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Introduction – Laplace Example

Linear partial differential operators (LPDOs) of order 2:

L = ∂x∂y + a ∂x + b ∂y + c

Gauge transformations:

L 7→ g−1Lg, g = g(x, y).

Laplace invariants:

h = c− ax − ab, k = c− by − ab.

The operator L can be factorised if h = 0 or k = 0:

L = (∂x + b) (∂y + a) + h,

= (∂y + a) (∂x + b) + k.
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Introduction – General Situation
Consider arbitrary LPDOs of order d:

L =
∑
|µ|≤d

aµ(x)∂µ, ∂µ = ∂µ1
x1
· · · ∂µn

xn

with symbol
∑

|µ|=d aµ(x)Xµ.
The factorisation of LPDOs is gauge invariant:

g−1Lg = g−1L1L2 g = (g−1L1 g)(g
−1L2 g).

Conditions for factorisation ↔ Laplace invariants.

Methods to compute invariants:

Partial factorisation (obstacles) [SW07b], [SW07a]
Moving frames [MS08]
. . .
Vessiot equivalence method [Ves03]
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Third Order LPDOs

The number of invariants in a generating set:

[MS08] Vessiot
Symbol, order 0 1 2 3 total 0 1 2 total
X3 2 2 1 5 2 3 5

X3, (a) 2 0 2 4 2 1 1 4

X3, (b) 1 1 0 1 3 1 1 1 3

X3, (c) 0 1 1 2 0 2 2

X2 Y 1 3 1 5 1 5 6

X Y (pX + qY ) 3 3 1 7 3 4 1 8

full 5 4 1 10

LX3 = ∂3
x + a20∂

2
x + a02∂

2
y + a11∂x∂y + a10∂x + a01∂y + a00.



Third Order LPDOs
The number of invariants in a generating set:

[MS08] Vessiot
Symbol, order 0 1 2 3 total 0 1 2 total
X3 2 2 1 5 2 3 5

X3, (a) 2 0 2 4 2 1 1 4

X3, (b) 1 1 0 1 3 1 1 1 3

X3, (c) 0 1 1 2 0 2 2

X2 Y 1 3 1 5 1 5 6

X Y (pX + qY ) 3 3 1 7 3 4 1 8

full 5 4 1 10

Moving frames: small invariants of higher order,
Vessiot: large invariants of minimal order.

In future: Combine both methods!



Invariants for LX3,(c) = ∂3
x + a20∂

2
x + a10∂x + a00

Moving frames [MS08]:

Ia10 = a10 −
1

3
a2

20 − a20,x,

Ia00
x = a00 −

1

3
a10a20 +

2

27
a3

20 −
1

3
a20,xx.

Vessiot:

I1
1 = −a10 +

1

3
a2

20 + a20,x,

I1
2 = a10,x − 3a00 + a20a10 −

2

3
a20a20,x −

2

9
a3

20.

Comparison:

Ia10 = −I1
1 Ia00

x = −1

3
(I2

1 + I1
1,x)



Invariants for Fourth Order LPDOs
Results of the Vessiot equivalence method:

Symbol, order 0 1 2 3 4

X4 5 5 1

X4 (a) 3 6

X4 (d) 2 2 1 0 2

...
X3 Y 4 7 1

X2 Y 2 3 10

X3 (pX + qY ) 5 7 1

X2 Y (pX + qY ) 4 9 1

X2 (pX + qY ) (rX + sY ) 5 9 1

X Y (pX + qY ) (rX + sY ) 5 9

X Y (pX2 + qY 2) 5 6 1
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Natural Bundles
Let X be a manifold, coordinates (x) = (x1, . . . , xn).

Diff loc(X,X): local diffeomorphisms ϕ : X → X.
Pseudogroup Θ ⊆ Diff loc(X,X).

A natural Θ-bundle is a fibre bundle

π : F → X : (x, v) → (x)

such that each x̃(x) ∈ Θ lifts to Φ : F → F as:

x̃ = x̃(x), v = Φṽ(x̃, x̃q).

In other words: Θ acts on F .
A section of F is called geometric object:

ω : X → F : (x) 7→ (x, v = ω(x)).

ψ : F → R is an invariant if ψ ◦ Φ = ψ ∀ x̃(x) ∈ Θ.
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In other words: Θ acts on F .

A section of F is called geometric object:

ω : X → F : (x) 7→ (x, v = ω(x)).

ψ : F → R is an invariant if ψ ◦ Φ = ψ ∀ x̃(x) ∈ Θ.



Natural Bundles
Let X be a manifold, coordinates (x) = (x1, . . . , xn).

Diff loc(X,X): local diffeomorphisms ϕ : X → X.
Pseudogroup Θ ⊆ Diff loc(X,X).
A natural Θ-bundle is a fibre bundle

π : F → X : (x, v) → (x)

such that each x̃(x) ∈ Θ lifts to Φ : F → F as:

x̃ = x̃(x), v = Φṽ(x̃, x̃q).
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Laplace Example I

Pseudogroup Θ of gauge transformations:

X → X :

 x
y
u

 7→

 x̃=x
ỹ= y

ũ= eg(x,y)u

 .

The natural Θ-bundle F for the Laplace operators

L = ∂x∂y + a ∂x + b ∂y + c

has coordinates (x, y, u; a, b, c).

Each gauge transformation lifts to F via L̃ 7→ e−gL̃eg:

a = ã+ gy

b = b̃+ gx

c = c̃+ gxy + ã gx + b̃ gy.

A section a(x, y), b(x, y), c(x, y) specifies an LPDO.
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Prolongation and Projection

Choosing v = v(x) and ṽ = ṽ(x̃), the Θ-action on F

v = Φṽ(x̃, x̃q)

can be seen as a PDE system for x̃(x) of order q.

Prolongation F  J1(F):

vx = DxΦ(ṽ,ṽx̃)(x̃, x̃q+1).

Projection F(1) = J1(F)/Kq+1:

w = Ψ(ṽ,w̃)(x̃, x̃q)

by eliminating derivatives of order q + 1.
Vessiot structure equations: Integrability conditions.
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Laplace Example II

The Θ-action on F is (with q = 2):

a = ã+ gy

b = b̃+ gx

c = c̃+ gxy + ã gx + b̃ gy + gxgy.

First prolongation to J1(F):

ax = ãx + gxy, ay = ãy + gyy,

bx = b̃x + gxx, by = b̃y + gxy,

cx = c̃x + gxxy + . . . , cy = c̃y + gxyy + . . . .

Projection: F(1) has the
Invariants: Projection to order zero.
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Embedding Theorem

Theorem
If the symbol of Φṽ(x̃, x̃q) = v is 2-acyclic for generic ṽ(x̃), then

ι : J2(F)/Kq+2 → J1(F(1))

is an embedding.

Visualisation: ↪→

Computing im(ι) involves only linear algebra.
The invariants on J2(F) and on im(ι) coincide.
More general situation:

↪→ ↪→ ↪→
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Laplace Example III

The bundle F(1) has the coordinates (x, y, u; a, b, c) and

h = ax − c+ ab, , d = ay, e = bx, k = by − c+ ab.

Prolongation to J1(F(1))

= h+ c− ab = d = e = k + c− ab

= hy + . . . = kx + . . .

hx hy kx ky

Projection to F(2):

hx, hy, kx, ky.

All new coordinates on F(2) are invariants
⇒ {h, k} is a generating set of invariants.
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Summary

Pseudogroup Θ, natural bundle F .

Prolongation and projection yields natural bundles

F , F(1), F(2), . . .

using the Embedding Theorem.
Invariants on Ji(F) = invariants on F(i).
All new coordinates of F(i) are invariants
⇒ generating set of invariants on F(i).
Computation of invariants:

Moving frames on F(i) or
Linear PDEs on F(i).

Sucessfully treated fourth order LPODs.
Even a fifth order example (X3Y 2) was computable. . .
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The end.

Done!
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