Laplace Invariants via Vessiot Equivalence Method

Arne Lorenz

Lehrstuhl B für Mathematik RWTH Aachen

6.2.2009

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

Outline

Introduction

- Linear Partial Differential Operators
- 2 Computational Results Overview
 - Invariants for Third Order LPDOs
 - Invariants for Fourth Order LPDOs
- Vessiot Equivalence Method for LPDOs

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

- Natural Bundles
- Prolongation and Projection
- Embedding Theorem

Introduction – Laplace Example

Linear partial differential operators (LPDOs) of order 2:

$$L = \partial_x \partial_y + a \,\partial_x + b \,\partial_y + c$$

Gauge transformations:

$$L \mapsto g^{-1}Lg, \qquad g = g(x, y).$$

Laplace invariants:

$$h = c - a_x - ab,$$
 $k = c - b_y - ab.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction – Laplace Example

Linear partial differential operators (LPDOs) of order 2:

$$L = \partial_x \partial_y + a \,\partial_x + b \,\partial_y + c$$

Gauge transformations:

$$L \mapsto g^{-1}Lg, \qquad g = g(x, y).$$

Laplace invariants:

$$h = c - a_x - ab,$$
 $k = c - b_y - ab.$

• The operator *L* can be factorised if h = 0 or k = 0:

$$L = (\partial_x + b) (\partial_y + a) + h,$$

= $(\partial_y + a) (\partial_x + b) + k.$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

Introduction – General Situation

• Consider arbitrary LPDOs of order d:

$$L = \sum_{|\mu| \le d} a_{\mu}(x) \partial^{\mu}, \qquad \partial^{\mu} = \partial_{x_1}^{\mu_1} \cdots \partial_{x_n}^{\mu_n}$$

with symbol $\sum_{|\mu|=d} a_{\mu}(x) X^{\mu}$.

• The factorisation of LPDOs is gauge invariant:

$$g^{-1}Lg = g^{-1}L_1L_2g = (g^{-1}L_1g)(g^{-1}L_2g).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conditions for factorisation ↔ Laplace invariants.

Introduction – General Situation

• Consider arbitrary LPDOs of order d:

$$L = \sum_{|\mu| \le d} a_{\mu}(x) \partial^{\mu}, \qquad \partial^{\mu} = \partial_{x_1}^{\mu_1} \cdots \partial_{x_n}^{\mu_n}$$

with symbol $\sum_{|\mu|=d} a_{\mu}(x) X^{\mu}$.

• The factorisation of LPDOs is gauge invariant:

$$g^{-1}Lg = g^{-1}L_1L_2g = (g^{-1}L_1g)(g^{-1}L_2g).$$

• Conditions for factorisation \leftrightarrow Laplace invariants.

Methods to compute invariants:

- Partial factorisation (obstacles) [SW07b], [SW07a]
- Moving frames [MS08]

• ...

• Vessiot equivalence method

[Ves03]

Outline

- Computational Results Overview
 Invariants for Third Order LPDOs
 - Invariants for Fourth Order LPDOs
- 3 Vessiot Equivalence Method for LPDOs
 - Natural Bundles
 - Prolongation and Projection
 - Embedding Theorem

Summary

Third Order LPDOs

The number of invariants in a generating set:

	[MS08]				Vessiot				
Symbol, order	0	1	2	3	total	0	1	2	total
X^3	2	2	1		5	2	3		5
X^{3} , (a)	2	0	2		4	2	1	1	4
X^{3} , (b)	1	1	0	1	3	1	1	1	3
X^{3} , (c)	0	1	1		2	0	2		2
$X^2 Y$	1	3	1		5	1	5		6
XY(pX+qY)	3	3	1		7	3	4	1	8
full						5	4	1	10

 $L_{X^3} = \partial_x^3 + a_{20}\partial_x^2 + a_{02}\partial_y^2 + a_{11}\partial_x\partial_y + a_{10}\partial_x + a_{01}\partial_y + a_{00}.$

Third Order LPDOs

The number of invariants in a generating set:

	[MS08]					Vessiot			
Symbol, order	0	1	2	3	total	0	1	2	total
X ³	2	2	1		5	2	3		5
X ³ , (a)	2	0	2		4	2	1	1	4
X^{3} , (b)	1	1	0	1	3	1	1	1	3
X ³ , (c)	0	1	1		2	0	2		2
$X^2 Y$	1	3	1		5	1	5		6
XY(pX+qY)	3	3	1		7	3	4	1	8
full						5	4	1	10

- Moving frames: small invariants of higher order,
- Vessiot: large invariants of minimal order.

In future: Combine both methods!

Invariants for $L_{X^3,(c)} = \partial_x^3 + a_{20}\partial_x^2 + a_{10}\partial_x + a_{00}$

Moving frames [MS08]:

$$I^{a_{10}} = a_{10} - \frac{1}{3}a_{20}^2 - a_{20,x},$$

$$I^{a_{00}}_x = a_{00} - \frac{1}{3}a_{10}a_{20} + \frac{2}{27}a_{20}^3 - \frac{1}{3}a_{20,xx}.$$

Vessiot:

$$I_1^1 = -a_{10} + \frac{1}{3}a_{20}^2 + a_{20,x},$$

$$I_2^1 = a_{10,x} - 3a_{00} + a_{20}a_{10} - \frac{2}{3}a_{20}a_{20,x} - \frac{2}{9}a_{20}^3.$$

• Comparison:

$$I^{a_{10}} = -I_1^1 \qquad I_x^{a_{00}} = -\frac{1}{3}(I_1^2 + I_{1,x}^1)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Invariants for Fourth Order LPDOs

Results of the Vessiot equivalence method:

Symbol,	order	0	1	2	3	4
X^4		5	5	1		
X^4 (a)		3	6			
X^4 (d)		2	2	1	0	2
÷						
X^3Y		4	7	1		
$X^2 Y^2$		3	10			
$X^3(pX+qY)$		5	7	1		
$X^2 Y \left(pX + qY \right)$		4	9	1		
$X^2 \left(pX + qY \right) \left(rX - qY$	+sY)	5	9	1		
XY(pX+qY)(rX	+sY)	5	9			
$XY\left(pX^2 + qY^2\right)$		5	6	1		

Outline

Introductior

- Linear Partial Differential Operators
- Computational Results Overview
 Invariants for Third Order LPDOs
 Invariants for Fourth Order LPDOs

Vessiot Equivalence Method for LPDOs

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

- Natural Bundles
- Prolongation and Projection
- Embedding Theorem

Summary

Natural Bundles

- Let X be a manifold, coordinates $(x) = (x^1, \ldots, x^n)$.
 - $\text{Diff}_{\text{loc}}(X, X)$: local diffeomorphisms $\varphi : X \to X$.

• Pseudogroup $\Theta \subseteq \text{Diff}_{\text{loc}}(X, X)$.

Natural Bundles

Let X be a manifold, coordinates $(x) = (x^1, \ldots, x^n)$.

- $\text{Diff}_{\text{loc}}(X, X)$: local diffeomorphisms $\varphi : X \to X$.
- Pseudogroup $\Theta \subseteq \text{Diff}_{\text{loc}}(X, X)$.
- A natural ⊖-bundle is a fibre bundle

$$\pi: \mathcal{F} \to X: (x, v) \to (x)$$

such that each $\tilde{x}(x) \in \Theta$ lifts to $\Phi : \mathcal{F} \to \mathcal{F}$ as:

$$\tilde{x} = \tilde{x}(x), \qquad v = \Phi_{\tilde{v}}(\tilde{x}, \tilde{x}_q).$$

(日) (日) (日) (日) (日) (日) (日)

In other words: Θ acts on \mathcal{F} .

Natural Bundles

Let X be a manifold, coordinates $(x) = (x^1, \ldots, x^n)$.

- $\text{Diff}_{\text{loc}}(X, X)$: local diffeomorphisms $\varphi : X \to X$.
- Pseudogroup $\Theta \subseteq \text{Diff}_{\text{loc}}(X, X)$.
- A natural ⊖-bundle is a fibre bundle

$$\pi: \mathcal{F} \to X: (x, v) \to (x)$$

such that each $\tilde{x}(x) \in \Theta$ lifts to $\Phi : \mathcal{F} \to \mathcal{F}$ as:

$$\tilde{x} = \tilde{x}(x), \qquad v = \Phi_{\tilde{v}}(\tilde{x}, \tilde{x}_q).$$

In other words: Θ acts on \mathcal{F} .

• A section of \mathcal{F} is called geometric object:

$$\omega: X \to \mathcal{F}: (x) \mapsto (x, v = \omega(x)).$$

• $\psi : \mathcal{F} \to \mathbb{R}$ is an invariant if $\psi \circ \Phi = \psi \quad \forall \tilde{x}(x) \in \Theta$.

• Pseudogroup Θ of gauge transformations:

$$X \to X : \begin{pmatrix} x \\ y \\ u \end{pmatrix} \mapsto \begin{pmatrix} \tilde{x} = x \\ \tilde{y} = y \\ \tilde{u} = e^{g(x,y)}u \end{pmatrix}$$

• The natural Θ -bundle \mathcal{F} for the Laplace operators

$$L = \partial_x \partial_y + a \,\partial_x + b \,\partial_y + c$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

has coordinates $(x, y, \mathbf{u}; a, b, c)$.

• Pseudogroup Θ of gauge transformations:

$$X \to X : \begin{pmatrix} x \\ y \\ u \end{pmatrix} \mapsto \begin{pmatrix} \tilde{x} = x \\ \tilde{y} = y \\ \tilde{u} = e^{g(x,y)}u \end{pmatrix}$$

• The natural Θ -bundle \mathcal{F} for the Laplace operators

$$L = \partial_x \partial_y + a \,\partial_x + b \,\partial_y + c$$

has coordinates $(x, y, \mathbf{u}; a, b, c)$.

• Each gauge transformation lifts to \mathcal{F} via $\tilde{L} \mapsto e^{-g} \tilde{L} e^g$:

$$a = \tilde{a} + g_y$$

$$b = \tilde{b} + g_x$$

$$c = \tilde{c} + g_{xy} + \tilde{a} g_x + \tilde{b} g_y$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)
 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

 (1)

• Pseudogroup Θ of gauge transformations:

$$X \to X : \begin{pmatrix} x \\ y \\ u \end{pmatrix} \mapsto \begin{pmatrix} \tilde{x} = x \\ \tilde{y} = y \\ \tilde{u} = e^{g(x,y)}u \end{pmatrix}$$

• The natural Θ -bundle \mathcal{F} for the Laplace operators

$$L = \partial_x \partial_y + a \,\partial_x + b \,\partial_y + c$$

has coordinates $(x, y, \mathbf{u}; a, b, c)$.

• Each gauge transformation lifts to \mathcal{F} via $\tilde{L} \mapsto e^{-g} \tilde{L} e^g$:

$$a = \tilde{a} + g_y$$

$$b = \tilde{b} + g_x$$

$$c = \tilde{c} + g_{xy} + \tilde{a} g_x + \tilde{b} g_y$$

• A section a(x, y), b(x, y), c(x, y) specifies an LPDO.

• Choosing v = v(x) and $\tilde{v} = \tilde{v}(\tilde{x})$, the Θ -action on \mathcal{F}

 $v = \Phi_{\tilde{v}}(\tilde{x}, \tilde{x}_q)$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

can be seen as a PDE system for $\tilde{x}(x)$ of order q.

• Choosing v = v(x) and $\tilde{v} = \tilde{v}(\tilde{x})$, the Θ -action on \mathcal{F}

 $v = \Phi_{\tilde{v}}(\tilde{x}, \tilde{x}_q)$

can be seen as a PDE system for $\tilde{x}(x)$ of order q. • Prolongation $\mathcal{F} \rightsquigarrow J_1(\mathcal{F})$:

$$\boldsymbol{v_x} = D_x \Phi_{(\tilde{v}, \tilde{v}_{\tilde{x}})}(\tilde{x}, \tilde{x}_{q+1}).$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

• Choosing v = v(x) and $\tilde{v} = \tilde{v}(\tilde{x})$, the Θ -action on \mathcal{F}

 $v = \Phi_{\tilde{v}}(\tilde{x}, \tilde{x}_q)$

can be seen as a PDE system for $\tilde{x}(x)$ of order q.

• Prolongation $\mathcal{F} \rightsquigarrow J_1(\mathcal{F})$:

$$\boldsymbol{v_x} = D_x \Phi_{(\tilde{v}, \tilde{v}_{\tilde{x}})}(\tilde{x}, \tilde{x}_{q+1}).$$

• Projection $\mathcal{F}_{(1)} = J_1(\mathcal{F})/K_{q+1}$:

$$\boldsymbol{w} = \Psi_{(\tilde{v}, \boldsymbol{\tilde{w}})}(\tilde{x}, \tilde{x}_q)$$

by eliminating derivatives of order q + 1.

・ロト・日本・日本・日本・日本

• Choosing v = v(x) and $\tilde{v} = \tilde{v}(\tilde{x})$, the Θ -action on \mathcal{F}

 $v = \Phi_{\tilde{v}}(\tilde{x}, \tilde{x}_q)$

can be seen as a PDE system for $\tilde{x}(x)$ of order q.

• Prolongation $\mathcal{F} \rightsquigarrow J_1(\mathcal{F})$:

$$\boldsymbol{v_x} = D_x \Phi_{(\tilde{v}, \tilde{v}_{\tilde{x}})}(\tilde{x}, \tilde{x}_{q+1}).$$

• Projection $\mathcal{F}_{(1)} = J_1(\mathcal{F})/K_{q+1}$:

$$w = \Psi_{(\tilde{v}, \tilde{w})}(\tilde{x}, \tilde{x}_q)$$

(日) (日) (日) (日) (日) (日) (日)

by eliminating derivatives of order q + 1.

Vessiot structure equations: Integrability conditions.

• The Θ -action on \mathcal{F} is (with q = 2):

$$a = \tilde{a} + g_y$$

$$b = \tilde{b} + g_x$$

$$c = \tilde{c} + g_{xy} + \tilde{a} g_x + \tilde{b} g_y + g_x g_y.$$

• First prolongation to $J_1(\mathcal{F})$:

$$a_x = \tilde{a}_x + g_{xy}, \qquad a_y = \tilde{a}_y + g_{yy},$$

$$b_x = \tilde{b}_x + g_{xx}, \qquad b_y = \tilde{b}_y + g_{xy},$$

$$c_x = \tilde{c}_x + g_{xxy} + \dots, \qquad c_y = \tilde{c}_y + g_{xyy} + \dots$$

• The Θ -action on \mathcal{F} is (with q = 2):

$$a = \tilde{a} + g_y$$

$$b = \tilde{b} + g_x$$

$$c = \tilde{c} + g_{xy} + \tilde{a} g_x + \tilde{b} g_y + g_x g_y.$$

• First prolongation to $J_1(\mathcal{F})$:

$$a_x = \tilde{a}_x + g_{xy}, \qquad a_y = \tilde{a}_y + g_{yy},$$

$$b_x = \tilde{b}_x + g_{xx}, \qquad b_y = \tilde{b}_y + g_{xy},$$

$$c_x = \tilde{c}_x + g_{xxy} + \dots, \qquad c_y = \tilde{c}_y + g_{xyy} + \dots$$

• Projection: $\mathcal{F}_{(1)}$ has the new coordinates

$$a_x, a_y, b_x, b_y.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

• The Θ -action on \mathcal{F} is (with q = 2):

$$a = \tilde{a} + g_y$$

$$b = \tilde{b} + g_x$$

$$c = \tilde{c} + g_{xy} + \tilde{a} g_x + \tilde{b} g_y + g_x g_y.$$

• First prolongation to $J_1(\mathcal{F})$:

$$a_x = \tilde{a}_x + g_{xy}, \qquad a_y = \tilde{a}_y + g_{yy},$$

$$b_x = \tilde{b}_x + g_{xx}, \qquad b_y = \tilde{b}_y + g_{xy},$$

$$c_x = \tilde{c}_x + g_{xxy} + \dots, \qquad c_y = \tilde{c}_y + g_{xyy} + \dots$$

• Projection: $\mathcal{F}_{(1)}$ has the improved coordinates:

$$h = a_x - c + ab$$
, a_y , b_x , $k = b_y - c + ab$.

Invariants: Projection to order zero.

Embedding Theorem

Theorem

If the symbol of $\Phi_{\tilde{v}}(\tilde{x}, \tilde{x}_q) = v$ is 2-acyclic for generic $\tilde{v}(\tilde{x})$, then

$$\iota: J_2(\mathcal{F})/K_{q+2} \to J_1(\mathcal{F}_{(1)})$$

is an embedding.

Visualisation:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Embedding Theorem

Theorem

If the symbol of $\Phi_{\tilde{v}}(\tilde{x}, \tilde{x}_q) = v$ is 2-acyclic for generic $\tilde{v}(\tilde{x})$, then

$$\iota: J_2(\mathcal{F})/K_{q+2} \to J_1(\mathcal{F}_{(1)})$$

is an embedding.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

- Computing $im(\iota)$ involves only linear algebra.
- The invariants on $J_2(\mathcal{F})$ and on $im(\iota)$ coincide.

Embedding Theorem

Theorem

If the symbol of $\Phi_{\tilde{v}}(\tilde{x}, \tilde{x}_q) = v$ is 2-acyclic for generic $\tilde{v}(\tilde{x})$, then

$$\iota: J_2(\mathcal{F})/K_{q+2} \to J_1(\mathcal{F}_{(1)})$$

is an embedding.

- Computing $im(\iota)$ involves only linear algebra.
- The invariants on $J_2(\mathcal{F})$ and on $im(\iota)$ coincide.
- More general situation:

$$\begin{array}{c} & & \\$$

• The bundle $\mathcal{F}_{(1)}$ has the coordinates (x, y, u; a, b, c) and

 $h = a_x - c + ab$, $d = a_y$, $e = b_x$, $k = b_y - c + ab$.

• The bundle $\mathcal{F}_{(1)}$ has the coordinates (x, y, u; a, b, c) and

$$h = a_x - c + ab$$
, $d = a_y$, $e = b_x$, $k = b_y - c + ab$.

• Prolongation to $J_1(\mathcal{F}_{(1)})$:

• The bundle $\mathcal{F}_{(1)}$ has the coordinates (x, y, u; a, b, c) and

$$h = a_x - c + ab, \quad , d = a_y, \quad e = b_x, \quad k = b_y - c + ab.$$

Prolongation to J₁(F₍₁₎) and the embedding im(*ι*):

$$a_x = h + c - ab \quad a_y = d \quad b_x = e \quad b_y = k + c - ab$$

$$c_x \quad c_y \quad d_x = h_y + \dots \quad d_y \quad e_x \quad e_y = k_x + \dots$$

$$h_x \quad h_y \quad k_x \quad k_y$$

• The bundle $\mathcal{F}_{(1)}$ has the coordinates (x, y, u; a, b, c) and

$$h = a_x - c + ab, \quad , d = a_y, \quad e = b_x, \quad k = b_y - c + ab.$$

Prolongation to J₁(F₍₁₎) and the embedding im(*ι*):

$$a_{x} = h + c - ab \quad a_{y} = d \quad b_{x} = e \quad b_{y} = k + c - ab$$

$$c_{x} \quad c_{y}$$

$$d_{x} = h_{y} + \dots \quad d_{y} \quad e_{x} \quad e_{y} = k_{x} + \dots$$

$$h_{x} \quad h_{y} \quad k_{x} \quad k_{y}$$

Projection to \$\mathcal{F}_{(2)}\$:

$$h_x, \qquad h_y, \qquad k_x, \qquad k_y$$

All new coordinates on *F*₍₂₎ are invariants
 ⇒ {*h*, *k*} is a generating set of invariants.

Outline

Introduction

- Linear Partial Differential Operators
- Computational Results Overview
 Invariants for Third Order LPDOs
 Invariants for Fourth Order LPDOs
- 3 Vessiot Equivalence Method for LPDOs
 - Natural Bundles
 - Prolongation and Projection
 - Embedding Theorem

• Pseudogroup Θ , natural bundle \mathcal{F} .

- Pseudogroup Θ , natural bundle \mathcal{F} .
- Prolongation and projection yields natural bundles

$$\mathcal{F}, \quad \mathcal{F}_{(1)}, \quad \mathcal{F}_{(2)}, \quad \dots$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

using the Embedding Theorem.

• Invariants on $J_i(\mathcal{F}) =$ invariants on $\mathcal{F}_{(i)}$.

- Pseudogroup Θ , natural bundle \mathcal{F} .
- Prolongation and projection yields natural bundles

$$\mathcal{F}, \quad \mathcal{F}_{(1)}, \quad \mathcal{F}_{(2)}, \quad \dots$$

(日) (日) (日) (日) (日) (日) (日)

using the Embedding Theorem.

- Invariants on $J_i(\mathcal{F}) =$ invariants on $\mathcal{F}_{(i)}$.
- All new coordinates of *F*_(i) are invariants
 ⇒ generating set of invariants on *F*_(i).

- Pseudogroup Θ , natural bundle \mathcal{F} .
- Prolongation and projection yields natural bundles

$$\mathcal{F}, \quad \mathcal{F}_{(1)}, \quad \mathcal{F}_{(2)}, \quad \dots$$

using the Embedding Theorem.

- Invariants on $J_i(\mathcal{F}) =$ invariants on $\mathcal{F}_{(i)}$.
- All new coordinates of *F*_(i) are invariants
 ⇒ generating set of invariants on *F*_(i).
- Computation of invariants:
 - Moving frames on $\mathcal{F}_{(i)}$ or
 - Linear PDEs on $\mathcal{F}_{(i)}$.
- Sucessfully treated fourth order LPODs.
- Even a fifth order example (X³Y²) was computable...

The end.

Done!

Literature

M. Barakat.

Jets. A MAPLE-package for formal differential geometry.

In Computer algebra in scientific computing (Konstanz, 2001), pages 1–12. Springer, Berlin, 2001.

A. Lorenz.

On local integrability conditions of jet groupoids. *Acta Appl. Math.*, 101:205–213, 2008.

E. L. Mansfield and E. Shemyakova.

Moving frames for Laplace invariants. *ISSAC'08*, 2008.

J.-F. Pommaret.

Systems of partial differential equations and Lie pseudogroups, volume 14 of Mathematics and its Applications.

Gordon & Breach Science Publishers, New York, 1978. With a preface by André Lichnerowicz.

E. S. Shemyakova and F. Winkler.

A Full System of Invariants for Third-Order Linear Partial Differential Operators in General Form. Lecture Notes in Comput. Sci., 4770:360–369, 2007.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

E. S. Shemyakova and F. Winkler.

Obstacles to the factorization of partial differential operators into several factors. *Programmirovanie*, (2):17–25, 2007.

E. Vessiot.

Sur la théorie des groupes continus. Ann. Sci. École Norm. Sup. (3), 20:411–451, 1903.