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1.1.3 Zeroth Čech Cohomology . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Zeroth Group Cohomology . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 First Elements of Homological Algebra . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 The Homology of a Chain Complex . . . . . . . . . . . . . . . . . . 10
1.2.2 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 The Cohomology of a Chain Complex . . . . . . . . . . . . . . . . . 11
1.2.4 The Universal Coefficient Theorem . . . . . . . . . . . . . . . . . . . 11

1.3 Basics of Singular Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 The Standard n-simplex . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 First Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.3 The Homology of a Point . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.4 The Homology of a Contractible Space . . . . . . . . . . . . . . . . . 17
1.3.5 Nice Representative One-cycles . . . . . . . . . . . . . . . . . . . . . 18
1.3.6 The First Homology of S1 . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 An Application: The Brouwer Fixed Point Theorem . . . . . . . . . . . . . 23

2 The Axioms for Singular Homology and Some Consequences 24
2.1 The Homotopy Axiom for Singular Homology . . . . . . . . . . . . . . . . . 24
2.2 The Mayer-Vietoris Theorem for Singular Homology . . . . . . . . . . . . . 29
2.3 Relative Homology and the Long Exact Sequence of a Pair . . . . . . . . . 36
2.4 The Excision Axiom for Singular Homology . . . . . . . . . . . . . . . . . . 37
2.5 The Dimension Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Reduced Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1



3 Applications of Singular Homology 39
3.1 Invariance of Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 The Jordan Curve Theorem and its Generalizations . . . . . . . . . . . . . 40
3.3 Cellular (CW) Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Other Homologies and Cohomologies 44
4.1 Singular Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Cup and Cap Product . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Ordered Simplicial (Co)Homology . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Oriented Simplicial Homology and Cohomology . . . . . . . . . . . . . . . . 52
4.4 Comparison of Oriented and Ordered Simplicial Homology . . . . . . . . . . 53
4.5 DeRham Cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.1 Some Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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Introduction

Algebraic topology is a large and complicated array of tools that provide a framework for
measuring geometric and algebraic objects with numerical and algebraic invariants. The
original motivation was to help distinguish and eventually classify topological spaces up to
homeomorphism or up to a weaker equivalence called homotopy type. But the subject has
turned out to have a vastly wider range of applicability. In the cases of the most interest, the
objects to which we apply the invariants of algebraic topology arise naturally in geometric,
analytic, and algebraic studies. The power of algebraic topology is the generality of its
application. The tools apply in situations so disparate as seemingly to have nothing to do
with each other, yet the common thread linking them is algebraic topology. One of the
most impressive arguments by analogy of twentieth century mathematics is the work of
the French school of algebraic geometry, mainly Weil, Serre, Grothendieck, and Deligne, to
apply the machinery of algebraic topology to projective varieties defined over finite fields in
order to prove the Weil Conjectures. On the face of it these conjectures, which dealt with
counting the number of solutions over finite fields of polynomial equations, have nothing to
do with usual topological spaces and algebraic topology. The powerful insight of the French
school was to recognize that in fact there was a relationship and then to establish the vast
array of technical results in algebraic geometry over finite fields necessary to implement
this relationship.

Let me list some of the contexts where algebraic topology is an integral part. It is related
by deRham’s theorem to differential forms on a manifold, by Poincaré duality to the study
of intersection of cycles on manifolds, and by the Hodge theorem to periods of holomorphic
differentials on complex algebraic manifolds. Algebraic topology is used to compute the
infinitessimal version of the space of deformations of a complex analytic manifold (and in
particular, the dimension of this space). Similarly, it is used to compute the infinitessimal
space of deformations of a linear representation of a finitely presented group. In another
context, it is used to compute the space of sections of a holomorphic vector bundle. In a
more classical vein, it is used to compute the number of handles on a Riemann surface,
estimate the number of critical points of a real-valued function on a manifold, estimate
the number of fixed points of a self-mapping of a manifold, and to measure how much
a vector bundle is twisted. In more algebraic contexts, algebraic topology allows one to
understand short exact sequences of groups and modules over a ring, and more generally
longer extensions. Lastly, algebraic topology can be used to define the cohomology groups
of groups and Lie algebras, providing important invariants of these algebraic objects.

A quote from Lefschetz seems appropriate to capture the spirit of the subject: after a
long and complicated study of pencils of hypersurfaces on algebraic varieties he said, “we
have succeeded in planting the harpoon of algebraic topology in the whale of algebraic ge-
ometry.” One part of this image needs amplifying – namely, if one views algebraic topology
as a harpoon, then one must see it as a harpoon with a complicated internal structure;
inside there are many hidden working parts. The main trouble with algebraic topology is
that there are many different approaches to defining the basic objects — homology and

4



cohomology groups. Each approach brings with it a fair amount of required technical bag-
gage, be it singular chains and the algebra of chain complexes in one approach, or derived
functors in another. Thus, one must pay a fairly high price and be willing to postpone the
joys of the beautiful applications for quite awhile as one sloggs through the basic construc-
tions and proves the basic results. Furthermore, possibly the most striking feature of the
subject, the interrelatedness (and often equality) of the theories resulting from different
approaches requires even more machinery, for at its heart it is saying that two completely
different constructions yield related (or the same answers).

My aim in this course is to introduce you to several approaches to homology and co-
homology and indicate results in various geometric and algebraic contexts that flow from
judicious uses of homology and cohomology. The level of background that is assumed will
vary greatly: when we are considering applications, I will assume whatever is necessary
from the area to which we are applying algebraic topology in order to establish the results.

1 Homology

We begin with three different constructions which will generalize to three different, but
closely related homology (and cohomology) theories.

1.1 The Simplest Homological Invariants

In this introduction to homology, we begin with some very simple examples of algebraic
invariants. These are immediately defined and easy to compute. One may wonder why we
are drawing attention to them, since they may seem somewhat forced. The reason for the
attention is that, as we shall see after we define homology in all its glory, these are the
lowest dimensional homological invariants. Thus, one can view homology as a vast higher
dimensional generalization of the fairly obvious invariants we introduce here.

1.1.1 Zeroth Singular Homology

Let X be a topological space and consider the free abelian group S0(X) with basis the
points of X. That is to say, an element of this group is a finite integral linear combination
of the form ∑

{p∈X}
np[p].

This is a finite sum in the sense that all but finitely many of the integral coefficients np

are zero. Distinct sums represent different elements of the group and one adds sums in
the obvious way. At this point the topology of X plays no role – only the points of X are
important. The zero element in this group is the empty sum. Of course, the elements [p] as
p ranges over the points of X forms a basis for this free abelian group. We call this group
the group of singular zero chains on X.
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The topology of X plays a role when we introduce an equivalence relation on S0(X).
We form a quotient of S0(X) by setting [p] ≡ [q] if there is a path beginning at p and
ending at q, i.e., a continuous map from the unit interval γ : [0, 1] → X with γ(0) = p and
γ(1) = q. It is easy to see that this is indeed an equivalence relation, and that it induces an
equivalence relation on S0(X). The quotient group of this equivalence relation, S0(X)/ ∼
is denoted H0(X) and is called the zeroth singular homology group of X. It is easy to
compute.

Lemma 1.1.1. H0(X) is the free abelian group generated by the set of path components of
X. In particular, if X is path connected, then H0(X) is isomorphic to Z.

Proof. Let π0(X) denote the set of path components of X. We have a homomorphism
S0(X) → ⊕A∈π0(X)Z defined by sending

∑
p∈X np[p] to

∑
p∈X np[A(p)] where A(p) ∈ π0(X)

is the path component containing p. This homomorphism is clearly compatible with the
equivalence relation, and hence defines a homomorphism H0(X) → ⊕A∈π0(X)Z. It is onto
since [p] maps to the element which is one times the component containing p, and these
form a basis for the range.

For each path component A choose a point a ∈ A and for each p ∈ A choose a path γp

from a to p. Then
∑

p∈A np[p] is equivalent to
∑

p∈A npa. Suppose α =
∑

p np[p] maps to
zero. This means that for each A ∈ π0(X) we have

∑
p∈A np = 0, and in light of the above

equivalences implies that the α is zero in H0(X).

We could also define H0(X; Q) and H0(X; R) by replacing the Z coefficients by rational
or real coefficients in the above constructions. The resulting groups are then vector spaces
over Q or R.

The homology H0(X) is a functor from the category of topological spaces and continuous
maps to the category of abelian groups. That is to say, if f : X → Y is a continuous
map, then there is an induced mapping H0(X) → H0(Y ), and this operation respects
compositions and sends the identity map of X to itself to the identity homomorphism on
H0(X). For more on categories and functors see appendix A.

1.1.2 Zeroth deRham Cohomology

In this section M is a smooth (= C∞) manifold. We define Ω0(M) to be the R-vector space
of smooth functions on M . These are the deRham zero cochains. We define H0

dR(M), the
zeroth deRam cohomology group, to be the subgroup of Ω0(M) consisting of functions f
for which df = 0. These of course are the locally constant functions on M , and hence are
functions constant on each component of M .

Lemma 1.1.2. H0
dR(M) is identified with the R-vector space of functions from the set of

components, or equivalently the set of path components, of M to R. In particular, if M is
connected, H0

dR(M) is isomorphic as a real vector space to R.
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The deRham cohomology is a contravariant functor from the category of smooth mani-
folds and smooth maps to the category of real vector spaces. That is to say, if f : M → N is
a smooth map of smooth manifolds, then there is an induced map f∗ : H0

dR(N) → H0
dR(M).

This association preserves compositions and sends identities to identities.
There are three differences between the construction of the zeroth deRham cohomolgy

group and the construction of the zeroth singular homology group. First, the deRham
construction applies only to smooth manifolds, not all topological spaces. Secondly, the
construction takes place in the category of real vector spaces instead of abelian groups.
These two changes are summarized by saying that the zeroth deRham cohomology is a
functor from the category of smooth manifolds and smooth maps to the category of real
vector spaces. Thirdly, the deRham cohomology group is a subgroup of the zero cochains,
whereas before the homology group is a quotient of the zero chains. This duality is indicated
by the change in terminology from homology to cohomology. It is also reflected in the fact
that deRham cohomology is a contravariant functor.

Notice that there is a natural pairing

H0
dR(M)⊗H0(M) → R

given by
f ⊗

∑
np[p] �→

∑
npf(p).

One sees easily that if f ∈ H0
dR(M) then the evaluation of f on S0(X) is constant on

equivalence classes and hence passes to a well-defined map on the quotient. If we replace
H0(X) by H0(X; R) then the pairing becomes a perfect pairing identifying H0

dR(X) with
the dual R-vector space to H0(X; R).

1.1.3 Zeroth Čech Cohomology

Let X be a topological space, and let {Uα}{α∈A} be an open covering of X. We define
the Čech zero cochains with respect to this open covering, Č0(X; {Uα}), to be the group
of all {fα}{α∈A}, where fα is a locally constant function from Uα to Z. The zeroth Čech

cohomology group Ȟ0(X; {Uα}) is the subgroup of all {fα} for which for every α, β ∈ A we
have fα|Uα∩Uβ

= fβ|Uα∩Uβ
. Clearly, these form an abelian group under addition. Elements

of this group are called cocycles.

Lemma 1.1.3. For any open covering of X, the group H0(X; {Uα}) is isomorphic to the
group of locally constant functions from X to Z. This is the free abelian group of functions
from the set of components of X to Z.

Proof. Let {Ua} be a covering of X by open sets and let {fa} be a Čech zero cochain with
respect to this covering. Since for all pairs of indices a, b we have fa

∣∣(Ua∩Ub) = fb

∣∣(Ua∩Ub),
the local functions fa glue together to define a function f on X. That is to say, there is
a unique function f : X → Z with the property that for each index a we have f |Ua = fa.
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Since the fa are locally constant and the Ua are open subsets, it follows that f is locally
constant. This defines a homomorphism from Ȟ0(X; {Ua}) to the group of locally constant
functions from X to Z. Conversely, given a locally constant function f on X, for each
index a we let fa be the restriction f |Ua. This, of course, is a locally constant function
on Ua and fa|Ua ∩ Ub = fb|Ua ∩ Ub. Thus this defines a homomorphism from the group
of locally constant functions on X to Ȟ0(X; {Ua}). It is clear that these constructions
produce inverse homomorphisms.

To define the zeroth Čech cohomology of X, independent of any open covering, we
consider all open coverings {Uα}α. The collection of open covers is ordered by refinement:
A covering {Vβ}β∈B is smaller than a covering {Uα}α∈A if for each β ∈ B there is an
α(β) ∈ A with the property that Vβ ⊂ Uα(β). If we choose a refinement map, that is to say
a map ρ : B → A with the property that Vβ ⊂ Uρ(β) for all β, then we can define a map
ρ∗ from the zero Čech cochains Č0(X; {Uα}) to Č0(X; {Vβ}). It is defined as follows. Let
{fα} ∈ Č0(X; {Uα}). For each β, set ρ∗({fα}) = {fρ(β)|Vβ

}. The map ρ∗ on the level of
cochains depends on the choice of refinement function ρ, but we have:

Lemma 1.1.4. If {fα} ∈ Č0(X; {Uα}) is a cocycle, then ρ∗{fα} ∈ Č0(X; {Vβ}) is a cocyle
which is independent of the choice of refinement mapping ρ.

Proof. {fα} is a cocycle if and only if there is a locally constant function f on X such
that fα = f |Uα . Then for any refinement mapping ρ, ρ∗{fα} is simply the cocyle given by
restricting f to the Vβ.

The zeroth Čech cohomology is defined as the direct limit of Ȟ0(X; {Uα}) and the maps
induced by refinements, as {Uα} ranges over all coverings. From the above proof it follows
immediately that this group is identified with the group of locally constant integral valued
functions on X. Set up this way the zeroth Čech cohomology is a functor from the category
of topological spaces and continuous maps to the category of abelian groups.

Remark 1.1.5. 1. Again we call this group a cohomology group, and notice that it is
a subgroup of the cochain group.

2. The fact that one can glue together local functions defined on open sets to give a global
function if and only if the local functions agree on the overlaps can be extended to
other contexts. This property is encoded in the notion of a sheaf on a topological
space. The first sheaves one encounters are sheaves of functions (locally constant,
continuous, smooth, arbitrary). But there are many other kinds of sheaves which play
extremely important roles in algebraic geometry, commutative algebra, and complex
analytic geometry.

Exercise 1.1.6. Show that there is a natural pairing

Ȟ0(X; {Ua})⊗H0(X) → Z

which is a perfect pairing if X is a locally path connected space.
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Exercise 1.1.7. Show that if X is a smooth manifold, then there is an inclusion Ȟ0(X; {Ua}) →
H0

dR(X) given by tensoring with R.

Exercise 1.1.8. We can replace Z by Q or R in the above construction (still using locally
constant functions) and obtain the rational or real zeroth Čech cohomology groups. These
are rational or real vector spaces. Show that if X is a smooth manifold then Ȟ0(X; {Ua}; R)
is identified with H0

dR(X).

1.1.4 Zeroth Group Cohomology

Let G be a group, let A be an abelian group and let ϕ : G× A → A be an action of G on
A. We define C0(G;A), the group of zero-cochains for G with values in A to be A. We
define C1(G;A), the group of one-cochains for G with values in A, to be the the set of
all set functions ψ : G → A. The one-cochains form an abelian group under addition of
functions using the addition in A. We define δ : C0(G;A) → C1(G;A) by δ(a)(g) = a−g ·a.
This is a group homomorphism. The kernel of this homomorphism is H0(G;A), the zeroth
group cohomology of G with coefficients in A. Clearly, H0(G;A) is identified with AG, the
subgroup of A fixed pointwise by every g ∈ G.

As in the deRham case we have a cohomology group defined as the kernel of a ‘cobound-
ary’ mapping.

If f : K → G is a homomorphism and the action of K on A is induced via f from
the action of G on A, then there is an induced mapping H0(G;A) → H0(K;A) (any
a ∈ A which is G-invariant is automatically K-invariant). Thus, fixing A, H0(·, A) is
a contravariant functor from the category of groups G equipped with actions on A and
homomorphisms compatible with the actions to the category of abelian groups.

Exercise 1.1.9. Give an example of a connected space which is not path connected.

Exercise 1.1.10. For the space constructed in Exercise 1.1.9, show that the zeroth Čech
cohomology is not dual to the zeroth singular homology.

Exercise 1.1.11. Show that for any locally path connected space the path components and
the connected components agree and that the zeroth Čech cohomology is the dual of the
zeroth singular homology.

Exercise 1.1.12. Prove that the zeroth singular homology is a functor from the category
of topological spaces and continuous maps to the category of abelian groups.

1.2 First Elements of Homological Algebra

The basic invariants described in the previous section are specific cases of much more general
constructions. Before we begin discussing these constructions in detail, we need to develop
some homological algebra that will be common to all of the invariants.
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1.2.1 The Homology of a Chain Complex

A chain complex (C∗, ∂∗) consists of

• a graded abelian group, C∗, i.e. a set of abelian groups Cn indexed by the integers
called the chain groups, and

• a homomorphism of graded groups, ∂∗, i.e. a set of homomorphisms, ∂n : Cn → Cn−1

again indexed by the integers, called the boundary map,

subject to the condition ∂n−1 ◦ ∂n = 0 for all n.
Often, we drop the index from the boundary homomorphisms and write the last condi-

tion as ∂2 = 0.
Chain complexes form the objects of a category. The set of morphisms from C∗ to

D∗ is the set of indexed homomorphisms fn : Cn → Dn commuting with the boundary
homomorphisms, i.e., satisfying ∂n ◦ fn = fn−1 ◦ ∂n where on the left-hand side of this
equation the boundary map is the one from D∗ whereas on the right-hand side the boundary
map is the one from C∗.

· · · −−−−→ Cn+1
∂n+1−−−−→ Cn

∂n−−−−→ Cn−1 −−−−→ · · ·

fn+1

⏐⏐� fn

⏐⏐� fn−1

⏐⏐�
· · · −−−−→ Dn+1

∂n+1−−−−→ Dn
∂n−−−−→ Dn−1 −−−−→ · · ·

The homology of a chain complex (C∗, ∂) is the graded abelian group {Hn(C∗)}n defined
by

Hn =
Ker∂n : Cn → Cn−1

Im∂n+1 : Cn+1 → Cn
.

For each n, an element of Ker ∂ : Cn → Cn−1 is called an n-cycle. An element in the image
of ∂ : Cn+1 → Cn is called an n-boundary. When the degree is unimportant or obvious,
we refer to these as cycles and boundaries respectively. An n-cycle ζ is said to be a cycle
representative for a homology class a ∈ Hn(C∗) if the equivalence class of ζ is a.

All the homology groups of a chain complex vanish if and only if the chain groups and
boundary homomorphisms form a long exact sequence.

Homology is a functor from the category of chain complexes to the category of graded
abelian groups (and homomorphisms). This last category is called the category of graded
abelian groups and homomorphisms.

There is the dual notion of a cochain complex and its cohomology. In a cochain complex
(C∗, δ) the upper index indicates the fact that the coboundary map δ raises degree by one.
We require δ2 = 0, and the cohomology of (C∗, δ) is defined by

Hn(C∗) =
Ker(δ) : Cn → Cn+1

Im(δ) : Cn−1 → Cn
.

Exercise 1.2.1. Let (C∗, ∂∗) be a chain complex. Define (C∗, δ) by Cn = C−n and δ : Cn →
Cn+1 by ∂ : C−n → C−n−1. Show that Hn(C∗) = H−n(C∗).
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1.2.2 Variants

The notion of chain complexes and homology and cochain complexes and cohomology exist
in any abelian category. For example, for a commutative ring R one has the category
of chain complexes consisting of R-modules and R-module homomorphisms. Homology
is then a functor from this category to the category of sets of R-modules (and R-module
homomorphisms) indexed by the integers. The special case when R is a field and everything
in sight is then a vector space over the field is especially interesting.

Another variant is homology of a chain complex with coefficents. Suppose that A is an
abelian group (e.g. Z/kZ, R, Q, C) and that (C∗, ∂) is a chain complex of abelian groups.
We define C∗ ⊗ A to be the chain complex of abelian groups whose nth-chain group is
Cn ⊗Z A and whose boundary map ∂ : Cn ⊗Z A → Cn−1 ⊗Z A is ∂ ⊗ IdA. It is clear that
this is a chain complex. We define H∗(C∗;A) to be the homology of this chain complex.
We say that H∗(C∗;A) is the homology of (C∗, ∂) with coefficents in A. If A is a field then
the homology groups are vector spaces over A, if A is a ring they are modules over A.

Exercise 1.2.2. Show that if k is a field of characteristic zero then H∗(C∗⊗k) = H∗(C∗)⊗k

Exercise 1.2.3. Give an example of a chain complex of a free abelia groups whose homology
is not free abelian.

Exercise 1.2.4. Consider the chain complex C∗,

0 −−−−→ Z
·2−−−−→ Z −−−−→ 0

Show that H∗(C∗) = 0 but H∗(C∗ ⊗ Z/2) �= 0.

1.2.3 The Cohomology of a Chain Complex

If (C∗, ∂) is a chain complex, then we define the dual cochain complex (C∗, δ) by Cn =
Hom(Cn, Z) with δ : Cn → Cn+1 the dual to ∂ : Cn+1 → Cn. Clearly, δ2 = 0 so that we have
defined a cochain complex. Its cohomology is called the cohomology of the original chain
complex. More generally, if A is an abelian group then we can also define the cohomology
of (C∗, ∂) with coefficents in A. To do this we define a cochain complex C∗(A) by setting
Cn(A) = Hom(Cn, A) and setting δ equal to the dual of ∂. Then the homology of this
cochain complex, denoted H∗(C∗;A), is the cohomology of C∗ with coefficients in A.

Exercise 1.2.5. For any abelian group A, compute the homology and cohomology of the
chain complex in Exercise 1.2.4 with coefficients in A.

1.2.4 The Universal Coefficient Theorem

Let G be an abelian group. A short free resoution of G is a short exact sequence,

0 → K → F → G → 0

where K and F are free abelian groups.

11



Lemma 1.2.6. Every abelian group has a short free resoltuion.

Proof. Every abelian group is the quotient of a free abelian group. Let F be that free
abelian group, and K be the kernel of the quotient map F → G. Then K is a subgroup of
F and is thus also free abelian and we have the short free resolution,

0 → K → F → G → 0

as desired.

Now, let G and H be abelian groups. Take a short free resolution for G and consider
Hom(·,H). This may not give us a short exact sequence, but we do obtain an exact sequnce
if we insert one more term, which we call Ext(G,H),

0→ Hom(G,H) → Hom(F,H) → Hom(K,H) → Ext(G,H) → 0.

The group Ext(G,H) is well defined up to canonical isomorphism. Suppose we have two
short free resolutions for G, then a map f : F1 → F2 exists so that the following diagram
commutes,

0 −−−−→ K1 −−−−→ F1 −−−−→ G −−−−→ 0⏐⏐�f |K1

⏐⏐�f

∥∥∥
0 −−−−→ K2 −−−−→ F2 −−−−→ G −−−−→ 0

This gives rise to,

0 −−−−→ Hom(G,H) −−−−→ Hom(F2,H) −−−−→ Hom(K2,H) −−−−→ E2 −−−−→ 0∥∥∥ ⏐⏐�f∗
⏐⏐�(f |K2

)∗
⏐⏐�∃!f̄∗

0 −−−−→ K2 −−−−→ F2 −−−−→ G −−−−→ 0

We made a choice when we picked f . If we vary f , it becomes f +h where h : F1 → K2.
This doesn’t change f̄∗.

Exercise 1.2.7. Show that changing f to f + h where h : F1 → K2 doesn’t change f̄∗, and
thus E1

∼= E2.

We use a similar argument to construct the group Tor(G,H). Again start with two
abelian groups G and H and a short free abelian resolution for G. Now, rather than
looking at Hom(·,H), we tensor with H. Again, this may to yeild a short exact sequence.
Inorder to make an exact sequence we insert the extra term, Tor(G,H),

0→ Tor(G,H) → K ⊗H → F ⊗H → G⊗H → 0.

Exercise 1.2.8. Compute Tor(G,H) and Ext(G,H) for finitely generated abelian groups.
Hint. First show that the construction behaves well under direct sum. Then compute for G
and H cyclic.
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Exercise 1.2.9. Show that if F is free abelian then Ext(F,A) = 0 and Tor(F,A) = 0 for
any abelian group A.

Exercise 1.2.10. Let F be the free abelian group generated by {a1, a2, . . .}. Define

F
f−−−−→ Q −−−−→ 0

by an �→ 1/n!. Let K = ker f . Find explicitly a free abelian basis for K. Use this to show
that Ext(Q, Z) is uncountable.

Exercise 1.2.11. Show that Tor(A, Q) = 0 for any finitely generated abelian group A.

Exercise 1.2.12. Show that Tor(A, Q/Z) ∼= A for any finitely generated abelian group A.

Exercise 1.2.13. Show Tor(Z/n,A) = n-torsion of A for any abelian group A.

Theorem 1.2.14. The Universal Coefficent Theorem Let C∗ be a free abelian chain
complex and A an abelian group. Then there exist the following short exact sequences,
natural for chain maps between such chain complexes,

0→ Ext(Hk−1(C∗);A) → Hk(C∗;A) → Hom(Hk(C∗), A) → 0

0→ Ext(Hk−1(C∗); Z) → Hk(C∗)→ Hom(Hk(C∗), Z) → 0

0 → Hk(C∗)⊗A → Hk(C∗;A) → Tor(Hk−1(C8);A) → 0

Remark 1.2.15. These results are not true in general if C∗ is not free abelian.

1.3 Basics of Singular Homology

The singular homology functor is a functor from the category of topological spaces to the
category of graded abelian groups. It is the composition of two functors. The first is
the singular homology chain complex functor which will be described in this section. The
second is the homology functor applied to chain complexes as described in the preivous
section.

1.3.1 The Standard n-simplex

Fix an integer n ≥ 0, and let Δn ⊂ Rn+1 be the convex hull of the n + 1 standard unit
vectors v0 = (1, 0, . . . , 0); v1 = (0, 1, 0, . . . , 0); . . . , vn = (0, 0, . . . , 0, 1). The object Δn is
called the standard n-simplex. We use affine coordinates on Δn. In these coordinates a
point x ∈ Δn is represented by (t0, . . . , tn) subject to the conditions that ti ≥ 0 for all
0 ≤ i ≤ n and

∑n
i=0 ti = 1. The point represented by the coordinates is

∑n
i=0 tivi in the

affine structure on Δn. Notice that if A is an affine space and if we have points a0, a1, . . . , an

of A then there is a unique affine linear map Δn → A sending vi to ai for each 0 ≤ i ≤ n.
It sends the point with affine coordinates (t0, . . . , tn) to

∑n
i=0 tiai. We call this the affine

linear map determined by the ordered set of points.
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Figure 1: The standard one simplex, Δ1 ⊂ R2

Figure 2: The standard two simplex, Δ2 ⊂ R3

Figure 3: The three simplex, Δ3. Note: This is not the standard embedding in R4!
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Let X be a topological space. For n ≥ 0 we define the group of singular n-chains
in X, Sn(X), to be the free abelian group generated by the set of all continuous maps
σ : Δn → X. For n < 0 we define Sn(X) = 0. Associating to X the group Sn(X) is
a functor from the category of topological spaces and continuous maps to the category
of groups and homomorphisms. The homomorphism f∗ : Sn(X) → Sn(Y ) associated to
the continuous mapping f : X → Y sends σ : Δn → X to f∗σ = f ◦ σ : Δn → Y . This
function from the basis of the free abelian group Sn(X) to Sn(Y ) extends uniquely to a
homomorphism Sn(X) → Sn(Y ).

Our next goal is to provide a boundary map for this construction, so as to define a
chain complex, the singular chain complex. As we shall see, to do this it suffices to define
an element ∂(Δn) ∈ Sn−1(Δn) for each n ≥ 0. For each index i; 0 ≤ i ≤ n we define the
ith-face fi of Δn. It is an affine linear map fi : Δn−1 → Δn determined by the n ordered
points {v0, v1, . . . , vi−1, vi+1, . . . , vn}. Notice that the image of fi is the intersection of Δn

with the hyperplane ti = 0 in Rn+1, and that fi is an affine isomorphism onto this subspace
preserving the order of the vertices.

We define

∂(Δn) =
n∑

i=0

(−1)ifi ∈ Sn−1(Δn).

f0f1

f2

Figure 4: ∂Δ2 = f0 − f1 + f2

More generally, let ζ =
∑

σ nσσ be an element of Sn(X). (Here, our conventions are
that σ ranges over the continuous maps of Δn to X, the nσ are integers all but finitely
many of which are zero.) Then we define

∂(ζ) =
∑
σ

nσσ∗(∂(Δn)).

By functorality, the right-hand side of the above equality is naturally an element of Sn−1(X).
Here is the basic lemma that gets this construction going. As we shall see, this will be

the first of many similar computations.

Lemma 1.3.1. The composition

Sn+1(X) ∂−→ Sn(X) ∂−→ Sn−1(X)

is zero.
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Proof. Clearly, by naturality, it suffices to prove that for all n we have ∂(∂(Δn)) = 0 ∈
Sn−2(Δn). For indices 0 ≤ i < j ≤ n let fij : Δn−2 → Δn be the affine linear map that
sends Δn−2 isomorphically onto the intersection of Δn with the codimension-two subspace
ti = tj = 0 in a manner preserving the ordering of the vertices. We compute:

∂(fi) =
n∑

k=i+1

(−1)k−1fik +
i−1∑
k=0

(−1)kfki.

Hence,

∂∂(Δn) =
n∑

i=0

(−1)i
( n∑
k=i+1

(−1)k−1fik +
i−1∑
k=0

(−1)kfki

)
.

Claim 1.3.2. In this sum, each term fij with 0 ≤ i < j ≤ n appears exactly twice and with
cancelling signs.

Exercise 1.3.3. Prove this claim.

The content of this lemma is that we have constructed a chain complex, S∗(X). It is
called the singular chain complex of X. It is immediate from what we have already proved
and the definitions that this is a functor from the topological category to the category of
chain complexes of free abelian groups.

The singular homology of X, denoted H∗(X), is the homology of the singular chain
complex. Singular homology is a functor from the topological category to the category of
graded abelian groups and homomorphisms. The group indexed by n is denoted Hn(X).

As disscussed in section 1.2.2 above, given a chain complex and an abelian group we
can define the homology of the chain complex with coefficents in that abeian group. In
particular, let A be an abelian group, then the singular homology of a topological space
X with coefficients in A, denoted H∗(X;A), is by definition the homology of S∗(X) ⊗ A.
Notice that if A is a field then these homology groups are vector spaces over A and if A is
a ring, then they are modules over A. This is a functor from the category of topological
spaces to the category of graded abelian groups (resp., to graded A-modules).

Likewise, we define the singular cohomology of X with coefficients in A to be the
cohomology of the cochain complex S∗(X;A) = Hom(S∗(X), A). A case of particular
interest is when A = Z. In this case we refer to the cohomology as the singular cohomology
of X.

1.3.2 First Computations

We will now compute some of the singular homology groups of a few spaces directly from
the definition.

Lemma 1.3.4. Hi(X) = 0 if i < 0.

Proof. By definition Si(X) = 0 if i < 0. The lemma follows immediately.
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Exercise 1.3.5. Show for any A that the singular homology with coefficients in A vanishes
in dimensions less than zero as does the singular cohomology with values in A.

Since the singular zero chains are what we denoted by S0(X) earlier, and the singular
one chains are generated by continuous maps of the interval into X, and since the boundary
of the one chain represented by γ : [0, 1] → X is γ(1) − γ(0), it follows that H0(X) is the
quotient of S0(X) by the equivalence relation studied earlier. Hence, we have already
established the following result:

Lemma 1.3.6. H0(X) is the free abelian group generated by the set of path components of
X.

Exercise 1.3.7. Show that the singular cohomology of a topological space X is ZP(X), the
group of functions from the set of path components of X to the integers.

1.3.3 The Homology of a Point

Proposition 1.3.8. Let X be a one-point space. Then Hk(X) = 0 for all k �= 0 and
H0(X) ∼= Z.

Proof. For each n ≥ 0, there is exactly one map of Δn → X, let us call it σn. Thus,
Sn(X) = Z for every n ≥ 0. Furthermore, ∂(σn) =

∑n
i=0(−1)iσn−1. This sum is zero if n

is odd and is σn−1 if n is even and greater than zero. Hence, the group of n-cycles is trivial
for n even and greater than zero, and is Ker ∂n = Z for n odd and for n = 0. On the other
hand, the group of n boundaries is trivial for n even and all of Sn(X) for n odd. The result
follows immediately.

Exercise 1.3.9. Compute the singular cohomology of a point. For any abelian group A,
compute the singular homology and cohomology with coefficients in A for a point.

1.3.4 The Homology of a Contractible Space

We say that a space X is contractible if there is a point x0 ∈ X and a continuous mapping
H : X × I → X with H(x, 1) = x and H(x, 0) = x0 for all x ∈ X. As an example, Rn is
contractible for all n ≥ 0.

Exercise 1.3.10. Show Rn is contractible.

Exercise 1.3.11. Show any convex subset Rn is contractible.

Proposition 1.3.12. If X is contractible, then Hi(X) = 0 for all i ≥ 1.

Proof. Let H be a contraction of X to x0. Let σ : Δk → X be a continuous map. We
define c(σ) : Δk+1 → X by coning to the origin. Thus,

c(σ)(t0, . . . , tk+1) = (1− t0)σ(t1/(1 − t0), . . . , tk+1/(1− t0)).
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One checks easily that this expression makes sense and that as t0 → 1 the limit exists and
is x0, so that the map is well-defined and continuous on the entire Δk+1.

Claim 1.3.13. If k ≥ 1, then ∂(c(σ)) = σ −
∑k

i=0(−1)kc(σ ◦ fi).

This claim remains true for k = 0 if we interpret the cone on the empty set to be the
origin.

X

Figure 5: c(σ : Δ1 → X) : Δ2 → X

For all k ≥ 0, we define c : Sk(X) → Sk+1(X) by c(
∑

nσσ) =
∑

nσc(σ). Then claim
1.3.13 implies the following fundamental equation for all ζ ∈ Sk(X), k ≥ 1:

∂c(ζ) = ζ − c(∂ζ) (1)

It follows that if ζ is a k cycle for any k ≥ 1, then ∂c(ζ) = ζ, and hence the homology
class of ζ is trivial. Thus, Hk(X) = 0 for all k > 0. Clearly, we have Hk(X) = 0 for
k < 0 and since X is path connected, we have H0(X) ∼= Z. This completes the proof of the
proposition.

Exercise 1.3.14. Compute H0(X) for X contractible.

Exercise 1.3.15. For any abelian group A, compute the homology and cohomology of a
contractible space with values in A.

1.3.5 Nice Representative One-cycles

Before we begin any serious computations, we would like to give a feeling for the kind of
cycles that can be used to represent one-dimensional singular homology. Let X be a path
connected space and let a ∈ H1(X) be a homology class. Our object here is to find an
especially nice cycle representative for a.

Definition 1.3.16. A circuit in X is a finite ordered set of singular one simplices {σ1, . . . , σk}
in X with the property that σi(1) = σi+1(0); for 1 ≤ i ≤ k − 1 and σk(1) = σ1(0).

Given a circuit {σ1, . . . , σk} there is an associated singular one-chain ζ =
∑k

i=1 σi ∈
S1(X).
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Figure 6: A circuit

Exercise 1.3.17. Show that ζ is a cycle.

Hence ζ represents a homology class [ζ] ∈ H1(X). Any such homology class is the image
under a continuous map of a homology class in the circle. To see this, paste k copies of the
one-simplex together end-to-end in a circuit to form a circle T , and use the σi, in order,
to define a map ζ̃ : T → X. The inclusions of the k unit intervals into T form a singular
one-cycle μ ∈ S1(T ) representing a homology class [μ] ∈ H1(T ). Clearly, [ζ] = ζ̃∗[μ]. The
next proposition shows that all elements in H1(X) are so represented, at least when X is
path connected.

Proposition 1.3.18. Let X be path connected. Given a ∈ H1(X), there is a circuit
{σ1, . . . , σk} such that the singular one-cycle ζ = σ1 + · · ·+ σk represents the class a.

Proof. We sketch the proof and leave the details to the reader as exercises.

Lemma 1.3.19. Every homology class in H1(X) is represented by a cycle all of whose
non-zero coefficients are positive.

Proof. First let us show that we can always find a representative one-cycle such that the
only singular one simplices with negative coefficients are constant maps. Given σ : Δ1 → X,
written as σ(t0, t1), we form the map ψ : Δ2 → X by ψ(t0, t1, t2) = σ(t0 + t2, t1). It is easy
to see that ∂Δ = σ+ τ−p where τ(t0, t1) = σ(t1, t0) and p(t0, t1) = σ(1, 0). We can rewrite
this as an equivalence

−σ ∼= τ − p.

Using this relation allows us to remove all negative coefficients from non-trivial singular
one-simplices at the expense of introducing negative coefficients on constant singular one-
simplices.

Next we consider a constant map p : Δ2 → X. Its boundary is a constant singular one
simplex at the same point. Subtracting and adding these relations allows us to remove all
constant one simplices (with either sign) from the cycle representative for a.
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Corollary 1.3.20. Every homology class in H1(X) is represented by a sum of maps of Δ1

to X with coefficients one (but possibly with repetitions).

Now let ζ =
∑k

i=1 σi be a cycle. It is possible to choose a subset, such that after possibly
reordering, we have a circuit {σi1 , . . . , σi�} Continuing in this way we can write ζ as a finite
sum of singular cycles associated to circuits.

Our next goal is to combine two circuits into a single one (after modifying by a bound-
ary). Let ζ and ζ ′ be cycles associated with circuits {σ1, . . . , σk} and {σ′

1, . . . , σ
′
�}. Since

X is path connected, there is a path γ : [0, 1] → X connecting σ1(0) to σ′
1(0). Then

{σ1, . . . , σk, γ, σ′
1, . . . , σ

′
�, γ

−1}

is a circuit and we claim that its associated cycle is homologous to the sum of the cycles
associated to the two circuits individually. (Here, γ−1(t0, t1) = γ(t1, t0).)

Figure 7: Joining two circuits together

Exercise 1.3.21. Prove this last statement.

An inductive argument based on this construction then completes the proof of the
proposition.

1.3.6 The First Homology of S1

The purpose of this section is to make our first nontrivial computation – that of H1 of the
circle. We denote by S1 the unit circle in the complex plane. It is a group and we write
the group structure multiplicatively. Here is the result.
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Theorem 1.3.22.
H1(S1) ∼= Z.

The proof of this result is based on the idea of winding numbers.

Claim 1.3.23. Let I be the unit interval, and let f : I → S1 be a continuous mapping.
Then there is a continuous function θ : I → R such that for all t ∈ I exp(iθ(t)) = f(t).
The function θ is unique up to adding a constant integral multiple of 2π. In particular,
θ(1) − θ(0) is independent of θ. This difference is called the winding numberwinding numberwinding number w(f) of f .
Furthermore, exp(iw(f)) = f(1)f(0)−1.

Proof. Let us consider uniqueness first. Suppose that θ and θ′ are functions as in the
claim. Then exp(iθ(t)) = exp(iθ′(t)) for all t ∈ I. Hence, θ(t)− θ′(t) is an integral multiple
of 2π. By continuity, this multiple is constant as we vary t.

Now we turn to existence. We consider the set S = {t ∈ I} for which a function
θ as required exists for the subinterval [0, t]. Clearly, 0 ∈ S. Suppose that t ∈ S, and
let θ0 : [0, t] → R be as required. There exists an open subset U ⊂ I containing t such
that f(U) ⊂ S1 \ {−f(t)} =: T . There is a continuous function θT : T → R such that
exp(iθT (x)) = x for all x ∈ T . By adding an integral multiple of 2π we can assume that
θT (f(t)) = θ0(t). Defining θ′ to be θ on [0, t] and to be θT ◦ f on U gives a function as
required on [0, t] ∪ U . This shows that S is an open subset of I. To show that S is closed
suppose that we have a sequence tn → t and functions θn : [0, tn] → R as required. By
adjusting by integral multiples of 2π we can arrange that all these functions take the same
value at 0. Then by uniqueness, we see that θn and θm agree on their common domain
of definition. Thus together they define a function of ∪∞

n=1[0, tn] which surely includes
[0, t). It is easy to see that the limit as n �→ ∞ of θ(tn) exists and hence can be used to
extend the map to a continuous map on [0, t], as required. To see this, look at an interval
U ⊂ S1 containing f(t). Now, consider the preimage of U in R under the exponential map
x �→ expix. This is a disjoint union of intervals, �Ui mapping homeomorphically to U, and
we have θ((t− ε, t)) ⊂ Ui for some i. Now, it should be clear that the limit exists, and we
define θ(t) = lim

tn→t
θ(tn). Since S is open and closed and contains 0, it follows that S = I

and hence 1 ∈ S, which proves the result.

In fact the argument above can be used to show the following

Corollary 1.3.24. Suppose that f, g are close maps of I to S1, close in the sense that the
angle between f(t) and g(t) is uniformly small. Then there are functions θf and θg from
I → R as above which are close, and in particular w(f) and w(g) are close.

For a singular 0-chain μ =
∑

p npp in S1, we define θ(μ) =
∏

p pnp , using the multiplica-
tive group structure of S1.

Lemma 1.3.25. Let ζ =
∑k

i=1 niσi be a singular one-chain in S1. Define w(ζ) =
∑k

i=1 niw(σi).
Then exp(iw(ζ)) = θ(∂ζ).

21



Proof. By the multicative property of both sides, it suffices to prove this equality for a
singular one-simplex, where it is clear.

Corollary 1.3.26. If ζ is a singular one-cycle in S1, then w(ζ) ∈ 2πZ.

We define a function from the abelian group of one cycles to Z by associating to a
cycle ζ the integer w(ζ)/2π. This function is clearly additive and hence determines a
homomorphism w from the group of one-cycles to Z.

Claim 1.3.27. If ζ is a boundary, then w(ζ) = 0.

Proof. Again by multiplicativity, it suffices to show that if ζ = ∂τ where τ : Δ2 → S1 is a
singular two simplex, then w(ζ) = 0. To establish this we show that there is a continuous
function θ : Δ2 → R such that exp(iθ(x)) = τ(x) for all x ∈ Δ2. First pick a lifting
θ(1, 0, 0) ∈ R for τ(1, 0, 0) ∈ S1. Now for each (a, b) with a, b ≥ 0 and a + b = 1, consider
the interval {t0, (1− t0)a, (1− t0)b}. There is a unique lifting θa,b mapping this interval into
R lifting the restriction of τ to this interval and having the given value at (1, 0, 0). The
continuity property described above implies that these lifts fit together to give the map
θ : Δ2 → R as required. Once we have this map we see that w(f0) = θ(0, 0, 1) − θ(0, 1, 0),
w(f1) = θ(0, 0, 1)−θ(1, 0, 0) and w(f2) = θ(0, 1, 0)−θ(1, 0, 0), so that w(f0)−w(f1)+w(f2) =
0.

Exercise 1.3.28. Prove that the map θ constructed above is continuous.

It now follows that we have a homomorphism W : H1(S1) → Z. We shall show that this
map is an isomorphism. The map I → S1 given by t �→ exp(2πit) is a one cycle whose image
under w is 1. This proves that W is onto. It remains to show that it is one-to-one. Suppose
that ζ is a cycle and w(ζ) = 0. According to proposition 1.3.18, we may as well assume
that ζ is the cycle associated to a circuit {σ1, . . . , σk}. We choose liftings σ̃� : I → R with
exp(iσ̃�(t)) = σ�(t) for all � and all t ∈ I. We do this in such a way that σ̃�+1(0) = σ�(1)
for 1 ≤ � < k. The difference σ̃k(1) − σ̃1(0) is 2πw(ζ), which by assumption is zero. This
implies that the circuit in S1 lifts to a circuit in R. Let ζ̃ be the one cycle in R associated
to this circuit. By Proposition 1.3.12 there is a two-chain μ̃ in R with ∂μ̃ = ζ̃. Let μ be the
two-chain in S1 that is the image of μ̃ under the exponential mapping. We have ∂(μ) = ζ,
and hence that ζ represents the trivial element in homology. This completes the proof of
the computation of H1(S1).

Exercise 1.3.29. Complete the proof of Corollary 1.3.20

Exercise 1.3.30. State and prove the generalization of Proposition 1.3.18 in the case of a
general space X.

Exercise 1.3.31. Prove Claim 1.3.13
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Exercise 1.3.32. Show that if X is path connected then for any a ∈ H1(X), there is a
map f : S1 → X and an element b ∈ H1(S1) such that a = f∗(b).

Exercise 1.3.33. Let X be path connected and simply connected (which means that every
continuous map of S1 → X extends over D2). Show that H1(X) = 0.

1.4 An Application: The Brouwer Fixed Point Theorem

As an application we now prove a famous result. Recall that a retraction of a space X onto
a subspace Y ⊂ X is a continuous surjective map ϕ : X → Y such that ϕ|Y = IdY .

Theorem 1.4.1. There is no continuous retraction of the 2-disk D2 onto its boundary S1.

Proof. Let i : S1 → D2 be the inclusion of S1 as the boundary of D2. Suppose a continuous
retraction ϕ : D2 → S1 of the disk onto its boundary exists. Then the composition

S1 i−→ D2 ϕ−→ S1,

is the identity. Since homology is a functor we have

H1(S1) i∗−→ H1(D2)
ϕ∗−→ H1(S1)

is the identity. But since H1(D2) = 0 since the disk is contractible, and H1(S1) �= 0, this
is impossible. Hence, no such ϕ exists.

This leads to an even more famous result.

Theorem 1.4.2. The Brouwer Fixed Point Theorem Any continuous map of the two
disk, D2, to itself has a fixed point.

Proof. Suppose that ψ : D2 → D2 is a continuous map without a fixed point. Then,
the points x and ψ(x) are distinct points of the disk. The line L(x) passing through x and
ψ(x) meets the boundary of the disk S1 in two points. Let ϕ(x) be the point of L(x) ∩ S1

that lies on the open half-ray of this line beginning at ψ(x) and containing x. One sees
easily that L(x) and ϕ(x) vary continuously with x. Thus, ϕ(x) is a continous mapping
D2 → S1. Also, it is clear that if x ∈ S1, then ϕ(x) = x. This contradicts theorem 1.4.1
and concludes the proof of the Brouwer fixed point theorem.

Exercise 1.4.3. Show that ϕ is continuous.

Remark 1.4.4. This result was proved before the introduction of homology by direct
topological arguments; however, these are quite intricate. The fact that this result follows
so easily once one has the machinery of homology was one of the first indications of the
power of homology.
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ϕ(x)

ψ(x)

x

Figure 8: ϕ : D2 → S1

2 The Axioms for Singular Homology and Some Consequences

As the above computations should indicate, it is quite difficult to compute singular homol-
ogy directly from the definition. Rather, one proceeds by finding general properties that
homology satisfies that allow one to compute homology for a large class of spaces from a
sufficiently detailed topological description of the space. These general properties are called
the axioms for homology. One can view this in two ways – from one point of view it is a
computational tool that allows one to get answers. From a more theoretical point of view,
it says that any homology theory that satisfies these axioms agrees with singular homology,
no matter how it is defined, at least on the large class of spaces under discussion.

2.1 The Homotopy Axiom for Singular Homology

The result in section 1.3.4 that the homology groups of a contractible space are the same
as those of a point has a vast generalization, the Homotopy Axiom for homology.

Definition 2.1.1. Let X and Y be topological spaces. We say two maps f, g : X → Y
are homotopic if there is a continuous map F : X × I → Y with F (x, 0) = f(x) and
F (x, 1) = g(x) for all x ∈ X. The map F is called a homotopy from f to g.

Lemma 2.1.2. Homotopy is an equivalence relation on the set of maps from X to Y .

Exercise 2.1.3. Prove this lemma.

An equivalence class of maps under this equivalence relation is called a homotopy class.
We will denote the homotopy class of a map f by [f ], and f is homotopic to g by f � g.
With this terminology in hand we can define a category, HomotopyHomotopyHomotopy. The objects of this
category are topological spaces. If X and Y are two topological spaces, then the collection
of morphisms in HomotopyHomotopyHomotopy between X and Y are just the homotopy classes of maps from
X to Y. That is, Hom(X,Y ) = {f : X → Y |f is continuous}/�. So the morphisms in this
category are actually equivalence classes of maps. If [f ] : X → Y and [g] : Y → Z are two
homotopy classes of maps, their composition [g] ◦ [f ] : X → Z in HomotopyHomotopyHomotopy is the class
[g ◦ f ]. We need to check that this definition is well defined. Suppose f ′ ∈ [f ] is another
representative for the homotopy class of f . Let H : X × I → Y be a homotopy from f to
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f ′. Then the map H ′ = g ◦H : X× I → Z is continuous since both H and g are continuous
and we have H ′(x, 0) = g ◦ H(x, 0) = g ◦ f and H ′(x, 1) = g ◦ H(x, 1) = g ◦ f ′. So H ′

is a homotpy from g ◦ f to g ◦ f ′, and thus [g ◦ f ] = [g ◦ f ′]. A similar argument shows
that the defintion is independent of the representative we choose for [g]. For any object
X of HomotopyHomotopyHomotopy, we have the identity morphism, [IdX ] : X → X is just the hompotopy
class represented by the identity map on X. Similarly, the morphisms in this category
are associative under composition because the underlying representatives of the homotopy
classes are associative. Notice that in the category HomotopyHomotopyHomotopy, it doesn’t make sense to
ask for the value of a morphism at a point in X. Unlike the morphisms in many other
categories we have seen, such as the algebraic categories of groups or rings, there is no
specific set function underlying a morphism in this category. Also, notice that there is a
natural functor from the category TopTopTop of topological spaces and continuous maps to the
category HomotopyHomotopyHomotopy given by sending a topological space to itself and sending a continuous
function to the homotopy class represented by that function.

We say that a map f : X → Y is a homotopy equivalence if there is a map g : Y → X
such that g ◦ f is homotopic to IdX and f ◦ g is homotopic to IdY . Show that the relation
X is homotopy equivalent to Y is an equivalence relation.

Recall, (See A) in any category C a morphism f : a → b is called an isomorphism if
there is another morphism f ′ : b → a in C such that f ′ ◦ f = Ida and f ◦ f ′ = Idb. If such
a morphism f ′ exists, it is unique and we write f ′ = f−1. Two objects a and b are said to
be isomorphic if there exists an isomorphism between them.

Exercise 2.1.4. What are the isomorphisms in the category HomotopyHomotopyHomotopy?

Lemma 2.1.5. Let X be a space and x0 ∈ X a point. Then the inclusion of x0 into X is
a homotopy equivalence if and only if X is contractible to x0.

Exercise 2.1.6. Prove this lemma.

Now we are ready to state the vast generalization alluded to above.

Theorem 2.1.7. The Homotopy Axiom for Singular Homology Let X and Y be
topological spaces and let f, g : X → Y . If f and g are homotopic, then f∗ = g∗ : H∗(X) →
H∗(Y ).

The Homotopy Axiom is most frequently used in the form of the following immediate
corollary.

Corollary 2.1.8. If f : X → Y is a homotopy equivalence, then f∗ : Hn(X) → Hn(Y ) is
an isomorphism for every n.

In the language of categories, this corollary to the homotopy axiom says that the singular
homology functor from the category of topological spaces to the category of graded abelian
groups factors through the natural functor from TopTopTop to HomotopyHomotopyHomotopy.

Proof. First let us introduce the homological analogue of a homotopy.
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Definition 2.1.9. Let C∗ and D∗ be chain complexes and f∗, g∗ : C∗ → D∗ be morphisms
in the category of chain complexes. A chain homotopy from f∗ to g∗ is a collection of
homomorphisms, one for each integer k, Hk : Ck → Dk+1 satisfying

∂ ◦Hk + Hk−1 ◦ ∂ = g∗ − f∗.

Claim 2.1.10. Chain homotopy is an equivalance relation on morphisms from C∗ to D∗.

Exercise 2.1.11. Prove this claim.

Claim 2.1.12. If f∗, g∗ : C∗ → D∗ are chain homotopic, then the maps that they induce on
homology are equal.

Proof. If ζ ∈ Ck is a cycle, then,

∂(Hk(ζ)) = g∗(ζ)− f∗(ζ).

Thus, in order to prove the Homotopy Axiom it is sufficent to prove the following
proposition:

Proposition 2.1.13. If f, g : X → Y are homotopic, then f∗, g∗ : S∗(X) → S∗(Y ) are chain
homotopic.

Proof. Since Δk × I is a product of affine spaces and hence is itself affine, we can define
an affine map of a simplex Δn into it by simply giving an ordered set of n + 1 points in
the space. We denote the affine map of Δn into Δk × I determined by (x0, . . . , xn) by this
ordered n+1-tuple. We denote by ui the point (vi, 0) in Δk× I and by wi the point (vi, 1).
Let H(Δk) ∈ Sk+1(Δk × I) be defined by

H(Δk) =
k∑

i=0

(−1)i(u0, . . . , ui, wi, . . . , wk).

Claim 2.1.14.

∂(H(Δk)) = Δk × {1} −Δk × {0} −
k∑

i=0

(−1)k(fi × IdI)∗(H(Δk−1)).

Proof.
Being careful that the sign corresponds with the position in the (n+2)-tuple of the dropped
vertex, rather than its index, we see that the boundary formula yields, ∂(H(Δk)) =
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k∑
i=0

(−1)i
[ i∑

j=0

(−1)j(u0, . . . , ûj , . . . , ui, wi, . . . , wk) +
k∑

j=i

(−1)j+1(u0, . . . , ui, wi, . . . , ŵj , . . . , wk)
]

=

∑
j<i

(−1)i+j(u0, . . . , ûj , . . . , ui, wi, . . . , wk) +
∑
j>i

(−1)i+j+1(u0, . . . , ui, wi, . . . , ŵj , . . . , wk)+

k∑
i=0

[
(u0, . . . , ui−1, wi, . . . , wk)− (u0, . . . , ui, wi+1, . . . , wk)

]
.

The last term telescopes to leave only,

(w0, . . . , wk)− (u0, . . . , uk) = Δk × {1} −Δk × {0},

and so we obtain,

∂(H(Δk)) =
∑
j<i

(−1)i+j(u0, . . . , ûj , . . . , ui, wi, . . . , wk) (2)

+
∑
j>i

(−1)i+j+1(u0, . . . , ui, wi, . . . , ŵj , . . . , wk)

+ Δk × {1} −Δk × {0}.

Now consider Δk−1 × I. Let x0, . . . , xn−1 denote the vertices at 0, and y0, . . . , yn−1

denote the vertices at 1. Then,

(fj × IdI)(xj) =

{
ui j > i

ui+1 j � i

(fj × IdI)(yj) =

{
wi j > i

wi+1 j � i

Now, we consider H(∂Δk). It is defined to be,

k∑
j=0

(−1)j(fj × IdI)(H(Δk−1) =
k∑

j=0

(−1)j(fj × IdI)(
k−1∑
i=0

(−1)i(x0, . . . , xi, yi, . . . , yk)) =

k∑
j=0

(−1)j
[ j−1∑

i=0

(−1)i(u0, . . . , ui, wi, . . . , ŵj , . . . , wk) +
j−1∑
i=0

(−1)i−1(u0, . . . , ûj , wi+1, . . . , . . . , wk)
]

=

∑
j>i

(−1)i+j(u0, . . . , ui, wi, . . . , ŵj , . . . , wk) +
∑
j<i

(−1)i+j−1(u0, . . . , ûj , . . . , ui, wi, . . . , wk) =

−
[∑

j>i

(−1)i+j+1(u0, . . . , ui, wi, . . . , ŵj , . . . , wk) +
∑
j<i

(−1)i+j(u0, . . . , ûj , . . . , ui, wi, . . . , wk)
]
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Comparing to the formula (2) we found above for ∂(H(Δk)), we see that we have,

∂(H(Δk)) = Δk × {1} −Δk × {0} −
k∑

i=0

(−1)k(fi × IdI)∗(H(Δk−1)).

Suppose that F : X × I → Y is a homotopy from f to g. Then we define F∗ : Sk(X) →
Sk+1 by

F∗(σ) = F ◦ (σ × IdI)∗(H(Δk)).

Claim 2.1.15. F∗ is a chain homotopy from f∗ to g∗.

Proof.

∂F∗(σ) = (F ◦ (σ × IdI)∗(Δk × {1} −Δk × {0} −H(∂Δk)) = g∗(σ)− f∗(σ)− F∗(∂σ).

So,
∂F∗(σ) + F∗(σ) = g∗(σ)− f∗(σ),

and thus F∗ is a chain homotopy from f to g.

The proposition now follows immediately.

This completes the proof of the homotopy axiom. In brief, these were the main steps:

Step 1. Chain homotopic maps induce the same map on homology.

Step 2. Define an element H(Δk) ∈ Sk+1(Δk × I) with the property

∂(H(Δk)) = Δk × {1} −Δk × {0} −
k∑

i=0

(−1)k(fi × IdI)∗(H(Δk−1)).

Step 3. Given a homotopy F from f to g use H(Δk) to define a chain homotopy F∗ from
f∗ to g∗ by

F∗(σ) = F ◦ (σ × IdI)∗(H(Δk)).
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2.2 The Mayer-Vietoris Theorem for Singular Homology

The next axiom is a result that allows us to compute the homology of a union of two open
sets provided that we know the homology of the sets themselves and the homology of their
intersection.

Theorem 2.2.1. Let X be a topological space and U, V open subsets of X so that X = U∪V .
Let jU : U ↪→ X and jV : V ↪→ X and iU : U∩V ↪→ U and iV : U∩V ↪→ V be the inclusions.
Then there is a long exact sequence of homology groups:

· · · → Hk(U ∩ V )
(iU )∗−(iV )∗−−−−−−−−→ Hk(U)⊕Hk(V )

(jU )∗+(jV )∗−−−−−−−−→ Hk(X) −−−−→ Hk−1(U ∩ V )→ · · ·

In order to prove this we will need the following homological lemma:

Lemma 2.2.2. Suppose we have a short exact sequence of chain complexes:

0 −−−−→ A∗
f∗−−−−→ B∗

g∗−−−−→ C∗ −−−−→ 0;

that is, we have three chain complexes, A∗, B∗, C∗ with chain complex morphisms f∗ :
A∗ → B∗ and g∗ : B∗ → C∗ such that for every n we have a short exact sequence:

0 −−−−→ An
fn−−−−→ Bn

gn−−−−→ Cn −−−−→ 0

Then there exists a connecting homomorphism β : Hk(C∗) → Hk−1(A∗) making the follow-
ing long exact sequence in homology:

· · · −−−−→ Hn(A∗)
f∗−−−−→ Hn(B∗)

g∗−−−−→ Hn(C∗)
β−−−−→ Hn−1(A∗) −−−−→ · · ·

Proof. The proof is an exercise in what is known as diagram chasing. Diagram chasing is
very common in algebraic topology, but it is a technique that is extremely tedious to read
and only becomes comfortable with practice. We will write out explicitly the begining of
the proof and leave the rest to the reader. To begin we will prove exactness at Hn(B∗).
Exactness at this point involves only the maps on homology induced by f∗ and g∗, not
the connecting homomorphism. First, we have g∗ ◦ f∗ = 0 holds on the chain level, so it
is also true on homology. Now, let [ζ] ∈ Hn(B∗). Suppose that g∗[ζ] = 0. This implies
g∗(ζ) = ∂cn+1 for some cn+1 ∈ Cn+1. By exactness at Cn+1, there is a bn+1 ∈ Bn+1 that
maps to cn+1 under gn+1. Let ζ ′ = ζ − ∂bn+1. Then ζ ′ is clearly a cycle, and [ζ] = [ζ ′].
Applying g∗ we see that

g∗(ζ ′) = g∗(ζ)− g∗(∂bn+1) = g∗(ζ)− ∂(f∗(bn+1)) = g∗(ζ)− g∗(ζ) = 0

as a chain, so exactness implies there exists an an ∈ An so that f∗(an) = ζ ′. Now, we need
to show ∂(an) = 0. We have ∂ζ ′ = 0 and therefore, by commutativity, f∗(∂(an)) = 0, but
by exactness at An−1, f∗ is an injection, and so ∂(an) = 0. Thus, f∗[an] = [ζ ′] = [ζ].
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Construction of the connecting homomorphism, β, makes use of the following commu-
tative diagram:

0 −−−−→ An+1
fn+1−−−−→ Bn+1

gn+1−−−−→ Cn+1 −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ An

fn−−−−→ Bn
gn−−−−→ Cn −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�

0 −−−−→ An−1
fn−1−−−−→ Bn−1

gn−1−−−−→ Cn−1 −−−−→ 0⏐⏐� ⏐⏐�
0 −−−−→ An−2

fn−1−−−−→ Bn−2

Start with a homology class [c] ∈ Hn(C∗) represented by a cycle c ∈ Cn. By exactness at
Cn there is a bn ∈ Bn so that gn(bn) = c. By comutativity of the diagram gn−1(∂bn) =
∂gn(bn) = ∂c = 0, since c is a cycle. Then by exactness at Bn−1, since bn−1 ∈ Ker(gn−1) =
Im(fn−1) there is an element an−1 ∈ An−1 so that fn−1(an−1) = ∂bn. We need to show that
an−1 is a cycle. By commutativity of the diagram fn−2(∂an−1) = ∂fn(an−1) = ∂∂bn−1 = 0.
Then by exactness at An−1, fn−1 is an injection, so ∂an−1 = 0. Thus, an−1 is a cycle.

We made a choice when we picked a bn in the pre-image of c. If we choose another
element b′n so that gn(b′n) = c, we have gn(b′n − bn) = gn(b′n) − gn(bn) = c − c = 0. That
is, bn and b′n differ by an element in the Kergn =Imfn. So we have b′n = bn + fn(an) for
some an ∈ An. Following this through our construction, we see that this changes an−1 to
an−1 + ∂an, and thus does not change our map on homology.

Now, suppose we choose a different cycle representative for [c], say c + ∂c′n+1 for some
c′n+1 ∈ Cn+1. Then, by exactness at Cn+1 there is an element b′n+1 ∈ Bn+1 so that
gn+1(b′n=1) = c′n+1. Then a natural choice for an element in Bn that maps to c + ∂c′n+1

under gn is b + ∂b′n+1. Notice we can choose any element in the pre-image of c + ∂c′n+1

that we want, since we have already shown that our construction is independent of this
choice. But now, if we continue with our construction, we see that we get the same element
an−1 ∈ An−1 as before. So, we have a well defined map β : Hn(C∗) → Hn−1(A∗) given by
[c] �→ [an−1]. We leave the proof of exactness at H∗(A∗) and H∗(C∗) as an exercise.

Now that we have proven this lemma, we need to find an appropriate short exact
sequence of chain complexes that will give rise to the Mayer-Vietoris sequence in homology.
At first glance, the most likely candidate would be:

0 −−−−→ S∗(U ∩ V )
(iU )∗−(iV )∗−−−−−−−−→ S∗(U)⊕ S∗(V )

(jU )∗+(jV )∗−−−−−−−−→ S∗(X) −−−−→ 0

If this was a short exact sequence then we would be done with the proof. The problem
with this choice is that the sequnce is not exact at S∗(X). There are singular chains in
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X that do not come from the inclusions of singular chains in U and singular chains in V ,
those chains that have maps σ : Δn → X with neither Im(σ) � U nor Im(σ) � V . To
force exactness at this point we replace S∗(X) with the subcomplex Ssmall∗ (X) generated
by the singular simplices whose images lie in either U or V . We call these chains, and the
simplices of which they are made small. Then one can easily check that

0 −−−−→ S∗(U ∩ V )
(iU )∗−(iV )∗−−−−−−−−→ S∗(U)⊕ S∗(V )

(jU )∗+(jV )∗−−−−−−−−→ Ssmall∗ (X) −−−−→ 0

is a short exact sequence of chain complexes. By our homolgical lemma, this induces a long
exact sequence in homology:

· · · → Hn(U ∩ V ) → Hn(U)⊕Hn(V )→ Hn(Ssmall
∗ (X)) → Hn−1(U ∩ V )→ · · ·

Now, we need to show that in fact, the inclusion Ssmall∗ (X) ↪→ S∗(X) induces an iso-
morphism on homology. To do this we will define the subdivision map sd: S∗(X) → S∗(X)
and a chain homotopy from this map to the identity, showing that it induces the identity
on homology.

First we will define a map sd, which given an n-simplex Δn, assigns a chain in Sn(Δn).
In order to define this map it will be convinient to think of the n-simplex in three equivalent
ways. We can write the n-simplex as a sequence of inclusions of faces Δn = τ0 ⊂ τ1 ⊂ · · · ⊂
τn, where τ i is an i-face of Δn. There are exactly (n+1)! ways of doing this corresponding
to the (n + 1)! elements of the permutation group Σn+1 of the n + 1 vertices of Δn. To
see this, we give a correspondance between ordered lists of the n + 1 vertices, and the
expression of Δn as a sequence of inclusions of faces. Given an ordered list of the vertices
(v0, v1, . . . , vn) we let τ i be the face of Δn with vertices v0, v1, . . . , vi. Given a sequence of
faces, Δn = τ0 ⊂ τ1 ⊂ · · · ⊂ τn, we obtain an ordered list of vertices by letting v0 = τ0,
v1 the vertex of τ1 not in τ0 and so on. Then given a permutation p ∈ Σn+1, we have the
sequence of faces corresponding to the ordered list of vertices (vp(0), vp(1), . . . , vp(n)). So we
have the following three ways of thinking of the n-simplex:

Σn+1 ⇔ {ordered lists of vertices} ⇔ {sequences of inclusions of faces}

For a face τ i of an n-simplex define τ̂ i to be the image under τ i of (1/(i+1), . . . , 1/(i+1)).
The point τ̂ i is called the barycenter of τ i. Then, given a sequence of inclusions of faces
τ0 ⊂ τ1 ⊂ · · · τn, we obtain a map of the n-simplex into itself given by the inclusion of the
n-simplex with vertices the barycenters of the faces:

τ0 ⊂ τ1 ⊂ · · · ⊂ τn � (τ̂0, . . . , τ̂n) : Δn ↪→ Δn

Now we define sd(Δn) ∈ Sn(Δn) by

sd(Δn) =
∑

τ0⊂τ1⊂···⊂τn

(−1)|p|(τ̂0, τ̂1, . . . , τ̂n)

where p is the permuatation corresponding to τ0 ⊂ τ1 ⊂ · · · ⊂ τn and |p| is the sign of the
permutation.
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Figure 9: sd(Δ2)

Now, for ζ ∈ Sn(X) where ζ =
∑

aσ(σ : Δn → X) we define sd(ζ) =
∑

aσσ∗(sd(Δn)) ∈
Sn(X). We need to show that sd: S∗(X) → S∗(X) is a chain complex morphism. By
naturality, it is sufficent to prove the following lemma.

Lemma 2.2.3. ∂sd(Δn) = sd(∂Δn)

Proof. We have,

∂sd(Δn) = ∂

[ ∑
τ0⊂···⊂τn

(−1)|p|(τ̂0, τ̂1, . . . , τ̂n)
]

=
∑

τ0⊂···⊂τn

(−1)|p|∂(τ̂0, τ̂1, . . . , τ̂n) =

∑
τ0⊂···⊂τn

(−1)p
[ n∑

i=0

(−1)i(τ̂0, τ̂1, . . . , τ̂ i−1, τ̂ i+1, . . . , τ̂n)
]

Suppose i �= n, and τ0 ⊂ · · · ⊂ τ i−1 ⊂ τ i+1 ⊂ . . . ⊂ τn is a chain. Then, in passing from
τ i−1 to τ i+1 we add two vertices w,w′. Hence, there are exactly two i−simplices that we can
insert at this point in the chain to form a complete chain, the corresponding permutations
differ by a two-cycle interchanging w and w′, and hence have opposite signs. So, all of the
terms with i < n cancel in pairs and we are left with

∂sd(Δn) =
∑

τ0⊂···⊂τn

(−1)|p|(−1)n(τ̂0, τ̂1, . . . , τ̂n−1)

We can write this as,

∑
τ0⊂···⊂τn

(−1)|p|(−1)n(τ̂0, τ̂1, . . . , τ̂n−1) =
n∑

j=0

[ ∑
{permutations p| p(n)=j}

(−1)|p|(−1)n(τ̂0, τ̂1, . . . , τ̂n−1)
]

=
n∑

j=0

(−1)jsd(fj) = sd(∂Δn)
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So we have a morphism of chain complexes sd: S∗(X) → S∗(X), which induces a map
sd∗ : H∗(X) → H∗(X). Now we want to show that this induced map on homology is the
identity.

Proposition 2.2.4. The chain map sd: S∗(X) → S∗(X) is chain homotopic to the identity.

Proof. We need to define H : Sn(X) → Sn+1(X) satisfying ∂H + H∂ = sd − Id.
We will construct H(Δn) ∈ Sn+1(Δn) by induction on n, and then define H(

∑
aσσ) =∑

aσσ∗(H(Δn)). For the initial case n = 0, we have sd(Δ0) = Δ0 and H(Δ0) = 0.
Suppose that n > 0 and that for all k < n we have H(Δk) defined with ∂H(Δk) =
sd(Δk) − Δk − H(∂Δk). Consider sd(Δn) − Δn − H(∂Δn) ∈ Sn(Δn). We want to show
that this is a cycle. We have,

∂

(
sd(Δn)−Δn −H(∂Δn)

)
= sd(∂Δn)− ∂Δn − ∂H(∂Δn).

The inductive hypothesis gives

∂H(∂Δn) = sd(∂Δn)− ∂Δn −H(∂∂Δn) = sd(∂Δn)− ∂Δn

Thus,

∂

(
sd(Δn)−Δn −H(∂Δn)

)
= sd(∂Δn)− ∂Δn − sd(∂Δn) + ∂Δn = 0.

Using the fact that Hn(Δn) = 0, we see that this cycle is also a boundary. Choose H(Δn) ∈
Sn+1(Δn) to be some element so that

∂H(Δn) = sd(Δn)−Δn −H(∂Δn).

The next step of the proof will be to show that by repeatedly applying the sd map to
elements of S∗(X) we can map all of S∗(X) into Ssmall∗ (X). We make use of the following
lemma.

Lemma 2.2.5. The diameter of every simplex in sd(Δn) ≤ n
n+1 diam(Δn).

Proof. The details of the proof are left to the reader. The general idea is to first reduce
to showing that the distance from any vertex vi of Δn = [v0, . . . , vn] to the barycenter b
is less than or equal to n

n+1 diam(Δn). Then, let bi be the barycenter of the face fi =
[v0, . . . , v̂1, . . . , vn] of Δn. Then, b = 1

n+1vi + n
n+1bi. Notice that this implies b lies on the

line segment between vi and bi, and the distance from vi to b is n/n + 1 times the length of
[vi, bi]. This shows that the distance from b to vi is bounded by n/n+1 times the diameter
of [v0, . . . , vn].
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Figure 10: sd2(Δ2)

Corollary 2.2.6. For σ : Δn → X there exists a constant k such that sdk(σ) is small.

Proof. Let W = σ−1(U) and Y = σ−1(V ). Then W and Y form an open cover of
Δn. Since Δn is compact, there is some number λ such that for any x ∈ Deltan either
Bλ(x) ⊂W or Bλ(x) ⊂ Y (This is a standard argument from point-set topology, look under
Lebesgue number in any basic topology text such as Munkres). Then there is some k such
that ( n

n+1 )kdiam(Δn) < λ, and thus sdk(σ) is small.

Corollary 2.2.7. For any n-chain ζ ∈ Sn(X) there exists a k so that sdk(ζ) ∈ Ssmall
n (X).

Corollary 2.2.8. The map on homology induced by Ssmall∗ (X) ↪→ S∗(X) is onto.

Proof. Given [ζ] ∈ Hn(X), let ζ be a representative cycle for this homology class. Then
sdk(ζ) is also a cycle, and sdk(ζ) is homologus to ζ, but if k is sufficently large sdk(ζ) is in
Ssmall

n (X).

Remark 2.2.9. If ζ is small, then sd(ζ) and H(ζ) are also small.

Proposition 2.2.10. The map on homology induced by Ssmall∗ (X) ↪→ S∗(X) is injective.

Proof. Suppose [a′] ∈ Hsmall
n (X), and a′ = ∂b where b ∈ Sn+1(X) i.e. [a′] = 0 ∈ Hn(X).

We need to show that [a′] = 0 ∈ Hsmall
n (X), that is a′ = ∂b′, for some b′ ∈ Ssmall

n+1 (X). By
corollary 2.2.7 there is a k such that sdk(b) = b′ ∈ Ssmall

n+1 (X). Then subdivide a′ k-times,

sdk(a′) = sdk(∂b) = ∂(sdk(b)) = ∂(b′).

Thus, [sdk(a′)] = 0 in Hsmall
n (X). Lastly, we need to show [a′] = [sdk(a′)] ∈ Hsmall

n ,. This is
proved by induction on k using remark 2.2.9
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This completes the proof of Mayer-Vietoris.
As an application of this result and the computation for contractible spaces (which is a

special case of the homotopy axiom), let us compute the homology groups of the spheres.

Corollary 2.2.11. For n ≥ 1, the homology Hk(Sn) is zero unless k = 0, n. For these two
values of k the homology is isomorphic to Z.

Proof. We proceed by induction on n. Suppose that we have

Hk(Sn−1) =

{
Z k = n− 1, 0
0 otherwise

for some n − 1 ≥ 1. Choose a point p ∈ Sn and let p∗ be the antipodal point. Let
U = Sn − {p} and V = Sn − {p∗}. Then {U, V } is an open cover of Sn. Applying
Mayer-Vietoris, we obtain the long exact sequence:

· · · → Hk(U ∩ V )→ Hk(U)⊕Hk(V ) → Hk(Sn)→ Hk−1(U ∩ V )→ · · · .

Both U and V are homeomorphic to Rn and hence are contractible. Then by the homotoppy
axiom,

H∗(U) = H∗(V ) ∼=
{

Z ∗ = 0
0 otherwise

As an exercise, show that, U ∩ V = Sn − {p} − {p∗} is homotopy equivalent to Sn−1, and
so by the homotopy axiom and the inductive hypothesis,

H∗(U ∩ V ) ∼= H∗(Sn−1) ∼=
{

Z ∗ = 0, n − 1
0 otherwise

Putting these into the Mayer-Vietoris long exact sequence, we see that for k ≥ 2. Hk(Sn) ∼=
Hk−1(U ∩ V ) and so the result follows by induction, and since,

0 −−−−→ H1(Sn) −−−−→ H0(Sn−1) −−−−→ H0(U)⊕H0(V ) −−−−→ H0(Sn) −−−−→ 0

=

⏐⏐� ∼=
⏐⏐� ∼=

⏐⏐� =

⏐⏐�
0 −−−−→ 0 −−−−→ Z −−−−→ Z⊕ Z −−−−→ H0(Sn) −−−−→ 0

We still need to show the intitial step. We have already shown that the homology of
S1 is isomorphic to Z in degree 1 by direct computation. We also know that H0(S1) ∼= Z
since S1 has a single path component. We need only to verify that Hk(S1) = 0 for k > 1.
If we let {U, V } be an open cover of S1 as above for the higher dimensional spheres, then
again, both U and V deformation retract to a point and U ∩ V is homotopic to S0, which
is just two points. Applying Mayer-Vietoris to S1 with this open cover shows, Hk(S1) = 0
for all k > 1.
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As another application, we have the extension of the Brouwer fixed point theorem to
higher dimensional disks.

Theorem 2.2.12. Let Dn ⊂ Rn be the closed unit disk, any map Dn → Dn has a fixed
point.

Proof. The proof is left as an exercise. It is the same as that for the lower dimensional
case, now using the fact that Hn−1(Sn−1) �= 0 whereas Hn−1(Dn) = 0.

Exercise 2.2.13. Show that if X = U
∐

V , then H∗(X) = H∗(U)⊕H∗(V )

Exercise 2.2.14. Prove theorem 2.2.12, the extension of the Brouwer Fixed Point Theorem
to higher dimensional disks.

Exercise 2.2.15. Suppose that x ∈ X and y ∈ Y have open neighborhoods that strongly
deformation retract to x and to y respectively, i.e. there are open neighborhhods U ⊂ X and
V ⊂ Y and maps HU : U × I → U and HV : V × I → V with HU (u, 0) = u, HU(u, 1) = x
and HU (x, t) = x for all 0 ≤ t ≤ 1, and HV (v, 0) = v, HV (v, 1) = x and HV (y, t) = y for
all 0 ≤ t ≤ 1. Let X ∧ Y be the one point union of X and Y where x is idenified with y.
Show that Hn(x ∧ Y ) = Hn(X)⊕Hn(Y ) for all n > 0.

Exercise 2.2.16. Let Z ⊂ X and Z ⊂ Y have open neighborhhods that strong deformation
retract to them. Let W = X ∪Z Y . Show that there is a long exact sequence

· · · −−−−→ Hk(Z) −−−−→ Hk(X)⊕Hk(Y ) −−−−→ Hk(W ) −−−−→ Hk−1(Z) −−−−→ · · ·

2.3 Relative Homology and the Long Exact Sequence of a Pair

Definition 2.3.1. A pair of topological spaces (X,A) consists of a topological space X
and a subspace A of X. These objects form a category whose morphisms (X,A) → (Y,B)
are continuous maps from X to Y mapping A to B.

If (X,A) is a pair of topological spaces then S∗(A) is naturally a subcomplex of S∗(X).
In fact, for each k there is the natural basis for Sk(X) and the group Sk(A) is the subgroup
generated by the subset of singular simplices whose image is contained in A. We define
S∗(X,A) to be the quotient chain complex S∗(X)/S∗(A). It is a chain complex whose
chain groups are free abelian groups. We define the relative homology H∗(X,A) to be the
homology of S∗(X,A). Notice that a topological space X can be identified with an object
of the category of pairs namely (X, ∅). We have the inclusion (X, ∅) ⊂ (X,A).

Relative homology is a functor from the category of pairs of topological spaces to the
category of graded abelian groups.

For any pair of topological spaces (X,A), we have a short exact sequence of chain
complexes:

0 → S∗(A) → S∗(X) → S∗(X,A) → 0
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Figure 11: A relative cycle

leading to a long exact sequence of homology

· · · −−−−→ Hk(A) i∗−−−−→ Hk(X)
j∗−−−−→ Hk(X,A)

β−−−−→ Hk−1(A) −−−−→ · · ·

where i : A ↪→ X and j : (X, ∅) ↪→ (X,A) are the inclusions, and β is the connecting
homomorphism. This long exact sequence is called the long exact sequence of a pair, and
is functorial for morphisms in the category of pairs of topological spaces.

There is also a relative version of the Mayer-Vietoris sequence.

Proposition 2.3.2. If (X,A) is a pair of topological spaces and {U, V } is an open cover
of X, then we have the following long exact sequence in homology,

· · · → Hk(U∩V,UA∩VA) → Hk(U,UA)⊕Hk(V, VA) → Hk(X,A) → Hk−1((U∩V,UA∩VA) → · · ·

where UA = U ∩A and VA = V ∩A.

Proof. The proof is essentially the same as the proof of Mayer-Vietoris in the absolute
case.

2.4 The Excision Axiom for Singular Homology

Our next axiom tells us that we can cut out, or excise, subspaces from topological pairs
without affecting the relative homology, given a few small assumptions about the subspaces.

Theorem 2.4.1. (Excision) Let (X,A) be a pair of topological spaces and let K ⊂ A be
such that K ⊂ int(A). Then the natural inclusion (X \ K,A \ K) to (X,A) induces an
isomorphism on homology.

Proof. The proof uses the tools developed in the proof of Mayer-Vietoris. Let B = X \K.
Then A∩B = A \K, so we need to show the inclusion induces H∗(B,A ∩B) ∼= H∗(X,A).
Notice that the interiors of A and B form an open cover of X. Thus, using the techniques of
the Mayer-Vietoris proof, we can subdivide a chain in S∗(X) to a chain which is small with
respect to the open cover {intA, intB}, and the inclusion Ssmall∗ (X) ↪→ S∗(X) induces an
isomporphism in homology. Recall that Ssmall∗ (X) is generated by singular simplices whose
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images lie in either intA or intB. In particular, the images of the generating simplices lie
in either A or B since intA ⊂ A and intB ⊂ B. For our purposes, this fact will be more
useful, so let SA+B∗ (X) denote the singular chains generated by singular simplices whose
images lie in either A or B.

Lemma 2.4.2. The inclusion SA+B∗ (X) ↪→ S∗(X) induces an isomorphism in homology.

Proof. The proof is almost exactly the same as in the Mayer-Vietoris proof. First we show
that the induced map on homology is onto. Given [ζ] ∈ Hn(X), let ζ be a representative
cycle for this homology class. Then sdk(ζ) is also a cycle, and sdk(ζ) is homologus to ζ,
but if k is sufficently large sdk(ζ) is in Ssmall

n (X) ⊂ SA+B
n (X). Now we show injectivity.

Suppose [a′] ∈ HA+B
n (X), and a′ = ∂b where b ∈ Sn+1(X) i.e. [a′] = 0 ∈ Hn(X). We need

to show that [a′] = 0 ∈ HA+B
n (X), that is a′ = ∂b′, for some b′ ∈ SA+B

n+1 (X). By corollary
2.2.7 there is a k such that sdk(b) = b′ ∈ Ssmall

n+1 (X) ⊂ SA+B
n+1 (X). Then subdivide k-times

giving,
sdk(a′) = sdk(∂b) = ∂(sdk(b)) = ∂(b′).

Thus, [sdk(a′)] = 0 in HA+B
n (X). Lastly, we need to show [a′] = [sdk(a′)] ∈ HA+B

n , but
this is true since if we start with chains in SA+B∗ (X), and subdivide or apply our chain
homotopy, we still have chains in SA+B∗ (X).

Furthermore, if we start with a chain in A, subdividing it still gives a chain in A, so
if we quotient out by chains in A, the map SA+B∗ (X)/S∗(A) → S∗(X)/S∗(A) still induces
an isomorphism in homology. The map S∗(B)/S∗(A ∩ B) → SA+B∗ (X)/S∗(A) induced by
inclusion is an isomporphism on the chain level, since both groups are generated by singular
simplices whose images are in B but not in A. Putting these together we obtain the desired
isomorphism in homology.

2.5 The Dimension Axiom

There is one more axiom, which we have already proven, the dimension axiom.

Theorem 2.5.1. Dimension Axiom If X is a point then,

Hk(X) =

{
Z k = 0
0 otherwise

Proof. See proposition 1.3.8.
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2.6 Reduced Homology

For any non-empty space X we denote by H̃∗(X), the reduced singular homology of X. By
definition it is the kernel of the natural mapping H∗(X) → H∗(p) where p is the one-point
space. Thus, Hk(X) = H̃k(X) for all k > 0 and H̃0(X) is trivial if X is path connected.
The long exact sequence of the pair remains valid if we replace the singular homology of X
and A by their reduced singular homology but leave the homology of the pair unchanged.
Because of the removal of the trivial Z in degree zero, reduced homology is often cleaner
to work with. As an example, we compute the relative homology of the disk modulo its
boundary using the reduced homology.

Proposition 2.6.1. Hk(Dn, Sn−1) = 0 unless k = n, in which case the relative homology
is isomorphic to Z.

Proof. The long exact sequence of a pair gives,

· · · −−−−→ H̃k(Dn) −−−−→ Hk(Dn, Sn−1) −−−−→ H̃k−1(Sn−1) −−−−→ H̃k−1(Dn) −−−−→ · · ·

But, since Dn is contractible, for k > 0 we have,

0 −−−−→ Hk(Dn, Sn−1)
∼=−−−−→ Hk−1(Sn−1) −−−−→ 0

The k = 0 case is clear. Thus,

Hk(Dn, Sn−1) =

{
Z ∗ = n

0 otherwise

3 Applications of Singular Homology

Now we give some of the nicest applications of the computations of the homology of the
disks and spheres.

3.1 Invariance of Domain

Corollary 3.1.1. (Invariance of Domain) Let U ⊂ Rn and V ⊂ Rm be non-empty open
subsets. If U and V are homeomorphic, then n = m.

Proof. We begin with a lemma,

Lemma 3.1.2. Let U be a non-empty open subset of Rn and let x ∈ U . Then Hk(U,U \{x})
is zero except when k = n in which case the relative homology group is Z.
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Proof. Let U ⊂ Rn be a non-empty open set. Let x ∈ U . If we let K = Rn \ U , then
K is closed and K ⊂ Rn \ {x}. So applying excision with X = Rn, A = Rn \ {x} and
K = Rn \ U , we have,

H∗(U,U \ {x}) ∼= H∗(Rn, Rn \ {x})

Since Rn is contractible, we have H̃∗(Rn) = 0, and by the homotopy axiom H̃∗(Rn \{x}) =
H̃∗(Rn \ {0}) = H̃∗(Sn−1) = Z if ∗ = n− 1 and 0 otherwise. And now, using the long exact
sequence of a pair we have,

H̃∗(Rn) = 0→ H∗(Rn, Rn \ {0}) → H̃∗−1(Sn−1) → H̃∗−1(Rn) = 0,

and thus H∗(Rn, Rn \ {0}) ∼= H̃∗−1(Sn−1) = Z if ∗ = n and 0 otherwise. So, H∗(U,U \ {x}
is non-zero in exactly one dimension, the dimension of the euclidean space in which U sits
as an open set, and in that dimension it is isomorphic to Z.

Now, suppose U ⊂ Rn and V ⊂ Rm are homeomorphic non-empty open sets, with
φ : U → V a homeomorphism. Let x ∈ U and y = φ(x) ∈ V . Then φ induces a
homeomorphism of pairs (i.e. an isomorphism in the category of pairs of topological spaces)

φ : (U,U \ {x}) → (V, V \ {y}),

and thus the induced map on homology is also an isomorphism,

φ∗ : H∗(U,U \ {x}) → H∗(V, V \ {y}).

Thus, by lemma 3.1.2, n = m.

3.2 The Jordan Curve Theorem and its Generalizations

The Jordan curve theorem says that any simple closed curve in the plane divides the plane
into two pieces, and is the frontier of each piece. Here is a homological theorem which applies
to all dimensions and as we shall see easily implies the classical Jordan curve theorem.

Theorem 3.2.1. For k < n, if ψ : Sk ↪→ Sn is a homeomorphism onto its image then
H̃i(Sn − ψ(Sk)) = 0 unless i = n − k − 1 in which case the homology group is isomorphic
to Z.

Proof. First, we will prove the following lemma.

Lemma 3.2.2. If Ik is a cube (k ≤ n) and φ : Ik ↪→ Sn is a continuous one-to-one
mapping. Then H̃∗(Sn − φ(Ik)) = 0.
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Proof. The proof is by induction on k. For k = 0, we know that Sn − {pt} ∼= Rn, and
H̃∗(Rn) = 0. Now, suppose the result holds for k − 1. Let

Y− = φ(Ik−1 × [0, 1/2])

Y+ = φ(Ik−1 × [1/2, 1])

Y1/2 = φ(Ik−1 × [1/2])

Then,

(Sn − Y+) ∪ (Sn − Y−) = Sn − Y1/2

(Sn − Y+) ∩ (Sn − Y−) = Sn − Y.

Then, by Mayer-Vietoris we have the following exact sequence,

H̃∗(Sn − Y1/2) → H̃∗(Sn − Y ) → H̃∗(Sn − Y−)⊗ H̃∗(Sn − Y+) → H̃∗−1(Sn − Y1/2)

Since, H̃∗−1(Sn − Y1/2) = 0, this implies,

H̃∗(Sn − Y ) ∼= H̃∗(Sn − Y−)⊗ H̃∗(Sn − Y+).

Now, if a ∈ Hi(SN − Y ) and a �= 0, then either (i−)∗(a) ∈ Hi(Sn − Y−) �= 0 or (i+)∗(a) ∈
Hi(Sn − Y+) �= 0, where i− : Sn − Y ↪→ Sn − Y− and i+ : Sn − Y ↪→ Sn − Y+ are the
inclusions. Choose Y1 ⊂ Y so that the inclusion of a is non-zero in Hi(Sn − Y1). Repeat
this step to get Y2, Y3, . . . so,

Ym = φ

(
Ik−1 ×

[
m

2k
,
m + 1

2k

])
and, am �= 0 ∈ Hi(Sn − Ym). Then let Y∞ =

∞
∩

m=1
Ym = φ(Ik−1 × {x}). Then a �→ 0 ∈

Hi(Sn − Y∞). Replace a by a cycle ζ in Sn − Y , where ζ = ∂c for some c in Sn − Y∞.
That is c =

∑
nσσ where ∪

σ, nσ �=0
Im(σ) ⊂ Sn − Y∞. Now, there exists an open set V ⊂ Sn

so that Y∞ ⊂ V and ∪
σ, nσ �=0

Im(σ) ⊂ V , which implies Ym ⊂ V for m sufficently large.

Thus, c ∈ Si+1(Sn − Ym) for all m � 1, and hence, am = 0 for all m � 1. This is a
contradiction.

Now we prove the theorem by induction on k. For k = −1, S−1 = ∅ and

H̃∗(Sn − ψ(Sk)) = H̃∗(Sn) =

{
Z ∗ = n

0 otherwise

Now, suppose the result holds for k, we want to show that it holds for k+1. We have Sk+1 =
Dk+1

+ ∪Dk+1
− , where D± are disks homeomorphic to Ik+1. Now, consider ψ : Sk+1 ↪→ Sn.
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Let U = Sn − ψ(Dk+1
+ ) and V = Sn −Dk+1

− . Then U ∪ V = Sn − ψ(Sk), call this X, and
U ∩ V = Sn − ψ(Sk+1). Now, U and V are both open in Sn, and hence are both open in
X. By lemma 3.2.2 H̃(U) = H̃(V ) = 0, so the Mayer-Vietoris sequence,

H̃∗(U)⊗ H̃∗(V ) → H̃∗(Sn − ψ(Sk)) → H̃∗−1(Sn − ψ(Sk+1)) → 0,

gives an isomorphism,

H̃∗(Sn − ψ(Sk)) ∼= H̃∗−1(Sn − ψ(Sk+1)),

and the result follows by induction.

Corollary 3.2.3. Any embedding ψ of Sn−1 into Sn separates Sn into exactly two compo-
nents. Furthermore, if Sn−ψ(Sn−1) = X�Y with X and Y open, then ψ(Sn−1) = X ∩Y .

Proof. By the theorem, H̃0(Sn − ψ(Sn−1)) ∼= Z and hence, H0(Sn − ψ(Sn−1)) ∼= Z ⊕ Z.
Therefore Sn − ψ(Sn−1) has two path components, but since Sn is locally path connected,
so is the open subset Sn − ψ(Sn−1) and thus path components are components.

Now, suppose Sn − ψ(Sn−1) = X � Y with X and Y open, then X̄ ⊂ Sn − Y since
X ⊂ Sn − Y and Y is open. Similarly, Ȳ ⊂ Sn − X. So, X ⊂ X̄ ⊂ [X ∪ ψ(Sn−1)]
and Y ⊂ Ȳ ⊂ [Y ∪ ψ(Sn−1)]. We will show that ψ(Sn−1) ⊂ X̄ and ψ(Sn−1) ⊂ Ȳ .
Suppose not. By symmetry we may assume that ψ(Sn−1) � X̄. Then there exists a point
p ∈ ψ(Sn−1) such that p /∈ X̄. Now, p ∈ ψ(Sn−1) − X̄ and therefore, for some ε > 0,
ψ(Dε(p)) ⊂ ψ(Sn−1) − X̄. Let Z = X ∪ ψ(Dn−1

ε (p)) ∪ Y . Then X̄ ∩ Z = X = X ∩ Z,
and so Z is not connected, but Z = Sn − ψ(Sn−1 −Dε(p)) and Sn−1 −Dε(p) ∼= Dn−1, so
H̃0(Z) = 0, by our lemma above. Contradiction.

In particular, this result is true for any simple closed curve in the plane. This result is
known as the Jordan curve theorem.

Corollary 3.2.4. (The Jordan Curve Theorem) Suppose C ⊂ R2 is a simple closed
curve i.e. C is homeomporphic to S1. Then R2 \ C has exactly two components and C is
the frontier of each compnent.

Exercise 3.2.5. Let L : Rn → Rn be a linear isomorphism. Compute the induced map
L∗ : Hn(Rn, Rn \ {0}) → Hn(Rn, Rn \ {0}).
Exercise 3.2.6. Let f : Rn → Rn be a diffeomorphism with f(0) = 0. Compute the induced
map f∗ : Hn(Rn, Rn \ {0}) → Hn(Rn, Rn \ {0}).
Exercise 3.2.7. In corollary 2.2.11 we saw that for n ≥ 1

Hk(Sn) =

{
Z k = 0, n
0 otherwise

Therefore, if f : Sn → Sn, the induced map f∗ : Hn(Sn) → Hn(Sn) is multiplication by
some integer d. We call this integer the degree of the map f . Compute the degree of the
identity map on Sn and the antipodal map a : Sn → Sn.
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C

R2

Figure 12: Two components of R2 separated by a simple closed curve C

Exercise 3.2.8. For n even show that every map Sn → Sn homotopic to the identity has
a fixed point. Show that this is not true for every n odd, by showing that the idenitity is
homotopic to the antipodal map for n odd.

Exercise 3.2.9. Compute H∗(Sn ×X in terms of H∗(X).

Exercise 3.2.10. Let X = Sp ∨ Sq. compute H∗(X).

3.3 Cellular (CW) Homology

Let ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ XN = X be a finite CW complex (see appendix C).
We define a chain complex with chain groups Ccw

k (X) = Hk(Xk,Xk−1) and boundary map
∂cw : Ccw

k (X) → Ccw
k−1(X) given by the composition,

Ccw
k (X) = Hk(Xk,Xk−1) ∂−−−−→ Hk−1(Xk−1) i∗−−−−→ Hk−1(Xk−1,Xk−2) = Ccw

k−1(X)

Proposition 3.3.1. ∂2
cw = 0

Proof. The cellular boundary map fits into a commutative diagram involving portions of
the long exact sequences of the pairs (Xn+1,Xn) and (Xn,Xn−1).

43



0�⏐⏐
Hn(Xn+1) ∼= Hn(X) 0�⏐⏐ ⏐⏐�

Hn(Xn) Hn(Xn)

∂n+1

�⏐⏐ i∗
⏐⏐�

· · · −−−−→ Hn+1(Xn+1,Xn) ∂cw−−−−→ Hn(Xn,Xn−1) ∂cw−−−−→ Hn−1(Xn−1,Xn−2) −−−−→ · · ·

∂n

⏐⏐� j∗
�⏐⏐

Hn−1(Xn−1) Hn−1(Xn−1)�⏐⏐
0

If we trace through this diagram we see that the composition ∂2
cw factors through the 0

map, and is thus 0.

So, {Ccw∗ (X), ∂cw} forms a chain complex, and we define the cellular homology of a CW
complex X to be the homology of this chain complex, Hcw∗ (X) = H∗({Ccw∗ (X), ∂cw}).

Lemma 3.3.2. H∗(Xk) = 0 for ∗ > k

Lemma 3.3.3. H∗(Xk) = H∗(X) for ∗ < k

Claim 3.3.4. Hcw∗ (X) is identified with the singular homology of X.

Proof. Examining the diagram in the proof above, we see that Hn(X) ∼= Hn(Xn)/Im(∂n+1).
Since i∗ is an injection, i∗(Im(∂n+1)) ∼= Im(i∗ ◦ ∂n+1) = Im(∂cw), and i∗(Hn(Xn)) ∼=
Im(i∗) = Ker(∂n). Since j∗ is an injection, Ker(∂n) = Ker(∂cw). Thus, i∗ induces an
isomorphism Hn(Xn)/Im(∂n+1) ∼= Ker(∂cw)/Im(∂cw).

4 Other Homologies and Cohomologies

4.1 Singular Cohomology

The group of singular cochains of degree n of X, denoted Sn(X), is defined to be the
dual group to Sn(X), i.e., Sn(X) = Hom(Sn(X), Z). Note that S∗(X) is not usually s
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free abelian chain complex. We then define the coboundary map δ : Sn(X) → Sn+1(X)
to be the dual to ∂ : Sn+1(X) → Sn(X), so for φ ∈ Sn(X), and σ : Δn+1 → X we have
< δφ, σ >=< φ, ∂σ >. This forms a cochain complex, the singular cochain complex of X.
Its cohomology is called the singular cohomology of X and is denoted H∗(X).

Singular cohomology is a contravariant functor from the category of topological spaces
to the category of graded groups. This means that if f : X → Y is a continuous map
then we have the induced homomorphism f∗ : H∗(Y )→ H∗(X). This association preserves
identities and takes compositions to compositions (with the order reversed).

We also have the notion of singular cohomology of X with coefficients in an abelian group
A, denoted H∗(X;A), and defined as the cohomology of the cochain complex Hom(S∗(X), A).
If A is a ring then these cohomology groups are modules over A.

The singular homology and singular cohomology of a space are clearly very closely
related, and it is not suprising that versions of the axioms for singular homology also hold
in the singular cohomology setting. The following theorem will be useful in establishing
those axioms.

Theorem 4.1.1. If C∗ and D∗ are free abelian chain complexes with C∗,D∗ = 0 for ∗ � 0,
and φ∗ : C∗ → D∗ is a chain map inducing an isomorphism on homology then the induced
map on cohomology is also an isomorphism.

Proof. The following lemma is a special case of the Universal Coefficent Theorem.

Lemma 4.1.2. Let C∗ be a free abelian chain complex with C∗ = 0 for ∗ � 0. If H∗(C∗) =
0, then H∗(C∗) = 0.

Proof. Define Zn ⊂ Cn to be the cycles = Ker ∂n, and Bn−1 ⊂ Cn−1 to be the boundaries
= Image ∂n. Then we have the following two short exact sequences:

0 → Zn → Cn → Bn−1 → 0 (a)

0 → Bn → Zn → Hn(C∗) → 0 (b)

Suppose that H∗(C∗) = 0. Then sequence (b) becomes, 0 → Bn → Zn → 0, and so
Bn

∼= Zn for all n. If the Cn are free abelian and C−k = 0 for k sufficently small, then
Cn
∼= Bn−1 ⊕ Zn, i.e. sequence (a) splits for all n. We proceed by induction on n, starting

with n sufficently small, so that C∗ = 0. In the initial case we have,

0 → Z0 → C0 → B−1 = 0 → 0,

Suppose that Cn splits. This implies that Z0 = B0 is projective (indeed free), and thus the
following sequence splits,

0 → Z1 → C1 → B0 = 0→ 0.
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Thus, C1
∼= Z1 ⊕B0. Now, suppose that we have shown Ck

∼= Zk ⊕Bk−1 for all k ≤ n− 1.
Then we have,

0 → Zn → Cn → Bn−1 → 0.

Bn−1
∼= Zn−1 and Zn−1 is a direct summand of Cn−1. This implies that Bn−1

∼= Zn−1 is
projective, so Cn

∼= Zn ⊕Bn−1 and the sequence splits. We have the following situation:

Cn+1 Zn+1 ⊕Bn

∂

⏐⏐� ∂

⏐⏐�
Cn Zn ⊕Bn−1

∂

⏐⏐� ∂

⏐⏐�
Cn−1 Zn−1 ⊕Bn−1

where in fact the ∂ maps on the left are isomorphisms Bn
∼= Zn, Bn−1

∼= Zn−1 and so on.
That is, the ∂ maps are,

Zn ⊕Bn−1
projection−−−−−−→ Bn−1

∂−−−−→∼=
Zn−1

inclusion−−−−−→ Zn−1 ⊕Bn−2

Dualizing, we have,
Cn+1 Z∗

n+1 ⊕B∗
n

δ

�⏐⏐ δ

�⏐⏐
Cn Z∗

n ⊕B∗
n−1

δ

�⏐⏐ δ

�⏐⏐
Cn−1 Z∗

n−1 ⊕B∗
n−1

where now the δ maps on the left are isomorphisms Z∗
n−1

∼= B∗
n−1, Z∗

n
∼= B∗

n, and so on.
We have,

Z∗
n ⊕B∗

n−1
inclusion←−−−−− B∗

n−1
δ←−−−−∼=

Z∗
n−1

projection←−−−−−− Z∗
n−1 ⊕B∗

n−2

Thus, H∗(C∗) = 0.

Remark 4.1.3. The hypothesis that C∗ = 0, for ∗ � 0, is actually not neccesary since it
is a general fact that a subgroup of a free abelian group is free abelian.

Now, given C∗ define a chain complex C∗[k] by (C∗[k])n = Cn−k with boundary map
∂[k]n = ∂n−k. Then we define another chain complex, the mapping cylindar, (Mφ)∗ by
(Mφ)∗ = C∗[1] ⊕D∗ with boundary map

∂ : (Mφ)n = Cn−1 ⊕Dn → (Mφ)n−1 = Cn−2 ⊕Dn−1
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given by
∂(cn−1, dn) = (∂Ccn−1, ∂

Ddn + (−1)nφn−1(cn−1)).

We can express this as a matrix:

∂ =
(

∂C
n 0

(−1)nφn−1 ∂D
n

)
Then to check that ∂2 = 0,

∂2 =
(

∂C 0
(−1)nφ ∂D

)(
∂C 0

(−1)n−1φ ∂D

)
=
(

(∂C)2 0
� (∂D)2

)
where,

� = (−1)n∂Dφ + (−1)n−1∂C = (−1)n[φ∂C − ∂Dφ] = 0

since φ is a chain map. Then we have the following short exact sequence of chain complexes:

0→ D∗ → (Mφ)∗ → C∗[1] → 0 (c)

and this induces the following long exact sequence on homology:

· · · −−−−→ Hn((Mφ)∗) −−−−→ Hn(C∗[1])
∼=−−−−→ Hn−1(D∗) −−−−→ Hn−1((Mφ)∗) −−−−→ · · ·

One can then check by the construction of the connecting homomorphism, Hn(C∗[1]) →
Hn−1(D∗) in lemma 2.2.2, that this map is in fact (−1)nφ∗ : Hn−1(C∗)→ Hn−1(D∗), and is
thus an isomorphism. This implies that H∗((Mφ)∗) = 0. Dualizing (c), we have the short
exact sequence,

0→ (C∗[1])∗ → (Mφ)∗ → D∗ → 0c

It is not true in general that the dual of an exact sequence is exact; however, since C∗[1] is
free abelian, the sequence can be split, and thus the dual sequence is also short exact. Using
lemma 4.1.2 above, H∗((Mφ∗)∗) = 0 and so we have the associated long exact sequence in
cohomology,

0 −−−−→ Hn(D∗) δ−−−−→∼=
Hn+1((C∗[1])∗) −−−−→ 0∥∥∥ ∥∥∥ ∥∥∥

0 −−−−→ Hn(D∗) φ∗
−−−−→∼=

Hn(C∗)

Now we will prove the axioms for singular cohomology.

Theorem 4.1.4. (The Homotopy Axiom for Singular Cohomology) If f, g : X → Y
are homotopic maps then f∗ = g∗ : H∗(Y ) → H∗(X)
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Proof. Let Hn : Sn(X) → Sn+1(Y ) be a chain homotopy from f∗ to g∗. So, ∂H + H∂ =
g∗ − f∗. Dualize, and we have Hn : Sn+1(Y ) → Sn(X) satisfying H∗δ + δH∗ = g∗ − f∗.
Now our homological algebra from before shows that the induced maps on cohomology are
equal.

Let (X,A) be a pair of topological spaces. Dual to the short exact sequence

0 → S∗(A) → S∗(X) → S∗(X,A) → 0

is the short exact sequence

0 → S∗(X,A) → S∗(X) → S∗(A) → 0.

Where S∗(X,A) is defined to be the kernel of the map induced by the inclusion, i∗ :
S∗(X) → S∗(A). This dual sequence is exact since S∗(X,A) is free abelian, and hence the
first short exact sequence splits. Applying cohomology yields the long exact sequence of a
pair in cohomology:

Theorem 4.1.5. (The Long Exact Sequence of a Pair for Singular Cohomology)
For a pair of topological spaces (X,A), there is a long exact sequence in cohomology:

· · · −−−−→ Hk(X,A) −−−−→ Hk(X) −−−−→ Hk(A)
β−−−−→ Hk+1(X,A) −−−−→ · · ·

where the first three maps are induced by the inclusions and β is the connecting homomor-
phism associated to the above short exact sequence of chain complexes. Furthermore, this
long exact sequence is functorial for maps of pairs of topological spaces.

There is also the dual form for cohomology of the Mayer-Vietoris sequence. In order to
prove this result one needs to know that the inclusion Ssmall∗ (X) → S∗(X) dualizes to a map
S∗(X) → S∗

small(X) which induces an isomorphism on cohomology. This is an immediate
consequence of theorem 4.1.1.

Theorem 4.1.6. (Mayer-Vietoris for Singular Cohomology) Suppose X = U ∪ V
with U, V open. Then we have the following long exact sequence,

· · · −−−−→ Hn+1(U ∩ V ) −−−−→ Hn(X)
i∗U−i∗V−−−−→ HN (U)⊕HN (V )

j∗U+j∗V−−−−→ Hn(U ∩ V ) −−−−→ · · ·

where jU : U → X, jV : V → X, iU : U ∩ V → U and iV : U ∩ V → V are the inclusions.

Proof. We have the short exact sequence of chain complexes,

0 −−−−→ S∗(U ∩ V )
(iU )∗−(iV )∗−−−−−−−−→ S∗(U)⊕ S∗(V )

(jU )∗+(jV )∗−−−−−−−−→ Ssmall∗ (X) −−−−→ 0

Dualizing, we obtain,
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0 −−−−→ S∗
small(X)

(jU )∗+(jV )∗−−−−−−−−→ S∗(U)⊕ S∗(V )
(iU )∗+−(iV )∗−−−−−−−−−→ S∗(U ∩ V ) −−−−→ 0

This gives rise to a long exact sequence in cohomology. Theorem 4.1.1, combined with the
fact that the inclusion Ssmall∗ (X) ↪→ S∗(X) induces an isomorphism on homology, implies
that the dual map induces an isomorphism in cohomology, so we have the desired long exact
sequence.

The cohomological versions of excision and the dimension axiom are immediate,

Theorem 4.1.7. (Excision for Singular Cohomology) Let (X,A) be a pair of topo-
logical spaces and K ⊂ K̄ ⊂ Int A ⊂ A. Then H∗(X \K;A \K) ∼= H∗(X;A).

Theorem 4.1.8. (The Dimension Axiom for Cohomology)

H∗({pt}) =

{
Z ∗ = 0
0 otherwise

4.1.1 Cup and Cap Product

One nice feature of singular cohomolgy, as opposed to singular homology, is that the singular
cohomlogy of a space has a product structure which makes it into an associative graded
ring with unit. Let X be any space, S∗(X) be the singular chain complex associated to
X and S∗(X) the singular cochain complex. We define a bilinear product, cup product,
∪ : Sk(X) ⊗ Sl(X) → Sk+l(X). Suppose α ∈ Sk(X), β ∈ Sl(X) and (σ : Δk+l → X) ∈
Sk+l(X). For an n-simplex σ : [v0, · · · , vn] = Δn → X define fri(σ) = σ|([v0, . . . , vi] =
Δi) → X and bkl(σ) = σ|([vn−l, . . . , vn] = Δl) → X. We say fri(σ) is σ restricted to the
front i simplex and bkl(σ) is σ restricted to the back l simplex. Then the cup product is
given by

< α ∪ β, σ >=< α, frk(σ) >< β,bkl(σ) > .

Lemma 4.1.9. Suppose α ∈ Sk(X), β ∈ Sl(X), then

δ(α ∪ β) = δα ∪ β + (−1)kα ∪ δβ.

Exercise 4.1.10. Prove this lemma.

Let Zn ⊂ Sn(X) denote the n-cocycles, and Bn ⊂ Sn(X) denote the coboundaries.

Corollary 4.1.11. If α ∈ Zk and β ∈ Z l then α ∪ β ∈ Zk+l.
If γ ∈ Bk and β ∈ Z l then γ ∪ β ∈ Bk+l.
If α ∈ Zk and γ ∈ Bl then α ∪ γ ∈ Bk+l.
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Proof. First suppose α ∈ Zk and β ∈ Z l. Then

δ(α ∪ β) = 0 ∪ β + (−1)kα ∪ 0 = 0.

So α ∪ β ∈ Zk+l.
Now, suppose γ ∈ Bk and β ∈ Z l. Let γ = δα for some α ∈ Sk−1(X). Then,

γ ∪ β = δα ∪ β = δ(α ∪ β) ∈ Bk+l.

Since (−1)kα ∪ δβ = (−1)kα ∪ 0 = 0.
Similarly, suppose α ∈ Zk and γ ∈ Bl. Let γ = δβ for some β ∈ Sl−1(X). Then,

(−1)kα ∪ γ = (−1)kα ∪ δβ = δ(α ∪ β) ∈ Bk+l.

Since δα ∪ β = 0 ∪ β = 0.

Thus, we have a well defined product on cohomology, ∪ : Hk(X)⊗H l(X) → Hk+l(X).
We can also define the adjoint to cup product, cap product. This is a bilinear product

∩ : Sl(X)× Sk+l(X) → Sk(X). It is adjoint to cup product in the sense that,

< α, β ∩ σ >=< α ∪ β, σ >

for α ∈ Sk(X), β ∈ Sl(X) and σ : Δk+l → X. On the chain level the formula for cap
product is,

β ∩ σ =< β,bkl(σ) > frk(σ).

One can easily check that with this formula cup and cap product are adjoints as desired.

Lemma 4.1.12. Suppose β ∈ Sl(X) and σ : Δk+l → X, then

∂(β ∩ σ) = β ∩ ∂σ − (−1)kδβ ∩ σ

Proof. Let α ∈ Sk(X). Then,

< α, ∂(β ∩ σ) > =< δα, β ∩ σ >

=< δα ∪ β, σ >

=< δ(α ∪ β), σ > −(−1)k < α ∪ δβ, σ >

=< α ∪ β, ∂σ > −(−1)k < α, δβ ∩ σ >

=< α, β ∩ ∂σ > −(−1)k < α, δβ ∩ σ >

=< α, β ∩ ∂σ − (−1)kδβ ∩ σ >
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As in the cup product case, this formula shows that we have a well defined cap product,
∩ : H l(X)⊗Hk+l(X) → Hk(X) via the following corollary.

Corollary 4.1.13. If α ∈ Z l and β ∈ Zk+l then α ∪ β ∈ Zk.
If γ ∈ Bl and β ∈ Zk+l then γ ∪ β ∈ Bk.
If α ∈ Z l and γ ∈ Bk+l then α ∪ γ ∈ Bk.

Exercise 4.1.14. Prove this corollary.

The cup product makes H∗(X) into an associative graded ring with unit. The unit is
the canonical generator 1 ∈ S0(X), which evaluates < 1, p >= 1 on a point p. Then we
have,

< 1 ∪ α, σ >=< 1, fr0(σ) >< α,bkk(σ) >=< 1, p >< α, (σ) >=< α, (σ) > .

Also, cup product is natural in the following sense. If f : Y → X is a continuous map, then
f induces f∗ : H∗(X) → H∗(Y ), and this map preserves cup product:

f∗[α] ∪ f∗[β] = [f∗α] ∪ [f∗β] = [f∗α ∪ f∗β],

as the following computation shows,

< f∗α, frk(σ) >< f∗β,bkl(σ) > =< α, f∗frk(σ) >< β, f∗bkl(σ) >

=< α, frk(f∗σ) >< β,bkl(f∗σ) >

=< α ∪ β, f∗σ > .

4.2 Ordered Simplicial (Co)Homology

Let K be a simplicial complex with |K| its geometric realization. We define a chain
complex with chain groups Cord

k (K) the free abelian group generated by {l : Δk →
K| l is affine linear i.e. l : V (Δk) → V (K) and Im(l) ∈ S(K)}. Geometrically these
are maps |l| : Δk → |K| such that the image is a simplex σ ⊂ |K|, that is we have
l : V (Δk) → V (σ) and then |l|

∑
aivi =

∑
ail(vi) where Δk =

∑
aivi in barycentric

coordinates. We define the boundary map ∂ : Cord
k (K)→ Cord

k−1(K) by

∂l =
k∑

i=0

(−1)il|fi

where fi : Δk−1 → Δk is given by sending the first i vertices of Δk−1 in barycentric
coordinates. We define the boundary map ∂ : Cord

k (K)→ Cord
k−1(K) by

∂l =
k∑

i=0

(−1)il|fi
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where fi : Δk−1 → Δk is given by sending the first i vertices of Δk−1 to the first i vertices
of Δk and sending the last k− i vertices of Δk−1 to the last k− i vertices of Δk. The usual
computation shows that ∂2 = 0.

The ordered simplicial chain groups of a simplicial complex sit naturally inside the
singular chain groups of the geometric realization of that simplicial complex, Cord∗ (K) ↪→
S∗(|K|), and this inclusion commutes with the boundary map.

Theorem 4.2.1. The inclusion Cord∗ (K) ↪→ S∗(|K|) induces an isomorphism on homology.

Proof. ???? Give
proof.

We have the dual ordered simplicial cochain complex as well as the versions of these
chain complex and cochain complex with coefficients in any abelian group. These lead to
the ordered simplicial homology and cohomology with coefficients in an abelian group.

There are also relative ordered chain groups and relative homology groups. Suppose
that K is a simplicial complex and that L is a subcomplex. Then the inclusion map induces
an inclusion

Cord
∗ (L) → Cord

∗ (K).

Then we define Cord∗ (K,L) = Cor∗ (K)/Cor(L). Its homology is the relative ordered homol-
ogy of the pair (K,L). By the construction there is a long exact sequence of the pair for
ordered simplicial homology.

Exercise 4.2.2. Write down the long exact sequence of the pair and prove that it is exact.
Show that this long exact sequence is natural for simplicial maps of pairs of simplicial
complexes.

4.3 Oriented Simplicial Homology and Cohomology

Let K be a simplicial complex (see appendix D). A simplex σ of degree i has two orienta-
tions. We can think of these orientations in two equivalent ways. First, any ordering of the
vertices of σ determines an orientation of σ. Two orderings give the same orientation if the
orderings differ by an even permuatation, and give the opposite orientation if they differ by
an odd permutation. The second way to think of orientation is to take a linear embedding
of σ into Ri given by mapping σ onto the standard i-simplex in Ri+1, and then projecting
to Ri. Then an orientation of σ is given by the standard orientation of Ri. Check that
these two definitions of orientation are equivalent.

Now, we define the oriented simplicial chain groups, Cor
i (K), to be a direct sum of infi-

nite cyclic groups, one for each −-simplex of K. However, these summands are not canon-
ically isomorphic to Z, rather the summands are of the form Z[σ, oσ]⊕Z[σ,−oσ]/{[σ, oσ ] =
−[σ, oσ ]} where oσ is an orientation of σ. To choose a generator for the summand associated
to σ is to choose an orientation of σ.

Definition 4.3.1. Cor
i =

⊕
σ∈K
|σ|=i

Z[σ, oσ]⊕ Z[σ,−oσ]
[σ, oσ ] � −[σ, oσ ]
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The boundary map ∂ : Cor
i (K) → Cor

i−1(K) is given by

∂([σ, oσ ]) =
∑
τ<σ

#τ=#σ−1

[τ, oσ |τ ].

An equivalent formula is given by

∂[σ, {v0, · · · , vi}] =
i∑

j=0

(−1)j [τj, {v0, · · · , v̂j , · · · , vi}].

where τj is the j-th codimension one face of σ. It should be clear from this formula that
∂2 = 0. Check that the two formulas are in fact the same. So, {Cor∗ (K), ∂} is a chain
complex, and we define the oriented simplicial homology of a simplicial complex to be the
homology of this chain complex, Hor∗ (K) = H∗({Cor∗ (K), ∂}).

The oriented simplicial cohomology is the cohomology of the dual cochain complex. It
is denoted H∗

or(K). We also have the oriented simplicial homology and cohomology with
coefficients in an abelian group A obtained by forming a chain complex by tensoring the
given complex with A or obtained by forming a cochain complex by taking Hom of the
complex into A. These are denoted Hor∗ (K;A) and H∗

or(K;A), respectively.
If L is a subcomplex of K, then there is a natural inclusion Cor∗ (L→Cor∗ (K). We define

the relative oriented chains Cor∗ (K,L) to be the quotient complex, and we define the ho-
mology of this quotient complex to be the relative oriented simplicial homology, denoted
Hor∗ (K,L). By the construction, there is a long exact sequence of the pair for oriented
simplicial homology.

Exercise 4.3.2. Write down the long exact sequence of the pair and prove that it is exact.
Show that this long exact sequence is natural for simplicial maps of pairs of simplicial
complexes.

4.4 Comparison of Oriented and Ordered Simplicial Homology

There is a natural chain map Cord∗ (K) → Cor∗ (K). It is defined as follows. If σ : Δn → K
is an ordered n-simplex whose image is a simplex of dimension less than n, then σ is sent
to zero in Cor∗ (K). If on the other hand, the image of σ is of dimension n, then σ is an
isomorphism from the standard n-simplex Δn to an n-simplex of K. Hence, it induces an
orientation on this n-simplex. We associate to σ this induced oriented n-simplex.

Here is the theorem that compares ordered and oriented homology.

Theorem 4.4.1. The map Cord∗ (K) → Cor∗ (K) is a chain map. It induces an isomorphism
on homology.

Proof. We begin by showing that the map is a chain map. If σ : Δn → K is an ordered
n-simplex whose image has dimension less than n − 1, then it is clear that σ and all its
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faces map to the zero element in Cor∗ (K). Hence, on these elements the maps commute
with the boundary maps. Suppose that the image of σ has dimension n− 1. Then σ maps
to zero in Cor∗ (K). These means that exactly two of the vertices vi, vj of Δn are identified
and the others are mapped to distinct vertices. All the faces of σ except the ones obtained
by deleting vi and vj have images of dimension n − 2 and hence map to zero in Cor∗ (K).
The remaining two faces map to oppositely oriented n − 1 simplices and hence cancel in
Cor∗ (K). This shows that ∂σ maps to zero in this case as well.

Lastly, it is clear when σ : Δn → K is an embedding that the image of ∂σ is equal to
the boundary of the image of σ.

First we prove that for finite simplicial complexes, the induced map on homology is an
isomorphism. This is done by induction on the number of simplices.

Claim 4.4.2. Suppose that K is a single simplex and all its faces. Then the map Cord∗ (K,∂K) →All its
faces
what?

Cor∗ (K,∂K) induces an isomorphism on homology.

Proof. Clearly, the oriented relative homology is a Z in degree equal to the dimension
of the simplex and zero in all other degrees. The exercises below show that the ordered
homology is isomorphic.

Exercise 4.4.3. Show that any relative ordered k-cycle of (Δn, ∂Δn) is trivial if k �= n and
any relative n-cycle is homologous to the identity map. Complete the proof of the previous
claim.

Now the argument for finite simplicial complexes goes by induction on the number of
simplices using the above claim and the long exact sequences of the pairs for both of these
homologies. For infinite complexes one uses the fact that homology comutes with direct
limits (see Appendix B).

Exercise 4.4.4. Complete the proof of the theorem.

Corollary 4.4.5. The ordered simplicial homology of a simplicial complex is identified with
the singular homology

Proof. By Theorem ?? the oriented simplicial homology is identified with the singular
homology and by Theorem 4.4.1 the ordered singular homology and the oriented singular
homology are identified.

4.5 DeRham Cohomology

In this section we will define a second cohomology theory, the DeRham cohomology of a
smooth manifold. Eventually we will prove what is known as DeRham’s theorem, which
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says that this cohomology agrees with the singular cohomology defined above for smooth
manifolds.

Differential forms give a contravariant functor from the category of smooth manifolds
and smooth maps to the category of real differential graded algebras.

M �→ Ω∗(M) = {
dimM
⊕

k=0
Ωk(M), d}

and,

(f : N →M) �→ (f∗ : Ω∗(M) → Ω∗(N))

In particular, these differential graded algebras are cochain complexes, and so we can apply
the cohomology functor. The composition of these functors gives a functor, the DeRham co-
homology functor, from the category of smooth manifolds and smooth maps to the category
of graded real vector spaces.

M �→ H∗
dR(M) = cohomology of Ω∗(M).

In fact, we have more. The differential graded algebra structure descends to a graded algebra
structure on cohomology. Given [α], [β] ∈ H∗

dR(M), choose closed form representatives α, β
for these cohomology classes, and consider α ∧ β. The Leibnitz rule tells us that this
is a closed form. We define [α] ∧ [β] = [α ∧ β]. We need to check that this definition
is independent of the closed form representatives that we use. So, if we have two other
representatives, α + dγ ∈ [α] and β + dμ ∈ [β], we need to show that,

[(α + dγ) ∧ (β + dμ)] = [α ∧ β + α ∧ dμ + dγ ∧ β + dγ ∧ dμ] = [α ∧ β]

This follows immediately from the following lemma.

Lemma 4.5.1. The wedge product of a closed from with an exact form is exact (and
therefore an exact form wedge a closed form is exact).

Proof. Suppose that α is a closed form i.e. dα = 0, and dμ is an exact form. Then
d(−1)|α|(α ∧ μ) = α ∧ dμ.

So, H∗
dR(M) is a graded comutative R-algebra, with,

[α] ∧ [β] = (−1)|α||β|[β] ∧ [α]

.
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4.5.1 Some Computations

Proposition 4.5.2.

H∗
dR({pt}) =

{
R ∗ = 0
0 otherwise

Proof. We have Ω0 = f : {pt} → R ∼= R and Ωk = 0 for k �= 0, and thus,

H∗
dR({pt}) =

{
R ∗ = 0
0 otherwise

A less trivial computation is the DeRham cohomology of the circle.

Proposition 4.5.3.

H∗
dR(S1) =

{
R ∗ = 0, 1
0 otherwise

Proof. We think of the circle as the quotient of the real line by translation by 2π.

S1 = R/(x � x + 2π)

So the 0-forms are 2π periodic smooth functions on R, and Ω1(S1) = {f(t)dt | f : R →
R is smooth and 2π periodic}. There are no differential forms on S1 of degree greater than
or equal to two.

Now, d(f(t)) = f ′(t)dt, so Ker(d) = {constant functions}. Thus H0
dR(S1) = R. Now,

given g(t)dt ∈ Ω1(S1), the fundamental theorem of calculus tells us that there exists a
function f : R → R, unique up to a constannt, such that f ′(t) = g(t); however, f may not
be periodic. The function f is obtained from g by integrating,

f(s) =
∫ s

0
g(t)dt.

So we see that f is periodic if and only if
∫ 2π

0
g(t)dt = 0. We have a homomorphism∫

: Ω1(S1)→ R given by ω �→
∫
S1 ω, where we define integration over the S1 by

∫
S1 g(t)dt =∫ 2π

0
g(t)dt where the latter is usual Riemannian integration. This is clearly an R-homomorphism,

and Im(d) = Ker(
∫

). Thus, the map
∫

is an isomorphism,

Ω1(S1)/Im(d)
R

−−−−→∼=
R
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and so we have,

H∗
dR(S1) =

{
R ∗ = 0, 1
0 otherwise

Exercise 4.5.4. Compute the deRham cohomology of the two torus, R2/Z.

4.6 Čech Cohomology

Čech cohomology, like singular cohomology, can be defined for any topological space X.
Initially, we define the Čech cohomology with respect to an open cover of X.

Definition 4.6.1. Let X be a topological space and {Uα}α∈A be an open cover of X. The
degree k Čech cochain group of X with respect to this open cover is defined to be

Čk(X; {Uα}α∈A) = {φ : {ordered k+1 tuples of A} → Z|φ satisfies properties 1 and 2 below}

1. φ(Uα(σ(0)), . . . , Uα(σ(k))) = (−1)|σ|φ(Uα(0), . . . , Uα(k)) for σ ∈ Σk+1.

2. φ(Uα(0), . . . , Uα(k)) = 0 if Uα(0) ∩ . . . ∩ Uα(k) = ∅.

If we fix a well ordering of A and consider the free abelian group Ck generated by
{α(0) < · · · < α(k)|Uα(0) ∩ . . . ∩ Uα(k) �= ∅} then Čk = Hom(Ck; Z). Thus, we see that like
the singular cochain groups, the Čech cochain groups are dual to free abelian groups.

Now we define the coboundary map δ : Čk(X; {Uα}) → Čk+1(X; {Uα} by,

δ(φ)(Uα(0), . . . , Uα(k+1)) =
k+1∑
i=0

(−1)iφ(Uα(0), . . . , Ûα(i), . . . , Uα(k+1))

This definition is understood to hold only in the case where Uα(0) ∩ . . . ∩ Uα(k) �= ∅. If
the intersection is empty then δ(φ)(Uα(0),...,Uα(k+1) = 0. Since δ is linear, it is an abelian
group homomorphism. Next we check that δ2 = 0, so we have defined a cochain complex.
Symbolically, the computation is very similar to the computations made for our previous
cochain complex constructions.

Proposition 4.6.2. δ2 = 0

Proof. Assume that Uα(0) ∩ . . . ∩ Uα(k+2) �= ∅.
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Then,

δ(δφ)(Uα(0) , . . . , Uα(k+2) =
k+2∑
i=0

(−1)iδφ(Uα(0) , . . . , Ûα(i), . . . , Uα(k+2))

=
k+2∑
i=0

(−1)i
[ i−1∑

j=0

(−1)jφ(Uα(0), . . . , Ûα(j), . . . , Ûα(i), . . . , Uα(k+2))

+
k+2∑

j=i+1

(−1)j−1φ(Uα(0), . . . , Ûα(i), . . . , Ûα(j), . . . , Uα(k+2))
]

= 0

Since in this sum, for a given pair a < b each term φ(Uα(0), . . . , Ûα(a), . . . , Ûα(b), . . . , Uα(k+2))
appears exactly twice and with cancelling signs.

Thus (Č∗(X; {Uα}), δ) forms a cochain complex. We define the Čech cohomology of
X with respect to the open cover {Uα} to be the cohomology of this cochain complex,
Ȟ∗(X; {Uα}) = H∗(Č∗(X; {Uα}), δ).

4.6.1 Some Computations

Proposition 4.6.3. Let X be any topological space and let {X} be the open cover consisting
of the single open set X. Then,

Ȟ∗(X; {X}) =

{
Z ∗ = 0
0 otherwise

Proof. Since there is only one set in our open cover, Č∗(X; {X}) = 0 for ∗ �= 0 and
Č0(X; {X}) = Z.

Proposition 4.6.4. Let X be any topological space and let {Uα}α∈A be an open cover
consisting of connected open sets. Then,

Ȟ0(X; {Uα}α∈A) = {φ : {components of X} → Z}

Proof. We have Č0(X; {Uα}α∈A) = ZA. Suppose that φ : A → Z is in Č0(X; {Uα}α∈A).
Then

δφ(Uα, Uβ) =

{
0 Uα ∩ Uβ = ∅
φ(α) − φ(β) Uα ∩ Uβ

Thus,

Ȟ0(X; {Uα}α∈A) = {φ : A→ Z|φ(α) = φ(β) if Uα∩Uβ �= ∅} = {φ : {components of X} → Z}
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Proposition 4.6.5. Let {Ij}tj=1 be an open cover of S1 by t open intervals so that each
interval Ii ∩ Ij = ∅ unless i = j, j + 1, j − 1 in cyclic order i.e. It+1 = I1. Then,

Ȟ∗(S1; {Ij}tj=1) =

{
Z ∗ = 0, 1
0 otherwise

Exercise 4.6.6. Prove this proposition.

4.6.2 Dependance on the Open Cover

Now we would like to remove the dependance of the Čech cohomology on the choice of an
open cover, so we have a topological invariant. Suppose that we have two open covers of
X, {Uα}α∈A and {Vβ}β∈B . We say that {Vβ}β∈B refines {Uα}α∈A if there is a function
r : B → A so that Vβ ⊂ Ur(β) for every β ∈ B. Such a function is called a refinement
function.

Theorem 4.6.7. Suppose that {Vβ}β∈B refines {Uα}α∈A. Let r : B → A be a refinement
function. Then r determines a cochain map r∗ : Č∗(X; {Uα}) → Č∗(X; {Vβ}). The induced
map on cohomology is independent of the choice of refinement function r.

Proof. Let φ ∈ Čk(X; {Uα}). Then we define r∗φ by,

r∗φ(Vβ(0), . . . , Vβ(k)) = φ(Urβ(0), . . . , Urβ(k))

assuming that Vβ(0)∩ . . .∩Vβ(k) �= ∅, in which case of course r∗φ(Vβ(0), . . . , Vβ(k)) = 0. Then
r∗φ ∈ Č∗(X; {Vβ}). We claim that this defines a cochain map. We have,

δ(δ(r∗φ))((Vβ(0), . . . , Vβ(k)) =
k+1∑
i=0

(−1)ir∗φ(Vβ(0), . . . , V̂β(i), . . . , Vβ(k+1))

=
k+1∑
i=0

(−1)iφ(Urβ(0), . . . , Ûrβ(i), . . . , Urβ(k+1))

= δφ(Urβ(0), . . . , Urβ(k))

= r∗δφ((Vβ(0), . . . , Vβ(k))

Thus, we have an induced map on cohomology, r∗Ȟ∗(X; {Uα}) → Ȟ∗(X; {Vβ}). Now,
suppose that s : B → A is another refinement map. We use r and s to define a cochain
homotopy H(r,s) : Čk(X, {Uα}) → Čk−1(X, {Vβ}) such that δH(r,s) + H(r,s)δ = s∗− r∗, and
thus r∗ = s∗ on cohomology.

Given φ ∈ Čk(X, {Uα}) define

H(r,s)φ(Vβ(0), . . . , Vβ(k−1)) =
k−1∑
i=0

(−1)iφ(Urβ(0), . . . , Urβ(i), Usβ(i), . . . , Usβ(k−1))

59



Then we have,

(δH)(φ)(Vβ(0) , . . . , Vβ(k)) =
k∑

i=0

(−1)iHφ(Vβ(0), . . . , V̂β(i), . . . , Vβ(k))

=
k∑

i=0

(−1)i
[ i−1∑

j=0

(−1)jφ(Urβ(0), . . . , Urβ(j), Usβ(j), . . . , Ûsβ(i), . . . , Usβ(k))

+
k∑

j=i+1

(−1)j−1φ(Urβ(0), . . . , Ûrβ(i), . . . , Urβ(j), Usβ(j), . . . , Usβ(k))
]
.

and,

(Hδ)(φ)(Vβ(0) , . . . , Vβ(k)) =
k∑

j=0

(−1)jδφ(Urβ(0), . . . , Urβ(j), Usβ(j), . . . , Usβ(k))

=
k∑

j=0

(−1)j
[ j∑

i=0

(−1)iφ(Urβ(0), . . . , Ûrβ(i), . . . , Urβ(j), Usβ(j), . . . , Usβ(k))

+
k∑

i=j

(−1)i+1φ(Urβ(0), . . . , Urβ(j), Usβ(j), . . . , Ûsβ(i), . . . , Usβ(k))
]
.

Thus,

(δH + Hδ)φ(Vβ(0), . . . , Vβ(k)) =
k∑

j=0

(−1)j
[
(−1)jφ(Urβ(0), . . . , Urβ(j−1), Usβ(j), . . . , Usβ(k))

+ (−1)j+1φ(Urβ(0), . . . , Urβ(j), Usβ(j+1), . . . , Usβ(k))
]

This sum telescopes leaving,

(δH + Hδ)φ(Vβ(0), . . . , Vβ(k)) = φ(Usβ(0), . . . , Usβ(k))− φ(Urβ(0), . . . , Urβ(k))

Now, let X be a topological space, and let O be the set of all open covers of X. We
make O into a directed set using the partial order {Uα}α∈A ≤ {Vβ}β∈B if {Vβ}β∈B refines
{Uα}α∈A. You can easily check that this relation makes O a poset. To see that it is directed,
given two open covers {Uα}α∈A and {Vβ}β∈B , the open cover {Uα ∩ Vβ}(α,β)∈A×B refines
both of them.

For any open cover o ∈ O we have Ȟ∗(X; o), and if o ≤ o′ we have a map r∗o,o′ :
Ȟ∗(X; o) → Ȟ∗(X; o′). Furthermore, if o ≤ o′ ≤ o′′ are open covers of X, then r∗o′,o′′ ◦r∗o,o′ =
r∗o,o′′ . Thus, {Ȟ∗(X, o), r∗o,o′}o∈O is a directed system of graded abelian groups and graded
group homomorphisms.
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Definition 4.6.8. The Čech cohomology groups of a space X are defined to be Ȟ∗(X) =
lim−→
o∈O
{Ȟ∗(X, o), r∗o,o′}

Theorem 4.6.9. Ȟ∗(S1) ∼= Ȟ∗(S1; {Ij}tj=1) where {Ij}tj=1 is the open cover of proposition
4.6.5 and the isomorphism is induced by the natural inclusion.

Proof. Covers of this type are cofinal in the set of all open covers of S1. Now use
compactness and a Lebesgue number argument along with the following claim to complete
the proof.

Claim 4.6.10. If {Ij}nj=1 ≤ {I ′l}ml=1 then Ȟ∗(S1; {Ij}nj=1) ∼= Ȟ∗(S1; {I ′l}ml=1), where the
isomorphim is the map induced by any refinement map.

4.6.3 Connection with oriented simplicial cohomology

We will show that the Čech cohomology of a space with respect to an open cover is the
oriented simplicial cohomology of some simplicial complex associated to the open cover.
Given a topological space X and an open cover {Uα}α∈V , we define a simplicial complex
K = Nerve({Uα}α∈V) called the nerve of the open cover. We assume that the open cover
does not contain the empty set. The vertices of K are given by the index set of the open
cover, V . Then S ∈ 2V \ {∅} is a simplex of K iff |S| < ∞ and

⋂
α∈S

Uα �= ∅.

U1

U2

U3

V1 V2

V3

V4

Nerve(U)

Nerve(V)

Figure 13: The nerves of two open covers

Now, suppose that we have two open covers {Uα}α∈V and {Vβ}β∈V ′ of X, such that
{Vβ}β∈V ′ is a refinement of {Uα}α∈V . Let r : V ′ → V be a refinement map. Then for a sim-
plex S′ ⊂ 2V ′

in Nerve({Vβ}β∈V ′), we see that r(s′) ⊂ 2V is a simplex in Nerve({Uα}α∈V ).
Thus, r induces a map between the nerves of the open covers and therefore induces a map
r∗ : H∗

or(Nerve(V )) → H∗
or(Nerve(V ′)).
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Theorem 4.6.11. The Čech cochains with respect to an open cover U are identified with
(C∗

or(Nerve(U)).

Proof. This is true at the chain level, and the boundary maps are exactly the same.
Consider ρ ∈ Ci

or(Nerve(U). Then ρ evaluates on [σ, oσ ] to give an integer, where σ is
an i-simplex of Nerve(U ), with the property ρ([σ, oσ ]) = −ρ([σ,−oσ]. An element φ ∈
Či(X;U) evaluates on an i-tuple of open sets in U to give an integer with the properties
that φ(Uα(1), . . . , Uα(i)) = 0 if ∩i

j=1Uα(j) = ∅, and if we change the order of the open
sets by a permutation then the value of φ changes by the sign of that permutation, i.e.
φ(Uα(1), . . . , Uα(i)) = sign(π)φ(Uα(π(1)), . . . , Uα(π(i))) for π ∈ Σn+1.

Corollary 4.6.12. The Čech cohomology of an open cover is the singular cohomology of
the geometric realization of the nerve of the open cover.

Theorem 4.6.13. Let K be a simplicial complex. The Čech cohomology of K is identified
with the singular cohomology of |K| in a manner compatible with simplicial mappings.

Proof. Given a simplicial complex K we define an open covering {Uv} of |K| whose open
sets are indexed by the vertices of K. For a vertex v of K we consider the open star Uv.
This is the union of all open simplices of |K| whose closures contain v. It is easy to see that
Uv is an open subset of |K| and that the Uv give an open covering of |K|. Furthermore,
Uv1 ∩ · · · ∩ Uvk

is non-empty if and only if the vertices v1, . . . , vk span a simplex σ of K.
Thus, the nerve of this covering is identified with the original simplicial complex K. Hence,
the Čech cohomology of this open covering is identified with the simplicial cohomology of
K.

Now the open coverings of |K| that arise from the above construction applied to simpli-
cial subdivisions of K form a cofinal set of open coverings of |K|. The cohomology of each
of these coverings is identified with the cohomology of the simplicial complex and hence
with the singular cohomology of |K|. These identifications are compatible with refinement
maps of the open coverings, proving that the Čech cohomology of |K| is identified with the
singular cohomology of |K|.

If ϕ : L → K is a simplicial mapping, then it induces a continuous mapping |ϕ| : |L| →
|K|. The open covering of |K| by open stars of vertices of K pulls back to an open covering
of |L| which is refined by the open covering of |L| by the open stars of its vertices. Hence,
there is an induced mapping between the nerves of these coverings which is clearly ϕ. Thus,
the map induced on Čech cohomology by |ϕ| agrees with the map induced by ϕ on simplicial
cohomology, and hence the map induced by |ϕ| on singular cohomology.

Exercise 4.6.14. Establish that the open stars Uv are open subsets of |K| and their union
as v ranges over all vertices of K is an open covering of |K|. Show that Uv1 ∩ · · · ∩Uvk

�= ∅
if and only if v1, . . . , vk span a simplex of K. Show that the collection of all such open
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coverings of |K| associated to all subdivisions of K form a cofinal sequence of open covers
of |K|. Lastly, show that if K ′ is a subdivision of K and if {Uv′} and |{Uv} are the open
coverings associated to these two simplicial complexes, then a refinement map is determined
by a simplicial map K ′ → K which sends each vertex v′ of K ′ to some vertex of the closed
simplex of |K| that contains v′. Show that any such simplicial map induces a continuous
map on the geometric realizations |K ′| → |K| that is homotopic to the identity. Show also
that the induced mapping on Čech cohomology is compatible with the given identifications
of the Čech cohomology with the simplicial cohomology.

4.6.4 The Axioms for Čech Cohomology

Dimension Axiom: We have already seen that the Čech cohomology of a point is a Z in
degree zero and zero in all other degrees, so the dimension axiom holds for Čech cohomology.
Relative Čech Cohomology and the Long Exact Sequence of a Pair: If (X,A) is
a pair of spaces, then any open covering of X induces one of A with index set consisting
of the open subsets in the covering of X that meet A. There is clearly an inclusion of the
nerve of the induced open covering of A as a subcomplex of the nerve of the open covering
of X, and hence an induced surjective mapping from the Čech cochains of X with respect
to this open covering to the Čech cochains of A with respect to the induced open covering
of A. The relative Čech cochains of (X,A) with respect to the given open covering are the
complex of the kernels of these surjective restriction mappings. With this definition, we
have a long exact sequence of the pair for the Čech cohomology with respect to the given
open covering.

As we pass from a covering to a refinement, this construction is natural. Taking the
direct limit defines the relative Čech cohomology of the pair. Since homology commutes
with direct limits, it is easy to see that there is a long exact sequence of the pair in Čech
cohomology that is natural with respect to maps of pairs.
Mayer-Vietoris:
Excision:
Homotopy Axiom:

4.7 Group Cohomology

Let G be a group, A an abelian group and G×A→ A an action i.e. ρ : G → Aut(A). We
define a cochain complex with the k-th cochain group the set of all functions from k-tuples
of elements in G to A, Ck(G;A) = {φ : G × · · · × G → A}. These make a group under
addition. The coboundary map is given by

δ(φ)(g0, . . . , gk) = g0φ(g1, . . . , gk) +
k+1∑
i=1

(−1)iφ(g0, . . . , (gi−1gi), gi+1, . . . , gk),

where by convention the k + 1 term in the sum is (−1)k+1φ(g0, . . . , gk−1).
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To give us some intuition for the definition of this coboundary map we first think of
a group as a category, and then given a category we associate a quotient of a simplicial
complex. We will show that the coboundary map given above corresponds closely to the
usual boundary of this geometric object. Given a group G, the group can be thought of as
a category with a single object {∗}, and Hom({∗}, {∗}) = G. Given a category we associate
a geometric object XG with a vertex for every object in the category and an oriented edge
for each morphism starting at the initital object (i.e. the domain) of the morphism and
ending at the terminal object (i.e. the range) of the morphism. XG contains a 2-simplex
everytime we have three edges making a commutative triangle. For higher dimensional
simplices, every time XG contains the boundary of an n-simplex, then the n-simplex is also
included.

In this geometric construction an n-simplex represents a chain of compositions,

· g1−−−−→ · g2−−−−→ · g3−−−−→ · · · gn−−−−→ ·
If we consider the usual boundary of this simplex, ∂(Δn) = f0 − f1 + f2 − · · · ± fn, we
see that this corresponds to the coboundary map given above, with the only change being
the additional action of g0 on the first term. This makes it clear that δ2 = 0, and we
have defined a cochain complex. We define H∗(G;A) to be the cohomology of this cochain
complex.

Lets examine these cohomology groups in low dimensions. The 0-cocycles are functions
from 0-tuples of elements in G to A, i.e. just elements in A, with the property that
δ(a)(g) = ga − a = 0 for a ∈ A, g ∈ G. So δ(a) = 0 iff a ∈ AG, the set of elements fixed
under the action of G. Thus, H0(G;A) = AG.

Now lets consider the 1-cochains. These are maps φ : G → A with δ(φ)(g0, g1) =
g0φ(g1) − φ(g0g1) + φ(g0) = 0. That is φ(g0g1) = g0φ(g1) + φ(g0). Such a map is called a
crossed homomorphism. Thus, H1(G;A) is the crossed homomorphisms modulo the trivial
crossed homomorphisms, φa(g) = ga− a.

4.7.1 Group Cohomology and Group Extensions

Let A be an abelian group and G × A → A an action of G with values in A. We wish to
classify exact sequences

{1} −−−−→ A −−−−→ H −−−−→ G −−−−→ {1}

of G by A with the proviso that the action of G on A is the given one. That is, the action
of G on A given by lifting an element g ∈ G to hg ∈ H and then conjugating, a �→ hgah−1

g

is the given action. The notion of isomorphism is the natural one – isomorphism of the
middle extension groups that induces the identity of A to itself and induces the identity on
the quotient G.

{1} −−−−→ A −−−−→ H −−−−→ G −−−−→ {1}

id

⏐⏐� ⏐⏐�∼= ⏐⏐�id

{1} −−−−→ A −−−−→ H ′ −−−−→ G −−−−→ {1}
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Given such an extension ext we define a 2-cochain on G with values in A by choosing
arbitrarily for each g ∈ G liftings hg ∈ H projecting to g ∈ G. We do this so that the lifting
of the identity element is the identity element of H and so that hg−1 = (hg)−1. Then

ext(g1, g2) = hg1hg2(hg1g2)
−1.

We claim that ext is a cocycle. For this we compute:

δ(ext)(g1, g2, g3) = g1ext(g2, g3)− ext(g1g2, g3) + ext(g1, g2g3)− ext(g1, g2)

=
(

hg1hg2hg3h
−1
g2g3

h−1
g1

)(
hg1g2hg3h

−1
g1g2g3

)−1(
hg1hg2g3h

−1
g1g2g3

)(
hg1hg2h

−1
g1g2

)−1

=
(

hg1hg2hg3h
−1
g2g3

h−1
g1

)(
hg1hg2g3h

−1
g1g2g3

)(
hg1g2g3h

−1
g3

h−1
g1g2

)(
hg1g2h

−1
g2

h−1
g1

)
= 1 ∈ H

We made a choice of our lift in H. Suppose we vary this choice by hg � ψ(g)hg for some
ψ(g) ∈ A. How does this affect our cocycle? We had ext(g1, g2) = hg1hg2(hg1g2)

−1. Now,
we have,

ext′(g1, g2) = ψ(g1)hg1ψ(g2)hg2(ψ(g1g2)hg1g2)
−1

Notice that hg1ψ(g2) = (hg1ψ(g2)h−1
g1

)hg1 = g1ψ(g2)hg1 . So,

ext′(g1, g2) = ψ(g1)g1ψ(g2)hg1hg2h
−1
g−1g2

ψ(g1g2)−1

= ψ(g1)g1ψ(g2)ψ(g1g2)−1ext(g1, g2)

which we can write additively as,

ext(g1, g2) + δext(g1, g2).

So, a choice of lift determines a cocycle, and varying the lifts adds a coboundary. Thus
the invariant of the extension is a class [ext(H)] ∈ H2(G;A). We call this the extension
clas. Furthermore, if two extensions are isomorphic, then the extension classes are equal in
H2(G;A).

Theorem 4.7.1. H2(G;A) classifies extensions up to isomorphism, i.e. two extensions are
isomorphic if and only if they have the same extension class and every cohomology class
occurs as an extension class.

Proof. Suppose we have two extensions, H and F such that [ext(H)] = [ext′(F )] ∈
H2(G;A). Choose lifts {hg}g∈G ∈ H and {fg}g∈G ∈ F that give ext, ext′ ∈ Z2(G;A)
respectively. Our hypothesis that [ext] = [ext′] ∈ H2(G;A) implies that ext′ = ext + δψ
for some ψ : G → A. Now, we use {ψ(g)hg}g∈G as lifts. With this new choice of lifts,
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ext = ext′ ∈ Z2(G;A). Define a map ρ : H → F by ahg �→ afg. We will show that this
map is a homomorphism, and thus an isomorphism (by the five-lemma). First,

ρ[(ahg1)(bhg2)] = ρ(a(g1b)hg1hg2)
= ρ(a(g1b)ext(g1, g2)hg1g2)
= a(g1b)ext(g1, g2)f(g1g2)

On the other hand, we have,

ρ(ahg1)ρ(bhg2) = afg1bfg2

= a(g1b)fg1fg2

= a(g1b)ext(g1, g2)fg1g2

And, thus, ρ[(ahg1)(bhg2)] = ρ(ahg1)ρ(bhg2). So, we have shown that two extensions are
isomorphic if and only if they have the same extension class. Now we show that every
cohomology class occurs as an extension class.

Given ϕ ∈ Z2(G;A) we want to give a group structure to the set Γϕ = {(a, g)|a ∈ A, g ∈
G}. We define the multiplication map as follows, writing additively in A,

(a, g1)(b, g2) = (a + (g1b) + ϕ(g1, g2), g1g2)

We claim that this gives a group structure on Γϕ. The identity element is (−ϕ(e, e), e). In
order to show this, we first show that ϕ(e, g) is independent of g.

δϕ(e, g1, g2) = 0
= e(ϕ(g1, g2))− ϕ(g1, g2) + ϕ(e, g1g2)− ϕ(e, g1)

And thus,
ext(e, g1g2) = ϕ(e, g1).

Now to check that (−ϕ(e, e), e) acts as the identity,

(−ϕ(e, e), e)(a, g) = (−ϕ(e, e) + (ea) + ϕ(e, g), eg)
= (a− ϕ(e, e) + ϕ(e, g), g)
= (a, g)

Now, we show that this multiplicative structure is associative.(
(a, g1)(b, g2)

)
(c, g3) = (a + (g1b) + ϕ(g1, g2), g1g2)(c, g3)

= (a + (g1b) + ϕ(g1, g2) + (g1g2)c + ϕ(g1g2, g3), (g1g2)g3)
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and,

(a, g1)
(

(b, g2)(c, g3)
)

= (a, g1)(b + (g2c) + ϕ(g2, g3), g2g3)

= (a + (g1((b + (g2c) + ϕ(g2, g3)) + ϕ(g1, g2g3), g1(g2g3))
= (a + (g1b) + g1(g2c) + g1ϕ(g2, g3) + ϕ(g1, g2g3), g1(g2g3))

By the associativity of G, (g1g2)g3 = g1(g2g3), so we need to show,

a+(g1b)+ϕ(g1, g2)+(g1g2)c+ϕ(g1g2, g3) = a+(g1b)+g1(g2c)+g1ϕ(g2, g3)+ϕ(g1, g2g3), g1(g2g3)).

So, it is enough to show that,

ϕ(g1, g2) + ϕ(g1g2, g3) = g1ϕ(g2, g3) + ϕ(g1, g2g3).

But this is exactly the cocycle condition for ϕ,

δ(ϕ)(g1, g2, g3) = g1ϕ(g2, g3)− ϕ(g1g2, g3) + ϕ(g1, g2g3)− ϕ(g1, g2) = 0.

Finally, to find inverses, suppose that (a, g)(b, g−1) = (−ϕ(e, e), e). Then,

(a + (gb) + ϕ(g, g−1), e) = (−ϕ(e, e), e).

So,
(a + (gb) + ϕ(g, g−1) = −ϕ(e, e).

And thus,

b = g−1

(
− ϕ(e, e) − ϕ(g, g−1)− a

)
.

So, Γϕ is a group and we have the extension,

{1} −−−−→ A −−−−→ Γϕ −−−−→ G −−−−→ {1}

Finally, we claim that [ext(Γϕ)] = [ϕ] ∈ H2(G;A).

4.7.2 Group Cohomology and Representation Varieties

Let ρ : G → Aut(V n) be a representation of G. Then we have the adjoint representation
ad(ρ) : G → Aut(End(V n)) given by

ad(ρ)(g)(α) = (ρ(g))α(ρ(g)−1).

A deformation of the represntation ρ is a family of maps ρt : G → Aut(V ), varying
continuosly with t ∈ [0, ε] such that ρ0 = ρ and ρt is a homomorphism for all t.
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We claim that the infinitesimal deformations of ρ modulo conjugtaion deformations
are given by H1(G; End(V )), where the action is ad(ρ). Let α : G → End(V ). Then
ρt(g) = exp(tα(g))ρ(g). The homomorphism condition says,

ρt(g1g2) = exp(tα(g1g2))ρ(g1g2)
= ρt(g1)ρt(g2)
= exp(tα(g1))ρ(g1)exp(tα(g2))ρ(g2)

But now,

ρt(g1g2) = exp(tα(g1g2))ρ(g1g2) = exp(tα(g1))ρ(g1)exp(tα(g2))ρ(g1)ρ(g2)

So, if ρt is a homomorphism,

exp(tα(g1g2)) = exp(tα(g1))ρ(g1)exp(tα(g2)),

and thus,
α(g1g2) = α(g1) + ρ(g1α(g2)).

That is, α is a crossed homomorphism. The representation variety, Hom(G,Aut(V )) is an
algebraic subvariety of

Hom(G,Aut(V )) ⊂ [Aut(V )]G =
∏
g∈G

Aut(V ).

If ρ ∈ Hom(G,Aut(V )), then we have the Zariski tangent space at ρ, Tρ Hom(G,Aut(V )).

Claim 4.7.2. The Zariski tangent space of the representation variety is isomorphic to
Z1(G,End(V )).

Suppose ρ : [0, ε) → Hom(G,Aut(V )) such that ρ(0) = ρ0. Then by the Leibniz rule,

ρ′(g1g2) = ρ′(g1)g2 + g1ρ
′(g2).

If τg ∈ End(V ), then we can write this as,

τg1g2g1g2 = τg1g2g1 + τg2g1g2

and thus,
τg1g2g1g2 = τg1g2g1 + τg2g1g2

and we obtain,
τg1g2 = τg1 + g1 ∗ τg2,

which is exactly the cocylce condition. So, Z1(G;End(V )) = Tρ Hom(G,Aut(V )). Now,
for conjugation, ρt(g) = (gtρg−1

t )′t=0. Let g′ = τ ∈ End(V ). Then,

ρ′0(g) = τρ(g)− ρ(g)τ = τρ(g)− (ρ(g) ∗ τ)ρ(g),

and thus,
τ − (ρ(g) ∗ τ)

and this is the trivial crossed homomorphism.
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5 Sheaves

We begin with the notion of a presheaf. Let X be a topological space. Then we have the
category Open(X) with objects the open sets of X and Hom(U, V ) = {i : U ↪→ V } if U ⊂ V
and Hom(U, V ) = ∅ otherwise. A presheaf A is a contravariant functor from the category
Open(X) to the category of groups, abelian groups, rings, R-modules, or k-algebras. For
simplicity, we will work with presheaves (sheaves) of abelian groups unless explicitly stated
otherwise, but the reader should keep in mind how our statements apply to other categories.
So, for each open set U ⊂ X we have an abelian group A(U). Elements of this group are
called the sections of the presheaf over U . If U ⊂ V , then we have a homomorphism
rV,U : A(V ) → A(U). This map is called the restriction of the sections over V to the
sections over U , and if U ⊂ V and s ∈ A(V ), we frequently write s|U for rV,U (s). Since
we require the presheaf to be a functor, the restriction mappings must satisfy the usual
functorial properties, i.e. rU,U = IdA(U) and when U ⊂ V ⊂ W then rV,U ◦ rW,V = rW,U .

A sheaf is a presheaf which satisfies the following two conditions known as the sheaf
axioms.

Sheaf Axiom 1
If U =

⋃
α

Uα with Uα ⊂ X open, and s, t ∈ A(U) are sections over U such that s|Uα = t|Uα

for all α then s = t.

Sheaf Axiom 2
Let {Uα} be a collection of open sets in X and let U =

⋃
α

Uα. If sα ∈ A(Uα) are given so

that sα|(Uα ∩ Uβ) = sβ|(Uα ∩Uβ) for every α and β, then there is a section s ∈ A(U) with
s|Uα = sα for each α.

The sheaf axioms can be put more consicely by ordering the index set and then saying
that the following sequence is exact.

0 −−−−→ A(U)
f−−−−→

∏
α

A(Uα)
g−−−−→

∏
α<β

A(Uα ∩ Uβ)

where U =
⋃
α

Uα and f is given by s �→
∏

s|Uα for s ∈ A(U), and g is given by

{sα} �→
∏

α<β{sα|Uα ∩ Uβ − sβ|Uα ∩ Uβ} for sα ∈ A(Uα). It is a simple exercise to check
that the exactness of this sequence is equivalent to the two sheaf axioms.

A sheaf on X is said to be a sheaf of groups, abelian groups, rings, R-modules, or k-
algebras if the functor describing the underlying presheaf is a functor from the category of
open subsets of X to the category of groups, rings, R-modules, or k-algebras. This means
that the sections over any open subset of X carries the corresponding algebraic structure
and that the restriction mappings are morphisms of these structures. Notice that in all
these cases if the sheaf axioms hold for the underlying presheaf of sets making the presheaf
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a sheaf of sets then the axioms hold in the algebraic category as well and we have a sheaf
with the corresponding algebraic structure. This, however, is not always true. For example,
this may not be true if the underlying presheaf is a functor to the category of topological
spaces.

Exercise 5.0.3. Define a presheaf in the category of topological spaces and show that a
presheaf in this category may determine a sheaf of sets without being a sheaf of topological
spaces.

5.1 Examples of Sheaves

5.1.1 Structure Sheaves

Let X be a topological space. We define a sheaf of R-algebras C0(X) over X. The sections
C0(U) over an open subset U ⊂ X are the continuous real-valued functions on U . For an
inclusion V ⊂ U of open subsets of X, the mapping C0(U) → C0(V ) is the usual restriction
mapping on continuous functions. Clearly, this is a functor: identities go to identities and
composition is preserved. Also, since a function is determined by its values, if {Ui} is an
open covering of U then an element f ∈ C0(U) is completely determined by its restrictions
fi = f |Ui. Since continuity is a local property, given functions fi ∈ C0(Ui) they patch
together to form an element f ∈ C0(U) whose restriction to Ui is fi if and only if for every
pair of indices i, j, we have fi|Ui∩Uj = fj|Ui∩Uj . These are exactly the axioms that are
required for C0(X) to be a sheaf. It is the structure sheaf of the topological space X.

Let M be a smooth manifold. We define a sheaf of R-algebras C∞(M), the sheaf of
smooth functions on M as follows. The sections C∞(U) over an open subset U ⊂ M
are the smooth functions on U . For an inclusion V ⊂ U of open subsets of M , the map
rU,V C∞(U) → C∞(V ) is the usual restriction mapping. This clearly defines a functor, i.e.,
a presheaf. Again, since functions are determined by their values and smoothness is a local
condition, it follows that the sheaf axioms hold for this sheaf. It is the structure sheaf of
the smooth manifold M . Notice that C∞(M) is a subsheaf of C0(M), which means that for
each open subset U we have C∞(U) ⊂ C0(U) in a manner compatible with the restriction
mappings.

Now let M be a real analytic manifold. This means that M is covered by coordinate
charts identified with open subsets of Rn in such a way that the overlap functions are real
analytic. On such manifolds we have the notion of a function f : M → R being real analytic.
This simply means that when restricted to any of the real analytic charts it becomes a real
analytic function on the given open subset of Rn. This notion of course makes sense for
any open subset of M . In this case, we have the structure sheaf of R-algebras Cω(M) of
real analytic functions on M . It associates to an open set U the R-algebra of real analytic
functions on U , with restriction being the usual restriction mapping. The sheaf axioms are
a consequence of the fact that a function is determined by its values and a function on a
real analytic manifolds is real analytic if and only if it is real analytic in a neighborhood of
every point. When M is a real analytic manifold we have Cω(M) ⊂ C∞(M) ⊂ C0(M).
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Now let M be a complex analytic manifold. Its structure sheaf is the sheaf of C-algebras
which associates to each open subset U ⊂ M the C-algebra of complex-valued, complex
analytic functions. The restriction mapping is the usual one. Again the sheaf axioms
for this presheaf hold because a function is determined by its values and a function on a
complex analytic manifold is complex analytic if an only if it is complex analytic in some
neighborhood of each of its points.

5.1.2 Schemes

Now let us give a related, but somewhat different example of a structure sheaf. Let k be a
field and let X ⊂ kn be an affine algebraic variety defined over k. This means that there is
a prime ideal IX in the polynomial ring k[x1, . . . , xn] consisting of all functions vanishing
on X. (Strictly speaking it is the ideal, not the subset that is most important – one gives
a variety by giving the ideal.) The coordinate ring k[X] of the variety is the quotient ring
k[x1, . . . , xn]/IX . Since we assumed that IX is a prime ideal, it follows that k[X] is an
integral domain. It is the ring of regular functions on the variety X.

In this case one works in the Zariski topology rather than a classical topolgy. The space
is denoted Spec(k[X]), and is called the spectrum of k[X]. Its points in the space are the
subvarieties of X, or equivalently, the prime ideals in k[X]. The topology is defined by
specifying the closed subsets. For any point Y ∈ Spec(k[X]) is a prime ideal IY ⊂ k[X].
We consider all prime ideals IZ ∈ Spec(k[X]) which contain IY . (In terms of subvarieties,
this means that Z ⊂ Y .) In any event, the union of all such IZ containing IY is defined to
be a closed subset in the Zariski topology, the closed subset of all subvarieties of Y . The
general closed subset is a finite union of these basic closed sets associated to subvarieties.
It is easy to check that this defines a topology. The maximal ideals are called the closed
points of Spec(k[X]). Indeed:

Exercise 5.1.1. Show that closed points are the only points of Spec(k[X]) which are closed
subsets in the Zariski topology.

This indicates a defect of the Zariski topology – it is not Hausdorff, and indeed points
are not closed.

Exercise 5.1.2. Show that any two open sets in the Zariski topology have a non-empty
intersection.

For example if C ⊂ C2 is an algebraic curve defined by a single irreducible polynomial
equation, then the closed subsets of C are C itself and finite subsets of C. The open sets
are then the empty set and complements of finite subsets. In particular, any two non-empty
open subsets have non-empty intersection. This is true in general in the Zariski topology.

Now suppose p ∈ Spec(k[X]) is a point. Then we form the localization k[X](p) of k[X]
at p. By definition this is the ring obtained by inverting all elements g ∈ k[X] which do
not vanish along the variety Yp associated to p, i.e., do not belong to p. The elements of
this ring are represented by formal fractions f/g where g �∈ p. Two such, f1/g1 and f2/g2,
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are identified if f1g2 = f2g1 in k[X]. One sees easily that k[X] ⊂ k[X](p). More generally,
if Z ⊂ Y are subvarieties (this means that if q and p are the prime ideals associated to
Z and Y , respectively, then we have p ⊂ q), then k[X](q) ⊂ k[X](p). In the special case
when Y = X, (i.e., p = 0, this localization is the quotient field k(X) of k[X], and all
the intermediate localizations are subrings of k(X) containing k[X]. Now we define the k-
algebra of sections of the structure sheaf over an open subset U ⊂ Spec(k[X]). We consider
all functions ϕ : U →

∐
p∈U k[X]p satisfying two properties:

1. For every p ∈ U we have ϕ(p) ∈ k[X](p).

2. For every p ∈ U there is an open neigborhood V of p in U and elements f, g ∈ k[X]
such that for every q ∈ V we have g �∈ q and ϕ(q) = [f/g] in k[X](q).

In words, over U we consider functions of the form f/g, with f, g ∈ k[X], where g doesn’t
vanish at any point of U , i.e., g is not contained in any prime ideal which is a point of U .
The restriction function is defined in the obvious way. Clearly, this gives us a presheaf of
k-algebras over Spec(k[X]). Since this construction defines a section of the presheaf over
U in terms of its values at all the points of U , it is clear that the first sheaf axiom holds.
Secondly, the set of functions that we consider are also determined locally, that is to say if
a function on U satisfies a the property to be a section of the presheaf in a neighborhood
of every point of its domain then it is a section of the presheaf over its entire domain. This
implies the second sheaf axiom. This is the structure sheaf of this affine variety.

Exercise 5.1.3. The above definition extends from affine varieties defined over fields to
arbitrary commutative rings with unit. Let R be such a ring. Define Spec(R) with its Zariski
topology and define the structure sheaf over Spec(R) generalizing the definitions above when
R = k[X]. These objects, the spectrum of a ring with its Zariski topology and its structure
sheaf is called an affine scheme. Describe this data in the case R = Z.

5.1.3 Pushforward Sheaves

Supppose that f : X → Y be a continuous map between topological spaces and let ξ be a
sheaf of abelian groups on X. We define the pushforward f!(ξ), a sheaf on Y as follows.
The sections of f!(ξ) over an open subset U ⊂ Y are the sections of ξ over f−1(U) ⊂ X.
The restriction mappings are the natural ones. Clearly, f!(ξ) is a functor from the category
of open subsets of X to abelian groups. Since the two sheaf axioms hold for ξ, it is
straightforward to see that they also hold for f!(ξ).

Exercise 5.1.4. Show that the sheaf axioms hold for f!(ξ).

As an example, let f : M → N be a smooth map betwen smooth manifolds. For each
k ≥ 0 we have f!Ωk(M) which assigns to an open subset U ⊂ N the smooth k-forms on
f−1(U) ⊂ M .
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5.1.4 Constant Sheaves

Let A be an abelian group and let X be a topological space. The constant sheaf over X
with values in A is a sheaf of abelian groups whose value over an open subset U ⊂ X is
the set of locally constant functions from U to A, i.e., an assignment of an element of A to
each connected component of U . Restriction is the obvious one. Since this is a presheaf of
functions, it satisfies the first sheaf axiom. As to the second, a locally constant function is
locally constant if and only if it is locally constant in a neighborhood of each point. From
this, one easily establishes the second sheaf axiom.

Exercise 5.1.5. Show that if we replace ”locally constant” by ”constant” in the above
definition then the result is a preshaef that is not a sheaf.

5.1.5 Locally Constant Sheaves

A sheaf ξ on X is said to be locally constant if in a neighborhood of each point x ∈ X it is
isomorphic to a constant sheaf. That is to say, there is an open covering {Uα} of X such
that the restriction of ξ to each Uα is isomorphic to a constant sheaf on Uα.
Example: Suppose that X̃ is a topological space with a free, properly discontinuous action
of a discrete group G. Denote the quotient X = X̃/G. Suppose that G acts as on an abelian
group A. Then there is an action of G on the trivial sheaf on X̃ with values in A covering
the given action of G on X̃ . The quotient is a sheaf of X which is locally isomorphic to
the trivial sheaf on X with coefficients in A. In fact for any open subset U ⊂ X which lifts
to X̃, any such lifting determines an isomorphism from the quotient sheaf over U to the
original trivial sheaf over the image on U in X̃ .

5.1.6 Sections of Vector Bundles.

Let X be a topological space and E → X a real vector bundle. Then we have the sheaf
of sections of E. This is a sheaf of R-vector spaces. The sections of the sheaf over an
open subset U consist of the R-vector space of sections of E|U . Restriction is the obvious
one. Again the sheaf axioms are straightforward to establish. Notice that this sheaf is a
module over the sheaf of continuous functions in the sense that for each open set U ⊂ X,
the sections of E|U are a module over C0(U) and these module structures are compatible
under restriction.

If M is a smooth manifold and E → M is a smooth vector bundle, then we have the
sheaf of smooth sections of E, which form a sheaf of R-vector spaces which are modules
over the sheaf C∞(M). Similarly, if M is real or complex analytic and E →M is a real or
complex analytic bundle we have the sheaf of real or complex analytic sections which form
modules over the sheaf of real or complex analytic functions on M .

5.2 Basic Constructions with Sheaves

The presheaves of abelian groups over X form a category. A morphism ϕ : F → G is a
collection of homomorphisms ϕ(U) : F (U) → G(U) for each open subset U ⊂ X which are
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compatible with the restriction mappings of F and G. Clearly there are identity morphisms
and composition of morphisms so that we have indeed formed a category. In fact, this is an
abelian category. The morphisms from F to G form an abelian group in the obvious way,
and the kernel and cokernels of a morphism of presheaves is simply the family of kernels
and cokernels of the ϕ(U) as U varies over the open subsets of X.

Inside this category there is the full subcategory of sheaves. The objects of this subcat-
egory are the presheaves satisfying the two sheaf axioms and the morphisms between two
sheaves are simply the morphisms between the underlying presheaves. Interestingly, as we
shall see below, this subcategory is not abelian since cokernels do not always exist.

Let F be a presheaf of abelian groups over X. We wish to define the sheafification of F .
This is a sheaf F over X and a morphism of presheaves F → F which is universal for all
morphisms of F to sheaves over X. To construct F we first construct the étalé space over
X associated to F . For each x ∈ X we define the germ Fx of F at x as lim−→

x∈U

F (U) where the

direct limit is taken over the directed set of open neighborhoods of x. This direct limit is
an abelian group. The direct limit Fx is called the stalk of F at x.

Exercise 5.2.1. Show that if F is the sheaf of C∞-functions on a smooth manifold M ,
then Fx is the germs of C∞-functions on M at x.

5.2.1 The Étale Space of a Presheaf

Let F be a presheaf of abelian groups over X. We shall define a space EtF , the étalé space
of F over X. It is the disjoint union over x ∈ X of the stalks Fx with the topology being
defined as follows. Let U ⊂ X be an open set and let α ∈ F (U) be a section of the presheaf
F over U . Then for each x ∈ U we have the image αx ∈ Fx. The collection {x, αx}x∈U is
defined to be an open subset of EtF .

Lemma 5.2.2. Let U1 and U2 be open sets of this type in EtF . Then U1 ∩ U2 is also an
open subset of this type.

Proof. Let U1 and U2 be the images of these open subsets in X and f1 ∈ F (U1) and
f2 ∈ F (U2) be the sections defining U1 and U2. By definition U1 and U2 are open subsets
of X. Let U = U1 ∩U2. Then we have the restrictions f1|U and f2|U in F (U). The lemma
will follow immediately if we can show the following:

Claim 5.2.3. The set of x ∈ U for which [f1] = [f2] ∈ Fx is an open subset.

Proof. If [f1] = [f2] ∈ Fx, then there is an open neighborhood V of x for which
f1|V = f2|V . Hence, [f1] = [f2] ∈ Fy for all y ∈ V . This completes the proof of the
claim.

Now U1 ∩U2 = (V, f1|V ) where V = {x ∈ U1 ∩U2|[f1] = [f2] ∈ Fx} and by the previous
claim V is an open subset of X.
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It follows that these open sets form a basis for a topology on X. This means that a
subset of EtF is open if and only if it is a union of sets of this type. This is the étalé
topology on EtF .

Exercise 5.2.4. Show that the natural projection mapping EtF → X is continous and is a
local homemomorphism.

Exercise 5.2.5. Show that the addition maps in the stalks leads to a continuous map
EtF × EtF → EtF commuting with the projections to X.

Exercise 5.2.6. EtF is not necessarily a Hausdorff space. Give an example for which it is
not.

Now given EtF , we define the sheaf F to be the sheaf of sections of EtF → X. That
is to say F (U) is the abelian group of all continuous maps U → EtF which project to
the inclusion of U → X. The restriction mappings are restrictions of sections. The group
structure is that induced by addition in the stalks. This addition is compatible with the
restriction maps, so that we have defined a presheaf of (local) sections, a presheaf of abelian
groups. Since the elements in our sheaves are functions and functions are determined by
their values, the first sheaf axiom holds for F . As for the second, let U = ∪iUi and suppose
we are given local sections over Ui which agree on the overlaps. We can piece these together
to give a function U → EtF which is clearly a continous section whose restriction to each
of the Ui is as required. This is the second sheaf axiom, completing the proof that F is a
sheaf of abelian groups.

Lemma 5.2.7. There is a natural map of presheaves of abelian groups F → F which
induces an isomorphisms on the stalks at every point.

Proof. For any open subset U ⊂ X we have the natural mapping F (U) → F (U).
Since these maps are compatible with the restriction mappings, they determine a map of
presheaves of abelian groups. Passing to the direct limits, they induce maps on the stalks
Fx → F x. Let U be an open neighborhood of x. Any section α ∈ F (U) has the property
that its restriction to some smaller neighborhood U ′ of x is the image of a section of F (U ′).
This shows that the map on stalks is onto. Conversely, if a section α ∈ F (U) maps to zero
in F x, this means that the local section of EtF determined by α takes value 0 at Fx, and
hence the map on stalks is one-to-one.

Lemma 5.2.8. If F is a sheaf, then the natural inclusion F → F is an isomorphism of
sheaves.

Proof. By the previous lemma, the inclusion F → F induces an isomorphism on the
stalks at every x ∈ X. Suppose a section α ∈ F (U) maps to zero in F (U). This means
that the image of α in every stalk Fx, x ∈ U , is trivial. That is to say, for each x ∈ U
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there is a neighborhood Ux of x such that the restriction α|Ux = 0 in F (Ux). Hence, we
can cover U by open sets on which α is trivial. By the first sheaf axiom for F , this implies
that α = 0 in F (U). Now let α ∈ F (U). Since the inclusion is an isomorphism on the
stalks, we can cover U by open subsets Ui such that αi = α|Ui is the image of a section
αi ∈ F (Ui). Since the αi satisfy the gluing condition on overlaps, and since we have already
shown that F (V ) → F (V ) is an injection for every open subset V of X, it follows that the
αi also satisfy the gluing condition on overlaps. Hence, by the second sheaf axiom for F ,
there is a section α ∈ F (U) whose restriction to each Ui is equal to αi. Then the image of
α in F (U) has the same restriction as α to each Ui and hence by the first sheaf axiom for
F , the image of α is equal to α.

Exercise 5.2.9. Show that if F is a presheaf of rings, R-modules or k-algebras, then the
same is true for F .

Exercise 5.2.10. Show that F has the stated universal property for maps of F to sheaves
over X.

Exercise 5.2.11. Show that this construction satisfies a universal property: If ϕ : F → G
is a map from F to a sheaf G of abelian groups then ϕ factors uniquely as the composition
of the natural map F → F followed by a map of sheaves F → G.

5.2.2 Pullbacks of Sheaves

Let f : X → Y be a continous mapping and suppose that ξ is a sheaf of abelian groups on
Y . We wish to define the pullback f∗ξ, a sheaf of abelian groups on X. Let E(ξ) → Y be
the étalé space of ξ. We form the fibered product

f∗(E(ξ) −−−−→ E(ξ)⏐⏐� ⏐⏐�
X

f−−−−→ Y

Then the sheaf f∗ξ is defined to be the sheaf of sections of f∗(E(ξ)) → X.

Exercise 5.2.12. Show that there is a natural map ξ → f!(f∗(ξ)).

The pullback is the universal solution to this mapping question. Unlike the pushforward
operation that can be performed for sheaves in any abelian category, the pullback operation
requires the étalé space, and hence is only valid in a category of sheaves whose values are
sets with extra structure (such as abelian groups, modules over a ring, etc.) The pullback
preserves compositions and sends identities to identities. Thus, pullback makes the category
of sheaves of abelian groups over topological spaces into a category. The objects are pairs
(X, ξ) consisting of a topological space and a sheaf of abelian groups over it. A morphism
from (X, ξ) to (Y, ζ) is a continuous mapping f : X → Y and a homomorphism of sheaves
over X φ : ξ → f∗ζ.
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5.3 Kernels and Cokernels

Let F and G be sheaves of abelian groups over a topological space X, and let ϕ : F →
G be a morphism. Define the kernel of ϕ, Ker(ϕ), to be the presheaf Ker(ϕ)(U) =
Ker(ϕ(U) : F (U) → G(U)). The restriction mappings are defined using the restriction
mappings for the sheaf F . Clearly, this is a presheaf and is a subpresheaf of F .

Lemma 5.3.1. Ker(ϕ) is a sheaf and its stalk at x ∈ X is the kernel of the map ϕx : Fx →
Gx induced by ϕ.

Proof. Let U be an open subset of X and U = ∪iUi. Suppose that α ∈ Ker(ϕ)(U)
and that α|Ui = 0 for all i. Then by the first sheaf property for F , it follows that α = 0.
Conversely, suppose given αi ∈ Ker(Ui) satisfying the gluing property. By the second sheaf
axiom for F , there is α ∈ F (U) such that for all i the restriction of α to Ui is αi. Since
ϕ(αi) = 0, it follows that ϕ(α)|Ui = 0 for all i. Hence, by the first sheaf axiom for G, we
see that ϕ(α) = 0, and hence that α ∈ Ker(ϕ)(U).

Since kernels commute with direct limits, it follows that the stalk of Ker(ϕ) at x agrees
with the kernel of the map ϕx : Fx → Gx.

It is clear that if ψ : F ′ → F is a map of sheaves with the property that ϕ ◦ψ = 0, then
ψ factors through the inclusion Ker(ϕ) → F .

Now let us consider the presheaf which is the cokernel of ϕ. This is a presheaf whose
sections over U are G(U)/ϕ(F (U)). Unfortunately, this presheaf is not usually a sheaf. We
define Coker(ϕ) to be the sheaf obtained from this presheaf. Direct limits also commute
with taking cokernels, so that the stalk of this presheaf at any x ∈ X is the cokernel of
ϕx : Fx → Gx. It then follows from the property above that:

Lemma 5.3.2. For every x ∈ X, there is an exact sequence of stalks

0→ Ker(ϕ)x → Fx → Gx → Coker(ϕ)x → 0.

If ψ : G → G′ is any morphism of sheaves of abelian groups, and if ψ◦ϕ = 0, then ψ factors
through the natural map of G to Coker(ϕ).

This definition turns out to be a reasonable definition in the category of sheaves of
abelian groups over X, and makes that category into an abelian category. In particular, a
sequence of sheaves

· · · −−−−→ F1
ϕ1−−−−→ F2

ϕ2−−−−→ F3 −−−−→ · · ·

is exact at F2 if the natural map of sheaves Coker(ϕ1) → Ker(ϕ2) is an isomorphism.
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5.4 Čech Cohomology with Values in a Sheaf

Let ξ be a sheaf of abelian groups over a topological space X.

Lemma 5.4.1. The sections of ξ over the empty set are the zero group.

Proof. From the construction of any sheaf as the sheaf of sections of an étalé space over
X, the set of sections over the empty set consists of a single element. Thus, it is the trivial
group.

Given an open covering {Uα}α of X we define the Čech cochains of ξ with respect to
this open cover as follows: First choose a total ordering on the index set and then define

Čk =
∏

α0<···<αk

ξ(Uα0 ∩ · · · ∩ Uαk
).

Of course, by the above lemma, it suffices to take the sum over those multi-indices whose
associated intersection is non-empty. The coboundary map is defined as follows: If a ∈ Čk,
then for any α0 < · · · < αk+1 we have

δ(a)(α0, . . . , αk+1) =
k+1∑
j=0

(−1)jr∗a(α0, . . . , αj−1, αj+1, . . . , αk+2),

where r∗ denotes the appropriate restriction mapping in the definition of the sheaf. The
usual computation shows that δ2 = 0 and hence that we have a complex of abelian groups.
The cohomology of this complex is the Čech cohomology with values in ξ with respect to
this open covering.

Exercise 5.4.2. Use arguments as in the case of constant coefficents show that under a
refinement there is a well-defined map on cohomology.

The Čech cohomology with values in ξ is then the direct limit over all open coverings
of the Čech cohomology of ξ with respect to the open covering. It is denoted Ȟ∗(X; ξ).

For suppose that (f, φ)(X, ξ) → (Y, ζ) is a morphism in the category of sheaves of
abelian groups over topological spaces. There is a natural mapping Prove

this.

(f, φ)∗ : Ȟ∗(Y ; ζ) → Ȟ∗(X; ξ).

This makes Čech cohomology a functor from the category of sheaves of abelian groups over
topological spaces to the category of graded abelian groups.

We are going to approach things differently. Instead of using Čech cohomology of a
sheaf, we shall give the derived functor approach to the cohomology of sheaves.
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5.5 Derived Functors of H0

5.5.1 Lemmas about exact sequences and groups of sections

In order to prepare the way for the derived functor approach to sheaf cohomology, we need
to study how exact sequences of sheaves behave under the operation of taking sections over
a given open subset.

Lemma 5.5.1. Suppose that we have an exact sequence of sheaves of abelian groups over
X:

0 → ξ′ → ξ → ξ′′

Then for any open subset U ⊂ X we have an exact sequence:

0 → ξ′(U)→ ξ(U) → ξ′′(U).

Proof. Restricting the sheaves to an open subset of X produces an exact sequence of
sheaves over that subset. Thus, it suffices to consider the case U = X. Suppose that
σ ∈ ξ′(X) and the image of σ in ξ(X) = 0. This implies that the value of σx ∈ ξ′X in each
stalk maps to zero in ξx. Since the maps on the levels of stalks are injective, this implies
that σx = 0 for all x and hence that σ = 0. Since the compositions ξ′x → ξx → ξ′′x are zero
for all x, it is clear that the composition ξ′(X) → ξ(X) → ξ′′(X) is zero. Lastly, suppose
that τ ∈ ξ(X) maps to zero in ξ′′(X). Then the images τx ∈ ξx map to zero in ξ′′x. Hence
for each x ∈ X there is a neighborhood U ⊂ X and a lifting σU ∈ ξ′(U) of τ |U . On the
overlaps U ∩ U ′ the restrictions of σU and σU ′ both map to τU∩U ′ . But we have already
seen that the map ξ′(U ∩ U ′) → ξ(U ∩ U ′) is an injection. This means that σU and σU ′

agree on the overlap and hence determine a global section σ ∈ ξ′(X) which maps to τ .

Suppose that ξ → ξ′′ → 0 is exact. It is not true in general that ξ(X) → ξ′′(X) is
onto. Let us examine this question in more detail. Given an element μ ∈ ξ′′(X) using the
fact that the maps ξx → ξ′′x are onto, we can find an open covering {U} of X and elements
τU ∈ ξ(U) mapping to μ|U . On the overlap U ∩ U ′, the restrictions of τU and τU ′ have the
same image in ξ′′(U ∩ U ′), namely μ|U∩U ′ . Thus, for every x ∈ U ∩ U ′ there is an element
σx ∈ ξ′x which maps to the difference (τU )x − (τU ′)x. As above, using the injectivity of
ξ′ → ξ we see that these elements σx glue together to form an element σU,U ′ ∈ ξ′(U ∩ U ′)
whose image in ξ(U ∩ U ′) is (τU )|U∩U ′ − (τU ′)|U∩U ′ . These then are a Čech one cochain
with values in ξ′. If we consider the restriction to triple overlaps we see that the restriction
to U ∩ U ′ ∩ U ′′ of σU,U ′ − σ(U,U ′′) + σU ′,U ′′ maps to zero in ξ(U ∩ U ′ ∩ U ′′). Again using
the injectivity of ξ′ → ξ on sections, we see that this implies that the Čech one cochain
determined by the σU,U ′ is a one cocylce. If this cocycle is a coboundary then one can
modify the σU,U ′ by the coboundary of sU until it becomes zero. This would allow us to
modify the τU by the image of the sU so that they agree on the overlap and hence form a
global section of ξ mapping to μ. This indicates that the obstruction to the surjectivity of
ξ(X) → ξ′′(X) lies in the first Čech cohomology of X with values in ξ′.

This argument has one consequence which is extremely important.
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Lemma 5.5.2. Let us suppose that

0→ ξ′ → ξ → ξ′′ → 0

is an exact sequence of sheaves of abelian groups over X. Suppose that for every open subset
U ⊂ X the restriction mapping ξ′(X) → ξ′(U) is surjective. Then for every open subset U ,
ξ(U) → ξ′′(U) is surjective.

Proof. Again it suffices to consider the case when U = X. Let t ∈ ξ′′(X). Consider pairs
(U, s) consisting of an open subset of X and an element s ∈ ξ(U) mapping to t. These
pairs are naturally ordered: (U, s) < (U ′, s′) if U ⊂ U ′ and s = s′|U . Any totally ordered
chain has a maximal element – take the union of the open subsets and use the sheaf axiom
to glue together the sections to form a section on the union. Thus, by Zorn’s lemma there
is a maximal element (U, s). Suppose that U �= X. Then there is a point x �∈ U . There
is a local section s′ defined in some neighborhood V of x which maps to t|V . Consider
s|U∩V − s′|U∩V . This section extends to a section s′′ on V . Clearly, (s′ + s′′)|U∩V = s|U∩V

and s′ + s′′ maps to t|V . Using the sheaf axioms we glues (s′ + s′′) ∈ ξ′(V ) and s ∈ ξ′(U)
to form ŝ ∈ ξ′(U ∪ V ). Clearly ŝ maps to t. So, we have a section over U ∪ V extending s
on U and mapping to t, contradicting the maximality of (U, s). This contradiction implies
that U = X and completes the proof.

Sheaves with the property stated in the lemma are called flabby (flasque in French).

5.5.2 The derived functor construction

Let ξ be a sheaf of abelian groups over X. We define H0(X, ξ) = ξ(X), the group of global
sections of ξ. This is a functor from the category of sheaves of abelian groups over X
to the category of abelian groups. The higher cohomology groups of ξ are defined as the
(right) derived functors of this functor. By this we mean we have a functor H∗(X; ξ) from
the category of sheaves to the category of graded abelian groups (with gradings in degrees
≥ 0) such that H0 is the global section functor and such that associated to any short exact
sequence

0→ ξ′ → ξ → ξ′′ → 0

we have a long exact sequence of cohomolgy groups:

· · · → H i(X; ξ′)→ H i(X; ξ) → H i(X; ξ′′) → H i+1(X; ξ′)→ · · ·
functorial in maps between short exact sequences. It may not be clear from this description
that this completely determines the higher cohomology groups, but that is exactly what
the homological algebra of derived functors allows one to prove. We shall not show this
general uniqueness statement. Rather, we will give an explicit construction and show that
it satisfies these axioms, and then define that as the cohomology functor.

Let ξ be a sheaf of abelian groups over X. The construction we give is based on the
étalé space Ét(ξ) over X. We define C(ξ) to be the presheaf which assigns to an open
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subset U ⊂ X the group of all sections, continuous or not, U → Ét(ξ)|U . In other words,
C(ξ)(U) =

∏
x∈U ξx. The restriction mapping is the obvious one as is the inclusion of

ξ → C(ξ).

Exercise 5.5.3. Check that C(ξ) is a sheaf.

Furthermore, C(ξ) is clearly flabby – given a section over U we can just extend it to be
zero outside of U (since there is no requirement of continuity).

Now we define C0(ξ) = C(ξ). We have the natural inclusion ξ ↪→ C0(ξ). Let B0(ξ) be
the cokernel of this map of sheaves, and define C1(ξ) = C(B0(ξ)). We have the natural
composition C0(ξ) → B0(ξ) ⊂ C1(ξ). Suppose inductively that we have defined Ci(ξ) for
all i < n together with maps Ci(ξ) → Ci+1(ξ). Then we let Bn−1(ξ) be the cokernel of
Cn−2(ξ) → Cn−1(ξ) and we define Cn(ξ) = C(Bn−1(ξ)). Continuing in this way we define
the Cn(ξ) for all n ≥ 0 and maps Cn(ξ) → Cn+1(ξ).

Lemma 5.5.4. The Cn(ξ) are all flabby for n ≥ 0 and we have an exact sequence of
sheaves:

0 → ξ → C0(ξ) → C1(ξ) → · · ·

Proof. Since for any sheaf of abelian groups ζ the sheaf C(ζ) is flabby, it follows im-
mediately from the construction that the Cn(ξ) are all flabby. It is also immediate from
the constrution that the composition Cn(ξ) → Cn+1(ξ) → Cn+2(ξ) is zero, as well as the
composition ξ → C0(ξ) → C1(ξ). The last thing to check is exactness. Suppose that an
element ax ∈ Cn(ξ)x maps to zero in Cn+1(ξ)x. Then it maps to zero in Bn(ξ)x, which
means that it is in the image of Cn−1(ξ)x. This completes the proof of exactness.

Since we have a chain complex C0(ξ) → C1(ξ) → · · · , taking global sections

H0(X;C0(ξ)) → H0(C1(X; ξ) → · · ·
leads to a complex of abelian groups. The cohomology of this complex is defined to be the
cohomology of ξ.

Lemma 5.5.5. With the above definition, the cohomology groups are a functor from the
category of sheaves of abelian groups over X to the category of graded abelian groups with
non-trivial groups only in non-negative degrees. Furthermore, H0(X; ξ) is identified with
the global sections of ξ.

Proof. Suppose that ξ → ζ is a morphism of sheaves of abelian groups over X. Then
there is a map of the associated étalé spaces and hence a map C(ξ) → C(ζ) compatible
with the map ξ → ζ. Applying the construction of the complex of sheaves, one concludes
that that there is an induced map between the complex of sheaves, and hence between the
complexes of global sections. This induces then a map on the cohomology groups. From the
exact sequence 0→ ξ → C0(ξ) → C1(ξ) we see that the kernel of the map H0(X;C0(ξ)) →
H0(X : C1(ξ)) is identified with H0(X; ξ), and hence the zeroth cohomology of the cochain
complex is identified with the group of global sections of ξ. This identification is clearly
natural for morphisms of sheaves.
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The last thing to establish is the cohomology long exact sequence associated to a short
exact sequence of sheaves. Finish

Argu-
ment

6 Spectral Sequences

Recall that a composition series of finite length for an abelian group A is the sequence of
quotient groups Ar/Ar+1 of a decreasing filtration of finite length

A = Ak ⊃ Ak+1 ⊃ Ak+2 ⊃ · · · ⊃ A� = 0

The basic setup for a spectral sequence is a cochain complex (C∗, d) of abelian groups
and a decreasing filtration F ∗(C∗), which means for each cochain group Cn we have a
decreasing sequence of subgroups

· · ·F k(Cn) ⊃ F k+1(Cn) ⊃ F k+2(Cn) ⊃ · · ·

This filtration is required to be compatible with the coboundary d in the sense that
d(F k(Cn)) ⊂ F k(Cn+1). We define the associated graded groups for Cn by

Grp
F ∗(Cn) = F p(Cn)/F p+1(Cn).

There is an induced decreasing filtration on cohomology, H∗ = H∗(C∗) denoted F ∗(H∗).
By definition F k(Hn) consists of all cohomology classes in degree n that have cocycle
representatives contained in F k(Cn). Said another way we have the subcomplex F k(C∗) of
C∗ and we define F k(H∗) to be the image of the cohomology of the subcomplex in H∗(C∗).
Clearly, this is a decreasing filtration. We denote by

Gr∗F ∗(H∗)

the associated graded of this filtration.
To get anything reasonable we need to make some finiteness assumptions. While it

is possible to get by with less, we make fairly strong assumptions, which nevertheless are
the most common ones encountered in the interesting examples. First, we assume that C∗

is bounded below, i.e., that Ck = 0 for all k sufficiently small, often k < 0 in practice.
Next we assume that F ∗(C∗) is bounded below in the sense that F k(C∗) = C∗ for all k
sufficiently small, again often k < 0 in practice. Lastly, we assume that F k(Cn) = 0 for
all k sufficiently large, how large depending on n. This condition is called locally bounded
above.

We define
Ep,n−p

0 = Grp
F ∗(Cn) = F p(Cn)/F p+1(Cn).

In a similar vein we define

Ep,n−p
∞ = Grp

F ∗(Hn) = F p(Hn)/F p+1(Hn).
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Fixing n and varying p,the groups Ep,n−p
0 give a composition series of finite length for Cn.

Similarly, the groups Ep,n−p∞ give a composition series of finite length for Hn. The idea is to
interpolate between these groups by defining a sequence of groups Ep,n−p

r for r = 0, 1, . . . ,,
such that Ep,q

r = Ep,q∞ for all r sufficiently large, and differentials dr : Ep,q
r → Ep+r,q−r+1

r

such that Ep,q
r+1 is the cohomology of dr at Ep,q

r . Thus, we begin with a composition series
for F ∗(C∗), repeatedly take cohomology and arrive at the composition series for F ∗(H∗).
Of course, this is a very complicated proceedure, with many groups and differentials to
compute, and one can well wonder how it is better than just computing the cohomology
directly. The point is that spectral sequences are most useful when the filtration is such
that one can identify the early terms in the spectral sequence, usually the E1- or E2-
terms, with other known cohomology groups. This then gives a first approximation to the
final cohomology. Sometimes things are so fortunate that no further computation is even
necessary!

Let us now try to understand intuitively how the better and better approximations to
the cohomology Ep,n−p

r are obtained. Let us begin with F p(Cn). At stage r we consider
classes which are cocycles modulo F p+r, i.e., x ∈ F p(Cn) such that dx ∈ F p+r(Cn+1)
and we divide out by boundaries from F p−r+1 as well as all classes in F p+1. Clearly, as
r increases we are putting more and more stringent conditions on dx and hence getting
closer and closer to the cocycle condition. Eventually, because of the finiteness conditions,
for sufficiently large r, we are requiring dx = 0. Also, as r increases we are dividing out by
more and more coboundaries, and again by the finiteness conditions, for r sufficiently large
we are dividing out by all coboundaries. Since we also divide out by F p+1 we end up with
the associated graded for the filtration on Hn.

Now let me make all this precise.
We define:

Ep,q
r =

{x ∈ F p(Cp+q)
∣∣dx ∈ F p+r(Cp+q+1)}

{x ∈ F p+1(Cp+q)
∣∣dx ∈ F p+r(Cp+q+1)}+ d(F p−r+1(Cp+q−1)) ∩ F p(Cp+q)}

.

The map
dr : Ep,q

r → Ep+r,q−r+1
r

is defined by
dr[x] = [dx].

Let us show that this makes sense. Notice that if [x] ∈ Ep,q
r then x ∈ F p(Cp+q) and

dx ∈ F p+r(Cp+q+1). Of course, d(dx) = 0 ∈ F p+2r(Cp+q+1). This means that dx represents
a class in Ep+r,q−r+1

r . If, in addition, x ∈ F p+1 then dx ∈ dF p+r−1(Cp+q) ∩ F p+r(Cp+q+1)
and hence the class of dx is trivial in Ep+r,q−r+1

r . Also if x ∈ d(F p−r+1(Cp+q−1))∩F p(Cp+q)
then dx = 0 so that dx is trivial in Ep+r,q−r+1

r . This shows that d induces a well defined
mapping dr as claimed. Since d2 = 0, it is clear that d2

r = 0 so that for each r we have a
bigraded cochain complex {Ep,q

r , dr}.

Claim 6.0.6. The cohomology of dr at Ep,q
r is naturally identified with Ep,q

r+1.
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Proof.

Claim 6.0.7.
Ker(dr : Ep,q

r → Ep+r,q−r+1
r ) =

{x ∈ F p(Cp+q)
∣∣dx ∈ F p+r+1(Cp+q+1)}

{y ∈ F p+1(Cp+q)
∣∣dy ∈ F p+r+1(Cp+q+1)}+ dF p−r+1(Cp+q−1) ∩ F p(Cp+q)

.

Proof. Suppose that x ∈ F p(Cp,q) represents a class [x] ∈ Ep,q
r for which dr[x] = 0. This

means that dx ∈ F p+r(Cp+q+1) and that

dx ∈
(
{y ∈ F p+r+1(Cp+q+1)

∣∣dy ∈ F p+2r(Cp+q+2}+ d(F p+1(Cp+q) ∩ F p+r(Cp+q+1)
)

.

Varying x by an element y ∈ F p+1(Cp+q) with dy ∈ F p+r(Cp+q+1) does not change [x] ∈
Ep,q

r and allows us to assume that dx ∈ {y ∈ F p+r+1(Cp+q+1)
∣∣dy ∈ F p+2r(Cp+q+2)}, which

simply means that dx ∈ F p+r+1(Cp+q+1).
Now suppose that we have two elements x, x′ ∈ F p(Cp+q) representing the same class

in Ep,q
r satisfy dx, dx′ ∈ F p+r+1(Cp+q+1). Then their difference y is an element of

{x ∈ F p+1(Cp+q)
∣∣dx ∈ F p+r(Cp+q+1)}+ d(F p−r+1(Cp+q−1)) ∩ F p(Cp+q)

and dy ∈ F p+r+1(Cp+q+1). It follows that

y ∈
(
{x ∈ F p+1(Cp+q)

∣∣dx ∈ F p+r+1(Cp+q+1)}+ d(F p−r+1(Cp+q−1)) ∩ F p+1(Cp+q)
)

.

This completes the proof of the claim.

Now consider the image of dr : Ep−r,q+r−1
r → Ep,q

r . Any element in this image is
represented by an element of dF p−r(Cp+q−1) ∩ F p(Cp+q). Conversely, any element of this
intersection represents an element of Ep,q

r that is in the image of dr. Thus,

Ker dr/Imdr = Ker dr : Ep,q
r → Ep+r,q−r+1

r

=
{x ∈ F p(Cp+q)

∣∣dx ∈ F p+r+1(Cp+q+1)}
{y ∈ F p+1(Cp+q)

∣∣dy ∈ F p+r+1(Cp+q+1)}+ dF p−r(Cp+q−1) ∩ F p(Cp+q)
.

This is exactly the definition of Ep,q
r+1.
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6.1 Double Complexes

One important example of a spectral sequence is the spectral sequence associated to a
double complex. A double complex consists of a collection of doubly indexed groups Cp.q

and two anticommuting differntials, d : Cp,q → Cp+1,q and δ : Cp,q → Cp,q+1 with d2 =
δ2 = 0, and dδ = −δd. Given a double complex we can form the associated total complex,
Ĉn =

⊕
p+q=n

Cp,q, with the differential D : Ĉn → Ĉn+1 given by D = d + δ. Then D2 = 0:

D2 = (d + δ)2 = d2 + dδ + δd + δ2

since d2 = δ2 = dδ + δd = 0. So, (Ĉ∗,D) is a cochain complex.
There are two natural filtrations on the total complex of a double complex. First, we

can filter by p. We define F k(Ĉ∗) =
⊕
p≥k

p+q=n

Cp,q. So, F 0(Ĉ∗) = Ĉ∗ and Fn+1(Ĉn) = 0.

Since D takes Cp,q to Cp+1,q ⊕Cp,q+1, the filtration is compatible with the differential, i.e.
D(F k) ⊂ F k. Using this filtration, the E0 term of the associated spectral sequence is,

Ep,q
0 =

F p(Ĉp+q)
F p+1(Ĉp+q)

= Cp,q

Since,
Ĉp+q =

⊕
p′+q′=p+q

Cp′,q′

F p(Ĉp+q) =
⊕
p′≥p

p′+q′=p+q

Cp′,q′

F p+1(Ĉp+q) =
⊕

p′≥p+1
p′+q′=p+q

Cp′,q′

Furthermore, d0 = δ. Thus, Ep,q
1 = Hq(Cp,∗, δ). So, there is a spectral sequence with

Ep,q
1 = Hq(Cp,∗, δ) converging to H∗(Ĉ∗,D), the cohomology of the total complex.

We could just have well filtered by q, so lets reverse the roles of pand q and see what
happens. Now our filtration is given by (F̃ k)(Ĉn) =

⊕
q≥k
p=q

Cp,q. Similarly, this filtration

is compatible with the differential, D(F̃ k) ⊂ F̃ k. The spectral sequence in this case has
Ẽp,q

0 = Cp,q and d̃0 = d and Ẽp,q
1 = Hp(C∗,q, d). This spectral sequence also converges to

the cohomolgy of the total complex, H∗(Ĉ∗,D).

Theorem 6.1.1. Let ξ be a sheaf of abelian groups over X, and suppose

0 −−−−→ ξ
i−−−−→ R0 f0−−−−→ R1 f1−−−−→ R2 f2−−−−→ · · ·

is a resolution. Then there is a spectral sequence whose E1 term is given by Ep,q
1 = Hq(Rp)

converging to H∗(ξ), and d1 is the map induced by the fi.
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We have the following situaition:�⏐⏐ �⏐⏐ �⏐⏐
0 −−−−→ C2(ξ) −−−−→ C2(R0) −−−−→ C2(R1) −−−−→ · · ·

δ

�⏐⏐ δ

�⏐⏐ δ

�⏐⏐
0 −−−−→ C1(ξ) −−−−→ C1(R0) −−−−→ C1(R1) −−−−→ · · ·

δ

�⏐⏐ δ

�⏐⏐ δ

�⏐⏐
0 −−−−→ ξ

i−−−−→ R0 f0−−−−→ R1 f1−−−−→ · · ·

Where each column is the standard flabby resolution for the sheaf in the bottom row.

Lemma 6.1.2. If ξ′ → ξ → ξ′′ is exact then C(ξ′)→ C(ξ) → C(ξ′′)is exact at C(ξ).

Now, we define a double complex by Cp,q = H0(Cq(Rp)), the global sections, and
D = d + δ. If we filter on p, taking vertical (δ) cohomology we have Ep,q

1 = Hq(Rp) and
the spectral sequence converges to H∗(Ĉ∗,D). If we filter on q, and take horizontal (d)
cohomology. Since,

0 −−−−→ Ci(ξ) −−−−→ Ci(R0) −−−−→ Ci(R1) −−−−→ · · ·

is an exact sequence of flabby sheaves, the sequence of global sections H0 is also exact,

H∗(H0(Ci(R∗), d)) =

{
0 ∗ > 0
H0(Ci(ξ)) ∗ = 0

So we have

Ẽp,q
1 =

{
0 p > 0
H0(Cq(ξ)) p = 0

and,

Ẽp,q
2 =

{
0 p > 0
Hq(ξ) p = 0

But all the higher d’s are zero, so the sequenc collapses at Ẽ2 and we have H∗(Ĉ,D) =
H∗(ξ).

Corollary 6.1.3. Suppose we have a resolution of ξ

0 −−−−→ ξ −−−−→ R0 f0−−−−→ R1 f1−−−−→ R2 −−−−→ · · ·

and suppose that H i(Rj) = 0 for all i > 0 and for all j ≥ 0, then

H∗
(

H0(R0)→ H0(R1) → H0(R2)→ · · ·
)

= E2 = E∞ = H∗(ξ).
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6.1.1 Soft sheaves and the relationship between deRham and sheaf cohomology

Now, let M be a smooth manifold. Let R be the constant sheaf on M such that R(U) =
Rcomp(U). We want to prove:

Theorem 6.1.4. The sheaf cohomology of M with coefficents in the constant sheaf R is
identified with the deRham cohomology, i.e.

H∗(M ; R) = H∗
dR(M ; R).

The idea will be as follows. First, by the Poincaré lemma, we have a resolution of the
sheaf R,

0 −−−−→ R −−−−→ Ω0 d−−−−→ Ω1 d−−−−→ Ω2 d−−−−→ · · ·
We will prove that the higher cohomologies vanish,

Theorem 6.1.5. H i(Ωj) = 0 for all i > 0 and all j ≥ 0.

and then the double complex spectral sequence will imply:

H∗(M ; R) = H∗
(

Ω0(M) d−−−−→ Ω1(M) d−−−−→ Ω2(M) d−−−−→ · · ·
)

= H∗
dR(M ; R)

To do this we will show that the sheaves Ω∗ are a special type of sheaves called soft
sheaves. Then we wil show that sheaves of this type have some properties very similar to
the properties of flabby sheaves. In particular, we will show that the higher cohomologies
vanish, and thus prove theorem 6.1.5 above.

Definition 6.1.6. A sheaf ξ is soft if every section on a closed set extends to a global
section.

By section of a sheaf ξ over a closed set F ⊂ X we mean a continuous map σ : F → Etξ
so that π ◦ σ = i, where π : Etξ → X is the standard projction and i : F ↪→ X is the
inclusion.

Now we show that the sheaves Ω∗ are soft. First, we notice that if ξ is a sheaf over a
manifold M , and σF is a section of this sheaf over a closed set F ⊂ M , then there exists
an open neighborhood U of F and a section σU ∈ ξ(U) such that σU |F = σF . This follows
from the fact that ξ(F ) = lim−→

U⊃F

(ξ(U)). So, given a section σF ∈ Ωi(M)(F ) we can extend

it to a section σU ∈ Ωi(M)(U) for U and open set with F ⊂ U ⊂ M . Now, we construct a
function λ : M → [0, 1] with λ|F = 1 and support(λ) ⊂ U . To do this we use the fact that
M is paracompact to show there is a collection of subsets {Vi ⊂ V̄i ⊂ Ui} where both the
Ui and Vi cover U , and thus F , and the Ui are locally finite. For each Vi ⊂ V̄i ⊂ Ui we can
construct a smooth bump function λi : M → [0, 1] such that λi restricted to V̄i is 1, and
the support of λi is contained in Ui. Let λ̂ =

∑
i λi. Then the suppport of λ̂ is contained

in ∪iUi ⊂ U , and λ̂(x) ≥ 1 for x ∈ F . To get λ, compose λ̂ with φ : [0,∞) → [0, 1] a
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smooth function that is identically zero in some neighborhood of zero and identically 1 on
(1 − ε,∞) for some ε > 0. Then λ = φ ◦ λ̂ : M → [0, 1] is a function with the desired
properties. Now, we can extend our section σU to a global section by σ′ = λσU ∈ Ωi(M),
and we have σ′|F = σF . Thus, we have shown,

Proposition 6.1.7. The sheaves Ωi(M) are soft.

Now, we have the following basic lemma,

Lemma 6.1.8. Suppose X is paracompact and we have the following short exact sequence
of sheaves over X.

0→ ξ′ → ξ → ξ′′ → 0

where ξ′ is a soft sheaf. Then H0(ξ) → H0(ξ′′) → 0 is exact.

Proof. Let σ′′ ∈ H0(ξ′′). Cover X by {Vi ⊂ V̄i ⊂ Ui}i∈I with {Ui}i∈I a locally finite
open cover, and {Vi}i∈I an open covering. Let σi ∈ ξ(Ui) be a lift of σ′′|Ui. Now consider
the collection of pairs (J ⊂ I, σJ ∈ ξ(

⋃
j∈J

V̄j)), where σJ �→ σ′′| ∪j∈J V̄j. Such pairs are

partially ordered by inclusion of subsets and extension of sections. Any totally ordered
chain in this partially ordered set has an upperbound: take the union of subsets, and use
local finiteness to construct a section, so by Zorn’s lemma there exists a maximal element,
(M ⊂ I, σM ∈ ξ(

⋃
j∈M

V̄j)). It is left as an exercise to show that M = I.

Corollary 6.1.9. If ξ′ and ξ are both soft, then so is ξ′′

Corollary 6.1.10. If 0 → ξ0 → ξ1 → ξ2 → · · · is an exact sequence of soft sheaves then
0 → H0(ξ0) → H0(ξ1)→ H(ξ2) → · · · is an exact sequence.

Corollary 6.1.11. If ξ is a soft sheaf, then H i(ξ) = 0 for i > 0.

Thus, the double complex spectral sequence implies that H∗(M ; R) = H∗
dR(M), com-

pleting the proof of theorem 6.1.4.

6.1.2 Čech cohomology and sheaf cohomology

Recall the definition of Čech cohomology with values in a sheaf. For a space X and an
open cover U = {Uα}α∈A we defined the Čech cochains as,

Čk(U ; ξ) =
∏

α0···αk

ξ(Uα0 ∩ · · · ∩ Uαk
),

where we have choosen some total ordering of the index set A. The coboundary map
δ : Čk → Čk+1 has the usual formula, and Ȟ∗(U ; ξ) is the cohomology of (Č∗(U ; ξ), δ).
To define the Čech cohomology of the space we take the direct limit over all open covers,
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lim−→
open covers U

Ȟ∗(U ; ξ) = Ȟ∗(X; ξ). The goal of this section is to identify Ȟ∗(X; ξ) with the

resolution cohomology, in the case where X is a paracompact space.
To do this, first we make the Čech cochains into a sheaf. We define a presheaf Čp(U ; ξ),

the Čech p-cochain presheaf on X by

Čp(U ; ξ)(U) = Čp(U|U ; ξ|U ) =
∏

α0···αk

ξ(U ∩ Uα0 ∩ · · · ∩ Uαk
).

This clearly defines a presheaf, and in fact:

Lemma 6.1.12. Čp(U ; ξ) is a sheaf.

Proof. Suppose that U = ∪iUi. We need to show that the following sequence is exact,

0 −−−−→ Čp(U ; ξ)(U) −−−−→
∏

i Čp(U ; ξ)(Ui) −−−−→
∏

i<j Čp(U ; ξ)(Ui ∩ Uj)

By definition, this is the same as showing the following sequence is exact,

0 −−−−→
∏

α0···αk
ξ(U ∩ Uα0 ∩ · · · ∩ Uαk

) −−−−→
∏

i

∏
α0···αk

ξ(Ui ∩ Uα0 ∩ · · · ∩ Uαk
)

−−−−→
∏

i<j

∏
α0···αk

ξ(Ui ∩ Uj ∩ Uα0 ∩ · · · ∩ Uαk
)

In this sequence we can interchange the order in which we take products. Then for a given
(p + 1)-tuple the sequence is exact by the sheaf property of ξ,

0 −−−−→ ξ(U ∩ Uα0 ∩ · · · ∩ Uαk
) −−−−→

∏
i ξ(Ui ∩ Uα0 ∩ · · · ∩ Uαk

)

−−−−→
∏

i<j ξ(Ui ∩ Uj ∩ Uα0 ∩ · · · ∩ Uαk
)

Since the product of exact sequences is exact, this proves the result.

Now, consider the canonical resolution,

0 −−−−→ ξ −−−−→ C0(ξ) −−−−→ C1(ξ) −−−−→ C2(ξ) −−−−→ · · ·
For each sheaf in this resolution we make the Čech cochains into a sheaf as described and
we have,

�⏐⏐ �⏐⏐ �⏐⏐
Č1(U ; ξ) Č1(U ;C0(ξ)) Č1(U ;C1(ξ))�⏐⏐ �⏐⏐ �⏐⏐
Č0(U ; ξ) Č0(U ;C0(ξ)) Č0(U ;C1(ξ))�⏐⏐ �⏐⏐ �⏐⏐

0 −−−−→ ξ −−−−→ C0(ξ) −−−−→ C1(ξ) −−−−→ C2(ξ) −−−−→ · · ·

(3)

We want to show three things,
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1. There are horizontal arrows in this diagram.

2. The vertical complexes are resolutions.

3. The Č∗(Ci(ξ)) have no higher cohomology.

Then puting these together, we will show that the cohomology of the total complex
equals the cohomology obtained from the canonical resolution, and thus we will have iden-
tified the sheaf cohomology with the Čech cohomology.

To show that we have horizontal maps, suppose that we have map f : ξ1 → ξ2. then
there is an induced map

Čp(f) : Čp(U ; ξ1)→ Čp(U ; ξ2).

We need a map Čp(U ; ξ1)(U) → Čp(U ; ξ2)(U).∏
α0···αp

ξ1(U ∩ Uα0 ∩ · · · ∩ Uαp)
f−−−−→

∏
α0···αp

ξ2(U ∩ Uα0 ∩ · · · ∩ Uαp)

These maps of sheaves commute with δ.
For step two, we have the following lemma,

Lemma 6.1.13. For any sheaf ξ we have a resolution

0 → ξ → Č0(U ; ξ) → Č1(U ; ξ) → Č2(U ; ξ) → · · ·

Proof. This is a resolution, since the sequence is exact on the stalk level.

For step three, we have,

Lemma 6.1.14. If ξ is flabby, then Čp(U ; ξ) is also flabby (for all p and for all U).

Proof. Let σ ∈ Čp(U ; ξ). Then

σ =
∏

α0···αp

σα0,...,αp ,

where σα0,...,αp ∈ ξ(U ∩ Uα0 ∩ · · · ∩ Uαp). Since ξ is flabby we can extend each one of these
σα0,...,αp to σ̂α0,...,αp ∈ ξ(Uα0 ∩ · · · ∩ Uαp), and thus extend σ to

σ̂ =
∏

α0···αp

σ̂α0,...,αp .
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Now, we have that each vertical column in the diagram (3) is a flabby resolution,

�⏐⏐
Č1(Ci(ξ))�⏐⏐
Č0(Ci(ξ))�⏐⏐

Ci(ξ)

and thus,

H∗(Č∗(Ci(ξ)), δ) =

{
0 ∗ > 0
H0(Ci(ξ)) ∗ = 0

Now, we use the double complex ⊕p,qA
p,q with

Ap,q = H0(Čq(U ;Cp(ξ))).

and maps given by,

Ap,q+1�⏐⏐δ−Čech

Ap,q d−−−−→ Ap+1,q

So, our double complex looks like,

�⏐⏐δ

�⏐⏐δ

�⏐⏐δ

Č1(U ; ξ) −−−−→ Č1(U ;C0(ξ)) −−−−→ Č1(U ;C1(ξ)) −−−−→�⏐⏐δ

�⏐⏐δ

�⏐⏐δ

Č0(U ; ξ) −−−−→ Č0(U ;C0(ξ)) −−−−→ Č0(U ;C1(ξ)) −−−−→�⏐⏐ �⏐⏐ �⏐⏐
0 −−−−→ ξ −−−−→ C0(ξ) −−−−→ C1(ξ) −−−−→ · · ·

Now, filtering on p,
Ep,q

0 = H0(Čq(U ;Cp(ξ)))

and d0 = δ.

Ep,q
1 =

{
0 q > 0
H0(Cp(ξ) q = 0
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and d1 : H0(Cp(ξ)) → H0(Cp+1(ξ)).

Ep,q
2 =

{
0 q > 0
Hp

resolution(ξ) q = 0

and thus,

Ep,q
2 = Ep,q

∞ = Hp(C∗
total,D) = Hp

resolution(ξ).

Now, we filter on q. Then Ep,∗
0 are the global sections,

Čp(U ;C0(ξ)) d−−−−→ Čp(U ;C1(ξ)) d−−−−→ Čp(U ;C2(ξ))

and d0 : Ep,∗
0 → Ep+1,∗

0 . Now,

Čp(U ;Ci(ξ)) =
∏

(a0,...,ap)

Ci(ξ)(Ua0 ∩ · · · ∩ Uap).

and the map d : Čp(U ;Ci(ξ)) → Čp(U ;Ci+1(ξ)) is given by,∏
(a0,...,ap)

(
d : Ci(ξ)(Ua0 ∩ · · · ∩ Uap)) → Ci+1(ξ)(Ua0 ∩ · · · ∩ Uap))

)
.

So,
Ep,q

1 =
∏

(a0,...,ap)

Hq(C∗(ξ)(Ua0 ∩ · · · ∩ Uap)).

where Hq is a cohomology presheaf of C∗(ξ),

Hq(C∗(ξ))(U) =
Ker(Cq(ξ)(U) → Cq+1(ξ)(U))
Im(Cq−1(ξ)(U) → Cq(ξ)(U))

.

Notice that Hq(C∗(ξ)) is a presheaf whose associated sheaf is trivial, and H0(C∗(ξ)) = ξ.
A presheaf A determines the trivial sheaf if and only if for every x ∈ X, lim−→

x∈U

A(U) = {0}.

In our case, for q > 0,

lim−→
{U |x∈U}

Hq(C∗(ξ))(U) = lim−→
{U |x∈U}

Ker(Cq(ξ)(U) → Cq+1(ξ)(U))
Im(Cq−1(ξ)(U) → Cq(ξ)(U))

=

Ker
(

lim−→
{U |x∈U}

Cq(ξ)(U) → lim−→
{U |x∈U}

Cq+1(ξ)(U)
)

Im
(

lim−→
{U |x∈U}

Cq−1(ξ)(U) → lim−→
{U |x∈U}

Cq(ξ)(U)
)

= {0}
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Now, suppose we have an open cover V = {Vb}b∈B that refines U = {Ua}a∈A. and a
refinement function r : B → A. Then r induces a map on the double complex of sheaves
and hence on the double complex of global sections.

Čp(U ;Cq(ξ)) → Čp(V;Cq(ξ))

σ =
∏

σa0,...,ap �→ τ =
∏

τb0,...,bp

where,
τb0,...,bp = σr(b0),...,r(bp)|Vb0

∩···∩Vbp
.

The map on the double complex depends on the refinelment. filtering on the resolution
degree,

Ep,q
1 =

{
0 q > 0
H0(Cp(ξ)) q = 0

For any choice of r the induced map on Ep,q
1 is the identity, and all possible refinements

induce the same isomorphism on the cohomology of the double complex.
Now, we filter on the Čech degree. Here things are much more complicated, and more

interesting. We have,

Ep,q
1 (U) = Čp(U ;Hq(C∗(ξ)))

Ep,q
2 (U) = Hp(U ;Hq(C∗(ξ)))

and the map r : V → U induces a map

Ep,q
1 (U) r∗−−−−→ Ep,q

1 (V)

σ =
∏

σa0,...,ap �→ τ =
∏

τb0,...,bp

where,
τb0,...,bp = σr(b0),...,r(bp)|Vb0

∩···∩Vbp
.

All the refinement maps induce the same map on Ep,q
2 . In this spectral sequence,

Ep,0
2 = Hp(U ;H0(C∗(ξ))) = Hp(U ; ξ) = lim−→

open covers

(Ep,0
2 ) = Ȟp(X; ξ)

Theorem 6.1.15. lim−→
open covers

(Ep,0
2 ) = 0 for q > 0 if X is paracompact.

Proposition 6.1.16. Suppose that A is a presheaf whose associated sheaf is trivial (X
paracompact), then Ȟ∗(X;A) = 0 for all ∗.
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Now, lim−→
open covers

(Ep,q
2 ) = 0 for q > 0, so the direct limit spectral sequence has,

Ep,q
2 = 0 for q > 0

and,
Ep,0

2 = Ȟp(X; ξ) = Ep,0
∞ = Hp(total complex)

and converges to H∗(total complex).

Corollary 6.1.17. DeRham’s Theorem For a smooth manifold M , the deRham coho-
mology H∗

dR(M) is identified with the Čech cohomology with real coefficents (i.e. coefficents
in the constant sheaf R)

7 Applications to Manifolds

Manifolds are one of the most important classes of topological spaces in mathematics, and
the tools of algebraic topology have been used extensively to study their properties. A great
deal is known about the algebraic topological invariants that we have developed so far in
the case where the space under consideration is a manifold. The starting point for this
application is the Poincaré Duality theorem, which relates the homology and cohomology
groups associated to a compact manifold. For our purposes we will generally stick to the
case of smooth manifolds, since this will allow us to make use of Morse theory; however,
many of these results also hold in non-smooth categories.

7.1 Morse Theory Basics

Morse theory studies the topology of a smooth n-manifold M by looking at smooth functions
from the manifold to R. We will apply the results of Morse theory to prove Poincaré Duality.
There is an excellent book on Morse theory by John Milnor, which contains most of the
results that we will need, so here we will only state the main results and refer the reader
to Milnor’s book for details.

Definition 7.1.1. A smooth function f : M → R is a Morse function if df ∈ Γ(T ∗M) has
isolated transverse zeros.

Let f : M → R be a Morse function. In local coordinates (x1, . . . , xn), centered at a
point x ∈ M , df(x) =

∑ ∂f
∂xi (0)dxi = 0 if and only if ∂f

∂xi (0) = 0 for all i. Such points are
called critical points. Points which are not critical points are called regular points.

Since f is a Morse function, D(df)(x,0) is transverse to TM(x,0). When this condition is
met, the critical point is said to be non-singular or non-degenerate. The condition that a
critical point be non-degenerate is the same as that the Hessian of f , H(f), be non-singular.
The Hessian of f is the symmetric matrix given by,

H(f)ij(0) =
(

∂2f

∂xi∂xj
(0)
)
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Figure 14: A Morse function on Σ2 and its critical points

The Hessian gives a symmetric bilinear, or quadratic form.

Lemma 7.1.2. Every real quadratic form on Rn is equivalent to a diagonal form with
+1,−1, 0 on the diagonal. The form is non-degenerate iff there are no zeroes on the diag-
onal. The number of +1’s and −1’s are invariants of the form.

The number of −1’s on the diagonal of a quadratic form is called the index of the form.
If x is a non-degenerate critical point of f then the index of x is the index of the quadratic

form given by D(df)x =
(

H(f)(x)
)

.

Theorem 7.1.3. Suppose that p is a non-degenrate critical point for f , then there exist local

coordintes (x1, . . . , xn) centered at p such that f(x1, . . . , xn) = f(p)+
k∑

i=0

(xi)2 −
n∑

j=k+1

(xj)2.

If p is a regular point then there exist local cooordintes (x1, . . . , xn) centered at p such that
f(x1, . . . , xn) = f(p) + x1.

Now we completely understand our Morse function locally. Near a critical point p there
exist local coordinates {→x,

→
y } such that f(

→
x,

→
y ) = f(p)− |→x |2 + |→y |2. Near a regular point

q there exist local coordinates {x1, . . . , xn} such that f(
→
x) = f(q)+ x1. The regular points

of a Morse function f : M → R are an open dense subset of M . The critical points are a
discrete subset of M . If M is compact this implies that there are only finitely many critical
points. Our next goal is to understand f−1([a, b]) for a and b sufficently close.

Definition 7.1.4. A gradient-like vector field for f , is a vector field V on M such that
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1. < df(x), V (x) > > 0 for every regular point x.

2. If p is a critical point, then there exist local coordinates (
→
x,

→
y ) such that f(

→
x,

→
y ) =

f0 + |→y |2 − |→x |2 and V = −2
∑

xi ∂
∂xi + 2

∑ ∂
∂yi .

Lemma 7.1.5. f has gradient like vector fields.

Theorem 7.1.6. Let f : M → R be a Morse function, a < b ∈ R and suppose that there is
no crtical point x ∈ M with f(x) ∈ [a, b]. Then f−1([a, b]) is diffeomorphic to f−1(a)× [a, b]

Remark 7.1.7. If a is a regular value, then f−1(a) is a smooth codim 1 submanifold of
M , and f |f−1([a,b]) = projection to the second factor, i.e. f−1(t) ∼= f−1(a) for all a ≤ t ≤ b.

Now assume there exists a single critical point c such that a ≤ f(c) ≤ b and furthermore,
a < f(c) < b. Our goal is to model the topology of f−1([a, b]), in terms of f−1(a) and
information about c. Let V be a gradient like vector field for f . For a point x ∈ M let
γx : R →M be a flow line for V starting at x.

Definition 7.1.8. The descending or stable manifold of a critical point c ∈ M is {x ∈
M | lim

t→∞γx(t) = c}. The ascending or unstable manifold of a critical point c ∈ M is {x ∈
M | lim

t→−∞γx(t) = c}.

stable manifold

unstable manifold

Figure 15: The stable and unstable manifolds

If c is a critical point of index i then the stable manifold is diffeomorphic to Ri.
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Theorem 7.1.9. If there exists a unique critical point with value in [a, b], that being a
critical point of index k, then

H∗(f−1([a, b]), f−1(a)) =

{
Z ∗ = k

0 ∗ �= k

If there exists a unique critical point with value in [a, b], that being a critical point of
index k, then

H∗(M(−∞,b],M(−∞,a]) = H∗(f−1
[a,b],Mb) =

{
Z ∗ = k

0 ∗ �= k

Thus, H∗(M(−∞,b]) = H∗(M(−∞,a]) for ∗ �= k − 1, k, and for these cases we have the
following exact sequence,

0 → Hk(M(−∞,b]) → Hk(M(−∞,a]) → Z → Hk−1(M(−∞,b])→ Hk−1(M(−∞,a]) → 0

Corollary 7.1.10. If M is a compact smooth manifold then H∗(M) is finitely generated.

Theorem 7.1.11. Morse Inequalities There is a free abelian chain complex whose chain
group in degree k has as a basis the set of critical points of index k, and whose homlogy is
isomorphic to the singular homology of M .

Corollary 7.1.12. If Mn has a Morse function with exactly two critical points, then
H∗(M) ∼= H∗(Sn).

7.2 The Fundamental Class

Suppose that M is a closed oriented n-manifold. Recall that

H∗(M,M \ {x}) =

{
Z ∗ = n

0 ∗ �= n

Furthermore, an orientation of M at x determines a generator for Hn(M,M \ {x}). A
global orientation for M determines a generator ox ∈ Hn(M,M \ {x}) for every x ∈ M .
An orientation homology class or fundamental class is an element [M ] ∈ Hn(M) such that
i∗([M ]) = ox ∈ Hn(M,M \ x) for every x ∈ M , where i : (M, ∅) ↪→ (M,M \ {x}) is the
inclusion. For a manifold with boundary,

Hn(M,M \ {x}) =

{
Z ∗ = n

0 ∗ �= n

if x ∈ int(M). If x ∈ ∂M , then M \ {x} ↪→ M induces an isomorphism on homology. A
homology orientation class for M is [M,∂M ] ∈ Hn(M,∂M) whose image in Hn(M,M \{x})
is ox for all x ∈ int(M).
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Theorem 7.2.1. If M is oriented then it has a homology orientation giving that orienta-
tion.

Lemma 7.2.2.

H∗(Sk ×Dn−k, Sk × ∂Dn−k) =

{
Z ∗ = n, n− k

0 otherwise

The relative class in degree n− k is carried by ({x}×Dn−k, {x}× ∂Dn−k) and a generator
of Hn is a homology orientation. Also,

H∗(Sk × Sn−k−1) =

{
Z ∗ = 0, k, n − k − 1, n − 1
0 otherwise

The classes in degree k and n − k − 1 are carried by Sk × {y} and {x} × Sn−k−1. A
generator for Hn−1 is a homology orientation.

Lemma 7.2.3. Let M be a smooth n-manifold without boundary and X ⊂ M an n-
submanifold, possibly with boundary, such that ∂X ⊂ M is a codim 1 submanifold. Then
there is a diffeomorphism (−ε, ε) × ∂X ↪→ M whose image is a neighborhood of ∂X and
such that the intersection with X is (−ε, 0]× ∂X.

Proof. There exists a neighborhood U of ∂X and a vector field V on U such that for
every x ∈ ∂X Vx points out of X. Use local coordinates to define V near each x, then add
these together with a partition of unity. Integrate the vector field to obtain,

(−ε, ε)× ∂X
Φ−−−−→ M

given by (t, x) �→ γx(t) where γx(t) is a flow line for V with γx(0) = x. Then DΦ(0,x)

is a linear isomorphism, so Φ : (ε, ε) × ∂X → M is a local diffeomorphism. If we can
show that it is one-to-one then it will be a diffeomorphism onto its image. If Φ|(−δ,δ)×∂X

is never one-to-one then there exist sequences (xn, tn) �= (yn, sn) with tn → 0, sn → 0
and xn, yn ∈ ∂X with Φ(xn, tn) = Φ(yn, sn). Pass to a subsequence so that xn → x and
yn → y then Φ(x, 0) = Φ(y, 0), which implies x = y, and thus both Φ(xn, tn) → Φ(x, 0) and
Φ(yn, sn)→ Φ(x, 0), which is a contradiction since Φ is a local diffeomorphism.

Corollary 7.2.4. There is a homotopy H : C1 × I → C1 such that H0 =Id, Ht|∂C1 =Id,
and H1(C1/2) = ∂X, where C1 is a collar neighborhood of ∂X and C1/2 is a smaller collar
neighborhood.

We now establish a slightly modified form of Mayer-Vietoris.

Proposition 7.2.5. Let X = A ∪C B where A,B ⊂ X are closed subsets and A ∩B = C.
Let UA ⊃ A and UB ⊃ B be open sets in X. Suppose there is a homotpy H : X × I → X
with H0 = IdX and Ht(A) ⊂ A, Ht(B) ⊂ B for all t and H1(UA) ⊂ A, H1(Ub) ⊂ B. Then
any homology class in X has a cycle representative ζA + ζB where ζA is a chain in A and
ζB is a chain in B and ∂ζA = −∂ζB ∈ S∗(C).
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Example 7.2.6. Let M be a closed n-manifold and X ⊂ M a codim 0 submanifold,
possibly with boundary. Let A = X, B = M \ int(X) and C = ∂X. Then the corollary
above provides the neccesary homotopy and the proposition implies that any homology
class in X has a cycle representative ζA + ζB where ζA is a chain in A and ζB is a chain in
B and ∂ζA = −∂ζB ∈ S∗(C).

Proof. Given α ∈ Hk(X) take a representative which is small with respect to the open
cover {UA, UB}. Say ζU(A) + ζU(B) is such a cycle representative for α with ζU(A) ∈ S∗(UA)
and ζU(B) ∈ S∗(UB). Consider (H1)∗(ζU(A) + ζU(B)). This is a new cycle representative for
the same class. Letting ζA = (H1)∗(ζU(A)) ∈ S∗(A) and ζB = (H1)∗(ζU(B)) ∈ S∗(B), we
have a representative for α as desired.

Theorem 7.2.7. If M is a closed compact orientable n-manifold then M has a unique
orientation class [M ] ∈ Hn(M).

Proof. Let f : M → R be a Morse function with critical values c1 < · · · < cl such
that f−1(ci) has a unique critical point for each i. Take a0 < c1 < a1 < c2 < · · · <
cl < al. We prove by induction that M(−∞,ai] = f−1(−∞, ai] has a unique orientata-
tion class. First, f−1(−∞, a0] = ∅, so there is nothing to show. For f−1(−∞, a0] = Dn

we have Hn(Dn, Sn−1) ∼= Z and Hn(Dn, Sn−1) → Hn(Dn,Dn \ {x}) is an isomorphism,
[Dn, Sn−1] �→ ox.

Now, let M− = M(−∞,ai−1] and M+ = M(−∞,ai]. Suppose that there exists a unique
orientation class [M−, ∂M−] ∈ Hn(M−, f−1(ai−1) = ∂M−). Let M ′ = M− ∪A A× I where
A = Mai−1 \ int(Sk−1 × Dn−k). Take a chain representative ζ− for [M−, ∂M−]. Then
∂ζ− is homologus to ζA + ζB where ζA ∈ Sn−1(A) and ζB ∈ Sn−1(Sk−1 × Dn−k). So
∂ζ− = ζA + ζB + ∂μ for some μ ∈ Sn(∂M−). Replace ζ− by ζ− − μ ∈ Sn(M−). This still
represents [M−, ∂M−], so ∂ζ− = ζA + ζB . By subdividng we have ζ− + ζA × I ∈ Sn(M ′),
and

∂(ζ−+sub(ζA×I)) = ζA+ζB+ζA×{1}−ζA×{0}+sub(∂ζA×I) = ζB+ζA×{1}−sub(∂ζA×I).

We have M+ = M−∪Dn, and fundamental classes [M−, ∂M−], [Dn, ∂Dn] inducing opposite
orientations on the boundary. We have Dn ∩ M = B ∪∂B=∂A (∂A × I). Choose chain
representatives ζ ′ for [M ′, ∂M ′] and ζD for [Dn, ∂Dn] such that ∂ζ ′ = μo + μ1 and ∂ζD =
ν0 + ν1 with μ0, ν0 ∈ Sn−1(B ∪ ∂A× I). Then μo and ν0 give appropriate orientations, and
hence [μ0] = −[ν0] ∈ Hn−1(B ∪ ∂A × I, ∂) so μ0 + ν0 = ∂γ for some γ ∈ Sn(B ∪ ∂A × I).
By adding γ we can make μ0 = −ν0. Now, let ζ+ = ζD + ζ ′ ∈ Sn(M+). Then ∂(ζD + ζ ′) =
μ1 + ν1 ∈ Sn−1(∂M+). Then ζ+ is a relative cycle for (M+, ∂M+) and agrees in M− with
ζ−, so ζ+ induces the orientation ox ∈ Hn(M+,M+ \ {x}) for all x ∈ int(M−) and hence
for all x ∈ int(M+).
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7.3 Poincaré Duality

Poincaré duality asserts that certain homology and cohomology classes of a manifold are
isomorphic. The isomorphism is given by taking cap product with the fundamental class
of the manifold.

Theorem 7.3.1. Poincaré Duality Let M be a closed oriented n-manifold. Let [M ] ∈
Hn(M) be the orientation class, then ∩[M ] : H i(M ; Z) → Hn−i(M ; Z) is an isomorphism.

Theorem 7.3.2. Lefschetz Duality If M is a manifold with boundary then ∩[M,∂M ] :
H i(M ; Z) → Hn−i(M,∂M ; Z) is an isomorphism.

The power of this theorem is illustrated by the following immediate corollaries.

Corollary 7.3.3. Hk(m) = 0 for all k > n.

Corollary 7.3.4. Hn(M) ∼= Z and [M ] is a generator.

Corollary 7.3.5. rk(Hi(M)) = rk(Hn−i(M)).

Corollary 7.3.6. TorHi(M) ∼= TorHn−i−1(M).

Corollary 7.3.7. Hn−1(M) is torsion free.

Remark 7.3.8. This is not true if M is not oriented. For example H1(RP 2) = Z/2Z.

Proof. Poincaré Duality Take a Morse function f : M → R such that if c is a critical
value, f−1(c) has exactly one critical point. Let c0 < c1 < c2 < · · · < cN be the critical
values of f and let xi ∈ f−1(ci) be the citical points. Choose a0 < c0, a1 < c1 < · · · <
aN < cN < aN+1. Let Mj = f−1((−∞, aj ]). Then each Mj is a compact manifold with
boundary. Since M is oriented so are int(Mj) and ∂Mj = f−1({aj}). M0 = ∅, MN+1 = M
and Mj+1 is obtained from Mj by adding a single handle.

Lemma 7.3.9. There is a relative fundamental class [Mj , ∂Mj ] ∈ HN (Mj , ∂Mj), and
∩[Mj , ∂Mj ] : H i(Mj)→ Hn−i(Mj , ∂Mj) is an isomorphism for all i.

Proof. The proof is by induction on j. The statement for j = N + 1 is Poincaré Duality
for M . Let Xj+1 = Mj+1 \ int(Mj) = f−1([aj , aj+1]). We have already shown the existence
of a fundamental class [Mj , ∂Mj ] ∈ Hn(Mj , ∂Mj) such that under the composition,

Hn(Mj+1, ∂Mj+1)
i∗−−−−→ Hn(Mj ,Xj+1)

∼=−−−−−→
excision

Hn(Mj , ∂Mj)

[Mj+1, ∂Mj+1] maps to [Mj , ∂Mj ]. We have the exact sequence,

· · · −−−−→ Hi(Xj+1, ∂Mj+1)
i∗−−−−→ Hi(Mj+1,Xj+1) −−−−→ Hi−1(Xj+1, ∂Mj+1) −−−−→ · · ·∥∥∥

Hi(Mj , ∂Mj)
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We have seen that H∗(Xj+1, ∂Mj) = H∗(Dk, ∂Dk) where k is the index of f at xj+1, and
Xj+1 deformation retracts onto the stable manifold at xj union ∂Mj which equals Dk∪∂Mj .

Now consider g = −f . Then g : Xj+1 → [−aj+1,−aj ]. The lower boundary under g
is g−1(−aj+1) = f−1(aj+1) = ∂Mj+1. There is still a critical point for g at xj+1, but the
index of that critical point is n minus the index of xj+1 for f . So, we see

H∗(Xj+1, ∂Mj+1) = H∗(unstablef (xj+1) ∪ ∂Mj+1, ∂Mj+1) =

{
Z ∗ = n− k

0 otherwsie

We conclude that i∗ : Hi(Mj+1, ∂Mj+1) → HI(Mj , ∂Mj) is an isomorphism for i �= n− k +
1, n − k. For these cases we have,

0 → Hn−k+1(Mj+1, ∂Mj+1) → Hn−k+1(Mj , ∂Mj)→ Z → Hn−k(Mj+1, ∂Mj+1) → Hn−k(Mj , ∂Mj) → 0

Now, compare H∗(Mj+1) and H∗(Mj). We have,

· · · −−−−→ H∗(Mj+1, ∂Mj) −−−−→ H∗(Mj+1)
i∗−−−−→ H∗(Mj) −−−−→ H∗+1(MJ+1,Mj) −−−−→ · · ·∥∥∥

H∗+1(Xj+1, ∂Mj)∥∥∥
H∗+1(Dk, ∂Dk)

So, i∗ : H l(Mj+1 → H l(Mj) is an isomorphism for l �= k, k − 1. For these we have,

0 → Hk−1(Mj+1) → Hk−1(Mj)→ Z→ Hk(Mj+1) → Hk(Mj) → 0

First, we look away from the critical dimensions, i �= k, k − 1.

H i(Mj+1)
∼=−−−−→
i∗

H i(Mj)⏐⏐�∩[Mj+1,∂Mj+1] ∼=
⏐⏐�∩[Mj ,∂Mj ]

Hn−i(Mj+1, ∂Mj+1)
∼=−−−−→ Hn−i(Mj , ∂Mj)∥∥∥

Hn−i(Mj+1,Xj+1)

So, all we need to show is that the diagram commutes and we will have shown that Lef-
shchetz duality holds for Mj+1 for all degrees except i = k − 1, k. To prove that the dia-
gram commutes, take a cycle representative for the fundamental class of Mj+1 of the form
ζj + χj+1 where ζj ∈ Sn(Mj) is a cycle representative for [Mj , ∂Mj ] and χj+1 ∈ Sn(Xj+1).
Then ∂χj+1 = ∂+χj+1 + ∂−χj+1 where ∂+χj+1 ∈ Sn−1(∂Mj+1), ∂−χj+1 ∈ Sn−1(∂Mj)
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and ∂ζj = −∂−χj+1. Suppose ζj =
∑

nσσ and χj+1 =
∑

nττ . Start with a cocylce
μ ∈ Si(Mj+1). Then i∗μ ∈ Si(mj). Now cap with ζj , and we have

i∗μ ∩ ζj =
∑

nσ < i∗μ, fri(σ) > bkn−i(σ).

On the other hand, we have

μ ∩ (ζj + χj+1) =
∑

nσ < μ, fri(σ) > bkn−i(σ) +
∑

nτ < μ, fri(τ) > bkn−i(τ)

The second sum is in Sn−i(Xj+1) and so equals zero in Hn−i(Mj , ∂Mj) = Hn−i(Mj+1,Xj+1).
Thus, we are left with,

μ ∩ (ζj + χj+1) =
∑

nσ < μ, fri(σ) > bkn−i(σ) ∈ Sn−i(Mj)

and the diagram commutes. Note that although this only proves Lefschetz duality for
i �= k − 1, k, the diagram commutes for all i.

Now, for i = k − 1, k we have,

Z∥∥∥
0 −−−−→ Hn−k+1(Mj+1, ∂Mj+1)

i∗−−−−→ Hn−k+1(Mj , ∂Mj) −−−−→ Hn−k(Dn−k, ∂Dn−k) −−−−→ · · ·�⏐⏐∩[Mj+1,∂Mj+1] ∼=
�⏐⏐∩[Mj ,∂Mj ]

�⏐⏐∩[Xj+1,∂Xj+1]

0 −−−−→ Hk−1(Mj+1) −−−−→ Hk−1(Mj) −−−−→ Hk(Dk, ∂Dk) −−−−→ · · ·∥∥∥
Z

· · · −−−−→ Hn−k(Mj+1, ∂Mj+1) −−−−→ Hn−k(Mj , ∂Mj) −−−−→ 0�⏐⏐∩[Mj+1,∂Mj+1] ∼=
�⏐⏐∩[Mj ,∂Mj ]

· · · −−−−→ Hk(Mj+1) −−−−→ Hk(Mj) −−−−→ 0

So, we need to show that the map

Hn−k(Dn−k, ∂Dn−k) Hn−k(Xj+1, ∂Mj+1)

∼=?

�⏐⏐∩[Xj+1,∂Xj+1] ∼=?

�⏐⏐∩[Xj+1,∂Xj+1]

Hk(Dk, ∂Dk) Hk(Xj+1, ∂Mj)

is an isomorphism
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7.3.1 More cup and cap product

If M is a closed oriented n-manifold, then Poincaré duality tells us we have a fundamental
class [M ] ∈ Hn(M) and

∩[M ] : Hk(M)
∼=−−−−→ Hn−k(M)

for all k. Consider the composition,

Hk(M)⊗Hn−k(M) ∪−−−−→ Hn(M)
< ,[M ]>−−−−−→ Z

This gives a bilinear pairing, Hk(M)⊗Hn−k(M) → Z, given by,

α⊗ β �→< α ∪ β, [M ] >=< α, β ∩ [M ] >=< α,PD(β) >

where PD(β) denotes the Poincaré dual of β. So, another way to write this pairing is,

Hk(M)⊗Hn−k(M) 1×PD−−−−→ Hk(M)⊗Hk(M)
< , >−−−−→ Z

If we just consider the torsion part Tor Hk(M) ⊂ Hk(M) we see that the map Tor Hk(M)⊗
Hn−k(M) → Z is zero. To see this, suppose α ∈ Tor Hk(M) and lα = 0. Then

l(α⊗ β) = (lα⊗ β) = (0⊗ β) �→ 0,

and thus (α ⊗ β) �→ 0. Similarly, Hk(M) ⊗ Tor Hn−k(M) → Z is zero, so we think of this
pairing as,

Hk(M)
Tor Hk(M)

⊗ Hn−k(M)
Tor Hn−k(M)

→ Z.

Theorem 7.3.10. This is a perfect pairing.

If A,B are free abelian groups then • : A ⊗ B → Z is a perfect pairing if its adjoint,
A → Hom(B, Z) = B∗ is an isomorphism. Another way to say this is, choosing bases for
A,B, • is represented by a square matrix and it is a perfect pairing iff the determinant of
this matrix is ±1.

Proof. Our pairing is now,

Hk(M)
Tor Hk(M)

⊗ Hn−k(M)
Tor Hn−k(M)

1⊗PD−−−−→ Hk(M)
Tor Hk(M)

⊗ Hk(M)
Tor Hk(M)

< , >−−−−→ Z

Poincaré duality tells us the first map in this composition is an isomorphism, so we need
only to check that the pairing,

Hk(M)
Tor Hk(M)

⊗ Hk(M)
Tor Hk(M)

< , >−−−−→ Z

is perfect. This is exactly what the universal coefficent theorem says.
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What about the symmetry of this pairing?

Theorem 7.3.11. ∪ : H∗(X)⊗H∗(X) → H∗(X) satisfies α ∪ β = (−1)|α||β|β ∪ α.

This should be a suprise to us. It certainly does not hold on the cochain level. In fact,
we have the following theorem,

Theorem 7.3.12. There cannot be a natural cochain cup product that is associative, graded
cummutative and satisfies the Leibniz rule.

The most interesting case of this pairing is when k = n− k i.e. n = 2k. Then we have,

i :
Hk(M2k))

Tor(Hk(M2k))
⊗ Hk(M2k))

Tor(Hk(M2k))
→ Z

The pairing is perfect, and symmetric for k even and skew symmetric for k odd. If we take
a basis {ei} for Hk(M)/Tor(Hk(M)) then i is represented by a matrix Alm = i(el, em).
This matrix has the property Alm = Aml if k is even, and Alm = −Aml if k is odd. The
determinant of Alm is ±1. In the symmetric case we are considering quadratic forms and in
the skew symmetric case, we are studying symplectic forms. The algebraic classification of
these matrices correspond to the classification of these pairings up to isomorphism. These
provide algebraic invariants of M (and an orientation).

Theorem 7.3.13. A perfect skew symmetric pairing is isomorphic to a direct sum
n⊕

i=0

H

for n ≥ 0, where

H =
(

0 1
−1 0

)
In particular, the rank of the free abelian group is even and is a complete invariant of

the pairing up to isomorphism.

Corollary 7.3.14. If M is a closed, oriented 4k + 2 manifold, then the rank of H2k+1(M)
is even and rkH2k+1−r(M) = rkH2k+1+r(M) for all r > 0.

Corollary 7.3.15. If M is a closed, oriented 4k +2 manifold then the Euler characteristic
of M is even.

Example 7.3.16. To see that orientation is neccesary, notice that the Euler characteristic
of RP 2 is 1.

Corollary 7.3.17. If M is a closed, oriented 2k +1 manifold then the Euler characteristic
of M is 0.

Remark 7.3.18. This is also true for non-orientable manifolds, as can be shown using a
Z/2 formulation of Poincaré duality.
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Now we turn to perfect symmetric pairings. These pairings are classified by three
invariants.

• rank: The rank of the free abelian group.

• signature: Tensor with R and then diagonalize. Then the signature is the number of
plus 1’s on the diagonal minus the number of -1’s.

• parity: A pairing is even if every diagonal entry is even, and odd otherwise.

Note that rank and signature are R invariants of the pairing, while parity is an integral
invariant.

Theorem 7.3.19. Let (L,<,>) be a perfect symmetric pairing. If L is not positive defni-
nite or negative definite, then the isomorphism class of (L,<,>) is determined by the rank,
signature and parity of the pairing.

We remark without proof that the folowing relationships hold between these invariants:

• rk ≡ signature mod 2.

• |signature| ≤ rk.

• If the parity is even then sign ≡ 0 mod 8.

Suppose that (L,Q) is a perfect symmetric pairing. Then the adjoint of Q identifies
L with its dual L∗ by l �→ Q(l, ·) : L → Z. So if we have another lattice M and a map
f : M → L, we can use this identification to think of the dual map f∗ : L∗ →M∗ as a map
f∗ : L→M∗.

Lemma 7.3.20. Suppose that (L,Q) is a perfect symmetric pairing, f∗ ◦ f = 0 and
Ker f∗/Imf is torsion, then the signature of (L,Q) is 0.

Theorem 7.3.21. Let W be a compact, oriented 4n+1 manifold. Let M = ∂W be a closed
oriented 4n manifold. Then the signature of M is zero.

Exercise 7.3.22. Compute the signature of Σg × Σg, where Σg is the closed surface of
genus g.

Exercise 7.3.23. Show that sign(M#N) = sign(M) + sign(N).

Exercise 7.3.24. If X̄ is X with the opposite orientation, show that sign(X#X̄) = 0.
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8 Differential Topology

In order to further develop the application of algebraic topology to manifolds, we will need
to briefly study some important results from differential topology. Differential topology is
a very interesting subject in its own right, but here we will only quickly cover the tools that
will be neccesary for our applications. Our main goals will be first to define connections
and covariant derivatives, so that we may describe the geodesic equation. We will then
use the local existence of geodesics to define the exponential map and prove the tubular
neighborhood theorem. Then we will return to algebraic topology, making use of the tubular
neighborhood theorem to prove the Thom isomorphism theorem.

8.1 Connections

Consider the tangent bundle to a smooth manifold,

TM⏐⏐�π

M

A connection on TM will be a choice of linear subspaces H(x,v) ⊂ T (TM)(x,v). These
subspaces will be the same dimension as the dimension of M and have the property that
the differential Dπ(x,v) : T (TM)(x,v) → TMx will be an isomorphism when restricted to
these subspaces,

Dπ(x,v) : H(x,v)

∼=−−−−→ TMx

We also require that the following two properties hold:

1. The H(x,v) vary smoothly with (x, v) i.e. the make a C∞ distribution.

2. They are invariant under the vector space structure, i.e. H(x,v) + H(x,w) = H(x,v+w)

and r ·H(x,v) = H(x,rv) for all r ∈ R.

By H(x,v) + H(x,w) = H(x,v+w) we mean, if we consider the map

+ : TM ×M TM → TM

given by
(x, v), (x,w)) �→ (x, v + w),

then {H(x,v),H(x,w)} defines a linear supspace of TM ×M TM of dimension equal to the
dimension of M , and the differential D(+) maps {(h, h′)|(π∗(h) = π∗(h′)} �→ H(x,v+w).
Similarly, by r ·H(x,v) = H(x,rv) for all r ∈ R, we mean if we consider the map

r· : TM → TM

given by
(x, v) �→ (x, rv),
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then the differential
D(r·) : T (TM)(x,v) → T (TM)(x,v)

takes H(x,v) to H(x,rv).

8.2 Covariant Derivatives

Choosing a connection on a manifold is equivalent to defining what is called a covariant
derivative. Let V F denote the space of vector fields on M . Then a covariant derivative is
a map,

∇ : V F ⊗R V F → V F .

Given two vector fields X and Y on M we write ∇X(Y ) ∈ V F . We require this map to
have the following three properties:

1. ∇r1X1+r2X2(s1Y1 + s2Y2) =
∑

risj∇Xi(Yj) for ri, sj ∈ R.

2. ∇fX(Y ) = f∇X(Y ) for any f ∈ C∞(M).

3. ∇X(fY ) = X(f) · Y + f∇X(Y )

Claim 8.2.1. ∇X(Y )(p) depends only on X(p) and the germ of Y at p.

Proof. First, suppose that germp(Y ) = germp(Y ′). Then Y − Y ′ = 0 near p, so there
exists a function f such that f(Y − Y ′) = 0 and f ′ ≡ 1 near p. Then fY = fY ′ and f ≡ 1
near p. Applying our covariant derivative,

∇X(fY )(p) = X(f)(p)Y + f∇X(Y )(p) = ∇X(Y )(p)

since X(f)Y (p) = 0. Then the same computation shows ∇X(fY ′)(p) = ∇X(Y ′)(p) and
thus ∇X(Y )(p) = ∇X(Y ′)(p).

Now, suppose that X(p) = 0. Take local coordinates {xi} centered at p so that X =∑
fi

∂
∂xi and fi(0) = 0. Then

∇X(Y )(p) =
∑

fi∇ ∂
∂xi

(Y )(p) =
∑

fi(p)∇ ∂
∂xi

(Y )(p) = 0

since fi(p) = 0.

Corollary 8.2.2. Suppose that U ⊂ M is an open subset. Then a connection ∇ on TM
induces ∇U on TU

Proof. Suppose that X and Y are vector fields on U . We need to define ∇U
XY (p). Using a

bump function argument, there exist vector fields X̂, Ŷ on M such that germpX̂ =germpX
and germpŶ =germpY . Then define ∇U

XY (p) = ∇X̂ Ŷ (p). By the previous claim this is well
defined.
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Now, let ∇ be given on TM and let U ⊂ M be a coordinate patch with local coordinates
(x1, . . . , xn). We define the Christoffel symbols, Γk

ij(x
1, . . . , xn) ∈ C∞(U) by

∇ ∂

∂xi
(

∂

∂xj
) =

n∑
k=1

Γk
ij(x

1, . . . , xn)
∂

∂xk

Notice that these symbols are uniquely determined by the connection and these symbols
determine the connection.

On a Riemannian manifold there is a best connection called the Levi-Civta connection.
Recal that a Riemannian metric is a symmetric, bilinear, positive definite map,

<,>: TM ×M TM → R

that varies smoothly with x ∈ M . In local coordinates, (x1, . . . , xn), the metric is given by
a smoothly varying, symmetric, positive definite matrix,(

gij(x1, . . . , xn)
)

.

Suppose that M has a given Riemannian metric. If X,Y,Z are vector fields on M , then

X(< Y,Z >) =< ∇X , Z > + < Y,∇X , Z >

so if we let G(x) = gij(x), then

d

dx
(Y trGZ) = (∇X(Y ))trGZ + Y tr∇X(G)Z + Y trG∇X(Z).

Since this must hold for any vector fields X,Y,Z, we see that ∇XG = 0 i.e.

∇ <,>= 0.

In local coordinates we have,

∂

∂xi
<

∂

∂xj
,

∂

∂xk
>=< ∇ ∂

∂xi

∂

∂xj
,

∂

∂xk
> + <

∂

∂xj
,∇ ∂

∂xi

∂

∂xk
>

In terms of the Christoffel symbols, this is,

∂

∂xi
(gjk) =<

n∑
l=1

Γl
ij

∂

∂xl
,

∂

∂xk
> + <

∂

∂xj
,

n∑
l=1

Γl
ik

∂

∂xl
> .

Thus,
∂gik

∂xi
=

n∑
l=1

(
Γl

ijglk + Γl
ikgjl

)
.
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We also require that the Levi-Civta connection is torsion free, or symmetric. This means,

∇XY −∇Y X = [X,Y ].

To see what this means in terms of the Christoffel symbols consider,

∇ ∂

∂xi
(

∂

∂xj
)−∇ ∂

∂xj
(

∂

∂xi
) = [

∂

∂xi
,

∂

∂xj
] = 0.

Thus,

0 =
n∑

l=1

Γl
ij

∂

∂xl
−

n∑
l=1

Γl
ji

∂

∂xl
,

which implies,
Γl

ij = Γl
ji

for all i, j, l.

Theorem 8.2.3. On a Riemannian manifold there exists a unique torsin free metric con-
nection. This is the Levi-Civta connection.

Proof. Let p ∈ M and let (x1, . . . , xn) be local coordinates centered at p such that
gij(p) = δij . Then at p we have,

∂gij

∂xk
(p) = Γk

ij + Γj
ik.

Then a short computation shows that,

∂gij

∂xk
(p)− ∂gjk

∂xi
(p) +

∂gki

∂xj
(p) = 2Γj

ik.

Thus,

Γj
ik = (1/2)

(
∂gij

∂xk
(p)− ∂gjk

∂xi
(p) +

∂gki

∂xj
(p)
)

.

8.3 Geodesics

We say that a path γ : (−ε, ε) → M is a geodesic if γ′(t) ∈ TMγ(t) is a parallel family i.e.
∇γ′(t)γ

′(t) = 0. We need to explain what we mean by this since γ′(t)is not a vector field
on M . Let τ(t) ∈ TMγ(t). We want to define ∇γ′(t)τ(t) ∈ TMγ(t). Suppose we have local
coordinates (x1, . . . , xn) so that

γ(t) = (γ1(t), . . . , γn(t))

109



γ′(t) = (γ′
1(t), . . . , γ

′
n(t))

τ(t) = (τ1(t), . . . , τn(t))

Then we want,

∇P
γ′

i(t)
∂

∂xi
(τ(t)) =

∑
γ′

i(t)∇ ∂
∂xi

(
τ1(t)

∂

∂x1
, . . . , τn(t)

∂

∂xn

)
=

n∑
i=1

γ′
i(t)
( n∑

j=1

∂τj

∂xi

∂

∂xj
+ τjΓk

ij

∂

∂xk

)
.

Now,
n∑

i=1

γ′
i(t)

∂τj(t)
∂xi

=
∂τj

∂t

And so,

n∑
i=1

γ′
i(t)
( n∑

j=1

∂τj

∂xi

∂

∂xj
+ τjΓk

ij

∂

∂xk

)
=

n∑
j=1

τ ′
j(t)

∂

∂xj
+

n∑
i,j,k=1

γ′
i(t)τj(t)Γk

ij

∂

∂xk

And we define this to be, ∇γ′(t)τ(t). Now it makes sense to require that

∇γ′(t)γ
′(t) = 0.

In local coordinates this becomes,

∇γ′(t)γ
′(t) =

n∑
j=1

γ′′
j (t)

∂

∂xj
+

n∑
i,j,k=1

γ′
i(t)γ

′
j(t)Γ

k
ij

∂

∂xk
= 0.

For a fixed k this gives,

γ′′
k(t) +

n∑
i,j=1

Γk
ij(γ(t))γ′

i(t)γ
′
j(t),

and so this gives us n second order ordinary differential equations for γ1(t), . . . , γn(t).

Theorem 8.3.1. Given p ∈ M and τ ∈ TMp, there exists an ε > 0 and a geodesic
γ : (−ε, ε) → M such that γ(0) = p and γ′(0) = τ . Furthermore, any two such geodesics
agree on their common domain of definition.

Furthermore, if X is a smooth manifold and φ : X → TM is a smooth map, then there
exists ε : X → (0,∞) so that if we let Uε = {(x, t)| − ε(x) < t < ε(t)} ⊂ X ×R there exists
ψ : Uε →M such that ψ|X×{0} = π ◦ φ, ∂ψ

∂t |X×{0} = φ and ψ|X×(−ε(x),ε(x)) is a geodesic.
Now we can define the exponential map. Let X = TMp. Let N(0) be a neighborhood

of 0 in X. Then we have a map, φ : N(0) → M given by φ(x) = γx(1) i.e. ψ|N(0)×{1}, and
Dφp = IdTMp .
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8.3.1 The Tubular Neighborhood Theorem

Let X be an n-dimensional compact smoothly embedded manifold in an N -dimensional
smooth manifold M . Impose a Riemannian metric on M . Then we have the normal bundle
νX⊂M = TM |X/TX. The Riemannian metric provides an embedding of the normal bundle
back into the tangent bundle of M restricted to X, νX⊂M ↪→ TM |X as the orthogonal
complement to TX ⊂ TM |X .

νX⊂M

TX

X

Figure 16: The normal bundle is identified with the orthogonal complement to TX ⊂ TM |X

So now the normal bundle sits in TM |X as a subbundle, so we have

νX⊂M
j−−−−→ TM⏐⏐� ⏐⏐�

X −−−−→ M

Now, we want to define a map from the normal bundle to M by (x, v) �→ γ(x,v)(1), where
γ(x,v) is the geodesic in M such that γ(x,v)(0) = x and γ′

(x,v)(0) = v. If γ(x,v)(1) is defined for
some point (x, v) in the normal bundle, then γ(x′,v′)(1) is defined for all (x′, v′) sufficently
close to (x, v). Notice that γx,0)(1) is defined for all x ∈ X. It is simply γx,0)(1) = x. This
implies there exists some neighborhood Ux of x ∈ X and an εx > 0 such that γ(u,v)(1) is
defined for all u ∈ Ux and v with |v| < εx. Since X is compact there exists some ε > 0 such
that γ(x,v)(1) is defined for all points (x, v) ∈ νX⊂M where |v| < ε. Let

νX⊂M,ε = {(x, v) ∈ νX⊂M | |v| < ε}.

Then we have a smooth map from this ε tube about the zero section of the normal bundle
to M ,

exp : νX⊂M,ε →M

(x, v) �→ γ(x,v)(1).

Now, lets examine Dexp(x, 0)(0, v). This is a map,

TνX⊂M(x, 0) = TXx ⊕ (νX⊂M )(x) → TMx = TXx ⊕ (νX⊂M )(x).

111



If we consider how this exponential map changes as we vary x in X along the zero section
of νX⊂M we see that Dexp(x,0)(0, v), is in fact the identity. So,

exp(x, tv) = γ(x,v)(t),

and,
Dexp(x,0)(0, v) = γ′

(x,v)(0) = v.

Then by the compactness of X and the inverse function theorem there is some 0 < ε′ < ε
such that exp : νX⊂M,ε′ → M is a local diffeomorphism onto an open set. To get a
diffeomorphism then we just need to show that the map is one to one. In order to do this
we may need to shrink ε′.

Lemma 8.3.2. For possibly smaller ε′, the map exp : νX⊂M,ε′ → M is one-to-one and
hence a diffeomorphism onto its image, which is an open neighborhood of X ⊂ M .

Proof. Suppose that no such smaller ε′ exists. Then there are sequences {(xn, vn), (yn, wn)}
such that exp : (xn, vn) = exp(yn, wn) for all (xn, vn) and (yn, wn), with (xn, vn) �= (yn, wn)
for any n and |vn|, |wn| → 0 as n→∞. Since X is compact, we can pass to a subsequence
and assume that xn → x and yn → y. Thus, (xn, vn) → (x, 0) and (yn, wn) → (y, 0). By con-
tinuity exp(x, 0) = exp(y, 0), which implies that x = y and therefore both (xn, vn)→ (x, 0)
and (yn, wn) → (x, 0). But this contradicts the fact that exp is a local diffeomorphism.

In particular, this shows that if X ⊂M is a codimension 1 submanifold which is locally
2-sided in M i.e. νX⊂M is orientable and therefore trivial, then a neighborhood of X in M
is diffeomorphic to X × (−ε, ε).

8.4 The Thom Isomorphism Theorem

Let M be a smooth manifold and
V⏐⏐�π

M

be a smooth dimension n vector bundle. Suppose that V is orientable as a vector bundle.
By this we mean that the line bundle ΛnV = L → M is orientable (⇔ L is trivial) or
equivalently, there is a local trivialisation of V such that all of the transition functions
have positive determinant. For an n-dim vector space V , an orientation is equivalent to a
generating class UV ∈ Hn(V, V \ {0}). If σ : Δn ↪→ V is a linear embedding, 0 ∈ σ(intΔn)
and σ is orientation preserving, then < UV , [σ] >= +1.

Theorem 8.4.1. Thom Isomorphism Theorem Let π : V n →M be an oriented vector
bundle. Then there exists a U ∈ Hn(V, V \ {0}section) called the Thom class such that

1. U |Vx ∈ Hn(Vx, Vx \ {0}) is the cohomology class determined by the orientation for
every x ∈ M .
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2. ∪U : Hk(V ) = Hk(M) → Hk+n(V, V \ {0}section) is an isomorphism for all K.

To shorten our notation, from now on for a vector bundle V , we will write H∗(V, \{0}section)
for H∗(V, V \ {0}section).

Remark 8.4.2. • Suppose that the vector bundle V → M has a metric. Let Vε be the
subbundle of balls of radius ε. Then U |Vε ∈ Hn(Vε, \{0}section) satisfies statement
2.

• Let V̄ε be the subbundle of closed balls of radius ε and let ∂V̄ε be the bundle of spheres
of radius ε. Then there exists a class U ∈ Hn(V̄ε, ∂V̄ε) such that ∪U : Hk(V̄ε) =
Hk(M) → Hk+n(V̄ε, ∂V̄ε) is an isomorphism for all k.

One important application of the Thom isomorphism theorem is in computing coho-
mology classes which are Poincaré dual to homology classes represented by embedded sub-
manifolds. Suppose that M is a closed oriented n-manifold and i : Xk ↪→ M is a closed
oriented submanifold. Then we have i∗[X] ∈ Hk(M). Then the Poincaré dual to i∗[X],
PD−1(i∗[X]) ∈ Hn−k(M) is given as follows. First, notice that the normal bundle νX⊂M

is oriented since both TX and TM are oriented. For every ε > 0 we have the Thom class
U ∈ Hn−k(νX⊂M,ε, \{0}section). If we take ε sufficently small then the tubular neighbor-
hood theorem identifies νX⊂M,ε with a tubular neighborhood of X ⊂ M via the exp map.
Now we push the class forward,

(exp−1)∗U ∈ Hn−k(nbhd(X ⊂ M),nbhd(X ⊂ M) \X) = Hn−k(M,M \X) → Hn−k(M),

and this is the Poincaré dual, PD−1(i∗[X]) ∈ Hn−k(M).

Corollary 8.4.3. Suppose that Xk and Y n−k are closed oriented smooth submanifolds of
Mn a closed oriented smooth manifold. Suppose that X and Y meet transversally i.e. for
every p ∈ X ∩ Y , TXp and TYp are complementary subspaces of TMp. Then X ∩ Y is a
finite set of points and to each point p ∈ X ∩ Y we have a sign, ε(p) = ±1, given by

σTXp ⊕ σTYp = σTMpε(p).

Then, ∑
p∈X∩Y

ε(p) =< PD−1[X], [Y ] >=< PD−1[X] ∪ PD−1[Y ], [M ] > .

Example 8.4.4. Consider CP 2 with its complex orientation. We claim theat x = [CP 1] ∈
H2(CP 2) generates. We take two representatives for x, L1 = [z0, z1, 0] ∈ CP 2 and L2 =
[0, z1, z2] ∈ CP 2. Then L1 ∩ L2 = {[0, z1, 0]} = {p} ∈ CP 2. Let ζ0 = z0/z1 and ζ2 = z/z0.
Then these are local coordinates near this point, and in these coordinates L1 = {ζ0 = 0}
and L2 = {ζ2 = 0}, so clearly they intersect transversally. Thus, < PD−1(x), x >=<
PD−1(x) ∪ PD−1(x), [CP 2] >= 1.
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Figure 17: The algebraic intersection of two 1-submanifolds in R2

Example 8.4.5. Consider S2×S2. We claim that the map H2(S2×S2)⊗H2(S2×S2) → Z,

given by x⊗ y �→< PD−1(x), y > is given by the matrix
(

0 1
1 0

)
.

Example 8.4.6. The surface of genus 2, Σ2, with generators {a1, b1, a2, b2} for H1(Σ2) as
pictured. Then the map H1(Σ2)⊗H1(Σ2) → Z given by x⊗ y �→< PD−1(x), y > is given

by the matrix

⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ .

a1 a2

b1 b2

Figure 18: Generators for H1(Σ2)

Now, we prove the Thom Isomorphism Theorem.
Proof. Let f : M → R be a Morse function with critical values c1 < · · · < ck such that

f−1(ci) has a unique critical point pi for each i. Take a0 < c1 < a1 < c2 < · · · < ck < ak.
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Let M(−∞,ar] = f−1(−∞, ar]. Then M(−∞,ar ] is a smooth submanifold of M with boundary
∂M(−∞,ar ] = Mar = f−1(ar). We will prove by induction that the result holds for V |M−∞,ar]

.

Lemma 8.4.7. Let π : V n → Y × I be a smooth vector bundle. Then there is a vector
bundle isomorphism covering the identity on the base:

V |Y ×{0} × I −−−−→ V⏐⏐�π

⏐⏐�π

Y × I Y × I

Proof.

Claim 8.4.8. Let W → Y be a smooth vector bundle. Then there is a smooth distribution
{Hw ⊂ TWw}w∈W such that,

• π∗ : Hw → TYπ(w) is an isomorphism.

• Hrw = rHw.

• Hw1+w2 = Hw1 + Hw2 if π(w1) = π(w2).

Proof. Locally in Y distributions exist, since W is locally trivial, given y ∈ Y there is an
open neighborhood U ⊂ Y of y and a vector bundle isomorphism from W |U → U ×V0. Let
H(U,V0) = TU(U,V0), the trivial connection on the trivial bundle. Now, cover Y by open sets
Uα with distributions Hα = {Hα

x } on W |Uα . Let λα be a partition of unity subordinate
to this cover. We want to form

∑
λαHα = H. We want to define

∑
λαi(y)Hαi

W = HW .
We have, there exists a unique pαi

w : TWw → Wy for w ∈ π−1(y) such that the kernel of
pαi

w = Hαi
w and pαi

w |Wy is the identity on Wy. Now,

pw =
∑

λαi(y)pαi
w : TWw → Wy.

This map is the identity restricted to Wy, so Ker pw = Hw is complementary to Wy. So,
H =

∑
λαHα is a connection on W → Y .

Now, we apply this to V → Y × I. So, we have a connection H on this vector bundle.
We claim that for each v0 ∈ V |Y ×{0} there exists a unique γ : [0, 1] → V so that γ(0) = v0

and π(γ(t)) = (π(v0), t) and γ′(t) ∈ Hγ(t). Restrict V to V |{y}×I . The connection also
resticts to give a connection on this bundle, H̄w = (dπ)−1(T{y}×I) =a line in (TW |{y}×I)w.
Now, trivialize the bundle, V |{y}×I = V0× ({y}× I). Then Hw is just a graph, ( d

dt , Lw( d
dt))

where Lw : R → V0 is a smoothly varying linear map such that Lrw = rLw and Lw1+w2 =
Lw1 + Lw2. Impose a metric on V0. Then |Lw( d

dt)| ≥ 0. Let K = max
|w|=1

|Lw( d
dt)|. Then we
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claim |γ′(t)| ≤ K|γ(t)| for a horizontal γ(t), and this implies that |γ(t)| ≤ ceKt for some
constant c. So, we have solutions to the differential equation for all time and we get,

V |Y ×{0} × I
Φ−−−−→ V⏐⏐� ⏐⏐�

Y × I Y × I

and Φ is a linear isomorphism on each fiber.

Corollary 8.4.9. Suppose X is a smoothly orientable manifold and V → X is a smooth
vector bundle, then V is trivial.

Proof. Let H : Y × I → Y be a smooth contraction. Take H∗V → Y . Then
H∗V |Y × {0} = V and H∗V |Y ×{1} = Y × Vy. Thus, V is vector bundle isomorphic to
Y × Vy.

Similarly, if Y ⊂ X and X smoothly deforms to Y then any smooth vector bundle
V → X smoothly deforms linearly in the fibers to a vector bundle V |Y → Y .

Now, the Thom isomorphism theorem holds for X = {p}. We have V n → {p}, and the
Thom class U ∈ Hn(V, V \ {0}) is the generator associated to the orientation of V . Also,

∪C : Hk(V ) → Hn+k(V, V \ {0})

is an isomorphism for all k. The theorem is also true for X = Dn. Since the disk is
contractible, V → Dn is vector bundle isomorphic to V0 ×Dn → Dn, and

H∗(V, \{0}section)
∼=−−−−→ H∗(V0, V0 \ {0})

∪U

⏐⏐� ∪U

⏐⏐�
H∗(V ) H∗(Dn)

Claim 8.4.10. The Thom isomorphism theorem holds for X = Sk.

Proof. The proof is by induction on k. For k = 0, S0 = D0
∐

D0, and the theorem has
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been shown. Now, Sk = Dk
+ ∪Sk−1 Dk−. By induction we have,

⏐⏐� ⏐⏐�
Hn+l(V, \{0}section) −−−−→ H l(Sk)⏐⏐� ⏐⏐�

Hn+l(V |D+ , \{0}section) ⊕Hn+l(V |D− , \{0}section)
(∪U+,∪U−)−−−−−−−→∼=

H l(Dk
+)⊕H l(Dk−)⏐⏐� ⏐⏐�

Hn+l(V |Sk−1) ∪U ′
−−−−→∼=

H l(Sk−1)⏐⏐� ⏐⏐�
So there exists a Thom class U ∈ Hn(V, \{0}section) so that,

∪U : Hn+l(V, \{0}section) → H l(Sk)

makes the diagram commute, and a five lemma argument shows that the map is an isomor-
phism.

Now, we have proven the theorem for X a disk and X a sphere. First, consider
X(−∞,a1] This is just a disk, so the theorem has already been proven in this case. Sup-
pose that the theorem is true for X(−∞,aj−1] ⊂ X(−∞,aj ]. So, we have a Thom class Uj−1 ∈
Hn(V |X(−∞,aj−1]

, \{0}section). Recall that X(−∞,aj ] deformation retracts to X(−∞,aj−1]∪Sr−1

Dr, so,
H∗(V |X(−∞,aj ]

, \{0}section) ∼= H∗(V |X(−∞,aj−1]∪Dr , \{0}section).

We have, V |X(−∞,aj−1]∪Dr = V |X(−∞,aj−1]
∪V |Sr−1

V |Dr . We obtain the sequence,

0 → Hn(V |X(−∞,aj−1]∪Dr , \{0}section) → Hn(V |(−∞,aj−1], \{0}section)⊕Hn(V |Dr , \{0}section) →

Hn(V |Sr−1, \{0}section) → · · ·

This shows that there exists a class Uj ∈ Hn(V |X(−∞,aj−1]∪Dr , \{0}section), and another
5-lemma argument shows that this is the desired Thom class.

Remark 8.4.11. This theorem is true for any topological vector bundle over a paracompact
base. The general proof uses local triviality plus paracompactness to establish the homo-
topy result for vector bundles. Then a spectral sequence argument replaces the iunductive
argument given here.
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Corollary 8.4.12. Let Mn be a smooth manifold, Xk ⊂ M a closed smooth submanifold
with oriented normal bundle. Then there exists a class U ∈ Hn−k(M,M \X) such that if
i : Dn−k ↪→ M is a smooth map transverse to X (i.e. TMx = TXx ⊕ Im(Di)0) mapping 0
to X and Dn−k \ {0} to M \X, then < U, i∗[D,∂D] >= ±1 depending on the orientation
of Dn−k versus the normal orientation of X.

Corollary 8.4.13. Let Mn be a smooth manifold, Xk ⊂ M a closed smooth submanifold
with oriented normal bundle. Suppose that f : Y n−k → M is a smooth map, where Y is
a closed oriented smooth manifold. Let U ∈ Hn−k(M,M \X) give the normal orientation
for X. Suppose that f is transverse to X. Then f−1(X) is a finite set of points, and at
each point we an compare the orientation of TYy with the orientation of (νX⊂M )y. Let
ε(y) = ±1 depending on wether or not these orientations agree or disagree. Then

< U, [Y ] >=
∑

y∈X∩Y

ε(y)

Theorem 8.4.14. Suppose that Xk ⊂ Mn are closed oriented manifolds. Then νX⊂M has
an induced orientation so that o(X)⊕ o(νX⊂M ) = o(M). Let U ∈ Hn−k(M,M \X) be the
image of the Thom class. Then the image of U in Hn−k(M) is Poincaré dual to [X]

Notice that U has a cocycle representative supported in an arbitrarily small neighbor-
hood of X.

Proof. We need to show that for any α ∈ Hk(M),

< α, [X] > =< α ∪ U, [M ] >

=< α,U ∩ [M ] >

=< α,PD(U) > .

By construction U has a cocyle representative suported in a tubular neighborhood W of
X. Thus, U ∩M is a cycle of dimension k supported in W . W is a tubular neighborhood
of X, so the inclusion X ↪→ W induces, H∗(W ) = H∗(X), and therefore Hk(W ) = Z and
[X] is a generator. So, U ∩ [M ] = t[X] for some t ∈ Z. Fix a point x ∈ X and a cocylce
α ∈ Sk(X,X \ {x}) such that < π∗α, [X] >= 1. It suffices to compute

< π∗α ∪ U, [M ] > =< π∗α,U ∩ [M ] >

=< π∗α, t[X] >

= t < π∗α, [X] >

= t.

Thus, PD−1[X] is a cohomology class with a cocycle representative supported near X
and computing transverse intersection numbers with X.
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A Category Theory

The language of category theory was introduced in the 1940’s by S. Eilenberg and S.
MacLane. It is a language well-suited to describe the tools of algebraic topology. In fact,
Eilenberg and MacLane first discovered categories and functors while studying universal
coefficent theorems in Čech cohomology. Although it has developed into a research topic
in its own right, we will only make use of the very basic terminology.

A.1 Categories

A category, C consists of a collection of objects and for each oredered pair of objects A,B
a set of morphisms between those objects, denoted HomC(A,B) or simply Hom(A,B) if C
is clear from context. There is a composition law for morphisms,

◦ : Hom(A,B)×Hom(B,C)→ Hom(A,C)

mapping g ∈ Hom(A,B) and f ∈ Hom(B,C), to f ◦g ∈ Hom(A,C), called the composition
of f and g. Composition must be associative, and for every object A there must be an
identity morphism, IdA ∈ Hom(A,A) so that

IdA ◦f = f ◦ IdA = f.

Example A.1.1. The category of sets and set functions is a familiar category.

Example A.1.2. There are many familiar algebraic categories. The category of groups
and group homomorphisms, the category of rings and ring homomorphisms, the category
of fields and field homomorphisms and so on. Some of these categories have subcategories,
for example the category of abelian groups and group homomorphisms is a subcategory
of the category of groups and group homomorphisms. This is what is known as a full
subcategory, since it consits of a subcollection of obejects, while the set of morphisms
between any two objects remains the same. Similarly, the category of commutative rings and
ring homomorphisms is a full subcategory of the category of rings and ring homomorphisms.

Example A.1.3. Any group G can be though of as a category with a single object {∗} and
a morphism g ∈ Hom(∗, ∗) for each element g ∈ G. Then the composition of two morphisms
corresponds to multiplication in the group, and the identity morphism corresponds to the
identity element. Of course, in order to form a group, the morphisms must also have
inverse morphisms, a condition not neccesarily satisfied in a general category. The general
category with exactly one element is the same thing as a semi-group with identity, also
called a monoid.

Example A.1.4. The category of topological spaces and continuous maps will form a very
important category in this text.
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Example A.1.5. Any class of manifolds can form a category. There is the category of
smooth manifolds and smooth maps, the category of topological manifolds and continuous
maps, the category of Cr manifolds and Cr maps, the category of complex manifolds and
holomorphic maps and so on.

There are many many more examples of categories. Often when speaking of a category,
only the objects will be mentioned explicitly, and the morphisms will be assumed to be
the appropriate structure preserving maps. For example, rather than saying the category
of groups and group homomorphisms, one will simply refer to the category of groups, and
the morphisms will be assumed to be the maps that preserve the group structure, i.e. the
group homomorphisms.

A.2 Functors

The next most basic notion in category theory is that of a functor between two categories.
Most of the invariants developed in algebraic topology are functors. A functor F : C → D
between two categories C andD is a map that associates to each object A in C an object F (A)
in D and each morphism f ∈ HomC(A,B) in C a morphism F (f) ∈ HomD(F (A), F (B)) in
D, respecting composition and identities, i.e.

F (f ◦ g) = F (f) ◦ F (g)

and,
F (IdA) = IdF (A) .

This is actually just one of two types of functors, called a covariant functor. The other
type of functor is a contravariant functor. A contravariant functor associates each morphism
f ∈ HomC(A,B) in C a morphism F (f) ∈ HomD(F (B), F (A)) in D, and the composition
laws change appropriately.

Example A.2.1. There is a forgetful functor from the category of topological spaces and
continuous maps to the category of sets and set functions that sends each topological space
to its underlying set and each continuous map to its underlying set function. It is called
a forgetful functor since it ”forgets” the extra structure of the topology. There are also
forgetful functors from the categories of rings to groups, fields to rings, groups to sets,
manifolds to topological spaces and so on.

Example A.2.2. Almost all of the topological invariants developed in this text are func-
tors. Singular homology and cohomology are functors from the category of topological
spaces to the category of graded abelian groups. Singular homology is a composition of the
singular chain complex functor from topological spaces to the category of free abelian chain
complexes, and the homology functor from the category of chain complexes to the category
of graded abelian groups. Singular cohomology is a similar composition of functors. The
other types of homology and cohomology are also functors. The fundamental group is also
a functor. It is a functor from the category of topological spaces to the category of groups.
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Example A.2.3. If we have two semi-groups with identity G1 and G2, thought of as
categories as in example A.1.3, then any semi-group homomorphism f : G1 → G2 gives a
functor. It takes the single object of G1 to the single object of G2. Because it is a semi-
group homomorphism, it takes the identity morphism in G1 to the identity morphism in
G2. It takes compositions of morphisms to composition of morphisms, since composition
of morphisms corresponds to multiplication in each of the respective semi-groups.

A.3 Monic, Epi and Isomorphism

In any category C a morphism f : a → b is called an isomorphism if there is another
morphism f ′ : b → a in C such that f ′ ◦ f = Ida and f ◦ f ′ = Idb. If such a morphism f ′

exists, it is unique and we write f ′ = f−1. Two objects a and b are said to be isomorphic
if there exists an isomorphism between them.

Definition A.3.1. A morphism m : a → b is said to be monic if it satisfies the following
universal property: For any two morphisms f1, f2 : c → a, m ◦ f1 = m ◦ f2 implies f1 = f2.

Definition A.3.2. A morphism s : a → b is said to be epi if it satisfies the following
universal property: For any two morphisms f1, f2 : b → c, f1 ◦ s = f2 ◦ s implies f1 = f2.

Show that in the category SetSetSet, with objects sets and morphisms set functions, a mor-
phism is monic iff it is an injection and a morphism is epi iff it is a surjection. In SetSetSet a
morphism is an isomorphim iff and it is monic and epi; however, this is not true in general.
Can you think of an example?

B Direct Limits

A partial order on a set S is a binary relation ≤ on S with the following properties:

• x ≤ x for every x ∈ S.

• x ≤ y and y ≤ x implies x = y.

• x ≤ y and y ≤ z implies x ≤ z.

A set S with a partial order ≤ is called a partially ordered set or poset. Given a set S, the
subsets of S ordered by inclusion are an example of a poset. Notice that given two elements
x and y in a poset, it is not neccesarily true that either x ≤ y or y ≤ x, that is to say, there
may be pairs of elements in a poset that are not comparable. A trivial example of a poset
that illustrates this point is given by taking a set S with the relation x ≤ x for every x ∈ S
and no other relations. A directed set is a poset {S,≤} with the property that for any two
elements x, y ∈ S there is an element z ∈ S such that x ≤ z and y ≤ z. A trivial example
of a directed set is given by taking any poset {S,≤} and adding one additional element,
say M , with the property that s ≤ M for any s ∈ S. A subset T ⊂ S of a directed set S is
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said to be cofinal in S if for every s ∈ S there is an element t ∈ T with s ≤ t. In this case
the restriction of the partial order to T makes T a directed set.

Let (S,≤) be a directed set. A direct system of abelian groups indexed by S is a family
of abelian groups {As}s∈S along with group homomorphisms fs,t : As → At for every pair
s, t ∈ S with s ≤ t such that for all s ≤ t ≤ u we have fs,u = ft,u ◦ fs,t and the map fs,s is
the identity on As for any s ∈ S.

Given a directed set (S,≤) we can construct a category DS with an object for each
object of S and Hom(s, t) = {rs,t} if s ≤ t and Hom(s, t) = ∅ if s � t. Then a directed
system of abelian groups indexed by S is a functor from DS to the category of abelian
groups and group homomorphisms.

Definition B.0.3. Let {As, fs,t} be a direct system of abelian groups indexed by a directed
set S. The direct limit of this system lim−→

S

(As, fs,t) is an abelian group A together with

homomorphisms ρs : As → A such that for all s ≤ t we have ρt ◦fs,t = ρs and A is universal
with respect to this property. That is, if A′ is an abelian group with homomorphisms
φs : As → A′ satisfying φt ◦ fs,t = ρs for all s ≤ t, then there is a unique homomorphism
ψ : A→ A′ such that ψ ◦ ρs = φs for all s ∈ S.

Proposition B.0.4. Direct limits of abelian groups exist and are unique up to unique
isomorphism.

Proof. As usual with universal properties of this type, if the direct limit exists then it is
unique up to unique isomorphism commuting with the structure maps ρs. To show that the
direct limit exists consider Ã = ⊕s∈SAs and introduce the equivalence relation generated
by the following: For all s ≤ t and all as ∈ As ⊂ Ã, the element as ∈ Ã is equivalent
to fs,t(as) ∈ At ⊂ Ã. Since the generators of this equivalence relation are additive, the
quotient of Ã by this relation is a quotient group. We claim that this quotient is the direct
limit. To see this, first notice that we have the compositions As → ⊕s∈SAs = Ã → Ã/ ∼=,
and these maps commute with the maps fs,t. If we have maps gs : As → B they define a
map g̃ : Ã → B. If the gs are compatible with the fs,t then g̃ factors uniquely through the
quotient, showing that the quotient has the universal property.

Example B.0.5. Consider the directed system of abelian groups indexed by {N,≤} where
all of the groups Ai = Z and the group homomorphisms are given by fi,i+1 = ·(i + 1),
multiplication by i + 1, and the neccesary compositions. Then lim−→

N

{Z, fi,j} = Q.

Claim B.0.6. Suppose that S is directed and f ∈ S is a final element i.e. s ≤ f for every
s ∈ S. Then for any directed system {As, ρs,t} indexed by S, lim−→

S

{As, ρs,t} = Af

Exercise B.0.7. Prove this claim.
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Let S be a directed set and T ⊂ S a cofinal subset. Suppose that AS = {As, fs,t} is a
direct system of abelian groups indexed by S. Then we define the restriction of AS to T ,
to be the direct system AT indexed by T obtained by considering only the abelian groups
At for t ∈ T and the homomorphisms ft,t′ for t, t′ ∈ T .

Lemma B.0.8. If S is a directed set and T ⊂ S a cofinal subset, AS = {As, fs,t} a direct
system of abelian groups indexed by S, and AT the restriction of AS to T , then the direct
limit of AS and AT are canonically identified.

Proof. For each t ∈ T we have the composition At → Ã → lim−→
S

{Aw, fs,s′}. These

are compatible with the ft,t′ for t ≤ t′ elements of T , and hence they determine a map
p : lim−→

T

{at, ft,t′} → lim−→
S

{As, fs,s′}. Given a ∈ As there is t ∈ T with s ≤ t and hence in

lim−→
S

{As, fs,s′} the class represented by a is also represented by fs,t(a) ∈ At. This implies

that p is surjective. If b ∈ At represents the trivial element in lim−→
S

{As, fs,s′} then for

some s ∈ S with t ≤ s we have ft,s(b) = 0. But there is t′ ∈ T with s ≤ t′. Clearly,
ft,t′(b) = f(s, t′(ft,s(b) = 0, so that b also represents 0 in lim−→

T

{At, ft,t′}. This proves that p

is one-to-one, and consequently that it is an isomorphism.

Remark B.0.9. One can define direct systems in any abelian category. For categories
such as modules over a ring, or vector spaces over a field, direct limits exist and are defined
by the same construction as given above.

There is another type of direct limit that will be important for us: direct limits in the
category of topological spaces. Let S be a directed set and {Xs, fs,s′} a directed system of
topological spaces and continuous maps indexed by S. This means that for each s ∈ S, Xs

is a topological space and for each s ≤ s′ we have a continuous map fs,s′ : Xs → Xs′ such
that fs,s = IdXs and fs′,s′′ ◦ fs,s = fs,s′′. Then the direct limit lim−→

S

{Xs, fs,s′} is defined to

be the quotient space of ∐
s∈S

Xs

by the equivalence relation generated by the following: for any s ≤ s′ and any x ∈ Xs, the
point x is equivalent to fs,s′(x) ∈ Xs′ .

If the fs,s′ are embeddings, then each Xs embeds in the direct limit and the direct limit
X is the union of these embeddings. It has the weak topology induced from these subspaces:
that is to say a subset of X is open if and only if its intersection with each Xs ⊂ X is open
in Xs.
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B.1 Direct Limits and singular homology

An important property of homolgy is that it behaves well under the taking of direct limits.
Let X be a Hausdorff space that is an increasing union of closed subspaces {Xn}{n=1,2,··· }.
We suppose that X has the direct limit or weak topology which means that a subset U ⊂ X
is open if and only if U ∩Xn is open for all n ≥ 1.

Lemma B.1.1. Then
H∗(X) = lim−→

n

H∗(Xn),

where the maps in the direct system of homology groups are the maps induced by the inclu-
sion.

Proof. The inclusions Xn ⊂ X are continuous and hence induce maps jn : H∗(Xn) →
H∗(X). Clearly, these are compatible with the inclusions of Xn ⊂ Xm. Hence, they define
a map

lim−→
n

H∗(Xn) → H∗(X).

We will show that this map is an isomorphism.

Lemma B.1.2. Let K ⊂ X be compact. Then K ⊂ Xn for some n.

Proof. Let K ⊂ X be a compact subset and suppose that K �⊂ Xn for any n. Then there
is a sequence {an}∞n=1 of points in K with an �∈ Xn. We claim that VN = X \ ∪∞

n=N{xn}
is an open subset of X. Of course, VN ∩Xt is the complement in Xt of a finite set. Since
the Xt are Hausdorff, it follows that VN ∩Xt is open in Xt for all N and t. Because the
topology on X is the weak topology, it follows that VN ⊂ X is open for all N . Clearly,
VN ⊂ VN+1 and ∪NVN = X. Thus, {VN ∩K} form an increasing open covering of K. By
the compactness of K, it follows that this cover has a finite subcover, which, because the
VN are an increasing sequence of subsets, implies that K ⊂ VN for some N . This is absurd,
since xn ∈ K \ VN for all n > N .

Since any singular chain in X has compact support this implies that any singular chain
in X is contained in Xn for some n. Thus, any α ∈ H∗(X) has a representative cycle ζ in
Xn for some n, and hence is in the image of H∗(Xn) → H∗(X), and therefore in the image
of lim−→

n

H∗(Xn) → H∗(X). On the other hand if ζ is a cycle in Xn which is homologous

to zero in X, let c be a chain in X with ∂c = ζ. Then c lies in Xm for some m > n and
hence [ζ] = 0 in H∗(Xm) and so [ζ] = 0 in the direct limit. This proves that the map
lim−→
n

H∗(Xn)→ H∗(X) is one-to-one.
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C CW Complexes

A CW complex X is a topological space made from the union of an increasing sequence of
closed subspaces

X−1 = ∅ ⊂ X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · ·
X0 consists of a set of points, and Xn is obtained from Xn−1 by attaching a collection of
n-cells, {Dn

α}α∈A, via attaching maps {φα : ∂Dn
α → Xn−1}. By this mean we mean that

Xn =

∐
{α∈A} Dn

α

x ∈ ∂Dα � φα(x) ∈ Xn−1

X is a finite CW complex if X=Xn for some n, and Xk is obtained from Xk−1 by attaching
a finite number of k-cells for each k. For a finite CW complex the topology is given by first
taking the disjoint union topology, and then the quotient topology, when attaching cells.
An inifinite CW-complex is given the weak topology, i.e. a set U ⊂ X is open if and only
if U ∩Xn is open in Xn for each n. The subspace Xn of X is called the n-skeleton of X.

D Simplicial Complexes

D.1 The Definition

A simplicial complex K consists of a set V = V (K), whose elements are called the vertices
of K and a set S(K) ⊂ 2V of subsets of V subject to the following requirements:

• If s ∈ S then the cardinality of s is finite.

• ∅ /∈ S.

• If s ∈ S and if t ⊂ s is a non-empty subset of s then t ∈ S.

• Every subset of 2V of cardinality 1 is a member of S.

The elements of S are called the simplices of K. The dimension of a simplex is one less
than its cardinality as a subset of V . We implicitly identity the simplices of K of dimension
zero with the corresponding vertex of K.

A subcomplex of K is a subset V ′ ⊂ V (K) and a subset S ′ ⊂ 2V ′
which makes a

simplicial complex and such that every s ∈ S ′ is also an element of S(K). A simplex t is
said to be a face of another simplex s, denoted t < s, if t is a subset of s. A facet is a
codimension-one face.

A finite simplicial complex is one whose vertex set is finite.
A simplicial map φ : K → L between simplicial complexes is a set function V (φ) :

V (K) → V (L) with the property that for every s ∈ S(K) the image φ(s) is an element of
S(L). (We do not require that φ(s) have the same cardinality as s.)

These objects and maps form a category: one has the obvious associative operation of
composing simplicial maps.
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D.2 The Geometric Realization

For a finite set V , the simplex Δ(V ) spanned by V is the finite subcomplex with V as its
set of vertices and S(Δ(V )) = 2V \∅ as its set of simplices. Notice that any finite simplicial
complex K with vertex set V is identified with a subcomplex of Δ(V ).

Every simplicial complex K determines a topological space |K|, called its geometric
realization. Given a simplex s ∈ S(K), with vertices V (s) we define the geometric real-
ization of s to be the subset of the real vector space Rs with basis V (s), given by |s| ={ ∑

v∈V (s)

tvv

∣∣∣∣tv ≥ 0 ∀v ∈ V (s),
∑

v∈V (s)

tv = 1
}

. In the special case that V (s) = {0, · · · , n},

the geometric realization of s is just the standard n-simplex, Δn. indexsimplicial com-
plex!geometric realization Now, to define |K|, start with the topological space

X(K) =
∐
s∈S

|s|,

where the topology is the disjoint union of the standard subspace topologies on |s| from
the embeddings |s| ⊂ Rs. Then introduce an equivalence relation on X generated by the
following relation: if t < s then |t| is identified with the geometric face of |s| spanned by
the vertices of t. We denote by |K| the quotient space with the quotient topology. A point
of |K| can be written uniquely as

∑
v∈V λvv where the λv are non-negative real numbers

which sum to 1 and such that the set of v ∈ V for which λv �= 0 are the vertices of a
simplex of K. The set of such sums {

∑
v∈V λvv|{v|λv �= 0} ⊂ s} is exactly the image of

|s| ⊂ |K|. In fact, this gives an embedding of |s| → |K| whose image is a closed subset.
This image is called the closed simplex |s|. The open simplex int|s| is the closed simplex
|s| minus the union of all the closed simplices associated with the proper faces of s. Then
int|s| = {

∑
v∈V λvv|λv �= 0 iff v ∈ s}.

The geometric realization |K| is the union of its closed simplices and has the induced
topology: a subset U ⊂ |K| is open if and only if its intersection with each closed simplex
is an open subset of that closed simplex. It is also true that |K| is the union of its open
simplices and that each point is contained in exactly one open simplex.

The finite subcomplexes of K form a directed set under inclusion, and as the next lemma
shows, K is their direct limit.

Lemma D.2.1. |K| is the union of |Kf | as Kf runs over the finite subcomplexes of K,
and the topology of |K| is the weak topology induced from this union; i.e., a subset U ⊂ |K|
is open if and only if its intersection with each |Kf | is an open subset of |Kf |

Exercise D.2.2. Prove this lemma.

A simplicial map φ : K → L clearly induces a continuous map |φ| : |K| → |L| which
sends each closed simplex |s| affine linearly onto the closed simplex |φ(s)| of |L|. The
correspondences define a functor from the category of simplicial complexes and simplicial
maps to the category of topological spaces and continuous maps.
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Exercise D.2.3. Show that for any simplicial complex K, the topological space |K| is
Hausdorff.

Exercise D.2.4. Show that if L is a subcomplex of K, then |L| is a closed subset of |K|.

Exercise D.2.5. Show that for a finite simplicial complex K, |K| is a compact metric
space if and only if |K| is a finite complex.

Exercise D.2.6. Show that for any simplex s of K, the space |s| is a closed subspace of
|K|

Exercise D.2.7. Show that for simplices s, t of K the intersection |s|∩ |t| is equal to |s∩ t|.
In particular, the intersection of two closed simplices is a (closed) face of each.

Exercise D.2.8. Show that direct limits exist in the category of simplicial complexes and
simplicial maps and that

|limS(Ks, φs,s′)| = lim−→
S

(|Ks|, |φs,s′ |).

D.3 Subdivision

Let K be a simplicial complex and let |K| be its geometric realization. A subdivision K ′ of
K is another simplicial complex whose vertices are points of |K| with the property that if
σ′ is a simplex of K ′ then there is a closed simplex σ of |K| that contains all the vertices of
σ′. Using this we can define a continuous mapping |K ′| → |K| compatible with the natural
map on the vertices sending each closded simplex |σ′| of |K ′| linearly onto a convex subset
of a closed simplex |σ| of |K|. The last condition for K ′ to be a subdivision of K is that
this map be a homeomorphism. Notice that if K ′ is a subdivision of K then we have an
identification |K ′| = |K|. This identification is linear on each simplex of |K ′|.

E Smooth Manifolds and Smooth Maps

Our motivation for defining smooth manifolds is to try and capture the class of topological
spaces on which it is possible to apply the tools of calculus that have been developed for
use in the Euclidean spaces, Rn. Before we can define this class of spaces, we need a few
preliminary defintions.

Definition E.0.1. A paracompact Hausdorff space M is called a topological manifold of
dimension n if every point p ∈ M has an open neighborhood, that is homeomorphic to an
open subset of Rn.

Although topological manifolds have many nice properties, this is far too general a class
of spaces for us to hope to be able to extend the tools of calculus to. We require some
additional structure, namely:
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Definition E.0.2. A smooth structure F on an n-dimensional topological manifold M is
a family of pairs (Ui, φi) such that:

1. {Ui} forms an open cover of M.

2. φi : Ui → Vi is a homeomorphism from Ui to an open subset Vi ⊂ Rn ∀ i.

3. ψij = φiφ
−1
j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj) is infinitely differentiable.

4. The family F is maximal with respect to (3) i.e if we have any pair (U, φ) where
U ⊂ M is open and φ : U → V is a homeomorphism from U to an open subset in Rn,
and φ ◦ φ−1

i and φi ◦ φ−1 are both C∞ ∀ φi ∈ F , then (U, φ) ∈ F

A collection of pairs {(Ui, φi)} satisfying properties (1) through (3) is called an atlas, and
so a differentiable structure is sometimes also called a maximal atlas. A pair (Ui, φi) is
called a chart. The subset Ui is called a coordinate neighborhood or coordinate patch. The
map φi is called a coordinate function or just a coordinate. We can write φi in terms of its
components as φi(p) = {x1

i (p), x2
i (p), . . . , xn

i (p)}. Then the {xj
i}nj=1 are also called coordi-

nates. The functions ψij are called transition functions or gluing functions. The following
lemma shows that any atlas gives rise to a unique smooth structure.

Lemma E.0.3. Given any atlas F0 = {(Ui, φi)} there is a unique differentiable structure
F containing F0.

Proof. Let

F = {All charts (U, φ) on M | φ ◦ φ−1
i and φi ◦ φ−1 are both C∞ ∀ φi ∈ F0}

The proof of uniqueness of this structure is left as an exercise.

Two atlases, F = {(Ui, φi)} and F ′ = {(Vj , ψj)}, on a manifold M are said to be
compatible if ψjφ

−1
i : φi(Ui ∩ Vj) → ψj(Ui ∩ Vj) and φiψ

−1
j : ψj(Ui ∩ Vj) → φi(Ui ∩ Vj) are

infinitely differentiable whenever Ui ∩ Vj �= ∅. It is easy to see that two compatible atlases
give rise to the same differentiable structure on M . We now have all of the neccesary
definitions to define the class of smooth manifolds.

Definition E.0.4. A smooth n-manifold is a pair (M,F) where M is an n-dimensional
topological manifold, and F is a differentiable structure on M .

Frequently, the manifold is simply referred to as M when the differentiable structure
is understood; however, be aware that a given space can have many possible differentiable
structures. For example, Milnor showed in 1956 that S7 has 28 differentiable structures,
and it was later discovered that R4 has infinitely many differentiable structures.

Now that we have defined a class of objects, we would like to specify a collection of
morphisms between them so that we can work in the category of smooth manifolds and
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smooth maps. Let f : M → N be a map from an m-dimensional manifold M to an
n-dimensional manifold N . Let p ∈ M , and (U, φ) and (V,ψ) be charts on M and N
respectively such that p ∈ U and f(p) ∈ V . Then f has a coordinate presentation at p as
ψfφ−1 : φ(U ∩ f−1(V )) → ψ(V ). If we write φ(p) = {xμ} and ψ(f(p)) = {yν}, then ψfφ−1

is the vector-valued function y = ψfφ−1(x). We will frequently abuse notation and simply
write y = f(x) or yν = f ν(xμ) when the coordinate sytsems are understood.

Definition E.0.5. A map f : M → N between smooth manifolds is said to be smooth at
p, for some point p ∈ M , if ψfφ−1 is C∞ for some coordinate presentation of f at p. We
say f is smooth if f is smooth at all points p ∈ M .

Claim E.0.6. The smoothness of f is independent of the coordinates in which it is pre-
sented.

Proof. Suppose that we have two overlapping charts, (U1, φ1) and (U2, φ2) with a point
p ∈ U1 ∩U2. Suppose that f is smooth with respect to φ1 i.e. ψfφ−1

1 is C∞. Then we have
ψfφ−1

2 = ψfφ−1
1 (φ1φ

−1
2 ) is also C∞ since the transition function ψ12 = φ1φ

−1
2 is smooth by

defintion. Thus, f is also smooth with respect to φ2. The same idea can be used to show
that the smoothness of f also does not depend on the chart in N .

It is an easy exercise to show that the composition of two smooth maps is again smooth,
and the identity map on any smooth manifold is smooth. Associativity follows from the
associativity of the underlying set functions. Thus, the collection of smooth manifolds and
smooth maps of manifolds defines a category.

Definition E.0.7. A map f : X → Y that is a smooth homeomorphism and has a smooth
inverse is a diffeomorphism.

Remark E.0.8. Diffeomorphisms are the isomorphisms in the category of smooth man-
ifolds. A smooth homeomorphism is not neccesarily a diffeomorphism, as the following
example illustrates.

Example E.0.9. Consider the map f : R → R given by t �→ t3. This map is clearly a
smooth homemorphism from R to itself; however, f−1(t) = 3

√
t is not smooth since it is not

differentiable at t = 0. Thus, f is not a diffeomorphism.

F Germs and Sheaves

The first major tool of real calculus is the derivative. This is a linear map associated to
each continuous function. In order to apply this tool in the context of smooth manifolds we
will need to associate a real vector space to each point on our manifold, called the tangent
space, and to each smooth map between manifolds, a linear map between the tangent spaces
of those manifolds. Our definition of the tangent space to a manifold will depend only on
the local properties of functions on the manifold. To formalize this we will introduce the
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notion of a germ of a continuous function. This leads us naturally to the notion of a sheaf
on a topological space. Without moving too far into the language of sheaves, we will make
use of one specific example, the sheaf of local continuous functions on a topological space.
We will then specify to the sheaf of smooth functions on a smooth manifold. These will
also allow us to formulate a second defintion of smooth manifold.

F.1 The sheaf of local continuous functions

Let X be a topological space. We begin with a category T (X) whose objects are the open
subsets of X and whose morphisms are inclusions. That is to say, given U and V in X
open, if U ⊂ V then there is a single morphism from U to V , thought of as inclusion,
and otherwise Hom(U, V ) = ∅. We also have the category A of R-algebras and R-algebra
homomorphisms. For nice spaces, for example in the case X is a compact Hausdorff space,
the algebra of continuous functions on that space, C(X) contains all of the information
about that space, namely, the points of X and the toplogy on X. We express this formally
in the folowing two propositions.

Proposition F.1.1. Let X be a compact Hausdorff space and C(X) be the algebra of con-
tinuous functions on X. Then the points of X correspond to the maximal ideals of C(X).

Proof. Let m be a maximal ideal of C(X). If f ∈ m, then ∃ x ∈ X such that f(x) = 0.
To see this, suppose f ∈ m, but f is nowhere zero. Then there is a function g ∈ C(X) given
by g(x) = (f(x))−1. Then,

g(x)f(x) = (f(x))−1f(x) = 1 ∈ m.

This contradicts the maximality of m.
Now we claim that there exists a point x0 ∈ X such that f(x0) = 0 ∀ f ∈ m. Suppose

not. Then for any point x ∈ X, there is a function fx ∈ m so that fx(x) �= 0. Since the func-
tions are continuous, ∀ x ∈ X there is an open neighborhood of x, Ux, such that fx(u) �=
0 ∀ u ∈ Ux. The collection {Ux}x∈X cover X, and since X is compact, we can take a
finite subcover, {Ui}1≤i≤N where fi �= 0 on Ui. Then consider the function f given by

f(p) =
N∑

i=1

(fi(p))2. Since for each i, (fi(p))2 ≥ 0 on all of X, and for every point in X, at

least one of the fi is strictly greater than 0, we see that f > 0 on all of X. But f ∈ m, so
this is a contradiction. So for any maximal ideal m we have shown that there is at least
one point of X at which all the functions in m vanish. Suppose that m is a maximal ideal
in C(X), and there are two distinct points, x, y ∈ X such that every f(x) = f(y) = 0 for
every f ∈ m. Since X is a compact Hausdorff space, X is metrizable, and thus the function
dx given by the distance from x is a continuous function which is zero at x, but non-zero
at y. Then clearly the ideal consisting of all functions that vanish at x strictly contains
m, contradicting the maximality of m. So in fact, for any maximal ideal m we have shown
that there is exactly one point of X at which all the functions in m vanish.
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Given a point x ∈ X, the set mx = {f ∈ C(X)|f(x) = 0} is a maximal ideal of C(X),
since mx = ker(φ), where φ : C(X) → R is the surjective ring homomorphism given by
φ(f) = f(x), and thus C(X)/mx

∼= R. Since R is a field, this implies mx is a maximal ideal.

Proposition F.1.2. Given C(X), we can recover the topology on X.

Proof. Given a function f ∈ C(X), the set, {x ∈ X|f(x) = 0} is a closed set of X. Given
a closed set of C ⊂ X, we can define a continuous function that is zero on exactly the
points of C (Why?).

We have a contravariant functor S : T (X) → A given by U �→ C(U) = the algebra of
continuous functions on U , and to an inclusion U ↪→ V associates the restriction mapping
rV,U from functions on V to functions on U . To say this another way, to each open subset U
of X we have the algebra C(U) of continuous functions on U and for each inclusion U ⊂ V we
have the restriction mapping rV,U : C(V ) → C(U) with the property that rU,W ◦rV,U = rV,W .
The functor S is called the sheaf of local continuous functions. Now let x ∈ X. We have
a directed system of open neighborhoods of x defined as follows: We say that V ≥ U if
U ⊂ V . Clearly, this relation is transitive and the system is directed in the sense that if
U1 and U2 are open neighborhoods of x, then there is an open neighborhood V of x with
V ≥ U1 and V ≥ U2. We define the germ of a continuous function at x as the direct limit
over the directed system of open neighborhoods of x of the continuous functions on those
neighborhoods. A germ is represented by an open neighborhood of U of x and a continuous
real-valued function f on U . Two representatives (U, f) and (V, g) represent the same germ
if and only if there is an open neighborhood Wof x contained in U ∩ V with f |W = g|W .

Exercise F.1.3. Show that the germ at x has a value at x, namely the value of any
representative of that germ at x, but it does not have a well-defined value at any other
point.

Suppose that f : X → Y is a continuous mapping between two topological spaces.
Then by pullback it induces a map from the algebra of continuous functions on an open
subset U ⊆ Y to the algebra of continuous functions on the open subset f−1(U) ⊆ X.
This association is compatible with restrictions and hence can be thought of as a map from
the algebra of germs of continuous functions on Y at y = f(x) to the algebra of germs
of continuous functions on X at x. If f is a homeomorphism, then pullback by f induces
an isomorphism from the sheaf of continuous functions on Y to the sheaf of continuous
functions on X.

F.2 The sheaf of local C∞ functions on a smooth manifold

Let M be a smooth manifold. For each open subset U ⊆ M we have the ring of smooth
(C∞) functions on U. These are closed under the restriction mappings rU,V used in the
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definition of the sheaf of continuous functons on M. Hence, we have a functor from the
category of open subsets of M to the category of R−algebras, which we call the sheaf of
smooth (or C∞) functions on M . In a natural way it is a subsheaf of the sheaf of continuous
functions on M .

We can turn this process around. Suppose that we have a topological space X and a
subsheaf S ′ of the sheaf S of continuous functions on X. That is to say, for each open set
U ⊆ X we have a subalgebra of the algebra of continuous functions on U , with the property
that these subalgebras are closed under the restrictions rV,U . Suppose further that locally
this subsheaf is isomorphic to the sheaf of C∞-functions on Rn. By this we mean that for
each x ∈ X there is an open neighborhood U ⊂ X and a homeomorphism from U to an open
subset V ⊂ Rn which induces an isomorphism between the restriction of the sheaf S ′ to
U and the sheaf of C∞-functions on V . Then we can use these homeomorphisms to define
local coordinates on X. In particular, the local coordinate functions of these charts are
elements of the sheaf S ′. It then follows that on the intersection of two of these coordinate
patches, the coordinate functions from one patch to another are C∞ with respect to the
local coordinates of the other patch. Hence, the transition functions are C∞ and so we have
determined a smooth structure on X. Thus, if X is paracompact and Hausdorff, we will
have determined a smooth structure of a smooth manifold on X by specifying a subsheaf
of the sheaf of continuous functions on X, the sheaf of functions that are to be smooth in
the structure that we are constructing.

F.3 The tangent space

We will now use the language developed in the previous sections to define the tangent space.
Let M be a smooth manifold and x ∈ M be a point on M. We have defined the germ of a
continuous function at x. Now consider the collection of all germs of smooth functions at
x. This set of germs inherits the structure of an R-algebra from the R-algebra structure on
representatives.

Definition F.3.1. A local derivation at x ∈ M is an R-linear map D : {germs at x} → R
satisfying the Leibnitz rule:

D(f · g)(x) = f(x) · D(g)(x) + g(x) · D(f)(x)

Exercise F.3.2. Show that the local derivations at x ∈ M form a R-vector space

Exercise F.3.3. Suppose that M is an open subset of Rn and x ∈ M . Show that ∂
∂xi
|x

(i.e. the operation that assigns to a differentiable function f defined near x the number
∂f
∂xi

(x) ∈ R) is a local derivation.

Exercise F.3.4. Suppose that M and N are smooth n-manifolds and x ∈ M, y ∈ N are
points with open neighborhoods U ⊂ M of x and V ⊂ N of y. Suppose also that there exists
a diffeomorphism φ : U → V so that φ(x) = y. Show that φ induces an isomorphism from
the algebra of germs at y to the algebra of germs at x, and hence a linear isomorphism from
the vector space of local derivations at x to the vector space of local derivations at y.
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Now we have a fundamental lemma:

Lemma F.3.5. Suppose that U ⊂ Rn is an open neighborhood of 0 and g : U → R is a C∞
function with g(0) = 0. Then there exists a neighborhood V ⊂ U of 0 and C∞ functions
hi : V → R such that g|V =

∑
xihi(x).

Exercise F.3.6. Prove this lemma.
Hint: Let V ⊂ U be an open neighborhood centered at 0. Then by the fundamental theorem
of calculus for an x �= 0

g(x) =
∫ 1

0

∂g

∂−→x (tx)dt

where ∂g
∂−→x is the directional derivative. That is, if x = (x1, . . . , xn), then

∂g

∂−→x =
∑

xi
∂g

∂ei
,

where ei is the i-th standard basis element of Rn. Define

hi(x) =
∫ 1

0

∂g

∂ei
(tx)dt

Show hi is C∞ and
∑

xihi(x) = g(x).

Exercise F.3.7. Now show that if in addition ∂g
∂xi

(0) = 0 then there exist C∞ functions

hij(x) for 1 ≤ i, j ≤ n with g(x) =
∑
i,j

xixjhij(x).

Exercise F.3.8. Use the previous exercise to show that ∂
∂xi |0 form a basis for the local

derivations of Rn at 0.

Exercise F.3.9. Show that if M is an n-manifold then for any x ∈ M the vector space of
local derivations at x is an n-dimensional real vector space. Show that if (xi, . . . , xn) are
local C∞-coordinates defined on some neighborhood of x then { ∂

∂x1 |x, . . . , ∂
∂xn |x} are a basis

for this R-vector space.

Definition F.3.10. The n-dimensional real vector space of local derivations at a point
x ∈M is called the tangent space to M at x and is denoted TMx.

As an example, suppose that we have an n-dimensional manifold sitting inside some
higher dimensional Euclidean space, Mn ⊂ RN . Then TMx is an n-dimensional linear
supspace of RN through the origin. Think of the n-dimensional hyperplane tangent to M
at x, translated to the origin.

Let M and N be smooth manifolds of dimensions m and n respectively. Let f : M → N
be a smooth map. Suppose x ∈ M and y = f(x) ∈ N .

Exercise F.3.11. Show that pre-composition with f defines an R-algebra homomorphism
from germs of C∞-functions on N at y to germs of C∞-functions on M at x
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Exercise F.3.12. Show f induces an R-linear map, denoted Dfx : TMx → TNy.

Definition F.3.13. The R-linear map, Dfx : TMx → TNy induced by f is called the
differential of f at x.

Exercise F.3.14. Let P be another smooth manifold. Show that if g : N → P is smooth
with g(y) = z then Dgy ◦Dfx = D(f ◦ g)x : TMx → TPz.

F.4 Variation of the tangent space with x ∈M

Let U ⊂ Rn be an open set. Then for every point x ∈ U we have a basis { ∂
∂x1 |x, . . . , ∂

∂xn |x}
for TUx. We view this basis as giving an isomorphism φx : Rn → TUx defined by

φx(t1, . . . , tn) =
n∑

i=1

ti
∂

∂xi
|x

Thus, as x varies we define φ : U × Rn → ∪
x∈U

TUx by

φ(u,
−→
t ) = φu(

−→
t ) =

n∑
i=1

ti
∂

∂xi
|u

The map φ induces a topology and even a smooth structure on ∪
x∈U

TUx. Now suppose

U, V ⊂ Rn are open sets and ψ : U → V is a diffeomorphism. Then we have ∪
x∈U

Dψx :

∪
x∈U

TUx → ∪
y∈V

TVy which sends τ ∈ TUx to Dψx(τ) ∈ TUy. By construction it is a family

of linear isomorphisms. We wish to consider the composition:

∪
x∈U

TUx
Dψ−−−−→ ∪

y∈V
TVy

∼=
�⏐⏐ ∼=

�⏐⏐
U × Rn Dψ−−−−→ V × Rn

Claim F.4.1. This composition sends

(u,
−→
t ) �→ (ψ(u),

∑
j

∂ψ

∂xj
(u)tj)

Exercise F.4.2. Use the chain rule to prove this claim.

As a consequence of this formula we see that Dψ is a diffeomorphism. We have a
commutative diagram of smooth maps:
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∪
x∈U

TUx −−−−→ ∪
y∈V

TVy�⏐⏐ ⏐⏐�
U × Rn Dψ−−−−→ V × Rn

P1

⏐⏐� P ′
1

⏐⏐�
U

ψ−−−−→ V

G Vector Bundles

A real vector bundle is a family of vector spaces parameterized by some base space with
some additional structure.

Definition G.0.3. A real vector bundle consists of two topological spaces, E and B, and
a continuous surjective map π : E → B with the following properties:

1. π−1(b) ⊂ E is a real vector space for each point b ∈ B.

2. Addition and scalar multiplication in E are continuous. That is, the maps

R× E → E

(λ, e) �→ λ · e
and

E ×B E → E

(e1, e2) �→ e1 + e2

are continuous.

3. There exists an open cover {Uα}α∈A of B so that π−1(Uα) ∼= Uα × V for some real
vector space V .

The space E is called the total space. The space B is called the base space. The map
π is called the projection map. The vector spaces π−1(b) are called sl fibers. Condition 3
in the definition is called local triviality.

Example G.0.4. Given any topological space B one can form the trivial bundle over B
by taking the total space to be B×V for some real vector space V , and the projection map
π : B × V → B to be just projection onto the first coordinate.

An alternative way to present a vector bundle is to start with the base space B, an
open cover {Uα}α∈A of B and a vector space V . Take trivial vector bundles over each of
the open sets Uα, and then glue them togther. To do this for any pair of open sets Uα

For any functorial operation on vector spaces there exists a corresponding
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H Integration of Differential Forms

Let U ⊂ Rn be an open subset and let ω ∈ Ωn(U) be a differential n-form on U . Then
there is a C∞-function f : U → R such that

ω(x) = f(x)dx1 ∧ · · · ∧ dxn.

If ω has compact supports in U then we define∫
U

ω =
∫

U
f(x)dx1 · · · dxn

where the integral on the right-hand-side is the usual Lebesgue (or riemann) integral in
Euclidean space.

Lemma H.0.5. Let U, V be connected open subsets in Rn, and let ψ : V → U be a
diffeomorphism. Suppose that ω is a differential n-form on U with compact support. Then∫

V
ψ∗ω = ε(ψ)

∫
U

ω

where ε(ψ) is +1 if ψ is orientation-preserving and −1 if ψ is orientation-reversing.

Proof. Denote by x1, . . . , xn the Euclidean coordinates on U and by y1, . . . , yn those on
V . Let J(ψ) be the Jacobian determinant of ψ. Write ω = f(x)dx1 ∧ · · · ∧ dxn. We have∫

V
ψ∗ω =

∫
V

f ◦ ψ(y)J(ψ)(y)dy1 ∧ · · · ∧ dyn.

On the other hand, by the change of variables formula for integral, we have∫
U

ω =
∫

U
f(x)dx1 · · · dxn =

∫
V

(f ◦ ψ)(y)|J(ψ)(y)|dy1 · · · dyn.

Clearly, these two formulas differ by the multiplicative factor ε(ψ).

Now suppose that M is an oriented n-manifold and that ω is a differential n-form on
M which is supported in a coordinate patch of M . We choose such a patch V ⊂ M with
ψ : V ∼= U ⊂ Rn compatible with the orientation of M . We define

∫
M ω to be

∫
U (ψ−1)∗ω.

By the previous lemma, this is independent of the choice of oriented coordinate patch U ,
but it does depend on the orientation of M – the integral changes sign if we reverse the
orientation of M .

More generally, let ω be a compactly supported differential n-form on an oriented n-
manifold M . There is a partition of unity {λU} on M subordinate to the open covering of
M by coordinate patches. We can write

ω =
∑
U

λUω
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where λUω has support in the coordinate patch U . Since ω is compacty supported, we can
arrange it so that this is a finite sum. According to the previous discussion,

∫
M λUω is

defined for each U and hence we can define∫
M

ω =
∑
U

∫
M

λUω.

Exercise H.0.6. Show the above definition is independent of the covering and the partition
of unity. Show that

∫
M ω changes sign when we reverse the orientation of M .

Thus, if M is a compact oriented k-manifold and ω is a differential k-form, then
∫
M ω

is defined.
We need a generalization of this to smooth manifolds with boundary. Suppose that

M is an oriented smooth k-manifold with boundary and that ω is a k-form with compact
support. Then we have

∫
M ω defined as before: we take a partition of unity subordinate

to a covering by coordinate charts so that it suffices to compute the integral of a form
supported in a single coordinate chart. Even if the chart is an open subset of half-space,
the integral is still defined.

We define the induced orientation of ∂M as follows. At each point x ∈ ∂M we consider
an orientation for TMx given by an ordered basis for this vector space whose first vector
points out of M and all the others are tangent to the boundary. The restriction to the
subset consisting of all but the first vector then gives the induced orientation of ∂M at x.

Theorem H.0.7. (Stokes’ Theorem) Let M be a compact oriented k-manifold possibly
with boundary. Give ∂M the induced orientation. Let ω be a differential (k − 1)-form on
M . Then ∫

∂M
ω =

∫
M

dω.

Proof. Cover M by finitely many coordinate charts which are cubes in Rn and take
a partition of unity λi subordinate to this covering. Then ω =

∑
ωi where ωi = λiω

is supported in the ith coordinate patch. Clearly, establishing the result for each ωi will
establish it for ω since both sides are additive. Thus, it suffices to prove the result for a
(k − 1)-form ω in a cube Ik in Rk. We write

ω =
∑

i

fi(x1, . . . , xk)dx1 ∧ · · · dxi−1 ∧ dxi+1 ∧ · · · ∧ dxk.

Again by linearity it suffices to consider the terms one at a time, so we may suppose that

ω = f(x1, . . . , xk)dx1 ∧ · · · ∧ dxk−1.

Then the integral of ω along all the faces of the boundary except the ones where xk = 0 and
xk = 1 vanish. The boundary orientation on the face where xk = 1 agrees with (−1)k−1
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times the orientation induced from Rk−1 whereas the boundary orientation on the face
xk = 0 is the opposite one. Thus, these integrals add up to:

(−1)k−1

∫
Ik−1

f(x1, . . . , xk−1, 1) − f(x1, . . . , xk−1, 0)dx1 . . . dxk−1.

On the other hand,

dω =
∂f

∂xk
dxk ∧ dx1 ∧ · · · ∧ dxk−1 = (−1)k−1 ∂f

∂xk
dx1 · · · dxk,

and by Fubini’s theorem its integral is equal to

(−1)k
∫

Ik−1

(∫ 1

0

∂f

∂xk

)
dx1 · · · dxk−1.

By the Fundamental Theorem of Calculus these expressions are equal.

Suppose that N is a smooth manifold and that ω is a differential k-form on N . Let
f : M → N be a smooth map of a compact, oriented k-manifold (possibly with boundary)
into N . We define

∫
M ω to be the integral of f∗ω over M .

Exercise H.0.8. Show that this operation is linear in ω and show that if η is a k−1-form,
then ∫

∂M
η =

∫
M

dη.

This is a more general form of Stokes’ theorem.

Exercise H.0.9. Define smooth n-manifolds with corners as being modeled on open subsets
in Qn, the positive quadrant in Rn. Extend Stokes’ theorem to manifolds with corners
mapping smoothly into M .

138



Index

étale space, 74

ascending manifold, 96
associated graded, 82
atlas, 128

base space, 135
boundary, 10
Brouwer fixed point theorem, 23

cap product, 50
category, 119
chain complex, 10
chain group, 10
chain homotopy, 26
chart, 128
Christoffel symbols, 108
circuit, 18
cofinal, 121
cohomology, 44

Čech, 57, 61
of open cover, 58
of sheaf, 78
zeroth, 7

DeRham, 54
of S1, 56
of point, 56
zeroth, 6

group, 63
zeroth, 9

ordered simplicial, 51
singular, 44

dimension axiom, 49
excision, 49
homotopy axiom, 47
long exact sequence of a pair, 48
Mayer-Vietoris, 48

composition series, 82
connection, 106
contractible, 17

coordinate function, 128
covariant derivative, 107
critical point, 94
cup product, 49
CW complex, 125
cycle, 10

degree, 42
DeRham’s Theorem, 94
derivation, 132
derived functor, 79, 80
descending manifold, 96
diffeomorphism, 129
differential, 134
direct limits, 121
directed set, 121
double complex, 85

epi, 121
extension class, 65

fiber, 135
filtration, 82
full subcategory, 119
functor, 120

contravariant, 120
covariant, 120
forgetful, 120

fundamental class, 97

geodesic, 109
germ, 131
gradient-like vector field, 95

Hessian, 94
homology, 5, 10

cellular, 43
ordered simplicial, 51
oriented simplicial, 52
singular, 13

circuit, 18
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excision, 37
homotopy axiom, 24
Mayer-Vietoris theorem, 29
of S1, 20
of Sn, 35
of contractible space, 17
of direct limit, 124
of point, 17
one-cycles, 18
reduced, 39
relative, 36
zeroth, 5

homotopy, 24

invariance of domain, 39
isomorphim, 121

Jordan curve theorem, 40

Lefschetz Duality, 100
Levi-Civta connection, 108, 109

manifold
smooth, 128
topological, 127

mapping cylindar, 46
Mayer-Vietoris, 29
monic, 121
monoid, 119
morphism, 119
Morse function, 94
Morse inequalities, 97

normal bundle, 111

object, 119
orientation class, 97

parity, 105
partial order, 121
perfect pairing, 103
Poincaré Duality, 100
presheaf, 69

étale space, 74

rank, 105
regular point, 94
representation variety, 68
resolution, 11
restriction, 69
retraction, 23

scheme, 71
section, 69
semi-group, 119
Sheaf

locallycon, 73
sheaf, 69

Čech cohomology of, 78
of smooth functions, 132
cokernel, 77
constant, 73
flabby, 80
flasque, 80
kernel, 77
of local continuous functions, 131
sections of vector bundle, 73
soft, 87
structure, 70

sheaf axioms, 69
simplex, 13
simplicial complex, 125
smooth map, 129
smooth structure, 128
spectral sequence, 82
stable manifold, 96
subcategory, 119
sugnature, 105

tangent space, 133
Thom class, 112
Thom isomorphism theorem, 112
total space, 135
Tubular neighborhood theorem, 111

Universal Coefficent Theorem, 11, 45
universal coefficent theorem, 45
unstable manifold, 96
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vector bundle, 135
sheaf of sections, 73
trivial, 135

Zariski tangent space, 68
Zariski topology, 71
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