∂t + x∂x,u ln |x|∂u,u∂u〉, A= x−1, B = 0;

11) A4 ∼ A3.7 ⊕ A1, A4 = 〈∂t , t∂t + x∂x, |x|
1−nu∂u,u∂u〉,

A= nx−1, B = 0,n 6= 0, 1;

12) A4 ∼ A4.5, A4 = 〈∂t , t∂t + x∂x, |x|
1
2 (1−n)u∂u, |x|

1
2 (1−n)u ln |x|∂u〉,

A= nx−1, B =
1
4 (n − 1)2x−2, n 6= 0, 1;

13) A4 ∼ A4.5, A4 = 〈∂t , t∂t + x∂x, |x|
1
2 (1−n+β)u∂u, |x|

1
2 (1−n−β)u∂u〉,

A= nx−1, B = mx−2, m< 1
4 (n − 1)2, m 6= 0, n 6= 0, β =

√
(n − 1)2 − 4m;

14) A4 ∼ A4.6, A4 = 〈∂t , t∂t + x∂x, |x|
1
2 (1−n) cos(β ln |x|)u∂u,

|x|
1
2 (1−n) sin(β ln |x|)u∂u〉,

A= nx−1, B = mx−2, m 6= 0, n 6= 0, m> 1
4 (n − 1)2, β =

√
m −

1
4 (n − 1)2;

II. D = ktx−3, k> 0,

1) A4 ∼ A4.1, A4 = 〈∂t −
1
2 kx−1u∂u, t∂t + x∂x, xu∂u,u∂u〉, A= B = 0;

2) A4 ∼ A4.2, A4 = 〈∂t −
4
9 kx−1u∂u, t∂t + x∂x,

√
|x|u∂u,

√
|x| ln |x|u∂u〉,

A= 0, B =
1
4 x−2

;

3) A4 ∼ A4.5, A4 = 〈∂t −
k

m+2 x−1u∂u, t∂t + x∂x, |x|
1
2 +βu∂u, |x|

1
2 −βu∂u〉,

A= 0, B = mx−2, m 6= 0,−2, m< 1
4 , β =

√
1
4 − m;

4) A4 ∼ A4.2, A4 = 〈∂t +
1
9 kx−1(1 + 3 ln |x|u)∂u, t∂t + x∂x,

x2u∂u, x−1u∂u〉, A= 0, B = −2x−2
;

5) A4 ∼ A4.6, A4 = 〈∂t −
k

m+2 x−1u∂u, t∂t + x∂x,
√

|x|u cos(β ln |x|)∂u,
√

|x|u sin(β ln |x|)∂u〉, A= 0, B = mx−2, m> 1
4 , β =

√
m −

1
4 ;

6) A4 ∼ A4.3, A4 = 〈∂t − kx−1u∂u, t∂t + x∂x,u∂u,u ln |x|∂u〉,

A= x−1, B = 0;

7) A4 ∼ A3.4 ⊕ A1, A4 = 〈∂t + kx−1(1 + ln |x|)u∂u, t∂t + x∂x,u∂u,

x−1u∂u〉, A= 2x−1, B = 0;

8) A4 ∼ A3.7 ⊕ A1, A4 = 〈∂t +
k

n−2 x−1u∂u, t∂t + x∂x,u∂u, |x|
1−nu∂u〉,

A= nx−1, B = 0, n 6= 0, 1, 2;

9) A4 = A4.4, A4 = 〈∂t −
1
2 kx−1 ln2

|x|u∂u, t∂t + x∂x, x−1u∂u, x−1 ln |x|u∂u〉,

A= 3x−1, B = x−2
;

10) A4 ∼ A4.2, A4 = 〈∂t −
4k

(n−3)2 x−1u∂u, t∂t + x∂x, |x|
1
2 (1−n)u∂u,

|x|
1
2 (1−n) ln |x|u∂u〉, A= nx−1, B =

1
4 (n − 1)2x−2, n 6= 0, 3;
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11) A4 ∼ A4.5, A4 = 〈t∂t + x∂x, ∂t −
k

2−n+m x−1u∂u, |x|
1
2 (1−n+β)u∂u,

|x|
1
2 (1−n−β)u∂u〉, A= nx−1, B = mx−2, n 6= 0, 2, m 6= n − 2, m< 1

4 (n − 1)2,

β =
√
(n − 1)2 − 4m;

12) A4 ∼ A4.2, A4 = 〈t∂t + x∂x, ∂t +
k

3−n x−1 ln |x|u∂u, x−1u∂u, |x|
2−nu∂u〉,

A= nx−1, B = (n − 2)x−2, n 6= 0, 2, 3;

13) A4 ∼ A4.6, A4 = 〈t∂t + x∂x, ∂t −
k

2−n+m x−1u∂u,

|x|
1
2 (1−n)u cos(β ln |x|)∂u, |x|

1
2 (1−n)u sin(β ln |x|)∂u〉,

A= nx−1, B = mx−2,n 6= 0, m 6= 0, m> 1
4 (n − 1)2,

β =

√
m −

1
4 (n − 1)2;

III. D = kt, k> 0,

1) A4 ∼ A4.1, A4 = 〈∂x, ∂t −
1
2 kx2u∂u, xu∂u,u∂u〉, A= B = 0;

2) A4 ∼ A4.3, A4 = 〈∂x, ∂t − kxu∂u, e−xu∂u,u∂u〉, A= 1, B = 0;

3) A4 ∼ A3.8 ⊕ A1, A4 = 〈∂x, ∂t − kβ−2u∂u,u cos(βx)∂u,u sin(βx)∂u〉,

A= 0, B = β2, β 6= 0;

4) A4 ∼ A3.6 ⊕ A1, A4 = 〈∂x, ∂t + kβ−2u∂u,uch(βx)∂u,u sinh(βx)∂u〉,

A= 0, B = −β2, β 6= 0;

5) A4 ∼ A3.4 ⊕ A1, A4 = 〈∂x, ∂t − 4ku∂u, exp
(
−

1
2 x

)
u∂u, x exp

(
−

1
2 x

)
u∂u〉,

A= 1, B =
1
4 ;

6) A4 ∼ A3.7 ⊕ A1, A4 =〈∂x, ∂t −km−1u∂u, exp
(
−

1
2 (1−β)x

)
u∂u,

exp
(
−

1
2 (1+β)x

)
u∂u〉, A= 1, B = m, m< 1

4 , m 6= 0, β =
√

1 − 4m;

7) A4 ∼ A3.9 ⊕ A1, A4 = 〈∂x, ∂t − km−1u∂u, exp
(
−

1
2 x

)
cos(βx)u∂u,

exp
(
−

1
2 x

)
sin(βx)u∂u〉,

A= 1, B = m, m> 1
4 , β =

√
m −

1
4 ;

IV. D = kt−2, k 6= 0,
A4 ∼ A4.8 (q = −1), A4 = 〈∂x, t∂t + x∂x, xu∂u,u∂u〉, A= B = 0;

V. D = m(x − kt)−2, k> 0, m 6= 0,
A4 ∼ A4.8 (q = −1), A4 = 〈∂t + k∂x, t∂t + x∂x, xu∂u,u∂u〉, A= B = 0.

Proof. According to Lemma 5 to get the list of inequivalent equations of the form
(6.1) we need to analyze the cases when either D = 0 or D does not vanish identically
and is obtained through Equation (6.8).

If D = 0, then the function h satisfies Equation (6.3) and the functions A, B are
given by one of the formulas (6.5). It follows from (6.2) that five is the highest possible
dimension of an invariance algebra admitted by (6.1). Equation admitting this algebra
is equivalent to the following one:

ut t = uxx − u−1u2
x. (6.10)

This proves the first part of the assertion of theorem.
The remaining expressions for the functions A, B from (6.5) yield the 14 sub-cases

of the case I of the second assertion of the theorem.
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The fourth expression for the function D given in (6.8) within the equivalence
relation (6.7) boils down to either D = ktx−3, k> 0 or D = kt, k> 0. The function
h satisfies one of the equations

h′′
+ Ah′

+ Bh = −λ1 H,

where either H = kx−3 or H = k. Analysis of the corresponding expressions for the
functions A, B (6.5) yields expressions listed in the cases II and III.

Next the function D given by the third formula from (6.8) simplifies to D =

kt−2 (k 6= 0) whence we get the results listed in the case IV of the second assertion
of the theorem. Similarly, the second expression for the function D gives rise to the
formulas of the case V.

The first expression for D from (6.8) gives no new invariant equations.
What is left is to prove that the so obtained invariant equations are inequivalent.

We skip the proof of this fact.
Theorem is proved.

7.2. Nonlinear Equations (2.7) Invariant Under Three-dimensional Lie Algebras

Class of PDEs (2.7) does not contain an equation whose invariance algebra is
isomorphic to a Lie algebra with a non-trivial Levi ideal (see, Theorem 12). That
is why, to complete the second step of our classification algorithm it suffices to
consider three-dimensional solvable real Lie algebras only. We begin by considering
two decomposable three-dimensional solvable Lie algebras.

Note that while classifying invariant equation (2.7) we skip equations belonging to
the class (6.1) which has been analyzed in the previous subsection.

7.2.1. Invariance Under Decomposable Lie Algebras

As A3.1 = 3A1 = A2.1 ⊕ A1, A3.2 = A2.2 ⊕ A1, to construct all realizations of A3.1 it
suffices to compute all possible extensions of the (already known) realizations of the
algebras A2.1 = 〈e1, e2〉 and A2.2 = 〈e1, e2〉. To this end we need to supplement the
latter by a basis operator e3 of the form (2.4) in order to satisfy the commutation
relations

[e1, e3] = [e2, e3] = 0. (6.11)

What is more, to simplify the form of e3 we can use transformations from E which
do not alter the remaining basis operators of the corresponding two-dimensional Lie
algebras.

We do not present full calculation details. Instead, we give several examples
illustrating the main steps which we need to perform in order to extend A2.1 to a
realization of A3.1.

Consider the realization A1
2.1. Upon checking commutation relations (6.11), where

e3 is of form (2.4), we get

λ1 = λ2 = r(t, x) = 0, h = k = const.

Consequently e3 is the linear combination of e1, e2, namely, e3 = λe1 + ke2 which
is impossible by the assumption that the algebra under study is three-dimensional.
Hence we conclude that the above realization of A1

2.1 cannot be extended to a
realization of the algebra A3.1.
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Turn now to the realization A2
2.1. Checking commutation relations (6.11), where e3

is of form (2.4), yields the following realization of A3.1:

〈t∂t + x∂x, σ (ξ)∂u, γ (ξ)∂u〉, ξ = t x−1,

where γ ′σ − γ σ ′
6= 0. However, the corresponding invariant equation (2.7) is linear.

Finally, consider the realization A3
2.1. Inserting its basis operators and the operator

e3 of the form (2.4) into (6.11) and solving the obtained equations gives the following
realization of A3.1:

〈∂t , ∂x,u∂u〉.

Inserting the obtained coefficients for e3 into the classifying Equation (2.5) we get
invariant equation

ut t = uxx + uG(ω), ω = u−1ux,

where in order to ensure nonlinearity we need to have Gωω 6= 0.
A similar analysis of the realizations Ai

2.1 (i = 4, 5, . . . , 12, 14) yields three new in-
variant equations. For two of so obtained A3.1-invariant equations the corresponding
three-dimensional algebras are maximal. The other two may admit four-dimensional
invariance algebras provided arbitrary elements are properly specified.

Handling in a similar way extensions of A2.2 up to realizations of A3.2 results in
10 inequivalent nonlinear equations the maximal invariance algebras of which are
realizations of the three-dimensional algebra A3.2 and four inequivalent equation
(2.7) admitting four-dimensional symmetry algebras.

We perform analysis of the equations admitting four-dimensional algebras in the
next sub-section. Here we present the complete list of nonlinear equation (2.7)
the maximal symmetry algebras of which are realizations of three-dimensional Lie
algebras A3.1 and A3.2.

A3.1-invariant equations

A1
3.1 = 〈∂t , ∂x,u∂u〉 :

F = uG(ω), ω = u−1ux;

A2
3.1 = 〈∂x, ϕ(t)∂u, ψ(t)∂u〉 :

σ = ψ ′ϕ − ψϕ′
6= 0, σ ′

= 0 :

F = ϕ−1ϕ′′u + G(t,ux).

A3.2-invariant equations

A1
3.2 = 〈∂t , ∂x, exu∂u〉 :

F = −u−1u2
x − u ln |u| + uG(ω),

ω = u−1ux − ln |u| :

A2
3.2 = 〈−t∂t − x∂x, ∂t + k∂x,u∂u〉 (k ≥ 0) :

F = uη−2G(ω), η = x − kt,

ω = ηu−1ux;
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A3
3.2 = 〈−t∂t − x∂x + mu∂u, ∂t + k∂x, |η|

−m∂u〉

(η = x − kt, k = m = 0 or k> 0,m ∈ R) :

F = m(k2
− 1)(m + 1)η−2u + |η|−2−mG(ω),

ω = |η|m(mu + ηux);

A4
3.2 = 〈∂x, exu∂u, ∂t + mu∂u〉 (m> 0) :

F = −u−1u2
x − ux + uG(ω),

ω = u−1ux − ln |u| + mt;

A5
3.2 = 〈−t∂t − x∂x, ∂x,u∂u〉 :

F = ut−2G(ω), ω = tu−1ux;

A6
3.2 = 〈−t∂t − x∂x, ∂t + kx−1u∂u,u∂u〉 (k> 0) :

F = 2ktx−2ux − 2ktx−3u + k2t2x−4u + x−2uG(ω),

ω = xu−1ux + ktx−1
;

A7
3.2 = 〈−t∂t − x∂x, ∂t + kx−1u∂u, exp(ktx−1)∂u〉 (k> 0) :

F = 2ktx−2ux + (k2t2x−4
− 2ktx−3

+ k2x−2)u +

+x−2 exp(ktx−1)G(ω), ω = exp(−ktx−1)(xux + ktx−1u);

A8
3.2 = 〈

1

2k
(∂t + k∂x), ex+kt∂u, eη∂u〉 (k> 0, η = x − kt) :

F = (k2
− 1)u + G(η, ω), ω = ux − u;

A9
3.2 = 〈∂t + f (x)u∂u, e(1+ f (x))t∂u, f (x)e f (x)t∂u〉 :

F = −(t f ′′
− t2( f ′)2 − (1 + f )2)u − 2t f ′ux + et f G(x, ω),

ω = e−t f (ux − f ′(t + f −1)u), f ′′
+ 2 f 2

+ f = 0, f 6= 0;

A10
3.2 = 〈k(t∂t + x∂x), |t |k

−1
|ξ |

k−1
2k ∂u, |ξ |

k−1
2k ∂u〉 (k 6= 0; 1) :

F =

[1 − k
k

ξ 2
+

1 − k2

4k2
(1 − ξ 2)

]
t−2u + t−2G(ξ, ω),

ω = |ξ |
k−1
2k

[
xux +

k − 1

2k
u
]
, ξ = t x−1.
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7.2.2. Invariance Under Non-decomposable Three-dimensional Solvable
Lie Algebras

There exist seven non-decomposable three-dimensional solvable Lie algebras over
the field of real numbers. All these algebras contain a subalgebra which is the two-
dimensional Abelian ideal. Consequently, we can use the results of classification of
A2.1-invariant equations in order to describe equations admitting non-decomposable
three-dimensional solvable real Lie algebras. We remind that equations of the form
(6.1) have already been analyzed and therefore are not considered in the sequel.

As an example we compute extension of the realization A10
2.1 to all possible

realizations of non-decomposable three-dimensional solvable real Lie algebras. The
remaining realizations are handled in a similar way.

It is straightforward to verify that transformations

t = γ t + γ1, x = εγ x + γ2, v = ρ(x)u + θ(x), (6.12)

where γ, γ1, γ2 ∈ R, γ 6= 0, ε = ±1, ρ 6= 0, are equivalence transformations for the
realization A10

2.1 = 〈∂t , f (x)u∂u〉 ( f 6= 0). That is why, we can utilize the above trans-
formation to simplify the form of operator e3. As a result, we get three inequivalent
expressions for e3

– e3 = t∂t + x∂x + r(t, x)∂u (rt 6= 0 or r = 0);
– e3 = ∂x + r(t, x)∂u (rt 6= 0 or r = 0);
– e3 = r(t, x)∂u (rt 6= 0 or r = 1).

Let e1 = ∂t e2 = f (x)u∂u and e3 = t∂t + x∂x + r(t, x)∂u, then

[e1, e3] = ∂t + rt∂u, [e2, e3] = −x f ′u∂u − r f ∂u.

Analyzing commutation relations for the algebras A3.i (i = 3, 4, . . . , 9) we obtain
that the necessary conditions for A10

2.1 to admit extension to a realization of A3.5 are
r = 0, x f ′

= − f , of A3.6 as r = 0, x f ′
= f, and of A3.7 as r = 0, x f ′

= −qf (0 <
|q| < 1). So A10

2.1 gives rise to the following realizations:

A3.5 : e1 = ∂t , e2 = x−1u∂u, e3 = t∂t + x∂x;

A3.6 : e1 = ∂t , e2 = xu∂u, e3 = t∂t + x∂x;

A3.7 : e1 = ∂t , e2 = |x|
−qu∂u, e3 = t∂t + x∂x (0 < |q| < 1).

If e3 = ∂x + r(t, x)∂u, then

[e1, e3] = rt∂u, [e2, e3] = − f ′u∂u − r f ∂u.

Analyzing the commutation relations for A3.i (i = 3, 4, . . . , 9) we come to conclusion
that the realization A10

2.1 cannot be extended to a realization of the above three-
dimensional Lie algebras.

The same conclusion holds true when e3 = r(t, x)∂u (rt 6= 0 or r = 1).
Let e1 = f (x)u∂u, e2 = ∂t . If e3 = t∂t + x∂x + r(t, x)∂u (rt 6= 0 or r = 0), then it

follows from commutation relations

[e1, e3] = −(r f + x f ′u)∂u, [e2, e3] = ∂t + rt∂u
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that the only possible extension of the realization A10
2.1 is the realization of A3.5:

〈x−1u∂u, ∂t , t∂t + x∂x〉.

This realization coincides within notation with the already obtained one.
Next if e3 = ∂x + r(t, x)∂u (rt 6= 0 or r = 0), then

[e1, e3] = −( f ′u + r f )∂u, [e2, e3] = rt∂u.

Analyzing the commutation relations for A3.i (i = 3, 4, . . . , 9) we come to conclusion
that the realization A10

2.1 cannot be extended to a realization of the above three-
dimensional Lie algebras.

The same conclusion holds true for the case e3 = r(t, x)∂u (rt 6= 0 or r = 1).
Summing up the above considerations we see that the realization A10

2.1 can be ex-
tended to the following realizations of non-decomposable three-dimensional solvable
real Lie algebras:

L1
∼ A3.5, L1

= 〈∂t , x−1u∂u, t∂t + x∂x〉;

L2
∼ A3.6, L2

= 〈∂t , xu∂u, t∂t + x∂x〉;

L3
∼ A3.7, L3

= 〈∂t , |x|
−qu∂u, t∂t + x∂x〉 (0 < |q| < 1).

Solving the corresponding classifying equations yields the following invariant
equations:

L1
: ut t = uxx − u−1u2

x − 2x−2u ln |u| + x−2uG(ω), ω = xu−1ux + ln |u|;

L2
: ut t = uxx − u−1u2

x + x−2uG(ω),

ω = xu−1ux − ln |u|;

L3
: ut t = uxx − u−1u2

x − q(q + 1)x−2u ln |u| + ux−2G(ω),

ω = xu−1ux + q ln |u| (0 < |q| < 1).

Note that the algebras L1, L2, L3 are maximal (in Lie’s sense) invariance algebras of
the corresponding equations.

While classifying nonlinear equations invariant under non-decomposable three-
dimensional solvable Lie algebras we have discovered equations whose maximal in-
variance algebras are four-dimensional. For example, after extending the realization
A9

2.1 up to a realization of the algebra A3.3 we got the following realization of the
latter:

〈∂u, ∂t , ∂x + t∂u〉.

The corresponding invariant equation (2.7) is ut t = uxx + G(ux). However, the
maximal invariance algebra of this equation is the four-dimensional Lie algebra
〈∂t , t∂u, ∂u, ∂x〉, which is a realization of A3.3 ⊕ A1. Note also that we have obtained
the above invariant equation when classifying A3.1-invariant equations.

By the above reason, we give below only those nonlinear invariant equations
the maximal symmetry algebras of which are three-dimensional non-decomposable
solvable real Lie algebras.
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A 3.3-invariant equations

A1
3.3 = 〈u∂u, ∂t + k∂x,m∂t + k−1xu∂u〉 (k> 0,m 6= 0) :

F = −u−1u2
x + uG(ω), ω = x − kt + mk2u−1ux;

A2
3.3 = 〈u∂u, ∂x,m∂t + xu∂u〉 (m> 0) :

F = −u−1u2
x + uG(ω), ω = t − mu−1ux;

A3
3.3 = 〈|t |

1
2 ∂u,−|t |

1
2 ln |t |∂u, t∂t + x∂x +

1

2
u∂u〉 :

F = −
1

4
t−2u + u3

xG(ξ, ω), ξ = t x−1, ω = xu2
x;

A4
3.3 = 〈∂u,−t∂u, ∂t + k∂x〉 (k ≥ 0);

F = G(η,ux), η = x − kt.

A 3.4-invariant equations

A1
3.4 = 〈|η|m−1∂u, ∂t + k∂x, t∂t + x∂x + (mu + t |η|m−1)∂u〉

(η = x − kt, k> 0,m 6= 1) :

F = (k2
− 1)(m − 1)(m − 2)η−2u − 2k(m − 1)ηm−2 ln |η|

+|η|m−2G(ω), ω = [ηux − (m − 1)u]|η|−m
;

A2
3.4 = 〈∂u,−t∂u, ∂t + k∂x + u∂u〉 (k ≥ 0) :

F = et G(η, ω), η = x − kt, ω = e−t ux;

A3
3.4 = 〈|t |

1
2 ∂u,−|t |

1
2 ln |t |∂u, t∂t + x∂x +

3

2
u∂u〉 :

F = −
1

4
t−2u + u−1

x G(ξ, ω), ξ = t x−1, ω = x−1u2
x;

A4
3.4 = 〈kx−1u∂u, ∂t − kx−1 ln |x|u∂u, t∂t + x∂x〉 (k> 0) :

F = −3ktx−3u − 2x−2u ln |u| − u−1u2
x + x−2uG(ω),

ω = xu−1ux + ln |u| + ktx−1
;

A5
3.4 = 〈exp(ktx−1)∂u, ∂t + kx−1u∂u, t∂t + x∂x + (u + t exp(ktx−1))∂u〉 (k> 0) :

F = k2x−4u(t2
+ x2)+ 2x−1(ktx−1

+ 1)ux

+2kexp(ktx−1)x−1 ln |x| + x−1 exp(ktx−1)G(ω),

ω = exp(−ktx−1)(ux + ktx−2u).
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A 3.5-invariant equations

A1
3.5 = 〈|η|m−1∂u, ∂t + k∂x, t∂t + x∂x + mu∂u〉 (k> 0, m 6= 1)

F = (k2
− 1)(m − 1)(m − 2)η−2u + |η|m−2G(ω),

ω = |η|−m
[ηux − (m − 1)u], η = x − kt;

A2
3.5 = 〈∂t , ∂x, t∂t + x∂x〉 :

F = u2
xG(u);

A3
3.5 = 〈∂t , ∂x, t∂t + x∂x + mu∂u〉 (m 6= 0) :

F = |u|
1−

2
m G(ω), ω = |ux|

m
|u|

1−m
;

A4
3.5 = 〈∂t , ∂x, t∂t + x∂x + ∂u〉 :

F = e−2uG(ω), ω = euux;

A5
3.5 = 〈∂t , x−1u∂u, t∂t + x∂x〉 :

F = −u−1u2
x − 2x−2u ln |u| + x−2uG(ω),

ω = xu−1ux + ln |u|;

A6
3.5 = 〈∂t + kx−1u∂u, exp(ktx−1)∂u, t∂t + x∂x + u∂u〉 (k> 0) :

F = kx−4u[kt2
− 2t x + kx2

] + 2ktx−2ux + x−1 exp(ktx−1)G(ω),

ω = exp(−ktx−1)(ux + ktx−2u);

A7
3.5 = 〈ϕ(t)∂u, ψ(t)∂u, ∂x + u∂u〉 (ϕ

′ψ − ϕψ ′
6= 0) :

F = ϕ−1ϕ′′u + uxG(t, ω),

ω = e−xux, ϕ
′′ψ − ϕψ ′′

= 0.

A 3.6-invariant equations

A1
3.6 = 〈∂t + k∂x, |η|

m+1∂u, t∂t + x∂x + mu∂u〉 (k> 0, m 6= −1) :

F = m(k2
− 1)(m + 1)η−2u + |η|m−2G(ω),

ω = |η|1−m
[ux − η−1(m + 1)u], η = x − kt;
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A2
3.6 = 〈∂t + mx−1u∂u, xu∂u, t∂t + x∂x〉 (m ≥ 0) :

F = −u−1u2
x − 2mtx−3u + x−2uG(ω),

ω = xu−1ux − ln |u| + 2mtx−1
;

A3
3.6 = 〈∂t + kx−1u∂u, exp(ktx−1)∂u, t∂t + x∂x − u∂u〉 (k> 0) :

F = x−4
[k2x2

− 2ktx + k2t2
]u + 2ktx−2ux + x−3 exp(ktx−1)G(ω),

ω = exp(−ktx−1)(x2ux + ktu);

A4
3.6 = 〈e−t∂u, et∂u, ∂t + k∂x〉 (k ≥ 0) :

F = u + G(η,ux), η = x − kt;

A5
3.6 = 〈|t |−

1
2 ∂u, |t |

3
2 ∂u, t∂t + x∂x +

1

2
u∂u〉 :

F =
3

4
t−2u + |t |−

3
2 G(ξ, ω), ξ = t x−1, ω = x−1u2

x.

A 3.7-invariant equations

A1
3.7 = 〈∂t + k∂x, |η|

m−q∂u, t∂t + x∂x + mu∂u〉

(k> 0,m 6= q, 0 < |q| < 1) :

F = (k2
− 1)(m − q)(m − q − 1)η−2u + |η|m−2G(ω),

ω = |η|1−m
[ux − (m − q)η−1u], η = x − kt;

A2
3.7 = 〈∂t + kx−1u∂u, exp(ktx−1)∂u, t∂t + x∂x + qu∂u〉

(k> 0, 0 < |q| < 1) :

F = [k2x−2
+ k2x−4t2

− 2ktx−3
]u + 2ktx−2ux

+|x|
q−2 exp(ktx−1)G(ω),

ω = |x|
1−q exp(−ktx−1)(ux + ktx−2u);

A3
3.7 = 〈|t |

1
2 q∂u, |t |1−

1
2 q∂u, t∂t + x∂x + (1 +

1

2
q)u∂u〉 (q 6= 0,±1) :

F =
1

4
q(q − 2)t−2u + |t |

1
2 (q−2)G(ξ, ω),

ξ = t x−1, ω = |t |−
1
2 qux;
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A4
3.7 = 〈exp

(
1

2
(q − 1)t

)
∂u, exp

(
1

2
(1 − q)t

)
∂u, ∂t + k∂x +

1

2
(1 + q)u∂u〉

(q 6= 0,±1; k ≥ 0) :

F =
1

4
(q − 1)2u + exp

(
1

2
(1 + q)t

)
G(η, ω),

η = x − kt, ω = exp

(
−

1

2
(1 + q)t

)
ux;

A5
3.7 = 〈∂t + kx−1u∂u, |x|

−qu∂u, t∂t + x∂x〉 (k ≥ 0,q 6= 0,±1) :

F = −u−1u2
x − q(q + 1)x−2u ln |u| + k(q − 1)(q + 2)t x−3u

+ux−2G(ω), ω = xu−1ux + q ln |u| + k(1 − q)t x−1.

A 3.8-invariant equations

A1
3.8 = 〈cos t∂u,− sin t∂u, ∂t + k∂x〉 (k ≥ 0) :

F = −u + G(η,ux), η = x − kt;

A2
3.8 = 〈|t |

1
2 cos(ln |t |)∂u,−|t |

1
2 sin(ln |t |)∂u, t∂t + x∂x +

1

2
u∂u〉 :

F = −
5

4
t−2u + |t |−

3
2 G(ξ, ω),

ξ = t x−1, ω = |t |
1
2 ux.

A 3.9-invariant equations

A1
3.9 = 〈sin t∂u, cos t∂u, ∂t + k∂x + qu∂u〉 (k ≥ 0,q > 0) :

F = −u + eqt G(η, ω), η = x − kt, ω = e−qt ux;

A2
3.9 = 〈|t |

1
2 sin(ln |t |)∂u, |t |

1
2 cos(ln |t |)∂u, t∂t + x∂x + (

1

2
+ q)u∂u〉

(q 6= 0) : F = −
5

4
t−2u + |t |q−

3
2 G(ξ, ω),

ξ = t x−1, ω = |t |
1
2 −qux.

7.3. Complete Group Classification of Equation (2.7)

The aim of this subsection is to finalize group classification of (2.7). The majority of
invariant equations obtained in the previous sub-section contain arbitrary functions
of one variable. That is why we can utilize the standard Lie–Ovsyannikov approach
in order to complete their group classification.
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7.3.1. Equations Containing Arbitrary Functions of One Variable

Note that we do not consider the equations belonging to the already studied class
(6.1).

As our computations show, new results could be obtained for the equations

ut t = uxx + uG(ω), ω = u−1ux, (6.13)

ut t = uxx + G(ux) (6.14)

only. Below we give (without proof) the assertions describing their group properties.

ASSERTION 7. Equation (6.13) admits wider symmetry group iff it is equivalent to
the following PDE:

ut t = uxx + mu−1u2
x (m 6= 0,−1). (6.15)

The maximal invariance algebra of (6.15) is the four-dimensional Lie algebra

A4 ∼ A3.5 ⊕ A1, A4 = 〈∂t , ∂x, t∂t + x∂x,u∂u〉.

ASSERTION 8. Equation (6.14) admits wider symmetry group iff it is equivalent to
one of the following PDEs:

ut t = uxx + eux ; (6.16)

ut t = uxx + m ln |ux|, m> 0; (6.17)

ut t = uxx + |ux|
k, k 6= 0, 1. (6.18)

The maximal invariance algebras of the above equations are five-dimensional
solvable Lie algebras given below.

A2
5 = 〈∂t , ∂x, ∂u, t∂u, t∂t + x∂x + (u − x)∂u〉;

A3
5 = 〈∂t , ∂x, ∂u, t∂u, t∂t + x∂x + (2u +

1

2
mt2)∂u〉;

A4
5 = 〈∂t , ∂x, ∂u, t∂u, t∂t + x∂x +

k − 2

k − 1
u∂u〉.

Analyzing the remaining equations containing arbitrary functions of one variable
we come to conclusion that for any them to admit wider invariance group one of the
following conditions should hold true:

– equation in question is equivalent to PDE of the form (6.1), or
– equation in question is equivalent to PDE of the form (6.15).

Skipping the proof, we present two typical examples. We begin with the equation

ut t = uxx + u + G(ux). (6.19)
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This equation is invariant under the four-dimensional algebra 〈∂t , ∂x, et∂u, e−t∂u〉

isomorphic to A3.6 ⊕ A1. Inserting F = u + G(ux) into classifying Equation (2.5)
yields the system of two equations for G

h′G ′
= −h′′

− 2λ, [(h − λ)ux + rx]G ′
− (h − 2λ)G = rt t − rxx − 2h′ux − r.

As G ′′
6= 0, the first equation implies that λ = h′

= 0. The second equation takes the
form

(hux + rx)G ′
− hG = rt t − rxx − r.

Upon differentiating the above equation twice with respect to ux we get (hux +

rx)G′′
= 0. As G′′

6= 0, the relations h = rx = 0 hold. Hence we conclude that the
class of PDEs (6.19) does not contain equations admitting five-dimensional symmetry
algebras.

The system of determining equations for the symmetry group of A2
3.2-invariant

equation

ut t = uxx + uη−2G(ω), η = x − kt, ω = ηu−1ux, k ≥ 0, (6.20)

is

(η−2rω − η−1rx)Gω − η−2rG = rt t − rxx,

[(λ2 − kλ1)η
−3ω + η−1h′

]Gω − 2(λ2 − kλ1)η
−3G = −2h′η−1ω − h′′.

Differentiating the first equation with respect to ω yields

(η−2rω − η−1rx)Gωω = 0,

whence in view of inequality Gωω 6= 0 we get r = 0. Next differentiating the second
equation twice by ω we get

[(λ2 − lkλ1)η
−3ω + η−1h′

]Gωωω = 0,

whence it follows that Gωωω = 0. Indeed, if this relation does not hold, we have λ2 =

kλ1, h′
= 0 and operator (2.4) takes the form

λ(t∂t + x∂x)+ λ1(∂t + k∂x)+ C1u∂u, λ, λ1C1 ∈ R, k ≥ 0.

As the above operator contains at most three arbitrary constants it cannot generate
a four-parameter Lie transformation group.

By the above argument we can restrict our considerations to the following class of
functions G:

G = Aω2
+ Bω + C, A 6= 0,−1, B,C ∈ R. (6.21)

Without any loss of generality we can suppose that A 6= −1 in (6.21) (since other-
wise (6.20) belongs to the class of PDEs (6.1)). Inserting (6.21) into the second
equation from (6.21) yields

2(A+ 1)η2h′
= B(λ2 − kλ1), η

2 Bh′
+ η3h" = 2C(λ2 − kλ1). (6.22)
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If k> 0, then this system splits into the three equations (note that h = h(x))

h′
= 0, B(λ2 − kλ1) = C(λ2 − kλ1) = 0.

Provided |B| + |C| 6= 0 there is no way to extend symmetry of Equation (6.20). If, on
the contrary, B = C = 0, then F = Au−1u2

x(A 6= 0,−1) and we obtain the equation
equivalent to (6.15). Under k = 0 system (6.22) takes the form

2(A+ 1)x2h′
= λ2 B, x2 Bh′

+ h′′x3
= 2λ2C.

Hence

h = −
1

2
λ2(A+ 1)−1 Bx−1

+ C1, C1 ∈ R, C =
B2

− 2B
4(A+ 1)

.

In this case Equation (6.20) does admit additional symmetry operator

∂x −
B

2(A+ 1)
x−1u∂u

but the change of variables

t̄ = t, x̄ = x, u = |x|
νv, ν = −

B
2(A+ 1)

,

reduces it to the form (6.15).
So Equation (6.20) admits wider symmetry group iff it is either belongs to the class

of (6.1) or is equivalent to (6.15).
To finalize the procedure of group classification of Equation (2.7) we need to

consider invariant equations obtained in the previous section that contain arbitrary
functions of two variables.

7.3.2. Classification of Equations with Arbitrary Functions of Two Variables

In the case of equations with arbitrary functions of two variables the standard
Lie–Ovsyannikov method is inefficient and we apply our classification algorithm.
To this end, we compute extensions of three-dimensional solvable Lie algebras to
all possible realizations of four-dimensional solvable Lie algebras. The subsequent
step will be to check which of the obtained realizations are symmetry algebras of
nonlinear equations of the form (2.7). In what follows we utilize the results of the
paper [44], where all inequivalent (within the action of inner automorphism group)
four-dimensional solvable abstract Lie algebras are given.

We give full computation details for the case of A3.6-invariant equations. As shown
in the previous sub-section, there are two inequivalent A3.6-invariant equations,
namely,

A4
3.6 = 〈e−t∂u, et∂u, ∂t + k∂x〉

(k ≥ 0) : F = u + G(η,ux), η = x − kt;

A5
3.6 = 〈|t |−

1
2 ∂u, |t |

3
2 ∂u, t∂t + x∂x +

1

2
u∂u〉 :

F =
3

4
t−2u + |t |−

3
2 G(ξ, ω), ξ = t x−1, ω = x−1u2

x.
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According to [44] the algebra A3.6 is the subalgebra of the following four-dimensional
solvable Lie algebras: 2A2.2, A3.6 ⊕ A1; A4.2(q = −1); A4.8(q = −

1
2 ).

Algebra 2A2.2. The algebra 2A2.2 = 〈e1, e2, e3, e4〉 is defined by the following
commutation relations (note that we give non-zero relations only):

[e1, e2] = [e1, e4] = [e2, e3] = [e2, e4] = 0, [e1, e2] = e2, [e3, e4] = e4.

It contains a subalgebra A3.6 = 〈e1 − e3, e2, e4〉. That is why, we can choose the basis
operators of the realization of A3.6 as e1 − e3, e2, e4. Next, we take an arbitrary
operator of the form (2.4) as e1 + e3 and require for the commutation relations

[e1 − e3, e1 + e3] = 0, [e1 + e3, e2] = e2, [e1 + e3, e4] = e4 (6.23)

to hold.
Realization A4

3.6. In this case

e1 − e3 = −∂t − k∂x, e2 = e−t∂u, e4 = et∂u,

e1 + e3 = (λt + λ1)∂t + (λx + λ2)∂x + (hu + r)∂u.

It follows from (6.23) that

λ = λ1 = 0, r = γ = γ (η), h = −1.

Using the change of variables

t̄ = t, x̄ = x, v = u +3(η),

where 3 = 3(η) is a solutions of equation λ23
′
+3 = −γ, we simplify the operator

e1 + e3 to become

e1 + e3 = α∂x − u∂u, α ∈ R.

Requiring invariance under the above operator yields that α 6= 0 (otherwise G
would be linear in ux). With this result in hand we rewrite the invariant equation to
become

G = exp(−α−1η)H(ω), ω = exp(α−1η)ux.

Thus we arrive at the following realization of the algebra 2A2.2:

〈e−t∂u, et∂u, ∂t + k∂x, α∂x − u∂u〉 (k ≥ 0, α 6= 0).

This algebra is admitted by the equation

ut t = uxx + u + exp(−α−1η)G(ω), η = x − kt, ω = exp(α−1η)ux.

If the function G (Gωω 6= 0) is arbitrary, then the obtained realization is the maximal
symmetry algebra of the equation under study. What is more, there is no such G that
the above equation admits a wider invariance algebra.
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Realization A5
3.6. In this case

e1 − e3 = −t∂t − x∂x −
1

2
u∂u, e2 = |t |−

1
2 ∂u,

e1 + e3 = (λt + λ1)∂t + (λx + λ2)∂x + (hu + r)∂u, e4 = |t |
3
2 ∂u.

It follows from commutation relations (6.23) that λ1 = λ2 = λ = 0, h = −1, r =

|t |
1
2 γ (ξ), ξ = t x−1.
Making the change of variables

t̄ = t, x̄ = x, v = u − |t |
1
2 γ (ξ)

we get r = 0 in e1 + e3. Consequently, without loss of generality we can choose e1 +

e3 = −u∂u. Requiring for the A5
3.6-invariant equation to admit the operator e1 + e3

yields the constraint 2ωGω = −G, whence G = |ω|
−

1
2 H(ξ). Consequently, the func-

tion F is linear in ux . This means that A5
3.6 does not admit extension to a realization

2A2.2 that can be a symmetry algebra of an essentially nonlinear equation of the form
(2.7).

Algebra A3.6 ⊕ A1. What we need to do here is to supplement the set of operators
e1, e2, e3 forming the basis of A3.6 by the operator e4 of the form (2.4) and verify the
commutation relations

[e1, e4] = [e2, e4] = [e3, e4] = 0. (6.24)

Realization A4
3.6. It follows from (6.24) that h = λ = λ1 = 0, r = γ (η), η = x − kt

in the operator e4 so that

e4 = α∂x + γ (η)∂u, α ∈ R.

If α 6= 0, then e4 is equivalent to ∂x . Hence we get two possible realizations of the
algebra A3.6 ⊕ A1:

〈e−t∂u, et∂u, ∂t , ∂x〉;

〈e−t∂u, et∂u, ∂t + k∂x, γ (η)∂u〉.

Analyzing the above realizations we come to conclusion that the second one cannot
be invariance algebra of a nonlinear equation of the form (2.7). The first realization
is the maximal invariance algebra of the (6.19), if G is an arbitrary function.

Realization A5
3.6. It follows from (6.24) that λ1 = λ2 = h = λ = 0 and

r = |t |
1
2 γ (ξ), ξ = t x−1,

so that the operator e4 necessarily takes the form e4 = |t |
1
2 γ (ξ)∂u. As the straightfor-

ward verification shows the so obtained realization cannot be invariance algebra of a
nonlinear equation of the form (2.7).

Algebra A4.2 (q = −1). We need to supplement the set of operators e1, e2, e4

forming the basis of A3.6 by the operator e3 of the form (2.4) so that the following
commutation relation hold

[e1, e3] = [e2, e3] = 0, [e3, e4] = e2 + e3. (6.25)
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Realization A4
3.6. In this case

e1 = e−t∂u, e2 = et∂u, e4 = −∂t − k∂x

and it follows from (6.25) that the coefficients of e3 satisfy equations h = λ = λ1 =

λ2 = 0, the function r being a solution of the equation

rt + krx = r + et .

Further analysis shows that this realization cannot be invariance algebra of nonlinear
equation of the form (2.7).

Realization A5
3.6. In this case

e1 = |t |−
1
2 ∂u, e2 = |t |

3
2 ∂u, e4 = −t∂t − x∂x −

1

2
u∂u.

It follows from Equation (6.25) that the coefficients of the operator e3 satisfy equa-
tions λ = λ1 = λ2 = h = 0 and the function r is a solution of the equation

trt + xrx =
3

2
r + |t |

3
2 .

Further analysis shows that the so obtained realization cannot be invariance algebra
of a nonlinear equation of the form (2.7).

Algebra A4.8 (q = −
1
2 ).We need to supplement the set of operators e1, e3, e4 form-

ing the basis of A3.6 by the e2 of the form (2.4) in order to satisfy the commutation
relations

[e1, e2] = 0, [e2, e3] = e1, [e2, e4] = e2. (6.26)

Realization A4
3.6. In this case

e1 = e−t∂u, e3 = et∂u, e4 =
1

2
∂t +

1

2
k∂x

and the second commutation relation yields the false equality 1 = 0.
Realization A5

3.6. In this case

e1 = |t |−
1
2 ∂u, e2 = |t |

3
2 ∂u, e4 = −t∂t − x∂x −

1

2
u∂u

and again the second commutation relation from (6.26) cannot be satisfied.
Consequently, there is no extension of the realization of A3.6 to a realization of the

algebra A3.8 (q = −
1
2 ).

The remaining equations containing arbitrary functions of two variables are
handled in a similar way. The results can be summarized as follows

– if the functions contained in the equations under study are arbitrary, then the
corresponding realizations are their maximal invariance algebras, and

– except for Equation (6.14), all the equations in question do not allow for
extension of their symmetry.
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Below we give the complete list of invariant equations obtained through group
analysis of equations with arbitrary functions of two variables.

7.3.3. Equations Invariant Under Four-dimensional Solvable Lie Algebras

A2.2 ⊕ 2A1-invariant equations

1) 〈∂x, ∂t + u∂u, et∂u, e−t∂u〉 : F = u + et G(ω), ω = u−t ux;

2) 〈
1

2k
(∂t + k∂x), ex+kt∂u, eη∂u, ∂x + u∂u〉 (k> 0, η = x − kt) :

F = (k2
− 1)u + eηG(ω), ω = e−η(ux − u).

2A2.2-invariant equations

1) 〈∂t + εu∂u, ∂x, ex+kt∂u, ex−kt∂u〉 (ε = 0, 1; k> 0) :

F = (k2
− 1)u + eεt G(ω), ω = e−εt (ux − u);

2) 〈α∂x − u∂u, ∂t + k∂x, e−t∂u, et∂u〉 (k ≥ 0, α > 0) :

F = u + exp(−α−1η)G(ω), η = x − kt, ω = exp(α−1η)ux.

A3.3 ⊕ A1-invariant equations

1) 〈∂t , ∂x, ∂u, t∂u〉 : F = G(ux).

A3.4 ⊕ A1-invariant equations

1) 〈∂u, ∂x, t∂t + x∂x + (u + x)∂u, t∂u〉 :

F = t−1G(ω), ω = ux − ln |t |;

2) 〈∂t + u∂u, ∂x, t∂u, ∂u〉 : F = et G(ω), ω = e−t ux;

3) 〈x−1∂u, ∂x − x−1(u + ln |x|)∂u, t∂t + x∂x, t x−1∂u〉 :

F = 2x−1ux + x−2
+ t−1x−1G(ω), ω = xux + u − ln |t x−1

|.

A3.5 ⊕ A1-invariant equations

1) 〈∂x, ∂u, t∂t + x∂x + u∂u, t∂u〉 : F = t−1G(ux);

2) 〈x−1∂u, ∂x − x−1u∂u, t∂t + x∂x, t x−1∂u〉 :

F = −2x−2u + 2t−1(ux + x−1u) ln |t (ux + x−1u)|

+t−1(ux + x−1u)G(ω), ω = xux + u.



Acta Appl Math (2006) 91: 253–313 303

A3.6 ⊕ A1-invariant equations

1) 〈∂x, t∂u, t∂t + x∂x, ∂u〉 : F = t−2G(ω), ω = t−1ux;

2) 〈∂t , ∂x, et∂u, e−t∂u〉 : F = u + G(ux).

A3.7 ⊕ A1-invariant equations

1) 〈exp

(
−

1

2
(1 − q)t

)
∂u, exp

(
1

2
(1 − q)t

)
∂u, ∂t +

1

2
(1 + q)u∂u, ∂x〉

(q 6= 0,±1) : F =
1

4
(1 − q)2u + exp

(
1

2
(1 + q)t

)
G(ω),

ω = exp

(
−

1

2
(1 + q)t

)
ux;

2) 〈∂x, |t |
1
2 (1−q)∂u, |t |

1
2 (1+q)∂u, t∂t + x∂x +

1

2
(1 + q)u∂u〉

(q 6= 0,±1) : F =
1

4
(q2

− 1)t−2u + |t |
1
2 (q−3)G(ω),

ω = |t |
1
2 (1−q)ux;

3) 〈|t |−
1
q |ξ |

q+1
2q ∂u, ∂x −

1 + q
2q

x−1u∂u,−q(t∂t + x∂x), |ξ |
1+q
2q ∂u〉

(q 6= 0,±1) : F =

[
1 − q2

4q2
(t−2

+ x−2)

]
u +

1 + q
q

x−1ux

+t−2
|ξ |

1+q
2q G(ω), ξ = t x−1, ω = |ξ |

q−1
2q

[
xux +

q + 1

2q
u
]
.

A3.8 ⊕ A1-invariant equations

1) 〈sin t∂u, cos t∂u, ∂t , ∂x〉 : F = −u + G(ux).

A3.9 ⊕ A1-invariant equations

1) 〈sin t∂u, cos t∂u, ∂t + qu∂u, ∂x〉(q > 0) :

F = −u + eqt G(ω), ω = e−qt ux.

A4.1-invariant equations

1) 〈∂u,−t∂u, ∂x, ∂t − t x∂u〉 : F = G(ω), ω = ux +
1

2
t2

;

2) 〈∂u,−t∂u, α∂x +
1

2
t2∂u, ∂t + kx∂x〉 (k ≥ 0, α > 0) :

F = α−1(x − kt)+ G(ux).
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A4.2-invariant equations

1) 〈|t |1−
1
2 q∂u, |t |

1
2 q∂u, ∂x, t∂t + x∂x +

[(
1 +

1

2
q
)

u + x|t |
1
2 q

]
∂u〉

(q 6= 0, 1) : F =
1

4
q(q − 2)t−2u + |t |

1
2 (q−3)G(ω),

ω = |t |
1
2 (1−q)ux − 2|t |

1
2 ;

2) 〈∂x,
√

|t |∂u,
√

|t | ln |t |∂u, t∂t + x∂x +

(
q +

1

2

)
u∂u〉

(q 6= 0) : F = −
1

4
t−2u + |t |q−

3
2 G(ω), ω = |t |

1
2 −qux.

A4.3-invariant equations

1) 〈∂x, |t |
1
2 ∂u,−|t |

1
2 ln |t |∂u, t∂t + x∂x +

1

2
u∂u〉 :

F = −
1

4
t−2u + |t |−

3
2 G(ω), ω = |t |

1
2 ux;

2) 〈∂x, t∂u, ∂u, t∂t + x∂x〉 : F = t−2G(ω), ω = tux;

3) 〈ekt∂u, ∂t + ku∂u, β∂x + tekt∂u, e−kt∂u〉 (k 6= 0, β > 0) :

F = k2u + 2kβ−1xekt
+ ekt G(ω), ω = e−kt ux;

4) 〈ex+kt∂u, eη∂u, α(∂x + u∂u)+ 2kteη∂u,−
1

2k
(∂t + k∂x)〉

(α 6= 0, k> 0) : F = (k2
− 1)u − 4k2α−1ηeη + eηG(ω),

ω = e−η(ux − u), η = x − kt.

A4.4-invariant equations

1) 〈|t |
1
2 ∂u,−|t |

1
2 ln |t |∂u, ∂x, t∂t + x∂x +

[
3

2
u − x|t |

1
2 ln |t |

]
∂u〉 :

F =
1

4
t−2u + |t |−

1
2 G(ω), ω = |t |−

1
2 ux +

1

2
ln2

|t |.

A4.5-invariant equations

1) 〈∂x, |t |m−α∂u, |t |1−m+α∂u, t∂t + x∂x + mu∂u〉

(m 6=
1

2
(1 + α),

1

2
+ α;α 6= 0) :

F = (m − α)(m − α − 1)t−2u + |t |m−2G(ω), ω = |t |1−mux.
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A4.6-invariant equations

1) 〈∂x, |t |
1
2 sin(q−1 ln |t |)∂u, |t |

1
2 cos(q−1 ln |t |)∂u,qt∂t + qx∂x(

1

2
q + p

)
u∂u〉 (q 6= 0, p ≥ 0) :

F = −

(
1

4
+ q−2

)
t−2u + |t |q

−1(p−
3
2 q)G(ω), ω = |t |q

−1( 1
2 q−p)ux.

A4.7-invariant equations

1) 〈∂u,−t∂u, ∂t + k∂x, t∂t + x∂x +

(
2u −

1

2
t2

)
∂u〉 (k ≥ 0) :

F = − ln |η| + G(ω), ω = η−1ux, η = x − kt.

A4.8-invariant equations

1) 〈∂t + εu∂u, ∂x, ex∂u, tex∂u〉 (ε = 0; 1) :

F = −u + eεt G(ω), ω = e−εt (ux − u);

2) 〈|x|
m−q∂u, ∂t , t |x|

m−q∂u, t∂t + x∂x + mu∂u〉 (q 6= 0, m ∈ R) :

F = −(m − q)(m − q − 1)x−2u + |x|
m−2G(ω),

ω = |x|
1−m

[ux − (m − q)x−1u];

3) 〈∂t + k∂x, ∂u, t∂u, t∂t + x∂x + qu∂u〉 (k> 0,q ∈ R) :

F = |η|q−2G(ω), ω = |η|1−qux, η = x − kt;

4) 〈x−1∂u, ∂t + ∂x − x−1u∂u, t x−1∂u, t∂t + x∂x〉 :

F = 2x−1ux + x−1(t − x)−1G(ω), ω = xux + u;

5) 〈∂u,−t∂u, ∂t + k∂x + u∂u, α∂x + u∂u〉 (α 6= 0,k ≥ 0) :

F = exp(α−1η + t)G(ω), ω = exp(−α−1η − t)ux, η = x − kt.

A4.10-invariant equations

1) 〈sin t∂u, cos t∂u, ∂x + u∂u, ∂t + k∂x〉(k ≥ 0) :

F = −u + eηG(ω), ω = e−ηux, η = x − kt.

In the above formulas G = G(ω) is an arbitrary function satisfying the condition
Fuxux 6= 0.

8. Symmetry Reduction and Solutions of Nonlinear Wave Equations

Among the various applications of Lie symmetry groups the most prominent and
remarkable one is a possibility to construct exact solutions of nonlinear PDEs.
The basic idea is reducing multi-dimensional differential equations to ordinary
differential equations via special ansatzes (invariant solutions). A regular (but not
the only!) way to derive those ansatzes is to utilize symmetry group admitted by
the equation under study (for more details see, e.g., [14, 15]). Though the obtained
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ordinary differential equations are, as a rule, nonlinear, they possess in many cases
a residual symmetry allowing for constructing their general or particular solutions.
Inserting the latter into the corresponding ansatz yields the exact solution of initial
nonlinear multi-dimensional PDE. This method is often referred to in the literature
as symmetry reduction of PDEs.

The majority of papers on exact solutions of Equation (1.1) deal with the PDEs of
the form

ut x = f (u), (7.1)

where f is a smooth function. The particular cases of the above equation are

• the Liouville equation ( f (u) = eu),
• the Bonnet (or sin-Gordon) equation ( f (u) = sin u),
• the sinh-Gordon equation ( f (u) = sinh u),
• the Tzitzeica equation ( f (u) = eu

+ e−2u).

It is a common knowledge that the Liouville equation is integrated in a closed
form. The sin/sinh-Gordon equations are integrable by the inverse scattering method.
Some exact solutions of the Tzitzeica equation were found in [4, 5].

A number of explicit solutions of Equation (7.1) different from those mentioned
above have been constructed in [45] (see, also [40] and the references therein). The
broad classes of exact solutions of Equation (7.1) under f (u) = λuk are obtained in
[46]. The case f = a sin(λu)+ b sin

(
1
2λu

)
has been studied in [5, 12, 47].

In what follows we concentrate on constructing solutions of nonlinear wave
equation (2.7) having the richest symmetry properties. To this end we apply the
symmetry reduction method.

To perform reduction of PDEs (2.7) to ordinary differential equations we need to
describe all inequivalent one-dimensional subalgebras of the symmetry algebras of
the equations under study. What is more, basis operators of these algebras

τ(t, x,u)∂t + ξ(t, x,u)∂x + η(t, x,u)∂u,

have to obey the following restriction [14]:

|τ | + |ξ | 6= 0 (7.2)

in some open domain � of the space V = R2
× R1 of independent R2

= 〈t, x〉 and
dependent R1

= 〈u〉 variables.
As we proved in the previous sections, equations

ut t = uxx − u−1u2
x; (7.3)

ut t = uxx + eux ; (7.4)

ut t = uxx + m ln |ux| (m> 0); (7.5)

ut t = uxx + |ux|
k (k 6= 0, 1). (7.6)

enjoy the highest symmetry properties amongst PDEs of the form (2.7).
We consider in some detail the main steps of the symmetry reduction algorithm

for Equation (7.3). To classify one-dimensional subalgebras we utilize the method
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suggested in [44] and the lists of one-dimensional subalgebras of four-dimensional
subalgebras obtained in [44].

Equation (7.3) admits the algebra

A1
5 = (A3.3 ⊕ A1)+⊃ 〈e5〉,

where A3.3 = 〈e1, e2, e3〉 = 〈u∂u, ∂x, xu∂u〉, A1 = 〈e4〉 = 〈∂t 〉, e5 = t∂t + x∂x.

In what follows we need the commutation relations of the basis operators of the
algebra A3.3 ⊕ A1 with the operator e5:

[e1, e5] = 0, [e2, e5] = e2, [e3, e5] = −e3, [e4, e5] = e4.

According to [44] the one-dimensional subalgebras of A3.3 ⊕ A1 defined within
the action of inner automorphism group of this algebra are 〈e1〉, 〈e1 + αe4〉, 〈e4〉,

〈e2〉, 〈e2 + αe4〉, 〈e3〉, 〈e3 + αe4〉, 〈e2 + βe3〉, 〈e2 + βe3 + αe4〉 (α, β 6= 0). The above
subalgebras can be further simplified by using transformation group generated by
the operator e5. For example, using the Campbell–Hausdorff formula we transform
e1 + αe4 as follows:

exp(θe5)(e1 + αe4) exp(−θe5) = e1 + αeθe4.

Consequently, choosing θ = − ln |α| we simplify e1 + αe4 to become e1 ± e4. Similarly,
we prove that we can put α = ±1 in e3 + αe4 and β = ±1 in e2 + βe3, e3 + βe3 + αe4.

To complete classification of one-dimensional subalgebras we have to describe
all inequivalent subalgebras with non-zero projection on the basis operator e5, i.e.,
subalgebras of the form

3 = e5 + α1e1 + α2e2 + α3e3 + α4e4, α1, α2, α3, α4 ∈ R. (7.7)

Utilizing the automorphism exp(θe4)with a properly chosen θ we have α4 = 0 in (7.7).
Next applying the transformation exp(θ1e2 + θ2e3) to operator (7.7) reduces it to one
of the following operators e5, e5 + αe1 (α 6= 0).

So the list of the one-dimensional subalgebras of the five-dimensional algebra
A1

5 determined within the action of inner automorphism group is exhausted by
the following algebras: 〈e1〉, 〈e1 ± e4〉, 〈e4〉, 〈e2〉, 〈e2 + αe4〉, 〈e3〉, 〈e3 ± e4〉, 〈e2 ± e3〉,

〈e2 ± e3 + αe4〉, 〈e5〉, 〈e5 + αe1〉 (α 6= 0). By direct verification we prove that the basis
operators of the algebras 〈e1〉, 〈e3〉 do not satisfy condition (7.2).

Finally, we make use of the fact that the discrete groups of transformations

t̄ = −t, x̄ = x, v = u;

t̄ = t, x̄ = −x, v = u;

t̄ = −t, x̄ = −x, v = u,

also belong to the equivalence group of (7.3). Using the above transformations
enables to further simplify the optimal system of inequivalent subalgebras

〈e1 + e4〉, 〈e4〉, 〈e2〉, 〈e2 + αe4〉, 〈e3 + e4〉,

〈e2 ± e3〉, 〈e2 ± e3 + αe4〉, 〈e5〉, 〈e5 + αe1〉 (α > 0). (7.8)

The second step of the method of symmetry reduction is constructing the complete
set of invariants f (t, x,u) for each inequivalent one-dimensional subalgebra. As a
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typical example, we consider the case of the subalgebra 〈e1 + e4〉. To construct its
invariants we need to integrate the first-order PDE

(e1 + e4) ◦ F(t, x,u) = 0

or

uFu + Ft = 0.

The complete set of first integrals of the above equation is ω1 = x, ω2 = e−t u.
Hence we get the general form of invariant solution (ansatz) ω 2 = ϕ(ω1). Solving
this equation with respect to u we finally have

u = etϕ(x). (7.9)

Inserting (7.9) into (7.3) yields ordinary differential equation for unknown
function ϕ

ϕ′′
− ϕ−1(ϕ′)2 − ϕ = 0,

which is easily integrated

ϕ = exp

[
1

2
x2

+ C1x + C2

]
, C1,C2 ∈ R.

Inserting the so obtained expression for φ into ansatz (7.9) yields the explicit form of
invariant solution of equation (7.3)

u = exp

[
t +

1

2
x2

+ C1x + C2

]
, C1,C2 ∈ R.

The full list of so obtained exact solutions of (7.3) is given in the Appendix.
In a similar way we perform symmetry reduction and construct exact solutions of
Equations (7.4)–(7.6). These solutions are also listed in Appendix.

9. Concluding Remarks

Let us briefly summarize the results obtained in this paper.
We prove that the problem of group classification of the general quasi-linear

hyperbolic type Equation (1.1) reduces to classifying equations of more specific forms

I. ut t = uxx + F(t, x,u,ux), Fuxux 6= 0;

II. ut t = uxx + g(t, x,u)ux + f (t, x,u), gu 6= 0;

III. ut x = g(t, x)ux + f (t, x,u), gx 6= 0, fuu 6= 0;

IV. ut x = f (t, x,u), fuu 6= 0.

The cases of PDEs that are essentially nonlinear in ux (the class of PDEs I) and
either linear in ux or do not depend on ux (the classes II–IV) need to be considered
separately.
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If we denote as DE the set of PDEs II–III, then the results of application of our
algorithm for group classification of equations I–IV can be summarized as follows.

– We perform complete group classification of the class DE . We prove that the
Liouville equation has the highest symmetry properties among equations from
DE . Next we prove that the only equation belonging to this class and admitting
the four-dimensional invariance algebra is the nonlinear d’Alembert equations. It
is established that there are 12 inequivalent equations from DE invariant under
three-dimensional Lie algebras. We give the lists of all inequivalent equations
from DE that admit one- and two-dimensional symmetry algebras.

– We have studied the structure of invariance algebras admitted by nonlinear
equations from the class I. It is proved, in particular, that their invariance algebras
are necessarily solvable.

– We perform complete group classification of nonlinear equations from the class
of PDEs I. We prove that the highest symmetry algebras admitted by those
equations are five-dimensional and construct all inequivalent classes of equations
invariant with respect to five-dimensional Lie algebras. We also construct all
inequivalent equations of the form I admitting one-, two-, three- and four-
dimensional Lie algebras.

The results of group classification of the class of nonlinear wave equation (1.1)
are utilized for constructing their explicit solutions. Namely, we perform symmetry
reduction of all Equation (1.1) admitting five-dimensional symmetry algebras to
ordinary differential equations and constructed multi-parameter families of their
exact solutions.

Appendix. Exact solutions of Equations (7.3)–(7.6)

Below we present the lists of invariant solutions of nonlinear wave equations
(7.3)–(7.6), which are obtained using the symmetry reduction approach.

Exact solutions of (7.3):

〈e1 + e4〉 : u = exp

[
t +

1

2
x2

+ C1x + C2

]
,

〈e4〉 : u = exp[C1x + C2],

〈e2〉 : u = C1t + C2,

〈e2 + αe4〉, (α > 0) : u = C2|t − αx + C1|
1−α2

,

〈e3 + e4〉 : u = exp

[
t x +

1

12
x4

+ C1x + C2

]
,

〈e2 − e3〉 : u = C1 exp

(
−

1

2
x2

)
cos(t + C2),
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〈e2 + e3〉 : u = C1 exp

(
1

2
x2

)
cosh(t + C2),

〈e2 + e3 + e4〉 : u = exp

[
C1 +

1

2
x2

± (t − x)
]
,

〈e2 − e3 + αe4〉 (α 6= 1, α > 0) : u = C2 exp

(
−

1

2
x2

) [
cos

(
C1 +

t − αx
α2 − 1

)]1−α2

,

〈e2 + e3 + αe4〉 (α 6= 1, α > 0) : u = C2 exp

(
−

1

2
x2

) [
cosh

(
C1 +

t − αx
1 − α2

)]1−α2

,

〈e5〉 : u = exp

{∫ ξ
(

C1(η
2
− 1)+

1

4
(η2

− 1) ln

∣∣∣∣1 + η

1 − η

∣∣∣∣ −
1

2
η

]−1

dη + C2

}
, ξ = t x−1,

〈e5 + e1〉 : u = t exp

{∫ ξ
[

C1η
2
+

1

2
η ln

∣∣∣∣1 + η

1 − η

∣∣∣∣ − η

]−1

dη + C2

}
,

〈e5 + αe1〉 : u = |t |α exp

[∫ ξ

g(η)dη + C1

]
, where ξ = t x−1 and g(ξ) is a solution of

the Riccati equation, ξ 2(ξ 2
− 1)g′

= ξ 2g2
− 2ξ(ξ 2

− α)g + α(α − 1).

Here e1 = u∂u, e2 = ∂x, e3 = xu∂u, e4 = ∂t , e5 = t∂t + x∂x and C1,C2 are arbitrary
real constants.

Exact solutions of (7.4):

〈e4〉 : u = C1t + C2,

〈e2〉 : u = (x + C1)[1 − ln |x + C1|] + C2,

〈e2 + αe4〉 (α > 0, α 6= 1) : u = (x − αt) ln |1 − α2
|

−(x − αt + C1)[ln |x − αt + C1| − 1] + C2,

〈e3 + αe4〉 (α > 0) : u = α−1t x + α2 exp(α−1t)+ C1t + C2,

〈e2 + εe3〉 (ε = ±1) : u =
1

2
εt2

+ ϕ(x), ϕ′
= y(x),

y − ln |ε − ey
| = εx + C1,

〈e2 + βe3 + e4〉 (β 6= 0) : u =
1

2
βt2

+ (x − t) ln |β| + C1,

〈e2 + βe3 + αe4〉 (β 6= 0, α > 0, α 6= 1) : u =
1

2
βt2

+ ϕ(η), η = x − αt,

ϕ = y′(η), y − ln |β − ey
| = β(1 − α2)−1η + C1,

〈e5〉 : u = −x ln |x| + C1t + x,

〈e5 + αe3〉 (α > 0) : u = (αt − x) ln |x| + xϕ(ξ), ξ = t x−1,

(ξ 2
− 1)ϕ′′

+ exp[−ξϕ′
+ ϕ + αξ − 1] = 1 + αξ.
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Here e1 = ∂u, e2 = ∂t , e3 = t∂u, e4 = ∂x e5 = t∂t + x∂x + (u − x)∂u and C1,C2 are
arbitrary real constants.

Exact solutions of (7.5):

〈e1 + e4〉 : u = x + C1t + C2,

〈e4〉 : u = C1t + C2,

〈e2〉 : u = ϕ(x), ϕ′
= f (x),

∫
df

ln | f |
= −mx + C1,

〈e2 + e4〉 : u = x − t + C1,

〈e2 + αe4〉 (α > 0, α 6= 1) : u = ϕ(η), η = x − αt, ϕ′
= f (η),∫

df
ln | f |

= −
m

1 − α2
(x − αt)+ C1,

〈e3 + αe4〉 (α > 0) : u = α−1t x +
1

2
mt2(1 + lnα)+

1

2
mt2

(
ln |t | −

1

2

)
+C1t + C2, α > 0,

〈e5〉 : u =
1

2
m2 ln |t | + t2ϕ, where ϕ = ϕ(ξ) (ξ = t x−1) satisfies equation

ξ 2(ξ 2
− 1)ϕ′′

+ 2ξ(ξ 2
− 2)ϕ′

− 2ϕ + m ln |ξ 2ϕ′
| −

3

2
m = 0.

Here e1 = ∂u, e2 = ∂t , e3 = t∂u, e4 = ∂x, e5 = t∂t + x∂x +
(
2u +

1
2 mt2

)
∂u and C1,C2

are arbitrary real constants.
Exact solutions of (7.6):

〈e1 + e4〉 : u =
1

2
t2

+ x + C1t + C2,

〈e4〉 : u = C1t + C2,

〈e2〉 : u = (2 − k)−1(C1 + (k − 1)x)
2−k
1−k + C2 and k 6= 2,

u = C2 ln |x − C1| and k = 2;

〈e2 + αe4〉 (α > 0, α 6= 1) : u = (1 − α2) ln |C1 − x + αt | + C2 and k = 2,

u =
1 − k
2 − k

(
1 − k
α2 − 1

) 1
1−k

|x − αt + C1|
2−k
1−k + C2 and k 6= 0, 1, 2,

〈e3 + e4〉 : u = t x + t (ln |t | − 1)+ C1t + C2 and k = −1,

u = t x − ln |t | + C1t + C2 and k = −2;

u = t x + (k2
+ 3k + 2)−1

|t |k+2
+ C1t + C2 and k 6= 0, 1,−1,−2,
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〈e2 + εe3〉 (ε = ±1) : u =
1

2
εt2

∫ x

f (η)dη + C2, where f is defined by∫
df

ε − | f |k
= η + C1,

〈e2 + εe3 + αe4〉 (ε = ±1, α > 0) : u =
1

2
εt2

∫ η

f (z)dz + C2,

η = x − αt, where f is defined by
∫

df
ε − | f |k

= (1 − α2)−1z + C1,

〈e5〉 : u = |t |
k−2
k−1 ϕ(ξ), ξ = t x−1, where ϕ is defined by

ξ 2(ξ 2
− 1)ϕ" + 2ξ

(
ξ 2

−
k − 2

k − 1

)
ϕ′

+ (−1)kξ 2k
|ϕ′

|
k
+

k − 2

(k − 1)2
ϕ = 0

and k 6= 0, 1, 2,

u =

∫ ξ
[

C1(1 − η2)+
1

4
(1 − η2) ln

∣∣∣∣1 + η

1 − η

∣∣∣∣ −
1

2
η

]−1

dη + C2,

ξ = t x−1 and k = 2,

〈e5 + αe1〉 (α > 0) : u = α ln |t | +

∫ ξ

f (η)dη + C1,

ξ = t x−1, f = f (η) is a solution of Riccati equation

η2(η2
− 1) f ′

+ η4 f 2
+ 2η3 f + α = 0 and k = 2.

Here e1 = ∂u, e2 = ∂t , e3 = t∂u, e4 = ∂x, e5 = t∂t + x∂x +
k−2
k−1 u∂u, k 6= 0, 1 and

C1,C2 are arbitrary real constants.
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