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Preface to the English Edition

This book started about 30 years ago as a course of lectures on functional
analysis given by a youthful Prof. I.I. Vorovich to his students in the De-
partment of Mathematics and Mechanics (division of Mechanics) at Ros-
tov State University. That course was subsequently extended through the
offering, to those same students, of another course called Applications of
Functional Analysis. Later, the courses were given to pure mathematicians,
and even to engineers, by both coauthors. Although experts in mechanics
are quick to accept results concerning uniqueness or non-uniqueness of so-
lutions, many of these same practitioners seem to hold a rather negative
view concerning theorems of existence. Our goal was to overcome this atti-
tude of reluctance toward existence theorems, and to show that functional
analysis does contain general ideas that are useful in applications. This
book was written on the basis of our lectures, and was then extended by
the inclusion of some original results which, although not very new, are
still not too well known.

We mentioned that our lectures were given to students of the Division of
Mechanics. It seems that only in Russia are such divisions located within
departments of mathematics. The students of these divisions study math-
ematics on the level of mathematicians, but they are also exposed to much
material that is normally given at engineering departments in the West. So
we expect that the book will be useful for western engineering departments
as well.

This book is a revised and extended translation of the Russian edition
of the book, and is published by permission of editor house Vuzovskskaya
Kniga, Moscow. We would like to thank Prof. Michael Cloud of Lawrence
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Technological University for assisting with the English translation, for pro-
ducing the LaTeX files, and for contributing the problem hints that appear
in the Appendix.

Department of Mechanics and Mathematics L.P. Lebedev
Rostov State University, Russia
&
Department of Mathematics
National University of Colombia, Colombia

Department of Mechanics and Mathematics I.I. Vorovich
Rostov State University, Russia



Preface to the Russian Edition

This is an extended version of a course of lectures we have given to third
and fourth year students of mathematics and mechanics at Rostov State
University. Our lecture audience typically includes students of applied me-
chanics and engineering. These latter students wish to master methods of
contemporary mathematics in order to read the scientific literature, jus-
tify the numerical and analytical methods they use, and so on; they lack
enthusiasm for courses in which applications appear only after long uninter-
rupted stretches of theory. Finally, the audience includes mathematicians.
These listeners, already knowing more functional analysis than the course
has to offer, are interested only in applications. In order to please such a
diverse audience, we have had to arrange the course carefully and introduce
sensible applications from the beginning. The brevity of the course — and
the boundless extent of functional analysis — force us to present only those
topics essential to the chosen applications. We do, however, try to make the
course self-contained and to cover the foundations of functional analysis.

We assume that the reader knows the elements of mathematics at the be-
ginning graduate or advanced undergraduate level. Those subjects assumed
are typical of most engineering curricula: calculus, differential equations,
mathematical physics, and linear algebra. A knowledge of mechanics, al-
though helpful, is not necessary; we wish to attract all types of readers
interested in the applications and foundations of functional analysis. We
hope that not only students of engineering and applied mechanics will ben-
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efit, but that some mathematicians or physicists will discover tools useful
for their research as well.

Department of Mechanics and Mathematics L.P. Lebedev
Rostov State University, Russia

Department of Mechanics and Mathematics I.I. Vorovich
Rostov State University, Russia
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Introduction

Long ago it was traditional to apply mathematics only to mechanics and
physics. Now it is almost impossible to find an area of knowledge in which
mathematics is not used as a tool to create new models and to simulate
them. This is due mainly to the fantastic ability of computers to process
models having thousands of parameters.

In view of the fact that mathematics has become such a central tool,
it is fortunate that mathematics itself tends to produce methods of great
generality. Functional analysis, in particular, allows us to approach differ-
ent mathematical facts and methods from a unified point of view. Let us
consider some examples.

Example 1. A system of linear algebraic equations

xi =
n∑

j=1

aijxj + ci, i = 1, . . . , n, (1)

can be solved by the method of successive approximations in the form

x
(0)
i = ci,

x
(k+1)
i =

n∑
j=1

aijx
(k)
j + ci, i = 1, . . . , n, k = 1, 2, . . . .

To establish convergence of the scheme, let us consider the difference

x
(k+1)
i − x

(k)
i =

n∑
j=1

aij [x
(k)
j − x

(k−1)
j ].
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We have

max
1≤i≤n

|x(k+1)
i − x

(k)
i | ≤ max

1≤i≤n

n∑
j=1

|aij ||x(k)
j − x

(k−1)
j |

≤ q · max
1≤j≤n

|x(k)
j − x

(k−1)
j |

where

q = max
1≤i≤n

n∑
j=1

|aij |.

Convergence of the method is ensured if q < 1. Then (z1, . . . , zn), where

zi = lim
k→∞

x
(k)
i

for i = 1, . . . , n, is a solution to (1).
Now let us apply the successive approximation scheme to a system of

integral equations

xi(t) =
n∑

j=1

∫ 1

0
aij(t, s)xj(s) ds+ ci(t), i = 1, . . . , n, (2)

where ci(t) and aij(t, s) are given continuous functions on [0, 1] and [0, 1]×
[0, 1], respectively. The scheme is

x
(0)
i (t) = ci(t),

x
(k+1)
i (t) =

n∑
j=1

∫ 1

0
aij(t, s)x

(k)
j (s) ds+ ci(t), i = 1, . . . , n.

For the difference of two successive approximations, we have

x
(k+1)
i (t) − x

(k)
i (t) =

n∑
j=1

∫ 1

0
aij(t, s)[x

(k)
j (s) − x

(k−1)
j (s)] ds

so

|x(k+1)
i (t) − x

(k)
i (t)| ≤

n∑
j=1

∫ 1

0
|aij(t, s)| |x(k)

j (s) − x
(k−1)
j (s)| ds.

Thus

max
1≤i≤n
0≤t≤1

|x(k+1)
i (t) − x

(k)
i (t)| ≤ max

1≤i≤n
0≤t≤1

n∑
j=1

∫ 1

0
|aij(t, s)| ds ·

· max
1≤j≤n
0≤s≤1

|x(k)
j (s) − x

(k−1)
j (s)|.
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It follows that for

q = max
1≤i≤n
0≤t≤1

n∑
j=1

∫ 1

0
|aij(t, s)| ds < 1

the sequence {x(k)
i (t)} (i = 1, . . . , n) is uniformly convergent on [0, 1]; hence

there exists a limit zi(t) = limk→∞ x
(k)
i (t), and (z1(t), . . . , zn(t)) is a solu-

tion to (2).
The obvious similarity between the treatments of (1) and (2) suggests

that some general approach might cover these and many other cases of
interest.

Example 2. In what follows, we shall deal mainly with spaces of infinite
dimension. For example, the wave equation

∂2u

∂t2
=
∂2u

∂x2 (3)

describes the vibrations u = u(x, t) of a stretched string. Let the string
ends be fixed:

u(0, t) = u(1, t) = 0.

It is natural to seek a solution with finite potential and kinetic energies,
i.e., with ∫ 1

0

(
∂u

∂x

)2

dx < ∞,

∫ 1

0

(
∂u

∂t

)2

dx < ∞.

We could seek a solution in the form of a Fourier series

u(x, t) =
∑
k,m

Akm sinπkx sinπmt.

This solution is evidently described by a denumerable set of numbers Akm,
which can be regarded as the components of a vector having an infinite
number of components. The set of such “vectors” clearly constitutes a
space that is infinite dimensional.

One of the difficulties in dealing with an infinite dimensional space is
that the Bolzano–Weierstrass principle (that any bounded infinite sequence
contains a convergent subsequence) breaks down. For example, we cannot
select a convergent subsequence from the bounded sequence of functions
yk = sin kx, k = 1, 2, . . ..

Example 3. In contemporary mathematical physics, generalized solutions
are typical. Without going into too much detail, we may briefly consider
the problem of a bar with clamped ends bending under a load q(x). A
corresponding boundary value problem is

(B(x)y′′(x))′′ − q(x) = 0, y(0) = y′(0) = y(l) = y′(l) = 0, (4)
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where B(x) and l are the stiffness and length, respectively, of the bar. This
formulation supposes y = y(x) to possess derivatives up to fourth order.

The same boundary value problem can be posed differently through the
use of variational principles. It can be shown that the functional I defined
by

I(y) =
1
2

∫ l

0
[B(y′′)2 − 2q(x)y] dx

takes on a minimum value at an equilibrium state of the bar (here all y(x)
under consideration must satisfy the boundary conditions stated in (4)).
The variation

δI =
∫ l

0
[B(x)y′′(x)ϕ′′(x) − q(x)ϕ(x)] dx

vanishes for any ϕ(x) satisfying the boundary conditions in (4) if y(x)
satisfies (4). A function y(x) is said to be a generalized solution to the
problem (4) if the equation∫ l

0
[B(x)y′′(x)ϕ′′(x) − q(x)ϕ(x)] dx = 0 (y(0) = y′(0) = y(l) = y′(l) = 0)

holds for any sufficiently smooth function ϕ(x) such that

ϕ(0) = ϕ′(0) = ϕ(l) = ϕ′(l) = 0.

So a generalized solution satisfies the equilibrium equation in a Lagrange
principle sense. For a moving system, we can introduce generalized solutions
using Hamilton’s variational principle.

Since the restrictions on smoothness for generalized solutions are milder
than those for classical solutions, the above approach extends the circle
of problems we may investigate. In particular, problems with non-smooth
loads often occur in industrial applications. The approach also arises nat-
urally when we study convergence of the finite element method — one of
the most powerful tools of mathematical physics.

At this point we hope the reader has begun to picture functional anal-
ysis as a powerful tool in applications. We are therefore ready to begin
a more systematic study of its fundamentals. Let us close this introduc-
tion by presenting two theorems of classical analysis. Both theorems bear
Weierstrass’s name, and will be used frequently in what follows.

Theorem 1. Let a sequence {fn(x)} of functions continuous on a compact
set Ω ⊂ Rk converge uniformly; that is, for any ε > 0 there is an integer
N = N(ε) such that

|fn+m(x) − fn(x)| < ε

for any n > N , m > 0, and x ∈ Ω. Then there exists a limit function

f(x) = lim
n→∞ fn(x)
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that is continuous on Ω.

Theorem 2. Let f(x) be a function continuous on a compact set Ω ⊂ Rk.
For any ε > 0 there is a polynomial Pn(x) of the nth degree such that

|f(x) − Pn(x)| < ε

for any x ∈ Ω.

We recall that in Rk the term “compact set” refers to a closed and
bounded set.
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1
Metric Spaces

1.1 Preliminaries

Consider a set of particles Pi, i = 1, . . . , n. To locate these particles in the
space R3, we need a reference system. Let the Cartesian coordinates of Pi

be (ξi, ηi, ζi) for each i. Identifying (ξ1, η1, ζ1) with (x1, x2, x3), (ξ2, η2, ζ2)
with (x4, x5, x6), and so on, we obtain a vector x of the Euclidean space R3n

with coordinates (x1, x2, . . . , x3n). This vector determines the positions of
all particles in the set.

To distinguish different configurations x and y of the system, we can
introduce a distance from x to y:

dE(x,y) =

(
3n∑
i=1

(xi − yi)2
)1/2

.

This is the Euclidean distance (or metric) of R3n. Alternatively, we could
characterize the distance from x to y using the function

dS(x,y) = max{|x1 − y1|, |x2 − y2|, . . . , |x3n − y3n|}.

It is easily seen that each of the metrics dE and dS satisfy the following
properties, known as the metric axioms:

D1. d(x,y) ≥ 0;

D2. d(x,y) = 0 if and only if x = y;
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D3. d(x,y) = d(y,x);

D4. d(x,y) ≤ d(x, z) + d(z,y).

Any real valued function d(x,y) defined for all x,y ∈ R3n is called a metric
on R3n if it satisfies properties D1–D4. Property D1 is called the axiom of
positiveness, property D3 is called the axiom of symmetry, and property
D4 is called the triangle inequality.
Problem 1.1.1. Let a real valued function d(x,y) be defined for all x,y ∈
Rn. Show that if d satisfies D2, D3, and D4, then it also satisfies D1.
Confirm that this does not depend on the nature of the elements x and y.
Remark 1.1.1. It follows from Problem 1.1.1 that the set of axioms for the
metric can be restricted to just three of them: D2, D3, and D4.

With regard to sequence convergence in R3n, the metrics dE and dS are
equivalent since there exist positive constants m1,m2 independent of x and
y such that

0 < m1 ≤ dE(x,y)
dS(x,y)

≤ m2 < ∞ (1.1.1)

whenever x,y ∈ R3n and x �= y. So

lim
k→∞

dE(xk,x) = 0 =⇒ lim
k→∞

dS(xk,x) = 0

and vice versa.
Remark 1.1.2. In what follows, we shall use the notation “mi” for those
constants whose exact values are not important.

Equation (1.1.1) shows that, in a certain way, dE(x,y) and dS(x,y) have
the same standing as metrics on R3n. We can introduce other functions on
R3n satisfying axioms D1–D4: for example,

dp(x,y) =

(
3n∑
i=1

|xi − yi|p
)1/p

, p = constant ≥ 1,

and

dk(x,y) =

(
3n∑
i=1

ki|xi − yi|2
)1/2

, ki > 0.

Problem 1.1.2. Show that any two of the metrics introduced above are
equivalent on Rn. Note that two metrics d1(x,y) and d2(x,y) on Rn are
equivalent if there exist m1,m2 such that

0 < m1 ≤ d1(x,y)
d2(x,y)

≤ m2 < ∞

for any x,y ∈ Rn such that x �= y.
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The notion of metric generalizes the notion of distance in R3. It can
be applied not only to particle locations but also to particle velocities,
accelerations, and masses, in order to distinguish between different states
of a given system or between different systems of particles. The same can
be done for any system described by a finite number of parameters (forces,
temperatures, etc.).

Now let us consider how to extend the idea of distance to continuum
problems. Take a string, with fixed ends, of length π. For a loaded string,
we can use the Fourier expansion

u(s) =
∞∑

k=1

xk sin ks (1.1.2)

to describe the string displacement u(s). Any state of the string can be
identified with a vector x having infinitely many coordinates xi, i = 1, 2, . . ..
The dimension of the space S of all such vectors is obviously not finite.

We can modify the metric of Rn to determine the distance from x to y
in S. The necessary changes are evident; we can use

d(x,y) =

( ∞∑
i=1

|xi − yi|p
)1/p

, p ≥ 1,

or
d(x,y) = sup

i
|xi − yi|.

The distances so defined satisfy D1–D4, hence are metrics. So we have an
analogy between Rn and S — but there are some differences. Consider, for
instance, the distance from 0 = (0, 0, . . .) to x0 = (1, 1/2, 1/3, . . .) using
the metrics

d1(x,y) =
∞∑

i=1

|xi − yi|, d2(x,y) = sup
i

|xi − yi|.

Since

d1(x0,0) =
∞∑

i=1

1/i, d2(x0,0) = 1,

and the series diverges, we do not have

d1(x0,0)/d2(x0,0) ≤ m2 < ∞.

Hence these metrics are not equivalent (moreover, they are defined on dif-
ferent subsets of S). So on an infinite dimensional space, different metrics
can determine different properties of sequence convergence.
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Definition 1.1.1. A set X is called a metric space if for each pair of points
x, y ∈ X there is defined a metric (a real valued function) which satisfies
axioms D1–D4.

Roughly speaking, a metric space consists of a set X along with an
appropriate metric d; it can therefore be regarded as an ordered pair (X, d).

Remark 1.1.3. In the following pages, we shall not distinguish between met-
ric spaces based on the same set of elements if their metrics are equivalent.
That is, if d1 and d2 are equivalent metrics, then we shall not distinguish
between (X, d1) and (X, d2). Metric spaces with non-equivalent metrics,
even those consisting of the same set of elements, are different for us. By
the above example we are made to distinguish the metric spaces consist-
ing of elements of S. Moreover, these spaces with non-equivalent metrics
consist of different subsets of elements of S. So S is not a metric space,
but only a (linear) set of infinite dimensional vectors whose linear subsets
(subspaces) of elements, together with their metrics, can be various metric
spaces of vectors with infinite numbers of coordinates.

In the definition of metric space the nature of the elements of the space is
unimportant. The elements could be abstract objects, even ordinary objects
such as chairs or tables — it is merely necessary that we can introduce
for each pair of elements of the set a function satisfying the axioms of
a metric. In mathematical physics, metric spaces of functions are usually
employed. These are the spaces to which solutions of some equations and/or
the parameters of a problem must belong. During the rigorous investigation
of such problems, some restrictions are always imposed on the properties
of the solutions sought. This is due not only to a desire for rigor and
formalism; some mathematical problems have several solutions, some parts
of which contradict our ideas about the nature of the process described
by the problem. Additional restrictions based on the physical nature of
the problem allow us to select physically reasonable solutions. One way to
impose such restrictions is to require that the solution belong to a metric
space. Thus the choice of space in which one seeks a solution can be crucial
for the solution of realistic problems. Depending on this choice, solutions
may exist or not, be unique or not, etc. Metric spaces in mathematical
physics are usually linear and infinite dimensional.

Let us enumerate some metric spaces of infinite dimensional vectors x =
(x1, x2, . . .) (equivalently, of sequences x = {xi}).

1. The metric space m. The space m is the set of all bounded sequences;
the metric is given by

d(x,y) = sup
i

|xi − yi|. (1.1.3)
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2. The metric space 	p. The space 	p (p ≥ 1) is the set of all sequences
{xi} such that

∑∞
i=1 |xi|p < ∞; the metric is

d(x,y) =

( ∞∑
i=1

|xi − yi|p
)1/p

. (1.1.4)

3. The metric space c. The space c is the linear subspace of m that consists
of all convergent sequences; the metric is the metric of m.
4. The metric space c0. The space c0 is the subspace of c consisting of all
sequences converging to 0; again, the metric is the metric of m.

The metrics of these spaces were introduced by analogy with metrics on
Rn. We now consider another class of metrics: the energy metrics.
5. The energy space for a string. The potential energy of a string is pro-
portional to ∫ 2π

0

(
∂u

∂s

)2

ds = π

∞∑
k=1

k2x2
k,

xk being defined by (1.1.2). We can compare two states of the string by
introducing the metric

d(u, v) ≡ d(x,y) =

( ∞∑
k=1

k2(xk − yk)2
)1/2

(1.1.5)

where

v(s) =
∞∑

k=1

yk sin ks.

The energy space of the string is the set of all sequences of Fourier coeffi-
cients such that

∑∞
k=1 k

2x2
k < ∞; the metric is given by (1.1.5).

Problem 1.1.3. Show that (1.1.3)–(1.1.5) are indeed metrics on their re-
spective sets.

Energy spaces are advantageous when applied to mechanics problems, as
we shall see later.
6. The metric space of straight lines. The notion of metric space is abstract.
A metric space can consist of elements that are not vectors. Consider, for
example, the set M of all straight lines in the plane which do not pass
through the coordinate origin. A straight line L is given by the equation
x cosα+ y sinα− p = 0. Let us show that

d(L1, L2) =
[
(p1 − p2)2 + 4 sin2 α1 − α2

2

]1/2

is a metric on M . Axioms D1 and D3 are obviously satisfied. Consider
D2. Certainly d(L1, L2) = 0 whenever L1 = L2. Conversely, d(L1, L2) = 0
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implies both p1 = p2 and sin(α1 − α2)/2 = 0; the latter condition gives
α1 − α2 = 2πn (n = 0,±1,±2, . . .) hence L1 = L2. Finally, consider D4.
Since

4 sin2 α1 − α2

2
= (sinα1 − sinα2)2 + (cosα1 − cosα2)2

we have

d(L1, L2) =
[
(p1 − p2)2 + (sinα1 − sinα2)2 + (cosα1 − cosα2)2

]1/2
.

Let (pi, sinαi, cosαi), for i = 1, 2, 3, be the coordinates of a point Ai in
3-dimensional Euclidean space. Noting that d(Li, Lj) equals the Euclidean
distance from Ai to Aj in R3, we see that D4 is also satisfied.

1.2 Some Metric Spaces of Functions

To describe the behavior or change in state of a body in space, we use
functions of one or more variables. Displacements, velocities, loads, and
temperatures are all functions of position. So we must learn how to distin-
guish different states of a body; the appropriate tool for this is, of course,
the notion of metric space. In mechanics of materials, we deal mostly with
real-valued continuous or differentiable functions.

Let Ω be a closed and bounded domain in Rn. A natural measure of the
deviation between two continuous functions f(x) and g(x), x ∈ Ω, is

d(f, g) = max
x∈Ω

|f(x) − g(x)|. (1.2.1)

It is obvious that d(f, g) satisfies axioms D1–D3. Let us verify D4. Since
|f(x) − g(x)| is a continuous function on Ω, there exists a point x0 ∈ Ω
such that

d(f, g) = max
x∈Ω

|f(x) − g(x)| = |f(x0) − g(x0)|.

For any function h(x) which is continuous on Ω, we get

d(f, g) = |f(x0) − g(x0)|
≤ |f(x0) − h(x0)| + |h(x0) − g(x0)|
≤ d(f, h) + d(h, g).

(Here we use the Weierstrass theorem that on a compact set a continuous
function attains its maximum and minimum values.) Thus d(f, g) in (1.2.1)
is a metric.

Definition 1.2.1. Let Ω be a closed and bounded domain. C(Ω) is the
metric space consisting of the set of all continuous functions on Ω supplied
with the metric (1.2.1).
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To take into account the derivatives of functions, we must use other
metrics. One of these is

d(f, g) =
∑

|α|≤k

max
x∈Ω

|Dαf(x) −Dαg(x)| (1.2.2)

where

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαn

n
, |α| = α1 + α2 + · · · + αn.

Problem 1.2.1. Let C(k)(Ω) denote the set of all continuous functions on a
closed and bounded domain Ω whose derivatives up to order k are continu-
ous on Ω. Show that this set is a metric space under the distance function
(1.2.2).

On C(Ω), let us consider another metric:

d(f, g) =
(∫

Ω
|f(x) − g(x)|p dΩ

)1/p

(p ≥ 1) (1.2.3)

where Ω is a compact domain in Rn that is Jordan measurable. We assume
this for formula (1.2.3) to be well defined for any f, g being continuous on
Ω. In applications, we use domains occupied by physical bodies that are of
comparatively simple shape. We will always assume that such domains are
Jordan measurable. Since the spaces Lp(Ω) and W l,p(Ω) are auxiliary for
our purposes (we use them to characterize physical objects) we shall assume
the same Jordan measurability for Ω as well, without explicit mention.

Now let us show that (1.2.3) really represents a metric. The only non-
trivial axiom to be verified is D4; its validity follows from the Minkowski
inequality for integrals(∫

Ω
|f1(x) + f2(x)|p dΩ

)1/p

≤
(∫

Ω
|f1(x)|p dΩ

)1/p

+
(∫

Ω
|f2(x)|p dΩ

)1/p

(1.2.4)
which holds for any p ≥ 1. With

f1(x) = f(x) − h(x), f2(x) = h(x) − g(x),

(1.2.4) becomes d(f, g) ≤ d(f, h) + d(h, g), showing that C(Ω) is also a
metric space under (1.2.3).

Although(∫
Ω

|f(x) − g(x)|p dΩ
)1/p

≤ (mes Ω)1/p max
x∈Ω

|f(x) − g(x)|,

we cannot find a constant m such that

max
x∈Ω

|f(x) − g(x)| ≤ m

(∫
Ω

|f(x) − g(x)|pdΩ
)1/p
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holds for any pair of continuous functions f(x) and g(x). (The reader should
show this by constructing a counterexample.) Hence the metrics (1.2.1) and
(1.2.3) are not equivalent on C(Ω).
Remark 1.2.1. For 0 < p < 1, d(f, g) in (1.2.3) is not a metric.

Another inequality for integrals, the Hölder inequality∫
Ω

|f(x)g(x)| dΩ ≤
(∫

Ω
|f(x)|p dΩ

)1/p(∫
Ω

|g(x)|q dΩ
)1/q

(1.2.5)

where 1/p+1/q = 1, will be used frequently. Proofs of this and Minkowski’s
inequality can be found in [29].
Problem 1.2.2. Show that the function

d(f, g) =
∫ 1

0
|f ′(x) − g′(x)| dx

is not a metric on the set of all functions that are continuous on [0, 1]. On
what set is it a metric?

1.3 Energy Spaces

We have already introduced the energy space for a string. Let us consider
other examples. In what follows, we shall employ only dimensionless vari-
ables, parameters, and functions of state of a body.

Bending of a Bar
In the Introduction we considered the problem of bending a clamped bar,
which was governed by (4). The potential energy of the bar is

E1(y) =
1
2

∫ l

0
B(x)(y′′)2 dx.

On the set S consisting of all functions y(x) that are twice continuously
differentiable on [0, l] and that satisfy

y(0) = y′(0) = y(l) = y′(l) = 0, (1.3.1)

let us consider

d(y1, y2) = (2E1(y1 − y2))
1/2 =

(∫ l

0
B(x)[y′′

1 (x) − y′′
2 (x)]2 dx

)1/2

.

For this, D1 and D3 obviously hold. Satisfaction of D4 follows from the
fact that E1(y) is quadratic in y. To verify D2, we need only show that
d(y, z) = 0 implies y(x) = z(x). But d(y, z) = 0 implies (y(x)− z(x))′′ = 0,
hence y(x) − z(x) = a1x+ a2 where a1, a2 are constants; imposing (1.3.1),
we arrive at a1 = a2 = 0. So d(y1, y2) is indeed a metric on S.
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Elastic Membranes
The potential energy of a membrane occupying a domain Ω ⊂ R2 is pro-
portional to

E2(u) =
∫

Ω

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]
dx dy.

So we can try
d(u, v) = (E2(u− v))1/2 (1.3.2)

as a metric on the functions u = u(x, y) that describe the normal displace-
ments of the membrane. We first consider the case where the edge of the
membrane is clamped, i.e.,

u
∣∣∣
∂Ω

= 0 (1.3.3)

where ∂Ω is the boundary of Ω. The function d(u, v) of (1.3.2) is a metric
on the set C(1)(Ω). Axioms D1 and D3 hold obviously; D2 holds by (1.3.3),
and D4 holds by the quadratic nature of E2(u). This space is appropriate
for investigating the corresponding boundary value problem

∆u = −f, u
∣∣∣
∂Ω

= 0,

called the Dirichlet problem for Poisson’s equation. This describes the be-
havior of the clamped membrane under a load f = f(x, y).

Another main problem for Poisson’s equation, the Neumann problem, is
determined by the boundary condition

∂u

∂n

∣∣∣
∂Ω

= 0. (1.3.4)

A result from the calculus of variations is that a minimizer of the functional

J(u) =
1
2

∫
Ω

[(
∂u

∂x

)2

+
(
∂u

∂y

)2

− 2fu

]
dx dy (1.3.5)

is a solution to the Neumann problem that can be formulated as
Problem 1.3.1. Given f(x, y) ∈ C(Ω), find a minimizer u(x, y) of J(u) such
that u(x, y) ∈ C(1)(Ω).

The boundary condition (1.3.4) appears here as a natural one; we need
not formulate it in advance. That is why we do not require any boundary
conditions on functions constituting the energy space for the Neumann
problem. If we take (1.3.2) as a metric for this energy space, we see that D2
is not fulfilled: from d(u, v) = 0 it follows that u(x, y)−v(x, y) = constant.
There are two ways in which we can make use of the energy metric for
this problem. One is to introduce a space whose elements are actually
equivalence classes of functions, two functions belonging to the same class
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(and hence identified with each other) if their difference is a given constant
on Ω. This approach takes into account the stress of the membrane, but
not its displacements as a “rigid” whole. Another approach, which avoids
“rigid motions,” is to impose an additional integral-type restriction on all
functions of the space, e.g.,∫

Ω
u(x, y) dx dy = 0.

Both approaches permit us to use (1.3.2) as a metric on an energy space
for a Neumann problem. We shall consider this in more detail later. To do
the problem sensibly, we shall need to impose on the forces the balance
condition

∫
Ω f dx dy = 0.

A Plate
For a linear elastic plate the potential energy is

E3(w) =
∫

Ω

D

2

{
(∆w)2 + 2(1 − ν)

[(
∂2w

∂x∂y

)2

− ∂2w

∂x2

∂2w

∂y2

]}
dx dy

(1.3.6)
where D is the bending stiffness of the plate, ν is Poisson’s ratio, and
w(x, y) is the normal displacement of the mid-surface of the plate, which
is denoted by Ω in the xy-plane. If the edge of the plate is clamped we get

w
∣∣∣
∂Ω

=
∂w

∂n

∣∣∣
∂Ω

= 0. (1.3.7)

If E3(w) = 0, then w = a + bx + cy and, from (1.3.7), w = 0. So D2 is
fulfilled by the distance function

d(w1, w2) = (2E3(w1 − w2))
1/2

. (1.3.8)

The remaining metric axioms are easily checked, and d(w1, w2) is a metric
on the subset of C(2)(Ω) consisting of all functions satisfying (1.3.7). This
is the energy space for the plate.

If the edge of the plate is free from geometrical fixing (clamping), the
situation is similar to the Neumann problem of membrane theory: we must
eliminate “rigid” motions of the plate. We shall consider this in detail later.

Linear Elasticity
Consider an elastic body occupying a bounded domain Ω ⊂ R3. The po-
tential energy functional of the body is

E4(u) =
1
2

∫
Ω
cijklεklεij dΩ (1.3.9)
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where cijkl is a component of the tensor of elastic moduli; the strain tensor
with components (εij) is defined by

εij ≡ εij(u) =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, u = (u1, u2, u3).

Here (x1, x2, x3) are the Cartesian coordinates of a point of Ω. As is the
usual case with tensors, the repeated index convention for summation is in
effect.

From elasticity theory, the elastic moduli satisfy the following conditions:

(a) The tensor is symmetric, that is

cijkl = cklij = cjikl. (1.3.10)

(b) The tensor is positive definite; that is, for any symmetric tensor (εij)
with εij = εji, the inequality

cijklεklεij ≥ c0

3∑
i,j=1

ε2ij (1.3.11)

holds with a positive constant c0 that does not depend on (εij).

On the set of continuously differentiable vector functions u(x), repre-
senting displacements of points of the body, let us introduce a function

d(u,v) = (2E4(u − v))1/2
. (1.3.12)

If d(u,v) = 0 then, from (1.3.11), εij(u − v) = 0 for all i, j = 1, 2, 3. As is
known from the theory of elasticity,

u(x) − v(x) = a + x × b

where a and b are constant vectors. If we restrict the set of vector functions
by the boundary condition

u
∣∣∣
∂Ω

= 0 (1.3.13)

(i.e., clamp the body edge) then we get u(x) − v(x) = 0. The other metric
axioms hold, too. Thus we can impose the metric (1.3.12) on the set of all
continuously differentiable vector functions u(x) satisfying (1.3.13); this is
the energy space for the elastic body.

Later we shall consider other boundary conditions of the boundary value
problems of the theory of elasticity.

We have not introduced special notation for the energy spaces discussed
thus far, since they are not the spaces we shall actually use. They form
only the basis of the actual energy spaces; to introduce these, we need the
notions of the Lebesgue integral and generalized derivatives, which we shall
introduce later.
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1.4 Sets in a Metric Space

By analogy with Euclidean space, we may introduce a few concepts.

Definition 1.4.1. In a metric space X the set of points x ∈ X such that
d(x0, x) < τ (≤ τ) is called the open (closed) ball of radius τ about x0.

This definition coincides with the definition of the ball in elementary
geometry. However, even in Euclidean space, the use of a metric different
from the Euclidean one can give quite different sets as balls. For example,
in R3 with the metric d(x,y) = supi |xi − yi|, a ball about zero d(0,x) < 1
is a cube having side length 2.

Definition 1.4.2. A subset S of a metric space X is said to be open if,
together with any of its points x, S contains an open ball of radius τ(x)
about x.

In a metric space we can introduce figures (e.g., ellipses) whose defini-
tions require only a notion of distance. In a concrete metric space, we can
introduce some sets using special properties of their elements. For example,
in c (see page 11) a cube C may be defined by

C = {x = (x1, x2, . . .) ∈ c : |xk − xk0| ≤ a for each k}

where x0 = (x10, x20, . . .) is a fixed point of c. Note that we call it a “cube”
because this definition is similar to the definition of a cube in R3. However,
by Definition 1.4.1, C is a ball.

Up to now we have not used the notion of linear space and, where possible
in this chapter, we shall not exploit it. But the algebraic nature of a linear
space X allows us to consider the straight line defined by

tx1 + (1 − t)x2, x1, x2 ∈ X (1.4.1)

where t ∈ (−∞,∞) is a parameter. If we restrict t ∈ [0, 1], then (1.4.1)
yields a segment in X.

When necessary, we shall also use the notions of plane, subspace, etc.

Definition 1.4.3. A set in X is called convex if together with each pair
of its points it contains the segment connecting those points.

Definition 1.4.4. A set in a metric space X is called bounded if there is
a ball of a finite radius that contains all the elements of the set.

1.5 Convergence in a Metric Space

It is interesting to construct various geometrical figures in a metric space,
but we are more interested in properties which, for spaces of functions, are
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the usual subjects of calculus. First we introduce the notion of convergence
of a sequence in a metric space.

In a metric space X, an infinite sequence {xi} has limit x if, for every
positive number ε, there exists a number N dependent on ε such that
whenever i > N we have d(xi, x) < ε. (In other words, for any i > N , all
members of the sequence xi belong to the ball of radius ε about x.) We
write

x = lim
i→∞

xi.

Alternatively, we may say that xi → x as i → ∞. We also say that {xi} is
convergent. This notion generalizes one from calculus, and possesses similar
properties:

1. There exists no more than one limit of a convergent sequence. To
see this, suppose to the contrary that {xi} has two distinct limits x1

and x2. Then d(x1, x2) = a �= 0, say. Take ε = a/3; by definition,
there exists N such that for all i ≥ N we have d(xi, x

1) ≤ a/3
and d(xi, x

2) ≤ a/3. But a = d(x1, x2) ≤ d(x1, xi) + d(xi, x
2) ≤

a/3 + a/3 = 2a/3, a contradiction.

2. A sequence which is convergent in a metric space is bounded.

The ease with which these and similar results are obtained might lead us to
try to generalize other classical results — the Bolzano–Weierstrass theorem
for example. However, as we mentioned before, many such results do not
extend to spaces of infinite dimension.

A sequence {xi} is called a Cauchy sequence if for every positive number
ε there exists a number N dependent on ε such that whenever m,n ≥ N
we have d(xn, xm) < ε. That this is not in general equivalent to the notion
of convergence is shown by the following exercise.
Problem 1.5.1. Construct a sequence of functions continuous on [0, 1] such
that the sequence converges to a discontinuous function in a space where
the metric is

d(f, g) =
∫ 1

0
|f(x) − g(x)| dx. (1.5.1)

1.6 Completeness

Definition 1.6.1. A metric space is said to be complete if every Cauchy
sequence in the space has a limit in the space; otherwise, it is said to be
incomplete.

The space R of all real numbers under the metric d(x, y) = |x−y| gives us
an example of a complete metric space. Its subset Q of all rational numbers
gives us an example of an incomplete space; there exist Cauchy sequences
of rational numbers whose limits are irrational.
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Another example of a complete metric space is C(Ω) when Ω is compact.
Its completeness is a consequence of Weierstrass’ theorem that the limit of
a uniformly convergent sequence of continuous functions on a compact set
Ω is continuous on Ω. (The reader should verify that a Cauchy sequence in
C(Ω) is uniformly convergent.)

Problem 1.5.1 shows that, depending on the kind of metric, the same set
can underlie a complete or an incomplete metric space. The metric space
of all continuous functions on a compact set Ω with the metric (1.5.1) is
incomplete.

Definition 1.6.2. An element x of a metric space X is called an accu-
mulation point of a set S if any ball centered at x contains a point of S
different from x. Next, S is called a closed set in X if it contains all its
points of accumulation.

It is clear that for x to be an accumulation point of S it suffices to
establish the existence of a countable sequence of balls centered at x with
radii εn → 0 each of which contains a point of S different from x.

If X is a complete metric space then the definition of an accumulation
point x in S states that there is a Cauchy sequence belonging to S, whose
elements are different from x, for which x is a limit element. Conversely, if
we have a Cauchy sequence belonging to S in a complete metric space then
there is a limit point in X. There are only two possibilities for this point:

1. it is an accumulation point of S;

2. it is an isolated point belonging to S.

These facts bring us to another form of Definition 1.6.2 for a complete
metric space that we shall use in what follows.

Definition 1.6.2′. A set S in a complete metric space X is called closed if
any Cauchy sequence whose elements are in S has a limit belonging to S.

The next theorem is evident.

Theorem 1.6.1. A subset S of a complete metric space X supplied with
the metric of X is a complete metric space if and only if S is closed in X.

Definition 1.6.3. A set A is said to be dense in a metric space X if for
every x ∈ X any ball of nonzero radius about x contains an element of A.

The Weierstrass theorem states that the set of all polynomials is dense
in C(Ω), where Ω is any compact set in Rn.

The property of completeness is of great importance since numerous
passages to the limit are necessary to justify numerical methods, existence
theorems, etc. The energy spaces of continuously differentiable functions
introduced above are all incomplete. Because these spaces are so convenient
in mechanics, we are led to consider the material of the next section.
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1.7 The Completion Theorem

Definition 1.7.1. A one-to-one correspondence between metric spaces M1
and M2 with metrics d1 and d2 respectively is called a one-to-one isometry
if the correspondence between the elements of these spaces preserves the
distances between the elements; that is, if a pair of elements x, y belonging
to M1 corresponds to a pair u, v of M2, then d1(x, y) = d2(u, v).

Theorem 1.7.1. For a metric space M , there is a one-to-one isometry
between M and a set M̃ which is dense in a complete metric space M∗;
M∗ is called the completion of M . If M is a linear space, the isometry
preserves algebraic operations.

Remark 1.7.1. The elements of M differ in nature from those of M̃ . How-
ever, in what follows we shall frequently identify them as part of our rea-
soning process.

Before we can prove the completion theorem, we need

Definition 1.7.2. Two sequences {xn} and {yn} in M are said to be
equivalent if d(xn, yn) → 0 as n → ∞.

Proof of Theorem 1.7.1. The proof is constructive. First we show how to
introduce the set M∗, then we verify that it has metric space properties as
stated in the theorem.

Let {xn} be a Cauchy sequence in M . Collect all Cauchy sequences
in M that are equivalent to {xn} and call the collection an equivalence
class X. Any Cauchy sequence from X is called a representative of X.
To any x ∈ M there corresponds the equivalence class which contains the
stationary sequence (x, x, x, . . .) and is called the stationary equivalence
class. Denote all equivalence classes X by M∗ and all stationary ones by
M̃ . Introducing on M∗ the metric given by

d(X,Y ) = lim
n→∞ d(xn, yn) (1.7.1)

where {xn} and {yn} are representatives of the equivalence classes X and
Y respectively, we obtain the needed M∗, M̃ , and the correspondence.

First we must show that (a) (1.7.1) is actually a metric, i.e., it does not
depend on the choice of representatives and satisfies the metric axioms, (b)
M∗ is complete, and (c) M̃ is dense in M∗.

(a) Validity of (1.7.1). Let us first establish that the limit d(X,Y ) exists
and is independent of choice of representative sequences. From D4 we get

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

so that
d(xn, yn) − d(xm, ym) ≤ d(xn, xm) + d(ym, yn),
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and, interchanging m and n,

d(xm, ym) − d(xn, yn) ≤ d(xm, xn) + d(yn, ym),

hence
|d(xn, yn) − d(xm, ym)| ≤ d(xn, xm) + d(yn, ym) → 0

as n,m → ∞ because {xn} and {yn} are Cauchy sequences. So {d(xn, yn} is
a Cauchy sequence in R and the limit in (1.7.1) exists. Similarly, the reader
can verify that this limit does not depend on the choice of representatives
X,Y . We now verify the metric axioms for (1.7.1):

D1: d(X,Y ) = limn→∞ d(xn, yn) ≥ 0.

D2: If X = Y then d(X,Y ) = 0. Conversely, if d(X,Y ) = 0 then X and
Y contain the same set of equivalent Cauchy sequences.

D3: d(X,Y ) = limn→∞ d(xn, yn) = limn→∞ d(yn, xn) = d(Y,X).

D4: For xn, yn, zn ∈ M ,

d(xn, yn) ≤ d(xn, zn) + d(zn, yn).

Passage to the limit gives

d(X,Y ) ≤ d(X,Z) + d(Z, Y )

for the equivalence classes X,Y, Z containing {xn}, {yn}, {zn}, re-
spectively.

(b) Completeness of M∗. Let {Xi} be a Cauchy sequence in M∗. We
shall show that there exists X = limi→∞Xi. From each of the Xi we first
choose a Cauchy sequence {x(i)

j } and from this an element denoted xi such

that d(xi, x
(i)
j ) < 1/i for all j > i. (This is possible since {x(i)

j } is a Cauchy
sequence.) Let us show that {xi} is a Cauchy sequence. Denote by Xi the
equivalence class containing the stationary sequence (xi, xi, . . .). Then

d(xi, xj) = d(Xi, Xj)

≤ d(Xi, X
i) + d(Xi, Xj) + d(Xj , Xj)

≤ 1
i

+ d(Xi, Xj) +
1
j

→ 0 as i, j → ∞.

Now let us denote by X the equivalence class containing the Cauchy
sequence {xi}. We shall show that limi→∞Xi = X. We have

d(Xi, X) ≤ d(Xi, Xi) + d(Xi, X)

≤ 1
i

+ d(Xi, X) (1.7.2)

=
1
i

+ lim
j→∞

d(xi, xj) → 0 as i → ∞
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since {xi} is a Cauchy sequence. This completes the proof of (b).
(c) It is almost obvious that M̃ is dense in M∗. For a class X containing

a representative sequence {xn}, denoting by Xn the stationary class for the
stationary sequence (xn, xn, . . .), we have

d(Xn, X) = lim
m→∞ d(xn, xm) → 0 as n → ∞

since {xn} is a Cauchy sequence.
Finally, the equality d(X,Y ) = d(x, y) if X and Y are stationary classes

corresponding to x and y, respectively, gives the one-to-one isometry be-
tween M and M̃ . The preservation of algebraic operations in M is obvious,
and this completes the proof of Theorem 1.7.1.

It is worth noting what happens if M is complete. It is clear that we
can determine a one-to-one correspondence between any equivalence class
and the only element which is the limit of a representative sequence of this
class. Thus we can identify a complete metric space with its completion.

Because Theorem 1.7.1 is of great importance to us, let us review its main
points: M∗ is a metric space whose elements are classes of all equivalent
Cauchy sequences from M ; M is isometrically identified with M̃ , which is
the set of all stationary equivalence classes; M̃ is dense in M∗.

We can sometimes establish a property of a limit of a representative
sequence of X that does not depend on the particular choice of representa-
tive. In that case we shall say that the class X possesses this property. This
is typical for energy and Sobolev spaces; the formulation of such properties
is the basis of so-called imbedding theorems.

The following sections will provide examples of the application of Theo-
rem 1.7.1.

1.8 The Lebesgue Integral and the Space Lp(Ω)

By arguments similar to those we gave in Section 1.6, the set of all functions
which are continuous on a closed and bounded domain Ω ⊂ Rn with metric

d(f(x), g(x)) =
(∫

Ω
|f(x) − g(x)|p dΩ

)1/p

, p ≥ 1, (1.8.1)

is an incomplete metric space.
Let us apply Theorem 1.7.1 to this case. The corresponding space of

equivalence classes is denoted by Lp(Ω). (In case p = 1 we usually omit the
superscript and write L(Ω) instead.) An element of Lp(Ω) is the set of all
Cauchy sequences of functions, continuous on Ω, that are equivalent to one
another. Here {fn(x)} is a Cauchy sequence if∫

Ω
|fn(x) − fm(x)|p dΩ → 0 as n,m → ∞
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and two sequences {fn(x)} and {gn(x)} are equivalent if∫
Ω

|fn(x) − gn(x)|p dΩ → 0 as n → ∞.

Remark 1.8.1. In the classical theory of functions of a real variable, it
is shown that for any equivalence class in Lp(Ω) there is a function (or,
more precisely, a class of equivalent functions) which is a limit, in a certain
sense, of a representative sequence of the class; for this function, the so-
called Lebesgue integral is introduced. Our constructions of Lp(Ω) and the
Lebesgue integral are equivalent to those of the classical theory. In view
of this, we shall sometimes refer to an equivalence class of Lp(Ω) as a
“function.”

Remark 1.8.2. In accordance with Weierstrass’ theorem, any function con-
tinuous on Ω can be approximated by a polynomial with any accuracy in
the metric of C(Ω), and hence in that of Lp(Ω). An interpretation is that
any equivalence class of Lp(Ω) contains a Cauchy sequence whose elements
are infinitely differentiable functions (moreover, polynomials), and we may
thus obtain Lp(Ω) on the basis of only this subset of C(Ω).

Remark 1.8.3. In (1.8.1) we use Riemann integration. We must therefore
exclude some “exotic” domains Ω which are allowed in the classical theory
of Lebesgue integration. It is possible to extend the present approach to
achieve the same degree of generality, but the applications we consider do
not necessitate this. We therefore leave it to the reader to bridge this gap
if he/she wishes to do so. We also remark that Ω need not be bounded in
order to construct the theory.

The Lebesgue Integral
An element of Lp(Ω) (an equivalence class) is denoted by F (x). To construct
the Lebesgue integral, we use the Riemann integral. We first consider how to
define

∫
Ω |F (x)|p dΩ when F (x) ∈ Lp(Ω). We take a representative Cauchy

sequence {fn(x)} from F (x) and consider the sequence {Kn} given by

Kn =
(∫

Ω
|fn(x)|p dΩ

)1/p

.

This is a Cauchy sequence of numbers: we have

|Kn −Km| =

∣∣∣∣∣
(∫

Ω
|fn(x)|p dΩ

)1/p

−
(∫

Ω
|fm(x)|p dΩ

)1/p
∣∣∣∣∣

≤
(∫

Ω
|fn(x) − fm(x)|p dΩ

)1/p

→ 0 as m,n → ∞,
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as a consequence of the inequality(∫
Ω

|f − g + g|p dΩ
)1/p

≤
(∫

Ω
|f − g|p dΩ

)1/p

+
(∫

Ω
|g|p dΩ

)1/p

(which follows from the Minkowski inequality) and a similar inequality
obtained by interchanging the roles of f and g. So there exists

K = lim
n→∞Kn = lim

n→∞

(∫
Ω

|fn(x)|p dΩ
)1/p

.

To complete the construction, we must show that K is independent of
the choice of representative sequence. We leave this to the reader as an
easy application of Minkowski’s inequality. The number Kp is called the
Lebesgue integral of |F (x)|p:

Kp ≡
∫

Ω
|F (x)|p dΩ = lim

n→∞

∫
Ω

|fn(x)|p dΩ.

Let F (x) ∈ Lp(Ω) where Ω is a bounded domain. Let us show that
F (x) ∈ Lr(Ω) whenever 1 ≤ r ≤ p. By Hölder’s inequality we have∣∣∣∣∫

Ω
1 · |f(x)|r dΩ

∣∣∣∣ ≤
(∫

Ω
1q dΩ

)1/q (∫
Ω
(|f(x)|r)p/r dΩ

)r/p

= (mes Ω)1/q

(∫
Ω

|f(x)|p dΩ
)r/p

if 1/q + r/p = 1. For any r such that 1 ≤ r ≤ p, it follows that(∫
Ω

|fn(x) − fm(x)|r dΩ
)1/r

≤

(mes Ω)1/r−1/p

(∫
Ω

|fn(x) − fm(x)|p dΩ
)1/p

.

This means that a sequence of functions which is a Cauchy sequence in the
metric (1.8.1) of Lp(Ω) is also a Cauchy sequence in the metric of Lr(Ω)
whenever 1 ≤ r < p. In similar fashion we can show that any two sequences
equivalent in Lp(Ω) are also equivalent in Lr(Ω). Hence any element of
Lp(Ω) also belongs to Lr(Ω) if 1 ≤ r < p, and we can say that Lp(Ω) is a
subset of Lr(Ω). Thus we can determine an integral∫

Ω
|F (x)|r dΩ

for 1 ≤ r < p. Moreover, passage to the limit shows that(∫
Ω

|F (x)|r dΩ
)1/r

≤ (mes Ω)1/r−1/p

(∫
Ω

|F (x)|p dΩ
)1/p

. (1.8.2)
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Now we can introduce the Lebesgue integral for an element F (x) ∈
Lp(Ω), p ≥ 1. Take a representative sequence {fn(x)} of the class F (x).
That the sequence of numbers {∫Ω fn(x) dΩ} is a Cauchy sequence follows
from the inequality ∣∣∣∣∫

Ω
f(x) dΩ

∣∣∣∣ ≤
∫

Ω
|f(x)| dΩ.

So the quantity ∫
Ω
F (x) dΩ = lim

n→∞

∫
Ω
fn(x) dΩ

is uniquely determined for F (x) and is called the Lebesgue integral of
F (x) ∈ Lp(Ω) over Ω. Note that for the Lebesgue integral we have

∣∣∣∣∫
Ω
F (x) dΩ

∣∣∣∣ ≤ (mes Ω)1/q

(∫
Ω

|F (x)|p dΩ
)1/p

(1.8.3)

if 1/q + 1/p = 1.
In what follows, we shall frequently encounter integrals of the form∫

Ω
F (x)G(x) dΩ.

For example, the work of external forces is of this form. Let us determine
this integral when F (x) ∈ Lp(Ω) and G(x) ∈ Lq(Ω) where 1/p + 1/q = 1.
Consider

In =
∫

Ω
fn(x)gn(x) dΩ

where {fn(x)} and {gn(x)} are representative sequences of F (x) and G(x),
respectively. Then

|In − Im| =
∣∣∣∣∫

Ω
[fn(x)gn(x) − fm(x)gm(x)] dΩ

∣∣∣∣
=
∣∣∣∣∫

Ω
[(fn − fm)gn + fm(gn − gm)] dΩ

∣∣∣∣
≤
∫

Ω
|fn − fm| |gn| dΩ +

∫
Ω

|fm| |gn − gm| dΩ

≤
(∫

Ω
|fn − fm|p dΩ

)1/p(∫
Ω

|gn|q dΩ
)1/q

+
(∫

Ω
|fm|p dΩ

)1/p(∫
Ω

|gn − gm|q dΩ
)1/q

→ 0 as n,m → ∞
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since {fn(x)} and {gn(x)} are Cauchy sequences in their respective metrics
and, for large n, ∫

Ω
|fn(x)|p dΩ ≤

∫
Ω

|F (x)|p dΩ + 1,∫
Ω

|gn(x)|q dΩ ≤
∫

Ω
|G(x)|q dΩ + 1.

So there exists I = limn→∞ In, which we call the Lebesgue integral

I =
∫

Ω
F (x)G(x) dΩ.

(Convince yourself that it is independent of the choice of representatives,
hence is well defined.)

Passage to the limit in∣∣∣∣∫
Ω
fn(x)gn(x) dΩ

∣∣∣∣ ≤
(∫

Ω
|fn(x)|p dΩ

)1/p(∫
Ω

|gn(x)|q dΩ
)1/q

shows that Hölder’s inequality∣∣∣∣∫
Ω
F (x)G(x) dΩ

∣∣∣∣ ≤
(∫

Ω
|F (x)|p dΩ

)1/p(∫
Ω

|G(x)|q dΩ
)1/q

(1.8.4)

holds for F (x) ∈ Lp(Ω), G(x) ∈ Lq(Ω), whenever 1/p+ 1/q = 1. Equality
holds in Hölder inequality if and only if F (x) = λG(x) for some number λ.
Remark 1.8.4. If Ω is unbounded, Hölder’s inequality still holds; however,
in this case it is not true in general that Lp(Ω) is a subset of Lr(Ω) for all
r < p.

We conclude this section by asserting that the properties of the classes
in Lp(Ω) introduced above permit us to deal with the Lebesgue integral as
if its integrand were an ordinary function.

1.9 Banach and Hilbert Spaces

Most of the metric spaces we have considered have also been linear spaces.
This implies that each pair x, y ∈ X has a uniquely defined sum x+ y such
that

1. x+ y = y + x,

2. x+ (y + z) = (x+ y) + z, and

3. there is a zero element θ ∈ X such that x+ θ = x;
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moreover, it implies that each x ∈ X has a uniquely defined product by a
real (or complex) scalar λ ∈ R (or C) such that

4. λ(µx) = (λµ)x,

5. 1x = x, 0x = θ,

6. x+ (−1x) = θ,

7. λ(x+ y) = λx+ λy,

8. (λ+ µ)x = λx+ µx.

In what follows, we shall denote the zero element of X by 0 instead of θ.
If multiplication by scalars is introduced as multiplication by purely real

numbers, the space will be called a real linear space; if the scalars are in
general complex numbers, the space will be called a complex linear space.

We could continue to consider the general properties of metric spaces, but
all spaces of interest to us have some special and very convenient properties
— namely, their metrics take a special form which can be denoted by

d(x, y) = ‖x− y‖. (1.9.1)

Definition 1.9.1. ‖x‖ is called a norm on a linear space X if it is a real-
valued function defined for every x ∈ X and satisfies the following norm
axioms:

N1. ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0;

N2. ‖λx‖ = |λ| ‖x‖ for any real (or complex) λ;

N3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

The reader should verify that any metric defined by (1.9.1) satisfies D1–
D4, provided that ‖x‖ satisfies N1–N3.

Definition 1.9.2. A linear space X is called a normed space if, for every
x ∈ X, a norm of x satisfying N1–N3 is defined. A normed space X is said
to be real (complex ) if the scalars λ in the product λx are taken from R

(C).

A normed space is a metric space, but the converse is false; there are
linear metric spaces which are not normed. For a normed space, we shall use
the terminology of the corresponding metric space. We shall subsequently
follow this practice for inner product spaces as well.
Problem 1.9.1. Two norms ‖ · ‖1 and ‖ · ‖2 defined on X are said to be
equivalent if there exist positive real numbers M and m such that for all
x ∈ X,

m‖x‖1 ≤ ‖x‖2 ≤ M‖x‖1. (1.9.2)

Show that on Rn, all norms are equivalent.



1.9 Banach and Hilbert Spaces 29

Problem 1.9.2. Show that if x and y are elements of a real normed space
X, then

‖x− y‖ ≥ | ‖x‖ − ‖y‖ |.
Definition 1.9.3. A complete normed space is called a Banach space.

Several of the spaces we examined previously are Banach spaces. C(Ω)
with compact Ω is a linear space, and is clearly a normed space if we set

‖f(x)‖ = max
x∈Ω

|f(x)|.

Because C(Ω) is complete as a metric space, it is a Banach space. We leave
it to the reader to show that Lp(Ω) is a Banach space under the norm

‖F (x)‖ =
(∫

Ω
|F (x)|p dΩ

)1/p

, p ≥ 1.

Other familiar Banach spaces are c, m, and 	p.
Let us consider a new example of a Banach space: C(k)(Ω), where Ω ⊂ Rn

is a closed and bounded domain. This space consists of those functions that
are defined and continuous on Ω and such that all their derivatives up to
order k are continuous on Ω. The norm on C(k)(Ω) is defined by

‖f(x)‖ = max
x∈Ω

|f(x)| +
∑

|α|≤k

max
x∈Ω

|Dαf(x)|.

The reader should supply the routine but necessary steps to verify that N1–
N3 are satisfied; we proceed to show that the resulting space is complete.

Let {fi(x)} be a Cauchy sequence in C(k)(Ω). This implies that the
sequence {fi(x)} as well as all the sequences {Dαfi(x)} when |α| ≤ k are
Cauchy sequences in C(Ω). Being uniformly convergent on Ω, each of these
sequences has a limit function:

lim
i→∞

fi(x) = f(x), lim
i→∞

Dαfi(x) = fα(x), |α| ≤ k,

where f(x) and fα(x) for each |α| ≤ k are continuous. To complete the
verification we must show that

Dαf(x) = fα(x).

We check this only for ∂f/∂x1; for the other derivatives it can be done in
a similar way. So let

lim
i→∞

∂fi(x)
∂x1

= f1(x) = f1(x1, x2, . . . , xn).

Consider

∆ = f(x1, x2, . . . , xn) − f(a, x2, . . . , xn) −
∫ x1

a

f1(t, x2, . . . , xn) dt.
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We have

∆ = [f(x1, . . . , xn) − fi(x1, . . . , xn)] −
− [f(a, x2, . . . , xn) − fi(a, x2, . . . , xn)] −

−
[∫ x1

a

(
f1(t, x2, . . . , xn) − ∂fi(t, x2, . . . , xn)

∂t

)
dt

]
.

Each of the terms in square brackets tends to zero uniformly as i → ∞, so
∆ = 0 since ∆ does not depend on i, i.e.,

f(x1, x2, . . . , xn) − f(a, x2, . . . , xn) =
∫ x1

a

f1(t, x2, . . . , xn) dt.

Thus
∂f(x)
∂x1

= f1(x).

Another example of a Banach space is the Hölder spaceHk,λ(Ω), 0 < λ ≤
1, which consists of those functions of C(k)(Ω) whose norms in Hk,λ(Ω),
defined by

‖f‖ =
∑

0≤|α|≤k

max
x∈Ω

|Dαf(x)| +
∑

|α|=k

sup
x,y∈Ω
x�=y

|Dαf(x) −Dαf(y)|
|x − y|λ ,

are finite.
Just as the notion of distance can be widely extended, so can the notion

of the vector dot product:

Definition 1.9.4. Let H be a linear space over C. A function (x, y) defined
uniquely for each pair x, y ∈ H is called an inner product on H if it satisfies
the following axioms:

P1. (x, x) ≥ 0, and (x, x) = 0 if and only if x = 0;

P2. (x, y) = (y, x);

P3. (λx+ µy, z) = λ(x, z) + µ(y, z) whenever λ, µ ∈ C.

The space H, taken together with an inner product, is called a (complex)
inner product space.

We can consider H over R; then the inner product is real-valued, P2 is
replaced by

P2′. (x, y) = (y, x),

and H is called a real inner product space. If it is clear from the context,
the designation “real” or “complex” shall be omitted.

Let us consider some properties of H. We introduce ‖x‖ using

‖x‖ = (x, x)1/2.

To show that we really have a norm, we prove the Schwarz inequality :
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Theorem 1.9.1. For any x, y ∈ H, the inequality

|(x, y)| ≤ ‖x‖ ‖y‖ (1.9.3)

holds. For x, y �= 0, equality holds if and only if x = λy.

Proof. If either x or y is zero, there is nothing to show. Let y �= 0 and let
λ be a scalar. By P1, (x+ λy, x+ λy) ≥ 0. We have

(x+ λy, x+ λy) = (x, x) + λ(y, x) + λ(x, y) + λλ(y, y) ≡ A(λ).

Put λ0 = −(x, y)/(y, y); then

A(λ0) = ‖x‖2 − 2
|(x, y)|2

‖y‖2 +
|(x, y)|2‖y‖2

‖y‖4 ≥ 0.

Inequality (1.9.3) follows directly.

Now we can verify that ‖x‖ satisfies N1–N3. N1 is satisfied by virtue of
P1; N2 is satisfied because

‖λx‖ = (λx, λx)1/2 = (λλ)1/2(x, x)1/2 = |λ| ‖x‖;

N3 is satisfied because

‖x+ y‖2 = (x+ y, x+ y)
= (x, x) + (x, y) + (y, x) + (y, y)

≤ ‖x‖2 + ‖x‖ ‖y‖ + ‖x‖ ‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2.

We have shown that an inner product space is a normed space.

Definition 1.9.5. A complete inner product space is called a Hilbert space.

By analogy with Euclidean space, we shall say that x is orthogonal to y
if (x, y) = 0.
Problem 1.9.3. Show that for all x, y in an inner product space, the paral-
lelogram equality

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) (1.9.4)

holds.
Let us consider some examples of Hilbert spaces.

1. The space 	2. For x,y ∈ 	2, an inner product is defined by

(x,y) =
∞∑

k=1

xkyk. (1.9.5)
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The space 	2 was the prototype for all Hilbert spaces, and as such it was
instrumental in the development of functional analysis. It was introduced
by Hilbert in a paper devoted to the justification of the Dirichlet principle.
In 	2 over R, the inner product is given by

(x,y) =
∞∑

k=1

xkyk. (1.9.6)

2. The space L2(Ω). Here the inner product is

(f(x), g(x)) =
∫

Ω
f(x)g(x) dΩ. (1.9.7)

The axioms P1–P3 are readily verified for both of these spaces. The
reader should take a moment to write down the Schwarz inequality in both
cases, and to write down the inner product for L2(Ω) over the reals.

Most importantly, the energy spaces we introduced earlier are all inner
product spaces.

1.10 Some Energy Spaces

A Bar
Earlier we noted that the set S of all continuous functions y(x) having con-
tinuous first and second derivatives on [0, l] and which satisfy the boundary
conditions

y(0) = y′(0) = y(l) = y′(l) = 0 (1.10.1)

under the metric

d(y, z) =

(
1
2

∫ l

0
B(x)[y′′(x) − z′′(x)]2 dx

)1/2

(1.10.2)

is a metric space. We called this an energy space for the clamped bar. We
can now introduce an inner product

(y, z) =
1
2

∫ l

0
B(x)y′′(x)z′′(x) dx (1.10.3)

and norm

‖y‖ =

(
1
2

∫ l

0
B(x)[y′′(x)]2 dx

)1/2

on this space. We have d(y, z) = ‖y − z‖. But this space is not complete
(it is clear that there are Cauchy sequences whose limits do not belong to
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C(2)(0, l); the reader should construct an example). To have a complete
space, we must apply the completion theorem. The real energy space de-
noted by EB is the completion of S in the metric (1.10.2) (or, what amounts
to the same thing, in the inner product (1.10.3)).

Let us consider some properties of the elements of EB . An element of EB

is a set of Cauchy sequences equivalent in the metric (1.10.2). If we assume
that

0 < m1 ≤ B(x) ≤ m2

then the sequence of second derivatives {y′′
n(x)} of a representative sequence

is a Cauchy sequence in L2(0, l) since

m1

∫ l

0
[y′′

n(x) − y′′
m(x)]2 dx ≤

∫ l

0
B(x)[y′′

n(x) − y′′
m(x)]2 dx.

So we can say that {y′′
n(x)} belongs to L2(0, l).

Now consider {y′
n(x)}. For any y(x) ∈ S we get

y′(x) =
∫ x

0
y′′(t) dt.

So for a representative {yn(x)} of a class y(x) ∈ EB we have

|y′
n(x) − y′

m(x)| ≤
∫ x

0
|y′′(t) − y′′

m(t)| dt ≤
∫ l

0
1 · |y′′

n(t) − y′′
m(t)| dt

≤ l1/2

(∫ l

0
[y′′

n(x) − y′′
m(x)]2 dx

)1/2

≤ (l/m1)1/2

(∫ l

0
B(x)[y′′

n(x) − y′′
m(x)]2 dx

)1/2

→ 0 as n,m → ∞. (1.10.4)

It follows that {y′
n(x)} converges uniformly on [0, l]; hence there exists a

limit function z(x) which is also continuous on [0, l]. This function does not
depend on the choice of representative sequence (verify). The same holds
for a sequence of functions {yn(x)}: its limit is a function y(x) continuous
on [0, l]. Moreover,

y′(x) = z(x).

To prove this, it is necessary to repeat the arguments of Section 1.9 on the
differentiability of the elements of C(k)(Ω), with due regard for (1.10.4).
From (1.10.4) and the similar inequality for {yn(x)} we get

max
x∈Ω

(|y(x)| + |y′(x)|) ≤ m

(
1
2

∫ l

0
B(x)[y′′(x)]2 dx

)1/2

(1.10.5)
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for some constant m independent of y(x) ∈ EB . So each element y(x) ∈ EB

can be identified with an element y(x) ∈ C(1)(0, l) in such a way that
(1.10.5) is fulfilled. This correspondence is called an imbedding operator.
In what follows, we shall interpret (1.10.5) as a statement that the imbed-
ding operator from EB to C(1)(0, l) is continuous (we shall see why in
Section 1.12). From now on we refer to the elements of EB as if they
were continuously differentiable functions, attaching the properties of the
uniquely determined limit functions to the corresponding elements of EB

themselves.
We are interested in analysis of all the terms that are included into

the statement of the problem of equilibrium of a body as the problem of
minimum of potential energy. So we will consider the functional of the work
of external forces. For the bar it is

A =
∫ l

0
F (x)y(x) dx.

This is well defined on EB if F (x) ∈ L(Ω); moreover, (1.10.5) shows that
it can contain terms of the form∑

k

Fky(xk) +Mky
′(xk),

which can be interpreted as the work of point forces and point moments,
respectively. This is a consequence of the continuity of the imbedding op-
erator.
Remark 1.10.1. Alternatively we can define EB on a base set S1 of smoother
functions, C(4)(0, l) say, satisfying (1.10.1). The result is the same since S1
is dense in S with respect to the norm of C(2)(0, l). Sometimes such a
definition is convenient.
Remark 1.10.2. Those readers familiar with the contemporary literature in
this area may have noticed that Western authors usually deal with Sobolev
spaces, studying the properties of operators corresponding to problems un-
der consideration; we prefer instead to deal with energy spaces, studying
first their properties and then those of the corresponding operators. Al-
though these approaches lead to the same results, in our view the mechanics
(physics) of a particular problem should play a principal role in the analysis
— in this way the methodology seems simpler, clearer, and more natural.
Why is it that in papers devoted to the study of elastic bodies we mainly
find investigation of the case of a clamped boundary? Sometimes this is
done on the principle that it is better to deal with homogeneous Dirichlet
boundary conditions only, but more often it is an unfortunate consequence
of the use of the Sobolev spaces Hk(Ω). The theory of these spaces is well
developed, but is not amenable to the study of other boundary conditions.
Indeed, success in the investigation of mechanics problems can be much
more difficult without the benefit of the physical ideas that are brought
out by the energy spaces.
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Remark 1.10.3. In defining the energy space of the bar, we left aside the
question of smoothness of the stiffness function B(x). From a mathemati-
cal standpoint this is risky since, in principle, B(x) can be nonintegrable.
But in the case of an actual physical bar, B(x) can have no more than a
finite number of discontinuities and must be differentiable everywhere else.
For simplicity, we shall continue to make realistic assumptions concerning
physical parameters such as stiffness and elastic constants; in particular,
we shall suppose whatever degree of smoothness as may be required for our
purposes.

A Membrane (Clamped Edge)
The subset of C(1)(Ω) consisting of all functions satisfying

u(x, y)
∣∣∣
∂Ω

= 0 (1.10.6)

with the metric

d(u, v) =


∫∫
Ω

[(
∂u

∂x
− ∂v

∂x

)2

+
(
∂u

∂y
− ∂v

∂y

)2
]
dx dy


1/2

(1.10.7)

is an incomplete metric space. If we introduce an inner product

(u, v) =
∫∫
Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dx dy (1.10.8)

consistent with (1.10.7), we get an inner product space. Its completion in
the metric (1.10.7) is the energy space for the clamped membrane, and is
denoted EMC . This is a real Hilbert space.

What can we tell about the elements of EMC? It is obvious that the
sequences of first derivatives {∂un/∂x}, {∂un/∂y}, of a representative se-
quence {un} are Cauchy sequences in the norm on L2(Ω). What about
functions? If we extend each un(x, y) by zero outside Ω, we can write

un(x, y) =
∫ x

0

∂un(s, y)
∂s

ds
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(assuming, without loss of generality, that Ω is confined to the band 0 ≤
x ≤ a). Squaring both sides and integrating over Ω, we get∫∫

Ω

u2
n(x, y) dx dy =

∫∫
Ω

(∫ x

0

∂un(s, y)
∂s

ds

)
dx dy

≤
∫∫
Ω

(∫ a

0
1 ·
∣∣∣∣∂un(s, y)

∂s

∣∣∣∣ ds)2

dx dy

≤
∫∫
Ω

a

(∫ a

0

(
∂un(s, y)

∂s

)2

ds

)
dx dy

≤ a2
∫∫
Ω

(
∂un(x, y)

∂x

)2

dx dy.

This means that if {∂un/∂x} is a Cauchy sequence in the metric of L2(Ω)
then {un} is also a Cauchy sequence in this metric. So we can consider
elements U(x, y) of EMC to be such that U(x, y), ∂U/∂x, and ∂U/∂y belong
to L2(Ω). In the next section, we shall see how to interpret derivatives of
U(x, y).

As a consequence of the last chain of inequalities, we get Friedrichs’s
inequality∫∫

Ω

U2(x, y) dx dy ≤ m

∫∫
Ω

[(
∂U

∂x

)2

+
(
∂U

∂y

)2
]
dx dy

which holds for any U(x, y) ∈ EMC and a constant m independent of
U(x, y).

A Membrane (Free Edge)
Although it is natural to introduce the energy space using the energy metric
(1.10.7), we cannot distinguish between two states u1(x, y) and u2(x, y) of
the membrane with free edge if

u2(x, y) − u1(x, y) = c = constant.

This difference is the so-called “rigid” motion of the membrane, the only
form of rigid motion possible in this theory. We first show that no other rigid
motions are possible. The proof is a consequence of Poincaré’s inequality

∫∫
Ω

u2 dx dy ≤ m


∫∫

Ω

u dx dy

2

+
∫∫
Ω

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]
dx dy


(1.10.9)
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for a function u(x, y) ∈ C(1)(Ω). The constant m does not depend on
u(x, y). Our proof follows Courant and Hilbert [8].

We first assume that Ω is the square [0, a] × [0, a], and begin with the
identity

u(x2, y2) − u(x1, y1) =
∫ x2

x1

∂u(s, y1)
∂s

ds+
∫ y2

y1

∂u(x2, t)
∂t

dt. (1.10.10)

(We will use the Poincaré inequality for general domains. Note that a mod-
ification of (1.10.9) for more general domains will be established in Section
1.26.) Squaring both sides and then integrating over the square, first with
respect to the variables x1, y1 and then with respect to x2, y2, we get∫∫
Ω

∫∫
Ω

[
u2(x2, y2) − 2u(x2, y2)u(x1, y1) + u2(x1, y1)

]
dx1 dy1 dx2 dy2

=
∫∫
Ω

∫∫
Ω

[∫ x2

x1

∂u(s, y1)
∂s

ds+
∫ y2

y1

∂u(x2, t)
∂t

dt

]2

dx1 dy1 dx2 dy2

≤
∫∫
Ω

∫∫
Ω

[∫ a

0
1 ·
∣∣∣∣∂u(s, y1)∂s

∣∣∣∣ ds+
∫ a

0
1 ·
∣∣∣∣∂u(x2, t)

∂t

∣∣∣∣ dt]2

dx1 dy1 dx2 dy2

≤ 2a
∫∫
Ω

∫∫
Ω

[∫ a

0

(
∂u(s, y1)

∂s

)2

ds+
∫ a

0

(
∂u(x2, t)

∂t

)2

dt

]
dx1 dy1 dx2 dy2

≤ 2a4
∫ a

0

∫ a

0

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]
dx dy.

The beginning of this chain of inequalities is

a2
∫∫
Ω

u2(x, y) dx dy − 2

∫∫
Ω

u(x, y) dx dy

2

+ a2

∫∫
Ω

u2(x, y) dx dy


so

2a2
∫∫
Ω

u2 dx dy ≤ 2

∫∫
Ω

u dx dy

2

+ 2a4
∫∫
Ω

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]
dx dy

and we obtain the needed inequality with a constant m = max(a2, 1/a2). It
can be shown that Poincairé’s inequality is valid for more general domains.
A modification of the inequality on a more general domain will be proved
in Section 1.26.

Let us return to the free membrane problem. Provided we consider only
the membrane’s state of stress, any two membrane states are identical if
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they are described by functions u1(x, y) and u2(x, y) whose difference is
constant. We gather all functions (such that the difference between any
two is a constant) into a class denoted by u∗(x, y). There is a unique rep-
resentative of u∗(x, y) denoted by ub(x, y) such that∫∫

Ω

ub(x, y) dx dy = 0. (1.10.11)

For this so-called balanced representative (or balanced function), Poincairé’s
inequality takes the form∫∫

Ω

u2
b(x, y) dx dy ≤ m

∫∫
Ω

[(
∂ub

∂x

)2

+
(
∂ub

∂y

)2
]
dx dy. (1.10.12)

Now it is clear that there are no “rigid” motions of the membrane other
than u(x, y) = c.

Because (1.10.12) has the same form as Friedrichs’s inequality, we can
repeat our former arguments to construct the energy space EMF for a free
membrane using the balanced representatives of the classes u∗(x, y). In
what follows we shall use this space EMF , remembering that its elements
all satisfy (1.10.11).

The condition (1.10.11) is a geometrical constraint resulting from our
mathematical technique. Solving the static free membrane problem, we
must remember that nature does not impose this constraint — the mem-
brane can move as a “rigid body.” But if we consider only deformations, the
results must be independent of such motions. Consider then the functional
of the work of external forces

A =
∫∫
Ω

F (x, y)U(x, y) dx dy.

If we use the space EMF , then A makes sense if F (x, y) ∈ L2(Ω) (guaran-
teed by (1.10.12) together with the Schwarz inequality in L2(Ω)). This is
the only restriction on external forces for a clamped membrane. However,
in the case of a static free membrane the functional A must be invariant
under transformations of the form u(x, y) �→ u(x, y)+ c. This requires that∫∫

Ω

F (x, y) dx dy = 0 (1.10.13)

be satisfied. Again, we consider the static problem where rigid motion,
however, is possible. Since we did not introduce inertia forces, we have put
formally the mass of the membrane to zero. In this situation of zero mass,
any forces with nonzero resultant would make the membrane as a whole
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move with infinite acceleration. Thus, (1.10.13) also precludes such physical
nonsense.

There is another way to construct an energy space using the classes
u∗(x, y) as base elements. Here the zero element is the set of all constants.
Then the completion of the set of all these classes in the metric (1.10.7)
is the energy space, the set of equivalent Cauchy sequences each of the
elements of which is determined to within a constant. (In algebra, such
a construction is called a factor space by the space of constants, but we
shall not use this terminology.) The inequality (1.10.12) remains valid for
representatives of classes — elements satisfying (1.10.11) which we uniquely
choose from every class.

The restriction (1.10.13) is necessary for the functional of external forces
to be uniquely defined for an element U∗(x, y). We shall use the same
notation EMF for this type of energy space since there is a one-to-one
correspondence, preserving distances and inner products, between the two
types of energy space for the free membrane. Moreover, we shall always
make clear which version we mean.

Those familiar with the theory of the Neumann problem should note
that the necessary condition for its solvability which arises in mathematical
physics, as a mathematical consequence, is of the same nature as (1.10.13).

Finally, we note that Poisson’s equation governs not only membranes,
but also situations in electricity, magnetism, hydrodynamics, mathematical
biology, and other fields. So we can consider spaces such as EM in various
other sciences. It is clear that the results will be the same.

We will proceed to introduce other energy spaces in a similar manner:
they will be completions of corresponding metric (inner product) spaces
consisting of smooth functions satisfying certain boundary conditions. The
problem is to determine properties of the elements of those completions. As
a rule, metrics must contain all terms of internal energy (we now discuss
only linear systems). For example, we can consider a membrane whose edge
is elastically supported; then we must include the energy of elastic support
in the expression for the energy metric.

Bending a Plate
Here we begin with the work of internal forces on variations of displace-
ments

(w1, w2) =
∫∫
Ω

Dαβγδργδ(w1)ραβ(w2) dx dy (1.10.14)

where w1(x, y) is the normal displacement of the mid-surface Ω of the plate,
w2(x, y) is its variation, ραβ(u) are components of the change-of-curvature
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tensor,

ρ11(u) =
∂2u

∂x2 , ρ12 =
∂2u

∂x∂y
, ρ22 =

∂2u

∂y2 ,

Dαβγδ are components of the tensor of elastic constants of the plate such
that

Dαβγδ = Dγδαβ = Dβαγδ (1.10.15)

and, for any tensor ραβ there exists a constant m0 > 0 such that

Dαβγδργδραβ ≥ m0

2∑
α,β=1

ρ2
αβ . (1.10.16)

(We suppose Dαβγδ to be constants but piecewise continuity of these pa-
rameters would be sufficient.)

For the theory of shells and plates, here and in what follows, Greek
indices assume values from the set {1, 2} while Latin indices assume values
from the set {1, 2, 3}. The repeated index convention for summation is also
in force:

aαβbαβ ≡
2∑

α,β=1

aαβbαβ .

We first consider a plate with clamped edge ∂Ω:

w
∣∣∣
∂Ω

=
∂w

∂n

∣∣∣
∂Ω

= 0. (1.10.17)

(Of course, the variation of w must satisfy (1.10.17) too.) Let us show that
on S4, the subset of C(4)(Ω) consisting of those functions which satisfy
(1.10.17), the form (w1, w2) given in (1.10.14) is an inner product. We
begin with the axiom P1:

(w,w) =
∫∫
Ω

Dαβγδραβ(w)ργδ(w) dx dy

≥ m0

∫∫
Ω

2∑
α,β=1

ρ2
αβ(w) dx dy

= m0

∫∫
Ω

[(
∂2w

∂x2

)2

+ 2
(
∂2w

∂x∂y

)2

+
(
∂2w

∂y2

)2
]
dx dy ≥ 0.

If w = 0 then (w,w) = 0. If (w,w) = 0 then, on Ω,

∂2w

∂x2 = 0,
∂2w

∂x∂y
= 0,

∂2w

∂y2 = 0.
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It follows that
w(x, y) = a1 + a2x+ a3y

where the ai are constants. From (1.10.17) then, w(x, y) = 0. Hence P1 is
satisfied. Satisfaction of P2 follows from (1.10.15), and it is evident that P3
is also satisfied. Thus S4 with inner product (1.10.14) is an inner product
space; its completion in the corresponding metric is the energy space EPC

for a clamped plate.
Let us consider some properties of the elements of EPC . It was shown

that

m0

∫∫
Ω

[(
∂2w

∂x2

)2

+ 2
(
∂2w

∂x∂y

)2

+
(
∂2w

∂y2

)2
]2

dx dy

≤
∫∫
Ω

Dαβγδργδ(w)ραβ(w) dx dy ≡ (w,w). (1.10.18)

From this and the Friedrichs inequality (written for the first derivatives of
w ∈ S4 as well) we get∫∫

Ω

w2 dx dy ≤ m1

∫∫
Ω

[(
∂w

∂x

)2

+
(
∂w

∂y

)2
]
dx dy

≤ m2

∫∫
Ω

[(
∂2w

∂x2

)2

+ 2
(
∂2w

∂x∂y

)2

+
(
∂2w

∂y2

)2
]
dx dy

≤ m3

∫∫
Ω

Dαβγδργδ(w)ραβ(w) dx dy ≡ m3(w,w). (1.10.19)

This means that, for a Cauchy sequence {wn} in EPC , wn ∈ S4, the se-
quences

{wn}, {∂wn/∂x}, {∂wn/∂y},
as well as

{∂2wn/∂x
2}, {∂2wn/∂x∂y}, {∂2wn/∂y

2},
are Cauchy sequences in L2(Ω). So we can say that an element W of the
completion EPC is such that W (x, y) and all its derivatives up to order two
are in L2(Ω).

We now investigate W (x, y) further. Let w ∈ S4 and w(x, y) ≡ 0 out-
side Ω. Suppose Ω lies in the domain {(x, y) | x > 0, y > 0}. Then the
representation

w(x, y) =
∫ x

0

∫ y

0

∂2w(s, t)
∂s∂t

ds dt
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holds. Using the Hölder inequality and (1.10.19) we get

|w(x, y)| ≤
∫ x

0

∫ y

0

∣∣∣∣∂2w(s, t)
∂s∂t

∣∣∣∣ ds dt ≤
∫∫
Ω

∣∣∣∣∂2w(s, t)
∂s∂t

∣∣∣∣ ds dt
≤ (mes Ω)1/2

∫∫
Ω

(
∂2w(s, t)
∂s∂t

)2

ds dt

1/2

≤ m4(w,w)1/2. (1.10.20)

This means that the sequence {wn} which is a Cauchy sequence in the
metric of EPC , wn ∈ S4, converges uniformly on Ω. Hence there exists a
limit function w0(x, y) = limn→∞ wn(x, y) which is continuous on Ω; this
function is identified, as above, with the corresponding element of EPC and
we shall say that EPC is continuously imbedded into C(Ω).

The functional of the work of external forces

A =
∫∫
Ω

F (x, y)W (x, y) dx dy

now makes sense if F (x, y) ∈ L(Ω); moreover, it can contain the work of
point forces ∑

k

F (xk, yk)w0(xk, yk)

and line forces ∫
γ

F (x, y)w0(x, y) ds

where γ is a line in Ω. (We assume that w0(x, y) is the corresponding limit
function for W (x, y).)

In modern books on partial differential equations, they require that
F (x, y) ∈ H−2(Ω). This is a complete characterization of external forces
— however, it is difficult for an engineer to verify this property.

Now let us consider a plate with free edge. In this case, we also wish to
use the inner product (1.10.14) to create an energy space. As in the case
of a membrane with free edge, the axiom P1 is not fulfilled: we saw that
from (w,w) = 0 it followed that

w = a1 + a2x+ a3y. (1.10.21)

This admissible motion of the plate as a rigid whole is called a rigid motion,
but still differs from real “rigid” motions of the plate as a three-dimensional
body.

We shall first use Poincaré’s inequality (1.10.9) to show that the zero ele-
ment of the corresponding completion is composed of functions of the form
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(1.10.21). For this, taking w(x, y) ∈ C(4)(Ω) we write down the Poincaré
inequality for ∂w/∂x and ∂w/∂y:

∫∫
Ω

(
∂w

∂x

)2

dx dy ≤ m


∫∫

Ω

∂w

∂x
dx dy

2

+

+
∫∫
Ω

[(
∂2w

∂x2

)2

+
(
∂2w

∂x∂y

)2
]
dx dy

 ,

and then the same inequality with the roles of x and y interchanged. From
this and (1.10.9) we get

∫∫
Ω

[
w2 +

(
∂w

∂x

)2

+
(
∂w

∂y

)2
]
dx dy ≤ m1


∫∫

Ω

w dxdy

2

+

+

∫∫
Ω

∂w

∂x
dx dy

2

+

∫∫
Ω

∂w

∂y
dx dy

2

+

+
∫∫
Ω

[(
∂2w

∂x2

)2

+ 2
(
∂2w

∂x∂y

)2

+
(
∂2w

∂y2

)2
]
dx dy


and from (1.10.18) it follows that

∫∫
Ω

[
w2 +

(
∂w

∂x

)2

+
(
∂w

∂y

)2
]
dx dy ≤ m2


∫∫

Ω

w dxdy

2

+

+

∫∫
Ω

∂w

∂x
dx dy

2

+

∫∫
Ω

∂w

∂y
dx dy

2

+

+
∫∫
Ω

Dαβγδργδ(w)ραβ(w) dx dy

 . (1.10.22)

For any function w(x, y) ∈ C(4)(Ω), we can take suitable constants ai and
find a function wb(x, y) of the form

wb = w + a1 + a2x+ a3y (1.10.23)

such that∫∫
Ω

wb dx dy = 0,
∫∫
Ω

∂wb

∂x
dx dy = 0,

∫∫
Ω

∂wb

∂y
dx dy = 0. (1.10.24)
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As for the membrane with free edge, we can now consider a subset S4b of
C(4)(Ω) consisting of those functions which satisfy (1.10.24). We shall refer
to such functions as the balanced functions as we did for the membrane. We
construct an energy space EPF for a plate with free edge as the completion
of S4b in the metric corresponding to the inner product (1.10.14).

From (1.10.24), (1.10.22), and (1.10.18), we see that an element W (x, y)
of EPF is such that W (x, y) and all its “derivatives” up to order two are
in L2(Ω). Here we could show the existence of a limit function w0(x, y) =
limn→∞ wn, w0(x, y) ∈ C(Ω), for any Cauchy sequence {wn}, but in this
case the technique is more complicated and, in what follows, we have this
result as a particular case of the Sobolev imbedding theorem.

Note that the system of relations (1.10.24) can be replaced by the system∫∫
Ω

w(x, y) dx dy = 0,
∫∫
Ω

xw(x, y) dx dy = 0,
∫∫
Ω

yw(x, y) dx dy = 0,

since these also fix uniquely the ai for a class of functions of the form
(1.10.23). (This possibility follows from the general result by S.L. Sobolev
[22] on equivalent norms in Sobolev spaces.)

The system (1.10.24) represents constraints which are absent in nature.
For a static problem there must be a certain invariance of some objects
under transformations of the form (1.10.23). In particular, the work of
external forces does not depend on such transformations if the problem is
stated correctly. This leads to the necessary conditions∫∫

Ω

F (x, y) dx dy = 0,
∫∫
Ω

xF (x, y) dx dy = 0,
∫∫
Ω

yF (x, y) dx dy = 0.

(1.10.25)

The mechanical sense of (1.10.25) is clear: the resultant force and moments
vanish. This is the condition for a self-balanced force system.

Problem 1.10.1. What is the form of (1.10.25) if the external forces contain
point and line forces?

An energy space, as for the membrane with free edge, can be introduced
in another way: namely, we combine all elements of the form w(x, y)+a1 +
a2x + a3y with different constants ai into a class which we consider as a
single element of the base space S4∗; the zero element of S4∗ is the set of
all polynomials of the form a1 + a2x + a3y. The completion of S4∗ in the
metric of EPF is an energy space of elements whose natures differ from
those of EPF . However, we can state a one-to-one correspondence between
elements of both spaces, so for this space we retain the notation EPF . We
advise the reader to carry through in detail the construction of this space.
For example, one may consider mixed boundary conditions: how must the
treatment be modified if the plate is clamped only along a segment AB ⊂ Ω
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so that

w(x, y)
∣∣∣
AB

= 0,

with the rest of the boundary free of geometrical constraints?

Linear Elasticity
We return to the problem of linear elasticity, which was considered in Sec-
tion 1.3. Let us introduce a functional of the work of internal forces on
variations v(x) of the displacement field u(x):

(u,v) =
1
2

∫
Ω
cijklεkl(u)εij(v) dΩ. (1.10.26)

Here the elastic moduli cijkl may be piecewise continuous functions sat-
isfying (1.3.10) and (1.3.11), which guarantee that all inner product ax-
ioms shall be satisfied by (u,v) except P1: from (u,u) = 0 it follows that
u = a + b × x. Note that (u,v) is consistent with the metric (1.3.12).

Let us consider boundary conditions prescribed by

u(x)
∣∣∣
∂Ω

= 0. (1.10.27)

If we use the form (1.10.26) on the set S3 of vector-functions u(x) satisfying
(1.10.27) and such that each of their components is of class C(2)(Ω), then
(u,v) becomes an inner product and S3 with this inner product becomes
an inner product space. Its completion EEC in the corresponding metric is
the energy space of an elastic body with clamped boundary. To describe
the properties of the elements of EEC , we establish Korn’s inequality :

Lemma 1.10.1. For a vector function u(x) ∈ S3, we have

∫
Ω

|u|2 +
3∑

i,j=1

(
∂ui

∂xj

)2
 dΩ ≤ m

∫
Ω
cijklεkl(u)εij(u) dΩ (1.10.28)

for some constant m which does not depend on u(x).

Proof. By (1.3.11) and Friedrichs’s inequality, it is sufficient to show that

∫
Ω

3∑
i,j=1

(
∂ui

∂xj

)2

dΩ ≤ m1

∫
Ω

3∑
i,j=1
i≤j

ε2ij(u) dΩ.
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Consider the term on the right:

A ≡
∫

Ω

3∑
i,j=1
i≤j

ε2ij(u) dΩ =
1
4

∫
Ω

3∑
i,j=1
i≤j

(
∂ui

∂xj
+
∂uj

∂xi

)2

dΩ

=
∫

Ω


3∑

i=1

(
∂ui

∂xi

)2

+
1
4

3∑
i,j=1
i<j

[(
∂ui

∂xj

)2

+
(
∂uj

∂xi

)2

+ 2
∂ui

∂xj

∂uj

∂xi

] dΩ.

Integrating by parts (twice) the term

B =
1
2

∫
Ω

3∑
i,j=1
i<j

∂ui

∂xj

∂uj

∂xi
dΩ =

1
2

∫
Ω

3∑
i,j=1
i<j

∂ui

∂xi

∂uj

∂xj
dΩ

and using the elementary inequality |ab| ≤ (a2 + b2)/2,

B ≤ 1
4

∫
Ω

3∑
i,j=1
i<j

[(
∂ui

∂xi

)2

+
(
∂uj

∂xj

)2
]
dΩ =

1
2

∫
Ω

3∑
i=1

(
∂ui

∂xi

)2

dΩ;

we get

A ≥ 1
4

∫
Ω

3∑
i,j=1

(
∂ui

∂xj

)2

dΩ

which completes the proof.

By Korn’s inequality, we see that each component of an element U ∈ EEC

belongs to EMC , i.e., the ui and their first derivatives belong to L2(Ω).
Note that the construction of an energy space is the same if the boundary

condition (1.10.27) is given only on some part ∂Ω1 of the boundary of Ω:

u(x)
∣∣∣
∂Ω1

= 0.

Korn’s inequality is also valid but its proof is more complicated (see, for
example, [19, 9]).

If we consider an elastic body with free boundary we meet difficulties
similar to those for a membrane or plate with free edge: we must circumvent
the difficulty with the zero element of the energy space. The restrictions∫

Ω
u dΩ = 0,

∫
Ω

x × u(x) dΩ = 0,

provide that the zero element is zero, and that Korn’s inequality remains
valid for corresponding vector functions. So we get an energy space with
known properties. But we can also organize an energy space of classes in
which the zero element is the set of all elements of the form a + b × x.
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1.11 Sobolev Spaces

In a famous book [22], S.L. Sobolev introduced normed spaces which now
bear his name; they are denoted by Wm,p(Ω). The norm in Wm,p(Ω) is

‖u‖ =

∫
Ω

∑
|α|≤m

|Dαu|p dΩ
1/p

, (1.11.1)

where m is an integer, p ≥ 1, and Ω is compact in Rn. (The reader may
wish to review the Dα notation from page 13.) Indeed this is a norm on
the set C(m)(Ω): fulfillment of the axioms N1 and N2 is evident, and N3
is fulfilled by virtue of Minkowski’s inequality (1.2.4). The completion of
C(m)(Ω) in the norm (1.11.1) gives us a Banach space Wm,p(Ω).

It is interesting to note that for Ω a segment [a, b], the spaces Wm,p(a, b)
were introduced by S. Banach in his dissertation. Our interest in Sobolev
spaces is clear, since the elements of each of our energy spaces belonged to
Wm,2(Ω) for some m.

For u ∈ Lp(Ω), K.O. Friedrichs [10] introduced the notion of strong
derivative, calling v ∈ Lp(Ω) a strong derivative Dα(u) if there exists a
sequence {ϕn}, ϕn ∈ C(∞)(Ω), such that∫

Ω
|u(x) − ϕn(x)|p dΩ → 0 and

∫
Ω

|v(x) −Dαϕn(x)|p dΩ → 0 as n → ∞.

Since C(∞)(Ω) is dense in any C(k)(Ω), we see that an element of Wm,p(Ω)
has all strong derivatives up to the order m lying in Lp(Ω).

Another approach to introduce a generalized derivative was proposed by
Sobolev. He used an idea of the classical calculus of variations: if∫

Ω
u(x)ϕ(x) dΩ = 0

for all finite infinitely differentiable functions ϕ(x), then u(x) = 0 almost
everywhere (everywhere if u(x) is to be continuous), along with the inte-
gration by parts formula. (We call ϕ(x) “finite” on an open domain Ω ⊂ Rn

if ϕ(x) ∈ C(∞)(Ω) and the closure of the set M = {x ∈ Ω: ϕ(x) �= 0} is
compact in Ω.) So v ∈ Lp(Ω) is called a weak derivative Dαu of u ∈ Lp(Ω)
if for every finite function ϕ(x) on Ω we have∫

Ω
u(x)Dαϕ(x) dΩ = (−1)|α|

∫
Ω
v(x)ϕ(x) dΩ. (1.11.2)

The two definitions of generalized derivative are equivalent [22]. We shall
not give the proof, as it would be beyond the scope of our presentation.
The same is true for some other facts of this section.
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The result we now present is a particular case of Sobolev’s imbedding
theorem.

For an element W of HPC , a subset of W 2,2(Ω) consisting of those func-
tions satisfying the boundary condition (1.10.17), we saw that there is a
limit function w which we identified with W , which is continuous, i.e., has
better smoothness properties, and

‖w‖C(Ω) ≤ m‖W‖HP C
.

Such a situation is typical in Sobolev spaces. A correspondence between
an element W of Wm,p(Ω) and its limit function w which belongs to a
space Y is called the imbedding operator of Wm,p(Ω) to Y ; this operator is
continuous if for any W ∈ Wm,p(Ω) we have

‖w‖Y ≤ m‖W‖W m,p(Ω) (1.11.3)

with a constant m independent of W . Here we use the notation ‖ · ‖X to
emphasize that the norm under discussion is the norm on a certain space
X.

We assume that the compact set Ω ⊂ Rn satisfies the so-called cone
condition. This means that there is a finite circular cone in Rn such that any
point of the boundary of Ω can be touched by the vertex of the cone while
the cone lies fully inside Ω. This is the condition under which Sobolev’s
imbedding theorem is proved. We denote by Ωr an r-dimensional piecewise
smooth hypersurface in Ω. (This means that, at any point of smoothness, in
a local coordinate system, it is described by functions having all derivatives
continuous up to order m locally, if we consider Wm,p(Ω).)

The theory of Sobolev spaces and their extensions is a substantial branch
of mathematics (see Adams [1], Lions and Magenes [18], etc.). We formu-
late only what is needed for our purposes, using the notion of a compact
operator which will be introduced later (Section 2.6). This is Sobolev’s
imbedding theorem with some extensions:

Theorem 1.11.1. The imbedding operator of Wm,p(Ω) to Lq(Ωr) is con-
tinuous if one of the following conditions holds:

(i) n > mp, r > n−mp, q ≤ pr/(n−mp);

(ii) n = mp, q is finite with q ≥ 1.

If n < mp, then the space Wm,p(Ω) is imbedded into the Hölder space
Hα(Ω) when α ≤ (mp− n)/p, and the imbedding operator is continuous.

The imbedding operator of Wm,p(Ω) to Lq(Ωr) is compact (i.e., takes
every bounded set of Wm,p(Ω) into a precompact set of the corresponding
space) if

(i) n > mp, r > n−mp, q < pr/(n−mp) or
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(ii) n = mp and q is finite with q ≥ 1.

If n < mp then the imbedding operator is compact to Hα(Ω) when α <
(mp− n)/p.

Note that this theorem, the second part of which is known as the Sobolev–
Kondrashov imbedding theorem, allows us to get imbedding properties not
only for functions but also for their derivatives: if u ∈ Wm,p(Ω) then
Dαu ∈ Wm−k,p(Ω) when |α| = k. Also available are stricter results on
the imbedding of Sobolev spaces on Ω into the spaces of functions given
on manifolds Ωr of dimension less than n. They are known as the trace
theorems. We shall not present them here, since they require an extended
notion of Sobolev spaces.

Let us formulate some consequences of Theorem 1.11.1 that we shall
frequently use.

Theorem 1.11.2. Let γ be a piecewise differentiable curve in a compact
set Ω ⊂ R2. For any finite q ≥ 1, the imbedding operator of W 1,2(Ω) to
the spaces Lq(Ω) and Lq(γ) is continuous (and compact), i.e.,

max{‖u‖Lq(Ω), ‖u‖Lq(γ)} ≤ m‖u‖W 1,2(Ω) (1.11.4)

with a constant m which does not depend on u(x).

Theorem 1.11.3. Let Ω ⊂ R2 be compact. If α ≤ 1, the imbedding
operator of W 2,2(Ω) to Hα(Ω) is continuous; if α < 1, it is compact. For the
first derivatives, the imbedding operator to Lq(Ω) and Lq(γ) is continuous
(and compact) for any finite q ≥ 1.

Theorem 1.11.4. Let γ be a piecewise smooth surface in a compact set
Ω ⊂ R3. The imbedding operator of W 1,2(Ω) to Lq(Ω) when 1 ≤ q ≤ 6,
and to Lp(γ) when 1 ≤ p ≤ 4, is continuous; if 1 ≤ q < 6 or 1 ≤ p < 4,
respectively, then it is compact.

We merely indicate how such theorems are proved. We established sim-
ilar results for the bar problem (see (1.10.5)) and for the clamped plate
problem (see (1.10.20)). At that time, we used the integral representations
of functions of certain classes. In like manner, the original proof of Sobolev
is given for Ω a union of bounded star-shaped domains. (A domain is called
star-shaped with respect to a ball B if any ray with origin in B intersects
the boundary of the domain only once.) For a domain Ω which is bounded
and star-shaped with respect to a ball B, a function u(x) ∈ C(m)(Ω) can
be represented in the form

u(x) =
∑

|α|≤m−1

xα1
1 · · ·xαn

n

∫
B

Kα(y)u(y) dΩ +

+
∫

Ω

1
|x − y|n−m

∑
|α|=m

Kα(x,y)Dαu(y) dΩy (1.11.5)
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where Kα(y) and Kα(x,y) are continuous functions. Investigating prop-
erties of the integral terms on the right-hand side of the representation
(1.11.5), Sobolev formulated his results; later they were extended to more
general domains.

Another method is connected with the Fourier transformation of func-
tions. In the case ofWm,2(Ω), it is necessary to extend functions of C(m)(Ω)
outside Ω in such a way that they belong to Cm(Rn) and Wm,2(Rn). Then
using the Fourier transformation

û(y) = (2π)−n/2
∫

Rn

e−ix·yu(x) dx1 · · · dxn

along with the facts that

‖u(x)‖L2(Rn) = ‖û(y)‖L2(Rn)

and
D̂αu(x) = (iy1)α1 · · · (iyn)αn û(y)

for u ∈ L2(Rn), we can present the norm in Wm,2(Ω) in the form

‖u(x)‖2
W m,2(Rn) =

∑
|α|≤m

‖yα1
1 · · · yαn

n û(y)‖2
L2(Rn). (1.11.6)

We can then study the properties of the weighted space L2
w(Rn); this trans-

formed problem is simpler, as many of the problems involved are algebraic
estimates of Fourier images.

Moreover, we can consider W p,2(Rn) with fractional indices p. These lead
to necessary and sufficient conditions for the trace problem: givenWm,2(Ω),
find the space W p,2(∂Ω) in which Wm,2(Ω) is continuously imbedded. The
inverse trace problem is, given W p,2(Ω), find the minimal index m such
that every element u ∈ W p,2(∂Ω) can be extended to Ω, u∗ ∈ Wm,2(Ω), in
such a way that

‖u∗‖W m,2(Ω) ≤ c‖u‖W p,2(∂Ω).

In this way, many results from the contemporary theory of elliptic (and
other types of) equations and systems are obtained. We should mention
that the trace theorems are formulated mostly for smooth manifolds, hence
are not applicable to practical problems involving domains with corners.

1.12 Introduction to Operators

We have already used the notions of operator and functional, with the
understanding that the reader has surely encountered these basic notions
in other subject areas. At this point, we pause to give a formal definition
valid for metric and more general spaces.



1.12 Introduction to Operators 51

Definition 1.12.1. Let X and Y be metric spaces. A correspondence
x �→ y = A(x) where x ∈ X and y ∈ Y is called an operator (from X to Y )
if to each x ∈ X there corresponds no more than one y ∈ Y . The set of all
x for which there exists a corresponding y = A(x) is called the domain of
A, denoted D(A), whereas the image of D(A) is the range of A, denoted
R(A).

Note that there is nothing to prevent us from having Y = X. A particular
case of the concept of operator occurs when R(A) ⊂ R or C: we then refer
to A as a real or complex functional, respectively.

In accordance with the classical definition of continuity of a function, we
say that A is continuous at x0 ∈ X if for any ε > 0 there exists δ > 0
(dependent on ε) such that d(A(x), A(x0)) < ε whenever d(x, x0) < δ. If
A is continuous at every point of an open domain M , then it is said to be
continuous in M .

If X and Y are linear spaces we can consider a class of linear operators
A : X → Y . For all x1, x2 ∈ X, a linear operator A satisfies

A(λ1x1 + λ2x2) = λ1A(x1) + λ2A(x2)

where λ1, λ2 are any (real or complex) numbers. For a linear operator A,
an image A(x) is usually denoted by Ax.

In this section, from now on, we let X and Y be normed spaces. The
definition of continuity of an operator is changed in an evident way. For a
linear operator A we have Ax−Ax0 = A(x−x0), so A is continuous in the
whole space X if and only if it is continuous at a single point x0 ∈ X, say
x0 = 0. This allows us to formulate the next result.

Theorem 1.12.1. A linear operator A from X to Y , X and Y being
normed spaces, is continuous if and only if there is a constant c such that
for every x ∈ X

‖Ax‖ ≤ c‖x‖. (1.12.1)

The infimum of all such constants c is called the norm of A, denoted ‖A‖.

Proof. We need only show continuity of A at x = 0. If (1.12.1) holds, then
this continuity is clear by definition. Conversely, suppose A is continuous
at x = 0. Take ε = 1; by definition there exists δ > 0 such that ‖Ax‖ < 1
whenever ‖x‖ < δ. For every nonzero x ∈ X, the norm of x∗ = δx/(2‖x‖)
is

‖x∗‖ = ‖δx/(2‖x‖)‖ = δ/2 < δ,

so ‖Ax∗‖ < 1. Since A is linear, we have

δ

2‖x‖‖Ax‖ < 1 or ‖Ax‖ < 2
δ
‖x‖.

This is (1.12.1) with c = 2/δ.



52 1. Metric Spaces

A linear operator A satisfying (1.12.1) is said to be bounded.

Theorem 1.12.2. A linear operator A from X to Y , X and Y being
normed spaces, is continuous if and only if for every sequence {xn}, xn → 0,
the sequence Axn → 0 as n → ∞.

Proof. It is clear that for a continuous operator Axn → 0 if xn → 0 as
n → ∞. We prove the converse. Let Axn → 0 for every sequence {xn} such
that xn → 0. Suppose to the contrary that A is not continuous (i.e., that
it is not bounded). Then there exists a sequence {xn} such that ‖xn‖ ≤ 1
but ‖Axn‖ → ∞. We can assume (why?) that ‖Axn‖ ≥ n. Consider the
sequence yn = xn/

√
n. It is clear that ‖yn‖ → 0 but ‖Ayn‖ ≥ √

n so Ayn

does not tend to 0. This contradiction completes the proof.

Thus, for a linear operator acting from X to Y we can introduce two
other equivalent definitions of continuity: the first uses the property of
boundedness (inequality (1.12.1)), and the second, defined by Theorem
1.12.2, uses the notion of sequential continuity.

Let us consider some examples of operators:

1. The operator d/dx is the operator of differentiation. It is clear that
it is bounded from C(1)(−∞,∞) to C(−∞,∞).

2. A differential operator Au =
∑

|α|≤m aαD
αu(x) with constant co-

efficients aα is bounded (hence continuous) from C(m)(Ω) to C(Ω)
and from Wm,2(Ω) to L2(Ω). The reader should take a moment to
construct an example where it is not continuous.

3. The operator of integration defined by

B(u)(x) =
∫ x

0
u(s) ds

is continuous from C(0, 1) to C(0, 1). It is left as an exercise for
the reader to determine whether it is continuous from C(0, 1) to
C(1)(0, 1).

Lastly, we mention that various authors employ other terms instead of
“operator.” We sometimes find instead the terms transformation, map,
mapping, or simply function.

1.13 Contraction Mapping Principle

In the particular case X = Y , an operator A is said to be acting in X.
Many problems of mechanics can be formulated as equations of the form

x = Ax (1.13.1)
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where A acts in a metric space X. A solution to (1.13.1) is called a fixed
point of A. In the Introduction we saw two different problems whose solu-
tions were in a certain sense similar. There are many other such problems;
their general similarity is captured in the following definition.

Definition 1.13.1. An operator A acting in a metric space X is called a
contraction in X if for every pair x, y ∈ X there is a number q, 0 < q < 1,
such that

d(A(x), A(y)) ≤ q d(x, y). (1.13.2)

The following central theorem is known as the contraction mapping prin-
ciple or Banach’s principle of successive approximations:

Theorem 1.13.1. Let A be a contraction operator (with a constant q < 1)
in a complete metric space X. Then:

(i) A has a unique fixed point x∗ ∈ X;

(ii) For any initial approximation x0 ∈ X, the sequence of successive
approximations

xk+1 = A(xk), k = 0, 1, 2, . . . (1.13.3)

converges to x∗; the rate of convergence is estimated by

d(xk, x∗) ≤ qk

1 − q
d(x0, x1). (1.13.4)

Remark 1.13.1. X need not be a linear space. Banach’s principle works if
X is a closed subset of a metric space such that A(X) ⊂ X and A is a
contraction operator in X.

Proof of Theorem 1.13.1. We first show uniqueness of a fixed point of A.
Assuming the existence of two such points x1, x2 with x1 = A(x1), x2 =
A(x2), we get

d(x1, x2) = d(A(x1), A(x2)) ≤ q d(x1, x2);

as q < 1, this implies d(x1, x2) = 0. Hence x1 = x2.
Now take an element x0 ∈ X and consider the iterative procedure

(1.13.3). For d(xn, xn+m), we successively obtain

d(xn, xn+m) = d(A(xn−1), A(xn+m−1))
≤ q d(xn−1, xn+m−1)
= q d(A(xn−2), A(xn+m−2))

≤ q2d(xn−2, xn+m−2)
...
≤ qnd(x0, xm).
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But

d(x0, xm) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3) + · · · + d(xm−1, xm)

≤ d(x0, x1) + q d(x0, x1) + q2d(x0, x1) + · · · + qm−1d(x0, x1)

= (1 + q + q2 + · · · + qm−1)d(x0, x1)

=
1 − qm

1 − q
d(x0, x1) ≤ 1

1 − q
d(x0, x1)

so
d(xn, xn+m) ≤ qn

1 − q
d(x0, x1). (1.13.5)

It follows that {xn} is a Cauchy sequence. Since X is complete there is an
element x∗ ∈ X such that

x∗ = lim
n→∞xn = lim

n→∞A(xn−1).

Let us estimate d(x∗, A(x∗)):

d(x∗, A(x∗)) ≤ d(x∗, xn) + d(xn, A(x∗))
= d(x∗, xn) + d(A(xn−1), A(x∗))
≤ d(x∗, xn) + q d(xn−1, x∗)
→ 0 as n → ∞.

Thus
x∗ = A(x∗)

and x∗ is a fixed point of A.
Passing to the limit as m → ∞ in (1.13.5) gives the estimate (1.13.4),

and completes the proof.

Problem 1.13.1. Use one of the intermediate estimates of the proof to es-
tablish that

d(xk, x∗) ≤ qkd(x0, x∗).

Why is this estimate of less practical value than (1.13.4)?

By AN we denote

AN (x) = A(A(· · · (A︸ ︷︷ ︸
N times

(x)) · · · )).

Problem 1.13.2. Let Ay(t) =
∫ t

0 g(t− τ)y(τ) dτ , with g(t) ∈ C[0, T ], be an
operator acting in C[0, T ]. (1) Prove that AN is a contraction operator for
some integer N . Similar operators appear in the theory of viscoelasticity.
(2) Is the statement valid if g(t) ∈ Lp(0, T ), p > 1?
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Corollary 1.13.1. Let AN , for some N , be a contraction operator in a
complete metric space X. Then the operator A has a unique fixed point
x∗ to which the sequence of successive approximations (1.13.3) converges
independently of choice of initial approximation x0 ∈ X and with rate

d(xi, x∗) ≤ qi/N−1

1 − q
max{d(x0, xN ), d(x1, xN+1), . . . , d(xN−1, x2N−1)}.

Proof. The operator AN meets all requirements of Theorem 1.13.1, so the
equation

x = AN (x) (1.13.6)

has a unique solution x∗ and we have x∗ = AN (x∗). We can apply A to
both sides of this latter equation to obtain

A(x∗) = A(AN (x∗)) = AN (A(x∗)).

This means that A(x∗) is also a solution to (1.13.6). From uniqueness of
solution of (1.13.6), it follows that

x∗ = A(x∗),

i.e., equation (1.13.1) is solvable. Noting that any fixed point of A is a
fixed point of AN , we get uniqueness of solution of (1.13.1). Finally, the
whole sequence of successive approximations can be constructed by taking
elements from each of the N subsequences

{x0, A
N (x0), A2N (x0), . . .},

{A(x0), AN+1(x0), A2N+1(x0), . . .},
...

{AN−1(x0), A2N−1(x0), A3N−1(x0), . . .}.

For each of these subsequences, the estimate (1.13.4) is valid: we have

d(AkN (x0), x∗) ≤ qk

1 − q
d(x0, A

N (x0)),

d(AkN+1(x0), x∗) ≤ qk

1 − q
d(A(x0), AN+1(x0)),

...

d(AkN+N−1(x0), x∗) ≤ qk

1 − q
d(AN−1(x0), A2N−1(x0)).
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Replacing kN by i in the first inequality, kN + 1 by i in the second in-
equality, and so on, and remembering that xk = Ak(x0), we get

d(xi, x∗) ≤ qi/N

1 − q
d(x0, xN ) (i = kN),

d(xi, x∗) ≤ q(i−1)/N

1 − q
d(x1, xN+1) (i = kN + 1),

...

d(xi, x∗) ≤ q(i−N+1)/N

1 − q
d(xN−1, x2N−1) (i = kN + (N − 1)).

The desired estimate follows.

We consider some applications of the Banach principle to more general
systems of linear algebraic equations than were dealt with in the Introduc-
tion. We wish to solve the system

xi =
∞∑

j=1

aijxj + ci. (1.13.7)

The corresponding operator A is defined by

y = Ax, y = (y1, y2, . . .), yi =
∞∑

j=1

aijxj + ci.

Our subsequent treatment of this system depends on the space in which
we seek a solution. If we take X = m, the space of bounded sequences with
metric

d(x,y) = sup
i

|xi − yi|,

then we find that A is a contraction operator if

q = sup
i

∞∑
j=1

|aij | < 1 (1.13.8)

and c = (c1, c2, . . .) ∈ m. So we can find a solution to (1.13.7) by the method
of successive approximations beginning with any initial approximation from
m.

Another restriction on the infinite matrix (aij) appears if we consider
successive approximations in 	p, p > 1. Here we get

d(Ax, Ay) =

 ∞∑
i=1

∣∣∣∣∣∣
∞∑

j=1

aij(xj − yj)

∣∣∣∣∣∣
p1/p

.
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Applying the Hölder inequality we obtain

d(Ax, Ay) ≤

 ∞∑
i=1

 ∞∑
j=1

|aij |r
p/r ∞∑

j=1

|xj − yj |p


1/p

=

 ∞∑
i=1

 ∞∑
j=1

|aij |r
p/r


1/p

d(x,y)

where 1/r + 1/p = 1. So A is a contraction operator in 	p if c ∈ 	p and

q =

 ∞∑
i=1

 ∞∑
j=1

|aij |r
p/r


1/p

< 1, r =
p

p− 1
. (1.13.9)

Now we can solve the system (1.13.7) by an iterative procedure in 	p.
The values of q from (1.13.8) and (1.13.9) are the corresponding operator

norms in m and 	p, respectively (prove this).
In a similar way we can extend the result of the Introduction for the

system (2) to more general systems of integral equations in different spaces.
We leave this to the reader as an exercise.

We shall see Banach’s principle applied to problems in plasticity. When
applicable to such problems, it is a convenient and useful tool.

What can we say about the method relative to its use in numerical com-
putation? The advantages of iterative procedures are well known; in par-
ticular, numerical error at each iterative step does not degrade the solution
as a whole. However, the convergence rate does depend on q: with q = 0.5
or greater, say, convergence may be too slow to carry out many iterations
on a very complicated system of equations. In such cases it may be possi-
ble to transform the iterative procedure in some way in order to speed up
convergence (e.g., Seidel’s method).

1.14 Generalized Solutions in Mechanics

We now discuss how to introduce generalized solutions in mechanics. We
begin with Poisson’s equation

−∆u(x, y) = F (x, y), (x, y) ∈ Ω, (1.14.1)

where Ω is a bounded open domain in R2. The Dirichlet problem consists
of this equation supplemented by the boundary condition

u
∣∣∣
∂Ω

= 0. (1.14.2)
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Let u(x, y) be its classical solution; i.e., u ∈ C(2)(Ω) satisfies (1.14.1) and
(1.14.2). Let ϕ(x, y) be a finite function in Ω. (Recall this means that
ϕ ∈ C(∞)(Ω) and the closure of the set M = {(x, y) ∈ Ω | ϕ(x, y) �= 0} lies
in Ω.)

Multiplying both sides of (1.14.1) by ϕ(x, y) and integrating over Ω, we
get

−
∫

Ω
ϕ(x, y)∆u(x, y) dx dy =

∫
Ω
F (x, y)ϕ(x, y) dx dy. (1.14.3)

If this equality holds for every function ϕ(x, y) that is finite and infinitely
differentiable in Ω and if u ∈ C(2)(Ω) and satisfies (1.14.2), then, as is
well known from the classical calculus of variations, u(x, y) is the unique
classical solution to the Dirichlet problem.

But using (1.14.3), we can pose this Dirichlet problem directly without
(1.14.1); namely, u(x, y) is a solution to the Dirichlet problem if, obeying
(1.14.2), it satisfies (1.14.3) for every ϕ(x, y) finite and infinitely differen-
tiable in Ω. If F (x, y) belongs to Lp(Ω) then we can take, as it seems,
u(x, y) having second derivatives in the space Lp(Ω); such a u(x, y) is not
a classical solution, and it is natural to call it a generalized solution.

We can go further by applying integration by parts to the left-hand side
of (1.14.3) as follows:∫

Ω

(
∂u

∂x

∂ϕ

∂x
+
∂u

∂y

∂ϕ

∂y

)
dx dy =

∫
Ω
F (x, y)ϕ(x, y) dx dy. (1.14.4)

In such a case we may impose weaker restrictions on a solution u(x, y) and
call it the generalized solution if it belongs to EMC , the energy space for
a clamped membrane. Equation (1.14.4) defines this solution if it holds
for every ϕ(x, y) that is finite in Ω. Note the disparity in requirements on
u(x, y) and ϕ(x, y).

Further integration by parts on the left-hand side of (1.14.4) gives us the
equation

−
∫

Ω
u(x, y)∆ϕ(x, y) dx dy =

∫
Ω
F (x, y)ϕ(x, y) dx dy. (1.14.5)

Now we can formally consider solutions from the space L(Ω) and this is a
new class of generalized solutions.

This approach leads to the so-called theory of distributions, originated
by Schwartz [21]. He extended the notion of generalized solution to a class
of linear continuous functionals, distributions, defined on the set D(Ω) of
all functions finite and infinitely differentiable in Ω. For this it is necessary
to introduce the convergence and other structures of continuity in D(Ω).
Unfortunately D(Ω) is not a normed space (see, for example, Yosida [29] —
it is a so-called locally convex topological space) and its presentation would
be beyond our present scope. This theory justifies, in particular, the use of
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the so-called δ-function, which was introduced in quantum mechanics via
the equality ∫

δ(x− a)f(x) dx = f(a), (1.14.6)

valid for every continuous f(x). Physicists considered δ(x) to be a function
whose value is zero everywhere except at x = 0, where its value is infinity.
Any known theory of integration gave zero for the value of the integral on
the left-hand side of (1.14.6), and the theory of distributions explained how
to understand such strange functions. It is interesting to note that the δ-
function was well known in classical mechanics, too; if we consider δ(x−a)
as a unit point force applied at x = a, then the integral on the left-hand
side of (1.14.6) is the work of this force on the displacement f(a), which is
indeed f(a).

So we have several generalized statements of the Dirichlet problem, but
which one is most natural from the viewpoint of mechanics?

From mechanics it is known that a solution to the problem is a minimizer
of the functional of total energy

I(u) =
∫

Ω

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]
dx dy − 2

∫
Ω
Fudx dy. (1.14.7)

According to the calculus of variations, a minimizer of I(u) on the subset of
C(2)(Ω) consisting of all functions satisfying (1.14.2) is a classical solution
to the Dirichlet problem. But we can consider I(u) on the energy space
EMC if F (x, y) ∈ Lp(Ω), p > 1. Indeed, the first term in I(u) is well
defined in EMC and can be written in the form ‖u‖2; the second,

Φ(u) = −
∫

Ω
F (x, y)u(x, y) dx dy,

is a linear functional with respect to u(x, y). It is also continuous in EMC ;
by virtue of Hölder’s inequality with exponents p and q = p/(p − 1), we
have ∣∣∣∣∫

Ω
Fudx dy

∣∣∣∣ ≤
(∫

Ω
|F |p dx dy

)1/p(∫
Ω

|u|q dx dy
)1/q

≤ m1‖F‖Lp(Ω)‖u‖W 1,2(Ω)

≤ m2‖u‖EMC
.

(Here we have used the imbedding Theorem 1.11.2 and the Friedrichs in-
equality.) By Theorem 1.12.1, Φ(u) is continuous in EMC , and therefore so
is I(u).

Thus I(u) is of the form

I(u) = ‖u‖2 + 2Φ(u). (1.14.8)
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Let u0 ∈ EMC be a minimizer of I(u), i.e.,

I(u0) ≤ I(u) for all u ∈ EMC . (1.14.9)

We try a method from the classical calculus of variations. Take u = u0+εv,
v being an arbitrary element of EMC . Then

I(u) = I(u0 + εv)

= ‖u0 + εv‖2 + 2Φ(u0 + εv)
= (u0 + εv, u0 + εv) + 2Φ(u0 + εv)

= ‖u0‖2 + 2ε(u0, v) + ε2‖v‖2 + 2Φ(u0) + 2εΦ(v)

= ‖u0‖2 + 2Φ(u0) + 2ε[(u0, v) + Φ(v)] + ε2‖v‖2.

From (1.14.9), we get

2ε[(u0, v) + Φ(v)] + ε2‖v‖2 ≥ 0.

Since ε is an arbitrary real number, it follows that

(u0, v) + Φ(v) = 0. (1.14.10)

In other words,∫
Ω

(
∂u0

∂x

∂v

∂x
+
∂u0

∂y

∂v

∂y

)
dx dy −

∫
Ω
F (x, y)v(x, y) dx dy = 0. (1.14.11)

This equality is valid for every v ∈ EMC , and defines the minimizer u0 ∈
EMC . Note that (1.14.11) has the same form as (1.14.4).

So we have introduced the notion of generalized solution which has an
explicit mechanical background.

Definition 1.14.1. An element u ∈ EMC is called the generalized solution
to the Dirichlet problem if u satisfies (1.14.11) for any v ∈ EMC .

We can also obtain (1.14.11) from the principle of virtual displacements
(work). This asserts that in the state of equilibrium, on all virtual (admis-
sible) displacements, the work of internal forces (which is now the variation
of total energy) is equal to the work of external forces.

In the case under consideration, both approaches to introducing gen-
eralized energy solutions are equivalent. In general, however, this is not
so, and the virtual work principle has wider applicability. If F (x, y) is a
nonconservative load depending on u(x, y), we cannot use the principle of
minimum of total energy; however, (1.14.11) remains valid since it has the
mathematical form of the virtual work principle. In what follows, we shall
frequently use this principle to pose problems in equation form.

Note that the part of the presentation from (1.14.8) up to (1.14.10) is
general and does not depend on the specific form (1.14.11) of the functional
I(u). So we can formulate
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Theorem 1.14.1. Let u0 be a minimizer of a functional I(u) = ‖u‖2 +
2Φ(u) given in an inner product (Hilbert) space H, the functional Φ(u)
being linear and continuous. Then u0 satisfies (1.14.10) for every v ∈ H.

Equation (1.14.10) is a necessary condition for minimization of the func-
tional I(u), analogous to the condition for functions that the first derivative
equal zero at a point of minimum.

We can obtain (1.14.10) formally by evaluating

d

dε
I(u0 + εv)

∣∣∣
ε=0

= 0 (1.14.12)

(verify). This is valid for the following reason. Given u0 and v the functional
I(u0+εv) is an ordinary function of the numerical variable ε, and assumes a
minimum value at ε = 0. The left-hand side of (1.14.12) can be interpreted
as a partial derivative at u = u0 in the direction v, and is called the Gâteaux
derivative of I(u) at u = u0 in the direction of v. We shall return to this
issue later.

The Dirichlet problem for a clamped membrane is a touchstone for all
static problems. In a similar way we can introduce a natural notion of
generalized solution for other problems under consideration. As we said,
each of them can be represented as a problem of a minimum total energy
functional of the form (1.14.10) in an energy space. For example, equation
(1.14.11), a particular form of (1.14.10) for a clamped membrane, is the
same for a free membrane — we need only replace EMC by EMF . Φ(u), to
be a continuous linear functional in EMF , must be supplemented with self
balance condition (1.10.13) for the load.

Let us concretize equation (1.14.10) for each of the other problems we
have under consideration.

A plate.

The definition of generalized solution w0 ∈ EP is given by the equation∫∫
Ω

Dαβγδργδ(w0)ραβ(w) dx dy −
∫∫
Ω

F (x, y)w(x, y) dx dy−

−
m∑

k=1

Fkw(xk, yk) −
∫

γ

f(s)w(x, y) ds = 0 (1.14.13)

(see the notation of Section 1.10) which must be valid for every w ∈ EP .
The equation is the same for any kind of homogeneous boundary condi-
tions (i.e., for usual ones) but the energy space will change from one set of
boundary conditions to another. If a plate can move as a rigid whole, the
requirement that

F (x, y) ∈ L(Ω), f(s) ∈ L(γ),
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for Φ to be a continuous linear functional, must be supplemented with
self-balanced conditions for the load:∫

Ω
F (x, y)wi(x, y) dx dy +

m∑
k=1

Fkwi(xk, yk) +
∫

γ

f(s)w(x, y) ds = 0

(1.14.14)
for i = 1, 2, 3, where w1(x, y) = 1, w2(x, y) = x, and w2(x, y) = y.

Note that for each concrete problem we must specify the energy space.
The same is true for the following problem.

Linear elasticity.

Here the generalized solution u ∈ EE is defined by the integro-differential
equation ∫

Ω
cijklεkl(u)εij(v) dΩ −

∫
Ω

F(x, y, z) · v(x, y, z) dΩ −

−
∫

Γ
f(x, y, z) · v(x, y, z) dS = 0 (1.14.15)

which must be valid for every v ∈ EE .
The load, thanks to Theorem 1.11.4 and Korn’s inequality, is of the class

Fi(x, y, z) ∈ L6/5(Ω), fi(x, y, z) ∈ L4/3(Γ), i = 1, 2, 3,

Γ being a piecewise smooth surface in Ω. This provides continuity of Φ(w).
As above, for a body with free boundary we must require that the load

be self-balanced: ∫
Ω

F(x) dΩ +
∫

Γ
f(x) dS = 0,∫

Ω
x × F(x) dΩ +

∫
Γ
x × f(x) dS = 0. (1.14.16)

We have argued that it is legitimate to introduce the generalized solution
in such a way. Of course, full legitimacy will be assured when we prove that
this solution exists and is unique in the corresponding space.

We emphasize once more that the definition of generalized solution arose
in a natural way from the variational principle of mechanics.

Now we return to general properties of metric spaces.

1.15 Separability

Two sets are said to be of equal power if there is a one-to-one correspon-
dence between their elements. Of all sets having infinitely many elements,
the set of least power is the set of positive integers.
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Definition 1.15.1. A set which is of equal power with the set of positive
integers is said to be countable.

Roughly speaking, each element of a countable set can be numbered by
assigning it a positive-integer index.

Theorem 1.15.1. A countable union of countable sets is countable.

Proof. It suffices to show how we may enumerate the elements of the union.
The method is clear from the diagram

a11 a12 a13 a14 · · ·
↙ ↙ ↙ ↙

a21 a22 a23 a24 · · ·
↙ ↙ ↙ ↙

a31 a32 a33 a34 · · ·
↙ ↙ ↙ ↙

a41 a42 a43 a44 · · ·
... ↙ ↙ ↙

where, for a fixed i, {aij} is a sequence of enumerated elements of the ith
set. The first element we choose to enumerate is a11; then we go along the
diagonal, enumerating a12 and a21. The next diagonal gives a13, a22, a31.
Proceeding in this way, all the elements of all the sets are put into one-to-
one correspondence with the sequence of positive integers. This completes
the proof.

Corollary 1.15.1. The set of all rational numbers is countable.

Proof. A rational number is represented in the form i/j where i, j are
integers. Denoting aij = i/j, we obtain the sequence aij which meets the
condition of the theorem.

Problem 1.15.1. Show that the set of all polynomials with rational coeffi-
cients is countable.

Georg Cantor (1845–1918) proved

Theorem 1.15.2. The set of real numbers of the segment [0, 1] is not
countable.

(The proof can be found in any textbook on set theory or the theory of
functions of a real variable.) So the set [0, 1] is not of equal power with the
set of positive integers; the points of [0, 1] form a continuum.

It would be beyond our scope to discuss Cantor’s theory of sets. Our
interests lie in applying the notion of countability to metric spaces. Modern
mechanics depends a great deal on computational ability. A computer can
process only finite sets of numbers, hence can only approximate results to
a given decimal accuracy. If x is an arbitrary element of an infinite set X
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and we want to use a computer to find it, then we must be certain that
every element of X can be approximated by elements of another set which
is finite or, at least, countable. This leads to

Definition 1.15.2. X is called a separable metric space if it contains a
countable subset which is dense in X.

In other words, X is separable if there is a countable set M ⊂ X such
that for every x ∈ X there is a sequence {mi}, mi ∈ M , approximating x:
d(x,mi) → 0 as i → ∞.

An example of a separable metric space is the set of real numbers in
[a, b]; here the dense set M is the set of all rational numbers in [a, b].

The set of all polynomials on a closed and bounded domain Ω, equipped
with the norm of the space C(Ω), is separable; the dense subset is the set
Pr of all polynomials with rational coefficients. Indeed, approximating the
coefficients aα of an arbitrary polynomial

∑
α aαxα by rational numbers

aαr we can always obtain

max
x∈Ω

∣∣∣∣∣∑
α

aαxα −
∑
α

aαrx
α

∣∣∣∣∣ < ε (xα ≡ xα1
1 · · ·xαn

n )

for any given precision ε > 0.
A nontrivial example of a separable space is provided by the classical

Weierstrass theorem, which can be formulated as

Theorem 1.15.3. The set Pr of all polynomials with rational coefficients
is dense in C(Ω), where Ω is a closed and bounded domain in Rn.

Since Pr is countable, the theorem states that C(Ω) is separable. Now
we construct an example of a set which is not a separable metric space.

Lemma 1.15.1. The set of functions f(x) bounded on [0, 1] and equipped
with the norm

‖f(x)‖ = sup
x∈[0,1]

|f(x)|

is not separable.

Proof. It suffices to construct a subset M of the space whose elements
cannot be approximated by functions from a countable set. Let α be an
arbitrary point of [0, 1]. The set M is composed of functions defined as
follows:

fα(x) =

{
1, x ≥ α,

0, x < α.

The distance from fα(x) to fβ(x) is

‖fα(x) − fβ(x)‖ = sup
x∈[0,1]

|fα(x) − fβ(x)| = 1 if α �= β.
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Take a ball Bα of radius 1/3 about fα(x). If α �= β then the intersection
Bα ∩Bβ is empty.

If a countable subset is dense in the space then each of the Bα must
contain at least one element of this subset, but this contradicts Theorem
1.15.2 since the set of balls Bα is of equal power with the continuum.

Now we show that the metric spaces we introduced are separable. We
begin with

Theorem 1.15.4. Let Ω be a closed and bounded domain in Rn. Then
Lp(Ω) is separable for any p ≥ 1.

Proof. It suffices to show that Pr, the set of all polynomials with rational
coefficients, is dense in Lp(Ω). We saw (Theorem 1.15.3) that Pr is dense
in C(Ω). Then Pr is dense in the set of all functions continuous on Ω which
is equipped with the metric of Lp(Ω). Indeed, if f(x) ∈ C(Ω) then, for a
given ε > 0, we can find a polynomial Qε(x) from Pr such that

max
x∈Ω

|f(x) −Qε(x)| ≤ ε

(mes Ω)1/p
.

Then

‖f(x) −Qε(x)‖Lp(Ω) =
(∫

Ω
|f(x) −Qε(x)|p dΩ

)1/p

≤
(

εp

mes Ω

∫
Ω

1 dΩ
)1/p

= ε.

Now let F (x) be an element of Lp(Ω) and {fn(x)} its representative
Cauchy sequence. Each fn(x) can be approximated by a polynomial from
Pr (since fn(x) is a continuous function) with any accuracy, say 1/n:

‖fn(x) −Qn(x)‖Lp(Ω) < 1/n.

It is easy to verify that {Qn(x)} is also a representative sequence of F (x).
By Theorem 1.15.1, the set of all Cauchy sequences constituted of elements
of a countable set is also countable. This completes the proof.

This proof is of a general nature. If Pr is replaced by a countable subset
which is dense in a metric space X, and the metric of Lp(Ω) by the metric
of X, the result is an abstract modification of Theorem 1.15.4:

Theorem 1.15.5. The completion of a separable metric space is separable.

This theorem allows us to show separability of energy spaces if we prove
the following:
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Theorem 1.15.6. Let Ω be compact in Rn. Then for any positive integer
k, C(k)(Ω) is separable.

We give only a sketch of the proof. A function f(x) ∈ C(k)(Ω) can be
approximated with any accuracy in the norm of C(k)(Ω) by a function
f1(x) that is infinitely differentiable. This can be done using the averaging
technique. We consider the derivative

∂knf1(x1, . . . , xn)
∂xk

1 · · · ∂xk
n

as an element of C(Ω) and, within a prescribed accuracy, approximate it
by a polynomial Qkn belonging to Pr. This can be done by virtue of the
Weierstrass theorem. Using Qkn, we then construct a polynomial with ra-
tional coefficients that approximates f(x) in C(k)(Ω) within the prescribed
accuracy. For this, we choose a point x0 = (x10, . . . , xn0) ∈ Ω with rational
coordinates. We then choose rational numbers aα that approximate the
values of Dαf1(x0) with some prescribed accuracy. Using these numbers as
initial data, we perform successive integrations on the polynomial Qkn:

Qkn−1(x1, x2, . . . , xn) = ak−1,k,...,k +
∫ x1

x10

Qkn(s, x2, . . . , xn) ds,

Qkn−2(x1, x2, . . . , xn) = ak−2,k,...,k +
∫ x1

x10

Qkn−1(s, x2, . . . , xn) ds,

...

At each stage of integration we get a polynomial with rational coefficients
that approximates in C(Ω) one of the derivatives of f1(x) within prescribed
accuracy. So the final polynomial approximates f1(x) and thus f(x) in
C(k)(Ω). We leave it to the reader to complete the proof.

We also need the following almost trivial result:

Theorem 1.15.7. Any subspace E of a separable metric space X is
separable.

Proof. Consider a countable set consisting of (x1, x2, . . .) which is dense in
X. Let Bki be a ball of radius 1/k about xi. By Theorem 1.15.1, the set of
all Bki is countable.

For any fixed k the union ∪iBki covers X and thus E. For every Bki,
take an element of E which lies in Bki (if it exists). Denote this element by
eki. For any e ∈ Bki ∩ E, the distance d(e, eki) is less than 2/k. It follows
that the set of all eki is, on the one hand, countable, and, on the other
hand, dense in E.

This theorem is of great importance. We have a limited selection of count-
able sets of functions with which to demonstrate separability of certain
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spaces: they are the space Pr of polynomials with rational coefficients, the
space of trigonometric polynomials with rational coefficients, and a few
others. As a rule, the elements of these spaces do not meet the boundary
conditions imposed on functions of, for example, energy spaces. We can
circumvent this difficulty by taking a wider space, containing the space of
interest, whose separability may be shown. The needed separability is then
a consequence of the theorem.

As a particular case of Theorems 1.15.5 and 1.15.6, we have

Lemma 1.15.2. The Sobolev spaces Wm,p(Ω), p ≥ 1, are separable.

Because we showed that all of the introduced energy spaces were sub-
spaces of certain Sobolev spaces, we have

Lemma 1.15.3. The energy spaces introduced above are all separable.

In what follows, we shall introduce other energy spaces and show that
they are also subspaces of Sobolev spaces; hence their separability shall be
established.

1.16 Compactness, Hausdorff Criterion

The classical Bolzano theorem states that every bounded sequence of Rn

contains a Cauchy subsequence. How does this property depend on the
dimension of a space?

Consider, for example, a sequence of elements of 	2:

x1 = (1, 0, 0, 0, . . .),
x2 = (0, 1, 0, 0, . . .),
x3 = (0, 0, 1, 0, . . .),

...

Since ‖xi‖ = 1 the sequence is bounded in 	2, but for any pair of distinct
elements we get

‖xi − xj‖ = (12 + 12)1/2 =
√

2;

hence {xi} does not contain a Cauchy subsequence.
Let us introduce

Definition 1.16.1. A set in a metric space is called precompact if every
sequence consisting of elements of the set contains a Cauchy subsequence.
If the limit elements of these subsequences all belong to the set, then the
set is called compact.

A compact set is closed. In these terms, Bolzano’s theorem can be re-
formulated as follows: a bounded subset of Rn is precompact; a closed and
bounded subset of Rn is compact.
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Note that Rn itself is not compact if we assume a usual metric. Is there
a metric on Rn such that the whole of Rn is precompact in this metric?
(The answer is “yes.” Why?)

To establish a criterion for compactness of a set we need

Definition 1.16.2. A finite set E of elements of a metric space X is called
a finite ε-net of a set M ⊂ X if for every x ∈ M there is an element e ∈ E
such that d(x, e) < ε.

This definition means that every element of M lies in one of a finite
collection of balls of radius ε if M has a finite ε-net. It is clear that any
finite set has a finite ε-net for any ε > 0. In particular, we may haveM = X.

Now we formulate Hausdorff’s criterion for compactness.

Theorem 1.16.1. A subset of a metric space is precompact if and only if
for every ε > 0 there is a finite ε-net for this set.

Proof. (a) Necessity. Let M be a precompact subset of a metric space X.
The existence of a finite ε-net for any ε > 0 for M is proved by contradic-
tion. Let ε0 > 0 be such that there is no finite ε0-net for M : this means
that a union of any finite number of balls of radius ε0 cannot contain all
elements of M . Take an element x1 ∈ M and a ball B1 of radius ε0 about
x1. Since there is no finite ε0-net for M , there is an element x2 of M
such that x2 /∈ B1. Construct the ball B2 of radius ε0 about x2. Outside
B1 ∪ B2 there is a third element x3 of M — otherwise x1 and x2 form an
ε0-net. Continuing to construct a sequence of elements and corresponding
balls, we get a sequence {xn} satisfying the condition d(xn, xm) ≥ ε0 for
n �= m. Therefore {xn} does not contain a Cauchy subsequence, and this
contradicts the definition of precompactness.

(b) Sufficiency. Suppose that for every ε > 0, there is a finite ε-net
of a set M ⊂ X. We must show that M is precompact. Let {xn} be an
arbitrary sequence from M : we shall show that we can select a Cauchy
subsequence from {xn}. For this, take ε1 = 1/2 and construct a finite ε1-
net for M . One of the balls, say B1, of radius ε1 about an element of this
finite net must contain an infinite number of elements of {xn}. Take one of
the latter elements and denote it xi1 . Next construct a finite ε2-net with
ε2 = 1/22. One of the balls, say B2, of radius ε2 about the elements of this
net contains an infinite number of elements of {xn} which belong to B1.
We choose such an element and denote it xi2 . Continuing this procedure,
we obtain an infinite sequence {xik

} which is a subsequence of {xn}. Since
xik

and xik+1 , by construction, are in the ball Bk of radius εk = 1/2k, we
get d(xik

, xik+1) ≤ 1/2k−1. Then the triangle inequality gives

d(xik
, xik+m

) ≤ d(xik
, xik+1) + d(xik+1 , xik+2) + · · · + d(xik+m−1 , xik+m

)

≤ 1
2k−1 +

1
2k

+ · · · +
1

2k+m−2 <
1

2k−2 .

This means that {xik
} is a Cauchy sequence, as desired.
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Note that a closed precompact set is compact. How do we formulate the
Hausdorff theorem for M to be compact?

Corollary 1.16.1. A precompact subset S of a metric spaceM is bounded.

Proof. Take ε = 1 and construct a 1-net. The union of the finite number of
unit balls with centers at the nodes of the net covers S. So there is a finite
ball of M that contains S.

In a certain way, the property of compactness is close to the property of
separability; namely, we have

Theorem 1.16.2. A precompact metric space M (or a precompact subset
of a metric space) is separable.

Proof. Using Theorem 1.16.1 we construct a countable set E which is dense
in M , as follows. Take the sequence εk = 1/k; let the set (xk1, xk2, . . . , xkN )
be a finite εk-net of M (N certainly depends on k). The collection of all
xki for all possible k, i, being a countable set, is the needed E since, for
every x ∈ M and any ε > 0 there is a ball B of radius εk < ε about an xki

such that x ∈ B. This means there is a sequence in E which converges to
x.

Now we examine an extension of Bolzano’s theorem.

Theorem 1.16.3. Every closed and bounded subset of a Banach space X
is compact if and only if X has finite dimension.

(We recall that X has finite dimension if there is a finite set of ele-
ments x1, . . . , xn such that any x ∈ X can be represented in the form
x =

∑n
i=1 αixi. The least such n is called the dimension of X.)

Sufficiency of the theorem is proved in a manner similar to that for
Bolzano’s theorem and is omitted. Necessity is a consequence of the follow-
ing

Lemma 1.16.1 (Riesz). Let M be a closed subspace of a normed space
X and suppose M �= X. Then for any ε, 0 < ε < 1, there is an element xε

such that

xε /∈ M, ‖xε‖ = 1, and inf
y∈M

‖y − xε‖ > 1 − ε.

Proof. Since M �= X there is an element x0 ∈ X such that x0 /∈ M .
Denote d = infy∈M ‖x0 − y‖. First we show that d > 0. If on the contrary
d = 0, then there is a sequence {yk}, yk ∈ M , such that ‖x0 − yk‖ → 0
as k → ∞; this means limk→∞ yk = x0 and so x0 ∈ M because M is
closed. Thus d > 0. By definition of infimum, for any ε > 0 there exists
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yε ∈ M such that d ≤ ‖x0 − yε‖ ≤ d/(1 − ε/2). The needed element is
xε = (x0 − yε)/‖x0 − yε‖. Indeed ‖xε‖ = 1 and for any y ∈ M we have

‖xε − y‖ =
∥∥∥∥ x0 − yε

‖x0 − yε‖ − y

∥∥∥∥ =
‖x0 − (yε + ‖x0 − yε‖y)‖

‖x0 − yε‖
≥ d

/ d

1 − ε/2
= 1 − ε

2
.

(Here we used the fact that yε + ‖x0 − yε‖y ∈ M .)

Proof of necessity for Theorem 1.16.3. It suffices to prove that the unit
ball about zero is compact only in a finite dimensional Banach space.

Take an element y1 such that ‖y1‖ = 1 and denote by E1 the space
spanned by y1, i.e., the set of all elements of the form αy1, α being in C.
If E1 �= X then, by Lemma 1.16.1, there is an element y2 /∈ E1 such that
‖y2‖ = 1 and ‖y1 − y2‖ > 1/2. Denote by E2 a linear space spanned by y1
and y2. If E2 �= X then, by the same lemma, we can find y3 such that

‖y3‖ = 1, ‖y3 − y1‖ > 1/2, ‖y3 − y2‖ > 1/2.

If X is infinite dimensional then this process goes on indefinitely and we
get a sequence {yk} such that

‖yi − yj‖ > 1/2 if i �= j.

This sequence lying in the unit ball about zero cannot contain a Cauchy
subsequence, which contradicts the hypothesis. So the process must termi-
nate and thus X = Ek for some k, i.e., is finite dimensional.

In the next section we consider a widely applicable theorem on compact-
ness.

1.17 Arzelà’s Theorem and Its Applications

Theorem 1.17.1. Let Ω be a closed and bounded (i.e., compact) domain
in Rn. A set M of functions continuous on Ω is precompact in C(Ω) if and
only if M satisfies the following pair of conditions:

(i) M is uniformly bounded. There is a constant c such that for every
f(x) ∈ M ,

|f(x)| ≤ c

for all x ∈ Ω.

(ii) M is equicontinuous. For any ε > 0 there exists δ > 0, dependent on
ε, such that whenever |x − y| < δ, x,y ∈ Ω, then

|f(x) − f(y)| < ε

holds for every f(x) ∈ M .
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Problem 1.17.1. Does (i) mean that M is bounded in C(Ω)?

Proof of Theorem 1.17.1. (a) Necessity. Let M be precompact in C(Ω).
By Theorem 1.16.1 there is a finite 1-net for M ; i.e., there is a finite set
of continuous functions gi(x), i = 1, . . . , k, such that to any f(x) there
corresponds gi(x) for which

‖f(x) − gi(x)‖ = max
x∈Ω

|f(x) − gi(x)| ≤ 1.

Since the gi(x) are continuous there is a constant c1 such that |gi(x)| < c1
for i = 1, . . . , k, and thus

|f(x)| ≤ c1 + 1.

So condition (i) is fulfilled.
Let us show (ii). Let ε > 0 be given. By precompactness of M , there is

a finite ε/3-net, say gi(x), i = 1, . . . ,m. Since the number of gi(x) is finite
and they are equicontinuous on Ω, we can find a positive number δ such
that whenever |x − y| < δ then

|gi(x) − gi(y)| < ε/3 for all i = 1, . . . ,m.

For an arbitrary function f(x) from M , there exists gr(x) such that

|f(x) − gr(x)| < ε/3 for all x ∈ Ω.

Let x,y ∈ Ω be such that |x − y| < δ. Then

|f(x) − f(y)| ≤ |f(x) − gr(x)| + |gr(x) − gr(y)| + |gr(y) − f(y)|
< ε/3 + ε/3 + ε/3 = ε

and thus condition (ii) is fulfilled too.
(b) Sufficiency. Let M satisfy conditions (i) and (ii) of the theorem. We

must show that from any sequence of functions lying in M we can choose
a subsequence which is uniformly convergent. Since Ω is compact in Rn we
can find a finite δ-net for Ω for any δ > 0, say “cubic” close packing. Take
δk = 1/k and construct a corresponding finite δk-net for Ω. We enumerate
all the nodes of these nets successively: first all points of δ1-net, then all
points of δ2-net, and so on. As a result, we get a countable set of points
{xk} which is dense in Ω.

Take a sequence of functions {fk(x)} from M and consider it at x =
x1. We can choose a convergent subsequence {fk1(x1)} from it because
the numerical sequence {fk(x1)} is bounded. Considering the numerical
sequence {fk1(x2)}, by the same reasoning we can choose a convergent
subsequence {fk2(x2)} from the latter. The same can be done for x = x3,
x = x4, and so on. On the kth step of this procedure we get a subsequence
which is convergent (Cauchy) at x = xi, i = 1, . . . , k.
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Consider a sequence consisting of diagonal elements of these sequences,
namely, {fnn

(x)}. By construction this sequence is convergent at every
x = xi, i = 1, 2, 3, . . .. Let us show that it is uniformly convergent. First,
by equicontinuity of M , for any ε > 0 we can find δ > 0 such that whenever
|x − y| < δ then for every n

|fnn(x) − fnn(y)| < ε/3.

Take some finite δ1-net of Ω, δ1 < δ, with nodes denoted by zi, i = 1, . . . , r.
Since r is finite, for the ε, we can find a number N such that for all n,m >
N ,

|fnn(zi) − fmm(zi)| < ε/3, i = 1, . . . , r.

Let x be an arbitrary point of Ω and zk be the point of the δ1-net nearest
to x, i.e., |x − zk| < δ1. For the above m,n we get

|fnn
(x) − fmm

(x)| ≤ |fnn
(x) − fnn

(zk)| + |fnn
(zk) − fmm

(zk)| +
+ |fmm

(zk) − fmm(x)|
< ε/3 + ε/3 + ε/3 = ε.

Therefore {fnn(x)} is uniformly convergent and the proof is complete.

Corollary 1.17.1. A set bounded in the space C(1)(Ω) is precompact in
C(Ω). It is compact if it is closed.

Proof. A set bounded in C(1)(Ω) is bounded in C(Ω), i.e., the condition (i)
of the theorem is fulfilled. Fulfillment of (ii) follows from the elementary
inequality

|f(x) − f(y)| =
∣∣∣∣∫ 1

0

df(sx + (1 − s)y)
ds

ds

∣∣∣∣ ≤ C|x − y|.

A famous application of Arzelà’s theorem is the following local existence
theorem due to Peano for the Cauchy problem for a system of ordinary
differential equations

y′ = f(t,y(t)), y(t0) = y0, y ∈ Rn. (1.17.1)

Denote

Q(t0, a, b) = {(t,y) | t0 ≤ t ≤ t0 + a, |y − y0| ≤ b, y ∈ Rn}.
Theorem 1.17.2 (Peano). Let f(t,y) be continuous on Q(t0, a, b) and
such that |f(t,y)| ≤ m on this domain, and let α = min{a, b/m}. Then
there is a continuous solution y = y(t) to the Cauchy problem (1.17.1) on
the interval [t0, t0 + α].
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Proof. On [t0 − 1, t0] we define a function y = yε(t) by

yε(t) = y0 + (t− t0)f(t0,y0).

Its continuation onto [t0, t0 + α] is determined by the equation

yε(t) = y0 +
∫ t

t0

f(s,yε(s− ε)) ds. (1.17.2)

The process of continuation is done successively onto the segment [t0, t0 +
α1], α1 = min{α, ε}, then onto [t0 + α1, t0 + 2α1] and so on.

If ε ≤ b/m, then on [t0 − ε, t0] we get

|yε(t) − y0| ≤ b.

By the conditions of the theorem this inequality also holds on [t0, t0 + α].
Moreover, on this latter segment |y′

ε(t)| ≤ m, i.e., the set of all functions
{yε(t)} when ε ≤ b/m, considered on [t0, t0 +α], satisfies the conditions of
Corollary 1.17.1. Thus we can find a sequence {εk} such that εk → 0 as k →
∞ and the sequence {yεk

(t)} converges uniformly, y(t) = limk→∞ yεk
(t)

on [t0, t0 + α].
By equicontinuity of f(t,y), the sequence {f(t, yεk

(t)} converges uni-
formly to f(t,y(t)) on the same segment. Therefore we can take the limit
under the integral sign on the right-hand side of (1.17.2); passage to the
limit in (1.17.2) gives

y(t) = y0 +
∫ t

t0

f(s,y(s)) ds, t ∈ [t0, t0 + α].

This means y(t) is a continuous solution to the problem (1.17.1).

Our subject is now to demonstrate how compactness can be applied to
the justification of a finite difference procedure to solve ordinary differen-
tial equations. We consider the simplest of these methods, due to Euler,
supposing the requirements of Theorem 1.17.2 to be fulfilled.

Let ∆ > 0 be a step of Euler’s method for the solution of (1.17.1). Euler’s
method is defined by the system of equations

zk+1 − zk

∆
= f(t0 + k∆, zk), k = 0, 1, . . .

z0 = y0. (1.17.3)

Denote by y = y∆(t) the linear interpolation function of the set of pairs
(t0 + k∆, zk); for 0 ≤ s ≤ ∆, it is defined by

y∆(t0 + k∆ + s) =
∆ − s

∆
zk +

s

∆
zk+1.
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On each of the segments [t0 + k∆, t0 + (k + 1)∆], k < α/n, we get the
relation

|y′
∆(t)| = |f(t0 + k∆, zk)| ≤ m (1.17.4)

from which it follows that

|zk − z0| ≡ |zk − y0| ≤ k∆m ≤ αm ≤ b

and thus the system (1.17.3) is solvable until k < α/∆. Therefore, (1.17.4)
holds for all t ∈ [t0, t0 + α] (except t of the form t0 + k∆ which, however,
does not break the fulfillment of the conditions of Arzelà’s theorem) and

|y∆(t) − y0| ≤ b when t ∈ [t0, t0 + α].

So we see that the set of all functions {y∆(t)} is precompact in C(t0, t0+α)
if ∆ ≤ α since both conditions of Arzelà’s theorem are fulfilled. Now we
can formulate

Theorem 1.17.3. Assume that all conditions of Theorem 1.17.2 are ful-
filled and the Cauchy problem (1.17.1) has the unique solution y = y(t) in
Q(t0, a, b). Then a sequence {y∆k

(t)} converges uniformly to y = y(t) on
[t0, t0 + α] as ∆k → 0.

Proof. It suffices to show that for any ε > 0 there is only a finite number
of functions from the sequence {y∆k

(t)} which do not satisfy

|y∆k
(t) − y(t)| ≤ ε, for all t ∈ [t0, t0 + α]. (1.17.5)

Assume to the contrary that there are infinitely many functions from the
sequence which do not satisfy (1.17.5) for some ε > 0. Then, using a stan-
dard technique from calculus, we can find a point t1, t1 ∈ [t0, t0 + α], and
a subsequence ∆k1 → 0 such that

|y∆k
(t1) − y(t1)| > ε

and the number sequence {y∆k1
(t)} is convergent.

As the set {y∆k1
(t)} is precompact in C(t0, t0 +α) we can choose from it

a subsequence {y∆k2
(t)} uniformly converging to y = z(t); it is clear that

z(t) ≡/ y(t). (1.17.6)

Rewriting (1.17.3) in the form

dy∆(t0 + k∆ + s)
ds

= f(t0 + k∆,y∆(t0 + k∆)), 0 ≤ s ≤ ∆

and integrating this with regard to (1.17.3), we get

y∆(t) − y0 = ∆
k−1∑
i=0

f(t0 + i∆,y∆(t0 + i∆)) + sf(t0 + k∆,y∆(t0 + k∆)),

(1.17.7)
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where t = t0 + k∆ + s, 0 ≤ s ≤ ∆. The expression on the right-hand side
of (1.17.7) is a finite Riemann sum which, under the present conditions,
converges as ∆ = ∆k2 → 0 to the integral∫ t

t0

f(s, z(s)) ds

and, therefore, z(s) satisfies the equation

z(t) − y0 =
∫ t

t0

f(s, z(s)) ds

which is equivalent to the Cauchy problem (1.17.1). By uniqueness of so-
lution of this problem we have z(t) = y(t), which contradicts (1.17.6).

What can we say about convergence of the first derivatives of {y∆(t)}?
At nodes of the ∆-net y∆(t) has no derivative, but it has a right-hand
derivative at every point (which is discontinuous at nodes) and it can be
shown that the sequence of right-hand derivatives of {y∆k

(t)} converges
uniformly on [t0, t0 + α).

The Euler finite-difference procedure is not used for computer solution
of differential equations but there are various finite difference methods,
frequently used, for which the problem of convergence is open. A harder
question is the justification of a finite difference procedure in a boundary
value problem, as it is connected with solvability of the problem and unique-
ness of solution. Boundary value problems for partial differential equations
and systems are of great interest with respect to the application of finite
difference methods, but justification of this applicability is in large part an
open problem. Most of the achievements here are for so-called variational
difference methods which are close to the finite element method; to jus-
tify them one uses the modified technique of energy spaces which is under
consideration in this book.

Finally, we state (without proof) the criterion for compactness in Lp(Ω)
where Ω is a closed and bounded domain in Rn.

Theorem 1.17.4. A set M of elements of Lp(Ω), 1 < p < ∞, is precom-
pact in Lp(Ω) if and only if M satisfies the following pair of conditions:

(i) M is bounded in Lp(Ω) (i.e., there is a constant m such that for every
function f(x) from M we have ‖f(x)‖Lp(Ω) ≤ m);

(ii) M is equicontinuous in Lp(Ω) (i.e., for any ε > 0 we can find δ > 0,
dependent on ε, such that whenever |∆| < δ then, for every f(x) ∈
M , ‖f(x+∆)−f(x)‖Lp(Ω) < ε. Here f(x) is extended by zero outside
Ω.)

The proof can be found in Kantorovich [16].
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1.18 The Theory of Approximation in a Normed
Space

In what follows, we shall consider some problems of minimum of a func-
tional — as a rule, a functional of energy. We begin with one of the simple
problems of this class: the so-called general problem of approximation in a
normed space X. It can be stated as follows:

Given x ∈ X and elements g1, g2, . . . , gn with each gi ∈ X, find
numbers λ1, λ2, . . . , λn such that the value of the function

φ(λ1, λ2, . . . , λn) = ‖x− λ1g1 − λ2g2 − · · · − λngn‖

is minimal.

We shall write down this and similar problems in the form

φ(λ1, . . . , λn) → min
λ1,...,λn

.

This form is shared by the problem of best approximation of a continuous
function by a polynomial of nth order, or by a trigonometric polynomial,
or by other special functions. Its solution depends on the norm which is
used to pose the problem.

We suppose that g1, g2, . . . , gn are linearly independent. This of course
means that from the equation

λ1g1 + λ2g2 + · · · + λngn = 0

it follows that λ1 = λ2 = · · · = λn = 0.
Denote by Xn the linear subspace of X spanned by g1, g2, g3, . . . , gn.

Theorem 1.18.1. For any x ∈ X there exists x∗, dependent on x, such
that x∗ =

∑n
i=1 λ

∗
i gi and

‖x− x∗‖ = inf
λ1,...,λn

∥∥∥∥∥x−
n∑

i=1

λigi

∥∥∥∥∥ . (1.18.1)

Proof. Consider φ(λ1, . . . , λn) as a function of n variables. The continuity
on Rn (or Cn if X is a complex space) of this function, and of the function

ψ(λ1, . . . , λn) =

∥∥∥∥∥
n∑

i=1

λigi

∥∥∥∥∥
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follows from the chain of inequalities

|φ(λ1 + ∆1, λ2 + ∆2, . . . , λn + ∆n) − φ(λ1, λ2, . . . , λn)|

=

∣∣∣∣∣
∥∥∥∥∥x−

n∑
i=1

(λi + ∆i)gi

∥∥∥∥∥−
∥∥∥∥∥x−

n∑
i=1

λigi

∥∥∥∥∥
∣∣∣∣∣

≤
∥∥∥∥∥
[
x−

n∑
i=1

(λi + ∆i)gi

]
−
[
x−

n∑
i=1

λigi

]∥∥∥∥∥
=

∥∥∥∥∥
n∑

i=1

∆igi

∥∥∥∥∥ ≤
n∑

i=1

|∆i| ‖gi‖.

(Here we have used
‖x− y‖ ≥ |‖x‖ − ‖y‖|, (1.18.2)

a consequence of the triangle inequality.) By continuity ψ(λ1, . . . , λn) as-
sumes a minimum value on the sphere

∑n
i=1 |λi|2 = 1 at some point

λ10, . . . , λn0 with
∑n

i=1 |λi0|2 = 1. As the set (g1, . . . , gn) is linearly in-
dependent we get∥∥∥∥∥

n∑
i=1

λi0gi

∥∥∥∥∥ = min∑n
i=1 |λi|2=1

∥∥∥∥∥
n∑

i=1

λigi

∥∥∥∥∥ = d > 0.

By (1.18.2),

φ(λ1, . . . , λn) ≥
∥∥∥∥∥

n∑
i=1

λigi

∥∥∥∥∥− ‖x‖

and, on the domain (
n∑

i=1

|λi|2
)1/2

≥ 3‖x‖/d,

we have
φ(λ1, . . . , λn) ≥ (3‖x‖/d)d− ‖x‖ = 2‖x‖.

Since φ(0, 0, . . . , 0) = ‖x‖, we find that φ(λ1, λ2, . . . , λn) has a minimal
value at a point (λ∗

1, λ
∗
2, . . . , λ

∗
n) of the ball

(∑n
i=1 |λi|2

)1/2 ≤ 3‖x‖/d.
When we referred to this general problem of approximation as relatively

simple, we meant that it was simple in principle — not that its concrete
applications are simple.

What about uniqueness of the best approximation in a normed space?
This is attained in spaces of the following type:

Definition 1.18.1. A normed space is called strictly normed if from the
equality

‖x+ y‖ = ‖x‖ + ‖y‖, x �= 0,

it follows that y = λx and λ ≥ 0.
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The spaces 	p, Lp(Ω), W k,p(Ω), when 1 < p ≤ ∞, are strictly normed.
This follows from the properties of the Minkowski inequality (see, for ex-
ample, Hardy et.al. [12]).

We establish a uniqueness theorem under more general conditions than
the existence theorem. For this, we introduce

Definition 1.18.2. A set S which contains the whole segment

λx+ (1 − λ)y, 0 ≤ λ ≤ 1,

for every pair of elements (x, y) ∈ S is said to be convex.

Theorem 1.18.2. For any element x of a strictly normed space X there
is at most one element of a closed convex set M ⊂ X which minimizes the
functional F (y) = ‖x− y‖ on the set M .

Proof. Suppose to the contrary that there are two minimizers y1 and y2 of
F (y):

‖x− y1‖ = ‖x− y2‖ = inf
y∈M

‖x− y‖ ≡ d. (1.18.3)

If x ∈ M then x = y1 = y2. Let x /∈ M so that d > 0. By convexity of M ,
an element (y1 + y2)/2 belongs to M . So ‖x − (y1 + y2)/2‖ ≥ d. On the
other hand, we have∥∥∥∥x− y1 + y2

2

∥∥∥∥ =
∥∥∥∥x− y1

2
+
x− y2

2

∥∥∥∥ ≤ 1
2
‖x− y1‖ +

1
2
‖x− y2‖ = d.

Therefore ∥∥∥∥x− y1 + y2
2

∥∥∥∥ =
∥∥∥∥x− y1

2

∥∥∥∥+
∥∥∥∥x− y2

2

∥∥∥∥ .
As X is strictly normed, it follows that

x− y1 = λ(x− y2), λ ≥ 0,

so ‖x− y1‖ = λ‖x− y2‖. From (1.18.3) we get λ = 1, hence y1 = y2.

Lemma 1.18.1. An inner product space is strictly normed.

Proof. Let ‖x+y‖ = ‖x‖+‖y‖, x �= 0. Then ‖x+y‖2 = (‖x‖+‖y‖)2. This
can be rewritten (for a complex space) in the form

‖x‖2 + 2 Re(x, y) + ‖y‖2 = ‖x‖2 + 2‖x‖ ‖y‖ + ‖y‖2 (1.18.4)

so Re(x, y) = ‖x‖ ‖y‖. By the Schwarz inequality, we obtain Im(x, y) = 0
and thus (x, y) = ‖x‖ ‖y‖ (in the real case, this equality comes directly
from (1.18.4)). By Theorem 1.9.1 we have y = λx and, placing this into
the last equality, λ ≥ 0.

In a Hilbert space, we can combine Theorems 1.18.2 and 1.18.1 as follows:
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Theorem 1.18.3. For any element x of a Hilbert spaceH, there is a unique
element of a closed convex set M which is a minimizer of the functional
F (y) = ‖x− y‖ on M .

Proof. Uniqueness was proved in Theorem 1.18.2. We show existence of a
minimizer. Let {yk} be a minimizing sequence of F (y), i.e.,

lim
k→∞

F (yk) = lim
k→∞

‖x− yk‖ = inf
y∈M

‖x− y‖.

(By definition of infimum, such a sequence exists.) As M is closed it suf-
fices to show that {yk} is a Cauchy sequence. For this, we write down the
parallelogram equality for a pair x− yi and x− yj :

‖2x− yi − yj‖2 + ‖yi − yj‖2 = 2
(‖x− yi‖2 + ‖x− yj‖2) ,

so

‖yi − yj‖2 = 2
(‖x− yi‖2 + ‖x− yj‖2)− 4

∥∥∥∥x− yi + yj

2

∥∥∥∥2

. (1.18.5)

Since ‖x− yj‖2 = d2 + εj , εj → 0 as j → ∞, from (1.18.5) it follows that

‖yi − yj‖2 ≤ 2(d2 + εi + d2 + εj) − 4d2 = 2(εi + εj) → 0

as i, j → ∞.

All requirements of Theorem 1.18.3 are fulfilled if M is a closed linear
subspace of H. But this case is so important that we treat it separately as
follows.

1.19 Decomposition Theorem, Riesz
Representation

Let x be an arbitrary element of a Hilbert space H, M be a closed linear
subspace of H, and m be the unique (by Theorem 1.18.3) minimizer of
F (y) on M :

‖x−m‖ = inf
y∈M

‖x− y‖.

Taking an element v of M , we consider a real-valued function f(α) =
‖x−m− αv‖2 of a real variable α. This function takes its minimum value
at α = 0, so

df

dα

∣∣∣
α=0

= 0.

Direct calculation gives

df

dα

∣∣∣
α=0

=
d

dα
(x−m− αv, x−m− αv)

∣∣∣
α=0

= −2 Re(x−m, v) = 0.
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Replacing v by iv, we get Im(x−m, v) = 0 so that

(x−m, v) = 0. (1.19.1)

It follows that x−m is orthogonal to every v ∈ M .

Definition 1.19.1. An element n of a Hilbert space H is said to be or-
thogonal to M , a subspace of H, if n is orthogonal to every element of M .
Two subspaces M and N of H are mutually orthogonal (denoted M ⊥ N)
if any n ∈ N is orthogonal to M and any m ∈ M is orthogonal to N .

We say that there is an orthogonal decomposition of a Hilbert space H
into M and N if M and N are mutually orthogonal subspaces of H and
any element x ∈ H can be uniquely represented in the form

x = m+ n, m ∈ M,n ∈ N. (1.19.2)

Now we can state the above result as the so-called decomposition theorem
for a Hilbert space.

Theorem 1.19.1. Assume that M is a closed subspace of a Hilbert space
H. Then there is a closed subspace N of H that is orthogonal to M and
such that H can be uniquely decomposed into the orthogonal sum of M
and N , i.e., any x ∈ H can be uniquely represented in the form (1.19.2).

Proof. Denote by N the set of all elements of H such that any n ∈ N is
orthogonal to every m ∈ M (we suppose that M �= H). As was shown, N
is not empty. It is seen that N is a subspace of H; indeed, if n1, n2 ∈ N ,
i.e.,

(n1,m) = (n2,m) = 0 for every m ∈ M

then (λ1n1 + λ2n2,m) = 0 for any numbers λ1, λ2 and any m ∈ M . More-
over, N is closed: every Cauchy sequence {nk}, nk ∈ N , has a limit element
y = limk→∞ nk and

(y,m) = lim
k→∞

(nk,m) = 0 for all m ∈ M

so we have y ∈ N .
At the beginning of this section, we constructed for an arbitrary element

x ∈ H its projection m on M in such a way that n = x−m is, by (1.19.1),
orthogonal to M . So the representation (1.19.2) is proven. It remains to
show uniqueness of this decomposition. Assume that for some x there are
two such representations:

x = m1 + n1 and x = m2 + n2, mi ∈ M,ni ∈ N.

Then m1 + n1 = m2 + n2 or

m1 −m2 = n1 − n2.
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Multiplying both sides of this equality by m1 − m2 and then by n1 − n2
in H, we get ‖m1 − m2‖2 = 0 and ‖n1 − n2‖2 = 0. This completes the
proof.

This theorem has widespread applications. One of them is the following
Riesz representation theorem in a Hilbert space, which is of great impor-
tance in what follows.

Theorem 1.19.2. Let F (x) be a continuous linear functional given on a
Hilbert space H. There is a unique element f ∈ H such that

F (x) = (x, f) for every x ∈ H. (1.19.3)

Moreover, ‖F‖ = ‖f‖.

Proof. Consider the so-called kernel of F , defined as the set M of all ele-
ments satisfying the equation

F (x) = 0. (1.19.4)

By linearity of F (x), any finite linear combination
∑n

i=1 λimi of elements
mi from M belongs to M ; if {mk}, mk ∈ M , is a Cauchy sequence in H,
then by continuity of F (x) we see that y = limk→∞mk satisfies (1.19.4),
i.e., y ∈ M . Therefore M is a closed subspace of H.

By Theorem 1.19.1 there is a closed subspace N of H which is orthogonal
to M , and any element x ∈ H can be uniquely represented in the form
x = m+ n where m ∈ M , n ∈ N , and (m,n) = 0.

Let us show that N is one-dimensional, i.e., that any of its elements n
has the form n = αn∗ where n∗ is a fixed element of N . Let n1 and n2 be
two arbitrary elements of N . Then the element n3 = F (n1)n2 − F (n2)n1
belongs to N . On the other hand

F (n3) = F (n1)F (n2) − F (n2)F (n1) = 0,

which means that n3 ∈ M . So n3 = 0, hence N is one-dimensional.
Take an element n ∈ N and define n0 by

n0 = n/‖n‖.

Any element of H can be represented as

x = m+ αn0, m ∈ M,

where α = (x, n0). It follows that

F (x) = F (m+ αn0) = F (m) + αF (n0) = αF (n0)

= F (n0)(x, n0) = (x, F (n0)n0).
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Denoting F (n0)n0 by f , we obtain the needed representation (1.19.3).
Suppose there are two representers f1 and f2, i.e.,

F (x) = (x, f1) = (x, f2).

The choice x = f1 − f2 in the last equality gives ‖f1 − f2‖2 = 0, hence
f1 = f2. Finally, the equality ‖F‖ = ‖f‖ follows from the definition of ‖F‖
and the Schwarz inequality.

This proof is carried out in a complex Hilbert space, but remains valid
for a real Hilbert space. The sense of the theorem is that any continuous
linear functional given on a Hilbert space can be uniquely identified with an
element of the same space. Since for a fixed f ∈ H the inner product (x, f)
is a continuous linear functional onH, we have a one-to-one correspondence
between the set H ′ of all continuous linear functionals given on a Hilbert
space H (called the conjugate space to H) and H itself.

Now let us consider some applications of the Riesz representation theo-
rem. One of them is the Lax–Milgram theorem:

Theorem 1.19.3. Let a(u, v) be a bilinear form in u, v ∈ H, a real Hilbert
space (i.e., a(u, v) is linear in each variable u, v), such that for all u, v ∈ H

(i) |a(u, v)| ≤ M‖u‖ ‖v‖,

(ii) |a(u, u)| ≥ α‖u‖2,

with positive constants M,α that do not depend on u, v. Then there exists
a continuous linear operator A having the properties

(i) the range of A is the whole of H;

(ii) A has a continuous inverse and ‖A−1‖ ≤ 1/α;

(iii) for all u, v ∈ H,
a(u, v) = (Au, v). (1.19.5)

Proof. Fix u ∈ H. By (i), the form a(u, v) is a linear continuous functional
in v. By the Riesz representation theorem, there is a uniquely defined el-
ement g such that a(u, v) = (v, g) = (g, v). Element u defines g uniquely,
which means that there is a correspondence u �→ g defining an operator A:
g = Au. Thus we have established the representation (1.19.5).

Let us prove the stated properties of this operator. The linearity of a(u, v)
in u implies the linearity of A.

By (i) of the theorem, we have

|a(u, v)| = |(Au, v)| ≤ M‖u‖ ‖v‖.
Putting v = Au we get

|(Au,Au)| = ‖Au‖2 ≤ M‖u‖ ‖Au‖
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and so ‖Au‖ ≤ M‖u‖. This means that A is continuous.
By the Schwarz inequality and (ii) of the theorem, it follows that

‖Au‖ ‖u‖ ≥ |(Au, u)| ≥ α‖u‖2

so
‖Au‖ ≥ α‖u‖. (1.19.6)

This means that on the range R(A) operator A has a continuous inverse
A−1 such that ‖A−1‖ ≤ 1/α.

It remains to demonstrate that R(A) = H. First of all, R(A) is a closed
subspace of H. Indeed, if {Axn} is a Cauchy sequence then, by (1.19.6),
{xn} is also a Cauchy sequence converging to x0. By continuity of A we
have Axn → Ax0, hence R(A) is closed. If R(A) �= H, then there is an
element v0 �= 0 such that v0 ⊥ R(A), which means that (Au, v0) = 0 for
all u ∈ H. In particular (Av0, v0) = 0 so, by (ii), we get v0 = 0. This is a
contradiction, and the proof is completed.

Corollary 1.19.1. Suppose Φ(v) is a continuous linear functional in H,
and a(u, v) is the bilinear form of the theorem. Then there is a unique
element u0 ∈ H which satisfies the equation

a(u0, v) = Φ(v) (1.19.7)

for all v ∈ H.

Proof. By the Riesz representation theorem, there is a unique representa-
tion Φ(v) = (v, f) = (f, v). So, by the theorem, we can rewrite equation
(1.19.7) as (Au, v) = (f, v). Since v is arbitrary it follows that Au = f . De-
noting u0 = A−1f , we define the element with the needed properties.

The Lax–Milgram theorem is used traditionally to demonstrate existence
and uniqueness of weak solutions of boundary value problems. To establish
the same theorems we shall use another approach that is based on the Riesz
representation theorem and energy norming of spaces. Both approaches
are equivalent, but we consider the energy approach to be preferable as it
relates with the nature of the problems more deeply.

1.20 Existence of Energy Solutions to Some
Mechanics Problems

We recall that in Section 1.14 we introduced generalized solutions for sev-
eral mechanics problems and reduced those problems to a problem of find-
ing a solution to the abstract equation

(u, v) + Φ(v) = 0 (1.20.1)
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on an energy (Hilbert) space. We obtained some restrictions on the forces
to provide continuity of the linear functional Φ(v) in the energy space. The
following theorem guarantees solvability of those mechanics problems in a
generalized sense.

Theorem 1.20.1. Assume Φ(v) is a continuous linear functional given on
a Hilbert space H. Then there is a unique element u ∈ H that satisfies
(1.20.1) for every v ∈ H.

Proof. By the Riesz representation theorem there is a unique u0 ∈ H such
that the continuous linear functional Φ(v) is represented in the form Φ(v) =
(v, u0) ≡ (u0, v), and so (1.20.1) takes the form

(u, v) + (u0, v) = 0. (1.20.2)

We need to find u ∈ H which satisfies (1.20.2) for every v ∈ H. Rewriting
it in the form

(u+ u0, v) = 0,

we see that its unique solution is u = −u0.

This theorem answers the question of solvability, in the generalized sense,
of the problems of Section 1.14. To demonstrate this, we rewrite Theorem
1.20.1 in concrete terms for a pair of problems.

Theorem 1.20.2. Assume that

F (x, y) ∈ L(Ω), f(x, y) ∈ L(γ),

Ω being compact in R2 and γ being a piecewise smooth curve in Ω. Then
the problem of equilibrium of a plate with clamped edge has a unique
generalized solution, namely, there is a unique w0 ∈ EPC which satisfies
(1.14.13) for every w ∈ EPC .

Changes for a plate which is free of clamping are evident: it is necessary
to add the self-balance condition (1.14.14) for forces, and the space EPC

in the statement must be replaced by EPF .

Theorem 1.20.3. Assume that all Cartesian components of the volume
forces F(x, y, z) are in L6/5(Ω), and that those of the surface forces f(x, y, z)
are in L4/3(S), where Ω is compact in R3 and S is a piecewise smooth
surface in Ω. Then the problem of equilibrium of an elastic body occupying
Ω, with clamped boundary, has a unique generalized solution u ∈ EEC ;
namely, u(x, y, z) satisfies (1.14.15) for every v ∈ EEC .

In both theorems, restrictions on the load are to provide continuity of
the corresponding functionals Φ, the work of external forces.
Problem 1.20.1. Formulate existence theorems for other problems of Sec-
tion 1.14.
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Now let us consider another application of the Riesz representation the-
orem.

A generalized solution to the eigenvalue problem for a clamped mem-
brane is defined by the integro-differential equation∫

Ω

(
∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y

)
dx dy = λ

∫
Ω
uv dx dy (1.20.3)

and is stated as follows: find an element u ∈ EMC and a corresponding
number λ such that u �= 0 satisfies (1.20.3) for every v ∈ EMC .

First we reformulate this eigenvalue problem in the form of the operator
equation

u = λKu (1.20.4)

in the space EMC . For this, consider the term

F (v) =
∫

Ω
uv dx dy

as a functional in EMC with respect to v when u is a fixed element of EMC .
It is seen that F (v) is a linear functional. By the Schwarz inequality and
the Friedrichs inequality we get

|F (v)| =
∣∣∣∣∫

Ω
uv dx dy

∣∣∣∣
≤
(∫

Ω
u2 dx dy

)1/2(∫
Ω
v2 dx dy

)1/2

≤ m‖u‖ ‖v‖
= m1‖v‖ (1.20.5)

(hereafter the norm ‖ · ‖ and the scalar product are taken in EMC) where
m is a constant defined by the Friedrichs inequality; hence F (v) is a con-
tinuous linear functional acting in the Hilbert space EMC . By the Riesz
representation theorem, F (v) has the unique representation

F (v) ≡
∫

Ω
uv dx dy = (v, f) = (f, v). (1.20.6)

What do we have? For every u ∈ EMC , by this representation, there is a
unique element f ∈ EMC , hence the correspondence u �→ f is an operator
f = K(u) from EMC to EMC .

Let us show some properties of this operator. First we show that it is
linear. Let

f1 = K(u1), f2 = K(u2).

Then ∫
Ω
(λ1u1 + λ2u2)v dx dy = (K(λ1u1 + λ2u2), v)
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while on the other hand,∫
Ω
(λ1u1 + λ2u2)v dx dy = λ1

∫
Ω
u1v dx dy + λ2

∫
Ω
u2v dx dy

= λ1(K(u1), v) + λ2(K(u2), v)
= (λ1K(u1) + λ2K(u2), v).

Combining these we have

(K(λ1u1 + λ2u2), v) = (λ1K(u1) + λ2K(u2), v),

hence K(λ1u1+λ2u2) = λ1K(u1)+λ2K(u2) because v ∈ EMC is arbitrary.
Therefore linearity is proven.

Now let us rewrite (1.20.5) in terms of this representation:

|(K(u), v)| ≤ m‖u‖ ‖v‖.

Take v = K(u); then

‖K(u)‖2 ≤ m‖u‖ ‖K(u)‖,

so
‖K(u)‖ ≤ m‖u‖. (1.20.7)

Hence K is a continuous operator in EMC .
Equation (1.20.3) can now be written in the form

(u, v) = λ(K(u), v).

Since v is an arbitrary element of EMC , this equation is equivalent to the
operator equation

u = λK(u)

with a continuous linear operator K.
By (1.20.7), we get

‖λK(u) − λK(v)‖ = |λ|‖K(u− v)‖ ≤ m|λ| ‖u− v‖.

If m|λ| < 1, then λK is a contraction operator in EMC and, by the contrac-
tion mapping principle, there is a unique fixed point of λK which clearly
is u = 0. So the set |λ| < 1/m does not contain real eigenvalues of the
problem. Further, we shall see (and this is well known in mechanics) that
eigenvalues in this problem must be real. The fact that the set |λ| < 1/m
does not contain real eigenvalues, and so any eigenvalues of the problem,
has a clear mechanical sense: the lowest eigenfrequency of oscillation of
a bounded clamped membrane is strictly positive. (From (1.20.3), when
v = u it follows that an eigenvalue must be positive.)
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In a similar way, we can introduce eigenvalue problems for plates and
elastic bodies. Here we can obtain corresponding equations of the form
(1.20.4) with continuous linear operators and can also show that the cor-
responding lowest eigenvalues are strictly positive. All this we leave to the
reader; later we shall consider eigenvalue problems in more detail.

In what follows, we shall see that, using the Riesz representation theo-
rem, one can also introduce operators and operator equations for nonlinear
problems of mechanics. One of them is presented in the next section.

1.21 The Problem of Elastico-Plasticity; Small
Deformations

Following the lines of a paper by I.I. Vorovich and Yu.P. Krasovskij [25]
that was published in a sketchy form, we consider a variant of the theory
of elastico-plasticity (Il’yushin [13]), and justify the so-called method of
elastic solutions for corresponding boundary value problems.

The system of partial differential equations describing the behavior of an
elastic-plastic body occupying a bounded volume is(

ν

ν − 2
− ω

3

)
∂θ

∂xk
+ (1 − ω)∆uk −

− 2
3
eI
dω

deI

3∑
s,t=1

ε∗ks

3∑
l=1

ε∗lt
∂2ul

∂xs∂xt
+
Fk

G
= 0 (1.21.1)

where ν is Poisson’s ratio, G is the shear modulus, F = (F1, F2, F3) are
the volume forces, ω(ei) is a function of the variable eI , an intensity of
the tensor of strains which defines plastic properties of the material with
hardening; ω(eI) must satisfy the following condition:

0 ≤ ω(eI) ≤ ω(eI) + eI
dω(eI)
deI

≤ λ < 1. (1.21.2)

Other bits of notation are

θ ≡ θ(u) = ε11(u) + ε22(u) + ε33(u),

ε∗ks =


(

∂uk

∂xs
− θ

3

) √
2

eI
, k = s,(

∂uk

∂xs
+ ∂us

∂xk

)
1√
2eI
, k �= s,

eI =
√

2
3
[
(ε11 − ε22)2 + (ε11 − ε33)2 + (ε22 − ε33)2 + 6(ε212 + ε213 + ε223)

]1/2
,

and

εij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
.
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If ω(eI) ≡ 0 we get the equations of linear elasticity (for an isotropic ho-
mogeneous body). By analogy with elasticity problems, to pose a boundary
value problem for (1.21.1) we must supplement it with boundary conditions.
We consider a mixed boundary value problem: a part S0 of the boundary
∂Ω of a body occupying the domain Ω is fixed,

u
∣∣∣
S0

= 0, (1.21.3)

and the remainder S = ∂Ω \ S0 is subjected to surface forces f(x):[
Kθ cos(n,x0

k) +
√

2GeI

3∑
m=1

ε∗km cos(n,x0
k)

] ∣∣∣∣∣
S

=
3∑

k=1

fk cos(n,x0
k) +G

√
2ωeI

3∑
m=1

ε∗km cos(n,x0
m) (1.21.4)

where K is the modulus of volume compressibility and cos(n,x0
k) is the

cosine of the angle between the direction of the outward normal n to the
boundary at a point and the direction x0

k of the Cartesian axis OXk.
When ω(eI) is small (as it is if eI is small) we have a nonlinear boundary

value problem which is, in a certain way, a perturbation of a corresponding
boundary value problem of linear elasticity. It leads to the idea of using an
iterative procedure, the so-called method of elastic solutions, to solve the
former. This procedure looks like that of the contraction mapping principle
if we can make the problem take the corresponding operator form. Then it
remains to show that the operator of the problem is a contraction. Now we
begin to carry out the program.

Let us introduce the notation

〈u,v〉 =
2
9
{[ε11(u) − ε22(u)][ε11(v) − ε22(v)] +

+ [ε11(u) − ε33(u)][ε11(v) − ε33(v)] +
+ [ε22(u) − ε33(u)][ε22(v) − ε33(v)] +
+ 6[ε12(u)ε12(v) + ε13(u)ε13(v) + ε23(u)ε23(v)]} (1.21.5)

If we consider the terms on the right-hand side of (1.21.5) as coordinates
of vectors a = (a1, . . . , a6), b = (b1, . . . , b6),

ai = ci(u), bi = ci(v), i = 1, . . . , 6,

c1(w) =
√

2
3

[ε11(w) − ε22(w)], c2(w) =
√

2
3

[ε11(w) − ε33(w)],

c3(w) =
√

2
3

[ε22(w) − ε33(w)], c4(w) =
2√
3
ε12(w),

c5(w) =
2√
3
ε13(w), c6(w) =

2√
3
ε23(w),
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then the form 〈u,v〉 is a scalar product of a by b in R6:

〈u,v〉 =
6∑

i=1

aibi.

Besides,

〈u,u〉 =
6∑

i=1

c2i (u) = e2I(u) (1.21.6)

and by the Schwarz inequality we get

|〈u,v〉| =

∣∣∣∣∣
6∑

i=1

ci(u)ci(v)

∣∣∣∣∣ ≤ eI(u)eI(v). (1.21.7)

On the set C2 of vector functions satisfying the boundary condition (1.21.3)
and such that each of their components is of class C(2)(Ω), let us now
introduce an inner product

(u,v) =
∫

Ω

(
3
2
G〈u,v〉 +

1
2
Kθ(u)θ(v)

)
dΩ. (1.21.8)

This coincides with a special case of the inner product (1.10.26) of the linear
theory of elasticity. So the completion of C2 in the metric corresponding to
(1.21.8) is the energy space of linear elasticity EEM (M for “mixed”) if we
suppose that the condition (1.21.3) provides u = 0 if

‖u‖2 =
∫

Ω

(
3
2
Ge2I(u) +

1
2
Kθ2(u)

)
dΩ = 0.

The norm of EEM is equivalent to one of W 1,2(Ω) × W 1,2(Ω) × W 1,2(Ω)
(see Section 1.10 and Fichera [9]). (By H1 × H2 we denote the so-called
Cartesian product of Hilbert spaces H1 and H2, the elements of which are
pairs (x, y), x ∈ H1, y ∈ H2. The scalar product in H1 ×H2 is defined by
the relation

(x1, x2)1 + (y1, y2)2

where x1, x2 ∈ H1 and y1, y2 ∈ H2.)
By the principle of virtual displacements, the integro-differential equation

of equilibrium of an elasto-plastic body is

(u,v) − 3
2
G

∫
Ω
ω(eI(u))〈u,v〉 dΩ −

−
3∑

i=1

∫
Ω
Fivi dΩ −

3∑
i=1

∫
S

fivi dS = 0. (1.21.9)

This equation can be obtained using the equations (1.21.1) and the bound-
ary conditions (1.21.3) and (1.21.4). Conversely, using the technique of the
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classical calculus of variations we can get (1.21.1) and the natural bound-
ary conditions (1.21.4). Thus, in a certain way, (1.21.9) is equivalent to the
above statement of the problem. So we can introduce

Definition 1.21.1. A vector function u ∈ EEM is called the generalized
solution of a problem of elastico-plasticity if it satisfies (1.21.9) for every
v ∈ EEM .

For correctness of this definition we must impose some restrictions on ex-
ternal forces. It is evident that they coincide with those for linear elasticity.
So we assume that

Fi(x1, x2, x3) ∈ L6/5(Ω), fi(x1, x2, x3) ∈ L4/3(S). (1.21.10)

Consider the form

A[u,v] =
3
2
G

∫
Ω
ω(eI(u))〈u,v〉 dΩ +

3∑
i=1

∫
Ω
Fivi dΩ +

3∑
i=1

∫
S

fivi dS

as a functional in EEM with respect to v(x1, x2, x3) when u(x1, x2, x3) ∈
EEM is fixed. As in linear elasticity, the load terms, thanks to (1.21.10),
are continuous linear functionals with respect to v ∈ EEM . Finally, in
accordance with (1.21.5) and (1.21.2), we get∣∣∣∣32G

∫
Ω
ω(eI(u))〈u,v〉 dΩ

∣∣∣∣ ≤ λ
3
2
G

∫
Ω

|〈u,v〉| dΩ ≤ λ‖u‖ ‖v‖,

so this part of the functional is also continuous.
Therefore we can apply the Riesz representation theorem to A[u,v],

which gives
A[u,v] = (v, f) ≡ (f ,v).

This representation uniquely defines a correspondence u �→ f , where u, f ∈
EEM , we obtain an operator f = A(u) acting in EEM . Equation (1.21.9)
is now equivalent to

(u,v) − (A(u),v) = 0 (1.21.11)

or, since v ∈ EEM is arbitrary,

u = A(u). (1.21.12)

The operator A is nonlinear. We shall show that it is a contraction op-
erator. For this, take arbitrary elements u,v,w ∈ EEM and consider

(A(u) −A(v),w) =
3
2
G

∫
Ω

[ω(eI(u))〈u,w〉 − ω(eI(v))〈v,w〉] dΩ.
(1.21.13)
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First, let u,v,w be in C2. At every point of Ω, by (1.21.7), we can estimate
the integrand from (1.21.13) as follows. We have

Int = |ω(eI(u)) 〈u,w〉 − ω(eI(v)) 〈v,w〉|

=

∣∣∣∣∣ω(eI(u))
6∑

i=1

ci(u) ci(w) − ω(eI(v))
6∑

i=1

ci(v) ci(w)

∣∣∣∣∣ .
Let us introduce a real-valued function f(t) of a real variable t by the
relation

f(t) =
6∑

i=1

ω(eI(tu + (1 − t)v))ci(tu + (1 − t)v)ci(w).

It is seen that

Int = |f(1) − f(0)|.
As f(t) is continuously differentiable, the classical mean value theorem
gives

f(1) − f(0) = f ′(z)(1 − 0) = f ′(z) for some z ∈ [0, 1],

or, in the above terms, we get

Int =

∣∣∣∣∣ ddt
{

6∑
i=1

ω(eI(tu + (1 − t)v)) ci(tu + (1 − t)v) ci(w)

}
t=z

∣∣∣∣∣
=
∣∣∣∣{dω(eI(tu + (1 − t)v))

deI

deI(tu + (1 − t)v)
dt

·

·
6∑

i=1

ci(tu + (1 − t)v) ci(w) + ω

6∑
i=1

ci(u − v) ci(w)
}

t=z

∣∣∣∣.
(Here we have used the linearity of ci(u) in u and, thus, in t.) Let us
consider the term

T =
6∑

i=1

deI(tu + (1 − t)v)
dt

ci(tu + (1 − t)v) ci(w)

=
6∑

i=1

d

dt

 6∑
j=1

c2j (tu + (1 − t)v)

1/2

ci(tu + (1 − t)v) ci(w)

=
6∑

i=1

2
∑6

j=1 cj(tu + (1 − t)v) cj(u − v)

2
(∑6

j=1 c
2
j (tu + (1 − t)v)

)1/2 ci(tu + (1 − t)v) ci(w).
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Applying the Schwarz inequality, we obtain

|T | ≤
6∑

i=1

(∑6
j=1 c

2
j (tu + (1 − t)v)

)1/2 (∑6
j=1 c

2
j (u − v)

)1/2

(∑6
j=1 c

2
j (tu + (1 − t)v)

)1/2 ·

· |ci(tu + (1 − t)v)| |ci(w)|

=

 6∑
j=1

c2j (u − v)

1/2
6∑

i=1

|ci(tu + (1 − t)v)| |ci(w)|

≤ eI(u − v)

(
6∑

i=1

c2i (tu + (1 − t)v)

)1/2( 6∑
i=1

c2i (w)

)1/2

= eI(u − v) eI(tu + (1 − t)v) eI(w)

(here we also used (1.21.6)). Similarly,∣∣∣∣∣
6∑

i=1

ci(u − v) ci(w)

∣∣∣∣∣ ≤
(

6∑
i=1

c2i (u − v)

)1/2( 6∑
i=1

c2i (w)

)1/2

= eI(u − v) eI(w).

Combining all these, we get

Int ≤
{
dω(eI(tu + (1 − t)v))

deI
eI(tu + (1 − t)v)) eI(u − v) eI(w) +

+ ω(eI(tu + (1 − t)v)) eI(u − v) eI(w)
}

t=z

=
{
ω(eI(tu + (1 − t)v)) +

dω(eI(tu + (1 − t)v))
deI

·

· eI(tu + (1 − t)v))
}

t=z

eI(u − v) eI(w).

By the condition (1.21.2), we have

Int ≤ λeI(u − v) eI(w) (1.21.14)

at every point of Ω.
Returning to (1.21.13) we have, using (1.21.14),

|(A(u) −A(v),w)| ≤ λ

∫
Ω

3
2
GeI(u − v) eI(w) dΩ.

In accordance with the norm of EEM it follows that

|(A(u) −A(v),w)| ≤ λ‖u − v‖ ‖w‖
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or, putting w = A(u) −A(v), we get

‖A(u) −A(v)‖ ≤ λ‖u − v‖, λ = const < 1. (1.21.15)

Being obtained for u,v,w ∈ C2, this inequality holds for all u,v,w ∈ EEM

since in this inequality we can pass to the limit for corresponding Cauchy
sequences in EEM .

Inequality (1.21.15) states thatA is a contraction operator inEEM ; hence
we can apply the contraction mapping principle, which states that (1.21.12)
has a unique solution that can be found using the iterative procedure

uk+1 = A(uk), k = 0, 1, 2, . . . .

This procedure begins with an arbitrary element u0 ∈ EEM ; when u0 = 0,
the procedure is called the method of elastic solutions since at each step we
must solve a problem of linear elasticity with given load terms. In practical
terms, the method works best when the constant λ is small.

So we can formulate

Theorem 1.21.1. Assume S0 is a piecewise smooth surface of nonzero
area and that the conditions (1.21.2) and (1.21.10) are fulfilled. Then a
mixed boundary value problem of elastico-plasticity has a unique gener-
alized solution in the sense of Definition 1.21.1; the iterative procedure
(1.21.15) defines a sequence of successive approximations uk ∈ EEM which
converges to the solution u ∈ EEM and

‖uk − u‖ ≤ λk

1 − λ
‖u0 − u1‖. (1.21.16)

It is clear that we cannot apply this theorem when, say, S = ∂Ω. In such
a case, we must add the self-balance conditions (1.14.16). These guarantee
that we can repeat the above method for a free elastic-plastic body, and so
can formulate

Theorem 1.21.2. Assume that all the requirements of Theorem 1.21.1
and the self-balance conditions (1.14.16) are met. Then there is a unique
generalized solution of the boundary value problem for a bounded elastic-
plastic body, and it can be found by an iterative procedure of the form
(1.21.15).

Problem 1.21.1. Is an estimate of the type (1.21.16) valid in Theorem
1.21.2?

We recommend that the reader prove Theorem 1.21.2 in detail, in order
to gain experience with the technique.
Remark 1.21.1. We would like to call attention to the way in which we
obtained the main inequality of this section. First it was proved for smooth
functions and then was extended to the general case. This is a standard
technique in the treatment of nonlinear problems of mechanics.
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1.22 Bases and Complete Systems

If a linear space Y has finite dimension n, then there are n linearly inde-
pendent elements g1, g2, g3, . . . , gn called a basis of Y such that every y ∈ Y
has a unique representation

y =
n∑

k=1

αkgk,

the αk being scalars. We now consider an infinite dimensional normed space
X.

Definition 1.22.1. A system of elements e1, e2, . . . , is called a basis of X
if any element x ∈ X has an unique representation

x =
∞∑

k=1

αkek

where the αk are scalars.

It is clear that a basis e1, e2, . . . is a linearly independent system since
the equation

0 =
∞∑

k=1

αkek

has the unique solution 0 = α1 = α2 = α3 = · · · .
If a normed space has a basis, then the space is separable: a countable set

of all linear combinations
∑n

k=1 ckek (n arbitrary) with rational coefficients
ck is dense in the space.

We are familiar with some systems of functions which could be bases in
certain spaces: for example,

{
1√
2π
eikx

}
in L2(0, 2π). Later, we confirm this

example.
Now we consider the system {xk}, k = 1, 2, . . ., in C(0, 1). If it is a basis,

then any function f(x) ∈ C(0, 1) could be represented in the form

f(x) =
∞∑

k=0

αkx
k,

where the series converges uniformly on [0, 1]. This representation means
that the function is analytic, but we know that there are continuous func-
tions on [0, 1] which are not analytic. Hence the system {xk} is not a basis.
On the other hand, the Weierstrass theorem states that this system pos-
sesses properties similar to those of a basis. To generalize this similarity,
we introduce
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Definition 1.22.2. A countable system g1, g2, g3, . . . of elements from a
normed space X is said to be complete in X if for any x ∈ X and any
positive number ε there is a finite linear combination

∑n(ε)
i=1 αigi such that∥∥∥∥∥∥x−

n(ε)∑
i=1

αigi

∥∥∥∥∥∥ < ε.

By Definition 1.22.2, the system {xk} is complete in C(0, 1). Because
C(0, 1) is dense in Lp(0, 1), p ≥ 1, this system is also complete in Lp(0, 1).

Problem 1.22.1. Which systems are complete in Lp(Ω), W k,p(Ω)?

If a normed space has a countable complete system, then the space is
separable. The reader should be able to name a countable dense set to
verify this.

The problem of existence of a basis in a certain normed space is difficult,
but there is a special case where it is fully solved: a separable Hilbert space.
The reader will find here the theory of Fourier series largely repeated in
abstract terms. We begin with

Definition 1.22.3. A system {xk} of elements of a Hilbert space H is said
to be orthonormal if for all integers m,n,

(xm, xn) = δmn =

{
1, m = n,

0, m �= n.

We know, at least for Rn, that there are some advantages in using an
orthonormal system of vectors as a basis.

Suppose we have an arbitrary linearly independent system of elements of
a Hilbert space H, say f1, f2, f3, . . . , fn, and let Hn be the subspace of H
spanned by this system. We would like to use this system to construct an
orthonormal system g1, g2, g3, . . . , gn that is also a basis of Hn. This can
be accomplished by the Gram–Schmidt procedure:

(1) The first element of the new system is g1 = f1/‖f1‖, ‖g1‖ = 1.

(2) Take e2 = f2 − (f2, g1)g1; then (e2, g1) = (f2, g1) − (f2, g1)‖g1‖2 = 0,
so the second element is g2 = e2/‖e2‖.

(3) Take e3 = f3−(f3, g1)g1−(f3, g2)g2; then (e3, g1) = 0 and (e3, g2) = 0.
Since e3 �= 0, we get the third element as g3 = e3/‖e3‖.

...

(i) Let ei = fi −(fi, g1)g1−· · ·−(fi, gi−1)gi−1. It is seen that (ei, gk) = 0
for k = 1, . . . , i− 1, hence we set gi = ei/‖ei‖.
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This process can be continued ad infinitum since all ek �= 0 (why?). So we
obtain an orthonormalized system g1, g2, g3, . . .. The process is, however,
found to be unstable for numerical computation.

As is known from linear algebra, a system f1, f2, . . . , fn is linearly inde-
pendent in an inner product space if and only if the Gram determinant∣∣∣∣∣∣∣∣∣

(f1, f1) (f1, f2) · · · (f1, fn)
(f2, f1) (f2, f2) · · · (f2, fn)

...
...

. . .
...

(fn, f1) (fn, f2) · · · (fn, fn)

∣∣∣∣∣∣∣∣∣
is not equal to zero. For an orthonormal system of elements the Gram
determinant, being the determinant of the identity matrix, equals +1; hence
an orthonormal system is linearly independent.
Problem 1.22.2. Show directly the linear independence of an orthonormal
system.

Let g1, g2, g3, . . . be an orthonormal system in a complex Hilbert space
H. For an element f ∈ H, the numbers αk, k = 1, 2, 3, . . . defined by the
equality αk = (f, gk) are called the Fourier coefficients of f . Now we prove

Theorem 1.22.1. A complete orthonormal system g1, g2, g3, . . . of ele-
ments of a Hilbert space H is a basis of H; any element f ∈ H has unique
representation

f =
∞∑

k=1

αkgk, (1.22.1)

called the Fourier series of f , where αk = (f, gk) are the Fourier coefficients
of f .

Proof. First we consider the problem of the best approximation of an ele-
ment f ∈ H by elements of a subspace Hn spanned by g1, g2, g3, . . . , gn. In
Section 1.18 we showed that this problem has a unique solution. Now we
show that it is

∑n
k=1 αkgk. Indeed, consider an arbitrary linear combination∑n

k=1 ckgk. Then∥∥∥∥∥f −
n∑

k=1

ckgk

∥∥∥∥∥
2

=

(
f −

n∑
k=1

ckgk, f −
n∑

k=1

ckgk

)

= ‖f‖2 −
(
f,

n∑
k=1

ckgk

)
−
(

n∑
k=1

ckgk, f

)
+

∥∥∥∥∥
n∑

k=1

ckgk

∥∥∥∥∥
2

= ‖f‖2 −
n∑

k=1

ckαk −
n∑

k=1

ckαk +
n∑

k=1

ckck

= ‖f‖2 −
n∑

k=1

|αk|2 +
n∑

k=1

|ck − αk|2.
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It is seen that ‖f −∑n
k=1 ckgk‖2 takes its minimum value when ck = αk:∥∥∥∥∥f −

n∑
k=1

αkgk

∥∥∥∥∥
2

= min
c1,...,cn

∥∥∥∥∥f −
n∑

k=1

ckgk

∥∥∥∥∥
2

= ‖f‖2 −
n∑

k=1

|αk|2 ≥ 0;

(1.22.2)
moreover, we obtain Bessel’s inequality

n∑
k=1

|(f, gk)|2 ≤ ‖f‖2. (1.22.3)

Denote

fn =
n∑

k=1

αkgk,

fn being the nth partial sum of the Fourier series for f . Let us show that
{fn} is a Cauchy sequence in H. By Bessel’s inequality,

n∑
k=1

|αk|2 ≤ ‖f‖2; (1.22.4)

hence

‖fn − fn+m‖2 =

∥∥∥∥∥
n+m∑

k=n+1

αkgk

∥∥∥∥∥
2

=
n+m∑

k=n+1

|αk|2 → 0 as n → ∞.

By completeness of the system g1, g2, g3, . . . in H, for any ε > 0 we can
find a number N and coefficients ck(ε) such that∥∥∥∥∥f −

N∑
k=1

ck(ε)gk

∥∥∥∥∥
2

< ε.

By (1.22.2)

‖f − fN‖2 =

∥∥∥∥∥f −
N∑

k=1

αkgk

∥∥∥∥∥
2

≤
∥∥∥∥∥f −

N∑
k=1

ck(ε)gk

∥∥∥∥∥
2

< ε,

so the sequence {fN} converges to f :

f = lim
n→∞ fn. (1.22.5)

This completes the proof.

From (1.22.5) we can obtain Parseval’s equality

∞∑
k=1

|(f, gk)|2 = ‖f‖2, (1.22.6)
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which holds whenever g1, g2, g3, . . . is a complete orthonormal system in H.
Indeed, by (1.22.2),

0 = lim
n→∞

∥∥∥∥∥f −
n∑

k=1

αkgk

∥∥∥∥∥
2

= lim
n→∞

(
‖f‖2 −

n∑
k=1

|αk|2
)
.

Now we introduce

Definition 1.22.4. A system e1, e2, e3, . . . of elements of a Hilbert space
H is said to be closed in H if from the system of equations

(f, ek) = 0 for all k = 1, 2, 3, . . .

it follows that f = 0.

It is clear that a complete orthonormal system of elements is closed in H.
The converse statement is correct as well. We formulate both statements
as

Theorem 1.22.2. Let g1, g2, g3, . . . be an orthonormal system of elements
in a Hilbert space H. This system is complete in H if and only if it is closed
in H.

Proof. We need to demonstrate only that a closed orthonormal system in
H is complete. Proving the previous theorem, we established that for any
element f ∈ H the sequence of partial Fourier sums fn =

∑n
k=1 αkgk is a

Cauchy sequence. SinceH is a complete space, there exists f∗ = limn→∞ fn

that belongs to H. To complete the proof we need to show that f = f∗.
We have

(f − f∗, gm) = lim
n→∞

(
f −

n∑
k=1

αkgk, gm

)
= αm − αm = 0.

By Definition 1.22.4 it follows that f = f∗, hence the system g1, g2, g3, . . .
is complete.

It is normally simpler to check whether a system is closed than to check
whether it is complete. At the beginning of this section we established that
any system of linearly independent elements in H can be transformed into
an orthonormal system equivalent to the original system in a certain way.
So we conclude

Theorem 1.22.3. A complete system g1, g2, g3, . . . in H is closed in H;
conversely, a system closed in H is complete in H.

As we said above, the existence of a countable basis in a Hilbert space
provides its separability. The converse statement is also valid. We formulate
that as



1.23 Weak Convergence in a Hilbert Space 99

Theorem 1.22.4. A Hilbert space H has a countable orthonormal basis
if and only if H is separable.

The proof follows immediately from the previous theorem. Indeed, in H
select a countable set of elements that is dense everywhere in H. Using
the Gram–Schmidt procedure, produce an orthonormal system of elements
from this set (removing any linearly dependent elements). Since the initial
system is dense it is complete and thus, as a result of the Gram–Schmidt
procedure, we get an orthonormal basis of the space.

Remember that all of the energy spaces we introduced above are sepa-
rable. Hence each of them has a countable orthonormal basis (non-unique,
of course).

In conclusion, we consider whether the system {eikx/
√

2π} is a basis of
the complex space L2(0, 2π). From standard calculus it is known that the
system is orthonormal in L2(0, 2π) (the reader, however, can check this).
Weierstrass’s theorem on the approximation of a function continuous on
[0, 2π] can be formulated as the statement that the set of trigonometric
polynomials, that is, finite sums of the form

∑
k αke

ikx, is dense in the
complex space C(0, 2π). But the set of functions C(0, 2π) is the base for
construction of L2(0, 2π), hence the same set of finite sums

∑
k αke

ikx is
dense in L2(0, 2π). This shows that {eikx/

√
2π} is an orthonormal basis of

L2(0, 2π).

1.23 Weak Convergence in a Hilbert Space

We know that in Rn, the convergence of a sequence of vectors is equivalent
to coordinate-wise convergence.

In a Hilbert space H, the Fourier coefficients (f, gk) of an element f ∈ H
play the role of the coordinates of f . Suppose g1, g2, g3, . . . is an orthonormal
basis of H. What can we say about convergence of a sequence {fn} if, for
every fixed k, the numerical sequence (fn, gk) is convergent?

Let us consider {gn}, the sequence of elements of the orthonormal basis.
It is seen that for every k,

lim
n→∞(gn, gk) = 0,

hence we have coordinate-wise convergence. But the sequence {gn} is not
convergent, since ‖gn − gm‖ =

√
2 if n �= m.

Therefore, coordinate-wise convergence in a Hilbert space is not equiva-
lent to the usual form of convergence in the space. We define a new type
of convergence in a Hilbert space.

Definition 1.23.1. Let H be a Hilbert space. A sequence {xk}, xk ∈ H,
is said to be weakly convergent to x0 ∈ H if for every continuous linear
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functional F (x) in H,
lim

k→∞
F (xk) = F (x0).

If every numerical sequence {F (xk)} is a Cauchy sequence, then {xk} is
called a weak Cauchy sequence.

To distinguish between weak convergence and convergence as defined on
page 19, we shall refer to the latter as strong convergence. We shall retain
the notation xk → x for strong convergence, and adopt xk ⇀ x for weak
convergence.

Definition 1.23.1 is given in a form which (with suitable modifications)
is valid in a metric space. But in a Hilbert space any continuous linear
functional, by the Riesz representation theorem, takes the form F (x) =
(x, f) where f is an element of H. So Definition 1.23.1 may be rewritten
as follows:

Definition 1.23.2. Let H be a Hilbert space. A sequence {xn}, xn ∈ H,
is weakly convergent to x0 ∈ H if for every element f ∈ H we have

lim
n→∞(xn, f) = (x0, f).

If every numerical sequence {(xn, f)} is a Cauchy sequence, then {xk} is a
weak Cauchy sequence.

We have seen that some weak Cauchy sequences in H are not strong
Cauchy sequences. But a strong Cauchy sequence is always a weak Cauchy
sequence, by virtue of the continuity of the linear functionals in the defini-
tion.

We formulate a simple sufficient condition for strong convergence of a
weakly convergent sequence:

Theorem 1.23.1. Suppose that xk ⇀ x0, where xk, x0 belong to a Hilbert
space H. Then xk → x0 if limk→∞ ‖xk‖ = ‖x0‖.

Proof. Consider ‖xk − x0‖2. We get

‖xk − x0‖2 = (xk − x0, xk − x0) = ‖xk‖2 − (x0, xk) − (xk, x0) + ‖x0‖2.

By Definition 1.23.2 we have

lim
k→∞

[(x0, xk) + (xk, x0)] = 2‖x0‖2,

hence limk→∞ ‖xk − x0‖2 = 0.

We shall see later that for many numerical methods it is easier to first
establish weak convergence of approximate solutions and then strong con-
vergence, than to establish strong convergence directly; the last theorem
allows us to justify a method successively, beginning with a simple ap-
proximate result and then passing to the needed one. That is why weak
convergence is a major preoccupation in this presentation.
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Theorem 1.23.2. In a Hilbert space, every weak Cauchy sequence {xn}
is bounded.

Proof. Suppose to the contrary that there is a weak Cauchy sequence {xn}
which is not bounded in H. So let ‖xn‖ → ∞ as n → ∞. We get a con-
tradiction. Consider the set of all numbers U that consists of the numbers
of the form (xn, y), where y belongs to a closed ball B(y0, ε) with arbi-
trary (but momentarily fixed) ε > 0 and arbitrary center y0 ∈ H. We first
claim that any U is unbounded from above. Indeed, elements of the form
yn = y0 + εxn/(2‖xn‖) belong to B(y0, ε) since

‖yn − y0‖ =
∥∥∥∥ εxn

2‖xn‖
∥∥∥∥ =

ε

2

and

(xn, yn) = (xn, y0) +
ε

2‖xn‖ (xn, xn) = (xn, y0) +
ε

2
‖xn‖ → ∞ as n → ∞

since, by definition of weak convergence, the numerical sequence {(xn, y0)}
is bounded.

We now want to obtain a contradiction. Take the ball B(y0, ε1), ε1 = 1,
y0 = 0. By the above note, we can find xn1 and then y1 ∈ B(y0, ε1) such
that

(xn1 , y1) > 1. (1.23.1)

By continuity of the inner product in both its variables, we can find a ball
B(y1, ε2) such that B(y1, ε2) ⊂ B(y0, ε1) and such that (1.23.1) holds not
only for y1 but for all y ∈ B(y1, ε2):

(xn1 , y) > 1 for all y ∈ B(y1, ε2).

Then in the ball B(y1, ε2) we similarly find xn2 , n2 > n1, and a correspond-
ing element y2 such that

(xn2 , y2) > 2,

and after this a ball B(y2, ε3) such that B(y2, ε3) ⊂ B(y1, ε2) and

(xn2 , y) > 2 for all y ∈ B(y2, ε3).

Repeating this procedure ad infinitum, we produce a sequence of balls
B(yk, εk+1), B(y0, ε1) ⊃ B(y1, ε2) ⊃ B(y2, ε3) ⊃ · · · and corresponding
members xnk

, nk+1 > nk, of the sequence {xn} such that

(xnk
, y) > k for all y ∈ B(yk, εk+1).

Since H is a Hilbert space there is at least one element y∗ which belongs
to every B(yk, εk+1), so

(xnk
, y∗) > k.

Thus we find a continuous linear functional F ∗(x) = (x, y∗) for which the
numerical sequence {F ∗(xnk

)} is not a Cauchy sequence. This contradicts
the definition of weak convergence.
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Using this proof we can get an important result:

Lemma 1.23.1. Assume that {xk} is an unbounded sequence in H:

‖xk‖ → ∞.

Then there exists y∗ ∈ H and a subsequence {xnk
} such that

(xnk
, y∗) → ∞ as k → ∞.

Proof. Let us introduce the supplementary sequence zn = xn/‖xn‖. For
any y with unit norm, the numerical sequence (zn, y) is bounded and thus
we can select a convergent subsequence from it. If there exists such a unit
element y∗ and a subsequence {znk

} for which (znk
, y∗) → a �= 0, then

the statement of the lemma is valid for the subsequence {xnk
} and y∗ if

a > 0; when a < 0 then y∗ must be changed to −y∗. Indeed, if a > 0 then
(xnk

, y∗) = (znk
, y∗)‖xnk

‖ → ∞.
Now we consider the case when we cannot find such an element y∗ and

a subsequence {znk
} for which a �= 0, so (zn, y) → 0 for any y ∈ H. By the

Riesz representation theorem, this means that {zn} converges weakly to
zero. We will demonstrate the statement of Lemma 1.23.1 to hold for the
latter class of sequences as well. For this we repeat two steps of the proof
of Theorem 1.23.2.

First we show that for any center y0 and radius ε, the numerical set
(xn, y) with y running over B(y0, ε) is unbounded. Indeed, taking the se-
quence yn = y0 + ε/(2‖xn‖)xn we get an element from B(y0, ε). Next,

(xn, yn) = (xn, y0) +
ε

2‖xn‖ (xn, xn) =
(
(zn, y0) +

ε

2

)
‖xn‖.

Since ε is finite and (zn, y0) → 0 as n → ∞, we have (xn, yn) → ∞.
Another step of the proof of Theorem 1.23.2, establishing the existence of

a subsequence {xnk
} and an element y∗ such that (xnk

, y∗) → ∞, requires
only that ‖xn‖ → ∞ and that for any ε > 0 the set (xn, y) is unbounded
when y runs over B(y0, ε), which was just proved. Thus we immediately
state the validity of Lemma 1.23.1 for all the unbounded sequences.

This is used in proving an important theorem called the principle of
uniform boundedness, which is

Theorem 1.23.3. Let {Fk(x)}, k = 1, 2, . . ., be a family of continuous
linear functionals defined on a Hilbert space H. If supk |Fk(x)| < ∞, then
supk ‖Fk‖ < ∞.

Proof. By the Riesz representation theorem, each of the functionals Fk(x)
has the form

Fk(x) = (x, fk), where fk ∈ H, ‖fk‖ = ‖Fk‖.
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So the condition of the theorem can be rewritten as

sup
k

|(x, fk)| < ∞. (1.23.2)

By Lemma 1.23.1, the assumption that supk ‖fk‖ = ∞ implies the existence
of x0 ∈ H and {fkn

} such that

|(x0, fkn
)| → ∞ as k → ∞.

This contradicts (1.23.2).

Corollary 1.23.1. Let {Fk(x)} be a sequence of continuous linear func-
tionals given on H, such that for every x ∈ H the numerical sequence
{Fk(x)} is a Cauchy sequence. Then there is a continuous linear functional
F (x) on H such that

F (x) = lim
k→∞

Fk(x) for all x ∈ H (1.23.3)

and
‖F‖ ≤ lim inf

k→∞
‖Fk‖ < ∞. (1.23.4)

Proof. The limit on the right-hand side of (1.23.3), existing by the condi-
tion, defines a functional F (x) which is clearly linear. Since the condition
of Theorem 1.23.3 is met, we have supk ‖Fk‖ < ∞; from

|F (x)| = lim
k→∞

|Fk(x)| ≤ sup
k

‖Fk‖ ‖x‖

it follows that F (x) is continuous. Moreover,

|F (x)| = lim
k→∞

|Fk(x)| ≤ lim inf
k→∞

‖Fk‖ ‖x‖,

i.e., (1.23.4) is proved also.

The following theorem gives an equivalent, but more convenient, defini-
tion of weak convergence:

Theorem 1.23.4. A sequence {xn} is weakly Cauchy in a Hilbert space
H if and only if the following pair of conditions holds:

(i) {xn} is bounded inH, i.e., there is a constantM such that ‖xn‖ ≤ M ;

(ii) for any fα ∈ H from a system {fα} which is complete in H, the
numerical sequence (xn, fα) is a Cauchy sequence.

Proof. Necessity of the conditions follows from the definition of weak con-
vergence and Theorem 1.23.2.
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Now we prove sufficiency. Suppose the conditions (i) and (ii) hold. Take
an arbitrary continuous linear functional defined, by the Riesz representa-
tion theorem, by an element f ∈ H and consider the numerical sequence

dnm = (xn, f) − (xm, f).

As the system {fα} is complete, there is a linear combination

fε =
N∑

k=1

ckfk

such that
‖f − fε‖ < ε/3M.

Then

|dnm| = |(xn − xm, f)|
= |(xn − xm, fε + f − fε)|
≤ |(xn − xm, fε)| + |(xn − xm, f − fε)|

≤
N∑

k=1

|ck||(xn − xm, fk)| + (‖xn‖ + ‖xm‖)‖f − fε‖.

Since, by (ii), the sequences {(xn, fk)}, k = 1, . . . , N , are Cauchy sequences,
we can find a number R such that

N∑
k=1

|ck||(xn − xm, fk)| < ε/3 when m,n > R

hence
|dnm| ≤ ε/3 + 2Mε/(3M) = ε for m,n > R.

This means that {(xn, f)} is a Cauchy sequence.

Problem 1.23.1. Show that a sequence {xn} is weakly convergent to x0 in
H if and only if the following pair of conditions holds:

(i) {xn} is bounded in H;

(ii) for any fα from a system {fα}, fα ∈ H, which is complete in H, we
have limn→∞(xn, fα) = (x0, fα).

Because weak convergence differs from strong convergence, we are led to
consider weak completeness of a Hilbert space.

Theorem 1.23.5. Any weak Cauchy sequence {xn} in a Hilbert space
converges weakly to an element of this space.



1.23 Weak Convergence in a Hilbert Space 105

Proof. For any fixed y ∈ H we define F (y) = limn→∞(y, xn). The func-
tional F (y), whose linearity is evident, is defined on the whole of H. From
the inequality

|(y, xn)| ≤ M‖y‖,
M being a constant such that ‖xn‖ ≤ M , it follows that

|F (y)| ≤ M‖y‖ and ‖F‖ ≤ M.

Therefore F (y) is a continuous linear functional which, by the Riesz repre-
sentation theorem, can be written in the form

F (y) = (y, f), f ∈ H, ‖f‖ = ‖F‖ ≤ M.

But this means that f is a weak limit of {xn}.

From this proof also follows

Lemma 1.23.2. If a sequence {xn} ⊂ H converges weakly to x0 in H and
‖xn‖ ≤ M for all n, then ‖x0‖ ≤ M .

This states that a closed ball about zero is weakly closed. Any closed
subspace of a Hilbert space is also weakly closed. Mazur’s theorem states
that any closed convex set in a Hilbert space is weakly closed. The interested
reader can find a proof in Yosida [29].

Theorem 1.23.6. Assume that a sequence {xn} in a Hilbert space H
converges weakly to x0 ∈ H. Then there is a subsequence {xnk

} of {xn}
such that the sequence of arithmetic means 1

N

∑N
k=1 xnk

converges strongly
to x0.

We now consider the problem of weak compactness of a set in a Hilbert
space. We have seen that a ball in an infinite dimensional Hilbert space is
not strongly compact. But for weak compactness an analog of the Bolzano–
Weierstrass theorem holds as follows:

Theorem 1.23.7. A bounded sequence {xn} in a separable Hilbert space
contains a weak Cauchy subsequence.

In other words, a bounded set in a Hilbert space is weakly precompact.

Proof. In a separable Hilbert space there is an orthonormal basis {gn}.
By Theorem 1.23.4 it suffices to show that there is a subsequence {xnk

}
such that, for fixed gm, the numerical sequence {(xnk

, gm)} is a Cauchy
sequence.

The bounded numerical sequence {(xn, g1)} contains a convergent subse-
quence {(xn1 , g1)}. Considering the numerical sequence {(xn1 , g2)}, for the
same reason we can choose a convergent sequence {(xn2 , g2)}. Continuing
this process, on the kth step we obtain a convergent numerical subsequence
{(xnk

, gk)}.
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Choosing now the elements xnn , we obtain a sequence {xnn} such that
for any fixed gm the numerical sequence {(xnn

, gm)} is a Cauchy sequence.
That is, {xnn

} is a weak Cauchy sequence.

This theorem has important applications; in the justification of some
numerical methods we can sometimes prove boundedness of the set of ap-
proximate solutions in a Hilbert (as a rule, energy) space.

Let us demonstrate this procedure on the example of the problem of
approximation, namely, we want to find a minimizer of a functional

F (x) = ‖x− x0‖2

given on a real Hilbert space when x0 is a fixed element of H, x0 /∈ M , and
x is an arbitrary element of a closed subspace M ⊂ H.

In Section 1.18 we established the existence of a minimizer of F (x). We
now treat this problem once more, as though this existence were unknown
to us.

This very simple problem (at least in theory) exhibits the following typ-
ical steps, which are common for the justification of approximate solutions
to many boundary value problems:

1. the formulation of an approximation problem and the demonstration
of its solvability;

2. a global a priori estimate of the approximate solutions that does not
depend on the step of approximation;

3. the demonstration of convergence of the approximate solutions to a
solution of the initial problem, and a study of the nature of conver-
gence.

Thus we begin to study our problem with the formulation of the approxi-
mation problem.

We try to solve the problem approximately, using the so-called Ritz
method. Assume that {gk} is a complete system in M such that any of
its finite subsystems in linearly independent. Consider Mn spanned by
(g1, . . . , gn) and find an element which minimizes F (x) on Mn. A solution
of this problem, denoted by xn, is the so-called nth Ritz approximation of
the solution.

A real-valued function f(t) = F (xn + tgk) of the real variable t takes its
minimal value at t = 0 and, thanks to differentiability of f(t),

df(t)
dt

∣∣∣∣
t=0

= 0.
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This gives an equation

0 =
d

dt
‖xn − x0 + tgk‖2

∣∣
t=0

=
d

dt
(xn − x0 + tgk, xn − x0 + tgk)

∣∣
t=0

= 2(xn − x0, gk)

so xn − x0 is orthogonal to each gk, k = 1, . . . , n.
Representing xn =

∑n
k=1 ckngk, we get a linear system of algebraic equa-

tions which is called the Ritz system of nth approximation:

n∑
k=1

ckn(gk, gm) = (x0, gm), m = 1, . . . , n. (1.23.5)

The determinant of this system is the Gram determinant of a linearly in-
dependent system (g1, . . . , gm) (not equal to zero) so the system (1.23.5)
has a unique solution.

Now we will find a global estimate of the approximate solutions that does
not depend on n. Although we know here that the approximate solution
exists, we can get the estimate without this knowledge. That is why such
estimates are called a priori estimates.

We begin with the definition of xn:

‖xn − x0‖2 ≤ ‖x− x0‖2 for all x ∈ Mn.

As x = 0 ∈ Mn, it follows that

‖xn − x0‖2 ≤ ‖x0‖2,

from which
‖xn‖2 ≤ 2‖xn‖ ‖x0‖,

hence
‖xn‖ ≤ 2‖x0‖. (1.23.6)

This is the required estimate.
Remark 1.23.1. It is possible to get a sharper estimate than (1.23.7); how-
ever, for this problem it is necessary to establish only the existence of a
bound.

Our last goal is to demonstrate that the sequence of approximations
converges to a solution of the problem. First we demonstrate that this
convergence is weak, and then that it is strong.

By (1.23.6), the sequence {xn} is bounded and, thanks to Theorem
1.23.7, contains a weakly convergent subsequence {xnk

} whose weak limit
x∗ belongs to M (a closed subspace is weakly closed).
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For any fixed gm, we can pass to the limit as k → ∞ in the equality

(xnk
− x0, gm) = 0

and get
(x∗ − x0, gm) = 0

(this is allowed since (x, gm) is a continuous linear functional in x).
Now consider (x∗ − x0, h) where h is an arbitrary but fixed element of

M . By completeness of the system g1, g2, g3, . . . in M , given ε > 0 we can
find a finite linear combination hε =

∑N
k=1 ckgk such that

‖h− hε‖ ≤ ε/(3‖x0‖).

Then

|(x∗ − x0, h)| = |(x∗ − x0, h− hε + hε)|
≤ |(x∗ − x0, h− hε)| + |(x∗ − x0, hε)|
= |(x∗ − x0, h− hε)|
≤ ‖x∗ − x0‖ ‖h− hε‖
≤ (‖x∗‖ + ‖x0‖)‖h− hε‖
≤ (2‖x0‖ + ‖x0‖)ε/(3‖x0‖)
= ε.

Therefore, for any h ∈ M we get

(x∗ − x0, h) = 0. (1.23.7)

Finally, considering values of F (x) = ‖x − x0‖2 on elements of the form
x = x∗ + h when h ∈ M , we obtain, thanks to (1.23.7),

F (x∗ + h) = (x∗ − x0 + h, x∗ − x0 + h)

= ‖x∗ − x0‖2 + 2(x∗ − x0, h) + ‖h‖2

= ‖x∗ − x0‖2 + ‖h‖2

≥ ‖x∗ − x0‖2

= F (x∗).

It follows that x∗ is a solution of the problem, and existence of solution has
been proved.

Now we can show that the approximation sequence converges strongly
to a solution of the problem. By Theorem 1.18.3, a minimizer of F (x) is
unique; this gives us weak convergence of the sequence {xn} on the whole.
Indeed, suppose to the contrary that {xn} does not converge weakly to x∗.
Then there is an element f ∈ H such that

(xn, f) � (x∗, f). (1.23.8)
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By boundedness of the numerical set {(xn, f)}, the statement (1.23.8) im-
plies that there is a subsequence {xnk

} such that there exists

lim
k→∞

(xnk
, f) �= (x∗, f). (1.23.9)

But for the subsequence {xnk
} we can repeat Step 3 and find that it con-

tains a subsequence which converges weakly to a solution of the problem.
Since the solution is unique, this contradicts (1.23.9). Finally, multiplying
both sides of (1.23.5) by the Ritz coefficient cmn and summing over m, we
get

(xn, xn) = (x0, xn).

We can pass to the limit as n → ∞, obtaining

lim
n→∞(xn, xn) = lim

n→∞(x0, xn) = (x0, x
∗).

By (1.23.7) with h = x∗

(x0, x
∗) = (x∗, x∗),

so
lim

n→∞ ‖xn‖2 = ‖x∗‖2.

Therefore, by Theorem 1.23.1, the sequence {xn} converges to x∗ strongly.
So we have demonstrated, via the Ritz method, a general way of justifying

the solution of a minimal problem and the Ritz method itself. The method
is common to a wide variety of problems, some nonlinear. In the latter case,
many difficulties center on Steps 2 or 3, depending on the problem. The
problem under discussion can also be interpreted another way, and this is
of so much importance that we devote a separate section to it.

1.24 The Ritz and Bubnov–Galerkin Methods in
Linear Problems

Consider once more the problem of minimizing the quadratic functional
(1.14.8) in a Hilbert space, namely,

I(x) = ‖x‖2 + 2Φ(x) → min
x∈H

. (1.24.1)

Assuming that Φ(x) is a continuous linear functional, by the Riesz repre-
sentation theorem we have

Φ(x) = (x,−x0)

where x0 is a unique element of H defined by Φ(x). Then

I(x) = ‖x‖2 − 2(x, x0) = ‖x− x0‖2 − ‖x0‖2.
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Since ‖x0‖2 is fixed, the problem (1.14.1) is equivalent to

F (x) = ‖x− x0‖2 → min
x∈H

.

This problem has the unique (and obvious) solution x = x0. Of much
interest is the fact that it coincides with the problem of the previous section
if M = H. So application of the Ritz method in this problem is justified.
Let us recall those results in terms of the new problem.

Let g1, g2, g3, . . . be a complete system in H, every finite subsystem of
which is linearly independent, and let the nth Ritz approximation to a
minimizer be xn =

∑n
k=1 ckngk. The system giving the nth approximation

of the Ritz method is
n∑

k=1

ckn(gk, gm) = −Φ(gm), m = 1, . . . , n. (1.24.2)

Let us collect the results in

Theorem 1.24.1. (i) For each n ≥ 1 the system (1.24.2) of nth approx-
imation of the Ritz method has the unique solution c1n, . . . , cnn.

(ii) The sequence {xn} of Ritz approximations defined by (1.24.2) con-
verges strongly to the minimizer of the quadratic functional ‖x‖2 +
2Φ(x), Φ(x) being a continuous linear functional on H.

It is interesting to note that if g1, g2, g3, . . . is an orthonormal basis of H,
then (1.24.2) gives the Fourier coefficients of the solution (in energy space).

As to Bubnov’s method, we only mention that it appeared when A.S.
Bubnov, reviewing an article by S. Timoshenko, noted that the Ritz equa-
tions can be obtained by multiplying by gm, a function of a complete sys-
tem, the differential equation of equilibrium in which u was replaced by
un =

∑n
k=1 ckngk, integrating the latter over the region, and then integrat-

ing by parts. In our terms this is

(un, gm) = −Φ(gm), m = 1, . . . , n.

Since this system indeed coincides with (1.24.2), Theorem 1.24.1 also jus-
tifies Bubnov’s method.

Galerkin was the first to propose multiplying by fm, a function of another
system, for better approximation of the residual. The corresponding system
is, in our notation,

(un, fm) = −Φ(fm), m = 1, . . . , n.

Discussion of this modification of the method can be found in Mikhlin [20].
Finally, we note that the finite element method for solution of mechanics

problems is a particular case of the Bubnov–Galerkin method, hence it is
also justified for the problems we consider.
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1.25 Curvilinear Coordinates, Non-Homogeneous
Boundary Conditions

We have considered some problems of mechanics using the Cartesian coor-
dinate system. Almost all of the textbooks present the theory of the same
problems in Cartesian frames; the few exceptions are the textbooks on the
theory of shells and curvilinear bars, where it is impossible to consider
the problems in Cartesian frames. However, in practice other coordinate
systems are used quite frequently. The question arises whether it is neces-
sary to investigate the boundary value problems for other coordinates, or
whether it is enough to reformulate the results for Cartesian systems. For
the generalized statement of the problems of mechanics in energy spaces,
the answer is simple: it is possible to reformulate the results, and a key tool
is a simple change of the coordinates. This change allows us to reformulate
the imbedding theorems in energy spaces, to establish the requirements for
admitting classes of loads, etc. We note that it is a hard problem to obtain
similar results independently, without the use of coordinate transforma-
tions, if the coordinate frame has singular points.

Let us illustrate the above on a simple example of a circular membrane
with fixed edge (Dirichlet problem). In Cartesian coordinates we have the
Sobolev imbedding theorem∫∫

Ω

|u(x)|p dx dy
1/p

≤ m

∫∫
Ω

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]
dx dy

1/2

(1.25.1)
for p ≥ 1, which is valid for any u ∈ Ẇ 1,2(Ω) ≡ EMC satisfying the
boundary condition

u
∣∣
∂Ω = 0. (1.25.2)

Taking a function u ∈ C(1)(Ω) satisfying (1.25.2), in both integrals of
(1.25.1) we pass to the polar coordinate system:(∫ R

0

∫ 2π

0
|u|pr dφ dr

)1/p

≤

m

(∫ R

0

∫ 2π

0

[(
∂u

∂r

)2

+
1
r2

(
∂u

∂φ

)2
]
r dφ dr

)1/2

(1.25.3)

where (r, φ) are the polar coordinates in a disk of radius R. Passing to the
limit along a Cauchy sequence of EMC in the inequality (1.25.1), which is
valid in Cartesian coordinates, shows us that it remains valid in the form
(1.25.3) in polar coordinates. Inequality (1.25.3) is an imbedding theorem
in the energy space of the circular membrane in terms of polar coordinates.
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The expression

‖u‖ =

(∫ R

0

∫ 2π

0

[(
∂u

∂r

)2

+
1
r2

(
∂u

∂φ

)2
]
r dφ dr

)1/2

(1.25.4)

is the norm in this coordinate system, whereas

(u, v) =
∫ R

0

∫ 2π

0

(
∂u

∂r

∂v

∂r
+

1
r2
∂u

∂φ

∂v

∂φ

)
r dφ dr

is the corresponding inner product.
The requirement imposed on forces for existence of a generalized solution

to the problem has the form∫ R

0

∫ 2π

0
|F |qr dφ dr < ∞, q > 1.

We have a natural form of the norm in the energy space (which is de-
termined by the energy itself) using curvilinear coordinates, as well as a
form of the imbedding theorem (i.e., properties of elements of the energy
space and natural requirements on forces for the problem to be uniquely
solvable).

Then we note that we can replace formally the Cartesian system by any
other system of coordinates which is admissible for smooth functions, and
also change formally any variables in any expression which makes sense in
the energy space considered in Cartesian coordinates.

Finally, note that a norm like (1.25.4) is usually called a weighted norm
because of the presence of weight factors, here connected with powers of r.
There is an abstract theory of such weighted Sobolev spaces, not being so
elementary as in the space we have considered.

For more complicated problems such as problems of elasticity, we can
use the same method of introducing curvilinear coordinates; here we can
change not only the independent variables (x1, x2, x3), but also unknown
components of vectors of displacements and prescribed forces, to the new
coordinate system. We leave it to the reader to write down an equation de-
termining a generalized solution, the forms of norm and scalar product, and
restrictions for forces as well as imbedding inequalities, in other curvilinear
coordinate systems such as cylindrical and spherical.

Now let us consider two questions connected with non-homogeneous
boundary value problems in mechanics. The first is to identify the whole
class of admissible external forces for which an energy solution exists. We
know that the condition for existence of a solution is that the functional of
external forces ∫

Ω
F (x)v(x) dΩ (1.25.5)
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(say, in the membrane problem) is continuous and linear with respect to
v(x) on an energy space. We shall show how this condition can be expressed
in terms of so-called spaces with negative norms, a notion due to P.D. Lax
[17].

The functional (1.25.5) can be considered as the scalar product of F (x)
by v(x) in L2(Ω). But v(x) belongs to an energy space E whose norm,
for simplicity, is assumed to be such that ‖v‖E = 0 implies v = 0. We
know that v ∈ L2(Ω) if v ∈ E; moreover, E is dense in L2(Ω). For any
F (x) ∈ L2(Ω), we can introduce a new norm

‖F‖E = sup
‖v‖E≤1

∣∣∣∣∫
Ω
F (x)v(x) dΩ

∣∣∣∣ .
It is clear that L2(Ω) with this norm is not complete (since all v ∈ Lp(Ω)
for any p > 2, p < ∞). The completion of L2(Ω) in the norm ‖ ·‖E is called
the space with negative norm, denoted E−. In Lax [17] (and in other books,
for example, Yosida [29]) it is shown that the set of all continuous linear
functionals on E can be identified with E− since E is dense in L2(Ω).

So the condition F (x) ∈ E− is necessary and sufficient for the work
functional (1.25.5) to be continuous with respect to v(x) on E.

In Lax [17], such a construction was introduced for a Sobolev space
Ẇ k,2(Ω); the corresponding space with negative norm was denoted by
W−k,2(Ω). An equivalent approach to the introduction of W−k,2(Ω) in-
volves use of the Fourier transformation in Sobolev spaces (cf., Yosida [29]).

The notion of the space with negative norm is a useful tool in the study
of problems, but it is not too informative when we want to know whether
certain forces are of a needed class; here sufficient conditions are more
convenient.

The second question we consider is what to do when boundary condi-
tions (of Dirichlet type) are non-homogeneous. Consider, for example, the
problem

−∆v = F, (1.25.6)

v
∣∣
∂Ω = ϕ. (1.25.7)

We can try the classical approach to the treatment of this problem, finding
a function v0(x) satisfying (1.25.7), i.e.,

v0
∣∣
∂Ω = ϕ.

Now we are seeking v(x) in the form v = u + v0, where u(x) satisfies the
homogeneous boundary condition

u
∣∣
∂Ω = 0. (1.25.8)



114 1. Metric Spaces

An integro-differential equation of equilibrium of the membrane is∫∫
Ω

(
∂u

∂x

∂ψ

∂x
+
∂u

∂y

∂ψ

∂y

)
dΩ +

∫∫
Ω

(
∂v0
∂x

∂ψ

∂x
+
∂v0
∂y

∂ψ

∂y

)
dΩ =

∫∫
Ω

Fψ dΩ.

(1.25.9)
wherein virtual displacements must also satisfy (1.25.8):

ψ|∂Ω = 0.

Considering the term ∫∫
Ω

(
∂v0
∂x

∂ψ

∂x
+
∂v0
∂y

∂ψ

∂y

)
dΩ

we see that it is a continuous linear functional on EMC if ∂v0/∂x and
∂v0/∂y belong to L2(Ω). In such a case there is a generalized solution to
the problem, i.e., u ∈ EMC satisfying (1.25.9) for any ψ ∈ EMC .

We have supposed that there exists an element of W 1,2(Ω) satisfying the
boundary condition (1.25.7). In more detailed textbooks on the theory of
partial differential equations, one may find the conditions for a function ϕ
given on the boundary that are sufficient for the existence of the function
v0. Corresponding theorems for v0 from Sobolev spaces are called trace the-
orems. The trace theorems suppose the boundary to be sufficiently smooth.
The case of a piecewise smooth boundary that is frequently encountered
in practice has not been completely studied as of yet. The problem of the
trace of functions is beyond the scope of this book.

A final remark. In mathematics we normally deal with dimensionless
quantities. In this presentation we have also supposed all quantities to be
dimensionless. However, variables having dimensional units can be used
without difficulty, provided we check carefully for units in all inequalities
and equations, and introduce additional factors as may be required. In par-
ticular, in imbedding theorems the constants normally carry dimensional
units, hence these constants change if the units are changed.

1.26 The Bramble–Hilbert Lemma and Its
Applications

This lemma is widely used to establish the rate of convergence of the finite
element method (see, for example, Ciarlet [6]). The lemma gives a bound
for a functional with special properties in a Sobolev space. We would like
to note that sometimes it is useful to read classical books because, for
example, the reader (as well as the authors of the lemma) could find that
the lemma is a simple consequence of the theorem on equivalent norming
of W l,p(Ω) in Sobolev [22].
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Recall the Poincaré inequality (1.10.9)

∫
S

u2 dS ≤ m

{(∫
S

u dS

)2

+
∫

S

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]
dS

}
, (1.26.1)

which was derived when S was the square [0, a] × [0, a].
The proof of (1.10.9) is easily extended to the case of an n-dimensional

cube. We now discuss how to extend it to a compact set Ω which is star-
shaped with respect to a square S; that is, any ray starting in S intersects
the boundary of Ω exactly once. We shall establish the following estimate,
which is also called the Poincaré inequality:

∫
Ω
u2 dΩ ≤ m1

(∫
S

u dS

)2

+m2

∫
Ω

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]
dΩ. (1.26.2)

Let us rewrite this in a system of polar coordinates (r, φ) whose origin is
at the center of S. Let ∂Ω be given by the equation r = R(φ) ≥ a/2,
R(φ) < R0. Then (1.26.1) has the form

∫ 2π

0

∫ R(φ)

0
u2r dr dφ ≤ m1

(∫
S

u dS

)2

+

+m2

∫ 2π

0

∫ R(φ)

0

[(
∂u

∂r

)2

+
1
r2

(
∂u

∂φ

)2
]
r dr dφ.

Because of (1.26.1), it follows that it is sufficient to get the estimate

∫ 2π

0

∫ R(φ)

a/2
u2r dr dφ ≤ m3

∫ 2π

0

∫ a/2

a/4
u2r dr dφ+

+m4

∫ 2π

0

∫ R(φ)

a/4
r

(
∂u

∂r

)2

dr dφ (1.26.3)

with constants which are independent of u ∈ C(1)(Ω) (C(1)(Ω) is introduced
in Cartesian coordinates!). We now proceed to prove this.

The starting point is the representation

u(r2, φ) = u(r1, φ) +
∫ r2

r1

∂u(r, φ)
∂r

dr, a/4 ≤ r1 ≤ a/2, a/4 ≤ r2 ≤ R0,
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from which, by squaring both sides and applying elementary transforma-
tions, we get

u2(r2, φ) ≤ 2u2(r1, φ) + 2
(∫ r2

r1

1√
r

(√
r
∂u

∂r

)
dr

)2

≤ 2u2(r1, φ) + 2
∫ r2

r1

dr

r

∫ r2

r1

r

(
∂u

∂r

)2

dr

≤ 2u2(r1, φ) +m5

∫ R(φ)

a/4
r

(
∂u

∂r

)2

dr, m5 = 2 ln
4R0

a
.

Multiplying this chain of inequalities by r1r2 and then integrating it first
with respect to r2 from a/2 to R(φ) and then with respect to r1 from a/4
to a/2 gives∫ a/2

a/4
r1

∫ R(φ)

a/2
u2(r2, φ)r2 dr2 dr1 ≤ 2

∫ a/2

a/4
u2(r1, φ)r1 dr1

∫ R(φ)

a/2
r2 dr2 +

+m5

∫ a/2

a/4

∫ R(φ)

a/2
r1r2 dr1 dr2

∫ R(φ)

a/4
r

(
∂u

∂r

)2

dr

or

3
32
a2
∫ R(φ)

a/2
u2(r, φ)r dr ≤ R2

0

∫ a/2

a/4
u2(r, φ)r dr+

+
3
64
a2R2

0m5

∫ R(φ)

a/4
r

(
∂u

∂r

)2

dr.

Finally, integrating this with respect to φ over [0, 2π] and multiplying it by
32/(3a2) completes the proof of (1.26.3) and hence of (1.26.2).

We can similarly extend the Poincaré inequality to the case of a multi-
connected domain Ω which is a union of star-shaped domains, and to the
case of an n-dimensional domain Ω with n > 2. The latter extension is∫

Ω
u2 dΩ ≤ m1

(∫
C

u dΩ
)2

+m2

n∑
i=1

∫
Ω

(
∂u

∂xi

)2

dΩ, (1.26.4)

where C ⊂ Ω is a hypercube in Rn.
We can apply the inequality (1.26.4) to any derivative Dαu, |α| < k.

Combining these estimates successively, we derive the inequality needed
for the proof of the Bramble–Hilbert lemma

‖u‖2
W k,2(Ω) ≤ m3

∑
0≤|α|<k

(∫
C

Dαu dΩ
)2

+m4

∑
|α|=k

∫
Ω

|Dαu|2 dΩ. (1.26.5)

This estimate permits us to introduce another form of equivalent norm
in W k,2(Ω). (Question to the reader: Which one?) Note that the estimate
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was obtained for functions of C(k)(Ω), but the now standard procedure of
completion provides that it is valid for any u ∈ W k,2(Ω).

Lemma 1.26.1 (Bramble–Hilbert [5]). Assume that F (u) is a contin-
uous linear functional on W k,2(Ω) such that for any polynomial Pr(x) of
order less than k,

F (Pr(x)) = 0. (1.26.6)

Then there is a constant m∗ depending only on Ω such that

|F (u)| ≤ m∗‖F‖W k,2(Ω)

∑
|α|=k

∫
Ω

|Dαu|2 dΩ
1/2

. (1.26.7)

Proof. From (1.26.5) and continuity of F (u) on W k,2(Ω), it follows that

|F (u)| ≤ m‖F‖W k,2(Ω)

 ∑
0≤|α|<k

(∫
C

Dαu dΩ
)2

+
∑

|α|=k

∫
Ω

|Dαu|2 dΩ
1/2

.

(1.26.8)
By (1.26.6),

F (u(x) + Pk−1(x)) = F (u(x))

where Pk−1(x) is an arbitrary polynomial of order k − 1. Fixing u(x) ∈
W k,2(Ω), we can always choose a polynomial P ∗

k−1(x) such that∫
C

Dα(u(x) + P ∗
k−1(x)) dΩ = 0 for all 0 ≤ |α| ≤ k − 1.

Substituting u(x) +P ∗
k−1(x) into (1.26.8), we get the needed (1.26.7) since

DαPk−1(x) = 0 for |α| = k.

Let us consider some simple applications of this lemma. Assume that we
find numerically, by Simpson’s rule,∫ 1

0
u(x) dx

when u(x) ∈ W 2,2(0, 1). What is a bound on the error? First we find the
error in one step of the trapezoidal rule:

Fk(u) =
∫ xk+h

xk

u(x) dx− h

2
[u(xk + h) + u(xk)].
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It is clear that Fk(u) is a linear and continuous functional in W 2,2(0, 1).
Making the change of variable x = xk + hz in the integral, we get

|Fk(u)| = h

∣∣∣∣∫ 1

0
u(xk + hz) dz − 1

2
[u(xk) + u(xk + h)]

∣∣∣∣
≤ 2h max

z∈[0,1]
|u(xk + zh)|. (1.26.9)

By the elementary inequality

max
x∈[0,1]

|f(x)| ≤
√

2
(∫ 1

0

(
f2(x) + [f ′(x)]2

)
dx

)1/2

≤
√

2‖f‖W 2,2(0,1)

(whose proof we leave to the reader), (1.26.9) gives

|Fk(u)| ≤ 2
√

2h‖u(xk + hz)‖W 2,2(0,1).

Since Fk(a + bx) = 0 for any constants a, b we can apply the Bramble–
Hilbert lemma and obtain

|Fk(u)| ≤ 2
√

2hm
(∫ 1

0
[u′′(xk + hz)]2 dz

)1/2

= m1h
5/2

(∫ xk+h

xk

[u′′(x)]2 dx

)1/2

.

This is the needed error bound for one step of integration.
Consider now the bound on total error when [0, 1] is subdivided into N

equal parts

F (u) =
∫ 1

0
u(x) dx− h

2

N−1∑
k=0

[u(xk) + u(xk+1)], xk = kh.

This is linear and continuous in W 2,2(0, 1), and f(u) =
∑N−1

k=0 Fk(u). We
get

|F (u)| =

∣∣∣∣∣
N−1∑
k=0

Fk(u)

∣∣∣∣∣ ≤
N−1∑
k=0

|Fk(u)|

≤ m1h
5/2

N−1∑
k=0

(∫ xk+h

xk

[u′′(x)]2 dx

)1/2

≤ m1h
5/2

√
N

(
N−1∑
k=0

∫ xk+h

xk

[u′′(x)]2 dx

)1/2

.
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Thus the needed bound on the error of the trapezoidal rule is

|F (u)| ≤ m1h
2
(∫ 1

0
[u′′(x)]2 dx

)1/2

.

No improvements in the order of the error result if we take functions
smoother than those from W 2,2(0, 1). But if v ∈ W 1,2(0, 1) the bound
is worse:

|F (v)| ≤ m2h

(∫ 1

0
[v′(x)]2 dx

)1/2

.

Another example of the application of Lemma 1.26.1 is given by
Problem 1.26.1. Show that the local error of approximation of the first
derivatives of a function u(x1, x2) ∈ W 3,2(Ω), Ω ⊂ R2, by symmetric dif-
ferences, is

l(u) =
∣∣∣∣∂u(0, 0)

∂x1
− u(h1, 0) − u(−h1, 0)

2h1

∣∣∣∣+
+
∣∣∣∣∂u(0, 0)

∂x2
− u(0, h2) − u(0,−h2)

2h2

∣∣∣∣
≤ M(h2

1 + h2
2)√

h1h2
‖u‖W 3,2(Ω)

if 0 < c1 < h1/h2 < c2 < ∞. (Take into account that l(P2(x1, x2)) = 0
when P2(x1, x2) is a polynomial of second order.)
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2
Elements of the Theory of Operators

2.1 Spaces of Linear Operators

This chapter aims to present in more detail some results of the theory of
linear operators. We cannot pretend to give a full treatment of this vast
area, and shall select only those parts which are useful in the applications
under consideration. Of course, we are forced to give some general theoret-
ical background.

Let A be an operator from a normed space X to a normed space Y . The
domain of A is denoted by D(A), and its range by R(A).

In Section 1.12 we saw that a linear operatorA defined onX is continuous
if and only if there is constant c such that whenever x ∈ X,

‖Ax‖ ≤ c‖x‖.
The infimum of all such constants was called ‖A‖, the norm of A.

Consider the set L(X,Y ) of continuous linear operators from X to Y ; it
is clearly a linear space.

Lemma 2.1.1. L(X,Y ) is a normed space.

Proof. We need to check only that the norm axioms are fulfilled for the
norm introduced above. ‖A‖ is clearly non-negative. If ‖A‖ = 0, then
‖Ax‖ = 0 for all x ∈ X, i.e., A = 0. Conversely, if A = 0 then ‖A‖ = 0.
Hence N1 is satisfied. It is obvious that N2 is satisfied. The chain of in-
equalities

‖(A+B)x‖ = ‖Ax+Bx‖ ≤ ‖Ax‖ + ‖Bx‖ ≤ ‖A‖ ‖x‖ + ‖B‖ ‖x‖
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shows that ‖A + B‖ ≤ ‖A‖ + ‖B‖. Hence ‖A‖ also satisfies norm axiom
N3.

As in any normed space, the notion of convergence acts in L(X,Y ). A
sequence of continuous linear operators {An} is said to be convergent to
A if ‖An − A‖ → 0 as n → ∞; in such a case we say that {An} converges
uniformly to A.

Theorem 2.1.1. If X is a normed space and Y is a Banach space, then
L(X,Y ) is a Banach space.

Proof. Let {An} be a Cauchy sequence in L(X,Y ), i.e.,

‖An+m −An‖ → 0 as n → ∞, m > 0.

We must show that there is a continuous operator A such that A =
limn→∞An. For any x ∈ X, {Anx} is also a Cauchy sequence because

‖An+mx−Anx‖ ≤ ‖An+m −An‖ ‖x‖;

hence there exists y ∈ Y such that y = limn→∞Anx since Y is a Banach
space. Thus, for every x ∈ X this defines a unique y ∈ Y , i.e., defines an
operator A such that y = Ax. By properties of the limit and the linearity of
An, the operator A is linear. Since {An} is a Cauchy sequence, the sequence
of norms {‖An‖} is bounded, say ‖An‖ ≤ c, and so

‖Ax‖ = lim
n→∞ ‖Anx‖ ≤ lim sup

n→∞
‖An‖ ‖x‖ ≤ c‖x‖.

That is, A is continuous and the proof is finished.

In a Banach space L(X,Y ) we can introduce series

∞∑
n=1

An

and define their sums by

S = lim
k→∞

k∑
n=1

An.

A series
∑∞

n=1An is said to be absolutely convergent if the numerical series∑∞
n=1 ‖An‖ is convergent.

Problem 2.1.1. Suppose An ∈ L(X,Y ) where Y is a Banach space. Show
that if

∑∞
n=1An is absolutely convergent, then it is convergent.
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We denote by L(X) the space L(X,X), X being a Banach space. In
L(X) we can introduce the product of operators A,B by

ABx = A(Bx).

The product possesses the usual properties of a numerical product except
commutativity; we have

(AB)C = A(BC),
(A+B)C = AC +BC,

A(B + C) = AB +AC,

IA = AI = A,

where I is the identity operator. The product is also a continuous operator,
because

‖ABx‖ ≤ ‖A‖ ‖Bx‖ ≤ ‖A‖ ‖B‖ ‖x‖
gives

‖AB‖ ≤ ‖A‖ ‖B‖.
Problem 2.1.2. Show that if A = limn→∞An and B = limn→∞Bn where
An, Bn belong to L(X), then AB = limn→∞AnBn.

So L(X) is a non-commutative ring. Denoting by Ak the product

A · · ·A︸ ︷︷ ︸
k

,

we can introduce some functions of operators in L(X), for example,

eA = I +
∞∑

k=1

1
k!
Ak.

Now we introduce another type of convergence of linear operators. Let
g1, g2, g3, . . . be an orthonormal basis of a Hilbert space H. By the Fourier
representation of an element

x =
∞∑

k=1

ckgk, ck = (x, gk),

we can define an operator Pn called the operator of orthogonal projection
onto a subspace Hn of H spanned by gn, . . . , gn:

Pnx =
n∑

k=1

(x, gk)gk.

By Bessel’s inequality
‖Pnx‖ ≤ ‖x‖,
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hence ‖Pn‖ ≤ 1 and since ‖Png1‖ = ‖g1‖ it follows that ‖Pn‖ = 1. By
definition,

Pn+mgn+1 − Pngn+1 = gn+1, m > 0,

so
‖(Pn+m − Pn)gn+1‖ = ‖gn+1‖

and thus ‖Pn+m −Pn‖ ≥ 1 for m > 0. This means that the sequence {Pn}
is not uniformly convergent; however, for any x ∈ H we get

x = lim
n→∞Pnx.

This forces us to introduce

Definition 2.1.1. A sequence {An}, An ∈ L(X,Y ), is said to be strongly
convergent to A ∈ L(X,Y ) if, whenever x ∈ X,

‖Anx−Ax‖ → 0 as n → ∞.

If {An} is uniformly convergent to A, then it is strongly convergent to
A; indeed,

‖Anx−Ax‖ ≤ ‖An −A‖ ‖x‖ → 0 as n → ∞.

As we have seen, strong convergence of a sequence of operators does not
imply its uniform convergence. Strong convergence is sometimes referred
to as pointwise convergence.

2.2 Banach–Steinhaus Principle

Let A be a linear operator whose domain is dense in a normed space X. The
operator acts from D(A) to a Banach space Y and is bounded on D(A),
i.e.,

‖Ax‖ ≤ M‖x‖ for all x ∈ D(A)

(such a situation was met implicitly in proving the imbedding theorems).
The infimum of the constants M we can also call ‖A‖, the norm of A. First
we prove

Theorem 2.2.1. Under the above conditions there is a continuation of A,
denoted Ac, such that

(i) Ac ∈ L(X,Y );

(ii) Acx = Ax for every x ∈ D(A);

(iii) ‖Ac‖ = ‖A‖.
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Proof. If x ∈ D(A) then Acx = Ax. Take x0 /∈ D(A). We construct the
value Ax0 as follows. There is a sequence {xn} ⊂ D(A) such that ‖xn −
x0‖ → 0. The sequence {Axn} is a Cauchy sequence because

‖Axn −Axm‖ ≤ ‖A‖ ‖xn − xm‖ → 0 as n,m → ∞;

hence, thanks to the completeness of Y , there exists limn→∞Axn which
does not depend on the choice of sequence {xn} (verify). We define Acx0
as limn→∞Axn. Since

‖Axn‖ ≤ ‖A‖ ‖xn‖,
passage to the limit gives

‖Acx0‖ ≤ ‖A‖ ‖x0‖.
This means that Ac is continuous and ‖Ac‖ ≤ ‖A‖. But on D(A) we have
‖Ac‖ = ‖A‖, so (iii) is valid.

We now prove the Banach–Steinhaus principle, which is given by

Theorem 2.2.2. Let {An} be a sequence of continuous linear operators
in L(X,Y ), Y being a Banach space, such that

(i) ‖An‖ ≤ M for all n;

(ii) there exists limn→∞Anx for all x ∈ X∗, X∗ being a subspace of X
such that X∗ is dense in X.

Then the sequence {An} converges strongly to a continuous linear operator
A, i.e., for every x ∈ X

‖Anx−Ax‖ → 0 as n → ∞.

Proof. The linear operator A, defined on X∗ by the relation

Ax = lim
n→∞Anx, x ∈ X∗

is bounded on X∗ by (i); indeed,

‖Ax‖ = lim
n→∞ ‖Anx‖ ≤ M‖x‖, x ∈ X∗.

Using the construction of Theorem 2.2.1 we can extend this operator to X
with preservation of norm. Denoting this continuation again by A, we shall
show that limn→∞Anx0 = Ax0 for any x0 ∈ X. Let {xn} ⊂ X∗ be such
that

‖xn − x0‖ → 0 as n → ∞.

Then Ax0 = limn→∞Axn. On the other hand,

‖Ax0 −Anx0‖ = ‖Ax0 −Axm +Axm −Anxm +Anxm −Anx0‖
≤ ‖Ax0 −Axm‖ + ‖Axm −Anxm‖ + ‖Anxm −Anx0‖
≤ ‖A‖ ‖x0 − xm‖ + ‖Axm −Anxm‖ +M‖xm − x0‖.
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Given ε > 0, we can choose m1 such that

‖x0 − xm1‖ < ε/(3M);

fixing this m1, thanks to (ii), we can find n1 such that for n > n1 we have

‖Axm1 −Anxm1‖ < ε/3.

Hence we get
‖Ax0 −Anx0‖ < ε when n > n1,

and this completes the proof.

The next theorem is the principle of uniform boundedness:

Theorem 2.2.3. Assume An ∈ L(X,Y ). If {Anx} is bounded for every
x ∈ X, then the set {‖An‖} is also bounded.

The proof can be found in any textbook on functional analysis (see, for
example, Yosida [29]).

2.3 The Inverse Operator

We are now interested in solving an equation

Ax = y

where A is a linear operator, y is a given element of a normed space Y , and
x is an unknown element of a normed space X.

We dealt with some problems of this type, reducing them to a trivial
equation x = y in an energy space. Now we consider the general case.

If for any y ∈ Y there is no more than one solution x ∈ X of the
equation, then the correspondence from Y to X defined by the equation is
an operator; this operator is called the inverse to A and is denoted A−1.
It is clear that D(A−1) = R(A) and R(A−1) = D(A).

As an easy exercise, the reader can prove

Theorem 2.3.1. The operator A−1 exists if and only if the equation Ax =
0 has the unique solution x = 0. The operator A−1, if it exists, is also linear.

We are interested not only in solvability of the equation, but in continuity
of dependence of its solution on external data. A simple result of this kind
is

Theorem 2.3.2. The operator A−1 is bounded on R(A) if and only if
there is a positive constant c such that

‖Ax‖ ≥ c‖x‖ for all x ∈ D(A). (2.3.1)
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Proof. Necessity. Let A−1 exist and be bounded on R(A). It follows that
there is a constant m > 0 such that ‖A−1y‖ ≤ m‖y‖. Denoting y = Ax,
c = 1/m, we get (2.3.1).

Sufficiency. From (2.3.1), it follows that the equation Ax = 0 has the
unique solution x = 0, i.e., A−1 exists. Putting x = A−1y in (2.3.1), we get
‖A−1y‖ ≤ (1/c)‖y‖ for all y ∈ R(A). This completes the proof.

An important case is when A−1 ∈ L(Y,X); then we shall say that A is
continuously invertible.

From Theorem 2.3.2 there follows

Theorem 2.3.3. An operator A is continuously invertible if and only if
(i) R(A) = Y and (ii) there is a positive constant c such that (2.3.1) holds.

Let us consider some examples.
We begin with the Fredholm equation with degenerate kernel:

u(t) − λ

∫ b

a

n∑
k=1

ϕk(t)ψk(s)u(s) ds = f(t), (2.3.2)

where λ is a parameter. Assume that ϕk(t), ψk(t), and f(t) are of class
C(a, b). What can we say about the inverse of the operator AF given by

(AFu)(t) = u(t) − λ

∫ b

a

n∑
k=1

ϕk(t)ψk(s)u(s) ds,

acting in C(a, b)? If equation (2.3.2) is solvable, then its solution has the
form

u(t) = f(t) +
n∑

k=1

ckϕk(t).

Putting this into (2.3.2), we get

n∑
k=1

ckϕk(t) + f(t) − λ

n∑
k=1

ϕk(t)
∫ b

a

ψk(s)

(
n∑

i=1

ciϕi(s) + f(s)

)
ds = f(t).

Supposing that the system ϕ1(t), . . . , ϕn(t) is linearly independent, we ob-
tain the linear algebraic system

ck − λ

n∑
i=1

ci

∫ b

a

ϕi(s)ψk(s) ds = λ

∫ b

a

f(s)ψk(s) ds, k = 1, . . . , n,

whose solution by Cramer’s rule is

ck =
Dk(λ, f)
D(λ)

, k = 1, . . . , n.
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Hence

u(t) = f(t) +
n∑

k=1

Dk(λ, f)
D(λ)

ϕk(t). (2.3.3)

This solution is valid if D(λ) �= 0; then from (2.3.3) we see that

max
t∈[a,b]

|u(t)| ≤ m(λ) max
t∈[a,b]

|f(t)|,

or, in terms of norms,
‖u‖ ≤ m(λ)‖f‖.

This means that A−1
F ∈ L(C(a, b)) if D(λ) �= 0 and ‖A−1

F ‖ ≤ m(λ).
Suppose that D(λ) = 0. Since D(λ) is a polynomial in λ of order n, it has

no more than n distinct zeros λi. For λ = λi, there is a nontrivial solution
c
(i)
1 , . . . , c

(i)
n to the system

ck − λi

n∑
j=1

cj

∫ b

a

ϕj(s)ψk(s) ds = 0, k = 1, . . . , n.

This means that the equation AFu = 0 has a nonzero solution and thus A−1
F

does not exist. These {λi} comprise the spectrum of the integral operator.
Now we consider a simple boundary value problem

u′′(t) = f(t), u(0) = u0, u(1) = u1,

when f(t) ∈ C(0, 1). Its solution is

u(t) =
∫ t

0

∫ s

0
f(s1) ds1 ds+ u0 +

(
u1 − u0 −

∫ 1

0

∫ s

0
f(s1) ds1 ds

)
t.

(2.3.4)
In terms of operators, we get an operator B whose domain is C(2)(0, 1)
and range is the space whose elements are pairs consisting of a function
f(t) ∈ C(0, 1) and a vector (u0, u1). From (2.3.4) it follows that B−1 exists
and is bounded.

Finally, we formulate

Theorem 2.3.4. Assume that X and Y are Banach spaces, A ∈ L(X,Y )
is continuously invertible, and B ∈ L(X,Y ) is such that ‖B‖ < ‖A−1‖−1.
Then A+B has an inverse (A+B)−1 ∈ L(Y,X) and

‖(A+B)−1‖ ≤ (‖A−1‖−1 − ‖B‖)−1. (2.3.5)

Proof. The equation
(A+B)x = y (2.3.6)

can be reduced to

x− Cx = x0, C = −A−1B, x0 = A−1y.
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By the condition of the theorem, ‖C‖ ≤ ‖A−1‖ ‖B‖ < 1. So we can apply
the contraction mapping principle to this equation and find that it has a
unique solution x∗ for any y ∈ Y which can be found by iteration:

xk+1 = x0 + Cxk

or
xk = (I + C + · · · + Ck)x0.

Existence of the unique solution to (2.3.6) means that the inverse to A+B
exists and its domain is Y .

We now obtain (2.3.5). From x = A−1Ax it follows that

‖x‖ ≤ ‖A−1‖ ‖Ax‖,

and so
‖Ax‖ ≥ ‖A−1‖−1‖x‖.

For any y ∈ Y , (2.3.6) shows that

‖y‖ = ‖(A+B)x‖
≥ ‖Ax‖ − ‖Bx‖
≥ ‖A−1‖−1‖x‖ − ‖B‖ ‖x‖
= (‖A−1‖−1 − ‖B‖)‖x‖.

From this (2.3.5) follows, and the proof is complete.

2.4 Closed Operators

Broader than the class of continuous linear operators is the class of closed
linear operators.

Definition 2.4.1. A linear operator A acting from a Banach space X to
a Banach space Y is called closed if for any sequence {xn} ⊂ D(A) such
that limn→∞ xn = x and limn→∞Axn = y, it follows that x ∈ D(A) and
y = Ax.

By definition, a continuous linear operator whose domain is X is closed.
There are closed linear operators which are not continuous. We now give
an example of such an operator.

The differentiation operator d/dt acting from C(0, 1) to C(0, 1) is closed.
Indeed, let xn(t) → x(t) and x′

n(t) → y(t), both uniformly (i.e., in C(0, 1)).
By a well known theorem of calculus, it follows that x′(t) = y(t), i.e.,
Definition 2.4.1 is fulfilled for d/dt. Its unboundedness is seen if we consider
d/dt acting on the sequence {tn}.
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In a similar way, it may be shown that a general differential operator
A given by Af(x) =

∑
|α|≤n cα(x)Dαf(x) with smooth coefficients cα(x)

acting in C(Ω) is closed.
Now we consider a closed operator from another point of view. We begin

with the definition of the product X × Y of Banach spaces X,Y over the
same scalar field. The elements of X × Y are ordered pairs (x, y), x ∈ X,
y ∈ Y . This is a linear space with operations defined as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2), α(x, y) = (αx, αy).

Moreover, X × Y is a Banach space under the norm

‖(x, y)‖ = (‖x‖2 + ‖y‖2)1/2.

Definition 2.4.2. The subset {(x,Ax) | x ∈ D(A)} of X ×Y is called the
graph of an operator A acting from D(A) ⊂ X to Y .

The following is equivalent to Definition 2.4.1 (prove this):

Definition 2.4.3. A linear operator A acting from D(A) ⊂ X to Y is
called closed if its graph is a closed linear subspace of X × Y .

We shall say that a linear operator A acting from D(A) ⊂ X to Y has a
closed extension if the closure of the graph G(A) in X × Y is the graph of
a linear operator, say B, acting from D(B) ⊂ X to Y .

Lemma 2.4.1. An operator A acting from a Banach space X to a Banach
space Y has a closed extension if and only if from the condition

(*) let {xn} ⊂ D(A) be an arbitrary sequence such that limn→∞ xn = 0
and limn→∞Axn = y

it follows that y = 0.

Proof. Necessity follows from the definition of a closed operator. For suffi-
ciency, we construct directly an operator B, called the least closed extension
of A, as follows. An element x belongs to D(B) if and only if there is a se-
quence {xn} ⊂ D(A) such that limn→∞ ‖xn −x‖ = 0 and Axn → y (strong
limit); for this x, the value Bx is defined by Bx = y. By the condition (*),
y is uniquely defined by x so B is an operator whose linearity is evident.

Then let {un} ⊂ D(B) be a sequence such that un → u and Bun → v. To
complete the proof, we must show that Bu = v. By definition of B, there is
a sequence {xn} ⊂ D(A) such that ‖xn −un‖ < εn and ‖Axn −Bun‖ < εn

where εn → 0 as n → ∞. Hence xn → u and Axn → v as n → ∞. Thus,
by definition of B, we have u ∈ D(B) and Bu = v.

As an example of the application of this lemma we consider an extension
of the operator

A =
∑

|α|≤k

cα(x)Dα
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with coefficients cα(x) ∈ C(k)(Ω), Ω being compact in Rn, acting in L2(Ω).
We define the domain of A as the set L2(Ω) ∩ C(k)(Ω). The range of A
lies in L2(Ω). We now try the condition of the lemma to show that A has
a closed extension. Let {un(x)} ⊂ D(A) be such that ‖un‖L2(Ω) → 0 and
‖Aun(x)−v(x)‖L2(Ω) → 0 as n → ∞. Let ϕ(x) ∈ C

(k)
0 (Ω), where C(k)

0 (Ω) is
the subspace of C(k)(Ω) consisting of functions that together with all their
derivatives up to the order k are zero on the boundary ∂Ω. Integration by
parts gives∫

Ω
ϕ(x)Aun(x) dΩ =

∫
Ω
un(x)

∑
|α|≤k

(−1)|α|Dα[cα(x)ϕ(x)] dΩ

(the boundary terms vanish because ϕ(x) and Dαϕ(x) equal zero on ∂Ω).
By definition of L2(Ω), passage to the limit gives∫

Ω
ϕ(x)v(x) dΩ =

∫
Ω

0 ·
∑

|α|≤k

(−1)|α|Dα[cα(x)ϕ(x)] dΩ = 0.

Since Ck
0 (Ω) is dense in L2(Ω), it follows that v(x) = 0 as an element

of L2(Ω). Hence there is a closed extension of the differential operator A.
(This is another approach which can lead us to generalized derivatives, and
is equivalent to the approach due to S.L. Sobolev.)

Theorem 2.4.1. If A is a closed linear operator and its inverse A−1 exists,
then A−1 is also closed.

Proof. The graph of A−1 can be obtained from the graph of A by rear-
rangement: (x,Ax) �→ (Ax, x). This means that G(A−1) is a closed set in
Y ×X.

A useful result is

Theorem 2.4.2. Let A be a closed linear operator whose domain is a
Banach space X and whose range lies in a Banach space Y . Assume there
is a set M which is dense in X and a positive constant c such that

‖Ax‖ ≤ c‖x‖ for all x ∈ M.

Then the operator A is continuous.

Proof. Take x0 ∈ X. Since M is dense in X, there is a sequence {xn} ⊂ M
such that

‖xn − x0‖ < 1/n.

By the condition of the theorem we get

‖Axk+m −Axk‖ ≤ c‖xk+m − xk‖
≤ c(‖xk+m − x0‖ + ‖xk − x0‖)
≤ 2c/k → 0 as k → ∞,
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so {Axk} is a Cauchy sequence which, thanks to completeness of Y , has
limit y. By closedness of A we get Ax0 = y. On the other hand

‖Ax0‖ = lim
k→∞

‖Axk‖ ≤ lim
k→∞

c‖xk‖ = c‖x0‖,

which completes the proof.

We can now formulate Banach’s closed graph theorem.

Theorem 2.4.3. Let A be a closed linear operator acting from a Banach
space X to a Banach space Y , and let D(A) = X. Then A is continuous
on X.

The proof can be found in any textbook on functional analysis (e.g.,
Yosida [29]). A consequence of this theorem is

Theorem 2.4.4. IfA is a closed linear operator mapping a Banach spaceX
onto a Banach space Y (i.e., R(A) = Y ) one-to-one, then A−1 is continuous
on Y .

Proof. By Theorem 2.4.1, A−1 is closed; by Theorem 2.4.3, it is continuous.

Problem 2.4.1. Let a linear space X be a Banach space with respect to
each of two norms ‖x‖1 and ‖x‖2. Show that if for every x ∈ X there is
a positive constant c1 not depending on x such that ‖x‖1 ≤ c1‖x‖2, then
there is a positive constant c2 such that ‖x‖2 ≤ c2‖x‖1. That is, show that
the norms ‖x‖1 and ‖x‖2 are equivalent.

2.5 The Notion of Adjoint Operator

This notion will be introduced for operators acting in a Hilbert space,
although it can also be applied in other settings. So we let H be a Hilbert
space and A be a continuous linear operator acting from H to H.

Consider the inner product (Ax, y) as a functional with respect to the
variable x ∈ H when y ∈ H is arbitrary but fixed. This functional, thanks
to the linearity of A, is linear and bounded because

|(Ax, y)| ≤ ‖Ax‖ ‖y‖ ≤ (‖A‖ ‖y‖)‖x‖.
By the Riesz representation theorem, it can be represented in the form

(Ax, y) = (x, z)

where the element z is uniquely defined by y and A. So the correspondence
y �→ z can be viewed as an operator A∗, z = A∗y, and we call A∗ the
adjoint of A.

Let us consider some properties of A∗.
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Lemma 2.5.1. A∗ is a linear operator.

Proof. By definition we get

(Ax, y1) = (x,A∗y1), (Ax, y2) = (x,A∗y2),

and
(Ax, α1y1 + α2y2) = (x,A∗(α1y1 + α2y2)).

But
(Ax, α1y1 + α2y2) = α1(Ax, y1) + α2(Ax, y2),

so

(x,A∗(α1y1 + α2y2)) = α1(x,A∗y1) + α2(x,A∗y2)
= (x, α1A

∗y1) + (x, α2A
∗y2).

Since x is an arbitrary element of H, we have

A∗(α1y1 + α2y2) = α1A
∗y1 + α2A

∗y2.

This completes the proof.

Lemma 2.5.2. We have

(i) (A+B)∗ = A∗ +B∗,

(ii) (AB)∗ = B∗A∗.

Proof. Property (i) is evident. Comparing the equalities

((AB)x, y) = (x, (AB)∗y)

and
(A(Bx), y) = (Bx,A∗y) = (x,B∗(A∗y)),

we prove (ii).

Lemma 2.5.3. If A is a continuous linear operator, then A∗ is continuous;
moreover, ‖A∗‖ = ‖A‖.

Proof. Using the Schwarz inequality, we get

M = sup
x,y∈H

|(Ax, y)|
‖x‖ ‖y‖ ≤ sup

x,y∈H

‖A‖ ‖x‖ ‖y‖
‖x‖ ‖y‖ = ‖A‖.

By definition of A∗, (Ax, y) = (x,A∗y) and

M = sup
x,y∈H

|(x,A∗y)|
‖x‖ ‖y‖ .
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Given x = A∗y, we have

M1 = sup
y∈H

|(A∗y,A∗y)|
‖A∗y‖ ‖y‖ = sup

y∈H

‖A∗y‖
‖y‖ .

But M1 ≤ M , so A∗ is bounded and

M1 = ‖A∗‖ ≤ M ≤ ‖A‖.
Thus we obtain that A∗ is continuous and ‖A∗‖ ≤ ‖A‖. The reverse in-
equality ‖A‖ ≤ ‖A∗‖, which completes the proof, follows from the next
lemma.

Lemma 2.5.4. (A∗)∗ = A.

Proof. Since A∗ is continuous then, by definition,

(A∗x, y) = (x, (A∗)∗y).

On the other hand

(A∗x, y) = (y,A∗x) = (Ay, x) = (x,Ay),

so we get
(x, (A∗)∗y) = (x,Ay).

Since x and y are arbitrary elements of H, we conclude that (A∗)∗ = A.

We have introduced the adjoint operator for a continuous linear operator
in a Hilbert space. If A is unbounded then we can try to introduce A∗ by
the same equality

(Ax, y) = (x,A∗y), x ∈ D(A)

which defines a value of A∗y uniquely if D(A) is dense in H. What are the
properties of A∗ now? The reader should study this problem. The notion of
adjoint can also be introduced for operators acting in Banach spaces (see,
for example, Yosida [29]). In what follows we will not use the notion of the
adjoint to an unbounded operator.

We consider some examples.
1. A matrix operator in 	2. This was considered in Section 1.13:

(Ax)i =
∞∑

j=1

aijxj .

By (1.13.9), its norm in 	2 is bounded by

‖A‖ ≤
 ∞∑

i=1

∞∑
j=1

|aij |2
1/2

.
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The adjoint of A is defined as follows:

(Ax, y) =
∞∑

i=1

∞∑
j=1

aijxjyi =
∞∑

j=1

xj

( ∞∑
i=1

aijyi

)
= (x,A∗y),

so

(A∗y)j =
∞∑

i=1

aijyi.

Here the subscript j denotes the jth component of the vector A∗y. Some-
times it happens that aij = aji; in such cases A = A∗, and A is called
self-adjoint.

Definition 2.5.1. A linear operator A is called self-adjoint if A∗ = A.

2. An integral operator. We consider an integral operator of the form

(Bf)(x) =
∫ 1

0
K(x, y)f(y) dy

in L2(0, 1). If we suppose that K(x, y) ∈ L2([0, 1]×[0, 1]) then it is bounded
in L2(0, 1). Indeed

‖Bf‖L2(0,1) =

(∫ 1

0

∣∣∣∣∫ 1

0
K(x, y)f(y) dy

∣∣∣∣2 dx
)1/2

.

Using the Schwarz inequality, we get

‖Bf‖L2(0,1) ≤
(∫ 1

0

(∫ 1

0
|K(x, y)|2 dy

∫ 1

0
|f(y)|2 dy

)
dx

)1/2

=
(∫ 1

0

∫ 1

0
|K(x, y)|2 dy dx

)1/2

‖f‖L2(0,1).

Thus

‖B‖ ≤
(∫ 1

0

∫ 1

0
|K(x, y)|2 dy dx

)1/2

.

Let us introduce B∗ when K(x, y) ∈ L2([0, 1] × [0, 1]). For this we consider

(Bf, g) =
∫ 1

0

∫ 1

0
K(x, y)f(y) dy g(x) dx

=
∫ 1

0
f(y)

∫ 1

0
K(x, y)g(x) dx dy

= (f,B∗g),
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so

(B∗g)(y) =
∫ 1

0
K(x, y)g(x) dx.

Therefore B∗ is also an integral operator. If K(x, y) = K(y, x), then B =
B∗ and so B is self-adjoint.
3. Stability of a thin plate. The linearized integro-differential equation in
the theory of stability of a plate under tension can be written in the form

(w,ϕ)EP
− µC(w,ϕ) = 0, (2.5.1)

C(w,ϕ) =
∫

Ω

[
Tx
∂w

∂x

∂ϕ

∂x
+ Txy

(
∂w

∂y

∂ϕ

∂x
+
∂w

∂x

∂ϕ

∂y

)
+ Ty

∂w

∂y

∂ϕ

∂y

]
dx dy

where (w,ϕ)EP
is introduced by (1.10.14). For definiteness, we consider the

problem in EPC ; Tx, Txy, and Ty here are considered as given functions
from L2(Ω). Condition (2.15.3) that the plate is under tension provides that
all the eigenvalues of the problem are positive. The results of this section
do not depend on (2.15.3).

The problem is to find the minimal µ such that there is a nontrivial
function w ∈ EPC that satisfies (2.5.1) for every ϕ ∈ EPC . So this is the
problem of finding the least eigenvalue.

Let us transform this problem into operator form. For this, consider
C(w,ϕ). Applying the Hölder inequality to a term

R(w,ϕ) =
∫

Ω
Tx
∂w

∂x

∂ϕ

∂x
dx dy,

we get

|R(w,ϕ)| ≤
(∫

Ω
T 2

x dx dy

)1/2
(∫

Ω

(
∂w

∂x

)4

dx dy

)1/4

·

·
(∫

Ω

(
∂ϕ

∂x

)4

dx dy

)1/4

.

Remembering the imbedding theorem in EPC , we then obtain

|R(w,ϕ)| ≤ m‖w‖EP
‖ϕ‖EP

.

In a similar way, we can bound other terms in C(w,ϕ) and so

|C(w,ϕ)| ≤ m1‖w‖EP
‖ϕ‖EP

. (2.5.2)

The linearity of C(w,ϕ) with respect to both variables w and ϕ is evident.
Let w ∈ EPC be fixed. Then, thanks to (2.5.2), C(w,ϕ) is a contin-

uous linear functional with respect to ϕ ∈ EPC and thus, by the Riesz
representation theorem, can be represented in the form

C(w,ϕ) = (ϕ, v)EP
.
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Since for every w ∈ EPC there is a unique element v ∈ EPC we have
obtained a correspondence w �→ v that is an operator G, v = Gw, whose
linearity is evident. By (2.5.2) we have

|C(w,ϕ)| = |(ϕ,Gw)EP
| ≤ m1‖w‖EP

‖ϕ‖EP
.

Putting ϕ = Gw, we get

(Gw,Gw)EP
≤ m1‖w‖EP

‖Gw‖EP

or
‖Gw‖EP

≤ m1‖w‖EP
.

So the operator G is continuous.
Since the form C(w,ϕ) is symmetrical in the variables w and ϕ, we get

(ϕ,Gw)EP
= C(w,ϕ) = C(ϕ,w) = (w,Gϕ) for all w,ϕ ∈ EPC .

This means that the operator G is self-adjoint.
4. The operator of differentiation. Let us consider an example of an un-
bounded operator. This is the operator Dt = i d/dt acting in L2(0, 1) whose
domain consists of functions Ẇ 1,2(0, 1), i.e., functions f(x) which, along
with their derivatives, belong to L2(0, 1), and which satisfy f(0) = f(1) =
0.

As above, we shall find (Dt)∗:

(Dtf, g) =
∫ 1

0
i
df(t)
dt

g(t) dt =
∫ 1

0
f(t)i

dg(t)
dt

dt = (f,D∗
t g).

This formula is valid if g ∈ C(1)(0, 1). Passage to the limit here shows that
it remains valid if g ∈ W 1,2(0, 1).

Thus D∗
t = i d/dt; i.e., D∗

t has the same form as Dt but its domain
includes W 1,2(0, 1). So D(D∗

t ) is wider than D(Dt), and thus D∗
t �= Dt. In

this case, the operator is called symmetrical (not self-adjoint).
We now obtain a pair of simple but useful lemmas.

Lemma 2.5.5. If a linear operator A is strongly continuous on a Hilbert
space then it is also weakly continuous; that is, it takes any weakly conver-
gent sequence into a weakly convergent sequence.

Proof. Let xn ⇀ x0 in H. An arbitrary continuous linear functional F (x)
takes the form F (x) = (x, f), f ∈ H, and hence we must show that

(Axn −Ax0, f) → 0 as n → ∞.

But (Ax, f) = (x,A∗f), and so

(Axn −Ax0, f) = (xn − x0, A
∗f) → 0 as n → ∞

since A∗f ∈ H and {xn} converges weakly to x0.
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In fact this is a more general result which we formulate as

Lemma 2.5.6. A continuous linear operator A acting from a normed space
X into a normed space Y is also weakly continuous.

The proof follows from the fact that for any continuous linear functional
F (y) given on Y the functional Φ(x) = F (Ax) is also continuous and linear,
but on X.

Lemma 2.5.7. Assume that A is a continuous linear operator acting in a
Hilbert space H. Let xn ⇀ x0 and yn → y0 in H. Then

(Axn, yn) → (Ax0, y0) as n → ∞.

Proof. Because (Ax, y) = (x,A∗y), where A∗ is continuous, we get

Rn = (Axn, yn) − (Ax0, y0) = (xn, A
∗yn) − (x0, A

∗y0).

Transforming this, we have

Rn = (xn, A
∗yn) − (x0, A

∗y0) + (xn, A
∗y0) − (xn, A

∗y0)
= (xn, A

∗(yn − y0)) + (xn − x0, A
∗y0);

but (xn − x0, A
∗y0) → 0 because xn ⇀ x0 in H, and

|(xn, A
∗(yn − y0))| ≤ ‖xn‖ ‖A∗‖ ‖yn − y0‖ → 0

since {xn} is bounded as a weakly convergent sequence.

Finally, we propose a simple but important
Problem 2.5.1. Let an operator K be defined by the Riesz representation
theorem from the equality

(Ku,ϕ)E =
∫

Ω
ρ(x)u(x)ϕ(x) dΩ

in an energy space E when ρ(x) is a bounded piecewise continuous function
(density) on a compact set Ω. Show thatK is a self-adjoint continuous linear
operator in all of the energy spaces EM , EP , and EE introduced earlier.
(For the body with free boundary, only the spaces of balanced functions
should be considered!)

For a self-adjoint operator, the norm can be defined in another way.

Theorem 2.5.1. If A is a self-adjoint continuous linear operator given on
a Hilbert space H, then

‖A‖ = sup
‖x‖≤1

|(Ax, x)|. (2.5.3)
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Proof. We denote sup‖x‖≤1 |(Ax, x)| = γ. Using the Schwarz inequality, we
get

γ ≤ sup
‖x‖≤1

{‖Ax‖ ‖x‖} ≤ sup
‖x‖≤1

{‖A‖ ‖x‖2} = ‖A‖.

We now show the reverse inequality. By definition of γ we have

|(Ax, x)| ≤ γ‖x‖2. (2.5.4)

Setting x1 = y + λz and x2 = y − λz, λ being a real number and y, z ∈ H,
we have

C ≡ |(Ax1, x1) − (Ax2, x2)|
= |2λ| |(Ay, z) + (Az, y)|
= |2λ| |(Ay, z) + (z,Ay)|.

On the other hand

C ≤ |(Ax1, x1)| + |(Ax2, x2)|
≤ γ(‖x1‖2 + ‖x2‖2)

= 2γ(‖y‖2 + λ2‖z‖2)

so
|2λ| |(Ay, z) + (z,Ay)| ≤ 2γ(‖y‖2 + λ2‖z‖2) for all y, z ∈ H.

Putting z = Ay, we obtain

|4λ| ‖Ay‖2 ≤ 2γ(‖y‖2 + λ2‖Ay‖2).

Take λ = ‖y‖/‖Ay‖; then

4‖y‖ ‖Ay‖ ≤ 2γ(‖y‖2 + ‖y‖2)

or
‖Ay‖ ≤ γ‖y‖ for all y ∈ H.

So ‖A‖ ≤ γ, and this completes the proof.

2.6 Compact Operators

The study of linear operators in infinite dimensional spaces is complicated
in comparison with the theory in finite dimensional spaces. However, some
classes of these operators can be fully described; the first to note this was
D. Hilbert. Among these, the class of compact operators is one of the
most important: on the one hand, compact operators are close to finite
dimensional operators in terms of properties and, on the other hand, they
play important roles in applications.

In this section we are dealing with a linear operator A acting from a
normed space X to a Banach space Y .
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Definition 2.6.1. A linear operator A is compact if it takes bounded sets
of X into precompact subsets of Y .

Alternatively, compact linear operators are sometimes called completely
continuous operators.

Theorem 2.6.1. A compact linear operator A is bounded.

Proof. Suppose to the contrary that it is not bounded. This means there
is a bounded sequence {xn} ⊂ X such that ‖Axn‖ → ∞ as n → ∞. But
the sequence {Axn} does not contain a convergent subsequence, and this
contradicts the definition of a compact operator.

So a compact operator is continuous. The converse is, in general, false.
For example, the identity operator Ix = x is continuous but not compact if
X is not a finite dimensional space, since a ball is compact only in a finite
dimensional space.

We consider an example of a compact operator. We show that the oper-
ator

(Bf)(t) =
∫ 1

0
K(t, s)f(s) ds

acting in C(0, 1) is compact when K(t, s) ∈ C([0, 1] × [0, 1]). It suffices
to show that B takes the unit ball of C(0, 1) into a precompact subset
S of C(0, 1). By boundedness of B, the set S is uniformly bounded. By
Arzelà’s theorem on compactness in C(0, 1), it remains to establish that S
is equicontinuous; this follows from the inequality chain

|(Bf)(t+ δ) − (Bf)(t)| =
∣∣∣∣∫ 1

0
K(t+ δ, s)f(s) ds−

∫ 1

0
K(t, s)f(s) ds

∣∣∣∣
≤ max

s∈[0,1]
|K(t+ δ, s) −K(t, s)| ≤ ε

since K(t, s) is uniformly continuous on [0, 1 + δ0] × [0, 1], δ0 > 0. (It is
assumed that K(t, s) is extended by continuity outside of [0, 1] × [0, 1].)
Problem 2.6.1. Show that if K(t, s) ∈ C([0, 1] × [0, 1]), then the integral
operator B is also a compact operator in L2(0, 1).

We shall see below that this restriction on K(t, s) can be weakened.
The set of all compact linear operators is closed in L(X,Y ); this follows

from

Theorem 2.6.2. If a sequence {An} ⊂ L(X,Y ) of compact linear opera-
tors converges uniformly to A (in the norm of L(X,Y )), then A is compact.

Proof. Let ‖An −A‖ → 0 as n → ∞. Take a bounded sequence {xn} ⊂ X.
We need only show that there is a subsequence {xnk

} such that {Axnk
} is

a Cauchy sequence in Y . For this, from {xn}, thanks to the compactness
of Ak, we first select a subsequence {xn1} such that {A1xn1} is a Cauchy
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sequence in Y . From {xn1} we select similarly a subsequence {xn2} such
that the sequence {A2xn2} is also a Cauchy sequence. This can be repeated
with {xn2}, {xn3}, and so on, producing a Cauchy sequence {Akxnk

} each
time. The subsequence {xnn

} is needed; indeed re-denoting xnn
by zn, we

find that the {Akzn} are Cauchy sequences for every fixed k = 1, 2, 3, . . .
and

‖Azn+m −Azn‖ = ‖(Azn+m −Akzn+m) + (Akzn+m −Akzn) +
+ (Akzn −Azn)‖

≤ ‖A−Ak‖ ‖zn+m‖ + ‖Ak(zn+m − zn)‖ +
+ ‖Ak −A‖ ‖zn‖

→ 0 as k, n → ∞.

This completes the proof.

Now we can establish the promised result for an integral operator. We
assume that K(t, s) ∈ L2([0, 1] × [0, 1]) and show that the operator is a
compact operator in C(0, 1) and in L2(0, 1). We begin with a note that
there is a sequence of functions {Kn(t, s)} ⊂ C([0, 1] × [0, 1]) such that∫ 1

0

∫ 1

0
|K(t, s) −Kn(t, s)|2 ds dt → 0 as n → ∞

(this is by definition of L2(Ω)). Each of these kernels defines an operator
An,

Anf(t) =
∫ 1

0
Kn(t, s)f(s) ds,

which is a compact operator in L2(0, 1). From the inequality

‖Af‖L2(0,1) =

(∫ 1

0

∣∣∣∣∫ 1

0
K(t, s)f(s) ds

∣∣∣∣2 dt
)1/2

≤
(∫ 1

0

∫ 1

0
|K(t, s)|2 ds dt

)1/2(∫ 1

0
|f(s)|2 ds

)1/2

it follows that

‖A‖ ≤
(∫ 1

0

∫ 1

0
|K(t, s)|2 ds dt

)1/2

in L2(0, 1)

and so ‖A − An‖ → 0 as n → ∞. By Theorem 2.6.2 this means that A is
a compact linear operator in L2(0, 1).

Theorem 2.6.3. A compact operator A ∈ L(X,Y ) takes a weakly Cauchy
sequence {xn} ⊂ X into a strongly Cauchy sequence {Axn} ⊂ Y .
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Proof. A weakly Cauchy sequence {xn} is bounded in X so, by definition
of complete continuity of A, we can take a strongly Cauchy subsequence
{Axn1} which converges to an element y of Y . By Lemma 2.5.6, {Axn} is
a weak Cauchy sequence in Y ; because its subsequence converges strongly
to y, the whole sequence {Axn} converges weakly to y ∈ Y .

We now show that the whole sequence {Axn} converges strongly to y.
Suppose to the contrary that there is a subsequence {Axn2} which does
not converge to y, i.e., there exists ε > 0 such that

‖Axn2 − y‖ > ε. (2.6.1)

But from the sequence {Axn2} we can select a subsequence {Axn3} which
is strongly Cauchy in Y and thus has a limit point y1 ∈ Y . This subse-
quence converges weakly to the same element y1. By the above, it converges
weakly to y, too. By uniqueness of the weak limit, we get y1 = y and this
contradicts (2.6.1).

In Section 1.11 we formulated the imbedding theorems in Sobolev spaces
(Theorems 1.11.1–4). Now we can give a clear meaning to the term “com-
pact operator”: such an operator takes every sequence which is weakly
convergent in W k,p(Ω) into a sequence which is strongly convergent in a
corresponding space shown by the condition of a theorem. In particular, in
any W k,2(Ω), k ≥ 1, the imbedding operator into L2(Ω) is compact. Since
all energy spaces introduced earlier can be considered as closed subspaces
of W k,2(Ω), k = 1 or 2, we can say more about the operator K defined
according to the Riesz representation theorem by the equality

(Ku,ϕ)E =
∫

Ω
ρ(x)u(x)ϕ(x) dΩ

in Section 2.5. We combine its properties into Lemma 2.6.1 below.
Remark 2.6.1. In the case of a free boundary of a body, we should con-
sider only the variants of energy spaces where the elements are “balanced”
functions to avoid “rigid” motions.

Lemma 2.6.1. If Ω is a closed and bounded domain (in R2 or R3) and
ρ(x) is a bounded piecewise continuous function, then K is a compact
self-adjoint operator in any of the spaces EM , EP , or EE .

Proof. We begin with the inequalities

|(Ku,ϕ)E | =
∣∣∣∣∫

Ω
ρ(x)u(x)ϕ(x) dΩ

∣∣∣∣
≤ sup

x∈Ω
|ρ(x)| ‖u‖L2(Ω)‖ϕ‖L2(Ω)

≤ m‖u‖L2(Ω)‖ϕ‖E (2.6.2)
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which follow from the Schwarz inequality and the imbedding theorems in
an energy space.

Let {un} be a bounded sequence in an energy space so that it contains
a weakly convergent subsequence which we denote by {un} again. As was
said above, the latter is a Cauchy sequence in L2(Ω). Setting u = un+m−un

and ϕ = K(un+m − un) in (2.6.2) we get

(K(un+m −un),K(un+m −un))E ≤ m‖un+m −un‖L2(Ω)‖K(un+m −un)‖E

or
‖Kun+m −Kun‖E ≤ m‖un+m − un‖L2(Ω) → 0 as n → ∞,

which means that K is compact. Its self-adjointness was shown earlier.

Definition 2.6.2. An operator An acting from X to Y is called finite
dimensional if it takes the form

Anx =
n∑

k=1

Φk(x)yk

where the Φk(x) are functionals on X and yk ∈ Y .

If the Φk are continuous linear functionals, then An is a continuous linear
operator. Moreover,

Theorem 2.6.4. A continuous finite dimensional linear operator An is
compact.

Proof. Let S be a bounded set in X. By boundedness of the functionals Φk,
the numerical set {Φk(x) | x ∈ S} is also bounded. Take a sequence {xm} ⊂
S. By boundedness of the numerical sequence {Φ1(xm)}, we can select a
convergent numerical subsequence {Φ1(xm1)}. Considering the numerical
sequence {Φ2(xm1)}, we can choose a convergent subsequence {Φ2(xm2)}.
Continuing this process, we get a subsequence {xmm

} for which each of the
sequences {Φk(xmm

)}, k = 1, . . . , n, are convergent and thus {Anxmm
} is

a Cauchy sequence in Y .

We apply this theorem to a matrix operator

y = Ax, y = (y1, y2, . . .), yk =
∞∑

l=1

aklxl, k = 1, 2, 3, . . . ,

in 	2. We have shown that

‖A‖ ≤
( ∞∑

k=1

∞∑
l=1

|akl|2
)1/2

.
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Consider an operator An defined as follows:

y = Anx, yk =

{∑∞
l=1 aklxl, k ≤ n,

0, k > n.

An is a finite-dimensional operator and so is compact. Since

‖A−An‖ ≤
( ∞∑

k=n+1

∞∑
l=1

|akl|2
)1/2

→ 0 as n → ∞

then, thanks to Theorem 2.6.2, A is compact if

∞∑
k=1

∞∑
l=1

|akl|2 < ∞.

Problem 2.6.2. Assume K(x,y) ∈ L2(Ω × Ω) where Ω is a closed bounded
domain in Rn. Show that an integral operator

(Af)(x) =
∫

Ω
K(x,y)f(y)dΩy

is a compact operator in L2(Ω).
Problem 2.6.3. Using the Riesz representation theorem, introduce a non-
linear operator K1 in EMC from the equality

(K1(u), ϕ)EM
=
∫

Ω
ρ(x)un(x)ϕ(x) dΩ

where ρ(x) is a given bounded piecewise continuous function on a compact
set Ω and n is a positive integer. Show that K1 takes every weakly Cauchy
sequence {um(x)} into the strongly Cauchy sequence {K1um} in EMC .

2.7 Compact Operators in Hilbert Space

In a Hilbert space, the statements of Theorems 2.6.3 and 2.6.4 can be
sharpened.

Theorem 2.7.1. An operator A acting in a Hilbert space is compact if
and only if it takes every weakly Cauchy sequence {xn} into the strong
Cauchy sequence {Axn} in H.

Proof. Necessity was proved in Theorem 2.6.3. Let us prove sufficiency.
Let M be a bounded set in H and AM its image under A. We need to
demonstrate that AM is precompact. Take a sequence {yn} belonging to
AM and consider the sequence {xn} lying in M such that Axn = yn. Since
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M is bounded, {xn} is bounded. Thus {xn} contains a subsequence {xnk
}

that is a weak Cauchy sequence in H. By the condition of the theorem, its
image, the sequence {Axnk

}, is a (strong) Cauchy sequence in H so AM
is precompact.

Theorem 2.7.2. Assume that A is a compact operator acting in a sep-
arable Hilbert space H. Then there is a sequence of finite dimensional
continuous linear operators {An} such that

‖A−An‖ → 0 as n → ∞.

Proof. Let {gn} be an orthonormal basis of H (which exists since H is
separable!). Any element f of H can be represented in the form

f =
∞∑

k=1

(f, gk)gk.

Then

Af =
∞∑

k=1

(f, gk)Agk.

We denote by An a finite dimensional linear operator

Anf =
n∑

k=1

(f, gk)Agk

and by Rn the operator A−An, and show that αn = ‖Rn‖ → 0 as n → ∞.
By definition αn = sup‖f‖≤1 ‖Rnf‖. First we show that there is an el-

ement f∗
n such that ‖f∗

n‖ ≤ 1 and αn = ‖Rnf
∗
n‖. Indeed, let {fk} be a

maximizing sequence such that ‖fk‖ ≤ 1 and ‖Rnfk‖ → αn as k → ∞.
Choosing a weakly convergent subsequence {fk1} whose weak limit is f∗

n,
thanks to Lemma 1.23.2, we get ‖f∗

n‖ ≤ 1. As Rn is a compact operator, the
sequence {Rnfk1} converges strongly to Rnf

∗
n. So αn = ‖Rnf

∗
n‖. (Question

for the reader: What is the value of ‖f∗
n‖?)

But

Rnf
∗
n = A

( ∞∑
k=n+1

(f∗
n, gk)gk

)
so

αn = ‖Aϕn‖, ϕn =
∞∑

k=n+1

(f∗
n, gk)gk.

We show that the sequence {ϕk} ⊂ H converges weakly to zero. Indeed,
for an arbitrary continuous linear functional defined by an element f , we
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get

|(ϕn, f)| =

∣∣∣∣∣
( ∞∑

k=n+1

(f∗
n, gk)gk,

∞∑
m=1

(f, gm)gm

)∣∣∣∣∣
=

∣∣∣∣∣
( ∞∑

k=n+1

(f∗
n, gk)gk,

∞∑
m=n+1

(f, gm)gm

)∣∣∣∣∣
≤
( ∞∑

m=n+1

|(f, gm)|2
)1/2

‖f∗
n‖ → 0 as n → ∞

since ‖f∗
n‖ ≤ 1 and

∑∞
m=1 |(f, gm)|2 = ‖f‖2 < ∞. Since ϕn is weakly

convergent to zero and A is compact we have ‖Aϕn‖ = αn → 0 as n → ∞.
This completes the proof.

Theorems 2.7.1 and 2.7.2 state, in particular, that in energy spaces
(which are separable Hilbert spaces) we can use other equivalent definitions
of a compact linear operator: such an operator (1) takes every weak Cauchy
sequence into a strong Cauchy sequence, or (2) can be approximated with
any prescribed accuracy in the operator norm by a finite-dimensional con-
tinuous linear operator.

Theorem 2.7.3. If A is a compact linear operator acting in a Hilbert
space, then A∗ is compact.

Proof. Take a sequence {fn} converging weakly to f0. It suffices to show
that {A∗fn} converges strongly to A∗f0. Indeed,

‖A∗fn −A∗f0‖2 = (A∗fn −A∗f0, A∗fn −A∗f0)
= (fn − f0, AA

∗(fn − f0))
≤ ‖fn − f0‖ ‖AA∗(fn − f0)‖ → 0 as n → ∞

(here we used the fact that a product AB is compact if the operator B is
continuous, and also ‖fn‖ < M = const).

2.8 Functions Taking Values in a Banach Space

We reserve the name “function” for a single-valued correspondence from
a subset of Rn to a Banach space Y . This is a useful convention in many
problems of mechanics.

We begin with definitions. A rule that assigns to each point of a domain
of Rn a unique element of a Banach space Y , written y = f(x), y ∈ Y ,
is called a function with values in Y . All notions relative to the functions
of classical calculus which are based only on the properties of the metric



2.8 Functions Taking Values in a Banach Space 147

are easily transferred to the present setting. For example, y = f(x) is
continuous at x0 if for every positive ε there exists δ > 0 dependent on ε
such that ‖f(x) − f(x0)‖ < ε whenever |x − x0| < δ. If f(x) is continuous
at every point of an open domain Ω in Rn then it is said to be continuous
in Ω. Continuity on a closed domain is introduced in a manner similar to
the parallel notion in calculus.

The set of all continuous functions given on a closed and bounded domain
Ω whose values lie in a Banach space Y is also a Banach space. We denote
this space C(Ω;Y ); the norm on C(Ω;Y ) is defined by

‖f(x)‖C(Ω;Y ) = max
x∈Ω

‖f(x)‖Y .

For a function y = f(t), y ∈ Y , t ∈ (a, b), the derivative df/dt at t = t0
is defined by

df(t0)
dt

= lim
t→t0

f(t) − f(t0)
t− t0

.

Higher order derivatives are introduced similarly. We may also introduce
spaces C(k)(a, b;Y ) analogous to the corresponding spaces of calculus.

Finally, we can construct the Riemann integral∫ b

a

f(t) dt

for a function with values in a Banach space; the method parallels that of
ordinary calculus. There is nothing analogous to the mean value theorem,
but we do have, for example,∥∥∥∥∥

∫ b

a

f(t) dt

∥∥∥∥∥ ≤
∫ b

a

‖f(t)‖ dt ≤ max
t∈[a,b]

‖f(t)‖(b− a), a < b.

These are consequences of passages to the limit in corresponding inequali-
ties for Riemann sums.

The construction of the Lebesgue integral for functions whose values lie
in a Banach space is introduced using the completion theorem in a manner
similar to that used for scalar-valued functions in Section 1.8.

If functions y = f(x) take their values in a Hilbert space H, we can
introduce a Hilbert space L2(a, b;H) with inner product

(f(t), g(t))L2(a,b;H) =
∫ b

a

(f(t), g(t))H dt,

as the completion of C(a, b;H) in the corresponding norm

‖f(t)‖L2(a,b;H) =

(∫ b

a

‖f(t)‖2
H dt

)1/2

.
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The particular case L2(a, b;L2(Ω)) coincides with the space L2([a, b] × Ω).
In some problems we meet a situation where, in addition to the main

energy inner product there is another inner product not depending on time,
the product in L2(Ω) for example; we denote such an additional inner
product by 〈·, ·〉. Assume, as above, that

〈f, f〉 ≤ m(f, f)H ≡ m(f, f) (2.8.1)

where the constant m does not depend on f ∈ H.
Analogous to the Sobolev space W 1,2(a, b) is a Hilbert space W 1(a, b) in

which the inner product is

(f(t), g(t))W 1(a,b) =
∫ b

a

[〈
df

dt
,
dg

dt

〉
+ (f, g)

]
dt. (2.8.2)

The space W 1(a, b) is the completion of C(1)(a, b;H) in the norm corre-
sponding to (2.8.2).

Thanks to (2.8.1), we get∫ b

a

〈f(t), f(t)〉 dt ≤ m

∫ b

a

(f(t), f(t)) dt ≤ m‖f‖2
W 1(a,b).

We can obtain some properties of the elements of W 1(0, T ) if we take into
account the identity

f(s+ ∆) − f(s) =
∫ s+∆

s

df(t)
dt

dt

which holds for f continuously differentiable. We have∫ s+∆

s

〈
df(t)
dt

, f(t)
〉
dt =

1
2

∫ s+∆

s

d

dt
〈f, f〉 dt

=
1
2
〈f(s+ ∆), f(s+ ∆)〉 − 1

2
〈f(s), f(s)〉 (2.8.3)

and

‖f(s+ ∆) − f(s)‖2
0 =

∥∥∥∥∥
∫ s+∆

s

df

dt
dt

∥∥∥∥∥
2

0

≤
(∫ s+∆

s

1 ·
∥∥∥∥dfdt

∥∥∥∥
0
dt

)2

≤
∫ s+∆

s

12 dt

∫ s+∆

s

∥∥∥∥dfdt
∥∥∥∥2

0
dt = ∆

∫ T

0

∥∥∥∥dfdt
∥∥∥∥2

0
dt

(2.8.4)

where ‖f‖2
0 = 〈f, f〉. Passage to the limit shows that they remain valid

for elements of W 1(0, T ). This means that the elements of W 1(0, T ) are
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continuous in t with respect to the norm ‖·‖0. This is an imbedding theorem
for W 1(0, T ).

We now turn to the problem of holomorphic functions.
A function f(λ) given on an open domain G of the complex plane C to a

Banach space X is called holomorphic in G if for each point λ0 ∈ G there
is a neighborhood D(λ0) of λ0 in which there is a power series expansion

f(λ) = f(λ0) +
∞∑

k=1

ck(λ− λ0)k, λ ∈ D(λ0)

converging uniformly by the norm of X in D(λ0).
A holomorphic vector valued function has properties similar to those of a

scalar valued function. For example, if f(λ) is holomorphic in |λ−λ0| < R
and ‖f(λ)‖ ≤ M , then it is infinitely differentiable in this disk, the Taylor
expansion

f(λ) =
∞∑

n=0

f (n)(λ0)
n!

(λ− λ0)n, |λ− λ0| < R,

exists, and
‖f (n)(λ0)‖ ≤ MR−nn!.

Then if f(λ) is a holomorphic function, f(λ) ∈ X, on the domain G,
then ∮

C

f(λ) dλ = 0

for every simple closed rectifiable contour C in G such that the interior of
C belongs to G. The Cauchy representation

f(λ) =
1

2πi

∮
C

f(z)
z − λ

dz

is also valid for λ lying in the interior of C.
These and similar results can be found in Yosida [29].

2.9 Spectrum of Linear Operators

In problems of mechanics of continuous media there arises an operator
equation

x−A(µ)x = f (2.9.1)

in a Banach space X, where A(µ) is a linear operator depending on a real
or complex parameter. A typical example is an equation describing steady
vibrations of elastic bodies, which has the form

x− µAx = f.



150 2. Elements of the Theory of Operators

In particular, eigen-oscillations of a string with fixed ends are governed by
the boundary value problem

λx+ x′′ = 0, x(0) = x(1) = 0,

µ = 1/λ. Another instance of equation (2.9.1) is the equation(
I +

n∑
k=1

µkAk

)
x = f

which appears, for example, in the theory of an elastic band.
Let us introduce some notation. A value µ0 is called a regular point of

the operator A(µ) if there is a bounded inverse (I−A(µ))−1 whose domain
is dense in X; otherwise, µ0 belongs to the spectrum of A(µ).

The same terms will be used for an operator A: λ is a regular point of A
if there is a bounded inverse R(λ,A) = (λI − A)−1 with domain dense in
X; otherwise, λ is a point of the spectrum of A.

The set of all regular points of A is called the resolvent set of A. It is
denoted by ρ(A).

A point λ may fail to be a regular point of A for several reasons, and the
set of spectrum points of A can be thereby classified into three types:

1. Point spectrum. This is the set of all complex λ such that (λI − A)
does not have an inverse. The equation (λI − A)x = 0 then has a
nontrivial solution called an eigensolution, and λ is an eigenvalue of
A.

2. Continuous spectrum. The set of all λ ∈ C such that there exists
(λI − A)−1 whose domain D(R(λ,A)) is dense in X, but such that
the operator (λI −A)−1 is not bounded.

3. Residual spectrum. The set of λ ∈ C such that R(λ,A) = (λI −A)−1

exists but with domain not dense in X.

We consider some examples.
1. A matrix operator acting in the n-dimensional Euclidean space has only
a point spectrum consisting of no more than n points called the eigenvalues
of the matrix. Other points of the complex plane are regular.
2. Any point of the complex plane belongs to the point spectrum of the
differentiation operator d/dt acting in C(a, b), since for every λ the equation

df

dt
− λf = 0

has a solution f(t) = ceλt where c is a constant. So the operator d/dt in
C(a, b) has no regular points. (Question for the reader: What happens to
the spectrum if the domain of d/dt is the subspace of C(a, b) consisting of
functions f(x) that satisfy f(a) = 0?)
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3. On the square [0, π] × [0, π] we consider the boundary value problem

∂2u

∂x2 + λ
∂2u

∂y2 = f(x, y), u
∣∣
∂Ω = 0. (2.9.2)

The operator B(λ) on the left-hand side of this equation is considered
in L2(Ω), Ω = [0, π] × [0, π]. Note that we keep the terminology for the
spectrum although this operator does not have the form (2.9.1).

The Fourier expansion of f(x, y) is

f(x, y) =
∞∑

m,n=1

fmn sinmx sinny,
∞∑

m,n=1

|fmn|2 < ∞.

Let λ be a point of C — not on the negative real axis, but otherwise
arbitrary. Then the solution of (2.9.2) is

u(x, y) =
∞∑

m,n=1

− fmn

m2 + λn2 sinmx sinny.

If λ = λ1 + iλ2 is such that λ2 �= 0, or if λ2 = 0 but λ1 ≥ 0, then
|m2 + λn2| > δ > 0 for all integers m,n ≥ 1. Therefore

‖u(x, y)‖2
L2(Ω) =

π2

4

∞∑
m,n=1

|fmn|2 1
|m2 + λn2|2 ≤ π2

4δ2

∞∑
m,n=1

|fmn|2

and it follows that
‖u‖L2(Ω) ≤ 1

δ
‖f‖L2(Ω). (2.9.3)

There are no other solutions to (2.9.2) so the inequality (2.9.3) means that
the inverse is bounded and thus these λ belong to the resolvent set of the
operator B(λ) acting in L2(Ω). What can we say about λ ∈ C such that
λ = Reλ < 0?

First we consider λ of the form λ = −p2/q2 where p and q are integers.
For these λ the corresponding boundary value problem is not solvable for
some f(x, y). To show this, take f(x, y) = sin px sin qy. As is easily seen, if
there is a solution to (2.9.2) then it has the form u(x, y) = c sin px sin qy
and for λ0 = −p2/q2 must satisfy the equation c(p2 + λ0q

2) = −1, which
is impossible. Moreover, u = sin px sin qy is a solution to the homogeneous
equation (2.9.2) at λ = λ0. So all λ = −p2/q2, where p, q are integers,
belong to the point spectrum of B(λ).

We consider the remaining part M of the negative real axis, i.e., the set
of λ such that λ = Reλ < 0 and λ cannot be represented in the form
−p2/q2 for some integers p, q. For λ ∈ M we can seek a solution in the
form of a Fourier series

u(x, y) =
∞∑

m,n=1

fmn

m2 + λn2 sinmx sinny.
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The set S of functions f(x, y) of the form
∑N1

m=1
∑N2

n=1 fmn sinmx sinny
is dense in L2(Ω); since solutions corresponding to these f(x, y) ∈ S are
also in L2(Ω) and defined uniquely, the inverse of B(λ) is determined on a
dense subset of L2(Ω). We show that it is unbounded for λ ∈ M . Indeed,
the set of all points of the form λpq = −p2/q2 is dense in M . Take λ ∈ M ;
there is a sequence λn = −p2

n/q
2
n → λ as n → ∞. Take the function

fn(x, y) = sin pnx sin qny, which is the right-hand side of (2.9.2). To this,
there corresponds the solution

un(x, y) = − 1
p2

n + λq2n
sin pnx sin qny.

Their norms are related by

‖un‖L2(Ω) =
1

|p2
n + λq2n| ‖fn‖L2(Ω)

where |p2
n + λq2n| → 0 as n → ∞. So the inverse to the operator B(λ)

is unbounded when λ ∈ M , and thus M is a subset of the continuous
spectrum.
4. Now we consider the so-called coordinate operator in C(a, b), defined as

(Qu)(t) = tu(t).

This operator has no eigenvalues. If λ /∈ [a, b], then it belongs to the resol-
vent set of Q since the equation

λu(t) − tu(t) = f(t)

has the unique solution

u(t) =
f(t)
λ− t

in C(a, b).
But if λ ∈ [a, b], then there exists the inverse defined by u(t) = f(t)/(λ−

t) whose domain consists of functions which can be represented in the form
f(t) = (λ− t)z(t) with z(t) ∈ C(a, b). This domain is not dense in C(a, b),
hence the points of [a, b] belong to the residual spectrum.
Problem 2.9.1. Show that for the coordinate operator acting in L2(a, b),
the points of [a, b] belong to the continuous spectrum.

2.10 Resolvent Set of a Closed Linear Operator

Theorem 2.10.1. Assume that A is a closed linear operator acting in
a complex Banach space X. For any λ0 belonging to the resolvent set of
A, the resolvent R(λ0, A) = (λ0I − A)−1 is a continuous linear operator
defined on the whole of X.
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Proof. By definition of resolvent set, the domain of R(λ0, A) is dense in X
and there is a constant m > 0 such that

‖(λ0I −A)x‖ ≥ m‖x‖. (2.10.1)

Take y ∈ X; by definition, there is a sequence {xn} such that limn→∞(λ0I−
A)xn = y (strong limit). By (2.10.1), we have limn→∞ xn = x and (λ0I −
A)x = y since A is closed. So the range of (λ0I −A)−1 is X.

Theorem 2.10.2. Assume that A is a closed linear operator acting in a
complex Banach space X. Then the resolvent set ρ(A) is an open domain
of C and R(λ,A) is holomorphic with respect to λ in ρ(A).

Proof. For any λ ∈ ρ(A), as was shown above, R(λ,A) is a continuous
linear operator on X. So the series

R(λ0, A)

{
I +

∞∑
n=1

(λ0 − λ)nRn(λ0, A)

}

is convergent in the disk |λ − λ0| < 1/‖R(λ0, A)‖ of C and thus is a
holomorphic function in this disk. Multiplying this series by (λI − A) =
(λ− λ0)I + (λ0I −A), we get I, i.e., it is an inverse to λI −A.

Theorem 2.10.3. Under the condition of Theorem 2.10.2, the Hilbert
identity

R(λ,A) −R(µ,A) = (µ− λ)R(λ,A)R(µ,A)

holds for any λ, µ ∈ ρ(A).

Proof. The identity follows from

R(λ,A) = R(λA)(µI −A)R(µ,A)
= R(λ,A){(µ− λ)I + (λI −A)}R(µ,A)
= (µ− λ)R(λ,A)R(µ,A) +R(µ,A)

since R(λ,A)(λI −A) = I.

Let B be a bounded linear operator in X. Then the series

1
λ

(
I +

∞∑
n=1

λ−nBn

)

is convergent if |λ| > ‖B‖. Multiplying it by λI −B we get I, i.e.,

R(λ,B) =
1
λ

(
I +

∞∑
n=1

λ−nBn

)

for |λ| ≥ ‖B‖.
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Lemma 2.10.1. The expansion

R(λ,B) =
1
λ

(
I +

∞∑
n=1

λ−nBn

)

is valid in the domain |λ| > rσ(B), where rσ(B) is the spectral radius of B
defined by

rσ(B) = lim
n→∞ ‖Bn‖1/n.

Proof. We show that rσ(B) exists. Denote r0 = infn ‖Bn‖1/n. We establish
that rσ(B) = r0. By definition of infimum, for any positive ε we can find
an integer N such that

‖BN‖1/N ≤ r0 + ε.

For large n represented as n = kN + l, 0 ≤ l < N , we get

‖Bn‖1/n ≤ ‖BkN‖1/n‖Bl‖1/n

≤ ‖BN‖k/n‖Bl‖1/n

≤ (r0 + ε)kN/n‖Bl‖1/n

≤ r0 + ε+ ε1(n)

where ε1(n) → 0 as n → ∞. Together with the inequality ‖Bn‖1/n ≥ r0,
this proves that rσ(B) exists and is equal to r0. The rest of the proof is
trivial.

Problem 2.10.1. Let A(µ) be a continuous operator-function in X which is
holomorphic with respect to µ in C. Show that the resolvent set ρ(A(µ))
of A(µ) is open and (I − A(µ))−1 is a holomorphic operator-function in
ρ(A(µ)).

2.11 Spectrum of Compact Operators in Hilbert
Space

An important class of operators for which there is a full description of
the spectrum is the class of compact linear operators. The first results
in this direction were due to I. Fredholm; studying the integral operator,
he established properties of its spectrum similar to those of the matrix
operator. The theory was then extended to the class of compact operators
(F. Riesz, J. Schauder) which we now consider in a Hilbert space. The
theory is of great interest as it describes eigen-oscillations of bounded elastic
bodies.
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So let A be a compact linear operator acting in a Hilbert space H. We
are seeking eigenvectors and eigenvalues of A, i.e., nontrivial solutions to
the equation

(I − µA)x = 0. (2.11.1)

In the previous section we used traditional spectrum terminology from
functional analysis. From now on we use the term “eigenvalue” for µ from
(2.11.1) but not for λ from the equation (λI −A)x = 0. The reason is that
in later applications of the theory we consider a non-traditional introduc-
tion of the operator equations for oscillations that are composed in energy
spaces; in this way, the term “eigenvalue” of problems of mechanics refers
to µ.

The Fredholm–Riesz–Schauder theory will be presented as a number of
lemmas and theorems. We want to underline that the results on the prop-
erties of eigenvectors corresponding to a fixed eigenvalue are the same for
compact linear operators A(µ) with general dependence on µ.

Let µ0 be an eigenvalue of A. By continuity and linearity of A, the set
of all eigenvectors corresponding to µ0, when adjoined to the zero vector
0, is a closed subspace of H denoted by H(µ0).

Lemma 2.11.1. H(µ0) is finite dimensional.

Proof. By definition of compact operator and the equality x = µ0Ax, x ∈
H(µ0), from any bounded sequence {xk} ⊂ H(µ0) we can choose a Cauchy
subsequence. This means that every bounded subset ofH(µ0) is precompact
and, by Theorem 1.16.3, H(µ0) is finite dimensional.

Lemma 2.11.2. Assume {x(i)
1 , x

(i)
2 , . . . , x

(i)
ni } is a linearly independent sys-

tem of elements in H(µi). Then the union

{x(1)
1 , x

(1)
2 , . . . , x(1)

n1
}, . . . , {x(k)

1 , x
(k)
2 , . . . , x(k)

nk
}

is a linearly independent system in the spaceH(µ1)+̇ · · · +̇H(µk) whose ele-
ments are linear combinations of elements of the spaces H(µi), i = 1, . . . , k.
If each {x(i)

1 , x
(i)
2 , . . . , x

(i)
ni } is a basis of H(µi), i = 1, . . . , k, then their union

is a basis in H(µ1)+̇ · · · +̇H(µk).

Proof. It suffices to show that the union of the x(j)
ni is a linearly independent

system. Let us renumber successively the eigenvectors x(j)
ni and eigenvalues

µi in such a way that µk corresponds to xk. The proof of independence is
carried out by induction. Assume a system x1, . . . , xn is linearly indepen-
dent. Let us add the next eigenvector xn+1 and consider the equation

n+1∑
k=1

ckxk = 0
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with respect to the coefficients ck. Applying A to both sides we get

n+1∑
k=1

ckAxk = 0

or, since xk is an eigenvector of A, we have

µn+1

n+1∑
k=1

ck
µk
xk = 0.

Subtracting this from
∑n+1

k=1 ckxk = 0, we have
n∑

k=1

ck

(
1 − µn+1

µk

)
xk = 0.

By assumption, ck = 0 for those k = 1, . . . , n− s for which µk �= µn+1. For
the rest of the eigenvectors, that is for xn−s+1, . . . , xn+1, we have

n+1∑
k=n−s+1

ckxk = 0.

In this all xk correspond to µn+1 and so are linearly independent. Thus
ck = 0 for k = 1, . . . , n+ 1.

Lemma 2.11.3. The set of eigenvalues of a compact linear operator A has
no finite limit points in C.

Proof. Suppose there is a sequence of distinct eigenvalues µn → µ0, |µ0| <
∞. For each µn take an eigenvector xn. Denote byHn the subspace spanned
by x1, x2, . . . , xn. By Lemma 2.11.2, Hn ⊂ Hn+1 and Hn �= Hn+1 so there
is an element yn+1 ∈ Hn+1 such that ‖yn+1‖ = 1 and yn+1 is orthogonal
to Hn.

The sequence {µnyn} is bounded in H so the sequence {A(µnyn)} must
contain a Cauchy subsequence. But this is impossible as is shown below.
Indeed

A(µn+myn+m) −A(µnyn) = yn+m − (yn+m − µn+mAyn+m + µnAyn).
(2.11.2)

Now yn+m ∈ Hn+m. We show that the term in parentheses on the right-
hand side belongs to Hn+m−1 (m ≥ 1); indeed yn+m =

∑n+m
k=1 ckxk and

so

yn+m − µn+mAyn+m =
n+m∑
k=1

ckxk − µn+mA

(
n+m∑
k=1

ckxk

)

=
n+m−1∑

k=1

ck

(
1 − µn+m

µk

)
xk ∈ Hn+m−1
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since µnAyn ∈ Hn ⊂ Hn+m−1 and thus we proved the needed property for
the term in parentheses.

Thus yn+m and (yn+m−µn+mAyn+m+µnAyn) are mutually orthogonal.
From (2.11.2) it follows that

‖A(µn+myn+m) −A(µnyn)‖2 = ‖yn+m‖2+

+ ‖yn+m − µn+mAyn+m + µnAyn‖2

≥ 1,

which contradicts the fact that {A(µnyn)} contains a Cauchy sequence.

Combining these three lemmas, we formulate

Theorem 2.11.1. There are no more than a countable number of eigenval-
ues of a compact linear operator acting in a Hilbert space; the set of eigen-
values has no finite limit point in C. A subspace H(µk) of all eigenvectors
of A corresponding to a µk is finite dimensional and H(µk) ∩H(µn) = 0 if
µk �= µn.

It is time to formulate

Theorem 2.11.2. A compact linear operator A in a Hilbert space has a
point spectrum only.

The proof follows immediately from Theorem 2.11.3 and Lemma 2.11.4.
Let us denote by M(µ0) the orthogonal complement to H(µ0) in H

(which is possible by the theorem on the orthogonal decomposition of a
Hilbert space).

Lemma 2.11.4. There are constants m1 > 0 and m2 > 0 such that

m1‖x‖ ≤ ‖x− µ0Ax‖ ≤ m2‖x‖ (2.11.3)

for all x ∈ M(µ0).

Proof. The right-most inequality is evident; let us prove the left-most in-
equality. Suppose there is no m1 > 0 such that the inequality holds for
all x ∈ M(µ0). This means there is a sequence {xn} ⊂ M(µ0) such that
‖xn‖ = 1 and ‖xn − µ0Axn‖ → 0 as n → ∞. Because A is compact, the
sequence {Axn} contains a Cauchy subsequence. By the identity

xn = µ0Axn + (xn − µ0Axn)

the sequence {xn} also contains a Cauchy subsequence. Let us denote this
Cauchy subsequence by {xn} again and let it converge to an element x0 ∈
M(µ0). Since Axn → Ax0 as n → ∞, we have x0 = µ0Ax0 and so x0 ∈
H(µ0). However, this contradicts the fact that x0 ∈ M(µ0).
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The inequalities (2.11.3) state that on M(µ0) we can introduce the norm
‖x‖1 = ‖x − µ0Ax‖ (and the scalar product) which is equivalent to the
norm of H.

Now we begin to treat the problem of solvability of the equation

x− µAx = f

in detail. So as not to complicate the presentation and to include into
consideration the case of general dependence on µ of A(µ) at once, we
denote µA = B (or A(µ) = B) and study the equation

x−Bx = f (2.11.4)

with a compact linear operator B acting in a Hilbert space.
We denote by N a subspace of eigenvectors of B corresponding to µ = 1,

i.e., all solutions to
x = Bx,

and by M the orthogonal complement to N in H. For B∗, the adjoint of
B, which is also a compact operator, we denote by N∗ the space of all
eigenvectors x = B∗x and by M∗ the orthogonal complement to N∗ in H.

Lemma 2.11.5. The equation

x−B∗x = f (2.11.5)

has a solution if and only if f ∈ M .

Proof. Necessity. Let (2.11.5) have a solution x0. Then for an arbitrary
element y of N we get

(f, y) = (x0 −B∗x0, y) = (x0, y −By) = (x0, 0) = 0,

i.e., f does belong to M .
Sufficiency. Let f ∈ M . We mentioned that ‖x‖1 = ‖x−Bx‖ is a norm

in M which is equivalent to the norm of H in M ; we can say the same
about the inner product (x, y)1 = (x−Bx, y −By) in M .

The functional (x, f) is linear and continuous on H (and so on M) and,
by the Riesz representation theorem, it can be represented on M using
(·, ·)1 as

(x, f) = (x, f∗)1 = (x−Bx, f∗ −Bf∗).

This equality, being valid for x ∈ M , holds for all x ∈ H too; indeed bearing
x = x1 + x2, x1 ∈ N , x2 ∈ M , we have

x−Bx = x1 −Bx1 + x2 −Bx2 = x2 −Bx2

and so, for all x ∈ H,

(x−Bx, f∗ −Bf∗) = (x2 −Bx2, f
∗ −Bf∗) = (x2, f

∗)1 = (x2, f) = (x, f)
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since (x1, f) = 0. We denote f∗ −Bf∗ by g; then

(x−Bx, g) = (x, f) for all x ∈ H.

It follows that
(x, g −B∗g) = (x, f) for all x ∈ H.

Therefore g is a solution to (2.11.5).

Since B and B∗ are mutually adjoint, we get

Corollary 2.11.1. The equation

x−Bx = f (2.11.6)

has a solution if and only if f ∈ M∗.

From the inequality (2.11.3) there follows

Corollary 2.11.2. For all f ∈ M∗ there is a positive constant m not
depending on f such that

‖x‖ ≤ m‖f‖
where x is a solution to (2.11.6).

Lemma 2.11.5 and Corollary 2.11.1 can be reformulated in other terms
as

R(I −B) = M∗, R(I −B∗) = M,

where R(S) is the range of operator S.

Lemma 2.11.6. Let Nn be the space of all solutions of the equation

(I −B)nx = 0

(which is also called the kernel of (I −B)n). Then

(i) Nn is a finite dimensional subspace of H;

(ii) for all n = 1, 2, . . ., Nn ⊆ Nn+1;

(iii) there is an integer k such that Nn = Nk if n > k.

Proof. Since (I−B)n = I−nB+ · · · , then (I−B)n has a structure I−B1
where B1 is a compact linear operator. Hence (i) is fulfilled. Property (ii)
is evident.

To check (iii) we first mention that if for some k we have Nk+1 = Nk

then Nk+m = Nk for all m = 1, 2, 3, . . .; indeed, in this case take x0 ∈ Nk+2
so that

0 = (I −B)k+2x0 = (I −B)k+1((I −B)x0),
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i.e., (I−B)x0 ∈ Nk+1. But this means (I−B)x0 ∈ Nk or (I−B)k+1x0 = 0,
and so x0 ∈ Nk+1 = Nk. Thus Nk+2 = Nk. This can be repeated for any
m > 2: Nk+m = Nk.

Now suppose to the contrary that there is no k such that Nk = Nk+1.
Then there is a sequence of elements {xn} such that xn ∈ Nn, ‖xn‖ = 1,
and xn is orthogonal to Nn−1. Let us consider the sequence {Bxn}. By
compactness of B it must contain a Cauchy subsequence but this leads to
a contradiction. Indeed, we have

Bxn+m −Bxn = xn+m − (xn+m −Bxn+m +Bxn),

where xn+m ∈ Nn+m and (xn+m −Bxn+m +Bxn) ∈ Nn+m−1 since Bxn ∈
Nn:

(I −B)nBxn = B(I −B)nxn = 0

and
(I −B)n+m−1(xn+m −Bxn+m) = (I −B)n+mxn+m = 0.

Therefore xn+m is orthogonal to (xn+m −Bxn+m +Bxn) and so

‖Bxn+m −Bxn‖2 = ‖xn+m‖2 + ‖xn+m −Bxn+m +Bxn‖2 ≥ 1.

This means that {Bxn} does not contain a Cauchy subsequence.

Theorem 2.11.3. R(I −B) = H if and only if N = 0.

Proof. Necessity. Let R(I−B) = H and suppose that N �= 0. Take x0 ∈ N ,
x0 �= 0. Since R(I−B) = H we can solve successively the following infinite
system of equations:

(I −B)x1 = x0; (I −B)x2 = x1; · · · (I −B)xn+1 = xn; · · ·
The sequence of solutions has the following property:

(I −B)nxn = x0 �= 0 but (I −B)n+1xn = (I −B)x0 = 0,

i.e., there is no finite k such that Nk+1 = Nk. This contradicts statement
(iii) of Lemma 2.11.6.

Sufficiency. This proof is a chain of direct implications of the type that
lends itself to proof by a computer. Let N = 0. Then M = H and so,
by Lemma 2.11.5, R(I − B∗) = M = H. By the necessity part of the
proof given above, N∗ = 0 and thus M∗ = H. By Corollary 2.11.1, we get
R(I −B) = M∗ = H.

Corollary 2.11.3. If R(I −B) = H, then the inverse (I −B)−1 is contin-
uous.

This follows from (2.11.3) written in terms of B.

Theorem 2.11.4. The spaces N and N∗ have the same dimension.
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Proof. Let the dimensions of N and N∗ be n and m, respectively, and
suppose that m > n. Choose orthonormal bases x1, . . . , xn and y1, . . . , ym

of N and N∗, respectively. Let us introduce an auxiliary operator Q by

Qx = (I −B)x+
n∑

k=1

(x, xk)yk ≡ (I − C)x,

where C is a compact linear operator as the sum of the compact operator
−B and a finite dimensional operator.

First we show that the kernel of Q does not contain nonzero elements.
Indeed if Qx0 = 0 then

(I −B)x0 +
n∑

k=1

(x0, xk)yk = 0.

Since R(I − B) = M∗ ⊥ N∗, all terms of the sum on the left-hand side of
the equality are mutually orthogonal and so each of them equals zero:

(I −B)x0 = 0, (x0, xk)yk = 0, k = 1, . . . , n.

From (I − B)x0 = 0 it follows that x0 ∈ N , the remainder means x0 is
orthogonal to all basis elements of N , thus x0 = 0.

By Theorem 2.11.3, the range of Q isH and thus the equationQx = yn+1
has a solution x0. But we get

1 = (yn+1, yn+1)
= (yn+1, Qx0)

= (yn+1, (I −B)x0) +

(
yn+1,

n∑
k=1

(x0, xk)yk

)
= ((I −B∗)yn+1, x0)
= 0.

This contradiction shows that m ≤ n. On the other hand, B is adjoint to
B∗ and, by the above, n ≤ m. Thus n = m.

Remark 2.11.1. In the last proof we used the operator Q, which was con-
tinuously invertible on H. The same property holds for an operator Qε

defined by

Qε = (I −B)x+ ε

n∑
k=1

(x, xk)yk

with any small ε �= 0. This operator has a continuous inverse and

‖I −B −Qε‖ = O(ε).

So Qε close to I − B allows us to solve the equation Qεx = f for any
f ∈ H, whereas the original equation Bx = f has no solution for some f .
Such operators are called regularizers and are widely used in applications.
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Remark 2.11.2. Collectively, the results of this section are known as the
Fredholm alternative.

2.12 Analytic Nature of the Resolvent of a
Compact Linear Operator

We know that the resolvent (I−µA)−1 is a holomorphic operator-function
in µ in non-spectral points. But what is its behavior near the spectrum?
We can answer this question for a compact operator.

We begin the study with the case of a continuous finite-dimensional op-
erator acting in a Hilbert space. The general form of such an operator is

Anx =
n∑

k=1

(x, ak)xk

where the system x1, . . . , xn is assumed to be linearly independent.
We consider the equation

x− µ
n∑

k=1

(x, ak)xk = f. (2.12.1)

Its solution has the form

x = f +
n∑

k=1

ckxk.

Placing this into (2.12.1), we get

f +
n∑

k=1

ckxk − µ

n∑
k=1

f +
n∑

j=1

cjxj , ak

xk = f

or
n∑

k=1

xk

ck − µ

n∑
j=1

cj(xj , ak)

 = µ

n∑
k=1

(f, ak)xk.

Since x1, . . . , xn is a linearly independent system we get an algebraic system

ck − µ

n∑
j=1

(xj , ak)cj = µ(f, ak), k = 1, . . . , n, (2.12.2)

which can be solved using Cramer’s rule:

ck =
Dk(µ, f)
D(µ)

, k = 1, . . . , n.
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Thus a solution to (2.12.1) is

x =
D(µ)f +

∑n
k=1Dk(µ, f)xk

D(µ)
.

In this case the solution to (2.12.1) is a ratio of two polynomials in µ of
degree no more than n. All µ which are not eigenvalues of An are points
where the resolvent is holomorphic, hence they cannot be zeros of D(µ).
But if µ0 is an eigenvalue of An thenD(µ0) = 0. If it is not true then for any
f ∈ H there is a solution to (2.12.1) and this means µ0 is not an eigenvalue.
So the set of all zeros of D(µ) coincides with the set of all eigenvalues of An,
and so each eigenvalue of An is a pole of finite multiplicity of the resolvent
(I − µAn)−1.

Now we consider a general case:

Theorem 2.12.1. Every eigenvalue of a compact linear operator A acting
in a Hilbert space is a pole of finite multiplicity of the resolvent (I−µA)−1.

Proof. It was shown (Theorem 2.7.2) that for any small ε > 0, the operator
A can be represented as

A = An +Aε, ‖Aε‖ ≤ ε,

where An is a finite dimensional operator. Fix ε > 0. The equation under
consideration takes the form

x− µ(An +Aε)x = f. (2.12.3)

Consider the operator (I − µAε)−1. In the disk |µ| < 1/ε it can be repre-
sented in the form

(I − µAε)−1 = I +
∞∑

k=1

µkAk
ε .

(The series is majorized by the series 1 +
∑∞

k=1 |µk|‖Aε‖k. The fact that
it is inverse to (I − µAε) is checked directly.) So in the disk |µ| < 1/ε the
operator (I − µAε)−1 is a holomorphic operator-function in µ.

We apply this operator to equation (2.12.3):

x− µ(I − µAε)−1Anx = (I − µAε)−1f

wherein, as above,

Anx =
n∑

k=1

(x, ak)xk.

Let us denote

f∗ = (I − µAε)−1f, x∗
k = (I − µAε)−1xk;
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then the equation takes the form

x− µ

n∑
k=1

(x, ak)x∗
k = f∗

which looks like (2.12.1) — the difference is that f∗ and x∗
k are holomorphic

functions in µ in the disk |µ| < 1/ε. When |µ| < 1/ε, the system x∗
1, . . . , x

∗
n

is linearly independent since x1, . . . , xn is linearly independent and (I −
µAε) is continuously invertible. So, by analogy with (2.12.1), we can point
out that for |µ| < 1/ε the solution to (2.12.3) is

x =
D(µ)f∗ +

∑n
k=1Dk(µ, f∗)x∗

k

D(µ)
(2.12.4)

wherein all zeros of D(µ) have multiplicity no more than n.
If µ0 is not an eigenvalue of A then the solution (2.12.4) is holomorphic

in µ in a neighborhood of µ0 and so D(µ0) �= 0. But if µ0 is an eigenvalue
then D(µ0) = 0 since otherwise the equation would be solvable for all f∗,
which is impossible.

So the set of eigenvalues of A belonging to the disk |µ| < 1/ε coincides
with the set of zeros of D(µ) lying in this disk.

2.13 Spectrum of Holomorphic Compact Operator
Function

Let A(µ) be an operator-function whose value, for any µ ∈ G, an open
domain in C, is a compact linear operator in a Hilbert space and A(µ) be
holomorphic in G. We know that the spectrum of such operator-functions is
a point spectrum. Following I.Ts. Gokhberg and M.G. Krein [11] we study
the distribution of eigenvalues.

Lemma 2.13.1. For µ0 ∈ G there is a positive ε such that for all µ in a
domain 0 < |µ− µ0| < ε the equation

(I −A(µ))x = 0 (2.13.1)

has the same number of linearly independent solutions.

Proof. Let x1, . . . , xn be an orthonormal basis of the space of solutions of
(2.13.1) when µ = µ0. By Theorem 2.11.4 there is an orthonormal basis
y1, . . . , yn of the space of solutions of the equation (I −A∗(µ0))x = 0 and,
by the proof of Theorem 2.11.4, the operator

Q(µ0)x = (I −A(µ0))x+
n∑

k=1

(x, xk)yk
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has a continuous inverse. As A(µ) depends on µ continuously, there is some
neighborhood |µ− µ0| < ρ of µ0 in which Q(µ) has a continuous inverse.

Equation (2.13.1) is equivalent to

Q(µ)x =
n∑

k=1

(x, xk)yk

and, in the above-mentioned neighborhood, to a system

x =
n∑

k=1

ξkQ
−1(µ)yk, |µ− µ0| < ρ,

ξk = (x, xk), k = 1, . . . , n,

which, in turn, can be reduced to an equivalent system of algebraic equa-
tions (substituting x from the first equation into the others)

ξk −
n∑

j=1

(Q−1(µ)yj , xk)ξj = 0, k = 1, . . . , n (2.13.2)

whose number of linearly independent solutions coincides with the number
for (2.13.1) when |µ − µ0| < ρ. In this domain, all terms in (2.13.2) are
holomorphic as are all elements of its determinant.

If all elements of the main determinant of the system (2.13.2) equal zero
identically, then the system (2.13.2) has n linearly independent solutions
in the disk |µ− µ0| < ρ, and the lemma is proven.

Otherwise, let ∆p(µ) be a minor of highest order p which is nonzero at
some point of the disk |µ− µ0| < ρ. Being holomorphic, ∆p(µ) is nonzero
in this disk except, perhaps, at a finite number of points. This means that
in this disk, except at those points, the number of linearly independent
solutions of (2.13.2) is n− p. Therefore, we can exhibit a disk |µ− µ0| < ε
such that for all its points µ, except perhaps µ = µ0, the system (2.13.2) and
thus (2.13.1) has the same number n− p of linearly independent solutions.

Theorem 2.13.1. Assume A(µ) is an operator-function, being holomor-
phic on a connected open domain G ⊂ C, whose values are compact linear
operators in a Hilbert space. Then α(µ), the number of linearly indepen-
dent solutions of (2.13.1), is the same, α(µ) = n, for all points of G, except
some isolated points of G at which α(µ) > n. In particular, if there exists
µ0 ∈ G such that α(µ0) = 0, then the spectrum of A(µ) consists of isolated
points of G. (This happens if, for example, there exists µ0 ∈ G such that
A(µ0) = 0.)

Proof. Consider α(µ). Assume its minimal value is n and that it is taken
at µ = µ0. Let µ1 be a point at which α(µ1) > n. We shall show that
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this point is isolated and, moreover, that there is an ε > 0 such that for
all µ �= µ1, |µ − µ1| < ε, the number α(µ) = n. Draw a curve lying in
G from µ0 to µ1. By Lemma 2.13.1, for any µ∗ ∈ G there is a positive
number ε(µ∗) such that for any µ ∈ G, 0 < |µ − µ∗| < ε(µ∗), the number
of linearly independent solutions of (2.13.1) is constant. These disks make
up a covering of G from which we can choose a finite covering of G. As
neighboring disks of the covering are mutually intersecting, then for all
points of the disks of the finite covering, except perhaps for their centers,
the number of linearly independent solutions of (2.13.1) is constant and
equals n.

2.14 Spectrum of Self-Adjoint Compact Linear
Operator in Hilbert Space

We did not touch on the problem of existence of the spectrum. The example
of the zero operator shows that there are compact operators having no finite
spectral points. But there is a class of operators having eigenvalues; it is
the class shown in the title of this section.

Lemma 2.14.1. All eigenvalues of a self-adjoint continuous linear operator
A acting in a Hilbert space are real, as are all values of the form (Ax, x).
Eigenvectors x1, x2 of A corresponding to µ1, µ2, respectively, µ1 �= µ2, are
mutually orthogonal; moreover, (Ax1, x2) = 0.

Proof. (Ax, x) is a real-valued functional since

(Ax, x) = (x,Ax) = (Ax, x).

So if x0 = µ0Ax0, then (x0, x0) = µ0(Ax0, x0) and µ0 is real too.
Let x1 = µ1Ax1 and x2 = µ2Ax2. Multiply the terms of the first equation

by x2 from the right, and the terms of the second by x1 from the left:

(x1, x2) = µ1(Ax1, x2), (x1, x2) = (x1, µ2Ax2) = µ2(Ax1, x2).

It follows that
(µ2 − µ1)(x1, x2) = 0

so x1 ⊥ x2 if µ1 �= µ2. Returning to (x1, x2) = µ1(Ax1, x2), we get
(Ax1, x2) = 0. Note that in the theory of elasticity the last equality is
called the relation of generalized orthogonality of eigenvectors.

Definition 2.14.1. A functional F (x) given on a Hilbert space is called
weakly continuous if for every weakly convergent sequence {xn}, xn ⇀ x0,
we have F (xn) → F (x0).

Note that a continuous linear functional is weakly continuous by the
definition of weak convergence of a sequence of elements.
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Lemma 2.14.2. A real-valued weakly continuous functional F (x) given
on a Hilbert space takes its maximal and minimal values on a ball ‖x‖ ≤ a.

Proof. Let sup‖x‖≤a F (x) = M . Then there is a sequence {xn}, ‖xn‖ ≤ a,
such that F (xn) → M as n → ∞. From {xn} we can choose a subsequence
{xnk

} which is a weak Cauchy sequence and its weak limit x0 satisfies
‖x0‖ ≤ a. By Definition 2.14.1, limnk→∞ F (xnk

) = F (x0) = M . The proof
for the minimal point is similar.

Lemma 2.14.3. Assume A is a self-adjoint compact linear operator in a
Hilbert space. Then (Ax, x) is a real-valued weakly continuous functional
on this space.

Proof. By Lemma 2.14.1, (Ax, x) is real-valued. Let {xk} be weakly con-
vergent to x0. Then

(Axk, xk) − (Ax0, x0) = (Axk, xk) − (Ax0, xk) + (Ax0, xk) − (Ax0, x0)
= (Axk −Ax0, xk) + (Ax0, xk − x0)
→ 0 as k → ∞

since ‖Axk − Ax0‖ → 0 by compactness of A and (Ax0, xk − x0) → 0 as
(x,Ax0) is a continuous linear functional in H.

Denote

λ+ = sup
‖x‖≤1

(Ax, x), λ− = inf
‖x‖≤1

(Ax, x).

Theorem 2.14.1. Assume A �= 0 is a self-adjoint compact linear operator
acting in a Hilbert space. Then there is at least one eigenvalue µ of A. If
both of λ+ and λ− are not zero, then there are at least two eigenvalues of
A which are µ1 = 1/λ+ and µ2 = 1/λ−.

Proof. Since ‖A‖ = sup‖x‖≤1 |(Ax, x)|, at least one of λ+, λ− is nonzero.
Without loss of generality, assume that λ+ �= 0. By Lemmas 2.14.2 and
2.14.3, (Ax, x) takes this maximal value in the unit ball at an element x0:
(Ax0, x0) = λ+. By homogeneity of (Ax, x) in x, it is evident that ‖x0‖ = 1.

Now consider a functional

Φ(x) =
(Ax, x)
‖x‖2 = (Aξ, ξ), ξ =

x

‖x‖ ,

whose range of values coincides with the set of values of (Ax, x) when x
runs over the sphere ‖x‖ = 1. Thus

sup Φ(x) = sup
‖x‖=1

(Ax, x) = (Ax0, x0) = Φ(x0).
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We shall show that x0 is an eigenvector of A. Consider Φ(x0 + αy), where
y is an arbitrary but fixed element of H, as a function of a real variable α;
it is differentiable in some neighborhood of α = 0 and takes its maximal
value at α = 0 so

dΦ(x0 + αy)
dα

∣∣∣
α=0

= 0.

This gives

Re(Ax0, y) − (Ax0, x0)
‖x0‖2 Re(x0, y) = 0

or
Re[(Ax0, y) − λ+(x0, y)] = 0.

Replacing y by iy, we get

Im[(Ax0, y) − λ+(x0, y)] = 0

so
(Ax0, y) − λ+(x0, y) = 0. (2.14.1)

Since y is an arbitrary element of H, we have

Ax0 − λ+x0 = 0 or x0 − 1
λ+

Ax0 = 0,

i.e., x0 is an eigenvector of A. If λ− �= 0, then we can show similarly that
µ = 1/λ− is also an eigenvalue of A.

Definition 2.14.2. A self-adjoint continuous linear operator A is called
strictly positive if (1) (Ax, x) ≥ 0 for all x ∈ H, and (2) (Ax, x) = 0 implies
x = 0.

By Lemma 2.14.1, any two eigenvectors corresponding to different eigen-
values of a self-adjoint operator are mutually orthogonal. But we can or-
thonormalize a linearly independent system of eigenvectors corresponding
to the same eigenvalue and so we can consider a basis of the set of all eigen-
vectors of a self-adjoint operator to be orthonormal. This and the method
used in the proof of Theorem 2.14.1 allow us to prove

Theorem 2.14.2. Assume A is a strictly positive self-adjoint compact
linear operator acting in a separable Hilbert space. Then

(i) A possesses infinitely many eigenvalues µ1, µ2, µ3, . . .; the sequence of
eigenvalues does not contain subsequences having finite limit points;

(ii) there is a system of eigenvectors x1, x2, x3, . . . of A which is an or-
thonormal basis of H;

(iii) A has a representation

Ax =
∞∑

k=1

(x, xk)
µk

xk, xk − µkAxk = 0.
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Proof. (i) Assume x1, x2, . . . , xn is an orthonormal system of eigenvectors of
A corresponding to eigenvalues µ1, µ2, . . . , µn respectively. Some of µi and
µj can coincide. We show how to construct the next eigen-pair (xn+1, µn+1).
Denote by Hn the orthogonal complement in H to a subspace spanned by
x1, x2, . . . , xn. Considering A on Hn, we can repeat the proof of Theorem
2.14.1 and, denoting µn+1 = 1/λn+1, λn+1 = sup‖x‖≤1

x∈Hn

(Ax, x), get a vector

xn+1 such that xn+1 ∈ Hn, ‖xn+1‖ = 1, λn+1 = (Axn+1, xn+1); this vector
xn+1 satisfies the equation (an analogy to (2.14.1))

(Axn+1, y) − λn+1(xn+1, y) = 0 for all y ∈ Hn.

In fact, this equality holds for all y ∈ H; if y = xk, k = 1, . . . , n, then

(Axn+1 − λn+1xn+1, xk) = (xn+1, Axk) − λn+1(xn+1, xk)
= (xn+1, λkxk) − λn+1(xn+1, xk)
= 0

because (xn+1, xk) = 0, so

Axn+1 − λn+1xn+1 = 0.

Thus xn+1 is an eigenvector and µn+1 = 1/λn+1 an eigenvalue of A.
Now we can realize the process of successive construction of eigenvalues

and eigenvectors of A, which could be disrupted only if sup‖x‖≤1
x∈Hn

(Ax, x) = 0

for some n. But this is possible only if H is a finite dimensional space. The
remainder of statement (i) is evident.

(ii) Let y be an arbitrary element of H. Consider

yn = y −
n∑

k=1

(y, xk)xk

where {xk} is a sequence of eigenvectors defined in (i) above. We recall that
yn is the nth Fourier remainder of y. It is clear that yn ∈ Hn. In the theory
of Fourier expansions (Section 1.22) it was shown that {yn} is a Cauchy
sequence. Assume its strong limit is y0 �= 0. For yn, thanks to yn ∈ Hn, we
get

(Ayn, yn)
‖yn‖2 ≤ λn+1.

But λn → 0 as n → ∞ since the set {µn} has no finite limit points. Passage
to the limit gives

(Ay0, y0)
‖y0‖2 = 0

so y0 = 0. This completes the proof of (ii).
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(iii) In the proof of Theorem 2.7.2, we showed that the operator A is a
uniform limit of a sequence of finite-dimensional operators An,

Anx =
n∑

k=1

(x, gk)Agk,

where g1, g2, . . . , gn, . . . is an orthonormal basis of H. We take as a basis
the set x1, x2, . . . constructed in part (i). Then

Anx =
n∑

k=1

(x, xk)Axk =
n∑

k=1

(x, xk)
µk

xk

and so

Ax =
∞∑

k=1

(x, xk)
µk

xk.

The proof is thereby completed.

Let us note that under the conditions of Theorem 2.14.2, thanks to the
Parseval equality, we get

‖x‖2 =
∞∑

k=1

|(x, xk)|2 =
∞∑

k=1

|(x, µkAxk)|2 =
∞∑

k=1

µ2
k|(x,Axk)|2

for any x ∈ H.
Since A is strictly positive, we can introduce a new norm

‖x‖A = (Ax, x)1/2

and the corresponding scalar product (x, y)A = (Ax, y). When H with this
norm is incomplete, we introduce its completion HA with respect to this
norm.

Let yk =
√
µkxk, xk being an eigenvector of part (i).

Lemma 2.14.4. Under the conditions of Theorem 2.14.2, the set

√
µ1x1,

√
µ2x2,

√
µ3x3, . . .

is an orthonormal basis of HA.

Proof. The system y1, y2, y3, . . . is orthonormal in HA; indeed

(yk, yn)A = (Ayk, yn) =
√
µk

√
µn(Axk, xn) =

√
µkµn

µk
(xk, xn)

= δkn =

{
1, k = n,

0, k �= n.
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For any x ∈ H there holds the Parseval equality in HA:

(x, x)A = (Ax, x) =

(
A

∞∑
k=1

(x, xk)xk, x

)
=

∞∑
k=1

(x, xk)(Axk, x)

=
∞∑

k=1

(x, µkAxk)(Axk, x) =
∞∑

k=1

(x,Ayk)(Ayk, x)

=
∞∑

k=1

|(Ax, yk)|2 =
∞∑

k=1

|(x, yk)A|2.

This means that the system y1, y2, y3, . . . is an orthonormal basis of the set
of elements x ∈ H in HA. But this set is dense in HA, and that completes
the proof.

As an example, consider the eigenvalue problem

y′′ + µ2y = 0, y(0) = y(π) = 0,

with the well-known set of eigenfunctions
{√

2
π sin kx

}
, k = 1, 2, . . .. We

are interested in its properties. If E is a Hilbert space of functions y ∈
Ẇ 1,2(0, π) with scalar product

(y, z)E =
∫ π

0
y′(x)z′(x) dx

then the problem can be posed as the problem of finding nontrivial y sat-
isfying the equation

(y, z)E − µ2(Ay, z)E = 0

for any z ∈ E, where

(Ay, z)E =
∫ π

0
y(x)z(x) dx.

It was shown that A satisfies all conditions of Theorem 2.14.2, so the system{√
2

π sin kx
}

is an orthonormal basis in L2(0, π), which is the spaceHA from
Lemma 2.14.4. Simultaneously, the same system is an orthogonal basis in
Ẇ 1,2(0, π).

2.15 Some Applications of Spectral Theory

First we recall the spectrum for the different elastic bodies we considered.
These are the problems of membranes, plates, and bodies in the framework
of two- and three-dimensional linear elasticity. In generalized form, we have

(u, v)E = µ

∫
Ω
ρ(x)u(x)v(x) dΩ. (2.15.1)



172 2. Elements of the Theory of Operators

Here E is an energy space for the corresponding elastic object occupying
a bounded domain Ω, and u(x) is a function for a membrane or a plate
and a vector-function of displacements for an elastic body. The spaces E
were introduced as real spaces — here we use their complex versions (i.e.,
the complex conjugate is applied to v in the integrand of (u, v)E). Now we
introduce an operator K using the Riesz representation theorem (Sections
1.20 and 2.6)

(Ku, v)E =
∫

Ω
ρ(x)u(x)v(x) dΩ.

For free-boundary problems E consists of “balanced” elements; for a
membrane, say, they satisfy

∫
Ω u(x,y) dΩ = 0. It was shown (Lemma 2.6.1)

that K is a self-adjoint compact linear operator in an energy space. More-
over, if ρ0 ≤ ρ(x) ≤ ρ1, with ρ0, ρ1 positive constants, then K is a strictly
positive operator; indeed,

(Ku, u)E =
∫

Ω
ρ(x)|u(x)|2 dΩ ≥ ρ0

∫
Ω

|u(x)|2 dΩ

and if (Ku, u)E = 0 then u = 0 in the sense of L2(Ω) (almost everywhere).
So for any of the models of bounded elastic bodies that we considered,

we get

Theorem 2.15.1. In the framework of all main (Dirichlet, Neumann, and
mixed) spectral boundary value problems in the generalized statement for
bounded membranes, plates, or linear elastic bodies, the spectrum of each
problem contains only eigenvalue points µk, and:

(i) All µk are positive, µk ≥ µ0 > 0.

(ii) The set {µk} is infinite and does not contain a finite limit point.

(iii) To each µk there corresponds no more than a finite number of linearly
independent eigenvectors which are assumed to be orthonormalized;
the set of all these eigenvectors {uk(x)} is an orthonormal basis in the
corresponding energy space and the set {√

µkuk(x)} is an orthonor-
mal basis in L2(Ω) with scalar product

(u, v)L2(Ω) =
∫

Ω
ρ(x)u(x)v(x) dΩ.

In Section 2.5 we considered a stability problem for a thin plate. In
generalized terms this problem can be stated as

(w,ϕ)EP
= µ(Cw,ϕ)EP

(2.15.2)

where

(Cw,ϕ)EP
=
∫

Ω

[
Tx
∂w

∂x

∂ϕ

∂x
+ Txy

(
∂w

∂y

∂ϕ

∂x
+
∂w

∂x

∂ϕ

∂y

)
+ Ty

∂w

∂y

∂ϕ

∂y

]
dΩ
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with given functions Tx, Txy, Ty ∈ L2(Ω). Then we get a spectral problem

w = µCw.

For a clamped plate, it was shown that C is a self-adjoint continuous oper-
ator. Since the imbedding operator from Ẇ 2,2(Ω) to W 1,4(Ω) is compact,
the inequality

|(Cw,ϕ)EP
| ≤ m

[∫
Ω
(T 2

x + T 2
xy + T 2

y ) dΩ
]1/2

·

·
[∫

Ω

(∣∣∣∣∂w∂x
∣∣∣∣4 +

∣∣∣∣∂w∂y
∣∣∣∣4
)
dΩ

]1/4

·

·
[∫

Ω

(∣∣∣∣∂ϕ∂x
∣∣∣∣4 +

∣∣∣∣∂ϕ∂y
∣∣∣∣4
)
dΩ

]1/4

shows that C is also compact.
Finally we assume the external tangential load to be compressible in

total, which is expressed by the inequality

Txw
2
1 + 2Txyw1w2 + Tyw

2
2 ≥ c0(w2

1 + w2
2) (2.15.3)

which is valid with a positive constant c0 for all real w1, w2 and x ∈ Ω.
Under the condition (2.15.3), C is a strictly positive operator on EPC , and
so we can say that this spectral problem is similar to one considered in
Theorem 2.15.1. Thus its spectrum has properties as stated in Theorem
2.15.1.

We mentioned that the spectral theory of compact operators began with
the study of integral equations originated by I. Fredholm. We found an
integral operator to be compact in L2(Ω) if its kernel belongs to L2(Ω×Ω)
and so we can reformulate all general results for these equations (try to do
this yourself). Now we wish to consider another important class of integral
operators, the so-called operators with kernels having weak singularities.
These are kernels of the form

K(x,y) =
R(x,y)
rα

, r = |x − y|, x,y ∈ Ω ⊂ Rn

where α < n and R(x,y) ∈ C(Ω × Ω).

Lemma 2.15.1. A linear integral operator whose kernel has a weak sin-
gularity is compact in L2(Ω).

Proof. First we show that this operator is bounded in L2(Ω):

‖Au‖2
L2(Ω) =

∫
Ω

∣∣∣∣∫
Ω

R(x,y)
rα

u(y) dΩy

∣∣∣∣2 dΩx

≤ m

∫
Ω

(∫
Ω

1
rα
dΩy

∫
Ω

|u(y)|2
rα

dΩy

)
dΩx;
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since
∣∣∣∫Ω dΩy

rα

∣∣∣ ≤ M when x ∈ Ω, we further get

‖Au‖2
L2(Ω) ≤ mM

∫
Ω

∫
Ω

|u(y)|2
rα

dΩx dΩy ≤ mM2
∫

Ω
|u(y)|2 dΩy,

which demonstrates the continuity of A.
To show that A is compact, we introduce an auxiliary operator with

kernel

Kε(x,y) =
R(x,y)
rα
ε

, rε =

{
r, r = |x − y| ≥ ε,

ε, r = |x − y| < ε.

The corresponding integral operator Aε is compact because its kernel is
continuous on Ω×Ω. Now it suffices to prove that ‖A−Aε‖ → 0 as ε → 0.
Denote by B(x) a ball about x of radius ε > 0. We have

‖Au−Aεu‖2
L2(Ω) =

∫
Ω

∣∣∣∣∫
Ω
R(x,y)

(
1
rα

− 1
rα
ε

)
u(y) dΩy

∣∣∣∣2 dΩx

=
∫

Ω

∣∣∣∣∣
∫

Ω∩B(x)
R(x,y)

(
1
rα

− 1
rα
ε

)
u(y) dΩy

∣∣∣∣∣
2

dΩx

≤ 4
∫

Ω

(∫
Ω∩B(x)

|R(x,y)|
rα

|u(y)| dΩy

)2

dΩx

≤ 4m
∫

Ω

(∫
Ω∩B(x)

dΩy

rα

∫
Ω∩B(x)

|u(y)|2
rα

dΩy

)
dΩx.

Since ∫
Ω∩B(x)

dΩy

rα
≤ m1ε

n−α,

we have

‖Au−Aεu‖2
L2(Ω) ≤ m2ε

n−α‖u‖2
L2(Ω)

and thus ‖A−Aε‖ → 0 as ε → 0.

Note that integral operators with weakly singular kernels appear in the
theory of Sobolev spaces: they participate in the integral representation
of functions, and their properties led Sobolev to his famous imbedding
theorems.

We leave it to the reader to formulate properties of the spectrum of a
linear integral operator with kernel having weak singularity.



2.16 Courant’s Minimax Principle 175

2.16 Courant’s Minimax Principle

R. Courant proposed a way to determine the nth eigenvalue of a strictly
positive self-adjoint compact linear operator A, by which this eigenvalue
could be found independently of the other eigenvalues.

In Section 2.14 we have shown that µn given by

µn =
1
λn
, λn = sup

‖u‖≤1
u∈Hn

(Ax, x),

is the nth eigenvalue of A determined successively: 0 < µ1 ≤ µ2 ≤ µ3 ≤ · · · .
As the corresponding orthonormal system of eigenvectors x1, x2, x3, . . . is
a basis of H, an element x ∈ H can be represented as

x =
∞∑

k=1

ckxk, ‖x‖2 =
∞∑

k=1

|ck|2,

and thus

(Ax, x) =

(
A

∞∑
k=1

ckxk,

∞∑
k=1

ckxk

)
=

( ∞∑
k=1

ckλkxk,

∞∑
k=1

ckxk

)

=
∞∑

k=1

λk|ck|2.

Let us take any n elements y1, . . . , yn ofH and denote byQn the subspace
spanned by these elements and by Sn its orthogonal complement in H. Let
Qneig be the subspace of H spanned by the eigenvectors x1, x2, . . . , xn of A
that were determined in Section 2.14, andHn the orthogonal complement of
Qneig in H. We shall now prove the so-called minimax principle of Courant,
which is

Theorem 2.16.1. µn+1 of A is

µn+1 =
1

λn+1
, λn+1 = inf

Qn

sup
‖x‖≤1
x∈Sn

(Ax, x) (2.16.1)

and λn+1 = sup‖x‖≤1(Ax, x) when x ∈ Hn.

Proof. We first recall that we have shown (Section 2.14) that

µn+1 =
1

λn+1
, λn+1 = sup

‖x‖≤1
x∈Hn

(Ax, x)

is an eigenvalue of A. Then we recall that λn ≥ λn+1 for all n ≥ 1.
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Suppose Qn �= Qneig. Then there is x0 =
∑n

k=1 c
0
kxk ∈ Qneig such that

‖x0‖ = 1, x0 ∈ Sn, and

(Ax0, x0) =
n∑

k=1

λk|c0k|2 ≥ λn

n∑
k=1

|c0k|2 = λn ≥ λn+1

and so for any Sn

sup
‖x‖≤1
x∈Sn

(Ax, x) ≥ λn+1.

This completes the proof.

Some consequences of this principle are very important in mechanics.

Theorem 2.16.2. If an elastic body (a membrane, plate, or two- or three-
dimensional body) is subjected to some additional geometrical constraints
(fixed lines, surfaces, or their parts), then all corresponding eigenvalues µn

can only grow; if some geometrical constraints are broken, then all µn can
only be less than or equal to the original ones.

Proof. Additional constraints are assumed to be some linear restrictions of
the type, say,

u
∣∣
γ

= 0 or u
∣∣
Γ = 0

where γ,Γ are a line and a surface, respectively. The value (2.16.1) of the
supremum of (Ax, x) in the definition of λn becomes less or the same and
so this holds for their infimum, i.e., λn cannot be more than the old one,
and so µn cannot be less under new restrictions. The second part of the
statement of the theorem is now evident.

Remark 2.16.1. In the energy spaces EM and EE for membranes and elastic
bodies, a restriction

u
∣∣
P

= 0

where P is a point in Ω, in accordance with Sobolev’s imbedding theorems,
is neglected, and so the fixing of several points of a membrane or an elastic
body cannot increase the corresponding eigenfrequencies (this was shown
by Vitt and Shubin [24]); but for eigenfrequencies of a plate, fixing of finite
number of points of the plate increases eigenfrequencies.



3
Elements of Nonlinear
Functional Analysis

From the viewpoint of functional analysis, nonlinear problems of mechanics
are more complicated than linear problems; as in mechanics, they require
new techniques for their study. Many of them, such as nonlinear elasticity
in the general case, provide a wide field of investigation for mathemati-
cians (see Antman [2]); the problem of existence of solutions in nonlinear
elasticity in general is still open.

But some of the nonlinear problems of mechanics can be treated on a
known background; as in the linear case, we consider only some of the
known nonlinear results of functional analysis that are needed in what
follows.

3.1 Fréchet and Gâteaux Derivatives

We begin nonlinear analysis of operators with definitions of differentiation.
Let F (x) be a nonlinear operator acting from D(F ) ⊂ X to R(F ) ⊂ Y ,
where X and Y are real Banach spaces. Assume D(F ) is open.

Definition 3.1.1. F (x) is differentiable in the Fréchet sense at x0 ∈ D(F )
if there is a bounded linear operator, denoted by F ′(x0), such that

F (x0 + h) − F (x0) = F ′(x0)h+ ω(x0, h) for all ‖h‖ < ε

with some ε > 0, where ‖ω(x0, h)‖/‖h‖ → 0 as ‖h‖ → 0. Then F ′(x0) is
called the Fréchet derivative of F (x) at x0, and dF (x0, h) = F ′(x0)h is
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its Fréchet differential. F (x) is Fréchet differentiable in an open domain
S ⊂ D(F ) if it is Fréchet differentiable at every point of S.

It is clear that the Fréchet derivative of a continuous linear operator is
the same operator.

Problem 3.1.1. Assume y = f(x) is a vector function from Rm to Rn and
f(x) ∈ (C(1)(Ω))n. Show that its Fréchet derivative at x0 ∈ Ω is the Jacobi
matrix

(
∂fi(x0)

∂xj

)
i=1,...,n
j=1,...,m

.

In the construction of the Fréchet derivative, the reader can recognize a
method of the calculus of variations, used to obtain the Euler equations of
a functional. The following derivative by Gâteaux is yet closer to this.

Definition 3.1.2. Assume that for all h ∈ D(F ) we have

lim
t→0

F (x0 + th) − F (x0)
t

= DF (x0, h), x0 ∈ D(F ),

where DF (x0, h) is a linear operator with respect to h. Then DF (x0, h)
is called the Gâteaux differential of F (x) at x0, and the operator is called
Gâteaux differentiable. Denoting DF (x0, h) = F ′(x0)h, we get the Gâteaux
derivative F ′(x0). An operator is differentiable in the Gâteaux sense in an
open domain S ⊂ X if it has a Gâteaux derivative at every point of S.

The definitions of derivatives are clearly valid for functionals. Suppose
Φ(x) is a functional which is Gâteaux differentiable in a Hilbert space and
that DΦ(x, h) is bounded at x = x0 as a linear functional in h. Then, by
the Riesz representation theorem, it can be represented in the form of an
inner product; denoting the representing element by grad Φ(x0), we get

DΦ(x0, h) = (grad Φ(x0), h).

By this, we have an operator grad Φ(x0) called the gradient of Φ(x) at x0.

Theorem 3.1.1. If an operator F (x) from X to Y is Fréchet differentiable
at x0 ∈ D(F ), then F (x) is Gâteaux differentiable at x0 and the Gâteaux
derivative coincides with the Fréchet derivative.

Proof. Put th instead of h in Definition 3.1.1:

F (x0 + th) − F (x0) = F ′(x0)th+ ω(x0, th).

It follows that

lim
t→0

F (x0 + th) − F (x0)
t

= F ′(x0)h

since ‖ω(x0, th)‖/‖th‖ → 0 as t → 0. This means F ′(x0) is a Gâteaux
derivative of F (x) at x0.
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Gâteaux differentiability does not imply Fréchet differentiability. We for-
mulate a sufficient condition as

Problem 3.1.2. Assume that the Gâteaux derivative of F (x) exists in a
neighborhood of x0 and is continuous at x0 in the uniform norm of L(X,Y ).
Show that the Fréchet derivative exists and is equal to the Gâteaux deriva-
tive.

We consider an operator equation with a parameter µ being an element
of a real Banach space M :

F (x, µ) = 0

where D(F (x, µ)) ⊆ X, R(F (x, µ)) ⊆ Y .
In problems of mechanics, µ can represent loads or some parameters of

a body or a process (say, disturbances of the thickness of a plate or its
moduli).

There are different abstract analogs of the implicit function theorem; we
present two of them.

Denote by N(x0, r;µ0, ρ) the following neighborhood of a pair:

N(x0, r;µ0, ρ) = {x ∈ X,µ ∈ M | ‖x− x0‖ < r, ‖µ− µ0‖ < ρ}.

Theorem 3.1.2. Assume:

(i) F (x0, µ0) = 0;

(ii) F (x0, µ) is continuous with respect to µ in a ball ‖µ− µ0‖ < ρ1;

(iii) there exist r1 > 0 and ρ1 > 0 and a continuous linear operator
A from X to Y , being continuously invertible and such that in the
neighborhood N(x0, r1;µ0, ρ1)

‖F (x, µ) − F (y, µ) −A(x− y)‖ ≤ α(r1, ρ1)‖x− y‖

where lim supr,ρ→0 |α(r, ρ)| ‖A−1‖ = q < 1.

Then there exist r0 > 0 and ρ0 > 0 such that in N(x0, r0;µ0, ρ0) the
equation

F (x, µ) = 0 (3.1.1)

has the unique solution x = x(µ) which depends continuously on µ: x(µ) →
x(µ0) as µ → µ0.

Proof. We reduce the equation to a form needed to apply the contraction
mapping principle:

x = K(x, µ), K(x, µ) = x−A−1F (x, µ).
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This equation is equivalent to (3.1.1) because A−1 is continuously invert-
ible. K(x, µ) is a contraction operator with respect to x in some neighbor-
hood of (µ0, x0). Indeed

‖K(x, µ) −K(y, µ)‖ = ‖x− y −A−1(F (x, µ) − F (y, µ))‖
≤ ‖A−1‖ ‖A(x− y) − (F (x, µ) − F (y, µ))‖
≤ ‖A−1‖ |α(r, ρ)| ‖x− y‖
≤ (q + ε)‖x− y‖;

by (iii), q + ε < 1 if r and ρ are sufficiently small and r < r1, ρ < ρ1.
Then there are r0, ρ0, r0 ≤ r1, ρ0 ≤ ρ1, such that K(x, µ) takes a ball
‖x− x0‖ ≤ r0 into itself when ‖µ− µ0‖ ≤ ρ0, indeed

‖K(x, µ) − x0‖ ≤ ‖K(x, µ) −K(x0, µ)‖ + ‖K(x0, µ) − x0‖
≤ (q + ε)‖x− x0‖ + ‖A−1F (x0, µ)‖
≤ (q + ε)‖x− x0‖ + ‖A−1‖ ‖F (x0, µ)‖.

Since F (x0, µ) → F (x0, µ0) = 0 as µ → µ0, then

‖A−1‖ ‖F (x0, µ)‖ ≤ (1 − q− ε)r1 when ‖µ− µ0‖ ≤ ρ2 for some ρ2 < ρ1

and thus for any r0 < r1, ρ0 < ρ2, the ball ‖x − x0‖ ≤ r0 is taken by
K(x, µ) into itself when ‖µ− µ0‖ ≤ ρ0.

By the contraction mapping principle, there is a solution x = x(µ) in
N(x0, r0;µ0, ρ0). The continuity of x(µ) at µ0 follows from the bound

‖x(µ) − x0‖ ≤ ‖A−1‖
1 − q − ε

‖F (x0, µ)‖,

a consequence of the contraction mapping principle.

To prove the other variant of the implicit function theorem, we need
some properties of Fréchet derivatives as given by the next two lemmas.

Lemma 3.1.1. Assume an operator F (x) from X to Y has a Fréchet
derivative at x = x0, and an operator x = S(z) from a real Banach space
Z to X also has a Fréchet derivative S′(z0) and x0 = S(z0). Then their
composition F (S(z)) has a Fréchet derivative at z = z0 and

(F (S(z0)))′ = F ′(x0)S′(z0).

Proof. Substituting

x− x0 = S(z) − S(z0) = S′(z0)(z − z0) + ω1(z0, z − z0)

into
F (x) − F (x0) = F ′(x0)(x− x0) + ω(x0, x− x0),
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we get

F (x) − F (x0) = F ′(x0)S′(z0)(z − z0) + F ′(x0)ω1(z0, z − z0) +
+ ω(x0, S(z) − S(z0)).

This completes the proof, since the last two terms on the right-hand side
are of the order o(‖z − z0‖).

The next lemma is the so-called Lagrange identity.

Lemma 3.1.2. Assume that F (x) from X to Y is Fréchet differentiable
in a neighborhood Ω of x0. Then for x ∈ Ω we have

F (x) − F (x0) =
∫ 1

0
F ′(x0 + θ(x− x0)) dθ (x− x0).

Proof. By Lemma 3.1.1, the composition F (S(θ)), where S(θ) = x0+θ(x−
x0), has a Fréchet derivative

d

dθ
F (S(θ)) = F ′(x0 + θ(x− x0))(x− x0)

since S′(θ) = x− x0. Integrating this over [0, 1] with regard for continuity
of F (S(θ)) in θ, we complete the proof.

We can now present the more traditional version of the implicit function
theorem. In preparation we introduce a partial Fréchet derivative Fx(x, µ)
of F (x, µ) with respect to x as its Fréchet derivative with respect to x when
µ is fixed.

Theorem 3.1.3. Assume:

(i) F (x0, µ0) = 0;

(ii) for some r > 0 and ρ > 0, the operator F (x, µ) is continuous on the
set N(x0, r;µ0, ρ);

(iii) Fx(x, µ) is continuous at (x0, µ0);

(iv) Fx(x0, µ0) has a continuous inverse linear operator.

Then there exist r0 > 0, ρ0 > 0 such that the equation F (x, µ) = 0 has the
unique solution x = x(µ) in a ball ‖x − x0‖ ≤ r0 when ‖µ − µ0‖ ≤ ρ0. If
there is, in addition, Fµ(x, µ) which is continuous at (x0, µ0) then x(µ) has
a Fréchet derivative at µ = µ0 and

x′(µ0) = −F−1
x (x0, µ0)Fµ(x0, µ0).
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Proof. We verify that A = Fx(x0, µ0) meets condition (iii) of Theorem
3.1.2. Consider

Ψ(x, y, µ) = ‖F (x, µ) − F (y, µ) − Fx(x, µ0)(x− y)‖.

By Lemma 3.1.2,

F (x, µ) − F (y, µ) =
∫ 1

0
Fx(y + θ(x− y), µ) dθ (x− y)

and so

Ψ(x, y, µ) =
∥∥∥∥∫ 1

0
(Fx(y + θ(x− y), µ) − Fx(x0, µ0)) d θ(x− y)

∥∥∥∥
≤
∫ 1

0
‖Fx(y + θ(x− y), µ) − Fx(x0, µ0)‖ dθ ‖x− y‖

≤ α(r, ρ)‖x− y‖

where

α(r, ρ) = sup
x,µ

‖Fx(x, µ) − Fx(x0, µ0)‖ on N(x0, r;µ0, ρ)

is such that α(r, ρ) → 0 as r, ρ → 0 since Fx(x, µ) is continuous at (x0, µ0).
The other conditions of Theorem 3.1.2 are also satisfied and so a solution
x = x(µ) actually exists. We leave the second part of the theorem on
differentiability of x(µ) without proof.

Using the implicit function theorem, we can determine whether a solution
to a problem depends continuously and uniquely on some parameters.

We studied several linear problems of mechanics with constant parame-
ters. The reader can now verify that small disturbances of elastic moduli
or, say, the thickness of a plate, bring small disturbances in displacements
(small in a corresponding energy norm). We note that for linear problems
this can be shown more easily by using the contraction mapping princi-
ple, but in nonlinear problems using the implicit function theorem is more
convenient.

3.2 Liapunov–Schmidt Method

We shall say that (x0, µ0) is a regular point of the equation F (x, µ) = 0 if
there is a neighborhood of (x0, µ0), say N(x0, r;µ0, ρ), in which there is a
unique solution x = x(µ).

The implicit function theorem gives sufficient conditions for regularity of
F (x, µ) at (x0, µ0).



3.2 Liapunov–Schmidt Method 183

In mechanics, the breakdown of the property of regularity of a solution
is of great importance; it is usually connected with some qualitative change
of the properties of a system under consideration: its behavior, stability, or
type of motion.

We now consider an important class of non-regular points of an operator
equation.

Definition 3.2.1. (x0, µ0) is a bifurcation point of the equation F (x, µ) =
0 if for any r > 0, ρ > 0, in the ball ‖µ− µ0‖ ≤ ρ there exists µ such that
in the ball ‖x − x0‖ ≤ r there are at least two solutions of the equation
corresponding to µ.

Many problems of mechanics (in particular, in shell theory) are such that
in an energy space a partial Fréchet derivative Fx(x0, µ0) of a corresponding
operator of a problem may be reduced to the form I − B, B = B(x0, µ0),
where B is a compact linear operator (as a rule it is self-adjoint) and so
the results of the Fredholm–Riesz–Schauder theory are valid. In particular,
I − B is not continuously invertible if and only if there is a nontrivial
solution to (I − B)x = 0, and this is the case when the implicit function
theorem is not applicable. This case is now considered.

Without loss of generality, we assume x0 = 0, µ0 = 0 (we can always
change x �→ x0 + x, µ �→ µ0 + µ) so let

F (0, 0) = 0.

Suppose F is an operator acting from H ×M in H where H is a Hilbert
space and M is a real Banach space. As we said, we suppose that Fx(0, 0)
takes the form

Fx(0, 0) = I −B0

with B0 a compact self-adjoint linear operator in H.
The equation F (x, µ) = 0 can be rewritten in the form

(I −B0)x = −F (x, µ) + (I −B0)x

or

(I −B0)x = R(x, µ), R(x, µ) = −F (x, µ) + (I −B0)x. (3.2.1)

We now consider the Liapunov–Schmidt method of determining the de-
pendence of solution to (3.2.1) on µ when ‖µ‖ is small and there are non-
trivial solutions to the equation (I−B0)x = 0. As in Section 2.11, denote by
N the set of these nontrivial solutions and let x1, . . . , xn be an orthonormal
basis of N .

In the beginning of the proof of Theorem 2.11.4 we saw that the operator

Q0x = (I −B0)x+
n∑

k=1

(x, xk)xk
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is continuously invertible. Equation (3.2.1) can be written in the form

Q0x = R(x, µ) +
n∑

k=1

αkxk, αk = (x, xk). (3.2.2)

We now consider (3.2.2) as an equation with respect to x that has pa-
rameters µ, α1, . . . , αn, introducing, in preparation,

x = u+
n∑

k=1

βkxk, (u, xj) = 0, j = 1, . . . , n.

Here u ∈ M , M being the orthogonal complement of N in H. As (x, xk) =
αk, then x = u+

∑n
k=1 αkxk and (3.2.2) is

Q0u = R

(
u+

n∑
k=1

αkxk, µ

)
. (3.2.3)

This equation defines u as a function of the variables µ, α1, . . . , αn. Since
Rx(0, 0) = −Fx(0, 0) + (I −B0) = 0 we get(

Q0x−R(u+
n∑

k=1

αkxk, µ)

)
u

∣∣∣∣∣ u=0
µ=0,α1=···=αn=0

= Q0

where Q0 is a continuously invertible operator, so all the conditions of
the implicit function theorem are fulfilled. Therefore (3.2.3) has a unique
solution for every µ, α1, . . . , αn when ‖µ‖ and |αk| are small:

u = u(µ, α1, . . . , αn).

This solution must be orthogonal to all xk, k = 1, . . . , n, and to define
values α1, . . . , αn we have the system

(u(µ, α1, . . . , αn), xk) = 0, k = 1, . . . , n (3.2.4)

which is called the Liapunov–Schmidt equation of branching.
Using the Liapunov–Schmidt method one can investigate so-called post-

critical behavior of a system, say, post-buckling of a von Kármán plate.

3.3 Critical Points of a Functional

From now on, we shall consider operators and real-valued functionals given
in a real Hilbert space H. So let Φ(x) be a functional on H.
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Definition 3.3.1. x0 ∈ H is called a local minimal (maximal) point of
Φ(x) if there is a ball B = {x | ‖x−x0‖ ≤ ε}, ε > 0, such that for all x ∈ B
we have Φ(x) ≥ Φ(x0) (Φ(x) ≤ Φ(x0)). Minimal and maximal points are
called extreme points of Φ(x). If Φ(x) ≥ Φ(x0) for all x ∈ H, then x0 is a
point of absolute minimum of Φ(x).

We prove the following

Theorem 3.3.1. Assume:

(i) Φ(x) is given on an open set S ⊂ H;

(ii) there exists grad Φ(x) at x = x0 ∈ S;

(iii) x0 is an extreme point of Φ(x).

Then grad Φ(x0) = 0.

Proof. Let h be an arbitrary element of H. The functional Φ(x0 + th) is a
function in a real variable t that attains its minimum at t = 0. Since

dΦ(x0 + th)
dt

∣∣∣
t=0

= 0,

we have
(grad Φ(x0), h) = 0. (3.3.1)

Since h is arbitrary, the conclusion follows.

Definition 3.3.2. A point x0 at which grad Φ(x0) = 0 is called a critical
point of Φ(x).

In fact, we implicitly used this theorem for linear problems when Φ(x)
was a (quadratic) functional of total energy of an elastic body and (3.3.1)
was an equation defining a generalized solution of the corresponding prob-
lem. Similar results will be valid for some nonlinear problems in what fol-
lows.

In preparation, we introduce some definitions.

Definition 3.3.3. A functional Φ(x) is called weakly continuous at x = x0
if for every sequence {xk} converging weakly to x0 the numerical sequence
Φ(xk) tends to Φ(x0) as k → ∞. It is called weakly continuous on an open
set S ⊂ H if it is weakly continuous at every point of S.

Definition 3.3.4. A functional Φ(x) given on H is called growing if

inf
‖x‖=R

Φ(x) → ∞ as R → ∞.

We obtained a necessary condition for existence of critical points of a
functional. Now we point out some sufficient conditions for this that have
important applications in mechanics.
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Lemma 3.3.1. Assume Q is a weakly closed and bounded set in H. A
weakly continuous functional Φ(x) is bounded on Q and attains its minimal
and maximal values in it.

Proof. First we prove that the values of Φ(x) on Q are bounded from above.
If not, there is a sequence {xn} ⊂ Q such that Φ(xn) → ∞ as n → ∞.
By hypothesis {xn} contains a subsequence {xnk

} weakly convergent to
x0 ∈ Q and so

Φ(xnk
) → Φ(x0) �= ∞ as nk → ∞,

which contradicts the assumption. Boundedness from below is thus clearly
seen.

Let d = infx∈Q Φ(x). By definition of infimum there is a sequence {zn}
for which Φ(zn) → d as n → ∞. As above, it contains a subsequence {znk

}
converging weakly to z0 ∈ Q. By weak continuity of Φ(x) we get Φ(z0) = d.
The proof for the maximal value is similar.

Note that a ball B(R) = {x | ‖x‖ ≤ R} has the properties of Q of the
lemma.

In what follows, some problems of mechanics can be reduced to a problem
of finding critical points of the functional

Ψ(x) = ‖x‖2 + Φ(x)

with Φ(x) a weakly continuous functional. The functional Ψ(x) is not
weakly continuous because of the term ‖x‖2 and so Lemma 3.3.1 does
not apply.

Theorem 3.3.2. Let Φ(x) be a weakly continuous functional. On a ball
B(R) = {x | ‖x‖ ≤ R}, the functional Ψ(x) = ‖x‖2 + Φ(x) attains its
minimal value.

Proof. By Lemma 3.3.1, Φ(x) and hence Ψ(x) is bounded from below on
B(R). Let d = inf Ψ(x) on B(R) and {xn} be a sequence in B(R) such that
Ψ(xn) → d as n → ∞. By weak compactness of B(R) we can produce a
subsequence {xnk

} which converges weakly to x0 ∈ B(R). Moreover, from
the bounded numerical sequence {‖xnk

‖} we can take a subsequence which
tends to some number a, a ≤ R. Redenote the last subsequence as {xn}
again.

We show that ‖x0‖ ≤ a. Indeed, since xn ⇀ x0 then limn→∞(xn, x0) =
‖x0‖2 and we have

‖x0‖2 = lim
n→∞ |(xn, x0)| ≤ lim

n→∞ ‖xn‖ ‖x0‖ = a‖x0‖

which gives ‖x0‖ ≤ a.
By weak continuity of Φ(x), we get Φ(xn) → Φ(x0) as n → ∞ and

Ψ(xn) → d = a2 + Φ(x0) simultaneously. Since x0 ∈ B(R),

Ψ(x0) = ‖x0‖2 + Φ(x0) ≥ inf
x∈B(R)

Ψ(x) = d = a2 + Φ(x0),
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and so ‖x0‖ ≥ a. With the above, this implies ‖x0‖ = a and thus x0 is a
point at which Ψ(x) takes its minimal value on B(R).

Remark 3.3.1. Since {xnk
} from the proof converges weakly to x0 and the

sequence {‖xnk
‖} converges to ‖x0‖ = a, this sequence converges to x0

strongly in H.

Definition 3.3.5. Assume inf Φ(x) = d > −∞ on H. A sequence {xn} is
called a minimizing sequence of Φ(x) if Φ(xn) → d as n → ∞.

In the proof of Theorem 3.3.2 we have established that under the condi-
tions of that theorem any sequence minimizing Ψ(x) contains a subsequence
that converges strongly to an element at which the minimum of Ψ(x) oc-
curs. Now we can formulate

Theorem 3.3.3. Assume that a functional Ψ(x) = ‖x‖2 + Φ(x), where
Φ(x) is weakly continuous on H, is growing. Then:

(i) there exists x0 ∈ H at which Ψ(x) takes its minimal value;

(ii) any minimizing sequence of Ψ(x) contains a subsequence which con-
verges strongly to a point at which Ψ(x) takes its minimal value:
moreover, every weakly convergent subsequence of {xn} converges
strongly to a minimizer of Ψ(x);

(iii) if a point x0 at which Ψ(x) takes its minimal value is unique, then a
minimizing sequence converges to x0 strongly;

(iv) if grad Φ(x0) exists at a point of minimum x0, then

2x0 + grad Φ(x0) = 0.

Proof. By Theorem 3.3.2, on a ball ‖x‖ ≤ R the functional Ψ(x) takes
its minimal value. Since Ψ(x) is growing we can take R so large that the
minimum is attained inside the open ball ‖x‖ < R. So statements (i) and
(ii) follow from Theorem 3.3.3 and Remark 3.3.1. Statement (iv) follows
from Theorem 3.3.1. The proof of (iii) is carried out in a way similar to
that given in Section 1.23.

Now we consider the application of the Ritz method to solve the problem
of minimizing Ψ(x) under the restrictions of Theorem 3.3.3. First we state
the equations of Ritz’s method. Let g1, g2, g3, . . . be a complete system in
H such that every finite subsystem is linearly independent. Denote by Hn

a subspace of H which is spanned by g1, . . . , gn.
The approximation of the Ritz method to minimize the functional Ψ(x)

is now formulated as follows:

• Find a minimizer xn of Ψ(x) on Hn.
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• Note that if Ψ(x) has grad Ψ(x) then the equations to find the nth
Ritz approximation are

(grad Ψ(xn), gk) = 0, k = 1, . . . , n, xn ∈ Hn.

Theorem 3.3.4. Under the restrictions of Theorem 3.3.3, the following
hold:

(i) for each n there exists a solution xn ∈ Hn, the nth Ritz approximation
of the minimizer of Ψ(x);

(ii) the sequence of Ritz approximations is a minimizing sequence of Ψ(x),
and thus

(iii) the sequence {xn} contains at least one weakly convergent subse-
quence whose weak limit is a minimizer of Ψ(x) — in fact, this sub-
sequence converges strongly to the minimizer;

(iv) every weakly convergent subsequence of {xn} converges strongly to a
minimizer of Ψ(x); if a minimizer of Ψ(x) is unique, then the whole
sequence {xn} converges to it strongly.

Proof. (i) Solvability of the problem for the nth approximation of solution
by the Ritz method follows from Theorem 3.3.3.

(ii) Let x0 be a solution to the main problem

Ψ(x0) = d = inf
x∈H

Ψ(x).

As the system g1, g2, g3, . . . is complete, there is x(n) ∈ Hn such that

‖x0 − x(n)‖ = δn → 0 as n → ∞.

Since Ψ(x) is continuous we get

|Ψ(x(n)) − Ψ(x0)| = εn → 0 as n → ∞.

But xn is a minimizer of Ψ(x) on Hn, so

d = Ψ(x0) ≤ Ψ(xn) = inf
x∈Hn

Ψ(x) ≤ Ψ(x(n)).

Therefore
|Ψ(xn) − Ψ(x0)| ≤ εn → 0 as n → ∞

and thus {xn} is a minimizing sequence of Ψ(x).
The other statements follow from Theorem 3.3.3.

Note that Theorem 3.3.4 can be applied to linear and nonlinear problems
of mechanics.
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3.4 Von Kármán Equations of a Plate

Theorem 3.3.4 will be applied to the boundary value problem of equilibrium
of a plate described by the von Kármán equations, which are

∆2w = [f, w] + q in Ω ⊂ R2, (3.4.1)

∆2f = −[w,w] in Ω, (3.4.2)

where w(x, y) is the normal displacement of the middle surface Ω of the
plate, f(x, y) is the Airy function, q = q(x, y) is the transverse external
load, and

[u, v] =
∂2u

∂x2

∂2v

∂x2 +
∂2u

∂y2

∂2v

∂y2 − 2
∂2u

∂x∂y

∂2v

∂x∂y
.

We consider the Dirichlet problem for these equations:

w
∣∣
∂Ω =

∂w

∂n

∣∣∣
∂Ω

= 0, (3.4.3)

f
∣∣
∂Ω =

∂f

∂n

∣∣∣
∂Ω

= 0. (3.4.4)

Let us consider the integro-differential equations

a(w,ϕ) = B(f, w, ϕ) +
∫

Ω
qϕ dΩ, (3.4.5)

a(f, η) = −B(w,w, η), (3.4.6)

where

a(w,ϕ) =
∫

Ω

{
∂2w

∂x2

(
∂2ϕ

∂x2 + ν
∂2ϕ

∂y2

)
+ 2(1 − ν)

∂2w

∂x∂y

∂2ϕ

∂x∂y
+

+
∂2w

∂y2

(
∂2ϕ

∂y2 + ν
∂2ϕ

∂x2

)}
dΩ,

B(f, w, ϕ) =
∫

Ω

{(
∂2f

∂x∂y

∂w

∂y
− ∂2f

∂y2

∂w

∂x

)
∂ϕ

∂x
+

+
(
∂2f

∂x∂y

∂w

∂x
− ∂2f

∂x2

∂w

∂y

)
∂ϕ

∂y

}
dΩ,

ν being Poisson’s ratio, 0 < ν < 1/2.
Note that a(u, v) is the scalar product (1.10.4) (with an omitted mul-

tiplier — the bending rigidity) of the energy space EPC for an isotropic
plate, and we shall use this notation in this section.

Suppose that (3.4.5) and (3.4.6), with respect to the unknown function
w, f , being smooth (of C(4)(Ω)) and satisfying the boundary conditions
(3.4.3) and (3.4.4), are valid for every ϕ, η which also satisfy (3.4.3) for these
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functions and their normal derivatives on the boundary. The usual tools of
the calculus of variations show that the pair (w, f) is a classical solution to
the von Kármán equations (3.4.1) and (3.4.2). This means that we can use
(3.4.5) and (3.4.6) to define a generalized solution to the problem under
consideration. We note that (3.4.5) expresses the virtual work principle for
the plate, and (3.4.6) is the equation of compatibility. So we introduce

Definition 3.4.1. A pair (w, f), w, f ∈ EPC , is called a generalized so-
lution to the problem (3.4.1)–(3.4.4) if it satisfies the integro-differential
equations (3.4.5)–(3.4.6) for any (ϕ, η), ϕ, η ∈ EPC .

For correctness of the definition the load q = q(x, y) must be such that
the term

∫
Ω qϕ dΩ is a continuous linear functional in EPC ; for this it

suffices that, say, q be of L1(Ω) (cf., Section 1.14).
Under the restrictions of the definition, all terms in (3.4.5) and (3.4.6)

make sense as each of the first derivatives of any of the functions under
consideration are of Lp(Ω) with any p < ∞. Indeed, a typical term which
is not present in a linear statement of the plate problem is bounded as∣∣∣∣∫

Ω

∂2f

∂x2

∂w

∂y

∂ϕ

∂y
dΩ
∣∣∣∣ ≤

(∫
Ω

∣∣∣∣∂2f

∂x2

∣∣∣∣2 dΩ
)1/2

·

·
(∫

Ω

∣∣∣∣∂w∂y
∣∣∣∣4 dΩ

)1/4(∫
Ω

∣∣∣∣∂ϕ∂y
∣∣∣∣4 dΩ

)1/4

, (3.4.7)

and hence is finite.
We could present a functional whose gradient in the space EPC ×EPC is

defined by (3.4.5) and (3.4.6); unfortunately it is not of the form required by
Theorem 3.3.4. That is why we shall reformulate the problem with respect
to the only unknown function w, defining f as an operator with respect
to w and construct a functional of w whose critical point is a generalized
solution of the problem. We now embark on this program.

So let w be a fixed but arbitrary element of EPC . Consider B(w,w, η)
as a functional with respect to η in EPC . It is clearly linear. By (3.4.7)
written for a typical term with f = w, thanks to the imbedding theorem
in EPC , we get

|B(w,w, η)| ≤ m‖w‖2
EP

‖η‖EP
,

i.e., the functional is continuous and so we can apply the Riesz representa-
tion theorem to get

−B(w,w, η) = (c, η)EP
= a(c, η).

Being uniquely defined by w ∈ EPC , the element c ∈ EPC can be considered
as a value of a nonlinear operator

c = C(w), a(C(w), η) = −B(w,w, η). (3.4.8)

Before studying the properties of C we introduce
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Definition 3.4.2. An operator A mapping from a Banach space X to
a Banach space Y is called compact if it is continuous in X and takes
every bounded set of X into a precompact set in Y . An operator is called
completely continuous if it takes every weakly convergent sequence of X,
xn ⇀ x0, into a sequence A(xn) converging strongly to A(x0).

Lemma 3.4.1. A completely continuous operator F mapping a Hilbert
space X into a Banach space Y is compact.

Proof. F is continuous since when a sequence {xn} converges to x0 strongly
in X then it converges to x0 weakly, too.

Next we take a bounded set S in X and let {xn} be a sequence lying in S.
From {xn}, thanks to its boundedness, we can choose a subsequence {xnk

}
converging weakly to x0 ∈ X. Then, by definition of complete continuity,
we get the sequence {F (xnk

)} converging to F (x0) strongly. This means
F (S) is precompact, hence F is compact.

It is known that there are compact operators in a Hilbert space which
are not completely continuous.

Corollary 3.4.1. If F (x) is a completely continuous operator, then the
functional ‖F (x)‖2 is a weakly continuous functional in X.

The proof is evident. Now we can prove

Lemma 3.4.2. The operator C(w) defined by (3.4.8) is completely con-
tinuous.

Proof. When the functions u, v, w ∈ EPC are smooth, direct integration by
parts gives

B(u, v, w) = B(v, u, w) = B(v, w, u) = B(w, u, v); (3.4.9)

the limit passage shows that this is valid for u, v, w ∈ EPC . So

−B(w,w, η) =
∫

Ω

{(
∂w

∂x

)2
∂2η

∂y2 +
(
∂w

∂y

)2
∂2η

∂x2 − 2
∂w

∂x

∂w

∂y

∂2η

∂x∂y

}
dΩ.

Next we take an arbitrary sequence {wn} converging weakly to w0 in EPC

and consider

|a(C(wn) − C(w0), η)| = |B(wn, wn, η) −B(w0, w0, η)|.
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Using the Hölder inequality, we bound a typical term of the right-hand side
of this equality as follows:

dn =

∣∣∣∣∣
∫

Ω

[(
∂wn

∂x

)2

−
(
∂w0

∂x

)2
]
∂2η

∂y2 dΩ

∣∣∣∣∣
=
∣∣∣∣∫

Ω

(
∂wn

∂x
− ∂w0

∂x

)(
∂wn

∂x
+
∂w0

∂x

)
∂2η

∂y2 dΩ
∣∣∣∣

≤
∥∥∥∥∂wn

∂x
− ∂w0

∂x

∥∥∥∥
L4(Ω)

(∥∥∥∥∂wn

∂x

∥∥∥∥
L4(Ω)

+
∥∥∥∥∂w0

∂x

∥∥∥∥
L4(Ω)

)∥∥∥∥∂2η

∂y2

∥∥∥∥
L2(Ω)

.

By the imbedding theorem in EPC , which is a subspace of W 2,2(Ω), we get

dn ≤ m1

∥∥∥∥∂wn

∂x
− ∂w0

∂x

∥∥∥∥
L4(Ω)

(‖wn‖EP
+ ‖w0‖EP

)‖η‖EP

and, thanks to the boundedness of a weakly convergent sequence,

dn ≤ m2‖wn − w0‖W 1,4(Ω)‖η‖EP

where m1 and m2 are constants.
Gathering all such bounds, we obtain

|a(C(wn) − C(w0), η)| ≤ m3‖wn − w0‖W 1,4(Ω)‖η‖EP
.

Putting η = C(wn) − C(w0), we finally obtain

‖C(wn) − C(w0)‖EP
≤ m3‖wn − w0‖W 1,4(Ω) → 0 as n → ∞

since the imbedding operator of W 2,2(Ω) into W 1,4(Ω) is completely con-
tinuous (a particular case of Sobolev’s imbedding theorems in W 2,2(Ω)).
The last limit passage shows that C is completely continuous.

From this lemma we see that (3.4.6) with a given w ∈ EPC has the
unique solution

f = C(w). (3.4.10)

If {wn} converges to w0 weakly in EPC , then {fn} = {C(wn)} converges
to f0 = C(w0) strongly in EPC .

From now on we consider f in (3.4.5) to be determined by (3.4.10).
For a fixed w ∈ EPC , by bounds of the type (3.4.7), we see that the

functional
B(f, w, ϕ) +

∫
Ω
qϕ dΩ

is linear and continuous with respect to ϕ ∈ EPC . So applying the Riesz
representation theorem, we have a representation

B(f, w, ϕ) +
∫

Ω
qϕ dΩ = a(U,ϕ)
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where U ∈ EPC is uniquely determined by w ∈ EPC ; so we define an
operator G, U = G(w), acting in EPC , by

B(f, w, ϕ) +
∫

Ω
qϕ dΩ = a(G(w), ϕ). (3.4.11)

In much the same way that Lemma 3.4.2 is proved we can establish

Lemma 3.4.3. G is a completely continuous operator in EPC .

Now the following is evident:

Lemma 3.4.4. The system of equations (3.4.5)–(3.4.6) defining a gen-
eralized solution of the problem under consideration is equivalent to the
operator equation

w = G(w) (3.4.12)

with a completely continuous operator G acting in EPC .

Now we introduce a functional

I(w) =
1
2
a(w,w) +

1
4
a(f, f) −

∫
Ω
qw dΩ

where, as we said, f is defined by (3.4.8).
The decisive point of this section is

Lemma 3.4.5. For every w ∈ EPC , we have

grad I(w) = w −G(w). (3.4.13)

Proof. In accordance with the definition of the gradient of a functional, we
consider

dI(w + tϕ)
dt

∣∣∣
t=0

=
1
2
d

dt
a(w+ tϕ, w+ tϕ)

∣∣∣
t=0

+
1
2
a

(
f,
df

dt

) ∣∣∣
t=0

−
∫

Ω
qϕ dΩ

where f = C(w + tϕ). It is clear that

1
2
d

dt
a(w + tϕ, w + tϕ)

∣∣
t=0 = a(w,ϕ).

Using the definition (3.4.8) of C, with regard for the equality B(w,ϕ, η) =
B(ϕ,w, η), a particular case of (3.4.9), we calculate directly that

a

(
df

dt

∣∣∣
t=0

, η

)
= −2B(w,ϕ, η)

and so

a

(
f,
df

dt

) ∣∣∣
t=0

= −2B(w,ϕ, f) = −2B(f, w, ϕ).
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It follows that

dI(w + tϕ)
dt

∣∣∣
t=0

= a(w,ϕ) −B(f, w, ϕ) −
∫

Ω
qϕ dΩ

and, thanks to (3.4.11),

dI(w + tϕ)
dt

∣∣∣
t=0

= a(w,ϕ) − a(G(w), ϕ) = a(w −G(w), ϕ).

This, by definition of the gradient of a functional, means that (3.4.13)
holds.

Combining Lemmas 3.4.3 and 3.4.4, we have

Lemma 3.4.6. A critical point w of I(w) defines the pair (w,G(w)) that
is a generalized solution of the problem under consideration.

So we reduce the problem of finding a generalized solution of the problem
to the problem of the minimum of a functional (it is not equivalent as there
are in general solutions which are not points of minimum of the functional).

To apply Theorem 3.3.3, it remains to verify

Lemma 3.4.7. The functional 2I(w) is growing and has the form

‖w‖2
EP

+ Φ1(w)

where

Φ1(w) =
1
2
a(f, f) − 2

∫
Ω
qw dΩ

is a weakly continuous functional, f being defined by (3.4.10).

Proof. 2I(w) is growing since

2I(w) ≥ a(w,w) − 2
∣∣∣∣∫

Ω
qw dΩ

∣∣∣∣ = ‖w‖2
EP

− 2
∣∣∣∣∫

Ω
qw dΩ

∣∣∣∣
and

2I(w) ≥ ‖w‖2
EP

−m‖w‖EP
→ ∞ if ‖w‖EP

→ ∞
as q is assumed to be such that

∫
Ω qw dΩ is a continuous functional with

respect to w ∈ EPC .
Weak continuity of Φ1(w) is a consequence of Corollary 3.4.1 and Lemma

3.4.2 for a(f, f) = ‖C(w)‖2
EP

and the fact that the continuous linear func-
tional

∫
Ω qw dΩ is weakly continuous (by definition).

So we can reformulate Theorem 3.3.3 in the case of the plate problem as
follows
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Theorem 3.4.1. Assume q is such that
∫
Ω qw dΩ is a continuous linear

functional with respect to w in EPC . Then any critical point of the grow-
ing functional I(w) which has at least one point of absolute minimum is a
generalized solution of the plate problem in the sense of Definition 3.4.1;
any minimizing sequence of I(w) contains at least one subsequence which
converges strongly to a generalized solution of the problem; each of the
weak limit points of the minimizing sequence, which are strong limit points
simultaneously, is a generalized solution to the problem under considera-
tion.

The reader can also reformulate Theorem 3.3.4 in the present case to
justify application of the Ritz method (and thus the method of finite el-
ements) to von Kármán equations. Note that in this modification of the
method we must find f exactly from (3.4.6). But it is not too difficult to
show that f can be found approximately, also by the Ritz method, and the
corresponding theorem on convergence remains valid in the present case.

3.5 Buckling of a Thin Elastic Shell

Following an article by I.I. Vorovich [27] (and [28]), we now consider a
buckling problem for a shallow elastic shell described by equations of von
Kármán’s type. We want to study stability of the momentless state (here
w = 0) of the shell. Assume the external load to be proportional to a
parameter λ. For every λ, existence of the momentless state of the shell is
seen. We formulate the equations of equilibrium as follows:

∆2w = −λ
(
T1
∂2w

∂x2 + T2
∂2w

∂y2 + 2T12
∂2w

∂x∂y
− F1

∂w

∂x
− F2

∂w

∂y

)
+

+ [f, w + z],

∆2f = − {2[z, w] + [w,w]} . (3.5.1)

We study a problem with Dirichlet conditions

w
∣∣
∂Ω =

∂w

∂n

∣∣∣
∂Ω

= f
∣∣
∂Ω =

∂f

∂n

∣∣∣
∂Ω

= 0. (3.5.2)

Here z = z(x, y) ∈ C(3)(Ω) is the equation of mid-surface of the shell. It is
supposed that the tangential stresses T1, T2, T12 are given, belong to L2(Ω)
and, as assumed during derivation of the equations, satisfy equations of
the two-dimensional theory of elasticity with forces (F1, F2). Other bits of
notation are taken from the previous section.
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The equations of a generalized statement of the problem under consid-
eration are as follows:

a(w,ϕ) = λ

∫
Ω

[
T1
∂w

∂x

∂ϕ

∂x
+ T2

∂w

∂y

∂ϕ

∂y
+ T12

(
∂w

∂x

∂ϕ

∂y
+
∂w

∂y

∂ϕ

∂x

)]
dx dy

+B(f, w + z, ϕ), (3.5.3)

a(f, η) = −2B(z, w, η) −B(w,w, η). (3.5.4)

Using standard variational tools, we can derive from these the equations
(3.5.1) if a solution is assumed to be sufficiently smooth; conversely, we can
derive (3.5.1) from (3.5.3)–(3.5.4). So we can take the latter equations to
formulate

Definition 3.5.1. A pair w, f from EPC is called a generalized solution to
the problem (3.5.1)–(3.5.2) if it satisfies the integro-differential equations
(3.5.3)–(3.5.4) for any ϕ, η ∈ EPC

The problem under consideration has a trivial solution w = f = 0. We
are interested in when there exists a nontrivial solution, i.e., in solving a
nonlinear eigenvalue problem.

First we mention that, as in Section 3.4, we solve the equation (3.5.4)
and then exclude f ∈ EPC from the equation (3.5.3) using the solution f
of (3.5.4) when w ∈ EPC is given. It is clear that

f = f1 + f2

where the fi are defined by the equations

a(f1, η) = −2B(z, w, η), a(f2, η) = −B(w,w, η).

Using the Riesz representation theorem we can find from these that

f1 = Lw, f2 = C(w). (3.5.5)

In Section 3.4 it was shown that C(w) is a completely continuous oper-
ator. The same is valid for the linear operator L (we leave it to the reader
to show this).

In Section 2.5, we introduced the self-adjoint bounded operator C that
is now redenoted as K. It is defined by

a(Kw,ϕ) =
∫

Ω

[
T1
∂w

∂x

∂ϕ

∂x
+ T12

(
∂w

∂x

∂ϕ

∂y
+
∂w

∂y

∂ϕ

∂x

)
+ T2

∂w

∂y

∂ϕ

∂y

]
dx dy.

K is compact in EPC as follows from Sobolev’s imbedding theorem.
Applying the Riesz representation theorem to the relation (3.5.3) wherein

f is defined by (3.5.5), we find an operator equation for a generalized
solution of the problem under consideration

w −G(λ,w) = 0. (3.5.6)
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The next point is to define a functional whose critical points are solutions
to (3.5.6). It is

I(λ,w) =
1
2
a(w,w) +

1
4
a(f, f) − λJ(w)

where

J(w) =
1
2

∫
Ω

[
T1

(
∂w

∂x

)2

+ 2T12
∂w

∂x

∂w

∂y
+ T2

(
∂w

∂y

)2
]
dx dy.

I(λ,w) is the total energy of the system “shell-load.”

Lemma 3.5.1. For every w ∈ EPC we have

grad I(λ,w) = w −G(λ,w). (3.5.7)

The proof is similar to that for Lemma 3.4.4 and is omitted, as is the
proof that G(λ,w) is a completely continuous operator in w ∈ EPC .

Next we consider the functional a(f, f). It is seen that

a(f, f) = a(f1, f1) +A3(w) +A4(w),
A3(w) = 2a(f1, f2) = −4B(z, w, f2),

A4(w) = a(f2, f2) =
1
2
B(f2, w, w).

Here Ak(w) is a homogeneous function of order k with respect to w, i.e.,

Ak(tw) = tkAk(w).

We leave it to the reader to show that a(f, f), along with each of its parts,
is a weakly continuous functional on EPC (for a(f, f), this is a consequence
of Corollary 3.4.1).

It is evident that J(w) is a weakly continuous functional in EPC . So we
have

Lemma 3.5.2. For every real number λ, the functional I(λ,w) takes the
form

I(λ,w) =
1
2
‖w‖2

EP C
+ Ψ(λ,w), Ψ(λ,w) =

1
4
a(f, f) − λJ(w),

where Ψ(λ,w) is a weakly continuous functional.

From now on, we assume that

J(w) > 0 if w �= 0, w ∈ EPC . (3.5.8)

This assumption has the physical implication that almost everywhere in
the shell the stress state of the shell is compressive.
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To study stability of the non-buckled state of the shell (that is, when
w = 0), beginning from L. Euler’s work on stability of a bar, one solves the
linearized (here around zero state) eigenvalue problem that is now

grad
[
1
2
a(w,w) +

1
4
a(f1, f1)

]
= λ gradJ(w). (3.5.9)

The lowest eigenvalue of the latter, denoted λE and called the Euler lowest
critical value, is usually considered as a value when the main, trivial form
of equilibrium of the shell becomes unstable. We shall analyze this method
for the shell.

We begin with the eigenvalue problem (3.5.9).

Lemma 3.5.3. There is a countable set λk of eigenvalues λk > 0 of the
equation (3.5.9) considered in EPC .

Proof. We first mention that the scalar product

〈w,ϕ〉 = a(w,ϕ) +
1
2
a(Lw,Lϕ), f1 = Lw,

induces the norm in EPC which is equivalent to the usual one since

a(w,w) ≤ 〈w,w〉 ≤ ma(w,w).

Using the new norm, we can rewrite (3.5.9) in the form

w = λK1w

where K1 is determined, thanks to the Riesz representation theorem, by
the equality

〈K1w,ϕ〉 =
∫

Ω

[
T1
∂w

∂x

∂ϕ

∂x
+ T12

(
∂w

∂x

∂ϕ

∂y
+
∂w

∂y

∂ϕ

∂x

)
+ T2

∂w

∂y

∂ϕ

∂y

]
dx dy.

It is easily seen that K1, as well as K, is strictly positive, self-adjoint, and
compact, and thus we can use Theorem 2.14.2 which gives even more than
the lemma states.

For the trivial solution w = f = 0, the total energy I(λ,w) = 0. A state
of the shell at which I(λ,w) takes its minimal value is, in a certain sense,
stable. So it is of interest what is the range of λ in which I(λ,w) can take
negative values.

Theorem 3.5.1. Assume T1, T12, T2 ∈ L2(Ω) and wE is an eigenfunction of
the linearized boundary value problem (3.5.9) corresponding to its smallest
eigenvalue λE , the Euler critical value. Then for every λ of the half-line

λ > λ∗ ≡ λE − A2
3(wE)

4A4(wE)J(wE)
(3.5.10)

there exists at least one nontrivial solution of the nonlinear boundary value
problem (3.5.6) at which I(λ,w) is negative.
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The proof is a consequence of the following three lemmas. The first of
them is auxiliary.

Lemma 3.5.4. Assume that w ∈ EPC satisfies

∂2w

∂x2

∂2w

∂y2 −
(
∂2w

∂x∂y

)2

= 0 (3.5.11)

in the sense of L1(Ω) (almost everywhere in Ω). Then w = 0.

Proof. If w ∈ C(2)(Ω), then (3.5.11) means the Gaussian curvature of the
surface z = w(x, y) vanishes so the surface is developable and, thanks to
the boundary conditions (3.5.2), w = 0.

If w /∈ C(2)(Ω), we take another route. For arbitrary w ∈ EPC , F ∈
W 2,2(Ω), the following formula holds:∫

Ω

[(
∂2F

∂x∂y

∂w

∂y
− ∂2F

∂y2

∂w

∂x

)
∂w

∂x
+
(
∂2F

∂x∂y

∂w

∂x
− ∂2F

∂x2

∂w

∂y

)
∂w

∂y

]
dx dy

= 2
∫

Ω

[
∂2w

∂x2

∂2w

∂y2 −
(
∂2w

∂x∂y

)2
]
F dx dy. (3.5.12)

(This is easily seen after integrating by parts for smooth functions; the
limit passage shows that it is valid for the needed classes.) In (3.5.12) we
put

F =
1
2
(x2 + y2)

which gives for w satisfying (3.5.11)∫
Ω

[(
∂w

∂x

)2

+
(
∂w

∂y

)2
]
dx dy = 0.

This, together with the boundary conditions for w, completes the proof.

Lemma 3.5.5. The functional I(λ,w) is growing for every λ > 0; that is,
we have I(λ,w) → ∞ as ‖w‖EP

→ ∞.

Proof. On the unit sphere S = {w : a(w,w) = 1} of EPC consider the set
S1 defined by

1
2
a(w,w) − λJ(w) >

1
4
.

Then on the image of S1 under the mapping w �→ Rw, we get

I(λ,Rw) ≥ 1
2
a(Rw,Rw) − λJ(Rw)

= R2
[
1
2
a(w,w) − λJ(w)

]
>

1
4
R2, w ∈ S1. (3.5.13)
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Next consider I(λ,Rw) when w ∈ S2 = S \ S1. Here

1
2
a(w,w) − λJ(w) ≤ 1

4
. (3.5.14)

Let us introduce the weak closure of S2 in EPC , denoted by ClS2. First we
show that ClS2 does not contain zero. If to the contrary it does contain
zero then there is a sequence {wn} ∈ ClS2 such that a(wn, wn) = 1 and
wn ⇀ 0 in EPC (or, equivalently, in W 2,2(Ω)). By the imbedding theorem
in W 2,2(Ω), the sequences of first derivatives of {wn} tend to zero strongly
in Lp(Ω) for any p < ∞ and thus J(wn) → 0, which contradicts (3.5.14)
since

1
2

≡ 1
2
a(wn, wn) ≤ 1

4
+ λJ(wn).

Next we show that for all w ∈ ClS2,

A4(w) ≥ c∗ (3.5.15)

wherein c∗ is a positive constant. Indeed, if (3.5.15) is not valid there is a
sequence {wn} ∈ ClS2 such that A4(wn) → 0 as n → ∞. This sequence
contains a subsequence which converges weakly to w0 belonging to ClS2
too. Since A4 is a weakly continuous functional,

A4(w0) = 0.

This means that
a(f2, f2) = 0, f2 = C(w0).

Returning to (3.5.5), we get

B(w0, w0, η) = 0

or, equivalently, ∫
Ω

[
∂2w0

∂x2

∂2w0

∂y2 −
(
∂2w0

∂x∂y

)2
]
η dx dy = 0

for any η ∈ EPC . As EPC is dense in L2(Ω),

∂2w0

∂x2

∂2w0

∂y2 −
(
∂2w0

∂x∂y

)2

= 0

almost everywhere in Ω and, by Lemma 3.5.3, it follows that w0(x, y) = 0.
This contradicts the fact that w0 belongs to ClS2 which does not contain
zero.

Since |A3(w)| ≤ c1 on S, we get, thanks to (3.5.15),

I(λ,Rw) ≥ c∗R4 −
(

1
4
R2 + c1R

3
)
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when w ∈ ClS2 and so for sufficiently large R, with regard for (3.5.13), we
obtain

I(λ,Rw) ≥ 1
4
R2

for all w ∈ S. This means that I(λ,w) is growing.

By Theorem 3.3.3 it follows that, for any λ, the functional I(λ,w) takes
its minimal value in EPC . But w = 0 is also a critical point of the functional,
so to conclude the proof of Theorem 3.5.1 we formulate

Lemma 3.5.6. Under the conditions of Theorem 3.5.1, the minimal value
of I(λ,w) is negative if λ satisfies (3.5.10).

Proof. Consider I(λ, cwE) where c is a constant. It is seen that

I(λ, cwE) = c2
[
1
2
a(wE , wE) +

1
4
a(LwE , LwE) − λJ(wE)

]
+

+ c3A3(wE) + c4A4(wE), (f1 = LwE).

Further, from (3.5.9) it follows that

1
2
a(wE , wE) +

1
4
a(LwE , LwE) = λEJ(wE).

Hence

I(λ, cwE) = c2
[
(λE − λ)J(wE) + cA3(wE) + c2A4(wE)

]
.

The minimum of I(λ, cwE)/c2 considered as a function of the real variable
c is taken at

c0 = −1
2
A3(wE)/A4(wE);

this minimum is equal to

min
c

(c−2I(λ, cwE)) = (λE − λ)J(wE) −A2
3(wE)/A4(wE).

So for λ satisfying (3.5.10), we get

I(λ, c0wE) < 0

and thus at w0, a minimizer of I(λ,w) at the same λ,

I(λ,w0) < 0.

This completes the proof of the lemma, and therefore of Theorem 3.5.1.

A very important result follows from Theorem 3.5.1.
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Corollary 3.5.1. Assume that there is an eigenfunction wE corresponding
to the Euler critical value λE such that

A3(wE) �= 0.

In this case we have a sharp inequality λ∗ < λE .

This result is of fundamental importance in the theory of stability of
shells, since from it we have that if A3(wE) �= 0, then the problem of
stability cannot be solved by linearization in the neighborhood of a mo-
mentless state of stress, used since Euler in the theory of stability of rods.
If A3(wE) �= 0, then we must investigate the problem of stability of a shell
in its nonlinear formulation.

Theorem 3.5.2. Let T1, T2, T12 ∈ L2(Ω). Then there is a value λl ≤ λ∗

such that for any λ < λl the nonlinear problem (3.5.6) has the unique
solution w = 0.

Proof. Assume w is a solution of (3.5.6), i.e., the pair w, f = Lw + C(w)
from EPC satisfies (3.5.3)–(3.5.4) for arbitrary ϕ, η ∈ EPC . Setting ϕ = w
and η = f in (3.5.3)–(3.5.4) we get

a(w,w) = 2λJ(w) +B(f, w,w) +B(f, z, w),
a(f, f) = −2B(z, w, f) −B(w,w, f).

Summing these equalities term by term, we have the identity

a(w,w) + a(f, f) = 2λJ(w) −B(z, f, w). (3.5.16)

Using the elementary inequality |ab| ≤ a2 + 1
4b

2, we get an estimate

|B(z, f, w)| =
∣∣∣∣∫

Ω

(
∂2f

∂x2

∂2z

∂x2 +
∂2f

∂y2

∂2z

∂y2 − 2
∂2f

∂x∂y

∂2z

∂x∂y

)
w dxdy

∣∣∣∣
≤
∫

Ω

[(
∂2f

∂x2

)2

+
(
∂2f

∂y2

)2

+ 2
(
∂2f

∂x∂y

)2
]
dx dy+

+
1
4

∫
Ω

[(
∂2z

∂x2

)2

+
(
∂2z

∂y2

)2

+ 2
(
∂2z

∂x∂y

)2
]
w2 dx dy.

Integrating by parts in the expression for a(f, f) gives

a(f, f) =
∫

Ω

[(
∂2f

∂x2

)2

+
(
∂2f

∂y2

)2

+ 2
(
∂2f

∂x∂y

)2
]
dx dy

and thus, from (3.5.16), it follows that

a(w,w) ≤ 2λJ(w) +
1
4

∫
Ω

[(
∂2z

∂x2

)2

+
(
∂2z

∂y2

)2

+ 2
(
∂2z

∂x∂y

)2
]
w2 dx dy.

(3.5.17)
Now we need a lemma which will be proved later.
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Lemma 3.5.7. On the surface S = {w | J(w) = 1} in EPC , the functional

I1(w) = a(w,w) − 1
4

∫
Ω

[(
∂2z

∂x2

)2

+
(
∂2z

∂y2

)2

+ 2
(
∂2z

∂x∂y

)2
]
w2 dx dy

has finite minimum denoted by 2λ∗∗.

We are continuing the proof. From this lemma, it follows that

I1(w) ≥ 2λ∗∗J(w)

since all of the functionals are homogeneous with respect to w of order 2.
Thus, from (3.5.17), we get

(2λ∗∗ − 2λ)J(w) ≤ 0,

from which it follows that if λ ≤ λ∗∗ then

J(w) ≤ 0.

This is possible only at w = 0, and the proof is complete.

Proof of Lemma 3.5.7. Assume {wn} is a minimizing sequence of I1(w)
on S and, by contradiction, that the minimum on S is not finite, i.e.,
I1(wn) → −∞ as n → ∞. It is quite obvious that ‖wn‖EP

→ ∞.
Define w∗

n = wn/‖wn‖EP
. We can consider the sequence {w∗

n} to be
weakly convergent to an element w∗

0 ∈ EPC . In this case

J(wn) = ‖wn‖2
EP
J(w∗

n)

so
J(w∗

n) = J(wn)/‖wn‖2
EP

→ 0 as n → ∞.

Since J is weakly continuous then J(w∗
0) = 0 and thus w∗

0 = 0. This means
that w∗

n ⇀ 0.
By the imbedding theorem we get

sup
Ω

|w∗
n(x, y)| → 0

and so

an =
∫

Ω

[(
∂2z

∂x2

)2

+
(
∂2z

∂y2

)2

+ 2
(
∂2z

∂x∂y

)2
]

(w∗
n)2 dx dy → 0 as n → ∞.

Thus

lim
n→∞ I1(wn) = lim

n→∞ ‖wn‖2
EP

(
1 − 1

4
an

)
= +∞,

a contradiction. Similar considerations demonstrate that a minimizing se-
quence {wn} of I1 is bounded. Then there is a subsequence that converges
weakly to an element w0. This element belongs to S since J(w) is weakly
continuous. The structure of I1 provides that I1(w0) = λ∗∗.
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As a result of Theorem 3.5.2 we get the estimates

−∞ < λ∗∗ ≤ λl ≤ λ∗ ≤ λE < ∞. (3.5.18)

From the statement of Lemma 3.5.7, it is seen that λ∗∗ can be defined as
the lowest eigenvalue of the boundary value problem

grad I1(w) = 2λ gradJ(w). (3.5.19)

Let us consider a particular case of a von Kármán plate. Here z(x, y) = 0
and thus the problem (3.5.19) takes the form

grad(a(w,w)) = 2λ gradJ(w).

But the equation (3.5.9) determining the λE for the plate coincides with
this one as f1 = Lw = 0 for a plate. Thus λE = λ∗∗ and (3.5.18) states
that λl = λE for the plate. This implies an important

Theorem 3.5.3. In the case of a plate (z(x, y) = 0), under the conditions
of Theorem 3.5.1, the equality λl = λE is satisfied. In other words, for
λ ≤ λE there is a unique generalized solution, w = 0, of the problem under
consideration; if λ > λE then there is another solution of the problem, at
which the functional of total energy of the plate is strictly negative.

This theorem establishes the possibility of applying Euler’s method of
linearization to the problem of stability of a plate.

We note that many works (not mentioned here) are devoted to math-
ematical questions in the theory of von Kármán’s plates and shells. The
corresponding boundary value problems of the theory are a touchstone of
abstract nonlinear mathematical theory because of their importance in ap-
plications, as well as their not too complicated form.

3.6 The Nonlinear Problem of Equilibrium of the
Theory of Elastic Shallow Shells

We consider another simple modification of the nonlinear theory of elastic
shallow shells when the geometry of the mid-surface of the shell is identified
with the geometry of a plane. This modification of the theory is widely
applied in engineering calculations. Nonlinear theory of shallow shells in
curvilinear coordinates is considered in [26] in detail.

We express the equations describing the behavior of the shell in a nota-
tion which is commonly used along with this version of the theory. Namely,
we let x, y denote the coordinates on the plane that is identified with the
mid-surface of the shell, u, v denote the tangential components of the vector
of displacements of the mid-surface, w denote the transverse displacement
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of the mid-surface, and subscripts x, y denote partial derivatives with re-
spect to x and y. The equations of equilibrium of the shell are

D∇4w +N1(k1 − wxx) +N2(k2 − wyy) − 2N12wxy − F = 0, (3.6.1)

∇2u+ (1 + µ)/(1 − µ)(ux + vy)x +
+ 2/(1 − µ)[(k1w)x + wxwxx + µ(k2w)x + µwywxy] +
+ wywxy + wxwyy = 0,

∇2v + (1 + µ)/(1 − µ)(ux + vy)y +
+ 2/(1 − µ)[(k2w)y + wywyy + µ(k1w)y + µwxwxy] +
+ wxwxy + wywxx = 0, (3.6.2)

D,E, µ being the elastic constants, 0 < µ < 1/2. We consider the shell
under the action of a transverse load F . The components of the tangential
strain tensor are

ε1 = ux + k1w +
1
2
w2

x, ε2 = vy + k2w +
1
2
w2

y, ε12 = uy + vx + wxwy.

(3.6.3)
Let us formulate the conditions under which we justify application of

Ritz’s method to a boundary value problem for the shell, and so for the
finite element method as well, and establish an existence theorem.

We suppose Ω, the domain occupied by the shell, satisfies the same condi-
tions we imposed earlier for the von Kármán plate. Let the shell be clamped
against the transverse translation at three points (xi, yi), i = 1, 2, 3, that
do not lie on the same straight line:

w(xi, yi) = 0. (3.6.4)

It is sufficient (but not necessary) to assume that

w
∣∣
Γ1

= 0 (3.6.5)

holds on a portion Γ1 of the boundary.
Let us call C4 the set of functions w belonging to C(4)(Ω) and satisfying

the conditions (3.6.4)–(3.6.5).
For the tangential displacements u, v, the minimal restrictions in this

consideration must be such that Korn’s inequality of two-dimensional elas-
ticity holds. That is (see Mikhlin [19]), we must have∫

Ω
(u2 + v2 + u2

x + u2
y + v2

x + v2
y) dx dy ≤ m

∫
Ω
[u2

x + (uy + vx)2 + v2
y] dx dy.

(3.6.6)
One of the possible restrictions under which (3.6.6) holds for all u, v with
the unique constant m is

u
∣∣
Γ2

= 0, v
∣∣
Γ2

= 0, (3.6.7)
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Γ2 being some part of the boundary of Ω.
Let us introduce the set C2 of vector functions ω = (u, v) with the

components belonging to C(2)(Ω) and satisfying (3.6.7).
We may suppose that some part of the boundary of the shell is elastically

supported (the corresponding term of the energy of the system should be
included into the expression of the energy norm) or that on some part of the
boundary there is given a transverse load (here the term that is the work
of the load on the boundary must be included into the energy functional).
We will not place these conditions in the differential form; they are well
known and can be derived from the variational statement of the problem.
The presence of these conditions has no practical impact on the way in
which we consider the problem.

Let us introduce energy spaces. Let E1 be a subspace of W 1,2(Ω) ×
W 1,2(Ω) that is the completion of the set C2 in the norm of W 1,2(Ω) ×
W 1,2(Ω). The Korn inequality (3.6.6) implies that on E1 the following
norm is equivalent:

‖ω‖2
E1

=
Eh

2(1 − µ2)

∫
Ω
[e21 + e22 + 2µe1e2 +

1
2
(1 − µ)e212] dx dy,

where
e1 = ux, e2 = vy, e12 = uy + vx,

and h is the shell thickness.
E2, a subspace of W 2,2(Ω), is the completion of C4 in the norm of

W 2,2(Ω). On E2 there is an equivalent norm (the energy norm we intro-
duced for the problem of bending of the plate):

‖w‖2
E2

=
1
2
D

∫
Ω
[(∇2w)2 + 2(1 − µ)(w2

xy − wxxwyy)] dx dy.

The norms on Ei induce the inner products that are denoted with use of
the names of corresponding spaces. Denote E1 × E2 by E.

Definition 3.6.1. u = (u, v, w) ∈ E is called a generalized solution of
the problem of equilibrium of a shallow shell if for an arbitrary δu =
(δu, δv, δw) ∈ E it satisfies the equation∫

Ω
(M1δκ1 +M2δκ2 + 2M12δχ+N1δε1 +N2δε2 +N12δε12) dx dy

=
∫

Ω
Fδw dx dy +

∫
∂Ω
fδw ds, (3.6.8)

where

M1 = D(κ1 + µκ2), M2 = D(κ2 + µκ1), M12 = D(1 − µ)χ,
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N1 =
Eh

1 − µ2 (ε1 + µε2), N2 =
Eh

1 − µ2 (ε2 + µε1), N12 =
Eh

2(1 + µ)
ε12,

κ1 = −wxx, κ2 = −wyy, χ = −wxy,

f being the external load on the edge of the shell.

We note that on the part of the boundary where δw = 0, it is not
necessary to show f . However we shall assume that on this part of the
boundary the function f = 0.

It is seen that all the stationary points of the energy functional

I(u) = ‖w‖2
E2

+
1
2

∫
Ω
(N1ε1 +N2ε2 +N12ε12) dx dy−

−
∫

Ω
Fw dx dy −

∫
∂Ω
fw ds (3.6.9)

are solutions to (3.6.8) since moving all the terms of (3.6.8) to the left-hand
side we get on the left in (3.6.8) the expression for the first variation of the
functional I(u).

Let us note that for the correctness of Definition 3.6.1 it is necessary to
impose an additional requirement: the terms∫

Ω
Fδw dx dy +

∫
∂Ω
fδw ds

must make sense for any δw ∈ E2. The set of these loads is called E∗. By
Sobolev’s imbedding theorems, sufficient conditions for the loads to belong
to E∗ are:

F = F0 + F1

where F0 ∈ L(Ω) and F1 is a finite sum of δ-functions (point transverse
forces);

f = f0 + f1

where f0 ∈ L(∂Ω) and f1 is a finite sum of δ-functions (point transverse
forces on ∂Ω). Under these conditions, the functional∫

Ω
Fδw dx dy +

∫
∂Ω
fδw ds

is linear and continuous in δw ∈ E2.
By the Riesz representation theorem there exists the unique element

g ∈ E2 such that∫
Ω
Fδw dx dy +

∫
∂Ω
fδw ds = (g, δw)E2 . (3.6.10)
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Now we can represent I(u) in a more compact form:

I(u) = ‖w‖2
E2

+
1
2

∫
Ω
(N1ε1 +N2ε2 +N12ε12) dx dy − (g, w)E2 . (3.6.11)

Let us find the tangential displacements u1, u2 through w. For this con-
sider the equation∫

Ω
(N1δε1 +N2δε2 +N12δε12) dx dy = 0

in E1. Reasoning as was done earlier, we can easily establish that this
equation is uniquely solvable in E1 with respect to ω = (u1, u2); the solution
can be written as

ω = G(w),

where G is a completely continuous operator. Let us put this ω into the
expression of I(u). After this substitution, the functional I(u) depends only
on w; it is denoted by ℵ(w). Standard reasoning leads us to the statement
that any stationary point of ℵ(w) is a generalized solution of the problem
under consideration.

The functional ℵ(w) has a structure that is suitable for application of
Theorem 3.3.4. To justify the Ritz method it is enough to show that ℵ(w)
is growing. Let us demonstrate this.

Lemma 3.6.1. Let the external load belong to E∗. Then ℵ(w) is growing;
that is, ℵ(w) → ∞ when ‖w‖E2 → ∞.

Proof. The proof follows from considering the form of ℵ(w). Indeed, under
the above assumptions, we have

N1ε1 +N2ε2 + 2N12ε12 ≥ 0.

Then
|(g, δw)E2 | ≤ ‖g‖E2‖w‖E2 ,

so
ℵ(w) ≥ ‖w‖2

E2
− ‖g‖E2‖w‖E2 .

From this the lemma follows.

Thus we have

Theorem 3.6.1. Let the conditions of Lemma 3.6.1 hold. Then

(i) there is a generalized solution of the problem of equilibrium of the
shell that belongs to E2 and admits a minimum of the functional
ℵ(w);

(ii) any sequence {wn} minimizing the functional ℵ(w) in E2 contains a
subsequence that converges strongly to a generalized solution of the
problem;
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(iii) the equations of the Ritz method (and thus of Galerkin’s method and
so of any conforming modification of the finite element method) have
a solution in each approximation; the set of approximations contains
a subsequence that converges strongly to a generalized solution of the
problem in E2; moreover, any weakly converging subsequence of the
Ritz approximations converges strongly to a generalized solution of
the problem.

3.7 Degree Theory

This is only a sketch of degree theory of a map, which will be used in what
follows. We begin with an illuminating example.

Let f(z) be a function holomorphic on a closed domain D of the complex
plane, and let ∂D, the boundary of D, be smooth and let it not contain
zeros of f(z). Then, as is well known, the number defined by the integral

n =
∮

∂D

f ′(z)
f(z)

dz

is equal to the number of zeros of f(z) inside D with regard for their
multiplicity.

This is extended to more general classes of maps; this is the so-called
degree theory, a full presentation of which can be found in Schwartz [21].

The degree of a finite-dimensional vector-field Φ(x) : Rn → Rn, originally
due to L.E.J. Brouwer, is defined as follows. Let Φ(x) = (Φ1(x), . . . ,Φn(x))
be continuously differentiable on a bounded open domain D with the
boundary ∂D in Rn. Suppose p ∈ Rn does not belong to ∂D, then the set
Φ−1(p), the preimage of p inD, is discrete and, finally, at each x ∈ Φ−1(p),
the Jacobian

JΦ(x) = det
(
∂Φi

∂xj

)
does not vanish. Then the degree of Φ with respect to p and D is

deg(p,Φ, D) =
∑

Φ(x)=p
x∈D

signJΦ(x)

where sign JΦ(x) is the signum of JΦ(x).
If deg(p,Φ, D) �= 0, then there are solutions of the equation Φ(x) = p

in D. If p /∈ Φ(D) then deg(p,Φ, D) = 0 and so deg(p,Φ, D) determines,
in a certain way, the number of solutions of the equation Φ(x) = p.

If there are points x at which Φ(x) = p and JΦ(x) = 0, then we can
introduce the degree of the map using the limit passage. We can always
take a sequence of points pk → p such that JΦ(x) �= 0 at any x ∈ Φ−1(pk);
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the degree of Φ is now defined by

deg(p,Φ, D) = lim
k→∞

deg(pk,Φ, D).

It is shown that this number does not depend on the choice of the sequence
{pk} and also characterizes the number of solutions of the equation Φ(x) =
p in D.

The next step of the theory is to state it for Φ(x) being of C(D) (each
of the components of Φ(x) being of C(D)). This is done by using a limit
passage. Namely, for Φ(x), there is a sequence {Φk(x)} such that Φk(x) ∈
C(1)(D) and each component of Φk(x) converges uniformly on D to a
corresponding component of Φ(x). Then as is shown, there exists

lim
k→∞

deg(p,Φk, D)

which does not depend on the choice of {Φk(x)}; it is, by definition, the
degree of Φ(x) with respect to p and D.

As there is a one-to-one correspondence between Rn and n-dimensional
real Banach space, the notion of degree of a map is transferred to continuous
maps in the latter space. Moreover, it is seen how it can be determined for
a continuous map whose range is a finite-dimensional subspace of a Banach
space.

In the case of general operator in a Banach space, the notion was ex-
tended to operators of the form I + F with a compact operator F on a
real Banach space X by J. Leray and J. Schauder [15]. To do this, they
introduce an approximate operator as follows.

Let D be a bounded open domain in X with the boundary ∂D. As
F is a compact operator, F (D), the image of D, is compact. So, by the
Hausdorff criterion on compactness, there is a finite ε-net Nε = {xk | xk ∈
F (D); k = 1, . . . , n}, such that for every x ∈ D there is an integer k such
that ‖F (x) − xk‖ < ε. Finally, the approximate operator Fε is defined by

Fε(x) =
∑n

k=1 µk(x)xk∑n
k=1 µk(x)

, x ∈ D

where µk(x) = 0 if ‖F (x) − xk‖ > ε and µk = ε− ‖F (x) − xk‖ if ‖F (x) −
xk‖ ≤ ε. This operator is called the Schauder projection operator.

It is easily seen that the range of Fε(x) is a domain in a finite dimensional
subspace Xn of X, the operator Fε is continuous, and, moreover,

‖F (x) − Fε(x)‖ ≤ ε

when x ∈ D.
By the above, we can introduce the degree of I + Fε with respect to p

and Dn = D ∩Xn if p /∈ (I + Fε)(∂Dn). As is shown in Schwartz [21], for
sufficiently small ε > 0 the degree deg(p, I + Fε, Dn) is the same and thus
it is defined as the degree of the operator I + F with respect to p and D.
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The following properties of the degree of an operator I+F with compact
operator F hold:

1. If x+ F (x) �= p in D, then deg(p, I + F,D) = 0;

2. if deg(p, I +F,D) �= 0, then in D there is at least one solution to the
equation x+ F (x) = p;

3. deg(p, I,D) = +1 if p ∈ D;

4. if D = ∪iDi where the family {Di} is disjoint and ∂Di ⊂ ∂D, then

deg(p, I + F,D) =
∑

i

deg(p, I + F,Di);

5. deg(p, I + F,D) is continuous with respect to p and F ;

6. (invariance under homotopy) Let Φ(x, t) = x+ Ψ(x, t). Assume that
for every t ∈ [a, b] the operator Φ(x, t) is compact with respect to x ∈
X and continuous in t ∈ [a, b] uniformly with respect to x ∈ D. Then
the operators Ψa = Ψ(·, a) and Ψb = Ψ(·, b) are said to be compact
homotopic. Let Ψa and Ψb be compact homotopic and p �= x+Ψ(x, t)
for every x ∈ ∂D and t ∈ [a, b]; then

deg(p, I + Ψa, D) = deg(p, I + Ψb, D).

The sixth and third properties give a result that is frequently used to
establish existence of solution of the equation

x+ F (x) = 0. (3.7.1)

We formulate it as

Lemma 3.7.1. Assume F (x) is a compact operator in a Banach space X
and the equation x+ tF (x) = 0 has no solutions on a sphere ‖x‖ = R for
any t ∈ [a, b]. Then in the ball B = {x | ‖x‖ < R} there exists at least one
solution to (3.7.1) and

deg(0, I + F,B) = +1.

In the next section we demonstrate an application of the lemma.

3.8 Steady-State Flow of Viscous Liquid

Following I.I. Vorovich and V.I. Yudovich [27], we consider the steady-
state flow of a viscous incompressible liquid described by the Navier–Stokes
equations

ν∆v = (v · ∇)v + ∇p+ f , (3.8.1)
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∇ · v = 0. (3.8.2)

Let ν > 0. We are treating a problem with boundary condition

v
∣∣
∂Ω = α. (3.8.3)

From now on, we assume:

(i) Ω is a bounded domain in R2 or R3 whose boundary ∂Ω consists of r
closed curves or surfaces Sk, k = 1, . . . , r with continuous curvature.

(ii) There is a continuously differentiable vector-function

a(x) = (a1(x), a2(x), a3(x))

such that

ak(x) ∈ C(1)(Ω), ∇ · a = 0 in Ω, a
∣∣
∂Ω = α.

(iii) On each Sk, k = 1, . . . , r, we have∫
Sk

α · n dS = 0 (3.8.4)

where n is the unit outward normal at a point of Sk.

We note that the condition
r∑

k=1

∫
Sk

α · n dS = 0

is necessary for solvability of the problem.
Let H(Ω) be the completion of the set S0(Ω) of all smooth solenoidal

vector-functions u(x) satisfying the boundary condition, in the norm in-
duced by the scalar product

(u,v)H(Ω) =
∫

Ω
∇u · ∇v dΩ ≡

∫
Ω

rotu · rotv dΩ

and so each of the components of u(x) ∈ H(Ω) is of W 1,2(Ω). Thus in the
three dimensional case, the imbedding operator of H(Ω) into (Lp(Ω))3 is
continuous when 1 ≤ p ≤ 6 and compact when 1 ≤ p < 6; in the two
dimensional case, the imbedding operator is compact into (Lp(Ω))2 for any
1 ≤ p < ∞.

We assume

(iv) fk(x) ∈ Lp(Ω), p ≥ 6/5 in the three dimensional case (k = 1, 2, 3),
p > 1 in the two dimensional case (k = 1, 2).
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Definition 3.8.1. v(x) = a(x)+u(x) is called a generalized solution to the
problem (3.8.1)–(3.8.3) if u(x) ∈ H(Ω) and satisfies the integro-differential
equation

ν(u,Φ)H(Ω) = −
∫

Ω
[(u · ∇)u · Φ + (u · ∇)a · Φ + (a · ∇)u · Φ+

+ (a · ∇)a · Φ + ν rota · rotΦ + f · Φ] dΩ (3.8.5)

for any Φ ∈ H(Ω).

It is easily seen that if a(x) and u(x) belong to C(2)(Ω) then v(x) is a
classical solution to the problem (3.8.1)–(3.8.3).

Note that there are infinitely many vectors a(x) satisfying the assump-
tion (ii) if there is one, but the set of generalized solutions does not depend
on the choice of a(x).

To use Lemma 3.7.1, we reduce equation (3.8.5) to the operator form
u + F (u) = 0, defining F with use of the Riesz representation theorem
from the equality

ν(F (u),Φ)H(Ω) =
∫

Ω
[(u · ∇)u · Φ + (u · ∇)a · Φ + (a · ∇)u · Φ+

+ (a · ∇)a · Φ + ν rota · rotΦ + f · Φ] dΩ. (3.8.6)

The estimates needed to prove that the right-hand side of (3.8.6) is a con-
tinuous linear functional in H(Ω) with respect to Φ follow from traditional
estimates of the terms using the Hölder inequality. But we now show a
sharper result; namely,

Lemma 3.8.1. F is a completely continuous operator in H(Ω).

Proof. Let {un(x)} be a weakly convergent sequence in H(Ω). Then it
converges strongly in (L4(Ω))k (k = 2 or 3). From (3.8.6), we get

ν|(F (um) − F (un),Φ)H(Ω)| =

=
∣∣∣ ∫

Ω
{[(um − un) · ∇]um · Φ − (un · ∇)(um − un) · Φ+

+ [(um − un) · ∇]a · Φ + (a · ∇)(um − un) · Φ} dΩ
∣∣∣

≤ M‖um − un‖L4(Ω)‖Φ‖H(Ω)

with a constant M which does not depend on m,n, or Φ. Setting

Φ = F (um) − F (un)

in the inequality, we obtain

ν‖F (um) − F (un)‖H(Ω) ≤ M‖um − un‖(L4(Ω))k → 0

when m,n → ∞, and so F is completely continuous.
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From Definition 3.8.1 it follows that

Lemma 3.8.2. A generalized solution of the problem under consideration
in the sense of Definition 3.8.1 satisfies the operator equation

u + F (u) = 0; (3.8.7)

conversely, a solution to (3.8.7) is a generalized solution of the problem.

By Lemma 3.7.1, it now suffices to show that all solutions of the equation
u+tF (u) = 0, for all t ∈ [0, 1], lie in a sphere ‖u‖H(Ω) ≤ R for some R < ∞.
First we show this in the simpler case of homogeneous boundary condition
(3.8.3). Here α = 0 and thus a(x) = 0.

Theorem 3.8.1. The problem (3.8.1)–(3.8.3) with α = 0 has at least
one generalized solution in the sense of Definition 3.8.1. Each generalized
solution u(x) is bounded, ‖u‖H(Ω) < R for some R < ∞ and the degree of
I + F with respect to 0 and D = {u ∈ H(Ω) | ‖u‖ < R} is +1.

Proof. As was said, it suffices to show an a priori estimate for solutions to
the equation u + tF (u) = 0 for t ∈ [0, 1]. For a solution, there holds the
identity

(u + tF (u),u)H(Ω) = 0

or, the same,

ν(u,u)H(Ω) + t

∫
Ω
(u · ∇)u · u dΩ = −t

∫
Ω

f · u dΩ.

Integration by parts gives∫
Ω
(u · ∇)u · u dΩ =

1
2

∫
Ω

∑
k

uk
∂

∂xk
(u · u) dΩ

= −1
2

∫
Ω
(u · u)(∇ · u) dΩ = 0 (3.8.8)

since ∇ · u = 0 and thus, for a solution u, we get

|ν(u,u)H(Ω)| =
∣∣∣∣t ∫

Ω
f · u dΩ

∣∣∣∣ ≤ νR

2
‖f‖Lp(Ω)‖u‖H(Ω)

with some constant R, or
‖u‖H(Ω) < R.

This completes the proof.

Now we consider the more complicated case of nonhomogeneous bound-
ary conditions (3.8.3). We need some auxiliary results.

Let ωε be a domain in Ω which consists of points covered by all inward
normals to ∂Ω of the length ε. For sufficiently small ε > 0, these normals
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do not intersect and thus in ωε we can use a coordinate system pointing
out for a x ∈ ωε a point Q on ∂Ω and a number s, the distance from Q to
x along the corresponding normal. So for a function g(x) given on ωε, we
write down g(s,Q).

Lemma 3.8.3. There is a solenoidal vector function aε(x) ∈ (C(1)(Ω))k

such that aε(x) = 0 in Ω \ ωε,

aε(x)
∣∣
∂Ω = α, and |aε(x)| ≤ M1/ε in Ω (3.8.9)

with a constant M1 not depending on ε.

Proof. Let us introduce a function q(x) by

q(s,Q) =

{
(ε2 − s2)2/ε4, 0 ≤ s ≤ ε,

0, s > ε.

Let a(x) be a solenoidal vector-function satisfying the assumption (ii) of the
beginning of the section. Under the taken assumptions, there is a vector-
function p(x) such that

a(x) = rotp(x).

It is seen that the vector function aε(x) = rot(qp) is needed.
Note that in the plane case, this is a vector (0, 0, qψ) where ψ(x1, x2) is

the flow function of a(x).

Lemma 3.8.4. For u ∈ H(Ω), we have∫
ωε

|u|2 dΩ ≤ M2
2 ε

2
∫

ωε

∑
i,j

∣∣∣∣ ∂ui

∂xj

∣∣∣∣2 dΩ (3.8.10)

with a constant M2 not depending on u or ε.

Proof. We show (3.8.10) for a smooth function. The limit passage will prove
the general case. So for points of ωε we have

u(s,Q) =
∫ s

0

∂u(t, Q)
∂t

dt.

By the Cauchy inequality∫ ε

0
|u(t, Q)|2 dt =

∫ ε

0

∣∣∣∣∫ s

0

∂u(t, Q)
∂t

dt

∣∣∣∣2 ds
≤
∫ ε

0
s

∫ s

0

∣∣∣∣∂u(t, Q)
∂t

∣∣∣∣2 dt ds
≤ ε2

2

∫ ε

0

∣∣∣∣∂u(t, Q)
∂t

∣∣∣∣2 dt.
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It is easily seen that for any g(x)

m1

∫ ε

0

∫
∂Ω
g2(s,Q) ds dS ≤

∫
ωε

g2 dΩ ≤ m2

∫ ε

0

∫
∂Ω
g2(s,Q) ds dS

and so ∫
ωε

|u|2 dΩ ≤ m2

∫
∂Ω

∫ ε

0
|u(s,Q)|2 ds dS

≤ m2

∫
∂Ω

ε2

2

∫ ε

0

∣∣∣∣∂u∂t
∣∣∣∣2 dt dS

≤ m2

2m1
ε2
∫

ωε

∑
i,j

∣∣∣∣ ∂ui

∂xj

∣∣∣∣2 dΩ.

To apply degree theory to the problem under consideration, it remains
to establish

Lemma 3.8.5. All solutions of the equation

u + tF (u) = 0 (3.8.11)

for all t ∈ [0, 1], are in a ball ‖u‖H(Ω) < R whose radius R depends only
on f , ∂Ω, a, and ν.

Proof. Suppose that the set of solutions to (3.8.11) is unbounded. This
means there is a sequence {tk} ⊂ [0, 1] and a corresponding sequence {uk}
such that uk + tkF (uk) = 0 and

‖uk‖H(Ω) → ∞ as k → ∞. (3.8.12)

Without loss of generality, we can consider {tk} to be convergent to t0 ∈
[0, 1] and, moreover, the sequence {u∗

k}, u∗
k = uk/‖uk‖H(Ω), to be weakly

convergent to an element u0 ∈ H(Ω) since {u∗
k} is bounded.

Let us consider the identity (uk + tkF (uk),uk) = 0, namely,

−ν‖uk‖2
H(Ω) = tk

∫
ωε

(aε · ∇)uk · uk dΩ +

+ tk

∫
Ω
[(aε · ∇)aε · uk + ν rotaε · rotuk + f · uk] dΩ

(3.8.13)

which is valid because of (3.8.8) and a similar equality∫
ωε

(uk · ∇)aε · uk dΩ = 0.
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The first integral on the right-hand side of (3.8.13) is a weakly continuous
functional with respect to uk, and for the second integral we have∣∣∣∣∫

Ω
[(aε · ∇)aε · uk + ν rotaε · rotuk + f · uk] dΩ

∣∣∣∣ ≤ M3‖uk‖H(Ω)

where M3 does not depend on uk. Dividing both sides of (3.8.13) by
‖uk‖2

H(Ω), it follows that

−ν = t0

∫
ωε

(aε · ∇)u0 · u0 dΩ. (3.8.14)

We note that this holds for any small positive ε < ε0 with a fixed ε0 for
which the above construction of the frame for ωε0 is valid. To prove it, take
ε = η < ε0

wk = uk + aε0 − aη

and consider the identity

(uk + tkF (uk),wk)H(Ω) = 0

which takes the form

−ν‖wk‖2
H(Ω) = tk

∫
ωη

(aη · ∇)wk · wk dΩ +

+ tk

∫
Ω
[(aη · ∇)aη · wk + ν rotaη · rotwk + f · wk] dΩ.

Divide this equality by ‖uk‖2
H(Ω) term by term. Consider the sequence

w∗
k = u∗

k + (aε − aη)/‖uk‖H(Ω).

Since ‖uk‖H(Ω) → ∞, we have (aε − aη)/‖uk‖H(Ω) → 0 strongly. Since
‖u∗

k‖H(Ω) = 1, we have that ‖w∗
k‖H(Ω) → 1. Besides, it is clear that w∗

k →
u0 weakly and thus we get the needed equality (3.8.14) again.

Now we show that the limit of the integral on the right-hand side of
(3.8.14) is zero. Thanks to (3.8.9) and (3.8.10), we obtain∣∣∣∣∫

ωε

(aε · ∇)u0 · u0 dΩ
∣∣∣∣ ≤ M1M2

∫
ωε

| rotu0|2 dΩ → 0

as ε → 0. Since ν > 0, we have a contradiction which completes the proof.

Now we can formulate

Theorem 3.8.2. Under assumptions (i)–(iv), there exists at least one gen-
eralized solution of the problem (3.8.1)–(3.8.3) in the sense of Definition
3.8.1. All generalized solutions of the problem are bounded in the energy
space and the degree of the operator I + F of the problem with respect to
zero and a ball about zero with sufficiently large radius is +1.
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Problem 3.8.1. Check which of the assumptions (i)–(iv) are not necessary
in proving Theorem 3.8.1.



Appendix
Hints for Selected Problems

Problem 1.1.1 (page 8)
Setting y = x in the triangle inequality we obtain d(x,x) ≤ d(x, z)+d(z,x).
By axioms D2 and D3 then, we have 0 ≤ 2d(x, z).

Problem 1.1.2 (page 8)
The metrics dS and dp are equivalent with

1 ≤ dp(x,y)
dS(x,y)

≤ N1/p,

because

max
1≤i≤n

|xi − yi| =
(

max
1≤i≤n

|xi − yi|p
)1/p

≤
(

n∑
i=1

|xi − yi|p
)1/p

≤
(

n∑
i=1

(
max

1≤j≤n
|xj − yj |

)p
)1/p

= N1/p max
1≤j≤n

|xj − yj |.
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The metrics dE and dk are equivalent with

(
min

1≤i≤n
ki

)1/2

≤ dk(x,y)
dE(x,y)

≤
(

max
1≤i≤n

ki

)1/2

.

Problem 1.1.3 (page 11)
Axioms D1–D3 are obviously fulfilled in each case. For the expression
(1.1.3), axiom D4 holds because

|xi − yi| ≤ |xi − zi| + |zi − yi|

for each i, and therefore

d(x,y) = sup
i

|xi − yi|
≤ sup

i
(|xi − zi| + |zi − yi|)

≤ sup
i

|xi − zi| + sup
i

|zi − yi|
= d(x, z) + d(z,y).

To verify D4 for the expressions (1.1.4) and (1.1.5), we need the Minkowski
inequality

( ∞∑
i=1

|ai + bi|p
)1/p

≤
( ∞∑

i=1

|ai|p
)1/p

+

( ∞∑
i=1

|bi|p
)1/p

.

For (1.1.4) we have, starting with the triangle inequality,

d(x,y) =

( ∞∑
i=1

|xi − zi + zi − yi|p
)1/p

≤
( ∞∑

i=1

[|xi − zi| + |zi − yi|]p
)1/p

≤
( ∞∑

i=1

|xi − zi|p
)1/p

+

( ∞∑
i=1

|zi − yi|p
)1/p

= d(x, z) + d(z,y).
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For (1.1.5) we have

d(x,y) =

( ∞∑
k=1

k2|xk − zk + zk − yk|2
)1/2

≤
( ∞∑

k=1

k2 (|xk − zk| + |zk − yk|)2
)1/2

=

( ∞∑
k=1

(k|xk − zk| + k|zk − yk|)2
)1/2

≤
( ∞∑

k=1

(k|xk − zk|)2
)1/2

+

( ∞∑
k=1

(k|zk − yk|)2
)1/2

= d(x, z) + d(z,y).

Problem 1.2.1 (page 13)
The only aspect of D1–D3 worthy of close examination is the implication

d(f, g) = 0 =⇒ f = g

of D2. Note that d(f, g) = 0 implies

max
x∈Ω

|Dαf(x) −Dαg(x)| = 0 for all α such that |α| ≤ k.

In particular this holds for α = (0, . . . , 0), giving

max
x∈Ω

|f(x) − g(x)| = 0.

This implies that f(x) = g(x) for all x ∈ Ω. Fulfillment of D4 follows from
the triangle inequality

|Dαf(x) −Dαg(x)| ≤ |Dαf(x) −Dαh(x)| + |Dαh(x) −Dαg(x)|

for real numbers.

Problem 1.2.2 (page 14)
The constant functions f(x) ≡ 0 and g(x) ≡ 1 on [0, 1] are not equal, but
the proposed distance function would give d(f, g) = 0. Hence d is not a
metric (cf., axiom D2).

To generate a metric space under this metric, we could narrow our con-
sideration to the functions satisfying a condition such as f(0) = 0.
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Problem 1.3.1 (page 15)
Requested here is a general setup of the problem; we cannot, in the nar-
row sense, “find” a solution. Rather, we can investigate the setup of the
variational problem in the form of a boundary value problem for a partial
differential equation. Of course, from a logical viewpoint the initial setup
as a problem of minimum is neither better nor worse than the latter one,
since in both cases we cannot find explicit solutions in general. Historically,
however, the theory of partial differential equations was well developed and
variational problems were always reduced to the solution of corresponding
boundary value problems.

Let us suppose that u has more smoothness than is required by the
problem, namely that u belongs to C(2). We employ the usual methods
of the calculus of variations. In the functional J(u) we consider variations
u = u(x, y) + tϕ(x, y) where t is a real variable and ϕ|∂Ω = 0. For fixed
ϕ the functional J(u + tϕ) can be regarded as an ordinary function of t,
taking its minimum at t = 0. It is necessary that

0 =
d

dt
J(u+ tϕ)

∣∣
t=0

=
∫∫

Ω

[(
∂u

∂x
+ t

∂ϕ

∂x

)
∂ϕ

∂x
+
(
∂u

∂y
+ t

∂ϕ

∂y

)
∂ϕ

∂y
− fϕ

] ∣∣∣∣
t=0

dx dy

=
∫∫

Ω

[
∂u

∂x

∂ϕ

∂x
+
∂u

∂y

∂ϕ

∂y
− fϕ

]
dx dy.

We now integrate by parts using the formula∫∫
Ω
u
∂v

∂xi
dx dy = −

∫∫
Ω

∂u

∂xi
v dx dy +

∮
∂Ω
uv ni ds,

where s parameterizes ∂Ω and ni is the cosine of the angle between the
outward normal n to Ω and the xi axis (xi = x, y for i = 1, 2, respectively).
This gives us

−
∫∫

Ω

[
∂2u

∂x2 +
∂2u

∂y2 + f

]
ϕdx dy +

∮
∂Ω

[
∂u

∂x
nx +

∂u

∂y
ny

]
ϕds = 0.

Because ϕ|∂Ω = 0, we have∫∫
Ω

[
∂2u

∂x2 +
∂2u

∂y2 + f

]
ϕdx dy = 0

for any “admissible” ϕ. It follows (by the “fundamental lemma”) that

∂2u

∂x2 +
∂2u

∂y2 + f = 0.
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This is Poisson’s equation for the unknown u. It can be argued that this
equation continues to hold even when the condition ϕ|∂S = 0 is removed,
allowing us to write ∮

∂Ω

[
∂u

∂x
nx +

∂u

∂y
ny

]
ϕds = 0

and thereby deduce the natural boundary condition[
∂u

∂x
nx +

∂u

∂y
ny

] ∣∣∣∣
∂Ω

=
∂u

∂n

∣∣∣∣
∂Ω

= 0.

Problem 1.5.1 (page 19)
The functions

fn(x) =


0, 0 ≤ x ≤ 1

2 ,

nx− n
2 ,

1
2 ≤ x ≤ 1

2 + 1
n ,

1 1
2 + 1

n ≤ x ≤ 1,
(n = 2, 3, 4, . . .)

are each continuous on [0, 1]. To see that {fn} is a Cauchy sequence, we
assume m > n and calculate

d(fn, fm) =
∫ 1

2+ 1
m

1
2

∣∣∣(mx− m

2

)
−
(
nx− n

2

)∣∣∣ dx+

+
∫ 1

2+ 1
n

1
2+ 1

m

∣∣∣1 −
(
nx− n

2

)∣∣∣ dx
=

1
2

(
1
n

− 1
m

)
→ 0 as m,n → ∞.

However, we have fn → f where

f =

{
0, 0 ≤ x ≤ 1

2 ,

1, 1
2 < x ≤ 1,

because

d(fn, f) =
∫ 1

2+ 1
n

1
2

∣∣∣1 −
(
nx− n

2

)∣∣∣ dx =
1
2n

→ 0 as n → ∞.

Problem 1.9.1 (page 28)
We can show that any norm is equivalent to the Euclidean norm ‖·‖e. Take
any basis ik that is orthonormal in the Euclidean inner product. We can
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express any x as x =
∑n

k=1 ckik. Then

‖x‖e =

(
n∑

k=1

c2k

)1/2

.

For an arbitrary norm ‖ · ‖ we have

‖x‖ =

∥∥∥∥∥
n∑

k=1

ckik

∥∥∥∥∥ ≤
n∑

k=1

|ck|‖ik‖ ≤
n∑

k=1

 n∑
j=1

|cj |2
1/2

‖ik‖ = m‖x‖e

where m =
∑n

k=1 ‖ik‖ is finite. So one side is proved. For the other side,
consider ‖x‖ as a function of the n variables ck. Because of the above
inequality it is a continuous function in the usual sense. Indeed

|‖x1‖ − ‖x2‖| ≤ ‖x1 − x2‖ ≤ m‖x1 − x2‖e.

It is enough to show that on the sphere ‖x‖e = 1 we have inf ‖x‖ =
a > 0 (because of homogeneity of norms). Being a continuous function,
‖x‖ achieves its minimum on the compact set ‖x‖e = 1 at a point x0. So
‖x0‖ = a. If a = 0 then x0 = 0 and thus x0 does not belong to the unit
sphere. Thus a > 0 and for any x, ‖x‖/‖x‖e ≥ a.

Problem 1.9.2 (page 29)
By N3 with x replaced by x− y, we have ‖x‖ − ‖y‖ ≤ ‖x− y‖. Swapping
x and y we have, by N2, ‖y‖ − ‖x‖ ≤ ‖y − x‖ = ‖(−1)(x− y)‖ = ‖x− y‖.
Therefore ‖x− y‖ ≥ |‖x‖ − ‖y‖|, as desired.

Problem 1.9.3 (page 31)

‖x+ y‖2 + ‖x− y‖2 = (x+ y, x+ y) + (x− y, x− y)
= (x, x+ y) + (y, x+ y) + (x, x− y) − (y, x− y)

= (x+ y, x) + (x+ y, y) + (x− y, x) − (x− y, y)

= (x, x) + (y, x) + (x, y) + (y, y) +

+ (x, x) − (y, x) − (x, y) + (y, y)
= 2(x, x) + 2(y, y)

= 2‖x‖2 + 2‖y‖2.
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Problem 1.10.1 (page 44)∫∫
Ω
F (x, y) dx dy +

∑
k

Fk(xk, yk) +
∫

γ

Fl(x, y) ds = 0,∫∫
Ω
xF (x, y) dx dy +

∑
k

xkFk(xk, yk) +
∫

γ

xFl(x, y) ds = 0,∫∫
Ω
yF (x, y) dx dy +

∑
k

ykFk(xk, yk) +
∫

γ

yFl(x, y) ds = 0.

Problem 1.13.1 (page 54)
Let m → ∞ in the inequality d(xn, xn+m) ≤ qnd(x0, xm). The result is
less useful than (1.13.4) because the right member involves the unknown
quantity x∗.

Problem 1.13.2 (page 54)
We show that AN is a contraction for some N if A acts in C[0, T ] and is
given by

Ay(t) =
∫ t

0
g(t− τ)y(τ) dτ.

Let M be the maximum value attained by g(t) on [0, T ]. For any t ∈ [0, T ]
we have

|Ay2(t) −Ay1(t)| ≤
∫ t

0
|g(t− τ)| |y2(τ) − y1(τ)| dτ

≤ max
τ∈[0,t]

|g(t− τ)| max
τ∈[0,t]

|y2(τ) − y1(τ)|
∫ t

0
dτ

≤ max
τ∈[0,T ]

|g(t− τ)| max
τ∈[0,T ]

|y2(τ) − y1(τ)| t

= M td(y2, y1).

Then

|A2y2(t) −A2y1(t)| ≤
∫ t

0
|g(t− τ)| |Ay2(τ) −Ay1(τ)| dτ

≤ M ·M d(y2, y1)
∫ t

0
τ dτ

= M2 t2

1 · 2
d(y2, y1).

Continuing in this manner we can show that

|Aky2(t) −Aky1(t)| ≤ Mk t
k

k!
d(y2, y1)
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for any positive integer k and any t ∈ [0, T ]. Thus

d(Aky2 , A
ky1) = max

t∈[0,T ]
|Aky2(t) −Aky1(t)|

≤ max
t∈[0,T ]

Mk t
k

k!
d(y2, y1)

=
(MT )k

k!
d(y2, y1).

Finally, we choose N so large that (MT )N/N ! < 1.

Problem 1.15.1 (page 63)
Fix n ∈ N and let Pn

r denote the set of all polynomials of degree n having
rational coefficients. Denote by Q the set of all rational numbers. The set
Pn

r can be put into one-to-one correspondence with the countable set

Qn+1 = Q × Q × · · · Q︸ ︷︷ ︸
n+1 times

.

The set Pr of all polynomials having rational coefficients is given by

Pr =
∞⋃

n=0
Pn

r

and this is a countable union of countable sets.

Problem 1.17.1 (page 71)
Yes. M bounded in C(Ω) means

∃R such that ∀f ∈ M, ‖f‖C(Ω) = max
x∈Ω

|f(x)| ≤ R.

Based on (i) we can assert this with R = c.

Problem 1.22.2 (page 96)
Let xk, k = 1, . . . , n, be orthonormal. Then

n∑
k=1

αkxk = 0 =⇒
(

n∑
k=1

αkxk, xj

)
=

n∑
k=1

αk(xk, xj) = αj = 0

for j = 1, . . . , n.
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Problem 2.1.2 (page 123)
We have

‖AnBn −AB‖ = ‖AnBn −AnB +AnB −AB‖
= ‖An(Bn −B) + (An −A)B‖
≤ ‖An(Bn −B)‖ + ‖(An −A)B‖
≤ ‖An‖ · ‖Bn −B‖ + ‖An −A‖ · ‖B‖

where ‖An‖ is bounded since An is convergent.

Problem 2.4.1 (page 132)
Let A map an element x from the space (X, ‖ · ‖2) into the same element
x regarded as an element of the space (X, ‖ · ‖1). This operator is linear
and, by hypothesis (‖x‖1 ≤ c1‖x‖2) it is bounded (continuous), hence it is
closed. It is also one-to-one and onto. By Theorem 2.4.4, A−1 is continuous
on (X, ‖ · ‖1); this gives the inequality ‖x‖2 ≤ c2‖x‖1, as desired.

Problem 2.6.1 (page 140)
In order to invoke Arzelà’s theorem we first show that B takes L2(0, 1) into
C(0, 1). We have

|(Bf)(t) − (Bf)(t0)| ≤
∫ 1

0
|K(t, s) −K(t0, s)| |f(s)| ds

≤ max
s∈[0,1]

|K(t, s) −K(t0, s)|
∫ 1

0
|f(s)| ds

≤ max
s∈[0,1]

|K(t, s) −K(t0, s)|‖f‖L2(0,1)

by application of Schwarz’s inequality in the form

∫ 1

0
1 · |f(s)| ds ≤

(∫ 1

0
12 ds

)1/2(∫ 1

0
|f(s)|2 ds

)1/2

= ‖f‖L2(0,1).

By continuity of K we can make |(Bf)(t) − (Bf)(t0)| as small as desired
for sufficiently small |t− t0|, uniformly with respect to s.

Following the argument in the text, we show that B takes the unit ball
of L2(0, 1) into a precompact subset S of C(0, 1). First S is uniformly
bounded: by the inequality displayed above we have

‖(Bf)(t)‖C(0,1) ≤ max
t∈[0,1]

∫ 1

0
|K(t, s)| |f(s)| ds ≤ M‖f‖L2(0,1),
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where
M = max

t,s∈[0,1]
|K(t, s)|.

Equicontinuity follows from the inequality

|(Bf)(t+ δ) − (Bf)(t)| ≤ max
s∈[0,1]

|K(t+ δ, s) −K(t, s)|

on the unit ball in L2(0, 1), and the uniform continuity of K.
Finally, we observe that a precompact set in C(0, 1) is precompact in

L2(0, 1). Indeed, if S is precompact in C(0, 1) then every sequence {fj} ⊂ S
contains a Cauchy subsequence {fjk

}: for every ε > 0 there exists N such
that

‖fjm − fjn‖C(0,1) = max
x∈[0,1]

|fjm(x) − fjn(x)| < ε

for m,n > N . Then {fjk
} is also a Cauchy sequence in L2(0, 1):

‖fjm − fjn‖L2(0,1) =
(∫ 1

0
|fjm(x) − fjn(x)|2 dx

)1/2

≤ ε

for m,n > N .

Problem 3.1.1 (page 178)
Given f : Rm → Rn, we wish to examine the difference

f(x0 + h) − f(x0).

Let us introduce the standard orthonormal bases of Rm and Rn, respec-
tively:

ẽ1, . . . , ẽm, e1, . . . , en.

Then

f(x) =
n∑

i=1

fi(x) ei

and we have

f(x0 + h) − f(x0) =
n∑

i=1

[fi(x0 + h) − fi(x0)] ei.

But Taylor expansion to first order gives, for each i,

fi(x0 + h) − fi(x0) =
m∑

j=1

∂fi(x0)
∂xj

hj + o(‖h‖),
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where the hj are the components of h:

h =
m∑

j=1

hj ẽj .

So we identify

f ′(x0)(h) =
n∑

i=1

ei

m∑
j=1

∂fi(x0)
∂xj

hj ,

and observe that the right-hand side is represented in matrix-vector nota-
tion as

∂f1(x0)
∂x1

h1 + · · · + ∂f1(x0)
∂xm

hm

...
∂fn(x0)

∂x1
h1 + · · · + ∂fn(x0)

∂xm
hm

 =


∂f1(x0)

∂x1
· · · ∂f1(x0)

∂xm

...
. . .

...
∂fn(x0)

∂x1
· · · ∂fn(x0)

∂xm


h1

...
hm

 .
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pany, New York, 1978.

[5] Bramble, J.H., and Hilbert, S.R. Bounds for a class of linear functionals
with applications to Hermite interpolation. Numer. Math., 1971, 16,
362–369.

[6] Ciarlet, P.G. The Finite Element Method for Elliptic Problems. North
Holland Publ. Company, 1978.

[7] Ciarlet, P.G. Mathematical Elasticity, vol. 1–3. North Holland, 1988–
2000.

[8] Courant, R., and Hilbert, D. Methods of Mathematical Physics. Inter-
science Publishers, New York, 1953–62.

[9] Fichera, G. Existence theorems in elasticity (XIII.15), and Boundary
value problems of elasticity with unilateral constraints (YII.8, XIII.15,
XIII.6), in Handbuch der Physik YIa/2, C. Truesdell, ed., Springer–
Verlag, 1972.



232 References

[10] Friedrichs, K.O. The identity of weak and strong extensions of differ-
ential operators. Trans. Amer. Math. Soc., 1944, vol. 55, pp. 132–151.

[11] Gokhberg, I.Ts, and Krejn, M.G. Theory of the Volterra Operators in
Hilbert Space and Its Applications. Nauka, Moscow, 1967.

[12] Hardy, G.H., Littlewood, J.E., and Pólya, G. Inequalities. Cambridge
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