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Foreword

This book is an outgrowth of my Introduction to Di¤erentiable Manifolds

(1962) and Di¤erential Manifolds (1972). Both I and my publishers felt it
worth while to keep available a brief introduction to di¤erential manifolds.

The book gives an introduction to the basic concepts which are used in
di¤erential topology, di¤erential geometry, and di¤erential equations. In dif-
ferential topology, one studies for instance homotopy classes of maps and
the possibility of finding suitable di¤erentiable maps in them (immersions,
embeddings, isomorphisms, etc.). One may also use di¤erentiable structures
on topological manifolds to determine the topological structure of the
manifold (for example, à la Smale [Sm 67]). In di¤erential geometry, one
puts an additional structure on the di¤erentiable manifold (a vector field, a
spray, a 2-form, a Riemannian metric, ad lib.) and studies properties con-
nected especially with these objects. Formally, one may say that one studies
properties invariant under the group of di¤erentiable automorphisms which
preserve the additional structure. In di¤erential equations, one studies vec-
tor fields and their integral curves, singular points, stable and unstable
manifolds, etc. A certain number of concepts are essential for all three, and
are so basic and elementary that it is worthwhile to collect them together so
that more advanced expositions can be given without having to start from
the very beginnings. The concepts are concerned with the general basic
theory of di¤erential manifolds. My Fundamentals of Di¤erential Geometry

(1999) can then be viewed as a continuation of the present book.

Charts and local coordinates. A chart on a manifold is classically a rep-
resentation of an open set of the manifold in some euclidean space. Using a
chart does not necessarily imply using coordinates. Charts will be used sys-
tematically.

v



I don’t propose, of course, to do away with local coordinates. They
are useful for computations, and are also especially useful when inte-
grating di¤erential forms, because the dx1 5 � � � 5 dxn. corresponds to the
dx1 � � � dxn of Lebesgue measure, in oriented charts. Thus we often give
the local coordinate formulation for such applications. Much of the
literature is still covered by local coordinates, and I therefore hope that the
neophyte will thus be helped in getting acquainted with the literature. I
also hope to convince the expert that nothing is lost, and much is gained,
by expressing one’s geometric thoughts without hiding them under an ir-
relevant formalism.

Since this book is intended as a text to follow advanced calculus, say at
the first year graduate level or advanced undergraduate level, manifolds are
assumed finite dimensional. Since my book Fundamentals of Di¤erential

Geometry now exists, and covers the infinite dimensional case as well, read-
ers at a more advanced level can verify for themselves that there is no es-
sential additional cost in this larger context. I am, however, following here
my own admonition in the introduction of that book, to assume from the
start that all manifolds are finite dimensional. Both presentations need to be
available, for mathematical and pedagogical reasons.

New Haven 2002 Serge Lang
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CHAPTER I

Differential Calculus

We shall recall briefly the notion of derivative and some of its useful
properties. My books on analysis [La83/97], [La 93] give a self-contained
and complete treatment. We summarize basic facts of the di¤erential
calculus. The reader can actually skip this chapter and start immediately
with Chapter II if the reader is accustomed to thinking about the de-
rivative of a map as a linear transformation. (In the finite dimensional
case, when bases have been selected, the entries in the matrix of this
transformation are the partial derivatives of the map.) We have repeated
the proofs for the more important theorems, for the ease of the reader.

It is convenient to use throughout the language of categories. The
notion of category and morphism (whose definitions we recall in §1) is
designed to abstract what is common to certain collections of objects and
maps between them. For instance, euclidean vector spaces and linear
maps, open subsets of euclidean spaces and di¤erentiable maps, di¤er-
entiable manifolds and di¤erentiable maps, vector bundles and vector
bundle maps, topological spaces and continuous maps, sets and just plain
maps. In an arbitrary category, maps are called morphisms, and in fact
the category of di¤erentiable manifolds is of such importance in this book
that from Chapter II on, we use the word morphism synonymously with
di¤erentiable map (or p-times di¤erentiable map, to be precise). All other
morphisms in other categories will be qualified by a prefix to indicate the
category to which they belong.

1



I, §1. CATEGORIES

A category is a collection of objects fX ;Y ; . . .g such that for two objects
X, Y we have a set MorðX ; Y Þ and for three objects X, Y, Z a mapping
(composition law)

MorðX ; YÞ � MorðY ; ZÞ ! MorðX ; ZÞ

satisfying the following axioms :

CAT 1. Two sets MorðX ; YÞ and MorðX 0; Y 0Þ are disjoint unless

X ¼ X 0 and Y ¼ Y 0, in which case they are equal.

CAT 2. Each MorðX ; XÞ has an element idX which acts as a left and

right identity under the composition law.

CAT 3. The composition law is associative.

The elements of MorðX ; YÞ are called morphisms, and we write fre-
quently f : X ! Y for such a morphism. The composition of two
morphisms f , g is written f g or f 	 g.

Elements of MorðX ;X Þ are called endomorphisms of X, and we write

MorðX ;XÞ ¼ EndðX Þ:

For a more extensive description of basic facts about categories, see my
Algebra [La 02], Chapter I, §1. Here we just remind the reader of the
basic terminology which we use. The main categories for us will be:

Vector spaces, whose morphisms are linear maps.
Open sets in a finite dimensional vector space over R, whose morphisms

are di¤erentiable maps (of given degree of di¤erentiability, C0;C1; . . . ;
Cy).

Manifolds, with morphisms corresponding to the morphisms just
mentioned. See Chapter II, §1.

In any category, a morphism f : X ! Y is said to be an isomorphism

if it has an inverse in the category, that is, there exists a morphism
g: Y ! X such that fg and gf are the identities (of Y and X respectively).
An isomorphism in the category of topological spaces (whose morphisms
are continuous maps) has been called a homeomorphism. We stick to the
functorial language, and call it a topological isomorphism. In general, we
describe the category to which a morphism belongs by a suitable prefix. In
the category of sets, a set-isomorphism is also called a bijection. Warning:
A map f : X ! Y may be an isomorphism in one category but not in
another. For example, the map x 7! x3 from R ! R is a C0-isomorphism,
but not a C1 isomorphism (the inverse is continuous, but not di¤erentiable
at the origin). In the category of vector spaces, it is true that a bijective

differential calculus2 [I, §1]



morphism is an isomorphism, but the example we just gave shows that the
conclusion does not necessarily hold in other categories.

An automorphism is an isomorphism of an object with itself. The set of
automorphisms of an object X in a category form a group, denoted by
AutðX Þ.

If f : X ! Y is a morphism, then a section of f is defined to be a
morphism g: Y ! X such that f 	 g ¼ idY .

A functor l: A ! A 0 from a category A into a category A 0 is a map
which associates with each object X in A an object lðXÞ in A 0, and with
each morphism f : X ! Y a morphism lð f Þ : lðXÞ ! lðYÞ in A 0 such
that, whenever f and g are morphisms in A which can be composed, then
lð f gÞ ¼ lð f ÞlðgÞ and lðidX Þ ¼ idlðXÞ for all X. This is in fact a covariant
functor, and a contravariant functor is defined by reversing the arrows�
so that we have lð f Þ : lðY Þ ! lðXÞ and lð f gÞ ¼ lðgÞlð f Þ

�
.

In a similar way, one defines functors of many variables, which may
be covariant in some variables and contravariant in others. We shall
meet such functors when we discuss multilinear maps, di¤erential forms,
etc.

The functors of the same variance from one category A to another A 0

form themselves the objects of a category FunðA; A 0Þ. Its morphisms will
sometimes be called natural transformations instead of functor morphisms.
They are defined as follows. If l, m are two functors from A to A 0 (say
covariant), then a natural transformation t : l ! m consists of a collection
of morphisms

tX : lðXÞ ! mðX Þ

as X ranges over A, which makes the following diagram commutative for
any morphism f : X ! Y in A :

Vector spaces form a category, the morphisms being the linear maps.
Note that ðE;FÞ 7! LðE;F Þ is a functor in two variables, contravariant in
the first variable and covariant in the second. If many categories are being
considered simultaneously, then an isomorphism in the category of vector
spaces and linear map is called a linear isomorphism. We write LisðE;FÞ
and LautðEÞ for the vector spaces of linear isomorphisms of E onto F, and
the linear automorphisms of E respectively.

The vector space of r-multilinear maps

c: E � � � � � E ! F

categories[I, §1] 3



of E into F will be denoted by LrðE;F Þ. Those which are symmetric (resp.
alternating) will be denoted by Lr

s ðE;F Þ or Lr
symðE;FÞ (resp. Lr

aðE;F Þ).
Symmetric means that the map is invariant under a permutation of its
variables. Alternating means that under a permutation, the map changes
by the sign of the permutation.

We find it convenient to denote by LðEÞ, LrðEÞ, Lr
s ðEÞ, and Lr

aðEÞ the
linear maps of E into R (resp. the r-multilinear, symmetric, alternating
maps of E into R). Following classical terminology, it is also convenient
to call such maps into R forms (of the corresponding type). If E1; . . . ;Er

and F are vector spaces, then we denote by LðE1; . . . ;Er ;FÞ the multilinear
maps of the product E1 � � � � � Er into F. We let :

EndðEÞ ¼ LðE; EÞ;

LautðEÞ ¼ elements of EndðEÞ which are invertible in EndðEÞ:

Thus for our finite dimensional vector space E, an element of EndðEÞ is in
LautðEÞ if and only if its determinant is 0 0.

Suppose E, F are given norms. They determine a natural norm on LðE;FÞ,
namely forA A LðE;F Þ, the operator norm jAj is the greatest lower bound of all
numbers K such that

jAxjeK jxj

for all x A E.

I, §2. FINITE DIMENSIONAL VECTOR SPACES

Unless otherwise specified, vector spaces will be finite dimensional over the

real numbers. Such vector spaces are linearly isomorphic to euclidean
space Rn for some n. They have norms. If a basis fe1; . . . ; eng is selected,
then there are two natural norms: the euclidean norm, such that for a
vector v with coordinates ðx1; . . . ; xnÞ with respect to the basis, we have

jvj2euc ¼ x2
1 þ � � � þ x2

n :

The other natural norm is the sup norm, written jvjy, such that

jvjy ¼ max
i

jxij:

It is an elementary lemma that all norms on a finite dimensional vector
space E are equivalent. In other words, if j j1 and j j2 are norms on E,
then there exist constants C1;C2 > 0 such that for all v A E we have

C1jvj1 e jvj2 eC2jvj1:

differential calculus4 [I, §2]



A vector space with a norm is called a normed vector space. They form
a category whose morphisms are the norm preserving linear maps, which
are then necessarily injective.

By a euclidean space we mean a vector space with a positive definite
scalar product. A morphism in the euclidean category is a linear map
which preserves the scalar product. Such a map is necessarily injective.
An isomorphism in this category is called a metric or euclidean iso-

morphism. An orthonormal basis of a euclidean vector space gives rise to
a metric isomorphism with Rn, mapping the unit vectors in the basis on
the usual unit vectors of Rn.

Let E, F be vector spaces (so finite dimensional over R by convention).
The set of linear maps from E into F is a vector space isomorphic to the
space of m� n matrices if dim E ¼ m and dim F ¼ n.

Note that ðE;FÞ 7! LðE;FÞ is a functor, contravariant in E and co-
variant in F. Similarly, we have the vector space of multilinear maps

LðE1; . . . ;Er;FÞ

of a product E1 � � � � � Er into F. Suppose norms are given on all Ei and
F. Then a natural norm can be defined on LðE1; . . . ;Er;FÞ, namely the
norm of a multilinear map

A: E1 � � � � � Er ! F

is defined to be the greatest lower bound of all numbers K such that

jAðx1; . . . ; xrÞjeK jx1j � � � jxrj:

We have:

Proposition 2.1. The canonical map

L
�
E1;LðE2; . . . ;LðEr;FÞ

�
! LrðE1; . . . ;Er;FÞ

from the repeated linear maps to the multilinear maps is a linear iso-

morphism which is norm preserving.

For purely di¤erential properties, which norms are chosen are irrelevant
since all norms are equivalent. The relevance will arise when we deal with
metric structures, called Riemannian, in Chapter VII.

We note that a linear map and a multilinear map are necessarily
continuous, having assumed the vector spaces to be finite dimensional.

finite dimensional vector spaces[I, §2] 5



I, §3. DERIVATIVES AND COMPOSITION OF MAPS

For the calculus in vector spaces, see my Undergraduate Analysis [La 83/
97]. We recall some of the statements here.

A real valued function of a real variable, defined on some neighborhood
of 0 is said to be oðtÞ if

lim
t!0

oðtÞ=t ¼ 0:

Let E, F be two vector spaces (assumed finite dimensional), and j a
mapping of a neighborhood of 0 in E into F. We say that j is tangent to
0 if, given a neighborhood W of 0 in F, there exists a neighborhood V of 0
in E such that

jðtVÞH oðtÞW

for some function oðtÞ. If both E, F are normed, then this amounts to the
usual condition

jjðxÞj Y jxjcðxÞ

with lim cðxÞ ¼ 0 as jxj ! 0.
Let E, F be two vector spaces and U open in E. Let f : U ! F be a

continuous map. We shall say that f is di¤erentiable at a point x0 A U if
there exists a linear map l of E into F such that, if we let

f ðx0 þ yÞ ¼ f ðx0Þ þ lyþ jðyÞ

for small y, then j is tangent to 0. It then follows trivially that l is
uniquely determined, and we say that it is the derivative of f at x0. We
denote the derivative by D f ðx0Þ or f 0ðx0Þ. It is an element of LðE; FÞ. If
f is di¤erentiable at every point of U, then f 0 is a map

f 0 : U ! LðE; FÞ:

It is easy to verify the chain rule.

Proposition 3.1. If f : U ! V is di¤erentiable at x0, if g: V ! W is

di¤erentiable at f ðx0Þ, then g 	 f is di¤erentiable at x0, and

ðg 	 f Þ0ðx0Þ ¼ g 0� f ðx0Þ
�
	 f 0ðx0Þ:

Proof. We leave it as a simple (and classical) exercise.

The rest of this section is devoted to the statements of the di¤erential
calculus.

Let U be open in E and let f : U ! F be di¤erentiable at each point of
U. If f 0 is continuous, then we say that f is of class C1. We define maps
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of class Cp ðp Z 1Þ inductively. The p-th derivative Dpf is defined as
DðDp�1 f Þ and is itself a map of U into

L
�
E; LðE; . . . ;LðE; FÞÞ

�

which can be identified with LpðE; FÞ by Proposition 2.1. A map f is said
to be of class Cp if its kth derivative Dkf exists for 1 Y k Y p, and is
continuous.

Remark. Let f be of class Cp, on an open set U containing the origin.
Suppose that f is locally homogeneous of degree p near 0, that is

f ðtxÞ ¼ tpf ðxÞ

for all t and x su‰ciently small. Then for all su‰ciently small x we

have

f ðxÞ ¼ 1

p !
Dpf ð0ÞxðpÞ;

where xðpÞ ¼ ðx; x; . . . ; xÞ, p times.

This is easily seen by di¤erentiating p times the two expressions for
f ðtxÞ, and then setting t ¼ 0. The di¤erentiation is a trivial application of
the chain rule.

Proposition 3.2. Let U, V be open in vector spaces. If f : U ! V and

g: V ! F are of class Cp, then so is g 	 f .

From Proposition 3.2, we can view open subsets of vector spaces as
the objects of a category, whose morphisms are the continuous maps of
class Cp. These will be called Cp-morphisms. We say that f is of class
Cy if it is of class Cp for all integers p Z 1. From now on, p is an
integer Z0 or y (C0 maps being the continuous maps). In practice, we
omit the prefix Cp if the p remains fixed. Thus by morphism, throughout
the rest of this book, we mean Cp-morphism with p Y y. We shall use
the word morphism also for Cp-morphisms of manifolds (to be defined in
the next chapter), but morphisms in any other category will always be

prefixed so as to indicate the category to which they belong (for instance
bundle morphism, continuous linear morphism, etc.).

Proposition 3.3. Let U be open in the vector space E, and let f : U ! F

be a Cp-morphism. Then Dpf
�
viewed as an element of LpðE; FÞ

�
is

symmetric.

Proposition 3.4. Let U be open in E, and let fi : U ! Fi ði ¼ 1; . . . ; nÞ be
continuous maps into spaces Fi. Let f ¼ ð f1; . . . ; fnÞ be the map of U

derivatives and composition of maps[I, §3] 7



into the product of the Fi. Then f is of class Cp if and only if each fi is

of class Cp, and in that case

Dpf ¼ ðDpf1; . . . ;D
pfnÞ:

Let U, V be open in spaces E1, E2 and let

f : U � V ! F

be a continuous map into a vector space. We can introduce the notion of
partial derivative in the usual manner. If ðx; yÞ is in U � V and we keep
y fixed, then as a function of the first variable, we have the derivative as
defined previously. This derivative will be denoted by D1 f ðx; yÞ. Thus

D1 f : U � V ! LðE1; FÞ

is a map of U � V into LðE1; FÞ. We call it the partial derivative with
respect to the first variable. Similarly, we have D2 f , and we could take n

factors instead of 2. The total derivative and the partials are then related
as follows.

Proposition 3.5. Let U1; . . . ;Un be open in the spaces E1; . . . ;En and let

f : U1 � � � � �Un ! F be a continuous map. Then f is of class Cp if and

only if each partial derivative Di f : U1 � � � �Un ! LðEi; FÞ exists and is

of class Cp�1. If that is the case, then for x ¼ ðx1; . . . ; xnÞ and

v ¼ ðv1; . . . ; vnÞ A E1 � � � � � En;

we have

D f ðxÞ � ðv1; . . . ; vnÞ ¼
X

Di f ðxÞ � vi:

The next four propositions are concerned with continuous linear and
multilinear maps.

Proposition 3.6. Let E, F be vector spaces and f : E ! F a continuous

linear map. Then for each x A E we have

f 0ðxÞ ¼ f :

Proposition 3.7. Let E, F, G be vector spaces, and U open in E. Let

f : U ! F be of class Cp and g: F ! G linear. Then g 	 f is of class

Cp and
Dpðg 	 f Þ ¼ g 	Dpf :

Proposition 3.8. If E1; . . . ;Er and F are vector spaces and

f : E1 � � � � � Er ! F
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a multilinear map, then f is of class Cy, and its ðrþ 1Þ-st derivative is

0. If r ¼ 2, then Df is computed according to the usual rule for

derivative of a product ( first times the derivative of the second plus

derivative of the first times the second ).

Proposition 3.9. Let E, F be vector spaces which are isomorphic. If

u: E ! F is an isomorphism, we denote its inverse by u�1. Then the

map

u 7! u�1

from LisðE; FÞ to LisðF; EÞ is a Cy-isomorphism. Its derivative at a

point u0 is the linear map of LðE; FÞ into LðF; EÞ given by the formula

v 7! u�1
0 vu�1

0 :

Finally, we come to some statements which are of use in the theory of
vector bundles.

Proposition 3.10. Let U be open in the vector space E and let F, G be

vector spaces.

(i) If f : U ! LðE; FÞ is a Cp-morphism, then the map of U � E into

F given by

ðx; vÞ 7! f ðxÞv
is a morphism.

(ii) If f : U ! LðE; FÞ and g: U ! LðF; GÞ are morphisms, then so

is gð f ; gÞ (g being the composition).
(iii) If f : U ! R and g : U ! LðE; FÞ are morphisms, so is fg (the

value of fg at x is f ðxÞgðxÞ, ordinary multiplication by scalars).
(iv) If f, g: U ! LðE; FÞ are morphisms, so is f þ g.

This proposition concludes our summary of results assumed without
proof.

I, §4. INTEGRATION AND TAYLOR’S FORMULA

Let E be a vector space. We continue to assume finite dimensionality over
R. Let I denote a real, closed interval, say a Y t Y b. A step mapping

f : I ! E

is a mapping such that there exists a finite number of disjoint sub-intervals
I1; . . . ; In covering I such that on each interval Ij, the mapping has
constant value, say vj. We do not require the intervals Ij to be closed.
They may be open, closed, or half-closed.
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Given a sequence of mappings fn from I into E, we say that it converges
uniformly if, given a neighborhood W of 0 into E, there exists an integer
n0 such that, for all n, m > n0 and all t A I , the di¤erence fnðtÞ � fmðtÞ lies
in W. The sequence fn then converges to a mapping f of I into E.

A ruled mapping is a uniform limit of step mappings. We leave to the
reader the proof that every continuous mapping is ruled.

If f is a step mapping as above, we define its integral

ð b
a

f ¼
ð b
a

f ðtÞ dt ¼
X

mðIjÞvj ;

where mðIjÞ is the length of the interval Ij (its measure in the standard
Lebesgue measure). This integral is independent of the choice of intervals
Ij on which f is constant.

If f is ruled and f ¼ lim fn (lim being the uniform limit), then the
sequence ð b

a

fn

converges in E to an element of E independent of the particular sequence
fn used to approach f uniformly. We denote this limit by

ð b
a

f ¼
ð b
a

f ðtÞ dt

and call it the integral of f. The integral is linear in f, and satisfies the

usual rules concerning changes of intervals. (If b < a then we define

ð b
a

to

be minus the integral from b to a.)
As an immediate consequence of the definition, we get :

Proposition 4.1. Let l: E ! R be a linear map and let f : I ! E be

ruled. Then l f ¼ l 	 f is ruled, and

l

ð b
a

f ðtÞ dt ¼
ð b
a

l f ðtÞ dt:

Proof. If fn is a sequence of step functions converging uniformly to f,
then l fn is ruled and converges uniformly to l f . Our formula follows at
once.

Taylor’s Formula. Let E, F be vector spaces. Let U be open in E. Let

x, y be two points of U such that the segment xþ ty lies in U for

0 Y t Y 1. Let

f : U ! F
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be a Cp-morphism, and denote by yðpÞ the ‘‘vector’’ ðy; . . . ; yÞ p times.
Then the function Dpf ðxþ tyÞ � yðpÞ is continuous in t, and we have

f ðxþ yÞ ¼ f ðxÞ þD f ðxÞy
1 !

þ � � � þDp�1 f ðxÞyðp�1Þ

ðp� 1Þ !

þ
ð1

0

ð1 � tÞp�1

ðp� 1Þ ! D
pf ðxþ tyÞyðpÞ dt:

Proof. It su‰ces to show that both sides give the same thing when we
apply a functional l (linear map into R). This follows at once from
Proposition 3.7 and 4.1, together with the known result when F ¼ R. In
this case, the proof proceeds by induction on p, and integration by parts,
starting from

f ðxþ yÞ � f ðxÞ ¼
ð1

0

D f ðxþ tyÞy dt:

The next two corollaries are known as the mean value theorem.

Corollary 4.2. Let E, F be two normed vector spaces, U open in

E. Let x, z be two distinct points of U such that the segment

xþ tðz� xÞ ð0 Y t Y 1Þ lies in U. Let f : U ! F be continuous and of

class C1. Then

j f ðzÞ � f ðxÞj Y jz� xj sup j f 0ðxÞj;

the sup being taken over x in the segment.

Proof. This comes from the usual estimations of the integral. Indeed,
for any continuous map g: I ! F we have the estimate

����
ð b
a

gðtÞ dt
����Y Kðb� aÞ

if K is a bound for g on I, and a Y b. This estimate is obvious for step
functions, and therefore follows at once for continuous functions.

Another version of the mean value theorem is frequently used.

Corollary 4.3. Let the hypotheses be as in Corollary 4.2. Let x0 be a

point on the segment between x and z. Then

j f ðzÞ � f ðxÞ � f 0ðx0Þðz� xÞj Y jz� xj sup j f 0ðxÞ � f 0ðx0Þj;

the sup taken over all x on the segment.
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Proof. We apply Corollary 4.2 to the map

gðxÞ ¼ f ðxÞ � f 0ðx0Þx:

Finally, let us make some comments on the estimate of the remainder
term in Taylor’s formula. We have assumed that Dpf is continuous. There-
fore, Dpf ðxþ tyÞ can be written

Dpf ðxþ tyÞ ¼ Dpf ðxÞ þ cðy; tÞ;

where c depends on y, t (and x of course), and for fixed x, we have

lim jcðy; tÞj ¼ 0

as jyj ! 0. Thus we obtain :

Corollary 4.4. Let E, F be two normed vector spaces, U open in E, and x

a point of U. Let f : U ! F be of class Cp, p Z 1. Then for all y such

that the segment xþ ty lies in U ð0 Y t Y 1Þ, we have

f ðxþ yÞ ¼ f ðxÞ þD f ðxÞy
1 !

þ � � � þDpf ðxÞyðpÞ
p !

þ yðyÞ

with an error term yðyÞ satisfying

lim
y!0

yðyÞ=jyjp ¼ 0:

I, §5. THE INVERSE MAPPING THEOREM

The inverse function theorem and the existence theorem for di¤erential
equations (of Chapter IV) are based on the next result.

Lemma 5.1 (Contraction Lemma or Shrinking Lemma). Let M be a

complete metric space, with distance function d, and let f : M ! M be a

mapping of M into itself. Assume that there is a constant K, 0 < K < 1,
such that, for any two points x, y in M, we have

d
�
f ðxÞ; f ðyÞ

�
Y K dðx; yÞ:

Then f has a unique fixed point (a point such that f ðxÞ ¼ x). Given any

point x0 in M, the fixed point is equal to the limit of f nðx0Þ (iteration of

f repeated n times) as n tends to infinity.
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Proof. This is a trivial exercise in the convergence of the geometric
series, which we leave to the reader.

Theorem 5.2. Let E, F be normed vector spaces, U an open subset of E,
and let f : U ! F a Cp-morphism with p Z 1. Assume that for some

point x0 A U , the derivative f 0ðx0Þ: E ! F is a linear isomorphism.
Then f is a local Cp-isomorphism at x0.

(By a local Cp-isomorphism at x0, we mean that there exists an open
neighborhood V of x0 such that the restriction of f to V establishes a
Cp-isomorphism between V and an open subset of E.)

Proof. Since a linear isomorphism is a Cy-isomorphism, we may
assume without loss of generality that E ¼ F and f 0ðx0Þ is the identity
(simply by considering f 0ðx0Þ�1 	 f instead of f ). After translations, we
may also assume that x0 ¼ 0 and f ðx0Þ ¼ 0.

We let gðxÞ ¼ x� f ðxÞ. Then g 0ðx0Þ ¼ 0 and by continuity there exists
r > 0 such that, if jxj < 2r, we have

jg 0ðxÞj < 1
2 :

From the mean value theorem, we see that jgðxÞj Y 1
2 jxj and hence g

maps the closed ball of radius r, Brð0Þ into Br=2ð0Þ.
We contend : Given y A Br=2ð0Þ, there exists a unique element x A Brð0Þ

such that f ðxÞ ¼ y. We prove this by considering the map

gyðxÞ ¼ yþ x� f ðxÞ:

If jyj Y r=2 and jxj Y r, then jgyðxÞj Y r and hence gy may be viewed as
a mapping of the complete metric space Brð0Þ into itself. The bound of 1

2
on the derivative together with the mean value theorem shows that gy is a
contracting map, i.e. that

jgyðx1Þ � gyðx2Þj ¼ jgðx1Þ � gðx2Þj Y 1
2 jx1 � x2j

for x1, x2 A Brð0Þ. By the contraction lemma, it follows that gy has a
unique fixed point. But the fixed point of gy is precisely the solution of the
equation f ðxÞ ¼ y. This proves our contention.

We obtain a local inverse j ¼ f �1. This inverse is continuous, because

jx1 � x2j Y j f ðx1Þ � f ðx2Þj þ jgðx1Þ � gðx2Þj

and hence
jx1 � x2j Y 2j f ðx1Þ � f ðx2Þj:

the inverse mapping theorem[I, §5] 13



Furthermore j is di¤erentiable in Br=2ð0Þ. Indeed, let y1 ¼ f ðx1Þ and
y2 ¼ f ðx2Þ with y1, y2 A Br=2ð0Þ and x1, x2 A Brð0Þ. Then

jjðy1Þ � jðy2Þ � f 0ðx2Þ�1ðy1 � y2Þj ¼
��x1 � x2 � f 0ðx2Þ�1�

f ðx1Þ � f ðx2Þ
���:

We operate on the expression inside the norm sign with the identity

id ¼ f 0ðx2Þ�1
f 0ðx2Þ:

Estimating and using the continuity of f 0, we see that for some constant
A, the preceding expression is bounded by

Aj f 0ðx2Þðx1 � x2Þ � f ðx1Þ þ f ðx2Þj:

From the di¤erentiability of f, we conclude that this expression is
oðx1 � x2Þ which is also oðy1 � y2Þ in view of the continuity of j proved
above. This proves that j is di¤erentiable and also that its derivative is
what it should be, namely

j 0ðyÞ ¼ f 0�jðyÞ��1
;

for y A Br=2ð0Þ. Since the mappings j, f 0, ‘‘inverse’’ are continuous, it
follows that j 0 is continuous and thus that j is of class C 1. Since taking
inverses is Cy and f 0 is Cp�1, it follows inductively that j is Cp, as was
to be shown.

Note that this last argument also proves :

Proposition 5.3. If f : U ! V is a homeomorphism and is of class Cp

with p Z 1, and if f is a C1-isomorphism, then f is a Cp-isomorphism.

In some applications it is necessary to know that if the derivative of a
map is close to the identity, then the image of a ball contains a ball of
only slightly smaller radius. The precise statement follows. In this book,
it will be used only in the proof of the change of variables formula, and
therefore may be omitted until the reader needs it.

Lemma 5.4. Let U be open in E, and let f : U ! E be of class C1.
Assume that f ð0Þ ¼ 0, f 0ð0Þ ¼ I . Let r > 0 and assume that Brð0ÞHU .
Let 0 < s < 1, and assume that

j f 0ðzÞ � f 0ðxÞj Y s

for all x, z A Brð0Þ. If y A E and jyj Y ð1 � sÞr, then there exists a

unique x A Brð0Þ such that f ðxÞ ¼ y.
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Proof. The map gy given by gyðxÞ ¼ x� f ðxÞ þ y is defined for jxj Y r

and jyj Y ð1 � sÞr, and maps Brð0Þ into itself because, from the estimate

j f ðxÞ � xj ¼ j f ðxÞ � f ð0Þ � f 0ð0Þxj Y jxj sup j f 0ðzÞ � f 0ð0Þj Y sr;

we obtain
jgyðxÞj Y srþ ð1 � sÞr ¼ r:

Furthermore, gy is a shrinking map because, from the mean value theorem,
we get

jgyðx1Þ � gyðx2Þj ¼
��x1 � x2 �

�
f ðx1Þ � f ðx2Þ

���
¼ jx1 � x2 � f 0ð0Þðx1 � x2Þ þ dðx1; x2Þj

¼ jdðx1; x2Þj;
where

jdðx1; x2Þj Y jx1 � x2j sup j f 0ðzÞ � f 0ð0Þj Y sjx1 � x2j:

Hence gy has a unique fixed point x A Brð0Þ which is such that f ðxÞ ¼ y.
This proves the lemma.

We shall now prove some useful corollaries, which will be used in
dealing with immersions and submersions later. We assume that morphism

means Cp-morphism with p Z 1.

Corollary 5.5. Let U be an open subset of E, and f : U ! F1 � F2 a

morphism of U into a product of vector spaces. Let x0 A U , suppose that
f ðx0Þ ¼ ð0; 0Þ and that f 0ðx0Þ induces a linear isomorphism of E and

F1 ¼ F1 � 0. Then there exists a local isomorphism g of F1 � F2 at ð0; 0Þ
such that

g 	 f : U ! F1 � F2

maps an open subset U1 of U into F1 � 0 and induces a local iso-

morphism of U1 at x0 on an open neighborhood of 0 in F1.

Proof. We may assume without loss of generality that F1 ¼ E�
identify by means of f 0ðx0Þ

�
and x0 ¼ 0. We define

j: U � F2 ! F1 � F2

by the formula

jðx; y2Þ ¼ f ðxÞ þ ð0; y2Þ

for x A U and y2 A F2. Then jðx; 0Þ ¼ f ðxÞ, and

j 0ð0; 0Þ ¼ f 0ð0Þ þ ð0; id2Þ:
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Since f 0ð0Þ is assumed to be a linear isomorphism onto F1 � 0, it follows
that j 0ð0; 0Þ is also a linear isomorphism. Hence by the theorem, it has a
local inverse, say g, which obviously satisfies our requirements.

Corollary 5.6. Let E, F be normed vector spaces, U open in E, and

f : U ! F a Cp-morphism with p Z 1. Let x0 A U . Suppose that

f ðx0Þ ¼ 0 and f 0ðx0Þ gives a linear isomorphism of E on a closed

subspace of F. Then there exists a local isomorphism g : F ! F1 � F2 at

0 and an open subset U1 of U containing x0 such that the composite map

g 	 f induces an isomorphism of U1 onto an open subset of F1.

Considering the splitting assumption, this is a reformulation of
Corollary 5.5.

For the next corollary, dual to the preceding one, we introduce the
notion of a local projection. Given a product of two open sets of vector
spaces V1 � V2 and a morphism f : V1 � V2 ! F, we say that f is a
projection (on the first factor) if f can be factored

V1 � V2 ! V1 ! F

into an ordinary projection and an isomorphism of V1 onto an open subset
of F. We say that f is a local projection at ða1; a2Þ if there exists an open
neighborhood U1 �U2 of ða1; a2Þ such that the restriction of f to this
neighborhood is a projection.

Corollary 5.7. Let U be an open subset of a product of vector spaces

E1 � E2 and ða1; a2Þ a point of U. Let f : U ! F be a morphism into a

Banach space, say f ða1; a2Þ ¼ 0, and assume that the partial derivative

D2 f ða1; a2Þ : E2 ! F

is a linear isomorphism. Then there exists a local isomorphism h of a

product V1 � V2 onto an open neighborhood of ða1; a2Þ contained in U

such that the composite map

V1 � V2 !h U !f F

is a projection (on the second factor).

Proof. We may assume ða1; a2Þ ¼ ð0; 0Þ and E2 ¼ F. We define

j: E1 � E2 ! E1 � E2
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by

jðx1; x2Þ ¼
�
x1; f ðx1; x2Þ

�

locally at ða1; a2Þ. Then j 0 is represented by the matrix

id1 O

D1 f D2 f

� �

and is therefore a linear isomorphism at ða1; a2Þ. By the theorem, it has a
local inverse h which clearly satisfies our requirements.

Corollary 5.8. Let U be an open subset of a vector space E and

f : U ! F a morphism into a vector space F. Let x0 A U and assume

that f 0ðx0Þ is surjective. Then there exists an open subset U 0 of U

containing x0 and an isomorphism

h: V1 � V2 ! U 0

such that the composite map f 	 h is a projection

V1 � V2 ! V1 ! F:

Proof. Again this is essentially a reformulation of the corollary, taking
into account the splitting assumption.

Theorem 5.9 (The Implicit Mapping Theorem). Let U, V be open sets in

normed vector spaces E, F respectively, and let

f : U � V ! G

be a Cp mapping. Let ða; bÞ A U � V , and assume that

D2 f ða; bÞ: F ! G

is a linear isomorphism. Let f ða; bÞ ¼ 0. Then there exists a continuous

map g: U0 ! V defined on an open neighborhood U0 of a such that

gðaÞ ¼ b and such that

f
�
x; gðxÞ

�
¼ 0

for all x A U0. If U0 is taken to be a su‰ciently small ball, then g is

uniquely determined, and is also of class Cp.
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Proof. Let l ¼ D2 f ða; bÞ. Replacing f by l�1 	 f we may assume
without loss of generality that D2 f ða; bÞ is the identity. Consider the map

j: U � V ! E� F

given by

jðx; yÞ ¼
�
x; f ðx; yÞ

�
:

Then the derivative of j at ða; bÞ is immediately computed to be
represented by the matrix

Djða; bÞ ¼
idE O

D1 f ða; bÞ D2 f ða; bÞ

� �
¼

idE O

D1 f ða; bÞ idF

� �

whence j is locally invertible at ða; bÞ since the inverse of Djða; bÞ exists
and is the matrix

idE O

�D1 f ða; bÞ idF

� �
:

We denote the local inverse of j by c. We can write

cðx; zÞ ¼
�
x; hðx; zÞ

�

where h is some mapping of class Cp. We define

gðxÞ ¼ hðx; 0Þ:

Then certainly g is of class Cp and

�
x; f ðx; gðxÞÞ

�
¼ j

�
x; gðxÞ

�
¼ j

�
x; hðx; 0Þ

�
¼ j

�
cðx; 0Þ

�
¼ ðx; 0Þ:

This proves the existence of a Cp map g satisfying our requirements.
Now for the uniqueness, suppose that g0 is a continuous map defined

near a such that g0ðaÞ ¼ b and f
�
x; g0ðxÞ

�
¼ c for all x near a. Then

g0ðxÞ is near b for such x, and hence

j
�
x; g0ðxÞ

�
¼ ðx; 0Þ:

Since j is invertible near ða; bÞ it follows that there is a unique point
ðx; yÞ near ða; bÞ such that jðx; yÞ ¼ ðx; 0Þ. Let U0 be a small ball on
which g is defined. If g0 is also defined on U0, then the above argument
shows that g and g0 coincide on some smaller neighborhood of a. Let
x A U0 and let v ¼ x� a. Consider the set of those numbers t with
0 Y t Y 1 such that gðaþ tvÞ ¼ g0ðaþ tvÞ. This set is not empty. Let s
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be its least upper bound. By continuity, we have gðaþ svÞ ¼ g0ðaþ svÞ. If
s < 1, we can apply the existence and that part of the uniqueness just
proved to show that g and g0 are in fact equal in a neighborhood of
aþ sv. Hence s ¼ 1, and our uniqueness statement is proved, as well as
the theorem.

Note. The particular value f ða; bÞ ¼ 0 in the preceding theorem is
irrelevant. If f ða; bÞ ¼ c for some c0 0, then the above proof goes
through replacing 0 by c everywhere.
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CHAPTER II

Manifolds

‘‘Vector spaces’’ are assumed to be finite dimensional as before. Starting
with open subsets of vector spaces, one can glue them together with Cp-
isomorphisms. The result is called a manifold. We begin by giving the
formal definition. We then make manifolds into a category, and discuss
special types of morphisms. We define the tangent space at each point,
and apply the criteria following the inverse function theorem to get a local
splitting of a manifold when the tangent space splits at a point.

We shall wait until the next chapter to give a manifold structure to the
union of all the tangent spaces.

II, §1. ATLASES, CHARTS, MORPHISMS

Let X be a Hausdor¤ topological space. An atlas of class Cp ðpZ 0Þ on
X is a collection of pairs ðUi; jiÞ (i ranging in some indexing set), sat-
isfying the following conditions:

AT 1. Each Ui is an open subset of X and the Ui cover X.

AT 2. Each ji is a topological isomorphism of Ui onto an open subset

jiUi of some vector space Ei and for any i, j, jiðUiXUjÞ is open
in Ei.

AT 3. The map

jjj
�1
i : jiðUiXUjÞ ! jjðUiXUjÞ

is a Cp-isomorphism for each pair of indices i, j.
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Each pair ðUi; jiÞ will be called a chart of the atlas. If a point x of X
lies in Ui, then we say that ðUi; jiÞ is a chart at x.

In condition AT 2, we did not require that the vector spaces be the
same for all indices i, or even that they be linearly isomorphic. If they are
all equal to the same space E, then we say that the atlas is an E-atlas. If
two charts ðUi; jiÞ and ðUj; jjÞ are such that Ui and Uj have a non-empty
intersection, and if pZ 1, then taking the derivative of jjj

�1
i we see that

Ei and Ej are linearly isomorphic. Furthermore, the set of points x A X
for which there exists a chart ðUi; jiÞ at x such that Ei is linearly iso-
morphic to a given space E is both open and closed. Consequently, on
each connected component of X, we could assume that we have an E-atlas
for some fixed E.

Suppose that we are given an open subset U of X and a topological
isomorphism j: U ! U 0 onto an open subset of some vector space E. We
shall say that ðU ; jÞ is compatible with the atlas fðUi; jiÞg if each map
jij

�1 (defined on a suitable intersection as in AT 3) is a Cp-isomorphism.
Two atlases are said to be compatible if each chart of one is compatible
with the other atlas. One verifies immediately that the relation of
compatibility between atlases is an equivalence relation. An equivalence
class of atlases of class Cp on X is said to define a structure of Cp-
manifold on X. If all the vector spaces Ei in some atlas are linearly
isomorphic, then we can always find an equivalent atlas for which they are
all equal, say to the vector space E. We then say that X is an E-manifold

or that X is modeled on E.
If E ¼ Rn for some fixed n, then we say that the manifold is n-

dimensional. In this case, a chart

j: U ! Rn

is given by n coordinate functions j1; . . . ; jn. If P denotes a point of U,
these functions are often written

x1ðPÞ; . . . ; xnðPÞ;

or simply x1; . . . ; xn. They are called local coordinates on the manifold.
If the integer p (which may also be y) is fixed throughout a discussion,

we also say that X is a manifold.
The collection of Cp-manifolds will be denoted by Manp. We shall

make these into categories by defining morphisms below.
Let X be a manifold, and U an open subset of X. Then it is possible, in

the obvious way, to induce a manifold structure on U, by taking as charts
the intersections �

UiXU ; jijðUiXUÞ
�
:

If X is a topological space, covered by open subsets Vj, and if we are
given on each Vj a manifold structure such that for each pair j, j 0 the
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induced structure on Vj XVj 0 coincides, then it is clear that we can give to
X a unique manifold structure inducing the given ones on each Vj .

Example. Let X be the real line, and for each open interval Ui, let ji be
the function jiðtÞ ¼ t3. Then the jjj

�1
i are all equal to the identity, and

thus we have defined a Cy-manifold structure on R !

If X, Y are two manifolds, then one can give the product X 
 Y a
manifold structure in the obvious way. If fðUi; jiÞg and fðVj; cjÞg are
atlases for X, Y respectively, then

fðUi 
 Vj; ji 
 cjÞg

is an atlas for the product, and the product of compatible atlases gives rise
to compatible atlases, so that we do get a well-defined product structure.

Let X, Y be two manifolds. Let f : X ! Y be a map. We shall say
that f is a Cp-morphism if, given x A X , there exists a chart ðU ; jÞ at x
and a chart ðV ; cÞ at f ðxÞ such that f ðUÞHV , and the map

c � f � j�1 : jU ! cV

is a Cp-morphism in the sense of Chapter I, §3. One sees then imme-
diately that this same condition holds for any choice of charts ðU ; jÞ at x
and ðV ; cÞ at f ðxÞ such that f ðUÞHV .

It is clear that the composite of two Cp-morphisms is itself a Cp-
morphism (because it is true for open subsets of vector spaces). The
Cp-manifolds and Cp-morphisms form a category. The notion of iso-
morphism is therefore defined, and we observe that in our example of the
real line, the map tN t3 gives an isomorphism between the funny di¤er-
entiable structure and the usual one.

If f : X ! Y is a morphism, and ðU ; jÞ is a chart at a point x A X ,
while ðV ; cÞ is a chart at f ðxÞ, then we shall also denote by

fV ;U : jU ! cV

the map c f j�1.
It is also convenient to have a local terminology. Let U be an open

set (of a manifold or a Banach space) containing a point x0. By a local

isomorphism at x0 we mean an isomorphism

f : U1 ! V

from some open set U1 containing x0 (and contained in U) to an open set
V (in some manifold or some vector space). Thus a local isomorphism is
essentially a change of chart, locally near a given point.
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II, §2. SUBMANIFOLDS, IMMERSIONS, SUBMERSIONS

Let X be a topological space, and Y a subset of X. We say that Y is
locally closed in X if every point y A Y has an open neighborhood U in X
such that Y XU is closed in U. One verifies easily that a locally closed
subset is the intersection of an open set and a closed set. For instance, any
open subset of X is locally closed, and any open interval is locally closed
in the plane.

Let X be a manifold (of class Cp with pZ 0). Let Y be a subset of X
and assume that for each point y A Y there exists a chart ðV ; cÞ at y such
that c gives an isomorphism of V with a product V1 
 V2 where V1 is
open in some space E1 and V2 is open in some space E2, and such that

cðY XVÞ ¼ V1 
 a2

for some point a2 A V2 (which we could take to be 0). Then it is clear that
Y is locally closed in X. Furthermore, the map c induces a bijection

c1 : Y XV ! V1:

The collection of pairs ðY XV ; c1Þ obtained in the above manner constitutes
an atlas for Y, of class Cp. The verification of this assertion, whose formal
details we leave to the reader, depends on the following obvious fact.

Lemma 2.1. Let U1, U2, V1, V2 be open subsets of vector spaces, and
g: U1 
U2 ! V1 
 V2 a C

p-morphism. Let a2 A U2 and b2 A V2 and

assume that g maps U1 
 a2 into V1 
 b2. Then the induced map

g1 : U1 ! V1

is also a morphism.

Indeed, it is obtained as a composite map

U1 ! U1 
U2 ! V1 
 V2 ! V1;

the first map being an inclusion and the third a projection.
We have therefore defined a Cp-structure on Y which will be called a

submanifold of X. This structure satisfies a universal mapping property,
which characterizes it, namely:

Given any map f : Z ! X from a manifold Z into X such that f ðZÞ is
contained in Y. Let fY : Z ! Y be the induced map. Then f is a

morphism if and only if fY is a morphism.
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The proof of this assertion depends on Lemma 2.1, and is trivial.

Finally, we note that the inclusion of Y into X is a morphism.
If Y is also a closed subspace of X, then we say that it is a closed

submanifold.

Suppose that X is a manifold of dimension n, and that Y is a sub-
manifold of dimension r. Then from the definition we see that the local
product structure in a neighborhood of a point of Y can be expressed in
terms of local coordinates as follows. Each point P of Y has an open
neighborhood U in X with local coordinates ðx1; . . . ; xnÞ such that the
points of Y in U are precisely those whose last n� r coordinates are 0,
that is, those points having coordinates of type

ðx1; . . . ; xr; 0; . . . ; 0Þ:

Let f : Z ! X be a morphism, and let z A Z. We shall say that f is an
immersion at z if there exists an open neighborhood Z1 of z in Z such that
the restriction of f to Z1 induces an isomorphism of Z1 onto a sub-
manifold of X. We say that f is an immersion if it is an immersion at
every point.

Note that there exist injective immersions which are not isomorphisms
onto submanifolds, as given by the following example :

(The arrow means that the line approaches itself without touching.) An
immersion which does give an isomorphism onto a submanifold is called
an embedding, and it is called a closed embedding if this submanifold is
closed.

A morphism f : X ! Y will be called a submersion at a point x A X if
there exists a chart ðU ; jÞ at x and a chart ðV ; cÞ at f ðxÞ such that j

gives an isomorphism of U on a products U1 
U2 (U1 and U2 open in
some vector spaces), and such that the map

c f j�1 ¼ fV ;U : U1 
U2 ! V

is a projection. One sees then that the image of a submersion is an open
subset (a submersion is in fact an open mapping). We say that f is a
submersion if it is a submersion at every point.
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We have the usual criterion for immersions and submersions in terms of
the derivative.

Proposition 2.2. Let X, Y be manifolds of class Cp ðpZ 1Þ. Let

f : X ! Y be a Cp-morphism. Let x A X . Then :

(i) f is an immersion at x if and only if there exists a chart ðU ; jÞ at x
and ðV ; cÞ at f ðxÞ such that f 0V ;U ðjxÞ is injective.

(ii) f is a submersion at x if and only if there exists a chart ðU ; jÞ at x
and ðV ; cÞ at f ðxÞ such that f 0V ;U ðjxÞ is surjective.

Proof. This is an immediate consequence of Corollaries 5.4 and 5.6 of
the inverse mapping theorem.

The conditions expressed in (i) and (ii) depend only on the derivative,
and if they hold for one choice of charts ðU ; jÞ and ðV ; cÞ respectively,
then they hold for every choice of such charts. It is therefore convenient
to introduce a terminology in order to deal with such properties.

Let X be a manifold of class Cp ðpZ 1Þ. Let x be a point of X. We
consider triples ðU ; j; vÞ where ðU ; jÞ is a chart at x and v is an element
of the vector space in which jU lies. We say that two such triples
ðU ; j; vÞ and ðV ; c; wÞ are equivalent if the derivative of cj�1 at jx maps
v on w. The formula reads :

ðcj�1Þ0ðjxÞv ¼ w

(obviously an equivalence relation by the chain rule). An equivalence class
of such triples is called a tangent vector of X at x. The set of such tangent
vectors is called the tangent space of X at x and is denoted by TxðXÞ.
Each chart ðU ; jÞ determines a bijection of TxðXÞ on a vector space,
namely the equivalence class of ðU ; j; vÞ corresponds to the vector v. By
means of such a bijection it is possible to transport to TxðX Þ the structure
of vector space given by the chart, and it is immediate that this structure is
independent of the chart selected.

If U, V are open in vector spaces, then to every morphism of class
Cp ðpZ 1Þ we can associate its derivative Df ðxÞ. If now f : X ! Y is a
morphism of one manifold into another, and x a point of X, then by
means of charts we can interpret the derivative of f on each chart at x as a
mapping

df ðxÞ ¼ Tx f : TxðX Þ ! T f ðxÞðY Þ:

Indeed, this map Tx f is the unique linear map having the following
property. If ðU ; jÞ is a chart at x and ðV ; cÞ is a chart at f ðxÞ such that
f ðUÞHV and v is a tangent vector at x represented by v in the chart
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ðU ; jÞ, then

Tx f ðvÞ

is the tangent vector at f ðxÞ represented by DfV ;U ðxÞv. The representation
of Tx f on the spaces of charts can be given in the form of a diagram

The map Tx f is obviously linear.
As a matter of notation, we shall sometimes write f�;x instead of Tx f .
The operation T satisfies an obvious functorial property, namely, if

f : X ! Y and g: Y ! Z are morphisms, then

Txðg � f Þ ¼ Tf ðxÞðgÞ � Txð f Þ;

TxðidÞ ¼ id:

We may reformulate Proposition 2.2 :

Proposition 2.3. Let X, Y be manifolds of class Cp ðpZ 1Þ. Let

f : X ! Y be a Cp-morphism. Let x A X . Then :

(i) f is an immersion at x if and only if the map Tx f is injective.
(ii) f is a submersion at x if and only if the map Tx f is surjective.

Example. Let E be a vector space with positive definite scalar product,
and let hx; yi A R be its scalar product. Then the square of the norm
f ðxÞ ¼ hx; xi is obviously of class Cy. The derivative f 0ðxÞ is given by
the formula

f 0ðxÞy ¼ 2hx; yi

and for any given x0 0, it follows that the derivative f 0ðxÞ is surjective.
Furthermore, its kernel is the orthogonal complement of the subspace
generated by x. Consequently the unit sphere in euclidean space is a
submanifold.

If W is a submanifold of a manifold Y of class Cp ðpZ 1Þ, then the
inclusion

i : W ! Y

manifolds26 [II, §2]



induces a map
Twi : TwðWÞ ! TwðY Þ

which is in fact an injection. It will be convenient to identify TwðWÞ in
TwðYÞ if no confusion can result.

A morphism f : X ! Y will be said to be transversal over the sub-
manifold W of Y if the following condition is satisfied.

Let x A X be such that f ðxÞ AW . Let ðV ; cÞ be a chart at f ðxÞ such
that c: V ! V1 
 V2 is an isomorphism on a product, with

c
�
f ðxÞ

�
¼ ð0; 0Þ and cðW XVÞ ¼ V1 
 0:

Then there exists an open neighborhood U of x such that the composite
map

U �!f V �!c V1 
 V2 �!
pr
V2

is a submersion.
In particular, if f is transversal over W, then f �1ðWÞ is a submanifold

of X, because the inverse image of 0 by our local composite map

pr � c � f

is equal to the inverse image of W XV by c.
As with immersions and submersions, we have a characterization of

transversal maps in terms of tangent spaces.

Proposition 2.4. Let X, Y be manifolds of class Cp ðpZ 1Þ. Let

f : X ! Y be a Cp-morphism, and W a submanifold of Y. The map f

is transversal over W if and only if for each x A X such that f ðxÞ lies in
W, the composite map

TxðXÞ �!Tx f TwðYÞ ! TwðYÞ=TwðWÞ

with w ¼ f ðxÞ is surjective.

Proof. If f is transversal over W, then for each point x A X such that
f ðxÞ lies in W, we choose charts as in the definition, and reduce the
question to one of maps of open subsets of vector spaces. In that case, the
conclusion concerning the tangent spaces follows at once from the assumed
direct product decompositions. Conversely, assume our condition on the
tangent map. The question being local, we can assume that Y ¼
V1 
 V2 is a product of open sets in vector spaces such that W ¼ V1 
 0,
and we can also assume that X ¼ U is open in some vector space, x ¼ 0.
Then we let g: U ! V2 be the map p � f where p is the projection, and
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note that our assumption means that g 0ð0Þ is surjective. Furthermore,
g�1ð0Þ ¼ f �1ðWÞ. We can then use Corollary 5.7 of the inverse mapping
theorem to conclude the proof.

Remark. In the statement of our proposition, we observe that the
surjectivity of the composite map is equivalent to the fact that TwðY Þ is
equal to the sum of the image of Tx f and TwðWÞ, that is

TwðY Þ ¼ ImðTx f Þ þ ImðTxiÞ;

where i : W ! Y is the inclusion.

If E is a vector space, then the diagonal D in E
 E is a closed
subspace. Either factor E
 0 or 0
 E is a closed complement. Con-
sequently, the diagonal is a closed submanifold of E
 E. If X is any
manifold of class Cp, pZ 1, then the diagonal is therefore also a sub-
manifold.

Let f : X ! Z and g: Y ! Z be two Cp-morphisms, pZ 1. We say
that they are transversal if the morphism

f 
 g: X 
 Y ! Z 
 Z

is transversal over the diagonal. We remark right away that the sur-
jectivity of the map in Proposition 2.4 can be expressed in two ways.
Given two points x A X and y A Y such that f ðxÞ ¼ gðyÞ ¼ z, the con-
dition

ImðTx f Þ þ ImðTygÞ ¼ TzðZÞ

is equivalent to the condition

Im
�
Tðx;yÞð f 
 gÞ

�
þ Tðz; zÞðDÞ ¼ Tðz; zÞðZ 
 ZÞ:

Thus in the finite dimensional case, we could take it as definition of
transversality.

We use transversality as a su‰cient condition under which the fiber
product of two morphisms exists. We recall that in any category, the fiber

product of two morphisms f : X ! Z and g: Y ! Z over Z consists of
an object P and two morphisms

g1 : P! X and g2 : P! Y

such that f � g1 ¼ g � g2, and satisfying the universal mapping property :
Given an object S and two morphisms u1 : S ! X and u2 : S ! Y such
that f u1 ¼ gu2, there exists a unique morphism u: S ! P making the
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following diagram commutative :

The triple ðP; g1; g2Þ is uniquely determined, up to a unique isomorphism
(in the obvious sense), and P is also denoted by X 
Z Y .

One can view the fiber product unsymmetrically. Given two morphisms
f , g as in the following diagram:

assume that their fiber product exists, so that we can fill in the diagram:

We say that g1 is the pull back of g by f , and also write it as f �ðgÞ.
Similarly, we write X 
Z Y as f �ðYÞ.

In our category of manifolds, we shall deal only with cases when the
fiber product can be taken to be the set-theoretic fiber product on which a
manifold structure has been defined. (The set-theoretic fiber product is the
set of pairs of points projecting on the same point.) This determines the
fiber product uniquely, and not only up to a unique isomorphism.

Proposition 2.5. Let f : X ! Z and g: Y ! Z be two Cp-morphisms
with pZ 1. If they are transversal, then

ð f 
 gÞ�1ðDZÞ;
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together with the natural morphisms into X and Y (obtained from the

projections), is a fiber product of f and g over Z.

Proof. Obvious.

To construct a fiber product, it su‰ces to do it locally. Indeed, let
f : X ! Z and g: Y ! Z be two morphisms. Let fVig be an open
covering of Z, and let

fi : f
�1ðViÞ ! Vi and gi : g

�1ðViÞ ! Vi

be the restrictions of f and g to the respective inverse images of Vi. Let
P ¼ ð f 
 gÞ�1ðDZÞ. Then P consists of the points ðx; yÞ with x A X and
y A Y such that f ðxÞ ¼ gðyÞ. We view P as a subspace of X 
 Y (i.e.
with the topology induced by that of X 
 Y ). Similarly, we construct Pi
with fi and gi. Then Pi is open in P. The projections on the first and
second factors give natural maps of Pi into f �1ðViÞ and g�1ðViÞ and of P
into X and Y.

Proposition 2.6. Assume that each Pi admits a manifold structure

(compatible with its topology) such that these maps are morphisms,
making Pi into a fiber product of fi and gi. Then P, with its natural
projections, is a fiber product of f and g.

To prove the above assertion, we observe that the Pi form a covering of
P. Furthermore, the manifold structure on PiXPj induced by that of Pi
or Pj must be the same, because it is the unique fiber product structure
over ViXVj , for the maps fij and gij (defined on f �1ðViXVjÞ and
g�1ðViXVjÞ respectively). Thus we can give P a manifold structure, in
such a way that the two projections into X and Y are morphisms, and
make P into a fiber product of f and g.

We shall apply the preceding discussion to vector bundles in the next
chapter, and the following local criterion will be useful.

Proposition 2.7. Let f : X ! Z be a morphism, and g: Z 
W ! Z be

the projection on the first factor. Then f, g have a fiber product, namely
the product X 
W together with the morphisms of the following

diagram :
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II, §3. PARTITIONS OF UNITY

Let X be a manifold of class Cp. A function on X will be a morphism of
X into R, of class Cp, unless otherwise specified. The Cp functions form a
ring denoted by FpðXÞ or FupðXÞ. The support of a function f is the
closure of the set of points x such that f ðxÞ0 0.

Let X be a topological space. A covering of X is locally finite if every
point has a neighborhood which intersects only finitely many elements of
the covering. A refinement of a covering of X is a second covering, each
element of which is contained in an element of the first covering. A
topological space is paracompact if it is Hausdor¤, and every open
covering has a locally finite open refinement.

Proposition 3.1. If X is a paracompact space, and if fUig is an open
covering, then there exists a locally finite open covering fVig such that
ViHUi for each i.

Proof. Let fVkg be a locally finite open refinement of fUig. For each k
there is an index iðkÞ such that VkHUiðkÞ. We let Wi be the union of
those Vk such that iðkÞ ¼ i. Then the Wi form a locally finite open
covering, because any neighborhood of a point which meets infinitely
many Wi must also meet infinitely many Vk.

Proposition 3.2. If X is paracompact, then X is normal. If, furthermore,
fUig is a locally finite open covering of X, then there exists a locally
finite open covering fVig such that ViHUi.

Proof. We refer the reader to Bourbaki [Bou 68].

Observe that Proposition 3.1 shows that the insistence that the indexing
set of a refinement be a given one can easily be achieved.

A partition of unity (of class Cp) on a manifold X consists of an open
covering fUig of X and a family of functions

ci : X ! R

satisfying the following conditions :

PU 1. For all x A X we have ciðxÞZ 0.

PU 2. The support of ci is contained in Ui.

PU 3. The covering is locally finite.

PU 4. For each point x A X we have

X
ciðxÞ ¼ 1:
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(The sum is taken over all i, but is in fact finite for any given point x in
view of PU 3.)

We sometimes say that fðUi;ciÞg is a partition of unity.
A manifold X will be said to admit partitions of unity if it is para-

compact, and if, given a locally finite open covering fUig, there exists a
partition of unity fcig such that the support of ci is contained in Ui.

If fUig is a covering of X, then we say that a covering fVkg is
subordinated to fUig if each Vk is contained in some Ui.

It is desirable to give su‰cient conditions on a manifold in order to
insure the existence of partitions of unity. There is no di‰culty with the
topological aspects of this problem. It is known that a metric space is
paracompact (cf. Bourbaki [Bou 68], [Ke 55]), and on a paracompact
space, one knows how to construct continuous partitions of unity (loc.
cit.).

If E is a euclidean space, we denote by BrðaÞ the open ball of radius r
and center a, and by BrðaÞ the closed ball of radius r and center a. If
a ¼ 0, then we write Br and Br respectively. Two open balls (of finite
radius) are obviously Cy-isomorphic. If X is a manifold and ðV ; jÞ is a
chart at a point x A X , then we say that ðV ; jÞ (or simply V) is a ball of
radius r if jV is a ball of radius r. We now use euclidean space for charts,
with the given euclidean norm.

Theorem 3.3. Let X be a manifold whose topology has a countable base.
Given an open covering of X, then there exists an atlas fðVk; jkÞg such
that the covering fVkg is locally finite and subordinated to the given

covering, such that jkVk is the open ball B3, and such that the open sets
Wk ¼ j�1k ðB1Þ cover X.

Proof. Let U1;U2; . . . be a basis for the open sets of X such that each
Ui is compact. We construct inductively a sequence A1;A2; . . . of compact
sets whose union is X, such that Ai is contained in the interior of Aiþ1.
We let A1 ¼ U1. Suppose we have constructed Ai. We let j be the
smallest integer such that Ai is contained in U1W � � � WUj . We let Aiþ1 be
the closed and compact set

U1W � � � WUj WUiþ1:

For each point x A X we can find an arbitrarily small chart ðVx; jxÞ at
x such that jxVx is the ball of radius 3 (so that each Vx is contained in
some element of U). We let Wx ¼ j�1x ðB1Þ be the ball of radius 1 in this
chart. We can cover the set

Aiþ1 � IntðAiÞ
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(intuitively the closed annulus) by a finite number of these balls of radius
1, say W1; . . . ;Wn, such that, at the same time, each one of V1; . . . ;Vn is
contained in the open set IntðAiþ2Þ � Ai�1 (intuitively, the open annulus of
the next bigger size). We let Bi denote the collection V1; . . . ;Vn and let B

be composed of the union of the Bi. Then B is locally finite, and we are
done.

Corollary 3.4. Let X be a manifold whose topology has a countable

base. Then X admits partitions of unity.

Proof. Let fðVk; jkÞg be as in the theorem, and Wk ¼ j�1k ðB1Þ. We can
find a function ck of class Cp such that 0YckY 1, such that ckðxÞ ¼ 1
for x AWk and ckðxÞ ¼ 0 for x B Vk. (The proof is recalled below.) We
now let

c ¼
X

ck

(a sum which is finite at each point), and we let gk ¼ ck=c. Then
fðVk; gkÞg is the desired partition of unity.

We now recall the argument giving the function ck. First, given two
real numbers r, s with 0Y r < s, the function defined by

exp
�1

ðt� rÞðs� tÞ

� �

in the open interval r < t < s and 0 outside the interval determines a bell-
shaped Cy-function from R into R. Its integral from minus infinity to t,
divided by the area under the bell yields a function which lies strictly
between 0 and 1 in the interval r < t < s, is equal to 0 for tY r and is
equal to 1 for tZ s. (The function is even monotone increasing.)

We can therefore find a real valued function of a real variable, say hðtÞ,
such that hðtÞ ¼ 1 for jtj < 1 and hðtÞ ¼ 0 for jtjZ 1þ d with small d, and
such that 0Y hY 1. If E is a euclidean space, then hðjxj2Þ ¼ cðxÞ gives us
a function which is equal to 1 on the ball of radius 1 and 0 outside the
ball of radius 1þ d. This function can then be transported to the manifold
by any given chart whose image is the ball of radius 3. For convenience,
we state separately what we have just proved.

Lemma 3.5. Let E be a euclidean space. There exists a Cy real function

c on E such that cðxÞ ¼ 1 for jxje 1, cðxÞ > 0 for jxj < 1þ d, and
cðxÞ ¼ 0 for jxjf 1þ d. Alternatively, there exists a Cy function h

such that

hðxÞ > 0 for jxj < 1 and hðxÞ ¼ 0 for jxjf 1:
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In other words, one would construct a function which is > 0 on a given
ball and ¼ 0 outside this ball.

Partitions of unity constitute the only known means of gluing together
local mappings (into objects having an addition, namely vector bundles,
discussed in the next chapter).

II, §4. MANIFOLDS WITH BOUNDARY

Let E be a vector space, and l: E ! R a linear map into R. (This will
also be called a functional on E.) We denote by E0

l the kernel of l, and by
Eþ
l (resp. E�

l ) the set of points x A E such that lðxÞZ 0 (resp. lðxÞY 0).
We call E0

l a hyperplane and Eþ
l or E�

l a half plane.
If m is another functional and Eþ

l ¼ Eþ
m , then there exists a number c > 0

such that l ¼ cm. This is easily proved. Indeed, we see at once that the
kernels of l and m must be equal. Suppose l0 0. Let x0 be such that
lðx0Þ > 0. Then mðx0Þ > 0 also. The functional

l�
�
lðx0Þ=mðx0Þ

�
m

vanishes on the kernel of l (or m) and also on x0. Therefore it is the 0
functional, and c ¼ lðx0Þ=mðx0Þ.

Let E, F be vector spaces, and let Eþ
l and Fþ

m be two half planes in E

and F respectively. Let U, V be two open subsets of these half planes
respectively. We shall say that a mapping

f : U ! V

is a morphism of class Cp if the following condition is satisfied. Given a
point x A U , there exists an open neighborhood U1 of x in E, an open
neighborhood V1 of f ðxÞ in F, and a morphism f1 : U1 ! V1 (in the sense
of Chapter I) such that the restriction of f1 to U1XU is equal to f. (We
assume that all morphisms are of class Cp with pZ 1:Þ

If our half planes are full planes (i.e. equal to the vector spaces them-
selves), then our present definition is the same as the one used previously.

If we take as objects the open subsets of half planes in vector spaces,
and as morphisms the Cp-morphisms, then we obtain a category. The
notion of isomorphism is therefore defined, and the definition of manifold
by means of atlases and charts can be used as before. The manifolds of §1
should have been called manifolds without boundary, reserving the name of
manifold for our new globalized objects. However, in most of this book,
we shall deal exclusively with manifolds without boundary for simplicity.
The following remarks will give readers the means of extending any result
they wish (provided it is true) for the case of manifolds without boundaries
to the case manifolds with.
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First, concerning the notion of derivative, we have :

Proposition 4.1. Let f : U ! F and g: U ! F be two morphisms of

class Cp ðpZ 1Þ defined on an open subset U of E. Assume that f and g
have the same restriction to U XEþ

l for some half plane Eþ
l , and let

x A U XEþ
l :

Then f 0ðxÞ ¼ g 0ðxÞ.

Proof. After considering the di¤erence of f and g, we may assume
without loss of generality that the restriction of f to U XEþ

l is 0. It is then
obvious that f 0ðxÞ ¼ 0.

Proposition 4.2. Let U be open in E. Let m be a non-zero functional on
F and let f : U ! Fþ

m be a morphism of class Cp with pZ 1. If x is a
point of U such that f ðxÞ lies in F0

m then f 0ðxÞ maps E into F0
m.

Proof. Without loss of generality, we may assume that x ¼ 0 and
f ðxÞ ¼ 0. Let W be a given neighborhood of 0 in F. Suppose that we can
find a small element v A E such that m f 0ð0Þv0 0. We can write (for small
t) :

f ðtvÞ ¼ t f 0ð0Þvþ oðtÞwt

with some element wt AW . By assumption, f ðtvÞ lies in Fþ
m . Applying m

we get

tm f 0ð0Þvþ oðtÞmðwtÞZ 0:

Dividing by t, this yields

m f 0ð0ÞvZ oðtÞ
t

mðwtÞ:

Replacing t by �t, we get a similar inequality on the other side. Letting t
tend to 0 shows that m f 0ð0Þv ¼ 0, a contradiction.

Let U be open in some half plane Eþ
l . We define the boundary of U

(written qU) to be the intersection of U with E0
l , and the interior of U�

written IntðUÞ
�
to be the complement of qU in U. Then IntðUÞ is open

in E.
It follows at once from our definition of di¤erentiability that a half

plane is Cy-isomorphic with a product

Eþ
l AE0

l 
 Rþ
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where Rþ is the set of real numbers Z0, whenever l0 0. The boundary
of Eþ

l in that case is E0
l 
 0.

Proposition 4.3. Let l be a functional on E and m a functional on F. Let
U be open in Eþ

l and V open in Fþ
m and assume U XE0

l , V XF0
m are not

empty. Let f : U ! V be an isomorphism of class Cp ðpZ 1Þ. Then

l0 0 if and only if m0 0. If l0 0, then f induces a Cp-isomorphism of

IntðUÞ on IntðVÞ and of qU on qV .

Proof. By the functoriality of the derivative, we know that f 0ðxÞ is a
toplinear isomorphism for each x A U . Our first assertion follows from the
preceding proposition. We also see that no interior point of U maps on a
boundary point of V and conversely. Thus f induces a bijection of qU on
qV and a bijection of IntðUÞ on IntðVÞ. Since these interiors are open in
their respective spaces, our definition of derivative shows that f induces an
isomorphism between them. As for the boundary, it is a submanifold of
the full space, and locally, our definition of derivative, together with the
product structure, shows that the restriction of f to qU must be an
isomorphism on qV .

This last proposition shows that the boundary is a di¤erentiable in-
variant, and thus that we can speak of the boundary of a manifold.

We give just two words of warning concerning manifolds with
boundary. First, products do not exist in their category. Indeed, to get
products, we are forced to define manifolds with corners, which would take
us too far afield.

Second, in defining immersions or submanifolds, there is a di¤erence
in kind when we consider a manifold embedded in a manifold without
boundary, or a manifold embedded in another manifold with boundary.
Think of a closed interval embedded in an ordinary half plane. Two cases
arise. The case where the interval lies inside the interior of the half plane
is essentially distinct from the case where the interval has one end point
touching the hyperplane forming the boundary of the half plane. (For
instance, given two embeddings of the first type, there exists an auto-
morphism of the half plane carrying one into the other, but there cannot
exist an automorphism of the half plane carrying an embedding of the first
type into one of the second type.)

We leave it to the reader to go systematically through the notions of
tangent space, immersion, embedding (and later, tangent bundle, vector
field, etc.) for arbitrary manifolds (with boundary). For instance, Pro-
position 2.2 shows at once how to get the tangent space functorially.
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CHAPTER III

Vector Bundles

The collection of tangent spaces can be glued together to give a manifold
with a natural projection, thus giving rise to the tangent bundle. The
general glueing procedure can be used to construct more general objects
known as vector bundles, which give powerful invariants of a given
manifold. (For an interesting theorem see Mazur [Maz 61].) In this
chapter, we develop purely formally certain functorial constructions having
to do with vector bundles. In the chapters on di¤erential forms and
Riemannian metrics, we shall discuss in greater details the constructions
associated with multilinear alternating forms, and symmetric positive
definite forms.

Partitions of unity are an essential tool when considering vector
bundles. They can be used to combine together a random collection of
morphisms into vector bundles, and we shall give a few examples showing
how this can be done (concerning exact sequences of bundles).

III, §1. DEFINITION, PULL BACKS

Let X be a manifold (of class Cp with pZ 0) and let p: E ! X be a
morphism. Let E be a vector space (always assumed finite dimensional).

Let fUig be an open covering of X , and for each i, suppose that we are
given a mapping

ti : p
�1ðUiÞ ! Ui � E

satisfying the following conditions:
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VB 1. The map ti is a Cp isomorphism commuting with the projec-

tion on Ui, that is, such that the following diagram is commu-

tative :

In particular, we obtain an isomorphism on each fiber (written
tiðxÞ or tix)

tix : p�1ðxÞ ! fxg � E

VB 2. For each pair of open sets Ui, Uj the map

tjx � t�1
ix : E ! E

is a toplinear isomorphism.

VB 3. If Ui and Uj are two members of the covering, then the map of
UiXUj into LðE;EÞ (actually Laut(E)) given by

x 7! ðtjt�1
i Þx

is a morphism.

Then we shall say that fðUi; tiÞg is a trivializing covering for p (or for E
by abuse of language), and that ftig are its trivalizing maps. If x A Ui, we
say that ti (or Ui) trivializes at x. Two trivializing coverings for p are
said to be VB-equivalent if taken together they also satisfy conditions VB 2,
VB 3. An equivalence class of such trivializing coverings is said to determine
a structure of vector bundle on p (or on E by abuse of language). We say
that E is the total space of the bundle, and that X is its base space. If we
wish to be very functorial, we shall write Ep and Xp for these spaces
respectively. The fiber p�1ðxÞ is also denoted by Ex or px. We also say
that the vector bundle has fiber E, or is modeled on E. Note that from
VB 2, the fiber p�1ðxÞ above each point x A X can be given a structure of
vector space, simply by transporting the vector space structure of E to
p�1ðxÞ via tix. Condition VB 2 insures that using two di¤erent trivializing
maps tix or tjx will give the same structure of vector space (with equivalent
norms, of course not the same norms).

Conversely, we could replace VB 2 by a similar condition as follows.
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VB 2 0. On each fiber p�1ðxÞ we are given a structure of vector space,
and for x A Ui, the trivializing map

tix : p�1ðxÞ ¼ Ex ! E

is a linear isomorphism.

Then it follows that tjx � t�1
ix : E ! E is a linear isomorphism for each pair

of open sets Ui, Uj and x A UiXUj.
Condition VB 3 is implied by VB 2.

Proposition 1.1. Let E, F be vector spaces. Let U be open in some

vector space. Let

f : U � E ! F

be a morphism such that for each x A U , the map

fx : E ! F

given by f xðvÞ ¼ f ðx; vÞ is a linear map. Then the map of U into

LðE; FÞ given by x 7! fx is a morphism.

Proof. We can write F ¼ R1 � � � � � Rn (n copies of R). Using the fact
that LðE; FÞ ¼ LðE; R1Þ � � � � � LðE; RnÞ, it will su‰ce to prove our
assertion when F ¼ R. Similarly, we can assume that E ¼ R also. But in
that case, the function f ðx; vÞ can be written gðxÞv for some map
g: U ! R. Since f is a morphism, it follows that as a function of each
argument x, v it is also a morphism. Putting v ¼ 1 shows that g is a
morphism and concludes the proof.

Returning to the general definition of a vector bundle, we call the maps

tjix ¼ tjx � t�1
ix

the transition maps associated with the covering. They satisfy what we call
the cocycle condition

tkjx � tjix ¼ tkix:

In particular, tiix ¼ id and tjix ¼ t�1
ijx .

As with manifolds, we can recover a vector bundle from a trivializing
covering.

Proposition 1.2. Let X be a manifold, and p: E ! X a mapping from

some set E into X. Let fUig be an open covering of X, and for each i
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suppose that we are given a vector space E and a bijection (commuting
with the projection on Ui),

ti : p�1ðUiÞ ! Ui � E;

such that for each pair i, j and x A UiXUj , the map ðtjt�1
i Þx is a linear

isomorphism, and condition VB 3 is satisfied as well as the cocycle

condition. Then there exists a unique structure of manifold on E such

that p is a morphism, such that ti is an isomorphism making p into a

vector bundle, and fðUi; tiÞg into a trivialising covering.

Proof. By Proposition 3.10 of Chapter I and our condition VB 3, we
conclude that the map

tjt
�1
i : ðUiXUjÞ � E ! ðUiXUjÞ � E

is a morphism, and in fact an isomorphism since it has an inverse. From
the definition of atlases, we conclude that E has a unique manifold
structure such that the ti are isomorphisms. Since p is obtained locally
as a composite of morphisms (namely ti and the projections of Ui � E on
the first factor), it becomes a morphism. On each fiber p�1ðxÞ, we can
transport the vector space structure of any E such that x lies in Ui, by
means of tix. The result is independent of the choice of Ui since ðtjt�1

i Þx is
a linear isomorphism. Our proposition is proved.

Remark. It is relatively rare that a vector bundle is trivial, i.e. VB-
isomorphic to a product X � E. By definition, it is always trivial locally.
In the finite dimensional case, say when E has dimension n, a trivialization
is equivalent to the existence of sections x1; . . . ; xn such that for each x, the
vectors x1ðxÞ; . . . ; xnðxÞ form a basis of Ex. Such a choice of sections is
called a frame of the bundle, and is used especially with the tangent
bundle, to be defined below.

The local representation of a vector bundle and

the vector component of a morphism

For arbitrary vector bundles (and especially the tangent bundle to be
defined below), we have a local representation of the bundle as a product
in a chart. For many purposes, and especially the case of a morphism

f : Y ! E

of a manifold into the vector bundle, it is more convenient to use U to
denote an open subset of a vector space, and to let j: U ! X be an
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isomorphism of U with an open subset of X over which E has a
trivialization t : p�1ðjUÞ ! U � E called a VB-chart. Suppose V is an
open subset of Y such that f ðVÞH p�1ðjUÞ. We then have the com-
mutative diagram:

The composite t � f is a morphism of V into U � E, which has two
components

t � f ¼ ð fU1; fU2Þ

such that fU1 : V ! U and fU2 : V ! E. We call fU2 the vector com-

ponent of f in the vector bundle chart U � E over U . Sometimes to
simplify the notation, we omit the subscript, and merely agree that fU ¼
fU2 denotes this vector component ; or to simplify the notation further, we
may simply state that f itself denotes this vector component if a discussion
takes place entirely in a chart. In this case, we say that f ¼ fU represents

the morphism in the vector bundle chart, or in the chart.

Vector bundle morphisms and pull backs

We now make the set of vector bundles into a category.
Let p : E ! X and p 0 : E 0 ! X 0 be two vector bundles. A VB-

morphism p ! p 0 consists of a pair of morphisms

f0 : X ! X 0 and f : E ! E 0

satisfying the following conditions.

VB Mor 1. The diagram

is commutative, and the induced map for each x A X

fx : Ex ! E 0
f ðxÞ

is a linear map.
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VB Mor 2. For each x0 A X there exist trivializing maps

t: p�1ðUÞ ! U � E

and

t 0 : p0�1ðU 0Þ ! U 0 � E 0

at x0 and f ðx0Þ respectively, such that f0ðUÞ is contained in
U 0, and such that the map of U into LðE; E 0Þ given by

x 7! t 0f0ðxÞ � fx � t
�1

is a morphism.

As a matter of notation, we shall also use f to denote the VB-
morphism, and thus write f : p ! p 0. In most applications, f0 is the
identity. By Proposition 1.1, we observe that VB Mor 2 is redundant.

The next proposition is the analogue of Proposition 1.2 for VB-
morphisms.

Proposition 1.3. Let p, p 0 be two vector bundles over manifolds X , X 0

respectively. Let f0 : X ! X 0 be a morphism, and suppose that we are
given for each x A X a continuous linear map

fx : px ! p 0
f0ðxÞ

such that, for each x0, condition VB Mor 2 is satisfied. Then the map f

from p to p 0 defined by fx on each fiber is a VB-morphism.

Proof. One must first check that f is a morphism. This can be done
under the assumption that p, p 0 are trivial, say equal to U � E and
U 0 � E 0 (following the notation of VB Mor 2), with trivialising maps equal
to the identity. Our map f is then given by

ðx; vÞ 7! ð f0x; fxvÞ:

Using Proposition 3.10 of Chapter I, we conclude that f is a morphism,
and hence that ð f0; f Þ is a VB-morphism.

It is clear how to compose two VB-morphisms set theoretically. In fact,
the composite of two VB-morphisms is a VB-morphism. There is no
problem verifying condition VB Mor 1, and for VB Mor 2, we look at the
situation locally. We encounter a commutative diagram of the following
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type :

and use Proposition 3.10 of Chapter I, to show that g � f is a VB-
morphism.

We therefore have a category, denoted by VB or VBp, if we need to
specify explicitly the order of di¤erentiability.

The vector bundles over X from a subcategory VBðXÞ ¼ VBpðXÞ
(taking those VB-morphisms for which the map f0 is the identity).

A morphism from one vector bundle into another can be given locally.
More precisely, suppose that U is an open subset of X and p: E ! X a
vector bundle over X . Let EU ¼ p�1ðUÞ and

pU ¼ p jEU

be the restriction of p to EU . Then pU is a vector bundle over U . Let
fUig be an open covering of the manifold X and let p, p 0 be two vector
bundles over X . Suppose, given a VB-morphism

fi : pUi
! p 0

Ui

for each i, such that fi and fj agree over UiXUj for each pair of indices i,
j. Then there exists a unique VB-morphism f : p ! p 0 which agrees with
fi on each Ui. The proof is trivial, but the remark will be used frequently
in the sequel.

Using the discussion at the end of Chapter II, §2 and Proposition 2.7 of
that chapter, we get immediately :

Proposition 1.4. Let p: E ! Y be a vector bundle, and f : X ! Y a

morphism. Then

f �ðpÞ : f �ðEÞ ! X

is a vector bundle called the pull-back, and the pair
�
f ; p�ð f Þ

�
is a VB-

morphism
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In Proposition 1.4, we could take f to be the inclusion of a sub-
manifold. In that case, the pull-back is merely the restriction. As with
open sets, we can then use the usual notation :

EX ¼ p�1ðXÞ and pX ¼ p jEX :

Thus pX ¼ f �ðpÞ in that case.
If X happens to be a point y of Y , then we have the constant map

py : Ey ! y

which will sometimes be identified with Ey.
If we identify each fiber ð f �EÞx with Ef ðxÞ itself (a harmless identi-

fication since an element of the fiber at x is simply a pair ðx; eÞ with e in
Ef ðxÞÞ, then we can describe the pull-back f � of a vector bundle p: E ! Y

as follows. It is a vector bundle f �p: f �E ! X satisfying the following
properties :

PB 1. For each x A X , we have ð f �EÞx ¼ Ef ðxÞ.

PB 2. We have a commutative diagram

the top horizontal map being the identity on each fiber.

PB 3. If E is trivial, equal to Y � E, then f �E ¼ X � E and f �p is the
projection.

PB 4. If V is an open subset of Y and U ¼ f �1ðVÞ, then

f �ðEV Þ ¼ ð f �EÞU ;

and we have a commutative diagram :

vector bundles44 [III, §1]



III, §2. THE TANGENT BUNDLE

Let X be a manifold of class Cp with pZ 1. We shall define a functor T
from the category of such manifolds into the category of vector bundles of
class Cp�1.

For each manifold X we let TðX Þ be the disjoint union of the tangent
spaces TxðXÞ. We have a natural projection

p: TðXÞ ! X

mapping TxðX Þ on x. We must make this into a vector bundle. If ðU ; jÞ
is a chart of X such that jU is open in the vector space E, then from the
definition of the tangent vectors as equivalence classes of triples ðU ; j; vÞ
we get immediately a bijection

tU : p�1ðUÞ ¼ TðUÞ ! U � E

which commutes with the projection on U , that is such that

is commutative. Furthermore, if ðUi; jiÞ and ðUj; jjÞ are two charts, and
if we denote by jji the map jjj

�1
i

�
defined on jiðUiXUjÞ

�
, then we obtain

a transition mapping

tji ¼ ðtjt�1
i Þ : jiðUiXUjÞ � E ! jjðUiXUjÞ � E

by the formula
tjiðx; vÞ ¼ ðjjix; DjjiðxÞ � vÞ

for x A UiXUj and v A E. Since the derivative Djji ¼ j 0
ji is of class Cp�1

and is an isomorphism at x, we see immediately that all the conditions of
Proposition 1.2 are verified (using Proposition 3.10 of Chapter I), thereby
making TðXÞ into a vector bundle of class Cp�1.

We see that the above construction can also be expressed as follows. If
the manifold X is glued together from open sets fUig in vector spaces by
means of transition mappings fjijg, then we can glue together products
Ui � E by means of transition mappings ðjij; DjijÞ where the derivative
Djij can be viewed as a function of two variables ðx; vÞ. Thus locally,
for open subsets U of vector spaces, the tangent bundle can be identified
with the product U � E. The reader will note that our definition coincides
with the oldest definition employed by geometers, our tangent vectors
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being vectors which transform according to a certain rule (namely the
derivative).

If f : X ! X 0 is a Cp-morphism, we can define

Tf : TðX Þ ! TðX 0Þ

to be simply Tx f on each fiber TxðXÞ. In order to verify that Tf is a VB-
morphism (of class Cp�1), it su‰ces to look at the situation locally, i.e. we
may assume that X and X 0 are open in vector spaces E, E 0, and that
Tx f ¼ f 0ðxÞ is simply the derivative. Then the map Tf is given by

Tf ðx; vÞ ¼
�
f ðxÞ; f 0ðxÞv

�

for x A X and v A E. Since f 0 is of class Cp�1 by definition, we can apply
Proposition 3.10 of Chapter I to conclude that Tf is also of class Cp�1.
The functoriality property is trivially satisfied, and we have therefore
defined the functor T as promised.

It will sometimes be notationally convenient to write f� instead of Tf
for the induced map, which is also called the tangent map. The bundle
TðXÞ is called the tangent bundle of X .

Remark. The above definition of the tangent bundle fits with Steenrod’s
point of view [Ste 51]. I don’t understand why many di¤erential geometers
have systematically rejected this point of view, when they take the defini-
tion of a tangent vector as a di¤erential operator.

III, §3. EXACT SEQUENCES OF BUNDLES

Let X be a manifold. Let p 0 : E 0 ! X and p: E ! X be two vector
bundles over X . Let f : p 0 ! p be a VB-morphism. We shall say that the
sequence

0 ! p 0 !f p

is exact if there exists a covering of X by open sets and for each open set
U in this covering there exist trivializations

t 0 : E 0
U ! U � E 0 and t: EU ! U � E

such that E can be written as a product E ¼ E 0 � F, making the following
diagram commutative :
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(The bottom map is the natural one : Identity on U and the injection of E 0

on E 0 � 0.)
Let p1 : E1 ! X be another vector bundle, and let g: p1 ! p be a VB-

morphism such that gðE1Þ is contained in f ðE 0Þ. Since f establishes a
bijection between E 0 and its image f ðE 0Þ in E, it follows that there exists
a unique map g1 : E1 ! E 0 such that g ¼ f � g1. We contend that g1 is a
VB-morphism. Indeed, to prove this we can work locally, and in view of
the definition, over an open set U as above, we can write

g1 ¼ t0�1 � pr � t � g

where pr is the projection of U � E 0 � F on U � E 0. All the maps on
the right-hand side of our equality are VB-morphisms; this proves our
contention.

Let p: E ! X be a vector bundle. A subset S of E will be called a
subbundle if there exists an exact sequence 0 ! p 0 ! p, also written

0 ! E 0 !f E;

such that f ðE 0Þ ¼ S. This gives S the structure of a vector bundle, and
the previous remarks show that it is unique. In fact, given another exact
sequence

0 ! E1 !
g
E

such that gðE1Þ ¼ S, the natural map f �1g from E1 to E 0 is a VB-
isomorphism.

Let us denote by E=E 0 the union of all factor spaces Ex=E
0
x. If we are

dealing with an exact sequence as above, then we can give E=E 0 the
structure of a vector bundle. We proceed as follows. Let fUig be our
covering, with trivialising maps t 0i and ti. We can define for each i a
bijection

p 00
i : EUi

=E 0
Ui

! Ui � F

obtained in a natural way from the above commutative diagram. (With-
out loss of generality, we can assume that the vector spaces E 0, F are
constant for all i.) We have to prove that these bijections satisfy the
conditions of Proposition 1.2.

Without loss of generality, we may assume that f is an inclusion (of the
total space E 0 into E). For each pair i, j and x A UiXUj, the toplinear
automorphism ðtjt�1

i Þx is represented by a matrix

h11ðxÞ h12ðxÞ
h21ðxÞ h22ðxÞ

� �

operating on the right on a vector ðv; wÞ A E 0 � F. The map ðt 00j t 00�1
i Þx on

F is induced by this matrix. Since E 0 ¼ E 0 � 0 has to be carried into
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itself by the matrix, we have h12ðxÞ ¼ 0. Furthermore, since ðtjt�1
i Þx has

an inverse, equal to ðtit�1
j Þx, it follows that h22ðxÞ is a toplinear auto-

morphism of F, and represents ðt 00j t 00�1
i Þx. Therefore condition VB 3 is

satisfied, and E=E 0 is a vector bundle.
The canonical map

EU ! EU=E
0
U

is a morphism since it can be expressed in terms of t, the projection, and
t 00�1. Consequently, we obtain a VB-morphism

g: p ! p 00

in the canonical way (on the total spaces, it is the quotient mapping of E
on E=E 0). We shall call p 00 the factor bundle.

Our map g satisfies the usual universal mapping property of a cokernel.
Indeed, suppose that

c: E ! G

is a VB-morphism such that c � f ¼ 0 (i.e. cx � fx ¼ 0 on each fiber E 0
x).

We can then define set theoretically a canonical map

c� : E=E
0 ! G;

and we must prove that it is a VB-morphism. This can be done locally.
Using the above notation, we may assume that E ¼ U � E 0 � F and that g
is the projection. In that case, c� is simply the canonical injection of
U � F in U � E 0 � F followed by c, and is therefore a VB-morphism.

We shall therefore call g the cokernel of f .
Dually, let g: p ! p 00 be a given VB-morphism. We shall say that the

sequence

p !g p 00 ! 0

is exact if g is surjective, and if there exists a covering of X by open sets,
and for each open set U in this covering there exist spaces E 0, F and
trivializations

t : EU ! U � E 0 � F and t 00 : E 00
U ! F

making the following diagram commutative:
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(The bottom map is the natural one : Identity on U and the projection of
E 0 � F on F.)

In the same way as before, one sees that the ‘‘kernel’’ of g, that is, the
union of the kernels E 0

x of each gx, can be given a structure of vector
bundle. This union E 0 will be called the kernel of g, and satisfies the usual
universal mapping property.

Proposition 3.1. Let X be a manifold and let

f : p 0 ! p

be a VB-morphism of vector bundles over X. Assume that, for each
x A X , the continuous linear map

fx : E
0
x ! Ex

is injective. Then the sequence

0 ! p 0 !f p

is exact.

Proof. We can assume that X is connected and that the fibers of E 0

and E are constant, say equal to the vector spaces E 0 and E. Let a A X .
Corresponding to the splitting of fa we know that we have a product
decomposition E ¼ E 0 � F and that there exists an open set U of X
containing a, together with trivializing maps

t: p�1ðUÞ ! U � E and t 0 : p 0�1ðUÞ ! U � E 0

such that the composite map

E 0 �!
t 0a�1

E 0
a �!

fa
Ea �!

ta
E 0 � F

maps E 0 on E 0 � 0.
For any point x in U , we have a map

ðt f t 0�1Þx : E 0 ! E 0 � F;

which can be represented by a pair of continuous linear maps

�
h11ðxÞ; h21ðxÞ

�
:

We define
hðxÞ: E 0 � F ! E 0 � F
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by the matrix
h11ðxÞ 0

h21ðxÞ id

� �
;

operating on the right on a vector ðv; wÞ A E 0 � F. Then hðxÞ restricted to
E 0 � 0 has the same action as ðt f t 0�1Þx.

The map xN hðxÞ is a morphism of U into LðE; EÞ and since it is
continuous, it follows that for U small enough around our fixed point a, it
maps U into the group of linear automorphisms of E. This proves our
proposition.

Dually to Proposition 3.1, we have :

Proposition 3.2. Let X be a manifold and let

g: p ! p 00

be a VB-morphism of vector bundles over X. Assume that for each

x A X , the continuous linear map

gx : Ex ! E 00
x

is surjective. Then the sequence

p !g p 00 ! 0
is exact.

Proof. It is dual to the preceding one and we leave it to the reader.

In general, a sequence of VB-morphisms

0 ! p 0 !f p !g p 00 ! 0

is said to be exact if both ends are exact, and if the image of f is equal to
the kernel of g.

There is an important example of exact sequence. Let f : X ! Y be an
immersion. By the universal mapping property of pull backs, we have a
canonical VB-morphism

T �f : TðXÞ ! f �TðY Þ

of TðXÞ into the pull back over X of the tangent bundle of Y . Fur-
thermore, from the manner in which the pull back is obtained locally by
taking products, and the definition of an immersion, one sees that the
sequence

0 ! TðXÞ �!T
�f
f �TðY Þ
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is exact. The factor bundle

f �TðYÞ=ImðT �f Þ

is called the normal bundle of f . It is denoted by Nð f Þ, and its total
space by Nf ðX Þ if we wish to distinguish between the two. We sometimes
identify TðXÞ with its image under T �f and write

Nð f Þ ¼ f �TðYÞ=TðXÞ:

Dually, let f : X ! Y be a submersion. Then we have an exact
sequence

TðX Þ �!T
�f
f �TðYÞ ! 0

whose kernel could be called the subbundle of f , or the bundle along the

fiber.
There is an interesting case where we can describe the kernel more

precisely. Let

p: E ! X

be a vector bundle. Then we can form the pull back of E over itself, that
is, p�E, and we contend that we have an exact sequence

0 ! p�E ! TðEÞ ! p�TðXÞ ! 0:

To define the map on the left, we look at the subbundle of p more closely.
For each x A X we have an inclusion

Ex ! E;

whence a natural injection

TðExÞ ! TðEÞ:

The local product structure of a bundle shows that the union of the TðExÞ
as x ranges over X gives the subbundle set theoretically. On the other
hand, the total space of p�E consists of pairs of vectors ðv; wÞ lying over
the same base point x, that is, the fiber at x of p�E is simply Ex � Ex.
Since TðExÞ has a natural identification with Ex � Ex, we get for each x a
bijection

ðp�EÞx ! TðExÞ

which defines our map from p�E to TðEÞ. Considering the map locally in
terms of the local product structure shows at once that it gives a VB-
isomorphism between p�E and the subbundle of p, as desired.
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III, §4. OPERATIONS ON VECTOR BUNDLES

We consider a functor

ðE; FÞ 7! lðE; FÞ

in, say, two variables, which is, say, contravariant in the first and co-
variant in the second. (Everything we shall do extends in the obvious
manner to functors of several variables.

Example. We took a functor in two variables for definiteness, and to
illustrate both variances. However, we could consider a functor in one or
more than two variables. For instance, let us consider the functor

E 7! LðE; RÞ ¼ LðEÞ ¼ E_;

which we call the dual. It is a contravariant functor in one variable. On
the other hand, the functor

E 7! LraðE; FÞ

of continuous multilinear maps of E� � � � � E into a vector space F is
contravariant in E and covariant in F. The functor E 7! LraðE; RÞ gives
rise later to what we call di¤erential forms. We shall treat such forms
systematically in Chapter V, §3.

Let f : E 0 ! E and g: F ! F 0 be two linear maps. By definition, we
have a map

LðE 0; EÞ � LðF; F 0Þ ! L
�
lðE; FÞ; lðE 0; F 0Þ

�
;

assigning lð f ; gÞ to ð f ; gÞ.
We shall say that l is of class Cp if the following condition is satisfied.

Give a manifold U , and two morphisms

j: U ! LðE 0; EÞ and c: U ! LðF; F 0Þ;

then the composite

U ! LðE 0; EÞ � LðF; F 0Þ ! L
�
lðE; FÞ; lðE 0; F 0Þ

�

is also a morphism. (One could also say that l is di¤erentiable.)

Theorem 4.1. Let l be a functor as above, of class Cp, pZ 0. Then for
each manifold X, there exists a functor lX , on vector bundles (of class
Cp)

lX : VBðX Þ � VBðX Þ ! VBðXÞ
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satisfying the following properties. For any bundles a, b in VBðX Þ and
VB-morphisms

f : a 0 ! a and g: b ! b 0

and for each x A X , we have :

OP 1. lX ða; bÞx ¼ lðax; bxÞ.

OP 2. lX ð f ; gÞx ¼ lð fx; gxÞ.

OP 3. If a is the trivial bundle X � E and b the trivial bundle X � F,
then lX ða; bÞ is the trivial bundle X � lðE; FÞ.

OP 4. If h: Y ! X is a Cp-morphism, then

l�
Y ðh�a; h�bÞ ¼ h�lX ða; bÞ:

Proof. We may assume that X is connected, so that all the fibers are
linearly isomorphic to a fixed space. For each open subset U of X we let
the total space lUðEa; EbÞ of lUða; bÞ be the union of the sets

fxg � lðax; bxÞ
�
identified harmlessly throughout with lðax; bxÞ

�
, as x ranges over U . We

can find a covering fUig of X with trivializing maps ftig for a, and fsig
for b,

ti : a�1ðUiÞ ! Ui � E;

si : b�1ðUiÞ ! Ui � F:

We have a bijection

lðt�1
i ; siÞ : lUi

ðEa; EbÞ ! Ui � lðE; FÞ

obtained by taking on each fiber the map

lðt�1
ix ; sixÞ : lðax; bxÞ ! lðE; FÞ:

We must verify that VB 3 is satisfied. This means looking at the map

x! lðt�1
jx ; sjxÞ � lðt�1

ix ; sixÞ�1:

The expression on the right is equal to

lðtixt�1
jx ; sjxs

�1
ix Þ:

Since l is a functor of class Cp, we see that we get a map

UiXUj ! L
�
lðE; FÞ; lðE; FÞ

�
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which is a Cp-morphism. Furthermore, since l is a functor, the transi-
tion mappings are in fact linear isomorphisms, and VB 2, VB 3 are
proved.

The proof of the analogous statement for lX ð f ; gÞ, to the e¤ect that
it is a VB-morphism, proceeds in an analogous way, again using the
hypothesis that l is of class Cp. Condition OP 3 is obviously satisfied,
and OP 4 follows by localizing. This proves our theorem.

The next theorem gives us the uniqueness of the operation lX .

Theorem 4.2. If m is another functor of class Cp with the same variance

as l, and if we have a natural transformation of functors t: l ! m, then
for each X, the mapping

tX : lX ! mX ;

defined on each fiber by the map

tðax; bxÞ : lðax; bxÞ ! mðax; bxÞ;

is a natural transformation of functors (in the VB-category).

Proof. For simplicity of notation, assume that l and m are both
functors of one variable, and both covariant. For each open set U ¼ Ui of
a trivializing covering for b, we have a commutative diagram:

The vertical maps are trivializing VB-isomorphism, and the top horizontal
map is a VB-morphism. Hence tU is a VB-morphism, and our assertion is
proved.

In particular, for l ¼ m and t ¼ id we get the uniqueness of our functor
lX .

(In the proof of Theorem 4.2, we do not use again explicitly the
hypotheses that l, m are di¤erentiable.)

In practice, we omit the subscript X on l, and write l for the functor
on vector bundles.
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Examples. Let p: E ! X be a vector bundle. We take l to be the
dual, that is E 7! E_ ¼ LðE; RÞ. Then lðEÞ is denoted by E_, and is
called the dual bundle. The fiber at each point x A X is the dual space E_

x .
The dual bundle of the tangent bundle is called the cotangent bundle T_X .

Similarly, instead of taking LðEÞ, we could take LraðEÞ to be the bundle
of alternating multilinear forms on E. The fiber at each point is the space
LraðExÞ consisting of all r-multilinear alternating continuous functions on
Ex. When E ¼ TX is the tangent bundle, the sections of LraðTX Þ are
called di¤erential forms of degree r. Thus a 1-form is a section of E_.
Di¤erential forms will be treated later in detail.

For another type of operation, we have the direct sum (also called the
Whitney sum) of two bundles a, b over X . It is denoted by al b, and the
fiber at a point x is

ðal bÞx ¼ axl bx:

Of course, the finite direct sum of vector spaces can be identified with their
finite direct products, but we write the above operation as a direct sum in
order not to confuse it with the following direct product.

Let a: Ea ! X and b : Eb ! Y be two vector bundles in VBðXÞ and
VBðY Þ respectively. Then the map

a� b : Ea � Eb ! X � Y

is a vector bundle, and it is this operation which we call the direct product

of a and b.
Let X be a manifold, and l a functor of class Cp with pZ 1. The

tensor bundle of type l over X is defined to be lX
�
TðX Þ

�
, also denoted by

lTðXÞ or TlðXÞ. The sections of this bundle are called tensor fields of
type l, and the set of such sections is denoted by GlðX Þ. Suppose that we
have a trivialization of TðXÞ, say

TðX Þ ¼ X � E:

Then TlðXÞ ¼ X � lðEÞ. A section of TlðXÞ in this representation is
completely described by the projection on the second factor, which is a
morphism

f : X ! lðEÞ:

We shall call it the local representation of the tensor field (in the given
trivialization). If x is the tensor field having f as its local representation,
then

xðxÞ ¼
�
x; f ðxÞ

�
:
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Let f : X ! Y be a morphism of class Cp ðpZ 1Þ. Let o be a tensor
field of type Lr over Y , which could also be called a multilinear tensor

field. For each y A Y , oðyÞ (also written oy) is a multilinear function on
TyðYÞ :

oy : Ty � � � � � Ty ! R:

For each x A X , we can define a multilinear map

f �xðoÞ : Tx � � � � � Tx ! R

by the composition of maps ðTx f Þr and of ðxÞ :

Tx � � � � � Tx ! Tf ðxÞ � � � � � Tf ðxÞ ! R:

We contend that the map x 7! f �xðoÞ is a tensor field over X , of the same
type as o. To prove this, we may work with local representation. Thus
we can assume that we work with a morphism

f : U ! V

of one open set in a Banach space into another, and that

o : V ! LrðFÞ

is a morphism, V being open in F. If U is open in E, then f �ðoÞ (now
denoting a local representation) becomes a mapping of U into LrðEÞ,
given by the formula

f �x ðoÞ ¼ Lr
�
f 0ðxÞ

�
�o
�
f ðxÞ

�
:

Since Lr : LðE; FÞ ! L
�
LrðFÞ; LrðEÞ

�
is of class Cy, it follows that

f �ðoÞ is a morphism of the same class as o. This proves what we want.
Of course, the same argument is valid for the other functors Lrs and Lra

(symmetric and alternating multilinear maps). Special cases will be
considered in later chapters. If l denotes any one of our three functors,
then we see that we have obtained a mapping (which is in fact linear)

f � : GlðYÞ ! GlðX Þ

which is clearly functorial in f . We use the notation f � instead of the
more correct (but clumsy) notation fl or Glð f Þ. No confusion will arise
from this.
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III, §5. SPLITTING OF VECTOR BUNDLES

The next proposition expresses the fact that the VB-morphisms of one
bundle into another (over a fixed morhism) form a module over the ring of
functions.

Proposition 5.1. Let X, Y be manifolds and f0 : X ! Y a morphism.
Let a, b be vector bundles over X, Y respectively, and let f , g: a ! b be

two VB-morphisms over f0. Then the map f þ g defined by the formula

ð f þ gÞx ¼ fx þ gx

is also a VB-morphism. Furthermore, if c: Y ! R is a function on Y,
then the map cf defined by

ðcf Þx ¼ c
�
f0ðxÞ

�
fx

is also a VB-morphism.

Proof. Both assertions are immediate consequences of Proposition 3.10
of Chapter I.

We shall consider mostly the situation where X ¼ Y and f0 is the
identity, and will use it, together with partitions of unity, to glue VB-
morphisms together.

Let a, b be vector bundles over X and let fðUi; ciÞg be a partition of
unity on X . Suppose given for each Ui a VB-morphism

fi : ajUi ! bjUi:

Each one of the maps ci fi (defined as in Proposition 5.1) is a VB-
morphism. Furthermore, we can extend ci fi to a VB-morphism of a into
b simply by putting

ðci fiÞx ¼ 0

for all x B Ui. If we now define

f : a ! b

by the formula

fxðvÞ ¼
X

ciðxÞ fixðvÞ

for all pairs ðx; vÞ with v A ax, then the sum is actually finite, at each ponit
x, and again by Proposition 5.1, we see that f is a VB-morphism. We
observe that if each fi is the identity, then f ¼

P
ci fi is also the identity.
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Proposition 5.2. Let X be a manifold admitting partitions of unity. Let

0 ! a !f b be an exact sequence of vector bundles over X. Then there

exists a surjective VB-morphism g : b ! a whose kernel splits at each

point, such that g � f ¼ id.

Proof. By the definition of exact sequence, there exists a partition of
unity fðUi; ciÞg on X such that for each i, we can split the sequence over
Ui. In other words, there exists for each i a VB-morphism

gi : bjUi ! ajUi

which is surjective, whose kernel splits, and such that gi � fi ¼ idi. We let
g ¼

P
cigi. Then g is a VB-morphism of b into a by what we have just

seen, and

g � f ¼
X

cigi fi ¼ id:

It is trivial that g is surjective because g � f ¼ id. The kernel of gx splits
at each point x because it has a closed complement, namely fxax. This
concludes the proof.

If g is the kernel of b, then we have b � al g.
A vector bundle p over X will be said to be of finite type if there exists

a finite trivialization for p (i.e. a trivialization fðUi; tiÞg such that i ranges
over a finite set).

If k is an integer Z 1 and E a vector space, then we denote by Ek the
direct product of E with itself k times.

Proposition 5.3. Let X be a manifold admitting partitions of unity. Let
p be a vector bundle of finite type in VBðX ; EÞ. Then there exists an

integer k > 0 and a vector bundle a in VBðX ; EkÞ such that pl a is

trivializable.

Proof. We shall prove that there exists an exact sequence

0 ! p !f b

with Eb ¼ X � Ek. Our theorem will follow from the preceding
proposition.

Let fUi; tiÞg be a finite trivialization of p with i ¼ 1; . . . ; k. Let
fðUi; ciÞg be a partition of unity. We define

f : Ep ! X � Ek

as follows. If x A X and v is in the fiber of Ep at x, then

fxðvÞ ¼
�
x; c1ðxÞt1ðvÞ; . . . ;ckðxÞtkðvÞ

�
:
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The expression on the right makes sense, because in case x does not lie in
Ui then ciðxÞ ¼ 0 and we do not have to worry about the expression
tiðvÞ. If x lies in Ui, then tiðvÞ means tixðvÞ.

Given any point x, there exists some index i such that ciðxÞ > 0 and
hence f is injective. Furthermore, for this x and this index i, fx maps Ex
onto a closed subspace of Ek, which admits a closed complement, namely

E� � � � � 0� � � � � E

with 0 in the i-th place. This proves our proposition.
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CHAPTER IV

Vector Fields and Differential
Equations

In this chapter, we collect a number of results all of which make use of the
notion of di¤erential equation and solutions of di¤erential equations.
Let X be a manifold. A vector field on X assigns to each point x of X a

tangent vector, di¤erentiably. (For the precise definition, see §2.) Given x0
in X, it is then possible to construct a unique curve aðtÞ starting at x0�
i:e: such that að0Þ ¼ x0

�
whose derivative at each point is the given

vector. It is not always possible to make the curve depend on time t from
�y to þy, although it is possible if X is compact.
The structure of these curves presents a fruitful domain of investiga-

tion, from a number of points of view. For instance, one may ask for
topological properties of the curves, that is those which are invariant under
topological automorphisms of the manifold. (Is the curve a closed curve,
is it a spiral, is it dense, etc.?) More generally, following standard pro-
cedures, one may ask for properties which are invariant under any given
interesting group of automorphisms of X (discrete groups, Lie groups,
algebraic groups, Riemannian automorphisms, ad lib.).
We do not go into these theories, each of which proceeds according

to its own flavor. We give merely the elementary facts and definitions
associated with vector fields, and some simple applications of the existence
theorem for their curves.
Throughout this chapter, we assume all manifolds to be of class Cp with

pZ 2 from §2 on, and pZ 3 from §3 on. This latter condition insures that
the tangent bundle is of class Cp�1 with p� 1Z 1 (or 2).
We shall deal with mappings of several variables, say f ðt; x; yÞ, the first

of which will be a real variable. We identify D1 f ðt; x; yÞ with

lim
h!0

f ðtþ h; x; yÞ � f ðt; x; yÞ
h

:
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IV, §1. EXISTENCE THEOREM FOR
DIFFERENTIAL EQUATIONS

Let E be a normed vector space and U an open subset of E. In this
section we consider vector fields locally. The notion will be globalized
later, and thus for the moment, we define (the local representation of ) a
time-dependent vector field on U to be a Cp-morphism ðpZ 0Þ

f : J �U ! E;

where J is an open interval containing 0 in R. We think of f as assigning
to each point x in U a vector f ðt; xÞ in E, depending on time t.
Let x0 be a point of U. An integral curve for f with initial condition x0

is a mapping of class Cr ðrZ 1Þ

a: J0 ! U

of an open subinterval of J containing 0, into U, such that að0Þ ¼ x0 and
such that

a 0ðtÞ ¼ f
�
t; aðtÞ

�
:

Remark. Let a: J0 ! U be a continuous map satisfying the condition

aðtÞ ¼ x0 þ
ð t
0

f
�
u; aðuÞ

�
du:

Then a is di¤erentiable, and its derivative is f
�
t; aðtÞ

�
. Hence a is of class

C 1. Furthermore, we can argue recursively, and conclude that if f is of
class Cp, then so is a. Conversely, if a is an integral curve for f with initial
condition x0, then it obviously satisfies out integral relation.

Let
f : J �U ! E

be as above, and let x0 be a point of U. By a local flow for f at x0 we
mean a mapping

a: J0 �U0 ! U

where J0 is an open subinterval of J containing 0, and U0 is an open
subset of U containing x0, such that for each x in U0 the map

axðtÞ ¼ aðt; xÞ

is an integral curve for f with initial condition x ði:e: such that að0; xÞ ¼
x).
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As a matter of notation, when we have a mapping with two arguments,
say jðt; xÞ, then we denote the separate mappings in each argument when
the other is kept fixed by jxðtÞ and jtðxÞ. The choice of letters will always
prevent ambiguity.
We shall say that f satisfies a Lipschitz condition on U uniformly with

respect to J if there exists a number K > 0 such that

j f ðt; xÞ � f ðt; yÞjYK jx� yj

for all x, y in U and t in J. We call K a Lipschitz constant. If f is of class
C1, it follows at once from the mean value theorem that f is Lipschitz on
some open neighborhood J0 �U0 of a given point ð0; x0Þ of U, and that it
is bounded on some such neighborhood.
We shall now prove that under a Lipschitz condition, local flows exist

and are unique locally. In fact, we prove more, giving a uniformity
property for such flows. If b is real > 0, then we denote by Jb the open
interval �b < t < b.

Proposition 1.1. Let J be an open interval of R containing 0, and U open

in the normed vector space E. Let x0 be a point of U, and a > 0, a < 1 a
real number such that the closed ball B3aðx0Þ lies in U. Assume that we
have a continuous map

f : J �U ! E

which is bounded by a constant LZ 1 on J �U , and satisfies a Lipschitz
condition on U uniformly with respect to J, with constant KZ 1. If

b < a=LK , then for each x in Baðx0Þ there exists a unique flow

a: Jb � Baðx0Þ ! U :

If f is of class Cp ðpZ 1Þ, then so is each integral curve ax.

Proof. Let Ib be the closed interval �bY tY b, and let x be a fixed
point in Baðx0Þ. Let M be the set of continuous maps

a: Ib ! B2aðx0Þ

of the closed interval into the closed ball of center x0 and radius 2a, such
that að0Þ ¼ x. Then M is a complete metric space if we define as usual the
distance between maps a, b to be the sup norm

ka� bk ¼ sup
t A Ib

jaðtÞ � bðtÞj:
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We shall now define a mapping

S : M !M

of M into itself. For each a in M, we let Sa be defined by

ðSaÞðtÞ ¼ xþ
ð t
0

f
�
u; aðuÞ

�
du:

Then Sa is certainly continuous, we have Sað0Þ ¼ x, and the distance of
any point on Sa from x is bounded by the norm of the integral, which is
bounded by

b supj f ðu; yÞjY bL < a:

Thus Sa lies in M.
We contend that our map S is a shrinking map. Indeed,

jSa� SbjY b sup
�� f �u; aðuÞ�� f

�
u; bðuÞ

���
Y bK ja� bj;

thereby proving our contention.
By the shrinking lemma (Chapter I, Lemma 5.1) our map has a unique

fixed point a, and by definition, aðtÞ satisfies the desired integral relation.
Our remark above concludes the proof.

Corollary 1.2. The local flow a in Proposition 1.1 is continuous.
Furthermore, the map x 7! ax of Baðx0Þ into the space of curves is

continuous, and in fact satisfies a Lipschitz condition.

Proof. The second statement obviously implies the first. So fix x in
Baðx0Þ and take y close to x in Baðx0Þ. We let Sx be the shrinking map of
the theorem, corresponding to the initial condition x. Then

kax � Syaxk ¼ kSxax � SyaxkY jx� yj:

Let C ¼ bK so 0 < C < 1. Then

kax � SnyaxkY kax � Syaxk þ kSyax � S2yaxk þ � � � þ kSn�1y ax � Snyaxk

Y ð1þ C þ � � � þ Cn�1Þjx� yj:

Since the limit of Snyax is equal to ay as n goes to infinity, the continuity
of the map x 7! ax follows at once. In fact, the map satisfies a Lipschitz
condition as stated.
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It is easy to formulate a uniqueness theorem for integral curves over
their whole domain of definition.

Theorem 1.3 (Uniqueness Theorem). Let U be open in E and let

f : U ! E be a vector field of class Cp, pZ 1. Let

a1 : J1 ! U and a2 : J2 ! U

be two integral curves for f with the same initial condition x0. Then a1
and a2 are equal on J1X J2.

Proof. Let Q be the set of numbers b such that a1ðtÞ ¼ a2ðtÞ for

0Y t < b:

Then Q contains some number b > 0 by the local uniqueness theorem. If
Q is not bounded from above, the equality of a1ðtÞ and a2ðtÞ for all t > 0
follows at once. If Q is bounded from above, let b be its least upper
bound. We must show that b is the right end point of J1X J2. Suppose
that this is not the case. Define curves b1 and b2 near 0 by

b1ðtÞ ¼ a1ðbþ tÞ and b2ðtÞ ¼ a2ðbþ tÞ:

Then b1 and b2 are integral curves of f with the initial conditions a1ðbÞ
and a2ðbÞ respectively. The values b1ðtÞ and b2ðtÞ are equal for small
negative t because b is the least upper bound of Q. By continuity it
follows that a1ðbÞ ¼ a2ðbÞ, and finally we see from the local uniqueness
theorem that

b1ðtÞ ¼ b2ðtÞ

for all t in some neighborhood of 0, whence a1 and a2 are equal in a
neighborhood of b, contradicting the fact that b is a least upper bound of
Q. We can argue the same way towards the left end points, and thus
prove our statement.

For each x A U , let JðxÞ be the union of all open intervals containing
0 on which integral curves for f are defined, with initial condition equal
to x. The uniqueness statement allows us to define the integral curve
uniquely on all of JðxÞ.

Remark. The choice of 0 as the initial time value is made for con-
venience. From the uniqueness statement one obtains at once (making a
time translation) the analogous statement for an integral curve defined on
any open interval ; in other words, if J1, J2 do not necessarily contain 0,
and t0 is a point in J1X J2 such that a1ðt0Þ ¼ a2ðt0Þ, and also we have the
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di¤erential equations

a 0
1ðtÞ ¼ f

�
a1ðtÞ

�
and a 0

2ðtÞ ¼ f
�
a2ðtÞ

�
;

then a1 and a2 are equal on J1X J2.

In practice, one meets vector fields which may be time dependent, and
also depend on parameters. We discuss these to show that their study
reduces to the study of the standard case.

Time-dependent vector fields

Let J be an open interval, U open in a normed vector space E, and

f : J �U ! E

a Cp map, which we view as depending on time t A J. Thus for each t, the
map x 7! f ðt; xÞ is a vector field on U. Define

f : J �U ! R� E

by

f ðt; xÞ ¼ ð1; f
�
t; xÞ

�
;

and view f as a time-independent vector field on J �U . Let a be its flow,
so that

a 0ðt; s; xÞ ¼ f
�
aðt; s; xÞ

�
; að0; s; xÞ ¼ ðs; xÞ:

We note that a has its values in J �U and thus can be expressed in terms
of two components. In fact, it follows at once that we can write a in the
form

aðt; s; xÞ ¼ ðtþ s; a2
�
t; s; xÞ

�
:

Then a2 satisfies the di¤erential equation

D1a2ðt; s; xÞ ¼ f ðtþ s; a2
�
t; s; xÞ

�

as we see from the definition of f . Let

bðt; xÞ ¼ a2ðt; 0; xÞ:

Then b is a flow for f, that is b satisfies the di¤erential equation

D1bðt; xÞ ¼ f
�
t; bðt; xÞ

�
; bð0; xÞ ¼ x:
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Given x A U , any value of t such that a is defined at ðt; xÞ is also such that
a is defined at ðt; 0; xÞ because ax and bx are integral curves of the same
vector field, with the same initial condition, hence are equal. Thus the
study of time-dependent vector fields is reduced to the study of time-
independent ones.

Dependence on parameters

Let V be open in some space F and let

g : J � V �U ! E

be a map which we view as a time-dependent vector field on U, also
depending on parameters in V. We define

G : J � V �U ! F� E

by

Gðt; z; yÞ ¼ ð0; g
�
t; z; yÞ

�

for t A J, z A V , and y A U . This is now a time-dependent vector field on
V �U . A local flow for G depends on three variables, say bðt; z; yÞ, with
initial condition bð0; z; yÞ ¼ ðz; yÞ. The map b has two components, and
it is immediately clear that we can write

bðt; z; yÞ ¼ ðz; a
�
t; z; yÞ

�

for some map a depending on three variables. Consequently a satisfies the
di¤erential equation

D1aðt; z; yÞ ¼ g
�
t; z; aðt; z; yÞ

�
; að0; z; yÞ ¼ y;

which gives the flow of our original vector field g depending on the
parameters z A V . This procedure reduces the study of di¤erential
equations depending on parameters to those which are independent of
parameters.

We shall now investigate the behavior of the flow with respect to its
second argument, i.e. with respect to the points of U. We shall give two
methods for this. The first depends on approximation estimates, and the
second on the implicit mapping theorem in function spaces.
Let J0 be an open subinterval of J containing 0, and let

j : J0 ! U

vector fields and differential equations66 [IV, §1]



be of class C1. We shall say that j is an �-approximate solution of f on J0
if ��j 0ðtÞ � f

�
t; jðtÞ

���Y �

for all t in J0.

Proposition 1.4. Let j1 and j2 be two �1- and �2-approximate solutions
of f on J0 respectively, and let � ¼ �1 þ �2. Assume that f is Lipschitz

with constant K on U uniformly in J0, or that D2 f exists and is bounded

by K on J �U . Let t0 be a point of J0. Then for any t in J0, we have

jj1ðtÞ � j2ðtÞjY jj1ðt0Þ � j2ðt0ÞjeKjt�t0j þ �

K
eKjt�t0j:

Proof. By assumption, we have

��j 0
1ðtÞ � f

�
t; j1ðtÞ

���Y �1;��j 0
2ðtÞ � f

�
t; j2ðtÞ

���Y �2:
From this we get

��j 0
1ðtÞ � j 0

2ðtÞ þ f
�
t; j2ðtÞ

�
� f

�
t; j1ðtÞ

���Y �:

Say tZ t0 to avoid putting bars around t� t0. Let

cðtÞ ¼ jj1ðtÞ � j2ðtÞj;

oðtÞ ¼
�� f �t; j1ðtÞ�� f

�
t; j2ðtÞ

���:
Then, after integrating from t0 to t, and using triangle inequalities we
obtain

jcðtÞ � cðt0ÞjY �ðt� t0Þ þ
ð t
t0

oðuÞ du

Y �ðt� t0Þ þ K

ð t
t0

cðuÞ du

YK

ð t
t0

½cðuÞ þ �=K � du;

and finally the recurrence relation

cðtÞYcðt0Þ þ K

ð t
t0

½cðuÞ þ �=K � du:

On any closed subinterval of J0, our map c is bounded. If we add �=K to
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both sides of this last relation, then we see that our proposition will follow
from the next lemma.

Lemma 1.5. Let g be a positive real valued function on an interval,
bounded by a number L. Let t0 be in the interval, say t0Y t, and assume
that there are numbers A, KZ 0 such that

gðtÞYAþ K

ð t
t0

gðuÞ du:

Then for all integers nZ 1 we have

gðtÞYA 1þ Kðt� t0Þ
1 !

þ � � � þ Kn�1ðt� t0Þn�1

ðn� 1Þ !

" #
þ LK nðt� t0Þn

n !
:

Proof. The statement is an assumption for n ¼ 1. We proceed by
induction. We integrate from t0 to t, multiply by K, and use the re-
currence relation. The statement with nþ 1 then drops out of the
statement with n.

Corollary 1.6. Let f : J �U ! E be continuous, and satisfy a Lipschitz
condition on U uniformly with respect to J. Let x0 be a point of U. Then
there exists an open subinterval J0 of J containing 0, and an open subset
of U containing x0 such that f has a unique flow

a: J0 �U0 ! U :

We can select J0 and U0 such that a is continuous and satisfies a

Lipschitz condition on J0 �U0.

Proof. Given x, y in U0 we let j1ðtÞ ¼ aðt; xÞ and j2ðtÞ ¼ aðt; yÞ, using
Proposition 1.6 to get J0 and U0. Then �1 ¼ �2 ¼ 0. For s, t in J0 we
obtain

jaðt; xÞ � aðs; yÞjY jaðt; xÞ � aðt; yÞj þ jaðt; yÞ � aðs; yÞj

Y jx� yjeK þ jt� sjL;

if we take J0 of small length, and L is a bound for f. Indeed, the term
containing jx� yj comes from Proposition 1.4, and the term containing
jt� sj comes from the definition of the integral curve by means of an
integral and the bound L for f. This proves our corollary.

Corollary 1.7. Let J be an open interval of R containing 0 and let U be

open in E. Let f : J �U ! E be a continuous map, which is Lipschitz
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on U uniformly for every compact subinterval of J. Let t0 A J and let j1,
j2 be two morphisms of class C

1 such that j1ðt0Þ ¼ j2ðt0Þ and satisfying
the relation

j 0ðtÞ ¼ f
�
t; jðtÞ

�

for all t in J. Then j1ðtÞ ¼ j2ðtÞ.

Proof. We can take � ¼ 0 in the proposition.

The above corollary gives us another proof for the uniqueness of
integral curves. Given f : J �U ! E as in this corollary, we can define
an integral curve a for f on a maximal open subinterval of J having a
given value aðt0Þ for a fixed t0 in J. Let J be the open interval ða; bÞ and
let ða0; b0Þ be the interval on which a is defined. We want to know when
b0 ¼ b (or a0 ¼ a), that is when the integral curve of f can be continued to
the entire interval over which f itself is defined.
There are essentially two reasons why it is possible that the integral

curve cannot be extended to the whole domain of definition J, or cannot
be extended to infinity in case f is independent of time. One possibility is
that the integral curve tends to get out of the open set U, as on the
following picture :

This means that as t approaches b0, say, the curve aðtÞ approaches a point
which does not lie in U. Such an example can actually be constructed
artificially. If we are in a situation when a curve can be extended to
infinity, just remove a point from the open set lying on the curve. Then the
integral curve on the resulting open set cannot be continued to infinity.
The second possibility is that the vector field is unbounded. The next
corollary shows that these possibilities are the only ones. In other words,
if an integral curve does not tend to get out of the open set, and if the
vector field is bounded, then the curve can be continued as far as the
original data will allow a priori.

Corollary 1.8. Let J be the open interval ða; bÞ and let U be open in E.
Let f : J �U ! E be a continuous map, which is Lipschitz on U,
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uniformly for every compact subset of J. Let a be an integral curve of f,
defined on a maximal open subinterval ða0; b0Þ of J. Assume :

(i) There exists � > 0 such that a
�
ðb0 � �; b0Þ

�
is contained in U.

(ii) There exists a number B > 0 such that j f
�
t; aðtÞ

�
jYB for all t in

ðb0 � �; b0Þ.

Then b0 ¼ b.

Proof. From the integral expression for a, namely

aðtÞ ¼ aðt0Þ þ
ð t
t0

f
�
u; aðuÞ

�
du;

we see that for t1, t2 in ðb0 � �; b0Þ we have

jaðt1Þ � aðt2ÞjYBjt1 � t2j:

From this it follows that the limit

lim
t!b0

aðtÞ

exists, and is equal to an element x0 of U (by hypothesis (i)). Assume that
b0 6¼ b. By the local existence theorem, there exists an integral curve b of
f defined on an open interval containing b0 such that bðb0Þ ¼ x0 and
b 0ðtÞ ¼ f

�
t; bðtÞ

�
. Then b 0 ¼ a 0 on an open interval to the left of b0, and

hence a, b di¤er by a constant on this interval. Since their limit as t! b0
are equal, this constant is 0. Thus we have extended the domain of
definition of a to a larger interval, as was to be shown.

The next proposition describes the solutions of linear di¤erential

equations depending on parameters.

Proposition 1.9. Let J be an open interval of R containing 0, and let V
be an open set in a vector space. Let E be a vector space. Let

g: J � V ! LðE; EÞ

be a continuous map. Then there exists a unique map

l: J � V ! LðE; EÞ

which, for each x A V , is a solution of the di¤erential equation

D1lðt; xÞ ¼ gðt; xÞlðt; xÞ; lð0; xÞ ¼ id:

This map l is continuous.
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Remark. In the present case of a linear di¤erential equation, it is not
necessary to shrink the domain of definition of its flow. Note that the
di¤erential equation is on the space of linear maps. The corresponding
linear equation on E itself will come out as a corollary.

Proof of Proposition 1.9. Let us first fix x A V . Consider the di¤erential
equation

D1lðt; xÞ ¼ gðt; xÞlðt; xÞ;

with initial condition lð0; xÞ ¼ id. This is a di¤erential equation on
LðE; EÞ, where f ðt; zÞ ¼ gxðtÞz for z A LðE; EÞ, and we write gxðtÞ instead
of gðt; xÞ. Let the notation be as in Corollary 1.8. Then hypothesis (i) is
automatically satisfied since the open set U is all of LðE; EÞ. On every
compact subinterval of J, gx is bounded, being continuous. Omitting the
index x for simplicity, we have

lðtÞ ¼ idþ
ð t
0

gðuÞlðuÞ du;

whence for tZ 0, say

jlðtÞjY 1þ B

ð t
0

jlðuÞj du:

Using Lemma 1.5, we see that hypothesis (ii) of Corollary 1.8 is also
satisfied. Hence the integral curve is defined on all of J.
We shall now prove the continuity of l. Let ðt0; x0Þ A J � V . Let I be

a compact interval contained in J, and containing t0 and 0. As a function
of t, lðt; x0Þ is continuous (even di¤erentiable). Let C > 0 be such that
jlðt; x0ÞjYC for all t A I . Let V1 be an open neighborhood of x0 in V

such that g is bounded by a constant K > 0 on I � V1.
For ðt; xÞ A I � V1 we have

jlðt; xÞ � lðt0; x0ÞjY jlðt; xÞ � lðt; x0Þj þ jlðt; x0Þ � lðt0; x0Þj:

The second term on the right is small when t is close to t0. We investigate
the first term on the right, and shall estimate it by viewing lðt; xÞ and
lðt; x0Þ as approximate solutions of the di¤erential equation satisfied by
lðt; xÞ. We find

jD1lðt; x0Þ � gðt; xÞlðt; x0Þj

¼ jD1lðt; x0Þ � gðt; xÞlðt; x0Þ þ gðt; x0Þlðt; x0Þ � gðt; x0Þlðt; x0Þj

Y jgðt; x0Þ � gðt; xÞj jlðt; x0ÞjY jgðt; x0Þ � gðt; xÞjC:
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By the usual proof of uniform continuity applied to the compact set
I � fx0g, given � > 0, there exists an open neighborhood V0 of x0 con-
tained in V1, such that for all ðt; xÞ A I � V0 we have

jgðt; xÞ � gðt; x0Þj < �=C:

This implies that lðt; x0Þ is an �-approximate solution of the di¤erential
equation satisfied by lðt; xÞ. We apply Proposition 1.4 to the two curves

j0ðtÞ ¼ lðt; x0Þ and jxðtÞ ¼ lðt; xÞ

for each x A V0. We use the fact that lð0; xÞ ¼ lð0; x0Þ ¼ id. We then
find

jlðt; xÞ � lðt; x0Þj < �K1

for some constant K1 > 0, thereby proving the continuity of l at ðt0; x0Þ.

Corollary 1.10. Let the notation be as in Proposition 1.9. For each

x A V and z A E the curve

bðt; x; zÞ ¼ lðt; xÞz

with initial condition bð0; x; zÞ ¼ z is a solution of the di¤erential

equation

D1bðt; x; zÞ ¼ gðt; xÞbðt; x; zÞ:

Furthermore, b is continuous in its three variables.

Proof. Obvious.

Theorem 1.11 (Local Smoothness Theorem). Let J be an open interval in

R containing 0 and U open in the vector space E. Let

f : J �U ! E

be a Cp-morphism with pZ 1, and let x0 A U . There exists a unique

local flow for f at x0. We can select an open subinterval J0 of J

containing 0 and an open subset U0 of U containing x0 such that the

unique local flow

a: J0 �U0 ! U

is of class Cp, and such that D2a satisfies the di¤erential equation

D1D2aðt; xÞ ¼ D2 f
�
t; aðt; xÞ

�
D2aðt; xÞ

on J0 �U0 with initial condition D2að0; xÞ ¼ id.
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Proof. Let

g: J �U ! LðE; EÞ

be given by gðt; xÞ ¼ D2 f
�
t; aðt; xÞ

�
. Select J1 and U0 such that a is

bounded and Lipschitz on J1 �U0 (by Corollary 1.6), and such that g is
continuous and bounded on J1 �U0. Let J0 be an open subinterval of J1
containing 0 such that its closure J0 is contained in J1.
Let lðt; xÞ be the solution of the di¤erential equation on LðE; EÞ given

by

D1lðt; xÞ ¼ gðt; xÞlðt; xÞ; lð0; xÞ ¼ id;

as in Proposition 1.9. We contend that D2a exists and is equal to l on
J0 �U0. This will prove that D2a is continuous, on J0 �U0.
Fix x A U0. Let

yðt; hÞ ¼ aðt; xþ hÞ � aðt; xÞ:

Then

D1yðt; hÞ ¼ D1aðt; xþ hÞ �D1aðt; xÞ

¼ f
�
t; aðt; xþ hÞ

�
� f

�
t; aðt; xÞ

�
:

By the mean value theorem, we obtain

jD1yðt; hÞ � gðt; xÞyðt; hÞj

¼
�� f �t; aðt; xþ hÞ

�
� f

�
t; aðt; xÞ

�
�D2 f

�
t; aðt; xÞ

�
yðt; hÞ

��
Y jhj sup jD2 f ðt; yÞ �D2 f

�
t; aðt; xÞ

�
j;

where y ranges over the segment between aðt; xÞ and aðt; xþ hÞ. By the
compactness of J0 it follows that our last expression is bounded by jhjcðhÞ
where cðhÞ tends to 0 with h, uniformly for t in J0. Hence we obtain

jy 0ðt; hÞ � gðt; xÞyðt; hÞjY jhjcðhÞ;

for all t in J0. This shows that yðt; hÞ is an jhjcðhÞ approximate solution
for the di¤erential equation satisfied by lðt; xÞh, namely

D1lðt; xÞh� gðt; xÞlðt; xÞh ¼ 0;

with the initial condition lð0; xÞh ¼ h. We note that yðt; hÞ has the same
initial condition, yð0; hÞ ¼ h. Taking t0 ¼ 0 in Proposition 1.4, we obtain
the estimate

jyðt; hÞ � lðt; xÞhjYC1jhjcðhÞ
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for all t in J0. This proves that D2a is equal to l on J0 �U0, and is
therefore continuous on J0 �U0.
We have now proved that D1a and D2a exist and are continuous on

J0 �U0, and hence that a is of class C1 on J0 �U0.
Furthermore, D2a satisfies the di¤erential equation given in the

statement of our theorem on J0 �U0. Thus our theorem is proved when
p ¼ 1.

A flow which satisfies the properties stated in the theorem will be called
locally of class Cp.

Consider now again the linear equation of Proposition 1.9. We re-
formulate it to eliminate formally the parameters, namely we define a
vector field

G : J � V � LðE; EÞ ! F � LðE; EÞ

to be the map such that

Gðt; x; oÞ ¼
�
0; gðt; xÞo

�

for o A LðE; EÞ. The flow for this vector field is then given by the map L

such that

Lðt; x; oÞ ¼
�
x; lðt; xÞo

�
:

If g is of class C 1 we can now conclude that the flow L is locally of class
C 1, and hence putting o ¼ id, that l is locally of class C 1.
We apply this to the case when gðt; xÞ ¼ D2 f

�
t; aðt; xÞ

�
, and to the

solution D2a of the di¤erential equation

D1ðD2aÞðt; xÞ ¼ gðt; xÞD2aðt; xÞ

locally at each point ð0; xÞ, x A U . Let pZ 2 be an integer and assume
out theorem proved up to p� 1, so that we can assume a locally of class
Cp�1, and f of class Cp. Then g is locally of class Cp�1, whence D2a is
locally Cp�1. From the expression

D1aðt; xÞ ¼ f
�
t; aðt; xÞ

�

we conclude that D1a is Cp�1, whence a is locally Cp.

If f is Cy, and if we knew that a is of class Cp for every integer p on
its domain of definition, then we could conclude that a is Cy ; in other
words, there is no shrinkage in the inductive application of the local
theorem.
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We now give the arguments needed to globalize the smoothness. We
may limit ourselves to the time-independent case. We have seen that the
time-dependent case reduces to the other.
Let U be open in a vector space E, and let f : U ! E be a Cp vector

field. We let JðxÞ be the domain of the integral curve with initial
condition equal to w.
Let Dð f Þ be the set of all points ðt; xÞ in R�U such that t lies in

JðxÞ. Then we have a map

a: Dð f Þ ! U

defined on all of Dð f Þ, letting aðt; xÞ ¼ axðtÞ be the integral curve on JðxÞ
having x as initial condition. We call this the flow determined by f, and
we call Dð f Þ its domain of definition.

Lemma 1.12. Let f : U ! E be a Cp vector field on the open set U of

E, and let a be its flow. Abbreviate aðt; xÞ by tx, if ðt; xÞ is in the

domain of definition of the flow. Let x A U . If t0 lies in JðxÞ, then

Jðt0xÞ ¼ JðxÞ � t0

�
translation of JðxÞ by�t0

�
, and we have for all t in JðxÞ � t0 :

tðt0xÞ ¼ ðtþ t0Þx:

Proof. The two curves defined by

t 7! a
�
t; aðt0; xÞ

�
and t 7! aðtþ t0; xÞ

are integral curves of the same vector field, with the same initial condition
t0x at t ¼ 0. Hence they have the same domain of definition Jðt0xÞ.
Hence t1 lies in Jðt0xÞ if and only if t1 þ t0 lies in JðxÞ. This proves the
first assertion. The second assertion comes from the uniqueness of the
integral curve having given initial condition, whence the theorem follows.

Theorem 1.13 (Global Smoothness of the Flow). If f is of class Cp (with
pYy), then its flow is of class Cp on its domain of definition.

Proof. First let p be an integer Z 1. We know that the flow is locally
of class Cp at each point ð0; xÞ, by the local theorem. Let x0 A U and let
Jðx0Þ be the maximal interval of definition of the integral curve having x0
as initial condition. Let Dð f Þ be the domain of definition of the flow, and
let a be the flow. Let Q be the set of numbers b > 0 such that for each t
with 0Y t < b there exists an open interval J containing t and an open set
V containing x0 such that J � V is contained in Dð f Þ and such that a is of
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class Cp on J � V . Then Q is not empty by the local theorem. If Q is not
bounded from above, then we are done looking toward the right end point
of Jðx0Þ. If Q is bounded from above, we let b be its least upper bound.
We must prove that b is the right end point of Jðx0Þ. Suppose that this
is not the case. Then aðb; x0Þ is defined. Let x1 ¼ aðb; x0Þ. By the local
theorem, we have a unique local flow at x1, which we denote by b :

b : Ja � baðx1Þ ! U ; bð0; xÞ ¼ x;

defined for some open interval Ja ¼ ð�a; aÞ and open ball Baðx1Þ of radius
a centered at x1. Let d be so small that whenever b� d < t < b we have

aðt; x0Þ A Ba=4ðx1Þ:

We can find such d because

lim
t!b

aðt; x0Þ ¼ x1

by continuity. Select a point t1 such that b� d < t1 < b. By the
hypothesis on b, we can select an open interval J1 containing t1 and an
open set U1 containing x0 so that

a: J1 �U1 ! Ba=2ðx1Þ

maps J1 �U1 into Ba=2ðx1Þ. We can do this because a is continuous at
ðt1; x0Þ, being in fact Cp at this point. If jt� t1j < a and x A U1, we define

jðt; xÞ ¼ b
�
t� t1; aðt1; xÞ

�
:

Then
jðt1; xÞ ¼ b

�
0; aðt1; xÞ

�
¼ aðt1; xÞ

and
D1jðt; xÞ ¼ D1b

�
t� t1; aðt1; xÞ

�
¼ f

�
bðt� t1; aðt1; xÞÞ

�
¼ f

�
jðt; xÞ

�
:

Hence both jx and ax are integral curves for f with the same value at t1.
They coincide on any interval on which they are defined by the uniqueness
theorem. If we take d very small compared to a, say d < a=4, we see that
j is an extension of a to an open set containing ðt1; a0Þ, and also
containing ðb; x0Þ. Furthermore, j is of class Cp, thus contradicting the
fact that b is strictly smaller than the end point of Jðx0Þ. Similarly, one
proves the analogous statement on the other side, and we therefore see
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that Dð f Þ is open in R�U and that a is of class Cp on Dð f Þ, as was to
be shown.

The idea of the above proof is very simple geometrically. We go as far
to the right as possible in such a way that the given flow a is of class Cp

locally at ðt; x0Þ. At the point aðb; x0Þ we then use the flow b to extend
di¤erentiably the flow a in case b is not the right-hand point of Jðx0Þ. The
flow b at aðb; x0Þ has a fixed local domain of definition, and we simply
take t close enough to b so that b gives an extension of a, as described in
the above proof.
Of course, if f is of class Cy, then we have shown that a is of class Cp

for each positive integer p, and therefore the flow is also of class Cy.
In the next section, we shall see how these arguments globalize even

more to manifolds.

IV, §2. VECTOR FIELDS, CURVES, AND FLOWS

Let X be a manifold of class Cp with pZ 2. Let p: TðX Þ ! X be its
tangent bundle. Then TðXÞ is of class Cp�1, p� 1Z 1.
By a (time-independent) vector field on X we mean a cross section of

the tangent bundle, i.e. a morphism (of class Cp�1)

x: X ! TðX Þ

such that xðxÞ lies in the tangent space TxðXÞ for each x A X , or in other
words, such that px ¼ id.
If TðX Þ is trivial, and say X is an E-manifold, so that we have a VB-

isomorphism of TðXÞ with X � E, then the morphism x is completely
determined by its projection on the second factor, and we are essentially in
the situation of the preceding paragraph, except for the fact that our
vector field is independent of time. In such a product representation, the
projection of x on the second factor will be called the local representation
of x. It is a Cp�1-morphism

f : X ! E

and xðxÞ ¼
�
x; f ðxÞ

�
. We shall also say that x is represented by f locally if

we work over an open subset U of X over which the tangent bundle
admits a trivialisation. We then frequently use x itself to denote this local
representation.
Let J be an open interval of R. The tangent bundle of J is then J � R

and we have a canonical section i such that iðtÞ ¼ 1 for all t A J. We
sometimes write it instead of iðtÞ.
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By a curve in X we mean a morphism (always of class Z 1 unless
otherwise specified)

a: J ! X

from an open interval in R into X. If g: X ! Y is a morphism, then g � a
is a curve in Y. From a given curve a, we get an induced map on the
tangent bundles :

and a� � i will be denoted by a 0 or by da=dt if we take its value at a point
t in J. Thus a 0 is a curve in TðXÞ, of class Cp�1 if a is of class Cp.
Unless otherwise specified, it is always understood in the sequel that we
start with enough di¤erentiability to begin with so that we never end up
with maps of class < 1. Thus to be able to take derivatives freely we have
to take X and a of class Cp with pZ 2.
If g: X ! Y is a morphism, then

ðg � aÞ0ðtÞ ¼ g�a
0ðtÞ:

This follows at once from the functoriality of the tangent bundle and the
definitions.
Suppose that J contains 0, and let us consider curves defined on J and

such that að0Þ is equal to a fixed point x0. We could say that two such
curves a1, a2 are tangent at 0 if a 0

1ð0Þ ¼ a 0
2ð0Þ. The reader will verify

immediately that there is a natural bijection between tangency classes of
curves with að0Þ ¼ x0 and the tangent space Tx0ðXÞ of X at x0. The
tangent space could therefore have been defined alternatively by taking
equivalence classes of curves through the point.
Let x be a vector field on X and x0 a point of X. An integral curve for

the vector field x with initial condition x0, or starting at x0, is a curve (of
class Cp�1)

a: J ! X

mapping an open interval J of R containing 0 into X, such that að0Þ ¼ x0
and such that

a 0ðtÞ ¼ x
�
aðtÞ

�

for all t A J. Using a local representation of the vector field, we know
from the preceding section that integral curves exist locally. The next
theorem gives us their global existence and uniqueness.
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Theorem 2.1. Let a1 : J1 ! X and a2 : J2 ! X be two integral curves of

the vector field x on X, with the same initial condition x0. Then a1 and

a2 are equal on J1X J2.

Proof. Let J � be the set of points t such that a1ðtÞ ¼ a2ðtÞ. Then J �

certainly contains a neighborhood of 0 by the local uniqueness theorem.
Furthermore, since X is Hausdor¤, we see that J � is closed. We must
show that it is open. Let t� be in J � and define b1, b2 near 0 by

b1ðtÞ ¼ a1ðt� þ tÞ;

b2ðtÞ ¼ a2ðt� þ tÞ:

Then b1 and b2 are integral curves of x with initial condition a1ðt�Þ and
a2ðt�Þ respectively, so by the local uniqueness theorem, b1 and b2 agree in
a neighborhood of 0 and thus a1, a2 agree in a neighborhood of t�,
thereby proving our theorem.

It follows from Theorem 2.1 that the union of the domains of all
integral curves of x with a given initial condition x0 is an open interval
which we denote by Jðx0Þ. Its end points are denoted by tþðx0Þ and
t�ðx0Þ respectively. (We do not exclude þy and �y.)
Let DðxÞ be the subset of R� X consisting of all points ðt; xÞ such that

t�ðxÞ < t < tþðxÞ:

A (global) flow for x is a mapping

a: DðxÞ ! X ;

such that for each x A X , the map ax : JðxÞ ! X given by

axðtÞ ¼ aðt; xÞ

defined on the open interval JðxÞ is a morphism and is an integral curve
for x with initial condition x. When we select a chart at a point x0 of X,
then one sees at once that this definition of flow coincides with the
definition we gave locally in the previous section, for the local repre-
sentation of our vector field.
Given a point x A X and a number t, we say that tx is defined if ðt; xÞ is

in the domain of a, and we denote aðt; xÞ by tx in that case.

Theorem 2.2. Let x be a vector field on X, and a its flows. Let x be a
point of X. If t0 lies in JðxÞ, then

Jðt0xÞ ¼ JðxÞ � t0
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(translation of JðxÞ by �t0), and we have for all t in JðxÞ � t0 :

tðt0xÞ ¼ ðtþ t0Þx:

Proof. Our first assertion follows immediately from the maximality
assumption concerning the domains of the integral curves. The second is
equivalent to saying that the two curves given by the left-hand side and
right-hand side of the last equality are equal. They are both integral
curves for the vector field, with initial condition t0x and must therefore be
equal.
In particular, if t1, t2 are two numbers such that t1x is defined and

t2ðt1xÞ is also defined, then so is ðt1 þ t2Þx and they are equal.

Theorem 2.3. Let x be a vector field on X, and x a point of X. Assume
that tþðxÞ < y. Given a compact set AHX , there exists � > 0 such that
for all t > tþðxÞ � �, the point tx does not lie in A, and similarly for t�.

Proof. Suppose such � does not exist. Then we can find a sequence tn
of real numbers approaching tþðxÞ from below, such that tnx lies in A.
Since A is compact, taking a subsequence if necessary, we may assume
that tnx converges to a point in A. By the local existence theorem, there
exists a neighborhood U of this point y and a number d > 0 such that
tþðzÞ > d for all z A U . Taking n large, we have

tþðxÞ < dþ tn

and tnx is in U. Then by Theorem 2.2,

tþðxÞ ¼ tþðtnxÞ þ tn > dþ tn > tþðxÞ

contradiction.

Corollary 2.4. If X is compact, and x is a vector field on X, then

DðxÞ ¼ R� X :

It is also useful to give one other criterion when DðxÞ ¼ R� X , even
when X is not compact. Such a criterion must involve some structure
stronger than the di¤erentiable structure (essentially a metric of some sort),
because we can always dig holes in a compact manifold by taking away a
point.

Proposition 2.5. Let E be a normed vector space, and X an E-manifold.
Let x be a vector field on X. Assume that there exist numbers a > 0 and
K > 0 such that every point x of X admits a chart ðU ; jÞ at x such that
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the local representation f of the vector field on this chart is bounded by K,
and so is its derivative f 0. Assume also that jU contains a ball of radius

a around jx. Then DðxÞ ¼ R� X .

Proof. This follows at once from the global continuation theorem, and
the uniformity of Proposition 1.1.

We shall prove finally that DðxÞ is open and that a is a morphism.

Theorem 2.6. Let x be a vector field of class C p�1 on the Cp-manifold
X ð2Y pYyÞ. Then DðxÞ is open in R� X , and the flow a for x is a

C p�1-morphism.

Proof. Let first p be an integer Z 2. Let x0 A X . Let J � be the set of
points in Jðx0Þ for which there exists a number b > 0 and an open
neighborhood U of x0 such that ðt� b; tþ bÞ U is contained in DðxÞ, and
such that the restriction of the flow a to this product is a Cp�1-morphism.
Then J � is open in Jðx0Þ, and certainly contains 0 by the local theorem.
We must therefore show that J � is closed in Jðx0Þ.
Let s be in its closure. By the local theorem, we can select a

neighborhood V of sx0 ¼ aðs; x0Þ so that we have a unique local flow

b : Ja � V ! X

for some number a > 0, with initial condition bð0; xÞ ¼ x for all x A V ,
and such that this local flow b is Cp�1.
The integral curve with initial condition x0 is certainly continuous on

Jðx0Þ. Thus tx0 approaches sx0 as t approaches s. Let V1 be a given
small neighborhood of sx0 contained in V. By the definition of J

�, we can
find an element t1 in J

� very close to s, and a small number b (compared
to a) and a small neighborhood U of x0 such that a maps the product

ðt1 � b; t1 þ bÞ �U

into V1, and is C
p�1 on this product. For t A Ja þ t1 and x A U , we define

jðt; xÞ ¼ b
�
t� t1; aðt1; xÞ

�
:

Then jðt1; xÞ ¼ b
�
0; aðt1; xÞ

�
¼ aðt1; xÞ, and

D1jðt; xÞD1bðt� t1; aðt1; xÞ
�

¼ x
�
bðt� t1; aðt1; xÞ

�
¼ x
�
jðt; xÞ

�
:
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Hence both jx, ax are integral curves for x, with the same value at t1.
They coincide on any interval on which they are defined, so that jx is
a continuation of ax to a bigger interval containing s. Since a is Cp�1 on
the product ðt1 � b; t1 þ bÞ �U , we conclude that j is also Cp�1 on
ðJa þ t1Þ �U . From this we see that DðxÞ is open in R� X , and that a is
of class Cp�1 on its full domain DðxÞ. If p ¼ y, then we can now
conclude that a is of class Cr for each positive integer r on DðxÞ, and
hence is Cy, as desired.

Corollary 2.7. For each t A R, the set of x A X such that ðt; xÞ is

contained in the domain DðxÞ is open in X.

Corollary 2.8. The functions tþðxÞ and t�ðxÞ are upper and lower

semicontinuous respectively.

Theorem 2.9. Let x be a vector field on X and a its flow. Let DtðxÞ be
the set of points x of X such that ðt; xÞ lies in DðxÞ. Then DtðxÞ is open
for each t A R, and at is an isomorphism of DtðxÞ onto an open subset of
X. In fact, atðDtÞ ¼ D�t and a�1t ¼ a�t.

Proof. Immediate from the preceding theorem.

Corollary 2.10. If x0 is a point of X and t is in Jðx0Þ, then there exists
an open neighborhood U of x0 such that t lies in JðxÞ for all x A U , and
the map

x 7! tx

is an isomorphism of U onto an open neighborhood of tx0.

Critical points

Let x be a vector field. A critical point of x is a point x0 such that
xðx0Þ ¼ 0. Critical points play a significant role in the study of vector
fields, notably in the Morse theory. We don’t go into this here, but just
make a few remarks to show at the basic level how they a¤ect the
behavior of integral curves.

Proposition 2.11. If a is an integral curve of a C1 vector field, x, and a
passes through a critical point, then a is constant, that is aðtÞ ¼ x0 for

all t.

Proof. The constant curve through x0 is an integral curve for the vector
field, and the uniqueness theorem shows that it is the only one.
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Some smoothness of the vector field in addition to continuity must be
assumed for the uniqueness. For instance, the following picture illustrates
a situation where the integral curves are not unique. They consist in
translations of the curve y ¼ x3 in the plane. The vector field is con-
tinuous but not locally Lipschitz.

Proposition 2.12. Let x be a vector field and a an integral curve for x.
Assume that all tZ 0 are in the domain of a, and that

lim
t!0

aðtÞ ¼ x1

exists. Then x1 is a critical point for x, that is xðx1Þ ¼ 0.

Proof. Selecting t large, we may assume that we are dealing with the
local representation f of the vector field near x1. Then for t

0 > t large, we
have

aðt 0Þ � aðtÞ ¼
ð t 0
t

f
�
aðuÞ

�
du:

Write f
�
aðuÞ

�
¼ f ðx1Þ þ gðuÞ, where lim gðuÞ ¼ 0. Then

j f ðx1Þj jt 0 � tjY jaðt 0Þ � aðtÞj þ jt 0 � tj supjgðuÞj;

where the sup is taken for u large, and hence for small values of gðuÞ.
Dividing by jt 0 � tj shows that f ðx1Þ is arbitrarily small, hence equal to 0,
as was to be shown.

Proposition 2.13. Suppose on the other hand that x0 is not a critical

point of the vector field x. Then there exists a chart at x0 such that the
local representation of the vector field on this chart is constant.
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Proof. In an arbitrary chart the vector field has a representation as a
morphism

x: U ! E

near x0. Let a be its flow. We wish to ‘‘straighten out’’ the integral curves
of the vector field according to the next figure.

In other words, let v ¼ xðx0Þ. We want to find a local isomorphism j at
x0 such that

j 0ðxÞv ¼ x
�
jðxÞ

�
:

We inspire ourselves from the picture. Without loss of generality, we may
assume that x0 ¼ 0. Let l be a functional such that lðvÞ 6¼ 0. We de-
compose E as a direct sum

E ¼ FlRv;

where F is the kernel of l. Let P be the projection on F. We can write
any x near 0 in the form

x ¼ Pxþ tðxÞv;

where

tðxÞ ¼ lðxÞ
lðvÞ :

We then bend the picture on the left to give the picture on the right using
the flow a of x, namely we define

jðxÞ ¼ a
�
tðxÞ; Px

�
:

This means that starting at Px, instead of going linearly in the direction of
v for a time tðxÞ, we follow the flow (integral curve) for this amount of
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time. We find that

j 0ðxÞ ¼ D1a
�
tðxÞ; Px

� l

lðvÞ þD2a
�
tðxÞ; Px

�
P:

Hence j 0ð0Þ ¼ id, so by the inverse mapping theorem, j is a local iso-
morphism at 0. Furthermore, since Pv ¼ 0 by definition, we have

j 0ðxÞv ¼ D1a
�
tðxÞ; Px

�
¼ x
�
jðxÞ

�
;

thus proving Proposition 2.13.

IV, §3. SPRAYS

Second-order vector fields and di¤erential equations

Let X be a manifold of class Cp with pZ 3. Then its tangent bundle
TðXÞ is of class Cp�1, and the tangent bundle of the tangent bundle
T
�
TðxÞ

�
is of class Cp�2, with p� 2Z 1.

Let a: J ! X be a curve of class Cq ðqY pÞ. A lifting of a into TðXÞ
is a curve b : J ! TðXÞ such that pb ¼ a. We shall always deal with
qZ 2 so that a lift will be assumed of class q� 1Z 1. Such lifts always
exist, for instance the curve a 0 discussed in the previous section, called the
canonical lifting of a.
A second-order vector field over X is a vector field F on the tangent

bundle TðXÞ (of class Cp�1) such that, if p: TX ! X denotes the canoni-
cal projection of TðX Þ on X, then

p� � F ¼ id:; that is p�F ðvÞ ¼ v for all v in TðXÞ:

Observe that the succession of symbols makes sense, because

p� : TTðXÞ ! TðXÞ

maps the double tangent bundle into TðXÞ itself.

A vector field F on TX is a second-order vector field on X if and only if it

satisfies the following condition : Each integral curve b of F is equal to the
canonical lifting of pb, in other words

ðpbÞ0 ¼ b:

Here, pb is the canonical projection of b on X, and if we put the
argument t, then our formula reads

ðpbÞ0ðtÞ ¼ bðtÞ
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for all t in the domain of b. The proof is immediate from the definitions,
because

ðpbÞ0 ¼ p�b
0 ¼ p� � F � b

We then use the fact that given a vector v A TX , there is an integral curve
b ¼ bv with bvð0Þ ¼ v (initial condition v).
Let a: J ! X be a curve in X, defined on an interval J. We define a to

be a geodesic with respect to F if the curve

a 0 : J ! TX

is an integral curve of F. Since pa 0 ¼ a, that is a 0 lies above a in TX, we
can express the geodesic condition equivalently by stating that a satisfies
the relation

a 00 ¼ Fða 0Þ:

This relation for curves a in X is called the second-order di¤erential

equation for the curve a, determined by F. Observe that by definition, if b
is an integral curve of F in TX, then pb is a geodesic for the second order
vector field F.
Next we shall give the representation of the second order vector field

and of the integral curves in a chart.

Representation in charts

Let U be open in the vector space E, so that TðUÞ ¼ U � E, and
T
�
TðUÞ

�
¼ ðU � EÞ � ðE� EÞ. Then p: U � E! U is simply the pro-

jection, and we have a commutative diagram:

The map p� on each fiber E� E is constant, and is simply the projection
of E� E on the first factor E, that is

p�ðx; v; u; wÞ ¼ ðx; uÞ:

Any vector field on U � E has a local representation

f : U � E! E� E

which has therefore two components, f ¼ ð f1; f2Þ, each fi mapping U � E
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into E. The next statement describes second order vector fields locally in
the chart.

Let U be open in the vector space E, and let TðUÞ ¼ U � E be the

tangent bundle. A Cp�2-morphism

f : U � E! E� E

is the local representation of a second order vector field on U if and

only if

f ðx; vÞ ¼
�
v; f2ðx; vÞ

�
:

The above statement is merely making explicit the relation p�F ¼ id, in
the chart. If we write f ¼ ð f1; f2Þ, then we see that

f 1ðx; vÞ ¼ v:

We express the above relations in terms of integral curves as follows.
Let b ¼ bðtÞ be an integral curve for the vector field F on TX. In the
chart, the curve has two components

bðtÞ ¼
�
xðtÞ; vðtÞ

�
A U � E:

By definition, if f is the local representation of F, we must have

db

dt
¼ dx

dt
;
dv

dt

� �
¼ f ðx; vÞ ¼

�
v; f2ðx; vÞ

�
:

Consequently, our di¤erential equation can be rewritten in the following
manner:

dx

dt
¼ vðtÞ;

d 2x

dt2
¼ dv

dt
¼ f2 x;

dx

dt

� �
;ð1Þ

which is of course familiar.

Sprays

We shall be interested in special kinds of second-order di¤erential
equations. Before we discuss these, we make a few technical remarks.
Let s be a real number, and p : E ! X be a vector bundle. If v is in E,

so in Ex for some x in X, then sv is again in Ex since Ex is a vector

sprays[IV, §3] 87



space. We write sE for the mapping of E into itself given by this scalar
multiplication. This maping is in fact a VB-morphism, and even a VB-
isomorphism if s 6¼ 0. Then

TðsEÞ ¼ ðsEÞ� : TðEÞ ! TðEÞ

is the usual induced map on the tangent bundle of E.
Now let E ¼ TX be the tangent bundle itself. Then our map sTX

satisfies the property

ðsTX Þ� � sTTX ¼ sTTX � ðsTX Þ�;

which follows from the linearity of sTX on each fiber, and can also be seen
directly from the representation on charts given below.
We define a spray to be a second-order vector field which satisfies the

homogeneous quadratic condition :

SPR 1. For all s A R and v A TðX Þ, we have

F ðsvÞ ¼ ðsTX Þ�sF ðvÞ:

It is immediate from the conditions defining sprays (second-order vector
field satisfying SPR 1) that sprays form a convex set ! Hence if we can
exhibit sprays over open subsets of vector spaces, then we can glue them
together by means of partitions of unity, and we obtain at once the
following global existence theorem.

Theorem 3.1. Let X be a manifold of class Cp ðpZ 3Þ. If X admits

partitions of unity, then there exists a spray over X.

Representations in a chart

Let U be open in E, so that TU ¼ U � E. Then

TTU ¼ ðU � EÞ � ðE� EÞ;

and the representations of sTU and ðsTU Þ� in the chart are given by the
maps

sTU : ðx; vÞ 7! ðx; svÞ and ðsTU Þ� : ðx; v; u; wÞ 7! ðx; sv; u; swÞ:

Thus

sTTU � ðsTU Þ� : ðx; v; u; wÞ 7! ðx; sv; su; s2wÞ:
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We may now give the local condition for a second-order vector field F
to be a spray.

Proposition 3.2. In a chart U � E for TX, let f : U � E! E� E
represent F, with f ¼ ð f1; f2Þ. Then f represents a spray if and only if,
for all s A R we have

f2ðx; svÞ ¼ s2 f2ðx; vÞ:

Proof. The proof follows at once from the definitions and the formula
giving the chart representation of sðsTX Þ�.

Thus we see that the condition SPR 1 (in addition to being a second-
order vector field), simply means that f2 is homogeneous of degree 2 in the
variable v. By the remark in Chapter I, §3, it follows that f2 is a quadratic
map in its second variable, and specifically, this quadratic map is given by

f2ðx; vÞ ¼ 1
2D

2
2 f2ðx; 0Þðv; vÞ:

Thus the spray is induced by a symmetric bilinear map given at each point
x in a chart by

BðxÞ ¼ 1
2D

2
2 f2ðx; 0Þ:ð2Þ

Conversely, suppose given a morphism

U ! L2symðE; EÞ given by x 7! BðxÞ

from U into the space of symmetric bilinear maps E� E! E. Thus for
each v, w A E the value of BðxÞ at ðv; wÞ is denoted by Bðx ; v; wÞ or
BðxÞðv; wÞ. Define f2ðx; vÞ ¼ Bðx ; v; vÞ: Then f2 is quadratic in its
second variable, and the map f defined by

f ðx; vÞ ¼
�
v; Bðx ; v; vÞ

�
¼
�
v; f2ðx; vÞ

�

represents a spray over U. We call B the symmetric bilinear map asso-
ciated with the spray. From the local representations in (1) and (2), we
conclude that a curve a is a geodesic if and only if a satisfies the di¤erential

equation

a 00ðtÞ ¼ BaðtÞ
�
a0ðtÞ; a0ðtÞ

�
for all t:ð3Þ

We recall the trivial fact from linear algebra that the bilinear map B is
determined purely algebraically from the quadratic map, by the formula

Bðv; wÞ ¼ 1
2 ½ f2ðvþ wÞ � f2ðvÞ � f2ðwÞ�:

sprays[IV, §3] 89



We have suppressed the x from the notation to focus on the relevant
second variable v. Thus the quadratic map and the symmetric bilinear
map determine each other uniquely.
The above discussion has been local, over an open set U in a Banach

space. In Proposition 3.4 and the subsequent discussion of connections, we
show how to globalize the bilinear map B intrinsically on the manifold.

Examples. As a trivial special case, we can always take f2ðx; vÞ ¼ ðv; 0Þ
to represent the second component of a spray in the chart.
In the chapter on Riemannian metrics, we shall see how to construct a

spray in a natural fashion, depending on the metric.
In [La 99] the chapter on covariant derivatives, we show how a spray

gives rise to such derivatives.

Next, let us give the transformation rule for a spray under a change of
charts, i.e. an isomorphism h: U ! V . On TU, the map Th is represented
by a morphism (its vector component)

H : U � E! E� E given by Hðx; vÞ ¼
�
hðxÞ; h 0ðxÞv

�
:

We then have one further lift to the double tangent bundle TTU, and we
may represent the diagram of maps symbolically as follows :

Then the derivative H 0ðx; vÞ is given by the Jacobian matrix operating on
column vectors tðu; wÞ with u, w A E, namely

H 0ðx; vÞ ¼
h 0ðxÞ 0

h 00ðxÞv h 0ðxÞ

� �
so H 0ðx; vÞ u

w

� �
¼

h 0ðxÞ 0

h 00ðxÞv h 0ðxÞ

� �
u

w

� �
:

Thus the top map on elements in the diagram is given by

ðH; H 0Þ : ðx; v; u; wÞ 7!
�
hðxÞ; h 0ðxÞv; h 0ðxÞu; h 00ðxÞðu; vÞ þ h 0ðxÞw

�
:

For the application, we put u ¼ v because f1ðx; vÞ ¼ v, and w ¼ fU ; 2ðx; vÞ,
where fU and fV denote the representations of the spray over U and V
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respectively. It follows that fU and fV are related by the formula

fV
�
hðxÞ; h 0ðxÞv

�
¼
�
h 0ðxÞv; h 00ðxÞðv; vÞ þ h 0ðxÞ fU ; 2ðx; vÞ

�
:

Therefore we obtain :

Proposition 3.3. Change of variable formula for the quadratic part of a

spray :

fV ; 2

�
hðxÞ; h 0ðxÞvÞ ¼ h 00ðxÞðv; vÞ þ h 0ðxÞ fU ; 2ðx; vÞ;

BV
�
hðxÞ ; h 0ðxÞv; h 0ðxÞw

�
¼ h 00ðxÞðv; wÞ þ h 0ðxÞBUðx ; v; wÞ:

Proposition 3.3 admits a converse :

Proposition 3.4. Suppose we are given a covering of the manifold X by

open sets corresponding to charts U, V ; . . . ; and for each U we are given

a morphism

BU : U ! L2symðE; EÞ

which transforms according to the formula of Proposition 3.3 under an
isomorphism h: U ! V . Then there exists a unique spray whose asso-

ciated bilinear map in the chart U is given by BU .

Proof. We leave the verification to the reader.

Remarks. Note that BUðx ; v; wÞ does not transform like a tensor of
type L2symðE; EÞ, i.e. a section of the bundle L2symðTX ; TX Þ. There are
several ways of defining the bilinear map B intrinsically. One of them is
via second order bundles, or bundles of second order jets, and to extend
the terminology we have established previously to such bundles, and even
higher order jet bundles involving higher derivatives, as in [Po 62].
Another way is in [La 99], via connections. For our immediate purposes,
it su‰ces to have the above discussion on second-order di¤erential
equations together with Proposition 3.3 and 3.4. Sprays were introduced
by Ambrose, Palais, and Singer [APS 60], and I used them (as recom-
mended by Palais) in the earliest version [La 62]. In [Lo 69] the bilinear
map BU is expressed in terms of second order jets. The basics
of di¤erential topology and geometry were being established in the early
sixties. Cf. the bibliographical notes from [Lo 69] at the end of his first
chapter.

Connections

We now show how to define the bilinear map B intrinsically and directly.
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Matters will be clearer if we start with an arbitrary vector bundle

p: E ! X

over a manifold X. As it happens we also need the notion of a fiber
bundle when the fibers are not necessarily vector spaces, so don’t have a
linear structure. Let f : Y ! X be a morphism. We say that f (or Y over
X ) is a fiber bundle if f is surjective, and if each point x of X has an open
neighborhood U, and there is some manifold Z and an isomorphism
h: f �1ðUÞ ! U � Z such that the following diagram is commutative :

Thus locally, f : Y ! X looks like the projection from a product space.
The reason why we need a fiber bundle is that the tangent bundle

pE : TE ! E

is a vector bundle over E, but the composite f ¼ p � pE : TE ! X is only
a fiber bundle over X, a fact which is obvious by picking trivializations in
charts. Indeed, if U is a chart in X, and if U � F! U is a vector bundle
chart for E, with fiber F, and Y ¼ TE, then we have a natural iso-
morphism of fiber bundles over U :

Note that U being a chart in X implies that U � E! U is a vector bundle
chart for the tangent bundle TU over U.
The tangent bundle TE has two natural maps making it a vector

bundle :

pE : TE ! E is a vector bundle over E ;

TðpÞ: TE ! TX is a vector bundle over TX :

Therefore we have a natural morphism of fiber bundle (not vector bundle)
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over X :

�
pE ; TðpÞ

�
: TE ! ElTX given by W 7!

�
pEW ; TðpÞW

�

for W A TE. If W A TeE with e A Ex, then pEW A Ex and TðpÞW A TxX .
After these preliminaries, we define a connection to be a morphism of

fiber bundles over X, from the direct sum ElTX into TE :

H : ElTX ! TE

such that �
pE ; TðpÞ

�
�H ¼ idElTX ;

and such that H is bilinear, in other words Hx : ExlTxX ! TE is
bilinear.
Consider a chart U as in the above diagram, so

TU ¼ U � E and TðU � FÞ ¼ ðU � FÞ � ðE� FÞ:

Then our map H has a coordinate representation

Hðx; e; vÞ ¼
�
x; e; H1ðx; e; vÞ; H2ðx; e; vÞ

�
for e A F and v A E:

The fact that
�
pE ; TðpÞ

�
�H ¼ idElTX implies at once that H1ðx; e; vÞ ¼ v.

The bilinearity condition implies that for fixed x, the map

ðe; vÞ 7! H2ðx; e; vÞ

is bilinear as a map F� E! E. We shall therefore denote this map by
BðxÞ, and we write in the chart

Hðx; e; vÞ ¼
�
x; e; v; BðxÞðe; vÞ

�
or also

�
x; e; v; Bðx; e; vÞ

�
:

Now take the special case when E ¼ TX . We say that the connection
is symmetric if the bilinear map B is symmetric. Suppose this is the case.
We may define the corresponding quadratic map TX ! TTX by letting
f2ðx; vÞ ¼ Bðx; v; vÞ. Globally, this amounts to defining a morphism

F : TX ! TTX such that F ¼ H � diagonal

where the diagonal is taken in TXlTX , in each fiber. Thus

F ðvÞ ¼ Hðv; vÞ for v A TxX :

Then F is a vector field on TX, and the condition ðp�; p�Þ �H ¼ id on
TXlTX implies that F is a second-order vector field on X, in other
words, F defines a spray. It is obvious that all sprays can be obtained in
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this fashion. Thus we have shown how to describe geometrically the
bilinear map associated with a spray.
Going back to the general case of a vector bundle E unrelated to TX,

we note that the image of a connection H is a vector subbundle over E.
Let V denote the kernel of the map TðpÞ : TE ! TX . We leave it to the
reader to verify in charts that V is a vector subbundle of TE over E, and
that the image of H is a complementary subbundle. One calls V the
vertical subbundle, canonically defined, and one calls H the horizontal
subbundle determined by the connection. Cf. Kobayashi [Ko 57],
Dombrowski [Do 68], and Besse [Be 78] for more basic material on
connections.

IV, §4. THE FLOW OF A SPRAY AND
THE EXPONENTIAL MAP

The condition we have taken to define a spray is equivalent to other
conditions concerning the integral curves of the second-order vector field
F. We shall list these conditions systematically. We shall use the fol-
lowing relation. If a: J ! X is a curve, and a1 is the curve defined by
a1ðtÞ ¼ aðstÞ, then

a 0
1ðtÞ ¼ sa 0ðstÞ;

this being the chain rule for di¤erentiation.
If v is a vector in TX, let bv be the unique integral curve of F with

initial condition v
�
i:e: such that bvð0Þ ¼ vÞ. In the next three conditions,

the sentence should begin with ‘‘for each v in TX ’’.

SPR 2. A number t is in the domain of bsv if and only if st is in the

domain of bv and then

bsvðtÞ ¼ sbvðstÞ:

SPR 3. If s, t are numbers, st is in the domain of bv if and only if s is in
the domain of btv, and then

pbtvðsÞ ¼ pbvðstÞ:

SPR 4. A number t is in the domain of bv if and only if 1 is in the

domain of btv, and then

pbvðtÞ ¼ pbtvð1Þ:

We shall now prove the equivalence between all four conditions.
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Assume SPR 1, and let s be fixed. For all t such that st is in the
domain of bv, the curve bvðstÞ is defined and we have

d

dt

�
sbvðstÞ

�
¼ s�sb

0
vðstÞ ¼ s�sF

�
bvðstÞ

�
¼ F

�
sbvðstÞ

�
:

Hence the curve sbvðstÞ is an integral curve for F, with initial condition
sbvð0Þ ¼ sv. By uniqueness we must have

sbvðstÞ ¼ bsvðtÞ:

This proves SPR 2.
Assume SPR 2. Since bv is an integral curve of F for each v, with

initial condition v, we have by definition

b 0
svð0Þ ¼ F ðsvÞ:

Using our assumption, we also have

b 0
svðtÞ ¼

d

dt

�
sbvðstÞ

�
¼ s�sb

0
vðstÞ:

Put t ¼ 0. Then SPR 1 follows because bsv and bv are integral curves of F
with initial conditions sv and v respectively.
It is obvious that SPR 2 implies SPR 3. Conversely, assume SPR 3.

To prove SPR 2, we have

bsvðtÞ ¼ ðpbsvÞ
0ðtÞ ¼ d

dt
pbvðstÞ ¼ sðpbvÞ

0ðstÞ ¼ sbvðstÞ;

which proves SPR 2.
Assume SPR 4. Then st is in the domain of br if and only if 1 is in the

domain of bstv, and s is in the domain of btv if and only if 1 is in the
domain of bstv. This proves the first assertion of SPR 3, and again by
SPR 4, assuming these relations, we get SPR 3.
It is similarly clear that SPR 3 implies SPR 4.

Next we consider further properties of the integral curves of a spray.
Let F be a spray on X. As above, we let bv be the integral curve with
initial condition v. Let D be the set of vectors v in TðX Þ such that bv is
defined at least on the interval [0, 1]. We know from Corollary 2.7 that D

is an open set in TðX Þ, and by Theorem 2.6 the map

v 7! bvð1Þ
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is a morphism of D into TðXÞ. We now define the exponential map

exp: D ! X

to be
exp ðvÞ ¼ pbvð1Þ:

Then exp is a Cp�2-morphism. We also call D the domain of the ex-
ponential map (associated with F ).
If x A X and 0x denotes the zero vector in Tx, then from SPR 1, taking

s ¼ 0, we see that Fð0xÞ ¼ 0. Hence

exp ð0xÞ ¼ x:

Thus our exponential map coincides with p on the zero cross section, and
so induces an isomorphism of the cross section onto X. It will be
convenient to denote the zero cross section of a vector bundle E over X by
zEðX Þ or simply zX if the reference to E is clear. Here, E is the tangent
bundle.
We denote by expx the restriction of exp to the tangent space Tx. Thus

expx : Tx ! X :

Theorem 4.1. Let X be a manifold and F a spray on X. Then

expx : Tx ! X

induces a local isomorphism at 0x, and in fact ðexpxÞ� is the identity at
0x.

Proof. We prove the second assertion first because the main assertion
follows from it by the inverse mapping theorem. Furthermore, since Tx is
a vector space, it su‰ces to determine the derivative of expx on rays, in
other words, to determine the derivative with respect to t of a curve
expxðtvÞ. This is done by using SPR 3, and we find

d

dt
pbtv ¼ btv:

Evaluating this at t ¼ 0 and taking into account that bw has w as initial
condition for any w gives us

ðexpxÞ�ð0xÞ ¼ id:

This concludes the proof of Theorem 4.1.
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Helgason gave a general formula for the di¤erential of the exponential
map on analytic manifolds [He 61], reproduced in [He 78], Chapter I,
Theorem 6.5.
Next we describe all geodesics.

Proposition 4.2. The images of straight segments through the origin in

Tx, under the exponential map expx, are geodesics. In other words, if
v A Tx and we let

aðv; tÞ ¼ avðtÞ ¼ expxðtvÞ;

then av is a geodesic. Conversely, let a: J ! X be a C2 geodesic defined

on an interval J containing 0, and such that að0Þ ¼ x. Let a0ð0Þ ¼ v.
Then aðtÞ ¼ expxðtvÞ.

Proof. The first statement by definition means that a 0
v is an integral

curve of the spray F. Indeed, by the SPR conditions, we know that

aðv; tÞ ¼ avðtÞ ¼ pbtvð1Þ ¼ pbvðtÞ;

and ðpbvÞ
0 ¼ bv is indeed an integral curve of the spray. Thus our as-

sertion that the curves t 7! expðtvÞ are geodesics is obvious from the
definition of the exponential map and the SPR conditions.
Conversely, given a geodesic a: J ! X , by definition a 0 satisfies the

di¤erential equation
a 00ðtÞ ¼ F

�
a 0ðtÞ

�
:

The two curves t 7! aðtÞ and t 7! expxðtvÞ satisfy the same di¤erential
equation and have the same initial conditions, so the two curves are
equal. This proves the second statement and concludes the proof of the
proposition.

Remark. From the theorem, we note that a C1 curve in X is a geodesic
if and only if, after a linear reparametrization of its interval of definition,
it is simply t 7! expxðtvÞ for some x and some v.

We call the map ðv; tÞ 7! aðv; tÞ the geodesic flow on X. It is defined on
an open subset of TX � R, with aðv; 0Þ ¼ x if v A TxX . Note that since
p
�
sbvðtÞ

�
¼ pbvðtÞ for s A R, we obtain from SPR 2 the property

aðsv; tÞ ¼ aðv; stÞ

for the geodesic flow. Precisely, t is in the domain of asv if and only if st is
in the domain of av, and in that case the formula holds. As a slightly
more precise version of Theorem 4.1 in this light, we obtain :
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Corollary 4.3. Let F be a spray on X, and let x0 A X . There exists an
open neighborhood U of x0, and an open neighborhood V of 0x0 in TX
satisfying the following condition. For every x A U and v A V XTxX ,
there exists a unique geodesic

av : ð�2; 2Þ ! X

such that

avð0Þ ¼ x and a 0
vð0Þ ¼ v:

Observe that in a chart, we may pick V as a product

V ¼ U � V2ð0ÞHU � E

where V2ð0Þ is a neighborhood of 0 in E. Then the geodesic flow is
defined on U � V2ð0Þ � J, where J ¼ ð�2; 2Þ. We picked ð�2; 2Þ for
concreteness. What we really want is that 0 and 1 lie in the interval. Any
bounded interval J containing 0 and 1 could have been selected in the
statement of the corollary. Then of course, U and V

�
or V2ð0Þ

�
depend

on J.

IV, §5. EXISTENCE OF TUBULAR NEIGHBORHOODS

Let X be a submanifold of a manifold Y. A tubular neighborhood of X in
Y consists of a vector bundle p: E ! X over X, an open neighborhood Z
of the zero section zEX in E, and an isomorphism

f : Z ! U

of Z onto an open set in Y containing X, which commutes with z :

We shall call f the tubular map and Z or its image f ðZÞ the corresponding
tube (in E or Y respectively). The bottom map j is simply the inclusion.
We could obviously assume that it is an embedding and define tubular
neighborhoods for embeddings in the same way. We shall say that our
tubular neighborhood is total if Z ¼ E. In this section, we investigate
conditions under which such neighborhoods exist. We shall consider the
uniqueness problem in the next section.
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Theorem 5.1. Let Y be of class Cp ðpZ 3Þ and admit partitions of unity.
Let X be a closed submanifold. Then there exists a tubular neighborhood
of X in Y, of class Cp�2.

Proof. Consider the exact sequence of tangent bundles :

0! TðX Þ ! TðYÞjX ! NðXÞ ! 0:

We know that this sequence splits, and thus there exists some splitting

TðYÞjX ¼ TðXÞlNðXÞ

where NðXÞ may be identified with a subbundle of TðYÞjX . Following
Palais, we construct a spray x on TðY Þ using Theorem 3.1 and obtain
the corresponding exponential map. We shall use its restriction to NðXÞ,
denoted by expjN. Thus

expjN : DXNðXÞ ! Y :

We contend that this map is a local isomorphism. To prove this, we may
work locally. Corresponding to the submanifold, we have a product
decomposition U ¼ U1 �U2, with X ¼ U1 � 0. If U is open in E, then we
may take U1, U2 open in F1, F2 respectively. Then the injection of NðXÞ
in TðYÞjX may be represented locally by an exact sequence

0! U1 � F2 !
j
U1 � F1 � F2;

and the inclusion of TðY ÞjX in TðYÞ is simply the inclusion

U1 � F1 � F2 ! U1 �U2 � F1 � F2:

We work at the point ðx1; 0Þ in U1 � F2. We must compute the derivative
of the composite map

U1 � F2 �!
j

U1 �U2 � F1 � F2 �!
exp

Y

at ðx1; 0Þ. We can do this by the formula for the partial derivatives. Since
the exponential map coincides with the projection on the zero cross
section, its ‘‘horizontal’’ partial derivative is the identity. By Theorem 4.1
we know that its ‘‘vertical’’ derivative is also the identity. Let

c ¼ ðexpÞ � j

(where j is simply j followed by the inclusion). Then for any vector
ðw1; w2Þ in F1 � F2 we get

Dcðx1; 0Þ � ðw1; w2Þ ¼ ðw1; 0Þ þ jx1ðw2Þ;
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where jx1 is the linear map given by j on the fiber over x1. By hypothesis,
we know that F1 � F2 is the direct sum of F1 � 0 and of the image of jx1 .
This proves that Dcðx1; 0Þ is a toplinear isomorphism, and in fact proves
that the exponential map restricted to a normal bundle is a local iso-

morphism on the zero cross section.
We have thus shown that there exists a vector bundle E ! X , an open

neighborhood Z of the zero section in E, and a mapping f : Z ! Y

which, for each x in zE , is a local isomorphism at x. We must show that
Z can be shrunk so that f restricts to an isomorphism. To do this we
follow Godement ([God 58], p. 150). We can find a locally finite open
covering of X by open sets Ui in Y such that, for each i we have inverse
isomorphisms

fi : Zi ! Ui and gi : Ui ! Zi

between Ui and open sets Zi in Z, such that each Zi contains a point x of
X, such that fi, gi are the identity on X (viewed as a subset of both Z and
Y ) and such that fi is the restriction of f to Zi. We now find a locally
finite covering fVig of X by open sets of Y such that ViHUi, and let
V ¼ 6Vi. We let W be the subset of elements y A V such that, if y lies in
an intersection Vi XVj , then giðyÞ ¼ gjðyÞ. Then W certainly contains X.
We contend that W contains an open subset containing X.
Let x A X . There exists an open neighborhood Gx of x in Y which

meets only a finite number of Vi, say Vi1 ; . . . ;Vir . Taking Gx small enough,
we can assume that x lies in each one of these, and that Gx is contained in
each one of the sets Ui1 ; . . . ;Uir . Since x lies in each Vi1 ; . . . ;Vir , it is
contained in Ui1 ; . . . ;Uir and our maps gi1 ; . . . ; gir take the same value at x,
namely x itself. Using the fact that fi1 ; . . . ; fir are restrictions of f, we see
at once that our finite number of maps gi1 ; . . . ; gir must agree on Gx if we
take Gx small enough.
Let G be the union of the Gx. Then G is open, and we can define a

map

g: G ! gðGÞHZ

by taking g equal to gi on GXVi. Then gðGÞ is open in Z, and the
restriction of f to gðGÞ is an inverse for g. This proves that f, g are
inverse isomorphisms on G and gðGÞ, and concludes the proof of the
theorem.

A vector bundle E ! X will be said to be compressible if, given an
open neighborhood Z of the zero section, there exists an isomorphism

j: E ! Z1

of E with an open subset Z1 of Z containing the zero section, which
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commutes with the projection on X :

It is clear that if a bundle is compressible, and if we have a tubular
neighborhood defined on Z, then we can get a total tubular neighborhood
defined on E. We shall see in the chapter on Riemannian metrics that
certain types of vector bundles are compressible.

IV, §6. UNIQUENESS OF TUBULAR NEIGHBORHOODS

Let X, Y be two manifolds, and F : R� X ! Y a morphism. We shall
say that F is an isotopy (of embeddings) if it satisfies the following
conditions. First, for each t A R, the map Ft given by FtðxÞ ¼ Fðt; xÞ is an
embedding. Second, there exist numbers t0 < t1 such that Ft ¼ Ft0 for all
tY t0 and Ft1 ¼ Ft for all tZ t1. We then say that the interval ½t0; t1� is a
proper domain for the isotopy, and the constant embeddings on the left
and right will also be denoted by F�y and Fþy respectively. We say that
two embeddings f : X ! Y and g: X ! Y are isotopic if there exists an
isotopy Ft as above such that f ¼ Ft0 and g ¼ Ft1 (notation as above). We
write f A g for f isotopic to g.
Using translations of intervals, and multiplication by scalars, we can

always transform an isotopy to a new one whose proper domain is
contained in the interval ð0; 1Þ. Furthermore, the relation of isotopy
between embeddings is an equivalence relation. It is obviously symmetric
and reflexive, and for transitivity, suppose f A g and gA h. We can
choose the ranges of these isotopies so that the first one ends and stays
constant at g before the second starts moving. Thus it is clear how to
compose isotopies in this case.
If s0 < s1 are two numbers, and s : R! R is a function (morphism)

such that sðsÞ ¼ t0 for sY s0 and sðsÞ ¼ t1 for sZ s1, and s is monotone
increasing, then from a given isotopy Ft we obtain another one,
Gt ¼ FsðtÞ. Such a function s can be used to smooth out a piece of isotopy
given only on a closed interval.

Remark. We shall frequently use the following trivial fact : If
ft : X ! Y is an isotopy, and if g: X1 ! X and h: Y ! Y1 are two
embeddings, then the composite map

h ftg: X1 ! Y1
is also an isotopy.
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Let Y be a manifold and X a submanifold. Let p: E ! X be a vector
bundle, and Z an open neighborhood of the zero section. An isotopy
ft : Z ! Y of open embeddings such that each ft is a tubular neigh-
borhood of X will be called an isotopy of tubular neighborhoods. In what
follows, the domain will usually be all of E.

Proposition 6.1. Let X be a manifold. Let p: E ! X and p1 : E1 ! X

be two vector bundles over X. Let

f : E ! E1

be a tubular neighborhood of X in E1 (identifying X with its zero section

in E1). Then there exists an isotopy

ft : E ! E1

with proper domain [0, 1] such that f1 ¼ f and f0 is a VB-isomorphism.
(If f, p, p1 are of class C

p then ft can be chosen of class Cp�1.)

Proof. We define F by the formula

FtðeÞ ¼ t�1 f ðteÞ

for t 6¼ 0 and e A E. Then Ft is an embedding since it is composed
of embeddings (the scalar multiplications by t, t�1 are in fact VB-
isomorphism).
We must investigate what happens at t ¼ 0.
Given e A E, we find an open neighborhood U1 of pe over which

E1 admits a trivialization U1 � E1. We then find a still smaller open
neighborhood U of pe and an open ball B around 0 in the typical fiber E
of E such that E admits a trivialization U � E over U, and such that the
representation f of f on U � B (contained in U � E) maps U � B into
U1 � E1. This is possible by continuity. On U � B we can represent f by
two morphisms,

f ðx; vÞ ¼
�
jðx; vÞ; cðx; vÞ

�

and jðx; 0Þ ¼ x while cðx; 0Þ ¼ 0. Observe that for all t su‰ciently small,
te is contained in U � B (in the local representation).
We can represent Ft locally on U � B as the mapping

Ftðx; vÞ ¼
�
jðx; tvÞ; t�1cðx; tvÞ

�
:

The map j is then a morphism in the three variables x, v, and t even at
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t ¼ 0. The second component of Ft can be written

t�1cðx; tvÞ ¼ t�1
ð 1
0

D2cðx; stvÞ � ðtvÞ ds

and thus t�1 cancels t to yield simply

ð1
0

D2cðx; stvÞ � v ds:

This is a morphism in t, even at t ¼ 0. Furthermore, for t ¼ 0, we obtain

F0ðx; vÞ ¼
�
x; D2cðx; 0Þv

�
:

Since f was originally assumed to be an embedding, it follows that
D2cðx; 0Þ is a toplinear isomorphism, and therefore F0 is a VB-
isomorphism. To get our isotopy in standard form, we can use a function
s: R! R such that sðtÞ ¼ 0 for tY 0 and sðtÞ ¼ 1 for tZ 1, and s is
monotone increasing. This proves our proposition.

Theorem 6.2. Let X be a submanifold of Y. Let

p: E ! X and p1 : E1 ! X

be two vector bundles, and assume that E is compressible. Let

f : E ! Y and g: E1 ! Y be two tubular neighborhoods of X in Y.
Then there exists a Cp�1-isotopy

ft : E ! Y

of tubular neighborhoods with proper domain ½0; 1� and a VB-isomorphism
l: E ! E1 such that f1 ¼ f and f0 ¼ gl.

Proof. We observe that f ðEÞ and gðE1Þ are open neighborhoods of X
in Y. Let U ¼ f �1

�
f ðEÞX gðE1Þ

�
and let j: E ! U be a compression.

Let c be the composite map

E �!j U �!f jU Y

c ¼ ð f jUÞ � j. Then c is a tubular neighborhood, and cðEÞ is contained
in gðE1Þ. Therefore g�1c: E ! E1 is a tubular neighborhood of the same
type considered in the previous proposition. There exists an isotopy of
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tubular neighborhoods of X :

Gt : E ! E1

such that G1 ¼ g�1c and G0 is a VB-isomorphism. Considering the
isotopy gGt, we find an isotopy of tubular neighborhoods

ct : E ! Y

such that c1 ¼ c and c0 ¼ go where o: E ! E1 is a VB-isomorphism.
We have thus shown that c and go are isotopic (by an isotopy of tubular
neighborhoods). Similarly, we see that c and fm are isotopic for some
VB-isomorphism

m: E ! E:

Consequently, adjusting the proper domains of our isotopies suitably, we
get an isotopy of tubular neighborhoods going from go to fm, say Ft.
Then Ftm

�1 will give us the desired isotopy from gom�1 to f, and we can
put l ¼ om�1 to conclude the proof.

(By the way, the uniqueness proof did not use the existence theorem for
di¤erential equations.)
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CHAPTER V

Operations on Vector Fields
and Differential Forms

If E ! X is a vector bundle, then it is of considerable interest to
investigate the special operation derived from the functor ‘‘multilinear
alternating forms.’’ Applying it to the tangent bundle, we call the sections
of our new bundle di¤erential forms. One can define formally certain
relations between functions, vector fields, and di¤erential forms which lie
at the foundations of di¤erential and Riemannian geometry. We shall give
the basic system surrounding such forms. In order to have at least one
application, we discuss the fundamental 2-form, and in the next chapter
connect it with Riemannian metrics in order to construct canonically the
spray associated with such a metric.
We assume throughout that our manifolds are su‰ciently di¤erentiable

so that all of our statements make sense.

V, §1. VECTOR FIELDS, DIFFERENTIAL OPERATORS,
BRACKETS

Let X be a manifold of class Cp and j a function defined on an open set
U, that is a morphism

j: U ! R:

Let x be a vector field of class Cp�1. Recall that

Txj: TxðUÞ ! TxðRÞ ¼ R

is a linear map. With it, we shall define a new function to be denoted by
xj or x � j, or xðjÞ. (There will be no confusion with this notation and
composition of mappings.)
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Proposition 1.1. There exists a unique function xj on U of class Cp�1

such that

ðxjÞðxÞ ¼ ðTxjÞxðxÞ:

If U is open in the vector space E and x denotes the local representation

of the vector field on U, then

ðxjÞðxÞ ¼ j 0ðxÞxðxÞ:

Proof. The first formula certainly defines a mapping of U into R. The
local formula defines a Cp�1-morphism on U. It follows at once from
the definitions that the first formula expresses invariantly in terms of the
tangent bundle the same mapping as the second. Thus it allows us to
define xj as a morphism globally, as desired.

Let Fup denote the ring of functions (of class Cp). Then our operation
j 7! xj gives rise to a linear map

qx : Fu
pðUÞ ! Fup�1ðUÞ; defined by qxj ¼ xj:

A mapping
q: R! S

from a ring R into an R-algebra S is called a derivation if it satisfies the
usual formalism: Linearity, and qðabÞ ¼ aqðbÞ þ qðaÞb.

Proposition 1.2. Let X be a manifold and U open in X. Let x be a

vector field over X. If qx ¼ 0, then xðxÞ ¼ 0 for all x A U . Each qx is a

derivation of FupðUÞ into Fup�1ðUÞ.

Proof. Suppose xðxÞ 6¼ 0 for some x. We work with the local rep-
resentations, and take j to be a linear map of E into R such that
j
�
xðxÞ

�
6¼ 0. Then j 0ðyÞ ¼ j for all y A U , and we see that j 0ðxÞxðxÞ 6¼ 0,

thus proving the first assertion. The second is obvious from the local
formula.

From Proposition 1.2 we deduce that if two vector fields induce the
same di¤erential operator on the functions, then they are equal.
Given two vector fields x, h on X, we shall now define a new vector

field ½x; h�, called their bracket product.

Proposition 1.3. Let x, h be two vector fields of class Cp�1 on X. Then
there exists a unique vector field ½x; h� of class Cp�2 such that for each
open set U and function j on U we have

½x; h�j ¼ x
�
hðjÞ

�
� h
�
xðjÞ

�
:
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If U is open in E and x, h are the local representations of the vector
fields, then ½x; h� is given by the local formula

½x; h�jðxÞ ¼ j 0ðxÞ
�
h 0ðxÞxðxÞ � x 0ðxÞhðxÞ

�
:

Thus the local representation of ½x; h� is given by

½x; h�ðxÞ ¼ h 0ðxÞxðxÞ � x 0ðxÞhðxÞ:

Proof. By Proposition 1.2, any vector field having the desired e¤ect on
functions is uniquely determined. We check that the local formula gives us
this e¤ect locally. Di¤erentiating formally, we have (using the law for the
derivative of a product) :

ðhjÞ0x� ðxjÞ0h ¼ ðj 0hÞ0x� ðj 0xÞh

¼ j 0h 0xþ j 00hx� j 0x 0h� j 00xh:

The terms involving j 00 must be understood correctly. For instance, the
first such term at a point x is simply j 00ðxÞ

�
hðxÞ; xðxÞ

�
remembering that

j 00ðxÞ is a bilinear map, and can thus be evaluated at the two vectors hðxÞ
and xðxÞ. However, we know that j 00ðxÞ is symmetric. Hence the two
terms involving the second derivative of j cancel, and give us our formula.

Corollary 1.4. The bracket ½x; h� is bilinear in both arguments, we have
½x; h� ¼ �½h; x�, and Jacobi’s identity

�
x; ½h; z�

�
¼
�
½x; h�; z

�
þ
�
h; ½x; z�

�
:

In other words, for each x the map h 7! ½x; h� is a derivation with respect
to the Lie product ðh; zÞ 7! ½h; z�.
If j is a function, then

½x; jh� ¼ ðxjÞhþ j½x; h�; and ½jx; h� ¼ j½x; h� � ðhjÞx:

Proof. The first two assertions are obvious. The third comes from the
definition of the bracket. We apply the vector field on the left of the
equality to a function j. All the terms cancel out (the reader will write
it out as well or better than the author). The last two formulas are
immediate.

We make some comments concerning the functoriality of vector fields.
Let

f : X ! Y

be an isomorphism. Let x be a vector field over X. Then we obtain an
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induced vector field fx over Y , defined by the formula

ð fxÞ
�
f ðxÞ

�
¼ Tf

�
xðxÞ

�
:

It is the vector field making the following diagram commutative :

We shall also write f  for ð f �1Þ when applied to a vector field. Thus we
have the formulas

fx ¼ Tf � x � f �1 and f x ¼ Tf �1 � x � f :

If f is not an isomorphism, then one cannot in general define the direct
or inverse image of a vector field as done above. However, let x be a
vector field over X, and let h be a vector field over Y. If for each x A X
we have

Tf
�
xðxÞ

�
¼ h
�
f ðxÞ

�
;

then we shall say that f maps x into h, or that x and h are f-related. If this
is the case, then we may denote by fx the map from f ðXÞ into TY
defined by the above formula.

Let x1, x2 be vector fields over X, and let h1, h2 be vector fields over Y. If
xi is f-related to hi for i ¼ 1, 2 then as maps on f ðX Þ we have

f½x1; x2� ¼ ½h1; h2�:

We may write suggestively the formula in the form

f½x1; x2� ¼ ½ fx1; fx2�:

Of course, this is meaningless in general, since fx1 may not be a vector
field on Y. When f is an isomorphism, then it is a correct formulation of
the other formula. In any case, it suggests the correct formula.
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To prove the formula, we work with the local representations, when
X ¼ U is open in E, and Y ¼ V is open in F. Then xi, hi are maps of U,
V into the spaces E, F respectively. For x A X we have

ð f½x1; x2�ÞðxÞ ¼ f 0ðxÞ
�
x 0
2ðxÞx1ðxÞ � x 0

1ðxÞx2ðxÞ
�
:

On the other hand, by assumption, we have

hi
�
f ðxÞ

�
¼ f 0ðxÞxiðxÞ;

so that

½h1; h2�
�
f ðxÞ

�
¼ h 0

2

�
f ðxÞ

�
h1
�
f ðxÞ

�
� h 0

1

�
f ðxÞ

�
h2
�
f ðxÞ

�
¼ h 0

2

�
f ðxÞ

�
f 0ðxÞx1ðxÞ � h 0

1

�
f ðxÞ

�
f 0ðxÞx2ðxÞ

¼ ðh2 � f Þ
0ðxÞx1ðxÞ � ðh1 � f Þ

0ðxÞx2ðxÞ

¼ f 00ðxÞ � x2ðxÞ � x1ðxÞ þ f 0ðxÞx 0
2ðxÞx1ðxÞ

� f 00ðxÞ � x1ðxÞ � x2ðxÞ � f 0ðxÞx 0
1ðxÞx2ðxÞ:

Since f 00ðxÞ is symmetric, two terms cancel, and the remaining two terms
give the same value as ð f½x1; x2�ÞðxÞ, as was to be shown.

The bracket between vector fields gives an infinitesimal criterion for
commutativity in various contexts. We give here one theorem of a general
nature as an example of this phenomenon.

Theorem 1.5. Let x, h be vector fields on X, and assume that ½x; h� ¼ 0.
Let a and b be the flows for x and h respectively. Then for real values t,
s we have

at � bs ¼ bs � at:

Or in other words, for any x A X we have

a
�
t; bðs; xÞ

�
¼ b

�
s; aðt; xÞ

�
;

in the sense that if for some value of t a value of s is in the domain of one

of these expressions, then it is in the domain of the other and the two
expressions are equal.

Proof. For a fixed value of t, the two curves in s given by the right-
and left-hand side of the last formula have the same initial condition,
namely atðxÞ. The curve on the right

s 7! b
�
s; aðt; xÞ

�
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is by definition the integral curve of h. The curve on the left

s 7! a
�
t; bðs; xÞ

�

is the image under at of the integral curve for h having initial condition x.
Since x is fixed, let us denote bðs; xÞ simply by bðsÞ. What we must show
is that the two curves on the right and on the left satisfy the same
di¤erential equation.

In the above figure, we see that the flow at shoves the curve on the left to
the curve on the right. We must compute the tangent vectors to the curve
on the right. We have

d

ds

�
atðbðsÞÞ

�
¼ D2a

�
t; bðsÞ

�
b 0ðsÞ

¼ D2a
�
t; bðsÞ

�
h
�
bðsÞ

�
:

Now fix s, and denote this last expression by F ðtÞ. We must show that if

GðtÞ ¼ h
�
aðt; bðsÞÞ

�
;

then
FðtÞ ¼ GðtÞ:

We have trivially Fð0Þ ¼ Gð0Þ, in other words the curves F and G have the
same initial condition. On the other hand,

F 0ðtÞ ¼ x 0�aðt; bðsÞÞ�D2a�t; bðsÞ�h�bðsÞ�
and

G 0ðtÞ ¼ h 0�aðt; bðsÞÞ�x�aðt; bðsÞÞ�
¼ x 0�aðt; bðsÞÞ�h�aðt; bðsÞÞ� ðbecause ½x; h� ¼ 0Þ:

Hence we see that our two curves F and G satisfy the same di¤erential
equation, whence they are equal. This proves our theorem.
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Vector fields x, h such that ½x; h� ¼ 0 are said to commute. One can
generalize the process of straightening out vector fields to a finite number
of commuting vector fields, using the same method of proof, using
Theorem 1.5. As another application, one can prove that if the Lie
algebra of a connected Lie group is commutative, then the group is
commutative. Cf. the section on Lie groups.

V, §2. LIE DERIVATIVE

Let l be a di¤erentiable functor on vector spaces. For convenience, take l
to be covariant and in one variable. What we shall say in the rest of this
section would hold in the same way (with slightly more involved notation)
if l had several variables and were covariant in some and contravariant in
others.
Given a manifold X, we can take l

�
TðXÞ

�
. It is a vector bundle over

X, which we denote by TlðXÞ as in Chapter III. Its sections GlðX Þ are the
tensor fields of type l.
Let x be a vector field on X, and U open in X. It is then possible to

associate with x a map

Lx : GlðUÞ ! GlðUÞ

(with a loss of two derivatives). This is done as follows.
Given a point x of U and a local flow a for x at x, we have for each t

su‰ciently small a local isomorphism at in a neighborhood of our point
x. Recall that locally, a�1t ¼ a�t. If h is a tensor field of type l, then the
composite mapping h � at has its range in TlðXÞ. Finally, we can take the
tangent map Tða�tÞ ¼ ða�tÞ to return to TlðXÞ in the fiber above x. We
thus obtain a composite map

F ðt; xÞ ¼ ða�tÞ � h � atðxÞ ¼ ða
t hÞðxÞ;

which is a morphism, locally at x. We take its derivative with respect to t
and evaluate it at 0. After looking at the situation locally in a triviali-
zation of TðX Þ and TlðX Þ at x, one sees that the map one obtains gives a
section of TlðUÞ, that is a tensor field of type l over U. This is our map
Lx. To summarize,

Lxh ¼ d

dt

����
t¼0

ða�tÞ � h � at:

This map Lx is called the Lie derivative. We shall determine the Lie
derivative on functions and on vector fields in terms of notions already
discussed.
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First let j be a function. Then by the general definition, the Lie
derivative of this function with respect to the vector field x with flow a is
defined to be

LxjðxÞ ¼ lim
t!0

1

t
j
�
aðt; xÞ

�
� jðxÞ

� �
;

or in other words,

Lxj ¼ d

dt
ða
t jÞ
����
t¼0

:

Our assertion is then that

Lxj ¼ xj:

To prove this, let
FðtÞ ¼ j

�
aðt; xÞ

�
:

Then
F 0ðtÞ ¼ j 0�aðt; xÞ�D1aðt; xÞ

¼ j 0�aðt; xÞ�x�aðt; xÞ�;
because a is a flow for x. Using the initial condition at t ¼ 0, we find that

F 0ð0Þ ¼ j 0ðxÞxðxÞ;

which is precisely the value of xj at x, thus proving our assertion.

If x, h are vector fields, then

Lxh ¼ ½x; h�:

As before, let a be a flow for x. The Lie derivative is given by

Lxh ¼ d

dt
ða
t hÞ
����
t¼0

:

Letting x and h denote the local representations of the vector fields, we
note that the local representation of ða

t hÞðxÞ is given by

ða
t hÞðxÞ ¼ FðtÞ ¼ D2að�t; xÞh

�
aðt; xÞ

�
:
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We must therefore compute F 0ðtÞ, and then F 0ð0Þ. Using the chain rule,
the formula for the derivative of a product, and the di¤erential equation
satisfied by D2a, we obtain

F 0ðtÞ ¼ �D1D2að�t; xÞh
�
aðt; xÞ

�
þD2að�t; xÞh 0�aðt; xÞ�D1aðt; xÞ

¼ �x 0�að�t; xÞ�D2að�t; xÞh�aðt; xÞ�þD2að�t; xÞh 0�aðt; xÞ�:
Putting t ¼ 0 proves our formula, taking into account the initial conditions

að0; xÞ ¼ x and D2að0; xÞ ¼ id:

V, §3. EXTERIOR DERIVATIVE

Let X be a manifold. The functor Lra (r-multilinear continuous alternating
forms) extends to arbitrary vector bundles, and in particular, to the
tangent bundle of X. A di¤erential form of degree r, or simply an r-form
on X, is a section of Lra

�
TðXÞ

�
, that is a tensor field of type Lra. If X is

of class Cp, forms will be assumed to be of a suitable class Cs with
1Y sY p� 1. The set of di¤erential forms of degree r will be denoted by
A rðX Þ (A for alternating). It is not only a vector space (infinite di-
mensional) over R but a module over the ring of functions on X (of the
appropriate order of di¤erentiability). If o is an r-form, then oðxÞ is an
element of Lra

�
TxðXÞ

�
, and is thus an r-multilinear alternating form of

TxðX Þ into R. We sometimes denote oðxÞ by ox.
Suppose U is open in the vector space E. Then Lra

�
TðUÞ

�
is equal to

U � LraðEÞ and a di¤erential form is entirely described by the projection
on the second factor, which we call its local representation, following our
general system (Chapter III, §4). Such a local representation is therefore a
morphism

o : U ! LraðEÞ:

Let o be in LraðEÞ and v1; . . . ; vr elements of E. We denote the value
oðv1; . . . ; vrÞ also by

ho; v1 � � � � � vri:

Similarly, let x1; . . . ; xr be vector fields on an open set U, and let o be an
r-form on X. We denote by

ho; x1 � � � � � xri

the mapping from U into R whose value at a point x in U is

hoðxÞ; x1ðxÞ � � � � � xrðxÞi:
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Looking at the situation locally on an open set U such that TðUÞ is trivial,
we see at once that this mapping is a morphism (i.e. a function on U) of
the same degree of di¤erentiability as o and the xi.

Proposition 3.1. Let x0 be a point of X and o an r-form on X. If

ho; x1 � � � � � xriðx0Þ

is equal to 0 for all vector fields x1; . . . ; xr at x0 (i.e. defined on some
neighborhood of x0), then oðx0Þ ¼ 0.

Proof. Considering things locally in terms of their local representations,
we see that if oðx0Þ is not 0, then it does not vanish at some r-tuple of
vectors ðv1; . . . ; vrÞ. We can take vector fields at x0 which take on these
values at x0 and from this our assertion is obvious.

It is convenient to agree that a di¤erential form of degree 0 is a
function. In the next proposition, we describe the exterior derivative of an
r-form, and it is convenient to describe this situation separately in the case
of functions.
Therefore let f : X ! R be a function. For each x A X , the tangent

map
Tx f : TxðX Þ ! Tf ðxÞðRÞ ¼ R

is a continuous linear map, and looking at local representations shows
at once that the collection of such maps defines a 1-form which will be
denoted by df. Furthermore, from the definition of the operation of vector
fields on functions, it is clear that df is the unique 1-form such that for
every vector field x we have

hdf ; xi ¼ x f :

To extend the definition of d to forms of higher degree, we recall that if

o: U ! LraðEÞ

is the local representation of an r-form over an open set U of E, then for
each x in U,

o 0ðxÞ : E! LraðEÞ

is a continuous linear map. Applied to a vector v in E, it therefore gives
rise to an r-form on E.

Proposition 3.2. Let o be an r-form of class Cp�1 on X. Then there
exists a unique ðrþ 1Þ-form do on X of class Cp�2 such that, for any
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open set U of X and vector fields x0; . . . ; xr on U we have

hdo; x0 � � � � � xri

¼
Xr
i¼0

ð�1Þ ixiho; x0 � � � � � x̂xi � � � � � xri

þ
X
i< j

ð�1Þ iþjho; ½xi; xj� � x0 � � � � � x̂xi � � � � � x̂xj � � � � � xri:

If furthermore U is open in E and o, x0; . . . ; xr are the local repre-
sentations of the form and the vector fields respectively, then at a point x
the value of the expression above is equal to

Xr
i¼0

ð�1Þ iho 0ðxÞxiðxÞ; x0ðxÞ � � � � � dxiðxÞxiðxÞ � � � � � xrðxÞi:

Proof. As before, we observe that the local formula defines a di¤er-
ential form. If we can prove that it gives the same thing as the first
formulas, which is expressed invariantly, then we can globalize it, and we
are done. Let us denote by S1 and S2 the two sums occurring in the
invariant expression, and let L be the local expression. We must show that
S1 þ S2 ¼ L. We consider S1, and apply the definition of xi operating on
a function locally, as in Proposition 1.1, at a point x. We obtain

S1 ¼
Xr
i¼0

ð�1Þ iho; x0 � � � � � x̂xi � � � � � xri0ðxÞxiðxÞ:

The derivative is perhaps best computed by going back to the definition.
Applying this definition directly, and discarding second order terms, we
find that S1 is equal to

X
ð�1Þ iho 0ðxÞxiðxÞ; x0ðxÞ � � � � � dxiðxÞxiðxÞ � � � � � xrðxÞi

þ
X
i

X
i< j

ð�1Þ ihoðxÞ; x0ðxÞ�� � ��x 0
j ðxÞxiðxÞ�� � �� dxiðxÞxiðxÞ�� � ��xrðxÞi

þ
X
i

X
j<i

hoðxÞ; x0ðxÞ � � � � � dxiðxÞxiðxÞ � � � � � x 0
j ðxÞxiðxÞ � � � � � xrðxÞi:

Of these there sums, the first one is the local formula L. As for the
other two, permuting j and i in the first, and moving the term x 0

j ðxÞxiðxÞ to
the first position, we see that they combine to give (symbolically)

�
X
i

X
i< j

ð�1Þ iþjho; ðx 0
jxi � x 0

ixjÞ � x0 � � � � � x̂xi � � � � � x̂xj � � � � � xri
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(evaluated at x). Using Proposition 1.3, we see that this combination is
equal to �S2. This proves that S1 þ S2 ¼ L, as desired.

We call do the exterior derivative of o. Leaving out the order of
di¤erentiability for simplicity, we see that d is an R-linear map

d : ArðXÞ ! Arþ1ðX Þ:

We now look into the multiplicative properties of d with respect to the
wedge product.
Let o, c be multilinear alternating forms of degree r and s respec-

tively on the vector space E. In multilinear algebra, one defines their
wedge product as an ðrþ sÞ multilinear alternating form, by the
formula

ðo5cÞðv1; . . . ; vrþsÞ ¼
1

r! s!

X
�ðsÞoðvs1; . . . ; vsrÞcðvsðrþ1Þ; . . . ; vsðrþsÞÞ

the sum being taken over all permutations s of ð1; . . . ; rþ sÞ. This
definition extends at once to di¤erential forms on a manifold, if we view it
as giving the value for o5c at a point x. The vi are then elements of the
tangent space Tx, and considering the local representations shows at once
that the wedge product so defined gives a morphism of the manifold X
into Lrþsa

�
TðXÞ

�
, and is therefore a di¤erential form.

Remark. The coe‰cient 1=r! s! is not universally taken to define the
wedge product. Some people, e.g. [He 78] and [KoN 63], take 1=ðrþ sÞ !,
which causes constants to appear later. I have taken the same factor as
[AbM 78] and [GHL 87/93]. I recommend that the reader check out the
case with r ¼ s ¼ 1 so rþ s ¼ 2 to see how a factor 12 comes in. With
either convention, the wedge product between forms is associative, so
with some care, one can carry out a consistent theory with either conven-
tion. I leave the proof of associativity to the reader. It follows by
induction that if o1; . . . ;om are forms of degrees r1; . . . ; rm respectively,
and r ¼ r1 þ � � � þ rm, then

ðo15 � � � 5omÞðv1; . . . ; vrÞ ¼
1

r1 ! � � � rm !
X
s

�ðsÞWs;

where

Ws ¼ o1ðvs1; . . . ; vsr1Þo2ðvsðr1þ1Þ; . . . ; vsðr1þr2ÞÞ . . .omðvsðr�rmþ1Þ; . . . ; vsrÞ;

and where the sum is taken over all permutations of ð1; . . . ; rÞ.
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If we regard functions on X as di¤erential forms of degree 0, then the
ordinary product of a function by a di¤erential form can be viewed as the
wedge product. Thus if f is a function and o a di¤erential form, then

fo ¼ f 5o:

(The form on the left has the value f ðxÞoðxÞ at x.)
The next proposition gives us more formulas concerning di¤erential

forms.

Proposition 3.3. Let o, c be di¤erential forms on X. Then

EXD 1. dðo5cÞ ¼ do5cþ ð�1ÞdegðoÞo5 dc.

EXD 2. ddo ¼ 0 (with enough di¤erentiability, say pZ 4).

Proof. This is a simple formal exercise in the use of the local formula
for the local representation of the exterior derivative. We leave it to the
reader.
One can give a local representation for di¤erential forms and the

exterior derivative in terms of local coordinates, which are especially useful
in integration which fits the notation better. We shall therefore carry out
this local formulation in full. It dates back to Cartan [Ca 28]. There is in
addition a theoretical point which needs clarifying. We shall use at first
the wedge 5 in two senses. One sense is defined as above, giving rise to
Proposition 3.3. Another sense will come from Theorem A. We shall
comment on their relation after Theorem B.
We recall first two simple results from linear (or rather multilinear)

algebra. We use the notation EðrÞ ¼ E� E� � � � � E, r times.

Theorem A. Let E be a vector space over the reals of dimension n. For
each positive integer r with 1Y rY n there exists a vector space 5r

E

and a multilinear alternating map

EðrÞ ! 5r
E

denoted by ðu1; . . . ; urÞ 7! u15 � � � 5 ur, having the following property :
If fv1; . . . ; vng is a basis of E, then the elements

fvi1 5 � � � 5 virg; i1 < i2 < � � � < ir;

form a basis of 5r
E.

We recall that alternating means that u15 � � � 5 ur ¼ 0 if ui ¼ uj for
some i 6¼ j. We call 5r

E the r-th alternating product (or exterior product)
on E. If r ¼ 0, we define 50

E ¼ R. Elements of 5r
E which can be
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written in the form u15 � � � 5 ur are called decomposable. Such elements
generate 5r

E. If r > dim E, we define 5r
E ¼ f0g.

Theorem B. For each pair of positive integers ðr; sÞ, there exists a unique
product (bilinear map)

5r
E�5s

E! 5rþs
E

such that if u1; . . . ; ur, w1; . . . ;ws A E then

ðu15 � � � 5 urÞ � ðw15 � � � 5wsÞ 7! u15 � � � 5 ur5w15 � � � 5ws:

This product is associative.

The proofs for these two statements can be found, for instance, in my
Linear Algebra.
Let E4 be the dual space, E4 ¼ LðE; RÞ. If E ¼ Rn and l1; . . . ; ln are

the coordinate functions, then each li is an element of the dual space, and
in fact fl1; . . . ; lng is a basis of this dual space. Let E ¼ Rn. There is a
linear isomorphism

5r
E4 !A LraðE; RÞ

given in the following manner. If g1; . . . ; gr A E
4 and v1; . . . ; vr A E, then

the value
det
�
giðvjÞ

�

is multilinear alternating both as a function of ðg1; . . . ; grÞ and ðv1; . . . ; vrÞ.
Thus it induces a pairing

5r
E4 � E r ! R

and a map
5r

E4 ! LraðE; RÞ:

This map is the isomorphism mentioned above. Using bases, it is easy to
verify that it is an isomorphism (at the level of elementary algebra).
Thus in the finite dimensional case, we may identify LraðE; RÞ with the

alternating product 5r
E4, and consequently we may view the local

representation of a di¤erential form of degree r to be a map

o: U ! 5r
E4

from U into the rth alternating product of E4. We say that the form is of
class Cp if the map is of class Cp. (We view 5r

E4 as a normed vector
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space, using any norm. It does not matter which, since all norms on a
finite dimensional vector space are equivalent.) The wedge product as we
gave it is compatible with the wedge product and the isomorphism of 5r

E

with LraðE; RÞ given above. If we had taken a di¤erent convention for the
wedge product of alternating forms, then a constant would have appeared
in front of the above determinant to establish the above identification (e.g.
the constant 12 in the 2� 2 case).
Since fl1; . . . ; lng is a basis of E4, we can express each di¤erential

form in terms of its coordinate functions with respect to the basis

fli15 � � � 5 lirg; ði1 < � � � < irÞ;

namely for each x A U we have

oðxÞ ¼
X
ðiÞ
fi1���irðxÞli15 � � � 5 lir ;

where fðiÞ ¼ fi1���ir is a function on U. Each such function has the same
order of di¤erentiability as o. We call the preceding expression the
standard form of o. We say that a form is decomposable if it can be
written as just one term f ðxÞli15 � � � 5 lir . Every di¤erential form is a
sum of decomposable ones.
We agree to the convention that functions are di¤erential forms of

degree 0.
As before, the di¤erential forms on U of given degree r form a vector

space, denoted by ArðUÞ.
Let E ¼ Rn. Let f be a function on U. For each x A U the derivative

f 0ðxÞ : Rn ! R

is a linear map, and thus an element of the dual space. Thus

f 0 : U ! E4

represents a di¤erential form of degree 1, which is usually denoted by df.
If f is of class Cp, then df is class Cp�1.
Let li be the i-th coordinate function. Then we know that

dliðxÞ ¼ l 0
i ðxÞ ¼ li

for each x A U because l 0ðxÞ ¼ l for any linear map l. Whenever
fx1; . . . ; xng are used systematically for the coordinates of a point in Rn, it
is customary in the literature to use the notation

dliðxÞ ¼ dxi:
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This is slightly incorrect, but is useful in formal computations. We shall
also use it in this book on occasions. Similarly, we also write (incorrectly)

o ¼
X
ðiÞ
fðiÞ dxi15 � � � 5 dxir

instead of the correct

oðxÞ ¼
X
ðiÞ
fðiÞðxÞli15 � � � 5 lir :

In terms of coordinates, the map df (or f 0) is given by

df ðxÞ ¼ f 0ðxÞ ¼ D1 f ðxÞl1 þ � � � þDn f ðxÞln;

where Di f ðxÞ ¼ q f =qxi is the i-th partial derivative. This is simply a
restatement of the fact that if h ¼ ðh1; . . . ; hnÞ is a vector, then

f 0ðxÞh ¼ q f

qx1
h1 þ � � � þ q f

qxn
hn:

Thus in old notation, we have

df ðxÞ ¼ q f

qx1
dx1 þ � � � þ q f

qxn
dxn:

We shall develop the theory of the alternating product and the exterior
derivative directly without assuming Propositions 3.2 or 3.3.
Let o and c be forms of degrees r and s respectively, on the open set

U. For each x A U we can then take the alternating product oðxÞ5cðxÞ
and we define the alternating product o5c by

ðo5cÞðxÞ ¼ oðxÞ5cðxÞ:

(It is an exercise to verify that this product corresponds to the product
defined previously before Proposition 3.3 under the isomorphism between
LraðE; RÞ and the r-th alternating product.) If f is a di¤erential form of
degree 0, that is a function, then we have again

f 5o ¼ fo;

where ð foÞðxÞ ¼ f ðxÞoðxÞ. By definition, we then have

o5 fc ¼ fo5c:
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We shall now define the exterior derivative do for any di¤erential form
o. We have already done it for functions. We shall do it in general first
in terms of coordinates, and then show that there is a characterization
independent of these coordinates. If

o ¼
X
ðiÞ
fðiÞ dli15 � � � 5 dlir ;

we define

do ¼
X
ðiÞ
d fðiÞ 5 dli15 � � � 5 dlir :

Example. Suppose n ¼ 2 and o is a 1-form, given in terms of the two
coordinates ðx; yÞ by

oðx; yÞ ¼ f ðx; yÞ dxþ gðx; yÞ dy:
Then

doðx; yÞ ¼ df ðx; yÞ5 dxþ dgðx; yÞ5 dy

¼ qf

qx
dxþ qf

qy
dy

� 	
5 dxþ qg

qx
dxþ qg

qy
dy

� 	
5 dy

¼ qf

qy
dy5 dxþ qg

qx
dx5 dy

¼ qf

qy
� qg

qx

� 	
dy5 dx

because the terms involving dx5 dx and dy5 dy are equal to 0.

Proposition 3.4. The map d is linear, and satisfies

dðo5cÞ ¼ do5cþ ð�1Þ ro5 dc

if r ¼ deg o. The map d is uniquely determined by these properties, and
by the fact that for a function f, we have df ¼ f 0.

Proof. The linearity of d is obvious. Hence it su‰ces to prove the
formula for decomposable forms. We note that for any function f we have

dð foÞ ¼ df 5oþ f do:

Indeed, if o is a function g, then from the derivative of a product we get
dð f gÞ ¼ f dgþ g df . If

o ¼ g dli15 � � � 5 dlir ;
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where g is a function, then

dð foÞ ¼ dð fg dli15 � � � 5 dlirÞ ¼ dð fgÞ5 dli15 � � � 5 dlir

¼ ð f dgþ g df Þ5 dli15 � � � 5 dlir

¼ f doþ df 5o;

as desired. Now suppose that

o ¼ f dli15 � � � 5 dlir and c ¼ g dlj15 � � � 5 dljs

¼ f ~oo; ¼ g ~cc;

with i1 < � � � < ir and j1 < � � � < js as usual. If some in ¼ jm, then from the
definitions we see that the expressions on both sides of the equality in the
theorem are equal to 0. Hence we may assume that the sets of indices
ii; . . . ; ir and j1; . . . ; js have no element in common. Then dð ~oo5 ~ccÞ ¼ 0 by
definition, and

dðo5cÞ ¼ dð f g ~oo5 ~ccÞ ¼ dð fgÞ5 ~oo5 ~cc

¼ ðg df þ f dgÞ5 ~oo5 ~cc

¼ do5cþ f dg5 ~oo5 ~cc

¼ do5cþ ð�1Þr f ~oo5 dg5 ~cc

¼ do5cþ ð�1Þro5 dc;

thus proving the desired formula, in the present case. (We used the fact
that dg5 ~oo ¼ ð�1Þr ~oo5 dg whose proof is left to the reader.) The
formula in the general case follows because any di¤erential form can be
expressed as a sum of forms of the type just considered, and one can then
use the bilinearity of the product. Finally, d is uniquely determined by the
formula, and its e¤ect on functions, because any di¤erential form is a sum
of forms of type f dli5 � � � 5 dlir and the formula gives an expression of
d in terms of its e¤ect on forms of lower degree. By induction, if the value
of d on functions is known, its value can then be determined on forms of
degree Z1. This proves our assertion.

Proposition 3.5. Let o be a form of class C2. Then ddo ¼ 0.

Proof. If f is a function, then

df ðxÞ ¼
Xn
j¼1

qf

qxj
dxj
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and

ddf ðxÞ ¼
Xn
j¼1

Xn
k¼1

q2 f

qxkqxj
dxk5 dxj :

Using the fact that the partials commute, and the fact that for any two
positive integers r, s we have dxr5 dxs ¼ �dxs5 dxr, we see that the
preceding double sum is equal to 0. A similar argument shows that the
theorem is true for 1-forms, of type gðxÞ dxi where g is a function, and
thus for all 1-forms by linearity. We proceed by induction. It su‰ces to
prove the formula in general for decomposable forms. Let o be decom-
posable of degree r, and write

o ¼ h5c;

where deg c ¼ 1. Using the formula for the derivative of an alternating
product twice, and the fact that ddc ¼ 0 and ddh ¼ 0 by induction, we see
at once that ddo ¼ 0, as was to be shown.
We conclude this section by giving some properties of the pull-back

of forms. As we saw at the end of Chapter III, §4, if f : X ! Y is a
morphism and if o is a di¤erential form on Y, then we get a di¤erential
form f ðoÞ on X, which is given at a point x A X by the formula

f ðoÞx ¼ of ðxÞ � ðTx f Þr;

if o is of degree r. This holds for rZ 1. The corresponding local
representation formula reads

h f oðxÞ; x1ðxÞ � � � � � xrðxÞi ¼ o
�
f ðxÞ

�
; f 0ðxÞx1ðxÞ � � � � � f 0ðxÞxrðxÞ


 �

if x1; . . . ; xr are vector fields.
In the case of a 0-form, that is a function, its pull-back is simply the

composite function. In other words, if j is a function on Y, viewed as a
form of degree 0, then

f ðjÞ ¼ j � f :

It is clear that the pull-back is linear, and satisfies the following properties.

Property 1. If o, c are two di¤erential forms on Y, then

f ðo5cÞ ¼ f ðoÞ5 f ðcÞ:

Property 2. If o is a di¤erential form on Y, then

df ðoÞ ¼ f ðdoÞ:
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Property 3. If f : X ! Y and g: Y ! Z are two morphisms, and o is

a di¤erential form on Z, then

f 
�
gðoÞ

�
¼ ðg � f ÞðoÞ:

Finally, in the case of forms of degree 0 :

Property 4. If f : X ! Y is a morphism, and g is a function on Y, then

dðg � f Þ ¼ f ðdgÞ

and at a point x A X , the value of this 1-form is given by

Tf ðxÞg � Tx f ¼ ðdgÞx � Tx f :

The verifications are all easy, and even trivial, except possibly for
Property 2. We shall give the proof of Property 2.
For a form of degree 1, say

oðyÞ ¼ gðyÞ dy1;

with y1 ¼ f 1ðxÞ, we find

ð f doÞðxÞ ¼
�
g 0
�
f ðxÞ

�
� f 0ðxÞ

�
5 df1ðxÞ:

Using the fact that dd f1 ¼ 0, together with Proposition 3.4 we get

ðdf oÞðxÞ ¼
�
dðg � f Þ

�
ðxÞ5 df1ðxÞ;

which is equal to the preceding expression. Any 1-form can be expressed
as a linear combination of form gi dyi, so that our assertion is proved for
forms of degree 1.
The general formula can now be proved by induction. Using the

linearity of f , we may assume that o is expressed as o ¼ c5 h where c,
h have lower degree. We apply Proposition 3.3 and Property 1 to

f  do ¼ f ðdc5 hÞ þ ð�1Þr f ðc5 dhÞ

and we see at once that this is equal to df o, because by induction,
f  dc ¼ df c and f  dh ¼ df h. This proves Property 2.

Example 1. Let y1; . . . ; ym be the coordinates on V, and let mj be the
jth coordinate function, j ¼ 1; . . . ;m, so that yj ¼ mjðy1; . . . ; ymÞ. Let

f : U ! V

operations on vector fields124 [V, §3]



be the map with coordinate functions

yj ¼ fjðxÞ ¼ mj � f ðxÞ:
If

oðyÞ ¼ gðyÞ dyj15 � � � 5 dyjs

is a di¤erential form on V, then

f o ¼ ðg � f Þ dfj15 � � � 5 dfjs :

Indeed, we have for x A U :

ð f oÞðxÞ ¼ g
�
f ðxÞ

��
mj1 � f

0ðxÞ
�
5 � � � 5

�
mjs � f

0ðxÞ
�

and
f 0j ðxÞ ¼ ðmj � f Þ

0ðxÞ ¼ mj � f 0ðxÞ ¼ dfjðxÞ:

Example 2. Let f : ½a; b� ! R2 be a map from an interval into the
plane, and let x, y be the coordinates of the plane. Let t be the coordinate
in ½a; b�. A di¤erential form in the plane can be written in the form

oðx; yÞ ¼ gðx; yÞ dxþ hðx; yÞ dy;

where g, h are functions. Then by definition,

f oðtÞ ¼ g
�
xðtÞ; yðtÞ

� dx
dt
dtþ h

�
xðtÞ; yðtÞ

� dy
dt
dt;

if we write f ðtÞ ¼
�
xðtÞ; yðtÞ

�
. Let G ¼ ðg; hÞ be the vector field whose

components are g and h. Then we can write

f oðtÞ ¼ G
�
f ðtÞ

�
� f 0ðtÞ dt;

which is essentially the expression which is integrated when defining the
integral of a vector field along a curve.

Example 3. Let U, V be both open sets in n-space, and let f : U ! V

be a Cp map. If
oðyÞ ¼ gðyÞ dy15 � � � 5 dyn;

where yj ¼ fjðxÞ is the j-th coordinate of y, then

dyj ¼ D1 fjðxÞ dx1 þ � � � þDn fjðxÞ dxn

dyj ¼
qyj

qx1
dx1 þ � � � þ qyj

qxn
dxn;
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and consequently, expanding out the alternating product according to the
usual multilinear and alternating rules, we find that

f oðxÞ ¼ g
�
f ðxÞ

�
Df ðxÞ dx15 � � � 5 dxn;

where D f is the determinant of the Jacobian matrix of f.

V, §4. THE POINCARÉ LEMMA

If o is a di¤erential form on a manifold and is such that do ¼ 0, then it is
customary to say that o is closed. If there exists a form c such that
o ¼ dc, then one says that o is exact. We shall now prove that locally,
every closed form is exact.

Theorem 4.1 (Poincaré Lemma). Let U be an open ball in E and let o

be a di¤erential form of degree Z 1 on U such that do ¼ 0. Then there
exists a di¤erential form c on U such that dc ¼ o.

Proof. We shall construct a linear map k from the r-forms to the
ðr� 1Þ-forms ðrZ 1Þ such that

dk þ kd ¼ id:

From this relation, it will follow that whenever do ¼ 0, then

dko ¼ o;

thereby proving our proposition. We may assume that the center of the
ball is the origin. If o is an r-form, then we define ko by the formula

hðkoÞx; v1 � � � � � vr�1i ¼
ð1
0

tr�1hoðtxÞ; x� v1 � � � � � vr�1i dt:

We can assume that we deal with local representations and that vi A E.
We have

hðdkoÞx; v1 � � � � � vri

¼
Xr
i¼1

ð�1Þ iþ1hðkoÞ0ðxÞvi; v1 � � � � � v̂vi � � � � � vri

¼
X

ð�1Þ iþ1
ð1
0

tr�1hoðtxÞ; vi � v1 � � � � � v̂vi � � � � � vri dt

þ
X

ð�1Þ iþ1
ð1
0

trho 0ðtxÞvi; x� v1 � � � � � v̂vi � � � � � vri dt:
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On the other hand, we also have

hðkdoÞðxÞ; v1 � � � � � vri

¼
ð1
0

trhdoðxÞ; x� v1 � � � � � vri dt

¼
ð1
0

trho 0ðtxÞx; v1 � � � � � vri dt

þ
X

ð�1Þ i
ð1
0

trho 0ðtxÞvi; x� v1 � � � � � v̂vi � � � � � vri dt:

We observe that the second terms in the expressions for kdo and dko
occur with opposite signs and cancel when we take the sum. As to the
first terms, if we shift vi to the i-th place in the expression for dko, then
we get an extra coe‰cient of ð�1Þ iþ1. Thus

dkoþ kdo ¼
ð 1
0

rtr�1hoðtxÞ; v1 � � � � � vri dt

þ
ð 1
0

trho 0ðtxÞx; v1 � � � � � vri dt:

This last integral is simply the integral of the derivative with respect to
t of

htroðtxÞ; v1 � � � � � vri:

Evaluating this expression between t ¼ 0 and t ¼ 1 yields

hoðxÞ; v1 � � � � � vri

which proves the theorem.

We observe that we could have taken our open set U to be star-shaped
instead of an open ball.

V, §5. CONTRACTIONS AND LIE DERIVATIVE

Let x be a vector field and let o be an r-form on a manifold X, rZ 1.
Then we can define an ðr� 1Þ-form Cxo by the formula

ðCxoÞðxÞðv2; . . . ; vrÞ ¼ o
�
xðxÞ; v2; . . . ; vr

�
;

for v2; . . . ; vr A Tx. Using local representations shows at once that Cxo has
the appropriate order of di¤erentiability (the minimum of o and x). We
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call Cxo the contraction of o by x, and also denote Cxo by

o � x:

If f is a function, we define Cx f ¼ 0. Leaving out the order of di¤er-
entiability, we see that contraction gives an R-linear map

Cx : ArðXÞ ! Ar�1ðXÞ:

This operation of contraction satisfies the following properties.

CON 1. Cx � Cx ¼ 0.

CON 2. The association ðx;oÞ 7! Cxo ¼ o � x is bilinear. It is in fact
bilinear with respect to functions, that is if j is a function, then

Cjx ¼ jCx and CxðjoÞ ¼ jCxo:

CON 3. If o, c are di¤erential forms and r ¼ deg o, then

Cxðo5cÞ ¼ ðCxoÞ5cþ ð�1Þro5Cxc:

These three properties follow at once from the definitions.

Example. Let X ¼ Rn, and let

oðxÞ ¼ dx15 � � � 5 dxn:

If x is a vector field on Rn, then we have the local representation

ðo � xÞðxÞ ¼
Xn
i¼1

ð�1Þ iþ1xiðxÞ dx15 � � � 5 cdxidxi5 � � � 5 dxn:

We also have immediately from the definition of the exterior derivative,

dðo � xÞ ¼
Xn
i¼1

qxiðxÞ
qxi

dx15 � � � 5 dxn;

letting x ¼ ðx1; . . . ; xnÞ in terms of its components xi.

We can define the Lie derivative of an r-form as we did before for
vector fields. Namely, we shall evaluate the following limit :

ðLxoÞðxÞ ¼ lim
t!0

1

t
½ða

t oÞðxÞ � oðxÞ�;
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or in other words,

Lxo ¼ d

dt
ða
t oÞ

����
t¼0

where a is the flow of the vector field x, and we call Lx the Lie derivative
again, applied to the di¤erential form o. We may rewrite this definition in
terms of the value on vector fields x1; . . . ; xr as follows :

ðLxoÞðx1; . . . ; xrÞ ¼
d

dt
ho � at; atx1 � � � � � atxri

����
t¼0

Proposition 5.1. Let x be a vector field and o a di¤erential form of

degree rZ 1. The Lie derivative Lx is a derivation, in the sense that

Lx

�
oðx1; . . . ; xrÞ

�
¼ ðLxoÞðx1; . . . ; xrÞ þ

Xr
i¼1

oðx1; . . . ;Lxxi; . . . ; xrÞ

where of course Lxxi ¼ ½x; xi�.
If x, xi, o denote the local representations of the vector fields and

the form respectively, then the Lie derivative Lxo has the local

representation

hðLxoÞðxÞ; x1ðxÞ � � � � � xrðxÞi

¼ ho 0ðxÞxðxÞ; x1ðxÞ � � � � � xrðxÞi

þ
Xr
i¼1

hoðxÞ; x1ðxÞ � � � � � x 0ðxÞxiðxÞ � � � � � xrðxÞi:

Proof. The proof is routine using the definitions. The first assertion
is obvious by the definition of the pull back of a form. For the local
expression we actually derive more, namely we derive a local expression

for a
t o and

d

dt
a
t o which are characterized by their values at ðx1; . . . ; xrÞ.

So we let

F ðtÞ ¼ hða
t oÞðxÞ; x1ðxÞ � � � � � xrðxÞið1Þ

¼ ho
�
aðt; xÞ

�
; D2aðt; xÞx1ðxÞ � � � � �D2aðt; xÞxrðxÞi:

Then the Lie derivative ðLxoÞðxÞ is precisely F 0ð0Þ, but we obtain also

the local representation for
d

dt
a
t o :

contractions and lie derivative[V, §5] 129



F 0ðtÞ ¼ d

dt
a
t oðxÞ; x1ðxÞ � � � � � xrðxÞ

� �
¼ð2Þ

ho 0�aðt; xÞ�D1aðt; xÞ; D2aðt; xÞx1ðxÞ � � � � �D2aðt; xÞxrðxÞið3Þ

þ
Xr
i¼1

ho
�
aðt; xÞ

�
; D2aðt; xÞx1ðxÞ� � � � �D1D2aðt; xÞxiðxÞ� � � � �D2aðt; xÞxrðxÞi

by the rule for the derivative of a product. Putting t ¼ 0 and using the
di¤erential equation satisfied by D2aðt; xÞ, we get precisely the local
expression as stated in the proposition. Remember the initial condition
D2að0; xÞ ¼ id.

From Proposition 5.1, we conclude that the Lie derivative gives an
R-linear map

Lx : ArðX Þ ! ArðX Þ:

We may use expressions (1) and (3) in the above proof to derive a formula
which holds even more generally for time-dependent vector fields.

Proposition 5.2. Let xt be a time-dependent vector field, a its flow, and
let o be a di¤erential form. Then

d

dt
ða
t oÞ ¼ a

t ðLxtoÞ or
d

dt
ða
t oÞ ¼ a

t ðLxoÞ

for a time-independent vector field.

Proof. Proposition 5.1 gives us a local expression for ðLxtoÞðyÞ, re-
placing x by y because we shall now put y ¼ aðt; xÞ. On the other hand,
from (1) in the proof of Proposition 5.1, we obtain

a
t ðLxtoÞðxÞ ¼ hðLxtoÞðyÞ; D2aðt; xÞx1ðxÞ � � � � �D2aðt; xÞxrðxÞi:

Substituting the local expression for ðLxtoÞðyÞ, we get expression (3) from
the proof of Proposition 5.1, thereby proving Proposition 5.2.

Proposition 5.3. As a map on di¤erential forms, the Lie derivative
satisfies the following properties.

LIE 1. Lx ¼ d � Cx þ Cx � d, so Lx ¼ Cx � d on functions.

LIE 2. Lxðo5cÞ ¼ Lxo5cþ o5Lxc.

LIE 3. Lx commutes with d and Cx.

LIE 4. L½x;h� ¼ Lx �Lh �Lh �Lx.
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LIE 5. C½x;h� ¼ Lx � Ch � Ch �Lx.

LIE 6. Lf xo ¼ fLxoþ df 5Cxo for all forms o and functions f.

Proof. Let x1; . . . ; xr be vector fields, and o an r-form. Using the
definition of the contraction and the local formula of Proposition 5.1, we
find that Cx do is given locally by

hCx doðxÞ; x1ðxÞ � � � � � xrðxÞi

¼ ho 0ðxÞxðxÞ; x1ðxÞ � � � � � xrðxÞi

þ
Xr
i¼1

ð�1Þ iho 0ðxÞxiðxÞ; xðxÞ � x1ðxÞ � � � � � dxiðxÞxiðxÞ � � � � xrðxÞi:

On the other hand, dCxo is given by

hdCxoðxÞ; x1ðxÞ � � � � � xrðxÞi

¼
Xr
i¼1

ð�1Þ iþ1hðCxoÞ0ðxÞxiðxÞ; x1ðxÞ � � � � � dxiðxÞxiðxÞ � � � � � xrðxÞi:

To compute ðCxoÞ0ðxÞ is easy, going back to the definition of the
derivative. At vectors v1; . . . ; vr�1, the form CxoðxÞ has the value

hoðxÞ; xðxÞ � v1 � � � � � vr�1i:

Di¤erentiating this last expression with respect to x and evaluating at a
vector h we get

ho 0ðxÞh; xðxÞ � v1 � � � � � vr�1i þ hoðxÞ; x 0ðxÞh� v1 � � � � � vr�1i:

Hence hdCxoðxÞ; x1ðxÞ � � � � � xrðxÞi is equal to

Xr
i¼1

ð�1Þ iþ1ho 0ðxÞxiðxÞ; xðxÞ � x1ðxÞ � � � � � dxiðxÞxiðxÞ � � � � � xrðxÞi

þ
Xr
i¼1

ð�1Þ iþ1hoðxÞ; x 0ðxÞxiðxÞ � x1ðxÞ � � � � � dxiðxÞxiðxÞ � � � � � xrðxÞi:

Shifting x 0ðxÞxiðxÞ to the i-th place in the second sum contributes a sign of
ð�1Þ i�1 which gives 1 when multiplied by ð�1Þ iþ1. Adding the two local
representations for dCxo and Cx do, we find precisely the expression of
Proposition 5.1, thus proving LIE 1.
As for LIE 2, it consists in using the derivation rule for d and Cx

in Proposition 3.3, EXD 1, and CON 3. The corresponding rule for

contractions and lie derivative[V, §5] 131



Lx follows at once. (Terms will cancel just the right way.) The other
properties are then clear.

V, §6. VECTOR FIELDS AND 1-FORMS
UNDER SELF DUALITY

Let E be a vector space and let

ðv; wÞ 7! hv; wi

be a bilinear function of E� E! R. We call such a function a bilinear
form. This form induced a linear map

l: E! E4

which to each v A E associates the functional lv such that

lvðwÞ ¼ hv; wi:

We have a similar map on the other side. If both these mappings are
linear isomorphisms of E and E4 then we say that the bilinear form is
non-singular. Such a non-singular form exists, and we say that E is
self-dual with respect to this form. For instance, a euclidean space is self-
dual.
It su‰ces for a bilinear form to be non-singular that its kernels on the

right and on the left be 0. (The kernels are the kernels of the associated
maps l as above.)
Let E be self dual with respect to the non-singular form ðv; wÞ 7!

hv; wi, and let

W : E� E! R

be a continuous bilinear map. There exists a unique operator A such that

Wðv; wÞ ¼ hAv; wi

for all v, w A E. (An operator is a linear map E! E by definition.)

Remarks. Suppose that the form ðv; wÞ 7! hv; wi is symmetric, i.e.

hv; wi ¼ hw; vi

for all v, w A E. Then W is symmetric (resp. alternating) if and only if A is
symmetric (resp. skew-symmetric). Recall that A symmetric (with respect
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to h ; i) means that

hAv; wi ¼ hv; Awi for all v; w A E:

That A is skew-symmetric means that hAv; wi ¼ �hAw; wi for all v, w A E.
For any operator A: E! E there is another operator tA (the transpose of
A with respect to the non-singular form h ; i) such that for all v, w A E we
have

hAv; wi ¼ hv; tAwi:

Thus A is symmetric (resp. skew-symmetric) if and only if tA ¼ A (resp.
tA ¼ �A).

The above remarks apply to any bilinear form W. For invertibility, we
have the criterion :

The form W is non-singular if and only if the operator A representing the

form with respect to h ; i is invertible.

The easy verification is left to the reader. Of course, invertibility or non-
singularity can be checked by verifying that the matrix representing the
linear map with respect to bases has non-zero determinant. Similarly, the
form is also represented by a matrix with respect to a choice of bases, and
its being non-singular is equivalent to the matrix representing the form
being invertible.
We recall that the set of invertible operators in LautðEÞ is an open

subset. Alternatively, the set of non-singular bilinear forms on E is an
open subset of L2ðEÞ.
We may now globalize these notions to a vector bundle (and eventually

especially to the tangent bundle) as follows.
Let X be a manifold, and p: E ! X a vector bundle over X with fibers

which are linearly isomorphic to E, or as we shall also say, modeled on E.
Let W be a tensor field of type L2 on E, that is to say, a section of the
bundle L2ðEÞ

�
or L2ðpÞ

�
, or as we shall also say, a bilinear tensor field on

E. Then for each x A X , we have a bilinear form Wx on Ex.
If Wx is non-singular for each x A X then we say that W is non-singular.

If p is trivial, and we have a trivalisation X � E, then the local repre-
sentation of W can be described by a morphism of X into the space of
operators. If W is non-singular, then the image of this morphism is
contained in the open set of invertible operators. (If W is a 2-form, this
image is contained in the submanifold of skew-symmetric operators.) For
example, in a chart U, we can represent W over U by a morphism

A: U ! LðE; EÞ such that Wxðv; wÞ ¼ hAxv; wi

for all v, w A E. Here we wrote Ax instead of AðxÞ to simplify the
typography.
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A non-singular W as above can be used to establish a linear
isomorphism

GðEÞ ! GL1ðEÞ; also denoted by GLðEÞ or GE4;

between the (infinite dimensional) R-vector spaces of sections GðEÞ of E
and the 1-forms on E in the following manner. Let x be a section of E.
For each x A X we define a continuous linear map

ðW � xÞx : Ex ! R

by the formula
ðW � xÞxðwÞ ¼ WxðxðxÞ; wÞ:

Looking at local trivialisations of p, we see at once that W � x is a 1-form
on E.
Conversely, let o be a given 1-form on E. For each x A X , ox is

therefore a 1-form on Ex and since W is non-singular, there exists a unique
element xðxÞ of Ex such that

WxðxðxÞ; wÞ ¼ oxðwÞ

for all w A Ex. In this fashion, we obtain a mapping x of X into E and we
contend that x is a morphism (and therefore a section).
To prove our contention we can look at the local representations. We

use W and o to denote these. They are represented over a suitable open
set U by two morphisms

A : U ! AutðEÞ and h: U ! E

such that

Wxðv; wÞ ¼ hAxv; wi and oxðwÞ ¼ hhðxÞ; wi:

From this we see that
xðxÞ ¼ A�1

x hðxÞ;

from which it is clear that x is a morphism. We may summarize our
discussion as follows.

Proposition 6.1. Let X be a manifold and p: E ! X a vector bundle

over X modeled on E. Let W be a non-singular bilinear tensor field on E.
Then W induces an isomorphism of FuðX Þ-modules

GE ! GE4:

A section x corresponds to a 1-form o if and only if W � x ¼ o.
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In many applications, one takes the di¤erential form to be df for some
function f. The vector field corresponding to df is then called the gradient
of f with respect to W.

Remark. There is no universally accepted notation to denote the
correspondence between a 1-form and a vector field under W as above.
Some authors use sharps and flats, which have two disadvantages. First,
they do not provide a symbol for the mapping, and second they do not
contain the W in the notation. I would propose the check sign 4

W
to

denote either isomorphism

4
W
: GLðEÞ ! GE denoted on elements by o 7! 4

W
o ¼ o4 ¼ xo

and also

4
W
: GE ! GLðEÞ denoted on elements by x 7! 4

W
x ¼ x4 ¼ ox:

If W is fixed throughout a discussion and need not be referred to, then it
is useful to write x4 or l4 in some formulas. We have 4

W
�4

W
¼ id.

Instead of the sharp and flat superscript, I prefer the single 4 sign.
Many important applications of the above duality occur when W is a

non-singular symmetric bilinear tensor field on the tangent bundle TX.
Such a tensor field is then usually denoted by g. If x, h are vector fields,
we may then define their scalar product to be the function

hx; hig ¼ gðx; hÞ:

On the other hand, by the duality of Proposition 6.1, if i.e. o, l are
1-forms, i.e. sections of the dual bundle T4X , then o4 and l4 are vector
fields, and we define the scalar product of the 1-forms to be

ho; lig ¼ ho4; l4ig:

This duality is especially important for Riemannian metrics, as in Chapter
X.
The rest of this section will not be used in the book.
In Proposition 6.1, we dealt with a quite general non-singular bilinear

tensor field on E. We now specialize to the case when E ¼ TX is the
tangent bundle of X, and W is a 2-form, i.e. W is alternating. A pair
ðX ; WÞ consisting of a manifold and a non-singular closed 2-form is called
a symplectic manifold. (Recall that closed means dW ¼ 0.)
We denote by x, h vector fields over X, and by f, h functions on X,

so that df, dh are 1-forms. We let xdf be the vector field on X which
corresponds to df under the 2-form W, according to Proposition 6.1.
Vector fields on X which are of type xdf are called Hamiltonian (with
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respect to the 2-form). More generally, we denote by xo the vector field
corresponding to a 1-form o. By definition we have the formula

W � xo ¼ o so in particular W � xdf ¼ df :W 1.

In Chapter VII, §7 we shall consider a particularly important example,
when the base manifold is the cotangent bundle ; the function is the kinetic
energy

KðvÞ ¼ 1
2 hv; vig

with respect to the scalar product g of a Riemannian or pseudo Rie-
mannian metric, and the 2-form W arises canonically from the pseudo
Riemannian metric.
In general, by LIE 1 of Proposition 5.3 formula W 1, and the fact that

dW ¼ 0, we find for any 1-form o that :

LxoW ¼ do:W 2.

The next proposition reinterprets this formula in terms of the flow when
do ¼ 0.

Proposition 6.2. Let o be such that do ¼ 0. Let a be the flow of xo.
Then a

t W ¼ W for all t (in the domain of the flow).

Proof. By Proposition 5.2,

d

dt
a
t W ¼ a

tLxoW ¼ 0 by W 2:

Hence a
t W is constant, equal to a

0W ¼ W, as was to be shown.

A special case of Proposition 6.2 in Hamiltonian mechanics is when
o ¼ dh for some function h. Next by LIE 5, we obtain for any vector
fields x, h :

LxðW � hÞ ¼ ðLxWÞ � hþW � ½x; h�:

In particular, since ddf ¼ 0, we get

Lxdf ðW � xdhÞ ¼ W � ½xdf ; xdh�:W 3.

One defines the Poisson bracket between two functions f, h to be

f f ; hg ¼ xdf � h:
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Then the preceding formula may be rewritten in the form

½xdf ; xdh� ¼ xdf f ;hg:W 4.

It follows immediately from the definitions and the antisymmetry of the
ordinary bracket between vector fields that the Poisson bracket is also
antisymmetric, namely

f f ; hg ¼ �fh; f g:

In particular, we find that

xdf � f ¼ 0:

In the case of the cotangent bundle with a symplectic 2-form as in the next
section, physicists think of f as an energy function, and interpret this
formula as a law of conservation of energy. The formula expresses the
property that f is constant on the integral curves of the vector field xdf .
This property follows at once from the definition of the Lie derivative of a
function. Furthermore :

Proposition 6.3. If xdf � h ¼ 0 then xdh � f ¼ 0.

This is immediate from the antisymmetry of the Poisson bracket. It
is interpreted as conservation of momentum in the physical theory of
Hamiltonian mechanics, when one deals with the canonical 2-form on the
cotangent bundle, to be defined in the next section.

V, §7. THE CANONICAL 2-FORM

Consider the functor E 7! LðEÞ (linear forms). If E ! X is a vector
bundle, then LðEÞ will be called the dual bundle, and will be denoted by
E4. For each x A X , the fiber of the dual bundle is simply LðExÞ.
If E ¼ TðXÞ is the tangent bundle, then its dual is denoted by T4ðXÞ

and is called the cotangent bundle. Its elements are called cotangent

vectors. The fiber of T4ðXÞ over a point x of X is denoted by T4
x ðX Þ.

For each x A X we have a pairing

T4
x � Tx ! R

given by
hl; ui ¼ lðuÞ

for l A T4
x and u A Tx (it is the value of the linear form l at u).
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We shall now describe how to construct a canonical 1-form on the
cotangent bundle T4ðXÞ. For each l A T4ðXÞ we must define a 1-form
on Tl

�
T4ðX Þ

�
.

Let p: T4ðX Þ ! X be the canonical projection. Then the induced
tangent map

Tp ¼ p : T
�
T4ðXÞ

�
! TðX Þ

can be applied to an element z of Tv
�
T4ðXÞ

�
and one sees at once that

pz lies in TxðXÞ if l lies in T4
x ðXÞ. Thus we can take the pairing

hl; pzi ¼ ylðzÞ

to define a map (which is obviously continuous linear) :

yl : Tl

�
T4ðX Þ

�
! R:

Proposition 7.1. This map defines a 1-form on T4ðXÞ. Let X ¼ U be

open in E and

T4ðUÞ ¼ U � E4; T
�
T4ðUÞ

�
¼ ðU � E4Þ � ðE� E4Þ:

If ðx; lÞ A U � E4 and ðu; oÞ A E� E4, then the local representation
yðx;lÞ is given by

hyðx;lÞ; ðu;oÞi ¼ lðuÞ:

Proof. We observe that the projection p: U � E4 ! U is linear, and
hence that its derivative at each point is constant, equal to the projection
on the first factor. Our formula is then an immediate consequence of the
definition. The local formula shows that y is in fact a 1-form locally, and
therefore globally since it has an invariant description.

Our 1-form is called the canonical 1-form on the cotangent bundle. We
define the canonical 2-form W on the cotangent bundle T4X to be

W ¼ �dy:

The next proposition gives a local description of W.

Proposition 7.2. Let U be open in E, and let W be the local

representation of the canonical 2-form on T4U ¼ U � E4. Let

ðx; lÞ A U � E4. Let ðu1; o1Þ and ðu2; o2Þ be elements of E� E4.
Then

hWðx;lÞ; ðu1; o1Þ � ðu2; o2Þi ¼ hu1; o2i � hu2; o1i

¼ o2ðu1Þ � o1ðu2Þ:
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Proof. We observe that y is linear, and thus that y 0 is constant. We
then apply the local formula for the exterior derivative, given in Pro-
position 3.2. Our assertion becomes obvious.

The canonical 2-form plays a fundamental role in Lagrangian and
Hamiltonian mechanics, cf. [AbM 78], Chapter 3, §3. I have taken the
sign of the canonical 2-form both so that its value is a 2� 2 determinant,
and so that it fits with, for instance, [LoS 68] and [AbM 78]. We observe
that W is closed, that is dW ¼ 0, because W ¼ �dy. Thus ðT4X ; WÞ is a
symplectic manifold, to which the properties listed at the end of the last
section apply.
In particular, let x be a vector field on X. Then to x is associated a

function called the momentum function

fx : T
4X ! R such that fxðlxÞ ¼ lx

�
xðxÞ

�

for lx A T4
x X . Then dfx is a 1-form on T

4X . Classical Hamiltonian
mechanics then applies Propositions 6.2 and 6.3 to this situation. We refer
the interested reader to [LoS 68] and [AbM 78] for further information on
this topic. For an important theorem of Marsden–Weinstein [MaW 74]
and applications to vector bundles, see [Ko 87].

V, §8. DARBOUX’S THEOREM

If E ¼ Rn then the usual scalar product establishes the self-duality of Rn.
This self-duality arises from other forms, and in this section we are
especially interested in the self-duality arising from alternating forms. If E
is finite dimensional and o is an element of L2aðEÞ, that is an alternating
2-form, which is non-singular, then one sees easily that the dimension of E
is even.

Example. An example of such a form on R2n is the following. Let

v ¼ ðv1; . . . ; vn; v 01; . . . ; v 0nÞ;

w ¼ ðw1; . . . ;wn; w 0
1; . . . ;w

0
nÞ;

be elements of R2n, with components vi, v
0
i , wi, w

0
i . Letting

oðv; wÞ ¼
Xn
i¼1

ðviw 0
i � v 0iwiÞ

defines a non-singular 2-form o on R2n. It is an exercise of linear algebra
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to prove that any non-singular 2-form on R2n is linearly isomorphic to this
particular one in the following sense. If

f : E ! F

is a linear isomorphism between two finite dimensional spaces, then it
induces an isomorphism

f  : L2aðFÞ ! L2aðEÞ:

We call forms o on E and c on F linearly isomorphic if there exists a
linear isomorphism f such that f c ¼ o. Thus up to a linear isomor-
phism, there is only one non-singular 2-form on R2n. (For a proof, cf. for
instance my book Algebra.)
We are interested in the same question on a manifold locally. Let U be

open in the Banach space E and let x0 A U . A 2-form

o: U ! L2aðEÞ

is said to be non-singular if each form oðxÞ is non-singular. If x is a vector
field on U, then o � x is a 1-form, whose value at ðx; oÞ is given

ðo � xÞðxÞðwÞ ¼ oðxÞðxðxÞ; wÞ:

As a special case of Proposition 6.1, we have :

Let o be a non-singular 2-form on an open set U in E. The association

x 7! o � x

is a linear isomorphism between the space of vector fields on U and the

space of 1-forms on U.

Let
o: U ! L2aðUÞ

be a 2-form on an open set U in E. If there exists a local isomorphism f at
a point x0 A U , say

f : U1 ! V1;

and a 2-form c on V1 such that f
c ¼ o (or more accurately, o restricted

to U1), then we say that o is locally isomorphic to c at x0. Observe that
in the case of an isomorphism we can take a direct image of forms, and
we shall also write

fo ¼ c

instead of o ¼ f c. In other words, f ¼ ð f �1Þ.
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Example. On R2n we have the constant form of the previous example.
In terms of local coordinates ðx1; . . . ; xn; y1; . . . ; ynÞ, this form has the
local expression

oðx; yÞ ¼
Xn
i¼1

dxi5 dyi:

This 2-form will be called the standard 2-form on R2n.

The Darboux theorem states that any non-singular closed 2-form in R2n

is locally isomorphic to the standard form, that is that in a suitable chart
at a point, it has the standard expression of the above example. A
technique to show that certain forms are isomorphic was used by Moser
[Mo 65], who pointed out that his arguments also prove the classical
Darboux theorem.

Theorem 8.1 (Darboux Theorem). Let

o: U ! L2aðEÞ

be a non-singular closed 2-form on an open set of E, and let x0 A U . Then
o is locally isomorphic at x0 to the constant form oðx0Þ.

Proof. Let o0 ¼ oðx0Þ, and let

ot ¼ o0 þ tðo� o0Þ; 0Y tY 1:

We wish to find a time-dependent vector field xt locally at 0 such that if a
denotes its flow, then

a
t ot ¼ o0:

Then the local isomorphism a1 satisfies the requirements of the theo-
rem. By the Poincaré lemma, there exists a 1-form y locally at 0 such
that

o� o0 ¼ dy;

and without loss of generality, we may assume that yðx0Þ ¼ 0. We
contend that the time-dependent vector field xt, such that

ot � xt ¼ �y;

has the desired property. Let a be its flow. If we shrink the domain of the
vector field near x0 su‰ciently, and use the fact that yðx0Þ ¼ 0, then we
can use the local existence theorem (Proposition 1.1 of Chapter IV) to see
that the flow can be integrated at least to t ¼ 1 for all points x in this
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small domain. We shall now verify that

d

dt
ða
t otÞ ¼ 0:

This will prove that a
t ot is constant. Since we have a

0o0 ¼ o0 because

að0; xÞ ¼ x and D2að0; xÞ ¼ id;

it will conclude the proof of the theorem.
We compute locally. We use the local formula of Proposition 5.2, and

formula LIE 1, which reduces to

Lxtot ¼ dðot � xtÞ;

because dot ¼ 0. We find

d

dt
ða
t otÞ ¼ a

t

d

dt
ot

� 	
þ a

t ðLxtotÞ

¼ a
t

d

dt
ot þ dðot � xtÞ

� 	

¼ a
t ðo� o0 � dyÞ

¼ 0:

This proves Darboux’s theorem.

Remark 1. For the analogous uniqueness statement in the case of a
non-singular symmetric form, see the Morse–Palais lemma of Chapter VII,
§5.

Remark 2. The proof of the Poincaré lemma can also be cast in the
above style. For instance, let ftðxÞ ¼ tx be a retraction of a star shaped
open set around 0. Let xt be the vector field whose flow is ft, and let o be
a closed form. Then

d

dt
f
t o ¼ f

tLxt o ¼ f
t dCx to ¼ df

t Cxt o:

Since f
0o ¼ 0 and f1 is the identity, we see that

o ¼ f
1o� f

0o ¼
ð1
0

d

dt
f
t o dt ¼ d

ð1
0

f
t Cxt o dt

is exact, thus concluding a proof of Poincaré’s theorem.
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CHAPTER VI

The Theorem of Frobenius

Having acquired the language of vector fields, we return to di¤erential
equations and give a generalization of the local existence theorem known
as the Frobenius theorem, whose proof will be reduced to the standard
case discussed in Chapter IV. We state the theorem in §1. Readers should
note that one needs only to know the definition of the bracket of two vector
fields in order to understand the proof. It is convenient to insert also a
formulation in terms of di¤erential forms, for which the reader needs to
know the local definition of the exterior derivative. However, the con-
dition involving di¤erential forms is proved to be equivalent to the vector
field condition at the very beginning, and does not reappear explicitly
afterwards.
We shall follow essentially the proof given by Dieudonné in his

Foundations of Modern Analysis, allowing for the fact that we use freely
the geometric language of vector bundles, which is easier to grasp.
It is convenient to recall in §2 the statements concerning the existence

theorems for di¤erential equations depending on parameters. The proof of
the Frobenius theorem proper is given in §3. An important application to
Lie groups is given in §5, after formulating the theorem globally.
The present chapter will not be used in the rest of this book.

VI, §1. STATEMENT OF THE THEOREM

Let X be a manifold of class Cp ðpZ 2Þ. A subbundle E of its
tangent bundle will also be called a tangent subbundle over X. We
contend that the following two conditions concerning such a subbundle are
equivalent.
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FR 1. For each point z A X and vector fields x, h at z (i.e. defined on an
open neighborhood of z) which lie in E (i.e. such that the image of
each point of X under x, h lies in E), the bracket ½x; h� also lies in
E.

FR 2. For each point z A X and di¤erential form o of degree 1 at z

which vanishes on E, the form do vanishes on x� h whenever x, h
are two vector fields at z which lie in E.

The equivalence is essentially a triviality. Indeed, assume FR 1. Let o
vanish to E. Then

hdo; x� hi ¼ 	ho; ½x; h�i 	 hho; xi þ xho; hi:

By assumption the right-hand side is 0 when evaluated at z. Conversely,
assume FR 2. Let x, h be two vector fields at z lying in E. If ½x; h�ðzÞ is
not in E, then we see immediately from a local product representation that
there exists a di¤erential form o of degree 1 defined on a neighborhood of
z which is 0 on Ez and non-zero on ½x; h�ðzÞ, thereby contradicting the
above formula.
We shall now give a third condition equivalent to the above two, and

actually, we shall not refer to FR 2 any more. We remark merely that, it
is easy to prove that when a di¤erential form o satisfies condition FR 2,
then do can be expressed locally in a neighborhood of each point as a
finite sum

do ¼
X

gi 5oi

where gi and oi are of degree 1 and each oi vanishes on E. We leave this
as an exercise to the reader.

Let E be a tangent subbundle over X. We shall say that E is integrable
at a point x0 if there exists a submanifold Y of X containing x0 such that
the tangent map of the inclusion

j : Y ! X

induces a VB-isomorphism of TY with the subbundle E restricted to Y .
Equivalently, we could say that for each point y A Y , the tangent map

Ty j : TyY ! TyX

induces a linear isomorphism of TyY on Ey. Note that our condition
defining integrability is local at x0. We say that E is integrable if it is
integrable at every point.
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Using the functoriality of vector fields, and their relations under tangent
maps and the bracket product, we see at once that if E is integrable, then
it satisfies FR 1. Indeed, locally vector fields having their values in E are
related to vector fields over Y under the inclusion mapping.
Frobenius’ theorem asserts the converse.

Theorem 1.1. Let X be a manifold of class Cp ðpZ 2Þ and let E be a

tangent subbundle over X. Then E is integrable if and only if E satisfies

condition FR 1.

The proof of Frobenius’ theorem will be carried out by analyzing the
situation locally and reducing it to the standard theorem for ordinary
di¤erential equations. Thus we now analyze the condition FR 1 in terms
of its local representation.
Suppose that we work locally, over a product U � V of open subsets

of vector spaces E and F. Then the tangent bundle TðU � VÞ can be
written in a natural way as a direct sum. Indeed, for each point ðx; yÞ in
U � V we have

Tðx;yÞðU � VÞ ¼ TxðUÞ � TyðVÞ:

One sees at once that the collection of fibers TxðUÞ � 0
�
contained in

TxðUÞ � TyðVÞ
�
forms a subbundle which will be denoted by T1ðU � VÞ

and will be called the first factor of the tangent bundle. One could define
T2ðU � VÞ similarly, and

TðU � VÞ ¼ T1ðU � VÞlT2ðU � VÞ:

A subbundle E of TðXÞ is integrable at a point z A X if and only if
there exists an open neighborhood W of z and an isomorphism

j: U � V ! W

of a product onto W such that the composition of maps

T1ðU � VÞ 	!inc: TðU � VÞ 	!Tj TðWÞ

induces a VB-isomorphism of T1ðU � VÞ onto EjW (over j). Denoting
by jy the map of U into W given by jyðxÞ ¼ jðx; yÞ, we can also express
the integrability condition by saying that Txjy should induce a linear
isomorphism of E onto Ejðx;yÞ for all ðx; yÞ in U � V . We note that in
terms of our local product structure, Txjy is nothing but the partial
derivative D1jðx; yÞ.
Given a subbundle of TðXÞ, and a point in the base space X, we know

from the definition of a subbundle in terms of a local product decom-
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position that we can find a product decomposition of an open neigh-
borhood of this point, say U � V , such that the point has coordinates
ðx0; y0Þ and such that the subbundle can be written in the form of an
exact sequence

0! U � V � E 	!
~ff
U � V � E� F

with the map

f ðx0; y0Þ: E! E� F

equal to the canonical embedding of E on E� 0. For a point ðx; yÞ in
U � V the map f ðx; yÞ has two components f1ðx; yÞ and f2ðx; yÞ into E
and F respectively. Taking a suitable VB-automorphism of U � V � E if
necessary, we may assume without loss of generality that f1ðx; yÞ is the
identity. We now write f ðx; yÞ ¼ f2ðx; yÞ. Then

f : U � V ! LðE; FÞ

is a morphism (of class Cp	1) which describes our subbundle completely.
We shall interpret condition FR 1 in terms of the present situation. If

x: U � V ! E� F

is the local representation of a vector field over U � V , we let x1 and x2 be
its projections on E and F respectively. Then x lies in the image of ~ff if
and only if

x2ðx; yÞ ¼ f ðx; yÞx1ðx; yÞ

for all ðx; yÞ in U � V , or in other words, if and only if x is of the form

xðx; yÞ ¼
�
x1ðx; yÞ; f ðx; yÞx1ðx; yÞ

�

for some morphism (of class Cp	1)

x1 : U � V ! E:

We shall also write the above condition symbolically, namely

x ¼ ðx1; f  x1Þ:ð1Þ

If x, h are the local representations of vector fields over U � V , then the
reader will verify at once from the local definition of the bracket
(Proposition 1.3 of Chapter V) that ½x; h� lies in the image of ~ff if and only
if

Df ðx; yÞ  xðx; yÞ  h1ðx; yÞ ¼ Df ðx; yÞ  hðx; yÞ  x1ðx; yÞ
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or symbolically,

Df  x  h1 ¼ Df  h  x1:ð2Þ

We have now expressed all the hypotheses of Theorem 1.1 in terms of
local data, and the heart of the proof will consist in proving the following
result.

Theorem 1.2. Let U, V be open subsets of vector spaces E, F

respectively. Let

f : U � V ! LðE; FÞ

be a Cr-morphism ðrZ 1Þ. Assume that if

x1; h1 : U � V ! E

are two morphisms, and if we let

x ¼ ðx1; f  x1Þ and h ¼ ðh1; f  h1Þ

then relation (2) above is satisfied. Let ðx0; y0Þ be a point of U � V .
Then there exists open neighborhoods U0, V0 of x0, y0 respectively,
contained in U, V, and a unique morphism a: U0 � V0 ! V such that

D1aðx; yÞ ¼ f
�
x; aðx; yÞ

�

and aðx0; yÞ ¼ y for all ðx; yÞ in U0 � V0.

We shall prove Theorem 1.2 in §3. We now indicate how Theorem 1.1
follows from it. We denote by ay the map ayðxÞ ¼ aðx; yÞ, viewed as a
map of U0 into V. Then our di¤erential equation can be written

DayðxÞ ¼ f
�
x; ayðxÞ

�
:

We let

j: U0 � V0 ! U � V

be the map jðx; yÞ ¼
�
x; ayðxÞ

�
. It is obvious that Djðx0; y0Þ is a

toplinear isomorphism, so that j is a local isomorphism at ðx0; y0Þ.
Furthermore, for ðu; vÞ A E� F we have

D1jðx; yÞ  ðu; vÞ ¼
�
u; DayðxÞ  u

�
¼
�
u; f ðx; ayðxÞÞ  u

�

which shows that our subbundle is integrable.
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VI, §2. DIFFERENTIAL EQUATIONS DEPENDING
ON A PARAMETER

Proposition 2.1. Let U, V be open sets in vector spaces E, F respec-

tively. Let J be an open interval of R containing 0, and let

g: J �U � V ! F

be a morphism of class C r ðrZ 1Þ. Let ðx0; y0Þ be a point in U � V .
Then there exists open balls J0, U0, V0 centered at 0, x0, y0 and

contained J, U, V respectively, and a unique morphism of class C r

b : J0 �U0 � V0 ! V

such that bð0; x; yÞ ¼ y and

D1bðt; x; yÞ ¼ g
�
t; x; bðt; x; yÞ

�

for all ðt; x; yÞ A J0 �U0 � V0.

Proof. This follows from the existence and uniqueness of local flows, by
considering the ordinary vector field on U � V

G : J �U � V ! E� F

given by Gðt; x; yÞ ¼
�
0; gðt; x; yÞ

�
. If Bðt; x; yÞ is the local flow for G,

then we let bðt; x; yÞ be the projection on the second factor of Bðt; x; yÞ.
The reader will verify at once that b satisfies the desired conditions. The
uniqueness is clear.

Let us keep the initial condition y fixed, and write

bðt; xÞ ¼ bðt; x; yÞ:

From Chapter IV, §1, we obtain also the di¤erential equation satisfied by
b in its second variable :

Proposition 2.2. Let notation be as in Proposition 2.1, and with y fixed,
let bðt; xÞ ¼ bðt; x; yÞ. Then D2bðt; xÞ satisfies the di¤erential equation

D1D2bðt; xÞ  v ¼ D2g
�
t; x; bðt; xÞ

�
 vþD3g

�
t; x; bðt; xÞ

�
D2bðt; xÞ  v;

for every v A E.
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Proof. Here again, we consider the vector field as in the proof of
Proposition 2.1, and apply the formula for the di¤erential equation
satisfied by D2b as in Chapter IV, §1.

VI, §3. PROOF OF THE THEOREM

In the application of Proposition 2.1 to the proof of Theorem 1.2, we take
our morphism g to be

gðt; z; yÞ ¼ f ðx0 þ tz; yÞ  z

with z in a small ball E0 around the origin in E, and y in V. It is
convenient to make a translation, and without loss of generality we can
assume that x0 ¼ 0 and y0 ¼ 0. From Proposition 2.1 we then obtain

b : J0 � E0 � V0 ! V

with initial condition bð0; z; yÞ ¼ y for all z A E0, satisfying the di¤erential
equation

D1bðt; z; yÞ ¼ f
�
tz; bðt; z; yÞ

�
 z:

Making a change of variables of type t ¼ as and z ¼ a	1x for a small
positive number a, we see at once that we may assume that J0 contains 1,
provided we take E0 su‰ciently small. As we shall keep y fixed from now
on, we omit it from the notation, and write bðt; zÞ instead of bðt; z; yÞ.
Then our di¤erential equation is

D1bðt; zÞ ¼ f
�
tz; bðt; zÞ

�
 z:ð3Þ

We observe that if we knew the existence of a in the statement of
Theorem 1.2, then letting bðt; zÞ ¼ aðx0 þ tzÞ would yield a solution of our
di¤erential equation. Thus the uniqueness of a follows. To prove its
existence, we start with b and contend that the map

aðxÞ ¼ bð1; xÞ

has the required properties for small jxj. To prove our contention it will
su‰ce to prove that

D2bðt; zÞ ¼ t f
�
tz; bðt; zÞ

�
ð4Þ

because if that relation holds, then

DaðxÞ ¼ D2bð1; xÞ ¼ f
�
x; bð1; xÞ

�
¼ f

�
x; aðxÞ

�

which is precisely what we want.
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From Proposition 2.2, we obtain for any vector v A E,

D1D2bðt; zÞ  v ¼ tD1 f
�
tz; bðt; zÞ

�
 v  z

þD2 f
�
tz; bðt; zÞ

�
D2bðt; zÞ  v  zþ f

�
tz; bðt; zÞ

�
 v:

We now let kðtÞ ¼ D2bðt; zÞ  v	 t f
�
tz; bðt; zÞ

�
 v. Then one sees at once

that kð0Þ ¼ 0 and we contend that

DkðtÞ ¼ D2 f
�
tz; bðt; zÞ

�
 kðtÞ  z:ð5Þ

We use the main hypothesis of our theorem, namely relation (2), in which
we take x1 and h1 to be the fields v and z respectively. We compute Df
using the formula for the partial derivatives, and apply it to this special
case. Then (5) follows immediately. It is a linear di¤erential equation
satisfied by kðtÞ, and by Corollary 1.7 of Chapter IV, we know that the
solution 0 is the unique solution. Thus kðtÞ ¼ 0 and relation (4) is
proved. The theorem also.

VI, §4. THE GLOBAL FORMULATION

Let X be a manifold. Let F be a tangent subbundle. By an integral

manifold for F, we shall mean an injective immersion

f : Y ! X

such that at every point y A Y , the tangent map

Ty f : TyY ! Tf ðyÞX

induces a linear isomorphism of TyY on the subspace Ff ðyÞ of Tf ðyÞX .
Thus Tf induces locally an isomorphism of the tangent bundle of Y with
the bundle F over f ðYÞ.
Observe that the image f ðYÞ itself may not be a submanifold of X. For

instance, if F has dimension 1 (i.e. the fibers of F have dimension 1), an
integral manifold for F is nothing but an integral curve from the theory of
di¤erential equations, and this curve may wind around X in such a way
that its image is dense. A special case of this occurs if we consider the
torus as the quotient of the plane by the subgroup generated by the two
unit vectors. A straight line with irrational slope in the plane gets mapped
on a dense integral curve on the torus.
If Y is a submanifold of X, then of course the inclusion j : Y ! X is an

injective immersion, and in this case, the condition that it be an integral
manifold for F simply means that TðY Þ ¼ F jY (F restricted to Y ).
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We now have the local uniqueness of integral manifolds, corresponding
to the local uniqueness of integral curves.

Theorem 4.1. Let Y, Z be integral submanifolds of X for the subbundle F

of TX, passing through a point x0. Then there exists an open neigh-

borhood U of x0 in X, such that

Y XU ¼ ZXU :

Proof. Let U be an open neighborhood of x0 in X such that we have a
chart

U ! V �W

with
x0 7! ðy0; w0Þ;

and Y corresponds to all points ðy; w0Þ, y A V . In other words, Y

corresponds to a factor in the product in the chart. If V is open in F1 and
W open in F2, with F1 � F2 ¼ E, then the subbundle F is represented by
the projection

Shrinking Z, we may assume that ZHU . Let h: Z ! V �W be the
restriction of the chart to Z, and let h ¼ ðh1; h2Þ be represented by its two
components. By assumption, h 0ðxÞ maps E into F1 for every x A Z. Hence
h2 is constant, so that hðZÞ is contained in the factor V � fw0g. It follows
at once that hðZÞ ¼ V1 � fw0g for some open V1 in V, and we can shrink
U to a product V1 �W1 (where W1 is a small open set in W containing
w0) to conclude the proof.

We wish to get a maximal connected integral manifold for an integrable
subbundle F of TX passing through a given point, just as we obtained a
maximal integral curve. For this, it is just as easy to deal with the
nonconnected case, following Chevalley’s treatment in his book on Lie

Groups. (Note the historical curiosity that vector bundles were invented
about a year after Chevalley published his book, so that the language
of vector bundles, or the tangent bundle, is absent from Chevalley’s
presentation. In fact, Chevalley used a terminology which now appears
terribly confusing for the notion of a tangent subbundle, and it will not be
repeated here !)
We give a new manifold structure to X, depending on the integrable

tangent subbundle F, and the manifold thus obtained will be denoted by
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XF . This manifold has the same set of points as X. Let x A X . We know
from the local uniqueness theorem that a submanifold Y of X which is at
the same time an integral manifold for F is locally uniquely determined. A
chart for this submanifold locally at x is taken to be a chart for XF . It is
immediately verified that the collection of such charts is an atlas, which
defines our manifold XF . (We lose one order of di¤erentiability.) The
identity mapping

j : XF ! X

is then obviously an injective immersion, satisfying the following universal
properties.

Theorem 4.2. Let F be an integrable tangent subbundle over X. If

f : Y ! X

is a morphism such that T f : TY ! TX maps TY into F, then the

induced map

fF : Y ! XF

(same values as f but viewed as a map into the new manifold XF ) is also a
morphism. Furthermore, if f is an injective immersion, then fF induces an

isomorphism of Y onto an open subset of XF .

Proof. Using the local product structure as in the proof of the local
uniqueness Theorem 4.1, we see at once that fF is a morphism. In other
words, locally, f maps a neighborhood of each point of Y into a sub-
manifold of X which is tangent to F. If in addition f is an injective
immersion, then from the definition of the charts on XF , we see that fF
maps Y bijectively onto an open subset of XF , and is a local isomorphism
at each point. Hence fF induces an isomorphism of Y with an open
subset of XF , as was to be shown.

Corollary 4.3. Let XF ðx0Þ be the connected component of XF containing

a point x0. If f : Y ! X is an integral manifold for F passing through

x0, and Y is connected, then there exists a unique morphism

h: Y ! XF ðx0Þ

making the following diagram commutative :

and h induces an isomorphism of Y onto an open subset of XF ðx0Þ.
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Proof. Clear from the preceding discussion.

Note the general functorial behavior of the integral manifold. If

g: X ! X 0

is an isomorphism, and F is an integrable tangent subbundle over X, then
F 0 ¼ ðTgÞðF Þ ¼ g�F is an integrable bundle over X 0. Then the following
diagram is commutative :

The map gF is, of course, the map having the same values as g, but viewed
as a map on the manifold XF .

VI, §5. LIE GROUPS AND SUBGROUPS

It is not our purpose here to delve extensively into Lie groups, but to lay
the groundwork for their theory. For more results, we refer the reader
to texts on Lie groups, di¤erential geometry, and also to the paper by
W. Graeub [Gr 61].
By a group manifold, or a Lie group G, we mean a manifold with a

group structure, that is a law of composition and inverse,

t : G � G ! G and G ! G

which are morphisms. Thus each x A G gives rise to a left translation

tx : G ! G

such that txðyÞ ¼ xy.
When dealing with groups, we shall have to distinguish between iso-

morphisms in the category of manifolds, and isomorphisms in the category
of group manifolds, which are also group homomorphisms. Thus we shall
use prefixes, and speak of group manifold isomorphism, or manifold iso-
morphism as the case may be. We abbreviate these by GM-isomorphism
or M-isomorphism. We see that left translation is an M-isomorphism, but
not a GM-isomorphism.
Let e denote the origin (unit element) of G. If v A TeG is a tangent

vector at the origin, then we can translate it, and we obtain a map

ðx; vÞ 7! tx� v ¼ xvðxÞ
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which is easily verified to be a VB-isomorphism

G � TeG ! TG

from the product bundle to the tangent bundle of G. This is done at once
using charts. Recall that TeG can be viewed as a vector space, using any
local trivialization of G at e to get a linear isomorphism of TeG with the
standard space on which G is modeled. Thus we see that the tangent
bundle of a Lie group is trivializable.
A vector field x over G is called left invariant if tx� x ¼ x for all x A G.

Note that the map
x 7! xvðxÞ

described above is a left invariant vector field, and that the association

v 7! xv

obviously establishes a linear isomorphism between TeG and the vector
space of left invariant vector fields on G. The space of such vector fields
will be denoted by g or lðGÞ, and will be called the Lie algebra of G,
because of the following results.

Proposition 5.1. Let x, h be left invariant vector fields on G. Then ½x; h�
is also left invariant.

Proof. This follows from the general functorial formula

tx� ½x; h� ¼ ½tx� x; tx� h� ¼ ½x; h�:

Under the linear isomorphism of TeG with lðGÞ, we can view lðGÞ as a
vector space. By a Lie subalgebra of lðGÞ we shall mean a closed subspace
h having the property that if x, h A h, then ½x; h� A h also.

Let G, H be Lie groups. A map

f : H ! G

will be called a homomorphism if it is a group homomorphism and a
morphism in the category of manifolds. Such a homomorphism induces a
linear map

Te f ¼ f� : TeH ! TeG;

and it is clear that it also induces a corresponding linear map

lðHÞ ! lðGÞ;
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also denoted by f�. Namely, if v A TeH and xv is the left invariant vector
field on H induced by v, then

f�xv ¼ xf�v:

The general functorial property of related vector fields applies to this case,
and shows that the induced map

f� : lðHÞ ! lðGÞ

is also a Lie algebra homomorphism, namely for x, h A lðHÞ we have

f�½x; h� ¼ ½ f�x; f�h�:

Now suppose that the homomorphism f : H ! G is also an immersion
at the origin of H. Then by translation, one sees that it is an immersion at
every point. If in addition it is an injective immersion, then we shall say
that f is a Lie subgroup of G. We see that in this case, f induces an
injection

f� : lðHÞ ! lðGÞ:

The image of lðHÞ in lðGÞ is a Lie subalgebra of lðGÞ.
In general, let h be a Lie subalgebra of lðGÞ and let Fe be the corre-

sponding subspace of TeG. For each x A G, let

Fx ¼ tx�Fe:

Then Fx is a subspace of TxG, and using local charts, it is clear that the
collection F ¼ fFxg is a subbundle of TG, which is left invariant. Fur-
thermore, if

f : H ! G

is a homomorphism which is an injective immersion, and if h is the image
of lðHÞ, then we also see that f is an integral manifold for the subbundle
F. We shall now see that the converse holds, using Frobenius’ theorem.

Theorem 5.2. Let G be a Lie group, h a Lie subalgebra of lðGÞ, and
let F be the corresponding left invariant subbundle of TG. Then F is

integrable.

Proof. I owe the proof to Alan Weinstein. It is based on the following
lemma.

Lemma 5.3. Let X be a manifold, let x, h be vector fields at a point x0,
and let F be a subbundle of TX. If xðx0Þ ¼ 0 and x is contained in F,
then ½x; h�ðx0Þ A F .
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Proof. We can deal with the local representations, such that X ¼ U is
open in E, and F corresponds to a factor, that is

TX ¼ U � F1 � F2 and F ¼ U � F1:

We may also assume without loss of generality that x0 ¼ 0. Then
xð0Þ ¼ 0, and x: U ! F1 may be viewed as a map into F1. We may write

xðxÞ ¼ AðxÞx;

with a morphism A: U ! LðE; F1Þ. Indeed,

xðxÞ ¼
ð1
0

x 0ðtxÞ dt  x;

and AðxÞ ¼ pr1 �
ð1
0

x 0ðtxÞ dt, where pr1 is the projection on F1. Then

½x; h�ðxÞ ¼ h 0ðxÞxðxÞ 	 x 0ðxÞhðxÞ

¼ h 0ðxÞAðxÞx	 A 0ðxÞ  x  hðxÞ 	 AðxÞ  hðxÞ;

whence
½x; h�ð0Þ ¼ Að0Þhð0Þ:

Since Að0Þ maps E into F1, we have proved our lemma.

Back to the proof of the proposition. Let x, h be vector fields at a
point x0 in G, both contained in the invariant subbundle F. There exist
invariant vector fields x0 and h0 and x0 such that

xðx0Þ ¼ x0ðx0Þ and hðx0Þ ¼ h0ðx0Þ:

Let
x1 ¼ x	 x0 and h1 ¼ h	 h0:

Then x1, h1 vanish at x0 and lie in F. We get :

½x; h� ¼
X
i; j

½xi; hj�:

The proposition now follows at once from the lemma.

Theorem 5.4. Let G be a Lie group, let h be a Lie subalgebra of lðGÞ,
and let F be its associated invariant subbundle. Let

j : H ! G
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be the maximal connected integral manifold of F passing through e. Then
H is a subgroup of G, and j : H ! G is a Lie subgroup of G. The

association between h and j : H ! G establishes a bijection between Lie

subalgebras of lðGÞ and Lie subgroups of G.

Proof. Let x A H. The M-isomorphism tx induces a VB-isomorphism
of F onto itself, in other words, F is invariant under tx� . Furthermore,
since H passes through e, and xe lies in H, it follows that j : H ! G is
also the maximal connected integral manifold of F passing through x.
Hence x maps H onto itself. From this we conclude that if y A H, then
xy A H, and there exists some y A H such that xy ¼ e, whence x	1 A H.
Hence H is a subgroup. The other assertions are then clear.
If H is a Lie subgroup of G, belonging to the Lie algebra h, and F is

the associated integrable left invariant tangent subbundle, then the integral
manifold for F passing through a given point x is simply the translation
xH, as one sees from first functorial principles.
When h is 1-dimensional, then it is easy to see that the Lie subgroup is

in fact a homomorphic image of an integral curve

a: R! G

which is a homomorphism, and such that a 0ð0Þ ¼ v is any vector in TeG

which is the value at e of a non-zero element of h. Changing this vector
merely reparametrizes the curve. The integral curve may coincide with the
subgroup, or it comes back on itself, and then the subgroup is essentially
a circle. Thus the integral curve need not be equal to the subgroup.
However, locally near t ¼ 0, they do coincide. Such an integral curve is
called a one-parameter subgroup of G.
Using Theorem 1.5 of Chapter V, it is then easy to see that if the Lie

algebra of a connected Lie group G is commutative, then G itself is
commutative. One first proves this for elements in a neighborhood of the
origin, using 1-parameter subgroups, and then one gets the statement
globally by expressing G as a union of products

UU   U ;

where U is a symmetric connected open neighborhood of the unit element.
All of these statements are easy to prove, and belong to the first chapter
of a book on Lie groups. Our purpose here is merely to lay the general
foundations essentially belonging to general manifold theory.
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CHAPTER VII

Metrics

In our discussion of vector bundles, we put no greater structure on the
fibers than that of topological vector space (of the same category as those
used to build up manifolds). One can strengthen the notion so as to
include the metric structure, and we are thus led to consider Hilbert
bundles, whose fibers are Hilbert spaces.
Aside from the definitions, and basic properties, we deal with two

special topics. On the one hand, we complete our uniqueness theorem
on tubular neighborhoods by showing that when a Riemannian metric is
given, a tubular neighborhood can be straightened out to a metric one.
Secondly, we show how a Riemannian metric gives rise in a natural way
to a spray, and thus how one recovers geodesics. The fundamental 2-form
is used to identify the vector fields and 1-forms on the tangent bundle,
identified with the cotangent bundle by the Riemannian metric.
We assume throughout that our manifolds are su‰ciently di¤erentiable

so that all our statements make sense. (For instance, when dealing with
sprays, we take pZ 3.)
Of necessity, we shall use the standard spectral theorem for (bounded)

symmetric operators. A self-contained treatment will be given in the
appendix.

VII, §1. DEFINITION AND FUNCTORIALITY

For Riemannian geometry, we shall deal with a euclidean vector space,
that is a vector space with a positive definite scalar product.
It turns out that some basic properties have only to do with a weaker

property of the space E on which a manifold is modeled, namely that the

158



space E is self dual, via a symmetric non-singular bilinear form. Thus we
only assume this property until more is needed. We recall that such a
form is a bilinear map

ðv; wÞ 7! hv; wi of E� E ! R

such that hv; wi ¼ hw; vi for all v, w A E, and the corresponding map of E
into the dual space LðEÞ is a linear isomorphism.

Examples. Of course, the standard positive definite scalar product on
Euclidean space provides the easiest (in some sense) example of a self dual
vector space. But the physicists are interested in R4 with the scalar
product such that the square of a vector ðx; y; z; tÞ is x2 þ y2 þ z2 
 t2.
This scalar product is non-singular. For one among many nice appli-
cations of the indefinite case, cf. for instance [He 84] and [Gu 91], dealing
with Huygens’ principle.

We consider L2symðEÞ, the vector space of continuous bilinear forms

l: E� E ! R

which are symmetric. If x is fixed in E, then the linear form
lxðyÞ ¼ lðx; yÞ is represented by an element of E which we denote by Ax,
where A is a linear map of E into itself. The symmetry of l implies that A
is symmetric, that is we have

lðx; yÞ ¼ hAx; yi ¼ hx; Ayi

for all x; y A E. Conversely, given a symmetric continuous linear map
A : E ! E we can define a continuous bilinear form on E by this formula.
Thus L2symðEÞ is in bijection with the set of such operators, and is itself a
vector space, the norm being the usual operator norm. Suppose E is a
euclidean space, and in particular, E is self dual.
The subset of L2symðEÞ consisting of those forms corresponding to

symmetric positive definite operators (by definition such that AZ �I for
some � > 0) will be called the Riemannian of E and be denoted by RiðEÞ.
Forms l in RiðEÞ are called positive definite. The associated operator A
of such a form is invertible, because its spectrum does not contain 0.
In general, suppose only that E is self dual. The space L2symðEÞ contains

as an open subset the set of non-singular symmetric bilinear forms, which
we denote by MetðEÞ, and which we call the set of metrics or pseudo

Riemannian metrics. In view of the operations on vector bundles (Chapter
III, §4) we can apply the functor L2sym to any bundle whose fibers are self
dual. Thus if p: E ! X is such a bundle, then we can form L2symðpÞ. A
section of L2symðpÞ will be called by definition a symmetric bilinear form

definition and functoriality[VII, §1] 159



on p. A (pseudo Riemannian) metric on p (or on E) is defined to be a
symmetric bilinear form on p, whose image lies in the open set of metrics
at each point. We let MetðpÞ be the set of metrics on p , which we also
call the set of metrics on E, and may denote by MetðEÞ.
If E is a euclidean space and the image of the section of L2symðpÞ lies in

the Riemannian space RiðpxÞ at each point x, in order words, if on the
fiber at each point the non-singular symmetric bilinear form is actually
positive definite, then we call the metric Riemannian. Let us denote a
metric by g, so that gðxÞ AMetðExÞ for each x A X , and lies in RiðExÞ if
the metric is Riemannian. Then gðxÞ is a non-singular symmetric bilinear
form in general, and in the Riemannian case, it is positive definite in
addition.
A pair ðX ; gÞ consisting of a manifold X and a (pseudo Riemannian)

metric g will be called a pseudo Riemannian manifold. It will be called a
Riemannian manifold if the manifold is modeled on a euclidean space, and
the metric is Riemannian.
Observe that the sections of L2symðpÞ form an infinite dimensional vector

space (abstract) but that the Riemannian metrics do not. They form a
convex cone. Indeed, if a; b > 0 and g1, g2 are two Riemannian metrics,
then ag1 þ bg2 is also a Riemannian metric.
Suppose we are given a VB-trivialization of p over an open subset U of

X , say
t: p
1ðUÞ ! U � E:

We can transport a given pseudo Riemannian metric g
�
or rather its

restriction to p
1ðUÞ
�
to U � E. In the local representation, this means

that for each x A U we can identify gðxÞ with a symmetric invertible
operator Ax giving rise to the metric. The operator Ax is positive definite
in the Riemannian case. Furthermore, the map

x 7! Ax

from U into the vector space LðE; EÞ is a morphism.
As a matter of notation, we sometimes write gx instead of gðxÞ. Thus

if v, w are two vectors in Ex, then gxðv; wÞ is a number, and is more
convenient to write than gðxÞðv; wÞ. We shall also write hv; wix if the
metric g is fixed once for all.

Proposition 1.1. Let X be a manifold admitting partitions of unity. Let
p: E ! X be a vector bundle whose fibers are euclidean vector spaces.
Then p admits a Riemannian metric.

Proof. Find a partition of unity fUi; jig such that pjUi is trivial, that is
such that we have a trivialization

pi : p
1ðUiÞ ! Ui � E
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(working over a connected component of X , so that we may assume the
fibers toplinearly isomorphic to a fixed space E). We can then find a
Riemannian metric on Ui � E in a trivial way. By transport of structure,
there exists a Riemannian metric gi on pjUi and we let

g ¼
X

ji gi:

Then g is a Riemannian metric on x.

Let us investigate the functorial behavior of metrics.
Consider a VB-morphism

with vector bundles E 0 and E over X and Y respectively, whose fibers are
self dual spaces. Let g be a symmetric bilinear form on p, so that for each
y A Y we have a bilinear, symmetric map

gðyÞ: Ey � Ey ! R:

Then the composite map

E 0
x � E 0

x ! Ey � Ey ! R

with y ¼ f ðxÞ is a symmetric bilinear form on E 0
x and one verifies

immediately that it gives rise to such a form, on the vector bundle p 0,
which will be denoted by f �ðgÞ. Then f induces a map

L2symð f Þ ¼ f � : L2symðpÞ ! L2symðp 0Þ:

Furthermore, if f x is injective and splits for each x A X , and g is a metric
(resp. g is a Riemannian metric in the euclidean case), then obviously so is
f �ðgÞ, and we can view f � as mapping MetðpÞ into Metðp 0Þ (resp. RiðpÞ
into Riðp 0Þ in the Riemannian case).
Let X be a manifold modeled on a euclidean space and let TðXÞ be its

tangent bundle. By abuse of language, we call a metric on TðXÞ also a
metric on X and write MetðX Þ instead of Met

�
TðXÞ

�
. Similarly, we write

RiðXÞ instead of Ri
�
TðXÞ

�
.

Let f : X ! Y be an immersion. Then for each x A X , the linear map

Tx f : TxðX Þ ! Tf ðxÞðYÞ
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is injective, and splits, and thus we obtain a contravariant map

f � : RiðYÞ ! RiðXÞ;

each Riemannian metric on Y inducing a Riemannian metric on X .
A similar result applies in the pseudo Riemannian case. If ðY ; gÞ is

Riemannian, and f is merely of class C1 but not necessarily an immersion,
then the pull back f �ðgÞ is not necessarily positive definite, but is merely
what we call semipositive. In general, if ðX ; hÞ is pseudo Riemannian and
hðv; vÞZ 0 for all v A TxX , all x, then ðX ; hÞ is called semi Riemannian.
Thus the pull back of a semi Riemannian metric is semi Riemannian.

The next five sections will be devoted to considerations which apply
specifically to the Riemannian case, where positivity plays a central role.

VII, §2. THE METRIC GROUP

Let E be a euclidean vector space. The group of linear automorphisms
LautðEÞ contains the group MautðEÞ of metric automorphisms, that is
those linear automorphisms which preserve the inner product :

hAv; Awi ¼ hv; wi

for all v; w A E. We note that A is metric if and only if A�A ¼ I .
As usual, we say that a linear map A: E ! E is symmetric if A� ¼ A

and that it is skew-symmetric if A� ¼ 
A. We have a direct sum de-
composition of the space LðE; EÞ in terms of the two closed subspaces of
symmetric and skew-symmetric operators :

A ¼ 1
2 ðAþ A�Þ þ 1

2 ðA
 A�Þ:

We denote by SymðEÞ and SkðEÞ the vector spaces of symmetric and
skew-symmetric maps respectively. The word operator will always mean
linear map of E into itself.

Proposition 2.1. For all operators A, the series

expðAÞ ¼ I þ Aþ A
2

2 !
þ � � �

converges. If A commutes with B, then

expðAþ BÞ ¼ expðAÞ expðBÞ:
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For all operators su‰ciently close to the identity I, the series

logðAÞ ¼ ðA
 IÞ
1

þ ðA
 IÞ2

2
þ � � �

converges, and if A commutes with B, then

logðABÞ ¼ logðAÞ þ logðBÞ:

Proof. Standard.

We leave it as an exercise to the reader to show that the exponential
function gives a Cy-morphism of LðE; EÞ into itself. Similarly, a function
admitting a development in power series say around 0 can be applied to
the set of operators whose bound is smaller than the radius of convergence
of the series, and gives a Cy-morphism.

Proposition 2.2. If A is symmetric (resp. skew-symmetric), then expðAÞ is
symmetric positive definite (resp. metric). If A is a linear automorphism

su‰ciently close to I and is positive definite symmetric (resp. metric), then
logðAÞ is symmetric (resp. skew-symmetric).

Proof. The proofs are straightforward. As an example, let us carry out
the proof of the last statement. Suppose A is Hilbertian and su‰ciently
close to I . Then A�A ¼ I and A� ¼ A
1. Then

logðAÞ� ¼ ðA� 
 IÞ
1

þ � � �

¼ logðA
1Þ:

If A is close to I , so is A
1, so that these statements make sense. We now
conclude by noting that logðA
1Þ ¼ 
logðAÞ. All the other proofs are
carried out in a similar fashion, taking a star operator in series term by
term, under conditions which insure convergence.

The exponential and logarithm functions give inverse Cy mappings
between neighborhoods of 0 in LðE; EÞ and neighborhoods of I in
LautðEÞ. Furthermore, the direct sum decomposition of LðE; EÞ into
symmetric and skew-symmetric subspaces is reflected locally in a neigh-
borhood of I by a Cy direct product decomposition into positive definite
and metric automorphisms. This direct product decomposition can be
translated multiplicatively to any linear automorphism, because if
A A LautðEÞ and B is close to A, then

B ¼ AA
1B ¼ A
�
I 
 ðI 
 A
1BÞ

�

the metric group[VII, §2] 163



and ðI 
 A
1BÞ is small. This proves :

Proposition 2.3. The group of metric automorphisms MautðEÞ of E is a

closed submanifold of LautðEÞ.

In addition to this local result, we get a global one also :

Proposition 2.4. The exponential map gives a Cy-isomorphism from the

space SymðEÞ of symmetric endomorphisms of E and the space PosðEÞ of
symmetric positive definite automorphisms of E.

Proof. We must construct its inverse, and for this we use the spectral
theorem. Given A, symmetric positive definite, the analytic function log t
is defined on the spectrum of A, and thus log A is symmetric. One verifies
immediately that it is the inverse of the exponential function (which can be
viewed in the same way). We can expand log t around a large positive
number c, in a power series uniformly and absolutely convergent in an
interval 0 < �Y tY 2c
 �, to achieve our purposes.

Proposition 2.5. The manifold of linear automorphisms of the Euclidean

space E is Cy-isomorphic to the product of the metric automorphisms
and the positive definite symmetric automorphisms, under the mapping

MautðEÞ � PosðEÞ ! LautðEÞ

given by

ðH; PÞ ! HP:

Proof. Our map is induced by a continuous bilinear map of

LðE; EÞ � LðE; EÞ

into LðE; EÞ and so is Cy. We must construct an inverse, or in other
words express any given linear automorphism A in a unique way as a
product A ¼ HP where H is metric, P is symmetric positive definite, and
both H, P depend Cy on A. This is done as follows. First we note that
A�A is symmetric positive definite

�
because hA�Av; vi ¼ hAv; Avi, and

furthermore, A�A is a linear automorphism. By linear algebra, A�A can
be diagonalized. We let

P ¼ ðA�AÞ1=2

and let H ¼ AP
1. Then H is metric, because

H �H ¼ ðP
1Þ�A�AP
1 ¼ I :
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Both P and H depend di¤erentiably on A since all constructions involved
are di¤erentiable.
There remains to be shown that the expression as a product is unique.

If A ¼ H1P1 where H1, P1 are metric and symmetric positive definite
respectively, then

H
1H1 ¼ PP
1
1 ;

and we get H2 ¼ PP
1
1 for some metric automorphism H2. By definition,

I ¼ H �
2H2 ¼ ðPP
1

1 Þ�PP
1
1

and from the fact that P� ¼ P and P�
1 ¼ P1, we find

P2 ¼ P21 :

Taking the log, we find 2 log P ¼ 2 log P1. We now divide by 2 and take
the exponential, thus giving P ¼ P1 and finally H ¼ H1. This proves our
proposition.

VII, §3. REDUCTION TO THE METRIC GROUP

We define a new category of bundles, namely the metric bundles over
X , denoted by MBðX Þ. As before, we would denote by MBðX ; EÞ those
metric bundles whose fiber is a euclidean space E.
Let p: E ! X be a vector bundle over X , and assume that it has a

trivialization fðUi; tiÞg with trivializing maps

ti : p
1ðUiÞ ! Ui � E

where E is a euclidean space, such that each linear automorphism ðtjt
1i Þx
is a metric automorphism. Equivalently, we could also say that tix is
a metric isomorphism. Such a trivialization will be called a metric

trivialization. Two such trivializations are called metric-compatible if their
union is again a metric trivialization. An equivalence class of such
compatible trivializations constitutes what we call a metric bundle over
X . Any such metric bundle determines a unique vector bundle, simply by
taking the VB-equivalence class determined by the trivialization.
Given a metric trivialization fðUi; tiÞg of a vector bundle p over X , we

can define on each fiber px a euclidean structure. Indeed, for each x we
select an open set Ui in which x lies, and then transport to px the scalar
product in E by means of tix. By assumption, this is independent of the
choice of Ui in which x lies. Thus in a metric bundle, we can assume that
the fibers are metric spaces.
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It is perfectly possible that several distinct metric bundles determine the
same vector bundle.
Any metric bundle determining a given vector bundle p will be said to

be a reduction of p to the metric group.
We can make metric bundles into a category, if we take for the MB-

morphisms the VB-morphisms which are injective at each point, and which
preserve the metric, again at each point.
Each reduction of a vector bundle to the metric group determines a

Riemannian metric on the bundle. Indeed, defining for each z A X and
v; w A px the scalar product

gxðv; wÞ ¼ htixv; tixwi

with any metric-trivializing map tix such that x A Ui, we get a morphism

x 7! gx

of X into the sections of L2symðpÞ which are positive definite. We also have
the converse.

Theorem 3.1. Let p be a vector bundle over a manifold X, and assume
that the fibers of p are all linearly isomorphic to a euclidean space E.
Then the above map, from reductions of p to the metric group, into the
Riemannian metrics, is a bijection.

Proof. Suppose that we are given an ordinary VB-trivialization
fðUi; tiÞg of p. We must construct an MB-trivialization. For each i, let gi
be the Riemannian metric on Ui � E transported from p
1ðUiÞ by means
of ti. Then for each x A Ui, we have a positive definite symmetric operator
Aix such that

gixðv; wÞ ¼ hAixv; wi

for all v; w A E. Let Bix be the square root of Aix. We define the
trivialization si by the formula

six ¼ Bixtix

and contend that fðUi; siÞg is a metric trivialization. Indeed, from the
definition of gix, it su‰ces to verify that the VB-isomorphism

Bi : Ui � E ! Ui � E

given by Bix on each fiber, carries gi on the usual metric. But we have, for
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v; w A E :

hBixv; Bixwi ¼ hAixv; wi

since Bix is symmetric, and equal to the square root of Aix. This proves
what we want.

At this point, it is convenient to make an additional comment on
normal bundles.
Let a, b be two metric bundles over the manifold X , and let f : a ! b

be an MB-morphism. Assume that

0! a !f b

is exact. Then by using the Riemannian metric, there is a natural way of
constructing a splitting for this sequence (cf. Chapter III, §5).
By elementary linear algebra, if F is a subspace of a euclidean space,

then E is the direct sum

E ¼ FlF?

of F and its orthogonal complement, consisting of all vectors perpendicular
to F.
In our exact sequence, we may view f as an injection. For each x we

let a?x be the orthogonal complement of ax in bx. Then we shall find an
exact sequence of VB-morphisms

b !h a ! 0

whose kernel is a? (set theoretically). In this manner, the collection of
orthogonal complements aLx can be given the structure of a metric bundle.
For each x we can write bx ¼ axl a?x and we define hx to be the

projection in this direct sum decomposition. This gives us a mapping
h: b ! a, and it will su‰ce to prove that h is a VB-morphism. In order
to do this, we may work locally. In that case, after taking suitable VB-
automorphisms over a small open set U of X , we can assume that we deal
with the following situation.
Our vector bundle b is equal to U � E and a is equal to U � F for

some subspace F of E, so that we can write E ¼ F� F?. Our MB-
morphism is then represented for each x by an injection f x : F ! E :

U � F 
!f U � E:
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By the definition of exact sequences, we can find two VB-isomorphisms t
and s such that the following diagram is commutative :

and such that the bottom map is simply given by the ordinary inclusion of
F in E. We can transport the Riemannian structure of the bundles on top
to the bundles on the bottom by means of s
1 and t
1 respectively. We
are therefore reduced to the situation where f is given by the simple
inclusion, and the Riemannian metric on U � E is given by a family Ax of
symmetric positive definite operators on E ðx A UÞ. At each point x, we
have hv; wix ¼ hAxv; wi. We observe that the map

A: U � E ! U � E

given by Ax on each fiber is a VB-automorphism of U � E. Let prF be the
projection of U � E on U � F. It is a VB-morphism. Then the composite

h ¼ prF � A

gives us a VB-morphism of U � E on U � F, and the sequence

U � E !h U � F ! 0

is exact. Finally, we note that the kernel of h consists precisely of the
orthogonal complement of U � F in each fiber. This proves what we
wanted.

VII, §4. METRIC TUBULAR NEIGHBORHOODS

Let E be a euclidean space. Then the open ball of radius 1 is isomorphic
to E itself under the mapping

v 7! v

ð1
 jvj2Þ1=2
;

the inverse mapping being

w 7! w

ð1þ jwj2Þ1=2
:
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If a > 0, then any ball of radius a is isomorphic to the unit ball under
multiplication by the scalar a (or a
1).
Let X be a manifold, and s: X ! R a function (morphism) such that

sðxÞ > 0 for all x A X . Let p: E ! X be a metric bundle over X . We
denote by EðsÞ the subset of E consisting of those vectors v such that, if v
lies in Ex, then

jvjx < sðxÞ:

Then EðsÞ is an open neighborhood of the zero section.

Proposition 4.1. Let X be a manifold and p: E ! X a metric bundle.
Let s: X ! R be a morphism such that sðxÞ > 0 for all x. Then the
mapping

w! sðpwÞw
ð1þ jwj2Þ1=2

gives an isomorphism of E onto EðsÞ.

Proof. Obvious. The inverse mapping is constructed in the obvious
way.

Corollary 4.2. Let X be a manifold admitting partitions of unity, and let
p: E ! X be a metric bundle over X. Then E is compressible.

Proof. Let Z be an open neighborhood of the zero section. For each
x A X , there exists an open neighborhood Vx and a number ax > 0 such
that the vectors in p
1ðVxÞ which are of length < ax lie in Z. We can find
a partition of unity fðUi; jiÞg on X such that each Ui is contained in some
VxðiÞ. We let s be the function

X
axðiÞji:

Then EðsÞ is contained in Z, and our assertion follows from the
proposition.

Proposition 4.3. Let X be a manifold. Let p: E ! X and p1 : E1 ! X

be two metric bundles over X. Let

l: E ! E1

be a VB-isomorphism. Then there exists an isotopy of VB-isomorphisms

lt : E ! E1

with proper domain ½0; 1� such that l1 ¼ l and l0 is an MB-isomorphism.

metric tubular neighborhoods[VII, §4] 169



Proof. We find reductions of E and E1 to the metric group, with metric
trivializations fðUi; tiÞg for E and fðUi; riÞg for E1. We can then factor
rilt


1
i as in Proposition 2.5, applied to each fiber map :

and obtain a factorization of l into l ¼ lHlP where lH is a MB-
isomorphism and lP is a positive definite symmetric VB-automorphism.
The latter form a convex set, and our isotopy is simply

lt ¼ lH �
�
tI þ ð1þ tÞlP

�
:

(Smooth out the end points if you wish.)

Theorem 4.4. Let X be a submanifold of Y. Let p: E ! X and

p1 : E1 ! X be two metric bundles. Assume that E is compressible. Let
f : E ! Y and g: E1 ! Y be two tubular neighborhoods of X in Y.
Then there exists an isotopy

ft : E ! Y

of tubular neighborhoods with proper domain ½0; 1� and there exists an
MB-isomorphism m: E ! E1 such that f1 ¼ f and f0 ¼ gm.

Proof. From Theorem 6.2 of Chapter IV, we know already that there
exists a VB-isomorphism l such that f A gl. Using the preceding
proposition, we know that lA m where m is a MB-isomorphism. Thus
glA gm and by transitivity, f A m, as was to be shown.

Remark. In view of Proposition 4.1, we could of course replace the
condition that E be compressible by the more useful condition (in practice)
that X admit partitions of unity.

VII, §5. THE MORSE LEMMA

Let U be an open set in some euclidean space E, and let f be a Cpþ2

function on U , with pZ 1. We say that x0 is a critical point for f if
D f ðx0Þ ¼ 0. We wish to investigate the behavior of f at a critical point.
After translations, we can assume that x0 ¼ 0 and that f ðx0Þ ¼ 0. We
observe that the second derivative D2 f ð0Þ is a continuous bilinear form on
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E. Let l ¼ D2 f ð0Þ, and for each x A E let lx be the functional such that
y 7! lðx; yÞ. If the map x 7! lx is a linear isomorphism of E with its dual
space E4, then we say that l is non-singular, and we say that the critical
point is non-degenerate.
We recall that a local Cp-isomorphism j at 0 is a Cp-invertible map

defined on an open set containing 0.

Theorem 5.1. Let f be a Cpþ2 function defined on an open neighborhood
of 0 in the euclidean space E, with pZ 1. Assume that f ð0Þ ¼ 0, and
that 0 is a non-degenerate critical point of f. Then there exists a local
Cp-isomorphism at 0, say j, and an invertible symmetric operator A such

that

f ðxÞ ¼ hAjðxÞ; jðxÞi:

Proof. We may assume that U is a ball around 0. We have

f ðxÞ ¼ f ðxÞ 
 f ð0Þ ¼
ð1
0

Df ðtxÞx dt;

and applying the same formula to Df instead of f , we get

f ðxÞ ¼
ð1
0

ð1
0

D2f ðstxÞtx � x ds dt ¼ gðxÞðx; xÞ

where

gðxÞ ¼
ð 1
0

ð1
0

D2f ðstxÞt ds dt:

Then g is a Cp map into the vector space of bilinear maps on E, and even
the space of symmetric such maps. We know that this vector space is
linearly isomorphic to the space of symmetric operators on E, and thus we
can write

f ðxÞ ¼ hAðxÞx; xi

where A : U ! SymðEÞ is a Cp map of U into the space of symmetric
operators on E. A straightforward computation shows that

D2f ð0Þðv; wÞ ¼ hAð0Þv; wi:

Since we assumed that D2f ð0Þ is non-singular, this means that Að0Þ is
invertible, and hence AðxÞ is invertible for all x su‰ciently near 0.
Theorem 5.1 is then a consequence of the following result, which

expresses locally the uniqueness of a non-singular symmetric form.

the morse lemma[VII, §5] 171



Theorem 5.2. Let A: U ! SymðEÞ be a Cp map of U into the open set

of invertible symmetric operators on E. Then there exists a Cp iso-

morphism of an open subset U1 containing 0, of the form

jðxÞ ¼ CðxÞx; with a Cp map C : U1 ! LautðEÞ

such that

hAðxÞx; xi ¼ hAð0ÞjðxÞ; jðxÞi ¼ hAð0ÞCðxÞx; CðxÞxi:

Proof. We seek a map C such that

CðxÞ�Að0ÞCðxÞ ¼ AðxÞ:

If we let BðxÞ ¼ Að0Þ
1AðxÞ, then BðxÞ is close to the identity I for small
x. The square root function has a power series expansion near 1, which is
a uniform limit of polynomials, and is Cy on a neighborhood of I , and
we can therefore take the square root of BðxÞ, so that we let

CðxÞ ¼ BðxÞ1=2:

We contend that this CðxÞ does what we want. Indeed, since both Að0Þ
and AðxÞ

�
or AðxÞ
1

�
are self-adjoint, we find that

BðxÞ� ¼ AðxÞAð0Þ
1;
whence

BðxÞ�Að0Þ ¼ Að0ÞBðxÞ:

But CðxÞ is a power series in I 
 BðxÞ, and CðxÞ� is the same power series
in I 
 BðxÞ�. The preceding relation holds if we replace BðxÞ by any
power of BðxÞ (by induction), hence it holds if we replace BðxÞ by any
polynomial in I 
 BðxÞ, and hence finally, it holds if we replace BðxÞ by
CðxÞ, and thus

CðxÞ�Að0ÞCðxÞ ¼ Að0ÞCðxÞCðxÞ ¼ Að0ÞBðxÞ ¼ AðxÞ:

which is the desired relation.
All that remains to be shown is that j is a local Cp-isomorphism at 0.

But one verifies that in fact, Djð0Þ ¼ Cð0Þ, so that what we need follows
from the inverse mapping theorem. This concludes the proof of Theorems
5.1 and 5.2.

Corollary 5.3. Let f be a Cpþ2 function near 0 on the euclidean space E,
such that 0 is a non-degenerate critical point. Then there exists a local
Cp-isomorphism c at 0, and an orthogonal decomposition E ¼ Fþ F?,
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such that if we write cðxÞ ¼ yþ z with y A F and z A F?, then

f
�
cðxÞ

�
¼ hy; yi 
 hz; zi:

Proof. On a space where A is positive definite, we can always make the
toplinear isomorphism x 7!A1=2x to get the quadratic form to become the
given hermitian product h ; i, and similarly on a space where A is negative
definite. In general, we decompose E into a direct orthogonal sum such
that the restriction of A to the factors is positive definite and negative
definite respectively.

Note. The Morse lemma was proved originally by Morse in the finite
dimensional case, using the Gram–Schmidt orthogonalization process.
The above proof is due to Palais [Pa 69]. It shows (in the language of
coordinate systems) that a function near a critical point can be expressed
as a quadratic form after a suitable change of coordinate system (satisfying
requirements of di¤erentiability).

VII, §6. THE RIEMANNIAN DISTANCE

Let ðX ; gÞ be a Riemannian manifold. For each C1 curve

g: ½a; b� ! X

we define its length

LgðgÞ ¼ LðgÞ ¼
ð b
a

hg 0ðtÞ; g 0ðtÞi1=2g dt ¼
ð b
a

��g 0ðtÞ��
g
dt:

The norm is the one associated with the positive definite scalar product,
i.e. the euclidean norm at each point. We can extend the length to
piecewise C 1 paths by taking the sum over the C1 curves constituting the
path. We assume that X is connected, which is equivalent to the property
that any two points can be joined by a piecewise C1 path. (If X is
connected, then the set of points which can be joined to a given point
x0 by a piecewise C

1 path is immediately verified to be open and closed,
so equal to X . The converse, that pathwise connectedness implies con-
nectedness, is even more obvious.)

We define the g-distance on X for any two points x; y A X by :

distgðx; yÞ¼greatest lower bound of LðgÞ for paths g in X joining x and y:

When g is fixed throughout, we may omit g from the notation and write
simply distðx; yÞ. It is clear that distg is a semidistance, namely it is
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symmetric in ðx; yÞ and satisfies the triangle inequality. To prove that it is
a distance, we have to show that if x 6¼ y then distgðx; yÞ > 0. In a chart,
there is a neighborhood U of x which contains a closed ball �BBðx; rÞ with
r > 0, and such that y lies outside this closed ball. Then any path between
x and y has to cross the sphere Sðx; rÞ. Here we are using the euclidean
norm in the chart. We can also take r so small that the norm in the chart
is given by

hv; wigðxÞ ¼
�
v; AðxÞw

�
;

for v, w A E, and x 7! AðxÞ is a morphism from U into the set of invertible
symmetric positive definite operators, such that there exist a number
C1 > 0 for which

AðxÞZC1I for all x A �BBðx; rÞ:

We then claim that there exists a constant C > 0 depending only on r,
such that for any piecewise C1 path g between x and a point on the sphere
Sðx; rÞ we have

LðgÞZCr:

This will prove that distgðx; yÞZCr > 0, and will conclude the proof that
distg is a distance.
By breaking up the path into a sum of C1 curves, we may assume

without loss of generality that our path is such a curve. Furthermore, we
may take the interval ½a; b� on which g is defined to be such that gðbÞ
is the first point such that gðtÞ lies on Sðx; rÞ, and otherwise gðtÞ A �BBðx; rÞ
for t A ½a; b�. Let gðbÞ ¼ ru, where u is a unit vector. Write E as an
orthogonal direct sum

E ¼ Ru ? F;

where F is a subspace. Then gðtÞ ¼ sðtÞu ¼ wðtÞ with
��sðtÞ��Y r, sðaÞ ¼ 0,

sðbÞ ¼ r and wðtÞ A F. Then

LðgÞ ¼
ð b
a

��g 0ðtÞ��
g
dt ¼

ð b
a

�
g 0ðtÞ; A

�
gðtÞ
�
g 0ðtÞ

�1=2
dt

ZC
1=2
1

ð b
a

hg 0ðtÞ; g 0ðtÞi1=2 dt

ZC
1=2
1

ð b
a

��s 0ðtÞ�� dt by Pythagoras

ZC
1=2
1 r

as was to be shown.
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In addition, the above local argument also proves :

Proposition 6.1. The distance distg defines the given topology on X.
Equivalently, a sequence fxng in X converges to a point x in the given

topology if and only if distgðxn; xÞ converges to 0.

We conclude this section with some remarks on reparametrization. Let

g: ½a; b� ! X

be a piecewise C1 path in X . To reparametrize g, we may do so on each
subinterval where g is actually C1, so assume g is C1. Let

j: ½c; d � ! ½a; b�

be a C 1 map such that jðcÞ ¼ a and jðdÞ ¼ b. Then g � j is C1, and is
called a reparametrization of g. The chain rule shows that

Lðg � jÞ ¼ LðgÞ:

Define the function s: ½a; b� ! R by

sðtÞ ¼
ð t
a

��gðtÞ��
g
dt; so sðbÞ ¼ L ¼ LðgÞ:

Then s is monotone and sðaÞ ¼ 0, while sðbÞ ¼ LðgÞ. Suppose that there is
only a finite number of values t A ½a; b� such that g 0ðtÞ ¼ 0. We may then
break up ½a; b� into subintervals where g 0ðtÞ 6¼ 0 except at the end points of
the subintervals. Consider each subinterval separately, and say

a < a1 < b1 < b

with g 0ðtÞ 6¼ 0 for t A ða1; b1Þ. Let sða1Þ be the length of the curve over the
interval ½a; a1�. Define

sðtÞ ¼ sða1Þ þ
ð t
a1

��g 0ðtÞ��
g
dt for a1Y tY b1:

Then s is strictly increasing, and therefore the inverse function t ¼ jðsÞ is
defined over the interval. Thus we can reparametrize the curve by the
variable s over the interval a1Y tY b1, with the variable s satisfying

sða1ÞY sY sðb1Þ:
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Thus the whole path g on ½a; b� is reparametrized by another path

g � j: ½0; L� ! X

via a piecewise map f : ½0; L� ! ½a; b�, such that
��ðg � jÞ0ðsÞ��

g
¼ 1 and Ls0ðg � jÞ ¼ s:

We now define a path g: ½a; b� ! X to be parametrized by arc length if��g 0ðtÞ��
g
¼ 1 for all t A ½a; b�. We see that starting with any path g, with

the condition that there is only a finite number of points where g 0ðtÞ ¼ 0
for convenience, there is a reparametrization of the path by arc length.
Let f : Y ! X be a Cp map with pZ 1. We shall deal with several

notions of isomorphisms in di¤erent categories, so in the Cp category,
we may call f a di¤erential morphism. Suppose ðX ; gÞ and ðY ; hÞ are
Riemannian manifolds. We say that f is an isometry, or a di¤erential

metric isomorphism if f is a di¤erential isomorphism and f �ðgÞ ¼ h. If f
is an isometry, then it is immediate that f preserves distances, i.e. that

distg
�
f ðy1Þ; f ðy2Þ

�
¼ disthðy1; y2Þ for all y1; y2 A Y :

Note that there is another circumstance of interest with somewhat weaker
conditions when f : Y ! X is an immersion, so induces an injection
Tf ðyÞ: TyY ! Tf ðyÞX for every y A Y , and we can speak of f being a
metric immersion if f �ðgÞ ¼ h. It may even happen that f is a local
di¤erential isomorphism at each point of y, as for instance if f is covering
map. In such a case, f may be a local isometry, but not a global one,
whereby f may not preserve distances on all of Y , possibly because two
points y1 6¼ y2 may have the same image f ðy1Þ ¼ f ðy2Þ.

VII, §7. THE CANONICAL SPRAY

We now come back to the pseudo Riemannian case.
Let X be a pseudo Riemannian manifold, modeled on the self dual

space E. The scalar product h ; i in E identifies E with its dual E4. The
metric on X gives a linear isomorphism of each tangent space TxðX Þ with
T4
x ðXÞ. If we work locally with X ¼ U open in E and we make the
identification

TðUÞ ¼ U � E and T4ðUÞ ¼ U � E4 ATðUÞ

then the metric gives a VB-isomorphism

h: TðUÞ ! TðUÞ
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by means of a morphism

g: U ! LðE; EÞ

such that hðx; vÞ ¼
�
x; gðxÞv

�
. ðWith respect to an orthonormal basis, gðxÞ

is represented by a symmetric matrix
�
gijðxÞ

�
, so the notation here fits

what’s in other books with their gij .Þ The scalar product of the metric at
each point x is then given by the formula

hv; wix ¼ hv; gðxÞwi ¼ hgðxÞv; wi for v; w A E:

For each x A U we note that g 0ðxÞ maps E into LðE; EÞ. For x A U and
u; v A E we write �

g 0ðxÞu
�
ðvÞ ¼ g 0ðxÞu � v ¼ g 0ðxÞðu; vÞ:

From the symmetry of g, di¤erentiating the symmetry relation of the
scalar product, we find that for all u, v, w A E,

hg 0ðxÞu � w; vi ¼ hg 0ðxÞu � v; wi:

So we can interchange the last two arguments in the scalar product
without changing the value.
Observe that locally, the tangent linear map

TðhÞ : T
�
TðUÞ

�
! T

�
TðUÞ

�
is then given by

TðhÞ: ðx; v; u1; u2Þ 7!
�
x; gðxÞv; u1; g 0ðxÞu1 � vþ gðxÞu2

�
:

If we pull back the canonical 2-form described in Proposition 7.2 of
Chapter V from T4ðUÞATðUÞ to TðUÞ by means of h then its de-
scription locally can be written on U � E in the following manner.

hWðx; vÞ; ðu1; u2Þ � ðw1; w2Þi ¼ð1Þ

hu1; gðxÞw2i 
 hu2; gðxÞw1i 
 hg 0ðxÞu1 � v; w1i þ hg 0ðxÞw1 � v; u1i:

From the simple formula giving our canonical 2-form on the cotangent
bundle in Chapter V, we see at once that it is nonsingular on TðUÞ. Since
h is a VB-isomorphism, it follows that the pull-back of this 2-form to the
tangent bundle is also non-singular.
We shall now apply the results of the preceding section. To do so,

we construct a 1-form on TðXÞ. Indeed, we have a function (kinetic

energy !)

K : TðXÞ ! R
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given by KðvÞ ¼ 1
2 hv; vix if v is in Tx. Then dK is a 1-form. By

Proposition 6.1 of Chapter V, it corresponds to a vector field on TðX Þ,
and we contend :

Theorem 7.1. The vector field F on TðXÞ corresponding to 
dK under

the canonical 2-form is a spray over X, called the canonical spray.

Proof. We work locally. We take U open in E and have the double
tangent bundle

Our function K can be written

Kðx; vÞ ¼ 1
2 hv; vix ¼ 1

2 hv; gðxÞvi;

and dK at a point ðx; vÞ is simply the ordinary derivative

DKðx; vÞ : E� E ! R:

The derivative DK is completely described by the two partial derivatives,
and we have

DKðx; vÞ � ðw1; w2Þ ¼ D1Kðx; vÞ � w1 þD2Kðx; vÞ � w2:

From the definition of derivative, we find

D1Kðx; vÞ � w1 ¼ 1
2 hv; g 0ðxÞw1 � vi

D2Kðx; vÞ � w2 ¼ hw2; gðxÞvi ¼ hv; gðxÞw2i:

We use the notation of Proposition 3.2 of Chapter IV. We can represent
the vector field F corresponding to dK under the canonical 2-form W by
a morphism f : U � E ! E� E, which we write in terms of its two
components :

f ðx; vÞ ¼
�
f1ðx; vÞ; f2ðx; vÞ

�
¼ ðu1; u2Þ:
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Then by definition :

�
Wðx; vÞ;

�
f1ðx; vÞ; f2ðx; vÞ

�
� ðw1; w2Þ

�
¼ hDKðx; vÞ; ðw1; w2Þið2Þ

¼ D1Kðx; vÞ � w1 þ hv; gðxÞw2i:

Comparing expressions (1) to (2), we find that as functions of w2 they have
only one term on the right side depending on w2. From the equality of the
two expressions, we conclude that

h f1ðx; vÞ; gðxÞw2i ¼ hv; gðxÞw2i

for all w2, and hence that f1ðx; vÞ ¼ v, whence our vector field F is a
second order vector field on X .
Again we compare expression (1) and (2), using the fact just proved

that u1 ¼ f1ðx; vÞ ¼ v. Setting the right sides of the two expressions equal
to each other, and using u2 ¼ f2ðu; vÞ, we obtain :

Proposition 7.2. In the chart U, let f ¼ ð f1; f2Þ: U � E ! E� E

represent F. Then f2ðx; vÞ is the unique vector such that for all w1 A E

we have :

h f2ðx; vÞ; gðxÞw1i ¼ 1
2 hg 0ðxÞw1 � v; vi 
 hg 0ðxÞ � v � v; w1i:

From this one sees that f2 is homogeneous of degree 2 in the second
variable v, in other words that it represents a spray. This concludes the
proof of Theorem 7.1.
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CHAPTER VIII

Integration of Differential
Forms

The material of this chapter is also contained in my book on real analysis
[La 93], but it may be useful to the reader to have it also here in a rather
self contained way, based only on standard properties of integration in
Euclidean space.

Throughout this chapter, m is Lebesgue measure on Rn.
If A is a subset of Rn, we write L1ðAÞ instead of L1ðA; m; CÞ.

Manifolds may have a boundary.

VIII, §1. SETS OF MEASURE 0

We recall that a set has measure 0 in Rn if and only if, given �, there
exists a covering of the set by a sequence of rectangles fRjg such thatP

mðRjÞ < �. We denote by Rj the closed rectangles, and we may always
assume that the interiors R0

j cover the set, at the cost of increasing the
lengths of the sides of our rectangles very slightly (an �=2n argument). We
shall prove here some criteria for a set to have measure 0. We leave it to
the reader to verify that instead of rectangles, we could have used cubes in
our characterization of a set of a measure 0 (a cube being a rectangle all
of whose sides have the same length).

We recall that a map f satisfies a Lipschitz condition on a set A if there
exists a number C such that

j f ðxÞ � f ðyÞjYCjx� yj

for all x, y A A. Any C1 map f satisfies locally at each point a Lipschitz
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condition, because its derivative is bounded in a neighborhood of each
point, and we can then use the mean value estimate,

j f ðxÞ � f ðyÞjY jx� yj supj f 0ðzÞj;

the sup being taken for z on the segment between x and y. We can take
the neighborhood of the point to be a ball, say, so that the segment
between any two points is contained in the neighborhood.

Lemma 1.1. Let A have measure 0 in Rn and let f : A! Rn satisfy a

Lipschitz condition. Then f ðAÞ has measure 0.

Proof. Let C be a Lipschitz constant for f. Let fRjg be a sequence of
cubes covering A such that

P
mðRjÞ < �. Let rj be the length of the side of

Rj. Then for each j we see that f ðAXSjÞ is contained in a cube R 0
j whose

sides have length Y 2Crj . Hence

mðR 0
j ÞY 2nCnrnj ¼ 2nCnmðRjÞ:

Our lemma follows.

Lemma 1.2. Let U be open in Rn and let f : U ! Rn be a C1 map. Let
Z be a set of measure 0 in U. Then f ðZÞ has measure 0.

Proof. For each x A U there exists a rectangle Rx contained in U such
that the family fR0

xg of interiors covers Z. Since U is separable, there
exists a denumerable subfamily covering Z, say fRjg. It su‰ces to prove
that f ðZXRjÞ has measure 0 for each j. But f satisfies a Lipschitz
condition on Rj since Rj is compact and f 0 is bounded on Rj, being
continuous. Our lemma follows from Lemma 1.1.

Lemma 1.3. Let A be a subset of Rm. Assume that m < n. Let

f : A! Rn

satisfy a Lipschitz condition. Then f ðAÞ has measure 0.

Proof. We view Rm as embedded in Rn on the space of the first m
coordinates. Then Rm has measure 0 in Rn, so that A has also n-
dimensional measure 0. Lemma 1.3 is therefore a consequence of Lemma
1.1.

Note. All three lemmas may be viewed as stating that certain para-
metrized sets have measure 0. Lemma 1.3 shows that parametrizing a set
by strictly lower dimensional spaces always yields an image having

sets of measure 0[VIII, §1] 181



measure 0. The other two lemmas deal with a map from one space into
another of the same dimension. Observe that Lemma 1.3 would be false if
f is only assumed to be continuous (Peano curves).

The next theorem will be used later only in the proof of the residue
theorem, but it is worthwhile inserting it at this point.

Let f : X ! Y be a morphism of class Cp, with pZ 1, and assume
throughout this section that X, Y are finite dimensional. A point x A X is
called a critical point of f if f is not a submersion at x. This means that

Tx f : TxX ! Tf ðxÞY

is not surjective, according to our di¤errential criterion for a submersion.
Assume that a manifold X has a countable base for its charts. Then we

can say that a set has measure 0 in X if its intersection with each chart has
measure 0.

Theorem 1.4 (Sard’s Theorem). Let f : X ! Y be a Cy morphism of

manifolds having a countable base. Let Z be the set of critical points of f

in X. Then f ðZÞ has measure 0 in Y.

Proof. (Due to Dieudonné.) By induction on the dimension n of X.
The assertion is trivial if n ¼ 0. Assume nZ 1. It will su‰ce to prove the
theorem locally in the neighborhood of a point in Z. We may assume that
X ¼ U is open in Rn and

f : U ! Rp

can be expressed in terms of coordinate functions,

f ¼ ð f1; . . . ; fpÞ:
We let us usual

Da ¼ Da1
1 
 
 
Dan

n

be a di¤erential operator, and call jaj ¼ a1 þ 
 
 
 þ an its order. We let
Z0 ¼ Z and for mZ 1 we let Zm be the set of points x A Z such that

Da fjðxÞ ¼ 0

for all j ¼ 1; . . . ; p and all a with 1Y jajYm. We shall prove :

(1) For each mZ 0 the set f ðZm � Zmþ1Þ has measure 0.

(2) If mZ n=p, then f ðZmÞ has measure 0.

This will obviously prove Sard’s theorem.
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Proof of (1). Let a A Zm � Zmþ1. Suppose first that m ¼ 0. Then for
some coordinate function, say j ¼ 1, and after a renumbering of the
variables if necessary, we have

D1 f1ðaÞ 6¼ 0:
The map

g: x 7! ð f1ðxÞ; x2; . . . ; xpÞ

obviously has an invertible derivative at x ¼ a, and hence is a local
isomorphism at a. Considering f � g�1 instead of f , we are reduced to the
case where f is given by

f ðxÞ ¼
�
x1; f2ðxÞ; . . . ; fpðxÞ

�
¼
�
x1; hðxÞ

�
;

where h is the projection of f on the last p� 1 coordinates and is
therefore a morphism h: V ! Rp�1 defined on some open V containing a.
Then

Df ðxÞ ¼
1 0

� DhðxÞ

� �
:

From this it is clear that x is a critical point for f if and only if x is a
critical point for h, and it follows that hðZXVÞ has measure 0 in Rp�1.
Since f ðZÞ is contained in R1 � hðZÞ, we conclude that f ðZÞ has measure
0 in Rp as desired.

Next suppose that mZ 1. Then for some a with jaj ¼ mþ 1, and say
j ¼ 1, we have

Da f1ðaÞ 6¼ 0:

Again after a renumbering of the indices, we may write

Da f1 ¼ D1g1

for some function g1, and we observe that g1ðxÞ ¼ 0 for all x A Zm, in a
neighborhood of a. The map

g: x 7! ðg1ðxÞ; x2; . . . ; xnÞ

is then a local isomorphism at a, say on an open set V containing a, and
we see that

gðZmXVÞH f0g � Rn�1:

We view g as a change of charts, and considering f � g�1 instead of f ,
together with the invariance of critical points under changes of charts, we
may view f as defined on an open subset of Rn�1. We can then apply
induction again to conclude the proof of our first assertion.
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Proof of (2). Again we work locally, and we may view f as defined on
the closed n-cube of radius r centered at some point a. We denote this
cube by CrðaÞ. For mZ n=p, it will su‰ce to prove that

f
�
ZmXCrðaÞ

�

has measure 0. For large N, we cut up each side of the cube into N equal
segments, thus obtaining a decomposition of the cube into Nn small
cubes. By Taylor’s formula, if a small cube contains a critical point
x A Zm, then for any point y of this small cube we have

j f ðyÞ � f ðxÞjYK jx� yjmþ1 YKð2r=NÞmþ1;

where K is a bound for the derivatives of f up to order mþ 1, and we use
the sup norm. Hence the image of Zm contained in small cube is itself
contained in a cube whose radius is given by the right-hand side, and
whose volume in Rp is therefore bounded by

Kpð2r=NÞpðmþ1Þ:

We have at most Nn such images to consider and we therefore see that

f
�
ZmXCrðaÞ

�

is contained in a union of cubes in Rp, the sum of whose volumes is
bounded by

KpN nð2r=NÞpðmþ1Þ YKpð2rÞpðmþ1Þ
Nn�pðmþ1Þ:

Since mZ n=p, we see that the right-hand side of this estimate behaves
like 1=N as N becomes large, and hence that the union of the cubes in Rp

has arbitrarily small measure, thereby proving Sard’s theorem.

Sard’s theorem is harder to prove in the case f is Cp with finite p, see
[Str 64/83], but p ¼ y already is quite useful.

VIII, §2. CHANGE OF VARIABLES FORMULA

We first deal with the simplest of cases. We consider vectors v1; . . . ; vn in
Rn and we define the block B spanned by these vectors to be the set of
points

t1v1 þ 
 
 
 þ tnvn

with 0Y tiY 1. We say that the block is degenerate (in Rn) if the vectors
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v1; . . . ; vn are linearly dependent. Otherwise, we say that the block is non-

degenerate, or is a proper block in Rn.

We see that a block in R2 is nothing but a parallelogram, and a block in
R3 is nothing but a parallelepiped (when not degenerate).

We shall sometimes use the word volume instead of measure when
applied to blocks or their images under maps, for the sake of geometry.

We denote by Volðv1; . . . ; vnÞ the volume of the block B spanned by
v1; . . . ; vn. We define the oriented volume

Vol0ðv1; . . . ; vnÞ ¼ GVolðv1; . . . ; vnÞ;

taking the þ sign if Detðv1; . . . ; vnÞ > 0 and the � sign if

Detðv1; . . . ; vnÞ < 0:

The determinant is viewed as the determinant of the matrix whose column
vectors are v1; . . . ; vn, in that order.

We recall the following characterization of determinants. Suppose that
we have a product

ðv1; . . . ; vnÞ 7! v1 5 v2 5 
 
 
 5 vn

which to each n-tuple of vectors associates a number, such that the product
is multilinear, alternating, and such that

e1 5 
 
 
 5 en ¼ 1

if e1; . . . ; en are the unit vectors. Then this product is necessarily the
determinant, that is, it is uniquely determined. ‘‘Alternating’’ means that if
vi ¼ vj for some i 6¼ j, then

v1 5 
 
 
 5 vn ¼ 0:

The uniqueness is easily proved, and we recall this short proof. We can
write

vi ¼ ai1e1 þ 
 
 
 þ ainen
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for suitable numbers aij , and then

v1 5 
 
 
 5 vn ¼ ða11e1 þ 
 
 
 þ a1nenÞ5 
 
 
 5 ðan1e1 þ 
 
 
 þ annenÞ

¼
X
s

a1;sð1Þesð1Þ 5 
 
 
 5 an;sðnÞesðnÞ

¼
X
s

a1;sð1Þ 
 
 
 an;sðnÞesð1Þ 5 
 
 
 5 esðnÞ:

The sum is taken over all maps s: f1; . . . ; ng ! f1; . . . ; ng, but because
of the alternating property, whenever s is not a permutation the term
corresponding to s is equal to 0. Hence the sum may be taken only over
all permutations. Since

esð1Þ 5 
 
 
 5 esðnÞ ¼ �ðsÞe1 5 
 
 
 5 en

where �ðsÞ ¼ 1 or �1 is a sign depending only on s, it follows that the
alternating product is completely determined by its value e1 5 
 
 
 5 en,
and in particular is the determinant if this value is equal to 1.

Proposition 2.1. We have

Vol0ðv1; . . . ; vnÞ ¼ Detðv1; . . . ; vnÞ

and

volðv1; . . . ; vnÞ ¼ jDetðv1; . . . ; vnÞj:

Proof. If v1; . . . ; vn are linearly dependent, then the determinant is equal
to 0, and the volume is also equal to 0, for instance by Lemma 1.3. So
our formula holds in the case. It is clear that

Vol0ðe1; . . . ; enÞ ¼ 1:

To show that Vol0 satisfies the characteristic properties of the determinant,
all we have to do now is to show that it is linear in each variable, say the
first. In other words, we must prove

Vol0ðcv; v2; . . . ; vnÞ ¼ cVol0ðv; v2; . . . ; vnÞ for c A R;ð�Þ

Vol0ðvþ w; v2; . . . ; vnÞ ¼ Vol0ðv; v2; . . . ; vnÞ þ Vol0ðw; v2; . . . ; vnÞ:;ð��Þ

As to the first assertion, suppose first that c is some positive integer k. Let
B be the block spanned by v; v2; . . . ; vn. We may assume without loss of
generality that v; v2; . . . ; vn are linearly independent (otherwise, the relation
is obviously true, both sides being equal to 0). We verify at once from the
definition that if Bðv; v2; . . . ; vnÞ denotes the block spanned by v; v2; . . . ; vn
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then Bðkv; v2; . . . ; vnÞ is the union of the two sets

B
�
ðk � 1Þv; v2; . . . ; vnÞ and Bðv; v2; . . . ; vnÞ þ ðk � 1Þv

which have only a set of measure 0 in common, as one verifies at once
from the definitions.

Therefore, we find that

Volðkv; v2; . . . ; vnÞ ¼ Vol
�
ðk � 1Þv; v2; . . . ; vnÞ þ Volðv; v2; . . . ; vnÞ

¼ ðk � 1Þ Volðv; v2; . . . ; vnÞ þ Volðv; v2; . . . ; vnÞ

¼ k Volðv; v2; . . . ; vnÞ;

as was to be shown.
Now let

v ¼ v1=k

for a positive integer k. Then applying what we have just proved shows
that

Vol
1

k
v1; v2; . . . ; vn

� �
¼ 1

k
Volðv1; . . . ; vnÞ:

Writing a positive rational number in the form m=k ¼ m 
 1=k, we con-
clude that the first relation holds when c is a positive rational number. If r
is a positive real number, we find positive rational numbers c, c 0 such that
cY rY c 0. Since

Bðcv; v2; . . . ; vnÞHBðrv; v2; . . . ; vnÞHBðc 0v; v2; . . . ; vnÞ;

we conclude that

c Volðv; v2; . . . ; vnÞYVolðrv; v2; . . . ; vnÞY c 0 Volðv; v2; . . . ; vnÞ:
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Letting c, c 0 approach r as a limit, we conclude that for any real number
rZ 0 we have

Volðrv; v2; . . . ; vnÞ ¼ r Volðv; v2; . . . ; vnÞ:

Finally, we note that Bð�v; v2; . . . ; vnÞ is the translation of

Bðv; v2; . . . ; vnÞ

by �v so that these two blocks have the same volume. This proves the
first assertion.

As for the second, we look at the geometry of the situation, which is
made clear by the following picture in case v ¼ v1, w ¼ v2.

The block spanned by v1; v2; . . . consists of two ‘‘triangles’’ T, T 0 having
only a set of measure zero in common. The block spanned by v1 þ v2 and
v2 consists of T 0 and the translation T þ v2. It follows that these two
blocks have the same volume. We conclude that for any number c,

Vol0ðv1 þ cv2; v2; . . . ; vnÞ ¼ Vol0ðv1; v2; . . . ; vnÞ:

Indeed, if c ¼ 0 this is obvious, and if c 6¼ 0 then

c Vol0ðv1 þ cv2; v2Þ ¼ Vol0ðv1 þ cv2; cv2Þ

¼ Vol0ðv1 þ cv2Þ ¼ c Vol0ðv1; v2Þ:

We can then cancel c to get our conclusion.
To prove the linearity of Vol0 with respect to its first variable, we may

assume that v2; . . . ; vn are linearly independent, otherwise both sides of
ð��Þ are equal to 0. Let v1 be so chosen that fv1; . . . ; vng is a basis of Rn.
Then by induction, and what has been proved above,

Vol0ðc1v1 þ 
 
 
 þ cnvn; v2; . . . ; vnÞ

¼ Vol0ðc1v1 þ 
 
 
 þ cn�1vn�1; v2; . . . ; vnÞ

¼ Vol0ðc1v1; v2; . . . ; vnÞ

¼ c1 Vol
0ðv1; . . . ; vnÞ:

From this the linearity follows at once, and the theorem is proved.
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Corollary 2.2. Let S be the unit cube spanned by the unit vectors in Rn.
Let l: Rn ! Rn be a linear map. Then

Vol lðSÞ ¼ jDetðlÞj:

Proof. If v1; . . . ; vn are the images of e1; . . . ; en under l, then lðSÞ is the
block spanned by v1; . . . ; vn. If we represent l by the matrix A ¼ ðaijÞ,
then

vi ¼ a1ie1 þ 
 
 
 þ anien;

and hence Detðv1; . . . ; vnÞ ¼ DetðAÞ ¼ DetðlÞ. This proves the corollary.

Corollary 2.3. If R is any rectangle in Rn and l: Rn ! Rn is a linear

map, then
Vol lðRÞ ¼ jDetðlÞjVolðRÞ:

Proof. After a translation, we can assume that the rectangle is a block.
If R ¼ l1ðSÞ where S is the unit cube, then

lðRÞ ¼ l � l1ðSÞ;

whence by Corollary 2.2,

Vol lðRÞ ¼ jDetðl � l1Þj ¼ jDetðlÞ Detðl1Þj ¼ jDetðlÞj VolðRÞ:

The next theorem extends Corollary 2.3 to the more general case where
the linear map l is replaced by an arbitrary C1-invertible map. The proof
then consists of replacing the linear map by its derivative and estimat-
ing the error thus introduced. For this purpose, we have the Jacobian

determinant

Df ðxÞ ¼ Det Jf ðxÞ ¼ Det f 0ðxÞ;

where Jf ðxÞ is the Jacobian matrix, and f 0ðxÞ is the derivative of the map
f : U ! Rn.

Proposition 2.4. Let R be a rectangle in Rn, contained in some open set
U. Let f : U ! Rn be a C1 map, which is C1-invertible on U. Then

m
�
f ðRÞ

�
¼
ð
R

jDf j dm:

Proof. When f is linear, this is nothing but Corollary 2.3 of the
preceding theorem. We shall prove the general case by approximating f

by its derivative. Let us first assume that R is a cube for simplicity. Given
�, let P be a partition of R, obtained by dividing each side of R into N
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equal segments for large N. Then R is partitioned into Nn subcubes which
we denote by Sj ð j ¼ 1; . . . ;NnÞ. We let aj be the center of Sj.

We have

Vol f ðRÞ ¼
X
j

Vol f ðSjÞ

because the images f ðSjÞ have only sets of measure 0 in common. We
investigate f ðSjÞ for each j. The derivative f 0 is uniformly continuous on
R. Given �, we assume that N has been taken so large that for x A Sj we
have

f ðxÞ ¼ f ðajÞ þ ljðx� ajÞ þ jðx� ajÞ;

where lj ¼ f 0ðajÞ and

jjðx� ajÞjY jx� aj j�:

To determine Vol f ðSjÞ we must therefore investigate f ðSÞ where S is a
cube centered at the origin, and f has the form

f ðxÞ ¼ lxþ jðxÞ; jjðxÞjY jxj�:

on the cube S. (We have made suitable translations which don’t a¤ect
volumes.) We have

l�1 � f ðxÞ ¼ xþ l�1 � jðxÞ;

so that l�1 � f is nearly the identity map. For some constant C, we have
for x A S

jl�1 � jðxÞjYC�:

From the lemma after the proof of the inverse mapping theorem, we
conclude that l�1 � f ðSÞ contains a cube of radius

ð1� C�Þðradius SÞ;

and trivial estimates show that l�1 � f ðSÞ is contained in a cube of radius

ð1þ C�Þðradius SÞ:

We apply l to these cubes, and determine their volumes. Putting indices j
on everything, we find that

jDet f 0ðajÞj VolðSjÞ � �C1VolðSjÞ

YVol f ðSjÞY jDet f 0ðajÞj VolðSjÞ þ �C1VolðSjÞ
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with some fixed constant C1. Summing over j and estimating jDf j, we see
that our theorem follows at once.

Remark. We assumed for simplicity that R was a cube. Actually, by
changing the norm on each side, multiplying by a suitable constant, and
taking the sup of the adjusting norms, we see that this involves no loss of
generality. Alternatively, we can approximate a given rectangle by cubes.

Corollary 2.5. If g is continuous on f ðRÞ, then
ð
f ðRÞ

g dm ¼
ð
R

ðg � f ÞjDf j dm:

Proof. The functions g and ðg � f ÞjDf j are uniformly continuous on
f ðRÞ and R respectively. Let us take a partition of R and let fSjg be the
subrectangles of this partition. If d is the maximum length of the sides of
the subrectangles of the partition, then f ðSjÞ is contained in a rectangle
whose sides have length Y Cd for some constant C. We have

ð
f ðRÞ

g dm ¼
X
j

ð
f ðSjÞ

g dm:

The sup and inf of g of f ðSjÞ di¤er only by � if d is taken su‰ciently
small. Using the theorem, applied to each Sj, and replacing g by its
minimum mj and maximum Mj on Sj, we see that the corollary follows at
once.

Theorem 2.6 (Change of Variables Formula). Let U be open in Rn and

let f : U ! Rn be a C1 map, which is C 1 invertible on U. Let g be in

L1
�
f ðUÞ

�
. Then ðg � f ÞjDf j is in L1ðUÞ and we have

ð
f ðUÞ

g dm ¼
ð
U

ðg � f ÞjDf j dm:

Proof. Let R be a closed rectangle contained in U. We shall first prove
that the restriction of ðg � f ÞjDf j to R is in L1ðRÞ, and that the formula
holds when U is replaced by R. We know that Cc

�
f ðUÞ

�
is L1-dense in

L1
�
f ðUÞ

�
, by [La 93], Theorem 3.1 of Chapter IX. Hence there exists a

sequence fgkg in Cc
�
f ðUÞ

�
which in L1-convergent to g. Using [La 93],

Theorem 5.2 of Chapter VI, we may assume that fgkg converges pointwise
to g except on a set Z of measure 0 in f ðUÞ. By Lemma 1.2, we know
that f �1ðZÞ has measure 0.

Let g�k ¼ ðgk � f ÞjDf j. Each function g�k is continuous on R. The
sequence fg�kg converges almost everywhere to ðg � f ÞjDf j restricted to R.

change of variables formula[VIII, §2] 191



It is in fact an L1-Cauchy sequence in L1ðRÞ. To see this, we have by the
result for rectangles and continuous functions (corollary of the preceding
theorem) : ð

R

jg�k � g�mj dm ¼
ð
f ðRÞ

jgk � gmj dm;

so the Cauchy nature of the sequence fg�kg is clear from that of fgkg. It
follows that the restriction of ðg � f ÞjDf j to R is the L1-limit of fg�kg, and
is in L1ðRÞ. It also follows that the formula of the theorem holds for R,
that is ð

f ðAÞ
g dm ¼

ð
A

ðg � f ÞjDf j dm

when A ¼ R.
The theorem is now seen to hold for any measurable subset A of R,

since f ðAÞ is measurable, and since a function g in L1
�
f ðAÞ

�
can be

extended to a function in L1
�
f ðRÞ

�
by giving it the value 0 outside f ðAÞ.

From this it follows that the theorem holds if A is a finite union of
rectangles contained in U. We can find a sequence of rectangles fRmg
contained in U whose union is equal to U, because U is separable. Taking
the usual stepwise complementation, we can find a disjoint sequence of
measurable sets

Am ¼ Rm � ðR1 W 
 
 
 WRm�1Þ

whose union is U, and such that our theorem holds if A ¼ Am. Let

hm ¼ gf ðAmÞ ¼ gwf ðAmÞ and h�m ¼ ðhm � f ÞjDf j:

Then
P
hm converges to g and

P
h�m converges to ðg � f ÞjDf j. Our

theorem follows from Corollary 5.13 of the dominated convergence
theorem in [La 93].

Note. In dealing with polar coordinates or the like, one sometimes
meets a map f which is invertible except on a set of measure 0, e.g. the
polar coordinate map. It is now trivial to recover a result covering this
type of situation.

Corollary 2.7. Let U be open in Rn and let f : U ! Rn be a C 1 map.
Let A be a measurable subset of U such that the boundary of A has

measure 0, and such that f is C1 invertible on the interior of A. Let g be
in L1

�
f ðAÞ

�
. Then ðg � f ÞjDf j is in L1ðAÞ and

ð
f ðAÞ

g dm ¼
ð
A

ðg � f ÞjDf j dm:
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Proof. Let U0 be the interior of A. The sets f ðAÞ and f ðU0Þ di¤er
only by a set of measure 0, namely f ðqAÞ. Also the sets A, U0 di¤er only
by a set of measure 0. Consequently we can replace the domains of
integration f ðAÞ and A by f ðU0Þ and U0, respectively. The theorem
applies to conclude the proof of the corollary.

VIII, §3. ORIENTATION

Let U, V be open sets in half spaces of Rn and let j: U ! V be a C 1

isomorphism. We shall say that j is orientation preserving if the Jacobian
determinant DjðxÞ is > 0, all x A U . If the Jacobian determinant is
negative, then we say that j is orientation reversing.

Let X be a Cp manifold, pZ 1, and let fðUi; jiÞg be an atlas. We say
that this atlas is oriented if all transition maps jj � j�1

i are orientation
preserving. Two atlases fðUi; jiÞg and fðVa; caÞg are said to define the

same orientation, or to be orientation equivalent, if their union is oriented.
We can also define locally a chart ðV ; cÞ to be orientation compatible with
the oriented atlas fðUi; jiÞg if all transition maps ji � j�1 (defined
whenever UiXV is not empty) are orientation preserving. An orientation
equivalence class of oriented atlases is said to define an oriented manifold,
or to be an orientation of the manifold. It is a simple exercise to verify
that if a connected manifold has an orientation, then it has two distinct
orientations.

The standard examples of the Moebius strip or projective plane show
that not all manifolds admit orientations. We shall now see that the
boundary of an oriented manifold with boundary can be given a natural
orientation.

Let j: U ! Rn be an oriented chart at a boundary point of X, such that :

(1) if ðx1; . . . ; xnÞ are the local coordinates of the chart, then the

boundary points correspond to those points in Rn satisfying x1 ¼ 0 ;
and

(2) the points of U not in the boundary have coordinates satisfying

x1 < 0.

Then ðx2; . . . ; xnÞ are the local coordinates for a chart of the boundary,
namely the restriction of j to qX XU , and the picture is as follows.
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We may say that we have considered a chart j such that the manifold lies
to the left of its boundary. If the reader thinks of a domain in R2, having
a smooth curve for its boundary, as on the following picture, the reader
will see that our choice of chart corresponds to what is usually visualized
as ‘‘counterclockwise’’ orientation.

The collection of all pairs
�
U X qX ; jjðU X qX Þ

�
, chosen according to

the criteria described above, is obviously an atlas for the boundary qX ,
and we contend that it is an oriented atlas.

We prove this easily as follows. If

ðx1; . . . ; xnÞ ¼ x and ðy1; . . . ; ynÞ ¼ y

are coordinate systems at a boundary point corresponding to choices of
charts made according to our specifications, then we can write y ¼ f ðxÞ
where f ¼ ð f1; . . . ; f nÞ is the transition mapping. Since we deal with
oriented charts for X, we know that Df ðxÞ > 0 for all x. Since f maps
boundary into boundary, we have

f1ð0; x2; . . . ; xnÞ ¼ 0

for all x2; . . . ; xn. Consequently the Jacobian matrix of f at a point
ð0; x2; . . . ; xnÞ is equal to

D1 f1ð0; x2; . . . ; xnÞ 0 
 
 
 
 
 0
�
� Dðn�1Þ

g

�

0
BB@

1
CCA;

where Dðn�1Þ
g is the Jacobian matrix of the transition map g induced by f

on the boundary, and given by

y2 ¼ f2ð0; x2; . . . ; xnÞ;
..
. ..

.

yn ¼ fnð0; x2; . . . ; xnÞ:
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However, we have

D1 f1ð0; x2; . . . ; xnÞ ¼ lim
h!0

f1ðh; x2; . . . ; xnÞ
h

;

taking the limit with h < 0 since by prescription, points of X have coor-
dinates with x1 < 0. Furthermore, for the same reason we have

f1ðh; x2; . . . ; xnÞ < 0:

Consequently

D1 f1ð0; x2; . . . ; xnÞ > 0:

From this it follows that Dðn�1Þ
g ðx2; . . . ; xnÞ > 0, thus proving our assertion

that the atlas we have defined for qX is oriented.

From now on, when we deal with an oriented manifold, it is understood
that its boundary is taken with orientation described above, and called the
induced orientation.

VIII, §4. THE MEASURE ASSOCIATED WITH
A DIFFERENTIAL FORM

Let X be a manifold of class Cp with pZ 1. We assume from now on

that X has a countable base. Then we know that X admits Cp partitions

of unity, subordinated to any given open covering.

(Actually, instead of the conditions we assumed, we could just as well
have assumed the existence of Cp partitions of unity, which is the precise
condition to be used in the sequel.)

We can define the support of a di¤erential form as we defined the
support of a function. It is the closure of the set of all x A X such that
oðxÞ 6¼ 0. If o is a form of class Cp and a is a Cq function on X, then we
can form the product ao, which is the form whose value at x is aðxÞoðxÞ.
If a has compact support, then ao has compact support. Later, we shall
study the integration of forms, and reduce this to a local problem by
means of partitions of unity, in which we multiply a form by functions.

We assume that the reader is familiar with the correspondence between
certain functionals on continuous functions with compact support and
measures. Cf. [La 93] for this. We just recall some terminology.

We denote by CcðXÞ the infinite dimensional vector space of continuous
functions on X with compact support (i.e. vanishing outside a compact
set). We write CcðX ; RÞ or CcðX ; CÞ if we wish to distinguish between the
real or complex valued functions.
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We denote by CKðXÞ the subspace of CcðX Þ consisting of those
functions which vanish outside K. (Same notation CSðX Þ for those
functions which are 0 outside any subset S of X. Most of the time, the
useful subsets in this context are the compact subsets K.)

A linear map l of CcðX Þ into the complex numbers (or into a normed
vector space, for that matter) is said to be bounded if there exists some
CZ 0 such that we have for the sup norm

jl f jYCk f k

for all f A CcðXÞ. Thus l is bounded if and only if l is continuous for the
norm topology.

A linear map l of CcðX Þ into the complex numbers is said to be
positive if we have l f Z 0 whenever f is real and Z 0.

Lemma 4.1. Let l: CcðXÞ ! C be a positive linear map. Then l is

bounded on CKðX Þ for any compact K.

Proof. By the corollary of Urysohn’s lemma, there exists a continuous
real function gZ 0 on X which is 1 on K has compact support. If
f A CKðX Þ, let b ¼ k f k. Say f is real. Then bgG f Z 0, whence

lðbgÞG l f Z 0

and jl f jY blðgÞ. Thus lg is our desired bound.

A complex valued linear map on CcðXÞ which is bounded on each
subspace CKðXÞ for every compact K will be called a Cc-functional on
CcðX Þ, or more simply, a functional. A functional on CcðXÞ which is also
continuous for the sup norm will be called a bounded functional. It is clear
that a bounded functional is also a Cc-functional.

Lemma 4.2. Let fWag be an open covering of X. For each index a, let
la be a functional on CcðWaÞ. Assume that for each pair of indices a, b
the functionals la and lb are equal on CcðWa XWbÞ. Then there exists a
unique functional l on X whose restriction to each CcðWaÞ is equal to la.
If each la is positive, then so is l.

Proof. Let f A CcðX Þ and let K be the support of f . Let fhig be a
partition of unity over K subordinated to a covering of K by a finite
number of the open sets Wa. Then each hi f has support in some WaðiÞ
and we define

l f ¼
X
i

laðiÞðhi f Þ:
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We contend that this sum is independent of the choice of aðiÞ, and also of
the choice of partition of unity. Once this is proved, it is then obvious
that l is a functional which satisfies our requirements. We now prove this
independence. First note that if Wa 0ðiÞ is another one of the open sets Wa

in which the support of hi f is contained, then hi f has support in the
intersection WaðiÞ XWa 0ðiÞ, and our assumption concerning our functionals
la shows that the corresponding term in the sum does not depend on the
choice of index aðiÞ. Next, let fgkg be another partition of unity over K
subordinated to some covering of K by a finite number of the open sets
Wa. Then for each i,

hi f ¼
X
k

gk hi f ;

whence X
i

laðiÞðhi f Þ ¼
X
i

X
k

laðiÞðgk hi f Þ:

If the support of gkhi f is in some Wa, then the value laðgkhi f Þ is inde-
pendent of the choice of index a. The expression on the right is then
symmetric with respect to our two partitions of unity, whence our theorem
follows.

Theorem 4.3. Let dim X ¼ n and let o be an n-form on X of class C0,
that is continuous. Then there exists a unique positive functional l on

CcðX Þ having the following property. If ðU ; jÞ is a chart and

oðxÞ ¼ f ðxÞ dx1 5 
 
 
 5 dxn

is the local representation of o in this chart, then for any g A CcðX Þ with
support in U, we have

lg ¼
ð
jU

gjðxÞj f ðxÞj dx;ð1Þ

where gj represents g in the chart i:e: gjðxÞ ¼ g
�
j�1ðxÞ

�� �
, and dx is

Lebesgue measure.

Proof. The integral in (1) defines a positive functional on CcðUÞ. The
change of variables formula shows that if ðU ; jÞ and ðV ; cÞ are two
charts, and if g has support in U XV , then the value of the functional is
independent of the choice of charts. Thus we get a positive functional by
the general localization lemma for functionals.

The positive measure corresponding to the functional in Theorem 4.3
will be called the measure associated with joj, and can be denoted by mjoj.
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Theorem 4.3 does not need any orientability assumption. With such
an assumption, we have a similar theorem, obtained without taking the
absolute value.

Theorem 4.4. Let dim X ¼ n and assume that X is oriented. Let o be

an n-form on X of class C 0. Then there exists a unique functional l on
CcðX Þ having the following property. If ðU ; jÞ is an oriented chart and

oðxÞ ¼ f ðxÞ dx1; 5 
 
 
 5 dxn

is the local representation of o in this chart, then for any g A CcðX Þ with
support in U, we have

lg ¼
ð
jU

gjðxÞ f ðxÞ dx;

where gj represents g in the chart, and dx is Lebesgue measure.

Proof. Since the Jacobian determinant of transition maps belonging to
oriented charts is positive, we see that Theorem 4.4 follows like Theorem
4.3 from the change of variables formula (in which the absolute value sign
now becomes unnecessary) and the existence of partitions of unity.

If l is the functional of Theorem 4.4, we shall call it the functional

associated with o. For any function g A CcðX Þ, we define

ð
X

go ¼ lg:

If in particular o has compact support, we can also proceed directly as
follows. Let faig be a partition of unity over X such that each ai has
compact support. We define

ð
X

o ¼
X
i

ð
X

aio;

all but a finite number of terms in this sum being equal to 0. As usual, it
is immediately verified that this sum is in fact independent of the choice of
partition of unity, and in fact, we could just as well use only a partition
of unity over the support of o. Alternatively, if a is a function in CcðXÞ
which is equal to 1 on the support of o, then we could also define

ð
X

o ¼
ð
X

ao:
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It is clear that these two possible definitions are equivalent. In particular,
we obtain the following variation of Theorem 4.4.

Theorem 4.5. Let X be an oriented manifold of dimension n. Let An
c ðXÞ

be the R-space of di¤erential forms with compact support. There exists a
unique linear map

o 7!
ð
X

o of An
c ðXÞ ! R

such that, if o has support in an oriented chart U with coordinates

x1; . . . ; xn and oðxÞ ¼ f ðxÞ dx1 5 
 
 
 5 dxn in this chart, then

ð
X

o ¼
ð
U

f ðxÞ dx1 
 
 
 dxn:

Let X be an oriented manifold. By a volume form W we mean a form
such that in every oriented chart, the form can be written as

WðxÞ ¼ f ðxÞ dx1 5 
 
 
 5 dxn

with f ðxÞ > 0 for all x. In Chapter X, §2 we shall see how to get a
volume form from a Riemannian metric. For densities, see [La99] Chapter
XVI, §4. They include as special case the absolute value of a volume
form.
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CHAPTER IX

Stokes’ Theorem

Throughout the chapter, manifolds may have a boundary.

IX, §1. STOKES’ THEOREM FOR A
RECTANGULAR SIMPLEX

If X is a manifold and Y a submanifold, then any di¤erential form on X

induces a form on Y . We can view this as a very special case of the
inverse image of a form, under the embedding (injection) map

id : Y ! X :

In particular, if Y has dimension n � 1, and if ðx1; . . . ; xnÞ is a system of
coordinates for X at some point of Y such that the points of Y corre-
spond to those coordinates satisfying xj ¼ c for some fixed number c, and
index j, and if the form on X is given in terms of these coordinates by

oðxÞ ¼ f ðx1; . . . ; xnÞ dx15 � � � 5 dxn;

then the restriction of o to Y (or the form induced on Y ) has the
representation

f ðx1; . . . ; c; . . . ; xnÞ dx15 � � � 5 cdxjdxj 5 � � � 5 dxn:

We should denote this induced form by oY , although occasionally we omit
the subscript Y . We shall use such an induced form especially when Y is
the boundary of a manifold X .
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Let

R ¼ ½a1; b1� 	 � � � 	 ½an; bn�

be a rectangle in n-space, that is a product of n closed intervals. The set
theoretic boundary of R consists of the union over all i ¼ 1; . . . ; n of the
pieces

R0
i ¼ ½a1; b1� 	 � � � 	 faig 	 � � � 	 fan; bng;

R1
i ¼ ½a1; b1� 	 � � � 	 fbig 	 � � � 	 ½an; bn�:

If

oðx1; . . . ; xnÞ ¼ f ðx1; . . . ; xnÞ dx15 � � � 5 cdxjdxj 5 � � � 5 dxn

is an ðn � 1Þ-form, and the roof over anything means that this thing is to
be omitted, then we define

ð
R0

o ¼
ð b1

ai

� � �
cðbi
ðbi

ai

� � �
ð bn

an

f ðx1; . . . ; ai; . . . ; xnÞ dx1 � � � cdxjdxj � � � dxn;

if i ¼ j, and 0 otherwise. And similarly for the integral over R1
i . We

define the integral over the oriented boundary to be

ð
q0R

¼
Xn

i¼1
ð�1Þ i

ð
R0

i

�
ð

R1
i

" #
:

Stokes’ Theorem for Rectangles. Let R be a rectangle in an open set U

in n-space. Let o be an ðn � 1Þ-form on U. Then

ð
R

do ¼
ð
q0R

o:

Proof. In two dimensions, the picture looks like this :
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It su‰ces to prove the assertion when o is a decomposable form, say

oðxÞ ¼ f ðx1; . . . ; xnÞ dx15 � � � 5 cdxjdxj 5 � � � 5 dxn:

We then evaluate the integral over the boundary of R. If i 6¼ j, then it is
clear that ð

R 0
i

o ¼ 0 ¼
ð

R1
i

o;

so that

ð
q0R

o ¼

ð�1Þ j

ð b1

a1

� � �
cðbj

aj

ðbj

aj

� � �
ð bn

an

½ f ðx1; . . . ; aj ; . . . ; xnÞ � f ðx1; . . . ; bj ; . . . ; xnÞ� dx1 � � � cdxjdxj � � � dxn:

On the other hand, from the definitions we find that

doðxÞ ¼ qf

dx1
dx1 þ � � � þ qf

qxn

dxn

� �
5 dx15 � � � 5 cdxjdxj 5 � � � 5 dxn

¼ ð�1Þ j�1 qf

qxj

dx15 � � � 5 dxn:

(The ð�1Þ j�1 comes from interchanging dxj with dx1; . . . ; dxj�1. All other
terms disappear by the alternating rule.)

Integrating do over R, we may use repeated integration and integrate
qf =qxj with respect to xj first. Then the fundamental theorem of calculus
for one variable yields

ð bj

aj

qf

qxj

dxj ¼ f ðx1; . . . ; bj; . . . ; xnÞ � f ðx1; . . . ; aj ; . . . ; xnÞ:

We then integrate with respect to the other variables, and multiply by
ð�1Þ j�1. This yields precisely the value found for the integral of o over
the oriented boundary q0R, and proves the theorem.

Remark. Stokes’ theorem for a rectangle extends at once to a version in
which we parametrize a subset of some space by a rectangle. Indeed, if
s: R ! V is a C 1 map of a rectangle of dimension n into an open set V

in RN , and if o is an ðn � 1Þ-form in V , we may define

ð
s

do ¼
ð

R

s�do:
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One can define ð
qs

o ¼
ð
q0R

s�o;

and then we have a formula

ð
s

do ¼
ð
qs

o;

In the next section, we prove a somewhat less formal result.

IX, §2. STOKES’ THEOREM ON A MANIFOLD

Theorem 2.1. Let X be an oriented manifold of class C2, dimension n,
and let o be an ðn � 1Þ-form on X, of class C1. Assume that o has

compact support. Then ð
X

do ¼
ð
qX

o:

Proof. Let faigi A I be a partition of unity, of class C2. Then

X
iAI

ai o ¼ o;

and this sum has only a finite number of non-zero terms since the support
of o is compact. Using the additivity of the operation d, and that of the
integral, we find ð

X

do ¼
X
i A I

ð
X

dðai oÞ:

Suppose that ai has compact support in some open set Vi of X and that
we can prove ð

Vi

dðai oÞ ¼
ð

Vi X qX

ai o;

in other words we can prove Stokes’ theorem locally in Vi. We can write

ð
ViXqX

ai o ¼
ð
qX

ai o;
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and similarly ð
Vi

dðai oÞ ¼
ð

X

dðai oÞ:

Using the additivity of the integral once more, we get

ð
X

do ¼
X
i A I

ð
X

dðai oÞ ¼
X
i A I

ð
qX

ai o ¼
ð
qX

o;

which yields Stokes’ theorem on the whole manifold. Thus our argument
with partitions of unity reduces Stokes’ theorem to the local case, namely
it su‰ces to prove that for each point of X these exists an open
neighborhood V such that if o has compact support in V , then Stokes’
theorem holds with X replaced by V . We now do this.

If the point is not a boundary point, we take an oriented chart ðU ; jÞ
at the point, containing an open neighborhood V of the point, satisfying
the following conditions : jU is an open ball, and jV is the interior of
a rectangle, whose closure is contained in jU . If o has compact support
in V , then its local representation in jU has compact support in jV .
Applying Stokes’ theorem for rectangles as proved in the preceding
section, we find that the two integrals occurring in Stokes’ formula are
equal to 0 in this case (the integral over an empty boundary being equal to
0 by convention).

Now suppose that we deal with a boundary point. We take an oriented
chart ðU ; jÞ at the point, having the following properties. First, jU is
described by the following inequalities in terms of local coordinates
ðx1; . . . ; xnÞ :

�2 < x1Y 1 and �2 < xj < 2 for j ¼ 2; . . . ; n:

Next, the given point has coordinates ð1; 0; . . . ; 0Þ, and that part of U on
the boundary of X , namely U X qX , is given in terms of these coordinates
by the equation x1 ¼ 1. We then let V consist of those points whose local
coordinates satisfy

0 < x1Y 1 and �1 < xj < 1 for j ¼ 2; . . . ; n:

If o has compact support in V , then o is equal to 0 on the boundary of
the rectangle R equal to the closure of jV , except on the face given by
x1 ¼ 1, which defines that part of the rectangle corresponding to qX XV .
Thus the support of o looks like the shaded portion of the following
picture.
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In the sum giving the integral over the boundary of a rectangle as in the
previous section, only one term will give a non-zero contribution, corre-
sponding to i ¼ 1, which is

ð�1Þ
ð

R0
1

o�
ð

R1
1

o

" #
:

Furthermore, the integral over R0
1 will also be 0, and in the contribution of

the integral over R1
1 , the two minus signs will cancel, and yield the integral

of o over the part of the boundary lying in V , because our charts are
so chosen that ðx2; . . . ; xnÞ is an oriented system of coordinates for the
boundary. Thus we find

ð
V

do ¼
ð

V X qX

o;

which proves Stokes’ theorem locally in this case, and concludes the proof
of Theorem 2.7.

Corollary 2.2. Suppose X is an oriented manifold without boundary, and

o has compact support. Then

ð
X

do ¼ 0:

For any number of reasons, some of which we consider in the next
section, it is useful to formulate conditions under which Stokes’ theorem
holds even when the form o does not have compact support. We shall say
that o has almost compact support if there exists a decreasing sequence of
open sets fUkg in X such that the intersection

7
y

k¼1
Uk
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is empty, and a sequence of C1 functions fgkg, having the following
properties :

AC 1. We have 0Y gk Y 1, gk ¼ 1 outside Uk, and gko has compact

support.

AC 2. If mk is the measure associated with jdgk 5oj on X, then

lim
k!y

mkðUkÞ ¼ 0:

We then have the following application of Stokes’ theorem.

Corollary 2.3. Let X be a C2 oriented manifold, of dimension n, and let

o be an ðn � 1Þ-form on X, of class C1. Assume that o has almost

compact support, and that the measures associated with jdoj on X and

joj on qX are finite. Then

ð
X

do ¼
ð
qX

o:

Proof. By our standard form of Stokes’ theorem we have

ð
qX

gko ¼
ð

X

dðgk oÞ ¼
ð

X

dgk 5o þ
ð

X

gk do:

We estimate the left-hand side by

ð
qX

o�
ð
qX

gk o

����
���� ¼

ð
qX

ð1� gkÞo
����

����Y mjojðUk X qX Þ:

Since the intersection of the sets Uk is empty, it follows for a purely
measure-theoretic reason that

lim
k!y

ð
qX

gk o ¼
ð
qX

o:

Similarly,

lim
k!y

ð
X

gk do ¼
ð

X

do:

The integral of dgk 5o over X approaches 0 as k ! y by assumption,
and the fact that dgk 5o is equal to 0 on the complement of Uk since gk

is constant on this complement. This proves our corollary.

The above proof shows that the second condition AC 2 is a very
natural one to reduce the integral of an arbitrary form to that of a form
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with compact support. In the next section, we relate this condition to a
question of singularities when the manifold is embedded in some bigger
space.

IX, §3. STOKES’ THEOREM WITH SINGULARITIES

If X is a compact manifold, then of course every di¤erential form on X

has compact support. However, the version of Stokes’ theorem which we
have given is useful in contexts when we start with an object which is not
a manifold, say as a subset of Rn, but is such that when we remove a
portion of it, what remains is a manifold. For instance, consider a cone
(say the solid cone) as illustrated in the next picture.

The vertex and the circle surrounding the base disc prevent the cone from
being a submanifold of R3. However, if we delete the vertex and this
circle, what remains is a submanifold with boundary embedded in R3.
The boundary consists of the conical shell, and of the base disc (without
its surrounding circle). Another example is given by polyhedra, as on the
following figure.

The idea is to approximate a given form by a form with compact
support, to which we can apply Theorem 2.1, and then take the limit. We
shall indicate one possible technique to do this.

The word ‘‘boundary’’ has been used in two senses : The sense of point
set topology, and the sense of boundary of a manifold. Up to now, they
were used in di¤erent contexts so no confusion could arise. We must now
make a distinction, and therefore use the word boundary only in its
manifold sense. If X is a subset of RN , we denote its closure by X as
usual. We call the set-theoretic di¤erence X � X the frontier of X in RN ,
and denote it by frðX Þ.
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Let X be a submanifold without boundary of RN , of dimension n. We
know that this means that at each point of X there exists a chart for an
open neighborhood of this point in RN such that the points of X in this
chart correspond to a factor in a product. A point P of X � X will be
called a regular frontier point of X if there exists a chart at P in RN with
local coordinates ðx1; . . . ; xNÞ such that P has coordinates ð0; . . . ; 0Þ ; the
points of X are those with coordinates

xnþ1 ¼ � � � ¼ xN ¼ 0 and xn < 0 ;

and the points of the frontier of X which lie in the chart are those with
coordinates satisfying

xn ¼ xnþ1 ¼ � � � ¼ xN ¼ 0:

The set of all regular frontier points of X will be denoted by qX , and will
be called the boundary of X . We may say that X W qX is a submanifold
of RN , possibly with boundary.

A point of the frontier of X which is not regular will be called singular.
It is clear that the set of singular points is closed in RN . We now
formulate a version of Theorem 2.1 when o does not necessarily have
compact support in X W qX . Let S be a subset of RN . By a fundamental
sequence of open neighborhoods of S we shall mean a sequence fUkg of
open sets containing S such that, if W is an open set containing S, then
Uk HW for all su‰ciently large k.

Let S be the set of singular frontier points of X and let o be a form
defined on an open neighborhood of X , and having compact support. The
intersection of supp o with ðX W qXÞ need not be compact, so that we
cannot apply Theorem 2.1 as it stands. The idea is to find a fundamental
sequence of neighborhods fUkg of S, and a function gk which is 0 on a
neighborhood of S and 1 outside Uk so that gko di¤ers from o only inside
Uk. We can then apply Theorem 2.1 to gko and we hope that taking the
limit yields Stokes’ theorem for o itself. However, we have

ð
X

dðgk oÞ ¼
ð

X

dgk 5o þ
ð

X

gk do:

Thus we have an extra term on the right, which should go to 0 as k ! y
if we wish to apply this method. In view of this, we make the following
definition.

Let S be a closed subset of RN . We shall say that S is negligible for X

if there exists an open neighborhood U of S in RN , a fundamental
sequence of open neighborhoods fUkg of S in U , with Uk HU , and a
sequence of C1 functions fgkg, having the following properties.
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NEG 1. We have 0Y gk Y 1. Also, gkðxÞ ¼ 0 for x in some open

neighborhood of S, and gkðxÞ ¼ 1 for x 6A Uk.

NEG 2. If o is an ðn � 1Þ-form of class C1 on U, and mk is the measure

associated with jdgk 5oj on U XX , then mk is finite for large

k, and

lim
k!y

mkðU XX Þ ¼ 0:

From our first condition, we see that gko vanishes on an open
neighborhood of S. Since gk ¼ 1 on the complement of Uk, we have
dgk ¼ 0 on this complement, and therefore our second condition implies
that the measures induced on X near the singular frontier by jdgk 5oj
(for k ¼ 1; 2; . . .), are concentrated on shrinking neighborhoods and tend
to 0 as k ! y.

Theorem 3.1 (Stokes’ Theorem with Singularities). Let X be an oriented,
C3 submanifold without boundary of RN . Let dim X ¼ n. Let o be an

ðn � 1Þ-form of class C1 on an open neighborhood of X in RN , and with

compact support. Assume that :

(i) If S is the set of singular points in the frontier of X, then

S X supp o is negligible for X.
(ii) The measures associated with jdoj on X, and joj on qX , are finite.

Then ð
X

do ¼
ð
qX

o:

Proof. Let U , fUkg, and fgkg satisfy conditions NEG 1 and NEG 2.
Then gko is 0 on an open neighborhood of S, and since o is assumed to
have compact support, one verifies immediately that

ðsupp gk oÞX ðX W qX Þ

is compact. Thus Theorem 2.1 is applicable, and we get

ð
qX

gk o ¼
ð

X

dðgk oÞ ¼
ð

X

dgk 5o þ
ð

X

gk do:

We have ð
qX

o�
ð
qX

gk o

����
����Y

ð
qX

ð1� gkÞo
����

����
Y
ð

Uk X qX

1 dmjoj ¼ mjojðUk X qX Þ:

Since the intersection of all sets Uk X qX is empty, it follows from purely
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measure-theoretic reasons that the limit of the right-hand side is 0 as
k ! y. Thus

lim
k!y

ð
qX

gk o ¼
ð
qX

o:

For similar reasons, we have

lim
k!y

ð
X

gk do ¼
ð

X

do:

Our second assumption NEG 2 guarantees that the integral of dgk 5o

over X approaches 0. This proves our theorem.

Criterion 1. Let S, T be compact negligible sets for a submanifold X of

RN (assuming X without boundary). Then the union S WT is negligible

for X.

Proof. Let U , fUkg, fgkg and V , fVkg, fhkg be triples associated with
S and T respectively as in condition NEG 1 and NEG 2 (with V replacing
U and h replacing g when T replaces S). Let

W ¼ U WV ; Wk ¼ Uk WVk; and f k ¼ gk hk:

Then the open sets fWkg form a fundamental sequence of open neigh-
borhoods of S WT in W , and NEG 1 is trivially satisfied. As for NEG 2,
we have

dðgk hkÞ5o ¼ hk dgk 5oþ gk dhk 5o;

so that NEG 2 is also trivially satisfied, thus proving our criterion.

Criterion 2. Let X be an open set, and let S be a compact subset in Rn.
Assume that there exists a closed rectangle R of dimension mY n � 2 and

a C 1 map s: R ! Rn such that S ¼ sðRÞ. Then S is negligible for X.

Before giving the proof, we make a couple of simple remarks. First, we
could always take m ¼ n � 2, since any parametrization by a rectangle of
dimension <n � 2 can be extended to a parametrization by a rectangle of
dimension n � 2 simply by projecting away coordinates. Second, by our
first criterion, we see that a finite union of sets as described above, that is
parametrized smoothly by rectangles of codimension Z 2, are negligible.
Third, our Criterion 2, combined with the first criterion, shows that
negligibility in this case is local, that is we can subdivide a rectangle into
small pieces.

We now prove Criterion 2. Composing s with a suitable linear map,
we may assume that R is a unit cube. We cut up each side of the cube
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into k equal segments and thus get km small cubes. Since the derivative of
s is bounded on a compact set, the image of each small cube is contained
in an n-cube in RN of radius Y C=k (by the mean value theorem), whose
n-dimensional volume is Y ð2CÞn=kn. Thus we can cover the image by
small cubes such that the sum of their n-dimensional volumes is

Y ð2CÞn=kn�m Y ð2CÞn=k2:

Lemma 3.2. Let S be a compact subset of Rn. Let Uk be the open set of

points x such that dðx; SÞ < 2=k. There exists a Cy function gk on RN

which is equal to 0 in some open neighborhood of S, equal to 1 outside

Uk, 0Y gk Y 1, and such that all partial derivatives of gk are bounded by

C1k, where C1 is a constant depending only on n.

Proof. Let j be a Cy function such that 0Y jY 1, and

jðxÞ ¼ 0 if 0Y kxkY 1
2 ;

jðxÞ ¼ 1 if 1Y kxk:

We use k k for the sup norm in Rn. The graph of j looks like this :

For each positive integer k, let jkðxÞ ¼ jðkxÞ. Then each partial deri-
vative Dijk satisfies the bound

kDijkkY kkDijk;

which is thus bounded by a constant times k. Let L denote the lattice of
integral points in Rn. For each l A L, we consider the function

x 7! jk x � l

2k

� �
:

This function has the same shape as jk but is translated to the point l=2k.
Consider the product

gkðxÞ ¼
Y

jk x � l

2k

� �
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taken over all l A L such that dðl=2k; SÞY 1=k. If x is a point of Rn such
that dðx; SÞ < 1=4k, then we pick an l such that

dðx; l=2kÞY 1=2k:

For this l we have dðl=2; SÞ < 1=k, so that this l occurs in the product,
and

jkðx � l=2kÞ ¼ 0:

Therefore gk is equal to 0 in an open neighborhood of S. If, on the other
hand, we have dðx; SÞ > 2=k and if l occurs in the product, that is

dðl=2k; SÞY 1=k;

then

dðx; l=2kÞ > 1=k;

and hence gkðxÞ ¼ 1. The partial derivatives of gk the bounded in the
desired manner. This is easily seen, for if x0 is a point where gk is not
identically 1 in a neighborhood of x0, then kx0 � l0=2kkY 1=k for some
l0. All other factors jkðx � 1=2kÞ will be identically 1 near x0 unless
kx0 � l=2kkY 1=k. But then kl � l0kY 4 whence the number of such l is
bounded as a function of n (in fact by 9n). Thus when we take the
derivative, we get a sum of a most 9n terms, each one having a derivative
bounded by C1k for some constant C1. This proves our lemma.

We return to the proof of Criterion 2. We observe that when an
ðn � 1Þ-form o is expressed n terms of its coordinates,

oðxÞ ¼
X

fjðxÞ dx15 � � � 5 cdxjdxj 5 � � � 5 dxn;

then the coe‰cients fj are bounded on a compact neighborhood of S. We
take Uk as in the lemma. Then for k large, each function

x 7! fjðxÞDjgkðxÞ

is bounded on Uk by a bound C2k, where C2 depends on a bound for o,
and on the constant of the lemma. The Lebesgue measure of Uk is
bounded by C3=k2, as we saw previously. Hence the measure of Uk

associated with jdgk 5oj is bounded by C4=k, and tends to 0 as k ! y.
This proves our criterion.

As an example, we now state a simpler version of Stokes’ theorem,
applying our criteria.
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Theorem 3.3. Let X be an open subset of Rn. Let S be the set of

singular points in the closure of X, and assume that S is the finite union

of C1 images of m-rectangles with mY n � 2. Let o be an ðn � 1Þ-form

defined on an open neighborhood of X . Assume that o has compact

support, and that the measure associated with joj on qX and with jdoj on

X are finite. Then ð
X

do ¼
ð
qX

o:

Proof. Immediate from our two criteria and Theorem 3.2.

We can apply Theorem 3.3 when, for instance, X is the interior of a
polyhedron, whose interior is open in Rn. When we deal with a sub-
manifold X of dimension n, embedded in a higher dimensional space RN ,
then one can reduce the analysis of the singular set to Criterion 2 provided
that there exists a finite number of charts for X near this singular set on
which the given form o is bounded. This would for instance be the case
with the surface of our cone mentioned at the beginning of the section.
Criterion 2 is also the natural one when dealing with manifolds defined by
algebraic inequalities. By using Hironaka’s resolution of singularities, one
can parametrize a compact set of algebraic singularities as in Criterion 2.

Finally, we note that the condition that o have compact support in an
open neighborhood of X is a very mild condition. If for instance X is a
bounded open subset of Rn, then X is compact. If o is any form on some
open set containing X , then we can find another form h which is equal to
o on some open neighborhood of X and which has compact support. The
integrals of h entering into Stokes’ formula will be the same as those of o.
To find h, we simply multiply o with a suitable Cy function which is 1 in
a neighborhood of X and vanishes a little further away. Thus Theorem
3.3 provides a reasonably useful version of Stokes’ theorem which can be
applied easily to all the cases likely to arise naturally.
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CHAPTER X

Applications of Stokes’
Theorem

In this chapter we give a survey of applications of Stokes’ theorem,
concerning many situations. Some come just from the di¤erential theory,
such as the computation of the maximal de Rham cohomology (the space
of all forms of maximal degree modulo the subspace of exact forms) ; some
come from Riemannian geometry ; and some come from complex mani-
folds, as in Cauchy’s theorem and the Poincaré residue theorem. I hope
that the selection of topics will give readers an outlook conducive for
further expansion of perspectives. The sections of this chapter are logically
independent of each other, so the reader can pick and choose according to
taste or need.

X, §1. THE MAXIMAL DE RHAM COHOMOLOGY

Let X be a manifold of dimension n without boundary. Let r be an
integer Z 0. We let ArðXÞ be the R-vector space of di¤erential forms on
X of degree r. Thus A rðXÞ ¼ 0 if r > n. If o A ArðXÞ, we define the
support of o to be the closure of the set of points x A X such that
oðxÞ 6¼ 0.

Examples. If oðxÞ ¼ f ðxÞ dx15 � � �5dxn on some open subset of Rn,
then the support of o is the closure of the set of x such that f ðxÞ 6¼ 0.

We denote the support of a form o by suppðoÞ. By definition, the
support is closed in X . We are interested in the space of maximal degree
forms AnðX Þ. Every form o A AnðXÞ is such that do ¼ 0. On the other
hand, AnðXÞ contains the subspace of exact forms, which are defined to
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be those forms equal to dh for some h A An�1ðX Þ. The factor space is
defined to be the de Rham cohomology HnðX Þ ¼ HnðX ; RÞ. The main
theorem of this section can then be formulated.

Theorem 1.1. Assume that X is compact, orientable, and connected.
Then the map

o 7!
ð
X

o

induces an isomorphism of H nðXÞ with R itself. In particular, if o is in

AnðXÞ then there exists h A An�1ðXÞ such that dh ¼ o if and only if

ð
X

o ¼ 0:

Actually the hypothesis of compactness on X is not needed. What is
needed is compactness on the support of the di¤erential forms. Thus we
are led to define A r

c ðXÞ to be the vector space of n-forms with compact
support. We call a form compactly exact if it is equal to dh for some
h A Ar�1

c ðXÞ. We let

Hn
c ðX Þ ¼ factor space An

c ðXÞ=dAn�1
c ðX Þ:

Then we have the more general version :

Theorem 1.2. Let X be a manifold without boundary, of dimension n.
Suppose that X is orientable and connected. Then the map

o 7!
ð
X

o

induces an isomorphism of Hn
c ðX Þ with R itself.

Proof. By Stokes’ theorem (Chapter IX, Corollary 2.2) the integral
vanishes on exact forms (with compact support), and hence induces an
R-linear map of Hn

c ðXÞ into R. The theorem amounts to proving the
converse statement : if ð

X

o ¼ 0;

then there exists some h A An�1
c ðXÞ such that o ¼ dh. For this, we first

have to prove the result locally in Rn, which we now do.
As a matter of notation, we let

I n ¼ ð0; 1Þn

be the open n-cube in Rn. What we want is :
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Lemma 1.3. Let o be an n-form on I n, with compact support, and such

that ð
I n

o ¼ 0:

Then there exists a form h A An�1
c ðI n�1Þ with compact support, such that

o ¼ dh:

We will prove Lemma 1.3 by induction, but it is necessary to load to
induction to carry it out. So we need to prove a stronger version of
Lemma 1.3 as follows.

Lemma 1.4. Let o be an ðn� 1Þ-form on I n�1 whose coe‰cient is a

function of n variables ðx1; . . . ; xnÞ so

oðxÞ ¼ f ðx1; . . . ; xnÞ dx15 � � �5dxn�1:

(Of course, all functions, like forms, are assumed Cy.) Suppose that o

has compact support in I n�1. Assume that

ð
I n�1

o ¼ 0:

Then there exists an ðn� 1Þ-form h, whose coe‰cients are Cy functions

of x1; . . . ; xn with compact support such that

oðx1; . . . ; xn�1 ; xnÞ ¼ dn�1 hðx1; . . . ; xn�1 ; xnÞ:

The symbol dn�1 here means the usual exterior derivative taken with

respect to the first n� 1 variables.

Proof. By induction. We first prove the theorem when n� 1 ¼ 1. First
we carry out the proof leaving out the extra variable, just to see what’s
going on. So let

oðxÞ ¼ f ðxÞ dx;

where f has compact support in the open interval ð0; 1Þ. This means
there exists � > 0 such that f ðxÞ ¼ 0 if 0 < xY � and if 1� �Y xY 1. We
assume ð1

0

f ðxÞ dx ¼ 0:
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Let

gðxÞ ¼
ð x

0

f ðtÞ dt:

Then gðxÞ ¼ 0 if 0 < xY �, and also if 1� �Y xY 1, because for instance
if 1� �Y xY 1, then

gðxÞ ¼
ð1
0

f ðtÞ dt ¼ 0:

Then f ðxÞ dx ¼ dgðxÞ, and the lemma is proved in this case. Note that we
could have carried out the proof with the extra variable x2, starting from

oðxÞ ¼ f ðx1; x2Þ dx1;
so that

gðx1; x2Þ ¼
ð1
0

f ðt; x2Þ dt:

We can di¤erentiate under the integral sign to verify that g is Cy in the
pair of variables ðx1; x2Þ.

Now let nZ 3 and assume that theorem proved for n� 1 by induction.
To simplify the notation, let us omit the extra variable xnþ1, and write

oðxÞ ¼ f ðx1; . . . ; xnÞ dx15 � � �5dxn;

with compact support in I n. Then there exists � > 0 such that the support
of f is contained in the closed cube

I
nð�Þ ¼ ½�; 1� ��n:

The following figure illustrates this support in dimension 2.

Let c be an ðn� 1Þ-form on I n�1, cðxÞ ¼ cðx1; . . . ; xn�1Þ such that

ð
I n�1

c ¼ 1;
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and c has compact support. Let

gðxnÞ ¼
ð
I n�1

f ðx1; . . . ; xn�1 ; xnÞ dx15 � � �5dxn�1

¼
ð
I
n�1ð�Þ

f ðx1; . . . ; xn�1 ; xnÞ dx15 � � �5dxn�1:

Note here that we do have the parameter xn coming in at the inductive
step. Let

mðxÞ ¼ f ðxÞ dx15 � � �5dxn�1 � gðxnÞcðx1; . . . ; xn�1Þ;
so

mðxÞ5 dxn ¼ oðxÞ � gðxnÞcðxÞ5 dxn:ð�Þ

Then ð
I n�1

m ¼ gðxnÞ � gðxnÞ ¼ 0:

Furthermore, since f has compact support, so does g (look at the figure).
By induction, there exists an ðn� 1Þ-form h, of the first n� 1 variables,
but depending on the parameter xn, that is

hðxÞ ¼ hðx1; . . . ; xn�1 ; xnÞ

such that

mðx1; . . . ; xn�1 ; xnÞ ¼ dn�1hðx1; . . . ; xn�1 ; xnÞ:

Here dn�1 denotes the exterior derivative with respect to the first n� 1
variables. Then trivially,

mðx1; . . . ; xn�1 ; xnÞ5 dxn ¼ dn�1 hðx1; . . . ; xn�1 ; xnÞ5 dxn

¼ dhðxÞ;

where dh is now the exterior derivative taken with respect to all n

variables. Hence finally from equation ð�Þ we obtain

oðxÞ ¼ dhðxÞ þ gðxnÞcðx1; . . . ; xn�1Þ5 dxn:ð��Þ

To conclude the proof of Lemma 1.3, it su‰ces to show that the second
term on the right of ð��Þ is exact. We are back to a one-variable
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problem. Let

hðxnÞ ¼
ð xn

0

gðtÞ dt:

Then dhðxnÞ ¼ gðxnÞdxn, and h has compact support in the interval ð0; 1Þ,
just as in the start of the induction. Then

d
�
hðxnÞcðx1; . . . ; xn�1Þ

�
¼ dhðxnÞ5cðx1; . . . ; xn�1Þ

¼ ð�1Þn�1gðxnÞcðx1; . . . ; xn�1Þ5 dxn

because dc ¼ 0. Of course we could have carried along the extra
parameter all the way through. This concludes the proof of Lemma 1.3.

We formulate an immediate consequence of Lemma 1.3 directly on the
manifold.

Lemma 1.5. Let U be an open subset of X, isomorphic to I n. Let

c A An
c ðUÞ be such that ð

U

c 6¼ 0:

Let o A An
c ðUÞ. Then there exists c A R and h A An�1

c ðUÞ such that

o� cc ¼ dh:

Proof. We take c ¼
ð
U

o

�ð
U

c and apply Lemma 1.3 to o� cc.

Observe that the hypothesis of connectedness has not yet entered the
picture. The preceding lemmas were purely local. We now globalize.

Lemma 1.6. Assume that X is connected and oriented. Let U, c be as in

Lemma 1.5. Let V be the set of points x A X having the following

property. There exists a neighborhood UðxÞ of x isomorphic to I n such

that for every o A An
c

�
UðxÞ

�
there exist c A R and h A An�1

c ðX Þ such

that

o� cc ¼ dh:

Then V ¼ X .

Proof. Lemma 1.5 asserts that V IU . Since X is connected, it su‰ces
to prove that V is both open and closed. It is immediate from the
definition of V that V is open, so there remains to prove its closure. Let z
be in the closure of V . Let W be a neighborhood of z isomorphic to I n.
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There exists a point x A V XW . There exists a neighborhood UðxÞ as in
the definition of V such that UðxÞHW . For instance, we may take

UðxÞA ða1; b1Þ  � � �  ðan; bnÞA I n

with ai su‰ciently close to 0 and bi su‰ciently close to 1, and of course
0 < ai < bi for i ¼ 1; . . . ; n. Let c1 A An

c

�
UðxÞ

�
be such that

ð
UðxÞ

c1 ¼ 1:

Let o A An
c ðWÞ. By the definition of V , there exist c1 A R and

h1 A An
c ðXÞ such that

c1 � c1c ¼ dh1:

By Lemma 1.5, there exists c2 A R and h2 A An
c ðXÞ such that

o� c2c1 ¼ dh2:

Then
o� c2c1c ¼ dðh2 þ c2h1Þ;

thus concluding the proof of Lemma 1.6.

We have now reached the final step in the proof of Theorem 1.2,

namely we first fix a form c A An
c ðUÞ with U A In and

ð
X

c 6¼ 0. Let

o A An
c ðX Þ. It su‰ces to prove that there exist c A R and h A An�1

c ðXÞ
such that

o� cc ¼ dh:

Let K be the compact support of o. Cover K by a finite number of open
neighborhoods Uðx1Þ; . . . ;UðxmÞ satisfying the property of Lemma 1.6.
Let fjig be a partition of unity subordinated to this covering, so that we
can write

o ¼
X

jio:

Then each form jio has support in some UðxjÞ. Hence by Lemma 1.6,
there exist ci A R and hi A An�1

c ðXÞ such that

jio� cic ¼ dhi;

whence o� cc ¼ dh, with c ¼
P

ci and h ¼
P

hi. This concludes the
proof of Theorems 1.1 and 1.2.
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X, §2. VOLUME FORMS AND THE DIVERGENCE

Let V be a euclidean vector space over R, of dimension n. We assume
given a positive definite symmetric scalar product g, denoted by

ðv; wÞ 7! hv; wig ¼ gðv; wÞ for v; w A V :

The space
Vn

V has dimension 1. If fe1; . . . ; eng and fu1; . . . ; ung are
orthonormal bases of V, then

e15 � � � 5 en ¼ Gu15 � � � 5 un:

Two such orthonormal bases are said to have the same orientation, or to
be orientation equivalent, if the plus sign occurs in the above relation. A
choice of an equivalence class of orthonormal bases having the same
orientation is defined to be an orientation of V. Thus an orientation
determines a basis for the one-dimensional space

Vn
V over R. Such a

basis will be called a volume. There exists a unique n-form W on V

(alternating), also denoted by volg, such that for every oriented ortho-
normal basis fe1; . . . ; eng we have

Wðe1; . . . ; enÞ ¼ 1:

Conversely, given a non-zero n-form W on V, all orthonormal bases
fe1; . . . ; eng such that Wðe1; . . . ; enÞ > 0 are orientation equivalent, and on
such bases W has a constant value.

Let ðX ; gÞ be a Riemannian manifold. By an orientation of ðX ; gÞ we
mean a choice of a volume form W, and an orientation of each tangent
space TxX ðx A XÞ such that for any oriented orthonormal basis
fe1; . . . ; eng of TxX we have

Wxðe1; . . . ; enÞ ¼ 1:

The form gives a coherent way of making the orientations at di¤erent
points compatible. It is an exercise to show that if ðX ; gÞ has such an
orientation, and X is connected, then ðX ; gÞ has exactly two orientations.
By an oriented chart, with coordinates x1; . . . ; xn in Rn, we mean a chart
such that with respect to these coordinates, the form has the representation

WðxÞ ¼ jðxÞ dx15 � � � 5 dxn

with a function j which is positive at every point of the chart. We call W
the Riemannian volume form, and also denote it by volg, so

volgðxÞ ¼ WðxÞ ¼ Wx:
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We return to our vector space V, with positive definite metric g, and
oriented.

Proposition 2.1. Let W ¼ volg. Then for all n-tuples of vectors

fv1; . . . ; vng and fw1; . . . ;wng in V, we have

Wðv1; . . . ; vnÞWðw1; . . . ;wnÞ ¼ dethvi; wjig:

In particular,

Wðv1; . . . ; vnÞ2 ¼ dethvi; vjig:

Proof. The determinant on the right side of the first formula is
multilinear and alternating in each n-tuple fv1; . . . ; vng and fw1; . . . ;wng.
Hence there exists a number c A R such that

dethvi; wjig ¼ cWðv1; . . . ; vnÞWðw1; . . . ;wnÞ

for all such n-tuples. Evaluating on an oriented orthonormal basis shows
that c ¼ 1, thus proving the proposition.

Applying Proposition 2.1 to an oriented Riemannian manifold yields :

Proposition 2.2. Let ðX ; gÞ be an oriented Riemannian manifold. Let

W ¼ volg. For all vector fields fx1; . . . ; xng and fh1; . . . ; hng on X, we

have

Wðx1; . . . ; xnÞWðh1; . . . ; hnÞ ¼ dethxi; hjig:

In particular,

Wðx1; . . . ; xnÞ2 ¼ dethxi; xjig:

Furthermore, if x4 denotes the one-form dual to x (characterized by

x4ðhÞ ¼ hx; hig for all vector fields h), then

Wðx1; . . . ; xnÞW ¼ x41 5 � � �5x4n :

This last formula is merely an application of the definition of the wedge
product of forms, taking into account the preceding formulas concerning
the determinant.

At a point, the space of n-forms is 1-dimensional. Hence any n-form
on a Riemannian manifold can be written as a product jW where j is a
function and W is the Riemannian volume form.

If x is a vector field, then W � x is an ðn� 1Þ-form, and so there exists a
function j such that

dðW � xÞ ¼ jW:
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We call j the divergence of x with respect to W, or with respect to the
Riemannian metric. We denote it by divW x or simply div x. Thus by
definition,

dðW � xÞ ¼ ðdiv xÞW:

Example. Looking back at Chapter V, §3 we see that if

WðxÞ ¼ dx15 � � �5 dxn

is the canonical form on Rn and x is a vector field, x ¼
P

jiui where
fu1; . . . ; ung are the standard unit vectors, and ji are the coordinate
functions, then

divW x ¼
Xn

i¼1

qji

qxi

:

For the formula with a general metric, see Proposition 2.5.

On 1-forms, we define the operator

d � : A1ðXÞ ! A0ðXÞ

by duality, that is if l4 denotes the vector field corresponding to l under
the Riemannian metric, then we define

d �l ¼ �div l4:

Let us define the Laplacian or Laplace operator on functions by the
formula

D ¼ d �d ¼ �div � grad:

Proposition 2.3. For functions j, c we have

DðjcÞ ¼ jDcþ cDj� 2hdj; dcig:

Proof. The routine gives :

DðjcÞ ¼ d �dðjcÞ ¼ d �ðc djþ j dcÞ

¼ �divðcxdjÞ � divðjxdcÞ

¼ �c div xdj � ðdcÞxdj � j div xdc � ðdjÞxdc
¼ cDjþ jDc� 2hdj; dcig

as was to be shown.
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Recall that

hdj; dcig ¼ hgrad j; grad cig;

so there is an alternative expression for the last term in the formula.

We shall tabulate some formulas concerning the gradient. For sim-
plicity of notation, we shall omit the subscript g in the scalar product,
because we now fix g. We shall also write simply gr j instead of gradg j.

gr 1. For functions j, c we have

grðjcÞ ¼ j grðcÞ þ c grðjÞ:

gr 2. The map j 7!
�
grðjÞ

�
=j ¼ j�1 grðjÞ is a homomorphism, from

the multiplicative group of functions never 0, to the additive
group of functions. In particular, for a positive function j,

2j�1=2 grðj1=2Þ ¼ j�1 grðjÞ ¼ gr log j

because d log j ¼ j�1 dj.

grðjÞ � c ¼ grðcÞ � j ¼ hgrðjÞ; grðcÞig:gr 3.

We use these formulas to give two versions of certain operators which
arise in practice. For any function j, we write for the Lie derivative

½gr j� ¼ Lgr j:

Corollary 2.4. Let d be a positive function. Then

D� ½gr log d� ¼ d�1=2D � d1=2 � d�1=2Dðd1=2Þ:

Proof. For a function c, by Proposition 2.3,

ðD � d1=2Þc ¼ Dðd1=2cÞ

¼ d1=2Dcþ cDðd1=2Þ � 2ðgr d1=2Þ � c:

We apply the right side of the equality to be proved to a function c. We
use the formula just derived, mutliplied by d�1=2. The term d�1=2Dðd1=2Þc
cancels, and we obtain

ðright sideÞðcÞ ¼ Dc� 2d�1=2ðgr d1=2Þ � c:

We use gr 2 to conclude the proof.
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General definition of the divergence

Although the most important case of the divergence is on a Riemannian
manifold, some properties are most clearly expressed in a more general
case which we now describe. Let T be a vector space of finite dimension n

over R. Then 5n
T is of dimension 1, and will be called the determinant of

T, so by definition,

det T ¼ 5max
T ¼ 5n

T :

Observe that we also have det T4. A non-zero element of det T4 will be
called a volume form on T.

The vector space of sections of 5n
T4X on a manifold X of dimension n

is also a module over the ring of functions. By a volume form on X we
mean section which is nowhere 0, so a volume form is a basis for this
space over the ring of functions. Instead of saying that W is a volume
form, one may also say that W is non-singular. If C is any n-form on X,
then there exists a function f such that C ¼ fW. So let W be a volume
form. Let x be a vector field on X. We define the divergence of x with

respect to W just as we did for the Riemannian volume form, namely
divWðxÞ is defined by the property

dðW � xÞ ¼
�
divWðxÞ

�
W:DIV 1.

From Chapter V, Proposition 5.3, LIE 1, we also have the equivalent
defining property

LxW ¼
�
divWðxÞ

�
W:DIV 2.

Directly from DIV 2 and LIE 2, we get for any functions j, f :

divWðjxÞ ¼ j divWðxÞ þ x � j:DIV 3.

d f 5 ðW � xÞ ¼ ðx � f ÞW:DIV 4.

Proof. First we have Lxð fWÞ ¼ ðx � f ÞWþ f divWðxÞW, and second,

Lxð fWÞ ¼ dð fW � xÞ ¼ df 5 ðW � xÞ þ fdðW � xÞ

¼ df 5 ðW � xÞ þ f divWðxÞW:

Then DIV 4 follows from these two expressions.

One can define an orientation on the general vector space T depend-
ing on the non-singular form W. Of course in general, we don’t have
the notion of orthogonality. But we say that a basis fv1; . . . ; vng of
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T is positively oriented, or simply oriented, with respect to W if
Wðv1; . . . ; vnÞ > 0. Let W, C be volume forms. We say that they have the
same orientation, or that they are positive with respect to each other, if
there exists a positive function h such that W ¼ hC. Forms with the same
orientation define the same orientation on bases. A manifold which
admits a volume form is said to be orientable, and the class of volume
forms having the same orientation is said to define the orientation.

Let d be a positive function on X, and let C be a volume form. Then :

divdCðxÞ ¼ ðx � log dÞ þ divCðxÞ:DIV 5.

Proof. By Proposition 5.3 of Chapter V, LIE 1, we have

dðdC � xÞ ¼ LxðdCÞ ¼ ðx � dÞd�1dCþ dLxðCÞ

¼ ðx � log dÞðdCÞ þ d divCðxÞC;

which proves the formula.

The divergence in a chart

Next we obtain an expression for the divergence in a chart. Let U be
an open set of a chart for X in Rn with its standard unit vectors u1; . . . ; un.
There exists a function d never 0 on U such that in this chart,

W ¼ d dx15 � � � 5 dxn:

Suppose U is connected. Then we have d > 0 on U or d < 0 on U since W
is assumed non-singular. For simplicity, assume d > 0.

Example. If W ¼ Wg is the Riemannian volume form, then

d ¼ ðdet gÞ1=2:

In other words,

WgðxÞ ¼
�
det gðxÞ

�1=2
dx15 � � � 5 dxn:

Here gðxÞ denotes the matrix representing g with respect to the standard
basis of Rn.

We write x in the chart U as a linear combination

x ¼
X

jiui

applications of stokes’ theorem226 [X, §2]



with coordinate functions j1; . . . ; jn. We let qi be the i-th partial deri-
vative. We write the coordinate vector of x vertically, that is

F ¼ Fx ¼
j1

..

.

jn

0
B@

1
CA:

We let tDW be the row vector of operators

tDW ¼ ðq1 þ q1 log d; . . . ; qn þ qn log dÞ:

Proposition 2.5.

divW x ¼ d�1
X

qiðdjiÞ

¼
X

qiji þ
X

ðqi log dÞji:

In matrix form,

divW x ¼ tDWFx or also divW ¼ d�1 tD � d:

Proof. We have

ðW � xÞðu1; . . . ; ûui; . . . ; unÞ ¼ Wðx; u1; . . . ; ûui; . . . ; unÞ

¼ ð�1Þ i�1Wðu1; . . . ; x; . . . ; unÞ

¼ ð�1Þ i�1dji:

Hence

ðW � xÞ ¼
X

ð�1Þ i�1dji
dx15 � � � 5 cdxidxi 5 � � � 5 dxn;

and since ddxj ¼ 0 for all j, we obtain

dðW � xÞ ¼
X

ð�1Þ i�1qiðdjiÞ dxi 5 dx15 � � � 5 cdxidxi 5 � � � 5 dxn

¼
X

qiðdjiÞ dx15 � � � 5 dxn

¼ d�1
X

qiðdjiÞW:

This proves the proposition.

We return to the gradient, for which we give an expression in local
coordinates, with an application to the Laplacian.
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Proposition 2.6. Let grðcÞ ¼
P

jiui. Let gðxÞ be the n n matrix

representing the metric at a point x. Then the coordinate vector of grðcÞ
is

F ¼
j1

..

.

jn

0
B@

1
CA ¼ gðxÞ�1

q1c

..

.

qnc

0
B@

1
CA:

In other words,

F ¼ g�1qc;

where q is the vector di¤erential operator such that tq ¼ ðq1; . . . ; qnÞ.

Proof. By definition,

hgrðcÞ; ujig ¼ ðdcÞðujÞ ¼ qjc:

The left side is equal to hgrðcÞ; gðxÞuji at a point x. Note that here the
scalar product is the usual dot product on Rn, without the subscript g.
The formula of the proposition then follows at once.

Proposition 2.7. Let f and c be function, and let grðcÞ ¼
P

jjuj as in

Proposition 2.6. Then

grðcÞ � f ¼
Xn

j¼1
ðqj f Þjj :

Proof. Since uj � f ¼ qj f , the formula is clear.

From Propositions 2.5 and 2.6, we obtain the coordinate representation
of the Laplacian via a matrix :

Proposition 2.8. On an open set of Rn, with metric matrix g, d ¼
ðdet gÞ1=2, and Laplacian Dg, we have

� Dg ¼ divg grg ¼ tDgg
�1q

¼ d�1 tq d�1g q:

Here, Dg abbreviates DWg
, and divg abbreviates divWg

.

Putting all the indices in, we get

�Dg f ¼ d�1
X

i

qi d
X

j

gijqj f

 !
ð1Þ
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where in classical notation, g�1ðxÞ is the matrix
�
gijðxÞ

�
for x A Rn. Using

the rule for the derivative of a product, we write (1) in the form

�Dg f ¼
Xn

i; j¼1
gij qiqj f þ Lg f ;ð2Þ

where Lg is a first-order di¤erential operator, that is a linear combination
of the partials q1; . . . ; qn with coe‰cients which are functions, depending
on g. From this expression, we see that the matrix g�1 ¼ ðgijÞ is the
matrix of the second-order term, quadratic in the partials qi, qj. Hence we
obtain :

Theorem 2.9. Let X be a Riemannian manifold. Then the Laplacian

determines the metric, i.e. if two Riemannian metrics have the same

Laplacian, they are equal. If F : X ! Y is a di¤erential isomorphism of

Riemannian manifolds, and F maps DX on DY , that is F commutes with

the Laplacians, then F is an isometry.

Note that the second statement about the di¤erential isomorphism is just a
piece of functorial abstract nonsense, in light of the first statement. Indeed,
F maps the metric gX to a metric F�gX on Y, and similarly for the
Laplacian. By assumption, F�DX ¼ DY . Hence DY is the Laplacian of gY

and of F�gX , so gY ¼ F�gX by the first statement in the theorem.

Example. Let A ¼ Rþ  � � �  Rþ be the product of positive multi-
plicative groups, taken n times, so we view A as an open subset of Rn. We
let a denote the variable in A, so a ¼ tða1; . . . ; anÞ with ai > 0. We identify
the tangent space Ta A ¼ Ta with Rn, so a vector v A Ta is an ordinary
n-tuple,

v ¼ tðc1; . . . ; cnÞ with ci A R:

Let g be the metric on A defined by the formula

hv; via ¼
Xn

i¼1
c2i =a

2
i :

Then g is represented by the diagonal matrix gðaÞ ¼ diagða�21 ; . . . ; a�2n Þ,
that is

hv; via ¼ hv; gðaÞvi;

where the scalar product without indices denotes the standard scalar
product on Rn. Then

dðaÞ ¼ det gðaÞ1=2 ¼
Yn
i¼1

a�1i ¼ dðaÞ�1
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where dðaÞ ¼ a1 � � � an is the product of the coordinates. Thus for a
function c on A, we have the explicit determination for the gradient,

ðgrA cÞðaÞ ¼ gðaÞ�1qc ¼ tða21q1c; . . . ; a2nqncÞðaÞ:ð1Þ

The Laplacian DA from Proposition 2.8 is seen to be

�DA ¼
Xn

i¼1
aiqi þ

Xn

i¼1
a2i q

2
i :ð2Þ

This comes from matrix multiplication,

dðaÞðq1; . . . ; qnÞ
dðaÞ�1a21q1

..

.

dðaÞ�1a2nqn

0
BB@

1
CCA:

X, §3. THE DIVERGENCE THEOREM

Let X be an oriented manifold of dimension n possibly with boundary, and

let W be an n-form on X. Let x be a vector field on X. Then dW ¼ 0, and
hence the basic formula for the Lie derivative (Chapter V, Proposition 5.3)
shows that

Lx W ¼ dðW � xÞ:

Consequently in this case, Stokes’ theorem yields :

Theorem 3.1 (Divergence Theorem).

ð
X

Lx W ¼
ð
qX

W � x:

Remark. Even if the manifold is not orientable, it is possible to use the
notion of density to formulate a Stokes theorem for densities. Cf. Loomis–
Sternberg [LoS 68] for the formulation, due to Rasala. However, this
formulation reduces at once to a local question (using partitions of unity
on densities). Since locally every manifold is orientable, and a density
then amounts to a di¤erential form, this more general formulation again
reduces to the standard one on an orientable manifold.

Suppose that ðX ; gÞ is a Riemannian manifold, assumed oriented for
simplicity. We let W or volg be the volume form defined in §2. Let o be
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the canonical Riemannian volume form on qX for the metric induced by
g on the boundary. Let nx be a unit vector in the tangent space TxðXÞ
such that u is perpendicular to TxðqX Þ. Such a unit vector is determined
up to sign. Denote by n4x its dual functional, i.e. the component on the
projection along nx. We select nx with the sign such that

n4x 5oðxÞ ¼ WðxÞ:

We then shall call nx the unit outward normal vector to the boundary at x.
In an oriented chart, it looks like this.

Then by formula CON 3 of Chapter V, §5 we find

W � x ¼ hn; xio� n4 5 ðo � xÞ;

and the restriction of this form to qX is simply hn; xio. Thus we get :

Theorem 3.2 (Gauss Theorem). Let X be a Riemannian manifold. Let o

be the canonical Riemannian volume form on qX and let W be the

canonical Riemannian volume form on X itself. Let n be the unit outward

normal vector field to the boundary, and let x be a C1 vector field on X,
with compact support. Then

ð
X

ðdivW xÞW ¼
ð
qX

hn; xio:

The next thing is to show that the map d � from §2 is the adjoint for
a scalar product defined by integration. First we expand slightly the
formalism of d � for this application. Recall that for any vector field x, the
divergence of x is defined by the property

dðvolg � xÞ ¼ ðdiv xÞvolg:ð1Þ

Note the trivial derivation formula for a function j :

divðjxÞ ¼ j div xþ ðdjÞðxÞ:ð2Þ
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If l is a 1-form, i.e. in GL1ðTX Þ ¼ A1ðX Þ, we have the corresponding
vector field xl ¼ l4 uniquely determined by the condition that

hxl; hig ¼ lðhÞ for all vector fields h:

For a 1-form l, we define the operator

d � : A1ðXÞ ! A0ðXÞ ¼ FuðXÞ by d �l ¼ �div xl;

so by (1),

ðd �lÞ volg ¼ dðvolg � xlÞ:ð3Þ

We get a formula analogous to (2) for d �, namely

d �ðjlÞ ¼ jd �l� hdj; li:ð4Þ

Indeed, d �ðjlÞ ¼ �div xjl ¼ �divðjxlÞ ¼ �j div xl � ðdjÞðxlÞ by (2),
which proves the formula.

Let l, o A A1ðTX Þ. We define the scalar product via duality

hl; oig ¼ hxl; xoig:

Then for a function j we have the formula

hdj; lig volg ¼ ðjd �lÞ volg � dðvolg � jxlÞ:ð5Þ

Indeed,

hdj; lig volg ¼ ½j d �l� d �ðjlÞ� volg by ð4Þ

¼ ðjd �lÞ volg � dðvolg � jxlÞ by ð3Þ

thus proving (5). Note that the congruence of the two forms hdj; lig volg
and ðjd �lÞ volg modulo exact forms is significant, and is designed for
Proposition 3.3 below.

Observe that the scalar product between two forms above is a function,
which when multiplied by the volume form volg may be integrated over
X . Thus we define the global scalar product on 1-forms with compact
support to be

hl; oiðX ; gÞ ¼ hl;oiX ¼
ð
X

hl; oig volg:

Applying Stokes’ theorem, we then find :
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Proposition 3.3. Let ðX ; gÞ be a Riemannian manifold, oriented and

without boundary. Then d � is the adjoint of d with respect to the global

scalar product, i.e.

hdj; liX ¼ hj; d �liX :

We define the Laplacian (operating on functions) to be the operator

D ¼ d �d:

For a manifold with boundary, we define the normal derivative of a
function j to be the function on the boundary given by

qn j ¼ hn; xdjig ¼ hn; gradg jig:

Theorem 3.4 (Green’s Formula). Let ðX ; gÞ be an oriented Riemannian

manifold possibly with boundary, and let j, c be functions on X with

compact support. Let o be the canonical volume form associated with the

induced metric on the boundary. Then

ð
X

ðjDc� cDjÞ volg ¼ �
ð
qX

ðjqn c� cqn jÞo:

Proof. From formula (4) we get

d �ðj dcÞ ¼ jDc� hdj; dcig;

whence

jDc� cDj ¼ d �ðj dcÞ � d �ðc djÞ

¼ �divðj dcÞ þ divðc djÞ:

We apply Theorem 3.2 to conclude the proof.

Remark. Of course, if X has no boundary in Theorem 3.7, then the
integral on the left side is equal to 0.

Corollary 3.5 (E. Hopf ). Let X be an oriented Riemannian manifold

without boundary, and let f be a C 2 function on X with compact support,
such that D f Z 0. Then f is constant. In particular, every harmonic

function with compact support is constant.

Proof. By Green’s formula we get

ð
X

D f volg ¼ 0:
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Since D f Z 0, it follows that in fact D f ¼ 0, so we are reduced to the
harmonic case. We now apply Green’s formula to f 2, and get

0 ¼
ð
X

D f 2 volg ¼
ð
X

2fD f volg �
ð
X

2ðgrad f Þ2 volg:

Hence ðgrad f Þ2 ¼ 0 because D f ¼ 0, and finally grad f ¼ 0, so df ¼ 0
and f is constant, thus proving the corollary.

X, §4. CAUCHY’S THEOREM

It is possible to define a complex analytic (analytic, for short) manifold,
using open sets in Cn and charts such that the transition mappings are
analytic. Since analytic amps are Cy, we see that we get a Cy manifold,
but with an additional structure, and we call such a manifold complex

analytic. It is verified at once that the analytic charts of such a manifold
define an orientation. Indeed, under a complex analytic change of charts,
the Jacobian changes by a complex number times its complex conjugate,
so changes by a positive real number.

If z1; . . . ; zn are the complex coordinates of Cn, then

ðz1; . . . ; zn; z1; . . . ; znÞ

can be used as Cy local coordinates, viewing Cn as R2n. If zk ¼ xk þ iyk,
then

dzk ¼ dxk þ i dyk and dzk ¼ dxk � i dyk:

Di¤erential forms can then be expressed in terms of wedge products of the
dzk and dzk. For instance

dzk 5 dzk ¼ 2i dyk 5 dxk:

The complex standard expression for a di¤erential form is then

oðzÞ ¼
X
ði; jÞ

jði; jÞðzÞ dzi15 � � �5dzir 5 dzj15 � � �5dzjs :

Under an analytic change of coordinates, one sees that the numbers r and
s remain unchanged, and that if s ¼ 0 in one analytic chart, then s ¼ 0 in
any other analytic chart. Similarly for r. Thus we can speak of a form of
type ðr; sÞ. A form is said to be analytic if s ¼ 0, that is if it is of type
ðr; 0Þ.

We can decompose the exterior derivative d into two components.
Namely, we note that if o is of type ðr; sÞ, then do is a sum of forms of
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type ðrþ 1; sÞ and ðr; sþ 1Þ, say

do ¼ ðdoÞðrþ1; sÞ þ ðdoÞðr; sþ1Þ:

We define

qo ¼ ðdoÞðrþ1; sÞ and qo ¼ ðdoÞðr; sþ1Þ:

In terms of local coordinates, it is then easy to verify that if o is decom-
posable, and is expressed as

oðzÞ ¼ jðzÞdzi15 � � �5dzir 5 dzj15 � � �5dzjs ¼ j ~oo;

then

qo ¼
X qj

qzk
dzk 5 ~oo:

and

qo ¼
X qj

qzk
dzk 5 ~oo:

In particular, we have

q

qzk
¼ 1

2

q

qxk

� i
q

qyk

� �
and

q

qzk
¼ 1

2

q

qxk

þ i
q

qyk

� �
:

(Warning : Note the position of the plus and minus signs in these
expressions.)

Thus we have
d ¼ qþ q;

and operating with q or q follows rules similar to the rules for operating
with d.

Note that f is analytic if and only if qf ¼ 0. Similarly, we say that a
di¤erential form is analytic if in its standard expression, the functions jði; jÞ
are analytic and the form is of type ðr; 0Þ, that is there are no dzj present.
Equivalently, this amounts to saying that qo ¼ 0. The following extension
of Cauchy’s theorem to several variables is due to Martinelli.

We let jzj be the euclidean norm,

jzj ¼ ðz1z1 þ � � � þ znznÞ1=2:

Theorem 4.1 (Cauchy’s Theorem). Let f be analytic on an open set in Cn

containing the closed ball of radius R centered at a point z. Let

okðzÞ ¼ dz15 � � �5dzn5dz15 � � �5cdzkdzk5 � � �5dzn
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and
oðzÞ ¼

Xn

k¼1
ð�1ÞkzkokðzÞ:

Let SR be the sphere of radius R centered at z. Then

f ðzÞ ¼ �ðnÞ ðn� 1Þ!
ð2piÞn

ð
SR

f ðzÞ
jz� zj2n

oðz� zÞ

where �ðnÞ ¼ ð�1Þnðnþ1Þ=2.

Proof. We may assume z ¼ 0. First note that

qoðzÞ ¼
Xn

k¼1
ð�1Þkdzk 5okðzÞ ¼ ð�1Þnþ1n dz5 dz;

where dz ¼ dz15 � � �5dzn and similarly for dz. Next, observe that if

cðzÞ ¼ f ðzÞ
jzj2n

oðzÞ;

then
dc ¼ 0:

This is easily seen. On the one hand, qc ¼ 0 because o already has
dz15 � � �5dzn, and any further dzi wedged with this gives 0. On the other
hand, since f is analytic, we find that

qcðzÞ ¼ f ðzÞ q oðzÞ
jzj2n

 !
¼ 0

by the rule for di¤erentiating a product and a trivial computation.
Therefore, by Stokes’ theorem, applied to the annulus between two

spheres, for any r with 0 < rYR we get

ð
SR

c�
ð
Sr

c ¼ 0;

or in other words,

ð
SR

f ðzÞoðzÞ
jzj2n

¼
ð
Sr

f ðzÞoðzÞ
jzj2n

¼ 1

r2n

ð
Sr

f ðzÞo ðzÞ:

Using Stokes’ theorem once more, and the fact that qo ¼ 0, we see that
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this is

¼ 1

r2n

ð
Br

qð foÞ ¼ 1

r2n

ð
Br

f qo:

We can write f ðzÞ ¼ f ð0Þ þ gðzÞ, where gðzÞ tends to 0 as z tends to 0.
Thus in taking the limit as r ! 0, we may replace f by f ð0Þ. Hence our
last expression has the same limit as

f ð0Þ 1

r2n

ð
Br

qo ¼ f ð0Þ 1

r2n

ð
Br

ð�1Þnþ1n dz5 dz:

But

dz5 dz ¼ ð�1Þnðn�1Þ=2 i n 2n dy15 dx15 � � �5dyn 5 dxn:

Interchanging dyk and dxk to get the proper orientation gives another
contribution of ð�1Þn, together with the form giving Lebesgue measure.
Hence our expression is equal to

f ð0Þð�1Þn ðnþ1Þ=2nð2iÞn 1

r2n
VðBrÞ;

where VðBrÞ is the Lebesgue volume of the ball of radius r in R2n, and is
classically known to be equal to pnr2n=n!. Thus finally we see that our
expression is equal to

f ð0Þð�1Þn ðnþ1Þ=2 ð2piÞn

ðn� 1Þ! :

This proves Cauchy’s theorem.

X, §5. THE RESIDUE THEOREM

Let f be an analytic function in an open set U of Cn. The set of zeros of
f is called a divisor, which we denote by V ¼ Vf . In the neighborhood of
a regular point a, that is a point where f ðaÞ ¼ 0 but some complex partial
derivative of f is not zero, the set V is a complex submanifold of U . In
fact, if, say, Dn f ðaÞ 6¼ 0, then the map

ðz1; . . . ; znÞ 7!
�
z1; . . . ; zn�1; f ðzÞ

�

gives a local analytic chart (analytic isomorphism) in a neighborhood of
a. Thus we may use f as the last coordinate, and locally V is simply
obtained by the projection on the set f ¼ 0. This is a special case of the
complex analytic inverse function theorem.
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It is always true that the function log j f j is locally in L1. We give the
proof only in the neighborhood of a regular point a. In this case, we can
change f by a chart (which is known as a change-of-variable formula),
and we may therefore assume that f ðzÞ ¼ zn. Then log j f j ¼ log jznj, and
the Lebesgue integral decomposes into a simple product integral, which
reduces our problem to the case of one variable, that is to the fact that
log jzj is locally integrable near 0 in the ordinary complex plane. Writing
z ¼ rei y, our assertion is obvious since the function r log r is locally
integrable near 0 on the real line.

Note. In a neighborhood of a singular point the fastest way and
formally clearest, is to invoke Hironaka’s resolution of singularities, which
reduces the question to the non-singular case.

For the next theorem, it is convenient to let

d c ¼ 1

4pi
ðq� qÞ:

Note that

dd c ¼ i

2p
qq:

The advantage of dealing with d and d c is that they are real operators.
The next theorem, whose proof consists of repeated applications of

Stokes’ theorem, is due to Poincaré. It relates integration in V and U by a
suitable kernel.

Theorem 5.1 (Residue Theorem). Let f be analytic on an open set U of

Cn and let V be its divisor of zeros in U. Let c be a Cy form with

compact support in U, of degree 2n� 2 and type ðn� 1; n� 1Þ. Then

ð
V

c ¼
ð
U

log j f j2 dd cc:

(As usual, the integral on the left is the integral of the restriction of c to

V, and by definition, it is taken over the regular points of V.)

Proof. Since c and dd cc have compact support, the theorem is local
(using partitions of unity). We give the proof only in the neighborhood of
a regular point. Therefore we may assume that U is selected su‰ciently
small so that every point of the divisor of f in U is regular, and such that,
for small �, the set of points

U� ¼ fz A U ; j f ðzÞjZ �g
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is a submanifold with boundary in U . The boundary of U� is then the set
of points z such that j f ðzÞj ¼ �. (Actually to make this set a submanifold
we only need to select � to be a regular value, which can be done for
arbitrarily small � by Sard’s theorem.) For convenience we let S� be the
boundary of U�, that is the set of points z such that j f ðzÞj ¼ �.

Since log j f j is locally in L1, it follows that

ð
U�

log j f j dd cc ¼ lim
�!0

ð
U�

log j f j dd cc:

Using the trivial identity

dðlog j f j d ccÞ ¼ d log j f j5 d ccþ log j f j dd cc;

we conclude by Stokes’ theorem that this limit is equal to

lim
�!0

ð
S�

log j f j d cc�
ð
U�

d log j f j5 d cc

� �
:

The first integral under the limit sign approaches 0. Indeed, we may
assume hat f ðzÞ ¼ zn ¼ rei y. On S� we have j f ðzÞj ¼ �, so log j f j ¼ log �.
There exist forms c1, c2 in the first n� 1 variables such that

d cc ¼ c15 dzn þ c25 dzn;

and the restriction of dzn to S� is equal to

�iei y dy;

with a similar expression for dzn. Hence our boundary integral is of type

� log �

ð
S�

o;

where o is a bounded form. From this it is clear that the limit is 0.
Now we compute the second integral. Since c is assumed to be of type

ðn� 1; n� 1Þ it follows that for any function g,

qg5 qc ¼ 0 and qg5 qc ¼ 0:

Replacing d and d c by their values in terms of q and q, it follows that

�
ð
U�

d log j f j5 d cc ¼
ð
U�

d c log j f j5 dc:
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We have

dðd c log j f j5cÞ ¼ dd c log j f j5c� d c log j f j5 dc:

Furthermore dd c is a constant times qq, and dd c log j f j2 ¼ 0 in any open
set where f 6¼ 0, because

qq log j f j2 ¼ qq ðlog f þ log f Þ ¼ 0

since q log f ¼ 0 and q log f ¼ 0 by the local analyticity of log f . Hence
we obtain the following values for the second integral by Stokes :

ð
U�

d c log j f j25 dc ¼
ð
S�

d c log j f j25c:

Since

d c log j f j2 ¼ � i

4p
ðq� qÞðlog f þ log f Þ

¼ � i

4p

dzn

zn
� dzn

zn

� �

�
always assuming f ðzÞ ¼ zn

�
, we conclude that if zn ¼ rei y, then the

restriction of d c log j f j2 to S� is given by

resS�
d c log f ¼ dy

2p
:

Now write c in the form

c ¼ c1 þ c2

where c1 contains only dzj, dzj for j ¼ 1; . . . ; n� 1 and c2 contains dzn or
dzn. Then the restriction of c2 to S� contains dy, and consequently

ð
S�

d c log j f j25c ¼
ð
S�

dy

2p
5 ðc1 jS�Þ:

The integral over S� decomposes into a product integral, we respect to the
first n� 1 variables, and with respect to dy. Let

ððn�1Þ
c1ðzÞ jS� ¼ gðznÞ:
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Then simply by the continuity of g we get

lim
�!0

1

2p

ð2p
0

gð�ei yÞ dy ¼ gð0Þ:

Hence

lim
�!0

ð
S�

dy

2p
5 ðc1 jS�Þ ¼

ð
zn¼0

c1:

But the restriction of c1 to the set zn ¼ 0 (which is precisely V ) is the same
as the restriction of c to V . This proves the residue theorem.
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A

adjoint of d 223
admit partitions of unity 32
almost compact support 205
alternating 4, 117, 132
alternating product 120
analytic 234
approximate solution 67
arc length 176
atlas 20
automorphism 3

B

base space 38
bilinear form 132
bilinear map associated with spray 89
bilinear tensor 133
bilinear tensor field 133
block 184
boundary 34, 35, 208
bounded functional 196
bracket of vector fields 105
bundle along the fiber 51

C

Cp 7, 22, 52
canonical 1-form and 2-form 138
canonical lifting 85
canonical spray 178
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Cauchy theorem 235
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change of variables formula for

integration 191
change of variables formula for

sprays 91
chart 21
class Cp 6, 52
closed form 126
closed submanifold 24
cocycle condition 39
cokernel 48
commuting vector fields 111
compact support 195
compatible 21
complex analytic 234
compressible 100, 103
connection 91, 93
contraction 12, 128
contraction lemma 13
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cotangent bundle 55, 137
cotangent vector 137
critical point 82, 170, 182
curve 61, 78

D

d � 223
Darboux theorem 141
decomposable 118, 119
degenerate block 184
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dependence on parameters 66
de Rham cohomology 215
derivation 106
derivative 6
determinant 225
di¤erentiable 6, 52
di¤erential equations 65, 148
di¤erential form 55, 113
dimension 21
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direct sum 55
divergence 223, 225
divergence theorem 230
divisor 237
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dual bundle 52, 137
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E

E-manifold 21
embedding 24
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euclidean space 5
exact form 126, 214
exact sequence 46, 50
exponential map 96, 162
exterior derivative 116, 121

F

factor bundle 48
fiber 38
fiber bundle 92
fiber product 28
finite type 58
flow 75, 79
forms 4
frame 40
Frobenius theorem 145
frontier 207
function 31
functional 34, 196, 198
functor 3, 52
functor of class Cp 52
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Gauss theorem 231
g-distance 173
geodesic 86
geodesic flow 97
global scalar product 232
global smoothness of flow 75

gradient 135, 224
Green’s formula 233
group manifold 153

H

half plane 34
Hamiltonian 135
homomorphism 154
horizontal subbundle 94
hyperplane 34
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immersion 24
implicit mapping theorem 17
initial condition 61, 78
integrable vector bundle 144, 155
integral 10
integral curve 61, 78
integral manifold 150
integration of forms 198
interior 35
inverte mapping theorem 13
isometry 176
isomorphism 2, 14, 22
isotopic 101
isotopy of tubular neighborhoods 102

J

Jacobian determinant 189
Jacobi identity 107

K

kernel 49
kinetic energy 136, 177

L

Laplace operator 223, 233
Laut 3
length 173
Lie algebra 154
Lie derivative 111, 128
Lie group 153
Lie subalgebra 155
Lie subgroup 155
lifting 85
linear di¤erential equation 70
Lipschitz condition 62, 180
Lipschitz constant 62
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local coordinates 21
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local flow 61
local isomorphism 13, 22
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local representation 41, 55, 77, 89,
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manifold 21
manifold with boundary 34, 208
Maut(E) 164
MB morphism 166
mean value theorem 11
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measure 0 180
metric 159
metric bundle 165
metric isomorphism 5, 176
metric trivialization 165
modeled 21, 38, 133
momentum 139
morphism 2, 7, 22
Morsemma 172
multilinear tensor field 56
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natural transformation 3
negligible 208
non-degenerate 171
non-singular 132, 133, 140, 171, 225
norm of operator 4
normal bundle 51, 100

O

one-parameter subgroup 157
operation on vector field 105
operations on vector bundles 52
operator 131, 162
orientation 193, 221, 226
oriented chart 193, 221
oriented volume 185
outward normal 231

P

paracompact 31
parallel 200, 202, 208
parameter 66
parametrized by arc length 176

partial derivative 8
partition of unity 31
Poincaré lemma 126
Poisson bracket 136
positive definite 159
projection 16
proper domain of isotopy 101
pseudo Riemannian manifold 160
pseudo Riemannian metric 159,

160
pull back 29, 43

R

reduction to metric group 166
refinement 31
regular 208
related vector fields 108
reparametrization 175
representation, local, see local

representation
residue theorem 238
Riemannian, Ri(E ) 159
Riemannian manifold 160
Riemannian metric 160
Riemannian volume form 221
ruled mapping 10

S

Sard theorem 182
second-order di¤erential equation

86
second-order vector field 85
section 3
semi Riemannian 162
semipositive operator 162
shrinking lemma 12, 63
singular 208
skew symmetric 162
spray 88, 94
standard 2-form 141
step mapping 10
Stokes’ theorem for rectangles 201
Stokes’ theorem on a manifold 203
Stokes’ theorem with singularities

209
subbundle 47
submanifold 23
submersion 24
support 31, 195, 214
symmetric 4, 93, 132, 162
symmetric bilinear form on vector

bundle 159
symplectic manifold 135
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T

tangent bundle and map 46
tangent curves 78
tangent space 25
tangent subbundle 143
tangent to 0 6
tangent vector 25
Taylor formula 11
tensor bundle 55
tensor field 55
time dependent 61, 65
toplinear isomorphism 2
total space 38
transition map 39
transversal 27, 28
trivial vector bundle 40
trivializing covering 38
trivializable 58
tube 98
tubular map 98
tubular neighborhood 98, 169

U

uniqueness theorem 64
unit outward normal 231

V

VB (vector bundle) equivalent 38
VB chart 41
VB morphism 41
vector bundle 38
vector field 61, 77, 105
vector space 4
vector subbundle 94
volume form 199, 221

W

wedge product 116
Whitney sum 55
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