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I hereby declare that I am the sole author of this thesis.I authorize the University of Waterloo to lend this thesis to other institutionsor individuals for the purpose of scholarly research.
I further authorize the University of Waterloo to reproduce this thesis by pho-tocopying or by other means, in total or in part, at the request of other institutionsor individuals for the purpose of scholarly research.

ii



The University of Waterloo requires the signatures of all persons using or pho-tocopying this thesis. Please sign below, and give address and date.

iii



AbstractIt has been conjectured that general relativistic shear-free perfect uids with abarotropic equation of state, and such that the energy density, �; and the pressure,p; satisfy �+p 6= 0; cannot simultaneously be rotating and expanding (or contract-ing). A survey of the known results about this conjecture is included herein. Weshow that the conjecture holds true under either of the following supplementaryconditions: 1) the Weyl tensor is purely magnetic with respect to the ow velocityvector or 2) dp=d� = �1=3:Any hypersurface-homogeneous shear-free perfect uid which is not space-timehomogeneous and whose acceleration vector is not parallel to the vorticity vectorbelongs to one of three invariantly de�ned classes, labelled A, B and C. It is foundthat the Petrov types which are allowed in each class are as follows: for class A,type I only; for class B, types I, II and III; and for class C, types I, D, II and N.Two-dimensional pseudo-Riemannian space-times are classi�ed in a manner sim-ilar to that of the Karlhede classi�cation of four-dimensional general-relativisticspace-times.In an appendix, the forms di�erential forms package for the Maple program isdescribed. iv
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Chapter 1IntroductionIf I have seen farther it is by standing onthe shoulders of giants. Sir Isaac NewtonI N THE process of �nding physically meaningful solutions to Einstein's �eld equa-tions of general relativity, one is often confronted with the possibility that an appar-ently new metric describes the same spacetime as that given by an already knownone. The problem is compounded by the fact that the physical properties of a givenmetric are unchanged by a coordinate transformation. The detection of the equiv-alence of two metrics is then a very di�cult problem, even if one con�nes oneselfto local considerations. One way to attack the problem of equivalence is to com-pute, from each metric, a set of invariants. If the invariants from the �rst metricare not equivalent to the invariants from the second metric, then the two metricscannot describe the same spacetime. For example, if the Riemann tensor vanishesfor one of the metrics, but not for the other, then the two metrics cannot be equiv-alent. The problem associated with the equivalence of metrics is therefore reduced1



CHAPTER 1. INTRODUCTION 2to that of �nding the equivalence of invariants constructed from the metrics. Evenif the question of the equivalence of two particular metrics cannot be completelysettled, partial information can be gained from a study of the invariants. Metricscan thus be classi�ed. For example, the Petrov classi�cation of the Weyl tensorand the Segre and Plebansk�� classi�cations of the Ricci tensors are classi�cationschemes based on constructing invariants from the Riemann tensor. Another setof invariants that can be derived from a particular metric is its symmetry group.It may seem that classi�cations based on invariants such as the Riemann tensorand classi�cations according to symmetry groups have little to do with each other.However, a deeper examination reveals an amazing interplay between the two ap-proaches; they are two facets of a very powerful theory. Indeed, they both can befound using the method of equivalence of Cartan, which is a systematic methodof �nding invariants. In particular, when applied to the study of the equivalenceof metrics, Cartan's method uncovers the results that the relevant invariants forthe orthogonal group of transformation are the Riemann tensor and its derivatives.Similarly, the invariants for the conformal group of transformations are found tobe the Weyl tensor, a tensor which reduces to the Cotton-York tensor in the threedimensional case, and their derivatives. Cartan's method also uncovers the varioussymmetry groups of the metrics.In chapter 2, manifolds with pseudo-Riemannian real analytic metrics are stud-ied using the method of Cartan. In the context of general relativity, however,many metrics can describe the same physical spacetime. Ignoring discrete trans-formations, this internal indeterminacy is encoded in a group of transformations,the special orthogonal group. The method of equivalence transforms the study ofthe original manifold to a new manifold that includes the group of indeterminacyas well as the original manifold. The invariants given by the method are quanti-



CHAPTER 1. INTRODUCTION 3ties which are de�ned on the enlarged manifold. We show the well-known resultthat the invariants associated with the pseudo-Riemannian metrics (using the spe-cial orthogonal group) are the Riemann tensor (on the enlarged manifold) and itsderivatives. We then show how these invariants of the enlarged manifold can becomputed by lifting calculations done on the original manifold, which are nothingmore than the classical calculations. We then do similar calculations when thegroup of transformations is the conformal group, a group that is larger than theinternal group of indeterminacy. This new equivalence problem has as invariants(de�ned on the enlarged manifold) the Weyl tensor, a tensor which reduces to theCotton-York in the three dimensional case and their derivatives. In the process, weuncover a set of one-forms that contain the information of the Ricci tensor. It isnot clear whether any meaning can be given to the particular combinations of Riccitensor components that appear in these one-forms. The calculations in chapter 2are illustrated throughout with explicit calculations for the situation of real analytictwo-dimensional pseudo-Riemannian metrics. We also give a classi�cation, whichappears to be new, of manifolds that possess such metrics. This classi�cation is asimilar to the Karlhede classi�cation, which is a modi�cation to the method of Car-tan that is better suited for the space-times of general relativity. We also illustratethe calculation of the invariants for the situation of conformally at metrics.In chapter 3, we concentrate on the four-dimensional spacetimes of general rela-tivity. We show how the structure equations of such manifolds can be obtained us-ing di�erential forms. This approach is dual to the method of orthonormal tetrads.The structure equations involve functions, the kinematic quantities, of which wepresent two similar invariant constructions. The di�erential forms method, or theorthonormal tetrad method, have the advantage over coordinate methods that theequations of general relativity become �rst order di�erential equations, instead of



CHAPTER 1. INTRODUCTION 4equations of second order. There is a price to be paid, however. The number ofequations is larger, since the set of equations that do not appear with the coordi-nate methods is the set of Jacobi identities, which are obtained by di�erentiatingthe structure equations. We then give expressions for the Riemann, Ricci and Weyltensors in terms of the kinematic quantities. The Einstein �eld equations are given,then specialized to the case of a perfect uid. Since we shall be interested in a uidwith a barotropic equation of state, the �eld equations introduce a single function,the energy density, in addition to the aforementioned kinematic quantities. Thecondition that two applications of the exterior derivative to a function must van-ish gives integrability conditions. With the integrability conditions of the energydensity, the basic equations are then all described.We also present an invariant determination of an orthonormal tetrad that is wellsuited to the study of rotating perfect uids. This choice implies the vanishing ofmany kinematic quantities, thereby simplifying our equations. This tetrad will beused in chapter 5.In chapter 4, the Petrov classi�cation of the Weyl tensor is presented in a man-ner that is slightly di�erent, yet fully equivalent, to the usual method in generalrelativity. The approach presented herein focuses on the eigenvalues of a three bythree complex matrix and on the dimensions of their corresponding eigenspaces.We also present a set of equations to convert between the Newman-Penrose com-ponents of the Weyl tensor, the components we presented in chapter 3 and theaforementioned three by three matrix. It is felt that this chapter clari�es the vari-ous interconnections between the di�erent approaches to the Petrov classi�cation.In chapter 5, we turn our attention to general relativistic shear-free perfect uidswith a barotropic equation of state. It has been conjectured that such a uid cannotbe both rotating and expanding (or contracting). The �rst result showing a special



CHAPTER 1. INTRODUCTION 5case of the conjecture dates back to 1950. There are no known general relativisticcounter-examples; however there are some in Newtonian gravity. Various specialcases of the conjecture have been proved over the years, though as yet, its validityin the general case has still not been established. In the �rst part of chapter 5,we present a detailed history of the various partial results. We identify variousproperties that we feel were critical to the success. We also identify as a recurringtheme the computation of torsion, which enables one to focus on the integrabilityconditions that are of lower order than is expected at any particular stage of aproof. In the second part of chapter 5, we establish the veracity of the conjecturefor the special case when the Weyl tensor is purely magnetic with respect to theuid ow. In the last part of the chapter, we show that the conjecture also holdsfor the case of a perfect uid with a barotropic equation of state such that thederivative of the pressure with respect to the energy density is equal to �1=3: Suchuids include the coasting universes of ination theory.Should the shear-free conjecture hold, then the possible spacetimes that satisfythe hypotheses of the conjecture can be classi�ed into two broad classes according towhether they are expanding (or contracting) or not. If their rate of expansion is notzero, then the shear-free conjecture would force them to be irrotational. This situ-ation is well understood, all such spacetimes having been classi�ed and examinedby Collins and Wainwright (1983). If, however, the uid has zero expansion, notall spacetimes have been identi�ed. There are partial results in the literature. It isthe subject of chapter 6 to �nd the Petrov types of a subclass of the expansion-freeshear-free rotating spacetimes that has been previously identi�ed. These space-times are hypersurface-homogeneous without being fully homogeneous. Also, theirvorticity vector is linearly independent of their acceleration vector. The spacetimeswe consider are divided into three cases, the simplest of which has already appeared



CHAPTER 1. INTRODUCTION 6in the literature in a study of rotating spacetimes with a Killing vector parallel tothe axis of rotation. The determination of the Petrov type for each of the threecases is for the most part fairly straightforward. There are, however, two Petrovtypes in one of the cases that are surprisingly di�cult to rule out. The questionarises of showing that a particular set of polynomials has no solutions. In theory,doing so is simple: variables are eliminated one by one until a contradiction resultsthat a non-zero integer is equal to zero. In practice, the expressions become solarge that even being able to �nish the computation is a di�cult endeavour. Theorder in which the calculations are done is critical. Even so, we had to use varioustransformations to reduce the expression sizes. A further complication arises fromthe fact that at one point, a particular polynomial factorizes. The manner in whichit does so precludes the use of certain evaluation techniques from the starting point.One must �rst use more straightforward methods in order to identify the factors ofthis polynomial. Once this is done, the evaluation techniques can be used to reducethe expression sizes. In spite of the various practical obstacles, it was found pos-sible to complete the classi�cation task. Various symbolic computation tools wereconsidered, and tried, in order to resolve the problem of the presence of solutionsto the set of polynomials. One theoretical development which initially appeared tobe promising was the Gr�obner bases method due to Buchberger (1985) for whichthe grobner package of Maple seemed especially useful. Unfortunately, it couldnot handle the polynomials which arose in the present problem. The computationscould not �nish, for lack of time. In retrospect, this is not surprising, consideringthe number of mathematical tools that were in the end used in order to completethe problem in a step by step manner.Finally, we present in appendix A a di�erential forms package for the Maplesymbolic computation program. The forms package implements the basic opera-



CHAPTER 1. INTRODUCTION 7tions on di�erential forms and vectors. It also implements higher level functionssuch as tools to solve for unknown di�erential forms, to test whether a particulardi�erential form is an element of a given di�erential ideal, to implement an innerproduct between di�erential forms and to compute operations such as the Hodgestar of a di�erential form. We considered the use of the difforms package providedwith Maple. It soon was apparent that difforms was not adequate for our needs1and that it would be faster to implement a new di�erential forms package than tomodify the existing one. The package forms of appendix A was used as the maincomputational tool for chapter 5.We make use of the following conventions, unless indicated otherwise. Indicesare raised and lowered with a metric tensor whose signature is (� +++): We usegeometric units in which 8�G = c = 1; where G is the Newtonian gravitationalconstant and c is the velocity of light in vacuum. The Riemann tensor, Rijk`;is de�ned by vi;`;k � vi;k;` = Rijk`vj for any C2 vector �eld ~v, with the semi-colon denoting covariant di�erentiation. The Ricci tensor, Rij ; is de�ned by thecontraction Rij = Rkikj ; and the Ricci scalar, R; by the contraction R = Rii:
1In particular, difforms does not handle vectors which are needed for the Lie derivative andfor the interior product of a vector and a di�erential form.



Chapter 2Applications of the EquivalenceMethod Un bon livre devrait toujours former unv�eritable lien entre celui qui l'�ecrit et celuiqui le lit. Laure ConanI N THIS chapter, the equivalence method of Cartan is used to study the equiva-lence of pseudo-Riemannian real analytic metrics. The approach of Cartan involvesthe transformation of the problem of equivalence on a given manifold to a problemof equivalence on a new manifold, consisting of the original manifold augmented bya group of transformations.We �rst look at the equivalence of metrics under the action of the orthogonalgroup. The application of the theory of Cartan shows that the geometric objectswhich allow a decision of whether two metrics are equivalent under this group arethe Riemann tensor and its covariant derivatives up to an order determined by themethod. These geometric objects are de�ned on the enlarged space. We show that8



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 9the appropriate calculations need not be done solely on the enlarged space, but themain portion can be done on the original manifold. We then look at the equivalenceof two metrics under the conformal group of transformations. We show that someof the invariant functions given by the method are the Weyl tensor componentsthat are de�ned on the enlarged manifold. The other invariants functions are givenby a tensor, which reduces to the Cotton-York tensor in the three-dimensional case.We then compute explicitly the various geometric objects, given by the method ofCartan, for the case of conformally at metrics. In that case, all invariants vanishwhen the dimension of the metrics is greater than two.Throughout our development, we illustrate the method by applying it to thetwo-dimensional pseudo-Riemannian real analytic metrics. We demonstrate thewell-known result that all of these spaces are conformally equivalent. We theninvestigate the equivalence problem under the orthogonal group. The Riemanntensor, which in this case is a scalar, is obtained. A classi�cation is provided ofthe real analytic two-dimensional pseudo-Riemannian metrics. This classi�cationappears to be new. It involves the various groups of symmetry of those metrics, butdistinguishes two classes of metrics without symmetry. This example illustrates theprogram of classi�cation of spacetime metrics undertaken by a number of authorssuch as Karlhede (1980a), Karlhede (1980b), Karlhede and Lindstr�om (1982), Karl-hede and MacCallum (1982), Bradley and Karlhede (1990), Collins, d'Inverno andVickers (1990), Joly and MacCallum (1990), �Aman et al. (1991), Koutras (1992)and Collins et al. (1993). MacCallum (1991) gives a nice review of the progress inthe classi�cation of exact solutions of general relativity and of the computer pro-grams involved in that classi�cation. An interesting new development, which canbe found in Paiva et al. (1993), is the use of the techniques involved in the Karlhedeclassi�cation in order to �nd limits of spacetimes in a coordinate-free approach.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 10We shall often resort to the Cartan Lemma (Cartan, 1945). The statement ofthis lemma is as follows:Lemma 1 (Cartan) Let !1; : : : ; !p be p one-forms which are linearly independentpointwise on an n-dimensional manifold M , with p � n. Let �1; : : : ; �p be p one-forms on M satisfying �i ^ !i = 0:Then there exist C1 functions Aij, with Aij = Aji, such that�i = Aij!j (i = 1; : : : ; p):Here, and throughout this work, we use Einstein's summation convention. Theproof1 of this lemma is as follows. Since !1; : : : ; !p are all independent, they formpart of a basis over M . This basis is formed by adjoining p � n independent one-forms �1; : : : ; �p�n. Since for each i (1 � i � p); the one-form �i is de�ned over M ,it can be expanded in this basis; therefore, we obtain �i = Aij!j +Bij�j ; where Aijand Bij are functions. The condition on �i translates into Aij!j^!i+Bij�j^!i = 0.Since the �j are all independent of the !i, and they are all independent pairwisewith each other, then the coe�cients of �j ^ !i must all vanish, i.e. Bij = 0 forall i and for all j. We are left with (Aij � Aji)!ji ^ !jj = 0; where ji; jj indicatesthat i � j. Since !ji ^ !jj are all independent of each other, their coe�cients mustvanish, i.e. Aij = Aji:We note that the method of proof allows us to generalize the Cartan lemma toconclude that a set of p di�erential forms, �i of degree q satisfying�i ^ !i = 0;1A similar proof of this lemma is found in Appendix A.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 11must also satisfy �i = �ij ^ !jfor some di�erential forms �ij of degree q � 1 that obey�ij ^ !j ^ !i = 0:The proof is very similar to that of the standard Cartan lemma. We shall notintroduce a new name for this generalization; the context being clear as to whichversion of the lemma is being used. Related to this generalization is the Cartan-Poincar�e lemma, which appears in section VIII.2 of Bryant et al. (1991).22.1 Equivalence under the orthonormal groupThe purpose of this section is to present a group invariant approach to de�ningand calculating the Riemann tensor. This approach is based on that of Cartanas expounded in Gardner (1989). We generalize the work therein by allowing fora metric of any signature. We also show explicitly how the calculations on theenlarged manifold can be done by lifting calculations on the original manifold. Thetheory is illustrated by performing the appropriate calculations for two-dimensionalreal analytic pseudo-Riemannian metrics, which will be referred to as 1+1 metrics.A spacetime, in general relativity, is a four-dimensional manifold possessing aLorentzian metric with signature �+++. In the tangent space of each point,therefore, the metric is simply the Minkowski metric ds2 = �dt2+dx2+dy2+dz2.The metric may always be written as ds2 = gab dxa 
 dxb; whether one is dealingwith a at geometry in general coordinates, or a non-at spacetime. This metric,2I am grateful to R. Gardner for pointing out this lemma.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 12since it is not degenerate by hypothesis, can then be diagonalized as ds2 = �(�0)2+(�1)2 + (�2)2 + (�3)2.In general, we shall consider non-degenerate metrics of arbitrary dimension andsignature; they may therefore be expressed as ds2 = Pa �aa(�a)2, where �aa is thediagonal signature matrix. We shall give greater details of the computations in thecase of the 1+1 metrics. Even though some features of the calculations are absentfor metrics of such a small dimension, they still provide a useful model to keep inmind because the calculations are comparatively simple, and yet many features ofhigher-dimensional problems are indeed present.The choice of diagonalization is not unique however. If we de�ne �! = S�, then�! is also an acceptable choice for the diagonalization, provided that �!t��! = �t��.This implies that �tSt�S� = �t�� for all �: Therefore S must obey the restrictionthat St�S = �. This is the de�nition of the statement that, ignoring reections, Sbelongs to the group SO(p; q;R), where p is the number of plus signs in the signatureand q is the number of minus signs. For spacetimes, the group is SO(3; 1;R).Because of its importance, this group is also referred to as the Lorentz group. For1+1 spacetimes, the group is SO(1; 1;R). We shall restrict ourselves to real analytictransformations.We now construct a di�erentiable manifold from the original space-time and theaforementioned group of transformations. This transforms the problem of equiva-lence over the space U to a question of equivalence over the space U�G; where G isthe group of which S is a member. In some sense, we are thus simultaneously con-sidering all possible choices of S. The steps of considering orthogonal frames andof lifting the problem to a space that includes the group of allowed transformationsform the essence of Cartan's equivalence method.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 13We �rst consider some calculations for 1+1 metrics, in order to illustrate thesteps of the general case. The group SO(1; 1;R) is easily parametrized; therefore,we can explicitly give part3 of the basis to the space of di�erential forms of elementsof U �G. If we parametrize G by �, then we can de�ne�!0 = (cosh�)�0 + (sinh �)�1and �!1 = (sinh �)�0 + (cosh�)�1;since �(�!0)2 + (�!1)2 = �(�0)2 + (�1)2. The cobasis elements � are de�ned over Uand the cobasis elements �! are de�ned over U � G, where G =SO(1,1,R). If werewrite this in terms of matrices, then �! = S�; whereS = 0B@ cosh� sinh�sinh � cosh� 1CA :We must �nd the variation of the frames in a small neighbourhood. We start withthe structure equations over U; given as the exterior derivatives of the elements ofthe original cobasis � in terms of themselves. We then look at the implications forthe U �G space. For the 1+1 case, then, we therefore start withd�0 = F1�0 ^ �1and d�1 = F2�0 ^ �1:The structure equations of U �G are found by the following calculations:d0B@ �!0�!1 1CA = 0B@ sinh� cosh�cosh� sinh� 1CAd� ^ 0B@ �0�1 1CA +3Since U �G is 3-dimensional, �!0 and �!1 cannot form a full basis.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 140B@ cosh� sinh�sinh� cosh� 1CA0B@ d�0d�1 1CA= 0B@ sinh� cosh�cosh� sinh� 1CA0B@ cosh� � sinh�� sinh � cosh� 1CA d� ^ 0B@ �!0�!1 1CA+0B@ cosh� sinh�sinh � cosh� 1CA0B@ F1�!0 ^ �!1F2�!0 ^ �!1 1CA ;where the equality �!0 ^ �!1 = �0 ^ �1 was used in order to express the results interms of forms over U �G rather than over U: The structure equations over U �Gare therefored0B@ �!0�!1 1CA = 0B@ 0 d�d� 0 1CA ^ 0B@ �!0�!1 1CA + 0B@ cosh�F1 + sinh�F2sinh�F1 + cosh�F2 1CA �!0 ^ �!1:For metrics of any dimension, the corresponding structure equations are given byd�! = dS ^ � + Sd�;which is, when expressed over U �G;d�! = (dSS�1 + #(U;S)) ^ �!; (2.1)where the terms #(U;S) are linear in �!. Di�erentiating St�S = � gives the followingde�ning relations for the Lie algebra so(p; q;R) corresponding to the Lie groupSO(p; q;R): d(St)�S + St�dS = 0:In order to use these relations together with the U � G structure equations, weobtain the following equivalent expression by multiplication on the left by (S�1)tand on the right by S�1 : (dSS�1)t� + �(dSS�1) = 0: (2.2)



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 15This exhibits the rôle of �: if we use it to raise and lower indices, the above linestates that dSS�1, with indices lowered, is antisymmetric .On the 1+1 space, if we de�ne� = d�+ (F1 cosh� + F2 sinh �)�!0 � (F1 sinh �+ F2 cosh�)�!1 (2.3)then the structure equations on U �G for the 1 + 1 metrics can be rewritten asd0B@ �!0�!1 1CA = 0B@ 0 �� 0 1CA ^ 0B@ �!0�!1 1CA : (2.4)The matrix 0B@ 0 �� 0 1CAis antisymmetric when the �rst index is lowered. This indicates that it is an elementof so(1,1,R). The idea behind the de�nition of � is to gather, as much as possible,quantities that can be changed by the group parameter, �.We observe that, for the 1+1 metrics, there are no longer any terms that areexplicitly quadratic in �!. For future reference, such terms will be referred to astorsion terms, or as the torsion. The requirement that the torsion vanish here, orequivalently that the torsion be completely absorbed, determines � uniquely. Thisstatement is rarely true in the application of the method of equivalence.For general metrics, we can always write, using an index-free notation, thestructure equations as d�! = � ^ �!; (2.5)where we recall that �! = S�: The matrix � is an n by n matrix of one-forms. Thematrix � can be split, non-uniquely, into a part that is independent of derivativesof group parameters and a part that does contain derivatives of group parameters.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 16In the present paragraph, we show that we can �nd, using �, a uniquely de�nedmatrix, �; belonging to so(p; q;R) and such thatd�! = � ^ �!:In order that the structure equations (2.5) be identical with (2.1), the matrix �must obey the condition (dSS�1 ��+ #(U;S)) ^ �! = 0:Therefore, we obtain, by using the Cartan Lemma, that�� dSS�1 � 0 mod base;where by \mod base" we mean that the given congruence holds up to a linearcombination of the basis �!. From this we can infer that(�� dSS�1)t� + �(�� dSS�1) � 0 mod base:Taking into account (2.2), this last congruence simpli�es to�t� + �� � 0 mod base:We thus conclude that there are no derivatives of group parameters in �t� + ��.Because of that fact, these components of � are called the principal components of�rst order4 (Gardner, 1989). The equivalence method approach then suggests thatwe perform the expansion � = � +	; where�	 = 1=2(�t� + ��)4The order refers to the number of times this step of identifying terms independent of groupderivatives in the matrix � is reached in the method of equivalence; for details, see Gardner (1989)



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 17and �� = 1=2(����t�);to get the structure equations re-expressed asd�! = � ^ �! +	 ^ �!:The functions 	 do not contain derivatives of group parameters, and so they areexpressible in the basis !. We therefore have(	)ij = 	ijk�!k;for some functions 	ijk: Without loss of generality, we can antisymmetrize 	ijk onthe lower two indices, since we do not thereby modify the structure equations. Wenotice that �t� + �� = 0, and so � satis�es the Lie algebra relations of so(p; q;R).We try to eliminate as many of the functions 	 as possible, by modifying �,withoutchanging its Lie algebra structure. This step is the absorption of torsion. Let �be an n � n matrix of one-forms expressed in the �! basis. Each entry thereforehas n terms. We consider the coe�cients in these terms to be the unknowns in thesystem of linear equations � ^ �! = 	 ^ �!, and we add the restriction that � mustobey the condition �t� + �� = 0: (2.6)Note that there are n2(n�1)2 equations with n2(n�1)2 unknowns. We perform theexpansion (�)ij = �ijk �!k;for some functions �ijk: After lowering the indices with �, the linear equations tobe satis�ed are �ijk�!k ^ �!j = 	ijk �!k ^ �!j:



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 18The coe�cients of the independent terms therefore obey�ijk ��ikj = 	ijk �	ikj:The Lie algebra condition (2.6) is�ijk�!k +�jik�!k = 0;so �ijk +�jik = 0:Together, these imply that�ijk = ��jik = �(�jki +	jik �	jki)= �kji �	jik +	jki= (�kij +	kji �	kij) �	jik +	jki= ��ikj +	kji �	kij �	jik +	jki= �(�ijk +	ikj �	ijk) + 	kji �	kij �	jik +	jki:This can be simpli�ed due to the antisymmetry 	ijk = �	ikj . Therefore, theunknowns �ijk are solved in terms of the torsion coe�cients as�ijk = 	ijk �	jik �	kij:The torsion can thus be eliminated by de�ning ' := �+�; to get d�! = '^ �! with't� + �' = 0: This determines ' uniquely.It is rarely the case that all torsion can be made to vanish. Usually only sometorsion terms can be set to zero. This being the case, the next step in the equivalencemethod would be to try to use the group G to normalize some of the remainingtorsion terms to particular values. For example, if the group acts by multiplication



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 19on some torsion terms, then a number of these could be normalized to 1. Requiringthat the normalization be preserved restricts the group G to one of its subgroups.At this stage, we have that ' and �! are invariants on U � G. Therefore thegroup of freedom on this structure consists solely of the identity. When this isthe case, we say that we have an e-structure. The theory of the equivalence of e-structures now enables us to state that the fundamental invariants of the problemare given by the functions involved in the structure equations of the e-structure.These functions, ; are invariants, in the sense that if � is the transformation thattakes U to V , then jU = jV � �. We shall �rst �nd these invariants for the 1+1spacetimes, then we shall do so for general spacetimes. We de�ne Fs to be the setconsisting of the invariants and their covariant derivatives up to order s � 1. Weconsider Fs to be lexicographically ordered. The rank ks of Fs at a point p is therank of the span of d(Fs) at p. The order of Fs at p is the smallest j for whichkj = kj+1. An e-structure is said to have regular rank � at p if the rank of theFs of the e-structure is � in a neighbourhood of p. We point out that the rank andthe order of an e-structure are invariant quantities. The theory (Gardner, 1989)allows us to state that if the rank of a regular n-dimensional e-structure is �, thenthe e-structure admits an (n� �)-dimensional symmetry group.For 1+1 spacetimes, we proceed as follows. From the exterior derivative of the1+1 structure equations (2.4), we get0 = d20B@ �!0�!1 1CA = 0B@ 0 d�d� 0 1CA ^ 0B@ �!0�!1 1CA� 0B@ 0 �� 0 1CA ^ 0B@ 0 �� 0 1CA ^ 0B@ �!0�!1 1CA :One of the relations we thereby obtain is0 = d� ^ �!1:



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 20This implies that d� = � ^ �!1; (2.7)where � is a 1-form on U �G. The other relation we obtain is0 = d� ^ �!0 = � ^ �!1 ^ �!0;where we have used (2.7). The Cartan lemma then states that � is a linear combi-nation of �!0 and �!1, i.e. � = R �!0 +R0 �!1:Again using (2.7), the derivative of the connection form � is therefored� = R �!0 ^ �!1: (2.8)The function R is the required invariant function. It is just the lifted Riemanntensor component R0101.We now proceed to obtain R explicitly in terms of the functions F1 and F2. Ifwe expand the derivatives of F1 and F2 in the � basis (since F1 and F2 are de�nedon U), we get dF1 = F1j�0�0 + F1j�1�1and a similar expression for F2. These expressions can be used as de�nitions forF1j�0, F1j�1, F2j�0 and F2j�1. We di�erentiate equation (2.3) and hence obtaind� = [�F1j�1 � F2j�0 + (F1)2 � (F2)2]�!0 ^ �!1;after converting the result into the �! basis. (In this case, �!0 ^ �!1 is just �0 ^ �1,but this is rarely true.) Comparison with (2.8) provides us with the result thatR = �F1j�1 � F2j�0 + (F1)2 � (F2)2; as required.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 21We now turn to spacetimes of any dimension. After the absorption of torsion,the structure equations are d�! = ' ^ �!;where ' is uniquely determined and obeys the condition't� + �' = 0:The exterior derivative of the structure equations is0 = d2�! = (d'� ' ^ ') ^ �!:The quantity in parentheses contains the information about the curvature of thespacetime. This justi�es the de�nition� := d'� ' ^ '; (2.9)where this curvature two-form is constrained by0 = � ^ �!: (2.10)We note that the de�nition of � forces it to obey �t� + �� = 0: By the Cartanlemma, the constraint (2.10) on � implies that it can be expanded in the basis �!,the coe�cients being one-forms: �ij =  ijk ^ �!k:The one-forms  ijk are not arbitrary since they must satisfy the constraint (2.10)on �. This produces the following equivalence:0 = �ij ^ �!j ,  ijk ^ �!k ^ �!j = 0:



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 22A cobasis for a space of dimension n is �!1; �!2; :::; �!n: If we multiply the constrainton  with all possible combinations of n� 2 cobasis forms, we obtain the relations(noting that most terms in the sum disappear)( ijk �  ikj) ^ �!1 ^ �!2 ^ � � � ^ �!n = 0;and therefore  is symmetric in the two lower indices, up to linear combinations ofthe cobasis, i.e.  ijk �  ikj mod base:Similarly, the antisymmetry of � with its indices lowered translates into the follow-ing antisymmetry of  :�ij = ��ji , ( ijk +  jik) ^ �!k = 0;where the indices are lowered (and raised) using �. Multiplying this constraint withall possible combinations of n� 1 cobasis forms, we obtain( ijk +  jik) ^ �!1 ^ �!2 ^ � � � ^ �!n = 0:We can therefore conclude that the following congruences hold: ijk �  ikj � � jik � 0 mod base;which imply that  ijk � 0 mod base:This shows that  ijk can be expanded in the cobasis as follows: ijk = 12Sijk`�!`;for some functions Sijk`: This demonstrates that  , and hence �, does not containderivatives of the group parameters. It therefore follows that�ij = 12Sijk`�!` ^ �!k:



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 23The coe�cients Sijk` are the fundamental invariants of the problem.When we take the exterior derivative of �; as given by its de�nition (2.9), weobtain d� = �d' ^ '+ ' ^ d'= �� ^ '� ' ^ ' ^ '+ ' ^�+ ' ^ ' ^ '= �� ^ '+ ' ^ �:This calculation simply yields the Bianchi identities on U �G.The structure equations on U � SO(p; q;R) can be summarized as follows:d�! = ' ^ �!andd' = ' ^ '+�:With indices, these become d�!i = 'ij ^ �!jand d'ij = 'ik ^ 'kj + 12Sijk`�!` ^ �!k;respectively.So far, the calculations have been made on U � G. This is more complicatedthan calculating on U . Furthermore, the \classical" results do not involve the groupG. We therefore need to �nd the contribution of G, in order to recover the classicalapproach.We de�ne a left-action on G by multiplication on the left by a constant:LC : G! GS 7! CS:



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 24This action on G induces an action (a pull-back) on the cobasis over U �G:L�C �! = L�C(S�) = CS� = C�!:We can determine the induced action on the connection forms ' since pull-backscommute with exterior di�erentiation, and since the pull-back of an exterior productis the exterior product of the pull-back. The sequence of equalitiesL�Cd�! = d(L�C �!) = d(C�!) = Cd�! = L�C(' ^ �!) = (L�C') ^ (L�C �!)leads to ' ^ �! = [C�1(L�C')C] ^ �!:We then conclude that L�C' = C'C�1;after invoking the uniqueness of '. This type of action is called an adjoint action.Also, by the uniqueness of ', C�1(L�C')C has the same index symmetries as '.The induced action on ' = dSS�1 + #U(u; S) leads toL�C' = d(CS)(CS)�1 + L�C#U(u;CS);where, as can be expected, L�C#U(u;CS) means (L�C#U)j(u;CS). Therefore, the actionon #U obeys L�C#U(u;CS) = C#U(u; S)C�1:Pointwise, we can make the choice of C = S�1 , provided, it seems, that we do notdi�erentiate the results; we shall show in the next paragraph that, actually, we canperform the di�erentiation. We thus obtain the equivalent connection forms on U .With the de�nition#U(u) := L�S�1#U(u; S�1S) = S�1#U (u; S)S;



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 25the connection forms on U and those on U �G are related by#U(u; S) = S#U(u)S�1:Similarly, the action on � obeysL�C�(u;CS) = L�C(d'� ' ^ ')= d(C'C�1)� C'C�1 ^ C'C�1= C(d'� ' ^ ')C�1= C�(u; S)C�1:We can therefore de�ne�(u) := L�S�1�(u; e) = S�1�(u; S)S;which leads to �(u; S) = S�(u)S�1:We now explicitly5 show that we can indeed di�erentiate on U and obtain theappropriate quantities, without �rst going to U �G and then choosing a particularvalue of S. This is of value, since di�erentiating on U is easier than on U � G.Once we know the result on U , it is easy to lift the result to U � G. We are thenable to apply the results of the method of equivalence.We start by showing that we can compute �(u) by staying on U . Ford#U(u)� #U(u) ^ #U(u)= d[S�1#U(u; S)S]� S�1#U(u; S) ^ #U(u; S)S= d[S�1'S � S�1dS]� S�1['� dSS�1] ^ ['� dSS�1]S5See page 27 �. for some comments on the calculations on U .



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 26= �S�1dSS�1 ^ 'S + S�1d(')S � S�1' ^ dS + S�1dSS�1 ^ dS�S�1' ^ 'S + S�1dSS�1 ^ 'S + S�1' ^ dS � S�1dSS�1 ^ dS= S�1d(')S � S�1' ^ 'S= S�1(�(u; S))S= S�1(S�(u)S�1)S= �(u);where the use of the relation d(S�1) = �S�1dSS�1 has been made. We cautionthat one needs to be careful with the signs of the exterior derivative and with theordering of the various quantities, since matrices do not, in general, commute.We now compute the Bianchi identities on U :d�(u) = d(S�1�(u; S)S)= �S�1dSS�1 ^ �(u; S)S + S�1d(�(u; S))S + S�1�(U;S) ^ dS= �S�1dS ^ �(u) + S�1(��(u; S) ^ '+' ^ �(u; S))S +�(u) ^ S�1dS= �S�1dS ^ �(u)� S�1�(u; S) ^ (dSS�1 + #(u; S)S)+S�1(dSS�1 + #(u; S)) ^�(u; S)S +�(u) ^ S�1dS= '(u) ^�(u)��(u) ^ '(u):These are the same equations as on U � G. Further di�erentiation does not giveanything new.Finally, we show that we can get #(u) from the cobasis on U :d� = d(S�1�!) = d(S�1) ^ �! + S�1d�!= �S�1dSS�1 ^ �! + S�1' ^ �!



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 27= �S�1dSS�1 ^ S� + S�1dSS�1 ^ S� + S�1#U(u; S) ^ S�= S�1(S#U(u)S�1)S ^ �= #U(u) ^ �:In summary, we can calculate #U and �(u) and the Bianchi identities withoutinvolving G at all. This is exactly the classical calculation, as can be found, for ex-ample, in Misner, Thorne and Wheeler (1973). The calculations for the equivalencemethod, which require the space U�G, can therefore be done by �rst computing onU , then lifting to U �G by change of basis and multiplication by matrices, withoutany further di�erentiations.This enables us to identify #U(u) as the connection one-forms, as found forexample in Misner, Thorne andWheeler (1973), and �(u) as the Riemann curvaturetwo-forms. Expanding them in the cobasis over U , we get#(u)]ij = �ijk �kand �(u)]ij = 12Rijk` �` ^ �k;where �ijk are the Christo�el symbols and Rijkl are the Riemann tensor compo-nents.The group SO(p; q;R) is the natural group to use in the study of pseudo-Riemannian manifolds. Furthermore, it is quite natural to use connections thatrender the structure equations to be torsion-free. These natural requirements canbe seen as follows. The exterior derivative operation can be extended to vector-valued objects. There are more details given in Misner et al. (1973). Given f~eaga vector basis, de�ne d to be a di�erentiation such that it is equal to the ordinaryexterior derivative when applied to functions and di�erential forms, and such that



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 28d~ea = ~eb�ba: On vectors with scalar coe�cients, this derivative is then a de�nitionfor covariant di�erentiation of a vector. This is readily extended to tensor productsof vectors with scalar coe�cients by using the product rule. The expressions �ba arereferred to as a connection. Let f~eag be chosen dual to the cobasis �b; therefore, itsatis�es the bilinear pairing < ~ea; �b >= �ba:We need a well de�ned relation betweenthe derivative of ~ea and that of �b: This is obtained by requiring the vanishing ofthe derivative the invariantly-de�ned vector-valued one-form ~ea
�a := P:We thusrequire ~ec 
 �ca ^ �a + ~ea 
 d�a = 0;whence d�b = ��bc ^ �c:We are thus led to torsion-free space-times. The connection is not uniquely spec-i�ed. One natural invariant requirement is that it be chosen so that covariantdi�erentiation be compatible with the metric; in other words, that the covariantderivative of the metric vanish. The (dual of) the metric is given byg =Xa �aa~ea 
 ~ea:Its covariant derivative, which we require to vanish, is given by0 = dg = �aa~ec�ca 
 ~ea + �aa~ea 
 ~ec�ca;which is equivalent to 0 = ~ec�ca 
 ~ea + ~ea 
 ~ec�ca:It follows then that �ac+�ca = 0 or, equivalently, �ac+�ca = 0: These relations areexactly the de�ning relations of the Lie algebra so(p; q;R): From previous resultsin the present chapter, it is clear that the connection is now uniquely determined.The fact that the torsion-free connection is that choice of connection which is



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 29SO(p; q;R)-invariant is exactly6 the reason why the equivalence calculations onU �G can be done �rst on U .Note that the theory of the method of equivalence con�rms the classical theo-rem that an n-dimensional Riemannian metric is determined up to isometries byprescribing the Christo�el symbols, the Riemannian curvature tensor and its deriva-tives up to order n+1+n(n�1)=2. The precise statement of this theorem containsconditions, on an e-structure, of regularity, equal order, equal rank, and preser-vation of dependency. We refer to Gardner (1989) for the precise speci�cation ofthese conditions. We shall illustrate some of these points when we classify the 1+1metrics. We further remark that the order stated in the theorem is one more thanthe dimension of U �G. The stated number of di�erentiations is an upper bound.Usually much less than this is needed to determine the equivalence of two metrics,whether or not symmetries are involved.Since the whole problem of equivalence on U �G can be completely solved byreducing to a computation on U � feg �= U , and then multiplying by appropriatematrices, we might as well choose the representation of U � feg in such a fashionas to simplify the computations. This provides a geometric justi�cation for theusual practice of rotating an orthonormal tetrad so that one eliminates as manykinematic quantities as possible on U � feg; since they are invariantly de�ned onU �G.A standard procedure for classifying metrics involves using an eigenvalue ap-proach on the Weyl and the Ricci tensors. This approach reduces the group Gto one of its subgroups by choosing invariantly de�ned frames based on quantitiesappearing in the Riemann tensor. As Bradley and Karlhede (1990) remarked, it6I am grateful to M.A.H. MacCallum for pointing this out.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 30is di�cult to use the Christo�el symbols directly on U to carry out the appro-priate reduction, since they are not tensorial in nature. However, on U � G, thecorresponding objects, ', are tensorial. This gives a further justi�cation for the ap-proach used in the orthonormal tetrad techniques, where a frame can often be �xedby requiring that certain combinations of Christo�el symbols be made to vanish.Since this allows us more possibilities to reduce the group G than by solely usingthe Riemann tensor, the number of derivatives required for a classi�cation can bereduced. For four-dimensional spacetimes, it has been shown that there is an up-per bound of seven derivatives of the Riemann tensor. A summary of the relevantresults can be found in Collins et al (1993). It appears likely that the upper boundwill be reduced to six; the only situations where that bound of six has not beenproved are the non-vacuum type-N metrics and a class of conformally at metrics.In Collins, d'Inverno and Vickers (1990), the question was posed as to whetherone needs to proceed beyond the third derivative. Since then, Koutras (1992) hasanswered that query by exhibiting a spacetime that requires four derivatives for itsclassi�cation. So far, this is the highest number of di�erentiations that has beenrequired for classifying a spacetime. In short the maximum number of necessarydi�erentiations is at least four, no more than seven and very possibly no more thansix.2.2 Equivalence under the conformal groupIn this section, we study the equivalence of metrics under the conformal group oftransformations CO(p; q;R) = f�Sj� 2 R�; S 2 SO(p; q;R)g, where R� representsthe non-zero real numbers. We shall show that the geometric object allowing us toclassify metrics under the conformal group is the Weyl tensor. Unlike the situation



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 31of the classi�cation under the orthonormal group, a single lift is not su�cient tosolve the problem. This section follows Gardner (1989), who stops after providingthe structure equation on the twice-lifted space with a positive-de�nite metric. Inthe present work, metrics of arbitrary signature are allowed. We compute the actionof the conformal group on the Weyl tensor. Some special cases of the classi�cationare briey addressed. We discuss the signi�cance of particular one-forms that wereintroduced during the calculation; these contain the Ricci part of the Riemanntensor. Using the method of calculation discussed in this section, we then showexplicitly the well-known result that, for conformally at metrics, the Weyl tensorvanishes.Let there be a non-degenerate metric given by ds2 = �t��; where� = diag(�1;�1; � � � ;�1| {z }q ; 1; 1; � � � ; 1| {z }p ):This metric will be used to raise and lower indices.The one-forms � give a coframe for the cotangent space to the base manifold U .We lift the problem to the space U�G, whereG is, in this case, the conformal group.We therefore look at the lifted coframe ! = �S�, where St�S = �, S 2 SO(p; q;R)and � 2 R�. The structure equations, which are obtained by di�erentiating !,contain terms that are linear and quadratic in !: Therefore, they can be expressedas d! = � ^ !; where � is a particular matrix of one-forms.We now proceed to determine which entries in � do not contain derivatives ofgroup parameters. The de�ning relations of the orthogonal group SO(p; q;R) areSt�S = �. Taking the exterior derivative of these relations gives the de�ning expres-sions of the corresponding Lie algebra so(p; q;R), that is, �dSS�1+(dSS�1)t� = 0:This implies that the de�ning relations of the Lie algebra associated with the con-



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 32formal group CO(p; q;R) obey the condition� d(�S)(�S)�1 + (d(�S)(�S)�1)t� = 2d���1 �:As a consequence of this, since the structure equations are of the formd! = d(�S)(�S)�1 ^ ! + terms quadratic in !;there are no derivatives of the group parameters in the combination��+�t� � 2n(trace�)�of entries of the matrix �. We say that this combination gives the principal com-ponents of the �rst order for the present equivalence problem. They are linear in!, and so the corresponding parts of the structure equations are quadratic in !.Consequently, the principal components of �rst order yield the torsion. The tor-sion is not necessarily unique for a given problem; by varying the derivatives of thegroup, the torsion can change, and sometimes can even be made to vanish. Theother components of � can split into a diagonal part and an antisymmetric part(once indices are lowered). To summarize, the structure equations can be writtenas d! = (~�+ ~�In) ^ ! + torsion;where ~� is antisymmetric with indices lowered, i.e. it obeys � ~� + ~�t� = 0; andwhere In is the n-dimensional identity matrix.From the equivalence problem under SO(p; q;R), we know that all the torsioncan be absorbed into ~�. In that situation, the absorption was unique. This is not soin the present situation, since there are more independent group parameters thanneeded to do the absorption. We can still vary ~�. This produces torsion terms,



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 33which can be absorbed into ~�. Performing that absorption, we conclude that thestructure equations can be written asdw = (�+ � In) ^ !; (2.11)where � is antisymmetric with indices lowered, i.e. �� + �t� = 0, where In is then-dimensional identity matrix, and where � and � contain group derivatives. Thereis no longer any torsion, and so there is no permanent torsion. Unlike the situationin the previous section, � and � are not uniquely determined. Therefore there isstill some freedom left after making the torsion vanish.Su�cient conditions for this system to be integrable are provided by the Cartan-K�ahler theorem, which is a geometric generalization of the Cauchy-Kowalewskitheorem. We refer the reader to Bryant et al. (1991) for the statement and proof ofthis di�cult theorem. However, for a problem such as the one we are dealing with,the theorem applies whenever the exterior di�erential system is real analytic andsatis�es the condition of being in involution. This notion of involution is not that ofFrobenius theory. Fortunately, Cartan has provided a simple test which can even beused as the de�nition of involution. For the situation we are considering, Cartan'stest is as follows (for further details, see Gardner (1989)). We start with the matrix�+ �In mod base. We construct a set �1 as follows. We �rst let �1 be the emptyset. Then we perform the following step as many times as possible: add to �1 anelement of the matrix, noting the row from which it came, provided that the chosenelement is independent of elements already in �1 and provided it did not come froma row already used. When there are many ways to construct �1, we choose one wayamongst those that maximize the cardinality of �1. We then construct �i, withi � 2; in a similar fashion using the matrix �+�In mod(base[�1[�2[� � �[�i�1):The ith Cartan character is de�ned to be the cardinality of �i. The Cartan



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 34character is de�ned to be the integer � = Pi i�i: The system is said to be ininvolution if its Cartan character is equal to the degree of freedom in it.For the case under consideration, we can construct �1 using the �rst columnof � + �In: The elements are all independent, and therefore �1 = n: Note that(�+�In mod base) is an (n�1)� (n�1) antisymmetric matrix. The next Cartancharacters are then �j = n � j; for j = 2; : : : ; n: The Cartan character is the sum� = Pj j �j = n(n+1)(n�1)6 + 1: The system is in involution if this number is equalto the degree of freedom in � and �: In order to �nd this degree of freedom, wesuppose that we can �nd �0 and �0 also satisfyingdw = (�0 + �0 In) ^ !; (2.12)where ��0 + �0t� = 0. By subtracting (2.11), we must have((�0 � �) + (�0 � �) In) ^ ! = 0:Putting in the indices, this is just�(�0 � �)ij + (�0 � �)�ij� ^ !j = 0: (2.13)Using the Cartan lemma, we deduce that(�0 � �)ij + (�0 � �)�ij = Aijk !k;with Aijk = Aikj. Now, taking the trace, we obtain �0 � � = 1nAiik !k. Bysimple renaming of Aiik=n by Ak, we �nd that �0 = � + Ai !i. Substitution into(2.13), and making use of the fact that (�0 � �) is antisymmetric with indiceslowered, yields that (�0 � �) is now uniquely determined. Explicitly, we obtainAijk = Ak�ij +Aj�ik �A`�`i�jk; therefore, (�0)ij = �ij + (Aj�ik �A`�i`�jk)!k: Thedegree of freedom is then n, which is the number of functions Ai. In summary, we



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 35have involution if and only ifn(n+ 1)(n � 1)6 + 1 = n:The solutions to this are n = 1; 2;�3. We therefore have involution if and onlyif n = 1 or 2, since the solution n = �3 is, of course, extraneous. This is say-ing that all real analytic one-dimensional metrics are equivalent under conformaltransformations, and that all real analytic two-dimensional metrics (with the samesignature) are equivalent to each other under the action of the conformal group.In the other cases, that is, when n > 2, the system is not involutive. We are nowfaced with another equivalence problem, where the group of indeterminacy is nowthe n-dimensional group G(1) of the functions Ai. We therefore lift the equivalenceproblem on U � G to an equivalence problem on U � G � G(1): There is a gain,since dimG(1) < dimG: Because G(1) is de�ned to be the group that preserves therelation dw = (�+ �In) ^ !; the lift from U �G to U �G�G(1) also satis�es thesame equation. We therefore keep the same notation; but now, !; � and � indicateforms over U�G�G(1):We have computed the derivative of ! on U�G; we showedthat it can be made torsion-free on that space. The expression for the derivative of! on U � G � G(1) is, of course, the same as the one on U � G. However, for thepurpose of the equivalence problem on the lifted space U �G�G(1), the derivativecontains only torsion terms, since (� + �In) ^ ! does not contain derivatives ofelements of G(1):We now require the derivatives of � and �. To compute them, we�rst take the exterior derivative of d!; to obtain0 = d2! = [(d�� � ^ �) + d� In] ^ !: (2.14)Let us de�ne � := d�� � ^ �+ d� In:



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 36The trace-free part of � is antisymmetric when its indices are lowered, and so obeysthe relation ��+�t� � 2ntrace� � = 0: (2.15)Also, � obeys the condition that � ^ ! = 0;which, by the Cartan lemma, implies that� =  ^ !:This is, using indices, �ij =  ijk ^ !k:The condition (2.15) on � then gives ijk ^ !k +  jik ^ !k � 2n  ``k ^ !k �ij = 0:If we multiply this equation with all possible combinations of (n � 1) cobasis ele-ments !, we obtain, by application of the Cartan lemma, that ijk � � jik + 2�k �ij mod base;where we de�ne �k := 1n ``k. In terms of  , the integrability condition (2.14)becomes  ijk ^ !k ^ !j = 0:If we multiply this relation with all possible combinations of (n�2) cobasis elements!; we �nd, after lowering the i index, that  also obeys ijk �  ikj mod base:



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 37We can then solve for  ijk. The solution is ijk = �j�ki � �i�jk + �k�ij +Aijk` !`;where Aijk` are functions. By back substitution, we obtain that�ij = �j ^ !i � �i ^ !j + �ij�k ^ !k +Aijk` !` ^ !k:Without loss of generality, we can assume that Aijk` is antisymmetric in the lasttwo indices, i.e. Aijk` +Aij`k = 0;since the symmetric part is cancelled when the antisymmetry in !` ^ !k is takeninto account. This entails that there are at most n3(n�1)=2 independent functionsaijk` for an n-dimensional manifold U . Because �ij = ��ji, it follows that Aijk` isantisymmetric in the �rst two indices, i.e.Aijk` +Ajik` = 0:This reduces the number of independent components of A to n2(n�1)2=4: Further-more, the requirement that �ij ^ !k = 0 imposes the conditionAi[jk`] = 0:In these equations, there are n possibilities for the index i and n(n � 1)(n � 2)=6possibilities for the other three indices. The number of independent entries in Ais therefore n2(n2 � 1)=12: The derivatives of elements of G(1) appear solely in thevarious terms �i: This allows us to give the structure equations on U �G�G(1) asd0BBBBB@ ��! 1CCCCCA = 0BBBBB@ 0 0 �0 0 �(�)0 0 0 1CCCCCA ^ 0BBBBB@ ��! 1CCCCCA + 0BBBBB@ 0� ^ �+A(�+ �In) ^ ! 1CCCCCA ;



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 38where [�(�) ^ !]ij = (�j�ik � �`�`i�kj) ^ !kand A = Aijk`!` ^ !k:The last term in these structure equations is the torsion.We now proceed to eliminate as many torsion terms as possible, using the G(1)freedom in �: This proceeds as follows. The functions � and Aijk` are not uniquelyde�ned. Suppose that ��i and �Aijk` also satisfy:�ij = ��j ^ !i � ��i ^ !j + �ij��k ^ !k + �Aijk` !` ^ !k:By subtraction of these two equalities on �ij, it follows that�(��j � �j)�ik � (��i � �i)�jk + �ij(��k � �k) + ( �Aijk` �Aijk`)!`� ^ !k = 0:If we multiply this last expression by all possible !, with the exception of !i, all theterms are eliminated except the one with �ij. By application of the Cartan lemma,we can conclude that ��k � �k = Bkm!m;where theBkm are functions. These functions represent a certain amount of freedomthat can be used for eventual removal of torsion. They are not, however, totallyarbitrary, since they must obey the condition�(Bj`�ik �Bi`�jk +Bk`�ij + ( �Aijk` �Aijk`)� !` ^ !k = 0:If we exchange i and j and add to the original expression, we obtainBk` !` ^ !k = 0;



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 39from which one concludes that Bk` is symmetric. We now proceed to use thearbitrariness left in Bk`. Now Bj` obeysBj`�ik�Bjk�i`�Bi`�jk+Bik�j`+(Bk`�B`k)�ij+( �Aijk`�Aijk`)�( �Aij`k�Aij`k) = 0;which simpli�es toBj`�ik �Bjk�i` �Bi`�jk +Bik�j` + 2 ( �Aijk` �Aijk`) = 0:If we raise the index i and take the trace on k and i, we obtain(n� 2)Bj` +B�j` + 2 ( �Aiji` �Aiji`) = 0;where B := Bii. If we now raise j and take the trace, we obtain(n� 1)B + �Aijij �Aijij = 0:We can use the freedom in B to setB = Aij ijn� 1 :The remaining freedom in Bij is used to setBj` = �B�j` + 2Aiji`n� 2 ;which is consistent with the de�nition of B. In this manner, the freedom in Bijis used to set the trace of A to vanish, i.e. �Aiji` = 0. The other �Aijkl are thenequal to their un-barred versions. When such a choice of Bj` as described above hasbeen made, we denote the resulting �Aijk` by 12W ijk`. At this juncture, we note thatW possesses the algebraic symmetries of the Weyl tensor. There are n(n + 1)=2independent Bk`. This means that there are n(n+1)(n+2)(n�3)=12 independententries in Wijk`: This means that if U is a three dimensional manifold, W is always



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 40zero. We also note that now � and W are uniquely de�ned. Therefore, the groupG(2) of freedom consists solely of the identity element. We thus have a uniquelyde�ned coframe, or e-structure, on U �G �G(1) � G(2) given by !; �; � and �: Inorder to �nd the fundamental invariants for this equivalence problem, we �rst needto ascertain whether this e-structure is in involution. The part of the structureequations that involve derivatives of the group G(1) is:d0B@ ��ij 1CA = 0B@ �k ^ !k�j ^ !i � �i ^ !j 1CA+ � � � :The right hand side has the form of a matrix M(�) multiplied, using exterior mul-tiplication, by !: The Cartan character from M(�) is easily seen to be non-zero.However, there is no degree of freedom in the de�nition of �: It follows that thesystem is not in involution whence a prolongation step is needed. The prolongationis obtained by computing the value of d�:We already have expressions7 for the exterior derivatives of !; � and �: Theprolongation step will give the structure equations on U � G � G(1) � G(2): Weobtain d� by examining the integrability condition of �, which is given by0 = d2� = d(�k ^ !k) = d�k ^ !k � �` ^ (�lk + ��lk) ^ !k= �d�k � �` ^ �`k � �k ^ �� ^ !k:It follows, by the Cartan lemma, thatd�k = �` ^ �`k + �k ^ � + �k` ^ !`;where the functions � are one-forms subject to the restrictionthat�k` ^ !` ^ !k = 0: (2.16)7We have these derivatives on U � G � G(1); but because G(2) is de�ned to be the group thepreserves the form of those derivatives we need not introduce new notation even though !; �; �and � are now de�ned on the space U �G� G(1) � G(2).



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 41Exterior multiplication of this last expression by all the other cobasis elements !,enables us to conclude, through the Cartan lemma, that�k` = Hk`m!m; (2.17)where Hk`m are functions. Back substitution reveals thatH[k`m] = 0: (2.18)Since we are only interested in � in so far as it appears in the product�k` ^ !` = Hk`m !m ^ !`;we can, without loss of generality require that G be antisymmetric in the last twoindices, i.e. Hk`m = �Hkm`:The structure equations on U �G�G(1) �G(2) can be summarized as follows:d! = (�+ �In) ^ !;d� = � ^ �� [� ^ !] +W;d� = � ^ !andd� = � ^ �+ � ^ �In +H:With indices, these becomed!i = (�ij + � �ij) ^ !j ;d�ij = �ik ^ �kj + �j ^ !i � �i ^ !j + 12Wijk` !` ^ !k; (2.19)d� = �k ^ !k (2.20)andd�k = �` ^ �`k + �k ^ �+Hk`m !m ^ !`; (2.21)



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 42where Hk`m = �Hkm`;Hk`m!k ^ !` ^ !m = 0and W has the index symmetries of the Weyl tensor.The fundamental invariants of this equivalence problem are given by W ijk`;Hk`m and their derivatives.In this paragraph we exhibit the relation between W and the Weyl tensor. We�rst de�ne a left action on the group G as follows:L(1)C : G! G(�; S) 7! (C�; S):The action induced on the cobasis ! isL(1)C �!i = C!i:This enables us to de�ne �i as follows:L(1)���1!i = ��1!i =: �i;from which !i = ��i: We can consider �i as a quantity de�ned over the manifoldU�SO(p; q;R); and so we can use the results of the previous section. The structureequations satis�ed by �i are then d�i = 'ij ^ �j ;and those satis�ed by 'ij ared'ij = 'ij ^ 'j k + 12Sijk`!` ^ !k: (2.22)



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 43This enables us to compute the structure equations for the conformal space in termsof the Riemannian space: d!i = d� ^ �i + �'ij ^ �j= (d���1�ij + 'ij) ^ !j :We use the discussion that begins with equation (2.12) above to enable us to identify� = d���1 +Mi!iand�ij = 'ij + (Mj�ik �M`�i`�jk)!k;where Mi is a member of G(1): By di�erentiation of �; we obtain, after using equa-tion (2.20) and Cartan's lemma,�i = dMi +Mj�j i +Mi�+Bij!j ; (2.23)with Bij = Bji: We can now de�ne a left action on G�G(1) by the following:L(2)C;K : G�G(1) ! G �G(1)(�; S;M) 7! (C�; S;K +M);where K = (K1;K2; : : : ;Kn) and M = (M1;M2; : : : ;Mn): It follows thatL(2)�C;K!i = C!i;L(2)�C;K� = d���1 + (Ki +Mi)C!iandL(2)�C;K�ij = 'ij + [(Kj +Mj)�ik � (K` +M`)�i`�jk]C!k:We can recover �i and 'ij using this action, sinceL(2)���1;�M!i = ��1!i = �i



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 44andL(2)���1;�M�ij = 'ij :We can also obtain the contribution of the conformal factor:L(2)���1;�M� = d���1:From equation (2.23), we obtain that the induced action on � is as follows:L(2)�C;K�k = dMk + (Ki +Mi)(�ik + ��ik) + L(2)�C;KBjkC!j;where Bjk = Bkj: This implies thatL(2)���1;�M�k = dMk +Bjkj(1;0)�j ;where we have used the de�nitionBjkj(1;0) := L(2)���1;�MBjk:On the one hand, we haveL(2)�C;Kd�ij = d(L(2)�C;K�ij)= d('ij + [(Kj +Mj)�ik � (K` +M`)�i`�jk ^ C!k= d'ij + dMj ^ C!i � dM`�i`�jk] ^ C!k)+ [(Kj +Mj)�ik � (K` +M`)�i`�jk]C(�km + ��km) ^ !m):On the other hand, we have, using (2.19), thatL(2)�C;Kd�ij = L(2)�C;K(�ik ^ �kj + �ik�j ^ !k � �jk�i ^ !k +Wijk` !k ^ !l)= f'ik + [(Kk +Mk)�im � (Ki +Mi)�km] ^ C!mg ^^f'kj + [(Kj +Mj)�kn � (K` +M`)�k`�jn] ^ C!ng+�ik[dMj + (K` +M`)(�`j + ��`j) + L(2)�C;KBjkC!m] ^ C!k��jk[dMi + (K` +M`)(�`i + ��`i) + L(2)�C;KBjkC!m] ^ C!k+(12L(2)�C;KW ijk`)C!` ^ C!k:



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 45If we let C be equal to ��1 and K be equal to �M , then we obtaind'ij + dMj ^ �i`�` � dMi ^ �jk�k= 'ik ^ 'kj + [dMj +Bjkj(1;0)�k] ^ �i`�` � [dMi +Bikj(1;0)�k] ^ �j`�`+(12L(2)���1 ;�MWijk`)�` ^ �k:We can replace d'ij using its value in (2.22). Doing so, we can solve for(12L(2)���1;�MWijk`) = Sijk` �Bikj(1;0)�j` +Bi`j(1;0)�jk +Bjkj(1;0)�i` �Bj`j(1;0)�ik:If we raise i, let k = i and then sum, we obtain0 = Siji` �Biij(1;0)�j` +Bj`j(1;0) +Bj`j(1;0)� nBj`j(1;0);where we have used the fact that W iji` = 0. This enables us to isolate Bj`j(1;0) andso obtain Bj`j(1;0) = 1n� 2[Siji` � �j`2(n � 1)Si`i`]: (2.24)Since Sijk` is the Riemann tensor on U � SO(p; q;R), it follows that Bj`j(1;0) isisomorphic to the Ricci tensor on U�SO(p; q;R), and therefore the trace-free tensorL(2)���1 ;�MWijk` is the Weyl tensor on U � SO(p; q;R). The quantity W can now beidenti�ed as the matrix of two-forms representing the Weyl tensor on U �G�G(1):From equation (2.23), we obtain by exterior di�erentiation the followingd�i = dMj ^ (�j)i +Mj d�j i + dMi ^ �+Mi d�+ d(Bij!j):From this value for d�i; we deduce thatL(2)���1;�M�i = dMj ^ 'j i + dMi ^ d���1 + (dBij) j(1;0) ^ !j (2.25)+ �Bijj(1;0)� ^ �'jk ^ �k + d���1 ^ �j� :



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 46From equation (2.21), one deduces thatL(2)���1;�M �i = �dMj +Bjkj(1;0)�k� ^ 'j i + �dMi +Bjij(1;0)�j� ^ d���1(2.26)+ �L(2)�(��1;�M)Hi`m� �m ^ �`:Comparing equations (2.25) and (2.26), we obtain the condition�dBij j(1;0)� L(2)�(��1;�M)Hijm�m� ^ �j = 0: (2.27)We now proceed to compute the action of the group on W, the Weyl tensor.This is done by taking the exterior derivative of d� and d�, and looking at whathappens to dW modulo the cobasis !.Di�erentiation of (2.19) yields0 = ��ip ^ �mk�pm + �k ^ !p�ki � �i ^ !p�pk + 12Wikpm!p ^ !m� ^ �`j�k`��ik ^ ��`m ^ �pj�mp + �j ^ !m�ml � �` ^ !p�pj + 12W`jnm!p ^ !m��kl+ ��` ^ �`j + �j ^ � + �j` ^ !`� ^ !k�ki��j ^ ��k` + ��k`� ^ !`�ki+�i ^ ��k` + ��k`� ^ !`�kj + 12dWijk` ^ !k ^ !`+12Wijk` ��km + ��km� ^ !m ^ !` � 12Wijk` ^ ��`m + ��`m� ^ !m;which simpli�es to0 = (dWijk` + 2Wijk`��Wmjk`�im (2.28)+Wimk`�mj +Wijm`�mk +Wijkm�m`+ 2�j`�ki � 2�i`�kj) ^ !k ^ !`:Multiplying (2.28) with all possible exterior products of (n� 2) di�erent !, we canconclude that0 � dWijk` + 2Wijk`��Wmjk`�im (2.29)



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 47+Wimk`�mj +Wijm`�mk +Wijkm�m` mod base:It follows that W transforms as a tensor under the SO(p; q;R) group (through �)and scales as �2 under stretching (through �). This means thatW ijk` = Sim(S�1)rj(S�1)pk(S�1)q`��2 ~Wmrqp; (2.30)where ~W is W evaluated at a �xed choice of the group parameters. Di�erentiat-ing (2.30), we obtaindW ijk` � (dSS�1)imWmjk` � (dSS�1)mjW imk` � (dSS�1)mkW ijm`� (dSS�1)m`W ijkm � 2(d���1)W ijk` mod base.This is equivalent to the congruence (2.29).Various special cases are apparent. The �rst special case is if all W ijk` vanish.8Since in that case W = 0, we cannot use it to perform a group reduction in aninvariant way. We shall now analyze this situation in more details. Equation (2.28)reduces to 2(�j`�ki � �i`�kj) ^ !k ^ !`:Using equation (2.17) and remembering that H is symmetric in the last two indices,this is equivalent to (�kjHimp � �kiHjmn)!k ^ !p ^ !m = 0: (2.31)Due to the antisymmetry in i and j, there are n(n�1)=2 (exterior) equations. Thenumber of unknowns, Hijk is n2(n � 1)=2. Consider the sets fi; jg and fm; pg. Ifthey are equal, the corresponding terms in equation (2.31) vanish either because of8Of course, if the manifold U is three-dimensional, then W is always zero; therefore, this doesnot represent any restriction.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 48� (when k 62 fi; jg) or because of the exterior product (when k 2 fm; pg = fi; jg).The terms corresponding to the situation when the intersection of fi; jg and fm; pgis empty imply that Himp = Hjmp = 0: This is because � is diagonal and that all!k ^ !m ^ !p; with k 2 fi; jg; are all independent of the other possibilities. Thevalue of n(n�1)(n�2)=2 unknowns is thus given. This leave n(n�1) unknowns tobe found. Note that the step just performed requires the dimension of U be at leastfour. The remaining situation is that when the intersection of fi; jg and fm; pg hasone element. Without loss of generality, we can choose m 2 fi; jg and p 62 fi; jg:Taking into account the vanishing of the aforementioned Himp; equation (2.31)reduces to (�jjHiip + �iiHjjp)!n ^ !i ^ !j = 0 (No sum on i; j). (2.32)Each of the n(n�1)=2 such exterior equation imply the vanishing of n�2 coe�cients.There are therefore n(n � 1)(n � 2)=2 such equations which are homogeneous inHiip: Note that n(n � 1)(n � 2)=2 � n(n � 1) for n � 4: The equality arises onlywhen n = 4: From the equations implied by equation (2.32), consider the subsetgiven by �jjH00p + �00Hjjp = 0; j 6= 0and �11H22p + �22H11p = 0:There are n(n � 1) such equation. The determinant of the matrix of coe�cientis easily seen to be, up to a sign, �2�(n�2)00 �11�22�n ; therefore, it does not vanishwhence the only solution to Hijk is the trivial solution. We then conclude that thedimension of U is greater than three, all the functions Hijk vanish.We now turn to the 3-dimensional case. In that situation Wijk` necessarilyvanishes. There are a maximum of n2(n� 1)=2 = 9 components of H ijk; due to the



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 49antisymmetry in j and k. This maximum is immediately reduced to 8 because ofthe single constraint (2.18). Equation (2.28) reduces to�kiHj`m!m ^ !k! ^` ��kjHi`m!m ^ !k ^ !` = 0:Since � is diagonal, this equation is equivalent to�iiHj`m!m ^ !i! ^` ��jjHi`m!m ^ !j ^ !` = 0 (No sum on i; j),which, in turn, is equivalent to�ii�jj �Hj `m!m ^ !i! ^` �H i`m!m ^ !j ^ !`� = 0 (No sum on i; j), (2.33)The indices i; j are two of three possibles values of indices in a three dimensionalspace. Let the index r denote the third one. Since H is antisymmetric in the lasttwo indices, the previous equation yields that the trace Hkk` vanishes. This reducesthe number of components of H ijk to 5. Let the quantity L be de�ned implicitlyas follows: H ijk!j ^ !k ^ !s = Lis!0 ^ !1 ^ !2: (2.34)Equation (2.33) gives �ii�jj �Lij � Lji�!0 ^ !1 ^ !2 = 0whence Lij is symmetric. Lowering i in equation (2.34), letting s = i and takingthe sum over i yields Hijk!j ^ !k!i = Lii!0 ^ !1 ^ !2:Since the left hand side of this equality vanishes, the quantity L must be trace-free.The fundamental invariants of this three-dimensional conformal equivalence prob-lem are the �ve quantities Lij and their covariant derivatives. Using equation (2.27),we �nd that Lis = Bik;` �Bi`;k;



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 50where (s; k; `) is a cyclic permutation of (0; 1; 2) and where the semi-colon denotescovariant di�erentation. Given equation (2.24), specialized to the three dimensionalcase (i.e. the case where n = 3), we can identify Lis as the Cotton-York, or Weyl-Schouten, tensor (Kramer et al., 1980).If all the W ijk` are constants, we have another special case. Since in that casevarying the group does not produce any change in W, then W cannot be used toperform a reduction of the group in an invariant way. Another way to see this isthat, in this case, the rank of the e�structure on U �G�G(1) is zero. This impliesthat there is, for such a space, a group of symmetry with the same dimension asthat of U�G�G(1); this is the maximal symmetry group possible. Therefore, thereare no privileged directions; such directions would allow us to do a group reduction.It is important that W is de�ned on U �G�G(1). Constancy of W on U does notnecessarily imply the constancy discussed here. The rest of Cartan's classi�cationapproach would involve consideration of the rank of dW, and of further derivatives.In the process of this calculation, the forms � were introduced. They containthe non-Weyl part, i.e. the Ricci part, of the Riemann tensor. The particularcombination of Ricci tensor components appearing in � is exactly the combinationthat is di�erentiated in the de�nition of the Cotton-York tensor, see Kramer etal. (1980), in the case of the three-dimensional manifolds. The forms � do allow usto compute the Weyl two-forms directly from the Riemann two-forms without �rstexhibiting the Riemann tensor from the two-forms.2.2.1 Conformally at metricsWe now present an example which illustrates calculations involving the precedingtheory. The starting point is a metric that is conformally equivalent to a at metric.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 51We proceed to compute the Weyl tensor, and thereby demonstrate the well-knownfact that it is zero. Suppose that ! = zZ�where � is a 1 � n array of exact di�erential forms � = dx, z is a non-zero realnumber and Z is a member of SO(p; q;R). Then, by di�erentiation, we have that�d(zZ)(zZ)�1 � �� �I� ^ ! = 0:We de�ne H := d(zZ)(zZ)�1 = dzz�1I + dZZ�1:We can split H into the trace part dzz�1 and trace-free part dZZ�1: By applicationof the Cartan lemma, we have�ij + ��ij �H ij = C ijk!k;for some functions C ijk: Taking the trace, it follows that� = dzz�1 + fk!k;where we de�ne fk := 1nC iik: Back substitution shows that(�� dZZ�1)ij = C ijk!k;subject to (fk�ij + C ijk)!k ^ !j = 0:The latter expression implies thatC ikj = C ijk � fj�ik + fk�ij:



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 52Now, since Z is a member of SO(p; q;R), then (dZZ�1)ij = �(dZZ�1)ji. There-fore, Cijk = �Cjik:We can then solve for Cijk and obtainCijk = �fi�jk + fj�ik:Therefore (�� dZZ�1)ij = �fi�jk!k + fj�ik!k:Taking the exterior derivative of �, we getd� = (dfk + f`�`k + f`��`k) ^ !k:This enables us to compute, using (2.20), that�k = dfk + f`�`k + f`��`k +Gk`!`; (2.35)for some functions Gk` satisfying Gk` = G`k. The non-diagonal connection formsare �ij = (dZ Z�1)ij � �`if`�jk!k + fj!i: (2.36)The exterior derivative of this last expression isd�ij = (dZZ�1)ik ^ (dZZ�1)kj � �`idf`�jk ^ !k � �`if`�jk(�k` + ��k`) ^ !`+dfj ^ !i + fj(�i` + ��i`) ^ !`:Using (2.35) and (2.36), this becomesd�ij = �ik ^ �kj + �j ^ !i � �im�jk�m ^ !k (2.37)+ ��Gj`�ik � f`fj�ik + �j`�mnfmfn�ik + �im�jkGm`��im�k`fmfj + �im�jkfmf`�!` ^ !k:



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 53We now examine the last term. We �rst note that the term with �k` is symmetricin k`; and therefore vanishes when multiplied with !` ^ !k and summed over allpossibilities. The coe�cients of the independent two-forms !` ^ !k simplify to�Gj`�ik +Gjk�i` � f`fj�ik + fkfj�i` + �j`�mnfmfn�ik � �jk�mnfmfn�i`+�im�jkGm` � �im�j`Gmk + �im�jkfmf` � �im�j`fmfk;which we de�ne to be J ijk`: It follows that J is antisymmetric in k`, and also inij, when the index i is lowered. Let i = k, then sum. Then raise j, let j = `, andsum. The result is 2(1 � n)(Gii � n � 22 f ifi) = J ij ij:It therefore follows that J ij ij can be set to zero (without loss of generality) byletting Gii = n � 22 f ifi: (2.38)With back substitution, it follows that we can set J iji` to zero by lettingGj` = �fjf` + 12fmfm�j`;which is consistent with (2.38). Actually, by direct calculation, one can verify thatnot only the trace J iji` is translated to zero by the present choice of Gj` but alsoevery J ijk` made to vanish. With these choices, we obtain!i = zZ ijdxj�ij = (dZZ�1)ij � fi�jk!k + fj�ik!k� = dzz�1 + fk!kand�k = dfk + f`�`k + f`��`k � fkf`!` + 12fmfm�k`!`;



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 54where Z 2 SO(p; q;R): Since J ijk` = 0, then equation (2.37) becomesd�ij = �ik ^ �kj + �j ^ !i � �im�jk�m ^ !k:Thus, using (2.19), we �nd that, with this choice of metric, the Weyl tensor is zero.Direct calculation shows that, for the manifolds we are investigating,d�k = �` ^ �`k + �k ^ �:The invariants Hjk` are then all equal to zero. This is compatible with the resultsof the preceding section, for manifolds U of dimension greater than three, that thefunctions Hijk must vanish when the Weyl tensor does so.In summary, for conformally at metrics, all the fundamental invariants van-ish. We can invoke the theory of the equivalence to conclude that all real analyticpseudo-Riemannian manifolds of dimension greater or equal to four such that theirWeyl tensor vanishes are conformally equivalent. In particular, since at metricshave their Weyl tensor equal to zero, all such aforementioned manifolds are confor-mally at if and only if they have zero Weyl tensor. Similarly, all three-dimensionalreal analytic pseudo-Riemannian manifolds are conformally at if and only if theirCotton-York tensor vanishes. Also, all real analytic pseudo-Riemannian manifoldsof dimension one or two are conformally at. These results are well known, seeKramer et al. (1980)2.3 A classi�cation of 1+1 metricsIn this section, we classify real analytic pseudo-Riemannian two-dimensional met-rics using the method of equivalence of Cartan. Afterwards, we redo the classi�ca-tion with a slightly di�erent point of view that emphasizes the physical aspects of



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 55the various cases. This second classi�cation also illustrates the di�erence betweenthe Karlhede classi�cation and that based on the method of Cartan. We recall thaton U �SO(1; 1;R), the structure equations are (cf. (2.4) and (2.8)) the e-structured!0 = � ^ !1d!1 = � ^ !0andd� = R !0 ^ !1:Taking the exterior derivative of the last equation yields0 = d2� = dR ^ !0 ^ !1:By the Cartan lemma, this implies thatdR = A!0 +B!1; (2.39)where A and B are functions.The �rst case to consider is when the rank (as de�ned on page 19) of fdRg iszero. It follows that A and B are both zero, and that R is a constant. In that case,the derivative of R does not produce any new invariants, and so the rank of thise-structure is 0 and the order is 0. The dimension of U � SO(1; 1;R) is 3. Thereis a three-dimensional group of symmetry for these metrics. The dimension of thisgroup is obtained by subtracting the rank of the e-structure from the dimension ofthe space U � SO(1; 1;R).We now suppose that the rank of fdRg is one. The Riemann curvature R isan invariant function. Therefore, the order of the e-structure is at least one. It isexactly one if the derivative of R does not produce any new invariants. As a �rst



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 56step, we compute the derivatives of A and B from the integrability condition on R,thereby obtaining0 = d2R = dA ^ !0 + dB ^ !1 +A� ^ !1 +B� ^ !0:We can then isolate dA and dB, and obtaindA = �B�+ C!0 +D!1anddB = �A�+D!0 + E!1;where C;D and E are functions. We remark that if A = 0; then dA = 0 impliesB = 0: Conversely, if B = 0; then dB = 0 implies A = 0: Since, in the presentsituation, R cannot be constant, we must have that A2 + B2 6= 0: If the orderof the e-structure is one, then the fact that di�erentiating R does not producenew invariants means that the rank of fdR;dA;dBg is one. This requires thatdR ^ dA = 0; which is just�BA!0 ^ �+AD!0 ^ !1 +B2� ^ !1 �BC!0 ^ !1 = 0:Since !0; !1 and � are independent, this means that B2 = 0, or B = 0. Similarly,dR^dB = 0 implies that A = 0. Now, we have already observed that A2+B2 6= 0;and therefore the case of order one cannot happen. This result can also be obtainedfrom a group consideration.9 Suppose that the order is exactly one. That entailsthat the rank must be equal to one whence there is a two-dimensional isometrygroup. Also, there is a single invariant on M �G: By the preceding this invariantcan be taken to be R: In addition, on M; except at isolated points, the orbits ofthe isometry group must be two-dimensional; therefore, R must be constant on Mand thus also on M �G: This is a contradiction.9I thank M.A.H. MacCallum for noting this line of argument.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 57We now turn to the situation when the order is at least two. This means thatdR produces at least one more invariant. There are two situations, dependingon whether the rank of fdR;dA;dBg is two or three. If this rank is three, thendi�erentiations of A and B cannot produce any new invariants independent of R;Aand B. Therefore the order of the e-structure is two and its rank is three. There isno symmetry in this structure since its rank is equal to the dimension of the spaceU � SO(1; 1;R) on which it is de�ned.When the rank of fdR;dA;dBg is two, there is a functional relationship betweenR;A and B. Their derivatives obey the relation dR ^ dA ^ dB = 0. This is[� (A2 +B2)D +AB(C + E)] ^� ^ !0 ^ !1 = 0;where use has been made of the integrability condition on R. In this situation, Bcannot produce invariants that are not already given by R or A, and so we considerthe integrability condition on A. From d2A = 0; we obtain0 = �dB ^��Bd�+ dC ^ !0 + Cd!0 + dD ^ !1 +Dd!1:We deduce that dC = �2D�+H!0 + I!1anddD = �(C + E)� + (BR + I)!0 + J!1;where H; I and J are functions. If the order of the e-structure is 2 then the rankof fdR;dA;dB;dC;dDg is equal to the rank of fdR;dA;dBg, which is 2. Since Bis functionally dependent on R and A, it su�ces to require that dR ^ dA^ dC = 0and dR ^ dA ^ dD = 0: These conditions translate to0 = �BAI � 2D(AD �BD) �B2H�� ^ !0 ^ !1



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 58and0 = �BAJ � (AD �BC)(C + E)�B2(BR+ I)�� ^ !0 ^ !1:Since the order of the e-structure is 2, there is a one-parameter group of sym-metries. If either of these last two conditions is not satis�ed, then the rank offdR;dA;dB;dC;dDg is 3. In this case the order is 3 and there is no group ofsymmetry.We summarize these results in table 2.1.order of the rank of the symmetrye-structure e-structure1 0 3-dimensional group1 1 this situation does not happen2 2 1-dimensional group2 3 no symmetry3 3 no symmetryTable 2.1: Classi�cation of 1+1 metricsWe now examine the classi�cation from a slightly di�erent point of view in or-der to shed more light as to the physical signi�cance of the various cases.10 Equa-tion (2.39) can be rewritten asdR = (A cosh�+B sinh �)�0 + (A sinh� +B cosh�)�1If dR = 0; we are in the situation with the 3-dimensional isometry group and so theonly invariant of this problem, viz. R, is constant. Hence, we suppose A2+B2 6= 0:10I am grateful to M.A.H. MacCallum for his remarks concerning the null versus non-nullcharacterization of dR.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 59If jA=Bj 6= 1; in other words, when dR is non-null, we can make 11 B = 0:This �xes the group parameter � and hence we are no longer directly working withthe e-structure12 but with a normal-form-structure. Di�erentiating dR = A!0; weobtain 0 = d2R = dA ^ !0 +A� ^ !1;whence, by the Cartan lemma, dA = C!0 +D!1and � = (D=A)!0 + E!1:The product dR ^ dA = AD!0 ^ !1vanishes if and only if D = 0, since A = 0 has already been excluded. We �rstsuppose that D 6= 0: Both the order and the rank of the normal-form-structure areequal to two. The invariants of the problem are R and A: There is no isometry inthis situation since the dimension13 of U � G is two. We note that this situationcorresponds to that of order = 2 and rank = 3 in the table 2.1. If D = 0; thenthe rank and the order of the normal-form-structure are 1. There is therefore aone-dimensional isometry group. The only invariant of the problem is R. We notethat this situation corresponds to that of order = 2 and rank = 2 in the table 2.1.11If jA=Bj < 1 then the discrete transformation (!0; !1) 7! p�1(!1; !0) is needed to keep �real.12Note that the e in e-structure refers to the group G(1) in U �G�G(1): We are reducing thegroup G to one of its subgroup G0. We are thus working with U �G0 �G(1):13Rotating the dyad so that B = 0 reduces the group of indeterminacy to a zero-dimensionalgroup.



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 60If jA=Bj = 1; then dR is null. It follows that B = �A: We choose to considerB = A; the situation of B = �A being analogous. We therefore havedR = A(!0 + !1):Di�erentiation of dR yields dA = �A�+ C(!0 + !1);after invoking the Cartan lemma. The rank relationdA ^ dR = �A2� ^ (!0 + !1)does not vanish since we have already considered the situation of a 3-dimensionalisometry group. Di�erentiation of dA and the Cartan lemma imply thatdC = �2C�+D(!0 + !1) + 12A(!0 � !1):The rank test-quantity dA ^ dR ^ dC = �A3R� ^ !0 ^ !1cannot vanish. There cannot be any further independent invariant functions. Boththe order and the rank of the present e-structure are equal to 3 whence there areno isometries.2.4 CommentsIt may now be seen that Cartan's method of equivalence leads naturally to theRiemann and Weyl tensor. It also uni�es classi�cations of the metric based onthe Riemann tensor, such as the Petrov classi�cation of the Weyl tensor and the



CHAPTER 2. APPLICATIONS OF THE EQUIVALENCE METHOD 61Plebansk�� and Segre classi�cations of the Ricci tensors, and those based on groupsof symmetry of the metric (see, for example, Kramer et al. (1980), McIntosh etal. (1981) and Joly and MacCallum (1990)). The works by Karlhede (1980a), Karl-hede (1980b), Karlhede and Lindstr�om (1982), Karlhede and MacCallum (1982),Bradley and Karlhede (1990), Collins and al. (1990), Joly and MacCallum (1990),�Aman et al. (1991), Koutras (1992) and others follow the method of equivalenceof Cartan, with a modi�cation, known as the Karlhede classi�cation, to be bettersuited for the purpose of the study of spacetimes. The equivalence method allowsthe various covariant derivatives of the Riemann tensor to play a rôle in the clas-si�cation. The last section uses the classi�cation of two-dimensional metrics toillustrate the classi�cation of higher dimensional metrics and shows the usefulnessof �nding normal forms14 to reduce the number of derivatives needed. As a by-product of the classi�cation with respect to the conformal group, we have foundan e�cient way of obtaining the Weyl curvature two-forms, given the Riemanncurvature two-forms.
14This is the essence of the modi�cation of Karlhede to the method of Cartan as applied tomanifolds of general relativity.



Chapter 3Orthonormal Frame FormalismAll men by nature desire to know.AristotleI N THIS chapter, we focus on the geometry of U , where U is a four-dimensionalLorentzian manifold. Let the metric be given byg = ds2 = ��!0 
 �!0 + �!1 
 �!1 + �!2 
 �!2 + �!3 
 �!3: (3.1)3.1 Structure equationsIn this section, we describe the structure equations of a Lorentzian spacetime withan invariantly de�ned1 unit timelike future-pointing vector. These structure equa-tions enable us to de�ne various kinematic quantities. We shall provide two meth-ods of giving an interpretation to these kinematic quantities. The method we use is1We shall concern ourselves with only local considerations. Not all spacetimes admit such aglobal unit timelike future-pointing vector �eld.62



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 63closely related to that of MacCallum (1973). Our approach uses di�erential forms,whereas MacCallum used the geometrical objects dual to one-forms, namely, vec-tors.Let ~e0 be the invariantly de�ned (locally) unit timelike vector admitted by thespacetime under consideration. For a perfect uid spacetime with � + p 6= 0,the vector ~e0 can be chosen in an invariant way as the unique future-pointing unittimelike eigenvector of the Ricci tensor(Ellis, 1971). This eigenvector is the velocityvector of the uid ow. In a coordinate basis, ~e0 can be written as~e0 = ui @@xi : (3.2)Let �!0 be the one-form dual to ~e0: In a coordinate basis, �!0 can be written as�!0 = �ui dxi: (3.3)The interior product of �!0 and ~e0 satis�es1 = ~e0c�!0 = �uiui: (3.4)This is consistent with the unit timelike character of the velocity. We complete theorthonormal cobasis by choosing three covectors�!� = A�idxi: (3.5)The corresponding vector basis elements are~e� = Bi� @@xi :The condition of orthonormality implies~e�c�!� = ��� = Bi�A�i; (3.6)~e0c�!� = uiA�i = 0 (3.7)and~e�c�!0 = �Bi�ui = 0: (3.8)



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 64The coordinate cobasis satis�esdxi = ui�!0 +Bi��!�:This is easily veri�ed by substitution into (3.3) and (3.5), followed by simpli�cationusing (3.4) and (3.8).The uid ow vector ~u is given by (3.2) in a coordinate basis and by (+1)~e0in the tetrad basis. The corresponding covector u = g(~u); where g(~u) denotes thecontraction of the metric (3.1) with the vector ~u; is given by ui dxi in coordinatesand by (�1) �!0 in the tetrad basis.We now proceed to calculate the various kinematic quantities. This is done by�rst computing the structure equations and then identifying their various compo-nents. The �rst structure equation is obtained by di�erentiating (3.3) to obtaind�!0 = �dui ^ dxi: (3.9)Since dui can be expanded in the coordinate cobasis as follows:dui = uijjdxj = ~ea(ui)�!a;equation (3.9) becomesd�!0 = �dui ^ dxi (3.10)= �dui ^ (ui�!0 +Bi��!�)= �~ea(ui) �!a ^ (ui�!0 +Bi��!�):The acceleration, _u = _u��!�; of the ~e0�congruence must be perpendicular to thevelocity, since the velocity has unit length. Therefore the acceleration does nothave a �!0 component; it is, however, equal to ~ucdu = �~e0cd�!0. Since~e0cd�!0 = ui~e�(ui)�!� �Bi�~e0(ui)�!�;



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 65the acceleration components are given by_u� = �~e�c~e0cd�!0 = �ui~e�(ui) +Bi�~e0(ui):We next compute the part of the structure equation (3.10) that is independent of�!0. First, we have~e�cd�!0 = �~e�(ui)(ui�!0 +Bi� �!�) + ~ej(ui)�!jBi�;where the sum over j omits j = �. Then, we have~e�c~e�cd�!0 = �~e�(ui)Bi� + ~e�(ui)Bi�:These quantities are antisymmetric and perpendicular to ~e0, and so they can begrouped as the one-form 2! �! , where (�; �; ) is an even permutation of (1; 2; 3).These kinematic quantities correspond to the (rate of) vorticity of the ~e0-congru-ence, as can be seen by noting that!1 �!0 ^ �!2 ^ �!3 + !2 �!0 ^ �!3 ^ �!1 + !3 �!0 ^ �!1 ^ �!2 == �!0 ^ d�!0= u ^ du:The structure equation (3.10) can therefore be written asd�!0 = � _u��!0 ^ �!� + 2! �!j� ^ �!�j;where by j��j we indicate that � � �.To compute the remaining structure equations, we start by di�erentiating (3.5),which gives d�!� = dA�i ^ dxi = dA�i ^ (ui�!0 +Bi��!�):



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 66Di�erentiating (3.7) and (3.6), we obtain dA�i ui = �A�idui and dA�iBi� =�A�idBi�; from which we deduce thatd�!� = �A�i~e�(ui)�!� ^ �!0 �A�i~ej(Bi�)�!j ^ �!�:We examine the part of these structure equations involving the ~e0�congruence. Inorder to do this, we �rst compute~ecd�!� = �A�i~e(ui)�!0 �A�i~e(Bi�)�!� +A�i~ej(Bi)�!j:From this, we obtain the required components, which are~e0c~ecd�!� = �A�i~e(ui) +A�i~e0(Bi): (3.11)This can be decomposed into a part that is symmetric in � and  and into a partthat is antisymmetric. The antisymmetric part is given by12[�A�i~e(ui) +Ai~e�(ui) +A�i~e0(Bi)�Ai~e0(Bi�)]:The �rst two terms in the square brackets are just 2!� with the index raised, where(�; �; ) is an even permutation of (1; 2; 3). The last two terms can be groupedtogether to de�ne the vector 
�~e�; where
� = +A�i ~e0(Bi)�Ai ~e0(Bi�);with (�; �; ) an even permutation of (1; 2; 3). Since we are using metric componentsin the orthonormal tetrad, we can lower the index on 
, a space-like quantity,without changing its value. These terms correspond to the rotation of the ~e�� axeswith respect to a Fermi-Walker propagated tetrad. The symmetric part of (3.11),denoted by �� is given by12[�A�i~e(ui)�Ai~e�(ui) +A�i~e0(Bi) +Ai~e0(Bi�)]:



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 67Lowering the upper index of the space-like quantity �� does not change its value,since we are using the orthonormal basis. This quantity is the (rate of) expansionof the ~e0-congruence.What has been obtained so far can be summarized by the equationd�!� + (�� + 
�)�!0 ^ �! = �A�i~e(Bi�)�! ^ �!�:We now wish to interpret the right-hand side of this expression. We choose (ar-bitrarily for now) one unit axis perpendicular to �!0 and call it �!1. The previoustreatment, which was applied to �!0, can act as a guide to the situation with �!1.We temporarily ignore the terms that involve �!0; since they already have beeninterpreted. The following, therefore, can be thought of as involving appropriateprojections onto the space perpendicular to the ~e0-congruence. Accordingly, welook at the terms involving �!1 in the structure equation for �!1: The expression~e1c �A1i~e(Bi�)�! ^ �!� = �A1i~e1(BiA)�!A +A1i~eA(Bi1)�!Ahas components~eAc~e1c �A1i~e(Bi�)�! ^ �!� = �A1i~e1(BiA) +A1i~eA(Bi1) =: dA;which represent the spatial part of the acceleration of the ~e1-congruence. Thespatial part of the vorticity of this congruence is given by~e3c~e2c �A1i~e(Bi�)�! ^ �!� = �A1i~e2(Bi3) +A1i~e3(Bi2) =: �n:The other components of the structure equations involving �!1 have coe�cientsgiven by ~eBc~e1c �AAi ~e(Bi�)�! ^ �!� = �AAi ~e1(BiB) +AAi ~eB(Bi1):



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 68As before, this expression can be decomposed into a symmetric part and an anti-symmetric part. The symmetric part, which is12[�AAi~e1(BiB)�ABi~e1(BiA) +AAi~eB(Bi1) +ABi~eB(Ai1)] =: 12 �̂AB;measures the spatial component of the expansion rate of the ~e1-congruence. Theantisymmetric part, which is given by12[�AAi~e1(BiB) +ABi~e1(AiB) +AAi~eB(Bi1)�ABi~eB(Ai1)] =: 12
̂;measures the spatial component of the angular velocity of the dyad f~e2; ~e3g alongthe ~e1-congruence.The only components of the structure equations that are left to interpret arethose independent of both �!0 and �!1: They are given by~eBc~eAc �AAi~e(Bi�)�! ^ �!� = �AAi~eA(BiB) +AAi~eB(BiA):There are only two such terms; the �rst is~e2c~e3c �A3i~e(Bi�)�! ^ �!� = �A3i~e3(Bi2) +A3i~eB(2i3) =: �A2;and the second is~e3c~e2c �A2i~e(Bi�)�! ^ �!� = �A2i~e2(Bi3) +A2i~e3(Bi2) =: �A3:The quantity A2 measures the projection of the acceleration of the ~e2-congruenceand A3, the expansion of the ~e2-congruence.Ellis (1971) gives a very clear introduction to the kinematic quantities, _u�; ���and !�; associated with the ~e0-congruence. The interpretation of the quantitiesassociated with the ~e1-congruence, namely dA; n; 
̂; �̂AB parallels the similar inter-pretation of the ~e0-congruence quantities, namely _u�; !�;
�; ���: There is also a



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 69parallel with the quantities associated with the ~e2-congruence, namely A2 and A3.The choices of sign in the above de�nitions of the kinematic quantities have beenmade in accordance with those of White and Collins (1984), who �rst2 de�neddA; AA; �̂AB; 
̂ and n:To summarize this section, the structure equations can be written as follows:d�!0 = � _u� �!0 ^ �!� + 2! �!j� ^ �!�j; (3.12)d�!1 = �11�!0 ^ �!1 + (�12 + !3 + 
3)�!0 ^ �!2 + (�13 � !2 � 
2)�!0 ^ �!3+d2 �!1 ^ �!2 � n �!2 ^ �!3 � d3 �!3 ^ �!1; (3.13)d�!2 = (�12 � !3 � 
3)�!0 ^ �!1 + �22 �!0 ^ �!2 + (�23 + !1 + 
1)�!0 ^ �!3+�̂22�!1 ^ �!2 �A3 �!2 ^ �!3 + (�
̂� �̂23) �!3 ^ �!1 (3.14)andd�!3 = (�13 + !2 + 
2)�!0 ^ �!1 + (�23 � !1 � 
1)�!0 ^ �!2 + �33 �!0 ^ �!3+ (�̂23 � 
̂)�!1 ^ �!2 +A2 �!2 ^ �!3 � �̂33 �!3 ^ �!1; (3.15)where (��) is an even permutation of (123).The following is an alternative characterization of the various kinematic quan-tities. The vector ~e0 is invariantly de�ned, and so the Lie derivative along ~e0 of themetric is also an invariantly de�ned quantity. The Lie derivative along ~e0 of theone-forms �!a is given byL~e0 �!0 = d(~e0c�!0) + ~e0cd�!0 = � _u1�!1 � _u2�!2 � _u3�!3;L~e0 �!1 = �11�!1 + (�12 + !3 + 
3)�!2 + (�13 � !2 � 
2)�!3;L~e0 �!2 = (�12 � !3 �
3)�!1 + �22�!2 + (�23 + !1 + 
1)�!32Similar, although not identical, quantities were previously de�ned by Greenberg (1970) andby Harness (1982)



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 70andL~e0 �!3 = (�13 + !2 + 
2)�!1 + (�23 � !1 � 
1)�!2 + �33�!3:The Lie derivative of the metric isL~e0g = _u�(�!0 
 �!� + �!� 
 �!0) + 2����!� 
 �!�: (3.16)We �rst note that �L~e0 �!0 is invariantly de�ned. It measures the change in lengthalong the uid ow direction as the ow is followed. It measures acceleration sincethe uid ow vector has unit length. The last term of (3.16) measures changes ofspatial length as the uid ow is followed. The expansion tensor is therefore givenby 12(�!0 
 �!0) ^ (L~e0g) := 12(L~e0g)ab(�!0 ^ �!a)
 (�!0 ^ �!b)= ���(�!0 ^ �!�)
 (�!0 ^ �!�):The expansion scalar, �; is found by considering the propagation of the volumeform, as follows:��!0 ^ �!1 ^ �!2 ^ �!3 = L~e0 �!0 ^ �!1 ^ �!2 ^ �!3 = (�11 + �22 + �33)�!0 ^ �!1 ^ �!2 ^ �!3:The following is also an invariant quantity:�!0 ^ d�!0 = 2!3�!0 ^ �!1 ^ �!2 + 2!2�!0 ^ �!3 ^ �!1 + 2!1�!0 ^ �!2 ^ �!3:It does not involve any change of length as seen by an observer travelling withthe ow, since otherwise it would appear in (3.16). Hence it represents the rate ofrotation of the uid ow. The vorticity vector (with index lowered) can then befound by !��!� = �12 �!0 ^ d�!0;



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 71where � is the Hodge3 star operator. This operator is a linear operator that obeys��!0 ^ �!1 ^ �!2 = �!3;��!0 ^ �!2 ^ �!3 = �!1;��!0 ^ �!3 ^ �!1 = �!2and��!1 ^ �!2 ^ �!3 = �!0:The spatial triad rotation, 
a�!a; is given by
a�!a = � � 12 �!0 ^  Xb (d�!b) ^ �!b! :The invariant de�nition of �!0 thus implies an invariant characterization of _u��!�;!��!� and ����!� 
 �!�: At this point, the group of indeterminacy is SO(3; 0;R);representing the possible rotations of the 1� 2� 3 triad. Using the aforementionedquantities, it may be possible to de�ne uniquely the direction of ~e1. For example,the acceleration vector, the vorticity vector or the triad rotation vector, if theydo not vanish, can each be chosen as this invariant direction. Another choiceof invariant direction can usually be made by examining the eigenvectors of theexpansion tensor, by choosing the eigenvector with the smallest eigenvalue, if theeigenvalues are all di�erent, or by choosing the eigenvector corresponding to thenon-repeated eigenvalue, if two eigenvalues are equal. The only situation when wecannot �nd an invariant direction using the acceleration vector, the vorticity vector,the triad rotation vector or the expansion tensor is when the acceleration, vorticity,and triad rotation vectors all vanish, and, at the same time, the expansion tensorhas three equal eigenvalues.3See also page 93.



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 72We shall suppose that we can invariantly �nd �!1. The expression �!0 ^L~e1 �!1 isthen an invariant quantity. It corresponds to the acceleration of the ~e1-congruence,projected into the 1� 2 � 3 triad. We can therefore �nd d2 and d3 by computing�!0 ^ L~e1 �!1 = d2�!0 ^ �!2 + d3�!0 ^ �!3:The (projected) tensor, �̂AB; corresponding to the expansion of the ~e1-congruenceis computed as follows:12 �(�!0 ^ �!1)
 (�!0 ^ �!1)� ^ L~e1g = �̂AB(�!0 ^ �!1 ^ �!A)
 (�!0 ^ �!1 ^ �!B):The (projected) vorticity, n, of the ~e1-congruence obeys��!0 ^ �!1 ^ d�!1 = n�!0 ^ �!1 ^ �!2 ^ �!3:The (projected) rotation of the 2{3 dyad with respect to a Fermi-Walker propagated~e1-congruence is given by��!0 ^ �!1 ^  X� (d�!�) ^ �!�! = (n + 2
̂)�!0 ^ �!1 ^ �!2 ^ �!3:Given an invariantly de�ned ~e0, an invariant de�nition of ~e1 thus enables us toobtain an invariant characterization of dA�!A; �̂AB �!A
 �!B; n and 
̂: The remainingindeterminacy is SO(1; 0;R); representing the rotations of the 2{3 dyad.The acceleration of the ~e2-congruence, projected in the 2{3 space, is given byA3�!3, and is computed using��!0 ^ �!1 ^ L~e2 �!2 = A3�!0 ^ �!1 ^ �!3:The tensor A2�!2 corresponding to (projection of) the expansion of the ~e2-congru-ence is computed as follows:12 �(�!0 ^ �!1 ^ �!2)
 (�!0 ^ �!1 ^ �!2)� ^ L~e2g =A2(�!0 ^ �!1 ^ �!2 ^ �!3)
 (�!0 ^ �!1 ^ �!2 ^ �!3):



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 733.2 Jacobi identitiesThe exterior derivative of the structure equations (3.12){(3.15) provides constraintson the �rst order derivatives of the kinematic quantities. They take the form of fourequations in the six-dimensional space with basis �!0^ �!1; �!0^ �!2; �!0^ �!3; �!1 ^ �!2;�!2 ^ �!3 and �!3 ^ �!1. There are therefore 24 coe�cients that must vanish, althoughnot all of them are independent. The equations represent the Jacobi identities ofthe Lie algebra generated by ~e0; ~e1; ~e2 and ~e3: These identities are equivalent to@1A3 = �@2
̂ + 2�22!2 + 
̂d2 �A3�̂33 + @3�̂22 � 2!1
3 + 2!1�12 � @2�̂23+2!3
1 � 
̂A2 + 2!3�23 + �̂23d2 � �̂23A2 � �̂22d3;@0A2 = �@3�23 + @2�33 � n!2 � n
2 � n�13 � 
2�̂23 + 
2
̂ + �13�̂23 � �13
̂�!2�̂23 + !2
̂ + @3!1 + @3
1 �A2�22 � �̂33
3 � �̂33!3��̂33�12 + 
1A3 � �23 _u3 + !1 _u3 + 
1 _u3 + �33 _u2 + !1A3 � �23A3;@0d3 = �
2�̂33 + �13�̂33 � n
3 + �13 _u1 � !2 _u1 + !3
̂ + 
3�̂23 � @3�11+@1�13 � @1!2 � @1
2 � d2
1 + 
3
̂ + �12�̂23 � 
2 _u1+n�12 � �11 _u3 + �12
̂� n!3 � d3�33 � d2!1�d2�23 + !3�̂23 � !2�̂33;@0d2 = �n!2 � n
2 � n�13 � 
2�̂23 + 
2
̂ + �13�̂23 � �13
̂� !2�̂23 + �12 _u1+!2
̂ + �12�̂22 + !3�̂22 � @2�11 + @1�12 + @1!3 + @1
3+d3
1 + 
3�̂22 + 
3 _u1 + !3 _u1 � �11 _u2 � d3�23 + d3!1 � d2�22;@0A3 = �@2�23 � n
3 + !3
̂ + 
3�̂23 + @3�22 � @2!1 � @2
1 + �̂22!2+
3
̂ + �12�̂23 + n�12 + �12
̂� 
1 _u2 � !1 _u2 � �23 _u2�
1A2 � !1A2 � �23A2 + �22 _u3 + �̂22
2 + !3�̂23��̂22�13 �A3�33 � n!3;



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 74@0n = @3!3 + @2!2 � @2�13 + !3 _u3 + d2
2 + �12 _u3 + !3A3 + �12A3 + @3
3+@2
2 � �13 _u2 + 
2A2 + 
3A3 + @3�12 + 
2 _u2 + 
3 _u3�n�22 + d3
3 + �11n+ !2A2 � �13A2 + !2 _u2 + d3!3�d2�13 + d2!2 � n�33 + d3�12;@0�̂33 = A2!3 � 2!1�̂23 �
2 _u3 � @3!2 + 2�23
̂�A2�12 + 
2d3 � !2 _u3 (3.17)��̂33�11 + @1�33 � �13 _u3 + �33 _u1 � 2
1�̂23 + �13d3 +A2
3�@3�13 + !2d3 � @3
2;@0!1 = �12 _u3A2 + 
3!2 � 
2!3 + �12!2 � !1�22 + 12 _u1n� 12@2 _u3 � !1�33+�13!3 + 12 _u2A3 + 12@3 _u2;@0!2 = 12 _u1d3 + !3�23 + 12 _u2
̂ + 12@1 _u3 + !3
1 + 12 _u3�̂33�!2�11 + 12 _u2�̂23 � !2�33 + !1�12 � 12@3 _u1 � !1
3; (3.18)@0!3 = �12 _u2�̂22 � !3�22 + !2�23 � 12@1 _u2 + 12 _u3
̂� 12 _u3�̂23 � !3�11 � 12 _u1d2+12@2 _u1 + !1
2 � !2
1 + !1�13; (3.19)@0�̂23 = 12@3!3 � 12@2!2 � 12@2�13 + 12!3 _u3 + 12d2
2 � 12�12 _u3 + @1�23 (3.20)�12!3A3 + 12�12A3 + 12@3
3 � 12@2
2 � 12�13 _u2 + 12
2A2 � 12
3A3�12@3�12 � 12
2 _u2 + �̂33
1 � 
1�̂22 + 12
3 _u3 + �23 _u1 � !1�̂22�12d3
3 + 12!2A2 + 12�13A2 � 12!2 _u2 � �̂23�11 � 12d3!3 + 12d2�13+12d2!2 + 
̂�22 � �33
̂ + !1�̂33 + 12d3�12;@0
̂ = @1
1 � 12@3!3 � 12@2!2 + 
1 _u1 + 12@2�13 + 32!3 _u3 � 12d2
2�12�12 _u3 � 
̂�11 � 32!3A3 + 12�12A3 + 12@3
3 + 12@2
2 + 12�13 _u2�12
2A2 � 12
3A3 � 12@3�12 + 12
2 _u2 + 12
3 _u3 + 2 _u1!1 � !1�̂22



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 75��33�̂23 � �23�̂22 � 12d3
3 � 32!2A2 � 12�13A2 + 32!2 _u2 + �̂23�22+12d3!3 � 12d2�13 + 12d2!2 + �̂33�23 � !1�̂33 + 12d3�12;@0�̂22 = �22 _u1 + �12d2 + @1�22 �A3�13 �
3d2 + 
3 _u2 � 2�23
̂ + !3 _u2 (3.21)��12 _u2 � �̂22�11 �A3!2 + 2!1�̂23 + 2
1�̂23 + @2
3 �A3
2�@2�12 + @2!3 � !3d2;@3
̂ = 2�33!3 � @2�̂33 + 2!1
2 � 
̂A3 + �̂33d2 + 2!2�23 + @1A2�2!2
1 + �̂23A3 +A2�̂22 + @3�̂23 + 
̂d3 � �̂23d3 + 2!1�13;@1!1 = �!1�̂33 � @2!2 + d2!2 + !2 _u2 + _u1!1 + !3 _u3 + d3!3 � !2A2�@3!3 � !3A3 � !1�̂22and@3d2 = 2
2!3 � 2�11!1 � 2�12!2 + @1n� 2�13!3 � d2A3 + n�̂22 � 2
3!2+d3A2 + n�̂33 + @2d3:3.3 ConnectionThe connection, '; is the unique matrix of one-forms that satis�esd�!i = 'ij ^ �!jand 'ij + 'ji = 0;where 'ij = 'kj�ki; and � is the signature matrix � = diag(�1; 1; 1; 1). Solving for'ij, we obtain'01 = � _u1�!0 � �11�!1 + (�!3 � �12)�!2 + (!2 � �13)�!3;



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 76'02 = � _u2�!0 + (!3 � �12)�!1 � �22�!2 � (�23 + !1)�!3;'03 = � _u3�!0 � (!2 + �13)�!1 + (��23 + !1)�!2 � �33�!3;'12 = 
3�!0 + d2�!1 + �̂22�!2 + (�̂23 + 12n)�!3;'23 = 
1�!0 + (
̂� 12n)�!1 �A3�!2 +A2�!3and'31 = 
2�!0 � d3�!1 + (�̂23 + 12n)�!2 � �̂33�!3:3.4 Riemann, Ricci and Weyl tensorsThe Riemann curvature two-forms are given by�ab = d'ab + 'ac ^ 'cb: (3.22)Explicitly, the various curvature two-forms are�01 = R0101�!0 ^ �!1 +R0102�!0 ^ �!2 +R0103�!0 ^ �!3+R0112�!1 ^ �!2 +R0123�!2 ^ �!3 +R0131�!3 ^ �!1;�02 = R0102�!0 ^ �!1 +R0202�!0 ^ �!2 +R0203�!0 ^ �!3+R0212�!1 ^ �!2 +R0223�!2 ^ �!3 �R0231�!1 ^ �!3;�03 = R0103�!0 ^ �!1 +R0203�!0 ^ �!2 +R0303�!0 ^ �!3+(�R0123 �R0231)�!1 ^ �!2 +R0323�!2 ^ �!3 +R0331�!3 ^ �!1;�12 = �R0112�!0 ^ �!1 �R0212�!0 ^ �!2 + (R0123 +R0231)�!0 ^ �!3+R1212�!1 ^ �!2 +R1223�!2 ^ �!3 +R1231�!1 ^ �!3;�23 = �R0123�!0 ^ �!1 �R0223�!0 ^ �!2 �R0323�!0 ^ �!3+R1223�!1 ^ �!2 +R2323�!2 ^ �!3 +R2331�!3 ^ �!1and



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 77�31 = �R0131�!0 ^ �!1 �R0231�!0 ^ �!2 �R0331�!0 ^ �!3+R1231�!1 ^ �!2 +R2331�!2 ^ �!3 +R3131�!3 ^ �!1:The twenty quantities R0101; R0102; R0103; R0112; R0123; R0131; R0202; R0203; R0212;R0223; R0231; R0303; R0323; R0331; R1212; R1223; R1231; R2323; R2331; and R3131 aregiven by:R0101 = ��211 + 2
3�12 � _u3d3 + !23 + @1 _u1 � 2
2�13 � @0�11��213 + _u21 + !22 � �212 � _u2d2;R0102 = 12@1 _u2 � 12 _u3
̂ + 12 _u1d2 + 12 _u3n� �13�23 + �13
1 + �22
3 + _u1 _u2��11�12 � !2!1 � 
2�23 � 12 _u3�̂23 � �12�22 � 12 _u2�̂22 � @0�12��11
3 + 12@2 _u1;R0103 = 12 _u2
̂ + 12@1 _u3 + 12 _u1d3 � !3!1 � @0�13 � �11�13 � 12 _u2�̂23+ _u1 _u3 + 12@3 _u1 � �12
1 + �11
2 + 
3�23 � �13�33 � �33
2�12 _u2n � �12�23 � 12 _u3�̂33;R0112 = @2�11 � 2�12�̂22 � @1�12 � �11d2 � @1!3 � 2!3 _u1 � !2
̂+d2�22 � d3!1 + d3�23 � 2�13�̂23 + 12n�13 + 12n!2 + �13
̂;R0123 = �23�̂22 + !3A3 + @2!2 + �11n+ !1�̂33 + �33�̂23 + !2A2 � �13A2�12n�33 � @2�13 � �̂23�22 + !1�̂22 + �12A3 + @3!3 � 12n�22 +@3�12 � �̂33�23 � 2 _u1!1;R0131 = !3
̂ + �11d3 � d2�23 + 2�13�̂33 � d3�33 + @1�13 � 2!2 _u1+�12
̂� d2!1 � 12n!3 + 12n�12 + 2�12�̂23 � @1!2 � @3�11;R0202 = ��222 � �223 � @0�22 � �212 + _u22 + !21 + !23�2
3�12 + _u1�̂22 + @2 _u2 + 2
1�23 + _u3A3;
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1 + 12@3 _u2 + _u3 _u2 � 12 _u2A3 + �33
1 + 
2�12 � �13�12 � 12 _u3A2��13
3 � �23�22 + 12@2 _u3 � !2!3 + _u1�̂23 � �33�23 � @0�23;R0212 = ��23�̂23 + 12!1n� 2�12d2 � !1�̂23 + @2�12 � @1�22 � 12�23n+�̂22�11 � @2!3 + A3�13 � �22�̂22 � 2!3 _u2 +A3!2 + 2�23
̂;R0223 = �@2!1 + �̂22!2 � @2�23 + @3�22 � �̂22�13 � 12n!3 �A3�33+A3�22 + !3�̂23 + �12�̂23 � 2!1 _u2 � 2�23A2 + 32n�12;R0231 = 12n�33 + �13A2 � !2 _u2 + @1�23 � !3A3 � @3�12 � @2!2+!3 _u3 + d2�13 � 12�11n+ 
̂�22 + �̂33�23 + �̂23�22 � �̂23�11+d3�12 � �33
̂ + _u1!1 � !1�̂22;R0303 = ��233 + !22 + _u2A2 � �223 + _u23 � 2
1�23 + 2
2�13 + @3 _u3+ _u1�̂33 + !21 � �213 � @0�33;R0323 = ��13�̂23 � @3!1 � 2!1 _u3 � @2�33 +A2�22 + �̂33�12 + 32n�13+!2�̂23 + 12n!2 + 2�23A3 � �33A2 + �̂33!3 + @3�23;R0331 = �A2�12 � 12�23n� !1�̂23 + �23�̂23 � @3!2 + 2�23
̂� 2!2 _u3+�33�̂33 +A2!3 � @3�13 � 12!1n� �̂33�11 + 2�13d3 + @1�33;R1212 = �2
̂�̂23 + n�̂23 + 2
3!3 + �̂222 �A3d3 + �̂223 � @2d2�14n2 � �11�22 � !23 + d22 + @1�̂22 + �212;R1223 = �!3!1 + 12@2n+ @2�̂23 + 2!1
3 +A3�̂33 + 2�̂23A2 + �22�13�@3�̂22 � !3�23 � �22!2 � nd2 �A3�̂22 � �12�23 � !1�12;R1231 = ��13!3 + n�̂22 � d2A3 � �̂23�̂22 + 12@1n� �̂33�̂23 � @1�̂23�d3d2 + �̂33
̂ + �11�23 � �11!1 + 2
2!3 � �̂22
̂� �12!2��13�12 � !2!3 + @2d3;



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 79R2323 = @2A2 � �̂223 +A22 + 34n2 + 2
1!1 +A23 + �̂22�̂33 � !21+�223 � �22�33 + @3A3 � 
̂n;R2331 = �!2!1 + !1�13 + �33�12 + @3�̂23 + 2!1
2 + 2�̂23A3 + nd3+!2�23 +A2�̂22 � 12@3n� �13�23 �A2�̂33 � @2�̂33 + �33!3andR3131 = ��11�33 + @1�̂33 � @3d3 + 2
̂�̂23 � !22 � n�̂23 + d23+�̂223 + �213 + �̂233 + 2
2!2 � 14n2 � d2A2:The Ricci tensor, which is a 4 � 4 symmetric tensor, is formed by contracting theRiemann tensor, i.e. Rab = Riaib: The components of the Ricci tensor are thusobtained by calculating R00 = �R0101 �R0202 �R0303;R11 = R0101 +R1212 +R3131;R22 = R0202 +R1212 +R2323;R33 = R0303 +R3131 +R2323;R01 = �R0212 +R0331;R02 = R0112 �R0323;R03 = �R0131 +R0223;R12 = R0102 �R2331;R13 = R0103 �R1223andR23 = R0203 �R1231:They are therefore given byR00 = @0�33 � _u1�̂22 � _u1�̂33 � _u2A2 � @1 _u1 � @2 _u2 � @3 _u3 + @0�11 + @0�22



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 80� _u21 + �211 � _u23 + �233 � 2!21 + 2�223 + 2�213 � 2!22+�222 � _u22 � 2!23 + 2�212 + _u2d2 + _u3d3 � _u3A3;R01 = @1�22 + @1�33 + 2�23�̂23 + �22�̂22 � @2�12 � @3�13 � @3!2 + @2!3+�33�̂33 � !1n�A3�13 �A3!2 + 2!3 _u2 � �̂22�11+2�12d2 � �̂33�11 �A2�12 +A2!3 + 2�13d3 � 2!2 _u3;R02 = �@3�23 + @2�33 � n�13 � �13�̂23 + �13
̂� !2�̂23 � !2
̂�2�12�̂22 + @2�11 � @1�12 + @3!1 � @1!3 + �33A2 � 2!3 _u1��11d2 � �̂33!3 � �̂33�12 �A2�22 + 2!1 _u3 � 2�23A3+d3�23 � d3!1 + d2�22;R03 = �2�13�̂33 � @2�23 + 2!2 _u1 +A3�22 � !3
̂ + @3�11 � @1�13 + @3�22�@2!1 + @1!2 � �12�̂23 + n�12 � �11d3 � �12
̂� 2!1 _u2�2�23A2 + �̂22!2 � �̂22�13 �A3�33 + d3�33 + d2!1 + d2�23 + !3�̂23;R11 = d22 + �̂222 � d2A2 � �11�33 + @1�̂22 + @1 _u1 � @0�11 + @1�̂33 � @2d2�@3d3 + 2
2!2 + _u21 � �211 + d23 + �̂233 + 2
3�12 + 2�̂223 � 12n2�2
2�13 � _u2d2 � _u3d3 �A3d3 � �11�22 + 2
3!3;R12 = �12 _u3
̂ � �11
3 + 12 _u1d2 + 12 _u3n� !2�23 � �12�22 + �22
3 �
2�23�!1�13 � �11�12 � 2!1
2 � @3�̂23 + 12@2 _u1 � @0�12 + 12@3n+12@1 _u2 + @2�̂33 �A2�̂22 � 12 _u2�̂22 � 12 _u3�̂23 +A2�̂33 � nd3��33!3 � �33�12 � 2�̂23A3 + �13
1 + _u1 _u2;R13 = 12@1 _u3 � @2�̂23 � 12@2n+ 12@3 _u1 + @3�̂22 � @0�13 + 12 _u1d3 + 12 _u2
̂�A3�̂33 + �11
2 � �11�13 � �13�33 + _u1 _u3 � 12 _u2�̂23 � �33
2�12 _u3�̂33 � 2!1
3 � �12
1 � 12 _u2n+ !3�23 + !1�12 +A3�̂22+nd2 + �22!2 � 2�̂23A2 � �22�13 + 
3�23;



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 81R22 = _u22 +A22 + @1�̂22 � @0�22 � �222 � @2d2 + @2A2 + @3A3 + @2 _u2+ _u3A3 + 2
1�23 �A3d3 � �11�22 � 2
̂�̂23 + n�̂23 + 2
3!3+�̂222 + 12n2 � �22�33 � 
̂n+ �̂22�̂33 +A23 + _u1�̂22�2
3�12 + d22 + 2
1!1;R23 = �@0�23 � @2d3 � 12@1n� �33�23 + 12@3 _u2 + 12@2 _u3 + @1�̂23�12 _u3A2 � �13
3 + d2A3 � n�̂22 + �13!3 + �12!2 � 12 _u2A3+�̂23�̂22 + �11!1 + �̂33�̂23 � �̂33
̂ + �̂22
̂� �11�23 + d3d2+ _u1�̂23 + 
2�12 � �23�22 + �33
1 + _u3 _u2 � �22
1 � 2
2!3andR33 = A22 + @1�̂33 � @0�33 � @3d3 + @2A2 + @3A3 + @3 _u3 � 2
1�23 + 2
2!2�d2A2 � �11�33 + d23 � �233 + �̂233 + _u1�̂33 + _u2A2+2
̂�̂23 � n�̂23 + _u23 + 2
2�13 + 12n2 � �22�33 � 
̂n+�̂22�̂33 +A23 + 2
1!1:The �i that absorb the Ricci tensor components from the Riemann curvature two-forms are given by �i = Bij �!j; where Bij = Bji and whereB00 = � 112R33 � 512R00 � 112R22 � 112R11;B01 = �12R01;B02 = �12R02;B03 = �12R03;B11 = � 512R11 + 112R33 � 112R00 + 112R22;B12 = �12R12;B13 = �12R13;



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 82B22 = � 512R22 + 112R33 � 112R00 + 112R11;B23 = �12R23andB33 = � 112R00 � 512R33 + 112R22 + 112R11:The Weyl curvature two-forms are given byW01 = W 0101�!0 ^ �!1 +W 0102�!0 ^ �!2 +W 0103�!0 ^ �!3+W 0112�!1 ^ �!2 +W 0123�!2 ^ �!3 +W 0131�!3 ^ �!1;W02 = W 0102�!0 ^ �!1 +W 0202�!0 ^ �!2 +W 0203�!0 ^ �!3+W 0212�!1 ^ �!2 +W 0131�!2 ^ �!3 �W 0231�!1 ^ �!3;W03 = W 0103�!0 ^ �!1 +W 0203�!0 ^ �!2 � (W 0101 +W 0202)�!0 ^ �!3+(�W 0123 �W 0231)�!1 ^ �!2 +W 0112�!2 ^ �!3 +W 0212�!3 ^ �!1;W12 = �W 0112�!0 ^ �!1 �W 0212�!0 ^ �!2 + (W 0123 +W 0231)�!0 ^ �!3�(W 0101 +W 0202)�!1 ^ �!2 +W 0103�!2 ^ �!3 +W 0203�!1 ^ �!3;W23 = �W 0123�!0 ^ �!1 �W 0131�!0 ^ �!2 �W 0112�!0 ^ �!3+W 0103�!1 ^ �!2 +W 0101�!2 ^ �!3 +W 0102�!3 ^ �!1andW31 = �W 0131�!0 ^ �!1 �W 0231�!0 ^ �!2 �W 0212�!0 ^ �!3+W 0203�!1 ^ �!2 +W 0102�!2 ^ �!3 +W 0202�!3 ^ �!1;whereW 0101 = �16@1�̂22 � 13@0�11 � 16@1�̂33 + 16@0�22 + 16@0�33 + 13@1 _u1 + 16@2d2+16@3d3 + 13@2A2 + 13@3A3 � 16@2 _u2 � 16@3 _u3 + 13A22 + 13A23+16�233 � 16 _u23 � 13�211 + 13 _u21 � 16 �̂222 � 16d22 � 16 _u3A3



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 83�13
3!3 + 16�11�22 + 16A3d3 � 13 _u3d3 � 13 _u2d2 � 13
̂n� 13
2!2�16 _u2A2 � 16 _u1�̂33 + 13n2 + 23
1!1 � 13�22�33 + 13 �̂22�̂33 + 16�11�33+16d2A2 � 16 _u1�̂22 � 
2�13 + 13!23 � 13�212 � 16 �̂233 � 13�213+13!22 + 16�222 � 16 _u22 � 23 �̂223 + 
3�12 � 23!+1 23�223 � 16d23;W 0102 = �@0!3 + 12@3�̂23 + 34@2 _u1 � 12@0�12 � 14@3n � 14@1 _u2 � 12@2�̂33�!3�22 � !3�11 � !2
1 � 12�11�12 � 14 _u1d2 � 34 _u3�̂23 + 14 _u3
̂+32!2�23 + 2!1
2 + 32!1�13 � !2!1 � �13�23 + 12�33!3 + 12A2�̂22+�̂23A3 � 12�12�22 + 14 _u3n� 12�11
3 + 12 _u1 _u2 + 12�13
1 � 34 _u2�̂22+12�33�12 � 12A2�̂33 + 12nd3 + 12�22
3 � 12
2�23;W 0103 = �14@1 _u3 + 12@2�̂23 + @0!2 + 14@2n+ 34@3 _u1 � 12@3�̂22 � 12@0�13+�̂23A2 + !2�11 + !2�33 � 12�12
1 � 12�22!2 + 12A3�̂33 � 14 _u2
̂�34 _u3�̂33 � !3
1 � 32!3�23 � 14 _u1d3 + 2!1
3 � 32!1�12 + 12 _u1 _u3�!3!1 � 12�33
2 � 12�11�13 + 12�22�13 � �12�23 � 34 _u2�̂23 � 12�13�33+12�11
2 + 12
3�23 � 14 _u2n� 12A3�̂22 � 12nd2;W 0112 = �!1 _u3 + 12A2�22 + �23A3 + 12d3�23 � 12@2�33 � 12!2
̂ + 12 �̂33�12�12@1�12 + n�13 + 12d2�22 + 12@2�11 + 12 �̂33!3 + 12!2�̂23 � 12d3!1�12�11d2 + 12@3�23 � 12�33A2 � 12@3!1 + 12�13
̂ � !3 _u1 + 12n!2��12�̂22 � 32�13�̂23 � 12@1!3;W 0123 = �23�̂22 + !3A3 + @2!2 + �11n+ !1�̂33 + �33�̂23 + !2A2��13A2 � 12n�33 � @2�13 � �̂23�22 + !1�̂22 + �12A3 + @3!3



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 84�12n�22 + @3�12 � �̂33�23 � 2 _u1!1;W 0131 = �(!2 _u1 + 12n!3 + 12A3�33 + 12@1!2 � 12@1�13 + 12@2!1 � n�12�12@3�22 + �23A2 + 12d2�23 � 12 �̂22!2 + 12d2!1 + 12d3�33 + !1 _u2��13�̂33 � 12!3�̂23 + 12@3�11 � 12!3
̂� 32�12�̂23 + 12 �̂22�13 � 12�12
̂�12�11d3 � 12A3�22 + 12@2�23);W 0202 = �16@1�̂22 + 16@0�11 + 13@1�̂33 � 13@0�22 + 16@0�33 � 16@1 _u1 + 16@2d2�13@3d3 � 16@2A2 � 16@3A3 + 13@2 _u2 � 16@3 _u3 � 16A22 � 16A23+16�233 � 16 _u23 + 16�211 � 16 _u21 � 16 �̂222 � 16d22 + 13 _u3A3�13
3!3 + 16�11�22 + 16A3d3 + 16 _u3d3 + 16 _u2d2 + 16
̂n + 23
2!2�12n�̂23 + 
1�23 � 16 _u2A2 � 16 _u1�̂33 � 16n2 + 
̂�̂23 � 13
1!1+16�22�33 � 16 �̂22�̂33 � 13�11�33 � 13d2A2 + 13 _u1�̂22 + 13!23 � 13�212+13 �̂233 + 23�213 � 23!22 � 13�222 + 13 _u22 + 13 �̂223 � 
3�12+13!21 � 13�223 + 13d23;W 0203 = �@0!1 � !2!3 � �13�12 + 12n�̂22 � 34 _u3A2 + 12
2�12 + 12 _u3 _u2+12�11�23 � 12 �̂33�̂23 + 14 _u2A3 � 12�11!1 + 12�33
1 � 12�33�23 � 12�23�22�12@0�23 + 12@2d3 + 14@1n+ 34@3 _u2 � 14@2 _u3 � 12@1�̂23 + 12�13!3+12�12!2 � 12d3d2 � 12 �̂23�̂22 � 12d2A3 � 12�13
3 � 12 �̂22
̂+12 _u1�̂23 � 12�22
1 � !1�33 + 12 _u1n � !1�22 + 
3!2 + 12 �̂33
̂;W 0212 = 12 �̂22�11 � 12 �̂33�11 + �13d3 � 12@1�22 + 2�23
̂� 12A2�12 + 12A3�13+12A2!3 � �12d2 + 12@2�12 � 12�23n � !3 _u2 � 12�22�̂22 � 12@2!3



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 85+12@1�33 � 12@3!2 � !2 _u3 � !1�̂23 + 12�33�̂33 � 12@3�13 + 12A3!2andW 0231 = �(�
̂�22 + �33
̂ � !1�̂33 � @1�23 � �̂33�23 + 12�11n� @3!3 � !2A2+@3�12 + d2!2 � d3�12 � @1!1 � �13A2 � d2�13 + 2!2 _u2 + �̂23�11+d3!3 � 12n�33 � �̂23�22):These equalities are equivalent to the following ones, taking into account the Jacobiidentities:, W 0101 = R0101 + 16(2R00 � 2R11 +R22 +R33);W 0102 = R0102 � 12R12;W 0103 = R0103 � 12R13;W 0112 = R0112 � 12R02;W 0123 = R0123;W 0131 = R0131 + 12R03;W 0202 = R0202 + 16(2R00 +R11 � 2R22 +R33);W 0203 = R0203 � 12R23andW 0231 = R0231:



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 863.5 Einstein �eld equationsFor a perfect uid, with � being the energy density and p being the pressure, theenergy-momentum tensor is given byTab�!a 
 �!b = ��!0 
 �!0 + pX� �!� 
 �!�: (3.23)With the sign convention used in (3.22) for the Riemann curvature tensor, theEinstein �eld equations are given byRab � R2 gab ��gab = Tab:An equivalent expression is given byRab = �Tab + T2 gab ��gab;where T = T aa is the trace of the energy-momentum tensor. It follows then thatthe Einstein �eld equations, for a perfect uid, are given byR00 = ��2 � 3p2 + �;R11 = R22 = R33 = ��2 + p2 � �;andR01 = R02 = R03 = R12 = R13 = R23 = 0:3.6 Integrability conditions on the energy densityClosely related to the Jacobi identities are the integrability conditions on the energydensity, �. They are determined by taking all the commutation relations on �. Thisis easily computed using di�erential forms, by making use of the identity:d2� = 0:



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 87We notice that, since p is a function of �; the preceding implies0 = d dp�+ p! : (3.24)Using the contracted Bianchi identities, we obtain0 = d �p0��!0 + _u��!�� :The evaluation of this equation implies that a particular two-form must vanish.Therefore, the six components of this two-form must also vanish, and so@0 _u1 = 1p0 �� _u1�p00(� + p) + _u2!3p0 � _u3�13p0 + p02@1�11 � p0� _u1 + p02� _u1� _u3
2p0 � _u3!2p0 + _u2
3p0 � _u2�12p0) ; (3.25)@0 _u2 = 1p0 �� _u2�p00(� + p) + p02@2� � _u1�12p0 � _u1!3p0 + _u2p02� � _u2p0�22� _u3�23p0 � _u1
3p0 + _u3
1p0 + _u3!1p0)@0 _u3 = 1p0 (� _u3�p00(�+ p)� _u1�13p0 + _u1!2p0 � _u2
1p0 � _u2�23p0 + _u1
2p0+ _u3p02� � _u3p0�33 + p02@3� � _u2!1p0� ;@1 _u2 = @2 _u1 � 2!3�p0 + _u3
̂ � _u2�̂22 � _u3�̂23 � _u1d2; (3.26)@2 _u3 = �2!1�p0 � _u3A2 + _u2A3 + @3 _u2 + _u1nand@3 _u1 = �2!2�p0 + _u2�̂23 + @1 _u3 + _u1d3 + _u3�̂33 + _u2
̂: (3.27)We note that the quantity being di�erentiated in (3.24) is the negative of thedi�erential of the function F of White and Collins (1984).3.7 Tetrad determinationThe Lorentzian metric (3.1) enables us to construct an orthonormal tetrad withaxes (~e0; ~e1; ~e2; ~e3) in the tangent space of each point of the spacetime. The tetrads



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 88are not uniquely determined. The group of freedom in their orientation, ignoringreections, is the full Lorentz group SO(3,1,R). We now require that the ~e0�axisof each tetrad be aligned with the unique future-pointing unit timelike eigenvectorof the energy-momentum tensor (3.23) of a perfect uid. The vector ~e0 is thenthe uid ow velocity vector of the uid. This restricts the possible tetrads. Theindeterminacy in their de�nition is now isomorphic to SO(3,0,R), corresponding torotations of the spacelike triad (~e1; ~e2; ~e3): The structure equations are now thosegiven in section 3.1.We shall study perfect uids that are shear-free; these are uids where theexpansion tensor of the uid possesses the simple form��� = �3���: (3.28)Since the uids that are of particular interest to us are rotating uids, we nowchoose the ~e1�axis in such a way that it is parallel to the vorticity vector of the uid.This choice involves solely rotations of the triad (~e1; ~e2; ~e3): Since equation (3.28) isinvariant under such rotations, this choice of ~e1 does not impose any restrictions onthe spacetime. We thus have that !2 = !3 = 0: The indeterminacy in the tetrad isnow SO(1,0,R), representing rotations of the dyad (~e2; ~e3); together with a possiblereection ~e1 7! �~e1 and a reection in the (2� 3) space, (~e2; ~e3) 7! (�~e2; ~e3): TheJacobi identity (3.18), the integrability condition (3.27), the shear-free conditionand the condition that !2 = !3 = 0 6= !1 requires that 
3 be zero. Similarly,equation (3.19), equation (3.26), the shear-free condition and !2 = !3 = 0 implythat 
2 = 0:At this point, �!0 and �!1 are determined. Let � be a parameter representingthe rotational freedom left in the determination of �!2 and �!3: Let �!20 and �!30 be



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 89another choice for these directions. The relation between (�!2; �!3) and (�!20; �!30) is0B@ �!20�!30 1CA = 0B@ cos� sin�� sin� cos� 1CA0B@ �!2�!3 1CA :It follows then that the structure equations for �!20 and �!30 in terms of the kinematicquantities associated with �!2 and �!3 ared�!20 = d� ^ �!30 + �3 �!0 ^ �!20 + (!1 + 
1)�!0 ^ �!30+(�̂22 cos2 �+ 2�̂23 cos� sin� + �̂33 sin2 �)�!1 ^ �!20+(A2 sin ��A3 cos�)�!20 ^ �!30+ h(�̂22 � �̂33) cos� sin �� 
̂ + �̂23(sin2 �� cos2 �)i �!30 ^ �!1and d�!30 = �d� ^ �!20 � (!1 + 
1)�!0 ^ �!20 + �3 �!0 ^ �!30+ h(�̂33 � �̂22) cos� sin �� 
̂ + �̂23(cos2 � � sin2 �)i �!1 ^ �!20+(A2 cos�+ A3 sin�)�!20 ^ �!30+(��̂22 sin2 �+ 2�̂23 cos� sin �� �̂33 cos2 �)�!30 ^ �!1:If we let !01 and 
01 be the kinematic quantities analogous to !1 and 
1, then2(!01 + 
01)�!0 ^ �!1 ^ �!20 ^ �!30 = �!1 ^ �!20 ^ d�!20 + �!1 ^ �!30 ^ d�!30= 2d� ^ �!1 ^ �!20 ^ �!30 + 2(!1 + 
1)�!0 ^ �!1 ^ �!20 ^ �!30:We can therefore require that !01 + 
01 = 0; provided that we require that @0� +(!1+
1) = 0: This result that !1+
1 can be set to zero also holds in the situationwhen the uid has non-vanishing shear. There is still freedom in the choice of �,provided that we maintain the constraint that @0� = 0: We compute the e�ect of



CHAPTER 3. ORTHONORMAL FRAME FORMALISM 90the rotation on the quantity �̂23 as follows:2�̂230�!0 ^ �!1 ^ �!20 ^ �!30 = �d�!20 ^ �!0 ^ �!20 + d�!30 ^ �!0 ^ �!30= 2 �(�̂33 � �̂22) sin� cos�+ �̂23(cos2 �� sin2 �)� �!0 ^ �!1 ^ �!20 ^ �!30:We can set �̂23 to be zero, by choosing � such that(�̂33 � �̂22) sin� cos� + �̂23(cos2 � � sin2 �) = 0: (3.29)Of course, when �̂22 = �̂23 = �̂33 = 0 no constraints are thereby imposed on �: Apartfrom this special situation, the tetrad f~eag is then completely determined, up topossible reections. This is allowed provided that equation (3.29) is propagatedalong the uid ow without introducing new constraints. For the present situation,equations (3.17), (3.20) and (3.21) reduce to@0�̂33 = ��3 �̂33 + 13@1� + �3 _u1;@0�̂23 = ��3 �̂23and@0�̂22 = ��3 �̂22 + 13@1� + �3 _u1:Using these expressions, the di�erentiation of equation (3.29) along ~e0 yields theidentity 0 = 0: We remark that if the uid possesses shear, then this di�erentiationof (3.29) will, in general, introduce new constraints. We also note that, prior tosetting !1 + 
1 = 0; we could have set �̂23 = 0: Propagating this expression in theuid ow direction would have forced !1 +
1 to vanish, without loss of generality,except when �̂22 = �̂33: The tetrad is now �xed, up to reection of axes, exceptwhen �̂22 = �̂33: When it is the case that �̂22 = �̂33; remembering that �̂23 = 0 wasimposed, we can still set !1 + 
1 to zero, but there are no restrictions on �; i.e.there is the full freedom of rotation of the 2-3 dyad.



Chapter 4The Petrov classi�cation of theWeyl tensorQue diable allait-il faire dans cette gal�ere?Moli�ereI N THIS chapter, we show how the Weyl tensor can be classi�ed using resultsfrom linear algebra. We refer to Grossman (1984) for an elementary introductionto the concepts from linear algebra that we shall need. In particular, for a two-dimensional matrix with a double eigenvalue for which the associated eigenspace isone-dimensional, Grossman (1984) shows how to compute a vector that is linearlyindependent of this eigenspace. We use that example in Grossman (1984) as a guidefor our calculations for the cases when the dimension of the eigenspace associatedwith a repeated eigenvalue is less than the multiplicity of the eigenvalue. The othercalculations are from the present author. Hungerford (1974) is a more advancedreference about algebra in general and linear algebra in particular. Kramer etal. (1980) provide more information about the Petrov classi�cation.91



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR92The uid ow vector may be employed to split the Weyl tensor into two tensors:the electric part, denoted by Eab, and the magnetic part, denoted by Hab. Moreinformation about the electric and magnetic parts of the Weyl tensor can be foundin Kramer et al. (1980) and in Ellis (1971). These tensors are symmetric and trace-free. Relative to a frame in which ~e0 is de�ned to be the uid ow tangent vector,they satisfy E0a = H0a = 0 and obeyW01 = �E11�!0 ^ �!1 � E12�!0 ^ �!2 � E13�!0 ^ �!3�H11�!2 ^ �!3 �H12�!3 ^ �!1 �H13�!1 ^ �!2;W02 = �E12�!0 ^ �!1 � E22�!0 ^ �!2 � E23�!0 ^ �!3�H12�!2 ^ �!3 �H22�!3 ^ �!1 �H23�!1 ^ �!2andW03 = �E13�!0 ^ �!1 � E23�!0 ^ �!2 � E33�!0 ^ �!3�H13�!2 ^ �!3 �H23�!3 ^ �!1 �H33�!1 ^ �!3:Since both the electric part and the magnetic part of the Weyl tensor are trace-free,it follows that E11 + E22 + E33 = 0 and H11 +H22 + H33 = 0: This enables us tomake the identi�cations: E11 = �W 0101;E12 = �W 0102;E13 = �W 0103;E22 = �W 0202;E23 = �W 0203;E33 = �E11 � E22;H11 = �W 0123;H12 = �W 0131;



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR93H13 = �W 0112;H23 = �W 0212;H22 = �W 0231andH33 = �H11 �H22:Introducing the de�nitionsW = (�!a ^ �!b) 
Wab; (4.1)and (~ea 
 ~eb)c �(�c ^ �d)
 (�e ^ �f)� := (�ca�d � �da�c)
 (�eb�f � �fb �e);with c (the hook operator) extended by bilinearity, it then follows that the electricpart of the Weyl tensor with respect to the uid ow is obtained byEab(�!a 
 �!b) = (�!0 
 �!0)cW; (4.2)and the magnetic part of the Weyl tensor with respect to the uid ow is obtainedby Hab(�!a 
 �!b) = (�!0 
 �!0)c �(�!a ^ �!b) 
 �Wab� ; (4.3)where the � operator1 is a linear operator that obeys�(�!0 ^ �!1) = �!2 ^ �!3;�(�!0 ^ �!2) = �!3 ^ �!1;�(�!0 ^ �!3) = �!1 ^ �!2;�(�!1 ^ �!2) = �!0 ^ �!3;1See also page 71.



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR94�(�!2 ^ �!3) = �!0 ^ �!1and�(�!3 ^ �!1) = �!0 ^ �!2:We de�ne the null vectors ~k; ~̀; ~m and ~�m in such a way that they satisfy:p2~k = ~e0 + ~e3;p2~̀ = ~e0 � ~e3;p2~m = ~e1 � i~e2andp2~�m = ~e1 + i~e2:This enables us to de�ne the components of the Weyl tensor as follows:	0 = (~k ^ ~m)
 (~k ^ ~m)cW;	1 = (~k ^ ~̀)
 (~k ^ ~m)cW;	2 = (~k ^ ~̀)
 (~k ^ ~̀� ~m ^ ~�m)cW;	3 = �(~k ^ ~̀)
 (~̀^ ~�m)cWand	4 = (~̀^ ~�m)
 (~̀^ ~�m)cW;where the exterior product of two vectors, denoted by ^ is an antisymmetric, as-sociative and bilinear operation. In terms of the components of the electric andmagnetic parts of the Weyl tensors, we obtain:	0 = 12(E11 � E22 + 2H12) + i2(H11 �H22 � 2E12);	1 = �12(E13 +H23) + i2(E23 �H13);



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR95	2 = 12E33 + i2H33;	3 = 12(E13 �H23) + i2(E23 +H13)and	4 = 12(E11 � E22 � 2H12) + i2(H11 �H22 + 2E12):The inverse relations areE11 = 14(	0 +	4 � 2	2 � 2�	2);E12 = i4(	0 �	4 � �	0 + �	4);E13 = 12(	3 �	1 + �	3 � �	1);E22 = �14(	0 +	4 + 2	2 + 2�	2);E23 = i2( �	1 + �	3 �	1 �	3);H11 = i4(2	2 � 2�	2 �	0 �	4);H12 = 14(	0 �	4 + �	0 � �	4);H13 = i2(	1 �	3 � �	1 + �	3);H22 = i4(	0 +	4 + 2	2 � 2�	2)andH23 = �12(	1 +	3 + �	1 + �	3):All the information in the Weyl tensor can be regrouped in the matrixQ = E+iH;which is equivalent toQ = 0BBBBB@ 12(	0 +	4 � 2	2) i2(	0 �	4) 	3 �	1i2(	0 �	4) �12(	0 +	4 + 2	2) �i(	1 +	3)	3 �	1 �i(	1 +	3) 2	2 1CCCCCA :



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR96This is a symmetric, trace-free complex matrix. Since the trace of a square matrix,M; is equal to the sum of the eigenvalues of M ,2 it follows that the sum of theeigenvalues of Q vanishes.The matrix Q can be classi�ed according to its eigenvalues and eigenvectors.Let � be an eigenvector of Q; therefore, � satis�es the characteristic polynomial ofQ : K = det(Q� �I3) = ��3 + �I � 2J = 0;with I3 being the three-dimensional identity matrix and the invariants I and Jsatisfying: I = 	0	4 � 4	1	3 + 3(	2)2and J = ����������� 	4 	3 	2	3 	2 	1	2 	1 	0 ����������� = 	0	2	4 + 2	1	2	3 �	4(	1)2 �	0(	3)2 � (	2)3:For an eigenvalue to be repeated there must be a common zero of K and dK=d�:Therefore � is a repeated eigenvalue if and only if the resultant of K and dK=d�with respect to � is zero. We conclude, then, that there is a repeated eigenvalueif and only if I and J satisfy I3 = 27 J2: We say that a spacetime is of Petrovtype I if the eigenvalues are all di�erent, or equivalently, if I3 6= 27 J2: Since all theeigenvalues are di�erent, the minimal polynomial of Q for Petrov type I is equalto (Q� �1I3)(Q� �2I3)(Q� �3I3) = 0; where �1; �2 and �3 are the three di�erenteigenvalues.2This follows since trace(AB)=trace(BA) and a matrixM is similar to a diagonal matrix withthe diagonal elements equal to the eigenvalues of M:



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR97For Q to admit a triply repeated eigenvalue, K; dK=d� and d2K=d�2 mustpossess a common factor. Taking the pairwise resultants with respect to �; andequating them to zero, it follows that the invariants I and J must both vanish.The repeated eigenvalue must therefore be zero. We look at the eigenspace be-longing to the triple eigenvalue zero. This space must be at least one-dimensional,otherwise there would not be any eigenvectors, and so there would not be any eigen-values. Suppose that the eigenspace is three-dimensional. Since the dimension ofthe eigenspace is the same as the space to which Q applies, then any vector is aneigenvector of Q. In particular, we must haveQ0BBBBB@ 100 1CCCCCA = Q0BBBBB@ 010 1CCCCCA = Q0BBBBB@ 001 1CCCCCA = 0:It follows that the tensor Q must vanish, and so the spacetimes that belong to thisclass are the conformally at spacetimes. They are said to belong to the class ofspacetimes of Petrov type O.If the eigenspace belonging to the triple eigenvalue zero is two-dimensional, wecan choose two independent vectors ~x1 and ~x2 as a basis for this eigenspace. Choosea vector ~w independent of ~x1 and ~x2: Such a vector must exist, since the eigenspaceis not three-dimensional. The vector Q~w cannot be zero, or even proportional to~w, since ~w cannot be an eigenvector, and so can be expressed in terms of ~w, ~x1 and~x2 : Q~w = a~w+ b1 ~x1 + b2 ~x2;where (b1)2 + (b2)2 6= 0: We want to show that a = 0: Suppose that a 6= 0; andtherefore a is not an eigenvalue of Q: It follows that B := (Q� a I3) is invertible.Therefore ~w = b1B�1 ~x1 + b2B�1 ~x2:



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR98On the other hand, since b1 ~x1 + b2 ~x2 is an eigenvector of Q; we have thatB�1Q(b1 ~x1 + b2 ~x2) = B�1 0 = 0= (I3 + a B�1)(b1 ~x1 + b2 ~x2)= b1 ~x1 + b2 ~x2 + a B�1(b1 ~x1 + b2 ~x2)= b1 ~x1 + b2 ~x2 + a ~w;which is a contradiction since this implies that a = 0: It follows then that, indeed,a = 0; and so Q~w is an eigenvector of Q: Note that Q cannot be equal to zero, sincethe vector ~w is not an eigenvector of Q: Because every vector ~x can be expressed asa combination of ~w; ~x1 and ~x2; it follows that, 8~x; (Q2)~x = 0: Therefore the minimalpolynomial of Q for spacetimes belonging to this class is Q2: Such spacetimes aresaid to be of Petrov type N.Now suppose that the eigenspace belonging to the triple eigenvalue zero of Q isone-dimensional. Let ~x be a non-trivial eigenvector of Q: Every other eigenvectorof Q must then be a multiple of ~x: Let ~y1 and ~y2 be two vectors, independent ofeach other and of ~x; and so ~y1 and ~y2 are not eigenvectors of Q: Since ~x; ~y1 and ~y2form a basis, Q~y1 can be expressed asQ~y1 = a~x+ b1~y1 + b2~y2:Similarly, we obtain Q~y2 = c~x+ d1 ~y1 + d2~y2:By taking ~z := d2 ~y1 � b2~y2; we see that Q~z does not have a component along ~y2:Since there is no loss of generality in taking ~y1 to be this vector ~z; and �nding anappropriate vector ~y2; we can assume that b2 is equal to zero. For simplicity, weshall denote b1 by b: We then have(Q� b I3)~y1 = a~x:



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR99By the same argument as in the preceding paragraph, the quantity b must be aneigenvalue of Q; and so must equal zero. It follows that Q~y1 is an eigenvector of Q:We now apply the matrix Q to the vector ~y2: From the result, we obtain(Q� d2 I3)~y2 = c~x+ d1~y1:Let C := Q� d2 I3: We �rst suppose that d2 is not an eigenvalue of Q, that is, wesuppose that d2 is not zero, whence C is invertible. It follows that~y2 = cC�1~x+ d1C�1~y1:Since ~x is an eigenvector of Q, we have that 0 = C�1Q~x = C�1(C + d2I3)~x =~x+ d2C�1~x; whence C�1~x is a multiple of ~x: The quantity Q~y2 is an eigenvector ofQ; so we must have Q~y1 = e~x; for some non-zero constant e: Because Q = C+d2I3;we obtain eC�1~x = ~y1 + d2C�1~y1; therefore, C�1~y1 belongs to the space spannedby ~x and ~y1; and so also must ~y2: This is a contradiction; therefore d2 must bean eigenvalue of Q; and so d2 must be zero. We thus get that Q~y2 = c~x + d1 ~y1:The quantity d1 cannot be equal to zero, since otherwise Q(c~y1 � a~y2) = 0; andso c~y1 � a~y2 = f~x; for some f: This cannot be, since ~y1; ~y2 and ~x are linearlyindependent, whence, (Q2)~y2 = d1~x 6= 0; and so Q2 6= 0: However, every vector~w is expressible as a linear combination of ~y1; ~y2 and ~x; so it must follow that8~w; (Q3)~w = 0: The minimal polynomial of Q is then Q3: Spacetimes belonging tothe present class are said to be of Petrov type III.We now consider the situation of a double eigenvalue, �: Since the sum ofthe eigenvalues must be zero, the non-repeated eigenvalue must be �2�: We havealready handled the situation of a triple eigenvalue, so we can impose the condition� 6= 0: Suppose that the eigenspace of the double eigenvalue � is two-dimensional.Let ~x1 and ~x2 be two eigenvectors of Q that form a basis of the eigenspace of �:



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR100Let ~y be an eigenvector that belongs to the eigenvalue �2�: The vector ~y must beorthogonal to both ~x1 and ~x2, since it belongs to a di�erent eigenvalue. Thus thevectors ~y; ~x1 and ~x2 form a basis for the full space. Let ~w be any vector. Theremust exist numbers a1, a2 and b such that~w = a1 ~x1 + a2 ~x2 + b~y:Applying the Q+ 2� I3 operator to ~w yields(Q+ 2� I3)~w = a1(Q� � I3) ~x1 + a2(Q� � I3) ~x2 + b(Q+ 2� I3)~y+3a1� ~x1 + 3a2� ~x2= 3a1� ~x1 + 3a2� ~x2;whence, (Q� � I3)(Q+ 2� I3)~w = 0:Since ~w is arbitrary, the minimal polynomial of Q must be (Q� � I3)(Q+ 2� I3):Spacetimes that belong to the present class are said to be of Petrov type D.Now suppose that the eigenspace of the double eigenvalue � has dimension 1. Let~x and ~y be non-trivial vectors belonging to the eigenspace of � and �2� respectively.The vectors ~x and ~y are orthogonal to each other, since they belong to di�erenteigenvalues. Let ~z be a vector orthogonal to both ~x and ~y: The vector ~z cannot bean eigenvector of Q: Hence there exist scalar functions a; b and c such thatQ~z = a~x+ b~y + c~z:The functions a and b cannot vanish at the same time, otherwise ~z would be aneigenvector. De�ne C to be equal to Q � cI3: If c is not an eigenvalue, then C isinvertible, and we obtain z = C�1(a~x+ b~y):



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR101We also have 0 = C�1(Q� � I3)~x = C�1[C + (c� �)I3]~x= x+ C�1(c� �)~xand0 = C�1(Q+ 2� I3)~y = C�1[C + (c+ 2�)I3]~y= y + C�1(c+ 2�)~y:It follows that (c� �)(c + 2�)~z = �(c� �)b~y � a(c+ 2�)~x:Now this is a contradiction, since c is assumed not to be an eigenvalue and ~x; ~y and~z are independent. Therefore C is not invertible and so c must be an eigenvalue.Suppose that c = �2�; and so(Q+ 2� I3)~z = a~x+ b~y:Because a matrix must satisfy its characteristic equation, Q must satisfy(Q� � I3)2(Q+ 2� I3) = 0;however, (Q� � I3)2(Q+ 2� I3)~z = b�2~y:In this case, b must be zero. SinceQ(3�~z � a~x) = 3�(�2�~z + a~x)� a�~x = �2�(3~x � a~x);we have that 3�~z � a~x is in the eigenspace of �2� and so must be proportional to~y: This is a contradiction. We thus have c = �; and so(Q� � I3)~z = a~x+ b~y:



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR102This is compatible with the characteristic equation of Q; and so there are no furtherrestrictions on a and b, provided that neither a nor b is zero. Let ~w be any vector.There are then functions c; d and e such that ~w = c~x+d~y+e~z:We �nd the minimalpolynomial of Q using the following computations:(Q+ 2� I3)~w = 3c�~x+ e(a~x+ b~y + 3�~z);(Q� � I3)(Q+ 2� I3)~w = �3eb�~y + 3ea�~x+ 3eb�~y = 3ea�~xand (Q� � I3)2(Q+ 2� I3)~w = 0:The minimal polynomial of Q is then (Q�� I3)2(Q+2� I3): Spacetimes belongingto this class are those of Petrov type II.We can summarize the content of the present section into table 4.1 where thePetrov type is given by the most restrictive matrix that applies.3
3A similar table appears as table 4.1 of Kramer et al. (1980).



CHAPTER 4. THE PETROV CLASSIFICATION OF THE WEYL TENSOR103
Petrov Matrix condition Dimension oftype (use the most restrictive matrix condition eigenspacethat applies)I (Q� �1 I3)(Q� �2 I3)(Q� �3 I3) = 0 < �1 >= 1�1; �2; �3 all di�erent < �2 >= 1< �3 >= 1D (Q+ �2 I3)(Q� � I3) = 0 < ��2 >= 2< � >= 1II (Q+ �2 I3)2(Q� � I3) = 0 < ��2 >= 1< � >= 1N Q2 = 0 < 0 >= 2III Q3 = 0 < 0 >= 1O Q = 0 < 0 >= 3The expression < � > is de�ned to be the dimension of theeigenspace associated with the eigenvalue �:Table 4.1: Petrov types.



Chapter 5The shear-free conjectureOnly a life lived for others is a life worthwhile. Albert EinsteinT HERE IS a growing body of evidence that the following conjecture, which weshall refer to as the shear-free conjecture, is true:Conjecture 1 A shear-free perfect uid that obeys a barotropic equation of state,p = p(�); such that �+p 6= 0; and satisfying the �eld equations of general relativity,is necessarily either irrotational or expansion-free, i.e., � = 0) !� = 0:This conjecture appears to have �rst appeared in the literature in King (1974).King attributes it to Treciokas and Ellis (1971).In the following pages, we present a historical account of the various resultssupporting the conjecture. Thereafter, the conjecture is proved for two specialcases. The �rst case is that when the Weyl tensor is purely magnetic with respect104



CHAPTER 5. THE SHEAR-FREE CONJECTURE 105to the uid ow vector. The second case is that of a coasting1 universe, i.e. onewith the equation of state satisfying dp=d� = �1=3:5.1 Historical surveyIn this section, we review the basic results previously obtained with respect to theshear-free conjecture. Particular attention is paid to features that were criticalto the success of the authors in establishing the veracity of the conjecture undervarious hypotheses. Collins (1986) gives a quite extensive discussion on shear-freeuids in general relativity. In particular, he provides a survey of the literature onthe shear-free conjecture and its consequences.The �rst result of which I am aware concerning the shear-free conjecture iscontained in the work of G�odel (1950). G�odel considers spacetimes with a dustsource, i.e. perfect uids with vanishing pressure. He requires the spacetime tobe spatially homogeneous and rotating, with non-constant energy density. Sincethe energy density varies, the space must be expanding. Therefore he requiresthat the product !� be non-vanishing. Since the dust is rotating, the ow velocitycannot be orthogonal to the surfaces of homogeneity, i.e. the spacetime is tilted.Furthermore, G�odel requires that the isometry group must be compact. He showsthat the group must be a three-parameter group that cannot be commutative, andtherefore that itmust be isomorphic (as a group of transformations) with the right (orleft) translations of a 3-space of constant positive curvature, or with1Matter-energy is between attracting and repulsing regimes as can be seen from Raychaudhuri'sequation.



CHAPTER 5. THE SHEAR-FREE CONJECTURE 106these translations plus certain rotations by an angle �:(G�odel, 1950)It follows then that the spacetime must be a tilted spatially homogeneous spacetimeof Bianchi-Behr type IX. If in addition the metric induced in the 3-spaces ofconstant density is positive de�nite, or, equivalently (G�odel, 1950), if the spacetimecontains no closed timelike lines, then the expansion tensor cannot be, at any instantof time, rotationally symmetric about the axis of rotation. This therefore requiresthat the spacetime exhibits shear. G�odel considers it very likely thatthere exist no rotating spatially homogeneous and expanding solutionswhatsoever in which the ellipsoid of expansion is permanently [G�odel'semphasis] rotationally symmetric around !:Sch�ucking (1957) generalizes the result of G�odel (1950) on the shear-free con-jecture to general spatially homogeneous dust. Sch�ucking remarks that shear-freemodels with simultaneous expansion and rotation would represent spacetimes thatare intermediate between the isotropically expanding Friedmann models withoutrotation and the stationary rotating G�odel models without expansion. Sch�uckingwrites the line element for a spatially homogeneous spacetime with dust in comov-ing coordinates as follows (with the convention of G�odel (1950) that has Greekindices running over 0 to 3 and Latin indices running over 1 to 3):ds2 = (dx0)2 + 2g0i(xj)dx0 dxi + gik(x�)dxi dxk:The velocity is given by u� = dx�ds = ��0 :



CHAPTER 5. THE SHEAR-FREE CONJECTURE 107The length scale R is de�ned as R3 = p�g; where g = det jg�� j: The equation ofcontinuity and the requirement of spatial homogeneity necessitate that R separatesas R(xr) = S(x0)W (xj):The (00) and the (0i) Einstein �eld equations, since they must hold for arbitraryxj; are then two di�erential equations for S(x0) which are incompatible with eachother under the requirement that both the expansion and the vorticity be non-zero. Sch�ucking (1957) mentions that models with both vorticity and expansiondo exist in Newtonian cosmology, as long as one does not neglect the ambiguity2(which is characteristic of such models) of the boundary conditions. The re-sult of Sch�ucking (1957) was generalized by Ellis (1967) to general dust and byBanerji (1968) for perfect uids with an equation of state p = ( � 1)�; such that 6= 10=9:Ellis (1967) studies general relativistic pressure-free matter. The scope of thiswork covers much more than the shear-free conjecture; however, we shall restrictourselves to that aspect. Ellis proves the conjecture for shear-free dust, i.e. foruids without pressure. An immediate consequence of requiring that the pressurevanish is that the acceleration must also vanish; this is proved using three of the fourcontracted Bianchi identities. The framework used is the orthonormal technique.Ellis proves the conjecture for shear-free dust by showing that a contradiction isreached after making the hypothesis that neither the expansion nor the vorticityvanishes. A sketch of the proof follows.The ~e0�axis is chosen to be the uid ow velocity. The ~e1�axis is chosen to2The problem is that it is not possible to invariantly separate the inertial and the gravitationalparts of the acceleration. For more details see Ellis (1971).



CHAPTER 5. THE SHEAR-FREE CONJECTURE 108be parallel to the vorticity vector. The vectors ~e2 and ~e3 have the freedom of ro-tation through the angle �: The propagation of this angle along ~e0 is chosen suchthat !1 + 
1 = 0: The Jacobi identities imply that 
2 = 
3 = 0: For shear-freeuids, then, !� + 
� = 0; with the convention that Greek indices run over 1 to3 and Latin indices run over 0 to 3. The propagation along ~e1 of � is chosen insuch a way to set 
̂ � �̂23 = 0: The Jacobi identities, some of the Einstein �eldequations and the remaining contracted Bianchi identity, which expresses conser-vation of energy, are then computed and used to �nd the four derivatives of theexpansion, the ~e0� and the ~e1�derivatives of the vorticity and the ~e0�derivativesof �; !; d2; d3; n;A2; A3; �̂22; �̂23; �̂33 and �: The [~e0; ~e2] and [~e0; ~e3] commutation re-lations on ! are then used to �nd the propagation of @2! and @3! along ~e0; wherewe denote the ~ei�derivative by @i: The propagation along ~e0 of the equations isthen used exclusively as the tool to generate further equations. The three spa-tial derivatives of � and various algebraic constraints are found. It is shown that�̂22 + �̂33 = 0 and n = 0: The propagations along ~e0 of @2� and of @3� yield twoequations involving @2! and @3!: Propagation of these yields two other such equa-tions; from these last four equations, the relation d2@3! � d3@2! = 0 is deduced.The propagation along ~e0 of the (11), (22) and (33) �eld equations produces therequired contradiction.We note, as did Ellis, that the timelike ~e0�congruence is the principal featureof this paper. As White and Collins (1984) observed, the proof of Ellis also holdsfor the more general situation when the pressure is constant. Any non-zero con-stant pressure can be absorbed into the cosmological term �, with the appropriateadjustment of the de�nition of the energy density. White and Collins (1984) givea slightly di�erent proof for this case, but in the same notation as that used in thepresent work.



CHAPTER 5. THE SHEAR-FREE CONJECTURE 109As a note on the history of the conjecture, we mention that Ellis (1967) asksthe question \under what more general3 conditions does such a result4 hold?"Banerji (1968) considers shear-free rotating spatially homogeneous perfect uidspacetimes with a gamma law equation of state p = (�1)�; where �1 is positive.He �nds that the conjecture holds except possibly when  = 10=9: The method ofstudy is based on coordinates. Let the surfaces of homogeneity be labelled byt = constant: The metric is given by ds2 = dt2 + 2g4idt dxi + gikdxi dxk: Thefunction G = p�g satis�es _G=G = �=3; where the dot (_) indicates di�erentiationalong the uid ow and Latin indices run from 1 to 3. For spatially homogeneousspacetimes, the function G separates as the product of a function, S; of x4 aloneand a function, W; which is independent of x4: The vorticity must be of the form!2 = AS6+2; with A being a positive constant. The (00) equation and a particularcombination of the (0�) �eld equations give, by integration, an algebraic relationon the function S: The requirement that �! 6= 0 then requires that S be equal top�Et; where E is a negative constant. The requirement that the energy densitynot vanish then shows that the only values for  are  = 1 and  = 10=9: The value = 1 corresponds to dust, for which Sch�ucking (1957) has shown the veracity ofthe shear-free conjecture in the case of spatially homogeneous spacetimes. Banerjiconsiders \not unlikely" that the case p = �=9 can also be ruled out, but does notgive a proof for this situation.Ellis (1971) mentions that for conformally at spacetimes, the Bianchi identitiesrequire that perfect uids must be shear-free, irrotational and geodesic. In other3than the conditions of the dust-�lled world with homogeneous space sections considered bySch�ucking.4that � 6= 0 = � ) ! = 0:



CHAPTER 5. THE SHEAR-FREE CONJECTURE 110words, they must be the Friedmann-Robertson-Walker models. The result is alsocontained implicitly in Stephani (1967b) and (1967a) who investigated conformallyat solutions of the Einstein �eld equations for a perfect uid or an electromagnetic�eld.Treciokas and Ellis (1971) proves the conjecture for the case of a shear-freeuid with the equation of state p = �=3: The method of proof is coordinate-based.First, Treciokas and Ellis show that for a shear-free perfect uid with a barotropicequation of state and with non-zero vorticity, local co-moving coordinates can bechosen so that the spacetime metric isds2 = 1w2(xa) �f��(x�)dx� dx� � v2(xa)(dx0 + x2 dx3)2� ;with v := w=r; where w := exp Z ��0 d�3(�+ p)!and r := exp Z pp0 dp�+ p! :The convention that Latin indices go from 0 to 3 and that Greek indices go from 1to 3 is used. The only quantities appearing in the metric that depend on time (x0)are w(xa) and v(w). The authors de�ne W (xa) := w;0 and X�(xa) := w;a � a�W;where a�(x�) := x2�3�. The expansion of the uid vanishes if and only if W does.The Xa are related to the acceleration terms. We note that the exterior derivativeof w is W (dx0 + x2 dx3) +X� dx�. The critical condition that p = �=3 translatesinto v = 1. There is then a precise correspondence with the spacetimes (within theclass under consideration) that are conformal to a static spacetime. An outline ofthe proof of the conjecture in this case now follows.The (00) �eld equation yields an expression for @0W ; the (0�) �eld equations give@0X� and the (��) ones give @�X� . The only expressions that contain derivatives



CHAPTER 5. THE SHEAR-FREE CONJECTURE 111of W are those for @�X� . They contain the term @0W: The (00); (0�) and (23)�eld equations are di�erentiated with respect to the variable x0: The resultingequations are denoted by (00);0; (0�);0 and (23);0; respectively, where (ab);0 denotesdi�erentiation of the (ab) �eld equation with respect to x0: The (00);0 equationyields an expression for @0@0W . The (0�);0 equations are then put in the form ofequations that are linear in X� ; with coe�cients in which the only dependence onx0 appears in the function w. The determinant of these three equations, consideringX� as the variables, is a polynomial in w with coe�cients independent of x0. Byrepeated di�erentiation with respect to x0, one can conclude that this determinantcan vanish if and only if all coe�cients of the polynomial in w vanish. It is thereforeof critical importance that w appears only in a polynomial fashion. The leadingcoe�cient, (8�0=3)3, cannot vanish, and therefore neither can the determinant. Onecan then solve for the variables X� : They appear as the ratio of a polynomial in w ofdegree 5 by a polynomial in w of degree 6 (the aforementioned determinant). Thenone solves for W from (23);0 and substitutes the result in (00). After multiplicationby a suitable power of the determinant and by a suitable power of a particular timeindependent function, Treciokas and Ellis (1971) obtain that a certain polynomialin w; with coe�cients independent of x0; vanishes. The leading coe�cient of thispolynomial must then vanish, but this is a contradiction because it is equal to5(�0=3)2(8�0=3)9; a non-zero quantity.We note that here as well the derivatives with respect to x0 are extremelyimportant. The crucial part of this proof is that the authors obtained the vanishingof quantities that are polynomials in the time-dependent variable. Unfortunately,this desirable feature does not appear to be generic, and so this method of proof isunlikely to apply to the full conjecture.We also note that higher order derivatives are eliminated as soon as possible in



CHAPTER 5. THE SHEAR-FREE CONJECTURE 112favour of lower order derivatives. The highest order derivative appearing explicitlyis @0@0W: This corresponds to second order derivatives of the kinematic quantities.Treciokas and Ellis (1971) also provide an outline of the proof of the conjecturefor the situation when there exists a function � such that the acceleration potentialr and its derivative along the uid ow _r are related by _r = �(r): Except inthe situation of dust, for which, anyway, Ellis (1967) established the truth of theconjecture, this case of Treciokas and Ellis (1971) is equivalent to the situationconsidered by Lang and Collins (1988). This work of Lang and Collins, which willbe examined below, provides the �rst full published proof, as far as we are aware,for this situation.Treciokas and Ellis (1971) mention that they would like to know the preciseconditions for which the requirement of vanishing shear entails that the product !�vanish. They conjecture thatIt is conceivably true for all perfect uid solutions, or for all perfect[uid] solutions with an equation of state of the form p = p(�).Treciokas and Ellis (1971) also mention that their result does not hold in the cor-responding Newtonian theory. Furthermore, the condition of vanishing shear doesnot impose restrictions on Newtonian spacetimes, unlike in the relativistic theory.Treciokas and Ellis conjecture that the energy-momentum tensor will be that cor-responding to a perfect uid only if the shear vanishes. Collins (1987) uses thisconjecture in a study on the uniqueness of the Friedmann-Robertson-Walker cos-mological models.King and Ellis (1973) generalize the work of Banerji (1968) by removing theconditions on the equation of state. They prove the conjecture for homogeneous



CHAPTER 5. THE SHEAR-FREE CONJECTURE 113cosmological models, provided the reasonable condition � + p > 0 holds. Thetechnique used in this proof is the method of tetrads. Let S(t) represent the surfacesof homogeneity. Let the vector ~n be the unique future-directed normal vector �elddetermined by S(t): If the vector ~n does not equal the uid ow vector, then themodel is said to be tilted. The orthogonal tetrad used by King and Ellis in theproof of the conjecture is a normalized uid basis. The vector ~e0 is a future-pointingvector parallel to the uid ow that has length r�1; wherer(t) := exp Z tt0 dp=dt� + p dt:This factor is included in order to simplify the tetrad form of the conservationequations. The vector ~e3 is chosen to be in the 2-plane spanned by ~u and ~n: Thevectors ~e1 and ~e2 are unit vectors that span the 2-planes orthogonal to ~n and~e3: The freedom of rotation in the de�nition of ~e1 and ~e2 is chosen so that the~e0c~e1cd�!2 connection coe�cient vanishes. All the connection coe�cients are func-tions of t only. King and Ellis note that the crux of the proof is that if the uid doesnot possess shear, then the Jacobi identities and the renormalized tilt parameter� := r tanh �; where cosh� := �g(~u; ~n); can be integrated up to a quadrature,in terms of a length parameter `; which has the same t�dependence as the func-tion G of Banerji (1968), de�ned by _̀=` = �(t)=3; where the dot (_) representsthe covariant derivative along the uid ow lines. Three cases arise (i) !2!3 6= 0,(ii) 0 = !3 6= !2 and (iii) 0 = !2 6= !3: The assumption that !� 6= 0, together withthe �eld equations, then yields a contradiction. King and Ellis (1973) describe theproof as \straightforward and tedious" and therefore do not give details beyond anoutline but refer to King (1973). We have not consulted King (1973), especiallysince the work of Lang and Collins (1988), as discussed below, encompasses thepresent part of that of King and Ellis (1973). The work of White (1981) relaxesthe condition �+ p > 0 by showing that the conjecture is true for spatially homo-



CHAPTER 5. THE SHEAR-FREE CONJECTURE 114geneous spacetimes under the more general condition � + p 6� 0: Incidentally, as ahistorical note, Lang and Collins (1988) notice that the work considered by Kingand Ellis (1973) is a special case5 of one of the situations considered by Treciokasand Ellis (1971); thereby, an alternative proof of the conjecture for the situation ofKing and Ellis (1973) could have been obtained.King (1974) studies singularities of shear-free perfect uids. Under certain con-ditions, such uids cannot have matter singularities. As a consequence of his result,he considers very plausible the truth of the shear-free conjecture, attributed by himto Treciokas and Ellis (1971). King (1974) states the conjecture as follows:... that either the expansion � or the vorticity ! must vanish in a shear-free perfect uid model, at least for p = p(�) [such that]0 � dpd� � 13 :King (1974) thus provides the �rst allusion in the literature to the conjecture.White and Collins (1984) show that the shear-free conjecture holds when thevorticity is parallel to the acceleration, including the degenerate case of geodesicow. The method involves the use of the orthonormal tetrad technique in a proofby contradiction that �rst assumes that !� 6= 0: The ~e0�axis is chosen to be alongthe tangent to the ow, normalized so that the ow velocity is unit. The ~e1�axisis chosen to be in the common direction of the acceleration and of the vorticity.The proof splits into two cases. The �rst case, when the ow is not geodesic,is the simpler of the two. We note that in the proof, the derivatives in the four5De�ned by _r = �(r) in the notation of Treciokas and Ellis (1971).



CHAPTER 5. THE SHEAR-FREE CONJECTURE 115directions of � and of the acceleration have been isolated as early as possible. Com-mutation relations have been used on variables. No second order derivatives neededto be isolated. There was then a crucial propagation of various expressions alongthe uid ow direction.In the second case, the ow is geodesic. Apart from an integration constant,this is essentially the situation of dust considered by Ellis (1967). White andCollins (1984) provide a proof similar to that of Ellis (1967), but in their notation.This enables a more direct comparison with the non-geodesic case, and clari�esthe rôle of the intrinsic geometrical quantities. It also enables the direct use ofthe intermediate results of White and Collins (1984) in the study of shear-freeperfect uids that is found in Collins and White (1984). As before, the proofuses commutation relations on the expansion, the energy density and the vorticity.As well, di�erentiation along the ow direction is still crucial; however, a newfeature arises: second order derivatives are calculated (namely @0@2! and @0@3!)and eventually eliminated. This is an indication that the geodesic case of theconjecture is more complex than the �rst case since second order derivatives areinvolved. That second order derivatives are eliminated (algebraically), yieldingequations with only lower order derivatives, is a new feature that will recur in theproof of other situations.In the work of Lang and Collins (1988), the rate of expansion is functionallyrelated to the energy density. This is equivalent to requiring that the uid obeys atype of homogeneity proposed by Bonnor and Ellis (1986), namely, the postulate ofuniform thermal history (PUTH). This postulate is based on the assumption thatsimilar thermodynamic histories imply similar dynamical histories. This requiresthat, for example, pressures and densities are not substantially a�ected by non-



CHAPTER 5. THE SHEAR-FREE CONJECTURE 116thermodynamic factors, such as gravitational waves. The postulate is expressed asfollows:Both density, � and entropy per baryon S are uniform for the funda-mental observers in the Universe.(Bonnor and Ellis, 1986).The framework is that of an orthonormal tetrad aligned as follows. The vector~e0 is aligned with the uid ow, and is unit. The ~e1�axis is parallel to the vorticityvector. The other two axes are rotated such that the (projected) shear tensor ofthe ~e1� congruence be diagonal ( �̂23 = 0 ). The shear-free conjecture is proved bycontradiction, supposing �rst that !�(�+p) 6= 0, then showing inconsistency. Thereare six di�erent cases to be treated. The �rst case is when the energy density, �; isconstant. One of the contracted Bianchi identities gives immediately the requiredcontradiction.The second case is that when the pressure, p, is constant. This case is basicallycovered by Ellis (1967). As mentioned in White and Collins (1984), the constantcan be \absorbed" into the cosmological constant followed by a reinterpretationof � and p. If this is done, then the proof of Ellis (which was for vanishing p)carries through without changes. In this situation, the conjecture holds withoutany further restrictions on �. White and Collins (1984) give a proof very similar tothat of Ellis (1967).The third case has the acceleration parallel to the vorticity. This has beentreated by White and Collins (1984). At this point, we prove that requiring that,in a general setting, the acceleration be non-zero and parallel to the vorticity, nec-essarily implies that the expansion and the energy density are functionally related.



CHAPTER 5. THE SHEAR-FREE CONJECTURE 117That this is the situation was not realized by Lang and Collins when they estab-lished their results. The proof is as follows. Since _u2 � _u3 � 0 then @2� = @3� = 0,by the Bianchi identities. Also @2� = @3� = 0 by the commutation relations on �;given by equation (3.1) of White and Collins (1984). Therefored� ^ d� = 0if and only if @0�@1� � @1�@0� = 0:Now, @0� = �(�+p)� and @1� = �(�+p) _u=p0 by the contracted Bianchi identities;@0� = (3=4)n2 as in equation (3.3) of White and Collins (1984); and @1� = (3=2)n!by the (01) �eld equation. Therefore@0�@1�� @1�@0� == �(3=4)n2(� + p) _u=p0 + (3=2)n!(� + p)�= �(3=4)n(� + p)=p0 � 2!p0� + (3=2)n!(� + p)�= 0;where use has been made of equation (3.5) of White and Collins (1984), viz. 2!p0� =n _u. The non-geodesic situation treated in White and Collins (1984) and by Collinsand White (1984) is then a proper subcase of that covered by Lang and Collins,and therefore obeys PUTH.After these �rst three cases, for which the proof of the conjecture is either im-mediate or has been done in previous work, Lang and Collins now turn to themain part of the proof. Four torsion expressions are computed. These expressionswere not recognized as such by Lang and Collins (1988), but for much of the presentwork, torsion will be a useful notion. It may be explained in loose terms as follows.66More will be mentioned about the torsion after the discussion of the sixth case.



CHAPTER 5. THE SHEAR-FREE CONJECTURE 118The torsion equations arise from particular combinations of commutation relations.Normally, commutation relations on algebraic quantities give second order deriva-tives. The torsions are the combinations that give derivatives of lower order thanexpected. In this case, the torsions would be expressions involving derivatives of atmost �rst order. The four torsions just noted are even more special, since they donot involve derivatives at all, but only algebraic quantities.We now examine the fourth, �fth and six cases of the proof. The fourth casecorresponds to constant uid expansion (�0 = 0). In the proof, the operator (1=�)@0is used twice, where @0 is the derivative along ~e0: The proof is completed by notingthat the ow is necessarily geodesic. This case therefore reduces to one alreadytreated.The �fth case has the equation of state obeying p0 = 1=9, excluding the situationcovered in the fourth case. It is interesting to note that this rather peculiar equationof state also appeared as the one exceptional case in the work of Banerji (1968)that was not treated, although it appears here in a broader context. The operators(1=�)@0 and @0 are used. Also a further torsion equation, involving a �rst orderderivative, is obtained. This equation enables the authors to solve for @2 _u3 andthen for @3 _u2. With this, the commutation relation [~e0; ~e1] on _u2 now becomes atorsion equation which leads to _u2 _u3 = 0. The choice is made to set _u2 = 0:7A further torsion equation was then evaluated, yielding a value for @1 _u3. Thisenables the commutation relation [~e0; ~e1] on _u3 to become a torsion equation, fromwhich the conclusion that _u1 vanishes is obtained. All the preceding results andthe commutation relation [~e0; ~e2] on d3 then produce a contradiction, namely that�! should vanish.7The other choice of _u3 = 0 is completely symmetric, and so there is no loss of generality.



CHAPTER 5. THE SHEAR-FREE CONJECTURE 119The sixth case is the general case where (p0 � 1=9)�0 6= 0. The authors startby obtaining a few expressions involving only functions of �. Then they derive ahomogeneous system of three linear equations (with coe�cients being functions of� only) in _u2; !2 and � + p. The di�erential operations used are di�erentiationwith respect to � and di�erentiation along the ow vector. The trivial solutionto this linear system is to be rejected, and so the determinant (a function of �only) must vanish. This determinant takes the form of a bivariate polynomial inp0 and G (a particular function of � involving p00). The derivatives of G and ofp0 with respect to � were previously calculated and are expressible in terms of Gand p0. Therefore, by di�erentiating the above bivariate polynomial with respectto �, another similar polynomial is obtained. In order that they have simultaneoussolutions, their resultant with respect to G must also vanish. This resultant is anon-trivial univariate polynomial8 in p0: Consequently, p0 is a constant. This crucialstep then leads one to the result that �+ p = 0: This is the required contradiction.In their remarks, Lang and Collins (1988) noted that 6 commutation relationswere applied to 12 variables, leading to 72 equations. There were two combinationsof those commutation relations that were purely algebraic. Normally, commutationrelations on algebraic quantities give expressions with second order derivatives.There may be combinations involving lower order derivatives, and, as can be seenin the proof of Lang and Collins, such combinations were also used. We note theywere also used in White and Collins (1984). No further justi�cation was given to thisprocedure, other than that it works. It so happens that �nding these combinationsis a well de�ned procedure of the theory of exterior di�erential systems,9 that of�nding the torsion. We point out that whenever known relations are propagated,8The resultant is of degree 60, has 53 terms and has some coe�cients with over 40 digits!9For more information about exterior di�erential systems, see Bryant et al. (1991).



CHAPTER 5. THE SHEAR-FREE CONJECTURE 120new torsion expressions may appear. We also note that the cases where the proof isthe most di�cult are those where the acceleration is perpendicular to the vorticity.From equation (4.19) of Ellis (1971) it is immediate that all non-rotating shear-free perfect uids must necessarily have a vanishing magnetic part of the Weyltensor. In an article by Collins (1984), it is shown that the converse does notnecessarily hold, but that if the uid is rotating, then the expansion must vanish(under the usual assumptions of �+p 6= 0 and a barotropic equation of state). First,for the case of geodesic ow, the situation is covered by White and Collins (1984)and by Ellis (1967); this therefore needs no further attention as far as the conjectureis concerned.A sketch of the proof of the conjecture for non-geodesic ow with a purelyelectric Weyl tensor follows. The tetrad is chosen such that ~e0 is along the uidow and is unit. The ~e1�congruence is chosen to be parallel to the vorticity. Itis assumed that the vorticity is non-zero. From the (full) Bianchi identities, itfollows that the vorticity vector is an eigenvector10 of the symmetric tensor Eab;representing the electric part of the Weyl tensor. In the chosen frame, E0a =E12 = E13 = 0 (a = 0; 1; 2; 3) and therefore the ~e0�propagation of E11 simpli�es to@0E11+�E11 = 0. The eigenvalue corresponding to the vorticity vector is �(1=3)(�+p); by the choice of tetrad, E11 must therefore be equal to this eigenvalue. Theconclusion follows from the propagation of E11 and the contracted Bianchi identity@0�+ (� + p)� = 0.Collins then proceeds to examine further the case when the vorticity does notvanish (and therefore, the expansion must vanish). We note that, in this situation,10The fact that the vorticity vector is either zero or is an eigenvector of Eab was independentlynoticed by Barnes (1984).



CHAPTER 5. THE SHEAR-FREE CONJECTURE 121~e0 is again distinguished, by being a Killing vector. The process of �nding thetorsion is again used (although not in any explicit way), as is the process of isolatingthe various derivatives of the acceleration vector components. Two classes appearaccording to whether or not the acceleration is parallel to the vorticity. In the �rstclass, they are not parallel. The tetrad is rotated so that _u3 = 0. It follows that ~e3is a second Killing vector. The situation where the acceleration is perpendicular tothe vorticity is again distinguished since, in that case, there is a third Killing vector,namely ~e1. Because there is a Killing vector parallel to the vorticity vector, suchspacetimes belong to a class of models investigated by Krasi�nski (1978). This classwill be studied in more detail as case C of chapter 6. In the second class, where theacceleration is parallel to the vorticity, the condition that the acceleration be alsoperpendicular to the vorticity (and so, that the acceleration vanish) again arisesas a special case { the vorticity is constant, and so are the pressure and energydensity. This is the G�odel solution, generalized to include pressure. This subclassis also distinguished in that there is a G5 isometry group instead of a G4.Carminati (1987) proves the shear-free conjecture for the situation when theWeyl tensor is of type N. The actual result is stronger than that of the conjecture.The spacetimes under consideration are shown to have vanishing volume expansionand necessarily non-vanishing vorticity. The Newman-Penrose (NP) formalism isused for the calculations. The null tetrad f~̀; ~n; ~m; ~�mg is chosen in the followingmanner. The vector ~̀ is chosen to be the repeated principal null direction of theWeyl tensor. By a rotation that leaves ~̀ �xed, ~n is made to lie in the two-spacespanned by ~̀ and the uid velocity vector ~u: Then ~̀ and ~n are rescaled so that~u = (1=p2)(~̀+ ~n): The freedom left in the choice of the tetrad is a multiplicationof the vector ~m by a complex number with unit modulus. Imposing this choiceof tetrad, the shear-free condition, the barotropic equation of state and the condi-



CHAPTER 5. THE SHEAR-FREE CONJECTURE 122tion that the spacetime be of Petrov type N in the Bianchi identities and the NPequations readily leads to the result that the repeated null congruence of the Weyltensor is non-geodesic and that the uid is necessarily rotating. The assumptionis made that the uid has non-zero expansion. Three subcases arise, each of whichleads to a contradiction. The �rst subcase has dp=d� 6� 0 and 1 + 3 dp=d� 6� 0:After some calculations, a contradiction is reached. Derivatives of Weyl tensor com-ponents were used. The second subcase has dp=d� = 0: This case is quickly shownto be impossible. The remaining rotational freedom of the tetrad is then used toimpose on the NP quantities � and � the restriction that ��+ � = �+ ��: This is acondition on a component of the acceleration divided by dp=d�: The third subcasehas 1 + 3 dp=d� = 0: This case is shown to be impossible after some calculations.The techniques of calculations are similar to that used in the orthonormal tetradapproach, except that the Bianchi identities are used explicitly. The Weyl tensorand Ricci tensor components also appear explicitly, instead of being expressed interms of the equivalent of the kinematic quantities and their derivatives. Commu-tation relations on the energy density are used. The various derivatives are appliedto propagate algebraic relations. The highest order derivative appears as the �rstderivative of the Weyl tensor components; therefore, second order derivatives of thekinematic quantities are potentially involved. The result proved is actually evenstronger than showing that the expansion vanishes, which is equivalent to askingthat the NP quantities11 � and � satisfy �� � � = 0: Carminati (1987) shows thatboth � and � vanish. The extra conditions can be interpreted as constraints onthe kinematic quantities of the ~v�congruence, where ~v is de�ned as the unit vectororthogonal to the uid ow vector, and lying in the two-space spanned by ~̀ and ~n:11The � used here is the NP quantity. It should not be confused with the energy density whichis denoted by � everywhere else in the present work.



CHAPTER 5. THE SHEAR-FREE CONJECTURE 123It is of interest to note that the uid in the spacetimes under consideration musthave non-zero acceleration and vorticity, and that the acceleration is orthogonal tothe vorticity. Carminati (1987) suggests that an avenue for further exploration is toconsider uids where the acceleration is perpendicular to the vorticity, regardless ofthe Petrov type. This would complement the results of White and Collins (1984),and is very closely related to the spacetimes explored by Krasi�nski (1978).In a later article, Carminati (1988) showed that perfect uid spacetimes ofPetrov type N, for which he had proved that the conjecture holds, are stationary,possess a three-parameter abelian group of local isometries acting simply transi-tively on time-like hypersurfaces and possess one Killing vector parallel to the owvelocity and another parallel to the vorticity vector. The presence of this lastKilling vector entails that spacetimes of Petrov type N must belong to the classof spacetimes studied by Krasi�nski (1978), and so must belong to our case C ofchapter 6. Our result that there are no spacetimes within the scope of chapter 6 ofPetrov type N that belong to either our case A or our case B is compatible withthe result of Carminati (1988).Carminati (1990) proves the conjecture for a subcase of the Petrov type IIIspacetimes. The framework for the proof is the Newman-Penrose formalism, whichuses null tetrads. The tetrad is initially chosen as in Carminati (1987). The caseswhen the pressure is constant, and when it is equal (up to an additive constant)to a third of the energy density have already been solved. The conjecture is thenproved for the so-called \aligned" cases. The �rst aligned case is de�ned to bethat arising when the acceleration vector lies in the two-space spanned by ~m and�~m: From the [�; ��] commutation relation on the energy density, two classes emerge.The �rst class is further divided into two subclasses, according to whether or not the



CHAPTER 5. THE SHEAR-FREE CONJECTURE 124vorticity vector has a component along the vector ~̀�~n; i.e. depending on whetheror not the vorticity vector lies in the two-space spanned by ~m and �~m: The secondclass necessarily does not have such a vorticity component. The second aligned caseis when the uid velocity vector lies in the two-spaces spanned by the principal nulldirections of the Weyl tensor. There are three subcases to be considered.We note that the [�;�] commutation relation was applied to the 	3 Weyl tensorcomponent. Therefore this proof possibly entails the computation of third orderderivatives of kinematic quantities. However, both the �� and the ��derivativesof 	3 were obtained in terms of the kinematic quantities and the energy density.The result of the commutation relation is an algebraic restriction. The highestorder derivatives that appear explicitly in this work arise from the �rst derivativesof Weyl tensor components. These involve second order derivatives of the kinematicquantities. The situation when dp=d� = �1=3 arises as a special case in variousplaces in the proof.A spacetime admits a conformal Killing vector, ~� ifL~�gab = 2 gab;where L~� is the Lie derivative along ~�: The function  (xa) is called the conformalfactor. If the second covariant derivatives of  do not vanish, then ~� is called aproper conformal Killing vector. If the second covariant derivatives of  do vanish,but the �rst do not, then ~� is called a special conformal Killing vector. If  isa non-zero constant then ~� is a homothetic vector, whereas if  is zero, then ~� isa Killing vector. Coley (1991) has shown that if there exists a conformal Killingvector parallel to the velocity four-vector, then the shear is necessarily zero. If thevector is a proper conformal Killing vector, then the expansion is non-zero but thevorticity vanishes. The same conclusion holds if the vector is a homothetic vector,



CHAPTER 5. THE SHEAR-FREE CONJECTURE 125whereas if the vector is a Killing vector, then the expansion must vanish. In allcases, the conjecture holds. Coley (1991) also gives the necessary changes to extendthe proof of Treciokas and Ellis (1971) to cover situation when the equation of stateis p = �=3+K for any constant K: The original proof of Treciokas and Ellis (1971)requires K to be zero.In summary, the shear-free conjecture is known to hold in the following situa-tions:1. Spatially homogeneous dust of Bianchi type IX (G�odel, 1950)2. Spatially homogeneous dust (Sch�ucking, 1957). This generalizes 1.3. All dust (Ellis, 1967). This generalizes 2. The validity of this result actuallyholds for constant pressure (White and Collins, 1984).4. Spatially homogeneous spacetimes with equation of state p = ( � 1)�; 6= 10=9 (Banerji, 1968). This generalizes 2.5. Conformally at spacetimes, i.e. spacetimes of Petrov type O (Ellis, 1971).6. Perfect uid with p = �=3 (this includes a relativistic gas) and claim of aproof for PUTH (Treciokas and Ellis, 1971).7. All spatially homogeneous spacetimes with �+ p > 0 (King and Ellis, 1973).This generalizes 4.8. Perfect uids with acceleration parallel to the vorticity and with � + p 6= 0;this includes the case of constant pressure (White and Collins, 1984). Thisgeneralizes 3.



CHAPTER 5. THE SHEAR-FREE CONJECTURE 1269. Perfect uids that obey PUTH and with �+ p 6= 0 (Lang and Collins, 1988).This generalizes 7 and has as a proper subcase the non-geodesic portion of 8.10. Perfect uids with a Weyl tensor which is purely electric with respect to theuid (Collins, 1984).11. Petrov type N spacetimes (Carminati, 1987).12. \Aligned" Petrov type III spacetimes (Carminati, 1990).1213. Fluids with a conformal Killing vector parallel to the velocity, together withthe extension of 6 to cover p = �=3 + constant(Coley, 1991).14. In this work, we show that the conjecture also holds for perfect uids with aWeyl tensor which is purely magnetic with respect to the uid.15. Also in this work, we show that the conjecture holds for coasting universes,i.e. universes that obey p = ��=3 + constant:5.2 Shear-free conjecture for spaces with a purelymagnetic Weyl tensorIn this section, we shall examine the spacetimes that not only satisfy the hypothesesof the shear-free conjecture, but also satisfy the extra constraint that the electricpart of the Weyl tensor with respect to the uid ow vector vanishes. We shallprove that for such uids, the shear-free conjecture is valid. The proof presented12Carminati has recently informed us that he has extended this result to all Petrov type IIIspacetimes.



CHAPTER 5. THE SHEAR-FREE CONJECTURE 127hereinafter is by contradiction, �rst assuming that neither the vorticity nor theexpansion vanishes.For a perfect uid with an equation of state that satis�es p0 = 0; it is alreadyknown that the conjecture holds, regardless of further conditions on the Weyl tensor.The validity of the conjecture was shown for case p = 0 by Ellis (1967). White andCollins (1984) showed that with a small modi�cation, the proof of Ellis is valid forthe pressure equal to any constant value. Treciokas and Ellis (1971) have provedthe conjecture for the case when p = �=3: Coley (1991) has extended this result top = �=3+K; with K being any constant. As a result of the foregoing discussion, wecan therefore assume throughout the remainder of this chapter that the equationof state is such that p0(3p0 � 1) 6= 0:For shear-free perfect uids, with the ~e0�axis along the uid ow velocity, the~e1-axis along the vorticity vector, and the ~e2-axis and ~e3-axis such that �̂23 can beset to zero, the Riemann curvature two-forms are:R01 =  _u2 d2 + _u3 d3 + @0�3 � @1 _u1 � _u21 + �29 ! (�0 ^ �1)+� _u2 �̂22 � _u2 _u1 � _u3 n2 � @2 _u1� (�0 ^ �2)+� _u2 n2 � @3 _u1 + _u3 �̂33 � _u3 _u1� (�0 ^ �3)+ d3 ! � @2�3 ! (�1 ^ �2)+ �2 _u1 ! � !�̂22 � !�̂33� (�2 ^ �3)+ �@3�3 � d2 !! (�1 ^ �3);R02 = � _u3 
̂� _u1 d2 � _u3 n2 � @1 _u2 � _u2 _u1� (�0 ^ �1)+ �29 � @2 _u2 � _u3A3 + @0�3 � _u22 � _u1 �̂22 � !2! (�0 ^ �2)



CHAPTER 5. THE SHEAR-FREE CONJECTURE 128+ 2!�3 � _u3 _u2 � _u1 n2 + _u3A2 + @0! � @3 _u2! (�0 ^ �3)+ @1�3 � !n2 ! (�1 ^ �2)+ 2 _u2 ! � @3�3 + @2!! (�2 ^ �3)+ �@1! + !�̂33� (�1 ^ �3);R03 = �� _u3 _u1 � @1 _u3 � _u2 
̂ + _u2 n2 � _u1 d3� (�0 ^ �1)+ �@2 _u3 � _u3 _u2 + _u1 n2 � 2!�3 � @0! + _u2A3! (�0 ^ �2)+ @0�3 + �29 � !2 � @3 _u3 � _u23 � _u2A2 � _u1 �̂33! (�0 ^ �3)+ ��!�̂22 � @1!� (�1 ^ �2)+ @3! + @2�3 + 2 _u3 !! (�2 ^ �3)+ @1�3 � !n2 ! (�1 ^ �3);R12 =  �@0d2 � d3 ! � � _u23 � � d23 ! (�0 ^ �1)+ !n2 � @0�̂22 � � �̂223 + � _u13 ! (�0 ^ �2)+ _u1 ! � !�̂33 � @0n2 � � n6 ! (�0 ^ �3)+ �29 � d22 + @2d2 + n24 + d3A3 � @1�̂22 � �̂222! (�1 ^ �2)+ @3�̂22 � @2n2 + d2 n�A3 �̂33 +A3 �̂22! (�2 ^ �3)+ �̂33 
̂ + @3d2 � @1n2 + !�3 � d2 d3 � d3A2 � n�̂33 � �̂22 
̂! (�1 ^ �3);R23 =  @0n2 � _u1 ! � � 
̂3 � @0
̂ + � n6 � @1!! (�0 ^ �1)



CHAPTER 5. THE SHEAR-FREE CONJECTURE 129+ �A33 � @2! + @0A3 � 2 _u2 ! � � _u33 ! (�0 ^ �2)+ � _u23 � @0A2 � @3! � �A23 � 2 _u3 !! (�0 ^ �3)+ 
̂A2 � 
̂ d2 + �̂22 d3 + d2 n+ @1A3 � @2n2 + @2
̂ +A3 �̂22! (�1 ^ �2)+ 3!2 + 
̂ n� @3A3 � @2A2 + �29��̂22 �̂33 � 3n24 �A32 �A22! (�2 ^ �3)+ @3
̂ � �̂33 d2 � @3n2 + 
̂A3 � @1A2 + nd3 � 
̂ d3 �A2 �̂33! (�1 ^ �3)andR13 =  d2 ! � � d33 � � _u33 � @0d3! (�0 ^ �1)+ !�̂22 � _u1 ! + � n6 + @0n2 ! (�0 ^ �2)+ !n2 + � _u13 � @0�̂33 � � �̂333 ! (�0 ^ �3)+ @2d3 � �̂22 
̂ + @1n2 + �̂33 
̂� !�3 + n�̂22 � d2 d3 � d2A3! (�1 ^ �2)+ nd3 � @3n2 +A2 �̂22 � @2�̂33 �A2 �̂33! (�2 ^ �3)+ �29 + d2A2 � d32 + n24 � @1�̂33 � �̂233 + @3d3! (�1 ^ �3):Specializing the results of chapter 3, we �nd that the Einstein �eld equations, theJacobi identities, the commutation relations on the acceleration potential and thecontracted Bianchi identities are equivalent to the following thirty-three equations:@0 _u1 = 6 � _u1 p02 � 6 _u1 p00 � p � 2 � _u1 p0 � 6 _u1 p00 � � + 9 p02!n6 p0 ; (5.1)@0 _u2 = �3 � p00 _u2 p + � _u2 p0 + 3 _u2 � p00 � � 3 @2� p02 � 3 � _u2 p023 p0 ;



CHAPTER 5. THE SHEAR-FREE CONJECTURE 130@0 _u3 = �3 _u3 p00 � p � 3 � _u3 p02 + � _u3 p0 � 3 @3� p02 + 3 _u3 � p00 �3 p0 ;@0! = p0 !� � 2!�3 ;@0n = �� n3 ;@0d2 = �@2�3 � � d23 � � _u23 ;@0d3 = �@3�3 � � _u33 � � d33 ;@0A2 = � _u23 � � A23 + @2�3 ;@0A3 = @3�3 + � _u33 � �A33 ;@0
̂ = �� 
̂3 ;@0�̂22 = � _u13 � � �̂223 + !n2 ;@0�̂33 = � _u13 � � �̂333 + !n2 ;@0� = �� �� � p;@1 _u1 = _u2 d2 + _u3 d3 + @0� + 3 p2 � _u21 + �23 � @2 _u2 � _u3A3 � _u22 � _u1 �̂22�2!2 � @3 _u3 � _u23 � _u2A2 � _u1 �̂33 � � + �2 ;@1! = _u1 ! � !�̂22 � !�̂33;@1� = 3!n2 ;@1n = 2!�3 � 2 _u3 _u2 � _u1 n+ 2 _u3A2 � 2 @3 _u2 + 2 �̂33 
̂ + 2 @3d2�2 �̂22 
̂� 2 d2 d3 � 2 d3A2 � 2n�̂33 + 2 p0 !�;@1A2 = @2�̂33 + @3
̂� �̂33 d2 � 
̂ d3 + 
̂A3 �A2 �̂22;@1A3 = 
̂ d2 � �̂22 d3 � @2
̂�A3 �̂33 + @3�̂22 � 
̂A2;@1� = �(� + p) _u1p0 ;@2 _u1 = _u1 d2 + _u2 �̂22 � _u3 
̂ + @1 _u2; (5.2)



CHAPTER 5. THE SHEAR-FREE CONJECTURE 131@2 _u3 = _u1 n � _u3A2 + @3 _u2 � 2 p0 !� + _u2A3;@2! = 2 @3�3 + d2 ! � 2 _u2 !;@2n = 2 @1 _u3 � _u2 n+ 2 _u2 
̂ + 2 _u1 d3 + 2 _u3 _u1 + 2 @3�̂22+2 d2 n� 2A3 �̂33 + 2A3 �̂22@2d2 = p2 � @3 _u3 � n24 + @0�3 � _u23 + @1�̂22 + �2 � !2 � d3A3� _u1 �̂33 � _u2A2 + d22 + �̂222;@2d3 = 2 _u3 _u2 + _u1 n� 2 _u3A2 + 2 @3 _u2 � 2 �̂33 
̂� @3d2 + 2 �̂22 
̂+2 d2 d3 + d3A2 + n�̂33 � 2 p0 !� � n�̂22 + d2A3;@2A2 = �@3 _u3 � @2 _u2 + p � 3n24 + 2 @0�3 + �23 � _u2A2 � _u23 � @3A3��+ !2 � _u3A3 � _u1 �̂22 + 
̂ n� �̂22 �̂33 �A32 �A22 � _u22 � _u1 �̂33;@2� = �(� + p) _u2p0 ;@3 _u1 = @1 _u3 + _u2 
̂ + _u1 d3 + _u3 �̂33; (5.3)@3n = �2 _u2 _u1 � _u3 n� 2 _u1 d2 + 2 _u3 
̂� 2 @1 _u2 + 2nd3+2A2 �̂22 � 2 @2�̂33 � 2A2 �̂33;@3d3 = p2 � @2 _u2 � n24 + @0�3 + @1�̂33 + �2 � !2 � _u3A3� _u1 �̂22 + �̂233 + d32 � _u22 � d2A2;@3! = d3 ! � 2 @2�3 � 2 _u3 !and@3� = �(� + p) _u3p0 :The requirement that the electric part of the Weyl tensor vanish is equivalent tothe following equations:@0� = 3 _u23 � �23 + 3!2 + 3 @3 _u3 � 3 p2 + 3 _u2A2 + 3 _u1 �̂33 � �2 + �;@1 _u2 = _u3 
̂ � _u1 d2 � _u3 n2 � _u2 _u1; (5.4)



CHAPTER 5. THE SHEAR-FREE CONJECTURE 132@1 _u3 = � _u3 _u1 � _u2 
̂ + _u2 n2 � _u1 d3; (5.5)@2 _u2 = _u23 � _u3A3 � _u22 � _u1 �̂22 + @3 _u3 + _u2A2 + _u1 �̂33and@3 _u2 = _u3A2 � _u1 n2 + p0 !� � _u3 _u2:The contact form representing the derivative of _u2 is therefored _u2 = ��3 _u2 p00 � p+ 3 _u2 � p00 � � 3 @2� p02 � 3 � _u2 p02 + � _u2 p0� �03 p0 (5.6)+� _u3 
̂� _u1 d2 � _u3 n2 � _u2 _u1� �1+ � _u23 � _u3A3 � _u22 � _u1 �̂22 + @3 _u3 + _u2A2 + _u1 �̂33� �2+�� _u2 _u3 � _u1 n2 + _u3A2 + p0 !�� �3and the contact form representing the derivative of _u3 isd _u3 =  �6 _u3 p00 � p � 2 p0 � _u3 + 6 � _u3 p02 � 6 _u3 � p00 � + 6 @3� p026 p0 ! �0 (5.7)+�� _u1 _u3 � _u2 
̂ + 12 _u2 n� _u1 d3� �1+�� _u2 _u3 + _u2A3 � p0!� + 12 _u1 n� �2+ @3 _u3 �3:Adding the exterior derivative of (5.6) multiplied by �0^�3, to the exterior derivativeof (5.7) multiplied by �0 ^ �2, taking into account all the previous information, weobtain ��̂22 � �̂33�!2(�0 ^ �1 ^ �2 ^ �3) = 0:The operation just performed is equivalent to adding together the [~e1; ~e2] commu-tator applied to _u2 and the [~e3; ~e1] commutator on _u3. This particular combinationensures that no second derivatives appear. Such an operation is called `�nding the



CHAPTER 5. THE SHEAR-FREE CONJECTURE 133non-absorbable torsion'. Now since the vorticity, !; does not vanish by hypothesis,we conclude that �̂22 = �̂33: (5.8)Evaluation of the following seven torsion expressions:[~e1; ~e2]n+ 2[~e2; ~e3]d2 � 2[~e1; ~e3]�̂22;[~e0; ~e1]A3 � [~e0; ~e3]�̂22 + [~e0; ~e2]
̂ + 12 [~e1; ~e2]!;[~e0; ~e1]A2 � [~e0; ~e3]
̂ � [~e0; ~e2]�̂22 � 12 [~e1; ~e3]!;[~e2; ~e3]d3 + 12[~e1; ~e3]n+ [~e1; ~e2]�̂22;[~e0; ~e2]n� 2[~e0; ~e2]�̂22;and[~e0; ~e2]A2 + [~e0; ~e3]A3 � 12[~e2; ~e3]!provides relations equivalent to the following equalities:@2� = 9!2p0 d3 + � _u3 + p _u33 p0 ! ; (5.9)@3� = �9!2p0 d2 + p _u2 + � _u23 p0 ! ;@1d2 = 5 �̂22 d2 � 5 _u1 d2 � 3 _u1 _u2 + 3 �̂22 _u2 + d3 
̂ + 12 n _u3+8 �̂22 p _u2 + 4n� _u3 + 8 �̂22 � _u2 � 4 _u1 p _u2 � 4 _u1 � _u2 + 4np _u318!2p0 ;@1d3 = ��d2 
̂� 5 �̂22 d3 + 5 _u1 d3 + 12 n _u2 + 3 _u1 _u3 � 3 �̂22 _u3+ �8 �̂22 � _u3 + 4np _u2 + 4n� _u2 � 8 �̂22 p _u3 + 4 _u1 � _u3 + 4 _u1 p _u318!2p0 ! ;@3d2 = d3A2 � 3p0�! � 32 _u1 n+ 2 �̂22 n+ 23! � + d3 d2+2 d2 � _u3 � 2 d3 p _u2 � 2 d3 � _u2 + 2 d2 p _u318!2p0 ;@2�̂22 = ��12 n _u3 + _u1 d2 � �̂22 d2



CHAPTER 5. THE SHEAR-FREE CONJECTURE 134+ 2 _u1 � _u2 + 2 _u1 p _u2 + 3n� _u3 � 2 �̂22 p _u2 � 2 �̂22 � _u2 + 3np _u318!2p0 !and@3�̂22 = 12n _u2 � _u1 d3 + �̂22 d3+�2 _u1 � _u3 + 3np _u2 + 3n� _u2 + 2 �̂22 p _u3 � 2 _u1 p _u3 + 2 �̂22 � _u318!2p0 :Evaluation of the following �ve combinations of commutation relations:[~e0; ~e1]� + 3[~e1; ~e2] _u2;[~e0; ~e2]� � 3[~e1; ~e2] _u1 + 32 [~e0; ~e3]!;[~e0; ~e3]� � 3[~e1; ~e3] _u1 � 32 [~e0; ~e2]!;[~e2; ~e3] _u1and[~e0; ~e1] _u2 + p0[~e1; ~e2]�yields the following equalities:p000 = �12 p0 _u1 � p00 p _u3 + 54 p02 _u1 p00 p!2d3 + 18 p03 _u1 !2d3+2 p02 _u1 � _u3 + 2 p02 _u1 p _u3 + 54 p02 _u1 � p00 !2d3�54 _u1 p04!2d3 � 6 _u1 p03� _u3 � 6 _u1 p03p _u3+6 p0 _u1 �2p00 _u3 + 6 p0 _u1 p00 p2 _u3 + 12! _u1 p03� _u2 � 36! _u1 p04� _u2+18! _u2 p002� �2 _u1 + 36! _u2 p002� p� _u1 � 18! _u2 p00 � p0 � _u1+18! _u2 p002� p2 _u1 + 9 _u2 p03!2n+ 36! _u1 p02 _u2 p00 � ��18! _u2 p00 � p0 p _u1 + 36!p00 � pp02 _u2 _u1 + 27 _u2 p00 pp02!2n+27 _u2 p00 � p02!2n� 27 p04!2n _u2�.�18! _u2 � p0 _u1 (p + �)2� ;�̂22 = _u1 (p+ � + 18!2p0)18!2p0 ;n = � _u1 �18!2p00 �� 18 p02!2 + 6!2p0 + p0 �+ 18!2p00 p + p0 p�9!3p0 (3 p0 � 1) ;



CHAPTER 5. THE SHEAR-FREE CONJECTURE 135d2 = � �27 � !2p00 p _u3 � 27 _u3 p02!2� � 4wp _u2 + 2 � p0 p _u3 � 4!� _u2+27 � !2p00 � _u3 + 9!2p0 � _u3 + 9!p0 p _u2+9!p0 � _u2 + 2 � p0 � _u3)/ �27!3p0 (3 p0 � 1)�andd3 = � �27 _u2 p02!2� � 9!2p0 � _u2 � 27 � !2p00 � _u2 � 27 � !2p00 p _u2+9!�p0 _u3 � 2 � p0 p _u2 � 2 � p0 � _u2 � 4wp _u3+9!p0 p _u3 � 4!� _u3)/ �27!3p0 (3 p0 � 1)� ;where the assumption that _u1 _u2 6= 0 has been made. We recall also we can assumethat the equation of state satis�es p0(3p0 � 1) 6= 0: The [~e0; ~e3] _u1 commutationrelation then provides p00 = p0 (3 p0 � 1)3(� + p) : (5.10)The torsion expression[~e0; ~e2] _u2 � [~e0; ~e1] _u1 + 3p02 [~e0; ~e2]d2 � 3p02 [~e0; ~e3]d3 � 3p04 [~e2; ~e3]!implies that p0 = �16 :This is inconsistent with equation (5.10). We must therefore have that _u1 _u2 = 0:We now consider the case that _u1 does not vanish. It follows then that _u2 mustbe equal to zero. Di�erentiation of _u2 = 0 along ~e0 yields that @2� = 0; which isequivalent to 9!2p0 d3 + _u3(�+ p) = 0 (5.11)by the relation (5.9). Subtracting the [~e1; ~e3] _u1 commutation relation from the[~e2; ~e3] _u2 commutation relation is equivalent to� 3(1� 3p0)d3!2 + (� 49p0 + 1) _u3(�+ p) = 0: (5.12)



CHAPTER 5. THE SHEAR-FREE CONJECTURE 136Elimination of d3 between equations (5.11) and (5.12) then requires that_u3!2p0(�+ p) = 0:from which it follows that _u3 = 0: Since _u2 also vanishes, we are therefore in thesituation when the acceleration is parallel to the vorticity. The shear-free conjecturewas proved for that situation by White and Collins (1984).Henceforth, we assume that _u1 is zero. Di�erentiation of _u1 = 0 along ~e0, asgiven by equation (5.1), implies that n = 0: Furthermore, di�erentiation along ~e2; asgiven by equation (5.2), together with the Weyl tensor constraint (5.4) implies that_u2�̂22 = 0; and di�erentiation along ~e3; as given by equation (5.3), together withthe Weyl tensor constraint (5.5) and with the equality (5.8) implies that _u3�̂22 = 0:If �̂22 6= 0; then both _u2 and _u3 are equal to zero; therefore, the situation is that forwhich White and Collins (1984) proved that the shear-free conjecture holds. Hence,we assume that _u1 = �̂22 = 0:The following �ve torsion expressions:2[~e0; ~e3]
̂� 2[~e0; ~e1]A2 + [~e1; ~e3]!;3[~e1; ~e2]! � 2[~e1; ~e3]�;��3(2 _u22 + _u23)p02[~e0; ~e2]d2 � 6 _u2 _u3p02[~e0; ~e3]d2 � 3( _u22 + 2 _u23)p02[~e0; ~e3]d3�3( _u22 + _u23)p02[~e2; ~e3]! + _u23p0[~e0; ~e2] _u2 � 2 _u2 _u3p0[~e0; ~e3] _u2+ _u22p0[~e0; ~e3] _u3) = (�!2( _u22 + _u23)) ;p0[~e2; ~e3]d2andp0[~e2; ~e3]d3imply, respectively, @1d2 = 
̂d3;



CHAPTER 5. THE SHEAR-FREE CONJECTURE 137@1d3 = �
̂d2;p00 = �23 p0(27p02 � 6p0 � 1)�+ p ; (5.13)@2� = 13 _u3(�+ p) + 9p0d3!2p0!and@3� = �13 _u2(�+ p) + 9p0d2!2p0! :Di�erentiation of p00 with respect to � givesp000 = 29 p0(27p02 � 6p0 � 1)(162p02 � 21p0 + 1)(� + p)2 :The combination of commutation relations [~e0; ~e2] _u2 + 3p0[~e0; ~e2]d2 implies that(�+ p)(6 _u2 _u3p0 + 2d3 _u2p0 � 2d2 _u3p0 � 36p02 _u2 _u3 + 2 _u2 _u3)� 18�p02!3 (5.14)�324p03 _u2!2d3 + 54p02 _u2!2d3 + 18 _u2!2d3p0 + 54p02� _u22! + 54p03�!3�1944 _u22p04�! + 486 _u22p03�! = 0;that of [~e0; ~e3] _u3 + 3p0[~e0; ~e3]d3 results in(� + p)(�2d2 _u3p0 � 2 _u2 _u3 + 36p02 _u2 _u3 � 6 _u2 _u3p0 + 2d3 _u2p0)� 54p02 _u3!2d2 (5.15)+486 _u23p03�! + 54p02� _u23! � 1944 _u23p04�!�18�p02!3 + 54p03�!3 � 18 _u3!2d2p0 + 324p03!2 _u3d2 = 0;and that of 2[~e0; ~e2]d2 + 2[~e0; ~e3]d3 + [~e2; ~e3]! gives(�+ p)(�2d2 _u3 + 2d3 _u2)� 18�!3p0 + 54�p02!3 = 0: (5.16)Dividing the di�erence of equation (5.14) and p0 times equation (5.16) by 3p0 � 1yields� 2 _u2 �324 _u2p03�! + 54d3p02!2 + 27�p02 _u2! + (6p0 + 1) _u3(� + p) + 9d3p0!2� = 0(5.17)



CHAPTER 5. THE SHEAR-FREE CONJECTURE 138Subtracting p0 times equation (5.16) from equation (5.15) and dividing the resultby 3p0 � 1 yields2 _u3 ��324 _u3p03�! + 54d2p02!2 � 27�p02 _u3! + (6p0 + 1) _u2(�+ p) + 9d2p0!2� = 0:(5.18)Now, p0 cannot be equal to �1=6; as can be seen by substitution into equation (5.13).This enables us to divide the di�erence of _u23 times equation (5.17) and _u22 timesequation (5.18) by the product _u2 _u3(6p0 + 1): Doing so gives the relation� 18 _u3!2d3p0 � 18 _u2!2d2p0 � 2 _u23�� 2 _u23p� 2 _u22p� 2 _u22� = 0: (5.19)The combination of commutation relations3 _u3[~e0; ~e2]! � 2 _u3[~e0; ~e3]� � 3 _u2[~e0; ~e3]! � 2 _u2[~e0; ~e2]�is equivalent to� ! �(�27p0 + 81p02)!2( _u2d2 + _u3d3) + (9p0 � 4)( _u22 + _u23)(�+ p)� = 0: (5.20)Subtracting !(9p0 � 4) times equation (5.19) from twice equation (5.20) yields�18!3p0( _u3d3 + _u2d2) = 0;from which we deduce that _u2d2 + _u3d3 = 0: Equation (5.19) then simpli�es andbecomes: �2( _u23 + _u22)(� + p) = 0;i.e. _u2 = _u3 = 0; and so the acceleration is parallel to the vorticity. By White andCollins (1984), the validity of the conjecture holds in this case also.



CHAPTER 5. THE SHEAR-FREE CONJECTURE 1395.3 Perfect uids with an equation of state thatobeys dp=d� = �13We now prove the conjecture for the special situation of a general relativistic perfectuid with a barotropic equation of state that satis�es dp=d� = �1=3:We show thatthe requirement that neither the vorticity, !; nor the expansion, �; vanish leads to acontradiction. While this equation is admittedly rather unphysical in the context ofstandard general relativity, it does represent an interesting limiting case for whichthe validity of the shear-free conjecture has heretofore not been established, as faras we are aware. Some further discussion of the physical relevance of this equationof state will be provided at the end of the present section.We use an orthonormal tetrad with the ~e0�axis along the uid ow velocity,the ~e1�axis along the vorticity vector, and the ~e2�axis and ~e3�axis such that �̂23is set to zero. The Einstein �eld equations, the Jacobi identities, the commutationrelations on the acceleration potential and the contracted Bianchi identities areobtained by setting p0 = �1=3 in the thirty-three equalities beginning with equa-tion (5.1), where the prime (0) denotes di�erentation with respect to the energydensity, �:



CHAPTER 5. THE SHEAR-FREE CONJECTURE 140The combinations of commutation relations�2[~e0; ~e3]d2 + [~e0; ~e1]n+ 2[~e0; ~e3] _u2;[~e0; ~e2]n� 2[~e0; ~e3] _u1 � 2[~e0; ~e3]�̂22;[~e0; ~e3]n+ 2[~e0; ~e2] _u1 + 2[~e0; ~e2]�̂33;[~e0; ~e2] _u2 + [~e0; ~e3] _u3 � 2[~e0; ~e2] _u1 + 3[~e0; ~e2]A2 + 3[~e0; ~e3]A3 � [~e2; ~e3]!;[~e0; ~e1] _u1 + [~e0; ~e2] _u2 � 2[~e0; ~e3] _u3 + 3[~e0; ~e1]�̂22 � 3[~e0; ~e2]d2 � [~e2; ~e3]!and[~e0; ~e1] _u1 � 2[~e0; ~e2] _u2 + [~e0; ~e3] _u3 + 3[~e0; ~e1]�̂33 � 3[~e0; ~e3]d3 � [~e2; ~e3]!are equivalent to the following equalities:0 = (8=3)� _u3 _u2 + (4=3) _u3@2� + (4=3)@3� _u2; (5.21)0 = �(4=3) _u1@3� � (8=3)� _u3 _u1 � 2!n _u3; (5.22)0 = (4=3) _u1@2� + (8=3)� _u1 _u2 + 2n _u2!; (5.23)0 = (4=3)� _u22 + (4=3) _u2@2� � (16=3)!2� � (8=3)� _u21 (5.24)+(4=3)� _u23 � 4 _u1!n+ (4=3)@3� _u3;0 = (4=3)� _u22 + (4=3) _u2@2� + (8=3)!2� + (4=3)� _u21 (5.25)�(8=3)� _u23 + 2 _u1!n� (8=3)@3� _u3and0 = �(8=3)� _u22 � (8=3) _u2@2� + (8=3)!2� + (4=3)� _u21 (5.26)+(4=3)� _u23 + 2 _u1!n+ (4=3)@3� _u3:We compute the resultant with respect to @3� of equation (5.21) and equation (5.22).We then eliminate @2� from the result, using the resultant with equation (5.23).We thus obtain _u3 _u2 _u1(3!n+ 2� _u1) = 0: (5.27)



CHAPTER 5. THE SHEAR-FREE CONJECTURE 141Similarly, we compute the resultant with respect to @3� of equation (5.22) andequation (5.24). We then eliminate @2� from the result, using the resultant withequation (5.23). Thus, we get2 _u22 _u21� + 8 _u21!2� + 4� _u41 + 2� _u23 _u21 + 6 _u31!n+3 _u1!n _u23 + 3 _u22 _u1n! = 0: (5.28)Elimination of n between equation (5.27) and equation (5.28) using the resultantyields _u3 _u2 _u31!3� = 0; (5.29)whereby _u1 _u2 _u3 = 0: Adding twice equation (5.24) to equation (5.25) results in2� _u22 + 2 _u2@2� � 4!2� � 2� _u21 � 3 _u1!n = 0; (5.30)whereas subtraction of equation (5.24) from equation (5.25) yields4!2� + 2� _u21 � 2� _u23 + 3 _u1!n� 2@3� _u3 = 0: (5.31)We eliminate @2� between equations (5.30) and (5.23), and eliminate @3� betweenequations (5.31) and (5.22) to obtain2 _u1� _u22 + 4 _u1!2� + 2� _u31 + 3 _u21!n + 3 _u22n! = 0 (5.32)and4 _u1!2� + (16=3)� _u31 + 2� _u23 _u1 + 3 _u21!n + 3!n _u23 = 0; (5.33)respectively.We now look at the three cases implied by equation (5.29). The �rst case has_u3 = 0: Equations (5.21) and (5.22) show that if @3� is not equal to zero, thenthe ow is geodesic. However, this is not compatible with the requirement thatp0 = �1=3; since geodesic ow implies that p0 = 0: It follows therefore that @3� = 0:



CHAPTER 5. THE SHEAR-FREE CONJECTURE 142The sum of the resultant of equations (5.23) and (5.24), with respect to @2�, andtwice the resultant of equations (5.23) and (5.25), with respect to @2�; reduces to_u22(3!n + 2� _u1) = 0: (5.34)The situation of _u2 = _u3 = 0 was covered by White and Collins (1984), who showedthat the shear-free conjecture holds in this case. We can thus suppose that _u2 6= 0:The resultant of equations (5.23) and (5.25) with respect to @2� subtracted fromthe resultant of equations (5.23) and (5.24) with respect to @2� simpli�es to_u1(2� _u21 + 3 _u1!n+ 4!2�) = 0: (5.35)Eliminating n between equations (5.34) and (5.35) yields_u22 _u1!2� = 0;whence _u1 = 0: Propagation of _u1 = 0 along the uid ow implies the vanishing ofn: Equation (5.31) then gives that !� = 0 and so the shear-free conjecture holds.The second case implied by equation (5.29) has _u2 = 0 6= _u3: Since our choice oftetrad and the structure equations (3.12) (to 3.15) are invariant under the discretesymmetry ~e2 7! ~e3; ~e3 7! �~e2; so also are our equations. In particular this impliesthat _u2 = 0 6= _u3 is equivalent to the situation of _u3 = 0 6= _u2 which we treatedin the preceding paragraph. Thus, the shear-free conjecture holds for the presentcase as well.The third, and last, case implied by equation (5.29) has _u1 = 0 6= _u2 _u3: Propa-gation of _u1 = 0 along the uid ow, given by equation (3.25), entails that n = 0:The resultant of equations (5.21) and (5.30) with respect to @2� simpli�es to� _u3 _u22 + 2 _u3!2� + @3� _u22 = 0: (5.36)



CHAPTER 5. THE SHEAR-FREE CONJECTURE 143The resultant of equations (5.31) and (5.36) with respect to @3� becomes!2�( _u23 + _u22) = 0;which is a contradiction. The shear-free conjecture therefore holds in this thirdcase as well.The situation of p0 = �1=3 includes spacetimes that obey a gamma-law of statep = ( � 1)� with  = 2=3. These spacetimes are generally regarded as non-physical since  is usually restricted to lie between 1 and 2. Other conditions whichare frequently imposed on the equation of state are � + p > 0 and � + 3p > 0 (seeEllis (1971) for more details). The case where  = 2=3 is then a limiting case ofthe second condition. There are further spacetimes where  = 2=3 is a limitingvalue. Raychaudhuri's equation, which is the (00) Einstein �eld equation, is givenby Ellis (1971) as being3�̀=` = 2(!2 � �2) + _ua;a � 12(�+ 3p) + �;where ` is a length scale obeying _̀=` = �=3: From this equation, it is readilyapparent that matter-energy is in some sense attractive when � + 3p > 0 andrepulsive when � + 3p > 0: The limiting situation, when � + 3p = 0 reduces to = 2=3 for a gamma-law of state. To clarify further the rôle of � + 3p, we shalldiscuss Raychaudhuri's equation in situations of especial physical interest. If weconsider the situation of a static star model �lled with a perfect uid (and thecosmological constant taken to be zero), then Raychaudhuri's equation, which isthe (00) Einstein �eld equation, reduces to_ua;a = (1=2)(� + 3p);as given by Ellis (1971). For the Friedman-Robertson-Walker solutions, Raychaud-



CHAPTER 5. THE SHEAR-FREE CONJECTURE 144huri's equation becomes, as given by Ellis (1973),3 �RR + 12(�+ 3p) � � = 0;with 3 _R=R being the expansion �:When the cosmological constant is zero,  = 2=3again represents a special situation, being a critical value that separates acceleratinguniverses from decelerating universes. In the Einstein static solution, which is aFriedmann-Robertson-Walker model with � = 0; the cosmological constant obeys� = (1=2)(�+3p); and therefore changes sign at  = 2=3: The value  = 2=3 is alsoa limiting case of G�odel's universe, generalized to include pressure (Ellis, 1973),since such spacetimes obey 2!2 + � = 12(�+ 3p)12(�� p) = ��: (5.37)Spacetimes with p0 = �1=3 are a genuine special case of the shear-free conjec-ture. This can be seen, for example, by computing the combination of commutationrelations �[~e2; ~e3]� + 3[~e0; ~e2] _u3 � 3[~e0; ~e3] _u2;which gives(1 + 3p0) �(3=2)!n2 + @3@2� � @2@3� + @2�A3 � @3�A2 � 2@0�!� = 0: (5.38)We note that when p0 = �1=3; equation (5.38) becomes a trivial torsion equa-tion. Other non-torsion expressions become non-trivial torsion expressions whenp0 = �1=3: An example of this situation is given by the combination of commutationrelations �2[~e0; ~e3]d2 + [~e0; ~e1]n+ 2[~e1; ~e3] _u2;



CHAPTER 5. THE SHEAR-FREE CONJECTURE 145which is(1 + 3p0) ��(1=3)@3@2� + (2=3)@0�! � (2=3)@3 _u2� + (2=3)@3�A2 � (1=2)!n2+(2=3)A2 _u3� � (1=3)� _u1n+ (2=3)p0�2!�+(2=3) _u3� _u2 � 6p0� _u2 _u3 � 4p0@3� _u2 � 4p0 _u3@2�+p00(� + p)p0  2 _u3@2� + 2�@3 _u2 + 2 _u2@3� � 2 _u3 _u2�p0 + 6 _u2 _u3�+n _u1� � 2A2 _u3� � 2!�2p0�+ p002(� + p)2p03 � p000(�+ p)2p02 ! (2 _u2 _u3�) = 0: (5.39)Equation (5.39) becomes a torsion equation when p0 = �1=3; and reduces to equa-tion (5.21). There is thus a substantial reduction in computational work.It is of interest to note that p0 = �1=3 was obtained as an intermediate resultin parts of previous proofs of the conjecture. For example, it appears in White andCollins (1984), in Carminati (1987) and in Carminati (1990),In three of the cases13 discussed by Collins and White (1984), the matter neces-sarily obeys the equation of state �+3p�2� = 0: Collins and White (1984) mentionthat this equation of state is physically unreasonable, but point out that such anequation of state, with � + 3p = constant; occurs for a class of solutions due toWahlquist (1968), of which a limiting case, with �+3p = 0; is due to Vaidya (1977).These solutions are of Petrov type D with a shear-free, expansion-free, rotating andaccelerating uid ow. They admit an abelian G2 isometry group acting on timelikeorbits.While  = 2=3 may be unphysical in the context of standard general relativisticcosmology, it is certainly not so in the context of inationary cosmology. Ellis (1990)13Labelled by IIAAii, IIIAAi and IIIAAii by Collins and White (1984)



CHAPTER 5. THE SHEAR-FREE CONJECTURE 146mentions that, for Friedmann-Robertson-Walker models, the value  = 2=3 is a crit-ical one which separates decelerating models from accelerating models. Universeswith  = 2=3 are called coasting universes. Accelerating models, called inationarymodels, violate the usual inequalities on the energy. If the cosmological constantis positive, a non-interacting mixture of matter, radiation and the cosmologicalconstant would evolve from a radiation-dominated universe ( � 4=3) to a matter-dominated universe ( � 1), then asymptotically to a universe dominated by thecosmological constant ( ! 0). There will therefore be a point when the criticalvalue of  = 2=3 is attained. Coasting universes can be obtained in terms of a scalar�eld solution, but not by any known simple matter. In particular, there exists acoasting generalized version of the Milne universe. The classical Milne universe isempty; however, the scalar �eld allows the generalized version to be non-empty.Coasting universes solve, in a weak sense, the horizon problem, which relates tothe following question: why do two widely separated regions of the sky have sim-ilar background radiation when not enough time, classically, has elapsed for theseregions to be causally related? The coasting universes allow for the possibility of amechanism that would ensure that all such regions be indeed causally related, butdo not guarantee in general the existence of such mechanisms (which is why it isonly in a weak sense that coasting universes solve the horizon problem).



Chapter 6Rotating non-expandingshear-freehypersurface-homogeneousspacetimesOn rencontre sa destin�ee souvent par deschemins qu'on prend pour l'�eviter.Jean de la FontaineW E consider a perfect-uid shear-free spacetime that is rotating but not ex-panding. The particular class of spacetimes we shall examine was �rst described byCollins (1988); however, we provide a di�erent characterization. The vector ~e0 ischosen to be the normalized velocity vector which can be taken as the unique unittime-like future-pointing eigenvector of the Ricci tensor, provided that the energydensity, �; and the pressure, p; are such that �+p 6= 0: Suppose that the spacetime147



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 148admits a unique exact unit space-like covector that is annihilated by ~e0: Let ~e1 bethe vector that corresponds to this covector via the metric. The above conditionsrequire the vanishing of the kinematic quantities ���; !2 + 
2; !3 + 
3; d2; d3 andn; which appear in equations (3.12) to (3.15). We rotate the ~e2� and ~e3�axes byan angle � as follows: ~e2 7! cos �~e2 + sin�~e3and~e3 7! � sin �~e2 + cos�~e3:This rotation is used so that !3 is set to zero at a point. We are then free tomake !3 vanish on a hypersurface transverse to the uid ow. Propagation of !3along ~e0; given by the Jacobi identity 3.19 simpli�ed using equation (3.26), showsthat !3 is then zero everywhere provided that !2(!1 + 
1) vanishes. Now this iseasily ensured, since under the aforementioned rotation, !1+
1 transforms by theformula !1 + 
1 7! !1 + 
1 + @0�:By choosing the rotation so that @0� = �(!1 +
1); we can ensure that !1 +
1 iszero and thus also the same applies to !3:The structure equations now obey:d�!0 = � _u1�!0 ^ �!1 � _u2�!0 ^ �!2 � _u3�!0 ^ �!3+2!1�!2 ^ �!3 + 2!2�!3 ^ �!1;d�!1 = 0;d�!2 = �̂22�!1 ^ �!2 �A3�!2 ^ �!3 + (�
̂� �̂23)�!3 ^ �!1andd�!3 = (�̂23 � 
̂)�!1 ^ �!2 +A2�!2 ^ �!3 � �̂33�!3 ^ �!1:



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 149Since �!1 is exact, it de�nes (locally) a coordinate function, x:We require that allthe kinematic quantities, the pressure, p; and the energy density, �; be non-constantfunctions of x only. Because of this, @2p = @3p = 0; and therefore _u2 = _u3 = 0: Sincep is a non-constant function of x; the acceleration does not vanish, and so _u1 is notequal to zero. The (01) �eld equation simpli�es to A3!2 = 0; the (02) �eld equationto !2(�̂23+
̂) = 0; the (12) �eld equation to A2(�̂22� �̂33)+2A3�̂23+2!1
2 = 0; andthe (13) �eld equation to A3(�̂22 � �̂33) � 2A2�̂23 = 0: If !2 = 0 then the vorticityand the acceleration are parallel, in which case, the situation has been studied byCollins and White (1984). The relevant situation here is case III of Collins andWhite (1984), since we require shear-free non-expanding rotating uids. If insteadwe require that !2 6= 0, then we have A3 = 0 and 
̂ = ��̂23: We are now inthe situation studied by Collins (1988), in which the spacetime is hypersurface-homogeneous (the orbits of the isometry group being given by fx = constantg);and we shall be concerned with this in the remainder of this chapter.For ease of comparison, since Collins (1988) uses the notation of MacCal-lum (1973), we shall make use of the following quantities:n23 := (�̂33 � �̂22)=2;a1 := �(�̂33 + �̂22)=2;a2 := �A2=2andn33 := �2�̂23:The inverse relations are: �̂22 := �(a1 + n23);�̂33 := n23 � a1;



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 150A2 := �2a2and�̂23 := �n33=2:The structure equations are therefore given by:d�!0 = � _u1�!0 ^ �!1 + 2!1�!2 ^ �!3 + 2!2�!3 ^ �!1;d�!1 = 0;d�!2 = �(a1 + n23)�!1 ^ �!2andd�!3 = �n33�!1 ^ �!2 � 2a2�!2 ^ �!3 + (a1 � n23)�!3 ^ �!1:We note that the tetrad is now uniquely determined. The (13) �eld equation nowsimpli�es to a2n33 = 0; (6.1)whereas the (12) �eld equation simpli�es to2a2n23 � !1!2 = 0: (6.2)One combination of the Einstein �eld equations gives the constraint4!21 � 4!22 + 8 _u1a1 + 4(p � �)� 4a21 � 16a22 + 4n223 + n233 = 0: (6.3)The remaining Einstein �eld equations, Jacobi identities and contracted Bianchiidentities give the propagation along ~e1 of the quantities as follows:@1!1 = _u1!1 + 2!1a1 + 2!2a2;@1!2 = !2(�2 _u1 + n23 + a1);@1 _u1 = ��+ (3=2)p + (1=2)� � 2!21 � 2!22 � _u21 + 2 _u1a1;



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 151@1a1 = (1=2)p + (1=2)� � !21 � 2!22 + _u1a1 + n223 + a21 + (1=4)n233;@1a2 = a2(n23 + a1);@1n23 = � _u1n23 + 2a1n23 + (1=2)n233 + !22;@1n33 = n33(� _u1 + 2a1 � 2n23);@1p = � _u1(�+ p)and@1� = 0:The quantity � is the cosmological constant. Therefore, the only quantity forwhich there is not a propagation equation is the energy density �: These equationsreproduce the results of Collins (1988).As noted by Collins (1988), the quantity !1 vanishes if and only if the quantitya2 does. The proof is as follows. Suppose that !1 = 0: Propagation of !1 entailsthat !2a2 = 0: Since we are operating under the assumption that !2 6= 0; thena2 = 0: Conversely, if we assume that a2 = 0; equation (6.2) implies that !1 = 0:Therefore requiring that a2 = 0 is equivalent to requiring that the vorticity beorthogonal to the acceleration for the spacetimes under consideration. We notethat, since !2 does not vanish, the quantity n23 cannot vanish. If n23 did vanish,the propagation of n23 would imply that n33 and !2 both vanish.Because of equation (6.1), there are three cases to be considered. The �rst case,which we shall refer to as case A, has n33 = 0 6= a2: Since a2 6= 0; it follows that!1 6= 0: Therefore, case A has n33 = 0 6= !1!2a2n23 _u1: Collins (1988) has identi�edthat spacetimes belonging to case A admit a G3 isometry group of Bianchi-Behrtype V Ih with h = �1 (i.e. Bianchi type III). Also, there is a Killing vector whichis not parallel to the uid velocity vector and orthogonal to the vorticity vector.The second case resulting from equation (6.1), case B, has a2 = 0 6= n33: By



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 152the discussion above, requiring a2 = 0 is equivalent to requiring !1 = 0: Therefore,case B has the constraints a2 = !1 = 0 6= n33n23!2 _u1: Collins (1988) has found thatspacetimes in case B admit a G3 isometry group of Bianchi type I and that thereis a Killing vector which is independent of the uid velocity vector and orthogonalto the vorticity vector.The third case, case C, has n33 = a2 = 0: By the preceding discussion, caseC has the constraints n33 = a2 = !1 = 0 6= !2n23 _u1: Collins (1988) has identi�edthat the spacetimes which belong to case C admit a G3 isometry group of Bianchitype I. They have a Killing vector which is independent of the velocity vector andorthogonal to the vorticity. Furthermore, case C is the only case where there isan additional Killing vector which is parallel to the vorticity; this is equivalent forthe spacetimes under consideration to having a Killing vector which is independentof the velocity vector and which lies in the 2-surfaces spanned by the velocityvector and the vorticity vector. Spacetimes belonging to case C coincide with thespacetimes studied by Krasi�nski (1978).We now wish to further the study of those spacetimes started by Collins (1988).We shall be interested in �nding which Petrov types of the Weyl tensor are allowedin each of the three cases identi�ed above. More information about the Petrovclassi�cation can be found in chapter 4. The Weyl tensor can be decomposed intotwo matrices with the help of the velocity vector, ~e0: The electric part of the Weyltensor, with respect to ~e0; is given by the (real) 3� 3 trace-free symmetric matrixE�� where the entries satisfy:E11 = �(2=3)� + p + (1=3)� � 2!21 � !22 + 2 _u1a1;E12 = E21 = �!2!1;E13 = E31 = 0;



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 153E22 = � _u1a1 + !21 � _u1n23 + (1=3)� � (1=2)p � (1=6)�;E23 = E32 = �(1=2) _u1n33andE33 = �(E11 + E22) = (1=3)� � (1=2)p � (1=6)� + !21 + !22 � _u1a1 + _u1n23:The magnetic part of the Weyl tensor, with respect to ~e0; is1 also a (real) 3 � 3trace-free symmetric matrix H�� with entries given by:H11 = 2 _u1!1 + 2!2a2 + 2!1a1;H12 = H21 = !2(n23 + a1);H13 = H31 = (1=2)!2n33;H22 = � _u1!1 � !1(a1 + n23);H23 = H32 = �(1=2)n33!1andH33 = �(H11 +H22) = � _u1!1 � !1a1 � 2!2a2 + !1n23:Some properties of spacetimes with Eab = 0 as well as for spacetimes with Hab = 0can be found in chapter 5.We form the complex matrix Q�� := E�� + iH��: The Petrov type can befound by looking at the elementary divisors and multiplicities of the eigenvalues ofQ (Kramer et al., 1980).2 We shall follow the matrix criteria given in Kramer etal. (1980) to determine the allowed Petrov types for each of the three cases identi�edabove, i.e. for case A: n33 = 0; a2 6= 0; n23!1!2 _u1 6= 0:, case B: n33 6= 0; a2 = 0;!1 = 0; n23!2 _u1 6= 0: and case C: n33 = 0; a2 = 0;!1 = 0; n23!2 _u1 6= 0:These cases can be regrouped in the specialization diagram given in table (6.1)1Strictly speaking, Hab is a tensor which is isomorphic to the 3� 3 matrix given above.2See also chapter 4.



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 154that appears on page 154.Case An33; a2 6= 0!1!2 _u1n23 6= 0 Case Bn33 6= 0; a2 = 0!1 = 0; n23!2 _u1 6= 0Case Cn33 = a2 = 0!1 = 0; n23!2 _u1 6= 0@@@R ���	Table 6.1: Specialization diagram6.1 Case A: n33 = 0; a2 6= 0; n23!1!2 _u1 6= 0:The propagation equations for case A are@1a1 = (1=2)p + (1=2)� � !21 � 2!22 + _u1a1 + n223 + a21;@1a2 = a2(n23 + a1);@1 _u1 = �� + (3=2)p + (1=2)� � 2!21 � 2!22 � _u21 + 2 _u1a1@1!1 = _u1!1 + 2!1a1 + 2!2a2;@1!2 = !2(�2 _u1 + n23 + a1);@1n23 = �� + p+ 2 _u1a1 � _u1n23 + !21 + 2a1n23 � a21 � 4a22 + n223;@1p = � _u1(� + p)and@1� = 0:



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 155There are also the further two constraints:� = �a21 + p + 2 _u1a1 + !21 � 4a22 � !22 + n223 (6.4)and !2!1 � 2a2n23 = 0: (6.5)The matrix Q is Q = 0BBBBB@ Q11 Q12 0Q12 Q22 00 0 Q33 1CCCCCA ;whereQ11 = (2=3)a21 + (1=3)p + (2=3) _u1a1 � (8=3)!21 + (8=3)a22 � (1=3)!22�(2=3)n223 + (1=3)� + i(2 _u1!1 + 2!2a2 + 2!1a1);Q12 = �!2!1 + i(!2n23 + !2a1);Q22 = �(1=3) _u1a1 + (4=3)!21 � _u1n23 � (1=3)a21 � (1=6)p � (4=3)a22�(1=3)!22 + (1=3)n223 � (1=6)� + i( _u1!1 + !1a1 + !1n23);andQ33 = �(Q11 +Q22)= �(1=3)a21 � (1=6)p � (1=3) _u1a1 + (4=3)!21 � (4=3)a22 + (2=3)!22+(1=3)n223 � (1=6)� + _u1n23 + i(� _u1!1 � !1a1 � 2!2a2 + !1n23):We immediately �nd that there are no spacetimes of Petrov type O, since thereal part of Q12 does not vanish, and so the matrix Q cannot vanish.In order that the Petrov type be N, the matrix Q must satisfy Q2 = 0 withQ 6= 0: Therefore, Q33 must vanish. The real part of Q33 provides an expression for



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 156the energy density:� = �2 _u1a1 + 6 _u1n23 � p+ 8!21 + 4!22 + 2n223 � 2a21 � 8a22:This is then used to reexpressQ2 without �: The constraint (6.5) gives an expressionfor a2 = !1!22n23 :The imaginary part of (Q2)12, which is�!21!2(a1n23 � n223 + _u1n23 + !22) = 0;yields an expression for _u1 : _u1 = �a1n23 � n223 + !22n23 :The imaginary part of (Q2)22 is2!1n23(!2 � 2n23)(!2 + 2n23)(a1n23 � n223 + !22) = 0:Since _u1 is constrained to be non-zero, it follows that !2 = �2n23: For both sit-uations, using the expressions just obtained for _u1; !2 and a2; we �nd from theexpression for � that � + p = 0: There are therefore no type N solutions.For Petrov type III, the matrix condition is Q3 = 0 with Q2 6= 0: In type III,all three eigenvalues must be equal to zero. Since Q is trace-free and symmetric,and since the vector (0; 0; 1) is an eigenvector of Q, it follows that Q must be ofthe form 0BBBBB@ A B 0B �A 00 0 0 1CCCCCA :



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 157The characteristic polynomial is then L(L2�A2�B2) = 0: For L = 0 to be a tripleroot, it follows that A2 +B2 = 0; and so A = �Bi: But this implies that Q2 mustbe zero. Therefore there are no type III spacetimes in case A.For Petrov types II and D, there is a (non-zero) double eigenvalue. From thestructure of the matrix Q; it is immediate that Q33 is an eigenvalue, with associatedeigenvector (0; 0; 1): Since the trace of a matrix is equal to the sum of its eigenvalues,there are two cases to consider for the present situation, depending on whether ornot Q33 is the repeated eigenvalue.We �rst consider the situation when Q33 is the double eigenvalue. The matrixQ�Q33 I3; with I3 denoting the three-dimensional identity matrix, is given byQ = 0BBBBB@ 2E11 + E22 + i(2H11 +H22) E12 + iH12 0E12 + iH12 2E22 + E11 + i(2H22 +H11) 00 0 0 1CCCCCA :One of the possible eigenvectors belonging to the eigenvalue Q33 is (0; 0; 1): Therewill be another such eigenvector, linearly independent of (0; 0; 1) if and only if thedeterminant������� 2E11 + E22 + i(2H11 +H22) E12 + iH12E12 + iH12 2E22 + E11 + i(2H22 +H11) �������vanishes. If this last determinant does vanish, then the Petrov type is D, otherwise,the Petrov type is II. On the other hand, the quantity �2Q33 is also an eigenvalue,which entails that the determinant of Q+ 2Q33 I3 must vanish, i.e.����������� �E11 � 2E22 + i(�H11 � 2H22) E12 + iH12 0E12 + iH12 �E22 � 2E11 + i(�H22 � 2H11) 00 0 Q33 ����������� = 0:



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 158This is precisely the condition that the Petrov type be D, since Q33 6= 0: Sincethe determinant is a complex valued quantity, its vanishing actually representstwo conditions. The vanishing of the real part of the determinant gives the �rstcondition: � (�+ p)( _u1n23 + 12!22)� _u1a1!22 � 2 _u21a1n23 � 2a21 _u1n23+2!22n23a1 + 14!21 _u1n23 � 8a22 _u1n23 + 3!22 _u1n23 + 10!2a2!1n23�6!1a1!2a2 + 6!21a1n23 + !42 � 12a22!22 + 2n323 _u1+3!21!22 � 2!21n223 + 2n223!22 � 6 _u1!1!2a2 + 2 _u21n223 = 0: (6.6)The second condition is attained by requiring that the imaginary part of the deter-minant be equal to zero:(� + p)(!2a2 � !1n23)� 8a22!1n23 � 2a21!1n23 + 2a21!2a2+4 _u1n223!1 � 3 _u1!1!22 � !1a1!22 + 5!22!1n23 � 6 _u21!1n23�10!2a2 _u1n23 + 2 _u1a1!2a2 � 2n223!2a2 + 8!31n23 � 8!21!2a2�8 _u1a1!1n23 + 8a32!2 � 6!32a2 + 2n323!1 = 0: (6.7)We eliminate �+ p between equations (6.6) and (6.7) to obtain:� 2 _u21n323!1 � a21!32a2 + 6!31a1n223 + (3=2) _u1!1!42 + (1=2)!1a1!42�(3=2)!42!1n23 + 6 _u31!1n223 � n223!32a2 + 6!31n223 _u1 � !31n23!22+!21!32a2 + n323!1!22 + 8a32!32 + 2!52a2 � 2!31n323 � 18a22!1n23!22+6 _u1!1!22a22 � 12!21a1!2a2n23 + 6!1a1!22a22 + 6 _u21a1!1n223�2!32n23a1a2 + 2!22n223a1!1 + 12!2a2!21n223 + a21!1n23!22�4 _u1n223!1!22 + 6 _u21!1!22n23 + 4!1a1!22 _u1n23 + 8!2a2 _u21n223+8!32a2 _u1n23 � 12!21!2a2 _u1n23 = 0: (6.8)



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 159Equation (6.8) is then di�erentiated three times. Each time, equation (6.4) isused to eliminate �, and then equation (6.7) is used to eliminate � + p: The threeequations thus obtained have 109, 291 and 648 terms respectively. Since the exactexpressions are not very illuminating in themselves, they, as well as other longequations, will be omitted from the present text. Su�cient details, however, willbe provided so that any omitted equation can be calculated.3 The main problem tocontrol is that the intermediate calculations become quite large. The order in whichthe operations are performed and the various projections that are used turn outto be critical in being able to complete the calculations. The steps are as follows.Factor every polynomials that are obtained. Each factor corresponds to a branch inthe calculations. The main reason for keeping the polynomials factor-free is to keeptheir sizes down. Denote equation (6.5) by T1; equation (6.8) by T2; and the threesuccessive derivatives of equation (6.8) by T3, T4 and T5. Equations (T1-T5) arepolynomial equations that are homogeneous. We set n23 = 1 in equations (T1-T5),thereby breaking the homogeneity of the equations. This is equivalent to replacingeach variable by itself divided by n23: We therefore are working in a projectivespace. This reduces the size of the equations that are to come, since we obtain realnumbers where polynomials in n23 would have appeared. The projective forms ofequations are labelled by T1a-T5a. Equation (T1a) is used to eliminate a2 fromthe other equations, using the resultant. The variable a2 has been chosen since itappears as the variable of lowest degree.Since computing a resultant entails computing a determinant of a matrix4 with3The use of a symbolic calculator proves to be essential.4This is the Sylvester matrix.



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 160dimension5 twice6 the degree7 of the variable which is to be eliminated, it is im-portant to keep the degrees as low as possible. If there are several variables to beeliminated, the �rst tendency might be to start by eliminating the higher degreevariables. That it is actually better to start with the lower degree variables is eas-ily seen by thinking about three bivariate equations, linear in one variable, but ofdegree ten, say, in the second variable. If one eliminates the linear variable, onewould get two equations of at most twentieth degree in the second variable. Thenumerical coe�cients are of the order of magnitude of the product of the largestcoe�cient in each of the polynomials. The determinant of a matrix of dimension40 would be computed. On the other hand, starting with elimination of the higherdegree variable, one would compute the determinant of two matrices of dimension20, with terms linear in the remaining variable. This would yield two polynomialswhose potential degree is 20. The numerical coe�cients are of potential order ofmagnitude of the product raised to the twentieth power of the largest coe�cientin each of the polynomials. As in the �rst approach, the determinant of a matrixof order 40 would need to be computed. The big di�erence is that the numericalcoe�cients are bigger in the second approach. This e�ect is magni�ed the morevariables there are.85The dimension of a square matrix is de�ned to be the number of rows (or columns) of thematrix.6There is another method of computing the resultant. It involves computing the determinantof a Bezout matrix which has dimension equal to the maximum degree of the polynomials. Itsentries are, however, more complicated than in the Sylvester matrix. In either case, the pointthat the needed expressions cannot be computed in the straightforward way still holds.7This is for polynomials in which the degree of the unknown is the same. The exact dimensionof the matrix for two polynomials is equal to the sum of their degrees.8As an example of this e�ect, let us suppose that we are given the three polynomial equationstx4+(t+1)x+3 = 0; (t+2)x4+(t+2)x2+4 = 0 and x4+ t+3 = 0: Eliminating t �rst, followed



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 161Equation T11 is obtained from equations T1a and T2a by taking the resultantwith respect to a2 followed by a division by !1: Equation T12 is obtained fromT1a and T3a, with a division by !21: Equation T13 is obtained from T1a and T4a,followed by a division by !31: Lastly, equation T14 is obtained from equations T1aand T5a followed by a division by !41: Since !1 and !2 only appear with even degreein equations T11 to T14, it is worthwile to replace !21 and !22 by new variables, W1and W2, respectively. Now variable W1 is the variable of least degree in T11-T14.We then use equation T11 to eliminateW1 from the other equations. Equation T21 isobtained from equations T11 and T12, together with a division by (W2�2)2:We shallconsider later the situation when W2� 2 = 0; which is equivalent to !22 � 2n223 = 0;but for now, we assume that this factor does not vanish. Equation T22 is obtainedfrom equations T11 and T13, and a division by (W2 � 2)2 = 0: Equation T23 isobtained from equations T11 and T14, and a division by (W2� 2)3: It is importantthat these factors of W2 � 2 be removed, otherwise resultants with respect to W2would be zero, indicating the presence ofW2�2 as a common factor, but not tellingus any information about other possible common factors involving variables otherthan W2. Next, the resultant T31 of T21 and T22 with respect to a1 is calculated.It has (2 _u1 +W2)4(3 _u1 + 2W2 � 2)10(W2 � 4)20(W2 � 2)11W 62 _u61 (6.9)as factors. We remove from the resultant these factors, whose possible vanishingwe shall consider later, and denote the result by T31a. The next step would beto compute the resultant of T21 and T23 with respect to a1: This, however, is alengthy calculation. It is not clear that it can be carried out, and the step followingby x gives �72145632. This is close to (3� 4)7:2: Doing the elimination in the opposite orderinggives 6087102333217026742804309262336: This is about (3 � 4)28:5: That these numbers do notequal to zero indicates that there are no common zeros to the polynomials.



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 162the elimination of a1 certainly could not be computed directly.9 A small primenumber is chosen; the value 19 is adequate.10 We replace W2 by this small prime inT21, T23 and T31a. Then, the resultant of the modi�ed T21 and T23 with respectto a1 is computed, and the result is labelled by T32. Then T41 is computed bytaking the resultant with respect to a1 of T32 and the modi�ed T31a. If we had notremoved the factors given by (6.9) from T31, we would have found that T41 is zero.Therefore, at least some of the factors of (6.9) are common to the two resultants T31and T32. Since these factors needed to be identi�ed, it was not possible to set W2to be the chosen prime from the outset.11 Having removed the factors (6.9) from9We may consider an estimate of the magnitude of the calculation, as follows. Equation T31 isalready of degree 35 in _u1 and of degree 75 in W2; implying that equation T31a is of degree 15 in_u1 and of degree 24 in W2: Equation T32 has a higher degree than T31. Even if the factors (6.9)are divisors of equation T32, the corresponding equation T32a would be of at least degree 15 in _u1and of degree 24 inW2: Eliminating _u1 between T31a and T32a involves �nding the determinant ofa matrix of dimension 30 with entries being polynomials inW2 with degree of the order of 24. Theresult would be a polynomial inW2 with degree of the order of 24�30. The numerical coe�cientsin T31 are of the order of 1040 to 1080. The polynomial in W2 would then have coe�cients of theorder of 1040�30. Roughly, we then have 700 terms with coe�cients of 1200 digits. This is 0.8megabytes just to give the coe�cients. In terms of time, it took about 7000 seconds to computeequation T31 on the machine jeeves.uwaterloo.ca which is a DECsystem 5500 running Ultrix4.2a and is about 30 times faster than a VAX780. Calculation of T32 would take even longer. It isclear that the resultant between T31a and T32 should not be attempted, since the required timebehaves as the cube of the dimension of the matrix whose determinant we compute; and this isassuming the fortuitous case that the coe�cients do not increase in magnitude, an assumption wealready know does not hold.10It is not required that the number be a prime number. For more information, see the followingfootnote.11Actually, given a bound on the degree of relevant polynomials, it is possible to do the eval-uation at enough prime values to be able to �nd the actual factors. For our purposes, such a



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 163T31, the value of T41 is not zero, but rather an integer comprising 5304 digits.12This value is the value of the full resultant T41 when evaluated at W2 equal to thechosen prime 19. Since the number obtained is not zero, we know that the full valueof the resultant T41 is a polynomial in W2: Equating this polynomial to zero, wecan conclude that W2 has to be a constant. In terms of the original variables, wecan then conclude that w2 is proportional to n23. The constant of proportionalitycannot be zero, and has to be �nite, since the product !2n23 cannot be zero.Taking into account the various common factors already identi�ed, the presentsituation therefore subdivides into 3 cases. The �rst subcase has !2 = An23; with Aa non-zero constant. The second subcase has !22 = �2 _u1n23 and the third subcasehas 3 _u1n23 + 2!22 � 2n223 = 0:The �rst subcase has !2 �An23 = 0: (6.10)Equation (6.10) is used to eliminate n23: Equation (6.5) becomes2a2 � !1A = 0: (6.11)Equation (6.11) is used to eliminate !1: Di�erentiation of equation (6.10) gives�A _u1 �Aa1 �A2!2 + !2 = 0: (6.12)Equation (6.12) is used to eliminate a1: Equation (6.8) becomesa2!22(8A4!2 _u21 + 8A4!32 + 32a22A2!2 � 56a22A4!2 � 14A6!32calculation turned out to be unnecessary. The reason for choosing prime numbers is that it isthen easier to compute the value of the actual factors.12This value of 5304 is of the same order of magnitude as the 1200 we arrived at in the pre-vious footnote. We may regard this as illustrating that our method of estimating such values isreasonably accurate.



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 164+28a22A6!2 � 8A5!22 _u1 � 4A8!2a22 + 7A8!32 �A10!32 + 2A6 _u21!2�2A9 _u1!22 �A8 _u21!2 + 10A7 _u1!22) = 0: (6.13)Equation (6.13) is used to eliminate _u1: Equation (T3) then becomes�a72A22!152 (A� 2)7(A+ 2)7(A2 � 2)2(72!22A10a22 + 48!22A8a22�480A6!22a22 + 128!42 � 384A2!42 + 30!42A8 � 404A6!42 + 9!42A10+648A4!42 + 144a42A10 + 768A2a22!22 � 192A4!22a22+1152A4a42 � 576A6a42 � 288A8a42)(4a22 + !22A2)2 = 0:It follows then that either !2 is proportional to a2 or A is equal to 2;�2;p2 or �p2:Di�erentiating !2 �Ba2 = 0; with B a non-zero constant, one gets �2 _u1Ba2 = 0;a contradiction. If !2 = 2n23 or !2 = �2n23; then di�erentiation of equation (6.12)shows that � + p = 0; a contradiction. If !22 = 2n223; then di�erentiation of equa-tion (6.12) gives that � + p = 4(a22 + n223): Di�erentiation of !22 � 2n223 = 0 impliesthat n23 + a1 + _u1 = 0: Equation (6.7) then gives 4p2a2n223(n23 + a1) = 0; whencen23+ a1 = 0: This in turn implies that _u1 = 0; a contradiction. There are thereforeno spacetimes that belong to the �rst subcase.The second subcase has !22 + 2 _u1n23 = 0: (6.14)Di�erentiation of equation (6.14) gives�2 _u1!22+2a1!22+2n23a21�6n23!21+8a22n23�2n323+n23(�+p)�4n23 _u21+4n23 _u1a1 = 0:(6.15)The variable _u1 is eliminated between equations (6.14) and (6.15), and factors ofn23 are removed from the result. This gives� 2n223 + 2a21 � 6!21 + 8a22 + �+ p = 0: (6.16)



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 165We use equation (6.16) to remove �, equation (6.14) to remove _u1 and equation (6.5)to eliminate !2 from equations (6.6), (6.7) and T3. We thus obtain8n323!1(�!41n23 + 3!41a1 + 2a22n23!21 � 6a22!21a1 + 2a22n323 (6.17)+4a22n223a1 + 2a22n23a21 � 4a42n23) = 0;8n323(!61 � 2a22!41 + 6a22n223!21 + 6a22n23!21a1 � 4a42n223 � 4a42n23a1) = 0: (6.18)and the equation that arises from T3. The resultant of equations (6.17) and (6.18)with respect to a1 is� 8192!112 + 38912a22!101 � 73728a22n223!81 + 245760a42n223!61�57344a42!81 � 303104a62n223!41 + 24576a62!61+163840a82n223!21 � 32768a102 n223 = 0; (6.19)after division by n1023!1a22: The resultant of the transformed T3 and equation (6.17)with respect to a1 becomes� 21!221 + 166a22!201 � 510!181 a42 � 324!181 a22n223 + 2100!161 a42n223+756!161 a62 � 1296!141 a42n423 � 5132!141 a62n223 � 536!141 a82+144!121 a102 + 8640!121 a62n423 + 5560!121 a82n223 � 1696!101 a102 n223�24624!101 a82n423 + 38688!81a102 n423 � 1728!81a122 n223 + 1600!61a142 n223�36064!61a122 n423 � 384!41a162 n223 + 19904!41a142 n423�6016a162 n423!21 + 768a182 n423 = 0;after division by n1723!1a22(!21 � 2a22): The resultant of equations (6.19) and (6.20)with respect to n223 is�67108864a42!101 (3!101 � 88!81a22 + 371!61a42 � 534!41a62 + 324!21a82 � 72a102 )(!1 � a2)3(!1 + a2)3(3!21 � 2a22)3(!21 � 2a22)3 = 0:



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 166We thus conclude that !1 is proportional to a2 and so we set!1 = Ba2; (6.20)with B being a non-zero constant. Di�erentiation of equation (6.20) gives_u1Ba2 +Ba2a1 + 2!2a2 �Ba2n23 = 0;which is equivalent to � 2B2a1 + 2B2n23 � 4n23 = 0; (6.21)after elimination of a2 with equation (6.20) and of !2 with equation (6.5). Thederivative of (6.21) is equivalent to�B4a22 � !22 + 2B2a22 +B2!22 = 0: (6.22)Di�erentiation of (6.22) leads to16B4a42 _u21(B � 1)2(B + 1)2(B2 � 2)2 = 0;which shows that B must be equal to 1;�1;p2 or �p2: Substitution of these fourvalues into equation (6.22) leads to contradictions in all cases. There are thereforeno spacetimes that belong to the second subcase.The third subcase has 3 _u1n23 + 2!22 � 2n223 = 0;which we shall refer to as being equation P1. We shall refer to equation (6.5) asequation P2, equation (6.6) as P3, equation (6.7) as P4, the derivative of P1 as P5and T3 as P6. We compute P13 as the resultant of P1 and P3 with respect to_u1: Similarly we compute P14, P15 and P16 as the resultants with P1 of P4, P5



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 167and P6 with respect to _u1. Then P123, P124, P125 and P126 are obtained asthe resultants of P2 with, respectively, P13, P14, P15 and P16 with respect to !1:Then, P1235 is obtained from the resultant of P123 and P125 with respect to �.Also, P1245 is obtained from the resultant of P124 and P125 with respect to �:Lastly, P12456 is obtained by taking the resultant of P126 and P1245 with respectto a1: Whenever they appear, we shall remove common factors of powers of n23; a2and !2:We let !2 be equal to the prime number 13 17 and take the resultant modulo7 with respect to n23 of P12345 and P12456. The answer is5(2a402 + 4a322 + 2a342 + a362 + 4a382 + 2a282 + 5a242 + a262 + a302 + 3a202+6a222 + 6a662 + 6a682 + 6a642 + 4a582 + 2a602 + 2a622 + 2a502 + 5a522+3a542 + a562 + a422 + 4a442 + 2a462 )2 � 0 mod 7:This shows that !2 is proportional to a2: Di�erentiation of !2 �Aa2 = 0; where Ais a non-zero constant, shows that �2 _u1Aa2 = 0: This is a contradiction. We canthen conclude that there are no case A spacetimes of Petrov type D.We now consider the case when Q33 is the non-repeated eigenvalue of Q. Sincethe eigenvalues of Q must sum to zero, the repeated eigenvalue is �(1=2)Q33: Thematrix Q+ (1=2)Q33 I3; which is0BBBBB@ (1=2)[E11 � E22 + i(H11 �H22)] E12 + iH12 0E12 + iH12 � (1=2)[E11 � E22 + i(H11 �H22)] 00 0 (3=2)Q33 1CCCCCA ;implies that the eigenvectors associated with �(1=2)Q33 are orthogonal to (0; 0; 1):The requirement that the eigenspace of �(1=2)Q33 be two-dimensional requires that13The numbers 7 and 17 are arbitrary. They were chosen because they were small and becausewe could obtain the results we sought. Most positive integers would have been appropriate.



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 168the submatrix0B@ (1=2)[E11 � E22 + i(H11 �H22)] E12 + iH12E12 + iH12 �(1=2)[E11 � E22 + i(H11 �H22)] 1CA (6.23)be scalar, i.e. a multiple of the identity matrix. However, if the matrix (6.23) isscalar, then E12; which is �!1!2; vanishes. This is a contradiction, whence thePetrov type must be II. Since �Q33=2 is an eigenvalue, the determinant of thematrix (6.23) must be zero. This determinant factors as:(1=2)a21 + (1=4)p + (1=2) _u1a1 � 2!21 + 2a22 � (1=2)n223 + (1=4)�+(3=2)i _u1!1 + i!2a2 + (3=2)i!1a1 + (1=2) _u1n23 + (1=2)i!1n23+i(�!2!1 + i!2n23 + i!2a1) (6.24)times (1=2)a21 + (1=4)p + (1=2) _u1a1 � 2!21 + 2a22 � (1=2)n223 + (1=4)�+(3=2)i _u1!1 + i!2a2 + (3=2)i!1a1 + (1=2) _u1n23 + (1=2)i!1n23�i(�!2!1 + i!2n23 + i!2a1): (6.25)We �rst suppose that the �rst factor (6.24) is equal to zero. The vanishing ofthe real part of (6.24) gives a value for � :(1=2) _u1a1 + (1=2) _u1n23 � !2n23 � !2a1+(1=4)� + (1=4)p � 2!21 � (1=2)n223 + (1=2)a21 + 2a22 = 0: (6.26)The vanishing of the imaginary part of (6.24) gives(3=2) _u1!1 + !2a2 + (3=2)!1a1 � !2!1 + (1=2)!1n23 = 0: (6.27)The derivative of equation (6.27) is equivalent to!1(!1 + a2)(9!31a22 + !22!31 + 2!22a2!21�3 _u1!21!2a2 � 9!21a32 � 3 _u1!1!2a22 � 2!22a22!1 � 3a32!22) = 0; (6.28)



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 169where equation (6.4) is used to eliminate �; equation (6.26) is used to eliminate�; equation (6.27) is used to eliminate a1 and equation (6.5) is used to eliminaten23: There are therefore two possibilities, according to whether or not !1 + a2 = 0:If !1 + a2 is indeed equal to zero, equation (6.5) gives that !2 + 2n23 = 0: Equa-tion (6.27) gives that a1+ _u1+3n23 = 0: In turn, equation (6.26) gives �+ p = 0; acontradiction. Therefore !1 + a2 6= 0: Equation (6.28), divided by !1(!1 + a2); willbe used to eliminate _u1: Furthermore, equation (6.28) is di�erentiated. The resultis equivalent to� 1968332 !61a42 + 656132 !61a22!22 + 72932 !61!42 + 2438 !51!42a2+1968316 !51a52 � 21878 !51a32!22 � 267332 !41!42a22 � 2405732 !41a42!22�1968332 !41a62 + 218716 !31a52!22 � 7294 !31a32!42 + 656116 !21a62!22�267332 !21a42!42 + 2438 a52!42!1 + 72932 a52!42 = 0: (6.29)Equation (6.29) is used to eliminate !1: The result of di�erentiating equation (6.29)implies that a782 !322 (343!42 + 234a22!22 � 81a42)(!22 + 4a22)6 = 0: (6.30)This implies that !2 is proportional to a2: Propagation of this proportionality re-lation yields a contradiction.If the factor (6.24) is not equal to zero, then, for the spacetime to be of Petrovtype II, the factor (6.25) must be zero. The same steps as in the preceding paragraphare followed, replacing the factor (6.24) by the factor (6.25). Two cases appear,according as !1+a2 vanishes or not. If !1+a2 does vanish, a contradiction is reachedin the same manner as that above. If !1 + a2 is not zero, the same steps as in thepreceding paragraph lead to exactly the same equation (6.30) that was obtained inthe �rst subcase. It follows then that !2 is proportional to a2: Propagation of that



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 170proportionality relation leads to a contradiction. There are therefore no Petrovtype II solutions in case A.If there are spacetimes in case A, they must be of Petrov type I.6.2 Case B: n33 6= 0; a2 = 0; !1 = 0; n23!2 _u1 6= 0:For case B, the propagation equations are@1a1 = (1=2)p + (1=2)� � 2!22 + _u1a1 + n223 + a21 + (1=4)n233;@1 _u1 = ��+ (3=2)p + (1=2)� � 2!22 � _u21 + 2 _u1a1;@1!2 = �2 _u1!2 + !2n23 + !2a1;@1n23 = ��+ p + 2 _u1a1 � _u1n23 + 2a1n23 � a21 + (3=4)n233 + n223;@1n33 = � _u1n33 + 2n33a1 � 2n33n23;@1p = � _u1(�+ p)and@1� = 0:The cosmological constant, � satis�es� = (1=4)n233 + p + 2 _u1a1 � a21 � !22 + n223:The matrix Q is of the form 0BBBBB@ Q11 Q12 Q13Q12 Q22 Q23Q13 Q33 Q33 1CCCCCA ;



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 171where Q11 = �(1=6)n233 + (1=3)p + (2=3) _u1a1 + (2=3)a21 � (1=3)!22�(2=3)n223 + (1=3)�;Q12 = i!2(n23 + a1);Q13 = (1=2)i!2n33;Q22 = �(1=3) _u1a1 � _u1n23 + (1=12)n233 � (1=6)p � (1=3)a21�(1=3)!22 + (1=3)n223 � (1=6)�;Q23 = �(1=2) _u1n33andQ33 = �(Q11 +Q22)= (1=12)n233 � (1=6)p � (1=3) _u1a1 � (1=3)a21 + (2=3)!22+(1=3)n223 � (1=6)� + _u1n23:The possibility of a Petrov type O spacetime is rejected because that wouldrequire that the matrix Q vanish. This cannot be so since the imaginary part ofQ13 is necessarily nonzero.A Petrov type N spacetime requires that Q2 = 0 with Q 6= 0: The expression in(Q2)13 = 0 is(1=24)i!2n33(4!22 � n233 � 4n223 + 2p � 8 _u1a1 + 4a21 + 2�) = 0;from which � is isolated:� = (1=2)n233 � p+ 4 _u1a1 � 2a21 � 2!22 + 2n223: (6.31)The expression (Q2)23 = 0 becomes, after division by n33� (1=2)!22n23 � (1=2)!22a1 + _u21a1 � (1=2) _u1!22 = 0: (6.32)



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 172The resultant, with respect to a1 of equation (6.32) with the equation (Q2)11 = 0is, after division by !22; equal to4!62 + 16 _u1n23!42 � 4!42 _u21 � !42n233 � 16 _u31n23!22 + 16 _u21n223!22+4!22n233 _u21 � 16 _u41n223 � 4 _u41n233 = 0:Multiplication of equation (6.31) by 8[ _u21�(1=2)!22]2 yields, after taking into accountequations (6.32) and (6.33), that8(� + p)[ _u21 � (1=2)!22 ]2 = 0;whence !22 = 2 _u21:Substitution into equation (6.32) reveals that n23+ _u1 = 0: Di�erentiation of n23+_u1 = 0 then yields n233� 4 _u21 = 0: Propagation of n233� 4 _u21 = 0 implies that _u1 = 0:This is a contradiction in case B, since n33 6= 0: There are therefore no spacetimesin case B that belong to Petrov type N.The matrix condition for a spacetime to belong to Petrov type III is Q3 = 0 withQ2 6= 0: A direct calculation shows that there are only two independent componentsin Q3: The entry (Q3)13 = 0; which is� 4(�+ p)2 + (�16 _u1a1 + 4n233 � 16a21 + 8!22 + 16n223)(�+ p)+96!2n23a1 + 8n33 _u1a1 + 16 _u1a1!2 + 32 _u1a1n223 � n433 � 16n423�16a41 � 16!42 + 8!22n233 + 8n233a21 � 8n233n223 � 16 _u21a21�32 _u1a31 + 64a21!22 + 32a21n223 + 32!22n223 � 48 _u1n23!22�12 _u21n233 � 48 _u21n223 = 0; (6.33)can provide a value for the energy density, since the coe�cient of the highest powerof � therein cannot vanish. We take the resultant of (Q3)11 = 0 and equation (6.33)



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 173with respect to �: Di�erentiation of the result does not yield anything new. Therecan be solutions of Petrov type III, but some constraints must be met.For spacetimes to be of Petrov type D, their Weyl tensor must be such that thematrix equation M := (Q+�=2 I3)(Q�� I3) = 0 must be satis�ed. The conditionM13 = 0; which is1=24i!2n33 �4!22 � n233 � 4n223 � 8 _u1a1 + 4a21 + 2(� + p) � 6�� = 0;produces a value for �; viz.,� = �(1=6)n233 � (4=3) _u1a1 + (2=3)a21 + (2=3)!22 � (2=3)n223 + (1=3)(� + p):Then, the equation M12 = 0 reduces to�(1=4)!2i(4!22n23 + 4!22a1 + n233 _u1 � 4 _u1a21 + 4n223 _u1) = 0;which will be used to eliminate n33: We deduce that n23 + _u1 = 0 from equationM22 = 0; which is ( _u1=2)(n23 + a1)(� + p) = 0:The condition M11 = 0 now simpli�es to�( _u1n23 + (1=2)!22)(� + p) = 0:Di�erentiation of a1 + n23 = 0 leads to � + p = 0; a contradiction. There cantherefore not be any case B solutions that are of Petrov type D.Petrov type II spacetimes have a Weyl tensor that obeys the matrix conditionN := (Q+ �=2 I3)2(Q� � I3) = 0; yet do not satisfy the condition for Petrov typeD. The equation given by N13 = 0; i.e.(1=96)!2n33i[�36�2 � 96!22n23a1 � 8n233 _u1a1 � 16 _u1a1!22



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 174�32 _u1a1n223 + n433 + 16n423 + 16a41 + 16!42 � 8!22n233 � 8n233a21+8n233n223 + 16 _u21a21 + 32 _u1a21 � 64a21!22 � 32a21n223 � 32!22n223+48 _u1n23!22 + 12 _u21n233 + 48 _u21n223(�16n223 � 8!22 + 16a21�4n233 + 16 _u1a1)(� + p) + 4(� + p)2] = 0; (6.34)provides an expression for �2:Multiplying this expression by � gives the value of �3:Substitution of the equalities for �2 and �3 into the matrix N results in a diagonalmatrix. It turns out that this matrix is a scalar matrix; in other words, the threenon-trivial entries are actually equal, and so N is now proportional to the identitymatrix. The resultant of this non-trivial entry of N and equation (6.34) with respectto � yields an equation with 923 terms. This equation can be considered a de�nitionfor the energy density, �; except when all the coe�cients of the various powers of �vanish or when there are no real-valued solutions for �: We now turn our attentionto the situation when it is indeed the case that this equation of 923 terms has itscoe�cients of the various powers of � vanishing. The highest power of � is 4. Werequire the vanishing of the corresponding coe�cient, viz.� (1=12) _u21n233 � (1=3) _u21n223 � (1=12)!42 � (1=3) _u1n23!22 = 0: (6.35)We shall use equation (6.35) to eliminate n33: The derivative of equation (6.35)becomes !22(2 _u1n23 + !22)[!42 + 4 _u1n23!22 + 4 _u21a21 + 2(� + p) _u21]24 _u31 = 0 (6.36)The term 2 _u1n23 + !22 cannot vanish, otherwise equation (6.35) would imply that�( _u21n233)=12 = 0; a contradiction. Equations (6.35) and (6.36) determine a valuefor �; viz. � = �p � 2a21 + (1=2)n233 + 2n223:



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 175We now return to the equation with 923 terms. The vanishing of the coe�cient of�3 therein simpli�es to!22(�2 _u1a1 + !22)2(2 _u1n23 + !22) = 0;after making use of equation (6.35) to eliminate n33: Since we have already ruledout the possibility that 2 _u1n23 + !22 = 0; we must have that !22 = 2 _u1a1: Di�eren-tiating !22 � 2 _u1a1 = 0 implies that n23 + a1 = 0: Equation (6.35) now reduces to�(1=12) _u21n233 = 0; a contradiction. There can therefore be solutions of Petrov typeII, provided that an expression with 923 terms (mentioned above) yields a valuefor �:In summary, there are no solutions in case B that are of Petrov types D, N orO. If there are spacetimes in case B, they must be of Petrov types I, II or III.6.3 Case C: n33 = 0; a2 = 0;!1 = 0; n23!2 _u1 6= 0:For this situation, the propagation equations reduce to@1a1 = (1=2)(p + �)� 2!22 + _u1a1 + n223 + a21;@1 _u1 = �� + (3=2)p + (1=2)� � 2!22 � _u21 + 2 _u1a1;@1!2 = �2 _u1!2 + !2n23 + !2a1;@1n23 = �� + p + 2 _u1a1 � _u1n23 + 2a1n23 � a21 + n223;@1p = � _u1(�+ p)and@1� = 0:Equation (6.3) can be used to solve for �; giving� = �!22 + p + 2 _u1a1 � a21 + n223:



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 176The matrix Q is Q = 0BBBBB@ Q11 Q12 0Q12 Q22 00 0 Q33 1CCCCCA ;whereQ11 = �(1=3)!22 + (1=3)(p + �) + (2=3) _u1a1 + (2=3)a21 � (2=3)n223;Q12 = i!2(n23 + a1);Q22 = �(1=3) _u1a1 � _u1n23 � (1=3)!22 � (1=3)a21 + (1=3)n223 � (1=6)(p + �)andQ33 = �(Q11 +Q22)= (2=3)!22 � (1=3) _u1a1 � (1=3)a21 + (1=3)n223�(1=6)(� + p) + _u1n23: (6.37)For Petrov type O, the matrix condition is that Q be equal to zero. Since !2does not vanish, we must have n23 + a1 = 0: The quantity Q11�Q22; which equals(1=2)(� + p); must also be zero, since Q vanishes; however, this is a contradiction.There are therefore no Petrov type O solutions in case C.There are also no spacetimes of Petrov type III since the vector (0; 0; 1) is anon-null eigenvector of Q: The proof that there are no Petrov type III spacetimesin case C is identical to that presented for case A, and therefore is omitted here.In order that a spacetime be of Petrov type N, the matrix Q must satisfy Q2 = 0with Q 6= 0: The entry (Q2)11 = 0 can be used to �nd a value for �:� = 4!22 � p � 2 _u1a1 � 2a21 + 2n223 + 6 _u1n23: (6.38)The only remaining independent entry in Q2 = 0 is given by(!2a1 + !2n23 + !22 + 2 _u1n23)(�!2a1 � !2n23 + !22 + 2 _u1n23) = 0: (6.39)



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 177The propagation of this equation does not yield any new restrictions. Thereforethere can be type N spacetimes in case C.For Petrov type II or type D there is a non-zero repeated eigenvalue. Becauseof the structure of Q, one of the eigenvalues is E33: The vector (0; 0; 1) is oneeigenvector associated with the eigenvalue E33: Since Q is trace-free, the sum of theeigenvalues must be zero. Therefore, there are two cases to consider, depending onwhether or not E33 is the repeated eigenvalue.Suppose that the repeated value is indeed E33:The matrix Q� E33 I3 is0BBBBB@ 2E11 + E22 iH12 0iH12 E11 + 2E22 00 0 0 1CCCCCA :Since the vector (0; 0; 1) is an eigenvector belonging to the eigenvalue E33; thedimension of the eigenspace of Q associated with E33 is either two or one accordingas (2E11 +E22)(E11 + 2E22) +H212 vanishes or not, whence the Petrov type is D orII, respectively. However, �2E33 is the non-repeated eigenvalue, and so the matrixQ+ 2E33 I3; which is0BBBBB@ �E11 � 2E22 iH12 0iH12 �2E11 � E22 00 0 3E33 1CCCCCA ;must be singular. The expression (E11+2E22)(2E11+E22)+H212 must then vanish,whence the Petrov type must be D. Explicitly, the equation(E11 + 2E22)(2E11 + E22) +H212 = 0is given by�( _u1n23 + (1=2)!22)(�+ p) + !42 + !22(3 _u1n23 � _u1a1 + 2n223 + 2n23a1)+ _u1n23(�2 _u1a1 � 2a21 + 2n223 + 2 _u1n23) = 0: (6.40)



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 178This gives a de�nition for �; unless its coe�cient vanishes, i.e. unless 2 _u1n23+!22 =0: Supposing that, indeed, 2 _u1n23 + !22 = 0; then equation (6.40) implies thatn23+a1 = 0; and the requirement that this is propagated now shows that �+p = 0;which is a contradiction. There can therefore be case C spacetimes of Petrov typeD; however, some constraints need to be satis�ed.Now suppose that the repeated eigenvalue is not E33; it must then be �E33=2:Therefore, the matrix Q+ (E33=2)I3 is0BBBBB@ (E11 � E22)=2 iH12 0iH12 (E22 � E11)=2 00 0 3E33=2 1CCCCCASince �E33=2 is an eigenvalue, the determinant of this matrix must be zero, forcing4H212 � (E11 � E22)2 = 0: This is equivalent to(p+ � � 4!2a1 + 2 _u1a1 + 2a21 � 4!2n23 + 2 _u1n23 � 2n223)��(p+ � + 4!2a1 + 2 _u1a1 + 2a21 + 4!2n23 + 2 _u1n23 � 2n223) = 0; (6.41)which gives two possible values for �: If H12 = 0 and E11 = E22 then the dimensionof the eigenspace associated with �E33=2 is two, whence the Petrov type is D;otherwise, the dimension is one, whence the Petrov type is II. If the Petrov typeis D, then the condition H12 = 0 implies that n23 + a1 = 0; and the conditionE11 = E22 necessitates that (1=2)(� + p) + _u1(n23 + a1) + (a1 + n23)(a1 � n23) = 0:Together, these two conditions imply that �+ p = 0; which is a contradiction, andthus the spacetimes must be of Petrov type II.In summary, spacetimes of Petrov type III and O are not allowed in case C. Theother Petrov types are allowed but under the presence of certain constraints.



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 1796.4 SummaryThe only spacetimes allowed in case A must be of Petrov type I. Spacetimes thatbelong to case B cannot belong to Petrov types O, N, or D. There can be solutionsof type I. There can also be solutions of Petrov type III, but some constraintshave to be met. There can also be solutions of type II, provided that a particularequation of 923 terms contains terms involving �: If the coe�cients of � all vanishin that particular equation, then there are no solutions. We note that since thePetrov types O and D are ruled out, spacetimes with a purely electric Weyl tensorthat belong to either of class A or of class B must be of Petrov type I (see Krameret al. (1980) who mention the fact that if the matrix Q is real, the only allowedPetrov types are O, D and I).For spacetimes that belong to case C, there are no solutions of Petrov typesO and III. There can be solutions of Petrov type N. In these spacetimes, the uidhas the energy given by equation (6.38) and the solutions are subject to the con-straint (6.39). There can also be Petrov type D solutions. They have Q33; givenby equation (6.37), as a double eigenvalue. The energy density is given implicitlyby equation (6.40) and the quantity 2 _u1n23+!22 cannot vanish. Furthermore, therecan be Petrov type II solutions. They have Q33 as the non-repeated eigenvalue.The energy density must satisfy equation (6.41). The quantities !2(n23 + a1) and(1=6)(p + �) + _u1(a1 + n23) + a22 � n223 cannot both vanish on an open set. Therecan also be solutions of type I.The results we have obtained for Petrov type N are compatible with thoseobtained by Carminati (1988), who showed that Petrov type N shear-free perfectuids with a barotropic equation of state must belong to the class studied byKrasi�nski (1978), and therefore must belong to our case C.



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 180There are no spacetimes within the class we are studying that are conformallyat, i.e. of Petrov type O. This, of course, is compatible with Ellis (1971) who at-tributes to Tr�umper14 the result that conformally at spacetimes with a barotropicequation of state must be shear-free, geodesic and irrotational and so must belongto the Friedmann-Robertson-Walker models.Kramer et al. (1980) mention that they were not aware of the existence of anyperfect uid solutions of Petrov type III. A super�cial search of the literature didnot reveal any solutions other than the work of Allnutt (1981) which uncovered aperfect uid of Petrov type III that possesses non-zero shear. Carminati (1990)mentions the article of Allnutt and adds that, as far as he is aware, there are noknown shear-free perfect uid solutions of Petrov type III. We have demonstratedthe possible existence of such spacetimes in our case B, although they are subjectto rather complicated (yet readily accessible) constraints.We have summarized the previous results in table (6.2) appearing on page 181.
14Ellis does not give an exact reference.



CHAPTER 6. HYPERSURFACE-HOMOGENEOUS SPACETIMES 181
Petrov Type Case A Case B Case CI Allowed Allowed AllowedD Disallowed Disallowed AllowedII Disallowed Allowed AllowedN Disallowed Disallowed AllowedIII Disallowed Allowed DisallowedO Disallowed Disallowed DisallowedTable 6.2: Allowed Petrov Types



Appendix AThe forms Maple package fordi�erential formsDe la discussion jaillit la lumi�ere.Proverbe fran�caisT HE Maple package forms is a collection of programs for calculations involvingdi�erential forms and their dual vectors. Maple V or Maple V release 2 is requiredin order to use it. A standard reference about Maple is Char et al. (1991).The following functions are provided:adjoint d: compute the adjoint di�erential, or coderivative of a form.cartan lemma: solve for unknown formscauchy char: compute the Cauchy characteristic of a di�erential ideald: compute the exterior derivativederived ideal: compute the derived ideal of a di�erential ideal182



APPENDIX A. THE FORMS MAPLE PACKAGE 183express base: express a form over a basisform coeffs: �nd the coe�cients of formsform to vec: take a basic form to a basic vector1form part: �nd the non scalar part of a termhodge star: apply on a form the hodge star operator with respect to an innerproducthook: compute the interior product of a form by a vectorin ideal: verify if a form belongs to given di�erential idealinner product: compute an inner product between two formsitem map: apply an operation to elements of nested structureslaplace beltrami: apply a generalized Laplacian to a formlie: compute the lie derivative of a formlinear divisors: compute the linear divisors of a formlinear solve: solve linear equations; extends solve(..., linear)mod ideal: �nds a representative of a form modulo a di�erential idealscalar part: �nd the coe�cient of a basic formstandard form: regroup forms according to basic forms1A basic form is a nform, a form or a dform. A basic vector is a nvector, a vector or advector.



APPENDIX A. THE FORMS MAPLE PACKAGE 184subs form: substitute forms in other forms; extends subs()vec scalar part: �nd the coe�cient of a multivector termvec subs: substitute multivectors. extends subs()vec to form: take a basic vector to a basic formvec wedge: compute the exterior multiplication of vectorsvector part: �nd the multivector part of a termwdegree: �nd the degree of a formwedge: compute the exterior multiplication of formsIn order to use the forms package, it must �rst be loaded in Maple via the with()facility.> with(forms):In the Maple examples below, it is useful the remember that the ordering ofterms in a sum, of factors in a product and elements in a set are session dependent.The output of each example may thus be di�erent from that shown in the presentdocument.Let V be a real vector space of dimension n; and V � its dual space. Elementsof V are called vectors; those of V �; covectors or 1-forms.A.1 Di�erential formsAny non-compound Maple expression is a di�erential form of degree 0. We shallrefer to such forms as 0-forms. Compound Maple expressions are quantities like



APPENDIX A. THE FORMS MAPLE PACKAGE 185sets, lists, expression sequences and so on. From 0-forms, one can get di�erentialforms of degree 1, or 1-forms, by using the exterior derivative operation d(). Forexample,> F1:=x*y+3*z; F1 := x y + 3 zis a 0-form.> dF1:=d(F1); dF1 := dform(1, x) y + x dform(1, y) + 3 dform(1, z)As one can see, the exterior derivative operates on 0-forms as a di�erential operatorand produces a 1-form. The notation dform(1,x) represents a closed 1-form withname x. This name is used to distinguish between various di�erential forms andshould be either a Maple name or a Maple indexed2 name. By de�nition, closedforms are di�erential forms whose exterior derivative is zero. One can use thosedform expressions to build other 1-forms.> F2:=x*d(y)+t*d(z); F2 := x dform(1, y) + t dform(1, z)One can use the standard addition of Maple to add di�erential forms together.> dF1+3*F2;dform(1, x) y + 4 x dform(1, y) + 3 dform(1, z) + 3 t dform(1, z)Like terms are combined using the standard form() operation.> standard_form(dF1+3*F2);dform(1, x) y + (3 + 3 t) dform(1, z) + 4 x dform(1, y)2There is no extra support for forms with indexed names. Further development of the formspackage could involve index symmetries and also Einstein's summation convention.



APPENDIX A. THE FORMS MAPLE PACKAGE 186The coe�cient multiplying a basic form can be obtained with the scalar part()function. The basic form itself is obtained using the form part() function.> scalar_part(3*x*d(y)); 3 x> form_part(3*x*d(y)); dform(1, y)Two di�erential forms can be multiplied together. However, since the multiplicationof di�erential forms is not necessarily commutative, the multiplication provided byMaple cannot3 be used. The appropriate multiplication, the exterior multiplication,is obtained through the wedge() operation.4> standard_form(wedge(dF1,F2));y x wedge(dform(1, x), dform(1, y))+ (x t - 3 x) wedge(dform(1, y), dform(1, z))+ y t wedge(dform(1, x), dform(1, z))The notation wedge(dform(1,y), dform(1,z)) means that the di�erential formsthat are arguments to the wedge() function are multiplied together using exteriormultiplication. The wedge() operation is distributive. Scalar functions (0-forms)move out of form(). The ordering within the square brackets is unique during a3Even if one could \overload" the � operator of Maple, it is arguably better to have a di�erentnotation for each type of multiplication. For an example to ponder about, consider the design of asystem that could handle tensor multiplication of exterior multiplications of arrays of quaternion-valued di�erential forms. The Gauss package for Maple, see Gruntz et al. (1993), is a suitableenvironment for such a system.4Unfortunately, this associative operator cannot be made into an in�x operator if it hasmore than two arguments without the appearance of extraneous parentheses. However doingalias(`&^`=wedge); will make give an in�x operator for the exterior product of two di�erentialforms.



APPENDIX A. THE FORMS MAPLE PACKAGE 187Maple session, but can change from one session to another.> standard_form(wedge(F2,dF1));- y x wedge(dform(1, x), dform(1, y))+ (3 x - x t) wedge(dform(1, y), dform(1, z))- y t wedge(dform(1, x), dform(1, z))The wedge() and the d() operations are then appropriate tools to construct di�er-ential forms of various degrees.> F3:=standard_form(wedge(wedge(F2,dF1),d(x)));F3 := (3 x - x t) wedge(dform(1, x), dform(1, y), dform(1, z))The degree of a di�erential form is obtained by wdegree(). Note that for theanswer of wdegree() to be valid, each term of its argument must be of the sameform-degree.5> wdegree(F3); 3The set of p-forms, or forms of degree p; is denoted by Vp(V �). The exterior algebraof V � is the graded algebra^(V �) :=^0(V �)�^1(V �)� � � � �^n(V �);where V0(V �) is the set of real (complex) valued functions and V1(V �) is the cov-ector space V �. Exterior multiplication is associative and distributive, but notcommutative. It satis�es the relation� ^ � = (�1)(pq)� ^ �; � 2 ^p(V �); � 2 ^q(V �):5There is a question of e�ciency behind this design. Assuming that the argument of wdegree()is homogeneous in degree allows for a constant time calculation. Without that assumption, everyterm would need to be checked, therefore checking the form-degree would be an operation witha cost linear in the number of input terms. A test for checking degree-homogeneity of fm1 isevalb(nops(map(wdegree, convert(fm1,set)))=1). The forms package can otherwise handleforms of non-homogeneous degree; in particular, exterior multiplication is handled correctly.



APPENDIX A. THE FORMS MAPLE PACKAGE 188The operation subs form() is used to substitute forms into other forms. Thefunction subs() of Maple is not adequate, since it does not preserve the canonicalforms that the forms package uses. Since the �rst step that subs form() performsis to use Maple's subs() command, the rules governing the use of subs() alsoapply here.> standard_form(subs_form(d(z)=3*x*d(t)+d(u), F3));2- 3 x (- 3 + t) wedge(dform(1, t), dform(1, x), dform(1, y))- x (- 3 + t) wedge(dform(1, u), dform(1, x), dform(1, y))The various coe�cients of a di�erential form are obtained with the functionform coeffs().6> form_coeffs(dF1,{d(x),d(y),d(z)});x, y, 3Note that the form which is passed as a �rst argument to form coeffs() mustbe constructible from the elements in the (optional) second argument, otherwisean error will be reported. This is quite useful because normally the results ofform coeffs() are only useful if the elements of the second argument are indepen-dent. For example, if one knows that z is a function of x and y, then the derivativeof z would be expressible in terms of d(x) and d(y).> dz:=d(z(x,y));/ d \ / d \dz := |---- z(x, y)| dform(1, x) + |---- z(x, y)| dform(1, y)\ dx / \ dy /6Note that the order can vary. An expression sequence is returned to be consistent with thecoeffs() function of Maple.



APPENDIX A. THE FORMS MAPLE PACKAGE 189The coe�cients7 in dF1 would then be> form_coeffs(dF1,{d(x),d(y)});Error, (in form_coeffs) Non basis form(s) present:, {dform(1,z)}The error message signals that we assumed that the form dF1 can be constructedsolely with d(x) and d(y). We �rst have to express dz in terms of d(x) and d(y),and substitute the result into dF1.> dF1_a:=subs_form(d(z)=dz,dF1); / d \dF1_a := dform(1, x) y + x dform(1, y) + 3 |---- z(x, y)| dform(1, x)\ dx // d \+ 3 |---- z(x, y)| dform(1, y)\ dy /One can then �nd the coe�cients which were being sought.> form_coeffs(dF1_a,{d(x),d(y)});/ d \ / d \x + 3 |---- z(x, y)|, y + 3 |---- z(x, y)|\ dy / \ dx /Sometimes it is useful to express a one-form with respect to a basis. This mayhappen, for example, when one wants to express the derivative of a function (i.e.the contact equation). Very often, one needs to invent new names for the variouscoe�cients. The function express base() was written to simplify this. It takes aform and a basis, and returns an equality where the left-hand side is the form, andthe right hand-side is the expanded version of it. An optional third argument givesa method for constructing the names for the coe�cients.7Note that some releases of Maple would have returned D[1](z)(x,y) as the form of thecoe�cients of dz.



APPENDIX A. THE FORMS MAPLE PACKAGE 190As an example, we can expand d(z) in terms of d(x) and d(y) using theexpress base() facility.> substitutions:={express_base(d(z),{d(x),d(y)})};substitutions := {dform(1, z) = z_x dform(1, x) + z_y dform(1, y)}> dF1_b:=subs_form(substitutions,dF1);dF1_b := dform(1, x) y + x dform(1, y) + 3 z_x dform(1, x) + 3 z_y dform(1, y)> form_coeffs(dF1_b,{d(x),d(y)});y + 3 z_x, x + 3 z_yOf course, the expression for d(z) can be constructed using the facilities of Maple:> substitutions_2:={d(z)=zx*d(x)+zy*d(y)};substitutions_2 := {dform(1, z) = zx dform(1, x) + zy dform(1, y)}> dF1_c:=standard_form(subs_form(substitutions_2,dF1));dF1_c := (x + 3 zy) dform(1, y) + (y + 3 zx) dform(1, x)The optional third argument to express base() is a function that will be calledwith three arguments: a name, a base element and a number. It should return aname constructed with this information. For example proc(name,base element,ind) could return on (F,dform(1,x),3) something like F x or F3.> substitutions_3:=express_base(d(z),[d(x),d(y)],<name[ind]|name,base,ind>);substitutions_3 := dform(1, z) = z[1] dform(1, x) + z[2] dform(1, y)> dF1_d:=standard_form(subs_form(substitutions_3,dF1));dF1_d := (x + 3 z[2]) dform(1, y) + (y + 3 z[1]) dform(1, x)The di�erential forms seen so far have been constructed with the exterior deriva-tive, d(), of functions and forms and with the exterior multiplication, wedge, offorms. It is quite useful to be able to use di�erential forms without necessarily hav-ing to construct them out of scalar functions. The notation nform(degree, name)



APPENDIX A. THE FORMS MAPLE PACKAGE 191is used to specify a di�erential form.> F4:=nform(3,w); F4 := nform(3, w)> dF4:=d(F4); dF4 := dform(4, w)> d2dF4:=d(dF4); d2dF4 := 0> wedge(F4,F2), wedge(F2,F4);x wedge(nform(3, w), dform(1, y)) + t wedge(nform(3, w), dform(1, z)),- x wedge(nform(3, w), dform(1, y)) - t wedge(nform(3, w), dform(1, z))A.2 Vectors and multivectorsA vector is an object which is dual to a one-form. In the package forms, ba-sic vectors are nvector(name1), which is dual to form(1, name1), anddvector(name1), which is dual to dform(1,name1). Vectors are formed by linearcombinations (over the maple expressions) of basic vectors.> V1:=dvector(x)+3*z*dvector(y)-u*dvector(z);V1 := dvector(x) + 3 z dvector(y) - u dvector(z)> V2:=-dvector(x)+2*x*dvector(y)+3*u*dvector(z);V2 := - dvector(x) + 2 x dvector(y) + 3 u dvector(z)> V3:=nvector(w1); V3 := nvector(w1)> V4:=expand(V1+3*x*V2);V4 := dvector(x) + 3 z dvector(y) - u dvector(z) - 3 x dvector(x)2+ 6 x dvector(y) + 9 x u dvector(z)Vectors can be multiplied together with vec wedge(). The notation for thevec wedge of basic vectors is vector([list of basis vectors]).> vec_wedge(V1,V2);



APPENDIX A. THE FORMS MAPLE PACKAGE 1922 x vec_wedge(dvector(x), dvector(y))+ 2 u vec_wedge(dvector(x), dvector(z))+ 3 z vec_wedge(dvector(x), dvector(y))+ 9 z u vec_wedge(dvector(y), dvector(z))+ 2 u x vec_wedge(dvector(y), dvector(z))The set of p-vectors, formed by the sum of terms that are the exterior products ofp vectors, is denoted by Vp(V ). The exterior algebra of V � is the graded algebra^(V ) := ^0(V )�^1(V )� � � � �^n(V );where V0(V ) is the real (complex) valued functions and V1(V ) is the vector �eld V .The exterior multiplication is associative and distributive, but not commutative. Itsatis�es the relation� ^ � = (�1)(pq)� ^ �; � 2 ^p(V ); � 2 ^q(V ):Two functions8 help in the construction of vectors, namely, form to vec() andvec to form(). The function form to vec() takes a basic form, and returns thecorresponding basic vector. The function vec to form() does the opposite.> form_to_vec(nform(1,w1)); nvector(w1)> form_to_vec(d(x)); dvector(x)> vec_to_form(dvector(y)); dform(1, y)> vec_to_form(nvector(w2));8These functions are used for formal manipulations. They are not intended to mathematicallyconvert between forms and vectors via a pairing such as < ~ea; �b >= �ba: For such a conversion,the function hook(), in conjunction with solve(), is more suitable.



APPENDIX A. THE FORMS MAPLE PACKAGE 193nform(1, w2)One can �nd the scalar function multiplying a basic vector with the functionvec scalar part(). The basic vector is returned with the function vector part().> vec_scalar_part(3*x*nvector(w1));3 x> vector_part(3*x*nvector(w1));nvector(w1)For the same reason why one should not do substitutions in forms using theMaple subs() function, but rather with the forms-package subs form(), the samesituation holds for vectors. The function vec subs() is provided to do the work.> vec_subs(dvector(z)=y*dvector(x)+x*dvector(y), vec_wedge(V1,V2));2 x %1 + 2 u x %1 + 3 z %1 - 9 z u y %1 - 2 u x y %1%1 := vec_wedge(dvector(x), dvector(y))Let vi be elements of V and wj be elements of V �: One can de�ne a pairing< vi; wj > which is linear in each argument and is a real (or complex) number.If vi is chosen to be dual to wi; then < vi; wj > is equal to �ji : This pairing isextended to elements of Vp(V ) and Vp(V �) as follows: Let � := v1 ^ � � � ^ vp and� := w1 ^ � � � ^ wp: The pairing < �; � > is de�ned to be the determinant of thematrix M ji :=< vi; wj >. The de�nition of this pairing is then extended usinglinearity in both arguments. If the degree of the multivector is higher than thedegree of the form, the pairing is de�ned to be zero.Given � 2 V; the interior product (�c) of � with a p-form, giving a (p� 1)-form,is de�ned implicitly as follows:< �; �c� >=< � ^ �; � > 8� 2 ^p(V ); � 2 ^p(V �)



APPENDIX A. THE FORMS MAPLE PACKAGE 194The function hook() is the implementation in the forms package of the inner prod-uct.> F5:=a*wedge(d(x),d(y))+b*wedge(d(y),d(z))+c*wedge(d(z),d(x));F5 := a wedge(dform(1, x), dform(1, y))+ b wedge(dform(1, y), dform(1, z))- c wedge(dform(1, x), dform(1, z))> V5:=form_to_vec(d(x)); V5 := dvector(x)> V6:=form_to_vec(d(y)); V6 := dvector(y)> hook(V5,F5); a dform(1, y) - c dform(1, z)> hook(vec_wedge(V5,V6),F5); aA.3 Higher level functionsThe higher level functions are functions that build upon the basic di�erential ex-terior algebra functions we have seen so far. Bryant et al. (1991) provide moreinformation about the concepts involve.Suppose that nform(p; �) is a p-form. The space of linear divisors of nform(p; �)is the set of one-forms whose exterior product with nform(p; �) vanish. This spaceis calculated with the function linear divisors().> linear_divisors(wedge(d(x), d(y)), DIV);DIV[1] dform(1, x) + DIV[2] dform(1, y), {0}, {DIV[1], DIV[2]}> F6:=wedge( d(x)+3*d(y), wedge ( d(u), d(t) ) + wedge( d(x), d(z) ) );



APPENDIX A. THE FORMS MAPLE PACKAGE 195F6 := - wedge(dform(1, x), dform(1, t), dform(1, u))- 3 wedge(dform(1, y), dform(1, t), dform(1, u))- 3 wedge(dform(1, x), dform(1, y), dform(1, z))> linear_divisors(F6, divisor);1/3 divisor[1] dform(1, x) + divisor[1] dform(1, y), {}, {divisor[1]}> linear_divisors(a*wedge(d(x),d(y))+b*wedge(d(t),d(z)), DIV);0, {}, {}The second argument to linear divisors() is a name which will be used in con-structing the arbitrary parameters in the answer. The function linear divisors()returns a sequence of three expressions. The answer is given by the �rst expressionparametrized by all possible values of the parameters given in the third expression.The second expression is the set of relations, if any, that must be equal to zerofor the answer to be valid. Note that all the basic forms appearing in the �rstargument of linear divisors() are assumed to be independent.A subring I � V(V �) is called an ideal if every element � of I is of homogeneousdegree and if � 2 I implies that �^� 2 I for all � 2 V(V �): Furthermore, I is calleda di�erential ideal if I is closed under exterior di�erentiation, i.e. if the exteriorderivative of every element of I belongs to I: For the forms package, di�erentialideals are represented by a set of di�erential forms that will be used as generatorsfor the ideal.> Ideal1:={d(y)-p*d(x)};Ideal1 := {dform(1, y) - p dform(1, x)}> Ideal2:=Ideal1 union map(d, Ideal1);Ideal2 :={wedge(dform(1, x), dform(1, p)), dform(1, y) - p dform(1, x)}> Ideal3:=Ideal2 union {d(H(x,y,p))};



APPENDIX A. THE FORMS MAPLE PACKAGE 196Ideal3 := {wedge(dform(1, x), dform(1, p)),dform(1, y) - p dform(1, x),/ d \ / d \|---- H(x, y, p)| dform(1, x) + |---- H(x, y, p)| dform(1, y)\ dx / \ dy // d \+ |---- H(x, y, p)| dform(1, p) }\ dp /Given an ideal I; the Cauchy characteristic space of I is the set of vectors whoseinterior product with all the members of I is itself a member of I. This space iscalculated with the function cauchy char().> cauchy_char(Ideal1, CC);CC[1] dvector(x)---------------- + CC[1] dvector(y), {}, {CC[1]}p> cauchy_char(Ideal2, CC); 0, {}, {}> cauchy_char(Ideal3,CC);/ d \CC[1] |---- H(x, y, p)| p dvector(y)\ dp /- --------------------------------------- + CC[1] dvector(p)/ d \ / d \|---- H(x, y, p)| + |---- H(x, y, p)| p\ dx / \ dy /



APPENDIX A. THE FORMS MAPLE PACKAGE 197/ d \CC[1] |---- H(x, y, p)| dvector(x)\ dp /- ---------------------------------------, {}, {CC[1]}/ d \ / d \|---- H(x, y, p)| + |---- H(x, y, p)| p\ dx / \ dy /The interpretation of the answer and of the second argument of the functioncauchy char() is similar to what was described for the linear divisors.9The retracting subspace of the di�erential ideal I is the annihilator of theCauchy characteristic space of I (i.e. all the di�erential one-forms whose inte-rior products by members of the Cauchy characteristic space of I vanish). Thisspace is calculated with the function retraction().> retraction(Ideal1,RR);RR[1] dform(1, y)- ----------------- + RR[1] dform(1, x), {}, {RR[1]}p> retraction(Ideal2,RR); 0, {0}, {}> retraction(Ideal3,RR);RR[2] dform(1, y) + RR[1] dform(1, p) +9In particular, the answer to cauchy char(Ideal1) may vary by overall factors which couldbe included in CC[1]. It is not clear which is the best strategy as to which factors should beabsorbed. Part of the problem is to avoid removing factors which could become zero.



APPENDIX A. THE FORMS MAPLE PACKAGE 198/ / d \ \| |---- H(x, y, p)| p RR[2] || \ dp / ||- --------------------------------------- + RR[1]|| / d \ / d \ || |---- H(x, y, p)| + |---- H(x, y, p)| p |\ \ dx / \ dy / /// d \ / d \ \||---- H(x, y, p)| + |---- H(x, y, p)| p| dform(1, x)\\ dx / \ dy / // / d \/ |---- H(x, y, p)|, {},/ \ dp /{RR[2], RR[1]}> map(simplify,standard_form("[1]));RR[2] dform(1, y) + RR[1] dform(1, p) - dform(1, x) (/ d \ / d \|---- H(x, y, p)| p RR[2] - RR[1] |---- H(x, y, p)| p\ dp / \ dy // d \ / / d \- RR[1] |---- H(x, y, p)|) / |---- H(x, y, p)|\ dx / / \ dp /The function in ideal() tests whether a particular di�erential form is a memberof a given di�erential ideal.> in_ideal(d(x), Ideal1); false



APPENDIX A. THE FORMS MAPLE PACKAGE 199> in_ideal(wedge(d(x),d(y)), Ideal1);trueThe (�rst-)derived system of an ideal I is the set of elements of I whose ex-terior derivative is also a member of I. This is calculated by the functionderived ideal().> Ideal4:={d(y)-p*d(x), d(p)-q*d(x)};Ideal4 := {dform(1, y) - p dform(1, x), dform(1, p) - q dform(1, x)}> derived_ideal(Ideal4);{dform(1, y) - p dform(1, x)}, {}> derived_ideal( derived_ideal(Ideal4)[1] );{}, {}The derived ideal() function has an optional second argument that is used togive to derived ideal() the expressions for the various derivatives.> derived_ideal({nform(1,a),nform(1,b)},> {d(nform(1,a))=wedge(nform(1,a), nform(1,b) ),> d(nform(1,b))=wedge( nform(1,a), nform(1,c))} );{nform(1, b), nform(1, a)}, {0}> derived_ideal({nform(1,a),nform(1,b)},> {d(nform(1,a))=wedge(nform(1,a), nform(1,b) ),> d(nform(1,b))=wedge( nform(1,c), nform(1,e))} );{nform(1, a)}, {}The answer consists of a sequence of two sets: the derived ideal and the set ofquantities that have been assumed to vanish.A very useful result in exterior di�erential algebra is the following. LetM be ann�dimensional manifold. Let f!ig be a set of p independent one-forms, where p<n.(The independence condition is determined by requiring that the exterior product



APPENDIX A. THE FORMS MAPLE PACKAGE 200of all p of these 1-forms gives a non-zero result.) Suppose that we have a set of p one-forms f�ig over that same manifold M satisfying Ppi=1 �i ^ !i = 0. Then Cartan'slemma states that there are p(p + 1)=2 functions Aij; with Aij = Aji; such that�i = Aij!j. The method of proof 10 is to complete the set of functions !i to a basisof T �M by adjoining (n�p) one-forms �a. Since the one-forms �i 2 T �M , they canbe expanded uniquely in this constructed basis: �i = Aij!j +Bia�a. We substitutethis in the condition on �i, to obtain Aij!j^!i+Bia�a^!i = 0. Since the functions!i and the �a are all pairwise independent, it follows that Aij �Aji = Bia = 0.The proof is instructive, since it allows us to extend the lemma. Suppose wehave a set of exterior algebraic equalities involving the one-forms of a basis ofT �M and other one-forms that are taken as unknowns but members of T �M . Wecan expand these unknown one-forms with respect to the basis, with the variouscoe�cients left as unknown functions. These expansions are substituted in thegiven equalities. We then put the result in standard order and equate to zero allthe coe�cients of the basic forms. We then solve for as many unknown functions aspossible. The relations that we are left with, not involving the unknown functions,cannot be made to vanish. They determine quantities known by the collective termof the non-absorbable torsion. (For systems satisfying the hypothesis of the Cartanlemma, all the the torsion can be absorbed).Now, substituting the solved functions into the unknown one-forms gives us theanswer we seek. We may have some functions that are still undetermined (in thestandard Cartan lemma, these are the coe�cients of the symmetric p � p matrixAij). Depending on the problem that is being solved, these parameters may have aninterpretation (for example in the method of equivalence, they may represent the10There is a similar proof on page 10. The present proof is included in order that this appendixbe self-contained.



APPENDIX A. THE FORMS MAPLE PACKAGE 201parameters of the subgroup involved in the prolongation step of the algorithm). Thetorsion is obtained by substituting the solved one-forms into the original problemand simplifying.> cartan_lemma( wedge(nform(1,F[1]),d(x))+wedge(nform(1,F[2]),d(y)),> {d(x),d(y)}, P);[{nform(1, F[1]) = P[2] dform(1, y) + P[3] dform(1, x),nform(1, F[2]) = P[1] dform(1, y) + P[2] dform(1, x)},{P[3], P[1], P[2]}]> F7:=wedge(nform(1,G), d(x)) + wedge(d(y),3*d(z));F7 := wedge(nform(1, G), dform(1, x)) - 3 wedge(dform(1, z), dform(1, y))> ans:=cartan_lemma( F7, {d(x), d(y), d(z) }, P);ans := [{nform(1, G) = P[1] dform(1, x)}, {P[1]}]> torsion:=subs_form(ans[1], F7);torsion := - 3 wedge(dform(1, z), dform(1, y))> cartan_lemma( {F7, wedge(d(z),d(x))}, {d(x), d(y)}, P);[{nform(1, G) = - 3 P[2] dform(1, y) + P[1] dform(1, x),dform(1, z) = P[2] dform(1, x)}, {P[1], P[2]}]Given a set of di�erential forms, one can construct an ideal I using these dif-ferential forms as generators with the multiplication operator being the exteriorproduct. The mod ideal() function of a di�erential form ! �nds a representativefor the equivalence11 class ! + I.> mod_ideal(d(p),Ideal4); q dform(1, x)> mod_ideal(wedge(d(p),d(y)),Ideal4);11The actual representative can change from a Maple session to another. However, if ! is inthe ideal, then the result of mod ideal() is guaranteed to be 0.



APPENDIX A. THE FORMS MAPLE PACKAGE 2020> mod_ideal(d(x),Ideal4); dform(1, x)> mod_ideal(d(y),Ideal4); p dform(1, x)> mod_ideal(wedge(d(p),d(z)),Ideal4);- q wedge(dform(1, z), dform(1, x))Let L be an n-dimensional space of di�erential one-forms with an inner product:g : L� L! RWe can extend this inner product to an inner product over the exterior algebraon L g :^L � ^L! Ras follows. First, if the two arguments of the inner product have di�erent wedgedegree, then the answer is zero. Second, since the inner product is linear in eachargument, we need only consider simple p-forms. Let � and � be expanded inone-forms as � = �1 ^ � � � ^ �p, and � = �1 ^ � � � ^ �p. Theng(�; �) = det �g(�i; �j)�The function inner product() calculates the inner product between two di�er-ential forms given an orthonormal basis, and a signature list12, which defaults to12The signature list gives the diagonal of the inner product between all the elements of theorthonormal basis { this is not always positive if we allow pseudo-Riemannian bases such as theones appearing in relativity.



APPENDIX A. THE FORMS MAPLE PACKAGE 203all begin equal to one.> inner_product(d(x)+3*d(y), -d(x)+4*d(y), [d(x),d(y)]);11> inner_product(d(x)+3*d(y), -d(x)+4*d(y), [d(x),d(y)],[-1,1]);13> inner_product( wedge(d(x),d(y)), wedge(d(x),d(z)), [d(x), d(y), d(z)]);0> inner_product( wedge(d(x),d(y)), wedge(d(x),d(y)), [d(x), d(y), d(z)]);1Given L, a di�erential forms space (of dimension n) with an inner product g,and given an orientation on L, we can de�ne an operator � taking p-forms into(n � p)-forms. This operator is called the (Hodge) star operator. Let � be thevolume form on L.Let � be a p-form Then �� is the unique (n� p)-form that satis�es� ^ � = g(��; �)�for all (n� p)-forms �.The function hodge star() calculates this operation. It takes as arguments thedi�erential form operated upon, an orthonormal basis and (optional) a signaturelist.> hodge_star(d(x),[d(x),d(y),d(z)]);- wedge(dform(1, z), dform(1, y))> hodge_star(wedge(d(y),d(z)),[d(x),d(y),d(z)]);dform(1, x)> hodge_star(d(x),[d(x),d(y),d(z)],[-1,1,1]);



APPENDIX A. THE FORMS MAPLE PACKAGE 204- wedge(dform(1, z), dform(1, y))> hodge_star(wedge(d(y),d(z)),[d(x),d(y),d(z)],[-1,1,1]);- dform(1, x)> hodge_star(d(x)+2*d(y),[d(x),d(y)]);dform(1, y) - 2 dform(1, x)When we have a space on which the Hodge star operator can be de�ned, thenfrom the exterior derivative, one can construct another di�erential operator � takinga p-form to a (p � 1)-form as follows:�� = (�1)(np+n+1) � d � �:The name adjoint d comes from the following property. If � is a p-form, and � isa p + 1-form, and g is the inner product on the space then,g(d�; �) = g(�; ��):This operator is also known as the co-di�erential.> adjoint_d(y*d(x),[d(x),d(y),d(z)]); 0> adjoint_d((x*y)*d(x),[d(x),d(y),d(z)]);- yWe now have all the ingredients to de�ne an operator � that generalizes theLaplacian operator on functions (actually, minus one times the Laplacian operator).It is de�ned as � := d � � + � � d:This operator is known as the Laplace-Beltrami operator. It also is known as theharmonic operator. The function laplace beltrami() implements this operator.



APPENDIX A. THE FORMS MAPLE PACKAGE 205It takes as arguments the di�erential form on which the operator is applied, theorthonormal basis and a contact set.The contact set is there for the following reason. Between the application ofthe second di�erentiation in each term of the Laplace-Beltrami operator, one hasto take into account the expansion of the �rst di�erentiation in the space VL,otherwise, the star operator cannot be applied.> basis:=[d(x),d(y),d(z)]:> contact:={express_base(d(f),[d(x),d(y),d(z)])}:> contact:=contact union map(express_base, {d(f_x),d(f_y),d(f_z)},basis);contact := {dform(1, f) = f_x dform(1, x) + f_y dform(1, y) + f_z dform(1, z),dform(1, f_x) = f_x_x dform(1, x) + f_x_y dform(1, y) + f_x_z dform(1, z),dform(1, f_y) = f_y_x dform(1, x) + f_y_y dform(1, y) + f_y_z dform(1, z),dform(1, f_z) = f_z_x dform(1, x) + f_z_y dform(1, y) + f_z_z dform(1, z)}> laplace_beltrami(f,basis,contact);- f_x_x - f_y_y - f_z_zThe Lie derivative of a di�erential form with respect to a vector is obtainedusing the lie() operation. The �rst argument is the vector in the direction ofwhich the derivative is applied. The second argument is the di�erential form to bedi�erentiated. An optional argument is used to specify the exterior derivatives ofthe various quantities.> f1:=x*d(y)+y^2*d(z); 2f1 := x dform(1, y) + y dform(1, z)> lie(dvector(y),f1);



APPENDIX A. THE FORMS MAPLE PACKAGE 2062 y dform(1, z)> alias(a=nform(1,a_),b=nform(1,b_), Avec=nvector(a_));I, a, b, Avec> lie(Avec,a+3*b,{d(a)=7*wedge(a,b),d(b)=9*wedge(a,b)});34 bA.4 Utility functionsIt is often the case that a function's natural argument is a single item (as opposedto a matrix, equality, set, list, etc.). If we apply that function to a compositeobject, such as a set, the natural thing to do would be to apply the function toeach individual member of the composite object. For example, taking the exteriorderivative of a matrix is just the matrix of exterior derivatives applied to eachmember of the matrix.Maple provides an operation to do this: map(). Unfortunately, this works onlyat a depth of one level. The function item map() generalizes map() to work toany desired depth. The �rst argument of item map() is a function. The secondargument is a list containing all the other arguments to the function. The thirdargument speci�es which \slot" needs to be expanded (by default, the �rst slot isthe one that is expanded). The fourth argument (optional) is a set of types overwhich item map() is recursively invoked, and the last argument speci�es the depthof recursion (default is in�nite).> item_map(d,[ { [ax=bx+cx], [ [d(cx) = ex*d(fx)]] } ] );{[dform(1, ax) = dform(1, bx) + dform(1, cx)],[[0 = - wedge(dform(1, fx), dform(1, ex))]]}



APPENDIX A. THE FORMS MAPLE PACKAGE 207> item_map(fn,[ { [ax=bx+cx], [ [d(cx) = ex*d(fx)]] } ],1, {list,set,�=�},2 );{[fn(ax = bx + cx)], [fn([dform(1, cx) = ex dform(1, fx)])]}> item_map(fn,[ { [ax=bx+cx], [ [d(cx) = ex*d(fx)]] } ],1, {list,set,�=�},3 );{[[fn(dform(1, cx) = ex dform(1, fx))]], [fn(ax) = fn(bx + cx)]}> item_map(fn,[ { [ax=bx+cx], [ [d(cx) = ex*d(fx)]] } ],1, {list,set},3 );{[fn(ax = bx + cx)], [[fn(dform(1, cx) = ex dform(1, fx))]]}The function linear solve() is an extension to the Maple function solve(...,linear). It returns the set of expressions that have been assumed to be equal tozero in order that the solution set be valid.> solve({x-a,x-b},{x});# Note NULL result. This indicates no solution> linear_solve({x-a,x-b},{x}); [{x = a}, {a - b}]# This is interpreted as : the solution is x=a, provided a-b=0.A.5 Points to keep in mindWhile forms used with the forms package can be inhomogeneous in degree, it isimportant important to realize that some of the functions require homogeneity. Forexample, the wdegree() function will return the degree of only one of the termsand will assume that all the other terms will have the same degree. Functions suchas addition, d(), wedge(), subs form() will work with inhomogeneous forms. Anyfunctions that are described in the higher level functions section must be assumedto require homogeneous forms.It is also recommended that the exterior derivative be used to construct ex-pressions involving dform. The wedge() operator is to be used to multiply forms



APPENDIX A. THE FORMS MAPLE PACKAGE 208together.Giving a set of independent basic forms to form coeffs() will detect the caseswhen a dependent form is present in the �rst argument. The second argument isoptional, and its omission will cause form coeffs() to assume that every basic formis independent. If this is not the case, then too many coe�cients will be returned.A.6 Making forms laconicThe package has been designed to be rather verbose. The main reasons are toavoid clashes with other Maple names, to avoid obtuse abbreviations and to avoidambiguity. Since Maple provides an aliasing facility, it is easy to replace longexpressions with shorter ones. Here are a few hints to use Maple's alias() functione�ectively.The normal syntax is alias(short=long) where long is a long expression,and short is a name that will be used to abbreviate long. For example,alias(alpha=nform(2,alpha_)) can be used to de�ne a two-form with namealpha. It is recommended that di�erent names be used on the two sides of theequality in the alias() expression. This is why an underscore was appended toalpha. The reason for this recommendation is because the expression op(2,alpha)returns alpha_. If the \internal" name had been alpha, then op(2,alpha) couldnot be visually distinguished from alpha. It is important to note that long willnot be evaluated, and cannot itself use abbreviations. Therefore, in order to givean alias for the derivative of alpha, use> alias(alpha=nform(2,alpha_)):> eval(subs(dalpha_=d(alpha), 'alias(dalpha=dalpha_)')):The alias() statements must come in the order shown.



APPENDIX A. THE FORMS MAPLE PACKAGE 209The expression alias(V=wedge); can be used to shorten input of data. A bettersolution to shorten the output is to use the neutral operators of Maple, togetherwith functions to transform expressions. This is done by making the de�nitions> shorten:=proc(item)> eval(subs('wedge'=proc() &^(args) end, item))> end:> lengthen:=proc(item)> eval(subs(�&^�=wedge, item))> end:An example showing the use of the preceding de�nitions is> eval(subs(_dx=d(x), _dy=d(y), _dt=d(t), 'alias(dx=_dx, dy=_dy, dt=_dt)')):> A:=t*wedge(dx,dy)+x*wedge(dx,dt);A := - t wedge(dy, dx) - x wedge(dt, dx)> shorten(A); - t (dy &^ dx) - x (dt &^ dx)> lengthen("); - t wedge(dy, dx) - x wedge(dt, dx)> shorten(d(")); &^(dy, dt, dx)Note that the forms package does not use the &^ operator. It is therefore necessaryto use lengthen() before applying any forms operation to expressions involving&^.



APPENDIX A. THE FORMS MAPLE PACKAGE 210A.7 ExtensibilityVarious functions have facilities to extend their domain of de�nition. The exteriorderivative function, d(), allows for the following. If the function `forms/d/alpha`exists, then d(alpha(args))will be the result to the call `forms/d/alpha`(args).If the function `forms/d2/alpha` exists, then d(alpha(args))will result in a callto `forms/d2/alpha`(alpha(args),fm). The function `forms/d2/alpha` mustgive the result of the di�erentiation of `alpha(args)` wedged with the form `fm`.Likewise, the function lie() applied to a function fn() will call the function`forms/lie/f`, if it exists, with arguments: the direction vector followed by theoriginal arguments to the function f and then followed by the structure equationsthat were passed as third argument to the lie() function.A.8 Vector-valued di�erential formsVector-valued di�erential forms are necessary for moving frame calculations. Underthe operation of d(), the vector parts of a di�erential form are assumed to behaveas a scalar. Their exterior derivatives multiply the form parts on the left. Thederivative of a vector, say nvector(A), is given a name suitable for substitution viasubs form(). This substitution must take place prior to a further di�erentiation.> d(nvector(AA)); nform(1, D_nvector(AA))> d(nvector(AA)*nform(1,WW));wedge(nform(1, D_nvector(AA)), nform(1, WW)) + nvector(AA) dform(2, WW)



APPENDIX A. THE FORMS MAPLE PACKAGE 211A.9 Further informationAn advanced study of di�erential forms can be found in Bryant et al. (1991). Anexcellent reference is Flanders (1963). Gardner (1989) applies di�erential formsto the problem of equivalence. Exterior di�erential systems are the subject ofCartan (1945).
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