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Preface

Metacognition: Thinking about how we think

I recently finished reading a book1 about teaching and learning that has
really inspired me to try to improve my ability to help other students learn.
Since I am in the midst of leading this tutorial, you folks are destined to be
the guinea pigs for my initial attempts at being a more effective teacher. I
apologize in advance for all shortcomings. Please bear with me.

My idea for the first part of the tutorial was based on the frustration I
felt as a student trying to piece together an understanding of Lie groups,
Lie algebras, and representations in the context of quantum mechanics and
particle physics. There are many books on all of these subjects, but it has
been hard to assemble the pieces into a succinct packet of understanding. In
short, I have struggled to “cut to the chase”. Writing up these lecture notes
has been a way to collect what I’ve learned in one place and, honestly, to
clarify my understanding of many of the connections. What I hope to do
in this tutorial is to encourage you to venture onto this path, provide some
guidance past the obstacles I have overcome, and help point the way ahead
to deeper insights.

My plan for the second half of the tutorial was initially to show how higher
homotopy groups arise in quantum field theory, indicating the existence of
anomalies or non-perturbative solutions. I’m a little concerned that this
might require asking you to accept too much on faith (even the previous
sentence has lots of technical terminology) and not provide a deep enough
learning experience to be satisfying. Stimulated by a comment from one of
you, I am now rethinking slightly my plan for the second half of the tutorial.
(I confess that I haven’t started writing up the notes for that yet!) My current

1Bain, Ken, “What the best college teachers do,” Harvard University Press, 2004.
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iv PREFACE

plan is to focus on the issue of local symmetry, because this is a subtle issue
that my fellow Berkeley graduate students and I wrestled with for about a
week and still didn’t come to a definitive conclusion. Local symmetry does
lead naturally to the study of topology so we should be able to bring in
homotopy groups as I had originally intended, fleshing out the mathematical
side of the tutorial. As this is a work in progress, however, you can influence
the outcome by making your personal desires known.

You must be thinking, “Enough of the meta mumbo jumbo already.” So
I will quickly conclude with the my goals and promises for the tutorial. In
this tutorial I will help you:

1. increase your amazement at the way beautiful, abstract mathematics
appears in understanding actual experiments in physics,

2. gain a new and unique perspective on the sophisticated mathematical
subjects of group theory and topology,

3. prove to yourself that you know what a Lie algebra is and what a local
symmetry represents, and be able to explain to anyone who asks the
distinction between SO(3) and SU(2),

4. cultivate a desire to study groups, quantum mechanics, topology, or
field theory in more detail.

I can help with these goals, but to succeed you will also need to be committed
to these goals yourself. Are you?

Now, on with the subject matter.



Chapter 1

Global Symmetries

1.1 Groups

We start with a set of elements G together with a rule (called multiplica-
tion) for combining two elements to get a third. The name of the resulting
algebraic structure depends on the properties of the multiplication law. If
the multiplication is associative, (g1g2)g3 = g1(g2g3) = g1g2g3, then G is
called a semigroup. If we also require an identity element 1 ∈ G such that
1 · g = g = g · 1 ∀g ∈ G, then G becomes a monoid. Finally, the existence
of inverse elements g−1 for every element such that gg−1 = 1 = g−1g ∀g ∈ G
makes G into a group. The group multiplication law is not necessarily com-
mutative, but if it is then the group is said to be Abelian. Because groups
are closely related to symmetries, and symmetries are very useful in physics,
groups have come to play an important role in modern physics.

Groups can be defined as purely abstract algebraic objects. For example,
the group D3 is generated by the two elements x and y with the relations
x3 = 1, y2 = 1, and yx = x−1y. We can systematically list all the elements:
D3 = {1, x, x2, y, xy, x2y}. We should check that this list is exhaustive,
namely that all inverses and any combination of x and y appears in the list.
Using the relations we see that x−1 = x2 and y−1 = y, so yx = x−1y = x2y, all
of which are already in the list. What about yx2? The order of a group is the
number of elements it contains and is sometimes written |G|. We see that D3

is a group of order 6, i.e. |D3| = 6. This is a specific example of a dihedral
group Dn which is defined in general as the group generated by {x, y} with
the relations xn = 1, y2 = 1, and yx = x−1y. We can systematically list the

1



2 CHAPTER 1. GLOBAL SYMMETRIES

Figure 1.1: (a) An equilateral triangle; (b) the same triangle with labels.

elements: Dn = {1, x, x2, . . . , xn−1, y, xy, x2y, . . . , xn−1y}. You should prove
that Dn has order 2n.

Exercise 1 The symmetric group Sn is the set of permutations of the in-
tegers {1, 2, . . . , n}. Is Sn Abelian? Determine the order of Sn (feel free to
start with simple cases of n = 1, 2, 3, 4). Note that |S3| = |D3|. Are they the
same group (isomorphic)?

1.1.1 Realizations and Representations

The previous example showed how a group can be defined in the abstract.
However, groups often appear in the context of physical situations. Consider
the rigid motions (preserving lengths and angles) in the plane that leave an
equilateral triangle (shown in Figure 1.1(a)) unchanged. To keep track of
what’s going on, we will need to label the triangle as shown in Figure 1.1(b).

One rigid motion is a rotation about the center by an angle 2π
3

in the
counter-clockwise direction as shown in Figure 1.2(a). Let’s call such a trans-
formation R for “rotation”. We say that R is a symmetry of the triangle
because the triangle is unchanged after the action of R. Another symmetry
is a reflection about the vertical axis, which we can call F for “flip”. This is
shown in Figure 1.2(b).

Both R and F can be inverted, by a clockwise rotation or another flip,
respectively. Clearly combinations of Rs and F s are also symmetries. For
example, Figure 1.3(a) shows the combined transformation FR in the top
panel, whereas the lower panel (b) shows the transformation R2F . Note that
our convention is that the right-most operation is done first.



1.1. GROUPS 3

Figure 1.2: (a) R, a counter clockwise rotation by 2π
3

; (b) and the “flip” F ,
a reflection about the vertical axis (b).

Figure 1.3: (a) The combined transformation FR; (b) the transformation
R2F .
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These examples show that transformations on a space can naturally form
a group. More formally, a group realization is a map from elements of G
to transformations of a space M that is a group homomorphism, i.e. it
preserves the group multiplication law. Thus if T : G → T (M) : g 7→ T (g)
where T (g) is some transformation on M , then T is a group homomorphism
if T (g1g2) = T (g1)T (g2). From this you can deduce that T (1) = I where I is
the identity (“do nothing”) transformation on M , and T (g−1) = (T (g))−1 =
T−1(g).

Let’s go back to the symmetries of our triangle. You probably noticed
that R3 = I and F 2 = I, which bears striking similarities to D3. In fact,
with T (x) = R and T (y) = F , it isn’t hard to prove that T is a realization of
D3. One important thing to check is whether T (yx) = T (y)T (x) = FR and
T (x−1y) = T−1(x)T (y) = R−1F = R2F are the same. But this is exactly
what we showed in Figure 1.3.

In this example the map T : D3 → Symmetries(4) is bijective (one-
to-one and onto) so in addition to being a homomorphism it is also an
isomorphism. Such realizations are often called faithful because every
different group element gets assigned to a different transformation. How-
ever, realizations do not need to be faithful. Consider the homomorphism
T ′ : D3 → Symmetries(4) where T ′(x) = I and T ′(y) = F . Then T ′(yx) =
T ′(y)T ′(x) = FI = F and T ′(x−1y) = T ′(x2y) = I2F = F . Thus the
group relations and multiplication still hold so we have a realization, but it
is definitely not an isomorphism.

Exercise 2 Consider the map T ′′ : D3 → Symmetries(4) where T ′′(x) = R
and T ′′(y) = I. Is T ′′ is a realization?

Exercise 3 A normal subgroup H ⊂ G is one where ghg−1 ∈ H for all
g ∈ G and h ∈ H. Both T ′ and T ′′ map a different subgroup of D3 to the
identity. Are those normal subgroups? In this context, why is the concept of
normal subgroup useful?

Physicists are usually interested in the special class of realizations where
M is a vector space and the T (g) are linear transformations. Such realizations
are called representations.1 A vector space V is an Abelian group with

1A warning about terminology: Technically the representation is defined as the map
(homomorphism) between G and transformations on a vector space. However, often the
term “representation” is used to refer to the vector space on which the elements T (g) act,
and sometimes even to the linear transformations T (g) themselves.
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elements |v〉 called vectors and a group operation “+”, and it possesses a
second composition rule with scalars α which are elements of a field F (like
R or C) such that α|v〉 ∈ V for all α ∈ F and all |v〉 ∈ V . Further we have
the properties:

i) (αβ)|v〉 = α(β|v〉)

ii) 1 ∈ F is an identity: 1|v〉 = |v〉

iii) (α+ β)|v〉 = α|v〉+ β|v〉 and α(|v〉+ |w〉) = α|v〉+ α|w〉.

A linear transformation on a vector space V is a map T : V → V such that
T (α|v〉+ β|w〉) = αT (|v〉) + βT (|w〉). Linear algebra is essentially the study
of vector spaces and linear transformations between them. This is important
for us because soon we will see how quantum mechanics essentially boils down
to linear algebra. Thus the study of symmetry groups in quantum mechanics
becomes the study of group representations. But first we should look a some
simple examples of representations.

Consider the parity group P = {x : x2 = 1}, also known as Z2, the cyclic
group of order 2. The most logical representation of P is by transformations
on R where T (x) = −1. Clearly T (x2) = T (x)T (x) = (−1)2 = 1 so this forms
a faithful representation. We could also study the trivial representation
where T ′(x) = 1. Again, T ′(x2) = T ′(x)2 = 12 = 1, so the group law is
preserved, but nothing much happens with this representation, so it lives up
to its name.

The dimension of a representation refers to the dimension of the vector
space V on which the linear transformations T (g) act, not to be confused with
the order of the group. Let’s now consider a two-dimensional representation
of P . Take R2 with basis |m〉, |n〉 and let T2(x)|m〉 = |n〉 and T2(x)|n〉 = |m〉.
You can check that T2(x

2) = (T2(x))
2 = I because it takes |m〉 → |n〉 → |m〉

and |n〉 → |m〉 → |n〉. In terms of matrices we have:

T2(x) =

(
0 1
1 0

)
and T2(1) =

(
1 0
0 1

)
(1.1)

and you can check that T2(x)
2 = I in terms of matrices as well.

Something interesting happens if we change the basis of the vector space
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to |µ〉 = 1√
2
(|m〉+ |n〉) and |ν〉 = 1√

2
(−|m〉+ |n〉). Then

T2(x)|µ〉 =
1√
2
(T2(x)|m〉+ T2(x)|n〉) =

1√
2
(|n〉+ |m〉) = |µ〉

T2(x)|ν〉 =
1√
2
(−T2(x)|m〉+ T2(x)|n〉) =

1√
2
(−|n〉+ |m〉) = −|ν〉

This new basis yields a new representation of P , call it T ′
2. The matrices

corresponding to the |µ〉, |ν〉 basis are:

T ′
2(x) =

(
1 0
0 −1

)
and T ′

2(1) =

(
1 0
0 1

)
. (1.2)

Of course, since T2 and T ′
2 are related by a change of basis their matrices are

related by a similarity transformation, T2(g) = ST ′
2(g)S

−1 and they aren’t
really different in any substantial way. Representations related by a change
of basis are called equivalent representations.

Another thing to notice about T ′
2 is that all the representatives (i.e. both

matrices) are diagonal. This means that the two basis vectors |µ〉 and |ν〉 are
acted upon independently, so they each can be considered as separate one-
dimensional representations. In fact, the representation on |µ〉 is none other
than the trivial representation, T ′, and the representation on |ν〉 is the same
as our faithful representation T above. A representation that can be sepa-
rated into representations with smaller dimensions is said to be reducible.
In general, a representation will be reducible when all of its matrices can be
simultaneously put into the same block diagonal form:

Tn+m+p(g) =

 T1(g)
T2(g)

T3(g)

 }n×n

}m×m

}p×p

. (1.3)

Then each of the smaller subspaces are acted on by a single block and give a
representation of the group G of lower dimension. Because larger represen-
tations can be built up out of smaller ones, it is sensible to try to classify the
irreducible representations of a given group.

Exercise 4 Can you construct an irreducible 2-dimensional representation
of the parity group P? Can you construct a nontrivial 3-dimensional repre-
sentation of P? If you can, is it irreducible?
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1.2 Lie Groups and Lie Algebras

Now we come to our main example, that of rotations. In R3 rotations about
the origin preserve lengths and angles so they can be represented by 3 × 3
(real) orthogonal matrices. If we further specify that the determinant be
equal to one (avoiding inversions) then we have the special orthogonal
group called SO(3):

SO(3) = {O ∈ 3× 3 matrices : O† = O−1 and detO = 1}. (1.4)

For real matrices like we have here, the Hermitian conjugate, O† = (O∗)T

is equal to the transpose, OT , so I’ve chosen to use the former for later
convenience. We can verify that this is a group by checking (O1O2)

† =
O†

2O
†
1 = O−1

2 O−1
1 = (O1O2)

−1 and det(O1O2) = detO1 detO2 = 1 · 1 = 1.
Here our definition of the group is made in terms of a faithful representation.
SO(3) has two important features: it is a continuous group and it is not
commutative. We will discuss these properties in turn.

Exercise 5 Prove that orthogonal transformations on R3 do indeed preserve
lengths and angles.

Exercise 6 Does the set of general n×n matrices form a group? If so, prove
it. If not, can you add an additional condition to make it into a group.

1.2.1 Continuous Groups

Rotations about the z-axis are elements (in fact, a subgroup) of SO(3). Since
we can imagine rotating by any angle between 0 and 2π it is clear that there
are an infinite number of rotations about the z-axis and hence an infinite
number of elements in SO(3). We can write the matrix of such a rotation as

Tz(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (1.5)

demonstrating how such a rotation can be parameterized by a continuous
real variable. It turns out that you need 3 continuous parameters to uniquely
specify every element in SO(3). (These three can be thought of as rotations
about the 3 axes or the three Euler angles.) Because of the continuous
parameters we have some notion of group elements being close together.
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Such groups have the additional structure of a manifold and are called Lie
groups.

A manifold is a set of point M together with a notion of open sets (which
makes M a topological space) such that each point p ∈M is contained in an
open set U that has a continuous bijection ϕ : U → ϕ(U) ⊂ Rn. Thus an
n-dimensional manifold is a space where every small region looks like Rn. If
all the functions ϕ are differentiable then you have a differentiable manifold.2

A Lie group is a group that is also a differentiable manifold.
Our main example of SO(3) is in fact a Lie group. We already know how

to deal with its group properties since matrix multiplication reproduces the
group multiplication law. But what kind of manifold is SO(3)?

We will begin to answer this question algebraically. More generally,
SO(n) consists of n × n real matrices with O†O = I and detO = 1. A
general n× n real matrix has n2 entries so is determined by n2 real param-
eters. But the orthogonality condition gives n(n+1)

2
constraints (because the

condition is symmetric, so constraining the upper triangle of the matrix au-
tomatically fixes the lower triangle). Since any orthogonal matrix must have
detO = ±1, the constraint for a positive determinant only eliminates half
of the possibilities but doesn’t reduce the number of continuous parameters.
Thus a matrix in SO(n) will be specified by n2− n(n+1)

2
= n(n−1)

2
. Thus SO(3)

is specified by 3 parameters and is therefore a 3-dimensional manifold.
Knowing the dimension is a start, but we can learn more by using geomet-

ric reasoning. Let’s specify a rotation about an axis by a vector along that
axis with length in the range [0, π] corresponding to the counter-clockwise
angle of rotation about that axis. The collection of all such vectors is a solid,
closed ball of radius π in R3, call it D3 (for “disk). However, a rotation by π
about some axis ~n is the same as a rotation by π about −~n. So to take this
into account we need to specify that opposite points on the surface of ball
are actually the same. If this identification is made into a formal equivalence
relation ∼ then we have SO(3) ∼= D3/∼. So as a manifold SO(3) can be vi-
sualized as a three-dimensional solid ball with opposite points on the surface
of the ball identified. As a preview of what is to come, note that this shows
that SO(3) is not simply connected.

Exercise 7 What is the relationship between SO(3) and the 3-dimensional

2For a general abstract manifold the definition of differentiable is that for two overlap-
ping regions Ui and Uj with corresponding maps ϕi and ϕj the composition ϕi ◦ ϕ−1

j :
Rn → Rn is infinitely differentiable.
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Figure 1.4: Rotating a book by the sequence R−1
y (π

2
)R−1

x (π
2
)Ry(

π
2
)Rx(

π
2
) does

not lead back to the initial configuration, demonstrating the non-Abelian
nature of SO(3).

unit sphere, S3?

Exercise 8 Does the set of general n× n matrices form a manifold? If so,
what is its dimension? If not, can you add an additional condition to make
it into a manifold?

1.2.2 Non-commutativity

In addition to being a manifold, SO(3) is a non-commutative (non-Abelian)
group. If a group is Abelian, then gh = hg, which means that g−1h−1gh = 1.
Let’s see what we get for a similar product of rotations in SO(3). Let Ri(θ)
denote a rotation about the i-axis by an angle θ. Let’s rotate a book by the
sequence R−1

y (π
2
)R−1

x (π
2
)Ry(

π
2
)Rx(

π
2
). (Note that the right-most rotation is

done first.) Such a sequence of group elements is sometimes known as the
commutator and is shown graphically in Figure 1.4.

At the end the book is definitely not back at its starting point, demon-
strating that this product of group elements is not equal to the identity,
proving that SO(3) is non-Abelian. The actual result is some complicated ro-
tation about a new axis. To get a better sense of what’s happening it is useful
to consider very small rotations by an infinitesimal angle ε. The commutator
then becomes R−1

y (ε)R−1
x (ε)Ry(ε)Rx(ε) = Ry(−ε)Rx(−ε)Ry(ε)Rx(ε), having

used the fact that R−1
i (θ) = Ri(−θ). We can work out what this is using the

explicit representation by 3× 3 matrices and the fact that ε is infinitesimal.
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For example,

Tz(ε) =

 cos ε − sin ε 0
sin ε cos ε 0

0 0 1

 =

 1− ε2

2
−ε 0

ε 1− ε2

2
0

0 0 1

 +O(ε3). (1.6)

Multiplying out the commutator then gives

Ty(−ε)Tx(−ε)Ty(ε)Tx(ε) =

 1 ε2 0
−ε2 1 0
0 0 1

 +O(ε3). (1.7)

From the expansion of Tz(ε) we see that to O(ε2) this is the same as Tz(−ε2).
Now we can use the notion of “closeness” in the manifold to get a better

handle on the non-commutativity. To this end we write an infinitesimal
rotation about the i-axis as Ti(ε) = 1 + εAi. If we want to build up a finite
rotation we can simply apply n consecutive small rotations to get a rotation
by θ = nε.

Ti(θ) = Ti(nε) = (Ti(ε))
n =

(
1 +

θ

n
Ai

)n

−→
n→∞

eθAi (1.8)

Expanding the explicit form of Tx, Ty, and Tz leads to

Ax =

 0 0 0
0 0 −1
0 1 0

 Ay =

 0 0 1
0 0 0
−1 0 0

 Az =

 0 −1 0
1 0 0
0 0 0

 (1.9)

Exercise 9 Verify explicitly that eθAz yields the matrix Tz(θ) shown in Eqn. (1.6).

The As are called generators of the Lie group SO(3), and they behave
somewhat differently from the group elements. The SO(3) matrices can be
multiplied together without leaving the group, T1T2 ∈ SO(3), but they can’t
be added: T1+T2 is not necessarily in SO(3). (Consider T1−T1 = 0. The zero
matrix is definitely not orthogonal! Or I + I = 2I, which has determinant 8
and not 1.) What about the generators? For T (θ) = eθA to be in SO(3) we
need

T †(θ)T (θ) =
(
eθA

)†
eθA = eθ∗A†eθA = eθ(A†+A) = I (1.10)

where we have used the fact that the angle θ is a real parameter. This
requirement means A† + A = 0 ⇒ A† = −A. We say such a matrix A is
skew-Hermitian (sometimes also called anti-Hermitian). Also, we need

detT (θ) = det eθA = eθTrA = 1 ⇒ Tr(A) = 0. (1.11)
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So altogether we find that the generators must be skew-Hermitian, traceless
matrices. Adding linear combinations of such generators shows

(aA+ bB)† = a∗A† + b∗B† = −aA− bB = − (aA+ bB) (1.12)

Tr (aA+ bB) = aTrA+ bTrB = 0 (1.13)

as long as a, b ∈ R. Thus the generators form a real vector space! But note
that the vector space is not closed under matrix multiplication. For instance,

AxAy =

 0 0 0
0 0 −1
0 1 0

  0 0 1
0 0 0
−1 0 0

 =

 0 0 0
1 0 0
0 0 0

 (1.14)

which is not skew-Hermitian. By considering the generators instead of the
group elements we give up the group structure but gain a vector space struc-
ture.

Exercise 10 Prove that
(
eA

)†
= eA†, which was used in Eqn. (1.10).

Exercise 11 Prove that det
(
eA

)
= eTrA, which was used in Eqn. (1.11).

[Hint: Start by proving it when A is a diagonal matrix, and then generalize
as much as you can.] Generalize this formula to rewrite the determinant of
a general matrix M in terms of a trace.

1.2.3 Lie Algebras

What does the non-commutativity look like in terms of the generators? Re-
consider the infinitesimal rotations by ε. Recall that we found

Ty(−ε)Tx(−ε)Ty(ε)Tx(ε) = Tz(−ε2). (1.15)

Writing this in terms of the As and expanding in ε gives

e−εAye−εAxeεAyeεAx =

(
1− εAy +

ε2

2
A2

y +O(ε3)

) (
1 + εAx +

ε2

2
A2

y +O(ε3)

)
(

1− εAy +
ε2

2
A2

y +O(ε3)

) (
1 + εAx +

ε2

2
A2

y +O(ε3)

)
= 1 + ε2AyAx − ε2AxAy +O(ε3) (1.16)

while
e−εAz = 1− ε2Az +O(ε3). (1.17)
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Thus we determine that

AxAy − AyAx ≡ [Ax, Ay] = Az, (1.18)

where we have defined the bracket operation [ , ] for generators. Note that
even though AB is not in the vector space, [A,B] is:

[A,B]† = (AB −BA)† = B†A† − A†B† = (−B)(−A)− (−A)(−B)

= BA− AB = [B,A] = −[A,B] (1.19)

and Tr[A,B] = Tr(AB−BA) = Tr(AB)−Tr(BA) = 0 by the cyclic property
of the trace. You can also check that [ , ] is compatible with the (real) vector
space structure. This bracket operation has the three properties that define
an abstract Lie bracket:

i) [A,B] = −[B,A] antisymmetry (1.20)

ii) [a1A1 + a2A2, B] = a1[A1, B] + a2[A2, B] bilinearity (1.21)

[A, b1B1 + b2B2] = b1[A,B1] + b1[A,B2] (1.22)

iii) [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 Jacobi identity.(1.23)

A vector space with the additional structure of a Lie bracket is called a Lie
algebra. In fact, just knowing how the Lie bracket operates on generators is
enough to allow you to work out the product of any two group elements. We
won’t prove that here, but to make it plausible consider the general situation
of two elements generated by A and B: g = eA and h = eB. Then gh = eAeB,
which must in turn be equal to eC for some C. Presumably C is determined
by A and B in some way, but it is complicated if A and B do not commute.
The Baker-Campbell-Hausdorff theorem provides the answer:

eAeB = eC with C = A+B +
1

2
[A,B] +

1

12
([A, [A,B]] + [B, [B,A]]) + · · · .

(1.24)

Exercise 12 Derive Eqn. (1.24) and (if you’re up for a challenge) work out
the next term in the expansion. [Hint: Multiply both A and B by a dummy
parameter λ and write C as a series of terms with increasing powers of λ.
Then expand both sides and collect powers of λ.]3

3For a systematic procedure for calculating the nth term (including a Mathematica
implementation), see the paper by Matthias Reinsch, arXiv.org: math-ph/9905012.
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All higher term in the expansion of C are determined by more nested brack-
ets, demonstrating that you don’t even need to be able to define the products
AB or BA.

Exercise 13 Looking back at the proof that the generators are skew-Hermitian,
was I justified in writing eθ∗A† = eθ(A†+A)?

We illustrated the concept of generators and Lie algebras by using the
specific, three-dimensional (defining) representation of SO(3). However, the
same thing can be done abstractly using a little more machinery and without
making any reference to the specific representation of the group or its dimen-
sion. The result is that each Lie group has a corresponding Lie algebra that
tells you all you need to know about the local structure of the group. In this
example we uncovered the Lie algebra as the generators of the group using
matrix exponentials. The Lie algebra can also be defined in terms of the
manifold structure as the tangent space to the group at the identity, and the
exponential of the generators can also be given a more abstract definition.
We’re interested in connecting to physics applications, so we won’t pursue
the abstract formulation here, but perhaps it would make a good project for
someone.

In our concrete example of SO(3), the Lie algebra is the real vector space
of skew-Hermitian, traceless matrices with [Ax, Ay] = Az and cyclic permu-
tations, often written as [Ai, Aj] = εijkAk. Since Ax, Ay, and Az form a basis
for the Lie algebra (as a vector space), knowing how the Lie bracket oper-
ates on them is enough to allow us to determine the commutator of any two
generators. For a general Lie group G the vector space of generators forms
its Lie algebra, often denoted g. Having a representation of G means that
T : G→ T (V ) assigns each group element g to a linear operator T (g) where
T (g1g2) = T (g1)T (g2). Thus if g = eA and T (g) is a linear operator on some
vector space V , we can define T : g → T (V ) (“overloading the operator”)
such that T (g) = eT (A) where T (A) is also a linear operator on V . (To be
precise we need to show existence and uniqueness, but we will come back to
that later.) In order for the group multiplication to make sense we must have

T (g1g2) = T (eA1eA2) = T (eA1+A2+ 1
2
[A1,A2]+···) = eT (A1+A2+ 1

2
[A1,A2]+··· )

= eT (A1)+T (A2)+ 1
2
T ([A1,A2])+··· (1.25)

?
= eT (A1)eT (A2) = T (g1)T (g2). (1.26)
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Clearly we will have agreement between the last two lines if T ([A1, A2]) =
[T (A1), T (A2)]. This last condition is therefore the requirement for T (A) to
be a representation of the Lie algebra. Thus we can talk about represen-
tations of the group or representations of the algebra, and we can go back
and forth between them using exponentiation. Often the Lie algebra is easier
to work with, so physicists usually focus on that. We haven’t yet discussed
the precise relationship between Lie groups and Lie algebras. Our above
construction shows how you can find a Lie algebra for every Lie group by
determining the generators in a specific (faithful) representation. But we
haven’t yet dealt with the converse. The result is that it isn’t quite a one-to-
one relationship between Lie algebras and Lie groups, but we will come back
to this later. First we will study quantum mechanics and see how physicists
use and understand Lie algebras.

Exercise 14 Describe the matrices that make up the Lie algebra for the
group of all invertible, n × n real matrices. (This group is called GL(n,R)
and its Lie algebra is written gl(n,R).

Exercise 15 Why is it important that the Lie algebra can be defined without
needing to define the products of two generators? [Hint: This is subtle; you
won’t find the answer in these lecture notes.]

1.3 Quantum Mechanics

As mentioned earlier, the underlying mathematical structure of quantum
mechanics is a complex vector space V together with an inner product 〈 | 〉
that satisfies the usual properties:

〈v|w〉 = 〈w|v〉∗ (1.27)

〈v|v〉 ≥ 0 with equality iff |v〉 = 0 (1.28)

〈v|αw + βu〉 = α〈v|w〉+ β〈v|u〉 (1.29)

〈αv + βu|w〉 = α∗〈v|w〉+ β∗〈u|w〉 (1.30)

More precisely, quantum mechanics is formulated on a Hilbert space. We
will use this terminology, but we won’t worry about the subtle distinctions
between a Hilbert space and a vector space. It is important to understand
that each “system” is represented by its own Hilbert space. Presumably
one could define the total Hilbert space of the universe, but obviously that
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would be far more complicated than necessary. Physicists restrict to smaller
systems which can be represented by simpler Hilbert spaces.

1.3.1 Postulates of Quantum Mechanics

Here are the postulates of quantum mechanics, according to Steven Weinberg
in his field theory book4:

1. The state of a system is represented by a ray in the Hilbert space,
defined as the equivalence class of normalized vectors 〈v|v〉 = 1. The
equivalence relation ∼ is defined such that |v〉 ∼ |w〉 if |v〉 = α|w〉 for
some α ∈ C with |α| = 1.

2. Observables are linear operators A : V → V that are also Hermitian,
i.e. A† = A. The Hermitian conjugate A† is defined such that 〈v|Aw〉 =
〈A†|w〉. For matrices A† = (A∗)T .

3. If the system is in the state |v〉 and we do an experiment to see if it
has properties of the state |w〉, the probability of finding |v〉 in state
|w〉 is P (v → w) = |〈w|v〉|2. Furthermore, the expectation value of
an observable, which is the average value of many measurements on
identically prepared systems in the state |v〉, is given by 〈A〉 = 〈v|A|v〉.

Exercise 16 Prove that the eigenvalues of a Hermitian matrix are real and
that eigenvectors corresponding to distinct eigenvalues are orthogonal. Show
that this implies that a Hermitian matrix is unitarily diagonalizable.

In quantum mechanics we want to understand the state of the system |ψ〉,
also called the wave function, which has its time evolution governed by the
Schrödinger equation

i~
∂

∂t
|ψ〉 = H|ψ〉. (1.31)

H is a Hermitian operator called the Hamiltonian, which essentially measures
the energy of the system. To solve the Schrödinger equation we usually
assume that H is independent of time and first solve the simpler equation
H|ψ〉 = E|ψ〉, with E ∈ R. Quantum mechanics boils down to solving this

4Weinberg, S. The Quantum Theory of Fields, Vol. I, Cambridge University Press,
1996, p. 49-50.
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eigenvalue equation with various forms for H. Symmetries are very useful
for simplifying this procedure.

If the system possesses a symmetry it is usually manifest in the Hamil-
tonian. For instance, an atom of hydrogen consists of a negative electron in
orbit around a much heavier, positive proton. The (lowest order) Hamilto-
nian that describes the state of the electron in a hydrogen atom is

Hhydrogen = − ~2

2m
∇2 − e2

r
(1.32)

which is spherically symmetric, meaning there is no preferred axis or direc-
tion. So we expect the physical configuration and predictions about this
electron will not change under rotations in SO(3). Since Hhydrogen is a linear
operator on the infinite-dimensional Hilbert space of square-integrable com-
plex functions, we are interested in representations of SO(3) on that same
vector (Hilbert) space. But here is where the reducibility of group represen-
tations comes in. Obviously an infinite dimensional vector space is a pretty
big space to be working in, so it would be nice if the solutions to the eigen-
value equation H|ψ〉 = E|ψ〉 broke down into smaller, finite dimensional sub-
spaces. In fact, we can use the finite dimensional irreducible representations
of SO(3) to separate the full Hilbert space into smaller, more manageable
pieces. But first we need to discuss what it means to have a symmetry in
quantum mechanics.

1.3.2 Symmetries in Quantum Mechanics

If we have a system that possesses a symmetry that means that physically
observable things such as probabilities for events should not be changed af-
ter a symmetry operation. So if g acts on a state |ψ〉 by an operator T (g),
then |ψ〉 → T (g)|ψ〉. If we measure the probability of our state |ψ〉 be-
ing in the state |φ〉, the original probability is Porig = |〈φ|ψ〉|2. After the
transformation, |φ〉 → T (g)|φ〉 ⇒ 〈φ| → 〈T (g)φ| = 〈φ|T †(g). Therefore

Pafter =
∣∣〈φ|T †(g)T (g)|ψ〉

∣∣2. For the probability to remain unchanged for any
initial and final state we need T †T = ±I. There is a theorem of Wigner
which states that any symmetry of the quantum mechanical system can be
represented by a unitary operator T †T = I.5

5We have implicitly assumed that T is a linear operator. However, time reversal requires
the use of an antilinear operator, which is defined to include complex conjugation of
scalars. We won’t pursue any symmetries containing time reversal.
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Furthermore, if the system has a specific energy, i.e. it is in an eigenstate
of H, we can’t have a symmetry operation changing that eigenvalue because
a measurement of the energy of that state shouldn’t change under the action
of a symmetry. So if H|ψ〉 = E|ψ〉, before the symmetry transformation we
have

〈H〉 = 〈ψ|H|ψ〉 = 〈ψ|E|ψ〉 = E〈ψ|ψ〉 = E. (1.33)

After doing the symmetry transformation we need

〈H〉 = 〈ψ|T †HT |ψ〉 = E, (1.34)

or in other words, T |ψ〉 also needs to be an eigenstate of H with eigenvalue
E: HT |ψ〉 = ET |ψ〉. This will be true if H and T (g) commute, because then
HT |ψ〉 = T (g)H|ψ〉 = T (g)E|ψ〉 = E(T (g)|ψ〉). Note however that T (g)|ψ〉
need not be equal to |ψ〉. All we need is for each eigenspace that corresponds
to a distinct eigenvalue of H to be an invariant subspace, meaning that it
is mapped into itself by the action of all T (g). This means that T (g) is
reducible, and that the eigenvalues of H label separate, smaller representa-
tions. Eventually we would like to break those smaller representations down
further into irreducible representations. So we will focus our study on the
irreducible, unitary representations of G. And to do that it is often easier to
study the irreducible representations of g.

Now we come to a place where math and physics make a slight divergence.
Recall that for eA to be unitary, (eA)†eA = 1 requiredA to be skew-Hermitian,
A† = −A. But quantum mechanics has a very special role for Hermitian
operators. So what physicists do is put in an explicit factor of i and define
generators that are Hermitian and therefore observables:

J ≡ iA so eA = e−iJ . (1.35)

Since A† = −A we have (−iJ)† = iJ† = iJ ⇒ J† = J . Recall that for SO(3)
we had [Ai, Aj] = εijkAk. This now becomes

[−iJi,−iJj] = εijk(−iJk) ⇒ −[Ji, Jj] = −iεijkJk ⇒ [Ji, Jj] = iεijkJk .

The boxed expression is the famous set of commutation relations for SO(3).
It turns out that the J ’s are observables representing angular momentum,
so they are also called the angular momentum commutation relations.
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Exercise 17 Using the fundamental commutation between position and mo-
mentum, [x, p] = i, show that the components of ~L = ~x×~p satisfy the angular
momentum commutation relations.6

From the mathematical standpoint this is a little weird. The J ’s still
form a real vector space VJ and it possesses a Lie bracket of sorts, with the
understanding that [A,B] = iC for A,B,C ∈ VJ . But this clumsiness with
the closure of the Lie algebra of the J ’s is a small price for physicists to pay
for getting to work with Hermitian generators.

Back to our main example, we want to study the irreducible, unitary rep-
resentation of SO(3), so we will focus on the irreducible, traceless, Hermitian
representations of the “Lie algebra” g′ spanned by Jx, Jy, and Jz with the

commutation relation ~J × ~J = i ~J .

It turns out that there are finite dimensional representations with each
dimension n = 1, 2, 3, . . .. The n = 1 representation is simply given by
T (Ji) = [0], i.e. the 1 × 1 0-matrix. Clearly this yields the trivial represen-
tation of G: T (g) = eT (A) = e0 = I for all A and thus all g. One could also
have trivial representations of any dimension, but this is pretty boring.

For n = 2 the non-trivial representation is given by:

T2(Jx) =
1

2

(
0 1
1 0

)
, T2(Jy) =

1

2

(
0 −i
i 0

)
, T2(Jz) =

1

2

(
1 0
0 −1

)
.

(1.36)
Clearly these matrices are Hermitian and traceless. You should check that
they satisfy the commutation relations.

For n = 3 we already discussedAx =

 0 0 0
0 0 −1
0 1 0

 which yields T3(Jx) = 0 0 0
0 0 −i
0 i 0

, etc. By changing basis such that T3(Jz) is diagonal we arrive

6I’m using units where ~ = 1. If you want to retain the dimensions, you need to add
an ~ to the right hand side of both commutation relations.
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at the equivalent representation

T ′
3(Jx) =

1√
2

 0 1 0
1 0 1
0 1 0

 , T ′
3(Jy) =

1√
2

 0 −i 0
i 0 −i
0 i 0

(1.37)

T ′
3(Jz) =

 1 0 0
0 0 0
0 0 −1

 . (1.38)

Exercise 18 Show explicitly that T3 and T ′
3 are equivalent.

Similarly, there is a four-dimensional representation:

T4(Jx) =


0

√
3
2

0 0√
3
2

0 2 0

0 2 0
√

3
2

0 0
√

3
2

0

 (1.39)

T4(Jy) =


0 −i

√
3
2

0 0

i
√

3
2

0 −2i 0

0 2i 0 −i
√

3
2

0 0 i
√

3
2

0

 (1.40)

T4(Jz) =


3
2

0 0 0
0 1

2
0 0

0 0 −1
2

0
0 0 0 −3

2

 (1.41)

There are systematic rules for determining Tn(Ji) for any positive integer
n. Note that in each case the Tn(Ji) are the basis vectors of a real, three-
dimensional vector space, even though as matrices they themselves have com-
plex components and act on a complex vector space of n-dimensions.
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1.3.3 SU(2) and Projective Representations

Let’s look more carefully at T2(J). Does this lead to a two-dimensional
representation of SO(3)? By explicit computation we find

e−iθT2(Jx) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
(1.42)

e−iθT2(Jy) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
(1.43)

e−iθT2(Jz) =

(
e−iθ/2 0

0 eiθ/2

)
. (1.44)

Note that these are 2 × 2 unitary matrices: U †U = 1. How can we con-
nect them to SO(3) to check whether they do indeed form a representation?
Recall our earlier characterization, SO(3) ∼= D3/ ∼. Just as D2, the two-
dimensional disk (filled circle) is topologically the same as the northern hemi-
sphere of S2, D3 is the “northern hemisphere” of S3. Thus SO(3) can be
thought of as the northern hemisphere of S3 with opposite equatorial points
identified, which is the same as all of S3 with antipodal points identified.

Now consider SU(2), the group of 2 × 2 unitary matrices. The general
matrix of this form can be written

U =

(
α β
−β∗ α∗

)
(1.45)

with α, β ∈ C. Multiplying U and it’s conjugate

U †U =

(
α∗ −β
β∗ α

) (
α β
−β∗ α∗

)
=

(
|α|2 + |β|2 0

0 |α|2 + |β|2
)

(1.46)

we see that U ∈ SU(2) only if |α|2 + |β|2 = 1. Writing α = a1 + ia2 and
β = b1 + ib2 this condition becomes |a1|2 + |a2|2 + |b1|2 + |b2|2 = 1. This is
nothing but the equation for a three sphere in real four dimensional space.
Thus as a manifold SU(2) ∼= S3. The connection to S3 suggests that SO(3)
is the same as SU(2) with “opposite” elements identified. This can be made
more explicit with the map π : SU(2) → SO(3) defined below.

e−iθxT2(Jx) 7→ e−iθxT3(Jx) (1.47)(
cos θx

2
−i sin θx

2

−i sin θx

2
cos θx

2

)
7→

 1 0 0
0 cos θx − sin θx

0 sin θx cos θx

 (1.48)
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Note that for θx = 0 we have(
1 0
0 1

)
7→

 1 0 0
0 1 0
0 0 1

 (1.49)

whereas for θx = 2π we get(
−1 0
0 −1

)
7→

 1 0 0
0 1 0
0 0 1

 . (1.50)

The same is true for mappings of the other generators. This demonstrates
that

π : SU(2) → SO(3) (1.51)

e−i(θxT2(Jx)+θyT2(Jy)+θzT2(Jz)) 7→ e−i(θxT3(Jx)+θyT3(Jy)+θzT3(Jz)) (1.52)

is a double cover.

Exercise 19 What is the dimension of SU(n) (as a manifold)? Find a basis
for its Lie algebra su(3). What is it’s dimension (as a vector space)? What
is the dimension of su(n)?

By construction T2 gives a representation of SU(2) and its Lie algebra,
which indicates that the Lie algebra of SU(2) is the same as that of SO(3).
Thus it appears that each Lie algebra doesn’t necessarily correspond to a
unique Lie group. The true relationship between Lie groups and Lie algebras
is the following:

Every Lie algebra corresponds to a unique simply-connected
Lie group.

A simply connected space is one where every closed path can be smoothly
shrunk to a point. We will (hopefully) talk more about simply-connected
manifolds in a later section, but for now we will just consider the case of the
sphere S2. If you imagine any closed path on S2 you can see that it can be
shrunk to a point. (This is somewhat like trying to lasso an orange.) But if
we now consider the space which is S2 with antipodal points identified, we
can draw a path from the north pole to the south pole. This is a closed path,
because the north and south poles are really the same point, but this path
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cannot be shrunk to a point no matter how you deform it. (In fancy language
one says that the first homotopy group of the sphere is the cyclic group of
order two, or π1(S

2) = Z2.) A similar situation occurs for S3 ∼= SU(2) and
S3/∼ ∼= SO(3). S3 is simply connected, but SO(3) is not, because a path
connecting opposite points on S3 is a closed path that cannot be deformed
to a point.

Now that we have ascertained that SU(2) and SO(3) have the same Lie
algebra and that SU(2) is a simply-connected double cover of SO(3), we can
come back to the question of whether T2(J) yields a representation T2(g)
of SO(3). As a specific example, first look at the product of two elements,
Ry(π)Rx(π) = Rz(π), in the three-dimensional representation T3.

T3(Ry(π))T3(Rx(π)) =

 −1 0 0
0 1 0
0 0 −1

  1 0 0
0 −1 0
0 0 −1

 (1.53)

=

 −1 0 0
0 −1 0
0 0 1

 = T3(Rz(π)) (1.54)

So we see that T3 preserves the group multiplication and follows the rules for
representations (at least in this case). What about the same product in the
two-dimensional representation?

T2(Ry(π))T2(Rx(π)) =

(
0 −1
1 0

) (
0 −i
−i 0

)
=

(
i 0
0 −i

)
(1.55)

But notice that T2(Rz(π)) =

(
−i 0
0 i

)
. Thus here we have an instance

where T2(g1)T2(g2) = −T2(g1g2). This extra minus sign prevents T2 from be-
ing a representation of SO(3). However, since it almost qualifies, such repre-
sentations “up to a sign” (or more generally, up to a phase) are given the name
projective representations. Of course, for SU(2) the two-dimensional rep-
resentation is a normal (non-projective) representation, since the 2× 2 uni-
tary matrices define what we mean by SU(2) in the first place. This example
shows that the representations of the Lie algebra lead to representations of
the corresponding simply-connected Lie group, but they might lead to pro-
jective representations of related, non simply-connected Lie groups with the
same Lie algebra.
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It turns out that all of the even dimensional representations of the Lie
algebra [Ji, Jj] = iεijkJk yield projective representations of SO(3), whereas
the odd dimensional representations are ordinary representations. So what
do we make of these projective representations? Going back to quantum
mechanics we recall that each state is designated by a ray Ri in the Hilbert
space which is an equivalence class of unit vectors. Abstractly, if the ac-
tion of the group element g1 takes R1 → R2, and if |ψ〉 is a vector in R1,
then T (g1)|ψ〉 must be a vector in R2. Similarly, if g2 takes R2 → R3 then
T (g2) (T (g1)|ψ〉) must lie in R3. Since the combined transformation g2g1

takes R1 → R3 consistency requires T (g2g1)|ψ〉 must be a vector in R3.
From these considerations we learn that T (g2) (T (g1)|ψ〉) ∼ T (g2g1)|ψ〉 or
T (g2) (T (g1)|ψ〉) = eiφ(g1,g2)T (g2g1)|ψ〉. In order for this to hold for all vectors
|ψ〉 we must have T (g2)T (g1) = eiφ(g1,g2)T (g2g1). In other words, quantum
mechanics only requires that T (g) forms a projective representation of the
symmetry group.

Exercise 20 On the Hilbert space consisting of differentiable functions of
angular coordinates ψ(θ, φ) with inner product

〈ψ1|ψ2〉 =

∫ 2π

0

∫ π

0

ψ∗1ψ2 sin θ dθ dφ, (1.56)

the generator Rz is represented by the operator Lz = −i~ ∂
∂φ

. Show that Lz

is Hermitian and that that implies ψ(θ, 0) = ψ(θ, 2π) for any ψ. What does
this imply about projective representations in this situation?

1.3.4 The Electron

In quantum mechanics the representations of the angular momentum com-
mutation relations are labeled not by their dimension, as we have done so far,
but by the angular momentum quantum number j (sometimes alternatively
` or s). The quantum number j can be either an integer or half-integer start-
ing with zero: j = 0, 1

2
, 1, 3

2
, . . .. The dimension of the angular momentum

j representation is 2j + 1. Thus the half-integral angular momentum states
correspond to even dimensional representations and the integral angular mo-
mentum corresponds to odd dimensional representations.

In the previous section we found that quantum mechanics would allow
us to use both ordinary and projective representations of SO(3) to describe
a system. But we might hope that the mathematical formalism we have



24 CHAPTER 1. GLOBAL SYMMETRIES

developed might be useful in restricting the physically allowed states of a
system. For instance, it would be interesting if for some reason all physi-
cal situations turned out to be described by ordinary representations of the
rotation group, SO(3). Then we might formulate a new physical principle
stating that no realizable quantum systems for projective representations of
the relevant symmetry group.

Physics is an experimental science, so we need to test the universe to
determine whether our new principle excluding projective representations
has any merit. This is where our mathematician friend the electron comes
in to play. First we will send our electron into a spherically symmetric
hydrogen atom to study the representations of SO(3). The electron reports
back that the angular wave-function for an electron in a hydrogen atom
can be described by functions called spherical harmonics, Y m

` (θ, φ), which
correspond to the odd-dimensional (ordinary) representations of SO(3). So
far, so good.

Now we send our electron to join a silver atom participating in a Stern-
Gerlach experiment. The principle behind this type of experiment is the
fact that a charged particle with non-zero angular momentum produces a
magnetic moment, ~µ = gq

2m
~J , where m is the particle’s mass, q is it’s elec-

tric charge, and g is dimensionless constant. When a magnetic moment
passes through a nonuniform magnetic field it experiences a force. Quantum
mechanics predicts that each angular momentum, and thus each magnetic
moment, has only a discrete set of allowed positions, specified by the z-
component of the angular momentum and given by the diagonal entries of
Tn(Jz). For example, in a system with j = 1 (3-dimensional representation
of SO(3)) there can only be three values for the z-component, −1, 0, or
+1. Classically, however, the angular momentum–and hence the magnetic
moment–can have any z-component in a continuous distribution.

So when a beam of particles with magnetic moments passes through a
nonuniform magnetic field the individual particles will experience different
forces depending on the direction their magnetic moment is pointing. Classi-
cally one would expect the beam to spread out in a continuous distribution.
Quantum mechanically one expects to get discrete bands corresponding to
the allowed values of the z-component. In fact, the number of bands will
be given by the dimension of the representation of SO(3). Thus the Stern-
Gerlach experiment can help us probe for even-dimensional (projective) rep-
resentations.

Back in 1921 when the original experiment was carried out by Otto Stern
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and Walter Gerlach, they were actually trying to test whether magnetic mo-
ments behaved classically (continuous distribution of deflected particles) or
quantum mechanically (particles deflected into discrete bands). There are
47 electrons in a neutral silver atom, but they combine their orbital angu-
lar momenta together in such a way that all the internal angular momenta
average out to zero, and the final valence electron is in an ` = 0 state, i.e.
the trivial representation. The result of the experiment was quite surprising.
The beam of atoms was clearly split into two discrete bands, as shown in the
image on the right in Figure 1.5. This means that the total magnetic moment
of the silver atoms must be characterized by a two-dimensional representa-
tion, j = 1

2
. Since all the inner electrons’ angular momenta cancels out, and

the valence electron has orbital angular momentum zero, this means that
the valence electron must have some additional, half-integral angular mo-
mentum. This intrinsic angular momentum carried by the electron is
called spin, though it doesn’t have anything to do with rotation because the
electron really is understood as a point particle. But regardless, this spin
forms a projective representation of SO(3), thus disproving our hypothetical
principle put forth above.

1.4 Philosophy

Now the discussion becomes more philosophical, so we’ll start with a sum-
mary of what we’ve learned. Classically rotational invariance corresponds
to the group SO(3). When we move to quantum mechanics, we naturally
want to find a way to use this symmetry. We found that the action of
SO(3) in quantum mechanics is mediated by unitary representations acting
on the Hilbert space. What’s more, those representations could be either
ordinary or projective (representations up to a phase). Finally, the Stern-
Gerlach experiment has demonstrated that the (even-dimensional) projective
representations do indeed have a place in nature because they are needed to
understand the intrinsic angular momentum of an electron (among other
particles).

We also learned that these projective representations of SO(3) are related
to the fact that SO(3) is not simply-connected.7 We also found that the pro-
jective representations of SO(3) were ordinary representations of SU(2), a

7A possible project would be to flesh out the connection between projective represen-
tations and the topology of the group.
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Figure 1.5: The result of the original Stern-Gerlach experiment, showing
the splitting of a beam of silver atoms into two distinct bands. This figure
was borrowed from a Physics Today article in December 2003, available at
http://www.physicstoday.org/vol-56/iss-12/p53.html.
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group that is a double cover of SO(3). So maybe instead of worrying about
projective representations we should just go ahead and switch to consider-
ing the simply-connected group SU(2). Those of you who have taken some
quantum mechanics know that this is exactly what physicists do in practice.
However, since we’re trying to understand the group theory in some detail,
we will consider this choice in more detail.

The question we want to answer is the following: Is there any difference
between using SO(3) and projective representations and using SU(2) where
all the representations are ordinary? The answer is basically “no”, so if
you’re sick of philosophy you can ignore the rest of this section. But I find
it interesting to probe further.

Assume our Hilbert space consists of states |ψo〉 that are part of an or-
dinary representation of SO(3), and other states |ψp〉 that are part of a
projective representation. By definition we have

T (g1g2)|ψo〉 = T (g1)T (g2)|ψo〉 (1.57)

T (g1g2)|ψp〉 = eiφ(g1,g2)T (g1)T (g2)|ψp〉 (1.58)

where the phase eiφ(g1,g2) is equal to ±1 depending on g1 and g2. Now consider
what would happen if we make a linear combination |ψ〉 = |ψo〉 + |ψp〉.
Assume we act on the combination with two group elements g1 and g2 that
have a nontrivial phase. Then we find

T (g1g2)|ψ〉 = T (g1g2) (|ψo〉+ |ψp〉) = T (g1g2)|ψo〉+ T (g1g2)|ψp〉(1.59)

= T (g1)T (g2)|ψo〉 − T (g1)T (g2)|ψp〉 (1.60)

= T (g1)T (g2) (|ψo〉 − |ψp〉) . (1.61)

This is a problematic equation. It seems that |ψ〉 doesn’t really fit in a repre-
sentation at all. One way around this difficulty is the use of a superselection
rule which prohibits the linear combinations of states from different types
of representations (ordinary and projective). Another way of phrasing this
is to say that |ψo〉+ |ψp〉 and |ψo〉 − |ψp〉 are indistinguishable, which means
that the subspaces containing |ψo〉 and |ψp〉 must always remain mutually
orthogonal.

What if we were using representations of SU(2)? Then there would be
no minus sign appearing in Eqn. (1.60) and we would have a nice, ordinary
representation respecting the group multiplication law, and no reason to
impose superselection rules.
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So the question really comes down to whether we can make arbitrary lin-
ear superpositions of states. From the perspective of SO(3) we see that linear
combinations of states belonging to ordinary and projective representations
are prohibited due to a selection rule that arises naturally from requiring a
consistent group multiplication law. However, working with SU(2) there is
no mathematical reason to impose such a superselection rule. So if we were
to prepare a state that was a linear combination of even and odd dimensional
representations, we would know we were dealing with SU(2) and not SO(3).

Unfortunately, the real world isn’t so cut and dried. According to the
Nobel laureate physicist Steven Weinberg, “it is widely believed to be im-
possible to prepare a system in a superposition of two states whose total
angular momenta are integers and half-integers, respectively”.8 So maybe
the “true” quantum mechanical group is SO(3) and the absence of certain
linear combinations are the result of a mathematical requirement resulting
in superselection rules. On the other hand, the group might still be SU(2)
and there is simply a physical principle that forbids those same linear com-
binations. Since there is no observable distinction between these two options
(that I can see), we are left being unable to distinguish between SO(3) and
SU(2). More generally, Weinberg calls the issue of superselection rules (and
thus implicitly projective representations) a “red herring”, because whether
or not you can make arbitrary linear combinations one can’t determine it
by using symmetry arguments alone, since any group with projective repre-
sentations can be replaced by another larger group (the universal covering
group) that gives the same physical results but does not have any projective
representations.

Exercise 21 Here’s a fun challenge: The power series for an exponential eA

looks similar to the Taylor series expansion of a function:

f(x0 + a) = f(x0) + a
∂

∂x

∣∣∣∣
x0

f(x) +
1

2!
a2 ∂2

∂x2

∣∣∣∣
x0

f(x) + · · · . (1.62)

Can you frame this similarity in terms of Lie algebras?

Exercise 22 Another open-ended question: Recast the first postulate of quan-
tum mechanics in terms of one-dimensional projection operators, i.e. ρ =

8Weinberg, S. The Quantum Theory of Fields, Vol. I, Cambridge University Press,
1996, page 53.
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|v〉〈v|. This leads to a formulation of quantum mechanics in terms of a den-
sity matrix which is a little more general that what we discussed above.



Chapter 2

Local Symmetries

In this second chapter we discuss the concept of local symmetry that
appears in physics. It seems to me that local symmetry represent is the way a
gauge symmetry manifests itself in quantum field theory, so our story will
begin with gauge symmetries as they appear in classical electrodynamics.
Since gauge field configurations have interesting topological properties, we
will explore homotopy groups in some detail as we work our way through the
path integral formulation of quantum mechanics up to quantum field theory.
Since all of these interesting topics are huge subjects in and of themselves,
we cannot hope to cover them all in any detail. Therefore I have chosen to
restrict the rigor (such as it is) to the discussion of homotopy theory and
will, unfortunately, have to ask you to take most of the physics formalism
and results on faith. I hope, however, that this is not too frustrating and
that I can whet your appetite for further study of quantum mechanics and
field theory.

2.1 Gauge Symmetries in Electromagnetism

The forces of electricity and magnetism are described by special vector fields.
The “E-field”, E(x) is a vector at each point in space that describes the
electric field, while the “B-field”, B(x) similarly describes the magnetic field.
A particle carrying electric charge q that is moving in the presence of E- and
B-fields feels a force given by

F = q(E + v ×B). (2.1)

30



2.1. GAUGE SYMMETRIES IN ELECTROMAGNETISM 31

We will focus on electro- and magnetostatics, which means we only con-
sider time-independent electric and magnetic fields. The E- and B-fields are
“special”, as mentioned above, because they satisfy the time-independent
Maxwell equations:

∇ ·B = ρ/ε0 ∇× E = 0 (2.2)

∇×B = µ0J ∇ ·B = 0. (2.3)

Here ρ is a static charge distribution and J is a current density, both of which
act as sources that produce the electric and magnetic fields. So E and B are
determined by ρ and J, but they are also subject to the constraints that E
be curl-free (∇× E = 0) and that B be divergenceless (∇ ·B = 0).

There is a slick way to take care of these constraints on E and B once and
for all. If we write E = −∇ϕ where ϕ : R3 → R3 is an arbitrary function,
we find that ∇×E = ∇× (−∇ϕ) = 0 always, since the curl of a gradient is
identically zero. Then we just need to solve

∇ · E(x) = ∇ · (−∇ϕ(x)) = −∇2ϕ(x) = ρ(x)/ε0 (2.4)

to fine E(x) for a given charge distribution ρ(x). This is a well studied
problem for which many different techniques have been developed.

Thus we have simplified the problem from finding a 3-component vector
field E(x) to finding a scalar field ϕ(x). (That’s great!) In addition, ϕ(x) is
called the electric potential because it is related to the potential energy a
charged particle possesses when it is sitting in the E-field: potential energy
= qϕ(x). However, there is some redundancy in using this “potential” for-
mulation. If we change the potential by a constant, ϕ′(x) = ϕ(x) + c it does
not change the electric field:

E′(x) = −∇ϕ′(x) = −∇(ϕ(x) + c) = −∇ϕ(x) + 0 = E. (2.5)

Physically this means that we can change the zero of energy arbitrarily; only
energy differences matter.

A similar situation holds for magnetism, but it isn’t quite as clean. For
the B-field we want to impose the constraint ∇ · B = 0, so to follow the
example of electricity, we want something whose divergence is always zero.
Thinking back to vector calculus you might recall that the divergence of a
curl always vanishes, so we will write B = ∇ × A, where A is called the
magnetic vector potential. Then

∇ ·B = ∇ · (∇×A) = 0 (2.6)
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so we are left having to solve

∇×B = ∇× (∇× A) = µ0J. (2.7)

This is not quite as nice as the electrostatic case because

1. A is still a vector so we have three components to find,

2. there is no simple energy interpretation, and

3. there is even more redundancy.

It is this redundancy in the B-field that will occupy us below. We already
mentioned that the curl of a gradient vanishes, which means that we can
add any gradient to the vector potential, A′(x) = A(x) + ∇λ(x) without
changing the magnetic field:

B′(x) = ∇×A′(x) = ∇× (A(x) +∇λ(x)) = ∇×A(x) +∇×∇λ(x) = B
(2.8)

for any scalar function λ(x).
Physical results and effects depend only on E(x) and B(x), however it is

often nicer to study ϕ(x) and A(x), especially in quantum mechanics. But
we have seen above that the inherent redundancy means that there are many
possible ϕ and A that describe the same physical situation (E and B). In
particular,

ϕ′(x) = ϕ(x) + c and A′(x) = A(x) +∇λ(x) (2.9)

yield identical results to ϕ(x) and A(x). These changes to the potentials are
called gauge transformations. The name doesn’t mean anything, it is a
historical holdover from people thinking about redefining the length scale, or
“gauge”. In practice, a gauge transformation or gauge symmetry refers to
this change in potentials (i.e. change in the mathematical description) that
leaves the physical fields unchanged.

Sometimes this gauge freedom can be used to simplify problems. Often
we choose c such that

lim
|x|→∞

ϕ(x) = 0 (2.10)

so that particles far away have no potential energy. Sometimes for A we
require ∇·A = 0. For instance, this simplifies Eqn. (2.7). However, there are
plenty of other gauge choices that are more appropriate for other situations.
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Figure 2.1: An idealized experiment to measure the Aharonov-Bohm effect.
A beam of electrons is split in two and directed to either side of an impene-
trable solenoid, then recombined and measured by a detector. In Experiment
#1 there is no current in the solenoid, so there are no E- or B-fields anywhere.

Exercise 23 Show how the gauge choice ∇ ·A = 0 simplifies Eqn. (2.7).

In summary, a gauge symmetry is a redundancy in the mathematical
formulation of the problem, perhaps you could say it is a “symmetry in the
formalism”, but it is qualitatively different from the global symmetries we
studied in the first chapter, which were symmetries of the physical system,
like the triangle that could be rotated by 120◦ without being changed.

2.1.1 The Aharonov-Bohm Effect: Experiment

In 1959 Aharonov and Bohm described an interesting quantum mechanical
effect of magnetic fields on charged particles. In an idealized experiment
to measure the Aharonov-Bohm effect, one takes an electron beam, splits
it into two, and sends the two beams on either side of a solenoid, a long
coil of wire. The electron beams are then recombined and enter a detector.
The solenoid is furthermore impenetrable to the electron beams. This setup
is shown schematically in Figure 2.1. With no current flowing through the
wires, there are no electric or magnetic fields anywhere, neither inside nor
outside the solenoid. The electrons feel no force, and they recombine and
yield a signal in the detector. This is the situation in Experiment #1.

In a second version of the same experiment, a steady current flows through
the wire in the solenoid, producing a magnetic field inside the solenoid, as
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Figure 2.2: An idealized experiment to measure the Aharonov-Bohm effect.
A beam of electrons is split in two and directed to either side of an impene-
trable solenoid, then recombined and measured by a detector. In Experiment
#2 there is a current in the solenoid, producing a magnetic field inside it.
However, there are still no E- or B-fields in the regions where the electron
beams pass through.

shown in Figure 2.2. However, there is still no electric or magnetic field
outside the solenoid. Since the electrons cannot penetrate the solenoid, they
never enter a region where the magnetic field is nonzero, so they continue to
feel no force. Since the E- and B-fields at the location of the electrons are the
same in both experiments, we would expect that the signal in the detectors
should be the same in both experiments.

But this is wrong! The observed signal in Experiment #2 changes as a
function of B, the magnetic field inside the solenoid. This surprising result,
which has been confirmed experimentally, is a purely quantum mechanical
effect. It is perhaps easiest to understand by using the path integral formu-
lation of quantum mechanics, which we will briefly describe now.

2.1.2 The Path Integral Formulation of Quantum Me-
chanics

To understand the surprising result of Aharonov and Bohm we will use the
path integral formulation of quantum mechanics, developed by Richard Feyn-
man. This formulation is equivalent to the Schrödinger equation approach.
Though it is less useful for actual calculations, it offers more insight into
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Figure 2.3: Examples of paths connecting an initial point (xi, ti) to a final
point (xf , tf ). Classically a particle will follow the path that minimizes the
action, S[x(t)]. Quantum mechanically the particle explores all the paths,
where the contribution of each path to the transition amplitude is weighted
by the factor e

i
~ S[x(t)].

what is really going on in quantum mechanics.
Our experiment consists of sending particles (electrons) from an initial

location xi at time ti to a final location xf at time tf , and we are interested in
the probability for that to occur. In our quantum mechanical Hilbert space
we will let |xi, ti〉 be the initial state vector and |xf , tf〉 be the final state
vector. Then we define the amplitude for the particle to move from xi to
xf in time tf − ti to be

A(i→ f) = 〈xf , tf |xi, ti〉, (2.11)

the inner product between the initial and final states. The probability P (i→
f) for this transition is then given by the square of the amplitude:

P (i→ f) = |A(i→ f)|2 = |〈xf , tf |xi, ti〉|2 . (2.12)

Since we want to know the probability, we need some way to calculate the
amplitude.

In getting from point “i” to point “f” there are many paths the particle
might take. A few possibilities are shown in Figure 2.3. But which path does
the electron actually follow?

Classically, the particle picks the path that satisfies the Principle of
Least Action. For every path specified by a function x(t) one can associate
a real number called the action by way of the action functional, S[x(t)].
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A functional is a “function of a function”, a map from the space of paths
(continuous vector-valued functions of time) into the real numbers:

S :
(
C0

)3 → R, (2.13)

where C0 stands for continuous functions of a real variable (t), and the power
of three indicates the three components of a path in R3. (This might be non-
standard notation.) For example, the action functional for a free particle
with mass m traveling along a path x(t) is:

S0[x(t)] =

∫ tf

ti

dt
1

2
m

(
dx

dt

)2

=

∫ tf

ti

dt
1

2
m

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]
.

(2.14)
This is the time integral of the kinetic energy of the particle. Thus given
a path x(t) you can compute S0[x(t)] by taking derivatives and integrating.
The Principle of Least Action states that the particle will follow the path
x(t) for which the action S[x(t)] is a minimum (or technically, an extremum).
In principle it is clear how to do this; just take all the paths, compute S,
and keep the path for which S is smallest. But with an infinite number of
paths connecting xi to xf , this would be daunting in practice. The simple,
systematic way to find the minimum of a functional is part of what is known
as the calculus of variations. This is an interesting and fun subject, but
we don’t have time to pursue it here.

The Principle of Least Action is the classical method for finding the cor-
rect path followed by the particle. In quantum mechanics the situation is
somewhat different, though there are still similarities. In the quantum me-
chanical description we assign to each path x(t) a complex number with unit

modulus, e
i
~ S[x(t)] using the exact same action functional S[x(t)] that ap-

pears in the classical description. Then the amplitude is the sum of these
exponential factors for all possible paths,

A(i→ f) = 〈xf , tf |xi, ti〉 = N
∑

paths x(t)

e
i
~ S[x(t)] (2.15)

where N is some normalization factor that we will ignore. Since there are
an infinite number of paths, this expression is often written as an integral,
namely the path integral:

A(i→ f) = 〈xf , tf |xi, ti〉 =

∫
paths

D[x(t)] e
i
~ S[x(t)]. (2.16)
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Here D[x(t)] stands for the “measure” over the space of paths, which we
won’t go into. From a mathematical perspective it is extremely annoying to
write a formula without properly defining key parts. However, in practice
if you do actually compute a path integral it is usually by discretizing all
the paths, so the integration becomes a product of a large number of normal
integrals for each of the segments of each path. Doing it this way isn’t terribly
revealing; it is very much like doing integrals in terms of Riemann sums.

The virtue of the path integral is that it helps build intuition about
quantum mechanics. Conceptually, what you do is sum over all the paths,
each with a different weighting factor e

i
~ S[x(t)] determined by the classical

action.

But this weighting factor is a little weird. As systems get bigger or more
complicated, we always need the quantum mechanical description to reduce
to the classical description. (This is done formally by taking the limit as
~ → 0.) So one would naturally expect that the classical trajectory would
contribute more than the crazy paths that we know are much less likely.
However, since the weighting factors are all complex exponentials, they all
have the same magnitude of 1. How do we recover the dominance of the
classical path?

The dominance of the classical trajectory is related to the method of
stationary phase, a technique used to evaluate some types of oscillatory
complex integrals. The basic idea is that where the integrand is rapidly
oscillating, nearby contributions are cancelling each other out and not con-
tributing much to the value of the integral, whereas the main contributions
come from regions where the integrand is not changing very quickly. Here
is an example to show how this works. Suppose we want to evaluate the
integral ∫ ∞

−∞
cos

[
20(w3 − w)

]
dw. (2.17)

The argument of the cosine function is φ = 20(w3 − w), the “phase”. If
we plot φ(w) we see that it is a cubic with a max and a min near the
origin. For large values of w, φ is very large, and more importantly, when
w changes slightly φ changes a lot, which means that the integrand, cosφ,
moves through several full periods quite rapidly. The phase φ changes most
slowly as a function of w near its maximum and minimum, and thus the
integrand also changes most slowly there. Thus the main contributions to
the integral come from the regions where φ is changing most slowly, namely
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Figure 2.4: Plot of φ(w) = 20(w3−w) (dashed red curve) and cosφ(w) (solid
black curve). In regions where φ is changing quickly cosφ oscillates rapidly,
whereas cosφ ceases to oscillate as much in the regions where φ is extremal.

where φ is “stationary”, which means its derivative vanishes and φ is at a
maximum or minimum. This is probably easier to see graphically than it is
to describe in words. In Figure 2.4 the dashed red curve is a plot of φ as
a function of w, while the solid black curve is the integrand, cosφ. Notice
how cosφ oscillates very rapidly except near the stationary points of φ. To
actually evaluate the integral you expand the phase in a Taylor series about
the point of stationary phase and do the integral in that region, ignoring the
other small contributions.

Exercise 24 Use the method of stationary phase to find an a approximate
value for the integral f(x) =

∫ ∞
0

cosx(w3 − w) dw as x → ∞. The reason
for the limit is that the method of stationary phase gets better as x → ∞.

(Why?) [Hint: The answer is f(x) =
√

π
3xw0

cos
[
x(w3

0 − w0) + π
4

]
, where w0

is the location of the minimum of φ. This was computed by Stokes in 1883.

Coming back to the path integral, the idea is the same as in the previous
example. The classical trajectory is the path where the phase in the path
integral, in this case the action, is at an extremum. Thus for paths near
the classical trajectory, the action isn’t changing very rapidly, so most of
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those paths give very similar contributions to the path integral. However,
for the crazy paths doing weird things, the action for two nearby paths can
be quite different, resulting in contributions to the path integral that might
have opposite signs and cancel each other out. Thus the path integral picture
of the world is as follows: the particle explores all possible paths between the
starting and ending point. However, only the paths where the action is
nearly extremal give sizeable contributions to the amplitude because they
add together “in phase”, whereas other paths tend to cancel out with their
neighbors.

2.1.3 The Aharonov-Bohm Effect: Explained

With our new found intuition derived from the path integral, we are now in a
position to explain the Aharonov-Bohm effect resulting from the interference
of electron beams.

First we need the action for a particle with charge q moving in a magnetic
field. Without proof, I assert that it is given by:

S[x(t)] =

∫ tf

ti

dt
1

2
m

(
dx

dt

)2

+ q
dx

dt
·A = S0[x(t)] +

∫ tf

ti

q
x

dt
·A dt. (2.18)

Note that it is the vector potential A and not the magnetic field B that
appears in this expression. This is crucial, because even though B = 0
outside the solenoid, A 6= 0 in that region.

Exercise 25 Working in cylindrical coordinates, show that if B = Bẑ is a
uniform magnetic field in the region r < R and B = 0 for r > R, then the
magnetic vector potential is given by A = 1

2
Brφ̂ for r < R and A = BR2

2r
φ̂

for r > R. Why don’t we just take A = 0 for r > R?

The time integral of A can be converted to a line integral,

q

∫ tf

ti

x

dt
·A dt = q

∫ xf

xi

A · dx, (2.19)

which allows us to write the action as

S[x(t)] = S0 + q

∫
A · dx. (2.20)
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So the amplitude for the electron to travel from the initial point to the
detector is given by

A(i→ f) = 〈xf , tf |xi, ti〉 =

∫
paths

D[x(t)] e
i
~ S[x(t)] (2.21)

=

∫
paths

D[x(t)] e
i
~ S0+q

∫
A·dx. (2.22)

We can separate this path integral into two pieces, one that sums up paths
that travel “above” the solenoid (as seen in the diagram) and another piece
summing paths that go “below” the solenoid,

A(i→ f) =

∫
above

D[x(t)] e[
i
~ S0+

∫
A·dx]

above +

∫
below

D[x(t)] e[
i
~ S0+

∫
A·dx]

below

Each path integral has an exponential factor that depends on the magnetic
field through the vector potential, e

iq
~

∫
A·dx. However, because B = ∇ ×

A = 0 in the region outside the solenoid where the paths are located, the
line integral of A depends only on the endpoints xi and xf and not on the
specific path between them. Therefore the exponential pieces containing A
are independent of the paths that are being integrated over, so they can be
pulled outside of the integral, yielding

A(i→ f) =
[
e

iq
~

∫
A·dx

]
above

∫
above

D[x(t)] e[
i
~ S0]

above (2.23)

+
[
e

iq
~

∫
A·dx

]
below

∫
below

D[x(t)] e[
i
~ S0]

below . (2.24)

The probability of arriving at the detector is given by the absolute square of
the amplitude. Using abbreviated notation, this is

P (i→ f) = |A(i→ f)|2 = |〈xf , tf |xi, ti〉|2 (2.25)

=

∣∣∣∣∫
above

∣∣∣∣2 +

∣∣∣∣∫
below

∣∣∣∣2 (2.26)

+2 Re
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iq
~
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A·dx|

abovee
iq
~

∫
A·dx|
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∫ ∗

above

∫
below

)
(2.27)

=

∣∣∣∣∫
above

∣∣∣∣2 +

∣∣∣∣∫
below

∣∣∣∣2 + 2 Re

(
e

iq
~

∮
A·dx

∫ ∗

above

∫
below

)
.(2.28)
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The last line combines a path below the solenoid with the negative of a
path above to form a closed line integrals of the vector potential around the
solenoid. Evaluating this using vector calculus theorems yields

∮
A · dx =∫

surface
(∇ ×A) · da =

∫
surf

B · da = Φ, where Φ is the magnetic flux passing
through the closed loop, which is exactly the flux inside the solenoid. Thus
the magnetic field dependence of the probability for electrons to reach the
detector will have a contribution from the cross-terms that is proportional
to a sine and/or cosine of qΦ/~. This is how the magnetic field dependence
arises in our Aharonov-Bohm experiment, even though B = 0 in all regions
where the electrons travel. In short, the probability has a term dependent
on the flux enclosed between two different paths taken by the electrons.

The crucial point here is that the setup with a nonzero B-field in the
solenoid means there are paths in the plane that encircle the magnetic flux
and others that don’t. One can also imagine paths that encircle the flux
several times. The number of times a closed path encircles the solenoid
is called the winding number and is a topological property of the space
in which the electrons are traveling. Thus the Aharonov-Bohm effect is a
topological effect in quantum mechanics.

One might have few objections at this point. First, doesn’t this prove
that the magnetic vector potential A is physical? It doesn’t, because the final
result only depends on Φ =

∫
B ·da, not A! A appears in intermediate steps,

so you might want to think about whether this result could be formulated in
a way that makes no reference to the vector potential.

A second protest is that this is all well and good for the simple, idealized
two-dimensional example presented here, but in the real, three-dimensional
world isn’t some magnetic field leaking out of the solenoid, which isn’t really
infinite anyway? Are the electron beams really probing the topology of the
space? The answer is a resounding “yes”. Many experiments to test the
Aharonov-Bohm effect have been done, but despite their solid results skep-
tics always come up with protests about leakage fields and the like. However,
in 1985 the definitive experiment was done by Tonomura and collaborators.1

They fabricated a toroidal ferromagnet, covered it with a superconducting
layer to keep the magnetic field from leaking out, and covered that with a
copper conducting layer to prevent the electron wavefunctions from leaking
in. Then they looked at the interference pattern produced by illuminating
the torus with an electron beam, as shown in Figure 2.5. In the first figure,

1Tonomura, et al., Phys. Rev. Lett. 56 p. 792, 1986.
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Figure 2.5: Interference fringes for electron beams passing near a toroidal
magnet from the experiment by Tonomura and collaborators in 1985. The
electron beam passing through the center of the torus acquires an additional
phase, resulting in fringes that are shifted with respect to those outside the
torus, demonstrating the Aharonov-Bohm effect. For details see the original
paper from which this image was borrowed: Figure 6 in Tonomura et al.,
Phys. Rev. Lett. 56, p.792, 1986.

the part of the electron beam that passes outside the torus interfere with
a reference beam to produce the horizontal interference fringes. The part
of the beam that passes through the hole in the torus also interferes with
the reference beam, but the fringes are obviously shifted, indicating a differ-
ent phase (e

iq
~

∫
A·dx) for the electron beam passing on the other side of the

magnetic flux. The other two figures show various checks that can be done
to prove that everything is working as intended. Tonomura and company
conclude their paper with the following wonderful paragraph:

The most controversial point in the dispute over experimen-
tal evidence for the AB effect has been whether or not the phase
shift would be observed when both electron intensity and mag-
netic field were extremely small in the region of overlap. Since
experimental realization of absolutely zero field is impossible, the
continuity of physical phenomena in the transition from negligibly
small field to zero field should be accepted instead of perpetual
demands for the ideal; if a discontinuity there is asserted, only a
futile agnosticism results.

Why does this experimental setup with the torus reflect the same situ-
ation we analyzed? The toroidal configuration also has the property that
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closed loops surround the magnetic field an integer number of times. In
mathematical language this means that the plane with a solenoid removed
(R2 − 0) and three-space with a toroid removed (R3 − T 2) has the same
first homotopy group, π1. In the next section we will develop the idea of
homotopy groups in more detail and rigor.

2.2 Homotopy Groups

This introduction to homotopy groups will closely follow the notation and
presentation in Chapter 4 of Nakahara. We start by defining a path α :
[0, 1] → X as a continuous map from the unit interval into a space X. The
initial point is α(0) = x0 and the final point is α(1) = x1.

A loop is a path where the initial and final points coincide, α(0) = α(1) =
x0, and x0 is called the base point.

As an example of a path, α : [0, 1] → R2 with α(s) = (cos πs, sin πs) is a
path in the plane that traces out the upper half of the unit circle from (1, 0)
to (−1, 0).

Another example is the constant path, cx : [0, 1] → X with cx(s) = x ∀s.
Of course, the constant path is also a constant loop since its initial and final
points coincide.

We can define a product of paths as follows. Let α, β : [0, 1] → X be
two paths such that the final point of α is the same as the initial point of β,
namely α(1) = β(0). Then we define the product α ∗ β : [0, 1] → X to be
the path in X where

α ∗ β =

{
α(2s), s ∈ [0, 1

2
]

β(2s− 1), s ∈ [1
2
, 1]

. (2.29)

This definition is fairly intuitive, since you first travel along α and then travel
along β, as shown in Figure 2.6. The complication comes from redefining the
parameter so that the product path α ∗ β also has a domain of [0, 1].

We can also define the inverse of a path, α−1 : [0, 1] → X, by α−1(s) ≡
α(1− s). This is simply the path α traveled in reverse, starting at α(1) and
ending at α(0).

Now that we’ve defined a product, ∗, and and inverse, α−1, we can ask
whether the set of paths in X forms a group. The zeroth order requirement
for a group is that you have a well defined multiplication operation. However,
if we have two paths where the endpoint of the first is not the same as the
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Figure 2.6: The product of two paths α and β is written α∗β and corresponds
to first traversing α and then traversing β.

starting point of the second, we don’t know how to multiply them. We might
try to remedy this by considering only paths that have a given initial point x0

and a given final point xf , but we wouldn’t be able to multiply them because
they all have the same initial point. Further, the inverse path wouldn’t live
in this set. To make our multiplication well defined and allow the inverse
path, we apparently need to restrict to loops with a fixed base point, x0.

Now that we have a well-defined multiplication on the set of loops with
a fixed base point, does that set form a group? First we check associativity,
where we need α ∗ (β ∗ γ) = (α ∗ β) ∗ γ. Looking at the sketch on the left
side of Figure 2.7 suggests that this should hold, since both products have
us tracing out the loops α then β and then γ. But closer inspection of the
definitions for multiplication show that there is a subtle difference in the
parameterizations. Consider α ∗ (β ∗ γ)(s). The rule for multiplication says
that during the first half of the interval, s ∈ [0, 1

2
], we follow α, while in

the second half, s ∈ [1
2
, 1] we follow β ∗ γ. But the since this second half is

composed of the product of β and γ, that means that for the third quarter
of the interval, s ∈ [1

2
, 3

4
] we follow β and in the last quarter we follow γ.

Compare this with (α ∗ β) ∗ γ, where the first half of the unit interval is
devoted to α and β, whereas the whole second half of the interval is given
to γ. So even though the points in X visited by these two paths are the
same, the parameterizations are different, which means that the paths are,
technically, different. This is easy to see graphically by labeling the portions
of the unit interval that correspond to traversal of each loop, as shown in the
right half of Figure 2.7. One can also write out the product loops explicitly
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Figure 2.7: Graphically α ∗ β ∗ γ looks associative, because all three loops
α, β, and γ are traversed in order, however closer inspection of the explicit
functions reveals that the two groupings give different parameterizations of
the combined paths.

to verify that they are indeed distinct.

α ∗ (β ∗ γ)(s) =


α(2s), s ∈ [0, 1

2
]

β(4s− 2), s ∈ [1
2
, 3

4
]

γ(4s− 3), s ∈ [3
4
, 1]

(2.30)

versus

(α ∗ β) ∗ γ(s) =


α4s, s ∈ [0, 1

4
]

β(4s− 1), s ∈ [1
4
, 1

2
]

γ(2s− 1), s ∈ [1
2
, 1]

. (2.31)

So associativity does not hold immediately, though we would certainly like
to come up with a clean way for two loops that differ only in their parame-
terization to be considered equal. Never fear, we will do this shortly.

The second property of groups is the presence of an identity element.
The natural choice is certainly the constant loop, cx0 , which stays put at the
base point. But do we have α ∗ cx0 = α = cx0 ∗ α? Again, we have some
problems with different parameterizations, which is clearly seen by looking
at the unit intervals labeled with the loops that are traversed during each
segment, shown in Figure 2.8. We see that α ∗ cx0 follows α for half the
time and then sits at the base point for the rest of the time, whereas cx0 ∗ α
does the reverse, sitting at the base point for the first half and tracing out α
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Figure 2.8: Products of α with the constant loop cx0 yield loops that are
technically different from α by itself. Again, the difference is only in param-
eterization, since the same points of X are visited by the various paths.

during the second half. And neither of these are identical to α, which doesn’t
do any waiting at the base point. Hopefully any fix of the parameterization
ambiguities will solve this problem as well.

Finally, the last property needed to have a group is the existence of an
inverse. The product of α and α−1 is given by

α ∗ α−1(s) =

{
α(2s), s ∈ [0, 1

2
]

α−1(2s− 1) = α(2− 2s), s ∈ [1
2
, 1]

(2.32)

which corresponds to traveling along alpha and then backtracking and travers-
ing alpha in the opposite direction. Even though you haven’t really gone
anywhere, this loop is definitely different from the constant loop, cx0(s) = x0

for s ∈ [0, 1], where you just sit at the base point the whole time. This is
shown in Figure 2.9. Here the problem is worse than in the previous two
cases, because it isn’t just a matter of parameterization. α ∗ α−1 reaches
points in X that are not reached by cx0 .

Is there some way to fix the situation so that we can define a group
structure on the set of loops with a fixed base point? Since the word “group”
is in the title of this section, it seems very likely that this is the case. The
fix is called homotopy, which is where we will turn now.
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Figure 2.9: The product of α with α−1 yields a loop that is traversed first
in one direction and then the other. This is very different from the constant
loop cx0 where only one point x0 in X is ever visited.

2.2.1 Homotopy

Without further ado, we define homotopy. Let α, β : [0, 1] → X be two loops
with the same base point x0. Then α and β are homotopic, written α ∼ β,
if there exists a continuous map F : [0, 1]× [0, 1] → X such that

F (s, 0) = α(s) F (s, 1) = β(s) ∀s ∈ [0, 1] (2.33)

F (0, t) = F (1, t) = x0 ∀t ∈ [0, 1]. (2.34)

F is called a homotopy between α and β.

Let’s unpack this formal definition. F is a function of two variables, s
and t. The first variable, s is the parameter that traces out the trajectory of
a loop, so the first condition says that for t = 0 F is the loop α, whereas for
t = 1 F is the loop β. The second variable, t, gives a continuous transition
from α(s) to β(s). The second condition tells us that every t corresponds to
a loop in X, since the initial and final points are fixed to be the base point
x0. Thus the homotopy F (s, t) is a specific prescription for turning one loop
into another in a continuous way such that you always have a loop in X.
This can be shown graphically by looking at the domain, which is a square
in the s-t plane, and the image in X, shown in Figure 2.10.
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Figure 2.10: Graphical representation of a homotopy between loops α and
β, showing both the domain and the image in X.

Exercise 26 Prove that homotopy, α ∼ β, is an equivalence relation.
Namely, that (i) α ∼ α, (ii) α ∼ β implies β ∼ α, and (iii) α ∼ β and β ∼ γ
implies α ∼ γ.

With the concept of homotopy, we can now turn our set of loops into
a group. The homotopy class [α] of a loop α consists of all loops that
are homotopic to α. The multiplication ∗ between paths naturally gives a
multiplication rule for homotopy classes: [α]∗ [β] ≡ [α ∗β]. We need to show
that this multiplication is well defined, which means that it doesn’t depend
on the representative loop in the homotopy class. In other words, if α ∼ α′

and β ∼ β′, we need to show α ∗ β ∼ α′ ∗ β′.
First, assume F (s, t) is a homotopy between α and α′, and G(s, t) is a

homotopy between β and β′. We need to find H(s, t) which gives a homotopy
between α∗β and α′ ∗β′. It is easiest to see how to proceed by manipulating
the graphical representations of the domains, as shown in Figure 2.11. By
putting the domains of F and G side by side and redefining the parameter s
to keep it in [0, 1] we achieve our objective. Namely,

H(s, t) =

{
F (2s, t), s ∈ [0, 1

2
]

G(2s− 1, t), s ∈ [1
2
, 1]

. (2.35)

With this well defined multiplication, we can finally define our main object
of interest.
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Figure 2.11: Given homotopies F between α and α′ and G between β and β′,
we can put them “side-by-side” to produce the homotopy H between α ∗ β
and α′ ∗ β′.
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Figure 2.12: Graphical representation of the homotopy between (α ∗ β) ∗ γ
and α ∗ (β ∗ γ).

The Fundamental Group or First Homotopy Group π1(X, x0) is
the set of homotopy classes [α] of loops in X with base point x0 with multi-
plication defined by ∗: [α] ∗ [β] = [α ∗ β].

Now we will prove that this is indeed a group. By restricting to loops with
a fixed base point and further to their homotopy classes, we have arranged
it so that the multiplication is well defined, as we just proved above. So the
first step is to show associativity: [α] ∗ ([β] ∗ [γ]) = ([α] ∗ [β]) ∗ [γ]. In other
words, we need to find a homotopy between α ∗ (β ∗ γ) and (α ∗ β) ∗ γ). It
is easiest to find our way graphically, as in Figure 2.12.

Exercise 27 Write out the explicit form of F (s, t) that yields the homotopy
shown in the figure.

The next step is to prove that cx0 is the identity, [cx0 ]∗[α] = [α] = [α]∗[cx0 ].
In other words, we need homotopies cx0 ∗ α ∼ α and α ∗ cx0 ∼ α. Again,
proceeding graphically is the best starting point, as shown in Figure 2.13.

Exercise 28 Write out the homotopies G and G′ explicitly in terms of s and
t.

Finally we need to prove the existence of inverses, namely [α]−1 = [α−1].
We want [α] ∗ [α−1] = [α ∗ α−1] = [cx0 ], which means we need to show
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Figure 2.13: Graphical representation of the homotopies cx0 ∗ α ∼ α and
α ∗ cx0 ∼ α.

α ∗ α−1 ∼ cx0 . Recalling that α−1(s) = α(1− s), we have

α ∗ α−1(s) =

{
α(2s), s ∈ [0, 1

2
]

α−1(2s− 1) = α(2− 2s), s ∈ [1
2
, 1]

, (2.36)

whereas cx0(s) = x0 = α(0) ∀s. Thus we can define H(s, t) as

H(s, t) =

{
α(2s(1− t)), s ∈ [0, 1

2
]

α((2− 2s)(1− t)), s ∈ [1
2
, 1]

(2.37)

to give the required homotopy.

Exercise 29 Sketch a picture of the homotopy H(s, t).

Having proven all three properties, we conclude that π1(X, x0) is a group!
Now we consider some examples of fundamental groups. First, take the

setup for the Aharonov-Bohm effect, which was essentially the plane R2 with
something special happening at the origin. Topologically, this is represented
by the plane minus the origin, or X = R2 − {0}. Clearly any loop that does
not encircle the origin will be homotopic to the constant loop, in other words,
contractible to a point. But a loop that goes around the origin cannot be
contracted to a point because it can never cross over the origin, since the
origin is not in the space X under consideration. If we take a loop α that
encircles the origin once and multiply it by itself, we get a new loop α∗α that
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encircles the origin twice. There is no way to deform α ∗ α to get back to α.
Proceeding this way, we can form loops that encircle the origin any number
of times. Winding a negative number of times is achieved by considering
α−1, which encircles the origin in the opposite direction. Thus we conclude
that π1(R2 − {0}) = Z. The integer corresponding to the number of times
the loop wraps about the origin is called the winding number.

The next example is the circle, S1. Considering loops that lie on the
circle, we quickly see that the situation is nearly identical to the previous
example, so conclude that π1(S

1) = Z.
What about R3−{0}? In this case, any loop in the xy-plane that encircles

the origin can be lifted up in the z-direction and there contracted to a point.
Thus π1(R3 − {0}) = 0, the trivial group. A space where the fundamental
group is trivial said to be simply connected.

Now consider the sphere, S2. If you imagine tying a string around an
orange, you rapidly find that the string always falls off, which is directly
related to the fact that the 2-sphere is simply connected, π1(S

2) = 0. We
can build on this example by considering RP 2, the real projective plane,
which is defined as the sphere S2 with antipodal points identified. This is
not a simply connected space, because a path β starting at the north pole and
ending at the south pole is a closed loop, since the north and south poles are
identified, so really the same point. But such a path cannot be continuously
deformed into a constant path. (Try!) However, β ∗ β is homotopic to the
constant path. Thus π1(RP 2) = Z2.

Exercise 30 Show graphically that β ∗ β defined above is indeed homotopic
to the constant loop in RP 2.

Finally, the previous two examples can be ratcheted up a dimension, and
we can consider the 3-sphere S3 and the real projective space RP 3, defined
as S3 with antipodal points identified. You should convince yourself that the
situation is completely analogous to the two-dimensional case.

Exercise 31 We talked about SU(2) and SO(3) a lot in the first part of this
tutorial. What are their fundamental groups?

Exercise 32 What is the fundamental group of the Möbius strip, the surface
you get by taking a strip of paper, twisting it by half, and then gluing the ends
together?
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Exercise 33 Find π1(T
2), the two-dimensional torus with one hole. Is it

Abelian? What is π1(T2), the two-dimensional torus with two holes? Is it
Abelian?

In all of these examples we haven’t mentioned the base point at all. For
a space that is all one piece, it is pretty clear that it doesn’t matter which
base point you pick, the fundamental group will be the same. To be precise
about being “all one piece” we need the concept of arcwise connectedness. A
space X is arcwise connected if for all x0 and x1 in X there exists a path η
such that η(0) = x0 and η(1) = x1. Then the statement about fundamental
groups is the following: If X is arcwise connected, the π1(X, x0) is isomorphic
to π1(X, x1).

To prove this statement, we consider a loop α with base point x0. Then
η−1 ∗α ∗ η is a loop with base point x1. We define the map Pη : π1(X, x0) →
π1(X, x1) that takes [α] 7→ [η−1 ∗ α ∗ η].

Exercise 34 Prove the map Pη is a group isomorphism.

Thus if X is arcwise connected, we don’t need to specify the base point.

2.2.2 Higher Homotopy Groups

The notation π1(X) suggests that perhaps π2(X) and πn(X) might exists,
and indeed they do. We will generalize π1(X) to get the higher homotopy
groups πn(X) for n > 2.

Since a closed loop αmaps the interval [0, 1] intoX with α(0) = alpha(1) =
x0, we can equally well consider the domain to be the circle, S1, so α : S1 →
X. So the obvious generalization is to consider maps β : S2 → X that map
the sphere into X. More formally we will define “2-loops” β as

β : [0, 1]× [0, 1] → X (2.38)

where β(s1, 0) = β(s1, 1) = x0 and β(0, s2) = β(1, s2) = x0. Now the domain
for β is a unit square, where the entire boundary is mapped to a single point
in X. This is shown in Figure 2.14. To make a group structure we first need
to define multiplication of 2-loops, which is done just as for 1-loops, using
the first variable. If α and β are 2-loops, then we define α ∗ β by

α ∗ β =

{
α(2s1, s2), s1 ∈ [0, 1

2
]

β(2s1 − 1, s2), s1 ∈ [1
2
, 1]

. (2.39)
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Figure 2.14: A 2-loop is a map of the unit square into X where the boundary
of the square is mapped to the base point x0.

Graphically, this amounts to squishing the domains of α and β together along
the s1-axis. This is shown in Figure 2.15.

For this multiplication to lead to a group structure we still need the con-
cept of homotopy, which can be readily generalized from the one-dimensional
case. If α and β are 2-loops, then we say they are homotopic, α ∼ β,
if there exists a continuous map F : [0, 1] × [0, 1] × [0, 1] → X such that
F (s1, s2, 1) = β(s1, s2), F (s1, s2, 0) = α(s1, s2), and F (s1, s2, t) = x0 for all t
and all (s1, s2) on the boundary of [0, 1]× [0, 1]. Graphically this can be rep-
resented by a cube where the bottom face is the domain of the 2-loop α and
the top face is the domain of β, and the interior represents the continuous
deformation of α into β. This is shown in Figure 2.16.

Exercise 35 Define the 2-loop α−1(s1, s2) and show that it behaves as it
should.

Putting these pieces together, the homotopy classes of 2-loops in X define
the group π2(X, x0).

Now for some examples. Sidney Coleman gives a nice argument that
π2(S

2) 6= 0: “You cannot peel an orange without breaking the skin.”2 The
point is that the flesh of the orange is the space X = S2 and the skin rep-
resents a map of S2 → X. If this map were homotopic to the identity, you
could push the skin around and deform it into a single point and then just

2Coleman, S. Aspects of Symmetry, Cambridge University Press, 1995, p. 208.
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Figure 2.15: The product of 1-loops and 2-loops both reparametrize the
domain of one variable to first traverse one loop and then the other.

Figure 2.16: The homotopy between the 2-loops α and β can be represented
by a cube where each horizontal slice represents a map of S2 into X, where
the bottom slice is α and the top slice is β.
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lift it off. Since this is clearly impossible, there is at least one nontrivial ho-
motopy class in π2(S

2). In fact, there is also a “winding number” associated
with maps of the sphere into itself, much as there was for maps of the circle
into itself. This leads to the result that π2(S

2) = Z.
The higher homotopy groups are, not surprisingly, more difficult to vi-

sualize. However, you should be able to convince yourself that π2(S
1) = 0.

Considering lower dimensional analogies, you can also show that π2(S
3) = 0.

This construction can be easily generalized to n-loops, α : Sn → X,
and their homotopy classes define the group πn(X). I will leave this as an
exercise.

Exercise 36 Formally define πn(X). That is, define n-loops, their multipli-
cation and homotopy, and show that in an arcwise connected space πn(X) is
independent of the base point.

Exercise 37 Prove that for 2-loops α and β, [α] ∗ [β] ∼ [β] ∗ [α]. That is,
prove that π2(X) is Abelian. Can you generalize this result to πn(X)?

Exercise 38 How would you define π0(X)?

Exercise 39 Determine πn(Sm) for as many combinations of n and m as
you can.

So how are these homotopy groups useful in physics? One place they
appear is when considering gauge field configurations in quantum field theory,
which is where we turn now.

2.3 Quantum Field Theory

What is quantum field theory (QFT)? There are many ways to answer
that question, so here I give two of them.

• The unique framework that reconciles quantum mechanics with special
relativity.

• A framework for computing the abundance of various products pro-
duced by collisions between elementary particles.
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Notice that I call QFT a framework rather than a theory. Quantum elec-
trodynamics (QED) is a specific theory that describes the interactions of
electrons and photons using the language of QFT. Similarly, quantum chro-
modynamics (QCD) is the theory of quarks and gluons (the constituents of
protons and neutrons) using QFT. QED and QCD are theories that describe
specific systems or aspects of reality, whereas quantum field theory is the
language or framework that they use. Thus just like classical mechanics or
quantum mechanics, QFT is a formalism that can be applied to lots of dif-
ferent systems. It isn’t only high energy physics that uses QFT; condensed
matter systems, like superconductors, are also described by QFT.

So what does QFT look like mathematically and how does it work concep-
tually? Quantum field theory is essentially quantum mechanics on steroids.
This is easiest to see when using the path integral formulation of both frame-
works.

Recall that the path integral formulation of quantum mechanics gives the
amplitude for a transition from an initial state xi to a final state xf in terms
of a sum over all paths connecting those two states:

A(i→ f) = 〈xf , tf |xi, ti〉 =

∫
D[x(t)] e

i
~ S[x(t)]. (2.40)

This is a path integral with three coordinates, x, y, and z, representing the
position of the particle we’re studying. We can generalize this slightly by
adding another particle and another three coordinates. The resulting path
integral is

〈x1f ,x2f , tf |x1i,x2i, ti〉 =

∫
D[x1(t)]D[x2(t)] e

i
~ S[x1(t),x2(t)], (2.41)

which depends on a new action S[x1(t),x2(t)] which is a functional of both
paths x1(t) and x2(t).

To go to QFT we replace the quantum mechanical coordinates x(t) and
with fields which are functions defined over all space, φ(x, t). Now the
location x is no longer a coordinate itself, but rather a label for the infinite
number of coordinates φ(x). In QFT the “coordinates” in the path integral
are the values of the field at each point in space, so φ(x0), φ(x1), φ(x2) are
three of the infinite number of coordinates that will be summed over in our
path integral.

Very roughly you can think of φ(x) as the wavefunction for a φ particles,
so |φ(x0)|2 would be the probability of finding the φ particle at position x0.
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However, the field φ(x) is not restricted to having total probability equal to
one. As a field it is allowed to represent the presence of 0, 1, 2 or many
φ particles at different places in the universe. This is one of the important
features of QFT, namely the ability to deal with systems where the total
number of particles is not conserved. That is something difficult to handle
in regular quantum mechanics.

In the quantum mechanical path integral we summed over all paths x(t),
which meant summing over all values for our coordinates x. In QFT we
do the same thing, summing over all values of the coordinates. This means
summing over all “field configurations” between some initial configuration,
φi(x, ti) and final configuration φf (x, tf ). The corresponding path integral is
written

〈φf (x, tf )|φi(x, ti)〉 =

∫
D[φ] e

i
~ S[φ]. (2.42)

Here S[φ] is still called the action and is a functional that takes a “path” in
field configuration space and returns a real number. Recall that in quantum
mechanics the action for a free particle was

SQM
0 [x(t)] =

∫ tf

ti

dt
1

2
m

(
dx

dt

)2

=

∫ tf

ti

dt
1

2
m

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]
.

(2.43)
Notice that the action sums up contributions from all three coordinates x, y,
and z. In QFT we have a similar action for a single, spinless point particle,

SQFT
0 [φ] =

∫ tf

ti

dt

∫
d3x

[∣∣∣∣ ∂φ∂xµ

∣∣∣∣2 −m2 |φ|2
]

(2.44)

=

∫ tf

ti

dt

∫
d3x

[∣∣∣∣∂φ∂t
∣∣∣∣2 − ∣∣∣∣∂φ∂x

∣∣∣∣2 − ∣∣∣∣∂φ∂y
∣∣∣∣2 − ∣∣∣∣∂φ∂z

∣∣∣∣2 −m2 |φ|2
]
(2.45)

where the second line expands the shorthand notation of ∂/∂xµ.3 So knowing
φ(x, t) you can take derivatives and do the integrals and arrive at a real
number S[φ]. In practice this isn’t done explicitly, but it is useful to know
that it wouldn’t be too hard to do.

3The index µ runs over 0, 1, 2, 3 in order to label the components of four-vectors that
are used in special relativity. For instance, xµ = (x0, x1, x2, x3) = (ct, x, y, z) where c is
the speed of light.
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The path integral in QFT tells you the amplitude for getting from one
specified inital field configuration to a final field configuration. In quantum
mechanics the path x(t) was a function that could take on any values between
its fixed endpoints, and shown in Figure 2.3. In QFT there is a similar “path”
at each point in space. For fixed x0, φ(x0, t) is a function of time which can
take on any values between fixed endpoints. The QFT path integral sums
over the infinity of adjacent paths φ(x0, t), φ(x1, t), etc. Another way to
visualize this sum over field configurations is by thinking of φ(x, ti) for fixed
ti as a surface lying over the domain x. As time evolves, that surface can
change in many ways until it reaches a specified final surface φf (x, tf ). The
QFT path integral sums over all different sets of surfaces that connect the
initial and final surfaces, or field configurations.

Unfortunately, the discussion at this level is as much metaphysics as it is
math or physics. In order to learn the details of how to extract meaningful
results from path integrals you will need to either dive into a textbook or
take a course on the subject.

2.3.1 Symmetries in Quantum Field Theory

The reason for this qualitative discussion of the path integral in quantum
field theory is that it gives the easiest way to see how symmetries manifest
themselves in QFT. Since physical results are computed from the path inte-
gral shown in Eqn. (2.42), any transformations on the fields φ that leave the
path integral unchanged will not change those results. For the path integral
to remain unchanged any transformation must not change the action, S[φ],
or the measure, D[φ]. We will be concerned with unitary transformations of
the fields φ which leave the measure invariant. There are important cases
where only the measure is changed by an apparent symmetry, but we will
not pursue that direction. Thus we will assume that the measure does not
change and look for symmetries of the action.

We start by considering the action of a single, complex, scalar field φ(x)
as shown in Eqn. (2.44). We recall that in quantum mechanics the overall
phase of the wavefunction didn’t have any physical meaning. The same thing
is true here, where we say that the S[φ] has a “global U(1) invariance”. U(1)
is the set of 1×1 unitary matrices, namely complex numbers with magnitude
1 which form the unit circle in the complex plane. The U(1) invariance means
that if we take φ(x) → φ′(x) = eiαφ(x) the action is unchanged. You can
readily check that S[φ′] = S[φ] because the eiα and its complex conjugate
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both appear in each term of the action. Thus our single, complex scalar field
exhibits a U(1) symmetry.

Now, earlier I said that QFT reconciles special relativity and quantum
mechanics. One of the things that special relativity says is that no infor-
mation can travel faster than light. Thus we might be a little suspicious
about a transformation φ(x) → eiαφ(x) that changes the phase of φ(x) ev-
erywhere by exactly the same amount at exactly the same time. So perhaps
we should consider changing the phase of φ in a way that can be different at
different places. This is called a local symmetry, and is achieved by taking
φ(x) → φ′(x) = eiα(x)φ(x), where the phase change α(x) is itself a function
of space. But is such a transformation a symmetry of the action?

The second term, m2φ†φ is clearly unaffected by the local change in phase
since m2 |φ′|2 = m2φ′†φ′ = m2e−iα(x)φ†eiα(x)φ = m2 |φ|2. However, the fist
term is problematic:

∂

∂xµ
eiα(x)φ(x) = i

∂α(x)

∂xµ
eiα(x)φ(x) + eiα(x)∂φ(x)

∂xµ
. (2.46)

Thus we see that there is an extra term coming from the derivative acting
on α(x), so when the above result is multiplied by its Hermitian conjugate,
we will definitely have extra contributions that weren’t present in the action
initially.

Thus as it stands this local transformation is simply not a symmetry of
the action. We could stop there and go home, but it proves to be useful to
find a way to patch things up and modify the action so that it is invariant
under the local U(1) transformation. The way to do that is to add a new
vector field Aµ(x) that transforms in a different way when the phase of φ is
changed, namely

Aµ(x) → A′
µ(x) = Aµ(x)− 1

e

∂α(x)

∂xµ
, (2.47)

where e is a real number called the coupling constant that represents the
strength of the interaction between the fields A(x) and φ(x). Now we write
a new action

S[φ,A] =

∫
dt

∫
d3x

∣∣∣∣( ∂

∂xµ
+ ieAµ

)
φ

∣∣∣∣2 −m2 |φ|2 (2.48)

Now the first term in the action is invariant under the local U(1) transfor-
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mation, since(
∂

∂xµ
+ ieA′

µ

)
φ′ =

(
∂

∂xµ
+ ie

(
Aµ −

1

e

∂α

∂xµ

))
eiα(x)φ (2.49)

= eiα(x)

(
∂

∂xµ
+ ieAµ

)
φ (2.50)

so when taking the magnitude-square of this quantity the phase eiα(x) drops
out.

So what just happened? By requiring that our action be invariant un-
der the local U(1) transformation, we were forced to introduce a new vector
field Aµ(x), called a gauge field, that transforms as in Eqn. (2.47). This
field is a four-vector, Aµ = (A0, Ax, Ay, Az) = (ϕ/c,A), where ϕ (not to be
confused with our field φ) is the electric potential and A is the magnetic vec-
tor potential that we encountered earlier when discussing electromagnetism.
Notice that the transformation in Eqn. (2.47) gives A → A′ = A− 1

e
∇α(x),

which is exactly the gauge transformation for A discussed earlier. Thus the
local U(1) invariance is really a restatement of the gauge symmetry of elec-
tromagnetism! The electromagnetic potential Aµ = (ϕ/c,A) appears as a
gauge field, whose small fluctuations, or “quanta”, are interpreted as pho-
tons. There is a deep geometric meaning to the gauge fields (as connections
on fiber bundles) but unfortunately we don’t have time to get into that.

Since we have uncovered electromagnetism, you might wonder where E
and B come in. They enter the action as a new term that depends only on
Aµ and represents the “kinetic energy” of the electric and magnetic fields,
which now we would call the gauge fields. This is written as an antisymmetric
matrix F defined by

Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
=


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 . (2.51)

The new term in the action is

S0[A] =

∫
dt

∫
d3x

(
−1

4
FµνF

µν

)
=

∫
dt

∫
d3x

(
1

2c2
E2 − 1

2
B2

)
(2.52)

Exercise 40 Verify that Fµν is gauge invariant, namely that it doesn’t change
under the transformation in Eqn. (2.47). (You can do this even without un-
derstanding the 4-vector notation.)
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2.3.2 General Gauge Theory

Now comes the time for us to connect some of what we learned early on about
Lie groups and Lie algebras to quantum field theory actions. A general, non-
Abelian gauge theory is specified by a Lie group G, (such as SO(3), SU(2),

or SU(n)) and a set of fields ~φ = (φ1, φ2, . . . , φn) which form an n-component
vector. We start with an action that is similar to Eqn. (2.44), except now

there is a standard dot product between the vector ~φ and it’s Hermitian
conjugate, ~φ†:

S[~φ] =

∫
dt

∫
d3x

∣∣∣∣∣ ∂~φ∂xµ

∣∣∣∣∣
2

−m2
∣∣∣~φ∣∣∣2

 (2.53)

We assume that the vector space of the fields ~φ forms an n-dimensional,
unitary representation of G. That means that there is a map T : G→ T (G)
that take g 7→ T (g) where T (g) is a unitary matrix acting on the vectors

space of ~φ. Thus an element g ∈ G changes the fields φ by

~φ(x) → T (g)~φ(x) i.e.


φ1

φ2
...
φn

 →

 T (g)




φ1

φ2
...
φn

 (2.54)

If T (g) is independent of the position in space, then the terms in Eqn. (2.53)
is each invariant. For the second term we have∣∣∣~φ′∣∣∣2 = ~φ′†~φ′ =

(
T (g)~φ

)† (
T (g)~φ

)
= ~φ†T †(g)T (g)~φ = ~φ†~φ =

∣∣∣~φ∣∣∣2 . (2.55)

Exercise 41 Show that the first term in Eqn. (2.53) is also invariant under

the transformation ~φ→ T (g)~φ.

However, just as we did a local phase transformation φ → eiα(x)φ where
the element in U(1) was a function of space, we can also consider a map
g(x) : R3 → G which assigns an element g(x) ∈ G to each point x of space.4

Then ~φ(x) → ~φ′(x) = T (g(x))~φ(x) is a local or gauge transformation of ~φ.
Clearly the derivative term in Eqn. (2.53) will no longer be invariant under

this local transformation, so again we need to introduce gauge fields Aµ to

4More properly we should be considering a map from 4-dimensional Minkowski space-
time into G, but this detail is unimportant for the general analysis under consideration.
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preserve the symmetry. However, this time they need to be proportional to
elements of the Lie algebra of G. So instead of ∂~φ/∂xµ we use(

∂

∂xµ
+ ieAµ

)
~φ where Aµ = Aa

µ(x)T (Ja). (2.56)

In the above equation Aa
µ(x) are vector functions, while T (Ja) form a n× n

matrix representation of the generators Ja of the Lie algebra g.

The action for the gauge fields written as in Eqn. (2.52), but now with

Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
+ ie[Aµ, Aν ], (2.57)

which is a n × n matrix and requires a trace to give a scalar. We also no
longer have the interpretation in terms of E and B since that is specific to
electromagnetism. So our full action is now

S[φ,A] =

∫
dt

∫
d3x

∣∣∣∣( ∂

∂xµ
+ ieAµ

)
φ

∣∣∣∣2 −m2 |φ|2 − 1

4
Tr(FµνF

µν). (2.58)

Under a gauge transformation the various fields transform as:

~φ(x) → ~φ′(x) = T (g(x))~φ(x) (2.59)

Aµ(x) → A′
µ(x) = T (g(x))Aµ(x)T †(g(x))− i

e
T (g(x))

∂

∂xµ

(
T †(g(x))

)
.(2.60)

Exercise 42 Use the second transformation and the definition of Fµν to
show that F transforms like Fµν(x) → F ′

µν(x) = T (g(x))Fµν(x)T
†(g(x)).

Exercise 43 Show that the action in Eqn. (2.58) is invariant in under the
above gauge transformations.

This is great! We’ve connected the earlier ideas of symmetries, Lie groups,
Lie algebras, and their representations to the path integral of quantum field
theory, which is just a glorified version of quantum mechanics. Now all we
need to do to “close the circle” is tie in the recent results we discussed about
homotopy theory.



64 CHAPTER 2. LOCAL SYMMETRIES

2.4 The Topology of Gauge Field Configura-

tions

We will now simplify things somewhat by considering a “pure gauge theory”.
This is just like thinking about electromagnetic waves, which are electric and
magnetic fields propagating through space without any charges or currents
nearby. In the context of a general, non-Abelian gauge theory this situation
is described by the action

S[A] =

∫
dt

∫
d3x− 1

4
Tr(FµνF

µν). (2.61)

It turns out to be useful to study configurations of finite action, because near
those configurations one can do classical approximations. The above action
will be finite as long as Fµν(x) goes to zero rapidly enough as x→∞. Clearly
this will be the case if Aµ(x) falls to zero at infinity, but it will also be true
if Aµ approaches a gauge transformation of zero, namely

lim
x→∞

Aµ(x) = T (g(θ))
∂

∂xµ

(
T †(g(θ))

)
⇒ lim

x→∞
Fµν(x) = 0. (2.62)

Here the function g(θ) represents a map from the boundary of the space at
infinity into G, so it depends only on angles, represented schematically by θ.
So to categorize the field configurations of finite action we need to categorize
the maps g(θ).

But can’t we just do a local gauge transformation h(x) and turn all those
configurations into the trivial configuration with Aµ = 0 everywhere? The
point is that the map g(θ) is only defined on the boundary of space, but a
gauge transformation h(x) must be continuous throughout the interior of the
space as well. We can think of such a map as being defined on consecutive
shells of smaller and smaller radii. If we choose h(x) such that it “undoes”
g(θ) and transforms Aµ to zero at the boundary (infinity), we still need
h(x) to be continuous on each of the smaller shells and eventually become a
constant at the origin. This is another way of saying that h(x) restricted to
the surface at infinity must be homotopic to h(x) at the origin, which must be
the constant map. The conclusion is that the set of gauge configurations of
finite action is equivalent to the homotopy classes of maps from the boundary
at infinity into G.
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We already saw this situation arise in our study of the Aharonov-Bohm
effect. There we had a system in two dimensions and our theory was elec-
tromagnetism, which is a U(1) gauge theory. The boundary at infinity in
this situation is essentially a circle, S1, so the question is whether there are
nontrivial maps g : S1 → U(1). Since U(1) can be thought of the unit circle
in the complex plane, it is topologically the same as S1, so the collection of
gauge configurations with finite action are classified by π1(S

1) = Z. This
tells us that there are indeed nontrivial gauge configurations where A is a
gauge transformation of zero (also called pure gauge) at infinity but cannot
be continuously deformed to be pure gauge everywhere in the interior of the
space. Exercise 25 exhibited a configuration where ∇ ×A = 0 everywhere
outside the solenoid. By writing A = ∇V for V = BR2φ/2, where φ is
the azimuthal angle in cylindrical coordinates, we see explicitly that this is
a “pure gauge” configuration. The integral of ∇V around a closed path is
proportional to the difference in angle φ between the beginning and ending of
the path, which comes in integral multiples of 2π. That integer is the wind-
ing number for the gauge configuration, which labels the distinct homotopy
classes.

We can now ask about a similar “Aharonov-Bohm” type effect in other,
more complicated gauge theories. For example, let G be SU(2) and consider
a theory in four-dimensional spacetime. The surface at infinity is now a 3-
sphere, S3, so we are interested in maps g : S3 → SU(2), i.e. π3(SU(2)).
Since we saw that SU(2) can be thought of as S3, this is the same as π3(S

3).
Generalizing the results for spheres in fewer dimensions, one can show that
π3(S

3) = Z. So there should be an “Aharonov-Bohm” effect and an associ-
ated winding number for an SU(2) gauge theory in 4D spacetime. In fact,
this result is more general. A theorem by Raoul Bott (who taught the topol-
ogy course I took as an undergraduate) states that for any simple Lie group
G, any continuous mapping of S3 → G can be continuously deformed into a
mapping into an SU(2) subgroup of G. Thus π3(G) = Z for any simple Lie
group G.

The third homotopy group, π3(G), is also important in the study of gauge
theory vacua. The situation appears similar to that discussed above, but
is somewhat different. In this situation we want to study the vacuum of
gauge theories, which is the state where all fields vanish everywhere. For
gauge fields, however, the redundancy that follows from gauge transforma-
tions means that they need not vanish, only that they be gauge transforma-
tions of vanishing fields. Even after we “fix the gauge”, the equivalent to
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requiring ∇ ·A = 0 in electromagnetism, we are left with a residual ambi-
guity which allows the spatial components of pure gauge configurations to
depend on spatial location

Ai(x) = T (g(x))
∂

∂xµ

(
T †(g(x))

)
. (2.63)

However, in order to have a well defined non-Abelian “charge”, analogous to
the electric charge, the gauge transformations must approach a constant at
spatial infinity,

lim
|x|→∞

T (g(x)) = T (g∞). (2.64)

Thus the possibilities for distinct g(x) as a function of three spatial dimen-
sions with the value at spatial infinity fixed is again given by π3(G) = Z for
any simple Lie group G, because a three dimensional space with the “bound-
ary” identified gives S3. So we know that such vacuum configurations can
be labeled by the winding number n, and we will denote them as states |n〉.

However, there exist so-called large gauge transformations Ω that can
change from a vacuum with winding number n to one with winding number
n + 1, namely Ω|n〉 = |n + 1〉. Since we expect the “true vacuum” to be
gauge invariant, in particular it should be invariant under transformations Ω.
Clearly the states |n〉 are not invariant, but we can construct a superposition
of those vacua that is. It is called the theta-vacuum and is defined by

|θ〉 =
∑

n

e−inθ|n〉. (2.65)

Operating on |θ〉 with Ω gives

Ω|θ〉 =
∑

n

e−inθΩ|n〉 =
∑

n

e−inθ|n+ 1〉 = eiθ
∑
n+1

e−i(n+1)θ|n+ 1〉 = eiθ|θ〉,

(2.66)
demonstrating that |θ〉 is an eigenstate of Ω. The existence of this θ-vacuum
leads to “non-perturbative” effects and possible CP -violation, but that is a
story for another tutorial.
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