Leon Simon

Theorems on Regularity
and Singularity of Energy
Minimizing Maps

based on lecture notes by
Norbert Hungerbuhler

Birkhauser






Lectures in Mathematics

ETH Ziirich

Department of Mathematics
Research Institute of Mathematics

Managing Editor:
Helmut Hofer



Leon Simon

Theorems on Regularity
and Singularity of Energy
Minimizing Maps

based on lecture notes by
Norbert Hungerbiihler

Birkhduser Verlag
Basel - Boston - Berlin



Author’s address:

Lcon Simon

Department of Mathematics
Stanford University
Stanford, CA 94305

USA

1991 Mathematics Subject Classification S8C27, S8E20

A CIP catalogue record for this book is available from the Library of Congress,
Washington D.C., USA

Deutsche Bibliothek Cataloging-in-Publication Data
Simon, Leon:
Theorems on rcgularity and singularity of cnergy minimizing
maps : based on lecture notes by Norbert Hungerbiihler /
Leon Simon. - Basel ; Boston ; Berlin : Birkhiuser, 1996
(Lectures in mathematics)
ISBN 3-7643-5397-X (Basel ...)
ISBN 0-8176-5397-X (Boston)

This work is subject to copyright. All rights are reserved, whether the whole or part of the matcrial
is concerned, specifically the rights of translation. reprinting. re-use of illustrations, recitation.
broadcasting. reproduction on microfilms or in other ways. and storage in data banks. For any kind

of use permission of the copyright owner must be obtained.

® 1996 Birkhduser Verlag. PO. Box 133, CH-4010 Basel. Switzerland
Printed on acid-frec paper produced of chlorine-free pulp. TCP
Printcd in Germany

ISBN 3-7643-5397-X

ISBN 0-8176-5397-X

987654321



Contents

Preface .. ..ot vii

1 Analytic Preliminaries

1.1
1.2
1.3
1.4
1.5
1.6
1.7
18

Holder Continuity ..........coiiiiiiiiieiiii i eiiieiiieeiinn 1
Smoothing ..o e 4
Functions with L2 Gradient ..., 5
Harmonic Functions ........ ..ot iiaiaeias 8
Weakly Harmonic Functions ...............oooiiiiiiiiiiniiaaaa.., 10
Harmonic Approximation Lemma ....................ooiiiiiaa.... 10
Elliptic regularity ..........ooviiiiiiiiiiiiiiii it 11
A Technical Regularity Lemma ...............cooiiiiiiiiiiiin o, 13

2 Regularity Theory for Harmonic Maps

2.1
2.2
23
24
2.5
2.6
2.7
28
29
2.10
2.11
212

Definition of Encrgy Minimizing Maps ........................oooll. 19
The Variational Equations ................c.ooiiiiiiiiiiieiinna., 20
The e-Regularity Theorem ..., 22
The Monotonicity Formula ......... ..., 23
The Density Function ..ottt 24
Alemmaof Luckhaus ...l 25
Corollaries of Luckhaus’ Lemma ...........o.oooiiiiiiiiieiiiaan.., 26
Proof of the Reverse Poincaré Incquality ..................oooooeael 29
The Compactness Theorem ..., 32
Corollaries of the e-Regularity Theorem ...t 35
Remark on Upper Semicontinuity of the Density O4(y) .............. 37
Appendix to Chapter 2 ...... ... ittt i, 37
2.12.1 Absolute Continuity Properties of Functions in W2 ..., 37
2.12.2  Proof of Luckhaus’ Lemma (Lemma 1 of Section 2.6) ....... b

2.12.3 Nearest point projection ...............oceeiiiiieiiien.n.. 12
2.12.4 Proof of the s-regularity theorem incascn =2 ............. 46

v



vi Contents
3 Approximation Properties of the Singular Set
3.1 Definition of Tangent Map .........ccoviiviiiiiiniiiiiiniinennn.., 51
3.2 Properties of Tangent Maps ..........coovviiiiiiiiiiiiiiiiniinians, 52
3.3 Properties of Homogeneous Degree Zero Minimizers ................. 52
3.4 Further Propertiesof singu ...........coocoviiiiiiiiiiiiiiin.., 54
3.5 Definition of Top-dimensional Part of the Singular Set .............. 58
3.6 Homogeneous Degree Zero ¢ with dimS(p)=n-3 ................ 58
3.7 The Geometric Picture Near Points of sing,uz ....................... 59
3.8 Consequences of Uniqueness of Tangent Maps ....................... 61
3.9 Approximation properties of subsets of R™ ................... ... 62
3.10 Uniqueness of Tangent maps with isolated singularities .............. 67
3.11 Functionals on vectorbundles ................cooiviiiieiniieniina 72
3.12 The Liapunov-Schmidt Reduction ...............c.ooiiiviiiiiiin, 74
3.13 The Lojasiewicz Inequality for F .......c..cooiiiiiiiiiiiiiiinnn. 78
3.14 Lojasiewicz for the Energy functionalon $"~! ...................... 80
3.15 Proof of Theorem 1 of Section 3.10 ...........ccoovviiiiniiinnnnnn, 82
3.16 Appendix to Chapter 3 .........ooiiiiiiiiiiirieinniiiiiiniiaieiins 87
3.16.1 The Liapunov-Schmidt Reduction in a
Finite Dimensional Setting .................c.ocoiviiie. 87
4 Rectifiability of the Singular Set
4.1 Statement of Main Theorems ...........c..ccoviiiiiiiiiiiiiiineinnn, 91
4.2 A general rectifiability lemma. ... 92
4.3 Gap Measureson Subsets of R™ ...........coviiiiiiiiiiiiiiiinn, 104
44 Energy Estimates .............ccooviiiiiiiiiiiiiiiiiiiiiiiiiieenn., 110
45 L2 e8timAeS .....oovuniieerriiiaeeeeiiareeeeeiiretetaaiaeeaeaaa, 120
4.6 The deviation function ¥ .........ccoviiiiiiiiiiiiiiiiiiieninrnennnns 129
4.7 Proof of Theorems 1, 2 of Section 4.1 ..........ccoiiininiiiinnnann, 135
4.8 The case when 2 has arbitrary Riemannian metric .................. 143
Biblography .......ovtiiiiiiiiiii i e e e 147
1T L 150



Preface

This monograph was started at the ETH during the Spring Semester of 1993, when
the author was presenting a Nachdiplom course on regularity and singularity of
energy minimizing maps betwecen Riemannian manifolds.

The aim here (as was the aim of the lectures) is to give an essentially self-contained
introduction to the basic regularity theory for energy minimizing maps, including
recent developments concerning the structure of the singular set and asymptotics
on approach to the singular set.

It is not assumed that the reader has prior specialized knowledge in partial differ-
ential equations or the geometric calculus of variations; a good general background
in mathematical analysis would be adequate preparation.

I want to thank the ETH for the opportunity to present this course in such congenial
surroundings. Most of all I have to thank Norbert Hungerbiihler for his patience,
efficiency and expertise in producing the beautiful BIEX 2¢ files, complete with
figures, from the lectures and the rather scrappy additional material that I from
time to time gave to him.

The support of National Science Foundation Grants DMS-9504456 and DMS-9207704
at Stanford University during part of the preparation of this monograph and during
part of the research described in Chapter 4 is also acknowledged.

Stanford, August 1995 Leon Simon

vii






Chapter |

Analytic Preliminaries

1.1 Holder Continuity

If @ C IR" is open and if @ € (0.1], u : Q2 — R is said to be Holder continuous with
exponent a on S if there is a constant C snch that

(i) lu(z) — u(y)] < Clz —y|*

for every .y € Q. u is called locally Holder continuous on Q with exponent « if
it is Holder continuous on each @ CC 2, where Q CC € means that the closure of
Q is a compact subset of 2. For the Hélder continuous functions on Q we have a
semi-norn, called the Holder coefficient of u. defined by

u(r) — u
!ula:ﬂ = Ssup | (z) (y)l .
r#y. T YeN '1 - ylu

This Holder coefficient is not a norm because it is zero for any constant function:
it is characterized by being the smallest constant C such that (i) holds for every
z,y € Q. We will write C®*(Q) for the bounded Hélder continnous functions on €.
The space C**(£2) becomes a Banach space in the norm

(i) [ufo.a := Null Loy + [w]ar -

This can easily be checked with the aid of the Arzcla-Ascoli Leinma. Finally, we
call u Lipschitz continuous if u is Holder continuous with exponent 1.

Holder continuity turns out to be of fundamental importance in geometric analysis
and PDE. We mention here two facts about Holder continuity which give an initial
hint as to why this might be so:

(a) Scaling: If |u(z) — u(y)| < A|z — y|* for every z,y € 2 and if for given R > 0
we definc the scaled function ¥(z) = R™u(Rz) for z € Q := {R'y : yeQ},
then |i(z) — u(y)] < Blz ~ y|]* for every z,y € Q. In fact we cvidently have

1



2 Chapter 1. Analytic Preliminaries

[w]a:1 = [W],,5- Notice that other kinds of continuity do not have such nice “scaling
invariance” properties.

(b) Dyadic decay of oscillation: For real valued functions u defined on 2 C R"
the oscillation is defined as

oscq u := supu(z) — inf u(z).
zeq e
If u : Br(zo) — R with oscgg,) u < oc and if there is a fixed 8 € (0, 1) such that

(ii) 0SCBy, (1) U < 3 OSCBp(v) u

for every y € Bgrja(xo) and every p < g, then u € C®®(Bpgj2(zo)) with a = —log2

fog
and moreover
[la:Bg/atze) < R7*Co05ChA(zg) U -
Proof: By induction we get from (ii) for k = 0,1,2,... the estimate

-k
(1) 08Cp,, (y) U S 27" 08Cp,(y) U

valid for all y € Bgy2(zo) and all p < &. Now, for z with r := |z —y| < — we can
choose an integer k such that %+! < 2' < 6*. Using (1) with p = R/2, we get

[u(z) — u(y)l < 27 o0sChy ) u < 27F 05CRy(a) U
- o (2| -
= GMOSCBR(,O)U < 6 0( I R l) 0SCBg(ze) U
provided a is chosen so that §* = 1. Thus the claim is established. o

The following result of Campanato is a nice characterization of those L? functions
which are Hélder continuous on a ball in IR™:

Lemma 1 Suppose u € L*(B2r(o)), a € (0,1], 3> 0 and

2 2 (P
(i) nf " /B lu-arss (&)

for every ball B,(y) such that y € Br(xo) and p < R. Then there 1s a Hélder
continuous representative T for the L%-class of u with

i) - 5001 < oot (1), V2w € Bitro),

where C, o depends only on n and a.



1.1. Holder Continuity 3

Remark: Notice that, since fBo(ll) [u—=AP? = fB,(y)(“2 — 2\u + A?), it is easy to
check that the infimum on the left of (iii) is attained when, and only when, A has
the average value \,, := (wnp")! [, B,(y) W Where wy, is the volume of the unit ball
in IR". We make frequent use of this in the sequel.

Proof: First note that

14 -n 2 n_-n 2 n Q2 |4 2a
W @) wesbsre [ u-arsze(5)”
(2) Bo/a(v) i B,) i (R)

where ), is the average of u over B,(y) as in the above remark. Using the given
inequality with p/2 in place of p, we also have

@ )" e <2 (3)

Adding (1) and (2) and using the squared triangle inequality |a — b]® < 2|a — c|> +
2|b — c|?, we conclude that

n - AN
@) [Avp = Aypr2l <2 Wnllzﬁ (ﬁ)
provided that p < R and y € Bg(z¢). (wn, = the volume of the unit ball in R".)
Now for any integer v € {0,1,2,...} we can choose p = 2~“R, whereupon (3) gives
(4) IAyrsze+r = Myrjze| < 27w 2B2700

Since 27 is the v** term of a convergent geometric series, we see that the series
s defined by s = 302 ((Ay.r/2v+1 — Ayms2v) is absolutely convergent. But the j**
partial sum s; is just Ay 2-; g — Ay R, SO we have lim, o Ay 2-+ g exists, and we denote
this limit by \,. Using (4) again we see also that

o0
(5) Pya-vr = Ml € D Pyrjpn = Ayryos| < CB272,

j=v

where C depends only on n and a. Then combining (1) (with p = 2R) and (5),
and using the squared triangle inequality again, we conclude

2a
6 -"/ u-MN2<cs (2,
(6) A (%)

for p=2"YR, v =0,1,.... On the other hand for any p € (0, R] there is an integer
v > 0 such that 27*"'R < p < 27“R, and it evidently follows (since B-vg(y) D
By(y) for such v) that (6) holds (with 2"+22C in place of C) for every p < R/2.

Now take any pair of points y, z € Bg(zo) with |y — 2| < R/4, and apply (6) with
p = 2|y — z| on balls with centers y,z and add the resultant inequalities. Since
B,/2(4(y + 2)) C Bo(y) N By(z) this gives

2a
o [ (e a - A <208 (5)”
B, a(3(y+2)
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Since |A, — A|? < 2lu — Ay|? + 2|lu — A.[?, this in turn gives

R
Now for any pair of points y, z € Br(x) we can pick points 2 = y,... ,23 = z on
the line segment joining y, z such that |z; — z;_;| < R/4, and applying (7) to each
of the pairs z,_), 2; and adding, we deduce finally that

(7) A = As| < 2CB(p/R)* = 2'*°CB (_ly — z')o .

©) Ay = Al < CB° ('y%zl) . Vuy,z € Bg(xo).

On the other hand by letting p | 0 in (6) and using the Lebesgue Lemma, we
have A, = u(y) for almost all y € Bg(z), so the proof is complete (because then
u(y) = )\, is a representative for the L? class of u which by (8) satisfies the required
Holder estimate). m]

1.2 Smoothing

Consider a function p € C*(IR") having compact support in B;(0) with the prop-
erties ¢ > 0 and f Bo? = 1. For o > 0 we define the mollifiers

PNz):=0""p (;) .
Note that o) has compact support in B,(0) and |, Bo(0) ¢ = 1. Now we can use
the mollifiers (®) to smooth a function u € L}, () (2 C R"). Let
Qy := {z € Q : dist(z,090) > o}
and for z € Q,

uy(z) = /n u()e (z - y)dy = (u+ ¢)(2).

u, is evidently smooth on €,. In fact, by virtue of the usual “differentiation under
the integral” lemma, D°u, is given explicitly by

DPuy(z) = /n u(y)D°p (= — y) dy

for all z € Q,. Here, we use the multi-index notation, i.e. a = (ay,...,a,) € Z}
lal

(24. = {0, 1,2,. . }) with |0‘| = ;“=l Q, and D° = al_olaw. Hence, we
| R

have that u, € C*=(€,). Furthermore, the following approximationnstat,ements hold

for o — 0:

(i) u, —»u ae. onf
(ii) u, — u in L'(K) for all compact sets K C Q
(iii) u, — u in LP(K) for all compact sets K C Q if u € L}, (Q)

(iv) 1, — u uniformly on compact sets K if u is continuous.
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(i) follows from the Lebesgue Lemma, (iv) is evident from the definition, and (ii).
(iii) follow fromn (iv) together with the fact that the continuous functions are dense
in L7,

1.3 Functions with L? Gradient

Recall that we say u € L%(Q) has a gradient in L*() if there exist functions
T1,. .. Tn € L%(82) such that

(i) /zpr, = —/uDiga, Vg e CE(Q).
il 0

Of conrse if such functions cxist they are unique; further if u € C'(Q) then (using
integration by parts) such an identity holds with r, equal to the usual partial deriva-
tive Dju, so this notion of L? gradient really does generalize the classical notion of
partial derivatives, and we call r; the L? weak derivatives of u. We denote them,
when they exist. simply by D,u. In this case the identity (i) takes the familiar formn

(ii) / oD = — / uDip, Vo € C2(Q).
9} Q

Using the completeness of the space L2(§?). it is easy to check that the set of all
functions u € L%(Q) having L? gradient, equipped with the inner product

(u,v) := (u,v) 21y + Z(Dju, D;v) 3y,

J=1

becomes a Hilbert space. This space will henceforth be denoted W'2(Q2) and the
inner product norm will be denoted by || - |lyr2¢q). It is an example of the niore
general Sobolev spaces W*»().

Smoothing gives a nice relation between classical partial derivatives and L? partial
derivatives as follows: If u € W'2(Q) then

(iii) Dju, = (Dju),, j=1....,n,0>0.

holds on 2, as one easily checks by using the definition (ii), keeping in mind that.
for fixed z € Q,, ¢! (z — y) is a C=(Q) function of y.Note that on the left hand
side of (iii) D, is the classical derivative of a smooth function, whereas on the right
hand side D; is the weak derivative.

We now present some of the important facts about W2 functions.

First recall that an open subset Q C R" is said to be Lipschitz if for each zy € 90
there exists R > 0 and a bijective function &,, : Bg(ze) — U C IR™ with the
following properties
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1. ®,, is bi-Lipschitz, i.e. ., and ®;} are Lipschitz functions.
2. fU, :=UNR, with Ry := {z = (z!,...,z") : z" > 0} then &,,(Br(zo) N
Q) =U,.

o
—

7 U -
Bg(xo) / // / ‘
RR.
~\_|
o \J

Thus in particular ®,,(892 N Bg(zo)) = U N ({0} x R*™!), so that &,, “flattens”
the boundary near zo. A cube in IR" is an example of a Lipschitz domain (edges
are allowed).

Now, if Q is a bounded Lipschitz domain it is an exercise (based on the use of the local
flattening transformations above together with even reflection across the boundary
of the half-space) to show that there exists a continuous linear extension operator
E: W'3(Q) — W'2(R"),u — u: for every u € W'?(Q) there exists an extension
7 € W'(IR") of u with ||&@|lw12wr) < Callullw:.2¢) where Cq depends only on Q.
Moreover, it is possible to arrange such an extension E such that {z € R" : u(z) #
0} C {z € R" : dist(z,8) < 1}. See e.g. [Ad75] or [GT83, Theorem 7.25] for a
detailed proof of these facts.

Lemma 1 (Rellich Compactness Lemma) Suppose Q is a bounded Lipschitz
domain in R" and uy is a sequence of W'2(Q) with sup, |lu|lwr2@) < co. Then
there 1s a subsequence uy and u € W'23(Q) such that

(a) up — u weakly in W'3(Q),
(b)  ww — u strongly in L¥(S),
(c)  Jo|Dul® < liminf fo | Dupl?.

Remark: In other words, the lemma claims that a bounded set in W'2(Q) is
precompact in L%(f2). In fact the same is true in LP(Q) for all p < 2* = 2% See
e.g. [Ma83] or [GT83, Chapter 7).

Proof: First note that the weak convergence of a subsequence of ux, Du, in L%(Q2)
is a consequence of the general weak compactness of the unit ball in a Hilbert space.

Next note that by the remarks preceding the lemma we can extend ux to % €
W'2(IR") with support contained in a fixed ball B (independent of k) and with
supy ||uk|lwr2mn) < 0o. Now the rest of the proof involves combining the two facts
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that (a) the functions (ux), are bounded and have bounded derivatives on R” with
bounds depending on o but not on k (indeed by using the definition of (ux), we
have sup |D(ux)s| < Co | ukllr < Co|ukljrz < Co~! with C independent of
k), and (b) ||ux — (Uk)sllL2mry < Co Yo > 0, with C independent of both k and
0. (See [GT83, p. 162] for the precise argument, which involves simply using the
definition of (), and calculus.) (a) enables us to apply the Arzela-Ascoli lemma
to (ux)e to find a uniformly convergent subsequence (uy,), (depending on o) which
then by (b) (after dropping finitely many terms at the start of the subsequence)
gives ||u;] — U, |lL2qrn) < Co for each j, €. Since this can be repeated with each
o = 2%, choosing a subsequence depending on i for each i, and since the (i + 1)
subsequence can be chosen as a subsequence of the i*", by taking a diagonal sequence
it then follows that there is a subsequence which is Cauchy with respect to the L?-
norm. By completeness of L? this proves the result (b).

Finally, the fact that a Hilbert space norm is weakly lower semicontinuous implies
that we have ||lullw1.2(q) < liminfy_o ||ur|lw12(q), which implies (c). o

We shall also need the following Poincaré Inequality:

Lemma 2 (Poincaré Inequality) Suppose Q is a bounded and connected Lip-
schitz domain in IR". Then there erists a constant Cq depending only on the domain
Q such that for every function u € W'%(Q) there holds

(iv) / lu— A2 < Ca / |Dul?,
Q Q

where A = |Q|7! [ u.

Proof: There are various proofs of the Poincaré inequality; one nice way to prove
it is to use the above Rellich compactness Theorem. Suppose the assertion is false:
Then for each k, k = 1,2,..., there exist functions u; € W'?(2) such that (iv) fails
with Cq = k:

(*) / |Dwf? < ¢ inf / e = AP = 1 [ e A

with M\ = Ilﬁl Jo ux- Defining

- Uy — /\k
kS
[lux = Akllzzn)

we find that ||vk|L2q) = 1 and || Dvkl|L2q) < # and hence that {v} is a bounded
sequence in W'2(Q). According to Rellich’s compactness result (Lemma 1 above)
there exists v € W'?(Q) such that v — v strongly in L%(R2) for a subsequence
{vw}. Further, since f v, = 0 for all k, we conclude that fn v = 0, and moreover (by
Lemma 1) Dup — Dv (weakly in L?) and || Dv|| 2(q) < lim infx—o || Dvi || L2¢) = O.
Hence, Dv = 0 a.e. on Q. Now it is easy to check that since 2 was supposed to be
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connected, Dv = 0 a.e. implies that v is constant. (For example, Dv, = (Dv), =0
on €, so v, is constant on any connected {2 C €2,, so we conclude v = constant in
Q by letting 0 | 0.) Now |[|v||z3(q) = 1 clearly contradicts the fact that v has mean
value zero. a]

Remarks: By using the special case when Q is the unit ball B,(0) and by changing
scale £ — Rz, one can find the explicit dependence of the constant Cpg(z,) on R;

namely,
R / lu— A2 < CR®™ / |Duf?
Br(zo) Bgr(zo)

for every u € W'2(Bpg(x,)), where C is a constant depending only on n (and not
on R).

Finally we want to state and prove Morrey’s Lemma.

Lemma 3 (Morrey’s Lemma) Suppose u € W'?(Bg(zo)), 8 >0, a € (0, 1] are
constants, and

2a
pz-n/ |Dul? < 3? (%) , Vy € Bgrj(zo), p € (0. g]
By(y)
Then u € C**(Bg,2(20)), and in fact
lu(z) - u(y)| < CB ("—,’{”') . Va,y€ Banlzo),
where C depends only on n.

Proof: Let A\, = (wap") " [ 5,(y) Y- The Poincaré inequality gives

20
o [ w-nrscp [ pur<cs(f)
B,(y) B,(v) R

for each y € Br2(x0) and each p € (0, ';']. Using the Campanato Lemma, we then
have the required result. @]

1.4 Harmonic Functions

Recall that a real function u on a domain Q C IR" is said to be harmonic if it is
C? and if Au = 0, where Au := }°7_| D,D;u, with D, = 35 Thus we can write
Au = div(Du), where Du = (Dyu,. .. , D,u) as usual denotes the gradient of u, and
div ® means Z] D;®’ for any smooth vector function ¢ = (®,...,0").

If we choose a ball Bgr(xo) with closure contained in €, and if we integrate the
identity div Du = 0 over Bg(zo) and apply the divergence theorem, then we can
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check rather easily (see e.g. [GT83] for the details) that harmonic functions have
the mean-value property

u

1
() u(zo) =
wnR™ JBg(zo)

for any such ball Bg(zro). Multiplying (i) by R" and differentiating with respect to
R we get the second version of the mean value property

N 1
1 U\To) = —— u,
(") (o) BT Jsuien

where 0, (= nw,) denotes the measure of the (n—1)-dimensional unit sphere $"-! =
9B,(0) and where Sg(zyp) = 8Bgr(zo). These properties are quite fundamental; for
example using (i’), one can easily obtain estimates for the partial derivatives of a
harmonic function in terms of its L! norm:

Lemma 1 If u is a harmonic function on a domain Q@ C R" and Q cC Q then
u € C*™ and there holds for every multi-indez a

(ii) sup|D%| < Cllullerey ,
@
where the constant C only depends on a and dist(ﬁ,aﬂ).

Proof: Let Ry = dist(,89) and R the mollifier of Section 1.2 having the
additional property that ¢(z) = ¢(]z]). Then, by multiplying each side of (i’) by
R (R) and integrating each side with respect to R from 0 to Ry, we get for every
fixed y € Q that u(y) = [ 97 (z — y)u(z), and hence that

Dl < [ D5 (e - )l )] < sup D) [ .
BRo(U) 1)
This completes the proof, because sup | D*pRe)(z)| = Cpa R{"". a

Remark: In the special case Q = Bg(zo) and § = Byg(zo) (with 8 € (0, 1) given)
one can check that (ii) takes the form

(ii") sup R|D°u| < CpzoR™™ / lul
Bgr(zo)

Bsr(zo)

with j = |a| With a bit of extra effort one can show (by induction on j) that

Cnys S CI% 0 11 for a suitable constant Chs, and from this (by using Taylor polyno-
mial approximation for u) it follows that in fact u is real-analytic. Thus harmonic
functions are automatically real-analytic.
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1.5 Weakly Harmonic Functions

Definition 1 Ifu € W'?(Q), where Q is an open set in R", we say that u is weakly
harmonic on Q if

(i) /nou-ap:o Vo€ C2(Q).

Notice this formally generalizes the notion of smooth harmonic, because if u is
smooth harmonic then we could integrate by parts in the identity fn Auyp =0, thus
establishing (i), and, conversely, if u € C?(Q), (i) evidently implies Au = 0 by virtue
of the arbitrariness of .

In fact H. Weyl proved that the two notions weakly harmonic and classical harmonic
are the same:

Lemma 1 (H. Weyl) Suppose u is weakly harmonic. Then the L? class of u has
a C*™ representative which is harmonic.

Proof: The key point is to note that if u € W'?(2) is weakly harmonic then
(with the notation of Section 1.2) u, is smooth harmonic on Q, for each ¢ > 0.
Let us check this claim first. Notice that by differentiation under the integral in
the definition of u,, we have Au,(z) = [, u(y)A.¢)(z — y) dy. Now by the chain
rule A,¢(z — y) = (—1)?Ayp'(z — y) = Ayp)(z — y), and since p(z - y) (as a
function of y for z fixed in Q,) is C°(§2), we use the definition of the weak derivative
Dju to obtain [ u(y)A:¢(z - y)dy = =37, o Dyu(y)Dyslp(z — y)] = 0 by
definition of weakly harmonic. Thus we have Au, = 0 on 2, as required. Now the
rest of the proof follows casily by letting o | 0 and using the Arzela-Ascoli Lemma
and the bounds 1.4(ii) with u, in place of u. w]

1.6 Harmonic Approximation Lemma

The following harmonic approximation (or “blow up”) lemma will be of fundamental
importance:

Lemma 1 (Harmonic Approximation Lemma) Let B = B,(0), the open ball

of radius 1 and center 0 in R". For each € > 0 there is § = §(n,€) > 0 such that if
feW'¥(B), [(|Df*<1 and

/BDf-Dso

then there is a harmonic function u on B such that [, |[Dul> < 1 and

/If—uI’SE’.
B

<ésup|Dy|, Ve CX(B),
B
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Proof: If this fails for some ¢ > 0. then there is a sequence {fi} C W'?%(B).
fﬂ Il)fkl2 S. 11

(1)

[ oai- Dso| < k™ sup|Dy|
B B
for cach ¢ € C*(B), and such that
@ [1e-u >
B

for every harmonic u on B with [, |Duf? < 1.

Notice that since the same holds with fk = fi — A for any choice of constants A,
we can assume without loss of generality that [, fi = 0 for each k. But then by
using the Poincaré inequality we conclude

limsup / (fel? + 1Dfif?) < o0,
k—oc B

and hence by the Rellich Compactness Theorem (Lemma 1 of Section 1.3) we have
a subsequence fy and an f € W'%(B) such that

(3) iim [ 17 - fuft =0

and Df,y — Df weakly in L?(B). But using this weak convergence in (1) we
deduce that [y Df - Dy = 0 for each ¢ € C*(B), so that f is weakly harmonic
on B, and Weyl’s Lemma guarantees that f is smooth harmonic on B, and hence
(since [ [Df|?> <liminf [ |Dfi|* < 1) we see that (3) contradicts (2). m

1.7 Elliptic regularity

We here establish the regularity theory and a-priori estimates for the Poisson equa-
tion Au = f needed in our later discussion. For more general results (the full
Schauder theory), we refer to (GT83] .

In this section, and subsequently, |u|i.q denotes the usual norm of u € C¥(QQ), i.c.
lulea = 35k [ D ulon, and [Drulag = 3504 [D uain-

The following lemma is fundamental:

Lemma 1 Let u: R" — R satisfy [D?*u)arn < 00. Then there is a constant C,,
depending only on n, such that

{Dzu]u:m" S CnlAu]o;n" .
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Proof: We give a new proof for this fact which is based upon a scaling argu-
ment. Assume the assertion is false, i.e. there exist u; and f; with fi = Au, and
[D*ui)amn < 00 but [fi]amr < [D*urlamn. By definition of [D?ui)amn, for each
k we can choose two distinct points y, zx € R" satisfying

| D?ux(yx) — Dzuk(zk)l
[y — z|® 2 on?

[Dzuklo {R™ -

Let ok := |yx — zx| and A := [D?*ui)a;r~. Since A\x > 0 the following scaling is
possible:

uk(z) Ae 0k2 “ur(yx + o)

fel@) = Ao fulu + on).
The scaled functions satisfy Aty = f; and [D%¥y)a;m~ = 1. Now we investigate the
deviation i of Uy from its 2-jet at the origin: Uk(z) = Uk(z) — 3 j0/<2 f,—‘;D"ik(O).
There holds A#lx = fx — fx(0) and of course still

(1) [D¥tk)amn = 1.

Furthermore we trivially have

(2) D4 (0) =0 for |a] < 2.

Considering the vectors () := |+:Ilk| € S™! we find due to the special choice of
2k — Yk

yx and 2 that

(3) DG > 55

(1) and (2) in particular tell us that {#;} has second derivatives forming an equicon-
tinuous family and has all derivatives of order up to and including 2 equal to zero
at z = 0. Thus from an appropriate version of the Arzela-Ascoli Lemma and the
compactness of S*~! respectively we infer that there exists a function v € C**(IR"),
a vector ( € S™! and a subsequence {k’} such that 4w — v locally in C? and
¢ — ¢ in R™. By the lower semicontinuity of the seminorm |- ],;r~ and (1) we get
[D vJame < 1, and from (2) we get D?v(0) = 0, while D?y(¢) # 0 from (3). Since
[fk]Q R < } we get supg_ |fk fk(O)I < 1R* — 0 for every fixed R and thus
Av = 0 which then implies AD?v = 0. Using the estimate (ii’) of Section 1.4 for
the harmonic function D?v we obtain

sup |D%| < G sup |D%v| = Cn sup | D*» — D*(0)|
Bpr/2(0) R BRr(0) R g

< f [D*]amnR* < C,R*' -0 as R — oo.

Thus D3 = 0 € R", i.e. v is a polynomial of degree < 2. But D?*(0) = 0 and
hence we conclude D?v = 0. This contradicts (3). o

We note that there is also a C'*® version of Lemma 1 which can be proved very
easily by a similar scaling argument:
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Lemma 2 Suppose [Dujom» < 00. Then

[Dulage < Claulzge
where [g];, g~ = inf Z,[ filaim» with the inf taken over all collections fy,. .. , fa such
that g = 3°7_, D, f; (weakly) on R".

We shall need to use the following standard differentiability theory for solutions of
Au = f. A proof can be based on Lemmas 1 and 2 together with mollification. (For
complete details and more general results, we refer to e.g. [GT83, Chapters 6, 8].)

Lemma 3 (Differentiability Theorem) Suppose u € W'?(Bg(zo)) 1s a weak so-
lution of Au = f in Br(xo). Then

(i)  f bounded on Br(zy) = u€ C'(Bgp(xy)) Va<l,

(i) Vae(0,1),ke{0,1,...}: feC(Br(zo) = ue C**22(Bp(zo));

in each case there are corresponding estimates, so that we have the additional con-
clusions

R'™°[Dula:pyp(z0) < C(|ulo;Ba(zo) + R?| flo:Ba(z0))s
wtth C = C(n,8,a), in case (i), and

k+2
Y R\D’ulopys + R0 DMl ypieo) <

j=1
< C('“'QCBR(IO) + RzlflO:BR(J‘o) + R2+H°[Dkflo;8n(m))v

C =C(n,0,a,k), in case (ii).

1.8 A Technical Regularity Lemma

Here we shall prove the following general regularity lemma, on which our later proof
(in Section 2.3) of the e-regularity theorem for energy minimizing maps will be
based.

Lemma 1 (Technical Lemma) Suppose a € (0,1) and 8 > 1 arc given. There
erists & = bo(n,«,3) > 0 such that the following holds: If u = (u',....u") €
W'2(Bg(z0): IR?) satisfies the equation

Au=F weakly in Bg(xo),
where F € L' (Br(zo)) with
(i) |F(z)| € BIDu(z)? a.e. z € Br(zo),
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if u satisfies the “reverse Poincaré” inequality

2-n
(i) B[ urseen [ - ap
B, /2(v) Bo(y)

whenever B,(y) C Br(zo), and if

(ii) R™ |u = Azo.rl® < 82,
Br(zo)

then u € Cl‘a(ﬁn/q(l'o)) unth

1/2
[t)1.Bg)4(z0) + [DUa;Bgsaizo) < C | RT" lu=Aerl®)
/' /' B

R(z0)

where C is a constant depending only on n,«a and 3.
Remark: Notice that Au = F weakly means that

/ S Dyu-Dyp= —/ o F, V€ C®(Ba(zo)).
B Br(zo)

R(Z0) j=)

Before we begin the proof of this lemma, we need to mention the appropriately
scaled version of the harmonic approximation lemma discussed in Section 1.6.

Lemma 2 (Rescaled Version of the Harmonic Approximation Lemma)
For any gwen ¢ > 0 there 15 § = §(n,e) > 0 such that if f € W'3(B,(y)), if
P [o,0) |PfI? < 1, and if |*™" [, .\ Df - Dy| < 8psupp,,, | Dy| for every ¢ €
C=(B,(y)), then there is a harmonic function u on B,(y) with p*>~" pr(v) |Dul? <1
and p™ [5 ) I = Ayl® < €2.

Notice that this easily follows from the unscaled version as in Lemma 1 of Section 1.6;
in fact one just checks that Lemma 1 of Section 1.6 applies to the rescaled function

fo(2) = f(y + p(z — ¥)).
Proof of the Technical Lemma: As in the above remark we have

(1) / Du-Dy = -/ ¢+ F, ¥y € C®(Bgr(xo)).
Br(zo) Br(zo)

Let B,(y) C Bgr(zo) be an arbitrary ball. By using identity (1) with o € C®(B,/2(y)),
and using also the hypotheses (i), (ii), we have

2-n
(&) [  Du-Dp<som sup ol [ ju- P
B,/2(v)

Bya(v) Bo(v)
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Since supg,,(y) lel < psupg, () |Dy| (by 1-dimensional calculus along line seg-
ments in By/(y)), we thus have

2 1/2

-n

@[ pvpgs<(pm [ w-rgt) o s D
By/a(y) By(y) Bya(y)

1/2
where v = £~ 'u, with £ = 3 (p"‘ fB,.(v) u— )‘y.plz) .

Also, we have trivially by (ii) and the definition of v that

. p\2n 2
(3) L / D <1.
(2) B,2(y)

Let € > 0 be for the moment arbitrary. By (2) and (3), we can apply the harmonic
approximation lenina (Lemma 2 above) in order to conclude that there is a harmonic
function w on B,(y) such that

SO A O A

/2(v)

2)

assuming that p=" || B, U~ Ayol? < 82, where § = 8(n.¢) is as in the harmonic

approximation lemma. Now take 6 € (0,3] and note that by the squared triangle
inequality

6  (@n)" /B ( )Iv - w(y)® < 260)7" / (lv = wl® + lw - w(y)l?) -

BDp(V)

Now using 1-dimensional calculus along line segments with end-point at y together
with the estimate 1.4(ii’) with j = 0 (applied to D;w), we have

Bs,(y) oy

sup |w — w(y)|® < (8p sup |Dw|)® < C02p2"'/ |Dw|?.
B, /a(y)
Using this together with (4) in (5). we conclude that
@) [ - w67+ 08,
Byp(y)

where C depends only on n. Writing v = €~ 'u, we have

(8p)™" / i — AP < B2(8-"¢? + C8)pm / b= AP,
Boa(v)

B,(y)

where A = fw(y) is a fixed vector in IR”. Now we choose 8 and e: first select
6 € (0, ) so that C3%6? < 16°*; notice that such 8 can be chosen to depend only on
n,a, 3. Having so chosen 6, now choose € > 0 such that §%60~"¢? < 16%. Therefore

0" [ =l <07 [ = AP
Bo,(y) Ba(y)
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Thus, to summarize, we have shown that if B,(y) C Bg(zo), and if p~" fB.(u) Jlu -
Ayol? < 82, with & = 8(n, @, ) sufficiently small, then

(6) (60)" / =l <7 [ -,
Bo,(y) Byo(y)

where 8 = 6(n,a, 8) € (0, 1]. From now on we assume &, has been so chosen.

Next, let Iy = R™ an(m) [u = As.r|? and note that if Iy < 27763, then, with

p = R/2, we have B,(y) C Br(zo) and -
p'"/ Iu - ’\ro.Rlz <2 < 63 Vy € Bn/g(l‘o).
Bo(v)
Thus, if I < 2762, then
(7 p"‘/ lu— Ay,l* < &, Vy € Brp(zo),
Bo(y)

where p = R/2. But notice that this in particular means that the “starting hypoth-
esis” p™" [, B =M o|? < 83 is satisfied with 8p in place of p, and hence (6) holds
with 8p in place of p (p = R/2 still). Continuing inductively, we deduce that

(8)

R\™" 2 g2ia (R\ " 2 o on
9’5 / lu = Ayorrpal® < 67 3 / [u = Ayrpal® <210
By, g/a(v) Bgr/a(y)

for each j = 0,1,2,..., provided only that the inequality 2"I, < 82 does hold.
Now on the other hand if o € (0, R/2], there is a unique j € {0,1,...} such that
#+'R/2 < 0 < #R/2, and it is then easy to check that (8) actually implies

2a
o / lu = Ayof? < 2722672 (Z2) % Jy Yy € Brp(zo), o € (0,R/2),
Bo(v) R

provided 2"Iy < 62. Then by virtue of the Campanato Lemma (Lemma 1 of Sec-
tion 1.1) we have u € C%*(Bg/,(z)) and

1/2
(9) [uloﬁn/:(to) <C (R-n/ fu— ’\zo.Rlz)
Bgr(zo)

Next we want to show that u € C'(Bg/s(zo)) as claimed in the statement of the
lemma. Since we may change scale, it suffices to prove this in case R = 1; so we
assume here that the hypotheses hold with R = 1. First let B,(y) C B)/2(zo) be
arbitrary. Since u € W'3(B,(y)) N C%(B,(y)), it is standard (see e.g. [GT83]) that
there is a v € C?(B,(y); R?) N C°(B,(y); R?) N W'?(B,(y); R?) which is harmonic
on B,(z,) and which agrees with u on dB,(y). Of course then v satisfies the weak
form of Laplace’s equation on B,(y); that is,

(10) /B ( )Z Djv-D,p =0, Ve CZ(B,(y);RP).
plV) =1
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Taking the difference of the equations (1) and (10), we thus get that
[ Y Dw-vDw=[ ¢ F veeCTBaNR)
Bo(v) =) Bo(v)

Now since u and v agree on the boundary it is easy to check that this is also valid with
the choice ¢ = v —u; here we use the general fact that if a C°(B,(y)) NW?(B,(y))
function is zero on 8B,(y), then it is the limit in the W'2(B,(y)) norm of a sequence
of C°(B,(y)) functions. Thus we obtain

_ 2: -— .
(1) /Bp(v)lD(u o)l /m)(u v)-F<

<Bsuplu—vl [ |DuP<Co / Duf?,
Bp(ll) Bp(ll) Bp(ll)

where we used the fact that supg, ) lu—u(y)| < Cp® (from the Holder continuity of
u proved above) for any y € B,(y) and that, for y, € 8B,(y), Supg, ) v — u(w)| =
SUPpg,(y) [v — v(%)| < nsup|u — u(yo)| < Cp* by applying the maximum principle
to each component v/ of v = (v!,... ,v?). By using the reverse Holder inequality
and the Holder estimate (9), we have

/ IDuf? < Cp? / =Ml < Co = [ Ju— Al
Bo(y) Bay(y) By (x0)

and hence (11) gives

(12)

1/2
o [ pw-vr ot o= ([ esar)
Bo(y) B (z0)

for such p. Now let us agrec that a was chosen in the first place so that 3a > 1,
and that hence 3a = 1 + 24 for some 4 > 0. Thus we have

p"‘/ |ID(u—v)]? < C?p*~2%,  for B,(y) C Bi(zo)-
Bo(y)
Therefore we get for any o < p
o [ 1Du=Dofy)l* <
Bos(y)
<2" / |Du - Dof? + 20~ / |Dv — Du(y)P?
Bs(y) Bo(y)

< 20"‘/ |Du — Dv|? + 20"‘/ |Dv - Du(y)|?
By(v) Bs(y)

<ce (S) p** %+ Co? :u(p) | D)2
o (V.
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By using the inequality 1.4(ii’) with R = p/2 and the harmonic functions D;v — A,
in place of u (A; any constants) we have

a? sup |D*v|> < &% sup |D*vf> +Co®p%p / |Dv — A%,
Bo(y) B,a(y) Bsypsa(v)

with any constant A € IRP. Taking A = Ay, = |B,(y)|~ fB ) D, and using (12)
again, we get

o? sup |D*|? <
Bo(y)

< Co%p? ’"/ |Dv = Ay,|?
B, /4(y)
Co?p2p / |Dv — Dul? + Co?p~2p™ / |Du - A2
Bsp/aly) Bs,/a(v)

2 2
ce (3) p3°-2+c(f) p'"/ |Duf?.
P p Bo(y)

Combining all the above estimates and setting I, := p™™ [, B,(v) [Du — A,y we
conclude

n 2 2
I <ce (5) pe? 4 e (%) p3°'2+C(%) p" / |Duf?.
By(y)

But by the reverse Poincaré inequality (hypothesis (ii) of the technical lemma) we
get

IN

IA

o [ D<o [ ju-dal < cBp
Bo(y) B2,(y)

by the Holder estimate from the first part of the proof. So using this on the right
of the previous inequality we get

I, < sz( ) 3a-2 | o2 (p)2p—2+2a‘

This holds for all 0 < p < 1/8, y € B3/s(xo). Choosing 0 = p*, k:=1+
can rewrite this in the form

(13) a'"/ |Du — Ayof* < Co®, o < (1/8)%, y € Bass(zo),
Bo(y)

n+2 '

where 2y = (28 + 2a — 2)/k > 0 if we choose a close to 1. From this we get
[Du]+.8,,4(z0) < C€ by virtue of Campanato’s Lemma (Lemma 1 of Section 4). In
particular, since || By (z0) |Du|? < A, this establishes SUPB, q(zo) |Du| < C¢, and hence
the equation has the form Au = f with f bounded by C¢ on Bj/s(zo). Then the
general assertion follows by using Lemma 3 of Section 1.7 with u — u(zy) in place of
u, since supg, , (z,) [# — u(zo)| < Clu]a:B,,4(z0) < C€ by (9). (]

Later (in Section 2.3) we shall apply this technical lemma to study energy minimizing
maps.



Chapter 2

Regularity Theory for Harmonic Maps

2.1 Definition of Energy Minimizing Maps

Suppose that € is an open subset of R", n > 2, and that N is a smooth compact
Riemannian manifold of dimension m > 2 which is isometrically embedded in some
Euclidean space IR?. We look at maps u of Q into N; such a map will always be
thought of as a map u = (u',... ,u?) : @ — R” with the additional property that
u(2) C N.

Qc Rn N ’.‘~ R"

We do not assume here that u is smooth in fact we make only the minimal as-
sumption necessary to ensure that the cnergy of u is well-defined. This gives rise to
the following definition:

Definition 1 (i) For 2 and N as specified above, the Sobolev space W,f,f(Q: N)s
defined as the set of functions u € W,",f(Q: IR?) with u(z) € N a.e. € Q.

(ii) The energy Ep,y)(u) for a function u € W,:f(Q; N) in a ball B,(y) := {z :
|z — y| < p} unth B,(y) C N 1s defined by
Enw() = [ 1Du.
Bﬁ(”)

19
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Notice that here Du means the n x p matrix with entries D;u’(:= &u//8z'), and
|Duf?* = 377, 375, (Diw’)?. We study maps u € W'2(B,(y); N) which minimize

energy in Q in the sense that, for each ball B,(y) C Q,
€, (1) < &g, (w),

for every w € W'?(B,(y); N) with w = u in a neighbourhood of 8B,(y). Such a u
will be called an energy minimizing map into N.

Remark: The theory to be developed in the sequel may be applied, after very minor
modifications, to the case when Q is equipped with a general smooth Riemannian
metric 3, | gi,dz'dz? rather than with the standard Euclidean metric; see the further
discussion in Section 4.8 below.

2.2 The Variational Equations

Suppose u is energy minimizing as in Section 2.1, suppose B,(y) C ©, and suppose
that for some § > 0 we have a 1-parameter family {u,}.c(-s5 of maps of B,(y)
into N such that up = u, Du, € L3(), and u, = u in a neighbourhood of 8B,(y)
for each s € (—4,6). Then by definition of minimizing we know £p,()(u,) takes its
minimum at s = 0, and hence

d€g, ) (u,
(') B’:is)(u )|s=0 =

whenever the derivative on the left exists. The derivative on the left is called the
first variation of £p,(y) relative to the given family; the family {u,} itself is called
an (admissible) variation of u. There are two important kinds of variations of u:

Class 1: Variations of the form
(i) u, = ITo (u + (),

where ¢ = (¢',...,¢P) with each (? € CZ(B,(y)) and where II is the nearest
point projection onto N. Notice (see Appendix 2.12.3 below) that nearest point
projection onto N is well-defined and smooth in some open subset W containing
N, and hence u, defined in (ii) is an admissible variation for |s| small enough: see
Fig. 2.1). Now by applying D; to the Taylor polynomial expansion of II we have
Diu, = Dyu + s(dIl,(Di¢) + HessI,(¢, Diu)) + E, where ||E||L1(B,u) < Cs? for
|s| small. Plugging this expression for Du, into the energy £g,(,)(u,) and using
the facts about the induced linear map and Hessian of I given in (iii), (iv), (v) of
Theorem 1 of Appendix 2.12.3, we check that for such a variation the equation (i)
gives the integral identity

(i) /Q Z. (Dau- D¢ — ¢ - Au(Diu, Di) =0
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Figure 2.1: Nearest point projection

for any ¢ as above. Notice that if u is C? we can integrate by parts here and use
the fact that ¢ is an arbitrary C*™ function in order to deduce the equation

(iv) Au + z": A.(D;u, D;u) =0,

where Au means simply (Au!,...,AuP). The identity (iii) is called the weak form
of the equation (iv); of course if u is not C? the equation (iv) makes no sense
classically, and must be interpreted in the weak sense (iii). It is worth noting that,
in case u € C?, (iii) says simply

(iv’) (Au)T =0

at a given point € B,(y), where (Au)” means orthogonal projection of Au(z) onto
the tangent space Ty(;)/N of N at the image point u(z). This follows directly from
the general identity (vi) in Theorem 1 of Appendix 2.12.3.

Class 2: Variations of the form
u,(z) = u(z + s((z)),

where ¢ = (¢'.... ,(") with each { € C®(B,(y)). Then Du,(z) = 3 -1 Diu(z +
s¢) + sDi¢’? Dju(z + s¢), and hence after making the change of variable £ = z + s(
(which gives a C* diffeomorphism of B,(y) onto itself in case |s| is small enough)
in this case (i) implies

X [, . 2 (048, -2 D) D =0

®) 4 y=1

(Notice that in checking this we need to observe that the Jacobian determinant of
the transformation z +— § = r + s((z) satisfies | det(dz*/9€’)| = | det(9€'/0x?)|~" =
1 — sdiv¢ + O(s?).) The identities (iii), (v) are of great importance in the study
of energy minimizing maps. Notice that if u € C? we can integrate by parts in (v)
in order to deduce that (iii) implies (v); it is however false that (iii) implies (v) in
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case Du is merely in L? (and there are simple examples to illustrate this). One calls
a map u into N which satisfies (iii) a “weakly harmonic map”, while a map which
satisfies both (iii) and (v) is usually referred to as a “stationary harmonic map”. The
above discussion thus proves that energy minimizing implies stationary harmonic.
We shall not here discuss weakly harmonic maps, but we do mention that such maps
admit far worse singularities than the energy minimizing maps - see e.g. [Riv92]—
except in the case n = 2 when there are no singularities at all. We show this below
in the case of minimizing maps, and refer to recent work of F. Hélein [He91] for the
general case of weakly harmonic maps.

2.3 The e-Regularity Theorem

We can now state the Schoen-Uhlenbeck regularity Theorem:

Theorem 1 (e-Regularity Theorem) Let A > 0,0 € (0, 1). There emists € =
e(n,N,A,8) > 0 such that if u € W'(Q; N) is energy minimizing on Bgr(zo) C Q
and if R*" JBa(z0) |Dul®> < A and R™ JBa(zo) 12 = Azo.rl* < €%, then there holds
u € C°°(Bgya(x0)), and for j =1, 2, ... we have the estimates

R sup |D’u| < C(R"‘/ lu = Ago.r|%)"2,
Br(zo)

Bsr(z0)

where C depends only on j, A, N, 6, and n.

Remark: It suffices to prove the lemma for some fixed 6 (e.g. & = }). To see
this, suppose the lemma is proved with § = %, and select @ = Q(n,0) and points
Y1s- - Y@ € Bar(xo) such that Byr(ze) C U?B(l_g)n/g(y,). Thus we can apply the
theorem with 6 = %, with y; in place of zo, and with (1 — 6)R in place of R. Since
B1-6)r(y,) C Br(zo) for each j, the required bounds on supg, . (,,) | D’u| then follow
because fB(t-a)n(v:) |u - /\y,.(l-O)Rlz = fBu-om(V,) |u~ '\’°'R|2 < fBR(zo) v — ’\Zkalz‘

Proof of Theorem 1: In view of the above remark, it will suffice to prove the
theorem in the special case § = },. According to the discussion in Section 2.2 above
we know that u satisfies Au + 37, A,(D,u, D,u) = 0 weakly in Bg(zo). But this
can be written in the form Au = F, where |F| = | 3_7_, Au(Dju, D;u)| < C|Dul?
with C = nsupyen.rer,n.r=1 |4y(7,7)| depending only on n and N. Thus the
technical Lemma 1 in Section 1.8 gives immediately that u € C'*(Bg/4(zo)) for any

a € (0,1), and
1/2
Iu - Azo.R'z) *

provided u satisfies the reverse Poincaré hypothesis (ii) from the technical lemma.
The fact that u € C*°(Bg/s(xo)) (and the stated estimates) now follows from
Lemma 3 of Section 1.7 as follows:

(1) lull:Bn/A(-‘l’o) + [Dula;Bnu(to) < CunNa (R_"L

r(z0)
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We have

(2) Au= Zn: Au(Dju, Dju) .

i=1

Since N is smooth, we know that Ay(-,-) is a smooth function of its arguments,
and, since u € C"*(BRg/4(xo)), it then follows that 2;;, Au(Dju, Dju) is of class
C%®(Bgya(x0)). That is the right side of (2) is in C%2(Bpys(z0)) and hence, by
Lemma 3 of Section 1.7, we deduce that u € C%®(Bgr/4(zo)). But then the right
side of (2) is of class C'*(Bg/4(zo)) and hence by Lemma 3 again we have u €
C32(Bgry4(0)). Continuing inductively we conclude that u € C*(Bg/s(0)) as
required. Furthermore at the same time (using the estimates of Lemma 3 of Sec-
tion 1.7), we can inductively check that

1/2

R sup |Du<C (R‘"/ [u— /\:o,Rlz)
B(§+1)R(:°) Br(zo)

J

foreach j =1,2,... .

Thus the theorem (with 6 = }) is proved modulo checking that there is a “reverse
Holder inequality” like that in hypothesis (ii) of the technical lemma (Lemma 1 in
Section 1.8). We defer the proof of this until Section 2.8, when we shall have more
theory at our disposal.

2.4 The Monotonicity Formula

An important consequence of the variational identity (v) of Section 2.2 is the “mono-
tonicity identity”

ou
(i) pz-n/ IDulz _ a?—u/ lDulz - 2/ R’z-nlﬁ 2’
Bo(v) Bo(y) By(y)\Bo(y)

valid for any 0 < ¢ < p < po, provided Bp,(y) C Q, where R = |z — y| and 8/8R
means directional derivative in the radial direction |z —y|~}(z — ). Since it is a key
tool in the study of energy minimizing maps, we give the proof of this identity.

Proof: First recall a general fact from analysis—Viz. if a; are integrable functions
on B, (y) and if me(v) 3i=19°D;¢ = 0 for each ¢ which is C* with compact

support in By, (y), then, for almost all p € (0, o), fB’(v) Yia1a;D5¢ = fas,(y)" -al
for any ¢ € C®(B,(y)), where a = (a',... ,a") and (= p~!(z — y)) is the outward
pointing unit normal of 8B,(y). (This fact is easily checked by approximating the
characteristic function of the ball B,(y) by C* functions with compact support.)
Using this in the identity (v) of Section 2.2, we obtain (for almost all p € (0, po))
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that

/B Y (IDul?8;, - 2Dsu - Dyu)Di¢? =

(v) i9=1

- /8 S (IDul6; - 2D - Dyl (& - 4)CP.

Bo(y) i 3=1

In this identity we choose (?(z) := 27 — 3, so D;(? = §;; and we obtain

2 1 au 2
(n- 2)/ |Dul* = p~ / |Duf? - 2 ‘— .
) 0B,(y) 9R

Now by multiplying through by the factor p' " and noting that faa, f= ﬁ 1, %)
for almost all p, we obtain the differential identity
2)

i p2-n/ |DU|2 =2i / R2—n
dp B) dp \ JB,wn\B. )

for almost all p € (0,p) and any fixed choice of 7 € (0,p). Since prf is an
absolutely continuous function of p (for any L'-function f), we can now integrate
to give the required monotonicity identity. ]

Ou

OR

Notice that since the right side of (i) is non-negative, we have in particular that
(ii) P / |Dul? is an increasing function of p for p € (0, pp),
Bo(y)

and hence that the limit as p — 0 of p>™ [, |Du|? exists; this limit is denoted
©.(y) and will be further discussed in the next section. An important additional
conclusion, which we see by taking the limit as ¢ | 0in (i), is that [ B,(v) R Ig”—;‘,l2 <
oo and

ul?
3R

(i) o / Duf—0uy) =2 [ R
By(y) Bo(y)

2.5 The Density Function
Definition 1 We define the density function ©, of u on Q by

(i) 0.(y) = lim g™ / Dul?.
pl0 Bp(ﬂ)

As we mentioned above, this limit always exists at each point of Q for a minimizing
map u. We shall give a geometric interpretation of this below.
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For the moment, notice that the density ©, is upper semi-continuous on ; that is

(ii) Yi — y € Q= 6,(y) = limsup B,(y;).
j—oo

Proof: Let ¢ > 0,p > 0 with p + ¢ < dist(y,0Q). By the monotonicity (ii)
of Section 2.4 we have 6,(y;) < p*™ an(w) |Du|? for j sufficiently large to en-
sure p < dist(y;,090). Since B,(y;) C B,tc(y) for all sufficiently large j, we
then have ©,(y;) < p*™ fB,,+,(y) |Du|? for all sufficiently large j, and hence we
get limsup;_,, ©,(y;) < p*" fB,,J,,(y) |Dul®>. Now, by letting ¢ | 0, we conclude
limsup;_., ©u(y;) < P*™" |, B,() |Du|?, and the required inequality follows by taking
the limit as p | 0. D

Before we enter into the proof of the reverse Poincaré inequality for energy minimiz-
ers we need a lemma due to Luckhaus (see [Lu88] and also [Lu93]) which extends
Lemma 4.3 of [SU82].

2.6 A Lemma of Luckhaus

We use the following definition:

Definition 1 (1) If v € L?(S""!;IRP) then we say v € W13(S"~!; IRP) if the ho-
mogeneous degree zero extension ¥(rw) = v(w), w € S*Y, r > 0 is in W2 in some
neighbourhood of S™~'. (Actually if n > 3 this is the same as saying that ¥ is in
W12(B,(0); RP).) We say that v € W'?3(S"Y; N) if v € W'?(S™); IR?) and if
v(S™ 1) C N.

(2) Similarly v € L*(S™! x [a, b]; IR?) is said to be in W'?(S"~! x [a, b]; RP) if the
homogeneous degree zero extension of v(w,t) (with respect to the S*! variable w)
is in W'2(U x [a, b]; RP) for some neighbourhood U of S™~!.

Figure 2.2: Luckhaus’ lemma

We now state the Luckhaus lemma depicted in Figure 2.2 above.
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Lemma 1 Suppose N is an arbitrary compuct subset of R?, n > 2, and u,v €
W1'2(S"-1; N) in accordance with the above definition. Then for each € € (0,1)
there is a function w € W'3(S"! x [0,¢]; RP) such that w agrees with u in a
neighbourhood of S™~! x {0}, w agrees unth v in a neighbourhood of S~ x {e}

/ [Tuwl? < Ce / (IVul? + [Vef2) + Ce-! / fu - of?,
Sh=1x[0,] s §n-1

n-1
and

dist?(w(z, s), N) <

1/2 1/2
Cel-n ( / Vuf? + |Vv|2) ( / u — v|2> +Ce / e — of?
Sn-1 Sn—1 Sn-1

Jor a.e. (z,s) € S™ ! x [0,¢]. Here V is the gradient on S™~! and V is the gradient
on the product space S"! x [0,¢].
We will give the proof of this lemma in the appendix of Chapter 2.

Now we want to establish some useful corollaries of Luckhaus' Lemma.

2.7 Corollaries of Luckhaus’ Lemma
First we mention the following important fact about slicing by the radial distance
function:

Remark: Suppose g > 0 is integrable on B,(y). By virtue of the general identity
pr(v)\B,/z(u)g = fp?Z‘f&B,(v) g) do, we see that for each 6 € (0,1)

(i) / 9< 20"'/)"‘/ 9
8B, (y) Bp(y)\B,/2(y)

for all 0 € (§,p) with the exception of a set of measure %E. (Indeed otherwise the
reverse inequality would hold on a set of measure > ‘-’22 and by integration this would

. P _ < ar
8Ve fo,u0\8,200 9 < Jor2(Jomo) 999 = Jo,40\8, () 9: @ contradiction.)

‘urthermore. if w € W!#(€, R) (identified with some fixed chosen representative
for the L? class of w), then for each ball B,(y) C € and each 6 € (0.1),

(i) wo € WHS™ i R)and [ Do fdw <
Su~l

< as—n/ |Dw|2 < 20—|p2—n/ tiiz
9B, Bo(y)\By2(y)

for all o € (p/2,p), with the exception of a set of o of measure Q,f, where w(g) is
defined by w,)(z) = w(y + ow), w € S*~!, and where D,, means gradient on S™~!.
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Corollary 1 Suppose N is a smooth compact manifold embedded in IR and A > 0.
There are § = 8p(n, N,A) and C = C(n, N, A) such that the following hold:

(1) If we have € € (0,1) and if u € W'2(B,(y); N) with p*™" fB,(v) |Vu|? < A, and
€™ [, e Ayol? < 83, then there is o € (2, p) such that there is a function

w = w, € W'3(B,(y); N) which agrees with u in a neighbourhood of dB,(y) and
which satisfies

0’2_"/ |Dw|? < ep""/ |Dul?® + e"Cp'"/ [u = Ay l2
Bs(y) By(v) By(v)

(2) If € € (0,8), and if u,v € W'3(B14¢),(y) \ Bo(y); N) satisfy the inequalities
P b yrounB (DU + |1DVP) < A and e [ g lu = < &,
then there is w € W'2(B(14¢),(y) \ B,(y); N) such that w = u in a neighbourhood

of 0B,(y), w = v in a neighbourhood of 0B(14¢),(y), and

p'z—n/ IDw|2 <
B(146)o(U\Bo(v)

< cp / (|Duf? + |Dof2) + Ce=2p~" / u — of?.
B(146)o(¥)\Bo(y) B(14e)o(y)\Bo(y)

Figure 2.3: Corollary 1(2)

Proof (1): According to the above remark, we can choose o € (§f ,p) such that
ulos, ) € W'*(Bs(y); N),

(1) o [ IDup < cp / |Dul?
6B, Bo(y)\B,a(v)
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and such that
(2) a""/ lu = Ay, < Cp'"/ lu= Ay, |2 < C8e™.
8B, (y) Bo(y)\B,/2(y)

Also note that, since u(B,(y)) C N, dist?(\,,, N) < |u(z) — A,,|? for each z €
B,(y). Thus integrating over B,(y) we have

dist? (A, N) < Cp"'/ [u = Ay,|2 < C8E™.
Bo(v)

We can thus choose A € IR? such that

3) AEN, =\ 2P<Cpo™ [u— A2 < C8%™.
VP B,(») VP 0
PV,

Now let i be defined on S™~! by @(w) = u(ow). Then in view of (3) we can apply
Lemma 1, with Ncs, = {z € R? : dist(z, N) < C&} in place of N, with @ in place
of u and with v = ), in order to deduce that there is a wp : S®~! — IR? such that
wo = u in a neighbourhood of S"~! x {0}, we = X in a neighbourhood of S™~! x {¢},

(4) / Vwol? < Ce / Vai[? + Ce-! / i = AP
Sn-1x(0.€] gn-t sn-1

and also dist(wo(z, s). N¢s) < Cé(',/2 by using (2), (3) in the second conclusion of
Lemma 1. where C = C(N,A,n). Now we can suppose (by taking a smaller § =
bo(n, N, A) if necessary) that Cé(;/ 2< a, where a > 0 is such that the nearest point
projection IT onto N is well-defined and smooth in N, = {z € R?: dist(z, N) < a}.
So finally we can define w € W1?(B,(y); N) by taking w(rw) = u(rw) for r € (o, p),
w(rw) = Nowg(w,1—1/0) for r € ((1—¢)o,0), and w(rw) = A for r € (0, (1 —¢)o).
Since d(IT o wp) = dll,q(z.s) © dwp it is then easy to see (with the aid of (2), (3), (4))
that this is an appropriate choice for w. So the proof of part (1) is complete.

Proof of (2): To prove part (2) we first note that by (i), (ii) above there is a set
of g € (p,(1 + §)p) of positive measure such that

(5) o5 / (IDuf? + Do) < Cp2me! / (IDuf? + |Dvf?)
8Bo(y) B,

(l+t)p(ll)\Bp(ll)

and
(6) a""/ lu—v]? < Cp'"e'I/ |u—v]? < C&e*™ .
8B, (y) Bi14+0)p(W)\Bo(v)

Also, by (ii) we know that almost all of these o can be selected so that u,v €
W'2(8B,(y); R?). Now we can apply the Luckhaus lemma (with £/4 in place of ¢)
to the functions #(w) = u(ow) and ¥(w) = v(ow), thus giving @& on S™~! x [0,&/4]
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with @ = ¥ in a neighbourhood of S"~! x {0}, @ = ¥ in a neighbourhood of

Sm1 x {e/4}),
(™M

/ (Va2 < Ce / (Va2 + |V3]?) + Ce™! / li — 2
Sn-1x[0,e/4) Sn-1 §n-1

< Cea:""/ (|Du)® + |Dv)?) + Ce"o""/ lu —v?
88, 88,

<cp / (IDuf? + |Dvf?) + Ce~2p™ / fu = of?
B(14¢)o(Y\Bo(y) B(14e)p(V\By(y)

by (5) and (6), and
@®)

supdist?(w, N) <

1/2 1/2
C ( / (IVa)? + |Vt‘;|2)) (e”" / |& — f;|2) +e" / |& — f2
sn-t sn-1 sn-1

Again by (5) and (6), the right side here is < Cép with C = C(n, N, A), and so for
6o = bo(n, N, A) small enough we conclude that @ maps into the same neighbourhood
N, as in the proof of part (1) above. Now we can define a suitable function w,
first on the ball B(14./2)0(y); we let w(z) = Now(w,r/o0 — 1), withr = |z - y| €
(0, (1+€/4)0), w(z) = u(z) for |z-y| < 0, w(rw) = v(Y(r)w) for r € ((1+€/4)0, (1+
€/2)o, where ¥(t) is a C'(IR) function with the properties ¥((1 + ¢/4)0) = o,
P((1+¢€/2)0) = (1+¢€/2)o and t|y/'(t)] < 2 for t € ((1+¢/4)a,(1+€/2)0). In view
of (7) it is straightforward to check that this satisfies the inequality stated in the
lemma. (]

2.8 Proof of the Reverse Poincaré Inequality

In order to complete the proof of the e-Regularity Theorem of section 2.3 we still
need to establish the reverse Poincaré inequality, i.e. the lemma

Lemma 1 If u is energy minimizing in the sense of Section 2.1, if A is a given
constant, and if R*™ [, B(zo) | DUl* < A for some ball Br(zo) with closure contained

in Q, then
pz_"/ |Dul? < Cp_"/ lu = Ayl
B,a(v) By(v)

for each y € Bgy2(x0), p < R/4. Here C = C(n,N,A) > 0.

Proof: For any p < R/2 and y € Bpg2(zo) we have by monotonicity ((ii) of

Section 2.4) that

@ /[ <@ [ pup s [ <o
Bo(y) B

r/2(Y) BRr(zo)
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Take a fixed pp € (0, R/2] and y € BR/Q(IO) We want to prove the inequality
o, o) |Dul?> < Cps™ [ (o) 12— Ao.no|2- By (1) there is no loss of generality
in assuming

() " /B fu = Mo ol? < €,

po(lm)

where ¢ is to be chosen (small) depending only on n, A, N (and not depending
on py, R, yo or u); because if the reverse inequality held, then by (1) we would
trivially have the required inequality with constant C = 2"A/e2. So from now on
we assume (2), subject to the agreement that we must eventually choose a fixed &g
depending only on n, N, A.

Let 6 € (0,1) and let ¢ € (0,1) in (2) (depending for the moment on §) be at
least as small as 6”6y, where &y is as in Corollary 1 of Section 2.7. We can thus
use Corollary 1(1) of Section 2.7 (with 8 in place of €) to obtain the existence of
w € W'¥(By(); N) and o € (3, py) such that

o [ et sogn [ 10w 4sCH" [ - dmal
Bo (o) Bog(wo) Bog(vo)

with w agreeing with u in a neighbourhood of B, (y,). Using the energy minimizing
property of u on the ball B,(yo) we get

3)
g / Dy < o* [ Dwl?
B3y /4(v0) Bs(wo)

<6p2 ™ / |Duf® + C6 p™ / = Ayopol?
Bvo(llo)

Bpo(llo)
< 6N +C&* 182,
Notice that then

(1) P / IDu? < C6, C=C(n,N,A),
Bo(y)

for any ball B,(y) with y € B,y 2(y0) and p < &, because for such a ball we have
p" fs,(y) |Du|? < (po/2)*™ prou(v) |Du|? < 4""2p3 " I, osa(vo) | Du|? by virtue of
the monotonicity formula and the inclusion B, /4(y) C Bg,,o/.,(yo) Then (keeping in
mind the arbitrariness of 6) by the Poincaré inequality we deduce from (4) that

(5) o [ =gl 2 [ D <
By(v) By,(y)

for all such balls B,(y), provided only that the original inequality (2) holds with
suitably small €9 depending only on n, N, A, and 6. Thus for any given € > 0 and
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with § chosen small enough (depending on n, N, A, €), we can repeat the argument
leading to (3), with p, y in place of py, yo, in order to deduce

© o[ pupscer [ pupeceton [ -l
By/a(v) Bo(y) By(y)

provided only that p < py/8 and the original inequality (2) holds with € small
enough, depending only on €, N, A, and n. In particular, assuming such a choice of
€o, this holds for arbitrary sub-balls B,(2) with By,(z) C B,(y); thus

02""/ |Duf? < Ceo""/ |Dul? + Ce"o"'/ [u = Aol
B, /2(2) B, (z) B, (z)

for each ball B,(2) such that By, (2) C B,(y) (and this holds for any ball B,(y) with
p < po/4 and y € B,y/2(10)), and hence

(7 02/ |Du)? < Csaz/ |Du)? + Ce™! / lu = Ay,l?
B /a(z) Bo(2) Bo(2)

< 0502/ |Dul?® + Ce~'1,
Bo(z)

where Iy = [ [u— Ay l*

Now in view of the arbitrariness of the balls B,(z) we claim that this implies the
required reverse Poincaré inequality on B,(y). To see this we need the following
abstract lemma.

Lemma 2 Let B,(y) be any ball in R™, k € R, v > 0, and let ¢ be any [0,00)-
valued convez subadditive function on the collection of conver subsets of B,(y); thus
v(A) < Z:’:l ¢(Aj) whenever A, A,,... ,An are convez subsets of B,(y) with A C
UN.,A;. There is o = €o(n, k) such that if

0*¢(By/2(2)) < €00*¢(Bs(2)) + 7
whenever By,(2) C B,(y), then

P*@(By2(y)) < Cv, C =Cl(n,k).
We give the proof of this below, but first we explain how it is used to complete the
proof of the reverse Holder inequality.
In view of (7) we may apply the lemma in the special case p(A) = [, |Duf?, v =
Ce 1), Ce = ¢ (C as in (7)) and k = 2, thus giving

® P [ D sce [ jusap
Bp/?(y)

By(y)
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provided p < py/4 and y € By, /2(yo). Finally since B,,/2(y) can be covered by balls
Booss(y;). 3 =1,...,Q with Q = Q(n) and y; € By /2(%), it is then clear that the
reverse Holder inequality for the ball By, (yo) follows by setting p = py/4 and y = y,
in (8) and then snmming over j. (Keeping in mind that fB’o,‘(v’) lu = Ay, poral® <

fam(m) = Ao )
Thus to complete the proof we have only to give the proof of Lemma 2.

Proof of Lemma 2: Let

Q= sup 0*p(B,(2)) (< (p/2)*¢(B,(y)) < ),
{Bo(2)" B?o(z)CBv(U))

and then take an arbitrary ball B,(2) with By,(2) C B,(y). Notice that such
a ball can be covered by balls B,/4(z), i = 1,...,S, with 2; € B,(z) and with
B,(z;) C B,(y); further we can evidently bound the number S by a fixed constant
depending only on n.

Suppose for a moment the given inequality holds with ¢ in place of o, with ¢
to be chosen depending only on n,k and not depending on 4. Then using this
inequality with 2, in place of z, and /4 in place of o, summing over i, and using
the subadditivity of ¢ we have

o*p(B,(z)) < 4*¥¢SQ + 4*Sy.
Taking sup on the left we thus have
Q < 4%¢SQ + 4* S,
whereupon choosing ¢ = go(n, k) such that 4%¢,S < %, we have
0*p(B,(2)) < 4**'8,

for each ball B,(2) with By,(2) C B,(y), where C depends only on n, N, A. Taking
z=yand 0 = § in (7) we thus have the required conclusion with C = 4*+1S and
€ = l/(4k+lS). a

2.9 The Compactness Theorem

There is also a nice compactness theorem for energy minimizing maps which is due
to Luckhaus (partial results had been obtained earlier by Schoen-Uhlenbeck [SU82]
and Hardt-Lin [HL87]), as follows.

Lemma 1 If {u,} is a sequence of energy minimizing maps in W'(Q; N) with
sup, pr(Y) |Du,|? < 0o for each ball B,(Y) with B,(Y) C Q, then there is a subse-
quence {u,} and a minimizing harmonic map u € W'*(Q; N) such that u, — u in
W'%(B,(y); RP) on each ball B,(y) C Q.
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Remarks: (1) In particular the energy |, B,(Y) | Duj|* converges to |, B,(Y) | Du|? for
cach ball B,(Y) C Q.

(2) Notice that, by the Rellich Compactness Lemma (Lemma 1 of Section 3) for
bounded sequences of functions in W2, there is a W,5%(£2, RP) function u such that
uj converges in L? to u on compact subsets of Q2 and Duj converges locally weakly
in L? to Du in Q. Of course then u inaps into N (in the sense that u(z) € N
a.c. T € ) because a subsequence of the subsequence u; converges pointwise a.e. to
u. Thus the main content of Lemma 1 is that Duj converges strongly in L? and
that u is minimizing.

The main difficulty in proving these latter facts is that on a given ball B,(y) with
closure contained in €, the values of u; and u differ slightly near the boundary
0B,(y), and so we are not able to directly use the definition of energy minimizing.

However we now have at our disposal Corollary 1(2) of Section 2.7, and this is
exactly what we need to compare energies of u, u; in a sufficiently precise manner,
even though the boundary values do not coincide.

The fact that Duj» converges in L? locally on Q is originally due to Schoen-Uhlenbeck,
who used the regularity theorem to establish it. This approach however does not
establish the fact that u is energy inimizing; this was not proved in full generality
until the paper [Lu88|.

Proof: As in the remark above, there is a subsequence {u;} (henceforth denoted
simply {u,}) and u € W,;*(2; N) such that u; — u in L? and weakly in W2 locally
on Q. Let B, (y) C Qandlet 6 > 0 and 6 € (0,1) be given. Choose any M €
{1.2,...} with limsup g2 ™" me(v) |Du,|* < Mé, and note that if € € (0, (1 —8)/M)
we must have some integer £ € {2,... .M} such that

2-n

Po |Du,-|2 <é

‘/890(04-“)(U)\Bao(0+(l—2)z)(v)

for infinitely many j, because otherwise we get that pj™" me(v) |Du;|* > Mé for

all sufficiently large j by summation over ¢, contrary to the definition of M. Thus
choosing such an ¢, letting p = po(0+(€—2)¢), and noting that p(1+¢€) < po(6+¢€e) <
Po, we get p € (0py, po) such that

(1) R / |Duf? < 6
Bo(14+6)(W\Bp(y)

for some subsequence j'. Of course then by weak convergence of Duj to Du we also
have

() " / |Dul? < 6.
By146)(W\Bp(y)

Now, by Corollary 1(2) of Section 2.7, since fﬁm(v) Ju — u;e|? — 0, for sufficiently
large j' we can find wy € W'?(Byu.4¢)(y) \ Bo(y); N) such that wjy = u in a
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neighbourhood of dB,(y), wj» = uj- in a neighbourhood of 3B,1+¢)(y), and

@3 / |Duwy[? <
B(l+¢)p\BP(v)

<ci [ (IDuf? + | Duy|? + €2p~2u - ugl?),
B(14+)o(¥\Bo(v)

where C depends only on n,N. Now let v € W'?(By, (y); N) with v = u in a
neighbourhood of 8By, (y), extend v to give v in W'?(B,(y); N) by taking v = u
on B, (y)\Bsp(y), and let uj: be defined by

uj on Bpo(y) \ B(I+e)P(y)
u, = wjr on Bye)(y) \ Be(y)
v on B,(y).

Then by the minimizing property of u, we have

(4) / |Duy? < / \D; 2
B(14¢)o(v) B(1+)o(V)

< / DV + / |Dw; ?,
Bo(y) B(14¢)o(¥)\Bo(y)

and hence by (1), (2) and (3)
6) o / |Duf? < liminf p*~" / |Duj? < p*" / |D3[? + C6,
Bo(v) I Bo(y) Bo(v)

where C = C(n, N), and hence

o / Duf? < 2 / |Dvf?.
Bopy (V) Bopg (V)

Since 6§ > 0 was arbitrary, this shows that u is minimizing on Bg,,(y), and in view
of the arbitrariness of 8 and py, this shows that u is minimizing on all balls B,(y)
with B,(y) C Q.

Finally to prove that the convergence is strong we note that if we use (5) with v = u,
then we can conclude

lim inf g2 / |Du, 2 < " / \Dul? + C8,
jmoo Bo(v) Bo(y)
and hence, in view of the arbitrariness of 8 and §,
o timint [ DwP < [ Dl
I7% JBp, (v) Boy(v)

for each p; < pp. Evidently it follows from this (keeping in mind the arbitrariness
of pp) that

(6) liminf [ Dy < / |Dul?
Bo(y)

J—e Bo(v)
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for every ball B,(y) such that B,(y) C Q. Then since

/ |Du, — Du® = / |Du)? + / |Duj[* -2 Du - Du,,
Bo(y) Bu(y) Bo(v) Bo(v)

we can evidently select a subsequence which converges strongly to Du on B,(y).
Since this holds for arbitrary B,(y) C Q. it is then easy to see (by covering Q by a
countable collection of balls B, (y,) with B, (y;) C Q) that there is a subsequence
such that Duj converges strongly locally in all of Q. @]

2.10 Corollaries of the e-Regularity Theorem
First we need to define the regular set reg u and the singular set singu of u:

Definition 1 If u € W'23(Q; IRP), Q an open subset of R, then
regu = {r € Q: u is C* in a neighbourhovod of r}
is the regular set of u, and
singu := Q \ regu

is the singular set of u.

Remark: Note that by definition reg u is an open set, whereas sing u is a (relatively)
closed set in Q. We show below in Lemma, 1 that sing u is small- of codimension 2.
Later (in Chapter 3) we improve this even further.

Corollary 1 There czists € > 0, depending only on n, N such that if B,(y) C Q
and if P>~ [ ) |Duf? < ¢, then y € regu and supg, .,y #1D’u| < C for each
7=0,1,2,..., where C depends only on j,n,N.

Proof: The Poincaré inequality (Lemma 2 of Section 1.3) tells us that

inf p~" / lu=A?<Cp*™ / |Duf? < Ck,
Al B,(y) B,(v)

and hence Corollary 1 is a direct consequence of the e-regularity theorem (Theorem 1
of Section 2.3). a

Now we show that the regularity theorcm gives a nice way of characterizing of the
regular set:



36 Chapter 2. Regularity Theory for Harmonic Maps

Corollary 2 ©6,(y) =0+ y € regu.

Proof: “<" follows trivially from the fact that u smooth near y implies |Dy] is
bounded near y, while “=” follows directly from Corollary 1. (]

The next corollary shows that the singular set of the energy-minimizing map u is
actually quite small:

Lemma 1 [f u € W'¥(Q; N) is energy minimizing in Q then H"%(singu) = 0.
(In particular singu = @ in case n = 2.)

Remark: Here H" 2 denotes (n — 2)-dimensional Hausdorff measure. Thus the
claim of the above lemma is that for every € > 0 there exists a countable collection
of balls {B,,(y;)} with singu C U; B, (y;) and ¥_; 0} % <e.

Proof: Let K be a compact subset of Q, 8y < dist(K,d52). For y € singun K we
know by Corollary 1 that

(1) / Dul? > ep™?
Bﬂ(y)

for all p < 8. For fixed § < 8, pick a maximal pairwise disjoint collection of balls
Bolg(y,)jﬂmj with y; € K Nsingu; that is, pick y; € K Nsingu, j =1,...,J,
such that Bss2(y,) N Bs2(y:) = @ for all i # j and such that J is the maximum
integer such that such a collection {y;} exists. Then the collection {Bs(y;)} covers
K Nsingu:

) K Nsingu C U, Bs(y;),

because if we could find z € K Nsing u\(UJJ-=,Bg(yj)), then we would have pairwise
disjoint balls Bss2(w1), ... , Bs;2(ys), Bsj2(z), thus contradicting the maximality of
J. Using (1) with 6/2,y; in place of p,y and summing over j we then have

3) J6? < one! / |Du? < 2%~ [ |Duf?,
UBs(ys) Qs

where Qs = {z : dist(z, K Nsingu) < §}.

In particular
J&" < 276%™ / |Duf?,
Qs
which, since Bs(y,), j =1,...,J, cover all of singuN K, and since we can let § | 0,

shows that sing uNK has Lebesgue measure zero. But then [, |Du|> — 0as§ | 0by
the dominated convergence theorem, and hence (3) implies that H*~2(singunK) =
0. Since K was an arbitrary compact subset of  this shows that H*~2(singu) = 0
as required. (m}
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Figure 2.4: The singular set

2.11 A Further Remark on Upper Semicontinuity
of the Density ©,(y)

Notice that if we use the result of the compactness lemma (Lemma 1 of Section 2.9),
and a very minor modification of the argument used to prove 2.5(ii), then we deduce
that ©,(y) is actually upper-semicontinuous with respect to the joint variables u,y
in the sense that if y; — y € L2 () and if {u,} is a sequence of energy minimizing
maps from © into N with locally bounded energy in €2 and locally converging in L?
(hence in W2 by the compactness lemma) to u, then 6,(Y') > linsup;__, 64,(y;).
We use this frequently in the sequel.

2.12 Appendix to Chapter 2

In this appendix we give the proof of Luckhaus’ leinma of Section 2.6. In order to
prepare this proof we first mention a further property of functions with L? gradient:

2.12.1 Absolute Continuity Properties of Functions in W2

Let Q be the cnbe [a;,b] X - -+ X [an, by) in R" (a; < b; real numbers, j =1.... ,n),
and let ¥» € W12(Q). Then there is a representative ¥ for the L2 class of 4 such that,
foreach j = 1,....n, ¥(z, ..., 297,29, 07%, ... ,z"), is an absolutely continuous
function of =/ for almost all fixed values of (x!,...,29"}, z7*,... /z"). Here of
course “almost all” is with respect to the (n — 1)-dimensional Lebesgue measure on
the (n — 1)-dimensional cube [a),b)] X ... X [aj_1,bj-1] X [@j41,Dj41] X ... X [@n, bn).

Furthermore, the classical partial derivatives Dj;—lz (defined in the usual way by
Djy(x) = limeot™'(¥(x + tej) — ¥(z)) whenever this exists) agree a.e. with the
L? derivatives D;i. A discussion of these properties can be found in c.g. [GT83]
or [Mo66]. We here make one further point: one procedure for constructing such a
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representative ¥ (see e.g. [Mo66)) is to define 3(z) = A, at all points where there
exists a A; such that lim,jop™" |, B,) |Az — u(y)| dy = 0, and to define ¥ arbitrarily
(e.g. Y(z) = 0) at points where the limit does not exist. Thus in particular if

=(¥',...,¥?): Q — IR?, and if N is any closed subset of IR? with the property
that Y(z) E N for almost all z € €2, then we can select the representative ¥ to
have the property ¥(z) € N for every z € 2, in addition to the absolute continuity
properties mentioned above.

2.12.2 Proof of Luckhaus’ Lemma (Lemma 1 of Section 2.6)

In the case n = 2 the functions u, v have an L? gradient on S! and hence have
absolutely continuous representatives u, 7 such that Vu = Vu, Vo = Vv ae,,
where Vi, Vu denotes respectively the classical gradient and the weak gradient of
Zon S'. Furthermore, by 1-dimensional calculus on S! and by the Cauchy-Schwarz
inequality we have

sup[a - o < / IV[@ - o] + (27)~" / - o
sl

<c/ V(@ -9)P) "2(/ @ - "’+c/ @ -,

If we now define s
w(w, 8) = (w) + E(ﬁ(w) - a(w)),

then, letting Vw denote the gradient of w on S' x [0, €], we have
= 1
IVl < |Va| +|V@E -7)l + -[v -1,

and hence _

[Vw|® < 8(|Val? + |Vo|?) + 26727 — 1|2
By integrating this over S! x [0, €], we get the first claim of the Luckhaus Lemma.
Further, since T(S') C N, the above inequality for supg: [Z— 7| implies that for each
w € S, s € [0,¢], we have

dist(w(w, ), N)<C/ V(@ ”“/ a— l"’+C/ [@-9P)"?,

which is the second claim of the Luckhaus Lemma (indeed it is stronger since in this
case n = 2 we get no ¢ dependence on the right). This completes the proof in the
case n = 2, so from now on assume n > 3.

Again choose representatives U, ¥ for u, v which have homogeneous degree zero
extensions to IR™ having the absolute continuity properties of ¥ of 2.12.1 on the
cube [0, 1] x --- x [0, 1].

Without changing notation, we also let %, T denote these homogeneous degree zero
extensions on R"; thus @(rw) = t(w) for r > 0 and w € S™~!, and Du = Vu on
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S"-1, D% = Vv on S™!. Notice also that Du(z) = |z|~! Du(w), with w = |z| 'z,
and hence (since n > 3) we have in particular that

() [0+ oy ¢ [ qot+ 9o,

and also of course

2 / Iﬁ—vl’SC/ |u — .
(-1 sn-1

Now for € € (0,3) and i = (i1,... ,in) € Z" (Z = {0,£1,£2,...}), we let Qi
denote the cube [ise, (i1 + 1)¢] x - - X [in€, (in + 1)e], and for a given non-negative
measurable function f: [-1,1]* > R we let f: Q;. — IR be defined by

f@y= Y flz+ei), z€Qos Qoe=Up1Qje-

{:QueCl-3.31"}

f(z)dr = dz < dr,
Qo.c f(-’b') * /U(Q...'-Q.,sck $.31m) f(T) B '/i~l-ll" f(x)

and hence for any K > 1 we have

LY f(z+et)<K/ f(z)dz

{5:QueCl-3.31")

Then

for all z € Qo with the exception of a set of measure < Ce" /K, where C = C(n).

Similarly, since by Fubini’s theorem

e~ - -~
/ / fa+teyddr<e [ fzydr<e / f(@)dzr, Qo = Uy1Qjer
Qo,- 0 Qn‘c l"l'll"
we have

DY /f(1:+te,.+ez)dt<K f(z)dz

{QueCl-4.317) =L

for all z € Qo with the exception of a set of measure < Ce"/K, and generally, for
any €€ {0,...,n},

ent Z / fz+y+ei)dH'(y) < K f(z)dz

{i:Quecl-$.41") =1

for all ¢-faces F© of Qp, and all T € Qo. with the exception of a set of measure
< Ce™/K. Notice that this last inequality implies

@ et 3 / ) dH@) < K / f(z)d

{i Qu.cc.l-3.3In) - tmurmor:w
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for all £ € {0,...,n} and all £ € Qo. with the exception of a set of measure
< Ce"/K.

Now by the absolute continuity properties of Appendix 2.12.1, we can select rep-
resentatives 4, 7, D4, D9, for the L? classes of u. v, Du, Dv such that for almost
all z € Qo. all of the functions %, ¥, Du, Du are defined H’a.e. on cach of the
¢-dimensional faces F of each of the cubes z + Q; with Q;. C [-3,3]" for each
¢ =0....,n and, furthermore, such that on each such ¢-dimensional face, i, 7 have
L2-gradients which coincide H‘-a.e. with the tangential parts of Du, D5. Now by
applying (3) with f = |u — 7]? and f = |Du|? + |D%|* we see that we can select
T = a € Qg such that the above properties hold and also such that

@ et Y Y [ fwats
{:QuCl- 441"} oces FO ofa+Que * 1

<C f(z)dz with f = [@ - 3|® or f = |Du|* + |Dv|?,
-1

for cach £ € {0,... ,n}, where C = C(n).

Next. let Q be any one of the cubes a + Q; with Q;. C [—3, 3|", and we proceed
to define a W2 function w = w(*¢) on @ x [0, €] which agrees with @ on Q x {0} at
all points of Q@ where u cxists, agrees with 7 on Q x {¢} at all points of Q where 7
exists, and which is such that

n-1
5 DwlP<C) e} / Du|* + |Do)?
(5) /Wl p<cy > [, apat+iooe)

Jj=1 all j-faces F(2) of Q

soert 3 [ eop
F)

all 1-faces F(})

with D = gradient on Q x [0, €], and

(6)
dist?(w(z), N) <

1/2 1/2
C  max ((/ |D(a—v)|2) (/ |ﬁ—a|2) +Ce"/ |a—r|2>.
1-faces F}) of Q F F F

Let E be any onc of the edges (i.e. 1-dimensional faces) of Q. By 1-dimensional
calculus along the line segment E, we have (since the length of E is €)

) sup|ﬁ—v|25/|D|a—v|’|+e"/|a—ﬁ|7.
E E E

Hence by using the Canchy-Schwarz inequality we obtain

(8) st;:plﬁ—ﬁlzS2(/E|D(ﬁ—ﬁ)|2)m </E|ﬁ—v|"’)m+e"/Em—m2
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Then we can define an IRP-valued function w on Q X [0, ¢] by the following inductive
procedure. We first define w on Q x {0} and Q x {e} by

9) w(z,0) = u(z), w(z,€) = v(x), T€Q.

Next we extend w to each F(" x [0,¢], where F(!) is any 1-dimensional face (i.e.
edge) of Q, by defining

w(z,s)=(1- E)ﬁ(z) + gﬁ(z). e FY, se(0,e
Notice that then by (8) and the fact that @(IR") C N we have

dist®’(w(z,s),N)< max sup|v—1a><
(w(z, s) )_|_‘mFm°‘QHR| |* <

1/2 1/2
2 max (( / D@ - a)F) ( / |ﬁ—ﬁ|2) +e! / |a—-|2).
1-faces F(1) of Q F() F() F(M)

Also notice that by direct computation

(11) sup, |Dw(z,s)I* < 8(|Du(z)[* + | Dv(x)I) + E%Iﬁ(z) - 5(z)|*

8€(0,e

at any z in any edge F(") of Q (where D = (£, £), & = gradient on F(), hence

(12) / IDul* < Ce / (Daf® + |Dw*) + Ce™! / 7 - 9%
F(Mx[0,e] FQ) )

For ¢ > 2 we now proceed inductively by homogeneous extension into faces of larger
and larger dimension. More precisely, assume ¢ > 2, and that w is already defined
(with L? gradient) on all F¢- x (0,¢] and w(z,0) = (z), w(z,¢) = v(z) on FO.
Since 3(F© x [0, ¢]) is the union of F(=") x [0, ] (over the £ — 1 faces F(*~)) of F(®)
together with F(9 x {0} and F(® x {¢}, we then have that w is already well defined
Ht-a.e. on O(F® x [0,€]). We can thus use homogeneous degree zero extension of
w|d(F© x [0,€]) into F® x [0,¢] with origin at the point (g,£/2), where g is the
center point of F9. Then by direct computation we have

(13) / [Dul? < Ce / (DT + Do) +Ce ¥ (Dup,
FOx[0,) F©

all Fle-1) Y F¢=1x (0]

where D = (£, 2), & = gradient on F( on the left and on F“-) on the right.
(In checking the ¢ dependence here it suffices to check the inequality only in the
special case € = 1, because we deduce the general case from this case by the scaling
(z,8) — (ex,€8).) So by mathematical induction based on (13) we conclude that,
for all £ € {2,...,n}, w can be extended to all of F(¥) x [0,¢] (F(© = any ¢-face of
Q) such that w has L? gradient Dw on all F(9 x [0, €] with

/ Duf<cet 3 / Duf?
F(Ox[0.] F()x[0,e]

all 1-faces F()) of Q

[4
$O3 e P [, A + o).
J=

all )-faces FU) of Q
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Furthermore notice that homogeneous degree zero extension preserves the bound
(10). Thus by (10), (12), (14) (with £ = n) we conclude the existence of w :
Q — RR” as in (5) and (6). Since Q = a + Qi,, we should write w = w().
Since the construction of w®) is such as to ensure that w") = wU<) H*l.ae on
F x [0, €] for any common ¢-face F( of two different cubes a + Q;. and a + Q;.,

we can then define a W'? function w on [-§,}]" by setting w(z,s) = w'*(z,s)
for (z,8) € (a + Qic) x [0,€]. (We are assuming € € (0, s) and a € Qo ., hence we
automatically have that (-1, 3]" C U{Q;. : a + Qi C [-1,1]".) Notice that then

by summing over i in (5) (keepmg in mind that Q = a+ Q. ,) and using (4) and (6)
we get

(15) / |Dw|* < 06/ (IDu? + | Dvf?) + Ce"/ |u — v]?
—1.4Inx[0.) 11" (R

and

dist?(w(z), N) <

1/2
<C max (/ [D(ﬁ—z‘;)[’/ |a-a|2) +Ce"/ @ — o2
1-faces FNeF \ Jp) F() F()
1/2
< Ce ( / (IDuf? + | Dof?) / u— v|2) +Ce / u—of?,
[-11)" [-n1)"

where F denotes the collection of all 1-faces of cubes in the collection {a + Q. :
Qie C [—3:5]"}-
Defining w = w|([—
we can choose p € |
that

\[-3 t—‘;]") x [0,¢€], and, using 2.12.1 and Fubini’s Theorem,
hat w has L?-gradient on 8([—p, p|") x [0, €] and such

/ |Dwl* < C |Dw)?.
8([-p.ln)x (0] [-3.4Inx[0.]

Then finally let ¥ be the radial map from 0 taking S*~! to 8([—p, p]") (notice that
this is a Lipschitz piecewise C! map with a Lipschitz piecewise C! inverse). Thus we
can define @ on S™~! x [0,¢] by W(w, s) = w(¥(w), s), and one then readily checks
that this map @ has the properties claimed for w in the statement of the Luckhaus
lemma. (In particular, since w(z,0) = u(z) for £ € 8([—p,p|") and since 7 is
homogeneous of degree zero in IR", we then have by definition that w(w,0) = T(w)
a.e. on S*~!. Similarly W(w,€¢) = %(w) a.e. on S*1.)

14
P
8'4

This completes the proof of the Luckhaus lemma.

2.12.3 Nearest point projection

Here we want to give a proof of the fact that if N is a compact C* (resp. C*) man-
ifold which is isometrically embedded in IR?, then there is a tubular neighbourhood
U = {z € R? : dist(z, N) < 6} of N such that the nearest point projection map
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(taking a point z € U to the nearest point of N) is well defined and C* (resp. C¥).
At the same time we want to discuss the geometrical significance of the induced
linear map and the Hessian of this nearest point projection.

The main results are described in the following theorem:

Theorem 1 If N is a compact C*™ (resp. C¥) submanifold of dimension q¢ embedded
in IRP, then there is § = §(N) > 0 and a map I1 € C°({z : dist(z, N) < 6};IRP)
(resp. I1 € C¥({z : dist(z, N) < 6};IRP)) such that the following properties hold:

) N(y)e N, y-TM(y) € Ty,)N [N(y) - y| =dist(y, N), and
|z — y| > dist(y, N) for any z € N \ {II(y)}

for all y € R with dist(y, N) < 6,

(ii) My +2) =y, forye N, z€ (T,N)*, |2| <6,
(iii) D 0|, = png)(v), v € RP, dist(y,N) <4,

where D, denotes directional derivative v- D and pn(y) denotes orthogonal projection
of R? onto Ty, N,

vy - Hess [Ty (vz, v3) = 1 3 vz, - HessI1, (v,

(i\') (4] o) v;rg)’
for dlSt’(yv N) < 61 U, V2,03 € Rpr

where v7|, = pn,)v, v+ = v —v"; the sum on the right 1s over all 6 permutations
01,02,03 of 1,2,3 and HessIl, denotes the Hessian of Il at y (thus HessIl, is a
symmetric map R? x R? — RP),

(V) Hess ny(vl1v2) = _Av(vl»v?)v ye Nv v,V € TyNs

where A, is the second fundamental form of N at y. Furthermore, ifu : Q — N is
a smooth map (2 C R" open), then

(vi) (Hess u|z(v1,v2)) =) = Hess Iy(z)( Dy, u(z), Dy, u(z))
= —Au@z)(Dy,u(z), Dyyu(z)),

for z € Q, vy,v, € R", where viu= means v'|yz).

Remark: Notice that in particular (iv) implies that v, - HessII,(vs, v3) is a sym-
metric function of (vy,vs,v3) € R? x R x IR? and that Hess I, (vi", v3) = 0 for all
v;,v2 € R?; indeed v; - HessII,(v2,v3) = O whenever at least 2 of v, vz, v; are in
(TnN)*

Proof: We describe the proof in the C* case. The proof for the C* case is identical,
using smooth maps rather than real-analytic at each stage. (If N is merely C* for
some k > 2, then the proof here shows that the nearest point projection is C*-!.)
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Thus assume N is isometrically embedded in IR? and is a real-analytic manifold. This
means that for each yo € N we can find real-analytic functions u : W — (T, N)*,
where ¢ < p is the dimension of N and W is a neighbourhood of y in the affine
space yo + T, N, such that

graphu := {z + u(z) : T € W}
is a neighbourhood V of y in N.

For notational convenience we can assume
% =0, T,N=IR?x{0}, (TWN)"' = {0} x RP™7.

W should then be reinterpreted as a neighbourhood of 0 in IR? rather than IR? x {0},
and u = (u',...,uP™9) : W — RP"9 with D;u(0) =0, j = 1,...,q. Define a map
¢ : WxIRP? - IRP by

o(z) = (z,u(z)),
so that y is a real analytic diffeomorphism of W onto the neighbourhood V C N.
Notice also that, at each point z € W, D1p(x),...,Dgp(z) are a basis for the
tangent space T,(;) N. Hence by the Gram-Schmidt orthogonalization process we can

construct real-analytic functions v, ... ,v,_o on W such that v (z),... ,v,_¢(z) are
an orthonormal basis for (T,,z)N)* at each point £ € W and 1(0),... ,v,4(0) are
the standard basis vectors eg41, ... ,€,. Then we define a map ¢ : W x R”~? — R?
by

P—q
®(z,y) = p(z) + Y _ ¥'v;(x).
ij=1
By direct computation we then have
(1) d®| o) = 1re.

Also, by construction & is real analytic on W x IRP™?, hence using local power
series expansions we can extend ® to give a holomorphic mapping ® of the complex
variables z!,...,zP in some neighbourhood of W x €P~9 (thinking now of W as
a subset of R x {0} C €% which ® maps into R”* C C?). Now of course the
identity (1) guarantees that d&;lo is the identity (as a complex linear map) of C?
onto €7, and hence the holomorphic inverse function theorem implies that there are
complex neighbourhoods W), W, of 0 in €” such that ® is a holomorphic map of
W) onto W, with holomorphic inverse. But this evidently implies in particular that
®|W, N (IR? x {0}) is a (real) analytic map onto an open subset V of IRP, with
0eV, having a real-analytic inverse. Thus in particular, for suitable § = §(N) > 0,
& gives a real-analytic diffeomorphism of a neighbourhood of Bj(0) x B; *(0) onto
some neighbourhood of 0 such that |D®|,|D&-!| < C on Bj(0) x B} °(0) and
&(B;(0) x B} *(0)) respectively, where C = C(N). Now for 8 € (0,1) to be chosen
shortly, take any z € ®(Bj,(0) x Bj;*(0)); say z = ®(¢,n),(£,n) € B, x By "
Evidently, since ¢(§) = ®(£,0), we then have |p(§) — 2| < Cn < C66, C = C(N),
so in particular dist(z, N) < C88, while on the other hand dist(z, 3®(Bs x B} %)) >
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C~16 for suitable C = C(N). Therefore, if § = §(N) € (0, 1) is chosen small enough,
we have

(2 l"e'iﬁ'i lp(z) — 2| <6,

and the minimum is attained only at interior points z € BJ(0). At any such point
z we then have

(Di‘p(x)’ ¢(I) - Z) = 01 .7 =1,... 14,
and since Djp(z), j = 1,...,q, are a basis for T,)N, it therefore follows that
2 —p(r) € (TyzN)* at any point z € Bj(0) where the minimum in (2) is attained;
thus

3) z2=p(z)+ ZAjuj(z) for suitable A = (A',... ,A"79) with || < 6.
j

But now this says precisely ®(z, A) = ®(£, 1) with both (z, A) and (£, 7) in B§(0) x
B§~7(0), which contradicts that fact that & is one-to-one on BJ(0) x Bf~(0) unless
z=§and A =1

Thus (changing notation to the extent that we write § in place of 88) we have proved
that, for § = 6(N) € (0,}) small enough, each point z = ®(z,y) € ®(Bj(0) x
BZ™9(0)) has the point ¢(z) as unique nearest point projection Il(z) onto N, z —
¢(z) € (Tyz)N)*, and, since @ is a real-analytic diffeomorphism of B§(0) x Bf~%(0),
this nearest point projection II : z = &(z,y) — ¢(z) is a real-analytic map. Indeed
IT is given explicitly in ®(BJ(0) x B;~9(0)) by

(4) N=ypoPod™,

where P is the orthogonal projection of IR? onto IR? x {0}. Since N is compact
and yo was an arbitrary point of N to begin with, this completes the proof of the
existence of a real analytic I1 satisfying (i), (ii) for suitable § = §(N) > 0.

Next we introduce the notation
(5) v'|y = Dyllly, v*=v-v", veRP, yeU,

where D, denotes the directional derivative v - D in IR? and where U = {z € R” :
dist(z, N) < 6}. Since Il is the identity on N and since Il(y +tn) =y fory € N
and n € (T,N)* with |tn| < 6, we see that geometrically v' is just the tangential
part of v relative to N at the nearest point II(y); that is, (iii) holds.

By applying the directional derivative operator D, to the first identity in (5) (with
v = v € C(U; RP)), we deduce that

(6)
Hess IT, (v1(y), v2(y)) = (Dvnv;r - (DWW)T)lw y €U, vn,v, € C®(U;IR?).

Taking vy, v3 and then v{.v; in place of the pair v}, v, we in particular deduce the
two facts that

@ HessIL, (v ,v3) = —(D,7v3)" € Tngy)N

Hess I, (v, v;) = (D,7v )* € (Tng)N)*.
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Since v; - (D, T3 5) = -vy- Dyr vg (which one checks by applying D, to the identity
v, c vy =0), this gives in turn that

(8) -Hess I, (v] ,v3) = vy - HessI1, (v .v, ) for y € U.

Also, from (i) and (ii) we deduce that II(y + sm + tne) = M(I(y) + (y - M(y)) +
sm + tp) = M(y) for m,m € (Tngy)N)* and for |s|, [t| small enough, and hence
aﬂ(’%g’;*'ﬂll,:,:o = 0; that is,

(9) HessI1 (fh, ) 03 Y€ Uv T, € (Tn(y)N)l'

Since v = v" + v* on U (for any given v € IRP), using linearity together with (6),
(7), (8), and (9) it is now straightforward to check the identity (iv).

Next recall that the second fundamental form A, of N at y € N is the symmetric
bilinear form on T, N with values in (T,N)* defined by

Ay(v],v3) = (Dy7v3)*lyy v, 2 € RP, y € N.
Using (6) with v], v, in place of v;, v, we get
Ay(v),v;) = —HessIl (vlT'U;)
for vy, v, € IRP, y € N, and hence (v) is proved.

Finally, if u : @ — N is smooth (2 € IR" open), then Du(z) € T )N for
z € Qand j = 1,...,n, and since u(z) = M(u(z)), and hence DiD,u(z) =
Hessy(z)(Dxu(z), Dju(z)) = dlly)(DxD,u(x)), we deduce

(DxDju(z))* = Hess y(z)(D,u(z), Dxu(z)) = — Ay (Dru(z), Dju(z)), z €9,

by (v), so (vi) is proved. (]

2.12.4 Proof of the e-regularity theorem in case n = 2

Here we assume n = 2, that u € W'2(Q; N) is energy minimizing, and that Bg(y) C
Q.

Let A > 0 be any constant such that

/ |Dul? < A.
Br(y)

As we mentioned in Section 2.3, in the present case n = 2 we obtain without further
hypotheses that

R’ sup |D’u|<C, C=C(,N,A), j=0,1,....

Br/2(y)
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The hard step in the proof (as it is for n > 3 also) involves showing that u € C'-.
We do this here—the remainder of the proof proceeds, using Schauder theory for
linear equations, exactly as described in Section 2.3.

We first prove that u € C%(Bg/»(0)) for some a = a(A,N) € (0,1).

Note that by the absolute continuity properties of functions with gradient in L? (sce
the discussion in Appendix 2.12 above), there is a representative % of the L2 class of
u such that %|0B.(y) is an absolutely continuous function for almost all T € (0, R],
u(dB,(y)) € N, Du (the classical gradient of the function %) exists a.e. and agrecs
a.e. with the L? gradient Du of u.

Now take o € (0, R]. By the formula fl?a(v)\B,/z(v) |Du)? = :/2 faB,(y) |Du|?dr, we
know that, for any 6 € (0. 3),

[ pwesete | \Daf
3B (y) Bo(y)\By/2(y)

for all 7 € (£,0) with the exception of a set of 1-dimensional Lebesgue measure
< 0. Taking 6 = } and such a 7 with 7dB,(y) absolutely continuous, we then
have

(1) f |Daf? < 4o~ / \Daf.
9B (y) Bo (Y\ B, /2(y)

On the other hand. since |0 B, (y) is absolutely continuous, we can use 1-dimensional
calculus on the circle 3B, (y) and the Cauchy-Schwarz inequality to give

2) sup  |a(xy) — w(xg)| < / : .

x,,22€9B (y) 9B+ (v)

o < var ([ o)

B-(y)

Hence by (1) we have, except for a set of 7 € (%,0) of measure < §,

3) sup [@(z) — T(ro)] £ 6 / |Dul® | .
z,20€9B5 (y) Bo (y)\Bo 2(v)

Now let 6 = 8(N) > 0 be small enough to ensure that the nearest point map II
(taking a point in IR” to the ncarest point of V) is well-defined and smooth on the
set {z € R” : dist(z, N) < 6} (sce Appendix 2.12.3 above), and let £ € (0,3) be
for the moment arbitrary. If 6 ( Bo (W\Bo/2(0) |Dul?)}/? < ¢ and if zo € OB, (y), then,
provided ¢ is sufficiently small depending only on N and A, we have from (3) that
the homogeneous degree 1 extension 4 : B,(y) — IR defined by

St

(4) w(y + rw) = @(xo) + ' r(A(y + Tw) - W(xo)), w € S re (0,7,
remains in the é-neighbonurhood of N. and hence we can define

w=Iou
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on B,(y). Then % agrees with @ on 8B, (y) and by (4), (2), and (1)

&M@Sﬁ/ IpaP < C \Duf?
9B (y) Bo (y)\Bo/2(v)

But by definition of energy minimizing we have €g,(,)(u) < &g, () (1), and hence
this gives

(5) / IDuf < C |Dul?.
By a(y) Ba(y)\Bo/2(v)
Keep in mind that this has been proved so far only under the assumption that
©) / IDuP <,
Bo(y)\Bs2(v)

with ¢ sufficiently small (depending on N). On the other hand for each Q we have

Br(y) = Bry2e(y)U(U;Z,(Brsar-1 (y) \ Bry: (v))) and hence, if we take Q depending
on ¢, there is at least one j such that (6) holds with R/2’ in place of o and then (5)

gives therefore that
/ |Duj? < Ce,
B\r(v)

where v € (0, 1) depends only on A, € and N. With £/C in place of ¢ and selecting
€ < g9, €9 = £9(N, A) small enough, we thus deduce from (5) that

(7) [ ipwr<c |Duf* < e
B,

0r2(y) Bp(y)\B,/2(v)

for any p < ¥R, provided that £p,,)(z) < A, where v = (N, A ¢) € (0, %) By
adding C [, B,a() |Dul? to each side of this inequality we get

/ |Dul> < 6 |Duf?, p<AR,
B,/2(v) By(v)

where 6 = ;&= € (0,1) depends only on n, N, A, . By iteration this gives that
Is - |Duf? < C27° for each j = 1,2,..., and hence (since any p € (0,vR] lies in

some interval (YR/2/,¥R/27-!| for some j > 1) we have
/ Dur<c(Z), oe(R), C=CMN).
Ba(y) R

(Notice that we can arrange for the inequality to hold trivially for o € (YR, R) by
choosing C suitably large.) On the other hand Ep,y)(u) < A implies Epy () (u) < A
for any 2 € Bgs2(y), so the above actually implies that

2c o)
/BO(:)IDuI "C(R) » 0€(0,R), z€ Brp(y)-
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But now Morrey’s lemma (Lemma 3 of Section 1.3) implies that u € C®*(Bg/2(y))
and that

[u]a,BR/Q(V) <G,
with C depending only on A, N and a; here a = a(N, A) € (0,1).

Next we show that this holds for every a € (0,1). To see this we let p € (0,vR)] be
arbitrary, and note that, by (7) and the first part of the argument above, for any
€ € (0,3) and for suitable v = (¢, N,A) € (0,3), there is T € (£, p) such that (3)
holds, and hence

®) sup |7 —@(zo)| < Ce'?,

8B:(y)
where zo is any point of dB,(y). As in the last part of the proof of Lemma 1 of
Section 1.8, we can find a harmonic function v € W'?(B,(y); R?) N C°(B.(y); R?)
with v = % on 0B, and with

(9) max |v — T(zo)| < Ce'/2.
r(y)
Then
(10) / |Duf? < 2 / ID(u - v)? +2 / |Dof?
Bo(y) Bs(y) Bos(y)

2
52/ |D(u-u)|2+2"—2/ | Dof?
Br(y) T° JB.(v)

for any o € (0, 7}, where we used the fact that | Dv|? is a subharmonic function and
hence 072 [ .\ |Dv|? is an increasing function of o € (0,7]. (See e.g. [GT83].)

Now on the other hand by the inequality (11) in the proof of Lemma 1 of Section 1.8,
and by (8), (9), we know that

/ |ID(u-v)>? £ C max |u—v| | Dul?
B:(y) 8B:(y) B:(y)
< C|( max |z — u(zo)| + max |v — u(z, )/ Dul?
(a&ml (o)l + el —uzoll) f 1P
<

Ce'/? / | Dul?.
Bo(y)

So (10) implies

2
/ |Duf? < CE'/2/ |Dul® + 2 f;/ | Dv|?.
Ba(y) By (y) T° JB.(v)

Also since v is harmonic and agrees with % on 9B, (y), we have |, B.(y) |Dvf? <
5.,y |Dul?, and hence this gives

2
Du < (ce?+ 22 |Dul?, o€ (0,7).
2
Bo(v) ™/ JBow)
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Since 7 € (§, p) we thus have

2
(11) / |Dul? < (Ce”’ +4 a_) / |Duf?, o€ (0,8
Bo(v) P?) JB,w

for any € € (0, %), provided p < YR with v = 4(N,A,¢) € (0.%) is sufficiently
small. Notice that for any given a € (0,1) we can select a 8 = 6(a) € (0,1) such
that 462 < §%°/2 and then choose £ = ¢(a, N, A) such that Ce < 6%*/2, with C as
in (11). So, if we take o = 6p with these choices, (11) gives

/ Duf? < 6% / IDuP, pe (0.7R],
Bo,(y) B,

o ()

where 7 = 4(N, A, a). Of course the same argument applies in any balls B,(z) with
p < YR and z € B,g(y), with v = y(A, N) € (0, %] sufficiently small, so we have
actually shown

(12) / IDu <= [ |DuP, oc(0R] € B.a(y),
Bop(2) By(2)

with v = y(N, A, a). Iterating (12), we easily check that it implies

2a
/ |Du*< C (E) / |Dul®>, o€ (0,p], p€ (0,7R], z € Byr(y).
Bo(2) P B,(z)

By the Morrey lemma (Lemma 3 of Section 1.3) we then have u € C%*(B,g(y)) and

ute) - uteal < € (BZ), a3 Boato

for suitable v = y(a, N, A) € (0, %). On the other hand the same argument applies
starting with any ball Brj2(2) (2 € Bgry2(y)) in place of Bgr(y), so that we have
actually proved

lu(z)) — u(z)| < C (|1€|+I'z|) , I1, T2 € Bgya(y),

with C = C(A, N, a), as required.

The proof that u is C'® now follows exactly the last part of the argument in the
proof of Lemma 1 of Section 1.8. (]



Chapter J

Approximation P roperties of the
Singular et

In this chapter u continnes to denote an energy minimizing map of €2 into N. with
) an open subset of R".

3.1 Definition of Tangent Map

Let By (y) with B (y) C €, and for any p > 0 consider the scaled function u,,,
defined by

U(z) = u(y + pa).

Notice that u,,, is well-defined on the ball B,,(0): furthermore, if ¢ > 0 is arbitrary
and p < &, we have (nsing Dy ,(r) = p(Du)(y + pz), and making a change of
variable £ = y + pr in the energy integral for u,,,)

M o / (Duy 2 = (o2~ / \Dul? < 2" f Du?,
0 (0) Booly) Bpn(")

where in the last inequality we used monotonicity ((ii) of Section 2.4). Thus if
p; 1 O then limsup;_ [ o |Duy,,|* < oo for each 0 > 0. and hence by the
compactness theorem (Lemmna 1 of Section 2.9) there is a snbsequence pjr such that
Uy, — ¢ locally in R™ with respect to the W!-norm, where ¢ : R" — N is an
energy minimizing map (in the sense of Section 2.1) with = R™. Any ¢ which is
obtained in this way is called a tangent map of u at y; further properties of tangent
maps are discussed below. In general it is not true that such tangent maps need
be unique (see [Wh92]) that is, if we choose different sequences p; (or different
subsequences p;i) then we may get a different limit map. In case the target N is
real analytic rather than merely C*, it remains an open question whether or not
we do or do not have uniqueness of ¢. In Section 3.10 it will be shown that if N is
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real analytic and if one of the tangent maps ¢ satisfies sing ¢ = {0}, then ¢ is the
unique tangent map.

3.2 Properties of Tangent Maps

Let p, | 0 be one of the sequences such that the re-scaled maps u,, — ¢ as
described above. Since u,, converges in energy to y, we have, after setting p = p;
and taking limits on each side of 3.1(i) as j — oo,

ot / IDef? = 84(y),
Bs(0)

where we used the definition ©,(y) = lim,op*™" fB( )|Du| Thus in particu-
lar g2" [, B.(0) |Dyp|? is a constant function of o, and, since by definition 6,(0) =
limgj00%°" [5 © |D#l?; we have

Q) 6.(y) = 8,(0) = 0" / IDo? Yo >0.

Bs(0)
Thus any tangent map of u at y has scaled energy constant and equal to the density
of u at y; this is also a nice interpretation of the density of u at y.

Furthermore if we apply the monotonicity formula (iii) of Section 2.4 to y then we
get the identity
oo’

0= 0’2—"/ |D‘Pl2 - T2—n/ ID¢|2 = / Rz—n 3R
B (0) B, (0) B, (0)\B-(0)

so that dp/0R = 0 a.e., and since ¢ € W,",'cz(lR"; IR?) it is correct to conclude from
this, by intcgration along rays, that

(i1) p(M)=p(z) YA>0,z€ R".

This is a key property of tangent maps, and enables us to use the further properties
of homogencous degree zero minimizers (see Section 3.3 below) in studying them.

We conclude this section with another nice characterization of the regular set of u:
(iii) y € regu <> 3 a constant tangent map ¢ of u at y.

To prove (iii), note that by Corollary 2 of Section 2.10 we have y € regu <=
B,(y) =0, but 8,(y) = 0 <= ¢ = const. by (i).

3.3 Properties of Homogeneous Degree Zero Min-
imizers

Suppose ¢ : IR® — N is a homogeneous degree zero minimizer (e.g. a tangent map
of u at some point y); thus p(Az) = p(z) for all A > 0, z € R".
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We first observe that the density ©,(y) is maximum at y = 0; in fact, by the
monotonicity formula of Section 2.4, for each p > 0 and each y € R"

|22 | o) = / D2,
Bp(v) Rll ¢ Bp(v)

where Ry(z) = |z —y| and B/BR, =|z—y|"(z —y)- D. Now B,(y) C By (0), so

that
P / |Dg|? P / | Dy|?
Bo(y) Bpy1y1(0)
n-2
(1+M) o+l [ 1Dl
p Byy1y1(0)

(1 + I%')"-z 0,(0),

because ¢ is homogeneous of degree zero (which guarantees that 72" [, © |Dyl? =
6,(0)). Thus letting p T 0o, we get

IA

2
? |+ 0,() < 6,(0),

Rt
which establishes the required inequality
(@) 6,(y) < 6,(0).

Notice also that this argument shows that equality in (i) implies dp/0R, = 0 a.e.;
that is, p(y + Az) = ¢(y + z) for each A > 0. Since we also have (by assumption)
¢(z) = p(Az) we can then compute for any A > 0 and z € IR that
p(z) = ¢(Az) = p(y + Az —y)) = p(y + A2 (Az —y))

= oMy +A7%(Az - y))) = o(z + ty),
where t = A — A~! is an arbitrary real number. So let S(p) be defined by
(ii) S(p) = {y € R": B,(y) = 6,(0)}.
Then we have shown that p(z) = p(z + ty) for all z € R", t € R, and y € S(p).
Then of course p(z + az) + bzy) = ¢(z) for all a, b € R and z), z; € S(p). But
if z € R" and p(z + z) = p(z) for all z € R™, then trivially ©,(z) = 6,(0) (and
hence 2 € S(yp) by definition of S(yp)), so we conclude

S(¢p) is a linear subspace of IR" and ¢(z + y) = p(z), z € R", y € S(p).

(Thus g is invariant under composition with translation by elements of S(¢).) Notice
of course that

(iii) dim S(p) = n <= S(p) = R" <= ¢ = const.

Also, a homogeneous degree zero map which is not constant clearly cannot be con-
tinuous at 0, so we always have 0 € singy if ¢ is non-constant, and hence, since
p(z + 2) = p(z) for any z € S(yp), we have

(iv) S(p) C singy

for any non-constant homogeneous degree zero minimizer .
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3.4 Further Properties of singu

For any y € Q and any tangent map ¢ of u at y we shall let S(¢) be the linear
subspace of points y such that ©,(y) = ©,(0), as discussed in the previous section.
Notice that then by 3.2(iii) we have

(1) y € singu <= dim S(p) < n — 1 for every tangent map ¢ of u at y.
Now for each j =0,1,... ,n — 1 we define

S; = {y € singu : dim S(p) < j for all tangent maps ¢ of u at y}.
Then we have
(ii) S CS8 C-+C8n3=8n2 =358 =singu.

To see this first note that S,_, = singu is just (i), and the inclusion S;_, C S;
is true by definition. Also, if S,_3 is not equal to both S,_; and S,_,, then we
can find y € singu at which there is a tangent map ¢ with dimS(y) = n -1 or
n — 2; but then H"*~2(S(p)) = oo and hence (since S(yp) C singy by 3.3(iv)) we
have H"~2(sing ) = oo, contradicting the fact that H"~2(sing ¢) = 0 by Lemma 1
of Section 2.10.

The subsets S, are mainly important because of the following lemma, which is a
direct modification of the corresponding result for minimal surfaces by F. Alm-
gren [Ag83); the lemma can be thought of as a refinement of the “dimension reduc-
ing” argument of Federer [FH69] (for this see also the discussion in the appendix
of [Si83a]):

Lemma 1 For each j =0,...,n—3, dimS; < j, and, for each a > 0, SoN{z :
©.(z) = a} is a discrete set.

Remark: Here “dim” means Hausdorff dimension; thus dimS; < j means simply
that H+¢(S;) = 0 for each € > 0.

Before we give the proof of this lemma, we note the following corollary.

Corollary 1 dimsingu < n—3, and if N is a 2-dimensional surface of genus > 1,
then dimsingu < n — 4. More generally, if all tangent maps ¢ € W,},f(R"‘; N) of

u satisfy dim S(yp) < m, then dimsingu < m.

Remark: Of course the above corollary implies dim singu < m for every locally en-
ergy minimizing map u € W'2(Q; N) if N happens to be such that all homogeneous
degree zero locally energy minimizing maps p € W'?(R®; N) satisfy dim S(p) < m.

For example if dim N = 2 and N has genus g > 1, we claim that this holds with m =
n — 4 (i.e. that dim S(p) < n — 4 for every homogeneous degree zero locally energy
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minimizing map from IR" into N), and hence by the corollary we have automatically
singu = S,_4. Indeed suppose there is a homogeneous degree zero locally energy
minimizing map ¢ of R" — N with dim S(¢) = n — 3. Without loss of generality,
we can assume that S(p) = {0} x R"~3, and we then have ¢(z,y) = yo(|z]|'z) for
z € R%\{0} and y € R"3. But then g, is a smooth non-constant minimizing map
from S? into N. But such maps are known not to exist (see e.g. [Jo84]).

Proof of Corollary 1: By (ii), singu = S,-3, hence the lemma with j = n -3
gives precisely dimsingu < n — 3 as claimed. In case dim N = 2 and the genus of N
is > 1, we know by the above remark that singu = S,_,, so in this case Lemma 1
gives dimsingu < n — 4.

Finally, if dim S(yp) < m for all tangent maps ¢, then by definition S,, = singu and
hence Lemma 1 gives dimsingu < m.

Proof of Lemma 1: We first prove that So N {z : ©,(z) = a} is a discrete set for
each a > 0. Suppose this fails for some a > 0. Then there are y, y, € So N {z :
6.(z) = a} such that y; # y for each j, and y, — y. Let p, = |y; — y| and consider
the scaled maps u,,,. By the discussion of Section 3.1 there is a subsequence p,
such that Uyp, = P where ¢ is (by definition) a tangent map of u at y; also, by
Section 3.2 we have ©,(0) = 6,(y) = a.

Let & = |y; — y|™"(y; — y)(€ S™!). We can suppose that the subsequence j' is such
that £+ converges to some £ € S™~!. Also (since the transformation z — y+p;z takes
yj to&;) B,(y;) = 6.,”,, (&;) = afor each j, hence by the upper semi-continuity of the
density (as in Section 2.5) we have ©,(€) > a. Thus since 8,(z) has maximum value
at 0 (by 3.3(i)), we have 6,(§) = 6,(0) = a, and hence £ € S(p), contradicting the
fact that S() = {0} by virtue of the assumption that y € So. (m]

Before we give the proof of the fact that dimS; < j, we need a preliminary lemma,

which is of some independent interest. In this lemma, and subsequently, we use 7,

to be the map of R" which translates y to the origin and homotheties by the factor
-1

p~"; thus

M.o(z) = p7 (z — ).
Lemma 2 For each y € Sj, and each 6 > 0 there is an € > 0 (depending on u,y,6)
such that for each p € (0,¢]
Ty o{T € By(y) : Ou(z) 2> B4(y) — €} C the 6-neighbourhood of L,,
for some j-dimensional subspace L, , of R" (see Figure 3.1).

Caution: We only prove this with the subspace L,, , depending on both y, p; thus,
as p varies, even if y is fixed, the subspace L, , may vary. See the example in
Section 3.9 below.

Proof: If this is false, then there exists 6 > 0 and y € S; and sequences p; | 0,
€x | 0 such that

(1) {z € By(0): B,,,,(T) > Ou(y) —ex} ¢ the é-neighbourhood of L
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Figure 3.1: Lemma 2

for every j-dimensional subspace L of R". But u,,,, — ¢, a tangent map of u at
y, and B,(y) = 6,(0). Since y € S;, we have dim S(¢) < j, so (since S(yp) is the
set of points where ©,, takes its maximum value ©,(0)), there is a j-dimensional
subspace Lo O S(¢) (Lo = S(p) in case dim S(p) = j) and an a > 0 such that

2) 6,(z) < ©,(0) — a for all z € B,(0) with dist{z, Lo} > 6.

Then we must have, for all sufficiently large k’. that

(3) {z € Bi(0) : B,,,,,(z) 26,(0) —a} C {z : dist{z, Lo} < 6}.

Because otherwise we would have a subsequence {k} C {k’} with O.,,, (zp) 2
6,(0) — a for some sequence z; € B,(0) with dist{z;, Lo} > 6. Taking another

subsequence if necessary and using the upper semi-continuity result of Section 2.11,
we get z; — z with ©,(z) > 6,(0) — a and dist(z, Lo) > 6, contradicting (2).

Thus (3) is established, thus contradicting (1) for sufficiently large k. (]
Completion of the proof of Lemma 1: Define S;;, i € {1,2,...}, defined to

be the set of points y in S; such that the conclusion of Lemma 2 above holds with
€ = i~!. Then, by Lemma 2, S; = U;»1S;,. Next, for each integer g > 1 we let

Sjiq={z € ;i : Bu(z) € (:3,9]},
and note that S; = U; ;S;.iq- For any y € S, we have trivially that
Sjiq C {2 : Ou(z) > Bu(y) - 1},
and hence, by Lemma 2 (with ¢ = i~!), for each p < i™!

7y.p(Sjiq N Bo(y)) C the é-neighbourhood of L, ,
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for some j-dimensional subspace L, , of R".

Thus ecach of the sets A = S, 4 has the “6-approximation property” that there is pp
(= i"! in the present case) such that, for each y € A and for each p € (0, pp),

(*) Myo(AN By(y)) C the §-neighbourhood of L,

for some j-dimensional subspace L, of R".

In view of the arbitrariness of § the proof is now completed by virtue of the following
lemma:

Lemma 3 There is a function 3 : (0,00) — (0,00) with limgo B(t) = 0 such that
if 6 > 0 and if A 1s an arbitrary subset of R™ having the property (x) above, then
H+BEO(A) = 0.

Proof: If 6 > 1/8 we can take 3(6) = n—j +1, so that H/+5®)(A) = H"+!(A) = 0.
Hence we can assume for the rest of the proof that § € (0,1/8). First note that
there is a fixed constant C, such that for each o € (0,1/2) we can cover the closed
unit ball B,(0) of R? with a finite collection of balls {B,(yx)}k=1....¢ in R’ where
Q = Q(j) and yx € By(0), such that Qo’ < C,, and also Qo’*# < 1/2 for suitable
B = 0B(c) with (o) | 0as o | 0.

It evidently follows that if L is any j-dimensional subspace of R™ and 6 € (0,1/8),
there is 3(8) (depending only on n,6), with 3(6) | 0 as 6 | 0, such that the 2é-
neighbourhood of LN B,(0) can be covered by balls B, (y), k = 1,... ,Q, with o =
46 and with centers g, in LN B, (0) and with Qo?+3¢) < 1. By scaling this means that
for each R > 0 a 26 R-neighbourhood of L N Bg(0) can be covered by balls Byg(yx)
with centers yx € LN Bg(0), k = 1,...,Q, such that Q(cR)7*5® < 3RI*AE) The
above lemina follows easily from this general fact by using successively finer covers of
A by balls. The details are as follows: Supposing without loss of generality that A is
bounded, we first take an initial cover of A by balls B, /2(yx) with ANB,,2(yx) # @,
k=1,...,Q, and let To = Q(po/2)’*P¥). For each k pick zx € AN By 2(yx). Then
by (*) with p = pp there is a j-dimensional affine space Ly such that A N By (2k)
is contained in the §-neighbourhood of L. Notice that L N Byy/2(yx) is a j-disk of
radius < py/2, and so by the above discussion its 26pg-neighbourhood (and hence
also A N B,y /2(2k)) can be covered by balls B,y /2(2,¢), € = 1,... , P, (centers not
necessarily in A) such that P(opo/2)*%®) < 1(po/2)+%®). Thus A can be covered
by balls Byp2(we), k = 1,..., M, such that M(opy/2)+?®) < 1Tp. Proceeding
iteratively we can thus for each g find a cover by balls Byep/2(wi), k = 1,... , Ry,
such that Ry(0%pp/2)+5®) < 29T,

o
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3.5 Definition of Top-dimensional Part
of the Singular Set

In this section we define the concept of “top dimensional part” of the singular set
of u; actually we only consider the case here when this is (n — 3)-dimensional (the
generic case), but the reader should keep in mind that all the discussion here carries
over with an integer m < n — 4 in place of n — 3 if the target manifold N happens
to be such that all homogeneous degree zero maps ¢ € W,f,f(lR"; N) of u satisfy
dim S(¢) < m. (Recall that by the remark following the Corollary 1 in Section 3.4
this implies dimsing u < m and in particular this is the case with m = n — 4 when
dim N =2 and N has genus > 1.)

Definition 1 The top dimensional part sing, u of singu is the set of points y €
sing u such that some tangent map ¢ of u at y has dim S(p) =n - 3.

Notice that then by definition we have sing u\sing, u C S,_4, and hence by Lemma 1
of Section 3.4 we have
(i) dim(sing u \ sing, u) < n — 4.

To study sing, u further, we first examine the properties of homogeneous degree zero
minimizers ¢ : R" — N with dim S(¢) =n - 3.

3.6 Homogeneous Degree Zero ¢ with
dimS(¢) =n—3

Let ¢ : R® — N be any homogeneous degree zero minimizer with dim S(p) =n-3.
Then, modulo an orthogonal transformation of IR™ which takes S(y) to {0} x R"3,
we have

() e(,y) = po(z),

where (z,y) denotes a general point in IR" with £ € R3, y € R"3, and where g, is
a homogeneous degree zero map from IR? into N. We in fact claim that

(ii) singpp = {0} and hence y|S? € C*®,

so that p|S? is a smooth harmonic map of S? into N. To see this, first note that
sing o D {0}, otherwise ,, and hence ¢, would be constant, thus contradicting the
hypothesis dim S(¢) = n — 3. On the other hand if £ # 0 with £ € sing po, then by
homogeneity of @y we would have {\§ : A > 0} C singyp, and hence

{(0&y) : A>0,y € R"3} Csingp.
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But the left side here is a half-space of dimension (n — 2), and hence this would give
‘H"~%(sing ¢) = oo, thus contradicting the fact that H"~?(sing ) = 0 by Lemma 1
of Section 2.10. Thus 3.6(ii) is established.

We also note that if ¢V) is any sequence of homogeneous degree zero minimizers
with ¢0)(z,y) = ¢§(z) for each j, and if lim SUP; _.oo [5,0) |DpY)|? < oo, then

limsupsup | D%{’| < oo
j—oo  §?

for each ¢ > 0. Indeed by the compactness theorem (Lemma 1 of Section 2.9)
there is a subsequence @0 — ¢, where ¢ is a homogeneous degree zero minimizer
with o(z,y) = @o(z), and by (ii) we have ¢o|S? € C*®. Thus for z € R™\({0} x
IR"~3) and positive o < dist(z, {0} x IR"~3) we have |p(z) — ¢(z)| < Co, whence
S50 [ —p(2))? < J5, (2 1#9") —¢[*+Ca?, s0 we can apply the regularity theorem
of Section 2.3 for o sufficiently small and j’ sufficiently large, so that the convergence
of pU" to o is actually with respect the C* norm for each k on compact subsets of
R™\({0} x R""3). In view of the arbitrariness of the sequence ¢U", it then follows
that for all homogeneous degree zero minimizers ¢ with [, |Dgo|?> < A we have

(iii) sup|D'go| < C, €¢=1,2,...,
s?

where C depends only on ¢, N, A.

3.7 The Geometric Picture Near Points of sing,u

Let K be a compact subset of 2 and z € sing, u N K, and let ¢ be a tangent map
of u at z with dim S(p) = n — 3. As in Section 3.4, we can assume without loss of
generality (after making an orthogonal transformation in IR™ which takes S(¢) to
{0} x R""3%), that

(i) p(z,y) = po(z), zeR’yeR">

By definition of sing, u, there is a sequence p, | 0 such that

(i) tim g5 [ Ju- g =0,
)00 B, (2)

gl
where ¢(3)(z,y) = ¢((z,y) — 2) so for p = p; with j sufficiently large we can make
the scaled L?-norm p™" Jo,9 e - ¢®|? as small as we wish. On the other hand
we claim that for any homogeneous degree zero minimizing maps ¢ : R" — N as
in 3.6(i) and any ball B,,(z) with B, (2) C 2 we have the estimate
(iii)
singu N B,2(z) C {z : dist(z, (z + {0} x R"%)) < 6(p)p} V¥p < po,

é(p) =C (p"‘ / |u - v“’l’) :
Bp(z)
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where C depends only on n, N, A with A any upper bound for oz~ |, Byo(2) |Du)? (see
Figure 3.2).

z+ {O)xIR™3

-—— - sing u

Figure 3.2: Picture near points of sing, u

In view of 3.3(ii), this perhaps suggests that the possibility that the top dimensional
part of the singular set is contained in a C' manifold (or at least a Lipschitz manifold)
of dimension n — 3. But there is a problem in that 3.3(ii) only guarantees that 6(p)
is small when p is proportionally close to one of the p;, and, without further input,
we cannot conclude very much about the structure of sing, u from this—see the
discussion in Section 3.8 below.

We conclude this section with the simple proof of (iii). We assume z = 0 for
convenience of notation.

Proof: Let p < pp and w = (§,7) € sing, uN B,/2(0). Take o = Gol€|, with G <
to be chosen. By the regularity thcorem Section 2.3 there is €9 = €o(n, N, A) >
such that

(1) <o / e — p(w)? <
Bo(w)

< 207" / lu— of? + 207" / o = o(w)P.
By (w) B, (w)

By virtue of 3.6(iii) we know that |Dyo(z)| < C|z]~!, where C depends only on
N, A, and hence |p(w) — ¢(z)| < C|€|~'o < CBo for z € B,(w), where C depends
only on N and A. Then (1) gives

o < 26571 [

By (0

1
2
0

lu—ol* + CB2.
)
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Then selecting C82 < %eo and multiplying through by |¢|", we have

e < ¢ (p-" / fu - ¢|’) o,
B,(0)

with C depending only on n, N, A. Taking n'* roots of each side, we then get the
required inequality. m]

3.8 Consequences of Uniqueness of Tangent Maps

We want to show here that the geometric picture established in the previous section
does give good information about the structure of the top dimensional part sing, u
if the tangent map at each point y € sing, u is unigue; because then for each § > 0
and each y € sing, u there is ¢ as above, an orthogonal transformation Q of R"
and a p, s > 0 such that 3.7(iii) holds for all p < p, 5, with Q independent of p. We
claim that such a property implies that sing, u is contained in a countable union
of (n — 3)-dimensional Lipschitz graphs: To be precise, we could apply the case
j = n — 3 of the following lemma:

Lemma 1 Let j € {1,...,n—1}. Suppose 6 € (0,1) and A is a subset of R" such
that at each point y € A there is a j-dimensional subspace L, of R" and p, > 0
such that

(i) AN By(y) C {z: dist(AN By(y),y + L,) < 6p} Vo< py,

then A C UR,\X;, where each L; is the graph of a Lipschitz function over some
j-dimensional subspace (in the sense that there is an open subset U; of some j-
dimensional subspace L; C R" and an L} -valued Lipschitz function f; on an open
subset U; of L; such that £; = {z + fi(z) : z € U;}).

Remark: In standard terminology, this says that A is countably j-rectifiable.

Proof: We decompose A = U2, A;, where A,y C A; is the set of points y € A such
that (i) holds with p, = i~!. Notice that then (i) holds for all y € A; with p, =i"!,
and A; satisfies a uniform cone condition in the sense that

A;N Bi-1(y) C K, Vye€ A,

where K|, is the cone given by K, = {z : dist(z,y + L,) < 6|z — y|}. Now select j-
dimensional subspaces L, ..., Lo of IR" such that for each j-dimensional subspace
L c R" there is one of the L; such that ||L; — L|| < 6. Then we can decompose
A = ?=|A.' J» Where

Ay ={y € Ai: |ILy - Lyl < 6}.
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Then each A,, has the uniform cone property that
Aiy,NBi-i(y) Cy+ K, Vy€ A,

where K, = {z : dist(z,L,) < 26|z|}. It is standard that such a uniform cone
condition implies that, for each given y € A;,, A;,NB;-1(y) is contained the graph of
a Lipschitz function with domain B;-1(y')NL,, where g’ is the orthogonal projection
of yon L;. (Sec e.g. [Si83a, §5].) The lemma is thus proved. D

Notice that the argument above actually shows that the following is true:

Corollary 1 If A satisfies the same hypotheses as in the lemma, except that we
can choose p, = po, with po > 0 independent of y, then AN B, (y) is contained in
the finite union of j-dimensional Lipschitz graphs for each y € A. If L, — y can
be selected independent of y (i.e. L, = y + Lo for some fired subspace Lo), then
AN B, (y) is contained in the graph of a Lipschitz function over the plane L.

By 3.7(iii), such a uniform choice of p,, L, can be made for sing,u N K, K any
compact subset of 2, provided that for each 6 > 0 and each compact K C §2, there
is p(6, K) € (0,dist( K, 39)) such that

(i) p"'/ lu—p? <6, p<p(6K), y€sing, unKkK.
Bo(y)

As a matter of fact by 3.7(iii) we only need (ii) to hold for suitable § = é(n, N, K,
A) > 0, where A is any upper bound for supd®~" [, - |Dul? over all y € K with
d € (0,dist(K, 89)), because then 3.7(iii) implies that the hypotheses of the above
corollary with & = (for example) §. Thus:

Corollary 2 There is 6 = 6(n, N, K,A) > 0 such that if for each y € sing,uN K
there 1s ¢ such that (ii) holds, then sing, u N B,s k)(y) is contained in an (n — 3)-
dimensional Lipschitz graph for each y € sing, uN K.

We see in the next chapter that there are stronger conditions on the L?-norm which
guarantee much stronger results in certain cases.

3.9 Approximation properties of subsets of IR"

We want to devote this section to some further discussion of properties of subsets
A C IR™ which satisfy the kind of j-dimensional approximation property described
in Lemma 1 of the previous section.

We in fact consider several variants of such a property; we continue to use the
notation that

Myo(z) = p7(z — ).
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Definition 1 Let A C R" be an arbitrary set and § > 0, then

(i) A has the weak j-dimensional é-approximation property if Vy € A there isp, > 0
such that, ¥V p € (0, p,], B1(0)Nny ,(A) C the S-neighbourhood of some j-dimensional
affine space L, containing y.

(i) The property in (i) is said to be pp-uniform, if A is contained in some ball of
radius py and if, for every y € A and every p € (0,p0), B1(0) N, ,(A) C the
6-neighbourhood of some j-dimensional affine space L, , containing y.

(iii) A has the strong j-dimensional é-approximation property if for each y € A
there is a j-dimensional affine space L, containing y such that definition (i) holds
with L, , = L, for every p € (0,p,).

(iv) The property in (iii) is said to be po-uniform if A is contained in some ball of
radius po and if for each y € A there is a j-dimensional affine space L, containing
y such that B,(0) N, ,(A) C the 6-neighbourhood of L, for each p € (0, py).

Concerning these properties, we have the following lemnma, which is actually just
a summary of the results of Lemma 3, Lemma 1, and Corollary 1 of Section 3.8.
We continue to use the terminology that G is the graph of a Lipschitz function
over some j-dimensional subspace to mean that there is a j-dimensional subspace
L cR" and a map u : L — L* such that sup, y¢; .4, |2 — y|7!|u(z) — u(y)| < o
and G = {z + u(z) : z € L}.

Lemma 1 (i) There is a function 3 : [0,00) — [0,00) with limg)o 3(6) = O such
that if A C R" has the j-dimensional weak 6-approzimation property for some given
5 € (0,1], then HI*3®(A) = 0. (In particular, if A has the j-dimensional weak
b-approzimation property for each § > 0, thendim A < j.)

(i) If A C R™ has the strong j-dimensional §-approzimation property for some
5 €(0.1], then A C UZ,Gk, where each Gy is the graph of some Lipschitz function
over some j-dimensional subspace of R".

(iii) If A C R™ has the py-uniform strong j-dimensional §-approrimation property
for some 6 € (0,1], then A C Uf':le, where each Gy is the graph of some Lipschitz
function over some j-dimensional subspace of R™.

The following lemma shows that certain closed subsets of the singular set of u satisfy
the uniform weak é-approximation property:

Lemma 2 If u € W'3(Q, N) is energy minimizing, if yo € singu, if S, = {z €
Q:6u(y) > Oulyo)}. and if & > 0 is arbitrary, then S, N B, (yo) has the (n — 3)-
dimensional py-uniform weak 6-approzimation property for suitable py = po(u, %o, 6) >
0.
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Remarks: S, C singu because 6,(y) > 0 <= y € singu by the e-regularity
theorem —see Corollary 2 of Section 2.10. Notice also that S, is a closed subset of
sing u by the upper semi-continuity of © proved in Section 2.5.

Proof: If the lemma is false, then there is § > 0, y € singu, pr | 0, 0% < pi, and
yx € B, (y) N Sy such that

(1)
By(0) N1y, 6, S+ € 8-neighbourhood of any (n — 3)-dimensional subspace.

Choose Ry | 0 with Ri/p, — oc. Then by monotonicity (see Section 2.4) we have,
for all p€ (0,Ry] and for all k = 1,2,...,

\Duf? < 2" /

BRr, (yx)

Ou(m) < p*7" /

|Duf? < B2 / | Duf?.
Bo(yx)

BRk +op (o)

In terms of the re-scaled function uy = u,, ,, this says

Oulur) < 72" / |Dugf? < B2 / |Dup
B, (0) B

Ry +op (wo)

for every p > 0 and for all sufficiently large k£ (depending on p). Since p/Rx — 0

we have RZ " Is | Duj?> — ©,(yo), and since B,(yx) > O.(y) by hypothesis,
Rk+ak(llo)

we then obtain

) Ou(so) < P / IDuil? < Oulyo) + e,
B,(0)

where €, — 0 as k — oc. In particular the u, have uniformly bounded energy on
any fixed ball in R", so the compactness theorem (Lemma 1 of Section 2.9) gives
that there is a minimizing map ¢ € Wl:,f(lR"; N) and a subsequence u such that
up — ¢ locally on R™ both with respect to L? and with respect to energy. But
then (2) says that

7 [ Dol = 8utwn), Vo >0
B,(0)

and by the monotonicity formula (Section 2.4) applied to ¢ we thus conclude that

2

91" _o, vp>o,

2-n
R OR

B,(0)

and hence that ¢ is homogeneous of degree zero:
3) o(Az) = p(z), z€R", A>0.

Henceforth let @ = B,(yo)(= 6,(0)). Now ¢ need not be a tangent map of u because
the points y; vary with k, but in any case we can (by (3)) apply the discussion of
Section 3.3 in order to deduce that

S(p) :={y € R": 8,(y) = a}
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is contained in an (n — 3)-dimensional subspace L of IR". Thus by upper semi-
continuity of ©, there is § > 0 such that

(4) {y € Bi(0) : 8,(y) > a - 6} C Ls,

where Ls denotes the (open) é-neighbourhood of L. Now by the upper semi-
continuity of © (as in Section 2.11) we see immediately that this implies

(5) {y€ Bi(0):8,,(y) >a -0} C Ls

for all sufficiently large k’. Indeed otherwise there would be a subsequence {k} C
{'} and z; € B,(0)\ Ls — = € By(0) \ Ls and with 6,,(z;) > a — 6. But then
by the upper semi-continuity we have ©,(z) > a — 6 with z € B,(0) \ Ls, which
contradicts (4). Thus (5) is established. But evidently (5) contradicts (1). u]

We want to conclude this section by briefly discussing an example which illustrates
the point that “very bad” sets A may have the weak j-dimensional approximation

property.

We begin with an isosceles triangle Ay with edge-lengths ¢, ¢, 1, and with angles
€., — 2¢, where € € (0,7/4) (see Figure 3.3); we should imagine € small. We

Figure 3.3: The triangle Ay and construction for A,

proceed to describe an iterative procedure which, at the kP stage gives rise to a
union of 2¢ homothetic copies of Ay, each scaled by a scaling factor €. (Note that
for small €, € = } + 3€2 + O(e*).) Specifically, inductively define the sequence A,
with A4 C Ay as follows:

A, is defined as the union of the two homothetic copies of Ay obtained by joining the
base of Ay to the vertex of Ay opposite the base with line segments making angles
€ with the two equal edges of Ay. (See Figure 3.3.) Thus both the triangles in A,
has edge-lengths €2, &2, ¢.

Then A, is the union of the four triangles (having edges of length €3, £3, £2) obtained
by applying the same construction to each of the two triangles in A,. At the k!
step we apply the same construction to each of the 2¥~! triangles (with edge-lengths
€k, ¢%,¢*-') in Ax_;. Thus A consists of a union of 2* triangles, each having edge-
lengths ¢5+1, ¢k ¢ Then we define

r = nl?i—.lAk'
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Ay “ ‘ ; Koch curve

AA J\JJ\_(_/\_

Figure 3.4: The sets A, and the Koch curve

Of course I' is a compact subset of A for cach k and has full projection onto the
base of Ag, because cach Ay evidently has this property.

Notice that in fact ' is just one of the well-known “Koch curves”, because the
union of the shorter edges of all the triangles in Az, is just the standard k't
approximation for the Koch curve with starting figure consisting of 4 segments each
of length ¢ as shown in Figure 3.4.

Since the Hausdorff dimension d of T satisfies (3)? = 2 (we use two copies of I

scaled by factor € to reproduce '), we get d = -ﬁ% €(lL,2)forc € (0.5). Tis
an example of a self-similar set: if we homothety by a factor of £~} from any vertex
of any one of the triangles in the collection U,>, Ax and intersect the result with a
suitable ball with center at the chosen vertex. then we see a copy of I' modulo a rigid
motion. (See [Hu81] for a general discussion of such sets.) Using this self-similarity
property. and the corresponding similarity properties of the approximations A, of
I it is quite easy to check that I' has the (alarmingly bad) property that. even
though H!(I') = oc. nevertheless H'(yNT) = 0 for any embedded C* curve 4 or for
any graph 4 of a Lipschitz function defined over a 1-dimensional subspace of R%.
(Such subsets are called “purely 1-unrectifiable”: see [Hu81], [Mt75] , [Mt82]. [Mt84].
[Ms53] or [Ha85].) On the other hand. again by using the self-similarity properties
of A; it is elementary to check that I' has the weak 1-dimensional §-approximation
property with é = 6¢.

Thus there is are extremely significant differences between subsets which satisfy the
weak and strong j-dimensional é-approximation properties; for example Lemma 1
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above shows that subsets with the strong j-dimensional §-approximation property
are automatically countably j-rectifiable, whereas the above example shows that sets
with the weak j-dimensional approximation property can have Hausdorff dimension
greater than j and be purely j-unrectifiable.

Thus although Lemma 2 will prove to be useful in our later discussion, it does not
in itself guarantee very much about the structure of singu.

3.10 Uniqueness of Tangent maps with isolated
singularities

Recall that we in fact could check the strong (n — 3)-dimensional §-approximation
property (and hence countable rectifiability. by Lemma 1) of the previous section
for singu (u any energy minimizing map u € W'3(Q; N)), provided all the tangent
maps of u at points of sing, u are unique. Unfortunately such uniqueness in general
is not true, although it is still an open question in case the target is real-analytic.

In this section we discuss one of the few situations in which uniqueness of tangent
maps is known -the case when the tangent map has only an isolated singularity at 0
and when the target nanifold N is real-analytic. The main theorem here (originally
proved in [Si83b] ) is as follows:

Theorem 1 Suppose ¢ is a tangent map of u at some point y € singu, and suppose
singyp = 0. Also, assume that N is real-analytic. Then ¢ is the unique tangent map
for u at y, and in fact

u(y + rw) = p(w) + e(r,w), we S

where lim, g | log 7|® sup,,¢ gn-1 |€(r,w)| = 0 for some a > 0.

Remark: (1) In view of the examples constructed in [AS88] and [GW89)] the decay
here is best possible.

(2) The theorem is not true if we replace the hypothesis that N is real-analytic by
the hypothesis that N is C>* (see [Wh92]). We briefly discuss why such a state of
affairs. which might seem surprising at first reading, is to be expected. First, rewrite
the equation Au + Y_, A,(D,u. Dju) = 0 (see Section 2.2) in terms of spherical
coordinates r = |z — y|, w = |z — y|~'(z — y), and then make the further change of
variable t = —logr. Letting %(w,t) = u(y + rw) and letting @’ abbreviate /8.
we obtain the equation

(1) U - (n = 2)u + Agn1U + Ag(D, i, D) = — Ag(@, ),

where A;(D, %, D, %) is an abbreviation for ;';,l Au(D,i, D). where 1y, ..., Tnoy
is any orthonormal basis for the tangent space of the sphere S™-1.
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Now by modifying the argument of Section 2.2 in a straightforward way, we can check
that Agn-1u + Ag(D, 4, D,u) is exactly the Euler-Lagrange operator corresponding
to the energy functional Egn-1(v) := [g._, |D,v|? for maps v : S*~! — N. Notice
that then of course, since ¢ is homogeneous of degree zero and singy = {0} we
know that g := p|S"~!: §7~! — N is C*™ and stationary for £gn-1. Thus

(2 Agn-199 + Au(Dutpo, Dupo) = 0.

Also, keep in mind that the Euler-Lagrange operator for Egn-1 (i.e., the operator on
the left of (2)) is by definition (see the discussion in Section 2.2) characterized as
the operator N (gp) such that

-4

(N(‘po)v C) = ds

Esn-1(M(wo + O))ls=0r ¢ =(¢"... ,¢P) € CX(S™ L RP);
that is, it can be thought of as the L? gradient of the functional £gn-1, and hence
it is reasonable to use the alternative notation —VEga-1 for this operator. In this
case the equation (1) can be written

3) @ = (n— Qi — VEsnr () = —As(@, T).

Now since ¢ is a tangent map for u at y, we know there is some sequence p; | 0
such that u,, converges to ¢ in the W'? norm on any ball Br(0); here as usual u,,,
denotes the re-scaled function given by u,,(z) = u(y + pz). Since ¢ is homogeneous
of degree zero and smooth away from 0, and hence | Dyp(z)[? < C|z|~2, this ensures
in particular that, for any given 8 € (0,1), 02~ "Ep,(:)(uy,,) < C6720?, provided
z € R"\ By(0), o € (0,0/2) and j is sufficiently large (depending on 6). Then by
the version of the e-regularity theorem given in Corollary 1 in Section 2.10 we have
that, for suitable € = €(n, N) > 0 and all sufficiently large j,

o <ef = sup o"lD"uW,,l < Ck
Bo(z)

for cach k = 0,1,... and for j sufficiently large (depending on 6, k); of course since
any region Bg(0) \ B,(0) can be covered by finitely many balls B,(2) with o < €6
this shows that in fact for any fixed 0 < p < R

(4) sup |D*uy,,| < C(k,p, R)
Br(0)\B,(0)

for all k = 0,1,... and for all sufficiently large j (depending on p, R, k). Then of
course the convergence of u,,, to ¢ must be with respect to the C* norm on any
compact subset of IR" and in particular, since %f = 0, we have

(5) e
Thus in terms of the function u(w,t), we see that with T; = —log p; — o0, u(w,t —
T,) converges to ¢(w) in the C* norm on all compact subsets of the cylinder $"~! x
[0,00) and in particular @'(w,t — T;) converges to zero on any such set. Thus fixing

— 0 on each compact subset of R" \ {0}.
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T > 4, taking arbitrary j sufficiently large, and letting v(w,t) = u(w, t — T;), we see
that the equation (3) can be written in the form

v —(n—2' =V (v)+ R, onS"!'x[0,T)
where [|[R(t)]|L2(sn-1) < 311V () |Lagsn-).

Now (after a re-scaling of the time variable to get rid of the factor (n — 2) in front
of v') this is analogous to a finite dimensional ODE system of the forin

(6) £ -¢=VfE)+R,

where f is a given fixed smooth function on R" and |R| < %l{’l. Of particular
interest are “slow decay solutions” of such an equation; that is, a solution £ such
that |€"| < |€'|. (Such solutions exist whenever f has critical points which are
degenerate in a certain bad scnse—see [AS88]). In this case the equation (6) takes
the form

) ¢ =-Vf()+R,

where |§| < %l{' |. Now the asymptotic behaviour of such equations is very different
in the cases f € C® and f real analytic. In fact, it is easy to construct examples
of C* functions f such that there are solutions £ of an equation of the form (7) (or
even exact solutions of the equations £ = —V f(§), §” — & = V f(§)) which have no
limit as ¢ — oo, even though the solution in question remains in a compact region
for all time. Indeed there are examples of C® functions f with f and its gradient
vanishing on a smooth Jordan curve v, with f positive inside -, and such that there
are solutions of £ = —V f(£) (or " — & = Vf(€)) which “spiral out” towards ~y
(“goat tracks down the hillside”) as t — oo, so that the set of limit points of £(t) as
t — oo is all of 7. See Figure 3.5.

Figure 3.5: “goat tracks” for C™-potential

On the other hand if f is real-analytic the situation is very different: According to
Lojasiewicz [Lo65], for each critical point y of f (i.e., each point where Vf = 0)
there is a € (0,1) and 1 > 0 such that

(i) V(@) 2 1f(z) = f(y)I'~*/
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for every point z € B,(y). We emphasize that this holds for any f which is real
analytic in some neighbourhood of 0; the constants a, 7 of course depend on the
particular function f. Using this inequality it is easy to prove that any solution of
an equation of the form (7) which remains in a compact region for all time must
indeed have a unique asymptotic limit as ¢ — oo:

Theorem 2 Suppose f € C*(IR") and £ : [0, 00) — R" is a bounded C'([0, o0))
solution of € = —V f(£) + R, where R has the property that there is a fized § € (0,1)
such that |R| < 0|¢'| on [0, 00). Then lim,_ &(t) ezists, and in fact there are
constants C, a > 0 and & € IR" such that |€(t) — &| < C(logt)™ for allt > 2.

Since our proof of Theorem 1 will involve an analogous argument in an infinite
dimensional setting, it is worthwhile for us to give the proof:

Proof: First note that by direct computation we have

(1) -2 1EW) = ~€ - VI©) = €7 ~€ - R> (1~ O

and hence by integration we get
(2 (1-0) /ts €' < F(&(t)) - f(£(s))

for any 0 < t < s < 0o. In particular this shows that f(£(t)) is an increasing
function of ¢; hence since there is a compact K such that £(t) € K Vt we conclude
that lim,_, f(£(t)) exists, and further, if y is any limit point of £(t) as t — oo, then
we must have limy_.o, f(£(t)) = f(y) and f(£(t)) > f(y) Vt. Thus (2) gives

(3) (1-6) / TIER < fE®) - ().
and by the Lojasiewicz inequality (i) this gives
(4) (1-6) / € < IV F(E() /e

provided [£(t) — y| < 7. Since |R| < 8|€'|, we can use the triangle inequality to give
IV£(€)] < (1+8)|¢|, and hence (4) implies

(5) (1-6) [“ €2 < 1+ 0)2/(2—a)|£l(t)|2/(2-°).

provided |£(t) —y| < 1, so that if [£(t) —y| < n on the interval [¢;, ;] we can integrate
the differential inequality (5) to yield

00 a-1 00 a-1
‘|2 - ‘2 C - ) ) )
([ |e|) (/ |e|) >Clt-t), te |t
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which evidently implies
00
(6) / P <Cit—t)"? teltit), B=(1-a)'-1>0.
t

Notice that by the Cauchy-Schwarz inequality we have

[ emar < -uy ( [ |£'<r)|*dr) "

Now [ |€'|> — 0 as t — oo, and y is a limit point of £(t) as t — co. We can
therefore choose t; in the above such that [ |¢'|* < e? and |€(t1) — y| < 1/8 where
€ is a constant to be chosen, depending only on 7, a, shortly. Then (7) gives

@) §(t1) — &(s)] <

8) sup €(t1) — £(t)] < eTY2.

tejty. i+

But by multiplying by (¢ — t;)%/2 and integrating in (6) we see that

ty +T,
/ (s — t1)'*P2I€'(s)|*ds < CT P72,
t

14T

with C independent of T for any T, > T such that [£(t) — &(t1)] < n/2 for all
t € [ty + T,t; + T.). On the other hand then by the Cauchy-Schwarz inequality we
get

(9) Ity +T.) - £ty + T)| <
) +T.
< / I€'(s)] ds

1+T
S (

t1+T 12 , oty +T. 1/2
/ (s - n)”"”le’(s)l*) ( [ - t,)""’/zds)
tu+T 61 +T

SCT'”SZ

for T > To, with Ty fixed, depending only on a and 5. Now with this Tp, we choose
€ in (8) such that Tg/? < n/8, so that (8) gives |£(t)) — £(ty + T)| < n/8 for
T < T and (9) gives |£(ty + T.) —€(Ty + T)| < n/4, hence by the triangle inequality
[€(t1 + T.) — &(t1)| < 3n/8. But then |£(t, +T.) — &(t1)| < 3n/8 for arbitrary T, such
that |£(t) — &(ty)] < n/2, t € [t1,T.]. Evidently then |£(t, +t) — £(t1)]| < n/2 for all
t € [t1,00). But then (9) can be applied with arbitrary T > 0 and with T, = t, such
that &(¢;) — y, thus giving

€ty +t) —y| < Ct P2 wt>o0.

This completes the proof. (m]
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3.11 Functionals on vector bundles

We begin with a general discussion of the notion of smooth functionals defined on
sniooth sections of a vector bundle over a compact Riemannian manifold.

Let n < p;, ¢ < p, be positive integers, let £ be a compact n-dimensional C!
Riemannian manifold isometrically embedded in IR”', and let V = U,egV,,, where
each V,, is a g-dimensional subspace of IR”, with V,, varying smoothly with respect
to w in the sense that the matrix of the orthogonal projection P, of IRP? onto V,, is
a smooth function of w.

For the applications to the energy functional, the reader should keep in mind the
case when we have n — 1, p in place of n, p; and when £ = $"~!, and V,, = T, N,
where ¢ : S"~! — N is a fixed sinooth (harmonic) map of S"~! into N.

For each k = 0,1,..., C*¥(V) will denote the set of C* sections of V, meaning that
cach u € C*¥(V) is a map u € C*¥(Z; R™) with u(w) € V,, for each w € X. Similarly.
for any a € (0, 1], C*(V) denotes the set of C* sections of V. Also L?(V) denotes
the subspace of L2(Z; IR™) equal to the set of u = (u',... ,u”?) € L*(Z:R") such
that u(w) € V, a.e. w € £. Thus the inner product is the usual L? inner product
(u,v) 12v) = [y u(w) - v(w) dw.

Now let 7,,...,7, be a locally defined smoothly varying IRP'-valued functions on
¥ which formn an orthonormal basis for T,L at each point w € ¥ where they are
defined. Then for any u € C'(V) we define

n
(i) VWu=Y rneWWu,
i=1

where
VXu = P,(V,u).

with V. u denoting the ordinary Euclidean directional derivative of u. Notice that
the expression on the right of (i) is actually globally defined on . because it is
evidently independent of the particular choice of orthonormal basis 7, ... . 7,, and
VVu takes values in T,E®V,, C R” ® R™. In fact we can get an explicit expression
for VV independent of the particular basis 7, ... , 7, as follows. Since u = 372, we;
we have V. u = 37, ;(w)e;, and since 37, (w1 = VEW, where VE means
gradient operator on £, we obtain in place of (i) the alternative identity

P2
(ii) VYu= Z(Vsu-') ® P,(ej),
i=1
which is evidently independent of the particular orthonormal basis 7,... ,7,. We

consider a given smooth real-valued function

F =F(w.Q), w€EX QeRM xR Q| < o,
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where oy > 0 is given. Here we are going to identify IR”* ® IR”* with IR”'” in the
usual way, via the linear isomorphism induced by the map

('...,2™)® W, ... ,v™) ~ (T¥)iz1,... pry=1,.. 02

(The right side here is a p, x p; matrix which, since it has p;p, components, can
be identified with a point in IR”'”2.) Subject to this identification, we can define a
functional F on C'(V) by

(i) Flu) = /ﬂ Flw,u,VVu), ueC\(V).

The Euler-Lagrange operator M« for F is defined on C%(V) by the requirements
(iv)
d
Mgx(u) € CO(V), Ef'(u + sv)

= (Mx(u),v)2x), u,vE C*(V).
=0
Of course this does uniquely determine Myx; indeed to see this and at the same
time to get a clea~r idea of the form of Mz, we note that by (ii) we can write
F(w,u,VVu) = F(w,u,VEd!,...,VEuP?), where F(w,z,7), 2 € R? and n =

(M, ..., 7@, with 9@ = (n{*,... ,%{?)) € R™, is defined by
- P2
Fw,z,1",... ,q%)) = F(w,2,Y_ 19 ® P.(e;)).
=1

Then by direct computation, the derivative on the f;]-' (u+ sv)|a o is given precisely
by the expression

d
d—sf'(u + sv) T

P2 P1
/ > (Z(V;v“)Fq(u)(w,i. Vi) + v° Fa(w, 8, vm) ,
La=1 1=1 ’

where V; =¢;- VE, j=1,...,p (so that VEf = (V,f,...,V,, f)) and where the
subscripts mean partial derivatives with respect to the indicated variables. After
using the integration formula [ V,f = — [ fH; on I (with f € C*(Z) and with
(Hy, ..., Hp,) the mean-curvature vector of X) this gives

if(u + sv)

8=0

/Zv ( ZV (F(..)(w u,Vu)) + H, F«.,(w i, Vi) + Fra(w, 1, V“'))

and hence we see that indeed My exists and is given by
(v)
€a Mx(u) = Zv (Fyo (@, 8, V) = Frauvay ~ ZH F(.,)(w i, Vi)

=1 i=1
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for each @ = 1,...,p;. Notice that this takes the general form

P P2
ea Ms(u) =3 D Froo(w, & VOViV’ — folw, @, Vi),

19=18=1
where f = f(w, z,7) is a smooth function of (w, 2,7) € £ x IR x RP*??,

We always assume that F is such that the Euler-Lagrange operator My is elliptic,
in the sense that

P1 P2
(vi) Y 2 Frogm(w,2mAadse’e >0
iy=1a,8=1
forall £ = (&,...,67) € T,Z\ {0} and for all A = (Ay,...,A,) € V,,\ {0}.

We also need to mention the linearization of M. If u € C?(V) is a solution of
Mx(u) =0 on I, we can define the linearized operator Lx, of Ms at u by

, vECHV).

=0

d
Lru(v) = d—st(“ + sv)

Let 0o > 0 and notice that if u € C*(V) with |u|c2 < g and if u;, u, are arbitrary
C?(V) functions with |u;|cs, |uz2|c? < 00, then we can write M £(u;) = Mx(u+(u;—
u)) for j = 1, 2, and, using the calculus identity f(1) = f(0)+f’(0)+fol(l—s)f”(s)ds
with f(s) = Mx(u + s(u, — u)), we deduce

(vii) Mz(u,)) = Mx(u) = Lr o(u; — u) + N(u, u,),

where . 2
N(u, uj) = / 1- s)mM(u +s(u, —u))ds, j=1,2
0

By taking the difference of these identities for u), u; and keeping in mind that
|u+ s(uj — u)|cz < 0 Vs € [0, 1], we obtain an identity of the form

(viii) Mz(uy) = Mx(uz) = Lr,u(uy — u2) + a- V(uy — up) +
+b-V(uy —u2) +c- (uy — up),

where

(ix) sup(la| + (8] + |c]) < C(Jur — ulcz + |uz — ulce)

with C depending only on F and oy. We shall use (viii), (ix) in the next section.

3.12 The Liapunov-Schmidt Reduction

In this section we want to describe the Liapunov-Schmidt reduction associated with
the Euler-Lagrange operator Mx. The reader unfamiliar with this may find it
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instructive to first look at the finite dimensional version in Appendix 3.16 below. The
infinite dimensional version described here is exactly analogous, both with respect
to the results and the proofs.

Let K be the (finite dimensional) kernel of the elliptic operator L5 defined in the
previous section, let Px be the orthogonal projection of L?(V) onto K, and let

(i) Nu = Pxu+ Mzu.

Notice that then A'(0) = 0 (because Mx(0) = 0), and the linearization d\|o(v) =
5N (sv)|,_, (defined on C?(V)) is just

PK+C}',

which has trivial kernel on C?(V), so by elliptic theory (keeping in mind the el-
lipticity 3.11(vi)) we know that dA|o is an isomorphism of C?%(V) onto C**(V)
for each o € (0,1). Then the inverse function theorem is applicable to the C!
operator N : C?>¢(V) — C%(V), thus giving that A is a bijection of a neigh-
bourhood U of 0 in C%?(V) onto a neighbourhood W of 0 in C%*(V), and that
the inverse ¥ = N-! from W onto U is also C'. We assume subsequently that
Uc{ueC?(V): |ullcza < 1}.

Lemma 1 For a neighbourhood Wcw of 0 in C®2(V), depending only on F, we
have
(i) 1¥(f) = ¥(f)llwaz < Cllf = foliz, fi, 2€ W,
where C depends only on F, and where

vlliyaz = lwliZs + 1Vol1Z2 + [IV20llZ.
Remark: Of course, since it is merely a notational matter, we can subsequently
take W = W.
Proof: Let u; = ¥(f;), so that (since N¥(f;) = f;) we have

Pk(u;) + Mx(u;) = f;, fi €W,

and according to (viii) and (ix) of Section 3.11 (with u = ©) we thus have

(1) Px(uz —w) + Lr,p(uy —u2) = a- V¥(u) —up) +

+b-V(uy —u) +c- (u) —u2) + fo — fi,
where
(2) sup(lal + [8] + |c]) < C(luy — @lcz + |uz — @lc2).

Taking projections onto K and K+ in (1), and keeping in mind that Lr, takes
values in K+, we thus have

(3
Pic(uz — w) = Pg(a- V3(u; —u2) + b- V(uy = w) + ¢+ (wr — up) + fo — f1)
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and

@
Lro((v2 = )*) = (a- V(1 — ug) +b- V(uy —ug) + ¢+ (wy —wa) + fo— fi)*

Now according to (vi) of Section 3.11 the operator Lr,, in the equation (4) is elliptic,
and hence by the standard L? estimates for such equations we have

) (w1 - w2)*lwaa < ClIFlia, € =C(F),
where F is the right side of (4). In view of (2) we thus have

(6)
ll(u1 — u2) lwaz < C(lur — @l + luz — plca)llr — vallwaz + Cllfy = fallea .

On the other hand by taking L? norms on each side of (3) and using (2) again we
evidently have

1Pk (w1 — uz)llzz < C(jwr = plez + [uz — plca)llur — wallwaz + Cllh - fallea -

Since K is spanned by an orthonormal set ¢,, ... , @, of smooth functions, this last
inequality evidently implies

(7
| P (u1 — u2)llwaz < C(luy — @plea + lue — plce)llur — wzllwea + Cllfy — fallee -

By adding (6) and (7) we deduce finally
fluy — uzllwaa < C(luy = plez + [uz — @le2)llwr — wzllwaz + Cllfi — fallza,

and if |u; — @|ca, |u1 — p|c2 are then small enough (depending only of F) to ensure
that C(|Juy — ¢lca + |u2 — ¢lca) < 4, we thus have (ii) as claimed. o

Now let ¢y,... ,¢ (€ C*(V)) be an orthonormal basis for K. By definition

L L L
(iii) N (‘1' (26’%‘)) =) &y for Y Ep;eW,

=1 =1 =1
so in particular
. L .

(iv) (M.r (‘I‘ (ELK’%))) =0 for ¥, o, €W,
where (- )* means L?(V)-orthogonal projection onto the orthogonal complement K+
of K. Using (ii) with f; = Pxu and f; = ¥~!(u), where u is such that Pxu € W

and u € U, we obtain

v 1¥(Pxu) - ullwza < Cl|Pxu— ¥ (u)llzs = [Mrullz2
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by the definition (i). In particular, with Pxu in place of u this gives
(vi) I(Pxu) = Pxullwza < CllPxullls, uel,

where U = {ue U : Pkue W} =UnN P (W N K), because LrPxu = 0 and
hence | M £(Pku)||1» < C||Pxull2: < C||Pxul|2,. (Notice that trivially || Pxu|lc> <
C||Pxul| 12, because the p;, j =1,... ,l, are all C*(V) functions.) In particular (vi)
evidently implies

(vii) d¥|po Px = Px.
We now define
1O = FU(Tjo895), Tiafe; €W,
and check by direct computation (using the definition 3.11(iv) of M) that
(viil) (1, VI(E)r = M (¥(Z;.,89;)), a¥(E,60:)(Z;m7 03

for £ € w a.nd 7 € R, where W is the open neighbourhood of 0 in R’ such that
EeW = Z] 1&¢; € WN K. Notice that this can be written

M. V(€)1 = Me(¥(T;2169,)), d¥(E,60,)(X,795) = P(Zjo1Pes))ia +
M (¥(Z;00695))s Pr(Z5m95)) s

Now by (vii) we know that ||d¥(3,€7¢;)(,79;) = Px(Z;21795) 12 < CIEl; then,
taking (by (iv)) 3,7’ ¢; parallel to Mx(¥(3_;67¢;)), we deduce that

IM£(¥(Z51870,)) | < IVFE)] + ClEN M (¥ (Z;2.80,)I-
Similarly, taking 7 parallel to V f(§) we get

IVF(©)] < (1+ ClED IM#(¥(E)1895)) -

Evidently then, since we may take a smaller neighbourhood W if necessary (to
ensure that C|€| < 1), we conclude

(ix) SIVIE] < IM(¥(Shoie)l S 295, £ .
Also, if u € U = U N Pg(W N K) we have
(x) Mzu=0= N(u) = Peu= VYN (u) = ¥(Pxu) = u = ¥(Pku),

and also then by thg}eft side of (ix) Vf(§) = O with £ € W such that > &, = Pxu.
Conversely, if £ € W and Vf(§) = 0, then M(¥(}"&;v;)) = 0 by (ix), and hence

Pc(U(T&w5)) = N(¥(L &) = L&¢; so that automatically W(T&p,) € U
if ¢ € W. Thus

(xi) {uelU:Mrpu=0}=¥({T} ¢, : £ €W and Vf(€) =0}).
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Figure 3.6: The Liapunov-Schmidt Reduction

Since ¥ is a C! diffeomorphism, we see that ¥ embeds W N K into U, so
(xii) M:={v(Ti&¢) £ W}

is an l-dimensional embedded C' submanifold of U which according to (xi) contains
the whole zero set of Mz in the neighbourhood U. (See Figure 3.6.)

We also note some important facts about how well the function f approximates the
functional F near zcro. Speciﬁcally, note that for u € U and Pxu € W we have

|F(u) — F(¥(Pxu))| = —.7-' (u + s(¥(Pxu) — u))ds
= M;(u + s(¥(Pxu) — u)), ¥(Pxu) — u) L2¢v)
by the definition 3.11(iv) of Mx. Since

Mz(u + s(¥(Pxu) — u)) = Mz(u)llL2 < Cl|¥(Pxu) — ullwz2
(by direct computation using the expression 3.11(v)) we thus get
|F(u) = F(¥(Pxu))| < IMs(u)llez 19(Pru) = ullez + Cl1¥(Pxu) = ullfyaz,
and hence by (v) we have

(xiii) |F(u) — F(¥(Pxu))| < ClIMzullfs.

3.13 The Lojasiewicz Inequality for F

We now specialize to the case when the functional F is real-analytic. To be precise
we assume that F = F(w,2,7), w € £, z € RP, n € RP'? is smooth and that all
derivatives with respect to the w variables up to order 3 are real-analytic functions
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of the variables z,77: Thus we assume that for each (2,79) € R” x IR”"” and
each integer j = 0,1,2,3 there are smooth functions {@a,s} on T corresponding to
arbitrary multi-indices a = (a1,... ,ap,), 8 = (61, ... ,Bpp;), and o > 0, such that

Y S“ngf,aoa(w)l)a"%oo

m=0 [a+|8j=m

and such that

F(w,z,n) = Z Z aaﬂ(w)(z —2)%(n— 7’0)5

m=0 |a}+]8|=m

for |z— 29| +|n—mnp| < 0. Notice that then we can apply the implicit function theorem
argument above on the complexified spaces C®C?*(V) and CRC?*(V) thus giving
¥ = N! defined and C! on a neighbourhood Ug of 0 in the space € ® C**(V) in
the sense that for any fixed u, € C%*(V), j = 1,..., R, the complex derivatives
%W(Zfﬂ 2'u,) all exist and are continuous as maps from Ug into C3%(V). In
particular

1
fe(2',... 2" = F(¥()_ )

=1
is a holomorphic function of (z!,...,z") in some neighbourhood of 0 in €'. Thus
the original f(£) (= Fi (\ll(z:;=l &¢;))) is real-analytic in some neighbourhood of

0 in IR". Thus we can apply the Lojasiewicz result 3.10(i) in order to deduce that
there exist constants a € (0,1] and C,o > 0 such that

(i) IFE)'/ < CIVS(€)l V€ € Bo(0),

where B,(0) is the ball in IR' of radius ¢ and centre 0. But now by the inequal-
ity 3.12(xiit), with u € U arbitrary such that & = (u, ;)2 satisfy |£| < o, we

have
|F(u) = £ < ClIM#(u)llZ2
and hence by (i) and 3.12(ix) we then have

|F)*"/2 < C(IM#(u)ll2 + IM#(w)]*®)
< ClMz(u)llL2

for each u € U such that ||Pxu|| < o. In particular there is 69 > 0 such that
(ii) |F(u)|'~*" < ClMsulls Vu € C3(V), |lulics < a0,
and this is the required Lojasiewicz inequality in C3(V).

Now we want to prove that, even without any real-analyticity hypothesis as in (i),
the above inequality holds with best exponent a = 1 in case we assume the following
“integrability condition”:

(iii) F(¥(Pxu)) = 0 on some C3-neighbourhood of 0 in C3(V).
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This is called an integrability condition because (by 3.12(xi)) it is equivalent to
the hypothesis that there is a smooth ¢-dimensional manifold of solutions of the
non-linear equation Mx(u) = 0 which is tangent to the kernel K of Lz at 0.

Thus we claim:

Lemma 1 [f (iii) holds then there are o, C > 0 such that
|F)|'? < CIM#(u)ls, € CHV), llulles < 0.

Proof: According to (iii) and 3.12(xiii) we have
|F(u)] = |F(u) = F(¥(Pru))| < ClMs(u)llZa

for each u € U, and this is the required inequality. m]

3.14 Lojasiewicz for the Energy functional on S™~1

We would like to apply the Lojasiewicz inequality to the energy functional on the
sphere, but the smooth maps C*(S™~!; N) are not a linear space. so we first need
to show that, at least for maps which are C? close to a given harmonic map ¢, €
C>(S™"!; N) we can write the energy functional as a functional on a vector bundle
as in Section 3.11.

So take fixed wo € C*(S™!; N) which is harmonic; recall that by the discussion of
Section 2.2 (and also Section 3.10) this is equivalent to ¢y satisfying the equation

(i) Agn-1900 + Ao (Do, Do) = 0,

where Ay, (Do, Duo) is an abbreviation for E;';,l Apo(Ve,00, Vs 00) with an

orthonormal basis 7y, ... , 7, for T,S™*"!. Now for § > 0 and yo € N we let
Ts(yo) = {r € T,,N :|7| <6}

Us(yo) {O(yo + 1) : 7 € Ts(wo)} -

Then, for suitable § = §(N) > 0, Us(yo) is a neighbourhood of yo in N, and in fact
the mapping ®,, : 7 — II(yo + 7) is a smooth (real analytic if N is real analytic)
diffeomorphism of T5(yo) onto Us(yo) such that

(ii) Q;o'(y) depends smoothly or real analytically on (yo,y) € N x N

according as N is smooth or real-analytic respectively. Now let V = ¢tTN =
{Tpotw)N}uwesn-1. If u € C*(S™'; N) with ||u — po|lc2 < 8, then by definition of &,
we have the identity

(i) u(w) = T(go + Ol (u(w), we S,
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80, letting #(w) = &), (u(w)) we have & € C}(V) with
(iv) u = I(po + 7).

Thus for u € C?*(S"': N) we have the identity

(v) Egn-1(u) = Egn-1 (Mg + ).

Notice that the cxpression on the right has the form
F(w.%.VV7),
sn-|

where we use the notation of Section 3.11 with V = {V, } egn-1. V. = Ty N and
where
F=F(w.zn). we8 ' zeR’neR"

is given (see 3.11(ii)) by

O)  Fz) = [l (T2, V5 8(0) @ Para) + )]

which is certainly a C* function of w. z, 5 for |z] < 8 and which also satisfies
the analyticity condition of Section 3.13 in case N is real-analytic. (Because IT is
C™ or real-analytic in {r € R? : dist(z. N) < 8} according as N is C* or real-
analytic.) Thus we arc motivated to make the following definition: Let F be defined
on {u € C}(V) : ||lullr= < 6} by

(vii) Flu) = / (F(w.u.VVu) — F(w.0.0)).
sn-1

with F as in (vi). Then in view of (v), F is related to the energy functional by
(viii)  Ego-1(4) — Esnoi () = F(H) = Ego-r (Mo + ) = Egnr ()

for u € C*(S™': N) and i snch that u = II(py + ) as described above: stated in
another way. this says

(ix)  F(r) =Esn-1(Il(go + 1)) = Esn-r(0). v € CHV), |Ivlle= < 6.
Next. recall (see the discussion of Section 2.2) that the Euler-Lagrange operator

of Esn-1(u) is exactly Mg, (u) = Aso-ru + Au(Dju.Dju). and it satisfies the
identity

;;i—sfsn-n(ﬂ(u +50))|o=0 = —(Me,_,(u).0) 2. v= (.....»*) € C¥}S" . IR").
On the other hand by (viii) and the definition ‘-;1_'.7-' (4 + 30)|azg = —(Mg(u). 1)z we

then have

Me,, \(0).0) 2 = (Mz().0)2. v € CHV).
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which evidently implies
(x) Me,, ,(w))® = Mz(@), uweC*S"N), |lu—pollce <6,

where (-)™ means the orthogonal projection onto T, N. However recall that
Me,,_, (1) = (Au)T (sec (iv’) of Section 2.2), where ()T means orthogonal pro-
jection onto Ty(,,)N. Since ||lu — po|lc2 < 6 we then have from (ix) the pointwise
bounds

(xi) (1= C8)Me,,_,(u)| < IM#(u)| < [Megg,_, (u)].

Notice that by taking the mixed partial derivative % of the identity (ix) with
sv + tw in place of v, we also have

Lpo(v) = Lr(v),

where L, = %Mgsn_,(ﬂ(cpo + 8v))|s=0 is the linearization of Mg, , at o and
Lr(v) = %M;(sv)|,=o is the lincarization of Mz at 0; in particular L is certainly
elliptic it has second-order term Av and hence we may apply all the theory of
the Sections 3.11—3.13 to F.

Thus in particular if N is real-analytic (which ensures F is real-analytic by the
discussion above), we know by (xi) and the Lojasiewicz inequality 3.13(ii) that there
is a € (0,1] and C, o > 0 such that

(xii) |Esn-1 () — Egn-1(00)'™/? < ClIMegg,_, (w)]l22
for u € C®(S™'; N) with ||u — @olcs < 0.

If on the other hand we have that N is merely smooth, then assuming that F satisfies
the integrability condition 3.13(iii)

(xiii) F(¥(Pxu)) = 0 on some C3-neighbourhood of 0 in C3(V).

(which by (ix) and the discussion in Section 3.13 is the same as the requirement
that the set of u € C*(S""!; N) with |lu - @ollcs < 6 and M¢,_,(u) = 0 is an
¢-dimensional submanifold), we have (xii) with best exponent a = 1; that is, there
are C, 0 > 0 such that

(xiv)
|Esn-1(u) — Esn-1(0)|'/? < CllMeg,_, (w)ll1a, u€ C¥(S" 5 N), |lu=gollcs <o

3.15 Proof of Theorem 1 of Section 3.10

The proof here is a simplification of the original proof in [Si83b).

First recall, by definition of tangent map, that there is a sequence p, | 0 such that
the re-scaled mappings u,,,, (= u(y+p,7)) converge in the W!'2.norm to our tangent
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map ¢. Thus for any given > 0, for suitable p, for example for p = p, with j
sufficiently large depending on 7, we have

1) / |y = ol < 72,
B3/2\Bs/4

where, here and subsequently, B, is an abbreviation for B,(0). Let us now abbreviate
U = uy,, and keep this p fixed for the time being, and also small enough so that
§3p/2 C Q; thus u is at least defined on —B—3/2. Now since ¢ is homogeneous in
IR"\{0} and smooth on S™! it is clear that if B,(z) C Bss; \ B4 then

o / - < 207 / [ - gl + 207" / o - o2
Bo(2) B, (2) Bo(z2)
207"n% + 802,

IA

where [ is a fixed constant depending on ¢ but not depending on o or p. Thus if v >
0 is given. then for small enough 1, o (depending only on n, N, ¢, v) we can apply the
e-regularity theorem on the ball B,(z) in order to deduce that |[u—¢||c3(s, 5(:)) < V-
Thus (in view of the arbitrariness of z) we obtain for any given vy > 0 that there
exists = (7, @) > 0 such that

(2) 1@ = @llL2(Bs 2\Bs/0) < 1= [t = @llca(Bs,0\B16) < 7-

(Notice that in (2) we do not have to assume that p is proportionately close to one
of the p;.)

Next recall that by (xii) we have constants C > 0,y € (0,1) and a € (0,1] such
that

)

1-a/2
/S _l(ID‘.:wl2 — |Dupl®) S ClMeg,_,(W)llez,  llw=¢lles <.
Since || Mg, _, (w)||22 is uniformly bounded for ||w|lcz < 1 (so that trivially we have
IMe,._, (w)lI7z < C " [[Mg,,_, (w)|7: for 11 < 72), we can, and we shall, assume
a<l.

So from now on a € (0,1), v (depending on ¢) are chosen fixed such that (3) holds,
and 7, depending on ¢ and 7, is chosen so that the implication (2) holds.

Now by the monotonicity identity 2.4(iii) we have
o

(4) 2/& ren pw

Notice that since & = uy, and [p r>™" |%&)* = Jo,™™" |2 = 0asp |0, we
have

2
= / Dl - 84(0).
B,

~

(5) /s. q2-n |0

or

2
<1
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for all p < pg for suitable py > 0. Also, in proving the identity (4) (in Section 2.4)
we showed that  satisfied the identity
2
)< Lo
8B,

ou
n—2/ DH’:/ Dﬁ2—2‘—
(-2 [ 1pa as.(ll L

where D’ means tangential gradient on dB,. Then using this in (4), and keeping in

mind that
- 2 _ 2
0:(0) = 0.9) =0,(0) = [ Dpf*= = [ D.ul

by virtue of the fact that ¢ is a tangent map of u at y (hence homogeneous of degree
zero), we obtain

2(n—2) /81 r2-n

Now in view of (2) we can apply the inequality (3) in order to deduce

~ 12
< / (1D - |D'gP)
aB,

= [[._.(Daa - D).

(6) < ClMeg @IE" 2,

sn-1

so long as || — ¢|lL2(By,5\B4/4) < M-

Now # satisfies the equation A% + }_7_, Aa(D;%, D;it) = 0, which, in terms of
spherical coordinates r = |z], w = |z|~'z, can be written

1 0 0t
rm-19r or

Since this just says Mg, _, (&) = —=r Z2(r" ' %) — A (&, %), we see that (6)

immplies
i ’)

™) [
B
provided that ”17 - ‘P"L’(Ba/z\Bw) <n.

Now notice that the re-scaled function #(®) defined by %(®)(z) = u(or) also satisfies
the harmonic map equation

1 ~ 1 -~ o~ du ou
) + r—?Asn-nu + ﬁA.-,(D“,u, D, u) + Ag (*g ——) =

6142 2-a
<
o1) =L

a(r*lu 2
or

AT + Z Agzo(D;i?, Dja®) = 0,
i=1

and by differentiation with respect to o, and noting that 3—%:—’2 = z-Du(oz) = 58';_‘,(,_” ,

we obtain the linear equation
ou
L (TE) = 0,
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where L is the linear elllptlc operator obtained by linearizing M(w) = Aw +
Aw(Djw, Djw) at w = u. Thus

P

Cv-Av+2ZA (Dyv, Du)+22v" a 7

J=1 k=1

(Djﬁ, DJ‘R‘I) =

Now since ||& — @llc3(B,,.\By/s) < 7 < 1, We see that this operator has the form
Lv)=Av+b-Dv+c-v,

where [b] + |c| < 8, B8 = B(n, N), in the domain Q = Bs/4 \ By/s. But any solution
v=(v',...,vP) of L(v) = 0 for such an operator L satisfies the estimate

sup |Dv| < Clvl|2(s,(2))
87/2(‘)

for any ball B.(2) C Q (= Bsss \ Byss). (See e.g. {GT83, Chapter 8].) Thus, in
particular, covering S™~! by a family of such balls B,, with 7 = 1/16, we conclude

o(3)

provided that ||[© — ¢||L2(B,,,\8,,,) < n- Thus by (7)

2
<C
By 4\Bz8

&72

or

sup
Sn-1

bl

~12 ~ 12
/ r2-u @ < C 1-2"‘ @ ,
B, or Bs3/3\By/4 or
provided ||ii — ¢llL2(B,,5\B,/¢) < 7 By re-scaling, since § - 2 = 7, we in fact deduce
~ 12 ~ 12
(8) (/ r2n du ) <C ri " il
By/2 or B1\B, /2 or

for [lu — i35 BI\Byj2) < n?, where C is a constant depending only on . This is the
key inequality; we claim that the theorem follows quite directly from it.

We need a simple inequality for real numbers, as follows:

(9)
(0<a<b<1l,a€(0,1),8>0, and a®>® < fB(b—a)) = a*" ' -b>"' > C,

where C is a fixed constant determined by a, 3 only, and not depending on a, b.
This is readily checked by calculus, considering separately the cases when b/a > 2
and b/a < 2. Notice that in view of (8) and (5) (with op in place of p—notice that
this amounts to applying the above discussion with #(°)(z) = u(oz) in place of ),
we can apply (9) with a = /(g/2) and b = I(0), where I(0) = [ r*™" I%;‘.‘|2, thus
giving

(10)  I(0/2)*' = I(0)*' > C provided o™"|[ii - ¢l}2(a,\8, 2 < T
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provided o~"|u — ‘P"i!(e.\e,,,) < 7. Now fa,,\aﬂ & - f? = : 7™ u(r) -
ll3a(gn-1) d, hence the condition o~"||i — wll{,(&\&n) < 7 (and hence the in-
equality in (10)) certainly holds if we require

(11) I@(7) = ellasn-1y <m, V7 €[0/2,0].

Now let us suppose that o € (0, %] is given, take the unique integer k > 1 such that
o € [27%-1,27*), and assume

(12) li(s) — plleasn-1y <n, Vs €lo1].

Then we can apply (10) with 1/2¢ in place of o for £ = 0,... ,k, whereupon we
obtain by summing over £ =0,... ,k

12*)et 2 127t - 11! 2 Ck,

and hence

(13)
ol c
= — < —
fte) [T or L3(Sn-Y) = |log o' +8’
provided (12) holds. Notice integration by parts gives the general formula

1 r 1
/ |logr|**872r f(r)dr = |logr|””/’/ sf(s)ds| +
0 0 0

where 6=(1—a)'-1>0,

1 r
+(1 +ﬁ/2)/ r’lllogr|"/2/ sf(s)dsdr,
0 0
and using this with f(r) = | Z(|3,(gn-1, we obtain by virtue of (13) that
1 2
a9 [ liogronr :
0

1
L3(sm-1) dr<¢ o aTlogs[' o7 = ¢
again subject to (12). But then we have by virtue of Cauchy-Schwarz that
(15) |lu(o) — w(7)l|Lacsn-1)
Gu(r) dr

T
<f
o Il O llzasn-)

< (frl log r|'+5/2
(-4

2\ V2, .. 1/2
(/ r"llogrrl-ﬁ/z)
(-4
< Cllog 7|92,

for any 0 < 0 < 7 < 1, provided only that (12) holds. Next note that by another

application of the Cauchy-Schwarz inequality we have

(16) .
E

-~

&i(r)
ar

dr

L3(Sn-t)

1
NE(r) - Gl agsnsy < /

~

b
1/2 2-n
< |log 7| ( /B T o

N
) = |log 7|'/%¢,
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where € = ([, r2-n| &)1z < Uz, r2-n|2|2)1/2 ( 0 as p | 0). Now notice that,
by virtue of the triangle inequality, (16) already guarantees that

ll@(r) = ollLasn-1y <n/2, Vo<7<1
if
(7 e|loga|'/? < n/4 and ||E(1) = ¢||L2(sm-1) < n/4.

So now suppose (17) holds and choose 7 € (0,1/2) such that C|log 7|7/ < n/4.
Then [|u(o) — ¢llz2 < |lu(o) — u(7)||e2 + [|u(7) - ¢|lL2 and hence by (15), (17) we
deduce that ||i(o) — || L2(sn-1) < 1/2 so long as ||u(s) — ¢||2sn-1) < 1 for s € [0, 1].
Clearly this shows that ||E(0) — @]l 2(sn-1) < 1/2 for all o € (0,1] provided only
we can ensure that ¢ can be selected so that (17) holds. However, & = u,,,, so by
taking p = p; with j sufficiently large, where p, | 0 is such that u, ,, — . we can
of course ensure both inequalities in (17). (The second we already discussed at the
beginning of the proof and the first trivially holds for j sufficiently large because
Js, 713> — 0as p | 0.) But now this means that (12) holds for all o € (0, 1] and
hence we can apply (15) with any o, 7. Then letting 0 = o; such that u(o;) — ¢
(which we can do because y is a tangent map of u at 0), we then have

~ - 1
() = plliasnn < Cllog 7™, 7€ (0,3)

which is the required asymptotic decay. (m]

3.16 Appendix to Chapter 3

3.16.1 The Liapunov-Schmidt Reduction in a
Finite Dimensional Setting

Suppose F € C*(R) where Q is an open subset of some Euclidean space IR? with
0 € Q. Suppose that 0 is a critical point of F; that is,

(i) VF(0) =0,

and suppose (without loss of genecrality in view of the possibility of composing F
with an orthogonal transformation) that

(ii) ker Hess F|o = IR x {0},

where 0 < ¢ < Q and where Hess F| (the Hessian of F at 0) is viewed as a symmetric
linear transformation of IR?. Then we have the following lemma, which effectively
reduces the study of the critical points of F near 0 to the study of the critical points
of a related function f defined in a neighbourhood of 0 in the lower dimensional
space IR? x {0}.
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Lemma 1 Ifg€ {0,...,Q — 1} and if (i), (ii) hold, then there is a neighbourhood
W of 0 in Q such that there is a diffeomorphism ¥ of W onto a neighbourhood U
of 0 in R? with

{z e UNP"Y (WN(RRIx{0})) : VF(z) =0} = ¥{€ € WN(RIx{0}) : Vf(£) =0},
where

f(§) = F(¥(§), e Wn(R?x{0})

and P denotes orthogonal projection of x onto R? x {0}; ¥ 1s in fact explicitly given
as the local inverse of the map  — z' + VF(z) in some neighbourhood of the origin,
where ' = P(z). Furthermore W can be chosen so that we have the inequalities

C|VF(¥(z)| < IVf(#)] < CIVF(z)l,  |f(z') - F(z)| < C|VF(a)?

Jor every x € U such that ' € W N (IR x {0}).

Remark: If ¢ = 0 then Hess F)o is an isomorphism of IR?, and hence the inverse
function theorem tells us that z — VF(z) is a diffeomorphism of suitable neigh-
bourhoods of 0, so the lemma holds trivially in this case (interpreting V f = 0, which
is reasonable since f(0) = 0 and f is only defined on the zero-dimensional subspace

{o}).
Proof: Let
(1) N(z)=12'+VF(z), z€Q,
and note that
dNlo(v) = v' + Hess Flo(v), v € R9.

In particular (since Hess Fo is injective on {0} x IR9~9 = range Hess F|o) we have
dNo(v) = 0 if and only if both v' = 0 and Hess Flov = 0 so that v € ({0} x
R% N (R x {0}) = {0}, i.e. v = 0. Thus dN, is injective and hence by the
inverse function theorem there are bounded nelghbourhoods Uop, Vo of 0 with smooth
boundaries such that NV|U, is a diffeomorphism of U, onto V with smooth inverse
¥ on V. Since N'(¥(z)) = z, = € Vp, we have in particular that

(2) (VF(¥(z))* = (N(¥(2)) - (¥(z)))*
=(z' - (¥(z')))t =0, z' e (R x {0})NV,,

where (-)* denotes orthogonal projection into {0} x R?~9. By 1-dimensional cal-
culus along the line segment joining z to AN'(y) we have

(3) ¥(z) - 3] = [¥(z) - ¥V )]

1
- /0 (VU(z + (N (y) = 2)). N(y) — 2) ds
<Clz- N@)|
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for z € B, and y € U, where B, = B,(0) C Vp and U = ¥(B,). With z = ¢/, this
gives

(4) 1¥(y) -yl SCIVF(y). yelo v e (R x{0})N,
by virtue of the fact that ¥ — N(y) = —VF(y) by definition of .

Now we define

f(€) = F(¥(€), &€ B,N(Rx {0})
and note that by the chain rule
(5) (v, Vf(§)) = (VF(¥(£)),d¥|e(v)), §€ W, veRx{0},
and hence, for y € U such that ¥ € B, N (IR? x {0}),
(6) V() < CIVF(¥(y))]

=C|VF(y + ¥(y') — y)|

< CIVF(y+¥(y) —y) - VF(y)| + CIVF(y)|

< Cl¥(y) -yl + CIVF(y)|

< CIVF(@)l,
where we used (4) again. Using (4) yet again, this time with 3’ in place of y, we
have |¥(y') — ¥| < C|VF(y)|, and since VF(0) = 0 and Hess F|o(IR? x {0}) = {0},
this implies that |¥(y’) — ¥| < C|¥|? for y € U such that ¥ € B, N (R? x {0}),
which in particular implies that

() d(VYoP)lo =P,

where P is orthogonal projection onto IR? x {0}. But now, for £ € B, N(IR? x {0}),
by (5) we have

(v, Vf(£)) = (VF(¥(£)).d¥[e(v)) =
= (VF(¥(§)),v) + (VF(¥(£)), (d(¥ o P)l¢ — P)v), veR?x{0},

and |(d(VoP)|¢—P)| < C|€| by (7). Thus, in case VF(¥(€)) # 0, since VF(¥(£)) €
IR? x {0} by (2). we can first choose v parallel to VF(¥(£)) in order to conclude

IVE(U())| < V(&) + ClENIVF(¥(E))I,

and then choose 7 parallel to V f(£) in order to conclude

IVE(Y())l 2 V()| - CIEN IVF(¥ ()]

Hence we conclude
(8) %lVf(E)I S |VF(¥(E) <21V £l

for £ € B, N (IR? x {0}). provided o is sufficiently small.
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Next we note that for y € U such that y € B, N (IR x {0})
VF(@y)=0 = Ny =y = y=3¥@),
so that by (8) we have
VF(y)=0 = y=¥(y) and Vf() = 0.

Conversely if y = ¥(£) with £ € B, N (R? x 0) and if Vf(£) = 0 then VF(y) =
by (8). and then also y = N¥(£) = £. Thus we have

{y e UnP7(B,N(R7x{0})) : VF(y) =0} = ¥{¢ € B,N(R!x0) : Vf(§) =0},
where P denotes orthogonal projection onto IR? x {0}.

This completes the proof of the lemma (with W = B,). except for the second
inequality in the last part of the lemma. To prove this we note that for y € U N
P-Y(W N (R? x {0}))

W) - F@) = IFOWW) - Fl)l
\ / (VF(y+ s(¥(&) - 1), ¥()) - |

I

IA

/o IVF(y + s(¥() - )l ds |¥() - 3l

IA

1
(IVF(y)I + /0 IVF(y + s(¥() - 3)) - VF(y)I) W) -yl
CIVF(@)P

by (4) again. 0

A



Chapter 4
Rectiﬁability of the Singular Set

In this chapter we establish rectifiability results for the singular set sing u of energy
minimizing maps.

4.1 Statement of Main Theorems

Recall that a subset A C R" is said to be m-rectifiable if H™(A) < oc, and if A has
an approximate tangent space a.e. in the sense that for H™-a.e. z € A there is an
m-dimensional subspace L, such that

um/mm)fdn"' =/’af(m"', f € COR™),

al0

where. here and subsequently, 1, ,(z) = o7 }(z - 2).

A subset A C IR" is said to be locally m-rectifiable if it is m-rectifiable in a neigh-
bourhood of each of its points. Thus for each 2 € A there is a ¢ > 0 such that
AN B,(z) is m-rectifiable.

Similarly A is locally compact if for each z € A there is ¢ > 0 such that AN B,(z)
is compact.

This terminology is used in the statement of the main theorems below.

Our main theorem for the case when the target manifold is real-analytic is the
following;:

Theorem 1 If u € W'3(Q; N) is energy minimizing and if N is real-analytic,
then, for each closed ball B C §, singun B is the union of a finite pairwise disjoint
collection of locally (n ~ 3)-rectifiable locally compact subsets.

91
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Remarks: (1) Notice that being a finite union of locally m-rectifiable subsets is
slightly weaker than being a (single) locally m-rectifiable subset, in that if A =
Ui Ak, where each Ay is locally m-rectifiable, there may be a set of points y of
positive measure on one of the A, such that H™((UxxeAx) N B,(y)) = oo for each
o > 0. (This is possible because Ay has locally finite measure in a neighbourhood
of each of its points, but may not have locally finite measure in a neighbourhood of
points in the closure A and this may intersect A¢, ¢ # k.)

(2) We shall prove also that ©,(z) is a.e. constant on each of the sets in the finite
collection referred to in the above theorem, and furthermore it will be established
that singu has a (unique) tangent space in the Hausdorff distance scnse at H"~3-
almost all points r € sing u.

For the case when N is merely smooth rather than real analytic, we need to assume
an “integrability condition” as in (xiii) of Section 3.14. Thus we have:

Theorem 2 The conclusions of Theorem 1 continue to hold if the requirement that
N is real analytic is dropped (so N is an arbitrary smooth compact Riemannian
manifold isometrically embedded in R¥ ), provided the integrability condition (ziii)
of Section 3.14 holds for all smooth harmonic maps p, : S> — N which are such
that the homogeneous degree zero extension of @, to R®\ {0} s a locally energy
minimizing map of R3 into N.

Remarks: (1) The stronger conclusions of remark (2) above also hold in this case.

(2) If NV is the standard S? or RP?, or metrically sufficiently close to the standard
S? or RP? in the C3 sense, then the following much stronger conclusion holds:

Q
singu = Uz,) UK

where each I, is a properly embedded C'* manifold and K is a closed set of
dimension < n — 4. This is proved, by rather different techniques (“blowing up”)
than those used here. For a detailed discussion of the blowing up method in the
context of nonisolated singularitics of minimal surfaces we refer to [Si93], and for an
outline of the proof (using the same blowup method) of the above result for energy
minimizing maps we refer to [Si92]; the detailed proof, which very precisely parallels
the corresponding resnlt for minimal surfaces proved in [Si93], will appear in [Si).

4.2 A general rectifiability lemma

Here we develop a general rectifiability lemma, which gives sufficient conditions for
an arbitrary closed subset of R" to be m-rectifiable, as defined in Section 4.1. This
rectifiability lemma will be crucial in our later rectifiability proofs of Section 4.7,
where it will be applied with m = n — 3.
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Let S C IR" be an arbitrary closed set, €, § € (0,1) with € < £ (in the applications
below we always have ¢ < §), pp > 0, and assume S has the e-approximation
property satisfied for S; in Lemma 2 of Section 3.9. Thus for each y € S and cach
p € (0, po] we assume

SN B,(y) C the (ep)-neighbourhood
of some m-dimensional affine space L, , containing y.

(i)

In all that follows we assume that such L, ,, corresponding to each y € S and p < py,
are fixed. Then, relative to such a choice, we have the following definition.

Definition 1 With the notation in (i) above, we say S has a 5-gap in a ball By(y)
with y € S if there is 2 € Ly, N B(1-5),(y) such that Bsy(2) NS = 2.

With this terminology and for any given y € S, p € (0, po] and 6 € (0, ), we define
(ii) Y(y,p,6) = sup({0} U {o € (0,p] : S has a §-gap in B,(y)}).

Thus v(y, p, 6) = 0 means that S has no §-gaps in the balls B.(y), 7 € (0, p], and if
7(y, p, 6) > 0 then S has no é-gaps in the balls B;(y), T € (7(y, p,6), p], but S does
have a 6-gap in B, (y) for some sequence 7; T 7(y, p,6); in particular, S has a %-gap
in By(y,.6)(y) in this case.

Lemma 1 (Rectifiability Lemma) Let 6§ € (0,3;) be given. There erists € =
e(m,n,6) € (0, %) such that the following holds. Let py > 0, 9 € S = a closed
subset of R" satisfying the e-approximation property (i), and suppose:

(I) Either S has a 2%-gap in B, (zo) or there is an m-dimensional subspace Ly C IR"
and a family Fy of balls with centers in S N B,y (zo) such that

(8 ) (diamB)" < &gy,
BeFo

(b) SN B,(y) C the (e0)-neighbourhood of y + Lo,
Y y € SN Byy2(20) \ (UFo), o € ((y, %.6), 3]

(unth ¥(y, p,8) as in (ii)), and

(II) Vz, € SN B,y (z0) and Vp, € (0, 2] there are Ly, Fy (depending on 1y, py) such
that the hypotheses (1) continue to hold with x,, p, Ly, F\ in place of xo, po, Lo, Fo
respectively.

Then S N B,y(xo) is m-rectifiable.
Remarks: (1) It is important, from the point of view of the application which we

have in mind, that the property (I)(b) need only be checked on balls B,(y) such
that S has no é-gap in any of the balls B,(z0), 7(y, §,6) <7 < &. In practice the
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condition (II) is often an automatic consequence of the way in which S is defined in
the first place. For example, in Section 4.7 below we apply the above lemma with
Zo = 0 and py = 1 to a subset S, of the singular set satisfying certain hypotheses
((i)-(v) of Section 4.5) which are automatically satisfied with S, = 1, ,, S+ in place
of S, and i = u o7, in place of u, where 1,,,, : =~ p;'(z — z;). Thus once
we have checked that the hypotheses (i)-(v) of Section 4.5 imply that (I) holds for
S., then it automatically follows that the hypotheses (II) also hold for S,.

(2) Notice that if S does not have a %-gap in B,,(Zo) (so that the first alternative
hypothesis of (I) does not hold), then, provided ¢ is sufficiently small relative to 8,
no ball B, (y) for 7 € (&, 8] and y € SN Byy/2(To) can have a é-gap, so in particular
7(y, §,6) < & and condition I(b) always has non-trivial content in this case.

(3) In order to establish the Theorems 1, 2 of Section 4.1 we are going to show
that this lemma can be applied with sets S of the form S, = B,(y) N {z € singu :
O.(z) > B,(y)} with suitable y € singu and with p sufficiently small. Notice that
Lemma 2 of Section 3.9 already establishes the weak e-approximation property (i)
for such S,. Most importantly, we are able in the discussion of Section 4.5 to get
much more control on sing u in balls which do not have é-gaps. This is the key point
which makes it possible to check the hypotheses I and hence to prove the main
theorems stated in the introduction.

In the proof of the rectifiability lemma, we shall need the following covering lemma.

Lemma 2 If 6 € (0, %), F C Bpy(z9) C R™ is arbitrary, and if B is a collection
of closed balls of radius < & and centers in F which covers F, and for each B =
B,(y) € B there is z € B(1-5),(y) such that Bs,(z) N F = @ (that is, F has a 6-gap
in each ball B € B), then there is a covering U = {B, (yx)} of F by balls with
centers y € F and with

DS (1-6)p7, 6=0(8m)€(0.1),
k

and, also, for each B,,(yx) € U there is a ball B,,(z) € B such that Bg-1,, (yx) D
B,,,(zk).

Proof: By translation and a scaling, we can assume py = 1, o = 0. We here
consider closed cubes Q = [21 =1, z1 + 7] X - X [2m = Zm +7); 2= (21,... , Zm) IS
the center of Q and 2r is the edge-length, denoted e(Q). For integers N > 2, Q)
will denote the N-times enlargement of Q; thus Q™) = [z; — N1, 2, + Nr] x --- X
[zm = N7, 2m + Nr].

We first construct a cover Up = {B,, (yx)} for F which satisfies all the stated condi-
tions, except possibly for the requirement that each y, € F.

As an initial observation, we note that such a collection Uy trivially exists with
8 = 6(m) € (0,1) (independent of §) if F N [— =, 4—\},;]"' = @. Similarly, for any
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given ag € (0,1) it is easy to check the existence of such Up with 0 0(m é,00) €
(0.1) if there is a ball B € B such that radius B > ¢ and BN [— 7— 7—] # 2,

becanse then, since radius B < % we have B C B)(0) and hence there is a ball
Byao(2) € By(0) with F N Bygy(2) =

So subsequently we can assume withont loss of generality that

(l) Fn [- 7-] 7(-' o,
and that
(2) BﬂQo#@adiamBsﬁﬁ.

where Qo = [~ 7. 7m]™ € Bi(0). Define

(3) Fo=FNQy By={BeB:BnQ #2}.

so that diamm B < m for each B € By by (2). For each k = 1,2,... let C; be the
collection of 2(-+V™ congruent subcubes of edge-length 7‘52"‘ obtained by repeated

subdivision (k + 1 times) of the cube Qq, and let C = Uy>1Cyx. Now for each B € By
let kg be the unique positive integer such that

diam B < 222 < 2 diam B.
(Since diam B < @ﬁ. we actually must have kg > 5.)

For each B € By let Qg be the collection of Q € Ci, such that QN B # &. Notice
that

(4) B c Q™ for each Q € Qp,

because e(Q) > diam B and BN P # & for each P, Q € Qp. Also, since diam B <
m for each B € By, we have

(5) e(Q)52diamB$ﬁ,-; VBe B, Q€ Qp.
Now for k = 1,2,.... we define
(6) &= |J @
BeBy kuy=k
and
e=Je
k

Notice that then

(7) UQDQon(U B):Fo.

QeQ BeBo
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Notice also that by (4) and (5) we have

QeQandQC [~5/m 5ym" =

(8) 3BeBywithQe Qg and Bc |J Pc Q™ c Q.
PeQgp

In particular, since Fy has a é-gap in any suchi B, we have

QGQandQCI—ﬁ,-,;.ﬁ;]"':

(9) . @)
3 Q1€ Q withe(Q)) =e(Q), RC @, C QY CQo,

where R is a cube satisfying

(10) e(R) > ﬁ"-‘e(Q) and RN Fy = 2.

Now we define a subcollection Q of Q as follows:

First, let é, = @Q,, and for each k£ > 1 (assuming é.,. .. ,ék are already defined)

let
k
ék+|={Q€Qk+|3Q¢U U P}‘

=1 peg,

and then define @ = UyQy. Evidently Qx C Qx, UQ = UQ,
{interior(Q) : Q € Q} is a pairwise disjoint collection.

If k> 1andif Q € Q with Q C [—ﬁ,ﬁ;]"‘, then either all P € Q, with
QNP # @ are in Qx, in which case, by (9), (10),

3 Q, € Qx such that Q, C Q® and such that

(11) . )
Jacube RC Q, wnhFoﬂR=Qande(R)_>_4\/m

or else there is P, € Qi with QN P, # @ and P, ¢ Qk, in which case by definition
of Qi we must have P, C P for some P € Q, with £ < k — 1 and hence Q@ C
P® c P®_ Notice that, in the latter case, since e(P) > 2¢(Q) and Q C P®, we
have Q©® C P®). Proceeding inductively, starting with an arbitrary Q € @ with
QcC [—m ﬁ;]"‘, we then cither have (11) or else there are integers ¢ > 1 and

k=1>¢ >--->€>1 and cubes P, € Q,, j = 1,... ,q, such that

e(QI):

(12) QO cPYc- P Cl-5tm aml™
3Q, € é,, andacube RC Q, C P,(:') with FoN R = @ and e(R) > L

@)
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(We can inductively establish the inclnsion P‘ ' [-3 \/— :,7;?]"' by namg the facts

that P,,’ n[- m,m]"’ o P(:’) nQ # 2. au(l ((P(:’)) < 6e(fy,) < m by (5).)
Therefore if we let G C @ be defined by

G={Q € Q: FyNR =@ for some cube R C @, withe(R) 2 70(().)}

then, keeping in mind that Q, ¢ P® = PO ¢ QM if ¢(P) = ¢(Q,), we have
by (11) and (12) that

(13) Uaeo U Q%> U Q.

)1y QeQ.QC|- VI-\%;';;:I:":". Qed.Qc|- r:,"_" h‘“?ﬁ.]'"

On the other hand we know by definition of G we can decompose cach Q € G into
a union of a collection Py of congruent sub-cubes (with non-overlapping interiors).
snch that

(14)
me(Q) <e(P)< ;7-(((2) VP € Py. and FyN P = @ for some P € Py.

Then if we let Pg be the subcollection of Py obtained by dropping all P € Py such
that FyN P = @, we have

(15) Y IPIS(1-6mQlL QeG.

PeFy

for snitable # = #(m), where |Q| denotes the volume of Q (that is. ¢(Q)™). Bmt
by (13) we have

(16) Qs Z Q1.

Q¢ QeQQl- - rmIm
Now if
(17) Z |Q' < %(2\/:7)"'

QeR.Qc |- r‘}m .‘«-",-:;]

then we have

(18) Z |Q| = g(g\/",)m + |Q"| 2 ,")m < (l - 'l.—..lwwt,,ﬁ)lQol-
QeQ

On the other hand if

) Q1 2 bz

Qed.Qc| i i
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then (16) gives

(19) ¥ 1Q1 > 8™
Qeg

Now let P be the collection (@ \ G) U (UgegP3). Then P covers Fy and by (15)
and (16) we have

=Y k+Y. Y Ip

QeP Qed\¢ Q€6 PePY
< Y RI+(1-60m 1Rl
Qed\¢ Qeg
=Y 1Q-6m) @l
Qed Qeg
< 1Qol - 65™ Y 1Q|
Qeg
for suitable 8 = 6(mm) € (0,1), and hence by (19)
(20) YRl -ce™iQl, € =C(m).
QeP

Also note that by (4), (5), and (14) we have

VP € P, 3B € By such that B c P™) with N < C6!

21
(21) and C~'§ diam B < e(P) < 2 diam B,

where C = C(m). Thus, regardless of whether or not (17) holds, we in any case get
a collection of cubes covering Fp such that (20) and (21) hold. (If (17) holds then
(18) shows that we can get (20), (21) with P = Q.)

Now for any 4 > 0 we can trivially cover B,(0) \ Qo by a family of balls {B,, (z:)}
with o, > B8 and 3, wmol' < (1+9)(|B1(0)| — |Qol), where 8 = B(m,v) > 0.
Similarly, there is a cover of any given cube Q C R™ by balls { B,, (zx)} such that
Lrwmop < (1+7)|Q| and ming ox > Be(Q), with 8 = B(v,m) > 0. Then (20),
(21) imply that there is a cover of F' by a collection Uy = {B,, (yx)} of balls with

(22) DA L(1-0)F, 0=0(6m)€ (1),
k

and, also, for each B, (yi) € Uy there is a ball B,, (2) € B such that

(23) By-1,(yx) O B, (2x).

To complete the proof of Lemma 2 we need the following lemma:
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Lemma 3 For eachn € (0, 5], each ball By,(xo) C R™, and each non-empty subset
F C Bpy(x0), there is a finite collection B = {B,, (yx)}k=1,...q of balls with centers
e € F, F C U2\ B, (%), pr > npo Yk, and 3°5_, pi < (1+C1°)pg*, where C >0
and o € (0,1) depend only on m.

Before we give the proof of this we show how it is used to complete the proof of
Lemma 2. Let Up be as in (22), (23) above, and let B € B be arbitrary. According
to the above lemma (with B, FN B, C~'/*0"/* in place of B, F, n respectively), we
can find a finite collection Rp of balls with centers in F' and covering F'N B such
that 3-5cn, |Bl < (1 +0)|B|, and with diam B > ydiam B, where y = y(m, §) > 0.
Then takmg U = Upeyy,R B, we evidently have by (22), (23) that

D" (radius B)™ < (1 +6)(1 - 6)o§" = (1 - 6%)p",
Beu

and, also, for each B, (yx) € U there is a ball B,, (zx) € B such that

By-1p, (yx) D By, (2k),

with v depending only on m, 6. This completes the proof of Lemma 2, subject to
the lemma, the proof of which we now give:

Proof of Lemma 3: By translation and scaling it is evidently enough to check the
lemma in the special case when o = 0 and py = 1. So suppose F' C B,(0), and let
Q denote the set of all balls B,(y) with either y € F or F N B,(y) = @. We claim
that for each k = 1,2,..., there is a collection Q) C Q with

(1) &m\(UB>su—mﬂ&MI
BeQx
and
(2) dlst(B(l), B(z)) > %[, BcC _B-l_l/lsk(o), radius B > —:;;

for every B, B"), B® € @, with B # B®,

This is correct for k = 1 (indeed we can take Q, to consist of just one ball of radius
1), so we assume k > 1 and that (as an inductive hypothesis) Qx C Q as in (1), (2)
already exists.

Let Pi be a maximal pairwise disjoint collection of closed balls of radlus —; with
centers in By(0) \ (Upeg, B). Then

3) By(0) \ ( U B) C U (2-times enlargement of P)

BeQx PePy

by the maximality of the collection Pk, where the 2-times enlargement of a ball
B,(y) means Bs,(y).
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Also. keeping in mind that no open ball of radius % . %; can intersect more than
one of the sets in the collection Q U {IR™ \ By(0)} (by (2)), we can easily check
that each P € Py contains a ball P; of radius } - 4= which does not intersect the set
(R™\ B1(0)) U(Upeg, B). On the other hand for any ball B,(y) C IR™ we can find
By/2(y) C By(y) with B,/2(9) € Q. (Just take § = y in case F N B,/2(y) = &, and
take § € FNB,/2(y) arbltrary m case FNB,/2(y) # 2.) Then the ball P, contains
aball P, € Q with radius 1 8 —; and hence the ball P with the same center as P,

and radius —rr has the properties

Peg, dlst( (R™\ By(0 u(U B)u( U Q))zﬁzﬂ.
B€Qx QEP:, Q#£P

Thus we can define N
Qks1 = QU Py,

where P, = {P : P € P}, and then Qi has the required propertics (2) with
k + 1 in place of k.

Furthermore, for any P € Py, the 32-times enlargement of P (i.e. Bag,(y) if P=
B,(y)) contains the 2-times enlargement of P, so. by (3),

By(0) \ ( U B) C U (32-times enlargement of 13),

BeQx PeP,
and hence
IB,(O)\ ( U B) <@E)™ Y|Pl
BeQx PeP,
Then

Bi(0)\ ( U B)
B€Qu 4+

BeQu PePy
< (1-5=)|Bi(0)\ ( U B)‘
BeQu

by the inductive hypothesis.

Thus the existence of the required collections Q) as in (1), (2) is established for
all k; further the above proof also establishes that for each k we can sclect a col-
lection (Viz. P, = {P : P € Pi}) of balls of radius ;zsr, each contained in
By (0) \ (Upeg, B), such that the 32-times enlargements (each of radius —g) cover
all of B(0) \ (UBGQ,|r ) and have total measure < (32)™|B,(0) \ (UBerB)l <
(32)"'(1 - 32,,,) |B1(0)]. Now for each P € Py such that the 32-times enla.rgement

of P intersects F we can choose P with center in F, radius 64-times the radius of P
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and containing the 32-times enlargement of P. Let the set of all such P be denoted
'Pk Then QU 'Pk cover F and the sum of the volumes is

(4) < (1+4(64)™(1 - 555)¥) |Bi(0)].

We now choose k such that 167% € [n,167). Then (1 — ;)% = ((l - m=)*)e <
(78%)"/9 < 16!/991/9, provided q is selected such that (1— ? 5727)7 < 1580 by (4) we see
that Lemma 3 is proved with a = q'l C = 64™*!, and B equal to the subcollection
consisting of all balls B in Q, U Py such that FN B # . m]

Proof of the Rectifiability Lemma: We assume first that S has no %—gap in
By, (x0), and hence (Cf. Remark (2) above). for € < €y, with gy = €o(n, m, §) small
enough,

(1) S has no 6-gap in any ball B,(y), y € Bp2(z0) NS, 7 € (2. 8]

and also the hypotheses I(a), (b) must hold. Let

(2)

S® = {y € SN Bpy2(z0) \ (UF) : S has no 6-gap in B,(y) Vp € (0, 2]},
and let
3) E,=85n Em/z(xo) \ (S(” U (UF)).

For each y € SV we have by the property (b) that S satisfies the uniform cone
condition

(4) SN B,(y) C the (ep)-neighbourhood of y + Lo

for each p € (0, %}, and hence we deduce immediately that
(1) m(g)) < Po\™
(5) s ca, HY (s sum(8)"

where G, is the graph of a Lipschitz function f defined over the m-dimensional
subspace Ly with Lip f < Ce. Let P, be the orthogonal projection of R" onto Lo.

By (1) and (i) we have that for each y € E,

(6) S has a --gap in B,,(y), S has no é-gap in B.(y) V1 € (p,, &
where p, = ¥(y, §.6) € (0, 8], and by hypothesis I(b)

() Sc{z € B,,(y) : dist(z,y + Lo) < epy} U Kye 1,
where K, . 1, is the double cone {r € R" : dist(z,y + Lo) < €|z — y|}.

Next, define F' = Py(Ey), and let B be the collection of balls in Lo which are orthog-
onal projections of the balls B, (y), y € E). For the remainder of this argument,
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balls in Lo will be denoted BY(y). Thus B = {'Bf,v(g)},,e Ey» Where j is the orthogonal

projection of y onto Ly. By virtue of (6), (7) we know that F has a %-gap in each of
the balls of B, and hence by the covering lemma (Lemma 2 above) we have that there
is a collection of balls B = {T?:k(g}k)}, with g = Po(yx), yx € E;, which cover F and
which satisfy 3, f* < (1—6)0f, and for each k there is By, (3) = Po(Bo,(2)) € B
(with 0% = p,,), such that B} (%) C Bj.,, (). By (7) with y = z we have
S C {z € B,,(2) : dist(z,2x + Ly) < €0k} U K., ¢,L,, and hence in particular
lye — 2x] < 207" pi, dist(yi, zx + Lo) < 260~ 'epy, and

Ey N Py (B, (#)) C Ey N Biiseo-1e)p, (U )
provided ¢ is sufficiently small relative to 6.

Thus, provided S has no %-g&p in B, (zo) and ¢ is sufficiently small relative to 6,
we have constructed a countable collection of balls { By, (yx)} (7 = (1 + 60~ '¢)px)
with centers in E) such that, after a change of notation (replacing by 2m*29)

(8)
Ec LkJBﬂ,(yk), ;T':" < (1-2m+29) (%) +Ceal < (1 - 2m19) (%)

for suitable 6 = 6(n,m, ) € (0, }).

Now with F = P(S\ B,y/2(z0)), P the orthogonal projection of IR" onto the affine
space L, ., we can first cover all of L, N Bpy(zo) \ Bpy/2(z0) by balls By, (yk)
with centers yx in L, ,, and radii p, > C~!py, with C = C(m,8) > 0, such that

9) I (1 ¥ g) (- (2)").

But then we can apply Lemma 3 to each of B, (yx) N F to get a new collection B, =
{B,,(2x)} with z; € F, F C UB,, and such that 3, o* < (1+6)(g0" — (po/2)™) and
ox > C7!, with C = C(m, ). Using property (i) we can then use the By to construct
a collection By = {Buicejoi(2k)} with P(2) = zx and 2 € S\ Byy2(x0) (so
|zx — 2| < €po by (i)) which covers all of S\ B,,/2(zo). Thus B= {Bn.(yx) }UFoUB,
is a collection of balls with centers in S N B,,(zo) with the the properties that

(10)
s\sWc|JB
BeB
3~ (diam BY™ < (1-27'0) ()" + Cegp + (1+6) (a5 - (%))
BeB
<(1-0)p

(for € sufficiently small depending on m, 6) and

(ll) s ¢ G, n—B.m/z(l‘o), 'H"'(S‘”) < w,,.p{,",
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where G, is the graph of a Lipschitz function f over Ly.

Of course if S does have a £-gap in the ball B, (o), then using (i) and Lemma 3 it
is trivial to find a cover B of balls such that (10) and (11) hold with S = @. Thus
regardless of which of the alternative hypotheses of (I) hold, we always conclude
that (10) and (11) hold.

We now proceed inductively. Assume that J > 1 and SU) C S, {B,J'.(:tj_k)}k=|_2_,_,,
j = 1,...,J, are already constructed (with z;x € S) so that S©® = @,
{Bpo.k(l'o,k)} = {Bpo(IO)}'

S\Usw c UBm(m)
j=1

Uy_1SY is contained in a countable union of Lipschitz graphs, and
Y om<1-0 prixand HMNSD) Swm D plins G=1,00 0
3 3 3

Then we repeat the argument described above, starting with SNB,,;k(z,) in place
of S and with x4, psx in place of zo, pp. Then conclusions (10), (11) imply that
we have a Lipschitz graph I and a subset S,(“’) C SNE]NB,, ,/(zks) such that
H™(S) < wmpT, and balls {B,,, (Tsx¢)}e=12,.. with centers in S such that

SN B, (z)\ S €| Bpsuo (@)
]

and

ZP.Tk.t < (1= 0)P5%-
]

Relabelling so that {B,,, (zsk¢)}xe=12... = {Bo,,,.(Ts+1k)}k=12... and defining
SU+D = 4, S we then have

H™(S*Y) < ZH’"(S“’) < wm Zm

zpulk <(1- 9)2/’1&,

and
J+1

S\ U SU) Cc U(Sn Bﬂ.u(z-lk) \ S(J“)) C UBﬂ.H»l k(z-’+l k)

Jj=1
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Thus such a collection exists for all J and

J
S\USY cUBpulzan) Y pR<(1-6)07
ij=1 k k

J
U SU) ¢ a countable union of Lipschitz graphs
=1

J J
H" Usw) <> (1 -0 wmpp
=1 =1

Thus S\ (U;SY)) has H™-measure zero, U,SY) is contained in a countable union of
Lipschitz graphs, and H™(U,SY)) < Cpp*. Thus the lemma is proved. 0

4.3 Gap Measures on Subsets of IR"

Here we want to establish the existence of a certain class of Borel measures on closed
subsets S C B)(0) having the same e-approximation property as the set S in the
previous section; the main result appears in Lemma 1 below.

Let ¢ > 0and m € {1.2,...,n -1}, By(2) = {r € R" : |z — z| < p}. and
let 0 € S C B,(0) be an arbitrary non-empty closed subset of R” with the same
¢-approximation property satisfied by S in Section 4.2. Thus for each z € S and
p € (0, 1] there is an m-dimensional affine space L., containing z such that

(i) B,(z) NS C the (ep)-neighbourhood of L. ,.

We henceforth fix these spaces L, ,, and assume € < g € (0. 3—'2).
(ii) Definition: If z € S the “6-radius” p, € [0, }] of z is defined by
p. = sup({0} U {o € (0,3}] : cither S has a 6-gap or a é-tilt in B,(2)}),

where L, , are as in (i). Here “6-gap” is as described in the previous section, and S
is said to have a é-tilt in B, (2) if ||(L.0 — 2) — Loall > 6.

Remark: Thus p, is such that S has no §-gaps or é-tilts in the balls B,(2), p, <

7 < 1, and, if p, > 0, S does have a 6-gap or é-tilt in B, (z) for some sequence

7 1P

Now we are going to define a family of subsets {T}} ¢ (1) as follows:

(iii) Definition: For p € (0, 1], we define open subsets 7, C R" by

Tp = U BP(Z)v

{2€S:p:<p}
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where p, is as in (ii) above.

(iv) Remarks: (1) The sets T, depend on S and é, but for convenience this is
not indicated by the notation. Of course T, C U,esB,(2) = S, = {r € R" :
dist(r, S) < p}, so we can think of T, as being some sort of refinement or reduction
of S,, taking into acconnt -gaps and é-tilts. Also.

T, C Tine C Bise(0) Vo € (0, %),

because S trivially has a ﬁ-gap in each ball By/4(2) with z € S\ By/4(0) by virtne
of the fact that S C By(0). Thus p, = 1 for z € S\ Bys(0), and hence. if p < &,
Definition (iii) implics Ty C Usesng, o0y Bp(2) C Bisye(0) as claimed.

(2) It is possible to check the following properties direct from the definition of the
sets T,
(a) The o-neighbonrhood of T, C T4, for each p.o > 0 with p+ 0 < :— (so that
in particular we have dist(T,,IR" \ T,,;,) > o).
(b) Vz € S\ T,, p € (0.}] we have p < p..

(b) The £-neighbonrhood of T, \ T,/ is contained in T, \ T,/4. p € (0.
4 P n/ 2p pl

Notice that, taking p =2~ and 0 = 2-* — 2-* in (a) we have in particular that
(d) dist(Tp-r,R*\Tp-4) > 2% Y for e >k +1. k> 2.

Proof of (a): Take any w € o-neighbourhood of 7,. Then w € B,(y) for some

Yy € T,. and by definition of T, there is a z € S such that y € B,(z) and p > p.. But

then trivially w € B,;,(z) and since p + o > p, this gives v € T,,, by dcfinition.
=}

Proof of (b): If p > p. then z € B,(z) C T, by (ii). o

Proof of (c): By (a), the §-ncighbourhood of T,/ is contained in T),/,. and hence
the &-neighbourhood of R" \ T, is contained in R" \ Tj,/4. Also, again by (a). the
£-neighbourhood of 7}, is contained in T,. The combination of these inclusions then
gives (¢) as claimed. ]

Lemma 1 There is 6 = by(m.n) € (0,%] such that if 0 < e < & < &, if
S, {To}oe0.1) are as introduced above. then there is a Borel measure p on S with

the properties u(S) = 1 and. for each o € (0. 5]

Clp" < u(B)(z)NS)<Cp™. pe b0, L], 2€T,NS.
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where C = C(n,m). The measure u has the general form

u=C (6""2 S oo lekal + 'H"'I_To)

k=2 J=1
where [z] denotes the unit mass (Dirac mass) supported at z, Ty = NpyoT,, C
depends only on n, m, and where the 2, € SNTo-x \Tp-s-1, j=1,... ,Qx, k > 2,
with
k+1 Q¢
SNTy-x \To-+-1 C U U Bgsisag-e(ze,), k22

t=max{k-2.2} j=1

(v) Remarks: (1) It is important for later application that C does not depend
on §, nor indeed on S. Of course one has to keep in mind that if the set S is very
badly behaved (like a Koch curve for example), then the sets T, can all reduce to
the empty set for sufficiently small p, in which case the lemma has correspondingly
limited content.

(2) As part of the proof, it is shown that Tj is contained in the graph of a Lipschitz
function defined over {0} x R™ and with Lipschitz constant < C§, so automatically
H™L Tp has total measure < C.

Proof of Lemma 1: First note that we may assume

(1) Tine # 9,

otherwise there is essentially nothing to prove. Also, without loss of generality we
can assume

(2) LO,l = {0} x R™

(where Ly, denotes the affine space L., of (i) in the case z = 0, p = 1). Notice that
by Remark (iv)(2)(d) above we have

(3) dist(Ty-x \ Tp-x-1,Tp-e \ Tp-e1) 22772, k>0+2, £2>2.

Now we choose a maximal pairwise-disjoint collection of balls {B;-6(2?)};-1....Q,
with z € SN Ty, \ Tys, and proceed inductively for k > 3 to choose a ma.xlmal
pmrwns&dnslomt collection {B;-s- 4(z )}i=t...@ With 2§ € (SN Ty \ Ty-s-1) \

(UQ* ' By-- z(z" 1)). Now notice that by (3) this automatlcally implies that
(4) {By-x-4(2})}j=1.... Qu.k22 is & pairwise disjoint collection.

Also, by induction and Remark (iv)(2)(c), SNTy/q \ Thys C U?Q,Bg-s(zf) and

k Qe
SNTp-s \Tp-e-s € | | Ba-e-s(2)),
t=k-1j=1

(5)

Qx
U Ba-+-3(2}) C Tp-trs \ Tprz, k23
j=1
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We now define
oo
(6) To=(\T- (= [ T
=1 p€(0.4)
so that we can decompose T/, as a disjoint union
[s ]
(7 Ty = (U(T,-, \T,-.-.)) uTo, ToCS.
=2

Notice that by Remark (iv)(2)(a) we have T, C Ty, Yo > 0, and hence T is a
closed subset of S. Also, by (4) we have

|2f —zj| 2 27™ 54 for all k,€2 2, i< Q, JS Qe 2 # 2,
and hence (using also Remark (iv)(2)(d) to give dist(z},Tp) > 27*-2)
(8) (Br-s-a(Z)\{ANN(Tou{ef 1 i=1,...,Q, €22}) =2,
j= lv-" 1Qk1 k22'

Now suppose that z = (§,7) € SN T,-« for some £ > 2. We then have by (2), (i)
and the definition of T,-¢ that there is £ € SN B;-¢(z) such that SN B,y(z) C the
(26p)-neighbourhood of % + {0} x IR™ for each p € [27¢, }], whence

SN Byy(2) C {w € By-e(2) : dist(w, 7 + {0} x R™) < 2627} U Ks(Z),
where, here and subsequently, we use the notation that

Ks(2) = {(z,9) : |z - & < b|(z,y) - (&)}

(so that Kj(z) is a circular double cone, with vertex at z = (§,7n) and central axis
2+ {0} x R™). Then by (2) and (i) it follows immediately that

9) Sc{(z,y) € By-tni(2) : |z — €| <627} U Kus(2z), z€ SNT;-e.
Notice that now by (8) and (9) we have
(10)

SCK%(Z)v ZGT()
Toufzl:i=1,...,Qn €22} C Kaps(2}), Vi=1,...,Q k22

(where in checking the second inclusion we used (9) with £ = k and 2z = z;‘) But
this means that Ty U {zf : k>2, j=1,...,Qx} satisfies a uniform cone condition
with respect to translates of the cone K395(0), hence there is a Lipschitz function f
on {0} x R™ with values in R*™™, Lip f < Cé, and

(1) Toufzr:j=1,...,Qs k22}cGcC N Kazs(2),

xEToU(z: $)<Qu. k22)
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where G = graph f. Notice that if 2 € T-¢ N S then either z € T or z € SN
Tp-+ \ Tz-+-1 for some k > €. In the latter case (5) implies |z — z{| < 27*~2 for some
< Qg qg>2andg=k—1ork. Soin either case we have a 2 € ToU {z} : j <
Qk, k> max(2,€ - 1)} with |Z — z| < 27 and hence by (9) with Z in place of z we
have

dist(z, 2 + {0} x R™) < C627,

whence (since Lip f < C6 and 2z € G) we can conclude

(12) dist(2,G) < C627!, Vz€Tp-NS, €>2.
Next we claim that
oo Qk
(13) Tins NG\ To C | J | Ba-r+2(2})-
k=2j=1

To see this we note that if w € G N Ty-¢ \ Tp-e-1 with € > 4, then (by definition
of T,-¢) there is z € SN Ty-« with |w — 2| < 2%, Then (12) holds, and using (9)
and the fact that S has no §-gaps in B-e+1(z), we see that there is 2z, € S with
|21 — w| < C627¢ < 272, By virtue of Remark (iv)(2)(c) (with p = 27¢!) and
the fact that w € Ty-¢ \ T3-c-1, we conclude that then 2 € Ty-e+1 \ T-¢-2, so by (5)
we have z) € Ujg_g<2 U?;’, Bz-:-x(z,q-), and hence w € Ujg_g<2 U?;, Bg-:(z;'). Since
w € GNTy6\ To was arbitrary, this proves (13) as claimed.

Now we define a Borel measure 9 on S by setting

00 Qe
(14) po=3_ 2™ [+ H"L Ty,
=2 J=1

where [2] denotes the unit mass (Dirac mass) supported at z. Notice that since Ty
is contained in the Lipschitz graph G, we have, for any w € IR" and any p € (0, 1),

(15) (H™L Ty)(By(w)) = H™(To N By(w)) < Cp™.
Now assume z € SNTy-¢, £ > 2, and p € (0, %] By definition (14) we have
(16) o(B)\To) =Y 2™ 3 1.

k=2 s*€B,(2)

By (3) the sums in (16) are empty for k < € — 4, and 2=™ < CH™(B,(z) N
By-x-2(2X) N G) if p 2 27%, k 2> € — 4 and 2} € B,(z), so (16) and (5) imply
(17

w(B(\T) =3 2™ T 1203 T H™(By(2) N Byrs-s(£) N G)

k=2 2¥€By(2) k=2 z:XeB,(z)

< Ci?‘("'(B,(z) A (Ty-rs1 \ Ty-+-2) N G) + CH™(B,(z) N G)
k=3
< CH™(B,(2) NG).
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Evidently (17) and the fact that Ty C G then give

(18)
Ho(B(2)) < CH™(B,(2)NG) < Cp™, 2€SNTp-r, p227F, 022

On the other hand, using (16) again, since ‘H"‘(82 w2(2F) NG N B,(2)) < C27™
we similarly obtain for z € T,-+ NS and p > 2°¢

Y. D H(Brua(z)NBy(2) NG) < Cpua(By(2) \ To).

k=2 3;‘5 By(z)

(where the sums on the left are taken to be zero when there are no 2§ in B,(z)).
Then since gyl Ty = H™L Ty, we obtain by summation that

S Y HYBrwna(2F) N By(2) NG) + H™(By(2) NTy) < Cpuo(B,(2))-

k=2 skeB,(z)

Now by virtue of (13) we have Ty;1sNG \ T C U, U, Bg—k-b?( ¥), and hence this
last inequality gives, for any z € SNT5-, £ > 4, and pe27t}

(19) C—ll)m < 'H"'(B,,(z)ﬂT,/wﬂG)
< Cro(By(2)),

where we used (12) to justify the first inequality. (Using (12) and the definition of
Ti/is it can be checked that B,(z) N Ty ¢ contains a ball of radius £ centered on
G.)

Now we construct the measure . For cach k > 2 and j = 1,....Qx we sclect
a maximal pairwise disjoint collection of balls Ball?g—k-z(uffd), t=1,...,R
subject to the restriction that wf’ € Tyy NS N Byr-s(zl) (s0 By-s-s(wfd) N
S C 8N By-s-2(2f) € SN Tprsr \ Tys-2 for k > 3 by Remark (iv)(2)(c)).
By the s-approximation property (i) (with £ < g), and by the no é-gaps hy-
pothesis in the definition of Tp-r. we know that, if 6 = 8(m,n) is sufficiently
small, U/ 85:/22-k (wf9) 5 8N Byoi-a(z z¥), and for each o € [6/2,1] and each
u}ESﬂBZ . 1( *) we have

(20)
_ o \m m
c! (m) <#{i: w 1 € By-x ()} <c(6'/2) , C=C(m).
where # A denotes the munber of points in the set A. Notice also that by (5) we
have

k Q Re,
(21) SNT\Tsn . | UUBore-er(wf¥). k22
f=max{k—1.2} j=1 i=1



110 Chapter 4. Rectifiability of the Singular Set

Then we define
Qx Ru,

p= 2762 N [wiV] + HL T,
k>2 =1 i=1
and in place of (16) we have
(16) Y 2™ = w(By(2) \ Th),
k=2 wireBy(z)

for any z € Ty-¢, € > 2, and any p € (0, }]. Then by virtue of (20) and (12), we can
use a minor modification of the argument leading from (16) to (18), (19) in order to
deduce that

C'o™ S u(By(2)) SCp™, z€Tpe, €24, pe 6?27 L]

By (1) we have in particular that u(S) > C~!. Then, appropriately relabeling the
wf" and using (21), we see that u satisfies all the conditions stated in the lemma,
except that in place of the condition u(S) = 1 we have

C'<u8)<C, C=C(mn),

and hence the required measure is obtained by taking a suitable multiple of u. (]

4.4 Energy Estimates

Here we continue to assume that v € W!%(Q; N) is an energy minimizing 1nap,
2 C IR" open, and throughout this section we assume that B,(0) C Q.

Here we are often going to use the variables (r,y) = (|z|, y) corresponding to a given
point (z,y) € R® x R"3, and it will be convenient to introduce the additional
notation

B} ={(ry) : r>0, 7" + |y <p’}, B}(wo)={(ry) : 7>0, |y -l < o’}

for given yo € R*3 and p > 0.

By a “homogeneous cylindrical map” ¢ (abbreviated HCM) we mean a homogeneous
degree zero energy minimizing map ¢ € W,:,f(lR"; N) such that @(z,y) = po(z),
with ¢ = ¢ o q for some orthogonal transformation ¢ of R" and ¢, € Wl:,f(lRa; N).
Of course every such ¢, is homogeneous of degree zero on IR? and, since dimsing ¢ <
n — 3 (by Corollary 1 of Section 3.4), we have automatically that (9|S? is a smooth
harmonic map of S? into N. Also, by our previous discussion (see Section 3.10)
we then know that Ar~@ + 3°7_, A3(D;@, D;$) = (Ar$)T = 0, and hence, since
Arn@(z,y) = 172 As2¢00(w) with w = |z| 'z, we have

(i) (As200)T =0 on S2,
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where, at each w € S?, (-)T means orthogonal projection into Tiy(w)N.

Notice that we do not assume that ¢ is necessarily a tangent map of u (although
the reader should keep in mind that such HCM’s exist at each point of sing, u as
described in Section 3.5).

The main inequality of this section is given in the following theorem:
Theorem 1 If N is real-analytic, ( € (0,1), and 8 > O then there are C =
C(B,N,n) >0, 7 =n(8,N,n,{) >0 and a = a(B8,N,n) € (0,1) such that the
following holds. If ©,(0) < 8, p*™ pr(o) |Dul? = ©4(0) < 7, and p~ pr(o) r?(u? +
u) < 7%, then there is an HCM ¢(z,y) = p(z,0) with p™" pr(o) [u — ¢ < ¢,
6.,(0) — ¢ £ 6,(0) < B,4(0) +¢, and

rldrdy < C r?(u? +ul) +

/ | [Pt - Do) v
By, |/s? B,(0)

1/(2-a)
+ Cp3(pn—3)l—l/(2—o) p—3/ 7.2(,“3 + u‘2‘) .
B, (0)\{(z.v): |zI<p/2}

If N is merely smooth rather than real-analytic, then the same is true with a =1
provided that the integrability condition (ziii) of Section 3.14 holds.

In proving Theorem 1 we shall need three lemmas, each of which is of some indepen-
dent interest. The first of these gives some important general facts about HCM'’s:
we use the notation

(ii)
Cs = {po € C*(S% N) : ¢(z,y) = pol|z|'z) is an HCM and Es2(w0) < B}

Then we have the following:

Lemma 1 Suppose N is real-analytic. For each 8 > 0, Cs is compact in C3(S%; N),
and there is {, = (,(8, N,n) € (0, }] such that if ¢1, @2 € Cs and |lp) — 2|12 < ¢
then Es2(p)) = Es2(p2). Furthermore there are constants (; = ((3, N,n) > 0 and
a=a(B,N,n) € (0,1) such that

Es2(¥) - Esa(@)P° < C /sz (As9)TP, € =C(B,N,n),

whenever ¢ € Cg and ¢ € C3(S?; N) with [ — plcs < (2. If N is merely smooth
rather than real-analytic, then the same continues to hold, with best exponent a = 1,
in case all the ¢ € Cy satisfy the integrability condition (ziii) of Section 3.14.

Remark: Thus we have uniform Lojasiewicz inequality for a whole C® neighbour-
hood of Cg, and also, by the first part of the above lemma, £s2(p) is constant on
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the connected components of the set Cg and there are only finitely many values of
Es2(yp) corresponding to ¢ € Cg.

Proof of Lemma 1: The compactness of Cg is a direct consequence of the estimates
of Section 3.6 and the compactness theorem of Section 3.6. Next suppose there is
no such ¢;. Then there must be sequences y,, @; in Cs converging in C3(S?; N) to
a common limit ¢ but with

(1) Esa(p;) # Es2(P) V3.

But then according to the Lojasiewicz inequality of Section 3.14 we have a = a(y) €
(0,1) and o = () > 0 such that

()
|Es2(¥) = Es2 ()P~ < CU(AY) I} 22y, ¥ € C3(SEN), ¥ = ¢les < o,

where C = C(n, N, ). But then for all sufficiently large j we can apply this with ¥ =
@j, @, in order to deduce that £s2(p;) = £52(F;) = Es2(yp), thus contradicting (1).

Now if the inequality of the lemma fails, then there are sequences ¢; € Cs and
¥; € C3(S?; N) both converging to a given ¢ € Cg but such that

3) €53(95) = Esa(3)'™"2 < Cll(A;) e,

where a; | 0 as j — oo. But then £s2(yp;) = Es2(p) for all sufficiently large j by
the first part of the proof above, and (3) contradicts (2). (]

Lemma 2 If Bg(O) C Q, lfﬂ > 0 and lf Suan,/e(o)\((:'v):|Z|Sa/|6) E?=001|D3u| <
B3, then

swp [ (@sutr) P < con [ (a2 +42)
Bf,,\(ry):r<o/8} JS? Bo\{(z.y):|z|<0/16}

and

Vo [ 19 utr ) | < o [ P+ 2).
s? B, \{(z.v):|z|<0/16}

sup
B3, \(ry):r<o/8}

Here V,, means the gradient with respect to the variables (r,y) € B}, C = C(B,
N,n), and u(r,y) denotes the function on S? defined by u(r,y)(w) = u(rw,y).

Proof: As discussed in Section 3.10, the Euler-Lagrange system for u says exactly
that (Agr~u)T = 0 (meaning that 7 - Agr~u = 0 for any 7 € T, N). Since

(Ageu)(r,y) = r2Asau(r,y) + r—zg ( ) Z 6’u(r 0]
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we thus have
(1) r‘z(AS"u)T = _(Ar.yu)Ts
where A, u = r-2 2 (r224a) 4 30 ——(1"1

Next we note that by differentiating the equation Ag~u + 3_"_, Au(Dju, Dju) =0,
we obtain for v = Gu/dy’ a linear equation of the form
Lyv =0 on Brs(0) \ {(z,y) : |z| < F}-

Here (Cf. Section 3.14) L, is the lincar elliptic operator defined by
Law= iM(lI(u + sw))|s=o0,

where M(u) = (Arsu)T = Agnu + Z Ay(Dju, Dju) and where I1 denotes the
nearest point projection into N as in Appendlx 2.12.3. Notice that, if w(z,y) €
Tuzy)N on Bross(0) \ {(2,9) : |z| < {5} then the operator £,w has the form

Aprw+7r'a - Vo+r2% - w
on Br,/5(0) \ {(z,9) : |z| < &}, with |a|, |b| < C(n, N,B) Then the standard C'*
Schauder theory for such linear operators (see Section 1.7) gives

1
2) sup |o? Duy|? < Ca"'/ ul.
Bropo\(zw) :1zl<0/9} 5o Bsoso\{(z,y) : |z|<0/10}

Similarly the quantity v = ru, +y-u, (i.e. v = Rup, where R = /72 + |y|?) satisfies
the same equation £,v = 0, and hence w = ru, satisfies the equation

n-3

Ly(ru,) = —Zy’ﬁu(uw) 2(A,u+ZA Uy, Uy)) = —-2(Avu+ZA (uyo, uy))-

Thus, again by Schauder theory (this time for the solutions of the inhomogencous
equation L,w = f, with f = -2 (A,u+z A u(tys, 1)), and using (2) to estimate
sup | f|, we deduce that u, satisfies

©)

S P D (run)f < G

sup / r?(u? +4?).
Bsa/d\((lyll) lzl<o/8} =0 By, 14\{(z W) : 1z]<0/16}

Now (1), (2), (3) evidently imply the first inequality of the lemma.

Next note that by directly differentiating and integrating by parts, we have

@) % /5, (VS u(r, y)[ dw = 2 / Vszu(r,y)-V‘sﬂ%
= —2/ Asau(r,y) - &g;;y)
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and

(5) 2 L VS u(r,y) P dw = 2 / Vu(r,y) - 95 2400)

= —2/ Agqu(r,y) - 6u(r y)

where u(r, y) is the function on S? defined by u(r,y)(w) = u(rw,y).
So since du/dy’ and du/dr are in T,N we have from (1), (4) and (5) that

a 2 Ou(r,y)
6 —/ VS u(r, 2dw=—2r"’/A,.ur, C—
(6) ayjscl ()l sﬂ.v(y) By
and
™ o LIVt = -2 [ Acyutr)- 200,
The proof is now completed by using (2), (3) to estimate the right side. [m]

Next we have a lemma which gives important information about approximation of
u by HCM’s.

Lemma 3 If 3 >0, p>" [, o, |Dul* < B, then for each ¢ > 0 there are constants
=7n(8,(,N,n) >0, a = a(N,n,B) € (0,1) such that p~" fBa,/J(O)\(I:I<p/2) r?(u? +
"3) < 1 and p*" [ o) |Duf?’ = ©4(0) < 7 imply that there is an HCM ¢ with

o(x,y) = ¢(z,0), 6 (0) ¢ £6,(0) <6,(0)+¢, and

3

P"‘/ lu—ol* <, sup Y PIDu - Dples < ¢
Bys,/16(0) Bg,/8(0)\{(z.y) : |2|<p/16} =0

If in addition N is real analytic, then there is (o = (o(n, N, 8) < min{(y, (2}, 1, (2
as in Lemma 1, such that if ( < (o, then the ¢ from the first part above satisfies

sup
B;f,“\(('-v) 1r<p/4}

/ (VS u(r )P - |v5“sa|’>w‘ <
s?

1/(2-a)
<C p""/ r?(u? + ul) .
Bo\{(z.y) ' IzI<p/8}

Here, as in Lemma 2, u(r,y) denotes the function on S? defined by u(r,y)(w) =
u(rw,y). If in place of the real-analyticity assumption on N we assume the inte-
grability condition (i) of Section 3.14, then these additional conclusions hold with
best exponent a = 1.
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Proof: First notice that by using the interpolation p?|D?(u — @)|co < ep*|D%(u —
@)lco + Ce~4"p™2||u — ||z (with € = (7) together with the regularity theorem
of Section 2.3 and the estimates of Section 3.6, an inequality of the form

3
(1) sup Y PIDu-Dg<CC, y=7(n) >0,
Ba,s(O\{(z) " I21<0/16} =5

is implied by the inequalities p~" wa,/w(O) |u = @[> < ¢ and 8,(0) < 6,(0) + ¢ <
P*" [0 |Dul’ + ¢ < B+, provided ¢ = ((n, N, ) is small enough. Hence (1)
will be established if we only check the other inequalities

6.(0) - ( £ 6,(0) £6.(0) +¢

p“"/ lu—ol* <¢.
By5,/16(0)

By rescaling it is enough to check (2) in case p = 1. Then if there is no such 7, there
must exist a sequence u) € W'?(B,(0); N) of energy minimizers with

(3) E8,0)(uY) — 6,»(0) = 0

and

(4)

()

J (W2 + @) — o,

B3/ (O\{(zw) [z 4}

yet such that, for every HCM ¢ with p(z,y) = ¢(z,0), at least one of the inequalities
in (2) fails with p = 1 and u = uY). Notice that (3) together with monotonicity
implies

(5)
8. (0) < P /

IDuOP? < / IDU < 0,0(0) +¢,, Vpe(0,1),
B,(0) B\ (0)

where €, | 0. By (4), (5) and the compactness theorem for energy minimizers
(see Section 2.9) we know that there is a subsequence (still denoted u") such that
u®) — o locally in W'?(By; IRP), where ¢, = 0 and ¢, = 0 on Bs/s(0) \ {(z,¥) :
|z| < 3} and p*" [y o IDp|? = lim©,,)(0) for every p € (0,1). But then in
particular 6,(0) = p*" |, B,(0) |Dy)? Vp € (0,1), so by monotonicity for ¢ we have
that ¢ extends to a homogeneous degree zero map in W,:,f(ll't"; N). Then since
¢r = 0and ¢, = 0on Bss(0) \ {(z,y) : |z| < }} we have that ¢ is an HCM with
o(z,y) = ¢(z,0). In view of (5) we see that in fact (2) now holds with u = u)
(j sufficiently large) and p = 1, a contradiction. Thus the required inequalities (2)
(and hence also (1)) must hold for some HCM ¢ with o(z,y) = ¢(z,0), provided 7
is sufficiently small.

We now need to establish the final inequality of the lemma. By virtue of Lemma 1
we have that there is a = a(N,n,3) € (0,1) and ¢ = {(N,n,B) > 0 such that (1)
implies

|53 (u(r, y)) — Es2() P < Cll(Asau(r, ) IZ2(s2)
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for each (r,y) € By, 4(0) with r > &, where C = C(n, N, ). Then the required
inequality holds by virtue of Lemma 2; notice that the hypothesis

sup Zp’lD’ul <p

Brars O (e 1</ 16 =

required in Lemma 2 is satisfied (with Cf in place of 3) by virtue of Section 3.6 and
the inequality (1) above. ]

We shall need the following corollary of the above lemma later. (It is not needed
for the present section.)

Corollary 1 For any given {, 8 > 0 there is 59 = 170(¢, 8,n, N) > 0 such that the
following holds. Suppose p is any HCM with ¢(z,y) = ¢(z,0) and 6,(0) < S,
suppose u € W13(B,(0); N) is energy minimizing with p*~" [5 ¢ |Dul* < B, and
suppose P [, on((er: ei<orar 18 = #I° < M0 and 227" 5 ) |Dul* — 84(0) < 1.
Then p™™ fa,,,(o) |u—¢|* < ¢ and

singu N B,2(0) C the ((p)-neighbourhood of {0} x R™"3.

Proof: By the argument in the first part of the proof of Lemma 3, for any given
Go > 0 we have that

3

Y F|DPu— Dig| < Go on Bsys(0) \ {(2,9) : 2] < §},

7=0
provided that ny = n9(3, N, n,{) is small enough. But then since ¢, = g,y =0 we
have in particular that

r(lur] + |ty|) < o on Bsyy(0) \ {(z.9) : |=l < §},
so (by choosing (o small enough) we can verify the hypotheses of Lemma 3 for any
given ¢ > 0, provided 79 = 10(8, ¢, n, N) is sufficiently small. Then by Lemma 3
we have p~" stm(“) |u — @|* < ¢ for suitable HCM @(z,y) = @(z,0) and hence
) Bayss(OM (=) l2l<p/4} | —@|? < C¢ by the triangle inequality. Then, again using
the triangle inequality, and also the fact that both p, @ are homogeneous of degree
zero, we conclude that p~ fa,,,.(o) |u — @f* < C¢. By (iii) of Section 3.7 we now

have the remaining conclusion with C¢(/" in place of (. Hence after a change of
notation we have the required conclusions as stated. o

Proof of Theorem 1: Let ¢ € (0,{| be given, where (o = {o(n, N, B) is as in
Lemma 3, and let 5 = n(N,n,{,B) € (0,10-%"] be as in Lemma 3. Then Lemma 3
implies that there is an HCM ¢ with

(1) Zp'w'u(r, ¥) — Digles <,
By,,.(o)\{(:.u) l=l<p/16} 3o
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and

(2 sup
B}, M(ry):r<p/4}

/s, (VS u(r, ) - IVs’th’)dw’ <

1/(2-a)
<c(om | PaZ+ad))
Bo(0)\{(z.v): |zI<p/8}

Notice that by (1) and the estimates of Section 3.6 we then have

3
3) sup Y _PIDu| < CB.

B0 (O\{(2.0) : |z]<p/16} 5=
For each y € R"2 with |y| < £ we let
(4) oy =sup({0}U{o € (0,8 : 07" [ (0 0\ (tzw):lsl<os8) r2(u? +ud) > n}).
Notice that, since p™" [, B,(0) r?(u? + u2) < 72 < 1072"7, we have automatically
(5) supa, < 10~2%p.

By the “five times” covering lemma (see e.g. [FH69) or [Si83a)]) we can find a count-
able pairwise-disjoint collection {B.k,,] (0,y;)} such that

(6) U -E«to, (01 y) Cc U §200,,, (Ov yj)'

vi<p/2,04>0

Notice in particular that (by definition of 0,) we have
(7 a"'/ Pl+ul) <

Bo(0u)\{(zw): |z|<a/8}
for each o € (0y, §], and so by exactly the same reasoning (involving the first part of
Lemma 3 and Section 3.6) that we used to conclude (1), (3) above, and keeping in
mind that 6= [, o |Dul* < 2”8 by the monotonicity of Section 2.4, we deduce

(taking a smaller = n(n, 8, N, {) if necessary) that SUPB,  o\((z.4): |zI<0/16} Z;f:o o’

|D?u] < CB. Hence by Lemma 2 we have, for each yo € R*~3 with |y| < £, and for
all 0 € (04, §),

(8) sup
BF, ,((wo)\{(r.y) :r<o/8}

<

Ve / VS u(r, )
S?

< Ca"'/ r(u} + ul).
Bo(0,10)\{(z.y) : [zI<a/16}

We now want to define a Whitney-type cover for B;/2(0), as follows. For j > 2 let
B,j»+2(0,2,%), k = 1,...,Qj, be a maximal pairwise disjoint collection of balls of
radius p/27*2 and centers (0, z;x) € B,/2(0) N ({0} x R™~3). Then for j > 2

Qy ‘
©) U Bor2(0.2i4) 3 Bo2(0) N {(z,9) : |2l < p/27*'},

k=1
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and, for any point (z,y) € B,/2(0),
(10) card{k : (z,y) € By2-5(0,2,4)} < C, C =C(n).

Next let 2, = B,(0) \ {(r,9) :r<§}ﬁ“=l¥wﬂ{hm):r<ﬁLam
Q.-landdeﬁnefor]>2andk—l, ,Q,

(11) Qi = B} (i) \ {(r,y) : 7 < p/2*?)},
and
(12) Qyae = B i (20) \ {(r.9) : 7 < p/27*%).

Notice that all points (r,y) € ﬁ,,k satisfy p/2'*3 < r < p/2’~!, and in particular
ﬁj,k ﬂﬁu =9, |i—- ]I >4,
so it follows from (10) that

(13) V(r,y) € B} (0), card{(j,k) : (r,y) s} <C, C=Cln).

Also, by (9)
(14)
B, C B,)N U{ ry) : p/P* <1 < p/2*}U{(ry) %})
[ <] Q)
clJU Q-
1=1k=1

Now, by (5), 1,1 intersects no B,,(y), while for each (j, k) such that ;i does not
intersect B‘,, (z,k) we must have p/2’ > 0:,,- Thus, in any case, if 2, x does not

mtcrscct B,, k(z,k) we can apply (8) with 0 = p/277!, yo = 2,x (yo = 0 in case
j=k=1), to deduce

(15)

[
Q;.k

On the other hand if Q,x does intersect B}, .(zi-") then j > 2 (by (5)) and 0., >
).

Voo [, 19 utr )
S?

ridrdy < C / r?(u? + u;‘;) dw rdrdy.
[

2-2p, hence Q,x C B,,*,)_k(zj.k) C U.«‘E;,,'(y.-). Hence by summing in (15) and
using (13), (14), we conclude that

(16)
rldrdy < C ri(u? + u:) dzdy.

B,(0)

Vs / VS u(r, )P du
s2

/B,:,,(O)\(U,B;.,,Jw,»
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Notice also that using the monotonicity of energy in Section 2.4 and the definition (4)
of o, we have that for each j

- 2( o [2 -1~ 20,2, o2
ov,"/ r’|Dul* < C < Cn~a, m(up + uy).
B«u.,,,(o‘v,)

-/Bcv) (0wy)\{(xw):|zl<0;/8}

Hence by summing on j, and using the disjointness of the B,,, (0,9;), we deduce
that

(17) D (o, + /”

Now we want to use the collection {Bwa.,, (0,y;)} to construct a cut-off function. For
each j, let ¢; : (0,00) x R*3 — [0,1] be a C* function with (;(r,y) = 1 outside
B, (W5). §i(r.y) = 0 in By, (y;) and with

r?|Duf?) < C/ r(u? +ud).
B,(0)

v, (0.%;)

c
(18) sup V(| < —.
B} %y,
Now evidently, since the { Bss, (y;)} are pairwise disjoint, at most a finite subcollec-
tion of the B"“"u (0,y;) can intersect a given compact subset of R \ ({0} x R™"3),
so we can define a smooth function ¢ : (0,00) x R*3 — [0,1] by

¢= HCJ
J

By construction ¢ = 0 on U,-F.:o,v (y;) O U|,,|<g,,,>oB;‘av(y). In particular if 0 <
. i<

o < &, |yl < &, then {(ro, yo) > 0 = ro > 0y, and hence
(19) " / r(u} +uj) <7,

Bry (0.00)\{(z.y): |7]<00/8}
which (since § - I = I) guarantees by Lemma 3 and the estimates of Section 3.6
that u is smooth on each of the subsets Br.,/6(0,%) \ {(z,y) : |zr|] < %}, and
hence in particular the function ([, |V u(r, y)[? dw — [ |V¥"¢|? dw) is smooth in
a neighbourhood of (ro, yy). Thus

1r0) = ) [ (Vs - 1950 o
is a smooth function of (r,y) € B}(0).

Next we note that since f is smooth on {(r,y) : r € (0,£], |y| < £}, we can integrate
by parts with respect to the r-variable giving

(20)
|flr®drdy <
B;)2(0)
</ \flr drdy <
lyl<p/2,r<p/2
<C |flr? drdy + %/ |, drdy.
lyi<p/2,p/4<r<p/2 lyi<p/2,7<p/2
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We emphasize that this is valid even if f is not bounded near r = 0, because we can
first prove (by integration by parts) an inequality as in (20) with r, = max{r —¢,0}
in place of 7, and then let € | 0. Since{ =1o0n B:/z\UJ-QdB;"o,'I (y;) and since Dyl =

YD) 1]3#. ¢;, we then obtain, in view of (16), (18), (5) and since /72 + [y|2 < ¥
forr, [y| <5,

/t;;,,(o)

<C

B}, O\{(rw):r<p/d}

+C rul+ul)+CY (o + / 2| Duf?).
) 7 ’ Buoo,

B: (0 () 0.;)

r?drdy <

/y (IV"u(r,9)? = V5" du)

ridrdy +

L (V= ulr, ) — [V 0P) do

In view of (2) and (17) this proves the theorem. o

4.5 L2 estimates

Here we are going to use the energy estimates of the previous section together
with the monotonicity identity of Section 2.4 (and some variants of it) to obtain L2
estimates for u. These will be needed in the next section in proving decay properties
of the deviation function introduced there.

u continues to denote a W'2(); N) energy minimizer, and we assume B;(0) C 0
and that

o) 0€singu, ©4(0) > o, f IDuf? < B,
B83(0)

where 3 is a given constant and 6, € {6,(0) : ¢ is an HCM with 0 < 6,,(0) < 8}.
Notice that by monotonicity (see Section 2.4) this implies

(ii) p""/a( )IDul’ <CB, VYpe(0,1], |z/<1.

With 6o as in (i)

(iii) Sy = {2 € Bi(0) : 6u(2) 2 6o}.

Let £ € (0, %] be for the moment arbitrary (we eventually choose & < &(n, N, 3) and
€ < eo(n, N, B,8)). S, will be assumed to satisfy a weak e-approximation property
like that in Lemma 2 of Section 3.4 with m = n — 3; thus for each p € (0,1] and
each z € S, we assume that

(iv) S N By(2) C the (ep)-neighbourhood of L. ,,
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where L., is an (n — 3)-dimensional affine space containing 2. We henceforth fix
these affine spaces L. ,. We also here assnme that

(v) \

R.up,|
sup / l—'R—‘I <e,  sup p”"/ |Duf? < 6y + ¢, sup ©,(z) <6y +e.
€8, JBy0) R;' 2€S54.,p<1 Bols) 2€8,

where 6, is as in (i).

Remark: We show in Section 4.7 below that for every given € > 0 and wy € singu
with 6, (u) = b € {6,(0) € (0.4] : ¢ is an HCM} there is ¢ > 0 (depending on
u, wy. £) such that all of the above conditions are satisfied, by Lemma 2 of Section 3.4
and the monotonicity of Section 2.4, with the rescaled function uy, 4, = 10 1y, 0,
in place of u for any uy € B,(wp) N {2 : B,(z) > 6,(wn)} and 4, < 0. These facts
are of crucial importance in the eventual applicability of the results of the present
section.

We also here snppose that z, € S,. p € (0. %] 7 € (0. 4], and that there exist points
2.0 2uog in Sy N By(2y) such that
2, — 20},=1.....m-3 are lincarly independent

. n-3
(vi) and 3 (2, - 20) -a)? 2 1p%laf* Va € L.

J=1
where L is the (n — 3)-dimensional linear space spanned by 2 — zy.... .2,_3 — 2o.

Notice that this says that the 2, — 29 are in “uniformly gcneral pusition”. up to the
factor 14, in By(z0) N L.

The main result of this section is the following:

Theorem 1 Suppose N is real-analytic. There is eg = €o(n. N.i3) > 0 such that
if (1). (iv). (v). (vi) hold with € = ¢, then for all z € S,

ln uR | < 2 2- ) ( ﬂ n~2 )l“l/(’-ll)
L < -n R.up, [2+C
/B”(m) R p~2s(2) Z| R, | O x

o Bu(z0) ;=9

1/(2-a)
-3 2 IR:ug, |2
x/ (orarlyy S8 R, 2 + el .
T =0 z o Ry
(B,uo)\uzu):dismx.w.zo+l.)<p/8) o P

where a = a(n.N,3) € (0.1), C=C(n.N.3.7). and 8(2) = p+ |2 — 2.
We shall need the following three lemmas in the proof:

Lemma 1 Suppose L, 2. ... ,2,-3 are as in (v) (although here we do not need to
assume that z; € S, ). Let U be open, U N By,(20) # @. Then for any v € W'(U)
we have
n-3
CM (302, + p|Devf) < Y IR, vm, P < C(rie?, + p*|Diof?) in Byy(20) N U,

1=0
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where C = C(n,7), rp(w) = dist(w, 20 + L), rov,, |w = (w — ') - Dv, with w' the
nearest pownt projection of w onto 29 + L, and where D, means gradient parallel to
L.

If 0 € (0,p] and o,... ,(n-3 are any other points in B,(zo) with (y,... (-3 €
B.,(Co) and with
n-3

D (&G —G)-a)* > yoja, a€l,
i=1
then
n-3 n-3
C\(rio}, + A*IDvf’) - €Y dist*(¢o 20 + L) DvP < Y |Re,vr, | <
j=0 =0
n-3
< C(riv?, +0*Dpv’) + C Y _ dist?(,, 20 + L) Dvf? on By(Go) U
Jj=0

for suitable C = C(n,v). In particular

n-3 2 n-3
> 1Ry v, P < € (2)"Y (1R vR, I* + dist?(G;, 20+ L)IDol?) on By(Go) N U.
=0 j=0

Remark: Notice that the inequality 2;';,3 ((2, — 20) - @)% > vp*|al?,a € L, means
that zg, ..., 2,-3 must be in “uniformly general position” in 29 + L up to the factor
7; likewise the condition 3°7-2((¢; — Co) - a)? > 70%|af?,a € L, requires that the
nearest point projections (g, ... ,{,_; should be in such uniformly general position
in B,(C3).

Proof of Lemma 1: By definition
(1) Rz,vﬂ., lw = (w—2;)-Dv
=(w—-u') - Dv+ (v -2;)-Dv
=TrLY, + (w’ - Zj) -Dpv
so in particular
R,)vg,,_ — Ryvg,, = (20 — 2;) - Dy,
and by the hypothesis we then have that on U

n-3
(2) 70 |Devl* < Y (Ry,vm,, — Rigvn,, ).
j=0

On the other hand using (1) with j = 0 we also have on U N B;,(2) that

(3) 102, < 2ARuvr,,)? +CAIDLP
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Combining (2) and (3) we then have, with C = C(v,n).

n-3
107, + 0%|Dpvf? < CZ |Rz;vm, [*
7=0
as claimed. Notice that the reverse inequality C-!Y""3 |R:,vg,, [ < (reve,)? +
02| Dv|? follows directly from (1) on Bay,(20) NU.

Next notice (Cf. (1) above) that at any point w € B,({o)

(4) Rvr, = (w=(;)-Dv
=(w-w')-Dv+ (w' =) -Dv+(¢—()-Dv
=7y, + (w—G) - Do+ (- () - Dv.

Taking differences in (4) we see that

(¢ =) - Dev = —Rg,vr + Rgvr, + (G —¢;) - Dv — (¢ — Go) - Du.
Since |¢} — ;| = dist((;, 20+ L), by using the given hypothesis on the (; we then see
that on U

n-3 n-3
(5) Dyl < CZ:(R(,u,,c 2 +CY dist*(;, 20 + L) Dvf?,
=0 j=0

Going back to (4) again we then also conclude that on U N B,((p)

n-3

2}, <C Z(& VR, ) +C Y dist’(¢j, 20 + L)| Dvl?,

=0

which proves the required upper inequality for r3v2, + 6%|Dov|?. The reverse in-
cquality follows directly from (4) and the triangle mequahty

The final inequality of the lemina is simply a matter of combining two of the previous
inequalities, so this completes the proof of the lemma. ]

In the proof of Theorem 1 we shall want to apply the main energy estimate estab-
lished in Theorem 1 of Section 4.4, and this requires that we check the hypothesis
that u is L%-sufficiently close to some HCM p with S(¢) = {0} x R™ 3 in the
appropriate ball. For this we need the following lemma.

Lemma 2 For any given ( > 0 there is g9 = €9(N, n, 8,() > 0 such that if (i). (iv).
(v), (vi) hold with € < &g, then

p"'/B( )(r{ufl_ + 0?|Dul?) < Ce.
o200
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where the notation is as in Lemma 1, and

o[ el sc sp YD Do £
pr2(20

Bay/3(z0)\(zw) - rL<p/16} ;55

for some HCM ¢ unth S(¢) = L, 6p — ¢ < ©,(0) < 0+ ¢ (©,(0) =6 if N is real
analytic). Here p,.(z,y) = ¢((z,y) — 20). Furthermore there is eo = €o(N,n,8) > 0
such that if (i), (iv), (v), (1) hold with € < €y then for all z € S,

dist®(z,20 + L) <
<Cp / (32, + (p + |2 = 2| Druf® + |Rour,PP) <
{(z.¥)€B3,/4(20) . rL2p/4}

< Cep™™p+ |2 — 2™

Remark: It is not assumed that |z — z| is small here; 29, z are unrelated points in
S,.

Proof of Lemma 2: Evidently we can assume without loss of generality that L
in (vi) is {0} x R""3. To prove the first inequality, notice that by Lemma 1 above

we have
n-3

"o“ +P2‘U2<CZ|R,,HR, ,

where rg = |z — &, |, Totr, = (T — &2) * Uzy 20 = (20, 720)- Integrating this inequality
over the ball B,(2) and noting that (v) implies

) o S |y un, I < Ce,
Bp(20) j=0
we then have the first inequality as claimed.

In view of the first inequality, the first part of Lemma 3 of Section 4.4 guarantees
that the second and third inequalities of the lemma hold for some HCM ¢ with

¢(z,y) = p(z,0) and

(2) 0o —(<6,(0) <+,
and
3
3) sup > PID’u - Dp.lcs < ¢

Ba,/a(z0)\{(z.w}: |z-&spl<p/16} S

In case N is real-analytic, we agree that ¢ is chosen smaller than the minimum
distance between distinct elements of {6,(0) : ¢ is an HCM with 6,(0) < 8}.
Then (2) gives 6,(0) = 6 in case N is real-analytic. We next claim that (for ¢
small enough in (3))

(4) le[? < Cp? / (€ w)

ly=n191<p/2. p/4<ro<p/2
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where C = C(n, N, 3) is fixed (independent of £, u), provided g9 = go(n, N, 8) > 0 is
small enough. Indeed otherwise by (2) and (3), after rescaling and translating so that
p =1and 2 = (), we would have a sequence u; € W'2(B,(0); N), with 0 € sing u;.
i HCM's with S(¢) = {0} x R""%, and points & € S? such that [ o |Duf? < .3,

fB,(o) |D"‘7"|2 <0, SUpg, (o0 ((r.p): Ix1<1/16) Zf:o p"DJuk-Dj‘ka("' —0Oask — oo,
and

(5) & —E€ S, / (€ - Dsug)? — 0.

lyl<3.i<lzi<}

Notice we also have
li:n infe,,(0) >0
—oc

by virtue of Corollary 2 of Section 2.10. Using the compactness theorem we can
assume that g — » locally in R", wp — 9 in Bys(0) \ {(z,y) : |z|] < %}
and that £ - o, = 0. But this implies that p((z.y) + A(£.0)) = ¢(z.y) for every
A € R, so sing ¢ contains the ray in the direction of (£,0). contradicting the fact
that singp = {0} x R"3. (Notice that i is not constant because 8,(0) > 0 by
upper-semicontinity as in Section 2.11.) Thus (4) is established.

On the other hand we have, using the notation 2y = (&, 75), 2 = (&2.72).
(§s0 — &2) - ur = Rep, — roury — (¥ — ) - 1,
and hence
(620 — &) - uzl* < 3(Reu,)? + 3(roure)” +3((y — 1:) - )",

By integrating this identity and using (4) with £ = §;, — €. we have

|€: — Eaf® < sz'"/ (roul, + (p+ |2 = =0])?u2 + |R.ug,[?)
W-n:01<p/2.p/4<ru<p/2

< Cep ™ (p+ |z - 2|)"

by (v) and Leinma 1, as claimed. u]

The third lemma is as follows:

Lemma 3 For any HCM  with S(¢) = {0} x R** and any Lipschitz v on B}
with ¥(r,y) =0 for 2 + |y[> = p?, we have the identity

/B (IDuf? — |DgP + 2, Y = — / r(IDuf? - | Do) +
I B,

n-3
+2/ rlu,l2w.-+2/ rzu,-u,,nl'yu
By B, o)
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Proof: We begin by recalling the identity (v) of Section 2.2, which is valid for any
Lipschitz ¢ = (¢,...,¢") : B, —» R" with { =0 on 8B,. Taking ¢ = ¥(r,y)(z,0)
(where r = |z|) in this identity, we thus obtain

/ ZZ(&.,qu — 2D - Dju)by9p =

oz-l]l

--/ ZZ(&,IDuI’ — 2D D) Dif(r, )}
B, i=1 Jj=
Since D;[y(r,y)] = r~'z%, if i < 3 and D;[y(r,y)] = D¢y if i = 4,... ,n, we
thus have
n-3

[ aou 4 2ty = - [ ripupvrsz [ riubu o+ [ 03wy
B, B, B,

B, o1

Now on the other hand by cylindrical homogeneity of ¢ (which guarantees that
|Dy|?(z,y) = r~3|Dp|?*(w,0)) and the fact that the volume element of R" is in the
chosen coordinates r2 dwdrdy, we have by integration by parts in the r-variable that

wIDel? = [ rulDef,

B, B,

s0 by adding this to the previous inequality we conclude the identity claimed in the
statement of the lemma. (n}

Proof of Theorem 1: By rotating if necessary, we may assume that the subspace L
of (vi) is {0} x R™3. If zg = (€o,70), then we have z; = (§,n;) for j = 1,... ,n—3.
By the monotonicity identity (ii) of Section 2.4 we have, for any HCM ¢ such that
6,(0) = 6, and S(yp) = {0} x lR"'s, and for any z € Sy N B,(20)

|R.ur, | P3 - 2 2
2 / £ Du|® — |Dy,|%),
o R <= as’m(l I* ~ 1Dysl*)
where we used the fact that 8,(z) > 6,(0) = 6, and where p,(z,y) = ¢((z,y)-2) =
vo(z — £). Let ¥ : R — [0,1] satisfy 9(t) = 0 for t > p, ¥(t) =1 for t < {38y,
¥’ < 0 everywhere, and |¢'(t)] < C(6)p~!. Multiplying each side of this inequality
by ¥(p) and integrating over [fp, p] we get for any 6 € (0, 1) that

R,
(1) 2 / | z;"" <Cp™ | W(R)(IDuf - | D, ).
Bg,(2) z By(2)

On the other hand the identity of Lemma 3 above implies

/ WR(DU = D + 2 ) < [ r2R:'W/(R.)|(1Duf? — | Do, ) +

o (2)
n—3

+2 r2R;Y¢/(R.) |u,,+2/
By(2)

(%) ety - ¥/ (R,)

B,(2) j=1
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where C depends on . Replacing % by 1 and using the Cauchy-Schwarz inequality
we have

(2)
/B( )w’(Rz)(lDul’- |De.[?) < 4/ r2R; (R (R:)|(1Duf* - |Des?) +

(2)

r1ed

+4 / (R (R (R)| + (W(R)P)r2,,
Bp(l)

and hence by combining (1) and (2) we have

R 2
@ [ Baalogye [ mas
Bo,(2) 2 By(2)

+Cp™ /
B}

where u*(z,y) = u((z,y) + z). Now by (v), Lemma 1 and Lemma 2 (with 2p in
place of p) we have
(4)

IE. = Eal* < CF™ / (22, + (p+ 2 — 20l)2 + |Reug, )
Bap(20)\{(z.y): 12-&29|<p/2}

< Cep*"(p+ |2 — )"

/ r(IDu*? — | Df?) du| 3drdy,
g

(Notice that for the present we need this only for the case 2 € S; N B,(2), but in
fact Lemma 2 shows that it is valid for all z € S,.) Since r?u? = ((z - &) - u.)* =
((z = &) - uz + (& — &) - u2)® < 2750l + |€ — &, [*us, we then have by (4), (v)
and the first part of Lemma 2 that

() (riul, + p*u)) <
Bay(2)
<C (rdul, + pul) + / (rdu?, + p*ul + |R.ug,[?)
Bap(2) Bap(20)\{(£) - Iz—Ex5 <P}
scf i)+ | (3, + £ + |Rua, )
Byp/2(20) Bap(z0)\{(z.0): l2—Exp<p/2}
< Cep",

assuming 2 € S} N By2(2). In particular with € small enough we can apply the

main energy estimate Theorem 1 of Section 4.4 with 2p in place of p on the right
side of (3), thus obtaining (after selecting 6 = 3)

|R.ug,|? _
e <Cp ri(uf, +up) +
Bsp/a(z) 2z Bap(2)

1/(2-a)
+C p"'/ r2(u?, +ul) .
Bap(s)\{(z.y): |z—E:l<p}

(6)
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Using (5) again on the right of (6) and also replacing p by :-’f we obtain for all
2 € Byps(20)

R u
() / Reunl®  opn [ (a2, + p2u2) +
B, /4(20) Bz,(20)

1/(2-a)
+C p"‘/ (rdud + p*ul) + |R.ug, | )
Bao(20)\{(z.y): |20l <p/4}

Notice that here we used the fact that |, —&.,| < § for z € S, N B,(2), by (4), and
we also used the inclusions Bj,/5(2) C Bzy(20), Bpa(20) C Bsyys(2) for z € Bsyys(20).

Now we want to consider |2 — 29| > %2. Notice that then, with z = (;,7,), we have
IR uR.I = ((Zt {z) Uy (y - 7]:) ) u'v)z < C("guf., + |y - 7lz|2u: + I&z - f:olzluzlz)-

By integrating this inequality over the ball B,/4(20) (keeping in mind that we have
the bound P>~ fB’(zo) u2 < CB by (ii)), and using (4) (with £ in place of p), we
obtain

/ IRanfsc [l 4 i) +C \Roun, %,
p/4(20 o0

Bo(20)\{(z.y) : |z—E2o1<p/4}

where 3(z) = p + |z — z9]. Notice that since |z — 2| > :-’82 this implies

/ IRzuR.|2<
B, ) RT T

<Cs™a) [ (B2 + $(2)d) + Cs2) /B \R.ur, |

B, (20) (20\{(z.¥) : |z—€3o1<p/4}

< Cs™(2) (reu?, + sz(z)uz) +
B, (20)

o2\ -/@E-e) 1/(2-a)
+ c ( )n—2) s_n(z) / |RzuR,l2 y
s(z Bo(200\{(2.9): 1201 <p/4)

where we used the fact that fB’(zo) |[R.ug,|> < Cp™2s%(z) by (ii). Using this in case
|z = 2] > :-’82 and using (7) in case |z — 2| < §s£' we thus have

2
(8) / B o gz / (22, + () +
By/a(20) B2,(20)

Z

1
AR rdud +82(2)ul | |R,up,?\\ T
+C(=) T (fsz(zo)\((z-v)fIf-izoISP/‘)( @ T R ))

for every 2 € S,.

The proof is now completed by using the first conclusion of Lemma 1 (with L =
{0} x IR""3%) in each of the integrals on the right side of this inequality and then
replacing p by §. m]
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4.6 The deviation function v

Here we use the gap measures of Section 4.3 in order to construct a certain deviation
function v, where ¥(z,y) is the mean over z € S, (S, as in Section 4.5) of the
quantity |(z,y) — z|~"|((z,y) — 2) - Du(z, y)|* (which appears on the left of the main
inequality in Theorem 1 of Section 4.5) with respect to a gap measure constructed
as in Section 4.3, with S, in place of S.

We continue to assume the hypotheses (i) (hence (ii)) and (iii), (iv), (v) of Sec-
tion 4.5.

Let p € (0,3], & € (0, %) (smaller than the 8(n) of Lemma 1 of Section 4.3), and
let Sy, TS, p* corresponding to Sy, T),, p of Section 4.3 with S, in place of S.
Notice that by definition of T,}, we have dist(z,z1 — Lo,) < Cép for 2, € T,N S,
and z € Sy N B,(z). Henceforth we assume without loss of generality that Lo, =
{0} x R""3, as we did in the proof of Lemma 1 of Section 4.3, so this gives

(i)
|€z - Eznl < Clslh 2 = (&zn’hn) € Tpns+v 2= (Ezv’h) € Bp(zl) NnS,, pe€ (01 %]

Now define the deviation function vy by

|RzuRz l2

(i) wie) = [ el

Z

du*(2).

(z.w)

Notice that for given (r,y) € B)(0) \ singu, the integrand in (ii) is an analytic
function of z € S, so ¥ is certainly well-defined on B,(0) \ sing u.

Notice ¥(z,y) = 0 if u itself is an HCM with 6,(0) = 6y, and in general fBl(O)w

measures the deviation (in an L2-sense) of u away from such an HCM. Notice also
that by (v) of Section 4.5 we have

¥(z,y) drdy < Ce.
By(0)

The main result concerning the deviation function is the following:

Theorem 1 Suppose N is real-analytic and 3 > 0. There is 6y = bp(n,N,3) > 0
such that the following holds. If (i)-(v) of Section 4.5 hold, if 6 < &, and if € =
e(n, N, B,6) < & is small enough, then for any p € (0, 5] we have the estimate

1/(2-a)
v<C / b ,
T,;;, T;\T,;

where a = a(n, N,B) € (0,1) and 6 = 6(n, N, B) € (0, 3].
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Proof: The proof is based on the L2 estimates of the previous section. As mentioned
above, we assume

)] Loy = {0} x R*3.

Take p € (0,3]. If T,) = & then we have nothing further to prove, so assume that
T} # o, and take an arbxtra.ry point wg € T}y NS,. We have by definition of
T*(C T;,) that there is a point @y € By(wo) N S+ such that

(2) By, (i) N Sy C {w : dist(w, @y + {0} x R™"3) < 26p}
and

(3) Bup(w) NSy #2 Vw e (@ + {0} x R™3) N Byy(ih).
Thus it follows that

(4) B,(wo) N S; C the (66p)-neighbourhood of wp + {0} x R*3,
and

(5) Basp(w) NSy #2 Y w € (wo + {0} x R™*) N By(wo).

Also since any w € B,(wg) N S, is in T3, N S, we know by Lemma 1 of Section 4.3
that

(6) Clo"? < ¥ (B,(w) N S,) < Co™2, Vo€ [46'%p, %]
and for any w € (wp+ {0} x R"~®)N B,(wp), where C = C(n). Now let wy,... ,w,—3
be any points in (wp + {0} x R™"3) N B,(wp) such that

n-3
™ > ((w; — wo) - a)? 2 —|a|2 Yae {0} x R™3,
i=1

Let 6 € [86'/2, L] be for the moment arbitrary. (We choose § = 6(n, N, §) be-
low; notice that since we require 8§'/2 < @, this also requires that § be cho-
sen small depending on n, N,3. In fact we are going to complete the proof with
8 = 6*(n,N,()/64.) In view of (5) and (6), for each j € {0,... ,n — 3} we can
select points 2; € Bysz(wj) N Sy such that
|R‘iuka, I2 S

Bo(wo)\(z4): le-Ewgl<8o/8} B
|R;ug,

<cut@Bmuw)? [ [ B oyt (2
B,/8(w;) J Bp(wo)\{(z.y) : |2—Ewg | <6p/8} z

¥(z,y) dzdy.

(8)

< Cp 9 /
B oo\ {(#:0):o-uol<0p/8)
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Notice that here we use the general principle that for any Borel set U x V C
B,(wo) x S; and any I > 0 we have

|R("R< |2 -1 |Rr-“li:|2 +
9 /v e < T (Y) / /U Bl deyau o
=) [ [ R 4 (2) ey
<Tu*(V)~ j W(z, ) dzdy
U

for all ¢ € V except for a Borel set E C V with p+(E) < I'~'u*(V). (Notice that
this implies that if U, U, are two subsets of B,(wo) and if ' > 2 then there exists at

least one point ¢ € V such that we simultaneously have (9) with each of the choices
u=0,U="U0,)

Also, since |z; — w;| < §, by (7) we have
n-3 2
(10) 2 (= )-)*2 Elaf, ael,
where L is the linear subspace spanned by z; — 2, j = 1,... ,n — 3. Notice that
automatically L satisfies
(1) IL - {0} x ™) < C6
by virtue of (2), (10) and the fact that 2,. .. ,zn—3 € S} N Ba,(wo).
Similarly, for arbitrary given w € (wo + ({0} x R"*™%)) N B,(wy), and for any set
. 1¢%_3 € Bgp(w) N (wo + {0} x R™"?) with
n-3 pz
(12) Z((c“ ) -a)? 2 =-laf’, ae (0} xR™,

we can again use the general principle (9). This time we in fact use (9) with the
choices U = Bgp(w) and U = By(wo) \ {(z,¥) : [T — &wol < §}, in each case taking
V = Byy/a(¢?) N S4. Then, keeping in mind (5), (6), the fact that 6 > 86'/2 and the
remark 1mmed|ately following (9), we deduce that we can select (; € Ba,,/s((") NS,
such that for each j =0,... ,n -3

(13)
u 2
/ |R¢, R<:I Sc(op)-(n-s)/ P
Bo,w) R, Bop/a(w)
ugp, |?
/ M < C(p) (n—3)/ ¥,
Bp(wolN(z.): lz-Eul<p/8) B, Ba(wo)\(z.0) :|2—Ewo|<0/8)

where C = C(n, N, 3). (We emphasize that the choice of ¢; depends on w, but C
only depends on n, N, 8.) Since |(; — (°| <% 2, from (11) and (12) we also deduce
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that
n-3 pz

(14) Y (G- a)* > ——laP, a€lL.
j=0

Now in view of (10) and (14) we can apply Lemma 1 of Section 4.5 in order to
conclude

n-3 n-3
(15) Y IR un, [P < CO Y |Rur [+ CO~ dist®((, 20 + L)| Duf?
j=0 §=0

on By,(w), and hence

n-3

ao [ PN
n-3

<co? / Z |Re;ur, | +C87 / |Duf® dist?(¢;, 20 + L)
BOp(W

Op w
f |Re,ur, I

+ CO7%(0p)" 2 dist?((j, 20 + L)
Ry,

< csopr [

Bop(w) =0

< Cop® .0 ¥+ CO o2 dist®(¢j, 20 + L)
0o \W,

by the first inequality in (13). Now by Lemma 1 and Lemma 2 of Section 4.5 together
with (8) and the second inequality in (13) we have

an

R,‘u . 2 u 2
dist*(¢j, 20 + L) < Cp’ |Ryur, 1R &J|)

By(wol\{(z.): lz~Ewol<p/8} 425 ( Ry, R,
<cpen e [

By (wo\{(z): [+~€wo|<8p/8}

Thus by combining (16) and (17) we conclude
(18)
n-3

/ Z |R.;un, | < COP° / v+ Co7p / ¥
BOp(w) Bgp(w)

Bp(wo)\{(z:0) : lz—Ewo |<0p/8}

for each w € (wp + ({0} x R*"3)) N B, (wp).
The presence of the factor 6 in the first term here is crucial, as we shall see below.

Now we are going to use the main L?-estimate from Theorem 1 of Section 4.5 with
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£ in place of p. Thus (since B,/16(20) D By/az2(wo) and B,/2(20) C B,(wo))
(19)

[Reur? (a2 / 2 ( i )""‘“’
2 < Cp*s(2)*™" R, ug, |°+C | —— X
/Ba/az(wo) Ry =) Zi i R’l s(z)"-2

2z By(wo) j=o

1 IRag, )}
X 2o \n-2 |R UR, I2 + R
(-/Ba(wo)\((r-v)'Iz-tunlsp/"’) (92 s(z)"? ,Z=; R Ry

for each 2 € S,.

Now we want to integrate this with respect to the measure u*. First notice that,
using the notation u*(A) = u*(ANS,),
(20)

1 + (wo u* (B +1yp(wo)) — u* (Bjp(wo))
/s s(z)"-2 du S Z G2

<Cp'+Cp —"Zﬂ+(B(]+l)p(w0))(j2—n -G+

Jj=1

<Cpt+Cpt Y i< Cp,

J=1

where we used summation by parts and the fact that u*(B(.1),(wp)) < Cj"3p"~3
by virtue of Lemma 1 of Section 4.3. Thus integrating in (19) and using the Holder
inequality and (20) we deduce that

(21) / v < Cp-? / IR, ug,
B,/32(wo) Ba('vo)z: ?

n-3 1/(2-a)
+oprspesa ([ Y IRyun, P9
Bp(wo)\{(z.y) " |z~€uwy|<p/16} 7=

0

Now we select points wy,... ,wq (with Q = Q(n,8)) in Bs,/a(wo) N (wo + ({0} x
R""%)) such that {By,/16(w;)} are pairwise disjoint and such that {Bg,/4(w;)} cover
the g,f-neighbourhood of Bs,y/a(wo) N (wo + ({0} x R"73)). Then (21) implies

@ [ ws cp—sz ) S 1R un, [+
B, /32(wo)

Bgpra(wy) J—o

+Cp~® Z |Rz,'UR. ?

Bo(wo)\{(z.y) : [z—€wo [<0p/8} j=p

n—3 1/(2-a)
+ sy f Y Ryum, P +v)
Bp(wo)\{(z.9) : [z~€wq |<6p/8)}

=0
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Now we use (18) with w; in place of w, thus estimating the terms |, Bay o) Z;';g IR,

ug,, |? on the right. At the same time we can use (8) in the remaining terms on the
right.

Thus we obtain from (22) that

Q
@ [ vy [ w+a v+
By /32(wo) j=1 Y Bop/a(w;) Bp(wo)\{(z.p) : [£—&wo 1<6p/8}

1/(2-a)
+ Cl(pu—3)l-1/(2-a) / ,‘p ,
Bo(wo)\{(z.) : 2wy |<6p/8}

where C = C(n, N, () is independent of 8 and C, = C,(0,n,N,B). Now notice
that By(wo) N Sy C {(z,y) : |z — &l < 68p} by (4), and p"~3 < Cu*(B,(wo))
by Lemma 1 of Section 4.3, where we continue to use the convention ut*(A) =
u*(ANS,). Hence, assuming 6§ < %, we see that (23) implies

ey [ wseof wecf v+
B, /32(wo) By (wo) By(wo)\S},

p/w}

1/(2-a)
+ Ci(p* (By(wo)))' -/ ( / w) ,
By (wo\S, 1

where S} = {(z,y) : dist((z,y),S+) < o}. Now notice that this was all valid
starting with an arbitrary wp € T,N S.. Now choose a maximal pairwise-disjoint
collection {B,/128(Pk)}k=1,..,r With px € S, N T:/d' Then UB,32(px) covers all of
the & neighbourhood of S, N T:“. Notice that by Remark (iv)(2)(a) of Section 4.3
we have also that UB,(px) is contained in T,,. Since any point of T, lies in at most
C(n) of the balls B,(px), we then have, by replacing wo by px in (24) and summing
over k,

1/(2-a)
JREL) R ¥+ Culu* (T3 ( / w)
Top T3, T \Sso/16 TH\SS, 16

500/ w+00/ v+C P+
Ty T3\Te, Tp\Ty,

0p/16

1/(2-a)
+ Ci(p*(T3)) 7V ( / ¢)
1;;\53;/16

1/(2-a)
< co/ v+C ¥+ Ci(pt(T3)) V@) (/ w) ,
T:p T;P\T:p/ 16 T;ﬂ\s:p/ 16

so that since u*(S,) = 1 and S} D T} we get finally that

1/(2-a)
/ v<C ( / w) :
Ty, T;P\T:p/m

0p/16
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provided 8 = 6(n, N.3) € (0, 3;) is chosen so that C8 < } and provided 85'/% < 8
(i.e. 6 < 6o, with &y = g—:). By a change of notation (taking % to 26) and replacing
p by £, we then have the required inequality. )

4.7 Proof of Theorems 1, 2 of Section 4.1

Let 3 > 0, let 6y € {6,(0) :  is an HCM with 6,(0) < 8} be arbitrary, and
suppose

(i) wq € singu with 6,(wp) = 6.

Recall that., by the monotonicity identity. for each ¢ € (0,1) there exists oq =
oo(e.u. wo) > 0 such that

(ii) Ou(wo) < 02'"/ |Dul* < B,(wo) +¢€, o € (0,0)-
Bo(wo)

Also, by monotonicity (see (i) of Section 2.4) we have the identity

2
(ii) 2 I&%,l =g / |Duf? - 8,(z)
B,(2) 2 B,(2)

for each z, p such that B,(z) C €, and. since B,(z) C B11¢)o(wo) for any z €
B,,(wp), we deduce from (ii) that

2
9 |R.ur.l* _ 2on j |Dul? — ©4(2)
Bo(z) R;' Ba(2)

<1+ (1 +¢€)o)*™ / | Duj? — 8,(z)
Bl14e)o(wv)
< C(n)(1+A)e, 2€ Beolwo), o< %P,
provided ©,(z) > 6p and provided g = go(u. wo. €) > 0 is sufficiently small. Let
S+ = {Z € -B-eao/Z(wO) : eu(z) 2 00}1
take wy € Sy N Beoy/a(wo), 01 € (0,R] and define

(iv) U= Uy g

where uy, o,(z,y) = u(wy + 01(z,y)). Then the above inequality gives

(v)
Ruia, | ]
2/;(')| -;;J =p2—nL(. |Dif? - ©:(z) < Ce, z€S,(wn.1), pe€ (0.4,

s
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where C = C(n.3) and
(vi) 0€ S, (w,0) = {z € By(0) : Ba(z) > 6o} = By(0) NNy, 0,5+-

Notice that S, (w),0,) corresponds exactly to the S, of Section 4.5 and 4.6 with
% in place of u. Also, recall that by Lemma 2 of Section 3.9, we can, and we
shall, assume that oo = go(u, wp, €) is chosen small enough so that S, has the &-
approximation property of (i) Section 4.2 and hence S,(w;,0,) does also. Thus
(Cf. (iv) of Section 4.5)

(vii) S (wy1,01) N B,(2) C the (eo)-neighbourhood of L, ,,

for each z € S,(w),0,) and ecach o € (0,1], where L,, is an (n — 3)-dimensional
affine space containing z. We fix these affine spaces in the sequel. Without loss of
generality we assume

(viii) Loy = {0} x R"3,

We emphasize that (v) and (vii) hold automatically if o9 = o¢(€, u, wo) is chosen
sufficiently small. We henceforth assume o¢(e, u,wo) has been so chosen. and we
continue to take u as in (iv). Notice also that, by (iv) (choosing new ¢ if necessary),
(i), (iii), (v) of Section 4.5 also hold with S, = S,(w).0,). Thus we can apply
the results of Section 4.5 and 4.6 with % in place of u, and with S, = S,(wy,0,),
00 = eu(w0)~

Before we begin, we need to establish the following lemma, which is a simple in-
equality for real numbers:
Lemmal If0<a<b<1,a€(0,1), 3>0 anda** < B(b-a), then

a~1*e/2 _p-14a/2 > 0gme2 O = C(B,a) > 0.

Proof: In case ;" > 2 we have trivially that

a—l+a/2 - b—l+n/2 > Ca—l+a/2 > Ca-o/Z‘
so the required inequality holds in this case. In case % < 2 we have

a~'te/2 _ p=1+al2 — (1 — a/2)c™2"/%(b—a) for some c € (a,b)

1-a/2 b-a
> -af2
- 4 @ a?-a
 BU=0/2) o

since a > -2'!

since a2~ < 3(b - a),

so again the required inequality is satisfied, and the lemma is proved. @]

We now give the proof of Theorem 1. We shall only need the real-analyticity hy-
pothesis in checking the Lojasiewicz inequality for the energy functional as in Sec-
tion 3.14. Since we already checked in Section 3.14 that this Lojasiewicz inequality
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lholds automatically (with any exponent a € (0.1]) when the integrability condition
of Theorem 2 holds. we thus see that Theorem 2 will follow by exactly the same
argument used to prove Theorem 1.

Proof of Theorem 1:

Let T\, u* (corresponding to given & with £ < %, and with @ as in (iv) in place of
u) be as in Section 4.6. & < &(n,N.3) and € < % will be chosen later.

Now. with i as in (iv), by virtue of (iii). (v). we can apply all the results of Section 4.6

to i, and hence
1/(2-a)
v<C / Y
TATY,

) /
7,
with ¢ the deviation function of Section 4.6 with & in place of u. where § =
f(n.N,3) > 0, and where a = a(n, N, 3) € (0,1).

In view of Lemma 1 we can usc (1) to give

~140/2 -1+a/2
o (L)) e
Tow T

where Iy = f‘r,’, R Then starting with p = } we can iterate the inequality (2) in

order to give

o1/4

-14a/2
u') >Cilg*? j=12...,
and hence
(3) / WGP, j=12,....
Toa

where 29 = 32 > 0. Notice that since (j + 1)'*7 — j'*7 > Cj, this implies

o oc
Y-ty [ escly it <o
=0 Toss =1

and using summation by parts we thus have

o<

St / v <O
=1 7';14/4\7-:1,-1

Thus we get

(4) / llogd|'* v < LY.

174
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where d is defined on T}, by

27k if (2,9) € T\ Tacr, k22

) d(z.y) = {o if (z,) € Ty

Now for z € S, NT}}, and (z,y) € T}, we claim that

(6) d(.’l.‘, y) < 432(1' y)v (Iv y) € T|74 \ Bd(z)/2(z)

where R.(z,y) = |(z,y) — 2|. Here we include z € Ty, in which case d(z) = 0 so (6)
says d(z,y) < 4R,(z,y), V(z,y) € T;;,. To prove this we can of course assume
d(z,y) > 0, so take any w = (z,y) € T,", \ T;-,_, for some k > 2, and consider
cases as follows:

Case (a): 2 € T, for some ¢ > k + 2. (If z € Ty, then this case will be applicable

Vg > k +2.) Then by Remark (iv)(2)(d) of Section 4.3 we have |w — z| > 2752 =
~k d(w

Y

Case (b): z € T}, \ T} .., with ¢ < k + 1. In this case, if we assume that w ¢

By(:)/2(2) then (keeping in mind that z € S, and d(z) = 2 %incase 2z € T,.,\T;",.,),

we have |w — z| > 27971 > 27k-2 = ),

Thus (6) is always satisfied as claimed. Now the inequality (4) says that
= (2
7 / [log d|'*" / ”3—‘;"& du*(z) dzdy < CI2",
1/4 S z

so that by interchanging the order of integration we deduce that

=12
Q [, ogaprBml gz < 1,
1/4 b

for all z € S, with the exception of a set of u*-measure < CI. (We must keep in
mind here that there will in general be lots of points z € S, which are not in the
support of u*, and these have u*-measure zero, so in particular (8) need not hold
for them.)

In view of (6), (8) implies

(9) i log R+ Rl gy < o,
77/4\54(;)/2(3) R?

for all z € S, with the exception of a set of u*-measure < CIj.

Next note that according to Lemma 1 of Section 4.3 we have a countable set S =
{zj-k : ] =1,... »ka k 2> 2} C S+ nTl74 such that

(10) 2ik € T \Tjuor,s0d(zin) =275, j=1,...,Qk k22,
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0 Qx
1) = C(&(n—fi)/? Z 9-(n-3)k lekal + H"-SLTJ), C =C(n),

k=2 Jj=1
and
k+1 Qe
(12) SATENT ¢ | UBsises(zy) VE22

t=max(k—2.2) =1

Now let & C S be the collection of all 2;x € S such that

Ile.k ﬁR:,_* I2

(13) / |log R, ,|'"*" dzdy > I,
T37a\Bags, 4 1/2(25.%) o R?;.. 0

and let & C Ty be the collection of all z € Ty such that

(14) / |logB,|'+"lR;;f‘l drdy > I7.

174 2
Since ut*(& U &) < CIJ by (9), we thus have by (11) that

(15) D dw) "+ H3E) < CR, C=C(n,N,9).
w€éo

Now take any z € T}, NS, \ Ty. We have by (12) that z € By, ,)/a(2;) for some
zjx € S; if this zj ¢ 80 then by (9)

|R3, kaRl)‘k |2

(16) / “Og Bz .k||+~, 3
T3ha\Ba(s, 4 )/2(25.8) ? R;'M

Regardless of whether 2;, € & or not, we have by (10) and Remark (iv)(2)(d) of
Section 4.3 (with k + 2, k + 1 in place of ¢, k) that z € By, ,)/a(2)x) C R*\ T\,
and hence that

dzdy < Ij.

(17) d(2) > 27" = Ld(z;«).
Thus by (16), (17), for any 2 € S, N T}, 14 \T,

(18) eitherz € S, N (U;).kggoBd(,’*)/q(ZJ k)
or 3z (=some z;x € S: NT}, \ (Tg' U &)) with d(z) > 3d(2),

z € Bys)/4(2), and / | log Rill+7|R;’?‘|

T,4\Bags)/a(%)

dzdy < Ij.

On the other hand if z € T \ £, then by definition d(z) = 0 and (9) gives

(19) / |log R,l”"lR;f‘l drdy < I7.

1/4
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Now we want to check that we have all the hypotheses needed to apply the rectifi-
ability lemma of Section 4.2 (incase p=1,m=n-3,and $=S,).

To check these hypotheses, we first assume

(20) no ball B,(z) with z € Bs/s(0) N S, and p € [}, 1] has a 6-gap.
Note that then by (20), (vii), (viii), and the fact that € < ~ we have
(21) Bss(0) N {(z,y) : |zl < §} C Ty,

In this case (19) implies

|log R, |l+-y IR,'MR'I

/ dzdy < Ij,
Bs/8(0)\By(s)/2(2) z

(22)

for any z € T3 \ €}, and (18) implies that for any point z in the subset (S;NB,2(0)\
T5') \ (Us, se0 Bz, 4)/4(254)) there is always a point Z € S, N T,‘% \ T5" such that

(23)

IRiﬁRi |2
R?

| log Rs|'*” dzdy < I§, z € Buya(2), d(2) 2 3d(2).

~/Bs/s(°)\BJ(i)/z(5)

Our aim now is to show that the hypotheses of the rectifiability lemma of Section 4.2
are satisfied.

First take an arbitrary point z € (S; N B)2(0) \ Tg') \ (U,J,‘eg‘,Bd(,,,)/.,(z, ) and
let Z be as in (23). Using the notation that ii(c) denotes the L2(S™!) function
given by i(s)(w) = i(Z + sw), w € S*!, we then have by direct integration, the
Cauchy-Schwarz inequality, and (23) that

(24) Jla(o) - fl(")"u(s- l)

< [1%
/2 ; pr 1/2
<([ IlogSI‘*’slla:;?)lliz(sn-:)dS) ([ s togsi-as)

1/2
R;ug, |?
< ([ jlog Ryl 7 EERE ) piog -2
By /s(0)\By(1)/2(2) H

<cR|log rl"'/2

||L=(s'- 1yds

for any __L) < 0 < 1 < 4. Notice also that by applying Lemma 2 of Section 4.5
(keeping i m mind (vii)), we have that ||i — ¢]|2 L3(Bya(2) < Ce for some HCM ¢ with

S(¢) = {0} x R""3, and also from hypothesis (v) we know that Iy < Ce. So if
¢ < 6% is given and if ¢ is small enough (depending on n, N, 3,6, () we then deduce
from (24), Corollary 1 of Section 4.4 and (vii) that

(25)
sing i N B,(2) C the (Cp)-neighbourhood of z + {0} x R*™3, Vpe (5"-‘-2 1
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Now, still assuming z € (S \ Ty )N B1/2(0) \ (Us, cc0 Bz, 1)/4(254)). (25) guarantees
in particnlar that S, N B,(z) C the (6p)-neighbonrhood of z + {0} x R"~3 for every
pE [ﬂ;—) 4], so (using the definition (iii) of Section 4.3) z € T, /2 unless one of the
balls B,(z) has a é-gap. But of course 2 € Tf(:) /2 contradicts the definition of d(z)
for d(z) > 0, so we conclude finally (kecping in mind (20))

(26) Yz e (S \TyH)NBy(0)\( U Baz, 0)/4(25k))s

2,k€&
Jo, € (ﬂzﬂ 1] such that S, has a 6-gap in B,,(z).

Next notice that since T is a snbset of the graph of a Lipschitz function over
{0} x R*~* with Lipschitz constant < C§, in view of (15) we can select a {B,, (2x)}
such that

(27) o €(0.}). & CUB, (). Y op?<CR.
k

For z € S, N T \ UpB,,(2x) we have. by the same argument that we used to
derive (24). except that we use (22) in place of (23).

(28) llit(a) = &(7)llagsn-ry < CI3"%|log 7|72

forall0<o <7< %, and again by Corollary 1 of Section 4.4 and (vii) we conclude
that

(29)
sing i 0 B,(z) C the ({p)-neighbourhood of z + {0} x R"~® for all p € (0. }].

In view of (15), (25), (26). and (29) it is now evident that. provided (20) holds,
we can take the collection { By, ,)/4(2jx)}z,ce0 U {Boy(21)} to be the collection
corresponding to Fy in the rectifiability lemma of Section 4.2 in case we use ¢ in
place of =, and then hypothesis I(b) of that lemma is satisfied in case 2y = () and
po =1

On the other hand if (20) fails then some ball B,,4(y) with y € Bs/s(0) N S, must
have a $-gap, and so the first alternative hypothesis in (I) of the rectifiability lemma
holds in case £y = () and py = 1.

Thus. provided ¢ is sufficiently small (depending on é,n, N, 3). we have shown that
S+ (un.ay) (as defined in (vi)) satisfies the hypotheses of the rectifiability lemma of
Section 4.2 for 1y = 0, py = 1. That is, in view of the arbitrariness of wy, o,. we
have shown that S = B,,,5(ue) NS, satisfy the hypotheses 1. II of the rectifiability

. = @
lenma. where gy = 2.

Thns the rectifiability lemma implies that ﬁm‘,/‘(wo) NS, is (n — 3)-rectifiable.

Finally. let B be any closed ball contained in 2. Then by monotonicity (see Sec-
tion 2.4) there is a fixed ;3 > 0 such that 6,(y) < 3 for cach y € B. In particular
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6,(0) < 4 for any tangent map of u at any point y € B, and by Lemma 1 of
Section 4.4 we know that {©,(y) : ¥ € sing, uN B} is a finite set &y < --- < ay of
positive numbers, where sing, u is as in Section 3.5. Let

S; = {z € singu : 6,(2) = a5}

S} = {z e singu : 8,(2) > a;}.
Notice that S is closed in © by the upper semi-continuity (ii) of Section 2.5 of ©,,.
Take any j € {1 ,N} and any y € S;. According to the above discussion, there

is p > 0 such that B,,(y)ﬁS+ is (n— 3)-rectifiable. Thus, in view of the arbitrariness
of y, the set S; has an open neighbourhood U; such that

(30) S} NU;j is locally (n — 3)-rectifiable.

Of course the S} NUj; are also locally compact, because S;' is closed and Uj is open.
Now let

V; ={z €singu : ©,(2) <ajn}, j=0...,N-1, Vy=Q

Then the V; are open in Q by the upper semi-continuity (ii) of Section 2.5 of ©,.
Now, with ag = 0, ay41 = 00, S§ = singu, and Up = @, we can write

N
BNsingu = U{z € Bnsingu : a; < 0,(z) < ajn}
.i=0

—UBnS+nV

('U(an+nv nV)) (U(BnS*\U,)nV)

This is evidently a decomposition of BNsingu into a finite union of pairwise disjoint
locally compact sets, each of which is locally (n — 3)-rectifiable; in fact for each j the
set (BNS; \U;)NV; C sing u\ sing, u, and hence has Hausdorff dimension < n—4
by Corollary 1 of Section 3.4, and the set BNS; NU;NV; is locally (n— 3)-rect1hable
by (30). This completes the proof of Theorem 2.

Proof of Remark (2) of Section 4.1:

We have to show that for H"%-a.e. z € singu there is a unique tangent space for
singu at z in the Hausdorff distance sense, and also that « has a unique tangent
map at 2.

For the former of these we have to show that, for H"3-a.e. z € singu, there is an
(n — 3)-dimensional subspace L, such that for each £ > 0

(1) By1(0) N7, 4(singu) C the e-neighbourhood of L,
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and
(2) By(0) N L. C the z-neighbourhood of 7. 4(sing u)

for all ¢ € (0,00) where gy = o¢(c.u.2) | 0 as € | 0. Using the notation in the
last part of the proof above. let : € S, be any point where S)" has an approximate
tangent space. Thus there is an (n — 3)-dimensional subspace L, with

(3) lim/ fdH"3 =/ fdH" ¥ f e CO(R").
710 JneaiS)) L.

We show that (1) and (2) hold with this L.. In fact the inclusion (2) is evidently
alrcady implied by this. so we need only prove (1). Let o; | 0 be arbitrary, and let
¢ be any tangent map of u at z with u(z + apx) — p for some snbsequence ;0.
By (3) we cvidently have that the €, neighbourhood of By(0)N7.,4,,S; contains all
of L. N By2(0) for some sequence & | 0. But then by the upper semi-continnity as
in Section 2.11 we have

O,(y) 2 ©,(0) =6,(0) everywhere on L, N By ;(0).

Thus by (i), (ii) of Section 3.3 we have S(¢) O L.. and since L, has maximal
dimension n — 3, this shows that S(@) = L., so ¢ is an HCM with S(¢) = L.. Bnt
then by Corollary 1 of Section 4.4 we have

By(0) N 6, (sing u) C the e-neighbourhood of L.

for some sequence s¢ | 0. In view of the arbitrariness of the original sequence o} we
thus have (2) as claimed.

Finally we want to show that there is a unique tangent map of u at H*"%-a.c. : €
singu. Let S) = {z € singu : ©,(z) = a,} as above. For cach £ > 0, we can
subdivide S; into U, S;,, where S,; denotes the set of points 2 € S, such that
the conclusions (1) and (2) hold with oy = % Provided the original uy. oy in the
definition (iv) of & are sclected with wo € S, and 0, = (s, 1. up. i) < %, we then
have by (1) and (2) that all points of = € 1)y.4, S, are contained in the set 7y in the
proof of Theorem 2 above. Henee by (28) of the above proof we conclude that there
is a unique tangent map of u at each point : € S,, N By, (uy) with the exception
of a set of H* *-measure < ca7~. In view of the arbitrariness of €. uy here (and
keeping in mind that we have already established that S, is (n — 3)-rectifiable) this
shows that there is a nnique tangent map of u for H"3-a.c. points : € S,;. Since
H" 3(sing u \ (U;,S,.)) = 0. this completes the proof. o

4.8 The case when 2 has arbitrary Riemannian
metric

So far we gave the proof of Theorem 2 for the case when € has the standard Euclidean
metric. The changes needed in the above arguments to handle the case when Q is
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equipped with an arbitrary smooth Riemannian metric

(@) Y gs(z)dr' @dr, g; € C2(Q), (9) >0,

ig=1
are of a purely routine technical nature, and we wish to describe them here.

In view of the local nature of the claim of Theorem 2, there is no loss of generality in
assuming from the outset that  is bounded, g;; € C3(Q1), and (rescaling the metric
by a suitable constant if necessary)

(ii) l9slosan < Br Y 95€'€ 2 KPP,
=1

where f, is a fixed constant. Now with the metric (g;;) in place of the Euclidean
metric, the energy of u € W'%(Q; N) is defined by

(i) £9w) = [ Dufvgas,
1]

where |Duf? = 377, ¢ Diu- Dju, with (g%) = (gi;)~" and g = det(gi;). The Euler-
Lagrange system (corresponding to (iii) of Section 2.2) for a minimizer or stationary
value u is

(iv) Agu+ Y g9 Au(Dwu, Dju) =0,
i5=1

where Agu = (Agu',... ,AguP), with A, = g7'/230. | Di(,/g¢" Dj) the Laplace-
Beltrami operator relative to the metric (g;;), and corresponding to the identity (iv)
of Section 2.2 we have

() f" (Z(IDuIZ&j -2) ¢"Deu- Dju)DiC + R,-d) =0,
ig=1 ] j=1
for any ¢ = (¢%,... ,(") € C=(2; IR") where |R;] < C|Dul? at each point of Q.

Now let u € W,;7(€; N) be any minimizer for £©), andlot z€ Q. Let T; : R” —
IR" be an affine transformation with 73(z) = z and with T, = T. — z satisfying

7.;:(9-';1’(2))?‘: = (),

and with 7, depending continuously on z. Then for each fixed z € 2 we evidently
have that u®) = uo T, is £5* minimizing, where

(65)(z,)) = Tigis(z, »))T2

hence in particular
gfj)(z) = 65,', z€f
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Then by the appruprlat(' minor modifications of the arguments in Section 2.4 using
the identity (v) with g, ) Vin place of g;, instead of the identity (iv) of Section 2.2.
we obtain

(vi)
(|Du[,; — 2D - D) Di¢? = / (3 5,¢+ 3 80,0
2 Qo
)=1 (¥}
for any ¢ € CX(Q)). where
(vii) W) =uoT., QP =T;1). |S!]+p|S,| < CH|Du
It is then casy to see that in place of (ii) of Section 2.1 we obtain
(n=2=Chp) [ 1DuP <+ Capo [ 10wz [ i
By(2) B(z) 0B,(2)
and in place of (iii) of Section 2.4.

(viii) et / |Du'®)|? is an increasing function of p,
Bu(2)

$0 the limit
(ix) 0,(z) = lime‘"/ | Du'??
o Byi2)

exists at every point : € ). 0, is as before calledd the density function of u. Also,
in place of (iii) of Scction 2.5 we obtain the ineguality

|R.u, 1P uml"' ).
(x) 2/ <p "/ |Du? 2 —©,(z) + E. |E| < C3p.
By(z) R Bylz)

where C = C'(n. N.i3). ,3 any constant such that p? " fs,.(:) |Dut?'|? < 3. It follows
that we can take tangent nmps and psendo-tangent maps by exactly the same pro-
cedure that we used before; thus for example for cach = e singu and cach o, | 0.
there is a slxbs('quouw a, such that u‘f} , — 2. where u3(r.y) = u9(z + alr.y))
and where ¢ € Wt ow 2(R": N) is energy mlmmu,mg (wnh respect to the standard
nmietric for R") and is homogencous of degree zero.

Also all of the energy estimates and L? estimates of Section 4.4 and 1.5 carry over
to the present setting with only very minor changes to take account of the fact
that in place of the standard metric (6;,) we now have (near cach point = € sing )
the metric q,‘l which satisfies |q( oS _ 6,1 < Chp on any hall By(z). Thus for
example Theorem 1 of Section 4. 1 contimies ta hold. except that in place of the
main inequality we now have

(xi)

p—n/
B

»'2

/ (| Du"? — | D) dw
52

ridedy < Cp™" / r((u™)? + (u‘;")’) +
B,40)

1/(2-a)
+C[p" / () + (ul")?) +E.
Bo(ON{(rp):lri<ps2)
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where u(® means u(*) with z = 0 and where | E| < Cf3)p. Likewise the main estimate
of Theorem 1 of Section 4.5 becomes

(i)
pn—2

/ lR;u(’)l 2.2 nz_f @) 2 1-1/2-e)
<Cp3s "'(z)/ |R;up | +C (_—) x
B,/q(zo) R’Z‘ 83‘,/2(20) j_o % 81! 2(2)
-3 1/(2-a)
/ "ZIRz (‘) |R’ (z)lz +E,
Bayya(so)\(20) : l2—sy|<p/8} P’s""(z) & TR

for z € Sy = {w € Bi(0) : ©,(z) > 6,(0)}, where u‘?) is as above, where we
are assuming that B;(0) C  with metric g still satisfying (ii), and where |E| <
Cﬁ,p”""/.s""(z).

In view of these estimates it is clear that we can take in place of the deviation
function ¥ of (ii) the function

1R

(xiii) Y(z,y) = A R;'

dut(2).
(zp)

Then by very straightforward modifications of Section 4.6 (using (xi), (xii) in place
of the main results in Theorem 1 of Section 4.4 and Theorem 1 of Section 4.5) we
can prove the result

(xiv) Igp < C(I, — Igy)" 0?2

analogous to Theorem 1, where now C also depends on f3;, and where I, = f,.: v+
Byp. Using the same kind of iteration as in Section 4.7 (based on (xiv) and on (ix)
of Section 4.7), this leads directly to

[ nogarg < crg,

for p < §, where d is defined as in Section 4.7.

The rest of the proof is completed as in Section 4.7, applying all of the above with the
rescaled function u,, 4, as in (iv) of Section 4.7 in place of u; this rescaled function
lives on the rescaled domain where the appropriately scaled metric satisfies (ii) with
the same fixed constant 8, independent of ¢,, provided we always take o, < 1,
which of course we can do—indeed it is necessary in the argument of Section 4.7
only that o) is sufficiently small. We also need to take o, small enough so that
the transformation T; in (vii) satisfies |T;, — T, || < € for z1, 22 € B,,(wy). (This
of course can be done because T, is continuous in 2.) Then for small enough
€ = ¢(n, N, 8) we again conclude as we did in Section 4.7 that the hypotheses of
the rectifiability lemma of Section 4.2 hold, and hence that S, N B, (wp) is (n — 3)-
rectifiable for small enough o0 = o(wp,u) > 0 and for any wp € sing,u = {z €
singu : ©,(z) = 6,(0) for some HCM ¢}. The proof is then completed as before.
a
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