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Abstract

In 1922, Cartan introduced in differential geometry, besides the Riemannian
curvature, the new concept of torsion. He visualized a homogeneous and isotropic
distribution of torsion in three dimensions (3d) by the “helical staircase”, which he
constructed by starting from a 3d Euclidean space and by defining a new connec-
tion via helical motions. We describe this geometric procedure in detail and define
the corresponding connection and the torsion. The interdisciplinary nature of this
subject is already evident from Cartan’s discussion, since he argued—but never
proved—that the helical staircase should correspond to a continuum with constant
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pressure and constant internal torque. We discuss where in physics the helical stair-
case is realized: (i) In the continuum mechanics of Cosserat media, (ii) in (fairly
speculative) 3d theories of gravity, namely a) in 3d Einstein-Cartan gravity—this
is Cartan’s case of constant pressure and constant intrinsic torque— and b) in 3d
Poincaré gauge theory with the Mielke-Baekler Lagrangian, and, eventually, (iii) in
the gauge field theory of dislocations of Lazar et al., as we prove for the first time
by arranging a suitable distribution of screw dislocations. Our main emphasis is on
the discussion of dislocation field theory.

Keywords: Cartan’s torsion, differential geometry, dislocations, Cosserat continuum,
Einstein-Cartan theory, 3-dimensional theories of gravitation
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1 Introduction: Homogeneous and isotropic torsion

in three dimensions

1.1 Cartan’s original idea

In 1922, when Élie Cartan [8, 9] analyzed Einstein’s general relativity theory (GR), he
introduced in this context the concept of torsion into differential geometry. Thereby he
generalized Riemannian geometry, dominated by the metric tensor gij = gji and the Rie-

mannian curvature tensor R̃ijk
ℓ, to Riemann-Cartan (RC) geometry carrying a generalized

curvature Rijk
ℓ and an additional fundamental third rank tensor Tij

k = −Tji
k, which was

named torsion by Cartan; here i, j, . . . are coordinate indices running either over 1, 2, 3
(space) or over 0, 1, 2, 3 (spacetime).

Whereas it is simple to visualize say a 2-dimensional (2d) Riemannian space as a
curved 2d surface imbedded in a (flat) 3d Euclidean space, no simple picture lends itself
to a visualization of a space with torsion. Still, already in his first publication on the
subject, Cartan [8], starting from 3d Euclidean space, gave a prescription of how to arrive
at a specific 3d space with homogeneous and isotropic torsion. We refer to this space as
Cartan’s spiral staircase for reasons that will become clear in the next two paragraphs.
This construction is largely forgotten1 in spite of being quite helpful in explaining the
characteristic features of a simple space with torsion.

The idea of Cartan was the following: Take a point A of a 3d Euclidean space E in
Cartesian coordinates, as it is depicted in Figure 1. Consider a neighboring point A′.

The vector linking A with A′ will be denoted by
−→

AA′. Rotate now the triad in A′ in

accordance with the vector ~ω := λ
−→

AA′ in the right hand-sense, where λ is a prescribed
constant. The new rotated triad serves as a basis for the space F with torsion: a vector
in F at A′ is said to be parallel to a vector at A, if its components in A with respect
to the local triad are the same as in A′ with respect to the rotated triad. Whereas the
Euclidean connection Γ̃ is zero with respect to the triads in E, the new Riemann-Cartan
connection ξΓ vanishes with respect to the rotated triads. This new “helical” connection
ξΓ carries a non-Riemannian piece that is proportional to the torsion. The space F is like
our ordinary space as viewed by an observer whose perception has been twisted [8].

Now, the vector ~ω can be decomposed into its components ω1, ω2, ω3, that is, into
rotations around the x-, y-, and z-axis, see Figure 1. Accordingly, if A′ first coincides
with A and is then shifted further and further away from A, then the triad along each
of the three axes undergoes a helical motion, that is, it is like going up a spiral staircase
along each of the axes.

In Section 2, following the prescriptions of Cartan, we will construct, with the help
of the calculus of exterior differential forms, the Riemann-Cartan connection ξΓ of the
spiral staircase F . In this way, we can put Cartan’s idea in a very succinct form. We will
determine the two-forms of torsion T α and of curvature Rαβ of the spiral staircase. This
will allow us to understand the 3d Riemann-Cartan space under consideration.

1See, however, Garćıa et al. [14] and Hehl and Obukhov [22].
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Figure 1: Cartan’s construction (1922) of a 3-dimensional space with homogeneous and
isotropic torsion: the spiral staircase

1.2 Cosserat medium

In his original article, Cartan [8] argued—and now we are back to physics—that the space
F of the spiral staircase corresponds to a medium with constant pressure p and constant
internal torque τ . As is clear from his acknowledgment, Cartan was influenced in his
investigations by the work of the brothers Cosserat [10] on continuum mechanics. In
classical continuum mechanics à la Euler and Cauchy—to name two main figures of the
orthodoxy—a medium with internal torque does not exist, since the classical medium can
only support (force-)stresses σi

k (specifically with pressure p := 1
3
σk

k), but no internal
torques.

However, already Voigt [63] had introduced the new concept of a (spin) moment stress
tensor τij

k = −τji
k, which can exist in a suitable medium in addition to the (force)

stress tensor σi
k. Then, specifically an internal torque τ := 1

2
ǫijkτijk can be defined, with

ǫijk = ±1, 0 as totally antisymmetric Levi-Civita symbol. The notion of a (spin) moment
stress tensor has been brought to fruition in the work of the brothers Cosserat.2

To get an intuitive feeling for their type of approach, we can start, as Cartan did, with

2For insight into more recently developed continuum theories with microstructure and with generalized
stresses, see, for example, [24, 46, 15, 12, 47, 48, 43]; also the review of Neff [51] is very readable.
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Euclidean geometry and its fundamental notions of translation and rotation. On the one
hand, these two geometrical notions are—via a suitable variational principle— intrinsically
related to the static notions of force stress and spin moment stress, on the other hand, if
one restricts the validity of Euclidean geometry only to local neighborhoods (“gauging of
the Euclidean group”), one ends up, guided by Cartan, with a Riemann-Cartan geometry
with torsion and curvature.

This brings us back to Cartan’s medium with constant pressure p and constant inter-
nal torque τ as image of his spiral staircase: Apparently a Cosserat medium, generalizing
the medium of classical elasticity, fluid mechanics, etc., is appropriate for this purpose.
Accordingly, Cartan’s introduction of the torsion has as a consequence a more general
conception of a continuum than the one taken for granted in classical continuum mechan-
ics.

As far as we aware, nobody considered so far the implications of the spiral staircase
to a Cosserat continuum. We will describe our corresponding results that the spiral
staircase produces constant hydrostatic pressure and constant internal torque in a linear,
incompatible isotropic Cosserat medium in Section 3.

1.3 Three-dimensional gravity

Let us recall that Cartan was in the process of analyzing GR, that is, a gravitational
theory. In the course of these investigations, he developed the skeleton of a new, slightly
generalized theory of gravity. This four-dimensional theory of gravitation, to which Cartan
laid the foundations, was worked out by Sciama and Kibble around 1961, see [20, 62], and
is called Einstein-Cartan (EC) theory of gravity. It is one of the very few viable theories
of gravity.

In the meantime, however, also a somewhat speculative three-dimensional (3d) EC-
type model of gravity, with a Lagrangian proportional to the curvature scalar of the
RC-space, has been proposed. This 3d EC-model has an exact solution with a geometry
described by the spiral staircase and matter of the Cosserat type carrying constant pressure
and constant spin moment stress (torque). We believe that it is this solution that Cartan
described in words. The corresponding derivations and the details will be presented in
Section 4.

Moreover, in the 3d framework there also exist gravitational models with Lagrangians
quadratic in torsion and curvature (Poincaré gauge models); the most general one of these
is a model of Mielke & Baekler [49, 2]. It has a so-called BTZ (Bañados, Teitelboim,
Zanelli) black hole with torsion as an exact vacuum solution [14]. Also in Section 4 we
show that a subcase of the vacuum BTZ-solution with torsion (namely for Λeff = 0)
carries the torsion of the spiral staircase—and for vanishing mass and angular momentum
M = 0, J = 0, also its connection ξΓαβ. In contrast to the EC-solution mentioned above,
it is an exact vacuum solution and, accordingly, was outside the scope of Cartan in 1922,
as we shall see in Section 4.
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1.4 Gauge theory of dislocations

Let us now turn to an important point of our investigations: During the 1950s it became
clear that crystal dislocations can be described by Cartan’s torsion [30, 32], basically
since dislocations, similar as torsion, can break open infinitesimally small parallelograms,
in this way inducing a closure failure of the parallelogram; for reviews, see Kröner [33]
and, furthermore, Ruggiero and Tartaglia [54]. Since dislocation lines are discrete objects,
it is helpful to consider in this context a “continuized crystal” [34].

During the last years a successful gauge field theory of dislocations has been developed
by Lazar [35, 36, 38] and Lazar and Anastassiasis [39, 40, 41]; for different versions, see
[26, 25, 45, 27] and the reviews [53, 29, 28]. Within this theory, the equivalence between
torsion and dislocation density plays a leading role. Then immediately the question
comes up whether Cartan’s spiral staircase is an exact solution of Lazar’s gauge theory
of dislocations and whether one can find, indeed, constant pressure and constant internal
torque in the corresponding medium.

It appears intuitively clear that the spiral staircases along the three Cartesian axes—
with the same pitch!—must be implemented by three forests of parallel screw dislocations;
the forests should be perpendicular to each other and each of them be of the same dislo-
cation density, that is, their respective Burgers vectors should be the same and constant,
see [19]. This distribution of screw dislocations should provide a constant torsion of the
twisted type that, by means of the constitutive laws, should induce constant pressure
and constant internal torque—provided Cartan’s intuition was right and Lazar’s theory
appropriate.

We prove in Section 5 that with Lazar’s highly non-trivial gauge theory of dislocations
we can derive, in linear approximation, the constant pressure and the constant internal
torque for the first time in a realistic setting.

In Section 6 we discuss our results and compare them with the literature.

2 The differential geometry of Cartan’s spiral stair-

case

2.1 Mathematical framework, conventions3

The geometrical arena for our considerations consists of a three-dimensional manifold M
together with a local Euclidean metric g. At each point we introduce a coframe field
ϑα, with the anholonomic (or frame) indices α, β, ... = 1̂, 2̂, 3̂, and, dual to it, the frame
field eβ , with eβ⌋ϑ

α = δα
β , where ⌋ denotes the interior product. In a trivial orthonormal

coframe ϑα = δα
i dxi, we have

g = gαβ ϑα ⊗ ϑβ, gαβ
∗
= diag(1, 1, 1) ; (1)

3A systematic presentation of our formalism can be found, for example, in Ref. [21].
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the corresponding trivial frame field is eβ = δj
β∂j . Thus, more explicitly, we have

ϑ1̂ = dx1 , ϑ2̂ = dx2 , ϑ3̂ = dx1 , e1̂ = ∂1 , e2̂ = ∂2 , e3̂ = ∂3 , (2)

the holonomic (or coordinate) indices i, k, ... run over 1, 2, 3. A ϑ-basis for 0-, 1-, 2-,
and 3-forms is

{
1, ϑα, ϑαβ := ϑα ∧ ϑβ, ϑαβγ := ϑα ∧ ϑβ ∧ ϑγ

}
, the Hodge dual η-basis for

3-,2-,1-, and 0-forms is specified by

η := ⋆1 =
1

3!
ηαβγ ϑαβγ , (3)

ηα := ⋆ϑα = eα⌋η =
1

2
ηαβγ ϑβγ , (4)

ηαβ := ⋆(ϑαβ) = eβ⌋ηα = ηαβγ ϑγ , (5)

ηαβγ := ⋆(ϑαβγ) = eγ⌋ηαβ , (6)

where ⋆ denotes the Hodge star and ηαβγ :=
√

det (gµν) ǫαβγ , with ǫαβγ as the totally
antisymmetric Levi-Civita symbol with ±1, 0.

This formalism can be straightforwardly generalized to n dimensions and to a Lorentzian
metric with, in n = 4, gαβ

∗
= diag(−1, 1, 1, 1).

In the case of the spiral staircase, see Figure 1, we have an underlying three-dimensional
Euclidean space E with flat metric (that is, vanishing Riemann curvature) and, accord-
ingly, with a Euclidean connection 1-form Γαβ = −Γβα = Γi

αβdxi that has vanishing
torsion and vanishing curvature.

2.2 Cartan’s prescription

Cartan introduced, besides this Euclidean connection Γαβ , for the space F a non-Euclidean
helical Riemann-Cartan connection 1-form,

ξΓαβ = −ξΓβα = ξΓi
αβdxi = ξΓ1

αβdx1 + ξΓ2
αβdx2 + ξΓ3

αβdx3 , (7)

in the following way, see Figure 1: If we consider the non-Euclidean parallel displacement
along the x1-axis, then, according to Cartan’s recipe, the corresponding orthonormal
coframe rotates in the positive sense around the x1-axis with the angle ω = ω23 = −ω32

per unit length. The analogous prescription applies to the parallel displacements along
the x2-axis and the x3-axis. Then only the following connection components, up to their
antisymmetry, are non-vanishing and equal:

ξΓ1
2̂3̂ = ξΓ2

3̂1̂ = ξΓ3
1̂2̂ = ω . (8)

We transform the coordinate indices into frame indices and find,

ξΓγαβ := gγδei
δ

ξΓi
αβ = ωηγαβ , (9)

7



with eα = ei
α∂i

∗
= δi

α∂i and gαβ = diag(1, 1, 1). In an anholonomic basis, the connection
1-form reads:

ξΓαβ = ξΓγαβϑγ = ωηαβγϑγ = ω ηαβ . (10)

For the coframe we have, see Figure 1, ϑ1̂ = dx1 , ϑ2̂ = dx2 , ϑ3̂ = dx3, which is a trivial
coframe

ϑα = δα
i dxi . (11)

Accordingly, the torsion 2-form is constant and only its axial piece survives:

T α := Dϑα = dϑa + ξΓβ
α ∧ ϑβ = ωηαβγϑβ ∧ ϑγ = 2ω ηα . (12)

For the Riemann-Cartan curvature 2-form we find4

Rα
β := d ξΓα

β − ξΓα
γ ∧ ξΓγ

β = −ω2ηα
δγηεβ

γ ϑδ ∧ ϑε

= −ω2
(
δε
αgδβ − δβ

αgδε
)
ϑδ ∧ ϑε = ω2 ϑα ∧ ϑβ or

Rαβ = ω2 ϑαβ . (13)

Alternative to the torsion 2-form T α, we can define the contortion 1-form Kαβ = −Kβα

either implicitly by
T α =: Kα

β ∧ ϑβ (14)

or explicitly by

Kαβ = e[α⌋Tβ] −
1

2
(eα⌋eβ⌋Tγ)ϑ

γ = 2e[α⌋Tβ] −
1

2
eα⌋eβ⌋(Tγ ∧ ϑγ) . (15)

Simple algebra yields for Cartan’s spiral staircase

Kαβ = −ω ηαβ . (16)

In order to isolate the Riemannian part, we decompose the Riemann-Cartan con-
nection into the Levi-Civita (or Christoffel) connection Γ̃αβ and the contortion Kαβ as
follows

ξΓαβ = Γ̃αβ − Kαβ . (17)

Substituting (10) and (16) into (17), we find that the Levi-Civita connection vanishes

ξΓαβ = −Kαβ , Γ̃αβ = 0 . (18)

Moreover, the Riemannian curvature 2-form R̃αβ vanishes due to the trivial Riemannian
geometry

R̃αβ = d Γ̃αβ − Γ̃αγ ∧ Γ̃γ
β = 0 . (19)

4In [22] the curvature carries a different sign, since there the Lorentzian signature − + + was used.
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Thus, the torsion, the Riemann-Cartan curvature, and the Riemannian curvature of Car-
tan’s spiral staircase read, respectively,

T α = 2ω ηα , Rαβ = ω2 ϑαβ , R̃αβ = 0 . (20)

This is a very simple configuration. In 3d, we can decompose the torsion into three
SO(3)-irreducible pieces according to T α = (1)T α + (2)T α + (3)T α with the number of
independent components 9 = 5 ⊕ 3 ⊕ 1. These three pieces (I)Tα are (see also [20])

(1)T α := T α − (2)T α − (3)T α (tentor), (21)

(2)T α :=
1

2
ϑα ∧

(
eβ⌋T

β
)

(trator), (22)

(3)Tα :=
1

3
eα⌋

(
ϑβ ∧ Tβ

)
(axitor) . (23)

Simple algebra yields for our case that only the axial torsion part is nonvanishing,

T α = (3)T α = 2ω ηα or A :=
1

3
⋆ (ϑα ∧ Tα) = 2ω . (24)

In this case the autoparallels of the Riemann-Cartan space coincide with the Riemannian
geodesics (extremals). This is obvious in the Cartan construction: here the geodesics
are just the straight lines of the underlying Euclidean space—and they are at the same
time the autoparallels in the newly constructed Riemann-Cartan space of constant axial
torsion and constant Riemann-Cartan curvature.5

Of similar simplicity is the Riemann-Cartan curvature. In 3d, the curvature 2-form
Rα

β is equivalent to the Ricci 1-form Ricα := eβ⌋Rα
β = Riciαdxi. We have 9 components

of the Ricci 1-form. By inspecting (20), we immediately recognize that only the curvature
scalar R := eα⌋Ricα is non-vanishing:

Rαβ = −
1

6
R ϑαβ = ω2 ϑαβ or R = −6ω2 . (25)

Thus, Cartan’s spiral staircase is characterized geometrically by the Riemann-Cartan
quantities (A = 2ω, R = −6ω2) alone, A is a pseudoscalar, R a scalar.

If one decomposes the Riemann-Cartan curvature Rαβ into its Riemannian part R̃αβ

and its rest and then multiplies with ηαβ, one finds the geometric identity, see [20, 23],

Rαβ ∧ηαβ = R̃αβ ∧ηαβ −2 d(ϑα ∧
⋆T α)+T α∧ ⋆

(
−(1)Tα + (n − 2) (2)Tα +

1

2
(3)Tα

)
, (26)

5Let us stress that Cartan started from a flat 3d Euclidean space, that is, its curvature is zero. His
mapping prescription yields the Riemann-Cartan connection ξΓαβ, which is depicted in Figure 1 by
means of the constantly rotating triads whenever they move in a given direction. We find ξΓαβ = ω ηαβ .
Therefore, our image represents exactly the Cartan description. The criticism of Mielke and Maggiolo
[50] that we “ignore[s] the constant curvature background” in [14] is incorrect; after all, a Euclidean
space carries no nonvanishing curvature. The original space is Euclidean and not curved. However, the
constant curvature (13) can be computed from the Riemann-Cartan connection ξΓαβ , which is depicted
in our image.
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Figure 2: Schematic view on a two-dimensional Cosserat continuum: Undeformed initial
state, see [22].

which is valid for any dimension n. For Cartan’s spiral staircase, which carries a constant
axial torsion, we are left with the 3-form

Rαβ ∧ ηαβ =
1

2
(3)T α ∧ ⋆ (3)Tα , (27)

that is, the curvature is quadratic in the torsion.

3 The spiral staircase in a Cosserat continuum

3.1 Cosserat elasticity6

The classical continuum of elasticity and fluid dynamics consists of unstructured points,
and the displacement vector uα is the only quantity necessary for specifying the deforma-
tion. The Cosserats conceived a specific medium with microstructure, see [17, 6, 16, 12]
and for a historical review [3], consisting of structured points such that, in addition to the
displacement field uα, it is possible to measure the rotation of such a structured point by
the bivector field ωαβ = −ωβα, see Figure 2 for a schematic view.

The deformation 1-forms distortion βα = βi
α dxi and contortion καβ = κi

αβ dxi of a
linear Cosserat continuum are (D is the exterior covariant derivative of the Euclidean 3d
space)

βα = Duα + ωαβϑβ , ωαβ = −ωβα , (28)

καβ = Dωαβ , (29)

see Günther [17] and Schaefer [56]. For the components of the distortion, we have

βi
α = Diu

α + ωαβeiβ or βαβ = Dαuβ − ωαβ . (30)

In classical elasticity, the only deformation measure is the strain

εαβ :=
1

2
(βαβ + ββα) ≡ β(αβ) = D(αuβ) . (31)

6In this subsection we follow in parts the presentation of [22].

10



Figure 3: Conventional homogeneous strain ε11 of a Cosserat continuum: Distance changes
of the “particles” caused by force stress σ11, see [22].

Figure 4: Homogeneous contortion κ112 of a Cosserat continuum: Orientation changes of
the “particles” caused by spin moment stress τ21

1, see [22].

Let us visualize these deformations. If the displacement field u1 ∼ x and the rotation
field ωαβ = 0, we find β11 = ε11 = const and καβγ = 0, see Figure 3. This homogeneous
strain is created by ordinary force stresses. In contrast, if we put uα = 0 and ω12 ∼ x, then
β12 = ω12 ∼ x and κ112 ∼ const, see Figure 4. This homogeneous contortion is induced
by applied spin moment stresses. Figure 5 depicts the pure constant antisymmetric stress
with ω12 = const and Figure 6 the conventional rotation of the particles according to
ordinary elasticity. This has to be distinguished carefully from the situation in Figure 4.

Apparently, in addition to the force stress Σα ≡ Σαβηβ ∼ ∂H/∂βα (here H is an
elastic potential), which is asymmetric in a Cosserat continuum, i.e., Σαβ 6= Σβα, we have

Figure 5: Homogeneous Cosserat rotation ω12 of the “particles” of a Cosserat continuum
caused by the antisymmetric piece of the stress Σ[12], see [22].
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Figure 6: Conventional rotation ∂[1u2] of the “particles” of a Cosserat continuum caused
by an inhomogeneous strain, see [22].

as new response the spin moment stress ταβ ≡ ταβ
γηγ ∼ ∂H/∂καβ . Hence the 2-forms of

(force) stress Σα and of spin moment stress ταβ characterize a Cosserat continuum from
the static side. We used bars for denoting the Cosserat stress and spin moment stress
2-forms specifically in 3d.

The equilibrium conditions for forces and moments read

DΣα + fα = 0 , Dταβ + ϑ[α ∧ Σβ] + mαβ = 0 . (32)

where fα are the volume forces and mαβ = −mβα volume moments. These relations are
valid in all dimensions n ≥ 1, see [15]. In 3 dimensions we have 3+3 and in 4 dimensions
4+6 independent components of the “equilibrium” conditions. They correspond to trans-
lational and rotational Noether identities. In classical elasticity and in fluid dynamics,
ταβ = 0 and mαβ = 0; thus, the stress is symmetric, ϑ[α ∧ Σβ] = 0, and then denoted
by σα; for early investigations of asymmetric stress and energy-momentum tensors, see
Costa de Beauregard [11].

For a local, linear, isotropic Cosserat continuum we have the following constitutive
relations

Σα = gαβ
⋆

3∑

I=1

cI
(I)ββ , (33)

ταβ = gαγgβδ
⋆

3∑

I=1

aI
(I)κγδ , (34)

where the 3 irreducible pieces of the distortion 1-form β are given by

βα = (1)βα + (2)βα + (3)βα , (35)

with the number of independent components 9 = 5⊕ 3⊕ 1. In component notation, they

12



are given by

(1)βαβ := βαβ − (2)βαβ − (3)βαβ , (36)

(2)βαβ :=
1

2

(
βαβ − ββα

)
, (37)

(3)βαβ :=
1

3
δαβ βγ

γ . (38)

In addition, the 3 irreducible pieces of the contortion 1-form κ are given by

καβ = (1)καβ + (2)καβ + (3)καβ , (39)

with the number of independent pieces 9 = 5 ⊕ 3 ⊕ 1. In component notation, they are
given by

(1)καβγ := καβγ −
(2)καβγ −

(3)καβγ , (40)

(2)καβγ :=
1

2

(
δαβ κδ

δγ − δαγκ
δ
δβ

)
, (41)

(3)καβγ :=
1

3

(
καβγ + κβγα + κγαβ

)
. (42)

The nonnegative moduli c1, c2, c3 have the dimension: [cI ] = force/(length)2 and a1, a2,
a3 have the dimension: [aI ] = force. In this way, the elastic potential for local, linear and
isotropic Cosserat theory reads

H =
1

2
Σα ∧ βα +

1

2
ταβ ∧ καβ . (43)

Nowadays the Cosserat continuum finds many applications. As one example we may
mention the work of Zeghadi et al. [64] who take the grains of a metallic polycrystal as
(structured) Cosserat particles and develop a linear Cosserat theory with the constitutive
laws Σα ∼ βα and ταβ ∼ καβ .

The Riemannian space is the analogue of the body of classical continuum theory:
points and their relative distances is all what is needed to describe it geometrically; the
analogue of the strain εij of classical elasticity is the difference between the metric tensor
gij of the Riemannian space and a flat background metric. In GR, a symmetric “stress”
σij = σji is the response of the matter Lagrangian to a variation of the metric gij.

A RC-space can be realized by a generalized Cosserat continuum. The “deformation
measures” ϑα = ei

α dxi and Γαβ = Γi
αβdxi = −Γβα of a RC-space correspond to those of

13



a Cosserat continuum according to the transcription7

δei
α → βα , δΓi

αβ → καβ . (46)

However, in general, the coframe ϑα and the connection Γαβ cannot be derived from a
displacement field uα and a rotation field ωαβ, as in (28) and (29). Such a generalized
Cosserat continuum is called incompatible, since the deformation measures βα and καβ

don’t fulfill the so-called compatibility conditions

Dβα + ϑβ ∧ κβ
α = 0 , Dκαβ = 0 , (47)

see Günther [17] and Schaefer [55, 56]. They guarantee that the “potentials” uα and ωαβ

can be introduced in the way as it is done in (28) and (29). Still, also in the RC-space,
as incompatible Cosserat continuum, we have, besides the force stress Σα ∼ ∂H/∂βα, the
spin moment stress ταβ ∼ ∂H/∂Γαβ . And in the geometro-physical interpretation of the
structures of the RC-space, Cartan apparently made use of these results of the brothers
Cosserat.

In 4d, the stress Σα corresponds to energy-momentum8 Σα and the spin moment stress
ταβ to spin angular momentum ταβ . Accordingly, Cartan enriched the 4d Riemannian
space of GR geometrically by the torsion 2-form T α and statically (or dynamically) by
the spin angular momentum 3-form ταβ of matter.

3.2 Incompatible Cosserat elasticity

In order to include the torsion tensor and the curvature tensor into the framework of
Cosserat elasticity, we have to generalize compatible Cosserat elasticity to incompatible
Cosserat elasticity. Such an extension is necessary for Cartan’s spiral staircase in the
framework of Cosserat theory since we have already seen that the Cartan spiral staircase
is related to the notion of torsion (12).

In the case of incompatible Cosserat elasticity, the distortion and the contortion do
not satisfy any longer the compatibility conditions (47). Then the elastic distortion and
the elastic contortion are given as

βα = Duα + ωαβϑβ − Pβα , (48)

καβ = Dωαβ − Pκαβ . (49)

7This can be seen from the response of the coframe ei
α and the Lorentz connection Γi

αβ in a RC-
space to a local Poincaré gauge transformation consisting of small translations ǫα and small Lorentz
transformations ωαβ,

dei
α = −Diǫ

a + ei
γωγ

α − ǫγTγi
α , (44)

dΓi
αβ = −Diω

αβ − ǫγRγi
αβ , (45)

see [18], Eqs.(4.33),(4.32); here Di := ∂i⌋D are the components of the exterior covariant derivative. The
second term on the right-hand-side of (44) is due to the semi-direct product structure of the Poincaré
group. If we put torsion and curvature to zero, these formulas are analogous to (28),(29).

8This is well-known from classical electrodynamics: The 3d Maxwell stress generalizes, in 4d, to the
energy-momentum tensor of the electromagnetic field, see [21].

14



It can be seen that the plastic distortion Pβα and the plastic contortion Pκαβ are the causes
of the incompatibility. The failure of the elastic and plastic fields to be compatible gives
rise to incompatibility conditions [17, 56]:

T α = Dβα + κβα ∧ ϑβ , (50)

Rαβ = Dκαβ , (51)

and for the plastic fields

T α = −D Pβα − Pκβα ∧ ϑβ , (52)

Rαβ = −D Pκαβ . (53)

The measures of incompatibilities (50)–(53) may be identified with the torsion 2-form and
the curvature 2-form of the incompatible Cosserat medium in linear approximation.

3.3 Cartan’s spiral staircase as a solution in incompatible Cosserat

elasticity

In this subsection we want to show, that the solutions (9) and (11) of Cartan’s spiral stair-
case are also solutions in incompatible Cosserat elasticity. If we use the identification (46),
we find for the elastic distortion and the elastic contortion

βαβ = δαβ , καβγ = ω ηαβγ . (54)

Thus, the elastic distortion and the elastic contortion are constant. The irreducible pieces
are

(1)βαβ = 0 , (2)βαβ = 0 , (3)βαβ = δαβ , (55)
(1)καβγ = 0 , (2)καβγ = 0 , (3)καβγ = ω ηαβγ . (56)

If we substitute (54) into (48) and (49) and integrate, we find for the displacement and
the microrotation bivector

uα = xα , ωαβ = ω ǫαβγx
γ (57)

and for the plastic distortion and plastic contortion

Pβαβ = −ωαβ
Pκαβγ = 0 . (58)

Thus, the plastic rotation is equal to the negative microrotation bivector and the plastic
contortion is zero. From (50)–(53) we calculate the torsion and the curvature produced
by Cartan’s spiral staircase in linear, incompatible Cosserat elasticity as

T α = 2ω ηα , Rαβ = 0 . (59)
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The vanishing of Rαβ identifies the corresponding RC-space as a teleparallel one.
Now we may substitute (55) and (56) into the constitutive relations (33) and (34) and

we find for the force and internal moment stresses caused by Cartan’s spiral staircase

Σαβ = −p δαβ = c3 δαβ , ταβγ = a3ω ηαβγ . (60)

Mechanically, we have found a constant hydrostatic pressure −c3 and a constant torque
a3ω as predicted by Cartan. Thus, we conclude that Cartan’s spiral staircase is a solution
in linear, incompatible Cosserat theory producing constant pressure and constant internal
torque in a Cosserat medium.

4 The spiral staircase in three-dimensional theories

of gravity

In the realm of quantum gravity, people are interested in (1+2)-dimensional theories of
gravity, basically since (1+3)-dimensional theories, like GR or the Einstein-Cartan theory,
in some high ‘temperature’ limit, may effectively reduce to (1+2)-dimensional theories.
A good reference describing this approach is Carlip [7]. We concentrate here purely on
the classical aspect of these theories.

The conventional gravitational Lagrangian in 4d is the Hilbert-Einstein Lagrangian ∼
ηαβ ∧Rαβ . This term also works in 3d. However, in 3d there exist topological, connection-
dependent terms, namely the Chern-Simons 3-form for the curvature

CRR := −
1

2

(
Γα

β ∧ dΓβ
α −

2

3
Γα

β ∧ Γβ
γ ∧ Γγ

α

)
. (61)

This equation is correct in a Riemann or a Riemann-Cartan space, for details, see, e.g.,
[20], Sec.3.9. In a Riemann-Cartan space we can define an analogous 3-form for the
torsion, namely

CTT :=
1

2ℓ2
gαβϑα ∧ T β , (62)

where ℓ is some constant with the dimension of a length. Introducing additionally a
cosmological term with Λ as cosmological constant, we end up with the Mielke-Baekler
Lagrangian [49, 2], see also [50],

VMB = −
χ

2ℓ
Rαβ ∧ ηαβ −

Λ

ℓ
η +

θT

2ℓ2
ϑα ∧ Tα

−
θL

2

(
Γα

β ∧ dΓβ
α −

2

3
Γα

β ∧ Γβ
γ ∧ Γγ

α

)
+ Lmat , (63)

with some coupling constants χ, θT, θL (here ‘T’ stands for translation and ‘L’ for Lorentz).
Theories with this general Lagrangian will be considered.
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4.1 3d Einstein-Cartan theory

In the simplest case we just have, for χ = 1, the 3d Einstein-Cartan Lagrangian without
cosmological constant,

VEC = −
χ

2ℓ
Rαβ ∧ ηαβ + Lmat . (64)

Variations with respect to coframe ϑα and Lorentz connection Γαβ, yield the field equations
of the 3d Einstein-Cartan theory (with Euclidean signature) [20, 14, 62]:

1

2
ηαβγ Rβγ = ℓ Σα , (65)

1

2
ηαβγ T γ = ℓ ταβ , (66)

where Σα and ταβ are the 2-forms of (force) stress and of (spin) moment stress, respectively.
Moreover, ℓ is a characteristic length.9

Substituting (13) and (12) into (65) and (66), respectively, and using simple algebra,
we find the force stress 2-form and the moment stress 2-form,10

Σα =
ω2

ℓ
ηα , ταβ =

ω

ℓ
ϑαβ . (67)

In order to find the tensor components, we develop the 2-forms Σα and ταβ with respect
to the 2-form ηα:

Σα =: tα
β ηβ , ταβ =: sαβ

γ ηγ . (68)

Inversion of (68) and use of (67) yields for the force stress tensor and the moment stress
tensor

tα
β = −pδβ

α =
ω2

ℓ
δβ
α , sαβγ =

ω

ℓ
ηαβγ . (69)

We have found a constant hydrostatic pressure −ω2/ℓ and a constant torque ω/ℓ, exactly
as foreseen by Cartan. Thus, the spiral staircase is an exact solution of the 3d Einstein-
Cartan theory (with Euclidean signature) carrying constant pressure and constant torque
as sources.

4.2 3d Poincaré gauge theory of gravity with Mielke-Baekler

Lagrangian

The EC-theory has a Lagrangian linear in the curvature. As a consequence, the Lorentz
connection is non-propagating. If one allows for higher order terms, as in the Mielke-
Baekler Lagrangian, the Lorentz connection becomes ‘liberated’. Such theories are Poincaré

9Roughly speaking, we could imagine ℓ as the distance between neighboring dislocation lines of the
dislocation forests mentioned above, see [19]; depending on the state of the crystal, this length ℓ could
typically be of the order of some 50 nm.

10Also here the signs in [22] are opposite.
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gauge theories. By variation of the Mielke-Baekler Lagrangian one arrives at the field
equations

χ

2
ηαβγ Rβγ + Λ ηα −

θT

ℓ
Tα = ℓΣα , (70)

χ

2
ηαβγ T γ −

θT

2ℓ
ϑαβ − θLℓ Rαβ = ℓταβ . (71)

Garćıa et al. [14] looked for static circularly symmetric vacuum solutions of these field
equation. In fact, for the 3d Einsteinian case in a Riemannian space such a solution had
been found by Bañados et al. [4]. Garćıa et al. generalized this so-called BTZ-solution
(Bañados, Teitelboim, Zanelli) to a ‘BTZ-solution with torsion’ [14]. The details for this
solution can be found in [14], Table I. If one puts the effective cosmological constant to
zero, Λeff = 0, this vacuum solution has the torsion and curvature

T α = 2
T

ℓ
ηα , Rαβ = −

(
T

ℓ

)2

ϑαβ , R̃αβ = 0 . (72)

Here the constant T can be expressed in terms of the coupling constants according to

T = −
θTχ

2(χ2 + 2θT)θL
. (73)

If we compare (72) with (20), we see that (apart from a probably signature dependent sign)
the torsion and the curvatures coincide. Consequently, a subcase of the vacuum BTZ-
solution with torsion carries the torsion and the curvature of Cartan’s spiral staircase.
We stress that, in contrast to the solution (65) with (66), where we only have to assume
constant sources, in (72) we have an exact vacuum solution. This was outside the scope
of Cartan in 1922.

5 The translation gauge theory of dislocations in three

dimensions

Let be given a solid body with crystalline structure. Often such solids contain lattice de-
fects that may be created during the growing of the crystal or during plastic deformation.
One-dimensional lattice defects are dislocation lines that (in a cubic primitive crystal)
are of two types: Edge dislocations (see Figure 7) and screw dislocations (see Figure 8).
From comparing Figure 8 with the spiral staircase Figure 1, it is clear that the geometry
of Cartan’s spiral staircase can be represented by a set of three perpendicular constant
‘forests’ of screw dislocations of equal strength. It is our goal to show that the spiral
staircase emerges as a solution in the framework of the gauge theory of dislocations. In
this theory the real crystal, containing dislocations, is modeled as a 3-dimensional space
with teleparallelism (Weitzenböck space) the torsion of which represents the dislocation
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Figure 7: Edge dislocation after Kröner [31]: The dislocation line is parallel to the vector
t. The Burgers vector δb, characterizing the missing half-plane, is perpendicular to t.
The vector δg characterizes the gliding of the dislocation as it enters the ideal crystal.

Figure 8: Screw dislocation after Kröner [31]: Here the Burgers vector is parallel to t.

density. By a suitable choice of the frames, it is always possible to ‘gauge’ the connection
1-form of the Weitzenböck space globally to zero [52],

Γαβ = 0 (in suitable frames) . (74)

We dropped here the ξ that designated in Section 2 the non-Riemannian connection.

5.1 Foundations

Let us display the structure of the three-dimensional translational gauge theory of dis-
locations as proposed by Lazar [35, 36]. This theory follows the basic features of the
metric-affine gauge theory of gravity, see the review [20].

At the outset we identify the torsion 2-form T α with the dislocation density. Since
subsequently we always assume orthonormal frames that nullify the connection according
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to (74), the torsion 2-form reads

T α = dϑα =
1

2
Tβγ

α ϑβ ∧ ϑγ . (75)

For the physical interpretation of quantities, the knowledge of the physical dimensions is
decisive. The dimension of the coframe ϑα is [ϑα] = length and [eα] = 1/length. Thus,
the dimension of T α is [T α] = length—it is called the absolute dimension of T— and the
physical dimension (of its components) turns out to be [Tβγ

α] = 1/length. The torsion
2-form satisfies the first (or translational) Bianchi identity

dT α = 0 . (76)

In a second step, the coframe 1-form ϑα is identified with the (incompatible) elastic
distortion 1-form known from continuum mechanics. Accordingly, we take ϑα and T α as
field variables of the dislocation gauge theory.

Now we can set up the total Lagrangian 3-form Ltot describing dislocations in an
incompatible elastic continuum, with absolute dimension [Ltot] = energy. It is given by
the sum of the elastic Lagrangian L of the material continuum and the gauge Lagrangian
V of the dislocation fields:

Ltot = L(ϑα) + V (ϑα, T α) . (77)

The covector-valued 2-form of the elastic (force) stress is defined by

Σα :=
δL

δϑα
. (78)

It has the absolute dimension [Σα] = force. In general, this stress Σα is asymmetric.
Analogously to (78), we can define the dislocation stress, a covector-valued 2-form, as

Eα :=
∂V

∂ϑα
= eα⌋V +

(
eα⌋T

β
)
∧ Hβ . (79)

the absolute dimension of which is [Eα] = force. Eshelby [13] called such a type of
expression an “elastic energy-momentum”; if Eα is integrated over a 2-dimensional closed
surface, it yields the force on defects (here dislocations) within the surface. Similar to Σa,
the dislocation stress Eα is asymmetric in general.

Torsion T α has the status of a gauge field strength in the formalism. Accordingly, we
can define the attached excitation 1-form as

Hα := −
∂V

∂T α
, (80)

with [Hα] = force. It is the response of the gauge Lagrangian V to the torsion 2-form T α.
The moment stress ταβ = −τβα is coupled to the contortion 1-form Kαβ = −Kβα

according to

ταβ =
∂V

∂Kαβ
, and ταβ = ϑ[α ∧ Hβ] , (81)
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with the dimension [τab] = force × length = moment, since [Kαβ] = 1. The last formula
in (81), analogously to (15), can be inverted as follows:

Hα = −2eβ⌋τα
β +

1

2
ϑα ∧ (eβ⌋eγ⌋τ

βγ) . (82)

Since, according to (75), T α depends on ϑα, the independent variable of the variational
principle is ϑα. Independent variation yields the Euler-Lagrange equation of dislocation
gauge theory:

δLtot

δϑα
≡ d

∂Ltot

∂T α
+

∂Ltot

∂ϑα
= 0 . (83)

By means of (80), (78), and (79), we can rewrite it as:

dHα − Eα = Σα . (84)

This is a Yang-Mills type field equation. The sum of the two stresses Σα and Eα constitutes
the source of the excitation Hα.

The field equation implies the force equilibrium: we differentiate (84) and find the law

d(Eα + Σα) = 0 . (85)

The total stress is apparently in equilibrium. From this equation we can read off the
covector-valued Peach-Koehler 3-form as

fα := dΣα = −dEα = (eα⌋T
β) ∧ Σβ . (86)

It represents the force density acting on a dislocation.
The moment equilibrium requires a bit of algebra. We start with the field equation

(84) and compute the antisymmetric piece of the total stress, use (81), and find

dταβ − T[α ∧ Hβ] + ϑ[α ∧
(
Eβ] + Σβ]

)
= 0 . (87)

Apart from the nonlinear term −T[α ∧ Hβ], this is exactly the expected law.
This represents the general framework of the dislocation gauge theory. Now we have

to specify a constitutive laws. For the excitation in a local, linear, isotropic continuum we
have

Hα = ⋆

3∑

I=1

aI
(I)Tα , (88)

wherein (I)Tα are the irreducible pieces (21), (22), and (23) of the torsion and a1, a2, and
a3 nonnegative constitutive moduli with dimension: [aI ] = force. For the elastic (force)
stress, we assume a Hooke type law

Σα = ⋆

3∑

I=1

cI
(I)ϑα , (89)
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where c1, c2, and c3 are nonnegative constitutive moduli with the dimension: [cI ] =
force/(length)2. With (88) and (89) and Euler’s theorem for homogeneous functions, we
can rewrite the gauge (or dislocation) Lagrangian and the elastic Lagrangian, respectively,
as

V = −
1

2
Hα ∧ T α =

1

2
ταβ ∧ Kαβ and L =

1

2
Σα ∧ ϑα . (90)

Summing up, the dislocation theory we displayed encompasses two kinds of asymmetric
force stresses (namely Eα and Σα) and one type of moment stress ταβ. Equivalent to ταβ

is the excitation Hα that plays a fundamental role in the Yang-Mills type field equation
(84). Compactly written, we have

T α = dϑα , (91)

dHα − Eα = Σα , (92)

Hα := −
∂V

∂T α
or Hα ≈ gαβ

⋆

3∑

I=1

aI
(I)T β , (93)

Eα :=
∂V

∂ϑα
= eα⌋V +

(
eα⌋T

β
)
∧ Hβ , (94)

Σα :=
δL

δϑα
or Σα ≈ gαβ

⋆

3∑

I=1

cI
(I)ϑβ , (95)

fα = (eα⌋T
β) ∧ Σβ (96)

(ϑα = distortion, T α = torsion = dislocation density, V = gauge Lagrangian ∼ torsion2,
Hα = excitation, Σα = force stress, Eα = dislocation stress, L = matter Lagrangian ∼
distortion2, fα = Peach-Koehler force density).

We could add simple consequences of the scheme, namely the homogeneous field equa-
tion and an alternative version of the inhomogeneous field equation,

dT α = 0 , (97)

dταβ − T[α ∧ Hβ] + ϑ[α ∧ Eβ] = ϑ[α ∧ Σβ] , (98)

with the spin moment stress ταβ = ϑ[α ∧ Hβ].
In a more recent development, one of us ref. [37] investigated the Higgs mechanism

in the framework of the translation gauge theory of dislocations. At the same time, he
discussed an anisotropic version of the dislocation gauge theory as well as a Chern-Simons
type theory of dislocation.

5.2 Cartan’s spiral staircase as a solution of dislocation gauge

theory

We want to model Cartan’s spiral staircase in the gauge theory of dislocations as a homo-
geneous distributions of three perpendicular forests of screw dislocations of equal strength.
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Hence, for the dislocation density, we make the ansatz

T α ≡ (3)T α = Aηα . (99)

The pitch of the helices is proportional to the constant A with the dimension [A] =
1/length. Thus, in the gauge (74), Eq.(17) yields the Levi-Civita connection

Γ̃αβ = Kαβ = −
A

2
ηαβ . (100)

and, as a consequence therefrom, the Riemannian curvature

R̃αβ = −
A2

4
ϑαβ . (101)

Due to (74), we find

T α = −Γ̃β
α ∧ ϑβ . (102)

Note that (101) deviates from the original result (20) of the spiral staircase.
In order to determine the excitation, we insert (99) into the constitutive law (88):

Hα = a3A
⋆ηα = a3A

⋆⋆ϑα = a3A ϑα . (103)

In turn, the moment stress reads help of (81):

ταβ = ϑ[α ∧ Hβ] = a3Aϑαβ . (104)

Inversion yields the components of the moment stress tensor, see (68),

sαβγ = s[αβγ] = a3Aηαβγ . (105)

This is apparently a pure constant torque.
Turning now to the force stress, we first compute the dislocation stress Eα which, for

a quadratic Lagrangian, can be rewritten as

Eα =
1

2

[(
eα⌋T

β
)
∧ Hβ −

(
eα⌋Hβ

)
T β

]
. (106)

We substitute (99) and (103) and find

Eα =
1

2
a3A

2
[(

eα⌋η
β
)
∧ ϑβ −

(
eα⌋ϑβ

)
ηβ

]
=

1

2
a3A

2ηα . (107)

This is a hydrostatic pressure quadratic in A, as an inversion à la (68) shows explicitly:

tα
β =

1

2
a3A

2δβ
α . (108)

Note that A enters this equation quadratically.
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By means of the field equation (84) we can determine the elastic stress Σα. We first
differentiate (103) and find

dHα = a3A dϑα = a3A
2 ηα . (109)

Now we turn to (84) and substitute (109) and (107) into it:

Σα = dHα − Eα =
1

2
a3A

2 ηα . (110)

Therefore, we have for both stress 2-forms

Σα = Eα =
1

2
a3A

2 ηα , (111)

and the total stress add up to

Σα + Eα = a3A
2 ηα . (112)

If we denote the total stress tensor of the left-hand-side of (112) by tot
tα

β, compare (68),
then we find again a hydrostatic pressure, namely

tot
tα

β = − totpδβ
α = a3 A

2 δβ
α . (113)

Accordingly, collecting our results, the force and moment stresses turn out to be

totΣα = a3A
2ηα , ταβ = a3Aϑαβ . (114)

As a check we differentiate the total force stress

d totΣα = a3A
2dηα = −a3A

2ηαβ ∧ T β = −a3A
3ηαβ ∧ ηβ = 0 , (115)

since ηαβ ∧ ηβ = ⋆ϑαβ ∧ ⋆ϑβ = ϑβ ∧ ϑαβ = 0. Hence the force equilibrium law (85) is
guaranteed. Moreover, even the Peach-Koehler 3-form (86) itself is zero:

fα = (eα⌋T
β) ∧ Σβ = −

1

2
a3A

3ηαβ ∧ ηβ = 0 . (116)

Thus, the elastic stress and the dislocation stress are conserved, separately, dΣα = 0 and
dEα. Similarly, we obtain

dταβ = a3Adϑαβ = a3A T[α ∧ ϑβ] = a3A
2 η[α ∧ ϑβ] = 0 . (117)

Thus, the moment equilibrium law (87) is also fulfilled since totΣα is symmetric and
T[α ∧ Hβ] = 0.

If we look back to our scheme (91) to (96), then we recognize that all equations are
now fulfilled with the exception of (91) and the constitutive law in (95). Let us first turn
to the former equation. Since the torsion is known, we can write down (91) explicitly:

T α = Aηα = A ⋆ϑα = dϑα = (∂iej
α) dxi ∧ dxj . (118)
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Applying the star to the equation, we find

Aϑα = (∂iej
α) ⋆(dxi ∧ dxj) . (119)

With ⋆ (dxi ∧ dxj) = ηijkdxk, we have

Aei
α = ηi

jk(∂jek
α) . (120)

In symbolic notation we can write

A ϑα = (curl ϑ)α . (121)

This means that the object of anholonomity is constant, that is, we have a constant
‘vorticity’ field. This coincides with our intuition of the distribution of screw dislocations.

In order to solve (120) approximately, we linearize the coframe, ei
α = δα

i + hi
α + . . . .

We substitute it into (120) and find

Aδα
i = ηi

jk(∂jhk
α) . (122)

Then we can read off the result hk
α = A

2
ηk

αℓxℓ or, in terms of the distortion 1-form

ϑα =

(
δα
i −

A

2
ηα

ijx
j

)
dxi . (123)

The distortion describes a rotation perpendicular to the (αi)-plane.
For the 3 irreducible pieces of the distortion 1-form we write

ϑα = Fi
α dxi = (1)ϑα + (2)ϑα + (3)ϑα , (124)

with the number of independent components 9 = 5 ⊕ 3 ⊕ 1

(1)ϑα := ϑα − (2)ϑα − (3)ϑα , (125)

(2)ϑα :=
1

2

(
Fi

α − F α
i

)
dxi , (126)

(3)ϑα :=
1

3
δα
i Fk

k dxi . (127)

With the help of (123) we find the three different pieces of the distortion as

(1)ϑα = 0 , (2)ϑα = −
A

2
ηα

ijx
j , (3)ϑα = δα

i dxi . (128)

In turn, the constitutive law (89) expresses the stress Σα in terms of the distortion (123).
If we substitute (128) into (89) and compare it with (111), we find for the Hooke type
moduli

c2 = 0 , c3 =
1

2
a3A

2 . (129)
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The elastic modulus c3 corresponds to the compression modulus κ, with c3 = κ/3. In this
way, the dislocation modulus a3 can be expressed in terms of the modulus of compression
and the pitch of helices:

a3 =
2κ

3A2
. (130)

Thus, we conclude that Cartan’s spiral staircase is a solution in the gauge theory of
dislocations provided the moduli of the underlying material obey the conditions (129).

Summing up: In the framework of dislocation gauge theory, we found

T α = 2ω ηα , Rαβ = 0 , R̃αβ = −ω2 ϑαβ , with ω =
A

2
. (131)

If we compare with Cartan’s spiral staircase (20), we observe that there is a difference
to second order in ω: the Riemann and the Riemann-Cartan curvature exchange places.
For Cartan’s spiral staircase we have a teleparallelism with respect to the Riemannian (or
Levi-Civita) connection, for the forests of the screw dislocations the underlying Riemann-
Cartan space is teleparallel. Insofar the dislocation theory led to a slightly different result
as compared to the spiral staircase. This is not unexpected: Let us consider the case of
a constant dislocations density in a real crystal. Then dislocation theory for geometrical
reasons predicts that the underlying connection, in terms of which the torsion is defined,
has to be teleparallel, see [33].

A second remark is in order: The torque stress ταβ = a3Aϑαβ is linear in the pitch
A and the hydrostatic pressure Σα = 1

2
a3A

2ηα quadratic in A. Thus, the pressure cor-
responds to a nonlinear effect. This is consistent with the screw dislocation distribution
specified. In linear elasticity, the stress fields of screw dislocations are represented by pure
shear stresses. Therefore, a constant pressure, caused by screw dilations, can only occur
in the nonlinear regime. Hence our picture is apparently consistent.

6 Discussion

As we have seen, Cartan’s spiral staircase corresponds to a homogeneous and isotropic
torsion distribution in three dimensions. Is it also possible to have such torsion distribu-
tions in two dimensions? Geometrically this has been demonstrated by Schuecking and
Surowitz [59], Sec.14 (see also [57, 58, 44]). We expect that it is likewise possible in
dislocation theory.

Thus, we have methods to visualize two- and three-dimensional distributions of ho-
mogeneous and isotropic torsion, and this may help to understand the corresponding
situations in gravitational physics, in particular in the framework of the Poincaré gauge
theory of gravitation. We wonder whether one can find in this framework a simple cos-
mological model11 with constant and isotropic torsion.

11For such models one should compare, for instance, [1] and [60].
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[8] Cartan, É.: Sur une généralisation de la notion de courbure de Riemann et les espaces
à torsion, C.R. Acad. Sci. (Paris) 174, 593–595 (1922); English translation by Kerlick,
G.D.: On a generalization of the notion of Riemann curvature and spaces with torsion.
In [5], pp. 489–491; with subsequent comments of Trautman, A.: Ref. [61]
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[31] Kröner, E.: Kontinuumstheorie der Versetzungen und Eigenspannungen. Ergebnisse
der Angew. Mathematik. Springer, Berlin (1958)
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