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Chapter 1

Analytic Preliminaries

1.1 Holder Continuity

If S2 C IR" is open and if a E (0.1], u : S2 -+ K is said to be Holder continuous with
exponent a on S2 if there is a constant C such that

(i) Iu(x) - u(y)I <- Clx - y1°

for every :r. y E Q. u is called locally Holder continuous on S2 with exponent a if
it is Holder continuous on each 0 CC S2, where S2 CC 12 means that the closure of
fl is a compact subset of Q. For the Hokler continuous functions on 0 we have a
semi-norm, called the Holder coefficient of it. defined by

lu]°;0 := sup Iu(x) - u(y)I
r#y,r,yE92 Ix - yI°

This Holder coefficient is not a norm because it is zero for any constant function:
it is characterized by being the smallest constant C such that (i) holds for every
x,y E fI. We will write C°'° (S2) for the bounded Holder continuous functions on 92.
The space CO-(S'2) becomes a Banach space in the norm

(ii) IuIO.°;n := Huh-(e) + 1u]°;

This can easily be checked with the aid of the Arzcla-Ascoli Lemma. Finally, we
call it Lipschitz continuous if it is Holder continuous with exponent 1.

Holder continuity turns out to be of fundamental importance in geometric analysis
and PDE. We mention here two facts about Holder continuity which give an initial
hint as to why this might be so:

(a) Scaling: If lu(x) - u(y)I < l3I x- y1 o for every x, y E S2 and if for given R > 0
we define the scaled function `u(x) = R-"u(Rx) for x E S2 := {R-'y : y E S2},
then lu(x) - u(y)l < ,31x - yl" for every x,y E S2. In fact we evidently have

1



2 Chapter 1. Analytic Preliminaries

[u]°;ii = [uJ°;n. Notice that other kinds of continuity do not have such nice "scaling
invariance" properties.

(b) Dyadic decay of oscillation: For real valued functions u defined on St C 1Rn
the oscillation is defined as

oscn u := sup u(x) - inf u(x).
=En XEO

If u : BR(xo) -+ IR With OSCB5(y) u < oc and if there is a fixed 0 E (0,
2)

such that

OSCBao(Y) U G
2

OSCB,(Y) U

f o r every y E BR/2(xo) and every p < 2, then u E C°,°(HR/2(xo)) with a = - logo,
and moreover

u o;BRro(=o) ! R Ce oscBx(=o) u U.

Proof: By induction we get from (ii) for k = 0, 1, 2,... the estimate

(1) 04CBokP(Y) u G Z k oSCBn(Y) U

valid for all y E BR/2(xo) and all p < R. . Now, for x with r :_ Ix - yI < i we can
choose an integer k such that gk < R < 9k. Using (1) with p = R/2, we get

Iv(x) - u(y)I < 2"k OscDk/2(Y) u <
2-k OSCB5(=o) u

9k" CBs(=o) U < 9-Q (2IxR
OSCB5(=o) u

provided a is chosen so that 0° = 1. Thus the claim is established. 0

The following result of Campanato is a nice characterization of those L2 functions
which are Holder continuous on a ball in IRn:

Lemma 1 Suppose u E L2(132R(xo)), a E (0, 11, /3 > 0 and

inf p-"
Ju-AI2<#2/R2°

AEI
B,,(Y)

for every ball B,(y) such that y E BR(xo) and p < R. Then there zs a Holder

continuous representative U for the L2-class of u with

Ii(x)-TIM 1 <-Cn.°/i(IxRyI)°, ex,yEBR(xo),

where Cn,,, depends only on n and a.
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Remark: Notice that, since fBB(Y) Iu - All = fB.(,,)(ul - 2Au + )2), it is easy to
check that the infimum on the left of (iii) is attained when, and only when, A has
the average value A,,p :_ (Wnp")-1 fBB(Y) u, where wn is the volume of the unit ball
in lR". We make frequent use of this in the sequel.

Proof: First note that

l
(1) \2/ "

lu - Y.v12 < 2"p " f Iu - AY.o12 < 2"/32 (R/2a
B1/2(Y) v(Y)

where 4, is the average of u over B,,(y) as in the above remark. Using the given
inequality with p/2 in place of p, we also have

(2) \2)
n

Iu - Av.p/212 < 2T02'R)2 .

Bn/2(Y)

Adding (1) and (2) and using the squared triangle inequality la - b12 < 21a - C12 +
21b - C12, we conclude that

(3) Iav.p - AY.p/2I
5 2n,.-1120

\ R/

provided that p:5 R and y E BR(xo). (we, = the volume of the unit ball in IR".)

Now for any integer v E {0, 1, 2.... } we can choose p = 2-"R, whereupon (3) gives

(4) lAY.R/21+1 - Av.R/2"I 5 2nwn
1/2 32-v0

Since 2-" is the v« term of a convergent geometric series, we see that the series
s defined by a = AY,R/2-) is absolutely convergent. But the j11'
partial sum sJ is just 4,2-,R - A,,R, so we have A.,,2--R exists, and we denote
this limit by AV. Using (4) again we see also that

(5) 1,\V,2--R - AYI 5 E IAY.R/2,+I - A,,R/vI 5

C depends only on n and a. Then combining (1) (with p = 2-"R) and (5),
and using the squared triangle inequality again, we conclude

" u-AY25CQ2 R ,(6) p f ( )
B,(v)

for p = 2-°R, v = 0, 1..... On the other hand for any p E (0, R] there is an integer
v > 0 such that 2-"-1R < p < 2-"R, and it evidently follows (since B2-.R(y) D
BB(y) for such v) that (6) holds (with 2n+2°C in place of C) for every p:5 R/2.

Now take any pair of points y, z E BR(xo) with Iy - zI < R/4, and apply (6) with
p = 21y - z1 on balls with centers y, z and add the resultant inequalities. Since
Bp/2(21(y + z)) C B,,(y) n Bp(z) this gives

np (Iu-av12+Iu-a=12)<2C/32 (R
)2n

Bo/2(l (v+s))
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Since 1.\ -) I2 < 21u - A I2 + 2Ju - A:12, this in turn gives

zI.
(7) JAY - A:I 5 2C3(p/R)° = 21+°CQ Cly -

R /J

Now for any pair of points y, z E BR(xo) we can pick points zo = y,... , z8 = z on
the line segment joining y, z such that Iz; - z;_11 < R/4, and applying (7) to each
of the pairs z,_1, z; and adding, we deduce finally that

(8)
1 ay-AISC,32(IyRzl/° Vy,zEBR(xo)

On the other hand by letting p j 0 in (6) and using the Lebesgue Lemma, we
have A = u(y) for almost all y E BR(xo), so the proof is complete (because then
'u(y) = AY is a representative for the L2 class of u which by (8) satisfies the required
Holder estimate).

1.2 Smoothing

Consider a function 0 E C°°(lR") having compact support in B1(0) with the prop-
erties p > 0 and fB.(o) cp = 1. For a > 0 we define the mollifiers

x

Note that gyp(') has compact support in B°(0) and faoioi 1. Now we can use
the mollifiers cpi°i to smooth a function u E LL(12) (fl C W). Let

S2, {x E 1 : dist(x, Of) > a}

and for x E 0,

u°(x)
in

- y) dy = (u s

u, is evidently smooth on 52,. In fact, by virtue of the usual "differentiation under
the integral" lemma, Du, is given explicitly by

D°u,(x) = I u(y)D°vi°i(x - y) dy
n

for all x E 51,. Here, we use the multi-index notation, i.e. a = (a,,... , a,) E Z
Z, = {0,1, 2, ... }) with Jai = Ej=1 a, and D° =

49x1°' ... ax"°ft .
Hence, we

have that u, E C°°(Q,). Furthermore, the following approximation statements hold
for a 0:

(i) u, - u a.e. on SI

(ii) u,- u inL'(K)forallcompact sets KCfl
(iii) u, - u in L"(K) for all compact sets K C 9 if u E L.(5l)
(iv) u, u uniformly on compact sets K if u is continuous.
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(i) follows from the Lebesgue Lemma, (iv) is evident from the definition, and (ii).
(iii) follow from (iv) together with the fact that the continuous functions are dense
in LP.

1.3 Functions with L2 Gradient

Recall that we say u E L2(SZ) has a gradient in L2(S2) if there exist functions
r1,..., r E L'2(12) such that

(i) Or, _ - J uD:,v, V'F E C,-(f?).
sl sl

Of course if such functions exist they are unique; further if u E C'(SZ) then (using
integration by parts) such an identity holds with r, equal to the usual partial deriva-
tive Dju, so this notion of L2 gradient really does generalize the classical notion of
partial derivatives, and we call rj the L2 weak derivatives of u. We denote them,
when they exist. simply by Du. In this case the identity (i) takes the familiar form

(ii) J pD;u = - J uDjpp, E CC°(S2).
: n

Using the completeness of the space L2(S2). it is easy to check that the set of all
functions u E L2(fl) having LZ gradient, equipped with the inner product

(u, v) := (u, V)L2(n) + E(Dju. Djv)L2(n),
j=1

becomes a Hilbert space. This space will henceforth be denoted W1.2(0) and the
inner product norm will be denoted by I1W'.2(n). It is an example of the more
general Sobolev spaces Wkm(S2).

Smoothing gives it nice relation between classical partial derivatives and L2 partial
derivatives as follows: If u E then

(iii) Dju, = (Dju),,, j = 1.... ,n, o > 0.

holds on St, as one easily checks by using the definition (ii), keeping in mind that.
for fixed x E f2 s0(0)(x - y) is a C,11c(S2) function of y. Note that on the left hand
side of (iii) Dj is the classical derivative of a smooth function, whereas on the right
hand side Dj is the weak derivative.

We now present some of the important facts about functions.

First recall that an open subset SZ C IRn is said to be Lipschitz if for each xo E 811
there exists R > 0 and a bijective function 4)r° : BR(xo) -+ U C IRn with the
following properties
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1. 'I is bi-Lipschitz, i.e. ,, and (=o are Lipschitz functions.

2. If U+ := U n IR.+ with R+ := {x = (x1, , x") : x" > 0} then 11 (BR(xo) n
S1) = U.

Thus in particular 1 (81l n BR(xo)) = U n ({0} x IRn-1), so that (1 "flattens"
the boundary near xo. A cube in IR" is an example of a Lipschitz domain (edges
are allowed).

Now, if S2 is a bounded Lipschitz domain it is an exercise (based on the use of the local
flattening transformations above together with even reflection across the boundary
of the half-space) to show that there exists a continuous linear extension operator
E : W1.2(lR"),u'- ii: for every u E W1"2(f1) there exists an extension
ii E W1.2(lR") of u with IIuIIwI.2(RR") 5 Cn[IuIIwt.2(n) where Cn depends only on S1.
Moreover, it is possible to arrange such an extension E such that {x E lR" : ii(x) 36
01 C {x E 1" : dist(x,1) < 1}. See e.g. [Ad75] or [GT83, Theorem 7.25] for a
detailed proof of these facts.

Lemma 1 (Rellich Compactness Lemma) Suppose 11 is a bounded Lipschitz
domain in 1R" and Uk is a sequence of W'-2(Q) with supk oo. Then
there is a subsequence uk, and u E W',2(1) such that

(a) uie - u weakly in W',2(S2),

(b) uk, - u strongly in L2(f)),

(c) fn IDu[2 < lim f fn IDuk,12.
kl-oo

Remark: In other words, the lemma claims that a bounded set in W"2(11) is
precompact in L2(1). In fact the same is true in LP(Q) for all p < 2' = 2. See
e.g. [Ma83] or [GT83, Chapter 7J.

Proof: First note that the weak convergence of a subsequence of uk, Duk in L2(Il)
is a consequence of the general weak compactness of the unit ball in a Hilbert space.

Next note that by the remarks preceding the lemma we can extend uk to uk E
with support contained in a fixed ball B (independent of k) and with

supk IIukIIw1.2(1t^) < oo. Now the rest of the proof involves combining the two facts
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that (a) the functions (iik), are bounded and have bounded derivatives on IR" with
bounds depending on or but not on k (indeed by using the definition of (uk), we
have suplD(uk),l < Ca-'I1uk11L1 <- Ca-'Ilukllts < Ca-1 with C independent of
k), and (b) IIuk - (uk),IIL2(sz^) < Ca Va > 0, with C independent of both k and
a. (See [GT83, p. 1621 for the precise argument, which involves simply using the
definition of (i k), and calculus.) (a) enables us to apply the Arzela-Ascoli lemma
to (uk), to find a uniformly convergent subsequence (uk,), (depending on a) which
then by (b) (after dropping finitely many terms at the start of the subsequence)
gives Iluk, - uk1IIL,(ut^) <- Co, for each j, t. Since this can be repeated with each
a = 2', choosing a subsequence depending on i for each i, and since the (i + 1)st
subsequence can be chosen as a subsequence of the it, by taking a diagonal sequence
it then follows that there is a subsequence which is Cauchy with respect to the L2-
norm. By completeness of L2 this proves the result (b).

Finally, the fact that a Hilbert space norm is weakly lower semicontinuous implies
that we have IIullw1.2(o) <- liminfk,.,,,, Iluk'llwt.2(n), which implies (c).

We shall also need the following Poincare Inequality:

Lemma 2 (Poincar6 Inequality) Suppose S2 is a bounded and connected Lip-
schitz domain in W. Then there exists a constant Co depending only on the domain
Q such that for every function u E W1"2(Q) there holds

(iv) flu - ale < Co f IDul2,
n n

where A = IS2I-! fo u.

Proof: There are various proofs of the Poincare inequality; one nice way to prove
it is to use the above Rellich compactness Theorem. Suppose the assertion is false:
Then f o r each k, k = 1, 2, ... , there exist functions uk E W 1,2(12) such that (iv) fails
with Cn = k:

(*)
fn

IDuk12 <
k

inf f l'Uk - AI2
k

if
luk - Akl2Ait n n

with Ak = -L fn uk. Defining
101

Uk - Ak
Vk :_

Iluk - AkIIL2(n)

we find that llvklIL2(0) = 1 and IlDvkllL2(n) <- 1 and hence that {vk} is a bounded
sequence in W1"2(0). According to Rellich's compactness result (Lemma 1 above)
there exists v E W1"2(1) such that vie - v strongly in L2(S2) for a subsequence
{vk,}. Further, since fn vk = 0 for all k, we conclude that fo v = 0, and moreover (by
Lemma 1) Duk, - Dv (weakly in L2) and IIDvIIL2(n) <- liminfk'..IIDvk'IIL2(n) = 0.
Hence, Dv = 0 a.e. on Q. Now it is easy to check that since S2 was supposed to be
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connected, Dv = 0 a.e. implies that v is constant. (For example, Dvo = (Dv), = 0
on S2o, so vo is constant on any connected 52 C Sto, so we conclude v = constant in
Q by letting or j 0.) Now IIvIILz(n) = 1 clearly contradicts the fact that v has mean
value zero.

Remarks: By using the special case when S2 is the unit ball B1(0) and by changing
scale x -. Rx, one can find the explicit dependence of the constant CB,,(,) on R;
namely,

R-"f Iu-al2 <CR2 J IDuI2

R(=O) R(=o)

for every u E W1.2(BR(x°)), where C is a constant depending only on n (and not
on R).

Finally we want to state and prove Morrey's Lemma.

Lemma 3 (Morrey's Lemma) Suppose u E /3 > 0, a E (0, 11 are
constants, and

r l
2a

p2
B

IDul2<at\R/ '

Then u E and in fact

"
lu(1W ) - u(y)I < CO (Ix R yl 1

, d x, y E BR12(x0) ,

where C depends only on n. 1

Proof: Let 4, = (u1"p")-' fBo(Y) u. The Poincare inequality gives

p-" f Iu - \Y.,12 < Cp2-" J
IDuI2 < C/i2 \R

)z"

BvIY) Bv(Y) J

for each y E BR12(xo) and each p E (0,
z

]. Using the Campanato Lemma, we then
have the required result.

1.4 Harmonic Functions

Recall that a real function u on a domain S2 C lR" is said to be harmonic if it is
C' and if Du = 0, where Du := Ej_1 D3D,u, with D, = ga . Thus we can write
Du = div(Du), where Du = (Diu, ... , D.u) as usual denotes the gradient of u, and
div 4) means E, D,r for any smooth vector function $ = ,V).
If we choose a ball BR(xo) with closure contained in S2, and if we integrate the

identity div Du = 0 over BR(xo) and apply the divergence theorem, then we can
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check rather easily (see e.g. IGT83J for the details) that harmonic functions have
the mean-value property

(i) u(xo) = u
wn1

Rn I...)
for any such ball BR(xo). Multiplying (i) by Rn and differentiating with respect to
R we get the second version of the mean value property

where a,, (= nwn) denotes the measure of the (n-1)-dimensional unit sphere Sn-' =
8B1(0) and where SR(xo) = 8BR(xo). These properties are quite fundamental; for
example using (i'), one can easily obtain estimates for the partial derivatives of a
harmonic function in terms of its L' norm:

Lemma 1 If u is a harmonic function on a domain fI C IRn and ) CC 0 then
u E Coo and there holds for every multi-index a

(ii) sup ID°uI < CIIuhIL (n) ,
ii

where the constant C only depends on a and dist(Sl, 8(1).

Proof: Let Ro = dist((I, 8S1) and V('O) the mollifier of Section 1.2 having the
additional property that V(x) = V(IxI). Then, by multiplying each side of (i') by
0'0)(R) and integrating each side with respect to R from 0 to RD, we get for every
fixed y E S2 that u(y) = f, o(R")(x - y)u(x), and hence that

I D°u(y)I <_ f IDY,p(1)(x - y)I Iu(x)I <- sup ID°VC')(x)I IuI

BROcv) n

This completes the proof, because sup I D°V('°)(x)I = Cn °Ro I°I 0

Remark: In the special case fZ = BR(xo) and SZ = BOR(xo) (with 0 E (0,1) given)
one can check that (ii) takes the form

(ii') sup R'ID°ul 5 Cn,i.0R f IuI
BOR(XO) BR(MO)

with j = fal. With a bit of extra effort one can show (by induction on j) that
Cn,.9 < C,', B' j! for a suitable constant C,,B, and from this (by using Taylor polyno-
mial approximation for u) it follows that in fact u is real-analytic. Thus harmonic
functions are automatically real-analytic.
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1.5 Weakly Harmonic Functions

Definition 1 If u E W1.2(Q), where 52 is an open set in 1R", we say that u is weakly
harmonic on 52 if

jDu.Dc2=0(i) `d W E C°(12).

Notice this formally generalizes the notion of smooth harmonic, because if u is
smooth harmonic then we could integrate by parts in the identity fn Du cp = 0, thus
establishing (i), and, conversely, if u E C2(Q), (i) evidently implies Du = 0 by virtue
of the arbitrariness of gyp.

In fact H. Weyl proved that the two notions weakly harmonic and classical harmonic
are the same:

Lemma 1 (H. Weyl) Suppose u is weakly harmonic. Then the L2 class of u has
a C°° representative which is harmonic.

Proof: The key point is to note that if u E W1.2(c) is weakly harmonic then
(with the notation of Section 1.2) u° is smooth harmonic on 52° for each a > 0.
Let us check this claim first. Notice that by differentiation under the integral in
the definition of u°, we have Du°(x) = fu u(y)t=cp(°)(x - y) dy. Now by the chain
rule 0=cp(O)(x - y) = (-1)2A,cp(O)(x - y) = /yc,(O)(x - y), and since cp(x - y) (as a
function of y for x fixed in 52°) is Cc' (Q), we use the definition of the weak derivative
D,u to obtain fn u(y)A.,Vi°i(x - y) dy = - Ej1 f0 D ju(y)Dys[cp(x - y)] = 0 by
definition of weakly harmonic. Thus we have Au° = 0 on 52° as required. Now the
rest of the proof follows easily by letting a 10 and using the Arzela-Ascoli Lemma
and the bounds 1.4(ii) with u° in place of u.

1.6 Harmonic Approximation Lemma

The following harmonic approximation (or "blow up") lemma will be of fundamental
importance:

Lemma 1 (Harmonic Approximation Lemma) Let B = B1(0), the open ball
of radius 1 and center 0 in W. For each e > 0 there is b = b(n, e) > 0 such that if
fEW1.2(B) fBIDf12<1 and

fDf.Dp6sup IDI, dcp E c°(B),
a

then there is a harmonic function u on B such that fB IDuI2 < 1 and

jjf_uI2e2.
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Proof: If this fails for some a > 0, then there is a sequence { fk} C W1,2(B).
fB IDfkI2 <<- 1,

(1) jDfk.Dc k' sup Da

for each y, E CO(B), and such that

(2) fIfk_tlt2>e2

for every harmonic u on B with fl, IDuI2 < 1.

Notice that since the same holds with fk = fk - Ak for any choice of constants 11k,
we can assume without loss of generality that f B fk = 0 for each k. But then by
using the Poincare inequality we conclude

lim sup (IfkI2 + IDfkI2) < oo,
k-o° JB'

and hence by the Rellich Compactness Theorem (Lemma 1 of Section 1.3) we have
a subsequence fk, and an f E W1.2 (B) such that

(3) lim J
B

If - fkI2 = 0

and Dfkw - Df weakly in L2(B). But using this weak convergence in (1) we
deduce that fBDf Dip = 0 for each W E C°°(B), so that f is weakly harmonic
on B. and Weyl's Lemma guarantees that f is smooth harmonic on B, and hence
(since f s I D f 12 < lim inf f B I D fk' I2 < 1) we see that (3) contradicts (2).

1.7 Elliptic regularity

We here establish the regularity theory and a-priori estimates for the Poisson equa-
tion Du = f needed in our later discussion. For more general results (the full
Sc:hauder theory), we refer to [GT831 .

In this section, and subsequently, Iulk:o denotes the usual noun of u E Ck(S2), i.e.
IuIk.n = E181<k ID8ulo:n, and [Dkuja.n = E1,9I=k[D"u]a;f.

The following lemma is fundamental:

Lemma 1 Let u: IRn - IR satisfy [D2u]o;jR. < oo. Then there is a constant C,,,
depending only on n, such that
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Proof: We give a new proof for this fact which is based upon a scaling argu-
ment. Assume the assertion is false, i.e. there exist uk and fk with fk = AUk and
[D2uk]a;jR" < oo but (fk]a;n- < k(D2uk]a;ffA. By definition of [D2Uk]a;iw, for each
k we can choose two distinct points yk, zk E 1R" satisfying

ID2Uk(yk) - D2uk(zk)[ > 1 [D2uk]a;,R- .
Iyk - zkI° 2n2

Let ak := Iyk - zkI and Ak := [D2Uk]a;IRfl. Since Ak > 0 the following scaling is
possible:

Uk(x) Aklak2_auk(yk + akx)

fk(x) = Ak'akafk(Yk + akx).

The scaled functions satisfy Dick = fk and [D2u`k]a;fft" = 1. Now we investigate the
deviation uk of uk from its 2-jet at the origin: uk(x) := u'k(x) - Dauk(0).

There holds 0ik = fk - fk(O) and of course still

(1) ID
suk]o;Iiv = 1 .

Furthermore we trivially have

(2) Dauk(0) = 0 for Jai < 2.

Considering the vectors (k := Zk - Yk E S"-' we find due to the special choice of
Izk - YkI

yk and zk that

(3) ID2i k((k)I 2! 12

(1) and (2) in particular tell us that {uk} has second derivatives forming an equicon-
tinuous family and has all derivatives of order up to and including 2 equal to zero
at x = 0. Thus from an appropriate version of the Arzela-Ascoli Lemma and the
compactness of S"-' respectively we infer that there exists a function v E C2-°'(lR"),
a vector ( E S"' and a subsequence {k'} such that uk, - v locally in C2 and
tk C in IR". By the lower semicontinuity of the seminorm [ - ],,,*t. and (1) we get
[D2v]a;Rn < 1, and from (2) we get D2v(0) = 0, while D2v(() # 0 from (3). Since
[fk]a;[n < k we get supBR(o) Ilk - fk(0)I < kRa -' 0 for every fixed R and thus
AV = 0 which then implies AD2V = 0. Using the estimate (ii') of Section 1.4 for
the harmonic function D2v we obtain

sup ID3vI < C" sup ID2v1 = C° sup ID2v - D2v(0)I
BR/2(O) R BR(O) R BR(o)

< R" C"Ra-' 0 as R -' oo.

Thus D3v 0 E IR", i.e. v is a polynomial of degree < 2. But D2v(0) = 0 and
hence we conclude D2v - 0. This contradicts (3).

We note that there is also a C'-a version of Lemma 1 which can be proved very
easily by a similar scaling argument:
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Lemma 2 Suppose [Du],,;n < oo. Then

[Du]a;m^ < C[Au]a;M..

where (g]Q;,R, = inf Ej[ f,],jR" with the inf taken over all collections such
that 9 = >,n=1 D.,fi (weakly) on 1R".

We shall need to use the following standard differentiability theory for solutions of
Au = f. A proof can be based on Lemmas 1 and 2 together with mollification. (For
complete details and more general results, we refer to e.g. [GT83, Chapters 6, 8].)

Lemma 3 (Differentiability Theorem) Suppose u E is a weak so-
lution of Au = f in BR(xo). Then

(i) f bounded on BR(xo) u E C''°(BR(xo)) Va < 1,

(ii) Va E (0, 1), k E {0, 1, ... } : f E Ck."(BR(xo)) u E Ck+2."(BR(xo));

in each case there are corresponding estimates, so that we have the additional con-
clusions

C(IuIo;BR(m) + R2IfIo;BR(=o)),

wrth C = C(n, 0, a), in case (i), and

k+2

Rj D'u + Rk+2+a(Dk+2u <

1=I /
5 C(IuIO:BR(=O) + R21f IO:BR(JO) + R2+1O[DkJ ]o;BR(=O)),

C = C(n, 0, a, k), in case (ii).

1.8 A Technical Regularity Lemma

Here we shall prove the following general regularity lemma, on which our later proof
(in Section 2.3) of the e-regularity theorem for energy minimizing maps will be
bm d.

Lemma 1 (Technical Lemma) Suppose a E (0,1) and f > I are given. Them
exists bo = bo(n, a, /3) > 0 such that the following holds: If u = (u',... , uP) E
W',2(BR(xo); 1R9 satisfies the equation

Au = F weakly in BR(xO),

where F E L'(BR(xo)) with

(i) IF(x)I <_ l3IDu(x)I2 a.e. x E BR(xo),
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if u satisfies the "reverse Poincare" inequality

J(11) (2J2 fB
IDuI2 < f3p °lit - \",12B,12(Y)

v( Y)

whenever B,(y) C BR(xo), and if

(iii) R -" J lu < bo,
R(so)

then it E CI.°(BR/4(xo)) with

1/2

I uI1;BR/,(so) + [Du1Q;BR/4(so) < C (R -n
I. luI2 1 ,

R(so)

where C is a constant depending only on n, a and /3.

Remark: Notice that Du = F weakly means that

f fBR(ZO)
F,

R(=O) j=1

Before we begin the proof of this lemma, we need to mention the appropriately
scaled version of the harmonic approximation lemma discussed in Section 1.6.

Lemma 2 (Rescaled Version of the Harmonic Approximation Lemma)
For any given e > 0 there is 6 = b(n, e) > 0 such that if f E W1.2 (B,,(y)), if
p2 -n fBv(Y) l Df I2 < 1, and if Ip2-n fBo(Y) Df DVI < bpsupBP(Y) I DcoI for every W E

C°°(BB(y)), then there is a harmonic function it on BP(y) with p2-n fBP(Y) IDuI2 < 1

and p-n fBo(Y) Iu - AY.vl2 < e2.

Notice that this easily follows from the unscaled version as in Lemma 1 of Section 1.6;
in fact one just checks that Lemma 1 of Section 1.6 applies to the resealed function
fp(x) m f(y + p(x - y)).

Proof of the Technical Lemma: As in the above remark we have

(1) J Du Dco = - f P' F, VVER(sO)
BR(s0)

Let B,(y) C BR(xo) be an arbitrary ball. By using identity (1) with O E CNB 12(y)),
and using also the hypotheses (i), (ii), we have

(P) I Du Dip < 02p n sup I VI f lit - \y.pl2
2 Bv/a(Y) By/2(Y) B,(Y)
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Since SUPBp/2(Y) Iwl < psupBpf2(Y) (by 1-dimensional calculus along line seg-
ments in 13p/2(y)), we thus have

(2) (P) J2 " r- Dv Dip
2 Bp/2(Y)

lu - Xy.P12< (P-n in,
(Y) )

1/2

p sup IDwI
Bp/2(Y)

1/2

where v = e-1u, with e = ji (p" fBB(Y) iu - AY.p12) .

Also, we have trivially by (ii) and the definition of v that

(p)2-" f 12 <

2 Bo/2(Y)

Let e > 0 be for the moment arbitrary. By (2) and (3), we can apply the harmonic
approximation lemma (Lemma 2 above) in order to conclude that there is a harmonic
function w on Bp/2(y) such that

(4) (p)2-" J IDwI2 < 1 and (p)
" f Iv - WI2 < e2,

2 Bp/2(Y) 2 Bp/2(Y)

assuming that p" fB
(Y)

(u - .1y,p12 < 62, where S = S(n. e) is as in the harmonic
approximation lemma. Now take 8 E (0,111] and note that by the squared triangle
inequality

(5) (BP)-" J
Iv - w(y)I2 < 2(8p)-"l (Iv - w12 + Iw - w(y)12)

BBp(Y) BBp(YI

Now using 1-dimensional calculus along line segments with end-point at y together
with the estimate 1.4(ii') with j = 0 (applied to D;w), we have

sup Iw - w(w)I2 < (9p sup IDwI )2 < C92p2-" IDwI2.
DOOM BOO(Y)

J
Bp/2(Y)

Using this together with (4) in (5). we conclude that

(BP)-"
J

Iv - w(y)12 < 9-"e2 + C02,
B«p(Y)

where C depends only on n. Writing v = t 'u, we have

f(9P)-" J It! - AI2 < 32(9 e2 +CB2)p "lu
ep(Y) y(e)

where A = P.w(y) is a fixed vector in IR". Now we choose 8 and e: first select
8 E (0, 4J so that Ci3282 < 1820; notice that such 0 can be chosen to depend only on
n, n,

13.
Having so chosen d, now choose e > 0 such that 320-"e2 < 1020. Therefore

(©p)-" J In - )1Y.BPI2 < 920p " J ju -
yp(Y) p (Y)
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Thus, to summarize, we have shown that if BB(y) C BR(xo), and if p -n fB9(y) lu -
Ay pl2 < bo, with bo = 60(n, a, Q) sufficiently small, then

(6) (Op)-" lu - Ay,epl2 < 02°p-" lu -A V,012,fB.n(Y) f ,(y)

where 0 = 0(n, a, Q) E (0,1 ]. From now on we assume bo has been so chosen.

Next, let Io = R'" fBR(x°) lu - Ax°,R12 and note that if to < 2-"602, then, with
p = R/2, we have BB(y) C BR(xo) and

P -n

B
lu - Axo.R12 < 2"Io < 602 Vy E BR/2(xo)

,(y)

Thus, if Io < 2-"602, then

(7)
P -n f Iu -) ,.pl2 < bo, Vy E BR/2(xo),

Bo(y)

where p = R/2. But notice that this in particular means that the "starting hypoth-
esis" p-" fB,(y) lu - Ay,pl2 < 602 is satisfied with Op in place of p, and hence (6) holds
with Op in place of p (p = R/2 still). Continuing inductively, we deduce that

(8)

"/0(o)
L.JR,3V

lu
-92j(,)-nf

lu - Ay,R/2]2 < 2
) R/9( y)

for each j = 0,1,2,..., provided only that the inequality 2"!o < ba does hold.
Now on the other hand if a E (0, R/21, there is a unique j E {0, 1.... } such that
OJ+' R/2 < a < 9' R/2, and it is then easy to check that (8) actually implies

a-" J lu - Ay.,l2 < 2°BR\RI2Q10 dy E BR/2(xo), a E (0, R/2],
,(y)

provided 2"l0 < bo. Then by virtue of the Campanato Lemma (Lemma 1 of Sec-
tion 1.1) we have u E

C lu - Ar0,R12 )

Next we want to show that u E C"°(BR/4(xo)) as claimed in the statement of the
lemma. Since we may change scale, it suffices to prove this in case R = 1; so we
assume here that the hypotheses hold with R = 1. First let BB(y) C B1/2(xo) be
arbitrary. Since u E W'"2(Bp(y)) fl C°(Bp(y)), it is standard (see e.g. ]GT83]) that
there is a v E C2(Bp(y); lR°) fl C°(Bp(y);1R") fl IR") which is harmonic
on BR(xo) and which agrees with u on 8Bp(y). Of course then v satisfies the weak
form of Laplace's equation on Bp(y); that is,

(10) J > D,v D,cp = 0, VV E CC°(Bp(y); lR°).
o (y) j _I
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Taking the difference of the equations (1) and (10), we thus get that

J D,(u - v) D;cp = f co . F,
P(Y) 7=1 BP(Y)

Now since u and v agree on the boundary it is easy to check that this is also valid with
the choice W = v - u; here we use the general fact that if a C°(BP(y)) fl W',2(Bo(y))
function is zero on 8B,(y), then it is the limit in the W'"2(BP(y)) norm of a sequence
of CC°(BP(y)) functions. Thus we obtain

(11) f ID(u - v)12 = f (u - v) F <
Bv(Y) BP(Y)

:5,3 sup lu - vlf IDuI2 < Cp° J IDu12,
BP(v) B(v) P(Y)

where we used the fact that supBP(Y) Iu-u(yo)1 < Cp° (from the Holder continuity of
u proved above) for any yo E Bo(y) and that, for yo E 8BP(y), supBP(Y) Iv - u(yo)I =
supOBP(Y) Iv - v(yo) 1 < nsup Iu - u(yo)I < Cp° by applying the maximum principle
to each component 0 of v = (v', ... , vo). By using the reverse Holder inequality
and the Holder estimate (9), we have

Du2 Cp2 1u - A .212 < Cp 2o lu -JPY
f

B2P(Y) fB1zo)

and hence (11) gives

(12)

p-" I ID(u - v)12 Ce2p3'-2,
v(Y)

1/2

lu - A"112
)

,

U1(so)

for such p. Now let us agree that a was chosen in the first place so that 3a > 1,
and that hence 3a = 1 + 2-y for some ry > 0. Thus we have

p "f I D(u - v)12 < Ce2p3°-2, for B,(y) C B1(xo)
Bv(v)

Therefore we get for any a < p

a-" f IDu - Dv(y) 12 <
B,(Y)

< 20-" f IDu - Dv12 + 20-" f IDv - Dv(y) 12
Bo(Y) Bo(Y)

< 2a-" fB,(Y) IDu - Dv12 + 2a-" f oYIDv - Dv(y)12

< Ce2 (f)" ps,-2 + Cot sup ID2vI2.
or a. (Y)
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By using the inequality 1.4(ii') with R = p/2 and the harmonic functions Djv - A,
in place of u (A, any constants) we have

r
a2 sup IDZv12 < a2 sup ID2vI2 +Ca2p2p "J IDv - AI2,

B.(L) By/2(Y) B314(Y)

with any constant A E RP. Taking A = AY,P = IB,,(y)I-' fBB(Y) Du, and using (12)
again, we get

a2 sup IDZvI2 <
B. (y)

f< Ca2p-2p-" IDv - AY. I2
3914(Y)

< Ca2p2p-" J Dv - Dull + Ca2p 2p " J IDu - A.,I2
3o/4(Y) 3 n/.(Y)

< Ce2
(a)2

p3n-2 + C
(!)2

p-"f IDuI2.
P J `P l B,(Y)

Combining all the above estimates and setting I. := p " fB,(Y) IDu - AP,yl2 we
conclude

I, < Ce2 (p)" p3°-2 +Ce2 ()23t_2 + C
r°12

p-" J IDuI2.
a P P BP(Y)

But by the reverse Poincare inequality (hypothesis (ii) of the technical lemma) we
get

p-" f IDuI2 < Cp " J lu - .\V.2PI2 < CQ2p 2+2u
r (Y) (Y)

by the Holder estimate from the first part of the proof. So using this on the right
of the previous inequality we get

a 2

I, < Ce2 lal
l"

P -2 +Ce2 (-1 p-2-2-.
P

This holds for all a < p < 1/8, y E B318(xo). Choosing or = p", K:= 1 + nn+2, we
can rewrite this in the form

(13) a-" f
e

IDu - A,,,,I2 < Cf2a2'', or < (1/8)", y E B31s(xo),
B (Y)

where 2y = ("+2 + 2a - 2)/K > 0 if we choose a close to 1. From this we get
(Du],;B31e(=o) < Ce by virtue of Campanato's Lemma (Lemma 1 of Section 4). In
particular, since fB,(=o) IDuI2 < A, this establishes supB3ie(=o) IDuI < Ce, and hence
the equation has the form Du = f with f bounded by Ce on B31s(xo). Then the
general assertion follows by using Lemma 3 of Section 1.7 with u - u(xo) in place of
u, since supB31a(=o) Iu - u(xo)I < Ce by (9). 0

Later (in Section 2.3) we shall apply this technical lemma to study energy minimizing
maps.
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Notice that here Du means the n x p matrix with entries D;u'(:= 8u.'/8x'), and
IDuI2 = E° I We study maps u E W1"2(BP(y); N) which minimize
energy in ! in the sense that, for each ball Bo(y) C Sl,

EB,(y)(u) :5 EB,(y)(W),

for every w E W'.2(B,,(y); N) with w =_ u in a neighbourhood of 8Bp(y). Such a u
will be called an energy minimizing map into N.

Remark: The theory to be developed in the sequel may be applied, after very minor
modifications, to the case when Q is equipped with a general smooth Riemannian
metric F-,, g;.,dx'dx3 rather than with the standard Euclidean metric; see the further
discussion in Section 4.8 below.

2.2 The Variational Equations

Suppose it is energy minimizing as in Section 2.1, suppose BP(y) C !1, and suppose
that for some 6 > 0 we have a 1-parameter family {u,},E(-6,6) of maps of BB(y)
into N such that uo = u, Du, E L2(Q), and u, __ it in a neighbourhood of 8B,(y)
for each s E (-6, 6). Then by definition of minimizing we know EBB(y)(u,) takes its
minimum at s = 0, and hence

(I)

B,(v)(u.) = 0
18=Ods

whenever the derivative on the left exists. The derivative on the left is called the
first variation of EB,(y) relative to the given family; the family {u,} itself is called
an (admissible) variation of it. There are two important kinds of variations of u:

Class 1: Variations of the form

(ii) u, = H o (u + s(),

where (_ with each (' E Cc°(B,,(y)) and where II is the nearest
point projection onto N. Notice (see Appendix 2.12.3 below) that nearest point
projection onto N is well-defined and smooth in some open subset W containing
N, and hence u, defined in (ii) is an admissible variation for Ist small enough: see
Fig. 2.1). Now by applying D; to the Taylor polynomial expansion of II we have
Diu, = Diu + HessHu((, Diu)) + E, where IIEIILI(B,(y)) <- Cs2 for
Isi small. Plugging this expression for Diu, into the energy EB,(y)(u,) and using
the facts about the induced linear map and Hessian of II given in (iii), (iv), (v) of
Theorem 1 of Appendix 2.12.3, we check that for such a variation the equation (i)
gives the integral identity

r
n

(Diu Di( - ( A (D,u, Diu) = 0
n i_1
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case Du is merely in L2 (and there are simple examples to illustrate this). One calls
a map u into N which satisfies (iii) a "weakly harmonic map", while a map which
satisfies both (iii) and (v) is usually referred to as a "stationary harmonic map". The
above discussion thus proves that energy minimizing implies stationary harmonic.
We shall not here discuss weakly harmonic maps, but we do mention that such maps
admit far worse singularities than the energy minimizing maps - see e.g. [Riv92l-
except in the case n = 2 when there are no singularities at all. We show this below
in the case of minimizing maps, and refer to recent work of F. Helein [He91] for the
general case of weakly harmonic maps.

2.3 The e-Regularity Theorem

We can now state the Schoen-Uhlenbeck regularity Theorem:

Theorem 1 (c-Regularity Theorem) Let A > 0, 0 E (0, 1). There exasts e =
e(n, N, A, 0) > 0 such that if u E W'"2(fl; N) is energy minimizing on BR(xo) C 0
and if R2-" fB,,(.,.) Pull < A and R-" fBR(=o) iu - Azo,RI2 < e2, then there holds
u E C°°(BR14(xo)), and for j = 1, 2, ... we have the estimates

R' sup iD'ui < C(R'n Iu - \x°,R12)1/2,

Ben(xo) R(xo)

where C depends only on j, A, N, 0, and n.

Remark: It suffices to prove the lemma for some fixed 0 (e.g. 0 = 8). To see
this, suppose the lemma is proved with 0 = 8, and select Q = Q(n, 0) and points
y1, , yq E BOR(xo) such that BOR(xo) C UQB(1_e)R/s(y,) Thus we can apply the
theorem with 9 = 8, with y, in place of x0, and with (1 - 9)R in place of R. Since
B(1_e)R(y,) C BR(xo) for each j, the required bounds on supBOR(xo) ID'u) then followf "(,) [u - \xo.R[2.because fB(1-B)R(,,) in - A y,.(1_e)RI2 < fB(1-B)R(y!) ITL - A:°.R12 < B

Proof of Theorem 1: In view of the above remark, it will suffice to prove the
theorem in the special case 0 = e. According to the discussion in Section 2.2 above
we know that u satisfies Du + Ej=1 D,u) = 0 weakly in BR(xo). But this
can be written in the form Du = F, where [FI = I Ej 1 D,u)l < C[Du[2
with C = nSUpyEN.IETyN.1r1=1 [A,(T,T)I depending only on n and N. Thus the
technical Lemma 1 in Section 1.8 gives immediately that u E 04 (BR/4(xo)) for any
a E (0, 1), and

r t/2

(1) IUI1:BR/4(xo) + [Du[a,BR/4(w) 5 Cn.Na
(R-n

J
in - )1xo.Ri2) ,

BR(xo)

provided it satisfies the reverse Poincare hypothesis (ii) from the technical lemma.
The fact that u E C°°(BR/4(xo)) (and the stated estimates) now follows from
Lemma 3 of Section 1.7 as follows:
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We have

(2)

n

au = >2 Ao(Dju, Dju)
j=1

Since N is smooth, we know that is a smooth function of its arguments,
and, since u E Cl"°(BR14(xo)), it then follows that F," I Dju) is of class
C"°(BR14(xo)). That is the right side of (2) is in and hence, by
Lemma 3 of Section 1.7, we deduce that u E But then the right
side of (2) is of class C',°(BR/4(xo)) and hence by Lemma 3 again we have u E
C3.°(BR/4(xo)). Continuing inductively we conclude that u E C°°(BR/4(xo)) as
required. Furthermore at the same time (using the estimates of Lemma 3 of Sec-
tion 1.7), we can inductively check that

(R-n
1/2

Rj sup ID3ul < C I lu
B(I)R(=o) R(=O)

for each j = 1, 2, ... .

Thus the theorem (with 0 = 8) is proved modulo checking that there is a "reverse
Holder inequality" like that in hypothesis (ii) of the technical lemma (Lemma 1 in
Section 1.8). We defer the proof of this until Section 2.8, when we shall have more
theory at our disposal.

2.4 The Monotonicity Formula

An important consequence of the variational identity (v) of Section 2.2 is the "mono-
tonicity identity"

(i) p2-nJ IDuI2-v2-"J IDuI2=2J R2-"It12
Bo(y) Be(Y) B,(Y)\B,(v) OR

valid for any 0 < a < p < po, provided BPo(y) C 11, where R = Is - yl and 8/8R
means directional derivative in the radial direction Ix- vi' (x - y). Since it is a key
tool in the study of energy minimizing maps, we give the proof of this identity.

Proof: First recall a general fact from analysis-Viz. if aj are integrable functions
on B. (y) and if fBPo(Y) E =i a'D3( = 0 for each S which is C°° with compact
support in B,(y), then, for almost all p E (0, po), fBo(Y) F_j=, ajDj( = faB,(y) ,?' a(
for any ( E C°°(Bp(y)), where a = (a',... , a") and q (_- p -'(x - y)) is the outward
pointing unit normal of 8B,(y). (This fact is easily checked by approximating the
characteristic function of the ball Bo(y) by C°° functions with compact support.)
Using this in the identity (v) of Section 2.2, we obtain (for almost all p c- (0, po))
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that

n

E (IDul2b;, - 2Diu D,u)D:C' _
f,(Y) iq=1

(IDul2bij - 2Diu D,u)p-'(x' - y')[;j.
LB(V) iJ=1

In this identity we choose (3(x) := xj - yi,, so D,(' = bij and we obtain

(n-2) J jDuI2=p'J IDuI2-2IORI2) .

Bv(Y) 8Bo(Y)

Now by multiplying through by the factor p'-" and noting that LB, f = d fB, f
for almost all p, we obtain the differential identity

r
2d ) d OU

WP
p2-" J IDuI2 = 2d

,l R2-" laP B,(Y) P

for almost all p E (0, po) and any fixed choice of r E (0, p). Since fB, f is an
absolutely continuous function of p (for any L'-function f), we can now integrate
to give the required monotonicity identity.

Notice that since the right side of (i) is non-negative, we have in particular that

(ii) p2"" J IDuI2 is an increasing function of p for p E (0,po),
, (Y)

and hence that the limit as p -+ 0 of p2-" fBB(Y) IDuj2 exists; this limit is denoted
@.(y) and will be further discussed in the next section. An important additional
conclusion, which we see by taking the limit as or 10 in (i), is that fB p(Y) R2-" I p

12 <
0o and

C
(iii) p2-" J JDu12 - Ou(y) = 2

fB,
R2-"I

at
aR

I2

(Y) (Y)

2.5 The Density Function

Definition 1 We define the density function 9u of u on Il by

(i) eu(y) =
limp2_n

IDu12.
alo

J
BB(y)

As we mentioned above, this limit always exists at each point of 12 for a minimizing
map u. We shall give a geometric interpretation of this below.
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For the moment, notice that the density 9 is upper semi-continuous on 0; that is

(ii) yi - y E 1 lim sup
j-oo

Proof: Let e > 0, p > 0 with p + e < dist(y, aQ). By the monotonicity (ii)
of Section 2.4 we have p2_n fB,,(",) IDuI2 for j sufficiently large to en-
sure p < dist(y3, O1). Since Bp(yy) C B,,+,(y) for all sufficiently large j, we
then have p2_" fBn+,(a) IDu[2 for all sufficiently large j, and hence we
get limsupj-, Bu(ys) < p2_n

fB"+,ibl [Du12. Now, by letting e j 0, we conclude
p2-n fB,(x) IDuI2, and the required inequality follows by taking

the limit as p j 0.

Before we enter into the proof of the reverse Poincare inequality for energy minimiz-
ers we need a lemma due to Luckhaus (see [Lu88] and also [Lu93]) which extends
Lemma 4.3 of [SU82].

2.6 A Lemma of Luckhaus
We use the following definition:

Definition 1 (1) If v E L2(S"-';1R.°) then we say v E W'"2(S"-'; IR") if the ho-
mogeneous degree zero extension v(rw) - v(w), w E Sn-1, r > 0 is in W1.2 in some
neighbourhood of S"'. (Actually if n > 3 this is the same as saying that v' is in

1R').) We say that v E W1'2(S"-'; N) if v E W'.2(S"-'; 1R') and if
v(S"-1) C N.

(2) Similarly v E L2(Sn-1 x [a, b]; lR') is said to be in W',2(Sn-1 x [a, b]; 1R.') if the
homogeneous degree zero extension of v`(w, t) (with respect to the S"-' variable w)
is in x [a, b]; 1R') for some neighbourhood U of S"''

Figure 2.2: Luckhaus' lemma

We now state the Luckhaus lemma depicted in Figure 2.2 above.
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Lemma 1 Suppose N is an arbitrary compact subset of lRp, n > 2, and u, v E
14,1.2(S"-'; N) in accordance with the above definition. Then for each e E (0, 1)
there is a function w E W1"2(S"-' x [0,e]; 1R') such that w agrees with u in a
neighbourhood of S"-' x {0}, w agrees with v in a neighbourhood of S"-' x {e}

IDw12 < CE (Ioul2 + IVvI2) +CE- 1 lu - V12,f"-, fo-,

and

diet2(w(x, s), N) <

1/2 '/2Ce' " (IS-1 1Qu12 + IVVI2(J lu - UI2+ CE f lu - V[2
S^-. " -1

for a.e. (x, s) E Sn-1 x (0, el. Here V is the gradient on S"-' and V is the gradient
on the product space S"-' x [0, el.

We will give the proof of this lemma in the appendix of Chapter 2.

Now we want to establish some useful corollaries of Luckhaus' Lemma.

2.7 Corollaries of Luckhaus' Lemma

First we mention the following important fact about slicing by the radial distance
function:

Remark: Suppose g > 0 is integrable on BP(y). By virtue of the general identity
f Bn(Y)\Bol2(Y) g = iP/2(f8Ho(Y) g) do, we see that for each 6 E (0, 1)

(i) f g:5 20--'p" f 9
8Be(Y) BP(Y)\BP/2(Y)

for all a E (a, p) with the exception of a set of measure L. (Indeed otherwise the
reverse inequality would hold on a set of measure > 2 and by integration this would

give fBB(Y)\B,12(Y) g < f,12(f8se(Y) 9) da- - fB,(y)\BP/2(Y) g' a contradiction.)

Furthermore, if w E IR) (identified with some fixed chosen representative
for the L2 class of w), then for each ball BP(y) C St and each 0 E (0.1).

(ii) W(a) E 14'.2(S"-'; IR) and f IDWw(,,)I2dw <

a3-" f I DwI2 < 20-' p2-" f IDwI2
B. a (Y)\Bn/2(Y)

for all a E (p/2, p), with the exception of a set of or of measure
z

, where w(,) is
defined by w(,)(x) _- w(y + ow), w E S"-', and where DD, means gradient on S"-'.
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Corollary 1 Suppose N is a smooth compact manifold embedded in JR' and A > 0.
There are bo = 6o(n, N, A) and C = C(n, N, A) such that the following hold:

(1) If we have e E (0, 1) and if u E Wl'2(Bv(y); N) with p2-n fBB(v) IVuI2 < A, and

e-2n p n fB,,(v) J U - AY PI2 < bo, then theme is or E (4 , p) such that there is a function

w= w, E W1"2(BP(y); N) which agrees with u in a neighbourhood of 8B,(y) and
which satisfies

a2-n J IDw12 < ep2-"
J

IDu12 + F-1Cp " J Iu - Ay,P12.
Be(Y) B"(Y) B9(Y)

(2) If C E (0, boj, and if u, v E WI.2(B(I+E)P(y) \ BP(y); N) satisfy the inequalities
,fBP(I+.)(v)\BP(v)(I DuI2 +IDuI2) < A and a-2np "fs(,+.)n(v)\BP(v) Iu - vI2 < 62

then there is w E WI"2(B(I+e)p(y) \ B,(y); N) such that w = u in a neighbourhood
of 8BP(y), w = v in a neighbourhood of 8B(I+,,)P(y), and

p2 " IDwI2<
B(1+.)n(v)\Bv(Y)

< Cp2-" f (IDuI2 + IDvI2) + CC-2p -n Iu - v12.
B(1 )v(v)\BP(U)

Figure 2.3: Corollary 1(2)

Proof (1): According to the above remark, we can choose a E (f , p) such that
uI aB.(v) E W 1,2(Bo(y); N),

(1) 03-n

J
IDu12 < Cp2-n I IDuI2

8B. Bo(&)\Bo/a(8)
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and such that

(2) a'-n
J

Iu - A,,, 12 <- Cp nf Iu - Cb5e2n.
OB.(y) ,(Y)\B,,2(Y)

Also note that, since u(Bp(y)) C N, dist2(Ay,P, N) < Iu(x) - ay,p12 for each x E
BP(y). Thus integrating over BB(y) we have

dist2(,\y,P, N):5 Cp " J I U - \Y,PI2 < C6 e2n .
v (Y)

We can thus choose .\ E RP such that

(3) A E N, I.\ - \Y,PI2 < Cp" f l u - '\ ,,p12 < Cboe2n .

B(Y)

Now let u be defined on S"-' by u(w) = u(aw). Then in view of (3) we can apply
Lemma 1, with Nab. - {x E IRP : dist(x, N) < Cbo} in place of N, with u in place
of u and with v - A, in order to deduce that there is a wo : Sn-' 1RP such that
wo = u in a neighbourhood of Sn-t x {0}, wo - \ in a neighbourhood of S"-' x {e},

(4) IVwol2 <Ce IV 2+Ce-' Iii _ '\12
f"-I x(Q.E' S"-1 J"-'

and also dist(wo(x, s). Nc,(,) < Cb01j2 by using (2), (3) in the second conclusion of
Lemma 1, where C = C(N, A, n). Now we can suppose (by taking a smaller bo =
60(n, N, A) if necessary) that C60112 < a, where a > 0 is such that the nearest point
projection r1 onto N is well-defined and smooth in N,, - {x E RP : dist(x, N) < a}.
So finally we can define w E W 1,2(BP(y); N) by taking w(rw) - u(rw) for r E (a, p),
w(rw) = fl o wo(w, l - r/a) for r E ((1 - e)a, a), and w(rw) - A for r E (0, (1- e)a).
Since d(f1 o wo) = drl,,,o(.,,) o dwo it is then easy to see (with the aid of (2), (3), (4))
that this is an appropriate choice for w. So the proof of part (1) is complete.

Proof of (2): To prove part (2) we first note that by (i), (ii) above there is a set
of a E (p, (1 + 2)p) of positive measure such that

(5) a3-" J (IDu12 + IDv12) < Cp2ne' J (IDui2 + IDv12)
Be(Y)

and

(6) a'-" I! - VI2 < Cp"e ' f Ill - VI2 < C602 e2n-'J B,, (y)

.

BU+qo(Y)\Bv(Y)

Also, by (ii) we know that almost all of these or can be selected so that u, v E
RP). Now we can apply the Luckhaus lemma (with e/4 in place of e)

to the functions u(w) - u(aw) and ii(w) = v(aw), thus giving w on S"-' x [O, c/41
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with w = ii in a neighbourhood of Sn-1 x {0}, w` = v in a neighbourhood of

S"-' x {e/4},

(7)

IowI2 < CE JS^
CE-1

J n `

JS"-' x [O,e/4) S

B.. B..

J< Cp2 n (IDvI2 + IDvI2) +CE2p "Iu - VI2f (,+r)v(Y)\Bp(Y) (,+.)v(Y)\Bp(Y)

by (5) and (6), and

(8)

supdist2(w, N) <
1/2

1/2C (f
, (IouI2 + IV 12)) (E2-2n / , Iu - f,12) + E-" I , Iu _ v12.

Again by (5) and (6), the right side here is < Cbo with C = C(n, N, A), and so for
bo = bo(n, N, A) small enough we conclude that w maps into the same neighbourhood
N,, as in the proof of part (1) above. Now we can define a suitable function w,
first on the ball B(1+e12)o(y); we let w(x) = fI o iv-(w, r/a - 1), with r = Ix - yI E
(a, (1+E/4)0), w(x) =- u(x) for Ix-yI < a, w(rw) = for r E ((1+e/4)a, (1+
E/2)a, where fli(t) is a C1(IR) function with the properties i'((1 + E/4)a) = a,
((1 +E/2)a) = (1 +E/2)a and tI/(t)I < 2 for t E ((1+E/4)a, (1 +E/2)a). In view
of (7) it is straightforward to check that this satisfies the inequality stated in the
lemma. 0

2.8 Proof of the Reverse Poincare Inequality

In order to complete the proof of the E-Regularity Theorem of section 2.3 we still
need to establish the reverse Poincare inequality, i.e. the lemma

Lemma 1 If u is energy minimizing in the sense of Section 2.1, if A is a given
constant, and if R2-" fBR(=,) IDuI2 < A for some ball BR(xo) with closure contained
in 1, then

p2-nf IDu12 < Cp " f ju - '\Y.PI2

o12(Y) I B(Y)

for each y E BR12(xo), p < R/4. Hen C = C(n, N, A) > 0.

Proof: For any p < R/2 and y E BR/2(xo) we have by monotonicity ((ii) of
Section 2.4) that

Iii - vj2

< CEa3-" (IDuj2 + IDvI2) + CE-101-n Itl - VI2
L L

(1) P2-" IDuI2 < (R/2)2-" IDuI2 < 2"-2R-" < 2"A.J .(Y) f R/2(Y) J R(=o)
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Take a fixed po E (0, R/2] and yo E BR12(xo). We want to prove the inequality
P02-n fB IDuI2 < Cpo n B Iu By (1) there is no loss of generality

on(w) l PO (uo)
in assuming

(2)
Pon f Iu-AyopoI2<e ,

B,o(YO)

where eo is to be chosen (small) depending only on n, A, N (and not depending
on po, R, yo or u); because if the reverse inequality held, then by (1) we would
trivially have the required inequality with constant C = 2nA/c . So from now on
we assume (2), subject to the agreement that we must eventually choose a fixed co
depending only on n, N, A.

Let 6 E (0, 1) and let co E (0, 1) in (2) (depending for the moment on 6) be at
least as small as bnbo, where bo is as in Corollary 1 of Section 2.7. We can thus
use Corollary 1(1) of Section 2.7 (with 6 in place of e) to obtain the existence of
w E N) and or E (3,po) such that

a2-n
J

IDwI2 < 6P.2-n J IDu12 + b-'Cpof Iu - '\yo.vul2,
B.,(to) o o(yo) Bop(yo)

with w agreeing with u in a neighbourhood of 8B,(yo). Using the energy minimizing
property of u on the ball B,(yo) we get

(3)

P.2-n

J IDu12 < 0,2-n B IDwI2
Baoo/.(yo) Bre(w)

bpo-n / IDuI2 + Cb-'pon f Iu - AYO.vol2
B,o(NO) Bvo(yo)

< 6A+C62n-1602.

Notice that then

(4) p2-n r IDu12 < C6, C = C(n, N, A),
B9(y)

for any ball Bo(y) with y E B 12(yo) and p < ?, because for such a ball we have
p -ft fB,(y) IDuI2 < (Po/2)2-n fBpp/.(y) IDwI2 < 4n-2P02-n fB,,o/.(yo) IDu12 by virtue of
the monotonicity formula and the inclusion B,,,4(y) C B3po/4(yo). Then (keeping in
mind the arbitrariness of 6) by the Poincare inequality we deduce from (4) that

(5)
P -n

J Iu -1YPI2, P2_n IDuI2 < 6
Bo(y)

f
Bo(y)

for all such balls Bo(y), provided only that the original inequality (2) holds with
suitably small co depending only on n, N, A, and 6. Thus for any given e > 0 and
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with 6 chosen small enough (depending on n, N, A, e), we can repeat the argument
leading to (3), with p, y in place of po, yo, in order to deduce

(6) p2-n J IDuI2 < Cep2-" J IDuI2 + Ce-'p" J lu - '1y.PI2
y12(y) P (y) o(y)

provided only that p < po/8 and the original inequality (2) holds with co small
enough, depending only on e, N, A. and n. In particular, assuming such a choice of
co, this holds for arbitrary sub-balls B,(z) with B2o(z) C B,(y); thus

a2_n f IDuI2 < Cea2-n f IDuI2 + Ce-la-n f lu - I2
z,o ,

Be/2(z) B,(z) B.(z)

for each ball B,(z) such that B2o(z) C B,(y) (and this holds for any ball BP(y) with
p:5 Po/4 and y E B 12(yo)), and hence

(7) a2 B./2W IDuI2 < Cea2 J
s

IDuI2 + Ce' f lu - a,l2
(z) ,(z)

< Cea2 J IDuI2 + C'li
.(z)

where I, = fBB(y) lu -\Y.P12*

Now in view of the arbitrariness of the balls B,(z) we claim that this implies the
required reverse Poincare inequality on BP(y). To see this we need the following
abstract lemma.

Lemma 2 Let BP(y) be any ball in IR", k E IR, 7 > 0, and let cp be any [0, oo)-
valued convex subadditive function on the collection of convex subsets of BP(y); thus
,p(A) < E I p(Aj) whenever A, Al, ... , AN are convex subsets of BP(y) with A C
Ujl IA;. There is co = eo(n, k) such that if

ak,(B,12(z)) 5 COO' p(B.(z)) +7

whenever B2o(z) C B,(y), then

pk'p(BP,2(y)) <- Cry, C = C(n, k).

We give the proof of this below, but first we explain how it is used to complete the
proof of the reverse Holder inequality.

In view of (7) we may apply the lemma in the special case W(A) = fA IDuI2, ,v, _
Ce-'I,, Cc = co (C as in (7)) and k = 2, thus giving

(8) p2-" f IDuI2 < Cp" B Iu - '\y,Pl2
B ,3(Y) Ba(y)
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provided p < po/4 and y E Bpo/2(yo). Finally since B,,0/2 (YO) can be covered by balls
Bp.18(y,) j = 1,... ,Q with Q = Q(n) and yj E B 12(yo), it is then clear that the
reverse Holder inequality for the ball B,, (yo) follows by setting p = po/4 and y = y)
in (8) and then summing over j. (Keeping in mind that f Iu - A I2 <

JB,u(uo) Iu -

Thus to complete the proof we have only to give the proof of Lemma 2.

Proof of Lemma 2: Let

Q = sup 00),
{Bu(s) By,(n)cB(y)}

and then take an arbitrary ball B,(z) with B2o(z) C B,(y). Notice that such
a ball can be covered by balls B,/4(z,), i = 1,... S, with z; E B,(z) and with
B,(z;) C Bp(y); further we can evidently bound the number S by a fixed constant
depending only on n.

Suppose for a moment the given inequality holds with a in place of e0, with e
to be chosen depending only on n,k and not depending on ry. Then using this
inequality with z, in place of z, and o/4 in place of a, summing over i, and using
the subadditivity of p we have

or kv(B,(z)) 5 4keSQ + 4kSry.

Taking sup on the left we thus have

Q < 4keSQ + 4kS7 ,

whereupon choosing e = eo(n, k) such that 4ke0S < 2, we have

ok'p(Bo(z)) < 4k+1S7,

for each ball B,(z) with B2,(z) C Bp(y), where C depends only on n, N, A. Taking
z = y and a = z in (7) we thus have the required conclusion with C = 41+1S and
Co = 1/(4k+1S).

2.9 The Compactness Theorem

There is also a nice compactness theorem for energy minimizing maps which is due
to Luckhaus (partial results had been obtained earlier by Schoen-Uhlenbeck [SU821
and Hardt-Lin [HL871), as follows.

Lemma 1 If {u., } is a sequence of energy minimizing maps in W1,2(52; N) with
sup, fB(y) IDu, 12 < oo for each ball BB(Y) with Bp(Y) C 52, then there is a subse-
quence {u,. } and a minimizing harmonic map u E W 1.2(52; N) such that uy -p u in
W1.2(Bp(y); 1R.p) on each ball Bp(y) C Q.
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Remarks: (1) In particular the energy fBo(y) IDu,'I2 converges to fBB(y) IDuI2 for

each ball BP(Y) C ft

(2) Notice that, by the Rellich Compactness Lemma (Lemma 1 of Section 3) for
bounded sequences of functions in W'.2, there is a W) (0, IR°) function u such that
u,, converges in L2 to u on compact subsets of (1 and Duy converges locally weakly
in L2 to Du in Q. Of course then u maps into N (in the sense that u(x) E N
a.e. x E Sl) because a subsequence of the subsequence u,, converges pointwise a.e. to
u. Thus the main content of Lemma 1 is that Du,, converges strongly in L2 and
that u is minimizing.

The main difficulty in proving these latter facts is that on a given ball B,(y) with
closure contained in Q, the values of u, and u differ slightly near the boundary
913,,(y), and so we are not able to directly use the definition of energy minimizing.

However we now have at our disposal Corollary 1(2) of Section 2.7, and this is
exactly what we need to compare energies of u, u, in a sufficiently precise manner,
even though the boundary values do not coincide.

The fact that Du,, converges in L2 locally on St is originally due to Schoen-Uhlenbeck,
who used the regularity theorem to establish it. This approach however does not
establish the fact that u is energy minimizing; this was not proved in full generality
until the paper [Lu881.

Proof: As in the remark above, there is a subsequence {u,'} (henceforth denoted
simply {u.,}) and u E W)a (S1; N) such that u, --+ u in L2 and weakly in Wi.2 locally
on 0. Let Ba(y) C ) and let 6 > 0 and 0 E (0,1) be given. Choose any M E
{1.2, ... } with limsuppo-" fBoo(y) IDu,12 < X'16, and note that if e E (0, (1-0)/M)
we must have some integer e E (2,... , M} such that

po-,a IDu,I2 < 6
B,o(o+e )(y)\Boo(e+u-2m)(y)

for infinitely many j, because otherwise we get that p02-" fBPo(y) IDu,I2 > Mb for
all sufficiently large j by summation over 2, contrary to the definition of M. Thus
choosing such ant, letting p = po(O+(t-2)s), and noting that p(l+e) < p0(0+er) <
po, we get p E (Opo, po) such that

(1) po IDu'12 < 6
Bo(,+e)(y)\Bp(y)

for some subsequence j'. Of course then by weak convergence of Du,, to Du we also
have

(2)
p02--

J
IDu12 < 6.

Now, by Corollary 1(2) of Section 2.7, since fBPo(y) Iu - u ,I2 -i 0, for sufficiently
large j' we can find w,' E B,,(y); N) such that w,, = u in a
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neighbourhood of 8BP(y), w,,' = uj, in a neighbourhood of 8B,1+£)(y), and

(3)
p2_nf IDw,,I2 <

B(,+.)n\BP(y)

<Cp2-n f (IDuI2+IDuj,12+e-2p2Iu-uj,I2),
B(I+.)9(Y)\BP(Y)

where C depends only on n, N. Now let v E W 1.2(Be (y); N) with v = u in a
neighbourhood of OBBP(y), extend v to give v' in W'.2(BPo(y); N) by taking v` - u
on B,(y)\Bo.(y), and let iij, be defined by

I 1Lj, on BPO(y) \ B(l+c)P(y)
u = w;, on B(1+,)P(y) \ BP(y)

v on BP(y).

Then by the minimizing property of u, we have

IDu;,I2(4) IDu;,I2 < jj (I+r)P(Y) ( I+e)o(Y)

<f IDuI2+f IDw)'I2,
BP(Y) BO+e)P(v)\BP(v)

and hence by (1), (2) and (3)

(5)
p2_n

IDu12 < lim inf p2-n IDuj I2 < p2_n IDI2 +Cb,fBP(Y)
J-ofB,,(v) fBP(v)

where C = C(n, N), and hence

p2 J IDuI2 < p2-n f IDuI2.
e,O(Y) BePp(Y)

Since 6 > 0 was arbitrary, this shows that u is minimizing on Be (y), and in view
of the arbitrariness of 0 and po, this shows that u is minimizing on all balls BP(y)
with BP(y) C Q.

Finally to prove that the convergence is strong we note that if we use (5) with v = u,
then we can conclude

limi fp2-nJ IDu,,,I2 < p2-nj IDuI2+C6,j-W
P(Y) P(Y)

and hence, in view of the arbitrariness of 0 and 6,

p2-n lira inf IDu,I2 < p2-n IDuI2,

1-00 fBP(Y) fBO(Y)

for each pl < po. Evidently it follows from this (keeping in mind the arbitrariness
of po) that

(6) lim inf I Dul12 < IDuI2
3-00 jflp(y) fBP(Y)
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for every ball B,,(y) such that Bp(y) C Q. Then since

IDu, -DuI2-J IDul2+J jDu,12-2J
J '(Y) B(Y) B.(Y) B,(Y)

we can evidently select a subsequence which converges strongly to Du on B,(y).
Since this holds for arbitrary B,(y) C Q. it is then easy to see (by covering 11 by a
countable collection of balls Bfy(y,) with BP, (y;) c Sl) that there is a subsequence
such that Duy converges strongly locally in all of Q. 0

2.10 Corollaries of the e-Regularity Theorem

First we need to define the regular set reg u and the singular set sing u of u:

Definition 1 If u E W"2(1l; R°), i2 an open subset of 1R", then

reg it := {x E Sl : u is C°° in a neighbourhood of x}

is the regular set of it, and

sing u:= 1\regu

is the singular set of it.

Remark: Note that by definition reg u is an open set, whereas sing it is a (relatively)
closed set in Q. We show below in Lemma 1 that sing it is small- of codimension 2.
Later (in Chapter 3) we improve this even further.

Corollary 1 There exists e > 0, depending only on n, N such that if B,(y) C Sl
and if p2-" fD(,) JDul2 < e, then y E regu and supBn,s(Y) pil D'ut < C for each
j = 0,1, 2, ... , where C depends only on j, n, N.

Proof: The Poincare inequality (Lemma 2 of Section 1.3) tells us that

inf p -n in, Iu - )1J2 < Cpl-" J JDu12 < Ce,
AEIRP

(Y) B.(Y)

and hence Corollary 1 is a direct consequence of the c-regularity theorem (Theorem 1
of Section 2.3). 0

Now we show that the regularity theorem gives a nice way of characterizing of the
regular set:
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Corollary 2 0 e=*y E regu.

Proof: follows trivially from the fact that u smooth near y implies IDul is
bounded near y, while follows directly from Corollary 1. 0

The next corollary shows that the singular set of the energy-minimizing map u is
actually quite small:

Lemma 1 If u E W'"2(12; N) is energy minimizing in Sl then ?in-2(singu) = 0.
(In particular sing u = 0 in case n = 2.)

Remark: Here N"-2 denotes (n - 2)-dimensional Hausdorff measure. Thus the
claim of the above lemma is that for every e > 0 there exists a countable collection
of balls {B l(y;)} with singu C U2 B,, (yy) and E, pj"-2 < E.

Proof: Let K be a compact subset of S1, bo < dist(K, 81l). For y E sing u n K we
know by Corollary 1 that

(1)

fB,(Y)

IDul2 > Ep"-2

for all p < 60. For fixed 6 < 6o, pick a maximal pairwise disjoint collection of balls
B612(y,)j-i with y) E K n sing u; that is, pick y3 E K n singu, j = 1,... , J,
such that B612(y,) n B612(yi) = 0 for all i # j and such that J is the maximum
integer such that such a collection {y,} exists. Then the collection {B6(y,)} covers
K n sing u:

(2) Knsing u C U,B6(y,),

because if we could find z E K nsing u\(U,=1B6(y,)), then we would have pairwise
disjoint balls B612(yi), ... , B612(yr), B6/2(z), thus contradicting the maximality of
J. Using (1) with 6/2, yj in place

J

of p, y and summing ovJ er j we then have

(3) Jbi2 < 2"E-' IDuI2 2"e' IDuI2,
B6 (Yy) 6

where Q6 = {x : dist(x, K n sing u) < 6).

In particular

J6n < 2"62E-' j IDuI2,

which, since B(y), j = 1,... , J, cover all of sing u n K, and since we can let 6 1 0,
shows that sing unK has Lebesgue measure zero. But then fQ, IDuI2 0 as 6 10 by
the dominated convergence theorem, and hence (3) implies that 7{n-2 (sing u n K) =
0. Since K was an arbitrary compact subset of Sl this shows that x"-2(sing u) = 0
as required. 0
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Figure 2.4: The singular set

2.11 A Further Remark on Upper Semicontinuity
of the Density ©u(y)

Notice that if we use the result of the compactness lemma (Lemma 1 of Section 2.9),
and a very minor modification of the argument used to prove 2.5(ii), then we deduce
that A (y) is actually upper-semicontinuous with respect to the joint variables u,y
in the sense that if y3 - y E L 2(Il) and if {u3 } is a sequence of energy minimizing
maps from 12 into N with locally bounded energy in S2 and locally converging in 1,2
(hence in W171.2 by the compactness lemma) to u, then
We use this frequently in the sequel.

2.12 Appendix to Chapter 2

In this appendix we give the proof of Luekhaus' lemma of Section 2.6. In order to
prepare this proof we first mention a further property of functions with LZ gradient:

2.12.1 Absolute Continuity Properties of Functions in W1,2

Let Q be the cube [al, bl] x x [an, bn) in 1R (aj < bj real numbers, j = 1..... n),
and let V' E 6i'1"2(Q). Then there is a representative I for the L2 class of V' such that,
for each j = 1, ... , n, I(xl , ... , x?-1. x3 :ci+l, ... , x't), is an absolutely continuous
function of xi for almost all fixed values of (xl, ... xJ-1, xj+1, ... , xn). Here of
course "almost all" is with respect to the (n - 1)-dimensional Lebesgue measure on
the (n - 1)-dimensional cube [al, b1] x ... x (aj_1, bb_1] x [a,+1, b,+t] x ... X [an, bn].

Furthermore, the classical partial derivatives D, (defined in the usual way by
Diy5(x) = liml-ot-1(tl(x+tei) -:i(x)) whenever this exists) agree a.e. with the
LZ derivatives A discussion of these properties can be found in e.g. [GT83]
or (lblo66]. We here make one further point: one procedure for constructing such a
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representative /i (see e.g. [Mo661) is to define zli(x) = k at all points where there
exists a .\ such that limP1o p-" feo(v) 1,\. - u(y) I dy = 0, and to define ' arbitrarily
(e.g. Vi(x) = 0) at points where the limit does not exist. Thus in particular if
0 = (0', ... , VR) : Q RP, and if N is any closed subset of IRP with the property
that O(x) E N for almost all x E 0, then we can select the representative V; to
have the property ;(x) N for every x E 1, in addition to the absolute continuity
properties mentioned above.

2.12.2 Proof of Luckhaus' Lemma (Lemma 1 of Section 2.6)

In the case n = 2 the functions u, v have an L2 gradient on S' and hence have
absolutely continuous representatives u, v such that Vu- = Vu, V17 = Vv a.e.,
where Du, Vu denotes respectively the classical gradient and the weak gradient of
u on S'. Furthermore, by 1-dimensional calculus on S' and by the Cauchy-Schwarz
inequality we have

rIvlu- V[2[+(2,)-1
J [u-17[2SSPIu-1712 <

//

/ ' '

<C(.)' IV(u-v)I2)112( f' [u-vI2)`12+C f' Iu1712,

If we now define
w(w, s) = U(w) + e (17(w) -11(w)),

then, letting Ow denote the gradient of w on S' x [0, e], we have

IvwI < IVUI + IV(17- u)I + f Ii - u1,

and hence

IOw12 <8(1V1112+1V1712)+2e 2117-u12.

By integrating this over S' x [0, e], we get the first claim of the Luckhaus Lemma.
Further, since u(S') C N, the above inequality for sups, 1u-17I implies that for each
wES',sE [0, el, we have

dist(w(w, s), N) < C(J IV(u - v)I2)h14( f ' Ill - 1712)1/4 +C(J 1u - 1712)1/2,

which is the second claim of the Luckhaus Lemma (indeed it is stronger since in this
case n = 2 we get no a dependence on the right). This completes the proof in the
case n = 2, so from now on assume n > 3.

Again choose representatives u, 17 for u, v which have homogeneous degree zero
extensions to R" having the absolute continuity properties of i of 2.12.1 on the
cube [0, 1] x ... x 10, 1].

Without changing notation, we also let u, 17 denote these homogeneous degree zero
extensions on IR"; thus U(rw) _- u(w) for r > 0 and w E S"', and Du = Vu on
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S1-1. DU = Vv on Sn'. Notice also that Du(x) = Ixl-'Du(w), with w = Ixl-'x,
and hence (since n > 3) we have in particular that

(1)
J -11)^(ID'iI2 + IDv12)

< C 1
^

(IVuI2 + IVV12),

and also of course

(2) f lu-v12<C f Iu_v12.
5^-'

Now fore E (0, 8) and i = (it,... in) E Z (7L = {0,±1,±2,...}), we let Qi,E
denote the cube lire, (i1 + 1)eI x ... x tine, (in + 1)eJ, and for a given non-negative
measurable function f : [-1.1]n ---+ lR we let f : Q.,E 1R be defined by

f(x) _ E f(x+ei),
{i:Q,.rc(-12.21)^}

Then

X E Qoe, QO2 = Ulil<tQi.e

f (x) dx f (x) dx < f f (x) dx,
Qa, 11)^

and hence for any K > I we have

Cn E f(x + e i) < K f f(x) dx

for all x E Qo,E with the exception of a set of measure < Ce"/K, where C = C(n).

Similarly, since by Fubini's theorem

f
e nf (x) dx < e f f(x) dx, o,= UUI<IQ,,Qo,o,c l-1,1J'

we have

f(x)dxe° '
e

for all x E Qo,e with the exception of a set of measure < Cen/K, and generally, for
any(E{0,...,n},

e"-e f f(x+y+ei)dlIE(y) 5 Kf f(x)dx

for all a-faces F(e) of Qo,E and all x E Qo,E with the exception of a set of measure
< Cen/K. Notice that this last inequality implies

(3) en-e f e f (y) d7e(y) 5 K f f (x) dx
{i Q,.ee.l-1.21)^}/_f 1-1,1)^
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for all t E (0,... , n} and all x E Qo, with the exception of a set of measure
< Cen/K.

Now by the absolute continuity properties of Appendix 2.12.1, we can select rep-
resentatives u, v, Du, D1, for the L2 classes of u. v, Du, Dv such that for almost
all x E Qo.e all of the functions u, v, DU, DU are defined V-a.e. on each of the
t-dimensional faces Ft of each of the cubes x + Q;,E with Q;,, c [-Z, 2]n for each
e = 0.... , n and, furthermore, such that on each such e-dimensional face, u, v have
L2-gradients which coincide V-a.e. with the tangential parts of Du, D1. Now by
applying (3) with f = Iu - v12 and f = IDu12 + IDvl2 we see that we can select
x = a E Qo.e such that the above properties hold and also such that

(4)
an-e Jf(Y)(Y)

M

< C f f (x) dx with f = Iu - vI2 or f = JD-j2+ lDvI2,

I-1.11"

for each e E {0, ... , n), where C = C(n).

Next, let Q be any one of the cubes a + Q;,E with Q;,E C [-Z, Z]n, and we proceed
to define a W'.2 function w = w(',`) on Q x [0, e] which agrees with u on Q x {0} at
all points of Q where u exists, agrees with v on Q x {g} at all points of Q where v
exists, and which is such that

(5)

n-1

IDw12 < CEEn-J+1

fQx(O,el j=1
E J (IDI2 + Dl2)

allj-facesFU)ofQ
U)

+ Cen-2 J
Iu - v12

all l-faces FO) F)' )

with gradient on Q x [0, e], and

(6)
dist2(w(x), N) <

(
l1/2

(J,)Iil_l2)
1/2

C max (\f 1 D- 2) + cc' f 1u
vI2lrfacFO)ofQ FOFU)

Let E be any one of the edges (i.e. 1-dimensional faces) of Q. By 1-dimensional
calculus along the line segment E, we have (since the length of E is e)

(7) sup Iu - vI2 <_ f IDIE - v12I + s-1 flU -'VI2.

Hence by using the Cauchy-Schwarz inequality we obtain

l1/2

(fE

1/2

(8) supIu-vI2<2(fEID(u-v)12Iu-x121 +e-' JElu-vI2
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Then we can define an RP-valued function w on Q x [0, c] by the following inductive
procedure. We first define w on Q x {0} and Q x {E} by

(9) w(x,0) = u(x), w(x,E) = 1i(x), x E Q.

Next we extend w to each FM x [0, E], where FO) is any 1-dimensional face (i.e.
edge) of Q, by defining

w(x, s) = (1 - )u(x) + Si(x), X E F(l), s E 10, E].
E E

Notice that then by (8) and the fact that u(lR") C N we have

dist2(w(x, s), N) <
1-faomax)otQ Fcp

Iv - UI2 <

((LI)
l1/2

(r 11/2 r
2 max ID(u - )[2/

\J
Iu - [2J +1 J lu - I2

1-faceaF(')ofQ FO) F(t)

Also notice that by direct computation

(11) sup IDw(x, s)I2 < 8(IDu(x)I2 + ID-v(x)I2) + . 111(x) - w(x)I2- T2
aE(O,e)

at any x in any edge Fit) of Q (where D = (A, a&,), -& = gradient on FO)), hence

(12) f IDwI2 < CE f (ID-l[2 + ID-I2) + CE-1 J I- - I2.FF(1) (t)

For e > 2 we now proceed inductively by homogeneous extension into faces of larger
and larger dimension. More precisely, assume t > 2, and that w is already defined
(with L2 gradient) on all F<'-1) x [0, c] and w(x, 0) - u(x), w(x, e) - 'v(x) on F(t).
Since 8(F(t) x [0, E]) is the union of F(<-1) x (0, EJ (over the a-1 faces F(t-1) of F(t))
together with Fit) x {0} and Fit) x {E}, we then have that w is already well defined
ht-a.e. on 8(Flt) x [0, e]). We can thus use homogeneous degree zero extension of
wl8(F(t) x [0, E]) into Fit) x [0, E] with origin at the point (q, E/2), where q is the
center point of F(t). Then by direct computation we have

(13) f I wI2 <CEf J c I)x(Oc}-(Qxl0,e1 F(t)
all F('-') (

where D = (O, as ), a = gradient on Fit) on the left and on F(1-1) on the right.
(In checking the a dependence here it suffices to check the inequality only in the
special case e = 1, because we deduce the general case from this case by the scaling
(x,s) -+ (ex,es).) So by mathematical induction based on (13) we conclude that,
for all e E 12,... , n}, w can be extended to all of Fit) x [0, c] (F( = any a-face of
Q) such that w has L2 gradient Dw on all Fit) x [0, eJ with

IDwI2
JF(')x(O.ej II<

Cet-1

fF t)x(0cl
alll-faceaF(tlofQ (

+CEEt-i+1 E J (IDwI2+IDwI2).I

9=1 ally-face F(i)ofQ ' (1)
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Furthermore notice that homogeneous degree zero extension preserves the bound
(10). Thus by (10), (12), (14) (with f = n) we conclude the existence of to :

Q - RP as in (5) and (6). Since Q = a + Q,,, we should write w =
Since the construction of is such as to ensure that 01-0 R"'-a.e. on
F<<) x (0, e] for any common P-face F<<) of two different cubes a + Q, and a + QQ,E,
we can then define a W1.2 function w on [-a, a]" by setting w(x,s) =
for (x, s) E (a + Q,) x [0, e]. (We are assuming e E (0, e) and a E Qo,,, hence we
automatically have that (-4,'-']" C a + Qi, C [-2, 2]".) Notice that then
by summing over i in (5) (keeping in mind that Q = a+Qi,1) and using (4) and (6)
we get

(15) J IDw12 < CC J (IDuI2 + [Dv12) +Cs-' J Iu - v12
;l^X10,C] 1-1.11^ I-1,11"

and

dist2(w(x), N) <
1/2

< C max I D(u - V) 12 J
(i)

(u- vI2) +Ce-1 Iu - vI2
I.faccsF)EF (J> p / LI)

\1/2

< C£I-"
(IDuI2 + IDvI2) J-^ lu v12) +Ce n Iu - v12,

U-1,11-
J

I1]"

where F denotes the collection of all 1-faces of cubes in the collection {a + Qi,,
Q,,e C [-2, 2]"}.

Defining w` = wI((-!, a]"\(-8, a]") x 10, e], and, using 2.12.1 and Fubini's Theorem,
we can choose p E [8,

4]
such that w has L2-gradient on 8([-p, p]") x [0, e] and such

that

J IDuI2 < C J
(]-P.P]")x[O,e] l-1,1J^x]O,el

Then finally let %P be the radial map from 0 taking S"-I to 8([-p, p]") (notice that
this is a Lipschitz piecewise Cl map with a Lipschitz piecewise C' inverse). Thus we
can define w on S"-' x [0, e] by iii(w, s) = iv-(4'(w), s), and one then readily checks
that this map ti has the properties claimed for w in the statement of the Luckhaus
lemma. (In particular, since w(x, 0) - u(x) for x E 8([-p, p]") and since u is
homogeneous of degree zero in IR", we then have by definition that w(w, 0) - u(w)
a.e. on S"-1. Similarly w(w,e) - v(w) a.e. on S"-'.)

This completes the proof of the Luckhaus lemma.

2.12.3 Nearest point projection

Here we want to give a proof of the fact that if N is a compact CO° (resp. C'') man-
ifold which is isometrically embedded in RP, then there is a tubular neighbourhood
U = {x E RP : dist(x, N) < b} of N such that the nearest point projection map
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(taking a point x E U to the nearest point of N) is well defined and C°° (resp. CW ).
At the same time we want to discuss the geometrical significance of the induced
linear map and the Hessian of this nearest point projection.

The main results are described in the following theorem:

Theorem 1 If N is a compact C°° (resp. C') submanifold of dimension q embedded
in IR°, then there is 6 = b(N) > 0 and a map II E C°°({x : dist(x, N) < b}; IR°)
(resp. fl E CW({x : dist(x, N) < 6};1RP)) such that the following properties hold:

fl(y) E N, y - 11(y) E Tn(v)N Iff(y) - yI = dist(y, N), and
(1) Iz - yI > dist(y, N) for any z E N \ {fl(y)}

for all y E RP with dist(y, N) < b,

(ii) MY + z) my, for y E N, z E IzI < 6,

(iii) D flIy =- pn(y)(v), v E 1R°, dist(y, N) < b,

where D denotes directional derivative v D and pr(y) denotes orthogonal projection
of 1RP onto Tn(y)N,

v, Hess fly(v2i v3) =
2

E v Hess fIy(v v.,,),

for dist(y, N) < b, vi, v2i v3 E RP,

where vT Iy = pn(y)V, vl = v - VT; the sum on the right is over all 6 permutations
al, a2, a3 of 1, 2, 3 and Hess fly denotes the Hessian of 1I at y (thus Hess 1y is a
symmetric map RP x 1RP -' RP),

(v) Hess IIy(vi,v2) = -Ay(v1iv2), YEN, v1,v2 ETyN,

where A. is the second fundamental form of N at y. Furthermore, if u : Sl - N is
a smooth map (fl C IR" open), then

(vi) (Hess ulx(vl,v2))lu(-) Hess

D, u(x)),

for x E Sl, vi, v2 E IR", where vl-(-) means vl

Remark: Notice that in particular (iv) implies that v, Hess fly(v2, v3) is a sym-
metric function of (vi, v2, v3) E RP X RP x RP and that Hess fly(vi , v2) = 0 for all
v1, v2 E 1RP; indeed v1 Hess fly(v2, v3) = 0 whenever at least 2 of v1, v2, v3 are in
(Tn(y)N)l.

Proof: We describe the proof in the C' case. The proof for the C°° case is identical,
using smooth maps rather than real-analytic at each stage. (If N is merely Ck for
some k > 2, then the proof here shows that the nearest point projection is Ck-1 )
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Thus assume N is isometrically embedded in 1RP and is a real-analytic manifold. This
means that for each yo E N we can find real-analytic functions u : W - (TyoN)1,
where q < p is the dimension of N and W is a neighbourhood of yo in the afflne
space yo + TN, such that

graph u {x + u(x) : x E W}

is a neighbourhood V of yo in N.

For notational convenience we can assume

yo = 0, Ty.N = 1Rq x {0}, (Ty,N)1 = {0} x RP-q.

W should then be reinterpreted as a neighbourhood of 0 in 1Rq rather than 1Rq x {0},
and u = (u', ... , Up-q) : W -+ 1RP° with Dju(0) = 0, j = 1, ... , q. Define a map
V : W x lRP-° -y 1RP by

V(x) = (x, u(x)),
so that cp is a real analytic diffeomorphism of W onto the neighbourhood V C N.
Notice also that, at each point x E W, DjW(x),... , DgW(x) are a basis for the
tangent space T,(=1N. Hence by the Gram-Schmidt orthogonalization process we can
construct real-analytic functions vl,... , vP_q on W such that v, (x),... , v9-q(x) are
an orthonormal basis for (T,,(.,) N)' at each point x E W and vi (0),... , v,-q(0) are
the standard basis vectors eq+1, ... , ep. Then we define a map 4? : W x 1RP-q - g1P

by
P-9

40, y) = W(x) + E U'vi(x)-
i=1

By direct computation we then have

(1) d4I(o,o) = ltao.

Also, by construction 45 is real analytic on W x RP-9, hence using local power
series expansions we can extend 45 to give a holomorphic mapping 4' of the complex
variables z1, ... , zP in some neighbourhood of W x CP-q (thinking now of W as
a subset of IRq x {0} c ( which 4) maps into RP C C"). Now of course the
identity (1) guarantees that d4)Io is the identity (as a complex linear map) of C"
onto GP, and hence the holomorphic inverse function theorem implies that there are
complex neighbourhoods W1, W2 of 0 in C" such that 4) is a holomorphic map of
W1 onto W2 with holomorphic inverse. But this evidently implies in particular that
4>IWl fl (RP x {0}) is a (real) analytic map onto an open subset V of IRP, with
0 E V, having a real-analytic inverse. Thus in particular, for suitable b = S(N) > 0,
4i gives a real-analytic diffeomorphism of a neighbourhood of B6(0) x PP6-9(0) onto
some neighbourhood of 0 such that 1D(bj,1D4' 'I < C on B6(0) x 9(0) and
4?(B6(0) x f-q(0)) respectively, where C = C(N). Now for 0 E (0, 1) to be chosen
shortly, take any z E 4'(B 12(0) x BBP6 9(0)); say z = 4'(C, rl), (C, i) E B 12 x B99" 9.
Evidently, since V(C) = 45(C, 0), we then have IV({) - zj < C,7 < CBS, C = C(N),
so in particular dist(z, N) < CBS, while on the other hand dist(z, 0946(B6 x B6-9)) >
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C-'b for suitable C = C(N). Therefore, if 0 = 9(N) E (0,1) is chosen small enough,
we have

(2) min zI < 6,
=E Be

and the minimum is attained only at interior points x E B6'(0). At any such point
x we then have

z) = 0, j = 1, ... , 4,

and since j = 1,... , q, are a basis for T,,(=)N, it therefore follows that
z - V(x) E (T,p(=)N)1 at any point x E 16(0) where the minimum in (2) is attained;
thus

(3) z = -p(x) + A vj(x) for suitable A = (A',... , An-9) with JAI < b.

But now this says precisely 4'(x, A) = 4'(i, 71) with both (x, A) and (£, 777) in Bb (0) x
B6-9(0), which contradicts that fact that 4' is one-to-one on Ba(0) x B6-9(0) unless

Thus (changing notation to the extent that we write 6 in place of 05) we have proved
that, for b = 6(N) E (0,

2)
small enough, each point z = 4'(x,y) E 4'(13 (0) x

B6-9(0)) has the point V(x) as unique nearest point projection 11(z) onto N, z -
pp(x) E (T,,,(z)N)1, and, since b is a real-analytic diffeomorphism of Bd(0) x B,"(0),
this nearest point projection 11 : z = 4'(x, y) *-+ ,p(x) is a real-analytic map. Indeed
1T is given explicitly in 4D(B7(0) x B6-9(0)) by

(4) 11=V oPo4-',
where P is the orthogonal projection of RP onto lR9 x {0}. Since N is compact
and yo was an arbitrary point of N to begin with, this completes the proof of the
existence of a real analytic n satisfying (i), (ii) for suitable b = b(N) > 0.

Next we introduce the notation

(5)
V_ =V_ UT, vElR9, yEU,

where D denotes the directional derivative v D in RP and where U = {x E JR9 :

dist(x, N) < 6}. Since IT is the identity on N and since 11(y + tip) _- y for y E N
and n E (TN)' with It97I < 6, we see that geometrically vT is just the tangential
part of v relative to N at the nearest point 11(y); that is, (iii) holds.

By applying the directional derivative operator D,,, to the first identity in (5) (with
V = V2 E C°°(U; IR9)), we deduce that

(6)

Hess, fy(vl(y),v2(y)) = (Dn,v2 - Y E U, V1, V2 E C°O(U;1R9).

Taking v1, v3 and then VT. v. in place of the pair vi, v2 we in particular deduce the
two facts that

(7)
Hess11 (vi ,vg) = vg )T E Tn(y)N

HessIly(V , v2) = (D,,; vs )1 E (Tn(v)N)1.
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Since v2 (D T V,)-= -v3 D,T v2 (which one checks by applying to the identity
v2 . V3 =- 0), this gives in turn that

(8) v2 Hess Ily(vi,v3)=v, Hess Hy(vi.v2)foryEU.

Also, from (i) and (ii) we deduce that 11(y + si7i + tom) _= 1I(1I(y) + (y - 11(y)) +
s77i + ti) _- lI(y) for 771,7h E (Tn(v)N)1 and for IsI, Iti small enough, and hence
a2n(y+

asm
ag,+t n) = 0; that is,

(9) Hess 1Iy(rti, r12) = 0, y E U, 111, 92 E (Tn(y)N)1.

Since v =- vT + v1 on U (for any given v E RP), using linearity together with (6),
(7), (8), and (9) it is now straightforward to check the identity (iv).

Next recall that the second fundamental form A. of N at y E N is the symmetric
bilinear form on TyN with values in (TyN)1 defined by

A'(vi , v2) = (D,rv2)lIy, vi, v2 E RP, y E N.

Using (6) with vi , v2 in place of vl, v2 we get

Ay(vi ,V2) = -HessHy(vi ,v2)

for v1, V2 E RP, y E N, and hence (v) is proved.

Finally, if u : S2 -. N is smooth (12 C 1R." open), then DDu(x) E T.(,)N for
x E 1 and j = 1,... , n, and since u(x) _- fl(u(x)), and hence DkD,u(x) _
Hess.(.,)(Dku(x), D,u(x)) = we deduce

(DkD;u(x))1 = -Hess 1I.(.)(D.,u(x), Dku(x)) _ D,u(x)), x E f2,

by (v), so (vi) is proved. 0

2.12.4 Proof of the e-regularity theorem in case n = 2

Here we assume n = 2, that u E W 1,2(f2; N) is energy minimizing, and that BR(y) C
Q.

Let A > 0 be any constant such that

1BR(y)
IDul2 < A.

As we mentioned in Section 2.3, in the present case n = 2 we obtain without further
hypotheses that

R' sup IlYuI<C, C=C(j,N,A), j=0,1,...
BR/2(y)
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The hard step in the proof (as it is for n > 3 also) involves showing that u E C'.
We do this here-the remainder of the proof proceeds, using Schauder theory for
linear equations, exactly as described in Section 2.3.

We first prove that u E C°"°(BR12(0)) for some a = o(A, N) E (0, 1).

Note that by the absolute continuity properties of functions with gradient in L2 (see
the discussion in Appendix 2.12 above), there is a representative u of the L2 class of
u such that ulOBT(y) is an absolutely continuous function for almost all r E (0, R],
u(8Br(y)) C N, Du (the classical gradient of the function u) exists a.e. and agrees
a.e. with the L2 gradient Du of u.

Now take or E (0, R]. By the formula fne(Y)\B.12(0 JDu12 = f,/2 f8B,(Y) ]DuI2 dr, we

know that, for any 0 E (0, 2),

f IDul2 < 0 -1 / IDul2

B , (Y) B., (Y)\B,12 (Y)

for all r E (E2, a) with the exception of a set of 1-dimensional Lebesgue measure
< Ba. Taking 0 = 1 and such a r with ul8B.(y) absolutely continuous, we then
have

(1) J IDu12 < 4a-' J
]Dul2.

8B,(y) B.,(Y)\B 12(Y)

On the other hand, since u l BB, (y) is absolutely continuous, we can use 1-dimensional
calculus on the circle 8B,(y) and the Cauchy-Schwarz inequality to give

2]Dul2) .(2) sup l-u(xi) -'&(X2)1 < f D-l
(18B,(Y)s,.x2E8B(y) B,(y)

Hence by (1) we have, except for a set of r E (z , a) of measure < a

Dul2
(1B.(Y)\B.12(V)

(3) z.xoEsup

BB,(Y)
l7L() - u(a0)l 6

I

Now let 6 = 6(N) > 0 be small enough to ensure that the nearest point map IT
(taking a point in 1R" to the nearest point of N) is well-defined and smooth on the
set {x E IR" : dist(x, N) < 6} (see Appendix 2.12.3 above), and let e E (0,

2)
be

for the moment arbitrary. If 6 (fBB(y)\Be/2(Y) IDul2)1/2 < e and if xo E 8Br(y), then,

provided a is sufficiently small depending only on N and It, we have from (3) that
the homogeneous degree 1 extension u : B.(y) --+ RP defined by

(4) t`c(y + rw) = u(2°) + r-'r(u(y + rw) - u(x°)), w E S'. r E (0, r],

remains in the 6-neighbourhood of N. and hence we can define

TL=foil
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on B,(y). Then u agrees with u on OB,(y) and by (4), (2), and (1)

EB,(y)(v.) <CrJ IDul2 <CJ IDnI2.
L(Y) B.(Y)1B,12(Y)

But by definition of energy minimizing we have EB,(Y)(u) < EB,(V)(n), and hence
this gives

(5) IDuI2 < C r IDuI2.f /2(Y) B,, (Y)

Keep in mind that this has been proved so far only under the assumption that

(6)
IDuI2

< e,
f(y)\B./2(y))

with a sufficiently small (depending on N). On the other hand for each Q we have
BR(y) = BR12v(y)U(UQ and hence, if we take Q depending
on e, there is at least one j such that (6) holds with R/22 in place of a and then (5)
gives therefore that

IDTCI2 < C£,
f,n(Y)

where -y E (0, 1) depends only on A, e and N. With c/C in place of a and selecting
e < co, eo = co(N, A) small enough, we thus deduce from (5) that

(7) f IDuI2<C / IDuI2<e
o 2(Y) B"(YAB112(0

for any p < -yR, provided that A, where y = ti(N,A,e) E (0, 2). By
adding Cffv/2(Y) IDuI2 to each side of this inequality we get

IDuI2 < 0f IDuI2, p:5 '7R,
B'(Y)

where 0 = i c E (0, 1) depends only on n, N, A, c. By iteration this gives that
fB IDuI2 < C2-°' f o r each j = 1, 2, ... , and hence (since any p E (0, lies in

some interval (yR/21,'yR/2j-1] for some j > 1) we have

fn(Y)
IDuI2 < C ( )° , o E (0, R), C = C(A, N).

(Notice that we can arrange for the inequality to hold trivially for a E (7R, R) by
choosing C suitably large.) On the other hand EBK(Y)(u) < A implies EBR/2(=)(u) < A
for any z E BR/2(y), so the above actually implies that

IDuI2 < C (a )° , a E (0, R], z E BR/2(y).
R
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But now Morrey's lemma (Lemma 3 of Section 1.3) implies that u E C"°(BR12(y))
and that

fu]a,BR,s(v) < C,

with C depending only on A, N and a; here a = a(N, A) E (0,1).

Next we show that this holds for every a E (0, 1). To see this we let p E (0, ryR] be
arbitrary, and note that, by (7) and the first part of the argument above, for any
e E (0, 2) and for suitable -y = ry(e, N, A) E (0, 1), there is r E (2, p) such that (3)
holds, and hence

(8) Sup If,_ U(XO)j :5 C6112,
8B.(v)

where xo is any point of OB,(y). As in the last part of the proof of Lemma 1 of
Section 1.8, we can find a harmonic function v E W',2(B,(y); 1R°) fl Co(B,(y); IR')
with v = u on 8B, and with

(9) max Iv - u(xo)I < Ce1"2.
L, (v)

Then

(10) J o(v)

Du2 < 2 J o
(v) B

ID(u - v)I2 + 2 J(v) IDvI2
ffB

<2J ID(u-v)I2+20,2 r IDvI2BT(v)
T B,. (Y)

for any a E (0, r], where we used the fact that IDvI2 is a subharmonic function and
hence o-2 fB.(Y) IDv12 is an increasing function of a E (0, r). (See e.g. [GT83].)

Now on the other hand by the inequality (11) in the proof of Lemma 1 of Section 1.8,
and by (8), (9), we know that

JB()
< C max Iu - vI f IDuI2

8B,(Y) B,(Y)

< C max Iu - u(xo)I + max Iv - u(xo)I) f IDu12

OB,(Y) 8B,(v) 8,(v)

cc, /2 fB, ID uI2.
(Y)

ID(u - v)I2

So (10) implies

IDuI2 < Ce'/2 I IDuI2 + 2
°z

-2 IDvI2JJ.(Y) BB(Y) T2 ,(Y)

Also since v is harmonic and agrees with u on OB,(y), we have fB,(v) IDvI2
fB,(Y) IDuI2, and hence this gives

<

r r
J

IDuI2 < (C1I2 + 2 ) J
IDuI2, a E (0, T].

B() T2

"(V)
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Since r E (2 2, p) we thus have

r
(11) J IDu12 < (CehI2 + 4 ) f Du2, a E (0, ]BP2 p(y)
for any e E (0, 2), provided p < yR with y = y(N, A,e) E (0,

Z)
is sufficiently

small. Notice that for any given a E (0, 1) we can select a 0 = 0(a) E (0, 1) such
that 4 02 < 02°/2 and then choose e = e(a, N, A) such that Ce < 02°/2, with C as
in (11). So, if we take or = Op with these choices, (11) gives

f IDu12 < 02° f IDuI2, P E
ep(Y) Bp(Y)

where y = y(N, A, a). Of course the same argument applies in any balls BB(z) with
p < yR and z E B,R(y), with y = y(A, N) E (0, 2] sufficiently small, so we have
actually shown

(12) J Du2 02° f Du12, a E (0,yR], z E B,R(y),
Bp(z) BB(z)

with y = y(N, A, a). Iterating (12), we easily check that it implies

I IDul2 < C
(6)2,of IDu12, a E (0, P], P E (0,yR], z E BR(Y)

,(z) P Bp(z)

By the Morrey lemma (Lemma 3 of Section 1.3) we then have u E C°A(B,.R(y)) and

l°
7R(y),Iu(21) - u(x2)I C

CIx1 X2I
al, x2 E B

R

J
,

for suitable y = y(a, N, A) E (0, z ). On the other hand the same argument applies
starting with any ball BR/2(z) (z E BR12(y)) in place of BR(y), so that we have
actually proved

( 1
Iu(x1) - U(X2)1:5 C Ix1 - X2IJa , X1, 22 E BR12(Y),

R

with C = C(A, N, a), as required.

The proof that u is C1,° now follows exactly the last part of the argument in the
proof of Lemma 1 of Section 1.8. 0



Chapter 3

Approximation properties of the
Singular Set

In this chapter u continues to denote an energy minimizing map of fl into N. with
S2 an open subset of 1R".

3.1 Definition of Tangent Map

Let Ba,(y) with 13Po(y) c S2, and for any p > 0 consider the scaled function uy,,
defined by

vv.a(x) = u(Y + px)-

Notice that vy,,, is well-defined on the ball B,(0); furthermore, if a > 0 is arbitrary
and p < M, we have (using Duy,p(x) = p(Du)(y + px), and making a change of
variable i = y + px in the energy integral for uy,p)

(i) a2-" f ]Dua.rl2 = (ap)2-" f o ]DuI2 < pn-" J ]Du[Z,
n (0) u(y) o n(y)

where in the last inequality we used monotonicity ((ii) of Section 2.4). Thus if
p., j 0 then fR"ro)]Du,,,p,12 < oo for each a > 0. and hence by the
compactness theorem (Lemma 1 of Section 2.9) there is a subsequence.. p; such that

<p locally in IR' with respect to the W1.2-norm, where cp : lR" N is an
energy minimizing map (in the sense of Section 2.1) with fl = W. Any W which is
obtained in this way is called a tangent map of a at y; further properties of tangent
maps are discussed below. In general it is not true that such tangent maps need
be unique (see [Wh92]) that is, if we choose different sequences pj (or different
subsequences py) then we may get a different limit map. In ease the target N is
real analytic rather than merely C, it remains an open question whether or not
we do or do not have uniqueness of pp. In Section 3.10 it will be shown that if N is
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real analytic and if one of the tangent maps cp satisfies sing cp = {O}, then cp is the
unique tangent map.

3.2 Properties of Tangent Maps

Let p, j 0 be one of the sequences such that the re-scaled maps uY,,, - cp as
described above. Since ue,,,,, converges in energy to cp, we have, after setting p = pi
and taking limits on each side of 3.1(i) as j - oo,

a2-nf ID(PI2 = eu(y),
e (o)

where we used the definition limplo p2-" fB,(y) IDuI2. Thus in particu-
lar a2 fn (o) is a constant function of or, and, since by definition 9,p(0) _
limo1o a2-' fa,(o) I Dca12. we have

(i) eu(y) = ew(0) =
a2_n I e

ID<p12 V a > 0.
B (o)

Thus any tangent map of u at y has scaled energy constant and equal to the density
of u at y; this is also a nice interpretation of the density of u at y.

Furthermore if we apply the monotonicity formula (iii) of Section 2.4 to p then we
get the identity

z

0 = a2-" J -72-n I
J

R2_n I &O

,ro) ,(o) .(o)\B,(o) 8R '

so that 8cp/8R = 0 a.e., and since W E WWa (lR"; IR") it is correct to conclude from
this, by integration along rays, that

(ii) cp(Ax) _ W(x) VA > 0, x E W.

This is a key property of tangent maps, and enables us to use the further properties
of homogeneous degree zero minimizers (see Section 3.3 below) in studying them.

We conclude this section with another nice characterization of the regular set of u:

(iii) y E regu e=* 3 a constant tangent map cp of u at y.

To prove (iii), note that by Corollary 2 of Section 2.10 we have y E regu
0, but 0 e cp - const. by (i).

3.3 Properties of Homogeneous Degree Zero Min-
imizers

Suppose cp : IR" -+ N is a homogeneous degree zero minimizer (e.g. a tangent map
of u at some point y); thus p(Ax) cp(x) for all A > 0, x E IR".
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We first observe that the density 610(y) is maximum at y = 0; in fact, by the
monotonicity formula of Section 2.4, for each p > 0 and each y E 1R"

r _ 2
Ry n (+ 6 ,(y) = e-' f I2J

Bv(L)
aR

BB(y)

where Ry(x) _ Ix - yI and 8/aR, = Ix - yI-h(x - y) D. Now B,(y) C B +151(0), so
that

p2-n J IDca12 < p2-n

J
IDw I2

Bv(y) Bv+l rl (O)
-(l+M'2(p+Iy)2_nj

IDcoI2
P o+IVI(O)

I 1 + IYI f n-2 9 1P(0),

because p is homogeneous of degree zero (which guarantees that .r2-n fB.(0) IDwI2
6,0(0)). Thus letting p j oo, we get

r
+ 6"(y) < 9w(U),

2 ut^
1y-n

I

12

which establishes the required inequality

(i) 6w(y) < 6w(0)
Notice also that this argument shows that equality in (i) implies 8cp/8Ry = 0 a.e.;
that is, W(y + Ax) _ W(y + x) for each A > 0. Since we also have (by assumption)
w(x) _ V(Ax) we can then compute for any A > 0 and x E 1Rn that

O(x) = o(Ax)
= co(y + (Ax - y)) = co(y + A-2(Ax - y))

= So(A(y + A-2(Ax - y))) = V(x + ty),

where t = A - .0 is an arbitrary real number. So let S(ip) be defined by

(ii) S(V) = {y E 1R" : 6r(y) = 6,0(0)} .

Then we have shown that cp(x) _ W(x + ty) for all x E IR", t E IR, and y E S(ip)-
Then of course V(x + azl + bz2) _ po(x) for all a, b E IR. and z1, z2 E S(ip). But
if z E IR" and (p(x + z) _ V(x) for all x E 1R,", then trivially 6,0(z) = 6,0(0) (and
hence z E S(W) by definition of S(ip)), so we conclude

S(ip) is a linear subspace of IR" and V(x + y) _ (p(x), x E IR", y E S(W).

(Thus W is invariant under composition with translation by elements of S(ip).) Notice
of course that

(iii) dim S(V) = n b S(ip) = IRn (P = const.

Also, a homogeneous degree zero map which is not constant clearly cannot be con-
tinuous at 0, so we always have 0 E sing cp if W is non-constant, and hence, since
w(x + z) _ V(x) for any z E S(ip), we have

(iv) S(ip) C singap

for any non-constant homogeneous degree zero minimizer V.
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3.4 Further Properties of sing u

For any y E Sl and any tangent map cp of u at y we shall let S(V) be the linear
subspace of points y such that 6,0(y) = 6,0(0), as discussed in the previous section.
Notice that then by 3.2(iii) we have

(i) y E sing u dim S(W) < n - 1 for every tangent map cp of u at y.

Now for each j = 0, 1,... , n - 1 we define

S; = {y E sing u : dim S(V) < j for all tangent maps V of u at y}.

Then we have

(ii) So C Si C ... C Sn-3 = Sn-2 = Sn-i = sing u.

To see this first note that Sn_1 = singu is just (i), and the inclusion Sj_i C S;
is true by definition. Also, if Sn_3 is not equal to both Sn-2 and Sn_1, then we
can find y E sing u at which there is a tangent map p with dim S(V) = n - 1 or
n - 2; but then xn-2(S(W)) = oo and hence (since S(V) C singV by 3.3(iv)) we
have xn-2(sing gyp) = oo, contradicting the fact that ?{n-2 (sing tp) = 0 by Lemma 1
of Section 2.10.

The subsets S, are mainly important because of the following lemma, which is a
direct modification of the corresponding result for minimal surfaces by F. Alm-
gren [Ag83]; the lemma can be thought of as a refinement of the "dimension reduc-
ing" argument of Federer IFH691 (for this see also the discussion in the appendix
of [Si83a]):

Lemma 1 For each j = 0,... , n - 3, dimS, < j, and, for each a > 0, So ft {x :
a} is a discrete set.

Remark: Here "dim" means Hausdorff dimension; thus dimS, < j means simply
that NJ" (S,) = 0 for each e > 0.

Before we give the proof of this lemma, we note the following corollary.

Corollary 1 dim sing u < n - 3, and if N is a 2-dimensional surface of genus > 1,
then dim sing u < n - 4. M o r e generally, i f all tangent maps V E W (1R`; N) of
u satisfy dim S(ip) < m, then dim sing u < m.

Remark: Of course the above corollary implies dim sing u < m for every locally en-
ergy minimizing map u E N) if N happens to be such that all homogeneous
degree zero locally energy minimizing maps V E W',2 (W; N) satisfy dim S(W) < m.

For example if dim N = 2 and N has genus g > 1, we claim that this holds with m =
n - 4 (i.e. that dim S(ip) < n - 4 for every homogeneous degree zero locally energy
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minimizing map from 1R" into N), and hence by the corollary we have automatically
sing u = S"_4. Indeed suppose there is a homogeneous degree zero locally energy
minimizing map p of 1R" --+ N with dim S(ip) = n - 3. Without loss of generality,
we can assume that S(cp) _ {0} x 1Rn-3, and we then have ep(x, y) _- cpo(IxI-ix) for
x E 1R3\{0} and y E 1R"-3. But then WO is a smooth non-constant minimizing map
from S2 into N. But such maps are known not to exist (see e.g. [Jo841).

Proof of Corollary 1: By (ii), sing u = S"_3, hence the lemma with j = n - 3
gives precisely dim sing u < n - 3 as claimed. In case dim N = 2 and the genus of N
is > 1, we know by the above remark that sing u = S,,_4, so in this case Lemma 1
gives dim sing u < n - 4.

Finally, if dim S(ip) < m for all tangent maps gyp, then by definition Sm = sing u and
hence Lemma 1 gives dim sing u < m.

Proof of Lemma 1: We first prove that So n {x : a} is a discrete set for
each a > 0. Suppose this fails for some a > 0. Then there are y, y, E So fl (x:

a} such that yl # y for each j, and y. -+ y. Let p, = I ys - yi and consider
the scaled maps uy,0,. By the discussion of Section 3.1 there is a subsequence p,'
such that u.,.,,, -+ gyp, where W is (by definition) a tangent map of u at y; also, by
Section 3.2 we have 9,0(0) = a.

Let {, = I yj - yI'( yj - y)(E S"'' ). We can suppose that the subsequence j' is such
that E converges to some l; E S''. Also (since the transformation x '-+ y+ppx takes
y l to l : l ) e , ( 1 ) = a for each j, hence by the upper semi-continuity of the
density (as in Section 2.5) we have 9,o(t;) > a. Thus since 9,0(x) has maximum value
at 0 (by 3.3(i)), we have 9,0(1;) = 9,0(0) = a, and hence t; E S(ip), contradicting the
fact that S(W) = {0} by virtue of the assumption that y E So.

Before we give the proof of the fact that dim S; < j, we need a preliminary lemma,
which is of some independent interest. In this lemma, and subsequently, we use %,O
to be the map of 1R' which translates y to the origin and homotheties by the factor
p-'; thus

71v,0(x) = p-'(x - y).

Lemma 2 For each y E S;, and each b > 0 there is an e > 0 (depending on u, y, b)
such that for each p E (0, e]

7,,,{x E B0(y) : e} C the 6-neighbourhood of Ly,

for some j-dimensional subspace Ly,O of IR" (see Figure 3.1).

Caution: We only prove this with the subspace L... depending on both y, p; thus,
as p varies, even if y is fixed, the subspace Ly,,, may vary. See the example in
Section 3.9 below.

Proof: If this is false, then there exists 6 > 0 and y E S; and sequences pk j 0,
ek 10 such that

(1) {x E B,(0) : 9UV,ak(x) > 9u(y) - CO 0 the 6-neighbourhood of L



56 Chapter 3. Approximation Properties of the Singular Set

Figure 3.1: Lemma 2

for every j-dimensional subspace L of W. But ui,,Pk, - cp, a tangent map of u at
y, and 6,0(0). Since y E Sj, we have dim S(ip) < j, so (since S(W) is the
set of points where 610 takes its maximum value 9,0(0)), there is a j-dimensional
subspace Lo D S(ip) (Lo = S(ip) in case dimS(w) = j) and an a > 0 such that

(2) 9l0(x) < 610(0) - a for all x E91(0) with dist{x, Lo} > b.

Then we must have, for all sufficiently large P. that

(3) {x E Bi (0) : (x) > 6,0(0) - a) C {x : dist{x, Lo} < 6}.

Because otherwise we would have a subsequence {k} C {k'} with
9,0(0) - a for some sequence xk E B1(0) with dist{xk, Lo} > 6. Taking another
subsequence if necessary and using the upper semi-continuity result of Section 2.11,
we get xk x with 910(x) > 9,0(0) - a and dist(x, Lo) > 6, contradicting (2).

Thus (3) is established, thus contradicting (1) for sufficiently large k. 0

Completion of the proof of Lemma 1: Define Sj,i, i E { 1, 2.... }, defined to
be the set of points y in Sj such that the conclusion of Lemma 2 above holds with
e = i-'. Then, by Lemma 2, Sj = Ui>1Sj,i. Next, for each integer q > 1 we let

Sj.i.q = {x E Sj,i : eu(x) E 91},

and note that Sj = U;,gSj,;,q. For any y E Sj,i,g we have trivially that

Sj.i,q C (x: eu(x) > eu(y) -

and hence, by Lemma 2 (with e = i-1), for each p < i-'

'nv.p(Sj.i.q fl B0(y)) C the 6-neighbourhood of Ly,O
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for some j-dimensional subspace Ld,o of JR".

Thus each of the sets A = Sj,,,q has the "b-approximation property" that there is po
(= i-1 in the present case) such that, for each y E A and for each p E (0, po),

(*) %%,,p(A n Bo(y)) C the b-neighbourhood of LI,,,

for some j-dimensional subspace LI,,,, of W.

In view of the arbitrariness of b the proof is now completed by virtue of the following
lemma:

Lemma 3 There is a function /3 : (0, oc) -+ (0, oo) with limllo /3(t) = 0 such that
if b > 0 and if A is an arbitrary subset of IR" having the property (*) above, then

0.

Proof: If 6 > 1/8 we can take /3(b) = n - j + 1, so that V+00) (A) = ?{n+1(A) = 0.
Hence we can assume for the rest of the proof that 6 E (0, 1/8). First note that
there is a fixed constant C" such that for each a E (0, 1/2) we can cover the closed
unit ball 91(0) of 1R' with a finite collection of balls {B,,(yk)}k=1,...,e in 1R' where
Q = Q(j) and yk E R, (0), such that Qa' < C", and also Qag+$ < 1/2 for suitable
0= 13(a) with /3(a) 10 as a 10.

It evidently follows that if L is any j-dimensional subspace of IR" and 6 E (0, 1/8),
there is i3(6) (depending only on n, 6), with j3(b) 1 0 as b 1 0, such that the 2b-
neighbourhood of L n B1(0) can be covered by balls B,(yk), k = 1,... , Q, with a =
46 and with centers yk in LnB1(0) and with Qo'+p(6) < 2. By scaling this means that
for each R > 0 a 26R-neighbourhood of Ln BR(O) can be covered by balls B,R(yk)
with centers yk E L n BR(0), k = 1,... , Q, such that Q(aR)1+3(6) < ZRi+0(6) The

above lemma follows easily from this general fact by using successively finer covers of
A by balls. The details are as follows: Supposing without loss of generality that A is
bounded, we first take an initial cover of A by balls B.12(yk) with An B,, 12(yk) 91 0,
k = 1,... , Q, and let To = Q(po/2)i+0(6). For each k pick zk E An BPo/2(yk). Then
by (*) with p = po there is a j-dimensional affine space Lk such that A n BPo(zk)
is contained in the 6-neighbourhood of Lk. Notice that Lk n BPo/2(yk) is a j-disk of
radius < p0/2, and so by the above discussion its 26po-neighbourhood (and hence
also A n B,/2(zk)) can be covered by balls B,Po/z(z,,i), P = 1,... , P, (centers not
necessarily in A) such that P(apo/2)j+0(6) < Z(po/2)3+9(6). Thus A can be covered
by balls B,Po12(wr), k = 1,... , M, such that M(apo/2)3+0(6) < !To. Proceeding
iteratively we can thus for each q find a cover by balls B,q,/2(wk), k = 1,...
such that Rq(aQpo/2)3+0(6) < 2-QTo.

0
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3.5 Definition of Top-dimensional Part
of the Singular Set

In this section we define the concept of "top dimensional part" of the singular set
of u; actually we only consider the case here when this is (n - 3)-dimensional (the
generic case), but the reader should keep in mind that all the discussion here carries
over with an integer m < n - 4 in place of n - 3 if the target manifold N happens
to be such that all homogeneous degree zero maps W E W (IR"; N) of u satisfy
dim S(ip) < m. (Recall that by the remark following the Corollary 1 in Section 3.4
this implies dim sing it < m and in particular this is the case with m = n - 4 when
dim N = 2 and N has genus > 1.)

Definition 1 The top dimensional part sing. u of sing u is the set of points y E
sing u such that some tangent map V of u at y has dim S(V) = n - 3.

Notice that then by definition we have sing u\sing. u C Sn-4, and hence by Lemma 1
of Section 3.4 we have

(i) dim(sing u \ sing. u) < n - 4.

To study sing. u further, we first examine the properties of homogeneous degree zero
minimizers ' : 1R" - N with dim S(W) = n - 3.

3.6 Homogeneous Degree Zero cp with
dimS(W) =n-3

Let cp : IR" - N be any homogeneous degree zero minimizer with dim S(V) = n - 3.
Then, modulo an orthogonal transformation of R" which takes S(W) to {0} x 1Rn-3

we have

(i) 'p(x, y) ='Po(x),

where (x, y) denotes a general point in IR" with x E 1R3, y E IRn-3, and where Vo is
a homogeneous degree zero map from 1R3 into N. We in fact claim that

(ii) sing o _ {0} and hence'PoIS2 E C°°,

so that VoIS2 is a smooth harmonic map of S2 into N. To see this, first note that
sing po D {0}, otherwise epo, and hence gyp, would be constant, thus contradicting the
hypothesis dim S(ip) = n - 3. On the other hand if f & 0 with t E sing Wo, then by
homogeneity of 'Po we would have J Al; : A > 0} C sing oo, and hence

{(a{,y):A>0,yEIR"-3}Csing p.
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But the left side here is a half-space of dimension (n - 2), and hence this would give
N" (sing cp) = oo, thus contradicting the fact that 7{n-2 (sing ep) = 0 by Lemma 1
of Section 2.10. Thus 3.6(ii) is established.

We also note that if cp0) is any sequence of homogeneous degree zero minimizers
with cp(3)(x, y) _- cpo)(x) for each j, and if limsups-,° fB,(0) ID,p°)I2 < oo, then

lim sup sup I Dtcpo) I < 00
j-oo s'

for each e > 0. Indeed by the compactness theorem (Lemma 1 of Section 2.9)
there is a subsequence pu') <p, where cp is a homogeneous degree zero minimizer
with cp(x, y) = cpo(x), and by (ii) we have cpoIS2 E C°°. Thus for Z E IR"\({0} x

1R"-3) and positive a < dist(z, {0} x IRn-3) we have IV(x) - V(z)I < Ca, whence
le,(z) 10)-V(z)I2 < ,1B,(=) so we can apply the regularity theorem
of Section 2.3 for a sufficiently small and j' sufficiently large, so that the convergence
of cpV') to cp is actually with respect the Ck norm for each k on compact subsets of
IR"\({0} x lR"-3). In view of the arbitrariness of the sequence cpO, it then follows
that for all homogeneous degree zero minimizers cp with fs, IDcpoI2 < A we have

(iii) sup I D`Vo1 < C, ' = 1, 2, ... ,
S2

where C depends only on f, N, A.

3.7 The Geometric Picture Near Points of sing,u

Let K be a compact subset of 1 and z E sing. u fl K, and let cp be a tangent map
of u at z with dim S(V) = n - 3. As in Section 3.4, we can assume without loss of
generality (after making an orthogonal transformation in lR" which takes S(cp) to
{0} x IR"-3), that

(i) cp(x, y) = ,o(x), x E 1R3, y E IR.n-3.

By definition of singe u, there is a sequence p, j 0 such that

(ii) tim pj-"j Iu - v(z)I2 = 0,
3 °°

p ,(z)

where W(') (x, y) - cp((x, y) - z) so for p = p, with j sufficiently large we can make
the scaled L2-norm p-n fB.(=) Iu - cp(,)IZ as small as we wish. On the other hand
we claim that for any homogeneous degree zero minimizing maps cp : IR" -+ N as
in 3.6(i) and any ball B,(z) with B,(z) C S1 we have the estimate

(iii)
singu fl BP/2(z) C {x : dist(x, (z + {0} x IRn-3)) < b(p)p} Vp < po,

b(p) = C (p_nj
I u -

v(z)
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where C depends only on n, N, A with A any upper bound for pa-" fBPo(.) IDuI2 (see
Figure 3.2).

Figure 3.2: Picture near points of sing. u

In view of 3.3(ii), this perhaps suggests that the possibility that the top dimensional
part of the singular set is contained in a C' manifold (or at least a Lipschitz manifold)
of dimension n - 3. But there is a problem in that 3.3(ii) only guarantees that 8(p)
is small when p is proportionally close to one of the pj, and, without further input,
we cannot conclude very much about the structure of sing. u from this-see the
discussion in Section 3.8 below.

We conclude this section with the simple proof of (iii). We assume z = 0 for
convenience of notation.

Proof: Let p < po and w = (t;, i) E sing. u fl B 12(0). Take a =,301tj, with pa $ 2
to be chosen. By the regularity theorem Section 2.3 there is co = Eo(n, N, A) > 0
such that

(1) eo a " Iu - V(w)I2 <
B.,(w)

< 20-" J In - VI2 + 2a-" J IV - w(w)I2.
B,,(w) B,(w)

By virtue of 3.6(iii) we know that ID,o(x)I < CIxI-', where C depends only on
N, A, and hence IV(w) - V(x)I < CItI-'a < C,130 for x E Bo(w), where C depends
only on N and A. Then (1) gives

Iu-'I2+CI33.e0<2I3 I-" B,,(0)
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Then selecting CI3o < co 2and multiplying through by IEI", we have

ICI"<CIp
,(o) /

with C depending only on n, N, A. Taking n°h roots of each side, we then get the
required inequality.

3.8 Consequences of Uniqueness of Tangent Maps

We want to show here that the geometric picture established in the previous section
does give good information about the structure of the top dimensional part sing. u
if the tangent map at each point y E sing. u is unique; because then for each b > 0
and each y E sing. u there is o as above, an orthogonal transformation Q of IR"
and a py,6 > 0 such that 3.7(iii) holds for all p:5 py,6, with Q independent of p. We
claim that such a property implies that sing. u is contained in a countable union
of (n - 3)-dimensional Lipschitz graphs: To be precise, we could apply the case
j = n - 3 of the following lemma:

Lemma 1 Let j E (1,. . . , n - 11. Suppose b E (0,1) and A is a subset of 1R" such
that at each point y E A there is a j -dimensional subspace Ly of IR" and py > 0
such that

(i) A n B,,(y) C {x : dist(A n B,(y), y + Ly) < bp} d p < py,

then A C U,_1E;, where each E; is the graph of a Lipschitz function over some
j-dimensional subspace (in the sense that there is an open subset U; of some j-
dimensional subspace Li C 1R" and an L; -valued Lipschitz function f; on an open
subset U; of Li such that E; = {x + f;(x) : x E U;}).

Remark: In standard terminology, this says that A is countably j-rectifiable.

Proof: We decompose A = U°_IA;, where A;+1 C A; is the set of points y E A such
that (i) holds with py = i-'. Notice that then (i) holds for all y E A; with py = i-',
and A, satisfies a uniform cone condition in the sense that

A, n B;-i (y) c Ky, V y E A;,

where K. is the cone given by Ky = {x : dist(x, y + Ly) < bIx - yI }. Now select j-
dimensional subspaces Ll,... , LQ of 1R" such that for each j-dimensional subspace
L C IR" there is one of the Lj such that II Lt - LII < b. Then we can decompose
A, = U9.,=Q IA;J, where

A;,={yEA;: IILy - L,II < b}.
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Then each A;, has the uniform cone property that

A;, n B;-,(y) C y+ K,, d y E A,,,

where K, = {x : dist(x, L,) < 26Ixl}. It is standard that such a uniform cone
condition implies that, for each given y E A;,, A; nB;-i (y) is contained the graph of
a Lipschitz function with domain B1- i(y') n L,, where y is the orthogonal projection
of y on Lp (See e.g. (Si83a, §51.) The lemma is thus proved. 0

Notice that the argument above actually shows that the following is true:

Corollary 1 If A satisfies the same hypotheses as in the lemma, except that we
can choose py - po, with po > 0 independent of y, then A n B,,(y) is contained in
the finite union of j-dimensional Lipschitz graphs for each y E A. If Ly - y can
be selected independent of y (i.e. L = y + Lo for some fixed subspace Lo), then
A n B, (y) is contained in the graph of a Lipschitz function over the plane Lo.

By 3.7(iii), such a uniform choice of p9, Ly can be made for sing. u n K, K any
compact subset of 1, provided that for each 6 > 0 and each compact K C 0, there
is p(b, K) E (0, dist(K, 8f2)) such that

(ii) p-"J Iu-cpl2<6, p<p(b,K), yEsing. unK.
Ba(y)

As a matter of fact by 3.7(iii) we only need (ii) to hold for suitable b = b(n, N, K,
A) > 0, where A is any upper bound for supd2-" fB,(y) IDuI2 over all y E K with
d E (0, dist(K, Os))), because then 3.7(iii) implies that the hypotheses of the above
corollary with b = (for example) Z. Thus:

Corollary 2 There is 6 = 6(n, N, K, A) > 0 such that if for each y E sing. u n K
there as ,p such that (ii) holds, then sing. u n Ba6,K)(y) is contained in an (n - 3)-
dimensional Lipschitz graph for each y E sing, u n K.

We see in the next chapter that there are stronger conditions on the L2-norm which
guarantee much stronger results in certain cases.

3.9 Approximation properties of subsets of ]R."

We want to devote this section to some further discussion of properties of subsets
A C RR" which satisfy the kind of j-dimensional approximation property described
in Lemma I of the previous section.

We in fact consider several variants of such a property; we continue to use the

notation that
71y.v(x) = P 1(x - y)-
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Definition I Let A C JR" be an arbitrary set and 6 > 0; then

(i) A has the weak j-dimensional b-approximation property ifV y E A there is py > 0
such that, Vp E (0, psJ, B1(0)flrtl1r,(A) C the 6-neighbourhood of some j-dimensional
affine space Ly,, containing y.

(ii) The property in (i) is said to be po-uniform, if A is contained in some ball of
radius po and if, for every y E A and every p E (0, po], B1(0) fl %,,(A) C the
6-neighbourhood of some j-dimensional affine space Ly,, containing y.

(iii) A has the strong j-dimensional b-approximation property if for each y E A
there is a j-dimensional affine space Ly containing y such that definition (i) holds
with Ly,P = Ly for every p E (0, p.,].

(iv) The property in (iii) is said to be po-uniform if A is contained in some ball of
radius po and if for each y E A there is a j-dimensional affine space Lr, containing
y such that B1(0) fl7ty,,(A) C the 6-neighbourhood of Ly for each p E (0, po].

Concerning these properties, we have the following lemma, which is actually just
a summary of the results of Lemma 3, Lemma 1, and Corollary 1 of Section 3.8.
We continue to use the terminology that G is the graph of a Lipschitz function
over some j-dimensional subspace to mean that there is a j-dimensional subspace
L C 1R" and a map u : L -+ L= such that sup=,yEL.=#y Ix - yl-'Iu(x) - u(y)l < 00
and G = {x + u(x) : x E L}.

Lemma 1 (i) There is a function 43 : 10, 00) [0, oo) with limalo j3(6) = 0 such
that if A C lR" has the j-dimensional weak 6-approximation property for some given
6 E (0, 11, then V+'sf6>(A) = 0. (In particular, if A has the j-dimensional weak
6-approximation property for each 6 > 0, then dim A < j.)

(ii) If A C 1R" has the strong j-dimensional b-approximation property for some
6 E (0.1], then A C Uk 1Gk, where each Gk is the graph of some Lipschitz function
over some j-dimensional subspace of 1R".

(iii) If A C 1R" has the po-uniform strong j-dimensional 6-approximation property
for some b E (0, 1J, then A C Uk ,Gk, where each Gk is the graph of some Lipschitz
function over some j-dimensional subspace of 1R"

The following lemma shows that certain closed subsets of the singular set of u satisfy
the uniform weak 6-approximation property:

Lemma 2 If u E W1"2(9, N) is energy minimizing, if yo E sing u, if S+ = {x E
S2 : e (y) > eu(yo)}, and if b > 0 is arbitrary, then S+ fl BPO(yo) has the (n - 3)-
dimensional po-uniform weak 6-approximation property for suitable po = po(u, yo, 6) >
0.
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Remarks: S+ C sing u because 9u(y) > 0 y E sing u by the e-regularity
theorem --see Corollary 2 of Section 2.10. Notice also that S+ is a closed subset of
sing u by the upper semi-continuity of 9 proved in Section 2.5.

Proof: If the lemma is false, then there is 6 > 0, y E sing u, pk 10, ok < Pk, and
yk E B0k (y) n S+ such that

(1)

Bi (0) n S+ St 6-neighbourhood of any (n - 3)-dimensional subspace.

Choose Rk j 0 with Rk/pk -+ oc. Then by monotonicity (see Section 2.4) we have,
for all p E (0, RkJ and for all k = 1, 2, ...

,, r
S p2-"

J
IDuI2 Rk "J IDuI2 C R2-n IDuI2.

Bp(Yk) BRk (Yk) BRk+pk (YO)

In terms of the re-scaled function Uk = uyk,ok this says

/ IDu I2eu(yk) < P2-n

J
IDukI2 < Rk R

Bp(O) f BRk+pk (YO))

for every p > 0 and for all sufficiently large k (depending on p). Since pk/Rk --+ 0
we have Rk"

fBRk+pk(YO)
IDu12 -+ 9u(yo), and since 9u(yk) > by hypothesis,

we then obtain

(2) eu(yo) < P2-n
J IDukI2 < eu(YO) +ek,

Bp(O)

where ek -+ 0 as k oc. In particular the uk have uniformly bounded energy on
any fixed hall in 111", so the compactness theorem (Lemma I of Section 2.9) gives
that there is a minimizing map cp E Wf (1R"; N) and a subsequence ule such that
uje -+ p locally on 1R" both with respect to L2 and with respect to energy. But
then (2) says that

P2-n J I 9 (yo), Vp > 0.
Bp(O)

and by the monotonicity formula (Section 2.4) applied to <p we thus conclude that

2' ° I
= 0, t1p > 0,R2-" IaRBp(o)

and hence that V is homogeneous of degree zero:

(3) cp(Ax) _ V(x), x E 1R", A > 0.

Henceforth let cx = 9u(yo)(- 9,,(0)). Now cp need not be a tangent map of u because
the points yk vary with k, but in any case we can (by (3)) apply the discussion of
Section 3.3 in order to deduce that

S(V) := {y E 1R" : 91,(y) = a}
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is contained in an (n - 3)-dimensional subspace L of IR". Thus by upper semi-
continuity of 8,, there is 0 > 0 such that

(4) {yE91(0):e,(y)>a-0}CL6,

where L6 denotes the (open) 6-neighbourhood of L. Now by the upper semi-
continuity of 8 (as in Section 2.11) we see immediately that this implies

(5) {yE C L6

for all sufficiently large W. Indeed otherwise there would be a subsequence {k} C
{k'} and xk E B1(0) \ L6 - x E B1(0) \ L6 and with a - 8. But then
by the upper semi-continuity we have 0,(x) > a - 8 with x E B1(0) \ L6i which
contradicts (4). Thus (5) is established. But evidently (5) contradicts (1). 0

We want to conclude this section by briefly discussing an example which illustrates
the point that "very bad" sets A may have the weak j-dimensional approximation
property.

We begin with an isosceles triangle Aa with edge-lengths e, e, 1, and with angles
e, e, 7r - 2e, where e E (0, 7r/4) (see Figure 3.3); we should imagine e small. We

Figure 3.3: The triangle Ao and construction for A,

proceed to describe an iterative procedure which, at the kth stage gives rise to a
union of 2k homothetic copies of AO, each scaled by a scaling factor ek. (Note that
for small c, e = z + 4E2 + O(c ).) Specifically, inductively define the sequence Ak,
with Ak+1 C A. as follows:

A, is defined as the union of the two homothetic copies of AO obtained by joining the
base of AO to the vertex of Ae opposite the base with line segments making angles
e with the two equal edges of Ao. (See Figure 3.3.) Thus both the triangles in A,
has edge-lengths t2, e2, e.

Then A2 is the union of the four triangles (having edges of length e3, e3, e2) obtained
by applying the same construction to each of the two triangles in A1. At the kth
step we apply the same construction to each of the 2k'I triangles (with edge-lengths
fk, ek, ek-1) in Ak_1. Thus Ak consists of a union of 2k triangles, each having edge-
lengths ek+i ek+t ek. Then we define

r = nk 1Ak-
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above shows that subsets with the strong j-dimensional b-approximation property
are automatically countably j-rectifiable, whereas the above example shows that sets
with the weak j-dimensional approximation property can have Hausdorff dimension
greater than j and be purely j-unrectifiable.

Thus although Lemma 2 will prove to be useful in our later discussion, it does not
in itself guarantee very much about the structure of sing it.

3.10 Uniqueness of Tangent maps with isolated
singularities

Recall that we in fact could check the strong (n - 3)-dimensional b-approximation
property (and hence countable rectifiability, by Lemma 1) of the previous section
for sing it (u any energy minimizing map it E W"2(1l; N)), provided all the tangent
maps of u at points of singe u are unique. Unfortunately such uniqueness in general
is not true, although it is still an open question in case the target is real-analytic.

In this section we discuss one of the few situations in which uniqueness of tangent
maps is known - the case when the tangent map has only an isolated singularity at 0
and when the target manifold N is real-analytic. The main theorem here (originally
proved in [Si83b] ) is as follows:

Theorem 1 Suppose p is a tangent map of u at some point y E sing u, and suppose
sing = 0. Also, assume that N is real-analytic. Then ;p is the unique tangent map
for u at y, and in fact

u(y + rw) = v(w) + e(r,w), w E S"-1,

where limrlo I log rI° SURIESn_, je(r, w) I = 0 for some a > 0.

Remark: (1) In view of the examples constructed in [AS88] and [GW89] the decay
here is best possible.

(2) The theorem is not true if we replace the hypothesis that N is real-analytic by
the hypothesis that N is Cx (see [Wh921). We briefly discuss why such a state of
affairs, which might seem surprising at. first reading, is to be expected. First, rewrite
the equation Au + E _, D;-u) = 0 (see Section 2.2) in terms of spherical
coordinates r = Ix - yI, w = Is - yi-1(x - y), and then make the further change of
variable t = - log r. Letting u(w, t) = u(y + rw) and letting u' abbreviate 09/8t.
we obtain the equation

(1) it" - (n - 2)ii + As.-tu + A4(Dji, DWu) = -Ajj(u , u'),

where A;(DWu, D,,u) is an abbreviation for A;,(D,.,u, D,,u). where 71, ... ,

is any orthonormal basis for the tangent space of the sphere S"'-1.
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Now by modifying the argument of Section 2.2 in a straightforward way, we can check
that Asn-, ii + A;,(D,,u, Du-) is exactly the Euler-Lagrange operator corresponding
to the energy functional Es.,-, (v) := IDvI2 for maps v : S' N. Notice
that then of course, since cp is homogeneous of degree zero and sing cp = {0} we
know that +po := ,IS"-' : S"-' -+ N is C°° and stationary for ES.,-,. Thus

(2) As.,-. po + A,, D.Vo) = 0.

Also, keep in mind that the Eulcr-Lagrange operator for ES. -I (i.e., the operator on
the left of (2)) is by definition (see the discussion in Section 2.2) characterized as
the operator such that

-WEsn-, (n(vo + '(P) E C (Sn-'; lP.P);

that is, it can be thought of as the L2 gradient of the functional ES.-,, and hence
it is reasonable to use the alternative notation for this operator. In this
case the equation (1) can be written

(3) ii" - (n - 2)ii' - DES"-1 (u) = W).

Now since V is a tangent map for u at y, we know there is some sequence pj j 0
such that converges to cp in the norm on any ball BR(0); here as usual uy,P
denotes the re-scaled function given by uy,,,(x) = u(y + px). Since cp is homogeneous
of degree zero and smooth away from 0, and hence CIxI-2, this ensures
in particular that, for any given 8 E (0, 1), a2-r EB.(z)(uy,P,) < CO-2o2, provided
z E IR" \ Be(0), a E (0,0/2) and j is sufficiently large (depending on 0). Then by
the version of the e-regularity theorem given in Corollary 1 in Section 2.10 we have
that, for suitable e = e(n, N) > 0 and all sufficiently large j,

a < 60 sup akI Dkuy,P, I < Ck
B,(z)

for each k = 0, 1.... and for j sufficiently large (depending on 0, k); of course since
any region BR(0) \ B,,(0) can be covered by finitely many balls Bg(z) with a < eO
this shows that in fact for any fixed 0 < p < R

(4) sup I Dkuy,p; I <_ C(k, p, R)
BR(O)\BP(O)

for all k = 0, 1.... and for all sufficiently large j (depending on p, R, k). Then of
course the convergence of uy,P, to p must be with respect to the Ck norm on any
compact subset of 1R" and in particular, since = 0, we have

(5) P' -+ 0 on each compact subset of IR" \ {0}.

Thus in terms of the function ii(w, t), we see that with TJ = -log p3 , no, ii(w, t -
T,) converges to w(w) in the C' norm on all compact subsets of the cylinder SO` x
[0, oo) and in particular W (w, t - Tj) converges to zero on any such set. Thus fixing
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T > 4, taking arbitrary j sufficiently large, and letting v(w, t) = u(w, t - T,), we see
that the equation (3) can be written in the form

v" - (n - 2)v' = VEsn-i (v) + R, on S"' x [0, T)

where
IIR(t)IIc2(sn-I)

<-
12IIv'(t)IIL2(s°-1).

Now (after a re-scaling of the time variable to get rid of the factor (n - 2) in front
of v') this is analogous to a finite dimensional ODE system of the form

(6)

where f is a given fixed smooth function on IR" and IRI 5 Of particular
interest are "slow decay solutions" of such an equation; that is, a solution such
that It;"I << 1F'I. (Such solutions exist whenever f has critical points which are
degenerate in a certain bad sense-see [AS88I). In this case the equation (6) takes
the form

(7) e = -Of(d) + R,

where IRI < a Now the asymptotic behaviour of such equations is very different
in the cases f E C°° and f real analytic. In fact, it is easy to construct examples
of C" functions f such that there are solutions { of an equation of the form (7) (or
even exact solutions of the equations {' = -V f (£), l;" - t' = V f (C)) which have no
limit as t oo, even though the solution in question remains in a compact region
for all time. Indeed there are examples of C°° functions f with f and its gradient
vanishing on a smooth Jordan curve 'y, with f positive inside -y, and such that there
are solutions of t'' = -V f (t;) (or t;" - Cr = V f (C)) which "spiral out" towards y
("goat tracks down the hillside") as t - oo, so that the set of limit points of C(t) as
t -+ooisallof -y. See Figure 3.5.

7:IVfl=0

Figure 3.5: "goat tracks" for C' -potential

On the other hand if f is real-analytic the situation is very different: According to
Lojasiewicz [Lo65], for each critical point y of f (i.e., each point where V f = 0)
there is a E (0, 1) and n > 0 such that

(i) IOf(x)I >- If (x) - f(v)I'-°'2
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for every point x E B,,(y). We emphasize that this holds for any f which is real
analytic in some neighbourhood of 0; the constants a, y of course depend on the
particular function f. Using this inequality it is easy to prove that any solution of
an equation of the form (7) which remains in a compact region for all time must
indeed have a unique asymptotic limit as t - oo:

Theorem 2 Suppose f E C"(lR") and t : [0, oo) --+ R" is a bounded O([0, oo))
solution of {' = -V f (t;) + R, where R has the property that there is a fixed 0 E (0, 1)
such that IRI < BI£'I on [0, oo). Then limt_.C(t) exists, and in fact there are
constants C, a > 0 and CO E IR" such that It;(t) - Col < C(log t)-° for all t > 2.

Since our proof of Theorem 1 will involve an analogous argument in an infinite
dimensional setting, it is worthwhile for us to give the proof:

Proof: First note that by direct computation we have

(1) -df(i(t)) of(f) = If1I2 - t' R > (1-

and hence by integration we get

(2) (1-0) f
a

I
for any 0 < t < s < oc. In particular this shows that f (t;(t)) is an increasing
function of t; hence since there is a compact K such that t(t) E K Vt we conclude
that limt_ f (t;(t)) exists, and further, if y is any limit point of t(t) as t --+ oo, then
we must have f (t;(t)) = f (y) and f (t;(t)) > f (y) Vt. Thus (2) gives

(3) (1-0) f(.(t)) - f(y),F
and by the Lojasiewicz inequality (i) this gives

(4) (1-0) f
a

I
provided It;(t) - yI < rl. Since IRI < BIC'I, we can use the triangle inequality to give
IVf(C)I <- (1 + 0)It;'I, and hence (4) implies

(5) (1 -0) (1 +e)2/(2-°)Ir'(t)121(2-Q)F
provided If(t)-yI <,q, so that if 1t;(t)-yI < yon the interval [tt,t2] we can integrate
the differential inequality (5) to yield

l°-1 00 tYOD (1
C(t - t,), t E [tt, t21,
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which evidently implies

IW'I2 C(t - t1)'°, t E tl, t21, Q = (1 - - 1 > 0.(6) f
Notice that by the Cauchy-Schwarz inequality we have

(7) IS(tl) - S(s)I < IJ a '(r)dT1 < (s - t1)1/2 (J a IS'(T)I2dT 1/2 .

t, ti /
Now f °° ii;'I2 0 as t - oo, and y is a limit point of C(t) as t -. 00. We can
therefore choose t1 in the above such that ft°° IC'I2 < e2 and IC(ti) - yI < 17/8 where
e is a constant to be chosen, depending only on q, a, shortly. Then (7) gives

(8) sup
I

ET1/2.
tE[t,.t,+Tj -

But by multiplying by (t - t1)a/2 and integrating in (6) we see that

t, +T.
(s - t1)1+,1/2I((s)I2ds < CT-912,

IT

with C independent of T for any T. > T such that It(t) - t(t1)I < 17/2 for all
t E [t1 + T, t1 + T.J. On the other hand then by the Cauchy-Schwarz inequality we
get

(9) T.) - (t1 + T)I <
t1+T.

< 1 f'(s)Ids
t1+T

r t

) I +T
(s - t1)-1-0/2 ds

1/2

< (J t'+T (s - t1)1+d/2It 51(s)I2

1/2

t, +T et+T
<CT-0<4

for T > To, with To fixed, depending only on a and 1). Now with this T0, we choose
e in (8) such that ET0I/2 < 17/8, so that (8) gives It (t1) - t:(t1 + T)I < 17/8 for
T< To and (9) gives It:(t1 +T.) -t (T1 +T)I < q/4, hence by the triangle inequality

+T.) - t(ti)I < 311/8. But then It (t1 +T.) )I < 311/8 for arbitrary T. such
that Il;(t) - tj(t1)I < 17/2, t E [t1, T.J. Evidently then It;(t1 + t) - t:(t1)I < 11/2 for all
t E [t1, oo). But then (9) can be applied with arbitrary T > 0 and with T. = t, such
that {(t,) - y, thus giving

<Ct-0/2 Vt>0.

This completes the proof. 0
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3.11 Functionals on vector bundles

We begin with a general discussion of the notion of smooth functionals defined on
smooth sections of a vector bundle over a compact Riemannian manifold.

Let n < pi, q < p2 be positive integers, let E be a compact n-dimensional C'
Ricmannian manifold isometrically embedded in 1RP', and let V = UWEEV,, where
each V, is a q-dimensional subspace of IRP', with V, varying smoothly with respect
to w in the sense that the matrix of the orthogonal projection P,, of IRP2 onto V,, is
a smooth function of w.

For the applications to the energy functional, the reader should keep in mind the
case when we have n - 1, p in place of n, p,2 and when E = S"-', and V, =
where cp : S"-' - N is a fixed smooth (harmonic) map of S"' into N.

For each k = 0,1, ... , Ck(V) will denote the set of Ck sections of V, meaning that
each u E Ck(V) is a map u E Ck(E; IRP') with u(w) E V, for each w E E. Similarly.
for any a E (0, 11, denotes the set of sections of V. Also L2(V) denotes
the subspace of L2(E; IRP') equal to the set of u = (u',... , 02) E L2(E; lRP') such
that u(w) E V,, a.e. L.) E E. Thus the inner product is the usual L2 inner product
(u, v)L2(V) = fE u(w) v(w) dw.

Now let rl.... , r be a locally defined smoothly varying IRP'-valued functions on
E which form an orthonormal basis for TE at each point w E E where they are
defined. Then for any u E C'(V) we define

(i)

n

VVur,0Vwu,
i=1

where
V'u = P,,(V,u).

with V,u denoting the ordinary Euclidean directional derivative of u. Notice that
the expression on the right of (i) is actually globally defined on E, because it is
evidently independent of the particular choice of orthonormal basis rl, .... r,,, and
Vvu takes values in TT,E®V,J C IRP' ®IRP'. In fact we can get an explicit expression
for Vv independent of the particular basis r1, ... , r4 as follows. Since u = EP'=, uWej
we have V,u = E°', ri(uJ)e;, and since E"=, ri(uj)ri = VEUJ, where VE means
gradient operator on E, we obtain in place of (i) the alternative identity

V VU

= 1:(VEu') ® P,(e.i)
i=1

which is evidently independent of the particular orthonormal basis rl, ... , ,r,,. We
consider a given smooth real-valued function

F=F(w.Q), wEE. QElRP' xIRP'P', IQI<oo,
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where ao > 0 is given. Here we are going to identify R" ® IRP2 with 1R"3' in the
usual way, via the linear isomorphism induced by the map

(x1,... ,xP')® (y',... ,PIP')'-' (x'y );=1....,PIJ=t,...,P .

(The right side here is a p1 x p2 matrix which, since it has p1p2 components, can
be identified with a point in lRP'P'.) Subject to this identification, we can define a
functional F on C' (V) by

(iii) F(u) = jF(w,u,V''u), u E C1(V).

The Euler-Lagrange operator MF for Jr is defined on C2(V) by the requirements

(iv)

F(u) E C°(V), dgF(u+sv)I - = (MF(u),v)L2(£), u, V E C2(V).
80

Of course this does uniquely determine Mr; indeed to see this and at the same
time to get a clear idea of the form of MF, we note that by (ii) we can write
F(w, u, Vvu) = FF(w, u, V£u1,... , V£uP'), where F(w, z, 77), z E 1R.9 and i _
(n0), .. ..7W), with rli°) = °)) E 1RP', is defined by

P2

F(w, 17W) = F(w, z, E n0) 0 P.(ej))
j=1

Then by direct computation, the derivative on the A.F(u + sv) I.-o is given precisely
by the expression

d

j
'2 P.

.F(u+sv)1. =
ds 0_1 j=1

where Vj = ej V£, j = I, ... pl (so that V' f = (V1 f, ... , VP, f )) and where the
subscripts mean partial derivatives with respect to the indicated variables. After
using the integration formula f£ V j f = - f£ f Hj on E (with f E C°°(E) and with
(H1, ... , H,,) the mean-curvature vector of E) this gives

d F(u + sv) _
Lo

r
P2 PI _

(w(F;,Z6,Oii))+Hj ^(o)(w, u,Vii)
0=1 j=1

and hence we see that indeed MT exists and is given by

(v)
PI Pt

e° MF(u) = EVj(F1(o)(w,u, Vu)) - E HjF1(a)(w,u, Vu)
j=1 j=l
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for each a = 1, ... , p2. Notice that this takes the general form

PI as

ea
M.F(u)

= E E (w, u, Vu)V,V,us - fe(w, ii, vii),
j=1 p=1

where f = f (w, z, r)) is a smooth function of (w, z, i) E E x IRP2 x R.

We always assume that F is such that the Euler-Lagrange operator My is elliptic,
in the sense that

P P2

(vi) nn,,)(w, z, n)A A$t't' > 0
i j= l o,Q=1

for allA=(A,,...,A2)EV,\{0}.

We also need to mention the linearization of M.F. If u E C2(V) is a solution of
MF(u) = 0 on E, we can define the linearized operator Cr,. of MF at u by

'Cf'°(v) =
dsMF(u + sv)18=0 , v E C2(V).

Let ao > 0 and notice that if u E C2(V) with 1u1c2 < ao and if ul, u2 are arbitrary
C2(V) functions with Jul IC2, [u2Ic < ao, then we can write MF(u,) _= MF(u+(u;-
u)) for j = 1, 2, and, using the calculus identity f (1) = f (0)+f'(0)+ fo (1-s) f"(s) ds
with f (s) = MF(u + s(u, - u)), we deduce

(Vii) M7(u3) - MF(u) = GF.u(uj - u) + N(u, u,),

where

N(u, u;) = J(1 -s)d2s M(u+s(uj -u))ds, j=1,2.
0

By taking the difference of these identities for ul, u2 and keeping in mind that

Iu + s(u, - u)IC, < ao Vs E [0, 1], we obtain an identity of the form

(viii) MF(ul) - MY (U2) = ICY, u(ul - u2) + a . V2(ul - u2) +
+b V(ui -u2)+c (ui -u2),

where

(ix) sup(Ial + IbI + Ici) <- C(Iui - uIC- + IU2 - uIC2)

with C depending only on F and ao. We shall use (viii), (ix) in the next section.

3.12 The Liapunov-Schmidt Reduction

In this section we want to describe the Liapunov-Schmidt reduction associated with
the Euler-Lagrange operator My. The reader unfamiliar with this may find it
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instructive to first look at the finite dimensional version in Appendix 3.16 below. The
infinite dimensional version described here is exactly analogous, both with respect
to the results and the proofs.

Let K be the (finite dimensional) kernel of the elliptic operator GF defined in the
previous section, let PK be the orthogonal projection of L2(V) onto K, and let

(i) Aru = PKU+Myu.

Notice that then N(0) = 0 (because MF(0) = 0), and the linearization dNlo(v)
N(sv)I5_o (defined on C2(V)) is just

PK+GF,

which has trivial kernel on C2(V), so by elliptic theory (keeping in mind the el-
lipticity 3.11(vi)) we know that dKlo is an isomorphism of C2.°(V) onto CI,* (V)
for each a E (0, 1). Then the inverse function theorem is applicable to the C'
operator N : C2.°(V) -+ thus giving that N is a bijection of a neigh-
bourhood U of 0 in C2.°(V) onto a neighbourhood W of 0 in and that
the inverse 41 = N-' from W onto U is also C'. We assume subsequently that
U C {u E C.°(V) : llullC,.o < 1).

Lemma 1 For a neighbourhood W C W of 0 in C°'°(V), depending only on F, we
have

(ii) II'y(fi) -'W(f2)I1w2,2 < CIlf, - f211L2, f,, f2 E w,

when C depends only on F, and when

IIvII V2,2 = IIVIIL2 + IIVvIIL2 + 11V2vIIL,

Remark: Of course, since it is merely a notational matter, we can subsequently
take W=W.

Proof: Let uj = ir(f,), so that (sinceN'P(f,) = f;) we have

PK(ui) + MF(ui) = fi, fs E W,

and according to (viii) and (ix) of Section 3.11 (with u = gyp) we thus have

(1)

where

(2) sup(Ial + IbI + Icl) <_ C(lui - PIc'a + lus - colc2)

Taking projections onto K and K1 in (1), and keeping in mind that GF,,p takes
values in K1, we thus have

(3)

l)
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and

(4)

.C.r,, ((u2 - ul)1) = (a O2(ul - u2) + b V(ul - u2) + c - (ul - u2) + f2 - fl)1-

Now according to (vi) of Section 3.11 the operator G,,,,p in the equation (4) is elliptic,
and hence by the standard L2 estimates for such equations we have

(5) II(ui - u2)1IIw9R < CIIFIIL2, C = C(.F),

where F is the right side of (4). In view of (2) we thus have

(6)

II(ul - u2)1IIwz2 < C(IUI - PIc2 + Iu2 - SPIc2)IIul - u211W +CIIfj - f211L2 .

On the other hand by taking L2 norms on each side of (3) and using (2) again we
evidently have

IIPK(ul - U2)II1.a < C(Iul -'PIC- + lug -1Plc3)Ilu1- u211w2.2 + CIIf1- f2IkL= .

Since K is spanned by an orthonormal set Pl, ... , cpa of smooth functions, this last
inequality evidently implies

(7)
IIPit(ul - u2)IIwa.2 < C(Iul - wIca + Iu2 -'P1c1)IIuI - u2IIw... + CIIfl - f21ILV

By adding (6) and (7) we deduce finally

Ilul -1211w2.2 <- C(lul - rp c2 + Iu2 - cPIca)Ilul - u21Iw°i + Cllfi - f2IIL2,

and if Jul - w1o, Jul - eplc' are then small enough (depending only of Y) to ensure
that C(lul - pl i + Iu2 - 1, we thus have (ii) as claimed.

Now let V1,... ,jPl (E C°°(V)) be an orthonormal basis for K. By definition

((t')(iii) _ j pj for
j=1 j=1

so in particular

(iv) (MY.
0 for Lj=1e'Pj E W,

where (-)-L means L2(V)-orthogonal projection onto the orthogonal complement K1
of K. Using (ii) with fl = PKU and f2 =-I(u), where u is such that PKU E W
and U E U, we obtain

(v) II4 (PKU) - U11w2.2 5 CIIPKU - II MfuII L9
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by the definition (i). In particular, with PKU in place of u this gives

L3 , u E U,(vi) II'I'(Pxu) - Pxullw..z < CIIPxu112

where U={uEU: PKUE W}=UnPK'(WnK),because CFPKu=0and
hence IIMF(PKU)IILW <- C'IIPKUII2c2 5 C'IIPKUIIi2. (Notice that trivially IIPKuIIc -
CII PKUII L2, because the pj, j = 1, ... ,1, are all C°°(V) functions.) In particular (vi)
evidently implies

(vii) dWIo o PK = PK.

We now define

E;=1b'Vj E W ,

and check by direct computation (using the definition 3.11(iv) of MF) that

(viii) (ii,Vf(0)LZ =

for ZEE W and 11 E IR", where W is the open neighbourhood of 0 in IR.' such that
l; E W Ej=1 Vcpj E W n K. Notice that this can be written

,7
(A'1F( coj) - PK(E'=1'!,))L2 +

PK(Ej=1TNj))L2.

Now by (vii) we know that IIdT (E,C'vj)(Ejrl''pj)-PK(Fj=jreWj)II L2 5 CICI; then,
taking (by (iv)) E,r'cpj parallel to MF(W(E1C'cj)), we deduce that

IIMF('P(E' +C'I(I

Similarly, taking rl parallel to V f (l:) we get

lVf(0I 5 (1 + CVI) IIMF('(E;=1twj)) II

Evidently then, since we may take a smaller neighbourhood W if necessary (to
ensure that CICI 5 1), we conclude

(ix) IIMr(`1(Ej=1b'coj))II 5 21Vf(C)I, C E W.

Also, if uE U-UnPK'(WnK) we have

(x) MFu = 0 . N(u) = PKU * WYN(u) ='I'(PKU) u = W'(PKu) ,

and also then by the left side of (ix) V f (C) = 0 with l; E f V- that E jW, = PKU.
Conversely, if f E W and V f ({) = 0, then M('I'(E l 0 by (ix), and hence

so that automatically (Eljcp,) E U
if f E W. Thus

(xi) :{EWandVf({)=0}).
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Figure 3.6: The Liapunov-Schmidt Reduction

Since %Y is a C' diffeomorphism, we see that 'P embeds W fl K into U, so

(xii) M := { E W _j

is an 1-dimensional embedded C' submanifold of U_ which according to (xi) contains
the whole zero set of My in the neighbourhood U. (See Figure 3.6.)

We also note some important facts about how well the function f approximates the
functional F near zero. Specifically, note that for u E U and PKU E W we have

I.F(u) - f('y(PKU))I = If ds.F(u + s(WY(PKU) - u))dsl

= (MF(U + s($(PKU) - u)), U)L2(V)

by the definition 3.11(iv) of M.F. Since

IIMF(U + s('(PKU) - u)) - MF(U)IIL2 < CII'(PKU) - UIIW2.2

(by direct computation using the expression 3.11(v)) we thus get

I-F(U) - F('P(PKU))I <_ IIMF(U)II0 IIW(PKU) - UIIL2 +CII `P(PKU) - UIIw2.2,

and hence by (v) we have

(xiii) IC(U) - aF('l'(PKU))I <_ CIIMFUIIL2 .

3.13 The Lojasiewicz Inequality for _F

We now specialize to the case when the functional F is real-analytic. To be precise
we assume that F = F(w, z, n), w E E, z E 1RP2, r/ E lRPIP2 is smooth and that all
derivatives with respect to the w variables up to order 3 are real-analytic functions
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of the variables z, q: Thus we assume that for each (zo, 710) E IR°t x lR"'P2 and
each integer j = 0, 1, 2,3 there are smooth functions {ap} on E corresponding to
arbitrary multi-indices a = (a1, ... ,a,), ,3 = ()31,... , j3,,,, ), and or > 0, such that

00

E( E sup 00

m=0 I°I+IQI=m
,.,EE

and such that
00

F(w, z,'1) = E E a°,(w)(z - zo)°(rl - rb)1
m=0 I°I+I$I=m

for Iz-zol+171-7lol < a. Notice that then we can apply the implicit function theorem
argument above on the complexified spaces C®C2,°(V) and C®C°'°(V) thus giving
%P = N-1 defined and C' on a neighbourhood Uc of 0 in the space C ® C°-°(V) in
the sense that for any fixed u., E j = 1, ... , R, the complex derivatives

R , z'u,) all exist and are continuous as maps from Uc into CC '°(V). In
particular

t

fc(z',... ,z") :=F(41(Ez3Wl))
=1

is a holomorphic function of (zl,... , z") in some neighbourhood of 0 in V. Thus
the original f (l;) (= .F(41(E'_, C'V,))) is real-analytic in some neighbourhood of
0 in V. Thus we can apply the Lojasiewicz result 3.10(1) in order to deduce that
there exist constants a E (0,11 and C, a > 0 such that

(1) If(C)I1-°/2 < CIVf(C)I V C E B0(0),

where B,(0) is the ball in IRl of radius a and centre 0. But now by the inequal-
ity 3.12(xiii), with u E U arbitrary such that Cj Oj)L2 satisfy Il;l < a, we
have

IF(U) - M)I <- CIIMf(u)II12
and hence by (i) and 3.12(ix) we then have

If(u)I1-°"2 <- C(IIJF(U)IILZ + IIjs(U)112-°)
< CIIM,(U)IIL-

for each u E U such that IIPKUII < a. In particular there is ao > 0 such that

(ii) IF(U)I1-°I'2 < CIIMFUIIL2 `du E C3(V), 11U11c3 < ao,

and this is the required Lojasiewicz inequality in C3(V).

Now we want to prove that, even without any real-analyticity hypothesis as in (i),
the above inequality holds with best exponent a = 1 in case we assume the following
"integrability condition":

(iii) .F(%P(PKu)) _- 0 on some C3-neighbourhood of 0 in C3(V).
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This is called an integrability condition because (by 3.12(xi)) it is equivalent to
the hypothesis that there is a smooth t-dimensional manifold of solutions of the
non-linear equation My(u) = 0 which is tangent to the kernel K of Ly at 0.

Thus we claim:

Lemma 1 If (iii) holds then there are a, C > 0 such that

IF(u)I''2 < CIIJvl,(u)II0, u E C3(V), Ilullc3 < a

Proof: According to (iii) and 3.12(xiii) we have

IF(u)I = IF(u) -.F(W(PKU))I <- CIIM,(u)II ,2

for each u E U, and this is the required inequality.

3.14 Lojasiewicz for the Energy functional on Sn-1

We would like to apply the Lojasiewicz inequality to the energy functional on the
sphere, but the smooth maps C°°(Sn-1; N) are not a linear space. so we first need
to show that, at least for maps which are C3 close to a given harmonic map po E
C°O(Sn-1; N) we can write the energy functional as a functional on a vector bundle
as in Section 3.11.

So take fixed 'o E CO0(Sn-1; N) which is harmonic; recall that by the discussion of
Section 2.2 (and also Section 3.10) this is equivalent to WO satisfying the equation

(1) Ao(D.1oo, DW,po) 0,

where A,yo(D,cpo, D1P0) is an abbreviation for Ej=i V,. o) with an
orthonormal basis r1, ... , for TS n-'. Now for 6 > 0 and yo E N we let

T6(yo) = {T ETwN: IrI <6}
U6(yo) = {fI(yo + T) : T E T6(yo)} .

Then, for suitable 6 = 6(N) > 0, U6(yo) is a neighbourhood of yo in N, and in fact
the mapping 4)YO : r H II(yo + r) is a smooth (real analytic if N is real analytic)
diffeomorphism of T6(yo) onto U6(yo) such that

(ii) -'(y) depends smoothly or real analytically on (yo, y) E N x N

according as N is smooth or real-analytic respectively. Now let V = <o TN
{T,°(W)N}WEs^-1. If U E CZ(Sn-1; N) with 6, then by definition of
we have the identity

(iii) u(w) = n('po + 4' (,,,)(u(w))), w E Sn-',
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so, letting i l ( , a ) = 4 1(y,)(u(w)) we have v` E C2(V) with

(iv) U = fl(,po + ir).

Thus for ti E C'2(Si-1: N) we have the identity

(v) £s^-l(it) = £5..-, (II(Wo + u)).

Notice that the expression on the right has the form

I F(w. ii. Vvu).

where we use the notation of Section 3.11 with V = V,, = N and
where

F=F(w.z.r)). wESi-1.zEllV',rlElZ"P

is given (see 3.11 (ii)) by

2
(vi) F(w. z, r)) = I I Apt u)+z((La=1Qy~ (w) P.,e") + rl)I

which is certainly a C'° function of w, z, q for IzI < h and which also satisfies
the analyticity condition of Section 3.13 in case N is real-analytic. (Because 11 is
C" or real-analytic in {x E lRP : dist(x. N) < h} according as N is CIO or real-
analytic.) Thus we are motivated to make the following definition: Let .F be defined
on {@ E C2(V) : Ilrrllr2 < h} byy

(vii) .F(u)=f (F(,a.u.Vvu)-F(w.0.0)).

with F as in (vi). Then in view of (v), F is related to the energy functional by

(viii) £S..-, (u) - £s..-1(Vo) = f'(i) E S - -

for u E C`(S"-t : N) and 11 such that u = 11(tip,) + ii) as described above: stated in
another way. this says

(ix) .F((,) = £5n-I (ll(wo + r)) - £s. (y o). r E OWL 111111c-2 :5 6.

Next. recall (see the discussion of Section 2.2) that the Euler-Lagrange operator
of £S..-, (u) is exactly (u) = AS u + .4"(Du. and it satisfies the
identity

dd£.(17(u+su))I$=o = -WF,._,(u.VL2. n= (rr.....r") E C2(S JR")

On the other hand by (viii) and the definition d.F(u+sr')Ia_11 = -(MjV(tI)- 1'42 we
then have

(Me, (u). r')L, = (MAT I). r)L2. r E O(V ).



82 Chapter 3. Approximation Properties of the Singular Set

which evidently implies

(x) (Me,,,_. (u))T° = MF(u), u E C2(S"-'; N), Ilu - wollcn < b,

where ( )TO means the orthogonal projection onto T,Po(,)N. However recall that
(u) = (Du)T (see (iv') of Section 2.2), where (_)T means orthogonal pro-

jection onto Since Ilu - pollc2 < 6 we then have from (ix) the pointwise
bounds

(xi) (1- C6)IMe,,,-, (u)I <- IM-F(ii)15 Ml -

Notice that by taking the mixed partial derivative aeae of the identity (ix) with
sv + tw in place of v, we also have

G'O(v) = CF(v),

where C,,, = !Me,._, (II(Wo + sv))l,=o is the linearization of at Vo and
CLS

G.r(v) = gMF(sv)I,_o is the linearization of Mr at 0; in particular GF is certainly
elliptic it has second-order term Av and hence we may apply all the theory of
the Sections 3.11-3.13 to F.

Thus in particular if N is real-analytic (which ensures F is real-analytic by the
discussion above), we know by (xi) and the Lojasiewicz inequality 3.13(ii) that there
is a E (0, 1] and C, a > 0 such that

(xii) I Es._i (u) - Es.. (,o)l1-°/2 < Cll M£,,, (u)IIL2 ,

for u E C°°(S"-'; N) with Ilu - Vollc3 < or.

If on the other hand we have that N is merely smooth, then assuming that.satisfies
the integrability condition 3.13(iii)

(xiii) .F'(T(PKu)) - 0 on some C3-neighbourhood of 0 in C3(V).

(which by (ix) and the discussion in Section 3.13 is the same as the requirement
that the set of u E C°°(S"-1; N) with Ilu - Vollc3 < b and (u) = 0 is an
t-dimensional submanifold), we have (xii) with best exponent a = 1; that is, there
are C, or > 0 such that

(xiv)

IEs.-, (u) - E3 CII ME,,,_. (u)IIL2, u E C(S"-'; N), Ilu -'pollc3 < a.

3.15 Proof of Theorem 1 of Section 3.10

The proof here is a simplification of the original proof in [Si83b].

First recall, by definition of tangent map, that there is a sequence p, j 0 such that
the re-scaled mappings u,,o, (= converge in the to our tangent



3.15. Proof of Theorem 1 of Section 3.10 83

map V. Thus for any given il > 0, for suitable p, for example for p = p, with j
sufficiently large depending on ,j, we have

(1) I w11.p - V12 < e,

where, here and subsequently, B4, is an abbreviation for B,(0). Let us now abbreviate
u = u,,,,, and keep this p fixed for the time being, and also small enough so that
B3v/2 C Q; thus u is at least defined on B3/2. Now since cp is homogeneous in
lR"\{0} and smooth on S"-' it is clear that if B,(z) C B3/2 \ B3/4 then

a-" J Iu - V(z)< 2a"f i - P12 +2aJ I-
,(z) ,(z) ,(z)

< 2a-"i2 +,3a2,

where /3 is a fixed constant depending on V but not depending on a or p. Thus if y >
0 is given, then for small enough rl, 0 (depending only on n, N, V, y) we can apply the
e-regularity theorem on the ball B,(z) in order to deduce that IIu-WIIC3(B,,,(z)) 5 'Y
Thus (in view of the arbitrariness of z) we obtain for any given y > 0 that there
exists , _ ij(y, cp) > 0 such that

(2) II - 17 Iiu -'PIIC3(B,,4\B7,8) < 7

(Notice that in (2) we do not have to assume that p is proportionately close to one
of the pj.)

Next recall that by (xii) we have constants C > 0, y E (0, 1) and a E (0, 11 such
that

(3)

I -a/2
f(IDwl2 - IDI2)CIIMES. (w)IIc3, IIw - WIIc3 <

Since (w)II L2 is uniformly bounded for IIwIIc2 <- 1 (so that trivially we have
(w)Ili < C II MES_. (w)II r2 for y, < y2), we can, and we shall, assume

a<1.
So from now on a E (0, 1), y (depending on .p) are chosen fixed such that (3) holds,
and t, depending on cp and y, is chosen so that the implication (2) holds.

Now by the monotonicity identity 2.4(iii) we have

(4) 2f r2-" 2 = JIDiil2 - 9(0)

Notice that since u = n3,,o and JB, r2-" I Or I2 = fep(v) r2-" IN I2 0 as p j 0, we
have

z

(5) f r2-" < 1
'5T -B,
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for all p < po for suitable po > 0. Also, in proving the identity (4) (in Section 2.4)
we showed that u satisfied the identity

(n-2) f ID"12=f (DiI2_22)
8

< r ID''u12,
B, 19B, C7r B,

where D' means tangential gradient on BB1. Then using this in (4), and keeping in
mind that

06(0) = Ou(y) = e,,(0) = f
n 1 2

f
" ,

IDWVI2
,

by virtue of the fact that cp is a tangent map of u at y (hence homogeneous of degree
zero), we obtain

2(n - 2)f r2-n

B, 8r
I2<1B,(1Vii12-ID'(p12)

=f (IDDiI2-IDD,vI2).

Now in view of (2) we can apply the inequality (3) in order to deduce

(6) f r2-n
1

ar,I2<-CIIMe(v)IIL(` °/2)
,

so long as Ill - PIIL2(B3/2\B3/4) < ?I'

Now u satisfies the equation Au + _j=1 Au(D ii, D,u) = 0, which, in terms of
spherical coordinates r1= I xI , w = I x1-'x, can be written

rn 11

Or Orrn-1 J + 2Og.-,1 + 72A;.(DWu, DWu) + Au (OU, ) = 0.

Since this just says Me (u) (r" ' ) - A (2g, 2i), we see that (6)
implies

(7)
(113,

r2_n

I

aii 12) 2-a

<
C JS"-. (lo(rnI

12

+ I

12)

provided that Ill - PIIL2(B3/2\B3/.) < r1

Now notice that the re-scaled function u(°) defined by u`(°)(x) = ii(ax) also satisfies
the harmonic map equation

n

emu(°) + E Au(o,(Diu(°), DJu(°)) = 0,
i=

and by differentiation with respect to or, and noting that 2"Z'' = r 8u(°>
a Or

we obtain the linear equation /
G /r 5 ) = 0,
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where G is the linear elliptic operator obtained by linearizing M(w) __ Ow +
E" 1 A,L,(Djw, Djw) at w = u. Thus

n n p

Gv = Av + 2 A;,(Drv, Dju) + 1: 1: vk 8Ak

I

- (Dju, Dju) = 0.
i,j=1 j=1 k=1 8z z

Now since IIu - 0IIc3(B314\B718) < 7 < 1, we see that this operator has the form

where Ibi + Ici < 0,0 =,(3(n, N), in the domain S2 = B5/4 \ B7/8. But any solution
v = (v', ... , VP) of £(v) = 0 for such an operator G satisfies the estimate

sup IDvi < CIIvf1L2(B,(z))
Br/2(z)

for any ball BT(Z) C S2 (= B514 \ B7/8). (See e.g. IGT83, Chapter 8J.) Thus, in
particular, covering S"-' by a family of such balls B,/2 with T = 1/16, we conclude

( 8`u
2 au

S-I "5 C fBs/4 \B718

provided that IIu - VII L2(B3/2\B3/4) < q. Thus by (7)

I I)
2-°

(L1

2

<C rC2-n

2

aT./2\B3/4 I

provided IIu - coIIL2(B312\B214) < rl. By re-scaling, since s . a = 2, we in fact deduce

9 z 2-a
(J/'

x(8)

(fB,12

r2_n I VId

l ) < C r2-n I lar BI\BI/2 on

for Iiu - p2, where C is a constant depending only on Ip. This is the
key inequality; we claim that the theorem follows quite directly from it.

We need a simple inequality for real numbers, as follows:

(9)

(0 < a < b< 1,a E (0, 1),,3 > 0, and a2-° < 3(b - a)) a a°-' - b-1 > C,

where C is a fixed constant determined by a,,3 only, and not depending on a, b.
This is readily checked by calculus, considering separately the cases when b/a > 2
and b/a < 2. Notice that in view of (8) and (5) (with op in place of p-notice that
this amounts to applying the above discussion with u(°)(x) - `u(ox) in place of U),

I2, thusw e can apply (9) with a = I (a12) and b = I (a), where I (a) = f B r2-" I Or
giving

(10) I(a12)Q-' - 1(Q)°-1 > C provided a-"IIu - WII i2(Be\Bo/2) < 17
2
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provided a--"IIu - ri. Now fep2\B Iii - sofa = f,' T"-lllu(T) -
(p112 2d7-, hence the condition a-"IIu - 2I1 Oa (and hence the in-
equality in (10)) certainly holds if we require

(11) Ilu(T) - n, dT E [a/2,a[ .

Now let us suppose that a E (0, 2) is given, take the unique integer k > 1 such that
a E [2-k-1, 2-k), and assume

(12) IIii(s)-4OIIL2(s.,_,)<17, VsE[a,1].
Then we can apply (10) with 1/2' in place of a for e = 0,... , k, whereupon we
obtain by summing over l = 0,. .. , k

1(2-k)°-1 > I(2-k)°-1 -
1(1)°-1

> Ck,

and hence

(13)

rll

a C
dr <

,

where Q = (1 - a)-1 - 1 >0,Ilogal1+s

provided (12) holds. Notice integration by parts gives the general formula

L
1

I logrll+A/2
fr

sf(s)dsli +
0

I log rl1+d/2r f(r) dr =

+(1+ui/2) I r ' logrls/2 / sf(s)dsdr,
1110 0

and using this with f (r) = I I (l we obtain

CL'

virtue of (13) that

(14)
Jh"ogr2r112 '11a dr <C / 1 1 C,

Or L2(S^-1) 0 71logsl1+F/2

again subject to (12). But then we have by virtue of Cauchy-Schwarz that

(16) Ilu(a) - u(T)IIL2(s"n-1)

0"(r) dr
a "r

1/a

rllogrl1+0/2
II_

112) J rr 1l
logrl-1-x/2)1/2

f
< Cl logTI-11/2,

for any 0 < a < r < 2, provided only that (12) holds. Next note that by another
application of the Cauchy-Schwarz inequality we have

(16)

II11(T) -11(1)iiV(sn-1) < f '
111L2(S"-,)

dr

< 1 log r 1112 r2-- l

_
tL

I2) 1/a
_ I logr I'/2E

,
(fat
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where E = (fB, r2-"I se-,. I2)1/2 = (fB,,(,,) r2 "I IZ)1/2 (--+ 0 as p j 0). Now notice that,

by virtue of the triangle inequality, (16) already guarantees that

11u(T) - wIIL2(s--t) < 17/2, d a< T < 1

if

(17) el logall/2 < 17/4 and lli (1) - PII i/4.

So now suppose (17) holds and choose T E (0,1/2) such that Cl logrl-0/2 < 71/4.

Then Ile(a) - WIIL2 <- ll u(a) - u(T)ll L2 + llu(r) - vPIIL2 and hence by (15), (17) we
deduce that llti(a)-'PIIL2(S -l) < 17/2 so long as 11u(s)-VIIL2(s"-I) < 1) for s E [a, 1].
Clearly this shows that llu(a) - (PII L2(s^-I) < 17/2 for all a E (0,1] provided only
we can ensure that E can be selected so that (17) holds. However, u = u.1,,, so by
taking p = pj with j sufficiently large, where p, j 0 is such that u1,,,,, gyp. we can

of course ensure both inequalities in (17). (The second we already discussed at the
beginning of the proof and the first trivially holds for j sufficiently large because

I2 - 0 asp 10.) But now this means that (12) holds for all a E (0, 11 andfB, r2-"l Or
hence we can apply (15) with any a, r. Then letting a = a3 such that u(a3) O

(which we can do because p is a tangent map of u at 0), we then have

Ilu(T) - Cl logrl-a/2, r E (0,11,

which is the required asymptotic decay. 0

3.16 Appendix to Chapter 3

3.16.1 The Liapunov-Schmidt Reduction in a
Finite Dimensional Setting

Suppose F E C°°(Q) where f? is an open subset of some Euclidean space lRQ with
0 E Q. Suppose that 0 is a critical point of F; that is,

(i) VF(O) = 0,

and suppose (without loss of generality in view of the possibility of composing F
with an orthogonal transformation) that

(ii) ker Hess Flo = 1R9 x {0},

where 0 < q < Q and where Hess Flo (the Hessian of F at 0) is viewed as a symmetric
linear transformation of IRQ. Then we have the following lemma, which effectively
reduces the study of the critical points of F near 0 to the study of the critical points
of a related function f defined in a neighbourhood of 0 in the lower dimensional
space lR9 x {0}.
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Lemma 1 If q E JO,... , Q - 1 } and if (i), (ii) hold, then there is a neighbourhood
W of 0 in 12 such that there is a diffeomorph:sm T of W onto a neighbourhood U
of 0 in IRQ with

{x E UnP-'(Wn(IR°x{0})) : VF(x) = 0} ='v{ E Wn(IR°x{o}) : vf(f) = o},

where

f(t;) = F($(t;)), t; E W n (1R° x {0})

and P denotes orthogonal projection of x onto 1R9 x {0};'P u in fact explicitly given
as the local inverse of the map x x'+VF(x) in some neighbourhood of the origin,
where x' = P(x). Furthermore W can be chosen so that we have the inequalities

C-'IVF('P(x'))I 5 IVf(x')I 5 CIVF(x)I, If (x') - F(x)I < CIVF(x) 12

for every x E U such that x' E W n (1114 x {0}).

Remark: If q = 0 then Hess Flo is an isomorphism of 1RQ, and hence the inverse
function theorem tells us that x '-+ VF(x) is a diffeomorphism of suitable neigh-
bourhoods of 0, so the lemma holds trivially in this case (interpreting V f - 0, which
is reasonable since f (0) = 0 and f is only defined on the zero-dimensional subspace
{0}).

Proof: Let

(1)

and note that

N(x) = x'+ VF(x), X E S2,

dNlo(v) = v' + Hess FIo(v), v E 1RQ.

In particular (since Hess Flo is injective on {0} x 1RQ-9 = range Hess Flo) we have
dNlo(v) = 0 if and only if both v' = 0 and Hess Flov = 0 so that v E ({0} x
IRQ-Q) n (1R9 x {01) = {0}, i.e. v = 0. Thus dNIo is injective and hence by the
inverse function theorem there are bounded neighbourhoods Uo, Vo of 0 with smooth
boundaries such that NIUo is a diffeomorphism of Uo onto Vo with smooth inverse
is on Vo. Since N('P(x)) _- x, x E Vo, we have in particular that

(2) )))1 =
(x' - (41(x'))')' == 0, x' E (1R° x {0}) n VO,

where ( )1 denotes orthogonal projection into {0} x iRQ-9. By 1-dimensional cal-
culus along the line segment joining z to N(y) we have

(3) O(z) - yl = I'I'(x) - ID(N(y))I

= I J
(V'P(z + s(N(y) - z)),N(y) - z) dsl

0

< CIz - Ar(y)l
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for zeB,and yEU,where B,=B,(0)CVoand U=11(B,). With z = y', this
gives

(4) I41(b) - yI <- CIVF(y)I, y E Uo, y 'E (lR9 x {o}) n uo

by virtue of the fact that y' - N(y) = -VF(y) by definition of N.

Now we define
F(W(D)), E B, n (]R9 x {0})

and note that by the chain rule

(5) (v, V f (t)) = d'Pl ((v)), t E Wo, v E IR9 x {o},

and hence, for y E U such that y' E B, n (lR9 x {0}),

(6) IVf(y )I <- CIVF(ID(y ))I

= CIVF(y + 4'(y') - y) I
< CIVF(y + 41(y')- y) - VF(y)I + CIVF(y)I
<- CI IP(y') - yl + CIVF(y)l

5 CIVF(y)I,

where we used (4) again. Using (4) yet again, this time with y' in place of y, we
have 11(y') - y'I < CIVF(y')I, and since VF(O) = 0 and HessFIo(1R9 x {0}) = {0},
this implies that I41(y') - yI < Cly'I2 for y E U such that y' E B, n (lR9 x {0}),
which in particular implies that

(7) d(%P oP)Io=P,

where P is orthogonal projection onto lR9 x {0}. But now, for E B, n (lR9 x (0)),

by (5) we have

(v,Vf(f)) = (VF(4'(f)),d4'If(v)) =
= v) + (d('P o P)If - P)v), v E IR9 x {O},

and I(d(WoP)IE-P)I < by (7). Thus, in case 0, since E
1119 x {0} by (2), we can first choose v parallel to VF('P(t)) in order to conclude

+CItI IVF(4'(t))I,

and then choose y parallel to V f ({) in order to conclude

Hence we conclude

(8)

IVF(4'(f))I ?

2lof(t)I <- IVF(4'(t))I 5 2IVf(t)I

for E B, n (1R9 x {0}). provided a is sufficiently small.
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Next we note that. for y E U such that y' E B, n (1R9 x {0})

VF(y) = 0 #, N(y) = y y = T(y),

so that by (8) we have

VF(y) = 0 y ='1'(y) and Vf(y') = 0.

Conversely if y = 'I'(i) with { E B. n (1R° x 0) and if V f 0 then VF(y) = 0
by (8), and then also y' = t;. Thus we have

{yEUnP-'(B,n(1R°x{0})) : VF(y)=0)=W(tEBon(IRwx0) : Vf(t)=0),

where P denotes orthogonal projection onto 1119 x {0}.

This completes the proof of the lemma (with Lb' = B,). except for the second
inequality in the last part of the lemma. To prove this we note that for y E U n
P-'(W n (1R° x {0)))

I.f(I%) - F(y)I = I F(''(U )) - F(y)I

= Ifl(VF(y+,(41(y')-y)),*(J)-y)dsI

< fIVF(y+s(W(')_u))IdsI(y')-YI

(IV1YI + jIVF(' y + s(W (?f) - y)) - VF(y)I) I'1'(?!) - yI

< CIVF (y) 12

by (4) again. 0



Chapter 4

Rectifiability of the Singular Set

In this chapter we establish rectifiability results for the singular set sing u of energy
minimizing maps.

4.1 Statement of Main Theorems

Recall that a subset A C 1R" is said to be m-rectifiable if '7im(A) < oc, and if A has
an approximate tangent space a.e. in the sense that for li--a.e. z E A there is an
m.-dimensional subspace L. such that

Jim f
..o f ` f , f E C°(IR"),010 7 (A)

where. here and subsequently, rl=,,(x) - a-'(x - z).

A subset A C 1R" is said to be locally m-rectifiable if it is m-rectifiable in a neigh-
bourhood of each of its points. Thus for each z E A there is a a > 0 such that
A n B,(z) is m-rectifiable.

Similarly A is locally compact. if for each z E A there is a > 0 such that A n B,(z)
is compact.

This terminology is used in the statement of the main theorems below.

Our main theorem for the case when the target manifold is real-analytic is the
following:

Theorem 1 If u E N) is energy minimizing and if N is real-analytic,
then, for each closed ball B C f1, sing u n B is the union of a finite pan-wise disjoint
collection of locally (n - 3)-rectifiable locally compact subsets.

91
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Remarks: (1) Notice that being a finite union of locally m-rectifiable subsets is
slhtly weaker than being a (single) locally m-rectifiable subset, in that if A =
Uk=1Ak, where each Ak is locally m-rectifiable, there may be a set of points y of
positive measure on one of the A, such that T{'°((Uk#,Ak) n B,(y)) = oo for each
a > 0. (This is possible because Ak has locally finite measure in a neighbourhood
of each of its points, but may not have locally finite measure in a neighbourhood of
points in the closure Ak and this may intersect Ac, e # k.)

(2) We shall prove also that is a.e. constant on each of the sets in the finite
collection referred to in the above theorem, and furthermore it will be established
that singu has a (unique) tangent space in the Hausdorff distance sense at f°-3_

almost all points x E sing u.

For the case when N is merely smooth rather than real analytic, we need to assume
an "integrability condition" as in (xiii) of Section 3.14. Thus we have:

Theorem 2 The conclusions of Theorem 1 continue to hold if the requirement that
N is real analytic is dropped (so N is an arbitrary smooth compact Riemannian
manifold isometrically embedded in IRP), provided the integrability condition (xiii)
of Section 3.14 holds for all smooth harmonic maps goo : S2 -+ N which are such
that the homogeneous degree zero extension of po to 1R3 \ {0} zs a locally energy
minimizing map of 1R3 into N.

Remarks: (1) The stronger conclusions of remark (2) above also hold in this case.

(2) If N is the standard Sr' or 1RP2, or metrically sufficiently close to the standard
S2 or 1RP2 in the C3 sense, then the following much stronger conclusion holds:

a
singu= UK0

where each E. is a properly embedded manifold and K is a closed set of
dimension < n - 4. This is proved, by rather different techniques ("blowing up")
than those used here. For a detailed discussion of the blowing up method in the
context of nonisolatel singularities of minimal surfaces we refer to [Si93], and for an
outline of the proof (using the same blowup method) of the above result for energy
minimizing maps we refer to [Si92]; the detailed proof, which very precisely parallels
the corresponding result for minimal surfaces proved in [Si93], will appear in [Si].

4.2 A general rectifiability lemma

Here we develop a general rectifiability lemma, which gives sufficient conditions for
an arbitrary closed subset of R' to be m-rectifiable, as defined in Section 4.1. This
rectifiability lemma will be crucial in our later rectifiability proofs of Section 4.7,
where it will be applied with m = n - 3.
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Let S C 1R" be an arbitrary closed set, e, 6 E (0, 1) with e < 18 (in the applications
below we always have e << 6), po > 0, and assume S has the c-approximation
property satisfied for S+ in Lemma 2 of Section 3.9. Thus for each y E S and each
p E (0, poJ we assume

(i)
S fl B,(y) C the (ep)-neighbourhood

of some m-dimensional affine space Ly,p containing y.

In all that follows we assume that such L..., corresponding to each y E S and p < po,
are fixed. Then, relative to such a choice, we have the following definition.

Definition 1 With the notation in (i) above, we say S has a 6-gap in a ball B,(y)
with y E S if there is z E Ly,P fl Bi1_6i,,(y) such that B6p(z) fl S = o.

With this terminology and for any given y E S, p E (0, po] and 6 E (0,
2

), we define

(ii) ry(y, p, b) = sup({0} U {a E (0, p] : S has a 6-gap in B0(y)}).

Thus -y(y, p, b) = 0 means that S has no 6-gaps in the balls B,(y), T E (0, pJ, and if
-y (y, p, b) > 0 then S has no 6-gaps in the balls B,(y), T E ('y(y, p, b), p], but S does
have a 6-gap in Br2 (y) for some sequence r; T ry(y, p, 6); in particular, S has a s-gap
in By(y,o,6)(y) in this case.

Lemma 1 (R.ectifability Lemma) Let 6 E (0, 32) be given. There exists e =
e(m, n, b) E (0, 18) such that the following holds. Let po > 0, xo E S = a closed
subset of 1R" satisfying the e-approximation property (i), and suppose:

(I) Either S has a !-gap in B,, (xo) or there is an m-dimensional subspace Lo C 1R"20
and a family Fp of balls with centers in S n 13p,,(xo) such that

(a) E (diam B)' :5 epo,
BE.Fo

(b) Sfl B.(y) C the (ea) -neighbourhood of y + Lo,

V y E S n BPo12(xo) \ (UFO), a E (7(y, I2 A' 8211

(with 7(y, p, b) as in (ii)), and

(II) Vx1 E SnB,(xo) anddp1 E (0,
1

J there are LI, F1 (depending on x1, pl) such
that the hypotheses (I) continue to hold with x1i pl, L1, F1 in place of xo, Po, Lo, Fo
respectively.

Then S n BPo(xo) is m-rectifiable.

Remarks: (1) It is important, from the point of view of the application which we
have in mind, that the property (I)(b) need only be checked on balls Bo(y) such
that S has no b-gap in any of the balls B,(xo), ry(y, M, 6) < r < 22. In practice the
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condition (II) is often an automatic consequence of the way in which S is defined in
the first place. For example, in Section 4.7 below we apply the above lemma with
xo = 0 and po = 1 to a subset S+ of the singular set satisfying certain hypotheses
((i)-(v) of Section 4.5) which are automatically satisfied with S+ = 9-,,,,,,S+ in place
of S+ and u = u o q. ,,P, in place of u, where rJx, P, x -- pi 1(x - x,). Thus once
we have checked that the hypotheses (i)-(v) of Section 4.5 imply that (I) holds for
S+, then it automatically follows that the hypotheses (II) also hold for S+.

(2) Notice that if S does not have a k-gap in B,(xo) (so that the first alternative
hypothesis of (1) does not hold), then, provided e is sufficiently small relative to b,
no ball BT(y) for T E [M, im] and y E SnB,12(xo) can have a 6-gap, so in particular

16 2
ry(y, M, b) < and condition I(b) always has non-trivial content in this case.

(3) In order to establish the Theorems 1, 2 of Section 4.1 we are going to show
that this lemma can be applied with sets S of the form S+ = Bo(y) fl {x E sing u :

with suitable y E singu and with p sufficiently small. Notice that
Lemma 2 of Section 3.9 already establishes the weak c-approximation property (i)
for such S+. Most importantly, we are able in the discussion of Section 4.5 to get
much more control on sing u in balls which do not have 6-gaps. This is the key point
which makes it possible to check the hypotheses I and hence to prove the main
theorems stated in the introduction.

In the proof of the rectifiability lemma, we shall need the following covering lemma.

Lemma 2 If 6 E (0, 32), F C BPo(xo) C Ilt'" is arbitrary, and if B is a collection
of closed balls of radius < & and centers in F which covers F, and for each B =
BP(y) E B there is z E B(i_b),(y) such that B6p(z) fl F = 0 (that is, F has a 6-gap
in each ball B E 8), then there is a covering U = {B,k(yk)} of F by balls with
centers yk E F and with

Epk<(1-9)po, 0=9(b,m)E(0,1),
k

and, also, for each B,k(yk) E U there is a ball B,,,(zk) E B such that Be-,,,,(yk) J
Bok(Zk)

Proof: By translation and a scaling, we can assume po = 1, xo = 0. We here
consider closed cubes Q = [zi - r, z, + r] x x [z,,, - r, zm + r]; z = (z,, ... , zm) is
the center of Q and 2r is the edge-length, denoted e(Q). For integers N > 2, Q(N)
will denote the N-times enlargement of Q; thus Q(") = [z, - Nr, z, + NrJ x ... x
[zm - Nr, zm + NrJ.

We first construct a cover Uo = {B,, (yk)} for F which satisfies all the stated condi-
tions, except possibly for the requirement that each yk E F.

As an initial observation, we note that such a collection Uo trivially exists with
9 = 9(m) E (0, 1) (independent of 6) if F' [-4, 4]"' = 0. Similarly, for any
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given fro E (0, e) it is easy to check the existence of such Uo with 0 = 0(m, b, ao) E
(0.1) if there is a ball B E B such that radius B > Qo and B n (- 2 M. , 2,,r,.- 0.
because then, since radius B < 8, we have B C BI(0) and hence there is a ball

C BI(0) with Ffl BB,,,,(z) = 0.

So subsequently we can assume without loss of generality that

Fn(-4 m #0,

Bf1Qo16 O=: 48,7--,

where Qo = (-'- . gyp" C 111(0). Define

(3) Fo=FfQ0, Bo={BEB: Bf1Qo#0}.

so that diam B < - 1 m for each B E Bo by (2). For each k = 1, 2.... let Ck be the
collection of 2(k+1)m congruent subcubes of edge-length -'2-1 obtained by repeated
subdivision (k + 1 times) of the cube Qo, and let C = Uk>ICk. Now for each B E 80
let ka be the unique positive integer such that

diam B < < 2 dialn B.

(Since diam B < ,n we actually must have kB > 5. )

For each B E Bo let QB he the collection of Q E CkB such that Q fl B # 0. Notice
that

(4) B C Q" for each Q E Qa,

because e(Q) > diam B and B fl P 34 0 for each P, Q E Qa. Also, since diam B
for each B E Bo, we have

(5) e(Q)<2diamB<24 VBEBo, QEQB.

Now for k = 1, 2, .... we define

(6) Qk = U QB.
BEB0, k0=k

and

Q=UQk.
k

Notice that then

(7) UQDQon1BU 8J DFo.
QE Q EB0
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Notice also that by (4) and (5) we have

QE Qand QC [-z,Tm2'Mj-

(8) 3 B E Bo with Q E Qn and BC U P C Q(3) C Qo.
PEQB

In particular, since Fo has a b-gap in any such B, we have

(9)

QEQandQC(--,-II-
3 Q1 E Q with e(Q1) = e(Q), R C Q1 C Q(3) C Qo,

where R is a cube satisfying

(10) e(R) > a and R fl FO = 0.

Now we define a subcollection Q of Q as follows:

First, let Ql = Q1, and for each k > 1 (assuming Q1,... , Qk are already defined)
let

k

Qk+I = Q E Qk+1 : Q it U U P
t=1 PEQ1

and then define Q = UkQk. Evidently Qk C Qk, UQ = UQ,

{interior(Q) : Q E Q} is a pairwise disjoint collection.

If k > 1 and if Q E Qk with Q C then either all P E Qk with
Q fl P # 0 are in Qk, in which case, by (9), (10),

3 Ql E Qk such that Ql C Q(3) and such that

3a cube RC Q1 with F0 flR=0 ande(R) >4b e(Q1),

or else there is P1 E Qk with Q fl P1 34 0 and P1 0 Qk, in which case by definition
of Qk we must have P1 C P for some P E Qt with e < k - 1 and hence Q C
P,(3) C Pi3i. Notice that, in the latter case, since e(P) > 2e(Q) and Q C Pi3i, we
have Q(s) C P(s). Proceeding inductively, starting with an arbitrary Q E Q with
Q C [- -3-M we then either have (11) or else there are integers q > 1 and

Pe, EQt,,j=1,...,q,such that

(12) 1,)C[
21m

21m]m

3 Q, E Qf, and a cube R C Ql C Po3l with Fo fl R = 0 and e(R) >
4

6 e(Q1).
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(We can inductively establish the iuchlssiion P(6) C in,I"' by using the facts

that ft, n [-4 tm` 1-1,, j" PI(" n Q T 0. and ((P(6) 6C(1,1,) < tn, b y
Therefore if we let 9 C Q be defined by

_ {Ql E F0 n R = 0 for some cube R C Qi with hrn(,(QI)}

then, keeping in mind that. Q, C Pt3) P(r') C Q(M) if !'(P) = e(Q1), w( > have
by(II)and(12)that

(13) U Qis) 3 U Q(6) 3 U Q.
Q,EQ QEQ.QCI-,fN-!V

On t he other hand we know by definition of 9 we can decompose each Q E 9 into
a union of a collectioll PQ of congruent sub-cubes (with non-overlapping interiors).
such that

(14)

:i22",e(Q)<c(1')<8 7-r(Q) V PEPQ.andFFnP=0 for some PE PQ.

Then if we let PQ be the suhcolleetion of PQ obtained by dropping all P E PQ such
that F.nP=0.wehave

(15) E I Q E 9.
PE,-"

for suitable 0 = 0(m), where IQI denotes the vohuiie of Q (that is. c(Q)'). But
by (13) we have

(16)

Now if

(17)

then we have

(18)

E : - 1 E IQI.
' Jm snQESO QEQ.QCI_ ,

IQI 2 (2 m)'n

IQI - 2 + IQnI - (2 (1 - t2 ;n)n, )IQoI.

QEQ

On the other haild if

E IQI > 2 t2 ,,,).
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then (16) gives

(19)
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IQI > 8-"'1_2)TM
QEG

Now let P be the collection (Q \ 9) U (UgEgPQ). Then P covers FO and by (15)
and (16) we have

E IQI = E IQI + E E IPI
QEP QEQ\6 QEG PEP&

E IQI+(1-96'°)EIQI
QEd\G QEG

- o r
Qed (X C,

IQoI - or E IQI
QEG

for suitable 9 = 9(m) E (0, 1), and hence by (19)

(20) E IQI <_ (1- C-1r)IQOI, C = C(m).
QEP

Also note that by (4), (5), and (14) we have

(21)
VP E P, 3 B E Bo such that B C P(N) with N < C6-'

and C-16 diam B:5 e(P) < 2 diam B,

where C = C(m). Thus, regardless of whether or not (17) holds, we in any case get
a collection of cubes covering FO such that (20) and (21) hold. (If (17) holds then
(18) shows that we can get (20), (21) with P = Q.)

Now for any -y > 0 we can trivially cover Bl(0) \ Qo by a family of balls {B,,,(zk)}
with ok ? i3 and Ekwmok < (1 + ry)(IBl(0)I - IQoI), where 3 = ,Q(m,'y) > 0.
Similarly, there is a cover of any given cube Q C Rm by balls {B,k(zk)} such that
£k 1J,nok < (1 + 7)IQI and mink ok > 13e(Q), with /3 = /3(y, m) > 0. Then (20),
(21) imply that there is a cover of F by a collection Uo = {B (yk)} of balls with

(22) E Pk < (1 - 9)Po , 9 = 9(6, m) E (0, 1),
k

and, also, for each B,(yk) E Uo there is a ball B,k(zk) E B such that

(23) Be-Ipk(yk) D Bvk(zk)

To complete the proof of Lemma 2 we need the following lemma:
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Lemma 3 For each 17 E (0, 16], each ball B,(xo) C 1R' , and each non-empty subset
F C B,(xo), there is a finite collection B = {B k(yk)}k=1....,Q of balls with centers
yk E F, F C UkQ__1Bpk(yk), Pk >_ i?Po `d k, and 1 pk < (1 +Crf )po , where C > 0
and a E (0, 1) depend only on m.

Before we give the proof of this we show how it is used to complete the proof of
Lemma 2. Let Uo be as in (22), (23) above, and let B E B be arbitrary. According
to the above lemma (with B, F fl B, C-11"01° in place of B, F, n respectively), we
can find a finite collection RB of balls with centers in F and covering F fl B such
that EBERB J BI < (1 + 9) I BI , and with diam B > ry diam B, where ry = ry(m, b) > 0.
Then taking U = UBEyk,RB, we evidently have by (22), (23) that

(radius B)tm < (1 + 8)(1 - 9)p0 n (1 - 82)po

BEU

and, also, for each Bpk(yk) E U there is a ball Bok(zk) E B such that

B,-Ipk(yk) J Bok(zk),

with -y depending only on m, 6. This completes the proof of Lemma 2, subject to
the lemma, the proof of which we now give:

Proof of Lemma 3: By translation and scaling it is evidently enough to check the
lemma in the special case when xo = 0 and po = 1. So suppose F C Bl(0), and let
Q denote the set of all balls Bo(y) with either y E F or F fl BP(y) = 0. We claim
that for each k = 1, 2,... , there is a collection Qk C Q with

(1) 32-B1(0) \
\ V B/ (1

- )kIBl(0)l
BEQk

and

(2) dist(B(1), B(2)) > 16 , B C B1_1/18k(0), radius B > 16

for every B, BM, Bi2> E Qk with BM 0 B(2).

This is correct for k = 1 (indeed we can take Ql to consist of just one ball of radius
,11-), so we assume k > I and that (as an inductive hypothesis) Qk C Q as in (1), (2)
already exists.

Let Pk be a maximal pairwise disjoint collection of closed balls of radius z
1

with
centers in BI (O) \ (UBEQk B). Then

(3) B1(0) \ I U B) C U (2-times enlargement of P)
BEQk J PEPk

by the maximality of the collection Pk, where the 2-times enlargement of a ball
Wp(y) means B2p(y).
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Also, keeping in mind that no open ball of radius s T'r can intersect more than
16

one of the sets in the collection Qk U {lRm \ B1(0)} (by (2)), we can easily check
that each P E Pk contains a ball P1 of radius a which does not intersect the set

16
(IIt°' \ B1(0)) U (UBEQ,B). On the other hand for any ball BB(y) C 1R' we can find
B 12(y) C B,(y) with BP/2(y) E Q. (Just take y = y in case F fl 9,,12(Y) = 0, and
take y E F fl 9,/2(y) arbitrary in case F fl BP/2(y) 54 0.) Then the ball P1 contains
a ball P2 E Q with radius 1

1
and hence the ball P with the same center as P2

and radius 11 has the properties

IPEQ, U BIU( U Q) I>I
`` BEQk / QEPk,Q#P J

Thus we can define
Qk+I = QkUPk,

where Pk = {P : P E Pk}, and then Qk+i has the required properties (2) with
k + 1 in place of k.

Furthermore, for any P E Pk, the 32-times enlargement of P (i.e. B32p(y) if P =
Bo(y)) contains the 2-times enlargement of P, so. by (3),

B1(0) \ (BEQ, U B) C U (32-times enlargement of
PEPk

and hence

Then

B1(0) \
U B I <

(32)" 051.
(BEQk / PEPk

B1(0) \ U B
BEQk+, \

IPIB1(0) \
U B I - E

BEQk / PEPk

(1 - 12F ) Bl (0) \
BEQUk B/

(1 - 32 )k+lIB1(0)I

by the inductive hypothesis.

Thus the existence of the required collections Qk as in (1), (2) is established for
all k; further the above proof also establishes that for each k we can select a col-

each contained inlection (Viz. Pk = {P : P E Pk}) of balls of radius 16 -T
2B1(0) \ (UBEQkB), such that the 32-times enlargements (each of radius 1) cover

all of B1(0) \ (UBEQkB) and have total measure < (32)mIBi(0) \ (UBEQ,B)I 5
(32)"'(1 - 32 )kIB1(0)I. Now for each P E Pk such that the 32-times enlargement
of P intersects F we can choose P with center in F, radius 64-times the radius of P
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and containing the 32-times enlargement of P. Let the set of all such P be denoted
Pk. Then Qk U Pk cover F and the sum of the volumes is

(4) < (1 + (64)"'(1 - 3I )k) $B1(0)I.

We now choose k such that 16-k E [17,1677). Then (1 - 31)k
= ((1 - I )Qk)I/9 <

O'/Q <_ 16'/977'/9, provided q is selected such that (1- szm )Q < Is, so by (4) we see
that Lemma 3 is proved with a =q-', C = 64"and B equal to the subcollection
consisting of all balls B in Qk U Pk such that F n B 34 0. O

Proof of the Rectifiability Lemma: We assume first that S has no f-gap in
B,,O (xo), and hence (Cf. Remark (2) above), fore < co, with co = eo(n, m, 6) small
enough,

(1) S has no 6-gap in any ball BT(y),yEB.12(xo)nS,TE[ ,2

and also the hypotheses I(a), (b) must hold. Let

(2)

Si'i = {y E S n R./2(xo) \ (U,Fo) : S has no 6-gap in BB(y) Vp E (0, 2]},

and let

(3) El = S n Bvo12(xo) \ (S(') U (U-

FO))-For each y E S(') we have by the property (b) that S satisfies the uniform cone
condition

(4) S n Bp(y) C the (ep)-neighbourhood of y + Lo

for each p E (0, 22 ], and hence we deduce immediately that

(5) S(') C GI,
7.(m(S(')) < Wm ( 7 ) ' "1

where GI is the graph of a Lipschitz function f defined over the m-dimensional
subspace Lo with Lip f < Ce. Let PO be the orthogonal projection of lR" onto Lo.

By (1) and (i) we have that for each y E El

(6) S has a 2-gap in B,,,(y), S has no 6-gap in BT(y) Vr E (py,
2

where p, = - (y, &2 , 6) E (0, ft], and by hypothesis I(b)

(7) S C {x E B,. (y) : dist(x, y + Lo) < epy} U Ky,,y,,,

where Ky,e,4 is the double cone {x E 1R" : dist(x, y + Lo) < eIx - yI}.

Next, define F = P0(EI ), and let B be the collection of balls in Lo which are orthog-
onal projections of the balls y E El. For the remainder of this argument,
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balls in Lo will be denoted BB(y). Thus B = {B ,(y)}yEE where y is the orthogonal
projection of y onto Lo. By virtue of (6), (7) we know that F has a a-gap in each of
the balls of B, and hence by the covering lemma (Lemma 2 above) we have that there
is a collection of balls B = {B,k(yk)}, with yk = Po(yk), yk E EI, which cover F and
which satisfy E. pk < (1-8)po , and for each k there is B k(zk) = E B
(with Qk = Psk), such that Bk(zk) C BB_,,, (yk). By (7) with y = zk we have
S C {x E B,k(zk) : dist(x, Zk + Lo) < cakl U KZk,e,(,o, and hence in particular
Ilk - zkI < 20-'Pk, dist(yk, Zk + Lo) < 28-'epk, and

E, n Po I(Bk(j/k)) C El n B(I+6B-le)Pk(yk),

provided a is sufficiently small relative to 8.

Thus, provided S has no -L-gap in B,,(xo) and a is sufficiently small relative to 0,
we have constructed a countable collection of balls {B,.k(yk)} (Tk = (1 + 60 'e)Pk)
with centers in El such that, after a change of notation (replacing 0 by 2iit20)

(8)

E1 C U B,k(yk), rTk < (1 - 2m+28) (Po)m +Cepo < (1 - 2m+18) (Pol"`

k k ` J

for suitable 8 = 0(n, m, b) E (0, 1).

Now with F = P(S \ B,o12(xo)), P the orthogonal projection of IR" onto the affine
space L=Q,,,, we can first cover all of Lx0,,0 n B,o(xo) \ B,,,12(xo) by balls Bpk(yk)
with centers yk in L=o,,,o and radii pk > C-' po, with C = C(m, 8) > 0, such that

0 ) (P_

k
2 2

But then we can apply Lemma 3 to each of B,k (yk) n F to get a new collection Bo =
{B,k(zk)} with Zk E F, F C UBo, and such that Ekak < (1+8)(po -_(po/2)'") and
ak > C-', with C = C(m, 8). Using property (i) we can then use the Bo to construct
a collection BI = {B(1+ce)ok(2k)} with P(2k) = zk and 2k E S \ Bp012(xo) (so
Izk-zkI < epo by (i)) which covers all of S\B,012(xo). Thus B = {B,.k(yk)}U.FoUBI
is a collection of balls with centers in S n B,o(xo) with the the properties that

(10)

S\S(') C UB
BEB

- (Polm)

E(diam B)°' < (1 - 2"+'8) Cepp + (1 + 8) (r(,
BEAR 1

< 0 - 8)Po

(for a sufficiently small depending on m, 8) and

(11) SM C G1 n Bpp/2(xo), 'H -(S(')) < wmPo ,
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where Gl is the graph of a Lipschitz function f over L°.

Of course if S does have a k-gap in the ball B,(x°), then using (i) and Lemma 3 it
is trivial to find a cover B of balls such that (10) and (11) hold with S(1) = 0. Thus
regardless of which of the alternative hypotheses of (I) hold, we always conclude
that (10) and (11) hold.

We now proceed inductively. Assume that J > 1 and S' C S, {Bp,,,(xj,k)}k=1,2,...,
j = 1, ... , J, are already constructed (with Xj,k E S) so that S(0) = 0,
{BPO,k(x0.k)} = {BPO(x0)},

J
S \ U S(J) C U BPJ.k

j=1 k

is contained in a countable union of Lipschitz graphs, and

E p.-, ' (1 - 0) E Pt ,,A, and ?-(SW)) < wn, E Pili 1,k+ j = 1, ... , J.
k k k

Then we repeat the argument described above, starting with Sfl BPJ,k(xJ,k) in place
of S and with XJ,k, PJ,k in place of x0, pp. Then conclusions (10), (11) imply that
we have a Lipschitz graph Ek and a subset SkJ) C S fl Ek fl BPk.,12(xk,J) such that
?{"'(SkJ)) < wmpljk, and balls {BP,,k,,(xJ,k,l)}1=1,2,... with centers in S such that

s fl BPJ.k(XJ,k) \ SkJ) C U BPJ.k.l(xJ,k,l)
I

and

EPik.1 5 (1 - O)PJk

Relabelling so that {BP,,k,,(xJ,k,l)}k,1=1,2,.. = {BP,+1.,, (xJ+1,k)}k=1,2,... and defining
S(J+I) = we then have

flm(S(J+i)) < E7r(S5J)<wfEPJk
k k

PJ+I,k :5 (1 - 0) E PJk,
k k

and

J+1

S\ U S°) C U(S n BPJ.k(xJ,k) \ S(J+1)) C U BPJ+l.k(xJ+l,k)
j=1 k k
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Thus such a collection exists for all J and

J
S\ U S(J) C U BPJ.k(xJ,k),

>2P$&. (I - 0)JPO
j==1 k k

J

U SO) C

J=1

a countable union of Lipschitz graphs

J J

9l'" U SO) <(1 - 0)j-1WmPO

=1 J=1

Thus S \ (U;S(J)) has f('-measure zero, U., SW) is contained
Lipschitz graphs, and fm(UJS(3)) < Cp0 . Thus the lemma

in a countable union of
is proved. 0

4.3 Gap Measures on Subsets of ]R."

Here we want to establish the existence of a certain class of Borel measures on closed
subsets S C BI (0) having the same e-approximation property as the set S in the
previous section; the main result appears in Lemma 1 below.

Let e > 0 and m E {1.2,... n - 1}, B,(z) = {x E 1R" : Ix - zI < p}, and
let 0 E S C B, (0) be an arbitrary non-empty closed subset of 111" with the same
e-approximation property satisfied by S in Section 4.2. Thus for each z E S and
p E (0, 1) there is an m-dimensional affine space Lz,P containing z such that

(i) BP(z) f1 S C the (6p)-neighbourhood of L.,,.

We henceforth fix these spaces L2.P, and assume e:5 s E (0.32 ).

(ii) Definition: If z E S the "6-radius" ps E [0,;J of z is defined by

pz = sup({0} U {o E either S has a 6-gap or a 6-tilt in B,(z)j),

where L2,, are as in (i). Here "6-gap" is as described in the previous section, and S
is said to have a 6-tilt in B,(z) if II(LZ,, - z) - Lo,111 ? 6.

Remark: Thus p= is such that S has no 6-gaps or b-tilts in the balls B,(z), p2 <
r < 4, and, if p= > 0, S does have a 6-gap or b-tilt in B,,(z) for some sequence
TJT P:

Now we are going to define a family of subsets {T}PE(o.;l as follows:

(iii) Definition: For p E (0, 4], we define open subsets TP C R' by

TP = U BP(z),
(zES:P.<P)
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where p. is as in (ii) above.

(iv) Remarks: (1) The sets T. depend on S and b, but for convenience this is
not indicated by the notation. Of course Tp C UzesBp(z) = S,, - {a E IR" :

dirt (x, S) < p}, so we can think of Tp as being some sort of refinement or reduction
of S. taking into account b-gaps and b-tilts. Also.

Tp C T1/16 C Bls/16(0) Vp E (0, 16 I.

because S trivially has a 13-gap in each ball B1/4(z) with z E S \ B7/8(0) by virtue
of the fact that S C Bl(0). Thus p. = a for z E S \ By5(0), and hence. if p S s
Definition (iii) implies Tp C U.Esna,/epyBp(z) C B1s/is(0) as claimed.

(2) It is possible to check the following properties direct from the definition of the
sets Tp:

(a) The a -neighbourhood of Tp C Tp+e for each p. a > 0 with p + a < 1 (so that
in particular we have dist(T, IR" \ Tp+p) > a).

(b) bzES\Tp,pE(0.4Jwehave p<p..

(b) The e-neighbourhood of Tp \ Tp12 is contained in T2,, \ T,/4. p E (0. J.

Notice that, taking p = 2-1 and a = 2-k - 2-' in (a) we have in particular that

(d) dist(T2-r, R' \ T2-a) > 2_k-1 for f > k + 1. k > 2.

Proof of (a): Take any w E a-neighbourhood of Tp. Then w E B,(y) for some
y E Tp. and by definition of T,, there is a z E S such that y E BB(z) and p > p.. But
then trivially w E Bp+o(z) and since p + ,or > p= this gives w E by definition.

13

Proof of (b): If p > p. then z E Bp(z) C Tp by (ii).

Proof of (c): By (a), the E-neighbourhood of Tp1., is contained in Tp/2, and hence
the a-neighbourhood of IR" \Tp/2 is contained in IR" \Tp/4. Also, again by (a). the
a-neighbourhood of T,, is contained in T2,. The combination of these inclusions then
gives (c) as claimed.

Lemma 1 Them is 60 = bp(m, n) E (0, 16J such that if U < e S 1 < &, if
S, {Ts}oEco.;j air as introduced above. then there is a Borel measure p on S with
the properties p(S) = I and. for each a E (0. 18

C-tp", < ll(B,(z) f1 S) < Cpm. p E Jb1 J2a. ;J, z E T fS.L
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where C = C(n, m). The measure µ has the general form

Qk 1
C b'"/2>2-mk[:rzkjj +fmLTo

k=2
jj=11`

)

where [z] denotes the unit mass (Dirac mass) supported at z, To = np,0Tp, C
depends only on n, m, and where the xk, E S n T2-k \ T2-k- i, j = I.... , Qk, k > 2,
with

k+1 Qr

SnT2-k \T2-k-i C U U Ba1,22-1(zt,), k > 2.
t=max{k-2.2} j=1

(v) Remarks: (1) It is important for later application that C does not depend
on b, nor indeed on S. Of course one has to keep in mind that if the set S is very
badly behaved (like a Koch curve for example), then the sets T,, can all reduce to
the empty set for sufficiently small p, in which case the lemma has correspondingly
limited content.

(2) As part of the proof, it is shown that To is contained in the graph of a Lipschitz
function defined over {0} x IR' and with Lipschitz constant < Cb, so automatically
?{'° L To has total measure < C.

Proof of Lemma 1: First note that we may assume

(1) T1/16 # 0,

otherwise there is essentially nothing to prove. Also, without loss of generality we
can assume

(2) Lo,1 = {0} x 1R'"

(where L0,1 denotes the affine space L=,, of (i) in the case z = 0, p = 1). Notice that
by Remark (iv)(2)(d) above we have

(3) dist(T2-k \ T2-k T2-f \ T2-,-1) > 2-t-2, k > e + 2, t2:2.

Now we choose a maximal pairwise-disjoint collection of balls {B2-o(zJ2)}j=1,,,.,Q2
with x., E S n T1/4 \ T118, and proceed inductively for k > 3 to choose a maximal
pairwise-disjoint collection {B2-k-4(zz)}j=1,,,,,Qk with zz E (S n T2-A. \ T2-k-I) \
(UQ",1B2-k-2(x,k-1)). Now notice that by (3) this automatically implies that

(4) xe)}j=1,.,.,Qk.k>2 is a pairwise disjoint collection.

Also, by induction and Remark (iv)(2)(c), S n T1/4 \ T,/s C u4'1B2-s(zJ) and

k Qt

S n T2-k \ T2-k-i C U U B2-1--(zi),

(5)
t=k-1j=1

Qk

U B2-k-s(z;) C T2-k+I \ T2-k-2, k > 3.
j=1
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We now define

(6) To = n T2- (= n T,,),
t=1 pE(o,;l

so that we can decompose T114 as a disjoint union

U(T2 \T2-1--) u TO, ToCS.(7) T114=(1'='02

Notice that by Remark (iv)(2)(a) we have Ti,, C Two Va > 0, and hence To is a
closed subset of S. Also, by (4) we have

Izk - z,1 > 2- min(k.t)-4 for all k, t > 2, i < Qk, j < Qt, zk 31 4,

and hence (using also Remark (iv)(2)(d) to give dist(z, , To) > 2-k-2)

(8) (B2-._.(zk)\{zk})n(ToU{z; : i=1,...,Qt, t>2})=0,
j=1,...,Qk, k>2.

Now suppose that z = (t;, r1) E S n T2-, for some t > 2. We then have by (2), (i)
and the definition of T2-t that there is z E S n B2-.(z) such that S n BB(z) C the
(26p)-neighbourhood of z + {0} x 1R' for each p E [2-1, 4], whence

S n B114(z) C {w E B2-e(z) : dist(w, z + {0} x 1R'") 5 2b2-t} U K26(i),

where, here and subsequently, we use the notation that

K5(z) = {(x,y) : Ix - I 5 61(x, y) - (t,n)I}

(so that K6(z) is a circular double cone, with vertex at z = (i;, q) and central axis
z + {0} x R). Then by (2) and (i) it follows immediately that

(9) S C {(x, y) E B2-,+, (z) : Ix - {I < b2-t+2} U K4b(z), Z E S nT2-e.

Notice that now by (8) and (9) we have

(10)

S C K26(z), Z E To

To U{z; : i=1,...,Q1, t>2}CK326(zk), b'j=1,...,Qk, k>2

(where in checking the second inclusion we used (9) with t = k and z = z,). But
this means that To U {zk : k > 2, j = 1, ... , Qk} satisfies a uniform cone condition
with respect to translates of the cone K326(0), hence there is a Lipschitz function f
on {0} x JR' with values in 1R"-", Lip f < Cb, and

(11) ToU{zk : j=1,...,Qk, k>2}CGC n K326 (z),
zEToU(z,* j<Qy, k22)
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where G= graph f. Notice that if z E T2-e n S then either z E To or z E S n
T2-k \ T2-k-, for some k > e. In the latter case (5) implies Iz - zz 1 < 2-k-2 for some
j<Qq,q>2andq=k-fork. So in either case we have azETo U{zj : j<
Qk, k > max(2, t - 1)} with Iz - zj < 2-t and hence by (9) with z in place of z we
have

dist(z, z + {0} x lR) < C62-1,

whence (since Lip f < Cb and z E G) we can conclude

(12) dist(z, G) < C62-1, `dz E T2-e n S, t > 2.

Next we claim that

(13)

00 Qk

T1116nG\To C U UB2-k+2(zik).
k=2j=1

To see this we note that if w E G n T2-e \ T2-e-, with t > 4, then (by definition
of T2-e) there is z E S n T2-e with 1w - zI < 2-1. Then (12) holds, and using (9)
and the fact that S has no 6-gaps in B2-e+i (z), we see that there is z1 E S with
Iz1 - wl < C62-' < 2-1-2. By virtue of Remark (iv)(2)(c) (with p = 2-'-1) and
the fact that w E T2-e \T2-e-,, we conclude that then z1 E T2-e+, \T2-e-2, so by (5)
we have z1 E U194152 UQ_91 B2-e-, (z, ), and hence w E Ulq_1152 Uj=1 B2-e(z ). Since
w E G n T1116 \ To was arbitrary, this proves (13) as claimed.

Now we define a Borel measure po on S by setting

(14)

00 Qe

µo = E 2""'' E[zl] + %-L- To,
1=2 j=1

where [z] denotes the unit mass (Dirac mass) supported at z. Notice that since To
is contained in the Lipschitz graph G, we have, for any w E IR" and any p E (0, 1),

(15) (fl LTo)(B,(w)) = f"`(To n Bo(w)) <- Cpm.

Now assume z E S nT2-e, t > 2, and p E (0,'-,1]. By definition (14) we have
00

(16) po(B,(z)\To)_E2--k 1.
k=2 z,"EBP(z)

By (3) the sums in (16) are empty for k < t - 4, and 2-1 < Cfm(Bp(z) n
B2-k-2(z,1) n G) if p > 2-1, k > t - 4 and z,' E B,(z), so (16) and (5) imply

(17)
00 00

pe(B,,(z)\To)=>2--k F 1<CE E 7f-(Bo(z)nB2-k-2(zjk)nG)
k=2 z,* EBp(z) k=2

00

< C> 1 r(Bp(z) n (T2-k+1 \ T2-k-2) n G) + C7i"`(Bp(z) n G)
k=3

< Cfm(B,(z) n G).
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Evidently (17) and the fact that To C G then give

(18)
po(Bp(z))<Cf'"(BP(z)nG)<Cpy", zESnT2-,, p.2 2-, P>2.

On the other hand, using (16) again, since fm(B2-k+a(_) n G n B,,(z)) < C2-'"k
we similarly obtain for z E T2-, n S and p> 2-1

7{m(B2-1+2(zk) n BP(z) nG) < Cplo(BP(z) \To).

k=2 - E BP(=1

(where the sums on the left are taken to be zero when there are no zj* in BP(z)).
Then since poLTo =?l' LTo, we obtain by summation that

cx

L n BP(z) nG) +7{'"(13P(z) 0T0) Ca!2o(BP(z))
k=2 - EB,,(=)

Now by virtue of (13) we have T11 16 n G \ To C Uk2 Up"`1 82-k+2 (-'), and hence this
last inequality gives, for any z E S n 7 -i, (> 4, and p E (2-e, a].

(19) C-'r <flm(BP(z)nT1/16nG)

< Cpo(BP(z)),

where we used (12) to justify the first inequality. (Using (12) and the definition of
T1116 it can he checked that BP(z) n T111 6 contains a ball of radius A- centered on
G.)

Now we construct the measure p. For each k > 2 and j = 1.... , Qk we select
a maximal pairwise disjoint collection of balls i = 1,...,Rk,
subject to the restriction that wkJ E T114 n S n B2-k-,(zx) (so B2-k-.,(wI") n
S C S n B2-k-2(zl) C S n T2-k+, \ T.2-k-2 for k> 3 by Remark (iv)(2)(c)).
By the approximation property (i) (with e < z), and by the no b-gaps hy-
pothesis in the definition of T2-,. we know that, if b = b(m, n) is sufficiently
small, D S n B2-. and for each a E (61/2,1] and each
w E S n B2-k-:,(z,) we have

(20)

C-1 ()m < # (f : wk E B2 ko(w)} < C

where # A denotes the number of points in the set A. Notice also that by (5) we
have

k Q, N,,

(21) S nT2-k \ T2-4-, C U U U Bh./-2-,-,(w;°). k>2.
(=mwx{k-1.2}1=1 i=1
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Then we define
Qk Rk.j

P = E2 mAbm/2 E Y, rwkJ] + 1-It LTo,
k>2>2=1 i=1

and in place of (16) we have

cc

(16') 1: 1: 2-mkam/2 =,i(BB(z) \To),
k=2 tuk.)CB,.(,)

for any z E T2-t, e > 2, and any p E (0, 4]. Then by virtue of (20) and (12), we can
use a minor modification of the argument leading from (16) to (18), (19) in order to
deduce that

C-lpm < Iz(B,(z)) < Cpm, Z E T2-e, t > 4, p E [61122_e, 1s]

By (1) we have in particular that µ(S) > C-1. Then, appropriately relabeling the
wka and using (21), we see that u satisfies all the conditions stated in the lemma,
except that in place of the condition µ(S) = 1 we have

C-1 < µ(S) < C, C = C(n1, n),

and hence the required measure is obtained by taking a suitable multiple of it.

4.4 Energy Estimates

Here we continue to assume that u E W1.2(S); N) is an energy minimizing map,
S1 C 1R" open, and throughout this section we assume that B,(0) C Q.

Here we are often going to use the variables (r, y) = (Ixi, y) corresponding to a given
point (x, y) E 1R3 x lR"-3, and it will be convenient to introduce the additional
notation

B, = {(r, y) : r > 0, r2 + IY12 < P2}, BP (yo) _ {(r, y) : r > 0, Iy - yo12 < P2}

for given yo E 1R"-3 and p > 0.

By a "homogeneous cylindrical map" p (abbreviated HCM) we mean a homogeneous
degree zero energy minimizing map cp E W, (1R"; N) such that (p(x, y) = cpo(x),
with = ep o q for some orthogonal transformation q of 1R" and (po E WW? (1R3; N).
Of course every such po is homogeneous of degree zero on 1R3 and, since dim sing p <
n - 3 (by Corollary 1 of Section 3.4), we have automatically that PoIS2 is a smooth
harmonic map of S2 into N. Also, by our previous discussion (see Section 3.10)
we then know that F_j_l Djip) _- (AER.c'p)T = 0, and hence, since
AIR-,7(x, y) = r-2OS2cpo(w) with w = IxI-1x, we have

(1)
(OS2Vo)T = 0 on S2.
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where, at each w E S2, (. )T means orthogonal projection into ,,(,)N.

Notice that we do not assume that W is necessarily a tangent map of u (although
the reader should keep in mind that such HCM's exist at each point of sing. u as
described in Section 3.5).

The main inequality of this section is given in the following theorem:

Theorem 1 If N is real-analytic, C E (0, 1), and 3 > 0 then there are C =
C(,3, N, n) > 0, r) = 1}(0, N, n, t;) > 0 and a = a(/3, N, n) E (0, 1) such that the
following holds. If 3, p2-R fB,(o) IDuJ2 - e (0) < 71, and p_" fB,(o) r2(u* +

u2) < r12, then there is an HCM ,p(x, y) w(x, 0) with p n fB,(o) Iu - W12 < (,

e..(0) - ( <_ e,v(0) S e.,(0) + (, and

'B:J 115'
r2(IDuI2 - ID.pI2)dwl r2drdy < C / r2(t4 + u22) +

Bo(o)

+ C
o(o)\{(=.u) : =I<P/2}

If N is merely smooth rather than real-analytic, then the same is true with a = 1
provided that the integrability condition (xiii) of Section 3.14 holds.

In proving Theorem 1 we shall need three lemmas, each of which is of some indepen-
dent interest. The first of these gives some important general facts about HCM's:
we use the notation

C,3 = {cPo E C3(S2; N) :p(x, y) _ po(Ixh-lx) is an HCM and £s2(Vo) !5,31

Then we have the following:

Lemma 1 Suppose N is real-analytic. For each Q > 0, C, is compact in C3(S2; N),
and there is (I N, n) E (0, 1) such that if V1, W2 E Co and IIVi - ep21I L2 < (
then e ( 1 ) = Furthermore there are constants S2 = (2(1,N,n) > 0 and
a = a(/3, N, n) E (0, 1) such that

I£V (V,) - £s2(V)I2-° < C f I(,)T12
, C = C(3, N, n),

s2

whenever .p E C,3 and E C3(S2; N) with IiP - VIc, < (2. If N is merely smooth
rather than real-analytic, then the same continues to hold, with best exponent a = 1,
in case all the V E Cp satisfy the integrability condition (xiii) of Section 8.14.

Remark: Thus we have uniform Lojasiewicz inequality for a whole C3 neighbour-
hood of C5, and also, by the first part of the above lemma, £s, (p) is constant on
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the connected components of the set Cp and there are only finitely many values of
£s2(V) corresponding to (p E Cp.

Proof of Lemma 1: The compactness of C0 is a direct consequence of the estimates
of Section 3.6 and the compactness theorem of Section 3.6. Next suppose there is
no such (1. Then there must be sequences cpl, ep`j in CO converging in C3(S2 ; N) to
a common limit W but with

(1) £s°(cpj) £s2('Gj) Vj.

But then according to the Lojasiewicz inequality of Section 3.14 we have a = a(w) E
(0,1) and c = o(V) > 0 such that

(2)

I£s.(VG) <
CII(A*)TI12 0 E C3(S2; N), I+& - (pIcz < o,,

where C = C(n, N, W). But then for all sufficiently large j we can apply this with ' =
epj, cp', in order to deduce that £s2 (W), thus contradicting (1).

Now if the inequality of the lemma fails, then there are sequences (o E CO and
1/,j E C3(S2; N) both converging to a given V E C0 but such that

(3) I£sn ('j) - £s9 (TGj) I'-°,/2 < CII (I +'j )T II L2,

where aj 10 as j oo. But then £52(cpj) = for all sufficiently large j by
the first part of the proof above, and (3) contradicts (2).

Lemma 2 If Bo(0) C ft, if 13 > 0 and if supB.,e,a(O)\((.,y):I4<o/16) Ej.Oa'ID'uI <
/0, then

sup I I(Os2u(r, y))T I2 dw < CO.-" J r2(ur + uy)
8/,\{(r,y):r<o/8} S2 Be\{(x,V):Ir)<o/16)

and

sup rVr,y J IDs'u(r, y)I2 dwl < Co.-"
J8 \((r,y):r<o/8} S B \((z.y):jsj<o/16)

r2(u,2. + uy) .

Here Vr.y means the gradient with respect to the variables (r, y) E B.+, C = C(,3,
N, n), and u(r, y) denotes the function on S2 defined by u(r, y) (w) = u(rw, y).

Proof: As discussed in Section 3.10, the Euler-Lagrange system for u says exactly
that (OIRnu)T = 0 (meaning that r Offtru = 0 for any r E Since

(r2fr') ur(Iu)(r,
y) = r20s°u(r, y) +

+
3 (2y)

j=1
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we thus have

(1) r-2(AS'2u)T = -(Ar,yU)T,

where O,.,vu = r-2 r (r22 ) + En- 8y

Next we note that by differentiating the equation AIRnu + En
j=l Dju) = 0,

we obtain for v = 8u./8y' a linear equation of the form

,Cuv = 0 on B7o/s(0) \ {(x, y) : Ixl < is}.

Here (Cf. Section 3.14) Cu is the linear elliptic operator defined by

dM(fl(u + sw))I,=o,

where M(u) = (Oo;-u)' - Ooz-u + FJ=1 Au(D,u, D,u) and where II denotes the
nearest point projection into N as in Appendix 2.12.3. Notice that, if w(x,y) E
TT(x,y)N on B7o/8(0) \ {(x, y) : IxI < 16} then the operator Cuw has the form

on B7o/8(0) \ {(x, y) : lxi < i6}, with jai, Ibl < C(n, N, 3) Then the standard
Schauder theory for such linear operators (see Section 1.7) gives

(2)

1

sup E lo'D'uyl2 < co'" J y.

Brn/u\{(x,y):IzI<o19) i=o B./e\{(x,y):I=I<o/10}

Similarly the quantity v = (i.e. v = RUR, where R = Vrr2 ++ Iy12) satisfies
the same equation Cuv = 0, and hence w = rur satisfies the equation

n-3 n-3 n-3

,C,.(rur) = -Ey'4(uy,)-2(Dyu+EAu(uy,,uy,)) = -2(Ayu+EAu(uy,,uy,))

Thus, again by Schauder theory (this time for the solutions of the inhomogeneous
equation f, with f = -2 (Dyu+E Au(uyt, uy,)), and using (2) to estimate
sup If I, we deduce that ur satisfies

(3)

slip E lo'D3(rur)I2 < C0-" J r2(uz + uY).
Ban/4\{(z,y):1zI<a/8} )=0 B3,,4\{(x,y):Ix <o/16}

Now (1), (2), (3) evidently imply the first inequality of the lemma.

Next note that by directly differentiating and integrating by parts, we have

(4) ay' Js I V
u(r, y)12 dw = 2 L V u(r, y) .

s. y)

= -2 I. Os,u(r, y)
8u y)
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and

(5) --
J IV u(r,y)I2dw = 2 f Dsu(r,y)

DgSu y)
1152

_ -2f Os2u(r, y)
(r, y)

8r 'sn

where u(r, y) is the function on S2 defined by u(r, y)(w) = u(rw, y).

So since Su/Sy' and Ou/or are in we have from (1), (4) and (5) that

(6)

and

f5'
I Vs'u(r, y)I2 dw = -2r2f Ar,yu(r, y) .

auk ;y)

(7) fz I DS'u(r, y) 12 dw = -2r2 Jg2 Ir.yu(r, y) 8u((rr,, y)

The proof is now completed by using (2), (3) to estimate the right side. 0

Next we have a lemma which gives important information about approximation of
u by RCM's.

Lemma 3 If 3 > 0, p2_" f ep(o) I Du12 <,3, then for each C > 0 there are constants
q = i(3, (, N, n) > 0, a = a(N, n, (3) E (0,1) such that p-" JB,,14(0)\(I=I<v12) r2(u2 +
u2) < n and p2-" ,79(o) IDuI2 - eu(0) < il imply that there is an HCM cp with
IP(x, y) = cp(x, 0), Au(0) - C < 6,p(0) < 6u(0) + (, and

11

P_"f
B15 116(0)

3

sup E p' I D'u - D',PI c9 S C.
B7,ie(O)\((x,y):Ix15p/16} J=O

If in addition N is real analytic, then there is Co = (o(n, N, i3) < min{Ci, (2}, C1, (2
as in Lemma 1, such that if C < Co, then the p from the first part above satisfies

sup
B o1+\((r.y):r<p/4} L V12 p I2)dwI <

< C (P-n J r2(u+ u)

Here, as in Lemma 2, u(r, y) denotes the function on S2 defined by u(r, y)(w) =
u(rw, y). If in place of the real-analyticity assumption on N we assume the inte-
grability condition (xiii) of Section 3.14, then these additional conclusions hold with
best exponent a = 1.
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Proof: First notice that by using the interpolation p'ID'(u - W)Ico < ep'ID4(u -
V)Ico + Ce 4-np-"/21Iu - CPIIL' (with e = (') together with the regularity theorem
of Section 2.3 and the estimates of Section 3.6, an inequality of the form

3

(1) sup E plI D'u - 5 CC", -f=-y(n)>O,
BT,/s(o)\((x.y) Ix1<p/16) J'_o

is implied by the inequalities p-" fB,s,/,6(o) Iu - p12 < C and 0,p(0) < C <

p2-" f Bo(o) I Du12 + C < 13 + C, provided ( = ((n, N, 0) is small enough. Hence (1)
will be established if we only check the other inequalities

ev(0) - C:5 89(0) 5 eu(0) + C

(2) -n

JB,av/,6(0)

By resealing it is enough to check (2) in case p = 1. Then if there is no such q, there
must exist a sequence u0) E W1,2(B1(0); N) of energy minimizers with

(3) EB,(o)(UU)) - 0

and

(4)
Bsie(o)\((x,y)'Ix1<{)((u(i))2 + (uy ))2) - 0

yet such that, for every HCM (p with (p(x, y) _ p(x, 0), at least one of the inequalities
in (2) fails with p = 1 and u = 0). Notice that (3) together with monotonicity
implies

(5)

E).(,)(0) <p2-" IDuO)I2 < IDO)I2 VpE (0,1),
fa,(0) fBi (0)

where e, j 0. By (4), (5) and the compactness theorem for energy minimizers
(see Section 2.9) we know that there is a subsequence (still denoted u0)) such that
u0) , (p locally in W1.2(Bt; RP), where (p, __ 0 and cpy = 0 on B5/8(0) \ {(x,y) :

Ixl <
z}

and p2-" fB,(o)1DAp12 = for every p E (0,1). But then in
particular E,,(0) = p2-" f Bo(w) l D)p12 V p E (0, 1), so by monotonicity for cp we have

that (p extends to a homogeneous degree zero map in W11,2 (1R"; N). Then since
0 and ap, =- 0 on B5/8(0) \ {(x,y) : Ixl < a} we have that W is an HCM with

,p(x, y) __ p(x, 0). In view of (5) we see that in fact (2) now holds with u = u0)
(j sufficiently large) and p = 1, a contradiction. Thus the required inequalities (2)
(and hence also (1)) must hold for some HCM cp with 'p(x,y) _-'p(x,0), provided 71
is sufficiently small.

We now need to establish the final inequality of the lemma. By virtue of Lemma 1
we have that there is a = a(N,n, 3) E (0,1) and C = C(N,n,,3) > 0 such that (1)
implies

I-Is. (u(r, y)) - 8s,(W)I'-° < CII(Osu(r, y)) 11'V(s2)
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for each (r, y) E B,18(0) with r > s, where C = C(n, N. Q). Then the required
inequality holds by virtue of Lemma 2; notice that the hypothesis

sup E p' I DDuI < p
B7,/$(o)\{(x+11):I=I<p/is} j=0

required in Lemma 2 is satisfied (with CO in place of /3) by virtue of Section 3.6 and
the inequality (1) above.

We shall need the following corollary of the above lemma later. (It is not needed
for the present section.)

Corollary 1 For any given C, /3 > 0 them is 7l = rlo(C, /3, n, N) > 0 such that the
following holds. Suppose o is any HCM with 1p(x, y) - cp(x, 0) and Op(o) < /3,
suppose u E W1.2(B,(0); N) is energy minimizing with p2-" fB(o) IDuI2 < /3, and
suppose p "fBe(o)1{(x,y):Ixl<p/4} Iu - WI2 < i and p2-" fBp(o) IDuI2 - eu(0) < rjb.
Then p -n f a

p12(o)
Iu - 912 < C and

singu n Bp/2(0) C the (Cp)-neighbourhood of {0} x lR"-3.

Proof: By the argument in the first part of the proof of Lemma 3, for any given
Co>0wehave that

3

E pf I D'u - D'VI < Co on Bs,,/8(0) \ {(x, y) : IxI < 2},
f=0

provided that rlo = i(/3, N, n, (0) is small enough. But then since /pr = Wvs - 0 we
have in particular that

r(Iurl + In,I) 5 Co on Bsp/s(0) \ {(x, y) : IxI < 2},

so (by choosing Co small enough) we can verify the hypotheses of Lemma 3 for any
given C > 0, provided i7o = go(J3, C, n, N) is sufficiently small. Then by Lemma 3
we have p'" f B.,14(0) Iu - jI2 < C for suitable HCM ip(x, y) - ip(x, 0) and hence
P' fB3p,4(o)\((x,y):Ix)<p/4} I+p-qZ < C( by the triangle inequality. Then, again using
the triangle inequality, and also the fact that both gyp, S i are homogeneous of degree
zero, we conclude that p-" fBay/4(0) Iu - +p]2 < CC. By (iii) of Section 3.7 we now

have the remaining conclusion with CCl/" in place of C. Hence after a change of
notation we have the required conclusions as stated.

Proof of Theorem 1: Let C E (0, (;0] be given, where Co = Co(n, N. 0) is as in
Lemma 3, and let r) = >?(N, n, C, /3) E (0,10'2x] be as in Lemma 3. Then Lemma 3
implies that there is an HCM W with

3

(1) sup E p'ID'u(r, y) - D'1pI c" <- C,
B7y/e(0)\((x,y):I=I<p/18} t=o
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and

(2) sup I f (IVS2u(r,y)I' - IV pl2)dw <
B3v/,\{(r,y):r<p/4} S'2

<C p " f r2(uT+uy)(p--
JBP(0)\{(t,Y):ISI<P/8}

Notice that by (1) and the estimates of Section 3.6 we then have
3

(3) sup Ep'ID'uI <Co.
B3P11(0)\{(z,Y):IxI<p/ls} i=o

For each y E 1R"-3 with IyI < 2 we let

(4) ay =sup({0} U {a E (0, 2] -" fB,(o,y)\{(z,y):Izl<c/8} r2(ur + uy) > 7J}).

Notice that, since p` fBP(o) r2(ur + uy) < r72 < 10-2n'77, we have automatically

(5) supay < 10-2p.

By the "five times" covering lemma (see e.g. [FH69] or [Si83a]) we can find a count-
able pairwise-disjoint collection {B4,y,(0,y3)} such that

(6) U B4c (0, y) C U B20c,,, (0, yi)-

Notice in particular that (by definition of ay) we have

(7) a-nf r2(U! + uy) < 17
ao (o,y)\{(z,v) :

Iz1<c/8}

for each a E (ay, 2j, and so by exactly the same reasoning (involving the first part of
Lemma 3 and Section 3.6) that we used to conclude (1), (3) above, and keeping in
mind that a2-n fB,(o,y) IDul2 < 2"/3 by the monotonicity of Section 2.4, we deduce

(taking a smaller 71 = i(n, /3, N, () if necessary) that supB,e,e\{(z,y): I=I_o/16} E; =o a'
ID'ul < CO. Hence by Lemma 2 we have, for each yo E 1R"-3 with Iyol < 2, and for
all aE(am,21,

(8) sup Vr,v f lVS2u(r,y)I2 <
BU/4(yo)\{(r,y):r<o/8} S2

Ca-n f r2(ur + uy).
B,(O,v,)\{(z,v): lzl<c/16}

We now want to define a Whitney-type cover for BP/2(0), as follows. For j > 2 let
Bp/2,+2(0, z,k), k = 1,... , Qi, be a maximal pairwise disjoint collection of balls of
radius p/2i+2 and centers (0, zi,k) E BP/2(0) f1({0} x 1R."-3). Then for j > 2

Q,

(9) U Bp/y (0, zi,k) D BP/2(0) f1 {(x, y) : IxI < p/2'+1 },
k=1
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and, for any point (x, y) E B,/2(0),

(10) card{k : (x, y) E B,/2,-5(0, z.,,k)} < C, C = C(n).

Next let 521 1 = B+/2(0) \ {(r, y) : r < e), 521,1 = Bo (0) \ {(r, y) : r < 16}, and
Ql=1, and define forj>2andk=1,...,QI

(11) Qi.k = B/2,(zi.k) \ {(r,y) : r < p/2'+2},

and

(12) k.k = (z ,k) \ {(r, y) : r < p/2'+3}.

Notice that all points (r, y) E kk satisfy p/2j+3 < r < p/2j-1, and in particular

f2j.knfii.[=0, Ii - jI ->4,

so it follows from (10) that

(13) V (r, y) E BP (0), card{(j, k) : (r, y) E Q',,k} < C, C = C(n).

Also, by (9)

(14)

B/2 C BP/2 fl (,1J{(rY) : p/2'2 r < p/2j1} U {(r,y) : r > }
_2

00 Q,

CUU52
j=1 k=1

Now, by (5), 521,1 intersects no B,, (y), while for each (j, k) such that SQj,k does not
intersect B,,,,.,, (zz,k) we must have p/2' > as,,k. Thus, in any case, if 52;,k does not
intersect B,,,,4 (zj.k) we can apply (8) with a = p/2j-1, yo = z,,k (yo = 0 in case
j = k = 1), to deduce

(15)

1,.k
Vr,y J I Vu(r, y)12 dWr2drdy < C J J r2(U+ uy) dw r2drdy.

2 n,.k
r

On the other hand if 52,,,k does intersect B;,.,, (z,,k) then j > 2 (by (5)) and az, k >

2'-2p, hence S2.,,k C B4,,k(zj,k) C U;B+.(y;). Hence by summing in (15) and
using (13), (14), we conclude that

(16)

J y J VS'u(r, y)12 dwr2drdy C J r2(uo,2(0)\(L,B16.,(y,))

32 Bv(0)
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Notice also that using the monotonicity of energy in Section 2.4 and the definition (4)
of vy, we have that for each j

a'" f r2IDuI2 < C < C7]-to f r2(n,2, + uy).
4oup, Ay)) Boys (o,vt)\{lx,y):Ixl<oJ/8}

Hence by summing on j, and using the disjointness of the B,,, (0, yj), we deduce
that

r r
(17) E(Qy"J + r2I Du[2) < C J r2(u2 + uy).

1, (0..v,,) B,(O)

Now we want to use the collection {B4oo11J (0, ,yj)} to construct a cut-off function. For

each j, let (j : (0, 00) x 1Rn-3 [0,1] be a Cx function with (j (r, y) - 1 outside
Bqa,`, (y,), (j (r, y) - 0 in B2,,, (yj) and with

(18) $uplo(jl <
B; ay,

Now evidently, since the { B4,, (yj) } are pairwise disjoint, at most a finite suhcollec-
tion of the B4o,,J (0, yj) can intersect a given compact subset of IR" \ ({0} x)fln 3),
so we can define a smooth function (0, oo) x 1R."-3 -* [0, 1J by

i(..
3

By construction (e 0 on Ujl3 ,,, (yj) D UI5I<_;.,,>oB4o,(y). In particular if 0 <
ro < 2, lyl < 2, then ((ro, yo) > 0 ro > aye and hence

(10)
ro n f

r2(u, + uy)
Bro(O.yo)\{(x.y):Irk<oo/8}

which (since 3 8 = 6) guarantees by Lemma 3 and the estimates of Section 3.6
that u is smooth on each of the subsets B7,-./6(0, YO) \ {(x, y) : I xl < r a}, and
hence in particular the function (fs, I052u(r, y) 12 dw - f IVs'cpl2 dw) is smooth in
a neighbourhood of (ro, yo). Thus

f(r,y) _ ((r, y) f 2(IV""u(r.y)IZ -1VS2W12)dw
s

is a smooth function of (r, y) E Bp (0).

Next we note that since f is smooth on {(r, y) : r E (0, ZJ, lyl < 2}, we can integrate
by parts with respect to the r-variable giving

(20)

If Ire drdy <
BPJ,lo)

<
I

I f lr2 drdy <
vl<p/2. r<p/2

<Cf Iflr2drdy+3f I.flr3drdy.
Ivl<p/2,p/4<r<p/2 Ivi<p/2,r<p/2 ar
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We emphasize that this is valid even if f is not bounded near r = 0, because we can
first prove (by integration by parts) an inequality as in (20) with rE = max{r-e, O}
in place of r, and then let e 10. Since 1 on B+/2\(JQ_1B o,Ej (y,) and since DkC =

n #, C j, we then obtain, in view of (16), (18), (5) and since r2 + 1y12 <
forr,lYl<2,

J J (IVu(r,y)I2 - IVSl2dw)r2drdy
3(0) 3

<CJ I( IVS3u(r,Y)IZ-IDwwI2)dwf r2drdy+
2

+CJ r2(ur+uy)+CE(oj +
in..,

r2IDuI2).

Bp (0) f MY,)

In view of (2) and (17) this proves the theorem.

4.5 L2 estimates

Here we are going to use the energy estimates of the previous section together
with the monotonicity identity of Section 2.4 (and some variants of it) to obtain L2
estimates for u. These will be needed in the next section in proving decay properties
of the deviation function introduced there.

u continues to denote a W1.2(fI; N) energy minimizer, and we assume B2(0) C 11
and that

0) 0 E sing u, eo, IDuI2 5 Q,J ,(o)

where Q is a given constant and Bo E o is an HCM with 0 < ep(0) < +a}.
Notice that by monotonicity (see Section 2.4) this implies

IDuI2 < C/3, dp E (0,1], IzI < 1.
B,(Z)

With 9o as in (i)

(iii) S+ = {z E T31(0) : 00}.

Let C E (0, 2] be for the moment arbitrary (we eventually choose 6 < 6a(n, N, 8) and
e < eo(n, N, 0, 6)). S+ will be assumed to satisfy a weak e-approximation property
like that in Lemma 2 of Section 3.4 with m = n - 3; thus for each p E (0, 1] and
each z E S+ we assume that

(iv) S+ fl BP(z) C the (ep)-neighbourhood of L,,,,
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where L.,P is an (n - 3)-dimensional affine space containing z. We henceforth fix
these affine spaces L:,P. We also here assume that

(v)

J
It: uR`2

sup <_ , sup pZ-" f I DuI2 < Bo + e, sup Bo + e.
(0) Ri :ES+,P<3 Bo(:) zES+

where 00 is as in (i).

Remark: We show in Section 4.7 below that for every given e > 0 and w(I E sing u
with e"(uq,) = 9o E {E3 (0) E (0. i31 : p is an HCM} there is a > 0 (depending on
u, wo. E) such that all of the above conditions are satisfied, by Lemma 2 of Section 3.4
and the monotonicity of Section 2.4, with the resealed function u,,,,,,,, - u o 11,,,1,e1
in place of u for any w1 E B (wo) n {z : > 8 (w(j)) and a, < a. These facts
are of crucial importance in the eventual applicability of the results of the present
section.

%Ve also here suppose that =( E S. p E (0. a], ry E (0.2], and that there exist points
mil- =r,-3 in S+ n B,,(z(,) such that

{z, - are linearly independent
"-3(vi)

andF((z,-zo).a)2>jp2IaI2VaE L.
/=1

where L is the (11 - 3)-dimensional linear space spanned by V, - zll- ... - -n_3 - z0.
Notice that this says that the z, - z(I are in "uniformly general position'". up to the
factor 'y, in BP(;.o) n L.

The main result of this section is the following:

Theorem 1 Suppose N is real-analytic. There is co = eo(u. N. ii) > 0 such that
if (i). (iv). (v). (vi) hold with e = co, then for all z E S+

2 -3f IRzUR:1<C,p-2s(`)2-"
IRz,RR ,J ,I2+C } XR: ,W(Z)n-2

n-3 12 IR

\J B,.(=o) \ (i.e) : di"t(lr.y l.ao+L l<P/R

when a = a(n. N,13) E (0.1), C = C(n. N. ii. -y). and s(z) = p + Iz - :,II.

A e shall need the following three lemmas in the proof:

Lemma 1 Suppose L, zo.... , are as in (v) (although here we do not need to
assurne that zz E S+). Let U be open, u n B2,,(zo) # 0. Then for any v E 10.2(0)
we have

n-3

C-1(ric'Tl. +p2IDLvI2) <C(r,v +p2IDLVI2) in B2p(zo)nU.
J=O
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when C = C(n, y), rL(w) - dist(w, zo + L), rLVrL. ° (w - w') Dv, with w' the
nearest point projection of to onto zo + L, and where DL means gradient parallel to
L.

If a E (0, P) and (o, ... , (n-3
B,((o) and with

then

are any other points in B0(zo) with (i, ... (n-3 E

n-3

1:(((,, - (o) - a)2 > rya2lal2, a E L,
jai

n-3 n-3

C`'(rLvri, + a2IDLVI2) - C> dist2(( xo + L)I DvI2 < E IRt,VR<, 12 <
i=0 ,=o

n-3
< C(rLv + a2IDLVI2) + C dist2((3, zo + L)IDvf 2 on B,((o) fl U

.ice

for suitable C = C(n, -y). In particular

n-3
l2

n-3

IR.,vR,, I2 < C () (IlkVR(, I2 + dist2(Ci, zo + L)IDvI2) on B,((o) fl U.
i=o i=o

Remark: Notice that the inequality Ef=i ((z, - zo) a)2 > ryP2IaI2, a E L, means
that zo,... , zn-3 must be in "uniformly general position" in za + L up to the factor
y; likewise the condition E,"--, 3(((j - (o) a)2 > ryo2IaI2,a E L, requires that the
nearest point projections (,, ... , C-3 should be in such uniformly general position
in B,, (q).

Proof of Lemma 1: By definition

(1)

so in particular
RZ,VR,, - RmvR,,, = (zo - zj) DLV,

and by the hypothesis we then have that on U

n-3

(2) yP2I DLVI2 < >(RZ,VR,, - RXOVR,o)2.
j=o

On the other hand using (1) with j = 0 we also have on U fl B2p(zo) that

(3) rLvrL 5 2(R.VR,o)2 +CP2IDLVI2.
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Combining (2) and (3) we then have, with C = C(7, n).

rLV:L +p2IDLVI2 <CEIRZ,vR,,I2

as claimed. Notice that the reverse inequality C-1 Eg=o IRE,VR,,I2 < (rLv?L)2 +
p2I DLVI2 follows directly from (1) on B2,,(zo) fl U.

Next notice (Cf. (1) above) that at any point w E B4((o)

(4) R<,vRS, = (w - (;) Dv

Dv

Taking differences in (4) we see that

(S,-(o).DLv=-RCvR<,+RtovR Dv - (Co-So) Dv.

Since I C; - Ci I = dist((,, zo + L), by using the given hypothesis on the C7 we then see
that on U

n-3 n-3
(5) OF 2IDLVI2 <C>(Rt,VRc)2+CEdist2(<I,zo+L)IDv12,

i=o i=0

Going back to (4) again we then also conclude that on U fl B.((o)

n-3 n-3
rLvrL <_ C E(Rt,vR') }2 + C dist2(Cj, zo + L)IDvI2,

S-o .o
which proves the required upper inequality for riv L + a2I DLVI2. The reverse in-
equality follows directly from (4) and the triangle inequality.

The final inequality of the lemma is simply a matter of combining two of the previous
inequalities, so this completes the proof of the lemma. 0

In the proof of Theorem I we shall want to apply the main energy estimate estab-
lished in Theorem I of Section 4.4, and this requires that we check the hypothesis
that u is L2-sufficiently close to some HCM p with S(cp) = {0} x IR"-3 in the
appropriate ball. For this we need the following lemma.

Lemma 2 For any given ( > 0 there is co = eo(N, n,,3, () > 0 such that if (i). (iv).
(v), (vi) hold with e < eo, then

p n
J (rL2' + p2I DLuI2) < CE.
Bo(zo)
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where the notation is as in Lemma 1, and

Pn 2

(zo)
In - Vzol 5 S !,

Bsr/3(zo)\{(x.v rtSP/18} _a
D cPw ICa

By/2

for some HCM V with S(cp) = L, 0o - ( < e,(0) < Bo + ( (610(0) = eo if N is real
analytic). Here V, (x, y) _- V((x, y) - zo). Furthermore there is Eo = £o (N, n, ,Q) > 0
such that if (i), (iv), (v), (in) hold with e < Eo then for all z E S+

dist2(z,zo+L) <

CP2_n J rLU2L + (P + Iz - zoI)2IDLu12 + IRzuR.I2)
{(z,V)EB3p/4(zo) rL?p/4}

< CEp2-n(p+ Iz - zoI)n.

Remark: It is not assumed that Iz - zol is small here; zo, z are unrelated points in
S+.

Proof of Lemma 2: Evidently we can assume without loss of generality that L
in (vi) is {0} x IRn-3. To prove the first inequality, notice that by Lemma 1 above
we have

n-3
2 2 2 < 2

P2uv - C IRz,uR., l ,

j=o

where ro = Ix - t;rol, (x - t,) u=, zo = (tro, pro). Integrating this inequality
over the ball Bo(zo) and noting that (v) implies

n-3

(1) P nJ 12<CE,
Bo(zo) j=o

we then have the first inequality as claimed.

In view of the first inequality, the first part of Lemma 3 of Section 4.4 guarantees
that the second and third inequalities of the lemma hold for some HCM V with
p(x, y) _- <p(x, 0) and

(2) 00 - 61(0) < 00 +

and
3

(3) sup E p'jDlu - D3cpz0Ics : C.
Ben/3(zo)\((=,v):Ix-f.015p/16) j =6

In case N is real-analytic, we agree that (is chosen smaller than the minimum
distance between distinct elements of {e,0(0) : V is an HCM with 6,0(0) < Q}.
Then (2) gives e,,(0) = 0o in case N is real-analytic. We next claim that (for
small enough in (3))

(4) IS12 < CP2-n J (S . us)2,
Iv-n.o I<p/2, p/4<ro<p/2
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where C = C(n, N, 3) is fixed (independent of , u), provided £o = ea(n, N, j3) > 0 is
small enough. Indeed otherwise by (2) and (3), after resealing and translating so that
p = 1 and zo = (l, we would have a sequence uk E lVI.2(BI(0); N), with 0 E sing Uk.
9k HCXI's with S(pk) = {0} x IR"-3, and points lk E S2 such that fB,10) IDukl2 < .j,

fB,(o) I D kI2 < C13, sup'.."'. )1llr,v):I:I<)/lol E,=oNI D3uk-D''vk(c.- 0 ask oo.
and

(5) (k -- E S2, J
Notice we also have

lim f ea4(0) > 0
k-w

by virtue of Corollary 2 of Section 2.10. Using the compactness theorem we can
assume that A - p locally in IR", Uk --+ ,p in 132/3(0) \ { (z, y) : I=I < is }
and that t; p_ - 0. But this implies that p((x,y) + A(t;.0)) - V(x.y) for every
.\ E IR, so sing W contains the ray in the direction of (t;, 0), contradicting the fact
that singyp = {0} x IRn-3. (Notice that ;p is not constant because 9 (0) > 0 by
upper-semicontinuity as in Section 2.11.) Thus (4) is established.

On the other hand we have, using the notation zp = z = q.),

R.uR. - rouo -

and hence

A m - &) usl2 < 3(R:UR. )2 + 3(rou,Y,)2 + 3((y - ?h) uy)2.

By integrating this identity and using (4) with C = ,, - C. we have

f ol2 < Cp2-" f (r2 2,ro + (p+ (a - wI)2u2 + IR_uR.I2)
Iv-%j<p/2. p/4<ro<p/2

< CEP2-"(P + Iz - zoi"

by (v) and Lemma 1, as claimed. 0

The third lemma is as follows:

Lemma 3 For any 11CM V with S(p) = {0} x W-3 and any Lipschitz y' on Bp
with. (r, y) - 0 for r2 + Iyi2 = />2, we have the identity

J (IDuI2 - IDpI2 + 21% 12)V, = -
B, J

r(ID I2 - IDvl2)vl, +

"-3

+21 rIur.12'#ir+2111 / r
A° 3° j=1
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Proof: We begin by recalling the identity (v) of Section 2.2, which is valid for any
Lipschitz C = (c1, ... , (n) : R, -. IRn with ( = 0 on BBP. Taking t; = 1/i(r, y)(x, 0)
(where r = IxI) in this identity, we thus obtain

n 3

f E>(6 jIDuI2 - 2Diu Dju)b jo _
Bp ,=1 j=1

n 3

- j >(bi,IDu]2 - 2Diu Dju)x'D.[4p(r, y)]
y i=1 j=1

Since Di[s/5(r, y)] = r-1xiib, if i < 3 and Di[r/i(r, y)] = D,,,-3?f if i = 4,... , n, we
thus have

JBp

r n-3

(IDuI2+2luz,I2)ip=- JBp
J r[u,121p,+2 f

Bp Bp B, j=1

Now on the other hand by cylindrical homogeneity of cp (which guarantees that
ID1pI2(x, y) = 0)) and the fact that the volume element of lRn is in the
chosen coordinates r2 dwdrdy, we have by integration by parts in the r-variable that

--f WIDcI2 =Bp
so by adding this to the previous inequality we conclude the identity claimed in the
statement of the lemma. 0

Proof of Theorem 1: By rotating if necessary, we may assume that the subspace L
of (vi) is {0} x 1R"-3. If zo = (1;0,170), then we have zj = (l o, rtj) for j = 1, ... , n - 3.
By the monotonicity identity (ii) of Section 2.4 we have, for any HCM 0 such that
e,(0) = Oo and S(ip) = {0} x IRn-3, and for any z c- S+ fl B,,(zo)

2 f IR=ue=I2
<

p3-n f (IDuI2 - IDv=I2),
Bp(=) Rz - n-2 Bp(=)

where w e used the f a c t that 6,,(0) = Oo and where =(x, y) - cp((x, y)-z)
cpo(x - t;=). Let rp : lR - [0, 11 satisfy 10(t) = 0 fort > p, k(t) - 1 fort < 1+0 p,
zp' < 0 everywhere, and IV(t)I < C(O)p-1. Multiplying each side of this inequality
by ?P(p) and integrating over [Op, p] we get. for any 0 E (0, 1) that

(1) 2f IR=un=12 < Cp2-" j
'(R=)(IDuI2 - IDm=I2).

Bep(=) R= p (=)

On the other hand the identity of Lemma 3 above implies

f V'(R=)(IDuI2 - IDcv=I2 + 2IuvI2) 5 f r2Rs 1Itp'(R=)I(IDul2 - IDV=I2) +
Bp(=) Bo(=)

n-3

+21 r2Rz1Ii,'(R=)Iur,+2 f
Cv(=) Bp(=) j=1 R.
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where C depends on 0. Replacing ) by ?,2 and using the Cauchy-Schwarz inequality
we have

(2)

f '2(R)(Du42 - ID=I2) <_ 4f - IDI2) +
p(z) Bp(z)

+ 4f+ (+G'(R.))2)r2
p(z)

and hence by combining (1) and (2) we have

(3)
fB.,(z)

IRzuR.I2 < CP-n f r2ur, +R"
Bp(z)

+Cp"1+
p

If r2drdy,

where uz(x, y) _= u((x, y) + z). Now by (v), Lemma 1 and Lemma 2 (with 2p in
place of p) we have

(4)

It. - t:o 12 < C p2_"f (rou;o + (p +
12

- zo I )2U: + I RzuR.I2)
Bap(w)\{(s.y):Ix-f ISp/2}

< Cep2-"(P + Iz - Z01)".

(Notice that for the present we need this only for the case z E S+ fl BB(zo), but in
fact Lemma 2 shows that it is valid for all z E S+.) Since r=u2, = ((x - _) us)2 =

12e((x - t:a) U. + (( -gym) u=)2 < 2rou + Il;z - C, , we then have by (4), (v)
and the first part of Lemma 2 that

(5) f (r2 2. + P2U2,) <
B3e(z) f< Cf (rou,ti + p2u2 + p2uy + IRzua.IZ)
l Bzp(z) sp (zo}\{(r.v) Is-Eel<p}

< C f (roU2u + p2u2) + f (rouro + p2u + IRzUR.IZ)
Bsp/2 zo)

< Cep",
Bsp(w)\{(s.y): -Ev,l<v/2}

assuming z E S+ fl Bp/2(zo). In particular with c small enough we can apply the
main energy estimate Theorem 1 of Section 4.4 with 2p in place of p on the right
side of (3), thus obtaining (after selecting B = e)

(6)

fB,,.(z)
IRRn.I2 < Cp " f r=(u2. + U2) +

R. B2p(z)

(_"j 1 1/(2-a)

+ C ri(uz + uy))
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Using (5) again on the right of (6) and also replacing p by f we obtain for all
z E B3P/s(zo)

(7)
I R=uR, I2

<- +Cp-"

J (rouro + p2uv) +
Rz

B2v(zo)

+ C
(P-"

(rou^p + p2uy) + IRztR.l2B2n(zo)\{(z,Y):Iz-E,0I<P/4}

Notice that here we used the fact that
4

for z E S+fl BB(zo), by (4), and
we also used the inclusions B3p/2(z) C B2p(zo), Bp/4(z0) C B5p/s(z) for z E B3p/8(zo).

Now we want to consider Iz - zol > s . Notice

/

that then, with z = (itjz, rfz[L), we have

IRzuR,12 = ((x - C.) ' U. + (y C(r0uro + Iy - ?.IIU2 + IC. - Szol2luzl2).

By integrating this inequality over the ball Bp/4(zo) (keeping in mind that we have
the bound p-" fBo(zo) U2 < CO by (ii)), and using (4) (with i in place of p), we
obtain

JB IRzUR,I2<Cf IRzTLR,I2,
oo(zo) Bo(zo)

Bo(zo)\{(z,Y):I'-f)I<

_P/4}

where s(z) = p + Iz - zol. Notice that since Iz - zol > a this implies

IRzuR, I2 <
fBp14(zO) Rn

< Cs "(z)
J

(roux + s2(z)u2Y) + C S - , ( Z ) f
IRzuR, I2

Bo(zo) Bozo)\{(z.Y): Ix-E,oi_P/4}

+s2(Z)U2) +5 Cs-"(z) (r0U,2.oJ (zo)

"-2 1-(1/(2-Q)) 1/(2-Q)

+ C ( p
s(z)"-2) (s-"(z) IRzuR, 12 )

1f
Bo(zo)\{(z,Y):Iz-t.0ISP/4)

where we used the fact that fB,(zo) IR;uR.I2 < Cpn-2s2(z) by (ii). Using this in case
Iz - zol > s and using (7) in case Iz - zol < M, we thus have

(8)
IRzuR,

12

< Cs-"(z)
Jpl4(zo) R=

(Truro + 82(Z)U,2) +
B2o(zo)

2 1_ 2 2 +82(2)U2 IR,uR,I2 oT-l+C( ) (fB2o(za)\{(=.Y)=I= f,oi<P/4}( s"(z + R. ))

for every z E S+.

The proof is now completed by using the first conclusion of Lemma 1 (with L =
(O} x ]R"-3) in each of the integrals on the right side of this inequality and then
replacing p by 2.



4.6. The deviation function , 129

4.6 The deviation function 0

Here we use the gap measures of Section 4.3 in order to construct a certain deviation
function ip, where io(x, y) is the mean over z E S+ (S+ as in Section 4.5) of the
quantity I (x, y) - zI-"I((x, y) - z) Du(x, y) 12 (which appears on the left of the main
inequality in Theorem 1 of Section 4.5) with respect to a gap measure constructed
as in Section 4.3, with S+ in place of S.

We continue to assume the hypotheses (i) (hence (ii)) and (iii), (iv), (v) of Sec-
tion 4.5.

Let p E (0, 1], 6 E (0, is) (smaller than the bo(n) of Lemma 1 of Section 4.3), and
let SP +, T,,+, p+ corresponding to SP, T, p of Section 4.3 with S+ in place of S.
Notice that by definition of TP , we have dist(z, z1 - Lo.1) < Cbp for zl E TP n S+
and z E S+ n BP(z1). Henceforth we assume without loss of generality that Lo.1 =
(0) x 111`3 , as we did in the proof of Lemma 1 of Section 4.3, so this gives

(i)
z17J )ETPnS+, z7l:)EBv(z1)nS+, PE (0, 8].

Now define the deviation function zG by

dp+(z).(ii) '(x, y) = f IRn.I2
I(z.y)s+ s

Notice that for given (x, y) E Bl (0) \ sing u, the integrand in (ii) is an analytic
function of z E S+, so i,b is certainly well-defined on P, (0) \ sing u.

Notice 7'(x, y) __ 0 if u itself is an HCM with au(O) = 00, and in general fB. (0)
measures the deviation (in an L2-sense) of u away from such an HCM. Notice also
that by (v) of Section 4.5 we have

fB1(0)

V,(x, y) dxdy < Ce.

The main result concerning the deviation function is the following:

Theorem 1 Suppose N is real-analytic and ,3 > 0. There is 60 = bo(n, 0
such that the following holds. If (i)-(v) of Section 4.5 hold, if 6 < 60i and if e =
e(n, N, 3, 6) < 18 is small enough, then for any p E (0, 18] we have the estimate

fIP<C(f
1

TBV T; \Te; )
1/(2-a)

where a = a(n, N, Q) E (0, 1) and 0 = 0(n, N,,3) E (0, z].
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Proof. The proof is based on the L2 estimates of the previous section. As mentioned
above, we assume

(1)

Take p E (0, J. If Tp = 0 then we have nothing further to prove, so assume that
TP 36 o, and take an arbitrary point wo E Tp n S+. We have by definition of
T, +(c T 2+p) that there is a point wo E Bp(wo) n S.,. such that

(2) B2,(i ) n S+ C {w : dist(w, wo + {0} x lR°-3) < 26p}

and

(3) B(w)fl S+ 960 bw E (wo + {0} x R"-3) n B2p(wo).

Thus it follows that

(4) B,,(wo) n S+ C the (66p)-neighbourhood of wo + {0} x iEin-3,

and

(5) Bajp(w) n S+ 0 0 V w E (wo + {0} x R.n-3) n B,(wo).

Also since any to E B,,(wo) n S+ is in T2p+ n S+, we know by Lemma 1 of Section 4.3
that

(6) C-1Q"-3 < P+(B,(w) n S+) < Can-3, Va E [41/2P, 16 I

and for any to E (wo+{0} x WI) nB,,(wo), where C = C(n). Now let wi,... , wn-3
be any points in (wo + {0} x lR^-3) n Bp(wo) such that

(7)

j=1

n-s 2

E((wj-wo) a)2>_ ]a13 VaE{O}xRn-3.

Lo,1 = {0} X W-3.

Let 0 E [861/2, -] be for the moment arbitrary. (We choose 9 = 9(n, N, 8) be-64
low; notice that since we require 861/2 < 9, this also requires that 6 be cho-
sen small depending on n, N, P. In fact we are going to complete the proof with
6o = 02(n, N, f3)/64.) In view of (5) and (6), for each j E 10,... , n - 3} we can
select points zj E Bp/32(wj) n S+ such that

(8)
J Ix-two I<9p/8}

(R,,us:f I2 <

< C/a+(Bp/s('wj))-1
fB18(tti3)

dxdydA'(z)
Bp(wo)\{(xv):Ix-ELI<9p/s} R:"

< CP ("-3) fB,('ftA&'V)' ?G(x, y) dxdy
Iz-E-01<Bp/8}
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Notice that here we use the general principle that for any Borel set U x V C
BP(wo) x S+ and any r > 0 we have

(9) j I 12 r(V)-1 JJJR:u .12 dxdydµ(z)

I'µ+(V)-1 J JR=uR I2 dµ}(z) dxdy
U V Ra

< rµ+(v)-'
J

,(x, y) dxdy
U

for all ( E V except for a Bore] set E C V with µ+(E) < r-'µ+(V). (Notice that
this implies that if U1, U2 are two subsets of BP(wo) and if r > 2 then there exists at
least one point ( E V such that we simultaneously have (9) with each of the choices
U = U1,U=U2.)

Also, since Iz, - wwl < 8, by (7) we have

n-3

(10) 1:((z3 - zo) a)2 > 8 lal2, a E L,
i=o

where L is the linear subspace spanned by z3 - zo, j = 1,... , n - 3. Notice that
automatically L satisfies

(11) IIL - {0} x 1Rn-3II < Co

by virtue of (2), (10) and the fact that z0, ... , zn-3 E S+ fl B2P(wo)

Similarly, for arbitrary given to E (wo + ({0} x lR'i-3)) fl BP(wo), and for any set
(0+. 40-3 E Bep(w) f1(wo + {0} x 1RW-') with

n-3 2

(12) F(( - So) a)2 >
2

la12, a E {0} x 1R"-3,

!=o

we can again use the general principle (9). This time we in fact use (9) with the
choices U = Bep(w) and U = BP(wo) \ {(x, y) : Ix - Cn,e 15 s }, in each case taking
V = BeP/4() fl S+. Then, keeping in mind (5), (6), the fact that 0 > 801/2 and the
remark immediately following (9), we deduce that we can select C, E BeP18((°) fl S+
such that for each j = 0,... , n - 3

(13)

IRc,uR,, I2 < C(0p)-(n-3)

Jj
e (w) , 14(w)

fB'(WO)\J(X'V):

`K1 uR, < C(0p )-(n-3)
Ix-Ewol_P/8} RC fU'(WOM(Z'V):IZ-Eaol<_v/8}

where C = C(n, N, /3). (We emphasize that the choice of C, depends on w, but C
only depends on n, Since ICf - Cl < I e, from (11) and (12) we also deduce
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that

(14)

n-3 02P2

F((Cj -Q a)2 > Ia12, a E L.

Now in view of (10) and (14) we can apply Lemma I of Section 4.5 in order to
conclude

(15)

n-3 n-3

EIR=,u&112 <C6-2EIRc1u lI2+CO-2dist2((, zo+L)IDu12

j=o j=o

on ,9,(w), and hence

n-S

(16)
fa-'(W)

E IHz,uR, I2 <
j=o

r n-3

< CB-2 J E I R< u 12 + C8-2 I Dull dist2((j, zo + L)
B ,(w) j--O B.n(w)

<
C8 2 e n

f n-3
IRcuR,, I2 + CO-2(op)n-2 2

B., i=0 RZ

< CBp3 0 + C8"-° pn-2 dist2((,, zo + L)J ,,(w)

by the first inequality in (13). Now by Lemma 1 and Lemma 2 of Section 4.5 together
with (8) and the second inequality in (13) we have

(17)

dist2((, zo + L) < Cp2
n-3 ( IR'ruR, I2 + IRuRC,

I2

E
j=0Bn(,ro)1{(s,y) R j irc,

< Cp2(Op)-(n-3) f

Bp(wo)\{(r.y)' I=-E.,oI<-ep/8}

Thus by combining (16) and (17) we conclude

(18)
-S

J IR=iUR, I2 CBp3 J i + C6-'P3 J
,,,(w) j=0 ' Bsv(w) B,(wo)\{(:

V)

Iz-E.nl<B0/8)

for each w E (w0 + ({0} x lRn-3)) fl BP(wo).

The presence of the factor 0 in the first term here is crucial, as we shall see below.

Now we are going to use the main L2-estimate from Theorem 1 of Section 4.5 with
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2 in place of p. Thus (since BP/18(zo) J BP/32(wo) and B,,/2(zo) C Bp(wo))

(19)
R u 2 n-3-3 n-2

Jo/32(wo) Ri
:

G
Cp 2s(3)2-n LPWO,

j=0 12+C ( (z)n-2)
x

1

n-3

12 +
I R=UR.12

x 2 n-2 1 Rz,uR=,
fBY(wo)\{(z.Y)'Iz-(un l<_P/18} N 3(2) j-o Rs

for each z E S.

Now we want to integrate this with respect to the measure p+. First notice that,
using the notation p+ (A) = p+ (A n S+),

(20)

s+ S(z)-2 dp+ v(2 0)) +'
(7P)n-2

+(Bjv(wo))

00

G Cp 1 + Cpl-n EP +(B(,+I)'(WO))(j2-n - (j + 1)2-n)
j=1
co

< Cp1 + Cp-1 Ej-2 < Cp-1,
3=11

where we used summation by parts and the fact that p+(Bu+1)p(wo)) G Cjn-3pn-3
by virtue of Lemma 1 of Section 4.3. Thus integrating in (19) and using the Holder
inequality and (20) we deduce that

(21) :5Cp3IR=,uR,,12 +
JB(wo)

n-3

Ip/32(wo) J=0

(fB,(U'O)\I(x.Y)

n-3

+ C(pn-3) 1-1/(2-a) (/-3 E IRs,uRs, 12
+,0)'Iz-("J:5p/16)

J=O

Now we select points w1, ... , wQ (with Q = Q(n, B)) in B3p/4(w0) n (wo + ({0} x
1n-3)) such that {B9p/18(wj)} are pairwise disjoint and such that {B6p/4(wj)} cover
the

a
-neighbourhood of B3p/4(wo) n (wo + ({0} x lRn-3)). Then (21) implies

Q n-3

(22) f t (Cp3E j 1R.,uR,,12+
Bo/32(wo) i=1 a v/4(w.) j=0

n-3

+Cp3 f EIRz,uR,,12
B,(wo)\{(z.Y):Ix-(..0ISBP/8} ,=o

(f8'(WGAI(z'V):

n-3

+ C(ps-3 )1-1/(2 a) p3> IRjt uR,, 12 +'011I=-(wpISBP/8}
J--O
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Now we use (18) with w; in place of w, thus estimating the terms f Bep/4(w,) JR..

uR, 12 on the right. At the same time we can use (8) in the remaining terms on the
right.

Thus we obtain from (22) that

r
(23) Cex V) +C1+Ip/rt(wo) j_I Bv(wo)\((x.Y)

C(pnl-3)1-1/(2-a) ( 7/j 1

Bp(wo)\{(x.Y): tx-{,,oI<Bp/8)

where C = C(n, N,,3) is independent of 0 and C1 = C1(0, n, N, Q). Now notice
that Bp(wo) fl S+ C {(x, y) : Ix - =oI < 66p} by (4), and pn-3 < Cp+(BB(wo))
by Lemma 1 of Section 4.3, where we continue to use the convention p+(A) _
,U+ (A fl S+). Hence, assuming 66:5 16, we see that (23) implies

(24) I
V,

<CO r *+C' Vi+
Bp/ss(wo) Bp(wo) Bplwo)\Sep/16}

TP) 1/(2-a)

+ C1(p+(Bp(wo)))1-1/(2-a)

J Bp(wo)\Sen/i6

where So = {(x, y) : dist((x, y), S+) < o}. Now notice that this was all valid
starting with an arbitrary wo E Tp f1 S+. Now choose a maximal pairwise-disjoint
collection {Bp/128(pk)}k=1,... p with pk E S+ n7P/4. Then UBp/32(pk) covers all of

the neighbourhood of S+ f1 T. Notice that by Remark (iv)(2)(a) of Section 4.3
64

we have also that UBp(pk) is contained in T2p. Since any point of T2 lies in at most
C(n) of the balls Bp(pk), we then have, by replacing wo by pk in (24) and summing
over k,

J
t( < CeJ t/J+C +Cl(p+(T2"))1-1/(2-a) r / + 'Y

7p Tip !fin\` P/I6 1\J o\Saon6

<CO 0+ce1 1+cf7-.,\V,/Ie IP +
T6'o Tso\Too

+ C1(li+(T'+))1-1/(2-a) /\II

Tu+ \Sep/16

< Ce J + c I + C1(p+(T2))-1/(2-a)
CIT.+,Tao Tpo\Tep/16

p
\ Sfip6

so that since p+(S+) = 1 and So D T, we get finally that

1/(2-a)Ic (f
Op/16 \ Tzn\Tep/16 /
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provided 0 = 8(n, N, /3) E (0, 3'-,j) is chosen so that CO < 1 and provided 861/2 < 0
(i.e. 6 < 60, with 60 = 64 ). By a change of notation (taking 18 to 20) and replacing
p by a, we then have the required inequality.

4.7 Proof of Theorems 1, 2 of Section 4.1

Let 0 > 0, let 00 E {9 ,(0) :.p is an HCM with 9,0(0) < ,B} be arbitrary, and
suppose

(i) w0 E sing u with e (w0) = 00.

Recall that, by the monotonicity identity. for each E E (0, 1) there exists a0 =
ao(e. u. w0) > 0 such that

(ii) 9L(w0) < a2-" f IDuI2 < e (w0) + E, a E (0, a0J.

Also, by monotonicity (see (i) of Section 2.4) we have the identity

z
(iii)

2 fBo(=)
IR:fix,

I = a2 fp(s) IDuI2 - eu(z)

for each z, p such that B0(z) C ), and, since B,(z) C B(1+e),(wo) for any z E
B6,(wo), we deduce from (ii) that

21 IR.uR.
z

I = a2-nf IDuI2 - eu(z)
4z) BnW

< (1 +e)"-2((1 +e)a)2-" f IDuI2 - eu(Z)

C(n)(1 + The, Z E BE,(wo), a < i

provided 0o and provided ao = o0(u, w0, e) > 0 is sufficiently small. Let

S+ = {z E BE,o/2(U'o) : eu(Z) ? 00},

take wl E S+ fl BF,Q/4(u'o), al E (0, ml and define

(iv) it = Uaq.01.

where u,,, (t, y) = u(w1 + a1(z, y)). Then the above inequality gives

(v)
R_u 2 f2f I

R:I = p2 IDuI2 - en(z) < CE, z E S+(w1, al), p E (0. UJ,

Bp(z)
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where C = C(n. Q) and

(vi) 0 E S+(wl,al) m {z E Bi(0) : ee(z) > 9o} = 91(0) n ri,1,,,S+.

Notice that S+(wi,al) corresponds exactly to the S+ of Section 4.5 and 4.6 with
u in place of u. Also, recall that by Lemma 2 of Section 3.9, we can, and we
shall, assume that ao = ao(u, wo, e) is chosen small enough so that S+ has the e-
approximation property of (i) Section 4.2 and hence S+(w1,al) does also. Thus
(Cf. (iv) of Section 4.5)

(vii) S+(wl, al) n B, (z) C: the (Eor)-neighbourhood of L,,,,

for each z E S+(wl,ol) and each a E (0,1], where LL,, is an (n - 3)-dimensional
affine space containing z. We fix these affine spaces in the sequel. Without loss of
generality we assume

(viii) L0.l = {0} x Rn-3

We emphasize that (v) and (vii) hold automatically if ao = ao(E, u, wo) is chosen
sufficiently small. We henceforth assume ao(E, u, wo) has been so chosen. and we
continue to take u as in (iv). Notice also that, by (iv) (choosing new a if necessary),
(i), (iii), (v) of Section 4.5 also hold with S+ = S+(wl.al). Thus we can apply
the results of Section 4.5 and 4.6 with u in place of u, and with S+ = S+(wi,a,),
00 = eu(w0)

Before we begin, we need to establish the following lemma, which is a simple in-
equality for real numbers:

Lemma 1 Ij0 < a < b < 1, a E (0,1), Q > 0 and a2-° < /3(b - a), then
a- 1+a/2 - b-1+°/2 > Ca-°/2, C = C(/3, a) > 0.

Proof: In case a > 2 we have trivially that

a-l+°/2 - b-l+°/2 > Ca-l+°/2 > Ca-°/2,

so the required inequality holds in this case. In case < 2 we have

a-1+0/2 - b-1+°/2 = (1 - a/2)c 2-°/2(b - a) for some c E (a, b)

>
1-o/2

a-°/2 Q2a since a > z

> /3(l 4a/2)a-°/2
since a2-° < /3(b - a),

so again the required inequality is satisfied, and the lemma is proved.

We now give the proof of Theorem 1. We shall only need the real-analyticity hy-
pothesis in checking the Lojasiewicz inequality for the energy functional as in Sec-
tion 3.14. Since we already checked in Section 3.14 that this Lojasiewicz inequality
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hold,, automatically (with any exponent a E (0.11) when the integrability condition
of Theorem 2 holds, we thus see that Theorem 2 will follow by exactly the same
argument used to prove Theorem 1.

Proof of Theorem 1:

Let T+, u+ (corresponding to given 6 with e < and with u as in (iv) in place of
u) be as in Section 4.6. 6 < bo(n, N. (3) and e < will be chosen later.

Now, with u as in (iv), by virtue of (iii). (v). we can apply all the results of Section 4.6
to u, and hence.

(1) U,: cC (k\7-,+,, IG

with v the deviation function of Section 4.6 with u in place of it. where 0 =
O(n, N, /3) > 0, and where a = a(n, N, (3) E (0, 1).

In view of Lemma 1 we can use (1) to give

(2)
ff

1+n/2 -1+n/2

'\J7+ ) - Jr: ) > CIo
n/2

where 1o = ii'. Then starting with p = 4 we can iterate the inequality (2) in
order to give

-1+n/2

(fT:,,4')
>Cjl;n/2. j=1.2....,

and hence

V, < Cj-1-2,102'. j = 1,2,... .(3)

e, +

where 2-) = 2a > 0. Notice that since (j + 1)1+' - jt+' > Cj', this implies

00

OC

E((j + 1)1+' _ jt4) r q, < CII' F'j 1-7 < CIo'.
J=D J a i+ 1=1

and using summation by parts we thus have

F,
j1+,

J Te,,+

Thus we get

(4) f 1 logdlt+"V, <CI'.
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where d is defined on T+,4 by

12-k if(x,y)ETZ k\7'' k- k>2
(5) d(x, y) =

0 if (x, y) E To.

Now for z E S+ fl T l+/4 and (x, y) E T 1/4 we claim that

(6) d(x, y) 5 4R=(x, y), (x, y) E 7i+14 \ Bd(Z)/2(z)

where R=(x, y) = J (x, y) - zl. Here we include z E To, in which case d(z) = 0 so (6)
says d(x,y) < 4R=(x, y), V (x, y) E TI4. To prove this we can of course assume
d(x, y) > 0, so take any w = (x, y) E T2 t,, \ T2 k-, for some k > 2, and consider
cases as follows:

Case (a): z E T2 t, for some q > k + 2. (If z E To, then this case will be applicable
V q > k//+2.) Then by Remark (iv)(2)(d) of Section 4.3 we have 1w - zl > 2-k-2 =

2k = d(,)
4 4

Case (b): z E T2 t, \ T2 t, with q < k + 1. In this case, if we assume that w
Bd(t)/2z) then (keeping in mind that z E S+ and d(z) = 2-9 in case z E T±,\T±,_, ),
we have 1w - zl > 2-q-1 > 2-k-2 =

Thus (6) is always satisfied as claimed. Now the inequality (4) says that

(7) r Ilogdll+7 r lR=iR.
s

dp+(z)dxdy<C1o'',
fT;/a JS+ Ri

so that by interchanging the order of integration we deduce that

(8) f l logdl1+ti IR=R. IZ drdy < to,
l/e

=

for all z E S+ with the exception of a set of u+-measure < C1o. (We must keep in
mind here that there will in general be lots of points z E S+ which are not in the
support of µ+, and these have u+-measure zero, so in particular (8) need not hold
for them.)

In view of (6), (8) implies

(9) l log R=I1+7
IR=uR, Iz dxdy < Io ,

for all z E S+ with the exception of a set of µ+-measure < CI.

Next note that according to Lemma 1 of Section 4.3 we have a countable set S =
(zj,k j = 1 ,... , Qk, k > 2} C S+ fl 2 4 such that

(10) zl,k E Tz k \ TZ k-, , so d(zi.k) = 2-k, j = 1, ... , Qk, k>2,
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w Qk
C(b(n-3)/2 2-(n-3)k >rrlzkJl + fn-3 L T ), C = C(n),

k=2 j=1

and

k+1 Qe

(12) SnT2 k\T2k_, C U UBoI/22-k(ze Vk>2.
[=max(k-2.2) 3=1

Now let Co C S be the collection of all zj.k E S such that

(13)
1+,

IRZ,.ku'R+,.4I2

log R" dxdy > Ip ,
R

and let £1 C To be the collection of all z E To such that

(14) J 1logR.I1+,IR2 I2dxdy> lo
Ti. 2

Since µ+ (£o U £1) < Clo by (9), we thus have by (11) that

(15) > d(w)n-3 +?{n-3(£1) < CID, C = C(n, N, b).
WEED

Now take any z E T /4 n S+ \ T. We have by (12) that z E Bd(2,,k)/4(zj,k) for some
zj,k E S; if this zj,k 0 Co then by (9)

,.
2

I log R=,.k I1+, k dxdy < I.(16) J /4 \Bd(+,.k) /2 (i,.k) ,.k

Regardless of whether zj,k E 4 or not, we have by (10) and Remark (iv)(2)(d) of
Section 4.3 (with k + 2, k + 1 in place of 1, k) that z E Bd(2,,k)/4(z,,,k) C IR" \ 12_4_2
and hence that

(17) d(z) > 2-k-1 = Zd(zj,k)

Thus by (16), (17), for any z E S+ n T j4 \ T

(18) either z E S+ n (U:,.kEEoBd(z,,k)/4(zj.k))

or S z (= some zj,k E S+ n T /4 \ (T U £a)) with d(z) > 2d(z),

f a
z E Bd(=)/4(Z), and J I lOgRsI1+,IR=kI dy < I.

/l\Bd(,),2(2) 2

On the other hand if z E To \,61 then by definition d(z) = 0 and (9) gives

J
12

(19) I log R. 1'+'y R.n dxdy < Is .

;/ k
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Now we want to check that we have all the hypotheses needed to apply the rectifi-
ability lemma of Section 4.2 (in case p = 1, m = n - 3, and S = S+).

To check these hypotheses, we first assume

84(20) no ball BB(z) with z E B5/8(0) fl S+ and p E I, ] has a b-gap.

Note that then by (20), (vii), (viii), and the fact that e < e we have

(21) B5/e(0) n {(x,y) : lxl < 8} C T/4.

In this case (19) implies

(22) I

logR;I1+7IRzuR.12 dxdy < IoJB5/B(O)\Bd(.,,2(z) Rz

for any z E To \E1, and (18) implies that for any point z in the subset (S+nPj12(0)\
To) \ (U., kEEOBd(., k)/4(Zj,k)) there is always a point z E S+ fl T+/4 \ TO such that

(23)

I

0,
1+7 IR=uRj IZ dxd <

r
log Rz z E B z d(z) > Zd(z).J 5/$(o)\Bd(.)/2(=) R=

Our aim now is to show that the hypotheses of the rectifiability lemma of Section 4.2
are satisfied.

First take an arbitrary point z E (S+ fl B1/2(0) \ To) \ (Uz,.kEeOBd(z, k)/4(zi.k)) and
let z be as in (23). Using the notation that u(a) denotes the L2(S"-1) function
given by u(s)(w) = u(z + sw), w E S"-1, we then have by direct integration, the
Cauchy-Schwarz inequality, and (23) that

(24) II u(a) - u(T)II L2(s.-I) <

5
J T II as

< (r I

(Z,S_llIog8l_l__'d8)l/2

1/2
) Ilogr1-7/21/2

(fB.18(0ABd(i)12P)
IlogR;l)+"JR=uR1I2

Co121 log rl-7/2

for any 3
4 < o < r < 4. Notice also that by applying Lemma 2 of Section 4.5

(keeping in mind (vii)), we have that flu - wII
V(BI14(:))

<- Cc for some HCM (p with

S((p) = {0} x 1R"-3, and also from hypothesis (v) we know that 10 < Ce. So if
(< 62 is given and if a is small enough (depending on n, N, $, 6, () we then deduce
from (24), Corollary 1 of Section 4.4 and (vii) that

(25)

sing u fl B,,(z) C the ((p)-neighbourhood of z + {0} x R"-3, Vp E ( I ].2
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Now. still assuming z E (S+\To)nB,/2(0)\(U=,.,EEUBd(-,.k)/4(zl.k)) (25) guarantees
in particular that S4. n B,(z) C the (6p)-neighbourhood of z + {0} x IRn-3 for every
p E (`tZ 11, so (using the definition (iii) of Section 4.3) z E T,,+(..)/2 unless one of the
balls Bp(z) has a 6-gap. But of course z E Td(-=)/2 contradicts the definition of d(z)
for d(z) > 0, so we conclude finally (keeping in mind (20))

(26) d z E (S+ \ T;) n B,/2(0) \ ( U Bd(-,.k)/4(Z,.k)),
=s.kEEo

3a, E (
1, K1

such that S+ has a 6-gap in B,,. (z).

Next notice that since To is a subset of the graph of a Lipschitz function over
{0} x IR"-s with Lipschitz constant < C6, in view of (15) we can select a {Bok(zk)}
such that

(27) ak E (0,e, C UkBB,k(zk), 1: ,k-3 <Cfa.
k

For z E S+ n To \ UkB,k(zk) we have. by the same argument that we used to
derive (24), except that we use (22) in place of (23).

(28) Ilii((Y) - ie(r)IIt.2(s--s) < Cfo/2(log rl-,/2

for all 0 < a < r < and again by Corollary 1 of Section 4.4 and (vu) we conclude
that

(29)
sing ii n B,(z) c the ((p)-neighbourhood of z + {0} x llt"_a

for all p E (0.7

In view of (15), (25), (26). and (29) it is now evident that, provided (20) holds,
we can take the collection {Bd(-,.k)/4( k)}=,.kEtO U to be the collection
corresponding to .) in the rectifiability lemma of Section 4.2 in case we use C in
place of and then hypothesis I(b) of that lemma is satisfied in case x0 = 0 and
PO=1.

Oil the other hand if (20) fails then some ball B,/4(y) with y E B5/s(0) n S+ must
have a 2-gap, and so the first alternative hypothesis in (I) of the rectifiability lemma
holds in case yo = (1 and po = 1.

Thus. provided s is sufficiently small (depending on 6, n, N. i3). we have shown t hat
S,(aw,,or,) (as defined in (vi)) satisfies the hypotheses of the rectifiability lemma of
Section 4.2 for xo = 0. po = 1. That is, in view of the arbitrariness of w,, a,. we
have shown that S = 9m,14(wo) nS+ satisfy the hypotheses I. Il of the rectifiability

4lemma. where po = `°Q

Thus the rectifiability lemma implies that n S+ is (n - 3)-rectifiable.

Finally, let B be any closed hall contained in Q. Then by monotonicity (see Sec-
tion 2.4) there is a fixed 3 > 0 such that %(y) < 3 for each y E B. In particular
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ew(0) < Q for any tangent map of u at any point y E B, and by Lemma 1 of
Section 4.4 we know that {eu(y) : y E sing, u n B} is a finite set al < < aN of
positive numbers, where sing, u is as in Section 3.5. Let

Si={zEsinge : eu(z)=aj}
S? = {z E singe eu(z) > aj}.

Notice that St is closed in fl by the upper semi-continuity (ii) of Section 2.5 of eu.
Take any j e 11,... , N} and any y E Si. According to the above discussion, there
is p > 0 such that BB(y) n SS is (n - 3)-rectifiable. Thus, in view of the arbitrariness
of y, the set Sj has an open neighbourhood Uj such that

(30) S; n Uj is locally (n - 3)-rectifiable.

Of course the Sj n U4 are also locally compact, because S, is closed and U, is open.
Now let

V ={zEsing u : eu(z) <a;+i}, j=0,...,N-1, VN=S2.

Then the V1 are open in Il by the upper semi-continuity (ii) of Section 2.5 of eu.
Now, with ao = 0, aN+l = oo, So = sing u, and Uo = 0, we can write

N

B n sing u = U {z E B n sing u : a1 < eu(z) < ai+i }
i=o
N

=UBnSS nV
J=O

_(,U(BnStnuinVi))uCUBnSt\ui)n)

This is evidently a decomposition of Bnsingu into a finite union of pairwise disjoint
locally compact sets, each of which is locally (n-3)-rectifiable; in fact for each j the
set (B n S, \ U1) n V C sing u \ sing, u, and hence has Hausdorff dimension < n - 4
by Corollary 1 of Section 3.4, and the set BnSJ'nU1nVf is locally (n-3)-rectifiable
by (30). This completes the proof of Theorem 2.

Proof of Remark (2) of Section 4.1:

We have to show that for ?1n-3-a.e. z E sing u there is a unique tangent space for
sing u at z in the Hausdorff distance sense, and also that u has a unique tangent
map at z.

For the former of these we have to show that, for %n-3-a.e. z E sing u, there is an
(n - 3)-dimensional subspace L. such that for each e > 0

(1) B1(0) n ga,,(singu) C the e-neighbourhood of L.
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and

(2) B,(0) n L. C the e-neighbourhood of r .(sing u)

for all a E (0, (ro) where ao = ao(e, it, z) j 0 as e 10. Using the notation in the
last part of the proof above. let : E S, be any point where S. has all approximate
tangent space. Thus there is an (n - 3)-dimensional subspace L. with

(3) lice
J ..

f dHn-3 - J f of-3 d f E C(111n)a(o

We show that (1) and (2) hold with this L. In fact the inclusion (2) is evidently
already implied by this, so we need only prove (1). Let ak j 0 be arbitrary. and let

be any tangent map of u at z with u(: + apx) --e o for some subsequence ak..
By (3) we evidently have that the ek neighbourhood of B1(0) n SJ contains all
of L, n B,12(0) for some sequence ek j 0. But then by the upper semi-continuity as
in Section 2.11 we have

9,,(y) >_ 0,,(0) = even-where on L, n B112(0),

Thus by (i), (ii) of Section 3.3 we have S(,p) D L. and since L, has maximal
dimension it - 3, this shows that S(v) = L. sop is an HCAI with S(,p) = L. But
then by Corollary I of Section 4.4 we have

B, (0) n gsk,(sing ti) C the ek-neighbourhood of L,

for some sequence rk j 0. In view of the arbitrariness of the original sequence ak we
thus have (2) as claimed.

Finally we want to show that there is a unique tangent map of u at 71' -a.e. z E
sing u. Let S, = (z E sing u : 0.(z) = n, j as above. For each r > 0, we can
subdivide S, into U'1S,,,, where S,,; denotes the set of points z E S, such that
the conclusions (1) and (2) hold with ao = Provided the original uw0. a in the
definition (iv) of u are selected with wo E S,., and a, = a,(r. U. in0. we then
have by (1) and (2) that all points of z E S,J are contained in the set To in the
proof of Theorem 2 above. Hence by (28) of the above proof we conclude that there
is a unique tangent neap of u at each point z E 5,,, n B,,,(u'o) with the exception
of a set of ?{n-3-measure < raI {. In view of the arbitrariness of e. wo here (and
keeping in mind that we have already established that S,,, is (n - 3)-rectifiable) this
shows that there is a unique tangent map of u for fn-3-a.c. points z E S,,;. Since
11" "';(sing u \ (U1,,S,.,)) = 0. this completes the proof. 0

4.8 The case when SZ has arbitrary Riemannian
metric

So far we gave the proof of Theorem 2 for the case when SI has the standard Euclidean
metric, The changes needed in the above arguments to handle the case when Q is
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equipped with an arbitrary smooth Riemannian metric

n

(1) 2, gii(x) dx` ® dx', 9ii E C°°(Q), (gii) > 0,
i j=1

are of a purely routine technical nature, and we wish to describe them here.

In view of the local nature of the claim of Theorem 2, there is no loss of generality in
assuming from the outset that 'l is bounded, gii E C3(Ut), and (resealing the metric
by a suitable constant if necessary)

n

ggie ? ItI2,
i 3=1

where f3 is a fixed constant. Now with the metric (gii) in place of the Euclidean
metric, the energy of u E W"2(fl; N) is defined by

(iii) e)(u) = jDuj9 f dx,

where JDujB = ,j=1 g'j Diu Diu, with (g") = (gii)-' and g = det(gii). The Euler-
Lagrange system (corresponding to (iii) of Section 2.2) for a minimizer or stationary
value u is

(iv) Ogu + gikA.(Diu, Diu) = 0,
i j=1

where Au = (A9u',... , Aup), with , = g''/z E")=1 D1(fgil D,j) the Laplace-
Beltrami operator relative to the metric (gii), and corresponding to the identity (iv)
of Section 2.2 we have

(v)

fit
((IDuIoi - 2>g4Du. D1u)D( + F, )Rjo =0,

i j=1 a i=1

. (n; )R") where jR;I < CIDuI2 at each point of Q.for any C = (S', ... , S") E C,-

Now let u E WW" ((t; N) be any minimizer for C(O), and let z E (3. Let T. : lit"
JR" be an affine transformation with T,(z) = z and with T, . T, - z satisfying

71. (gii(z))T: _ (bii),

and with T, depending continuously on z. Then for each fixed z E 1 we evidently
have that u(2) = u o T, is E02) minimizing, where

(gjZ)(x,y)) =T:(gy(X,11))T=

hence in particular
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Then by the appropriate minor modifications of the arguments in Section 2.4 using
the identity (v) with y,jl in place of g;, instead of the identity (iv) of Section 2.2.
we obtain
(vi)

J
(IDu(:)12h, - 2Diu(a . Djii"))Di(' = J (t Sir;J + E SAD, ?)

(, I ,.,
J=1 ,j

for any l; E C,' (12(')). where

(vii) us:) = u o T 12(:' = T, s(12). IS I +pISS) < C;3iIDul')12.

It is then easy to see that in place of (ii) of Section 2.4 we obtain

(n - 2 - Cusp) f IDu(')I2 < (1 + C',3ip)p f IDu(-)I' - 2pf Iu;) I2,

and in place of (iii) of Section 2.4.

(viii) f ID'U(`)12 is an increasing function of p,

rw the limit

(ix) limp" IDu1:)12
P10 11W-0

exists at every point z E 12. H is as before called the density function of u. Also.
in place of (iii) of Section 2.5 we obtain the inequality

4"
IR_14R'I2 f(x) , < IDr,(=)12 _ E. IEI < C.i,p.

lz) fl (:)

where C = C'(n. N. ii). 4 any constant such that !2 IDu(`)12 < 3. It follows
that we can take tangent maps and pseudo-tangent maps by exactly the same pro-
cedure that we used before; thus for example for each z E sing u and each o, 10.
there is a subsequence a,, such that ,;. where u1s(x. y) = u(4)(z + a(.r. Y))
and where y E lbi;; (1R": N) is energ minimizing (with respect to the standard
metric for and is homogeneous of degree zero.

Also all of the energy estimates and L2 estimates of Section 1.4 and .1.5 carry over
to the present Setting with only very minor changes to take account of the fact
that, in place of the standard metric (b;,) we now have (near each point z E sing u)
the metric .4(:) which salt isfies I.q,;) - b,, j < C.111) on any ball [I,(:). Thins for
example Theorem 1 of Section 4.1 continues to hold. except that in place of the
main inequality we now have

(xi)
- r2( Dutn) 2 - D,;12) d o r2(1r d < C' r2 rr(o) 2 + u(u)i f f I I I I y p

fit'.
((.) (y)1)+s(o)

+ E.+C (p
Jfl(Oi\((:.y)

r2((n'c'))`'+(r/y°))2)
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where 0) means u(Z) with z = 0 and where IEI < C01p. Likewise the main estimate
of Theorem I of Section 4.5 becomes

(xii)
I R(;) 12< '-3 2 1-1/(2-o)=16R' I< CP-282-"(z) IR_ Ujt; 2+r. Pn x(z)

41440) Bsa,ztxo) j

j
sn_Z(z,

1 t-0 2
12

( sn-2 x 1 I Rz,uRf I + Rn ) l + E,
(L3P,24GA1(s.v):lz-E41I<P/8} P2 ( ) j=0 : /

for z E S+ _ {w E B1(0) : eu(z) >- eu(0)}, where u(r) is as above, where we
are assuming that B1(O) C fl with metric g still satisfying (ii), and where IEI <

C.P1+n-2/8n'(.z).

In view of these estimates it is clear that we can take in place of the deviation
function >(' of (ii) the function

r
(xiii) i(x, y) = IR =u( I

I
dµ+(z).

s+ Rz (z.Y)

Then by very straightforward modifications of Section 4.6 (using (xi), (xii) in place
of the main results in Theorem 1 of Section 4.4 and Theorem I of Section 4.5) we
can prove the result

(xiv) lop < C(Ip - IBP)1/(2-a)

analogous to Theorem 1, where now C also depends on 01, and where 1 p = fV' +
flip. Using the same kind of iteration as in Section 4.7 (based on (xiv) and on (ix)
of Section 4.7), this leads directly to

I log CJ,4

for p!5 1, where d is defined as in Section 4.7.

The rest of the proof is completed as in Section 4.7, applying all of the above with the
resealed function uu,,,o, as in (iv) of Section 4.7 in place of u; this resealed function
lives on the resealed domain where the appropriately scaled metric satisfies (ii) with
the same fixed constant 01 independent of at, provided we always take a1 < 1,
which of course we can do-indeed it is necessary in the argument of Section 4.7
only that a1 is sufficiently small. We also need to take a1 small enough so that
the transformation TZ in (vii) satisfies II T, - T,, 11 < e for z1, z2 E Bo, ("). (This
of course can be done because TZ is continuous in z.) Then for small enough
e = e(n, N,Q) we again conclude as we did in Section 4.7 that the hypotheses of
the rectifiability lemma of Section 4.2 hold, and hence that S+n BQ(w0) is (n - 3)-
rectifiable for small enough or = a(wo, u) > 0 and for any w0 E sing. U = {z E
singu : ep(z) = Op(O) for some HCM 1p}. The proof is then completed as before.

13
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