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1

Introduction

Here k is an algebraic closure of a finite field Fq with q a power of a prime p.
Let G be a connected reductive algebraic group over k which is defined over
Fq. Let G be the Lie algebra of G. Then both G and the adjoint representation
Ad : G → GL(G) are defined over Fq. We denote by F : G → G, F : G → G
the Frobenius endomorphisms corresponding to these Fq-structures. Assume
that µ : G × G → k is a non-degenerate G-invariant symmetric bilinear form
defined over Fq and let Ψ : Fq → Q

×
� be a non-trivial additive character where

Q� is an algebraic closure of the field of �-adic numbers with � a prime �= p .
We call trigonometric sums [Spr76] the GF -invariant characters of the abelian
group GF which are of the form y �→

∑
x∈O Ψ

(
µ(y, x)

)
for some GF -orbit O of

GF . They form an orthogonal basis of the Q�-vector space C(GF ) of functions
GF → Q� which are constant on the GF -orbits of GF . The Fourier transform
FG : C(GF )→ C(GF ) with respect to (µ, Ψ) is defined as follows:

FG(f)(x) = |GF |−1
∑

y∈GF

Ψ
(
µ(x, y)

)
f(y)

with f ∈ C(GF ) and x ∈ GF . The trigonometric sums of GF are thus (up to a
scalar) the Fourier transforms of the characteristic functions of the GF -orbits
of GF .

The trigonometric sums were first studied by Springer [Spr71] [Spr76] in
connection with the Q�-character theory of finite groups of Lie type (i.e. finite
groups of the form GF ): it was shown by Kazhdan [Kaz77], using the results
of [Spr76], that the values of the Green functions of finite groups of Lie type
[DL76] can be expressed (via the exponential map) in terms of the values of
trigonometric sums of the form y �→

∑
x∈O Ψ

(
µ(y, x)

)
with O a semi-simple

regular GF -orbit of GF . In [Lus87] and [Lus92], Lusztig has outlined what
should be the Lie algebra version of his character sheaves theory to study

E. Letellier: LNM 1859, pp. 1–4, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 1 Introduction

Fourier transforms and to give a general framework for computing the values
of trigonometric sums. In particular, he has defined the “admissible com-
plexes” on G as well as the generalized Green functions on GF which coincide
with the generalized Green functions on GF [Lus85b] via any G-equivariant
isomorphism from the nilpotent variety Gnil onto the unipotent variety Guni.
Within this framework, he was able to explain most of phenomena observed at
first by Kawanaka like the existence of pairs (f,G) such that f is a nilpotently
supported function on GF invariant under the “modified” Fourier transforms
[Kaw82].

In this book, we study trigonometric sums using the techniques developed
principally by Lusztig to study the irreducible Q�-characters of finite groups
of Lie type. The first step is to define a “twisted” induction in the Lie algebra
setting which fits to the study of trigonometric sums, that is, which commutes
with Fourier transforms. Lehrer has proved [Leh96] that Harish-Chandra in-
duction commutes with Fourier transforms, suggesting thus to define the re-
quired twisted induction as a generalization of Harish-Chandra induction. The
definition of the twisted induction we give here (which is somehow a Lie alge-
bra version of Deligne-Lusztig induction [DL76]) uses the “character formula”
where the “two-variable Green functions” are defined in group theoretical
terms and then transferred to the Lie algebra by means of a G-equivariant
homeomorphism ω : Gnil → Guni (see definition 3.2.13). Our definition of
twisted induction (we call Deligne-Lusztig induction) is thus available if such
a G-equivariant homeomorphism is well-defined which is the case if p is good
for G [Spr69]. The author was informed that Lusztig already knew this defini-
tion at least when ω is the usual exponential map (unpublished). Let L be the
Lie algebra of an F -stable Levi subgroup L of G and let RG

L : C(LF )→ C(GF )
denote the Deligne-Lusztig induction. We conjecture the following commuta-
tion formula:

RG
L ◦ FL(f) = εGεLFG ◦ RG

L(f) (*)

where εG = (−1)Fq−rank(G), FL is the Fourier transform with respect to
(µ|L×L, Ψ), and f ∈ C(LF ). If L is a Levi subgroup of an F -stable parabolic
subgroup of G, then the formula (*) follows from a result of Lehrer [Leh96]
since in that case RG

L is the Harish-Chandra induction. If the function f is
the characteristic function of a semi-simple regular orbit, then the formula (*)
follows from Kazhdan-Springer’s work [Spr76][Kaz77] assuming that p is large
enough. When the prime p is acceptable (5.0.14), we define another twisted
induction so-called geometrical induction (see 5.4.10) using the Lie algebra
version of Lusztig’s character sheaves theory. From the result of [Lus90], we
prove that the geometrical induction coincides with the Deligne-Lusztig in-
duction when q is large enough. Since the definition of geometrical induction
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does not involve any map Gnil → Guni, it proves the independence of our defi-
nition of Deligne-Lusztig induction from the choice of such a map ω. Using the
coincidence of these two twisted inductions, we prove the above commutation
formula (*) in many cases (6.2.15, 6.2.17, 6.2.19). More precisely, we show
(assuming that p is acceptable and q is large enough) that this commutation
formula will be available in full generality (i.e. for any reductive group G) if
we can verify that for any G such that G is either semi-simple of type An, or
simple of type Dn,

(**) the constant coming from Fourier transforms [Lus87] (called Lusztig
constant) attached to an F -stable “cuspidal pair” (C, ζ) [Lus84] with C a
unipotent conjugacy class ofG and ζ an irreducibleG-equivariant local system
on C, does not depend (up to a sign) on the Fq-structure on G (see 6.2.18).

If p > 3(hGo − 1) where hGo is the Coxeter number of G, then we express
the Lusztig constant attached to (C, ζ) as a “generalized character sum” as-
sociated to the regular prehomogeneous vector space of Dynkin-Kostant type
corresponding to C (see 6.2.25). Such a formula has been obtained by Digne-
Lehrer-Michel [DLM97] in type An, by Kawanaka [Kaw86] in type E8, F4 and
G2, and by Waldspurger [Wal01] if G is of classical type, i.e. G is SON (k) or
Sp2n(k). Although this formula is not explicit enough to verify (**), it has
been used by the previously named authors to compute explicitly the Lusztig
constants in types An, E8, F4, G2, and in the case where G is of classical type
(see also [Gec99] for the simple adjoint case). In these cases, it is thus possible
to verify the property (**).

Hence, to prove the conjecture (*) when p > 3(hGo − 1), we are reduced to
prove (**) in the case where G is the spin group Spin2n(k), i.e. the simply
connected simple group of type Dn, which problem reduces to a problem on
regular prehomogeneous vector spaces of Dynkin-Kostant type. As far as I
know, the assertion (**) with G = Spin2n(k) is still an open problem.

Using the commutation formula (*), we reduce the computation of the
trigonometric sums of GF to the computation of the Lusztig constants (see
above) attached to the F -stable cuspidal pairs on the F -stable Levi subgroups
ofG and the computation of the generalized Green functions. Lusztig has given
an algorithm which reduces the computation of the values of the generalized
Green functions to the computation of some roots of unity whose values are
known in many cases. We thus have a method (up to the above conjecture)
to compute the values of the trigonometric sums of GF . The commutation
formula (*) has also other applications in the representation theory of finite
groups of Lie type (see for instance [Let04]).
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We shall now give a brief review of the content of the different chapters. In
chapter 2, we give a review on algebraic groups and their Lie algebras of less
accessible material. In particular we give for simple groups of type An or sim-
ply connected simple groups of type Bn, Cn or Dn, a necessary and sufficient
condition on p to have a non-degenerate G-invariant bilinear form on G. In
chapter 3, we give the definition of Deligne-Lusztig induction in terms of two-
variable Green functions, and we state its basic properties like transitivity,
the Makey formula and commutation with duality. We also state our conjec-
ture on the commutation formula (*) with Fourier transforms. In chapter 4,
we give a review on perverse sheaves and local systems of what is needed. In
chapter 5, we describe the theory of admissible complexes (character sheaves)
on Lie algebras starting from [Lus87] [Lus92] and by adapting Lusztig’s ideas
[Lus84][Lus85b][Lus86a] to the Lie algebra case. While in [Lus87] [Lus92],
the prime p is assumed to be large, here we give a strict bound on p using
the results of chapter 2. Finally, using the theory of admissible complexes
on the Lie algebra, we construct the geometrical induction and we prove (by
transferring [Lus90, 1.14] to the Lie algebra case by means of a G-equivariant
isomorphism Gnil → Guni) its coincidence with the Deligne-Lusztig induction
assuming that q is large enough. In chapter 6, we discuss the conjecture of
chapter 3 and prove it in many cases. We first reduce the conjecture (*) to
the case where f is a “cuspidal” function by using the coincidence of the two
inductions. Then using a construction by Waldspurger [Wal01, chapter 2] to
investigate the Frobenius action on the “parabolic induction” of “cuspidal
orbital” perverse sheaves, the conjecture (*) is further reduced to the case
where f is a cuspidal nilpotently supported function. From this, we reduce
the conjecture (*) to the problem (**). We then state our main results on
(*). Finally in chapter 7, we show how to compute the values of trigonometric
sums.



2

Connected Reductive Groups and Their Lie

Algebras

The geometrical objects considered are defined over an algebraically closed
field k of characteristic p. In this chapter, we first introduce some notation
which will be used throughout this book. We then discuss some properties
about algebraic groups and their Lie algebras related to the characteristic p.
These results will be used to give an explicit bound on p for which the main
result of [Lus87] applies. For any prime r, we choose once for all an algebraic
closure Fr of the finite field Fr = Z/rZ. Then we denote by Frn the unique
extension of degree n > 0 of Fr in Fr.

2.1 Notation and Background

We denote by Gm the one-dimensional algebraic group (k − {0},×), and by
Ga the one-dimensional algebraic group (k,+). Let H be a linear algebraic
group over k, i.e. H is isomorphic to a closed subgroup of some GLn(k). We
denote by 1H the neutral element of H and by Ho the connected component
of H containing 1H . We denote by Lie(H) = H the Lie algebra of H (i.e.
the tangent space of Ho at 1H) and we denote by [, ] the Lie product on H.
The Lie algebras of GLn(k), SLn(k) and PGLn(k) are respectively denoted
by gln(k), sln(k) and pgln(k). Let ZH = {x ∈ H | ∀y ∈ H,xy = yx} be the
center of H , and let z(H) = {X ∈ H|∀Y ∈ H, [X,Y ] = 0} be the center of H.
If x ∈ H , we denote by xs the semi-simple part of x and by xu its unipotent
part. If X ∈ H, then Xs denotes the semi-simple part of X and Xn denotes
its nilpotent part.

For an arbitrary morphism f : X → Y of algebraic varieties, we denote by
dxf the differential of f at x. If X is an algebraic group, we put df = d1Xf .

E. Letellier: LNM 1859, pp. 5–31, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



6 2 Connected Reductive Groups and Their Lie Algebras

2.1.1 H-Varieties and Adjoint Action of H on H

An algebraic variety on whichH acts morphically is called anH-variety. If V is
an H-variety and S a subset of V , we put CH(S) := {h ∈ H | ∀x ∈ S, h.x = x}
and we denote by CoH(S) instead of CH(S)o its connected component. We
also put AH(S) := CH(S)/CoH(S). The normalizer {h ∈ H |h.S ⊂ S} of S
in H is denoted by NH(S). Let X be an homogeneous H-variety (i.e. H
acts transitively on X). Then the choice of an element x ∈ X defines an H-
equivariant morphism πx : H → X , h �→ h.x which factors through a bijective
morphism πx : H/CH(x)→ X . We have the following well-known proposition.

Proposition 2.1.2. The following assertions are equivalent:
(i) The morphism πx is separable.
(ii) The natural inclusion Lie(CH(x)) ⊂ Ker(dπx) is an equality.
(iii) The morphism πx is an isomorphism.

2.1.3. For any h ∈ H , let Inth : H → H be the automorphism of H given by
g �→ hgh−1. Then the map Ad : H → GL(H), h �→ d(Inth) is a morphism
of algebraic groups and is called the adjoint action of H on H. We also have
[Ad(h)X,Ad(h)Y ] = Ad(h)([X,Y ]) for any h ∈ H , X,Y ∈ H. For a closed
subgroup K of H , we use the terminology “K-orbit of H” for the adjoint
action of K on H. If X ∈ H, we denote by OKX the K-orbit of X and if
x ∈ H , we denote by CKx the K-conjugacy class of x in H . If X,Y are two
elements of H, we say that they are K-conjugate if X ∈ OKY . The differential
of Ad : H → GL(H) at 1 is denoted by ad. It satisfies ad(X)(Y ) = [X,Y ]
for any X,Y ∈ H. Since the restriction of Ad to ZH is trivial, we thus get
that Lie(ZH) ⊂ z(H). We will see later that this inclusion is not always an
equality.

Let K be a closed subgroup of H with Lie algebra K. For X ∈ H and
x ∈ H , we define

CK(X) := {Y ∈ K|[Y,X ] = 0},

CK(x) := {Y ∈ K|Ad(x)Y = Y }.

Consider the orbit maps π : K → OKX , h �→ Ad(h)X and ρ : K → CKx ,
h �→ hxh−1. Then by [Bor, III 9.1], we have Ker(dπ) = CK(X) and Ker(dρ) =
CK(x). Hence, by 2.1.2 the orbit map π (resp. ρ ) is separable if and only if
Lie(CK(X)) = CK(X) (resp. Lie(CK(x)) = CK(x)).
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2.1.4 Reductive Groups

The letter G will always denote a connected reductive algebraic group
over k and we will denote by G its Lie algebra. By a semi-simple algebraic
group, we shall mean a connected reductive algebraic group whose radical
is trivial, i.e. a connected reductive group whose center is finite.

Notation 2.1.5. We denote by G′ the derived subgroup of G, i.e. the closed
subgroup of G which is generated by the elements of the form xyx−1y−1 with
x, y ∈ G, and by G′ the Lie algebra of G′. We also denote by G the quotient
G/ZoG and by G the Lie algebra of G.

Recall that G′ and G are both semi-simple algebraic groups. Recall also
that G = G/Lie(ZoG). We will see that G′ is not always the Lie subalgebra of
G generated the elements of the form [X,Y ] with X,Y ∈ G (see 2.4.4).

Definition 2.1.6. Let H be an algebraic group and let H1, ..., Hn be closed
subgroups of H such that any two of them commute and each of them has a
finite intersection with the product of the others. If H = H1...Hn, then we say
that H is the almost-direct product of the Hi.

Theorem 2.1.7. [DM91, 0.38] If G is a semi-simple algebraic group, then G
has finitely many minimal non-trivial normal connected closed subgroups and
G is the almost-direct product of them.

Definition 2.1.8. The minimal non-trivial normal connected closed sub-
groups of a semi-simple algebraic group G will be called the simple components
of G. We shall say that G is simple if it has a unique simple component.

The letter B will usually denote a Borel subgroup of G, the letter T a
maximal torus of B and U the unipotent radical of B. Their respective Lie
algebras will be denoted by B, T and U . The dimension of T is called the
rank of G and is denoted by rk(G). The rank of G is called the semi-simple
rank of G and is denoted by rkss(G). If P is an arbitrary parabolic subgroup
of G, then we denote by UP the unipotent radical of P and by UP the Lie
algebra of UP . If P = LUP is a Levi decomposition of P with corresponding
Lie algebra decomposition P = L ⊕ UP , then we denote by πP : P → L and
by πP : P → L the canonical projections. Throughout the book we will make
the following abuse of language: by a “Levi subgroup of G”, we shall mean
a Levi subgroup of a parabolic subgroup of G.
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We denote by X(T ) the group of algebraic group homomorphisms T →
Gm. For any γ ∈ X(T ), put Gγ = {v ∈ G|∀t ∈ T,Ad(t)v = γ(t)v} and Φ =
{γ ∈ X(T )− {0}|Gγ �= {0}}. We have

G =
⊕

γ∈Φ∪{0}
Gγ = T ⊕

⊕

α∈Φ
Gα.

For any α ∈ Φ, we denote by Uα the unique closed connected one-dimensional
unipotent subgroup of G normalized by T such that Lie(Uα) = Gα.

It is known that Φ forms a (reduced) root system in the subspace V of
X(T ) ⊗ R it generates. The set Φ is then called the root system of G with
respect to T and the elements of Φ are called the roots of G with respect to T .
If there is any ambiguity, we will write Φ(T ) instead of Φ. We denote by Φ∨ the
set of coroots and by X∨(T ) the group of homomorphisms of algebraic groups
Gm → T ; the set Φ∨ forms a root system in the subspace V ∨ of X∨(T ) ⊗ R

it generates. We denote by Q(Φ) the Z-sublattice of X(T ) generated by Φ

and by Q(Φ∨) the Z-sublattice of X∨(T ) generated by Φ∨. Recall that we
have an exact pairing 〈, 〉 : X(T )×X∨(T )→ Z such that for any α ∈ X(T ),
β ∈ X∨(T ) and t ∈ Gm, we have (α ◦ β∨)(t) = t〈α,β

∨〉. By abuse of notation,
we still denote by 〈, 〉 the induced pairing between V and V ∨. The Z-lattice of
weights P (Φ) is defined to be {x ∈ V |〈x, Φ∨〉 ⊂ Z}. The lattice Q(Φ) is then
a Z-sublattice of P (Φ) of finite index.

If G is semi-simple, we have the following inclusions of Z-lattices Q(Φ) ⊂
X(T ) ⊂ P (Φ) and Q(Φ∨) ⊂ X∨(T ) ⊂ P (Φ∨); conversely if one these in-
clusions hold, then G is semi-simple. Moreover we have |P (Φ)/X(T )| =
|X∨(T )/Q(Φ∨)| and so

|X(T )/Q(Φ)||X∨(T )/Q(Φ∨)| = |P (Φ)/Q(Φ)|.

Definition 2.1.9. We say that G is

(i) adjoint if X(T ) = Q(Φ);

(ii) simply connected if X∨(T ) = Q(Φ∨).

It follows from Chevalley’s classification theorem that each Z-lattice between
Q(Φ) and P (Φ) determines a unique (up to isomorphism) semi-simple alge-
braic group over k with root system Φ. We denote by Gad the adjoint group
corresponding to G and by Gsc the simply connected algebraic group cor-
responding to G. Their respective Lie algebras are denoted by Gad and Gsc.
When G is semi-simple, the inclusions Q(Φ) ⊂ X(T ) ⊂ P (Φ) give rise to
canonical isogenies (i.e surjective morphisms whose kernel is finite and so lies
in the center) πsc : Gsc → G and πad : G→ Gad; the kernel of the later map is
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equal to ZG (see [Ste68, page 45]). Moreover, the canonical isogenies πsc and
πad are central, that is Ker(dπsc) ⊂ z(Gsc) and Ker(dπad) ⊂ z(G). In fact, for
the later map we have Ker(dπad) = z(G).

The choice of the Borel subgroupB containing T defines an order on Φ∪{0}
such that any root is positive or negative by setting Φ+ := {γ ∈ Φ| Gγ ⊂ B}.
The set Π of positive roots that are indecomposable into a sum of other
positive roots is called the basis of Φ with respect to B. The elements of Π are
linearly independent and any root of Φ is a Z-linear combination of elements
of Π with coefficients all positive or all negative. If β =

∑
α∈Π nαα ∈ Φ, then

we define the height of β (with respect to Π) to be the integer
∑

α∈Π nα. The
highest root of Φ with respect to Π is defined to be the root of highest height.
For any Levi subgroup L of G, we denote by WG(L) the group NG(L)/L.
The Weyl group of G relative to T is WG(T ). We denote by ho the Coxeter
number of WG(T ). It depends only on G, and so if there is any ambiguity, we
will denote it hGo instead of ho.

2.1.10 About Intersections of Lie Algebras of Closed Subgroups of
G

Let M and N be two closed subgroups of G, then we have

2.1.11. Lie(M ∩N) ⊂ Lie(M) ∩ Lie(N).

In general this inclusion is not an equality; it becomes an equality exactly
when the quotient morphism π : G → G/N induces a separable morphism
M → π(M) (see [Bor, Proposition 6.12]).

2.1.12. When M ∩N contains a maximal torus of G, the inclusion 2.1.11 is
an equality.

The above assertion follows from [Bor, Proposition 13.20]; note that [Bor,
Corollary 13.21], which asserts that 2.1.11 is an equality whenever M and
N are normalized by a maximal torus of G, is not correct since in positive
characteristic, the intersection of two subtori of a maximal torus of G may
have finite intersection while their Lie algebras have an intersection of strictly
positive dimension. For instance, let G = SL3(k) and let T be the maximal
torus of G consisting of diagonal matrices, then the set ZG is finite and is
the intersection of the two subtori Tα = Ker(α) and Tβ = Ker(β) of T where
α : T → k×, (t1, t2, t−1

1 t−1
2 ) �→ t1t

−1
2 and β : T → k×, (t1, t2, t−1

1 t−1
2 ) �→ t22t1.

The intersection of the Lie algebras of Tα and Tβ is of dimension 0 unless
p = 3 in which case the intersection is of dimension 1.
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2.1.13. We will need to deal with the question of whether the inclusion 2.1.11
is an equality or not only in the cases where the closed subgroups M and
N involved in 2.1.11 are parabolic subgroups, Levi subgroups or unipotent
radicals of parabolic subgroups.

Let P and Q be two parabolic subgroups G. Let L and M be two Levi
subgroups of P and Q respectively such that L∩M contains a maximal torus
T of G (given P and Q, such Levi subgroups L and M always exists). We
denote by P , Q, L andM the corresponding Lie algebras of P,Q,L and M .

Proposition 2.1.14. With the above notation, we have:
(1) Lie(P ∩Q) = P ∩Q,
(2) Lie(L ∩M) = L ∩M,
(3) Lie(L ∩ UQ) = L ∩ UQ,
(4) Lie(UP ∩ UQ) = UP ∩ UQ.

Proof: The assertions (1) and (2) are clear from 2.1.12. Let us see (3). From
2.1.11, it is enough to prove that dim(L∩UQ) = dim (L∩UQ). Since L∩UQ
is a closed unipotent subgroup of G normalized by T , by [DM91, 0.34], it is
of dimension equal to the number of the Uα, with α ∈ Φ, it contains. On the
other hand the torus T normalizes L∩UQ, therefore by full reducibility of the
adjoint representation of T in G, the space L ∩ UQ is the direct sum of the
Gα , α ∈ Φ, it contains. Hence the equality dim(L ∩ UQ) = dim(L ∩ UQ) is a
consequence of the fact that Gα ⊂ L ∩ UQ if and only if Uα ⊂ L ∩ UQ. The
proof of (4) is completely similar. ��

The above proposition together with [DM91, Proposition 2.1] has the fol-
lowing straightforward consequence.

Proposition 2.1.15. With the above notation, we have

P ∩Q = (L ∩M)⊕ (L ∩ UQ)⊕ (M∩UP )⊕ (UP ∩ UQ).

2.1.16 Fq-Structures

Notation 2.1.17. Let r be a prime and let X be an algebraic variety on Fr

defined over Frn . If F : X → X denotes the corresponding Frobenius endo-
morphism, we say that x ∈ X is rational if F (x) = x and we denote by XF

the set of rational elements of X .
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2.1.18. Let k = Fp, and let q be a power of p such that the group G is
defined over Fq. We then denote by F : G → G the corresponding Frobenius
endomorphism. The Lie algebra G and the adjoint action of G on G are also
defined over Fq and we still denote by F : G → G the Frobenius endomorphism
on G. Assume that the maximal torus T of G is F -stable, and denote by
τ the unique automorphism on Φ such that for any root α ∈ Φ, we have
F (Uα) = Uτ(α); it satisfies (τα)(F (t)) = (α(t))q for any α ∈ X(T ) and t ∈ T .
If B is also F -stable, then τ permutes the elements of the basis Π of Φ. Recall
that an F -stable torus H ⊂ G of rank n is said to be split if there exists
an isomorphism H

∼→ (Gm)n defined over Fq. The Fq-rank of an F -stable
maximal torus T of G is defined to be the rank of its maximum split subtori.
An F -stable maximal torus T of G is said to be G-split if it is maximally split
in G; recall that the G-split maximal torus of G are exactly those contained
in some F -stable Borel subgroup of G. The Fq-rank of G is defined to be the
Fq-rank of its G-split maximal tori. The semi-simple Fq-rank of G is defined
to be the Fq-rank of G. We say that an F -stable Levi subgroup L of G is G-
split if it contains a G-split maximal torus; this is equivalent to say that there
exists an F -stable parabolic subgroup P of G having L as a Levi subgroup.

Notation 2.1.19. Let H be a group with a morphism θ : H → H . We say
that x, y ∈ H are θ-conjugate if and only if there exists h ∈ H such that
x = hy(θ(h))−1. We denote by H1(θ,H) the set of θ-conjugacy classes of H .

2.1.20. Let k = Fq with q a power of p. Let H be a connected linear algebraic
group acting morphically on a variety X . Assume that H , X and the action
of H on X are all defined over Fq. Let F : X → X and F : H → H be
the corresponding Frobenius endomorphisms. Let x ∈ XF and let O be the
H-orbit of x. The orbit O is thus F -stable and OF is a disjoint union of
HF -orbits. By [SS70, I, 2.7] (see also [DM91, 3.21]) we have a well-defined
parametrization of theHF -orbits ofO byH1(F,AH(x)). This parametrization
is given as follows. Let y ∈ OF and let h ∈ H be such that y = h.x. Then to
the HF -orbit of y, we associate the F -conjugacy class of the image of h−1F (h)
in AH(x).

2.2 Chevalley Formulas

For any α ∈ Φ, the symbol eα denotes a non-zero element of Gα and hα denotes
[eα, e−α]. When p = 0, we assume that the eα are chosen such that the set
{hα, eγ |α ∈ Π, γ ∈ Φ} is a Chevalley basis of G′ (see [Car72, 4.2] or [Ste68]).
When p > 0 and G′ = Gsc, then G′ is obtained by reduction modulo p from the
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Z-span of a Chevalley basis in the corresponding Lie algebra over C. Hence in
that case, we assume that the eα are chosen such that {hα, eγ |α ∈ Π, γ ∈ Φ}
is obtained from a Chevalley basis in the corresponding Lie algebra over C;
the set {hα, eγ |α ∈ Π, γ ∈ Φ} is then called a Chevalley basis of G′. In the
general case, let π denote the canonical central isogeny Gsc → G′; the choice
of the eα is made such that BG := {hα, eγ |α ∈ Π, γ ∈ Φ} is the image by dπ
of a Chevalley basis of Gsc. When it is a basis of G′, the set BG is called a
Chevalley basis of G′. We will see in 2.4, that the existence of Chevalley basis
on G′ �= Gsc is subject to some restriction on p. With such a choice of the eα,
for any r ∈ Φ, we have dr(hr) = 2 and the vector hr is a linear combination of
the hα with α ∈ Π . The last fact can be deduced from the simply connected
case by making the use of the canonical Lie algebra homomorphism Gsc → G′.

2.2.1. We then have the following well-known relations:
(i) [t, h] = 0, t, h ∈ T ,
(ii) [t, er] = dr(t)er, t ∈ T , r ∈ Φ,
(iii) [er, es] = 0, r ∈ Φ, s ∈ Φ, r + s /∈ Φ ∪ {0},
(iv) [er, es] ∈ Gr+s, r ∈ Φ, s ∈ Φ, r + s ∈ Φ.

Using the decomposition G = T ⊕
⊕

α Gα and the above formulas, we see
that the subspace of G′ generated by {hα, eγ |α, γ ∈ Φ} is [G,G]. But since the
vectors hr with r ∈ Φ are linear combinations of the hα with α ∈ Π , the Lie
algebra [G,G] is actually generated by BG . As a consequence, since G′ is of
dimension |Π |+ |Φ| = |BG |, we see that G′ = [G,G] if and only if BG is a basis
of G′, i.e. the elements of {hα|α ∈ Π} are linearly independent.

2.2.2. For r ∈ Φ, we fix an isomorphism of algebraic groups xr : Ga → Ur
such that dxr(1) = er. The following formulas give the action of Ur, with
r ∈ Φ, on G:

(i) Ad(xr(t))er = er,

(ii) Ad(xr(t))e−r = e−r + thr − t2er,

(iii) Ad(xr(t))h = h− dr(h)ter, h ∈ T ,

(iv) Ad(xr(t))es = es +
∑

{i>0|ir+s∈Φ} cr,s,it
ieir+s for some cr,s,i ∈ k ,

if r �= −s.
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2.3 The Lie Algebra of ZG

Recall that by 2.1.3, we have an inclusion (*) Lie(ZG) ⊂ z(G). In this sub-
section, we give among other things a necessary and sufficient condition on p
for (*) to be an equality. We denote by T the maximal torus T/ZoG of G and
by T ′ the maximal torus of G′ which contains T .

We consider on Lie(ZG)⊕G the Lie product given by [t⊕v, h⊕u] := [v, u].

2.3.1. There is an isomorphism of Lie algebras G � Lie(ZG)⊕ G.

Proof: It is enough to prove the existence of a k-subspace V of G such that
G = Lie(ZG)⊕ V and [V, V ] ⊂ V , so that V � G. For α ∈ Π , denote by hα ∈
Lie(T ) the image of hα under the canonical projection T → Lie(T ). We choose
a subset I of Π such that E = {hα|α ∈ I} is a basis of the subspace of Lie(T )
generated by {hα|α ∈ Π}, and we complete E into a basis E ∪ {x1, ..., xn} of
Lie(T ). We choose xi ∈ T such that its image in Lie(T ) is xi. Now let V be the
subspace of G generated by X := {x1, ..., xn, hα, eγ |α ∈ I, γ ∈ Φ}. Since the
image of X in G is a basis of G, we have dimV = dimG and V ∩Lie(ZG) = {0}.
It follows that G = Lie(ZG)⊕ V . From 2.2.1, we get that [V, V ] ⊂ V . ��
2.3.2. It follows from 2.2.1 that

z(G) =
⋂

α∈Π
Ker(dα), (1)

and from [DM91, Proposition 0.35] that

ZG =
⋂

α∈Π
Ker(α). (2)

2.3.3. The canonical morphism ρ : T → T induces an injective group homo-
morphism ρ∗ : X(T ) → X(T ), γ �→ γ ◦ ρ mapping bijectively the roots of G
with respect to T onto Φ. Hence we may identify the roots of G with respect
to T with Φ. Under this identification, the lattice Q(Φ) is a Z-sublattice of
X(T ). We have the following proposition.

Proposition 2.3.4. We have |(X(T )/Q(Φ))tor| = |X(T )/Q(Φ)|. The follow-
ing assertions are equivalent:

(i) p does not divide |(X(T )/Q(Φ))tor|,
(ii) Lie(ZG) = z(G).
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Proof: For the sake of clarity, in this proof we prefer to differentiate the
root system Φ of G with respect to T from Φ. Let r be the rank of G and
s be the semi-simple rank of G. Let {γ1, ..., γr} be a basis of X(T ) such
that for some integer s with s ≤ r and some non-zero integers m1, ...,ms,
the set {m1γ1, ...,msγs} is a basis of Q(Φ). We have X(T )/Q(Φ) = Z

r−s ×
Z/m1Z × ... × Z/msZ and so |(X(T )/Q(Φ))tor| =

∏s
i=1mi. Now for i ∈

{1, .., s}, we have miγi ∈ Q(Φ) and so, by 2.3.2(2), we have γi(z)mi = 1 for
any z ∈ ZoG. Hence, if µmi denotes the group of mth

i roots of unity, we get that
γi(ZoG) ⊂ µmi . Since ZoG is connected, we deduce that γi(ZoG) = {1}. Thus,
for i ∈ {1, .., s}, the morphism γi factors through a morphism γi : T → Gm.
We see that {γi}i∈{1,...,s} and {miγi}i are respectively bases of the groups
X(T ) and Q(Φ) (from which we see that |(X(T )/Q(Φ))tor| = |X(T )/Q(Φ)|);
this can be verified by using the fact that dim X(T ) = s and the fact that ρ∗

maps γi onto γi for i ∈ {1, ..., s}. From the fact that {γi}i is a basis of X(T ),
it results that the morphism T → G

s
m given by t �→ (γ1(t), ..., γs(t)) is an

isomorphism of algebraic groups. As a consequence, its differential Lie(T )→
ks given by t �→ (dγ1(t), ..., dγs(t)) is an isomorphism, i.e. the intersection of
the s hyperplanes Ker(dγi) of Lie(T ) is {0}.

We deduce that the intersection of the s hyperplanes Ker(midγi) of Lie(T )
is zero if and only if the mi are invertible in k (i.e if p does not divide
|(X(T )/Q(Φ))tor|). On the other hand, since {miγi}i is a basis of Q(Φ), by
2.3.2 (1) we have

⋂i=s
i=1 Ker(midγi) = z(G). We thus proved that the mi are

invertible in k if and only if z(G) is trivial.

We are now in position to see that the proposition is a consequence of the
fact that any isomorphism of Lie algebras G � Lie(ZG)⊕G as in 2.3.1 induces
an isomorphism from z(G) onto Lie(ZG)⊕ z(G). ��

Remark 2.3.5. If the assertion (i) (and so the assertion (ii)) of 2.3.4 holds for
G, it does for any Levi subgroup of G.

Remark 2.3.6. Let π : G→ Gad be the composition morphism of the canonical
projection G→ G with the canonical central isogeny G→ Gad, then we have
Ker(π) = ZG and Ker(dπ) = z(G), so by 2.1.2, the morphism π is separable
if and only if Lie(ZG) = z(G).

Using 2.3.6, we see that 2.3.4 has the following consequence.

Corollary 2.3.7. The canonical morphism G→ Gad is separable if and only
if p does not divide |(X(T )/Q(Φ))tor|.
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Corollary 2.3.8. Assume that G is semi-simple and write G = G1...Gr where
G1, ..., Gr are the simple components of G. Assume moreover that p does not
divide |(X(T )/Q(Φ))tor| = |X(T )/Q(Φ)|, then G =

⊕
i Lie(Gi).

Proof: For any i, we denote by Gi the Lie algebra of Gi. We fix i and let
I be a subset of {1, .., r} which does not contain i. Let x ∈ (

∑
j∈I Gj) ∩ Gi.

Since for i �= j the group Gi commutes with Gj , we have [Gi,Gj ] = {0}.
Hence x ∈

∑
j∈I Gj centralizes Gi and so x ∈ z(Gi). Since each element of Gi

centralizes Gj for any i �= j, we deduce that x ∈ G. By 2.3.4 we have x = 0.
We deduce that the sum E =

∑
i Gi is direct. Hence E is a subspace of G

of dimension
∑

i dimGi and so since algebraic groups are smooth, we have
dimE =

∑
i dimGi = dimG. We deduce that G =

⊕i=n
i=1 Gi. ��

Using the canonical map T ′ → T , we identify X(T ) with a subgroup
of X(T ′) and the root system of G′ with respect to T ′ with Φ. Then
|(X(T )/Q(Φ))tor| = |X(T )/Q(Φ)| divides |X(T ′)/Q(Φ)|.

Corollary 2.3.9. Assume that p does not divide |X(T ′)/Q(Φ)|, we have G =
z(G)⊕ G′.

Proof: Since Lie(ZG) ⊂ z(G), we have Lie(ZG) ∩ G′ ⊂ z(G′) and so by 2.3.4
applied toG′, we have Lie(ZG)∩G′ = {0}. Hence the sum Lie(ZG)+G′ is direct
and so it is a subspace of G of dimension dimZG + dimG′ = dimG; thus we
get that Lie(ZG)⊕G′ = G. Now, since p does not divide |X(T ′)/Q(Φ)|, it does
not divide |(X(T )/Q(Φ))tor|, hence by 2.3.4, we get that G = z(G)⊕ G′. ��

Remark 2.3.10. The assumption “ p does not divide |(X(T )/Q(Φ))tor|” is not
sufficient for G = z(G)⊕ G′ to hold. Indeed, consider G = GLn(k); the group
(X(T )/Q(Φ))tor is trivial while the group X(T ′)/Q(Φ) is isomorphic to Z/nZ.
Assume that p divides |X(T ′)/Q(Φ)| = n. Then diagonal matrices (a, ..., a)
with a ∈ k belong to the Lie algebra of ZG but also to sln = G′ since na = 0.
Hence Lie(ZG) ∩ G′ �= {0} .

2.4 Existence of Chevalley Bases on G′

We will need the following lemma.

Lemma 2.4.1. [Bor, 8.5]

(i) Let Ti : (Gm)r → Gm be the i-th projection; the maps Ti form a basis of
the abelian group X(Gr

m) of algebraic group homomorphisms (Gm)r → Gm,
that is for any f ∈ X(Gr

m) there exists a unique tuple (n1, ..., nr) ∈ Z
r such
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that f = T n1
1 ...T nr

r . Let f = T n1
1 ...T nr

r ∈ X(Gr
m), then df : kr → k is given by

df(x1, ..., xr) =
∑

i nixi.

(ii) Let T∨
i : Gm → (Gm)r be given by T∨

i (t) = (1, .., 1, t, 1, .., 1) (t be-
ing located at the i − th rank); the maps T∨

i form a basis of the abelian
group X∨(Gr

m) of algebraic group homomorphisms Gm → (Gm)r, that is
for any f ∈ X∨(Gr

m) there exists a unique uple (n1, ..., nr) ∈ Z
r such that

f = (T∨
1 )n1 ...(T∨

r )nr . If f = (T∨
1 )n1 ...(T∨

r )nr ∈ X∨(Gr
m), then df : k → kr is

given by df(t) = (n1t, ..., nrt).

Recall that T ′ denotes the maximal torus of G′ contained in T and that
X(T ′) is a Z-sublattice of P (Φ).

Definition 2.4.2. The quotient P (Φ)/X(T ′) is called the fundamental group
of G and is denoted by π1(G).

Note that π1(Gsc) = 1 and π1(Gad) = P (Φ)/Q(Φ).

We assume that G is semi-simple.

By Chevalley’s classification theorem, there exists a unique (up to iso-
morphism) connected reductive algebraic group G∗ over k with a maxi-
mal torus T ∗ of G∗ such that its root datum (Φ∗, X(T ∗), (Φ∗)∨, X∨(T ∗)) is
(Φ∨, X∨(T ), Φ,X(T )); we refer to [DM91] or [Car85] for the definition of root
datum. We denote by G∗ the Lie algebra of G∗. Since G is assumed to be
semi-simple, the group G∗ is also semi-simple. We denote by α∗ the element
of X(T ∗) = Hom(T ∗,Gm) corresponding to α∨ ∈ Φ∨ and by δ(χ) the ele-
ment of X∨(T ∗) = Hom(Gm, T

∗) corresponding to χ ∈ X(T ). Then for any
χ ∈ X(T ) and α ∈ Φ, we have

2.4.3.
〈χ, α∨〉 = 〈α∗, δ(χ)〉.

Proposition 2.4.4. The following assertions are equivalent:

(i) G = [G,G].

(ii) BG = {hα, eγ | α ∈ Π, γ ∈ Φ} is a basis of G.

(iii) z(G∗) = {0}.

(iv) p does not divide |π1(G)|.

(v) The canonical central isogeny Gsc → G is separable.
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Proof: The equivalence between (i) and (ii) follows from the fact that [G,G]
is generated by BG . Let π : Gsc → G be the canonical central isogeny. The
equivalence between the assertions (v) and (ii) follows from the fact that BG
is the image by dπ of a Chevalley basis of Gsc and that π is separable if and
only if dπ is an isomorphism. Since we have |P (Φ)/X(T )| = |X∨(T )/Q(Φ∨)|,
the equivalence between (iii) and (iv) is a consequence of 2.3.4 applied to G∗.
We propose to prove the equivalence between the assertions (ii) and (iii).

We first prove that for any root α we have dα∨(k) = [Gα,G−α] (this makes
sense since [Gα,G−α] ⊂ T ). It is known that for any root α ∈ Φ, the group
α∨(Gm) is contained in the subgroup Hα of G generated by Uα and U−α.
But the group Hα is a semi-simple algebraic group of rank one with maximal
torus T ∩ Hα; hence it is isomorphic to SL2(k) or PGL2(k). Now a simple
computation in SL2(k) or in PGL2(k) shows that we have dα∨(k) = [Gα,G−α].
Hence dα∨(1) = λhα for some λ ∈ k. Let us see that λ = 1. Since 〈α, α∨〉 = 2,
we have dα ◦ dα∨(1) = 2, and by 2.2, we also have dα(hα) = 2. Hence

dα∨(1) = hα. (*)

Let r be the rank of G. Let (x1, ..., xr) be a basis of X(T ) and consider the
isomorphisms of algebraic groups ψ : T → G

r
m given by t �→ (x1(t), ..., xr(t))

and φ : G
r
m → T ∗ given by (t1, ..., tr) �→

∏
i δ(xi)(ti).

Using φ and ψ to identify respectively T ∗ and T with G
r
m, we identify (as

suggested by 2.4.1) the abelian groupsX(T ∗) andX∨(T ) with Z
r. Under these

identifications, for α ∈ Φ, both α∨ and α∗ correspond to the same element
(nα1 , ..., n

α
r ) of Z

r. Indeed, for i ∈ {1, ..., r}, let T∨
i : Gm → G

r
m and Ti : G

r
m →

Gm be the morphisms of 2.4.1; then we have δ(xi) = φ ◦ T∨
i and xi = Ti ◦ ψ.

Thus we get that 〈α∗ ◦φ, T∨
i 〉 = 〈α∗, δ(xi)〉 and 〈Ti, ψ ◦α∨〉 = 〈xi, α∨〉 for any

α ∈ Φ. We deduce from 2.4.3 that 〈α∗ ◦ φ, T∨
i 〉 = 〈Ti, ψ ◦ α∨〉 = nαi .

Let {α1, ..., αr} = Π , then it is clear from (*) that {hα, α ∈ Π} is a basis

of T if and only if the matrix M =




nα1

1 ... nαr
1

: :
nα1
r ... nαr

r



 ∈Mr(k) is invertible. On

the other hand, since z(G∗) =
⋂
α∈Π Ker(dα∗), we have z(G∗) = {0} if and

only if the linear map f : Lie(T ∗)→ kr given by f(t) = (dα∗
1(t), ..., dα∗

r(t)) is
injective, that is if and only if tM (and so M) is invertible. ��
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2.5 Existence of Non-degenerate G-Invariant Bilinear

Forms on G
By a G-invariant bilinear form B(, ) on G we shall mean a symmetric bi-
linear form B(, ) on G such that for any g ∈ G, x, y ∈ G, we have
B(Ad(g)x,Ad(g)y) = B(x, y). A well known example of such a form is the
Killing form defined on G × G by (x, y) �→ Trace(ad(x) ◦ ad(y)). In this sec-
tion, we want to discuss for which primes p there exists an G-invariant non-
degenerate bilinear form on G. The case of simple groups has been discussed
among other things in [SS70] where it has been proved that the condition “p
is good for G” (see 2.5.2) is enough to have non-degenerate invariant bilinear
forms on G if G is not of type An. On the other hand, it is known that the
condition “p is very good for G” (see 2.5.5) is sufficient if G is simple of type
An. By making the use of 2.3.9 and 2.3.8, we will extend the above results to
the case of connected reductive groups, that is, we will see that the condition
“p is very good for G” is sufficient to have non-degenerate G-invariant bilinear
forms on G. However this is not completely satisfactory since if G = GLn(k),
the “very good characteristics” for G are the characteristics which do not di-
vide n, while the trace form (X,Y ) �→ Tr(XY ) is always non-degenerate on
gln.

As far as I know, no necessary and sufficient condition on p for the exis-
tence of non-degenerate G-invariant bilinear forms on G has been given in the
literature. While the above problem is not so important for reductive groups
without component of type An (indeed the “very good characteristics for G”
are then the “good ones for G”, and there are only few “bad characteristics”,
see further), it becomes more important for the others. For this reason, we
will give a necessary and sufficient condition on p in the case of simple groups
of type An. We will also treat the cases of simply connected groups of type
Bn, Cn or Dn since no extra work is required for these cases (see 2.5.11).

2.5.1. We start with some general properties of G-invariant bilinear forms on
G. Assume that B(, ) is a G-invariant bilinear form on G. Then:
(1) For any x, y, z ∈ G we have

B(x, [y, z]) = B([x, y], z).

(2) Let α ∈ Φ. For any x in T ⊕ (
⊕

γ∈Φ−{−α} Gγ), we have B(x, eα) = 0.

Let us prove (2). Let x ∈ T ; since B(, ) is G-invariant, for any t ∈ T we
have
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B(Ad(t)x,Ad(t)eα) = B(x, eα),

that is α(t)B(x, eα) = B(x, eα). But α �= 0, thus we get that B(x, eα) = 0.
Now let β ∈ Φ− {−α}; we have α(t)β(t)B(eβ , eα) = B(eβ , eα) for any t ∈ T .
Since β �= −α, we have B(eβ , eα) = 0. ��

Definition 2.5.2 (good characteristics). We say that p is good for G if
p does not divide the coefficient of the highest root of Φ, otherwise p is said to
be bad for G.

Bad characteristics are p = 2 if the root system is of type Bn, Cn or Dn,
p = 2, 3 in type G2, F4, E6, E7 and p = 2, 3, 5 in type E8 (see [Bou, Ch. VI,
4]).

Definition 2.5.3. [Ste75, Definition 1.3] We say that p is a torsion prime of
Φ when there exists a closed root subsystem Φ′ of Φ (i.e a root subsystem Φ′

of Φ such that any element of Φ which is a Z-linear combination of elements
of Φ′ is already in Φ′) such that Q(Φ∨)/Q(Φ′∨) has torsion of order p.

Definition 2.5.4 (torsion primes of G). We say that p is a torsion prime
of G, when it is a torsion prime of Φ or when p divides |π1(G)|.

This definition is in fact [Ste75, Lemma 2.5]. For the original definition of
torsion primes of G, see [Ste75, Definition 2.1].

Torsion primes of Φ are p = 2 when Φ is of type Bn, Dn or G2, p = 2, 3
in type E6, E7, F4, p = 2, 3, 5 in type E8. The fundamental group π1(G) is a
quotient of the biggest possible fundamental group P (Φ)/Q(Φ) whose cardinal
is r + 1 in types Ar, 2 in types Bn, Cn, E7, 4 in types Dn, 3 in types E6 and
1 in types E8, F4 or G2 (see [Slo80, page 24]).

Definition 2.5.5 (very good characteristics). We say that p is very good
for G when p is good for G and p does not divide |P (Φ)/Q(Φ)| = |π1(Gad)|.

Remark 2.5.6. (a) If Φ does not have any component of type An, then p is
very good for G if and only if p is good for G.

(b) If p is very good for G then it is not a torsion prime of G.
(c) If p is very good for G and G has a component of type An, then it is

not necessarily very good for Levi subgroups of G,
(d) If G is of type An, Bn, Cn or Dn, then p is very good if and only if p

does not divide |P (Φ)/Q(Φ)|.
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Proposition 2.5.7. [SS70, I, 5.3] Let G be either an adjoint simple group
not of type An or G = GLn(k). We assume that p is good for G. Then there
exists a faithful rational representation (ρ, V ) of G or a group isogenous to G
(i.e a simple group with same Dynkin diagram as G) such that the symmetric
bilinear form B(, ) on G defined by B(x, y) = Trace(dρ(x) ◦ dρ(y)) is non-
degenerate. Moreover B(, ) is G-invariant.

Corollary 2.5.8. Let G be simple not of type An and assume that p is good
for G. Then there exists a non-degenerate G-invariant bilinear form on G.

Proof: Let H be a group isogenous to G (with Lie algebra H) and let (Hsc =
Gsc, π) be the simply connected cover of H . Since p is very good for G (and
so for H), it is not a torsion prime of H (see 2.5.6 (b)), and so by 2.4.4, the
differential dπ : Hsc → H of π : Hsc → H is an isomorphism. Moreover it
satisfies dπ ◦ Ad(h) = Ad(π(h)) ◦ dπ for any h ∈ Hsc. Hence we deduce that
anyHsc-invariant non-degenerate bilinear form onHsc induces anH-invariant
non-degenerate bilinear form onH and conversely. Hence, the corollary follows
from 2.5.7. ��

In order to do a more accurate study of the type An we need the following
well known result.

Proposition 2.5.9. Let G be simple of type An−1 (n > 1). Then recall that
Gsc = sln and Gad = pgln. Then we have the following assertions:

(1) We always have sln = [sln, sln]. Moreover dim z(sln) �= 0 if and only
if p is not very good, in which case dim z(sln) = 1.

(2) We always have z(pgln) = {0}, moreover pgln = [pgln, pgln] if and
only if p is very good. When p is not very good, the Lie algebra pgln is of the
form k.σ ⊕ [pgln, pgln] where σ is a semi-simple element.

(3) The three following situations occur:

(3.1) p does not divide |P (Φ)/X(T )|, then G � sln,
(3.2) p does not divide |X(T )/Q(Φ)|, then G � pgln,
(3.3) p divides both |X(T )/Q(Φ)| and |P (Φ)/X(T )|, then G is neither iso-

morphic to pgln nor to sln, and has a one-dimensional center. In fact G is of
the form z(G)⊕ [G,G] � z(G)⊕ (sln/z(sln)).

Proof: The assertions (1) and the first sentence of (2) follow from 2.4.4 and
2.3.4; the fact that dim z(sln) ≤ 1 is easy.
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Now we prove the second assertion of (2). Assume that p is not very
good. Recall that for any semi-simple algebraic group G, the Lie alge-
bra [G,G] is generated by {hα, eγ |α ∈ Π, γ ∈ Φ}, moreover by (1), we have
sln = [sln, sln]. Hence if ρ : SLn → PGLn denotes the canonical cen-
tral isogeny then dρ(sln) = [pgln, pgln]. On the other hand since we al-
ways have Ker(dρ) = z(sln), we have dρ(sln) � sln/z(sln). We deduce that
[pgln, pgln] � sln/z(sln). Now since p is not very good, by (1), we have
dim z(sln) = 1 and so [pgln, pgln] is of codimension one in pgln; the fact
that σ in (2) can be chosen semi-simple follows from the fact that for any
connected reductive group G, the Lie algebra [G,G] contains all the nilpotent
elements of G.

Now we describe the situation (3.3). First note that the situations (3.1)
and (3.2) have been already studied, see equivalence between (iv) and (v) in
2.4.4 for (3.1) and in 2.3.7 for (3.2). Let π : SLn → G be the canonical central
isogeny.

Assume that p divides both |X(T )/Q(Φ)| and |P (Φ)/X(T )|.

(i) Since p divides |P (Φ)/X(T )|, the map dπ is not injective. Moreover by
(1), the Lie algebra z(sln) is one-dimensional, thus we deduce from Ker(dπ) ⊂
z(sln) that Ker(dπ) = z(sln). As a consequence we have dπ(sln) � sln/z(sln)
and so [G,G], which is equal to dπ([sln, sln]) = dπ(sln), is of codimension one
in G and has a trivial center.

(ii) Now since p divides |X(T )/Q(Φ)|, the Lie algebra G has a non-trivial
center (see 2.3.4). Hence by (i), the Lie algebra z(G) must be one-dimensional.

��

We are now in position to discuss the existence of non-degenerate invariant
bilinear forms on the Lie algebras of simple algebraic groups of type An. We
have the following proposition.

Proposition 2.5.10. Assume that G is simple of type An. Then G is endowed
with a non-degenerate G-invariant bilinear form if and only if p is very good
for G or p divides both |X(T )/Q(Φ)| and |P (Φ)/X(T )|.

Proof: Assume that G is of type An−1 with n > 1 and that p is very good for
G. Then p does not divide n and so the SLn-invariant bilinear form (X,Y ) �→
Tr(XY ) on sln is non-degenerate. Moreover the canonical morphism sln → G
is an isomorphism, hence we can proceed as in the proof of 2.5.8 to show the
existence of a non-degenerate G-invariant bilinear form on G.
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Assume now that p divides both |X(T )/Q(Φ)| and |P (Φ)/X(T )|. Then by
2.5.9 (3.3), we have G = z(G) ⊕ [G,G]. Since G acts trivially on z(G), any
G-invariant non-degenerate bilinear form on [G,G] can be extended to a non-
degenerate G-invariant bilinear form on G. Hence, it is enough to show the
existence of a non-degenerate G-invariant bilinear form on [G,G] � sln/z(sln).
Define 〈, 〉 on sln/z(sln) by 〈x + z(sln), y + z(sln)〉 = Tr(xy). This is well
defined since z(sln) � k and for any X ∈ sln, a ∈ k, Tr(aX) = aTr(X) = 0.
Let π : SLn → G be the canonical central isogeny, then for any g ∈ SLn,
we have dπ ◦ Ad(g) = Ad(π(g)) ◦ dπ so it is not difficult to check that 〈, 〉 is
G-invariant. It remains to check that it is non-degenerate. Let x ∈ sln and
assume that for any y ∈ sln, we have Tr(xy) = 0. Then an easy calculation
shows that x ∈ z(sln), that is, its image in sln/z(sln) is zero. We thus proved
the non-degeneracy of 〈, 〉 on [G,G].

Now assume that there exists a non-degenerate G-invariant bilinear form
〈, 〉 on G and that p does not divide |X(T )/Q(Φ)| or |P (Φ)/X(T )|. We want
to prove that p is very good for G. Two situations occur,

(1) p does not divide |P (Φ)/X(T )|, then we may assume that G = SLn.
Let z ∈ z(G), then by 2.5.1(2), for any α ∈ Φ, we have 〈z, eα〉 = 0, and
since z is central, by 2.5.1(1) we have 〈z, hα〉 = 0. But by 2.4.4, the set
{hα, eγ |α ∈ Π, γ ∈ Φ} is a basis of G, hence the non-degeneracy of 〈, 〉 implies
that z = 0. We thus proved that z(G) = {0}. By 2.3.4, we deduce that p does
not divide |(X(T )/Q(Φ))tor| = |P (Φ)/Q(Φ)| and so that p is very good for G.

(2) p does not divide |X(T )/Q(Φ)|, then we may assume that G = PGLn.
Assume that p is not very good (i.e p divides |P (Φ)/X(T )|).

Let T ⊂ G be the set of diagonal matrices modulo ZGLn and let B be
the set of upper triangular matrices modulo ZGLn . For i ∈ {1, ..., n− 1}, let
αi : T → k× be defined by αi(t1, ..., tn) = tit

−1
i+1; note that dαi(t1, ..., tn−1) =

ti− ti+1. The basis Π of Φ is equal to {α1, ..., αn−1}. Since p is not very good,
by 2.5.9 (2), the Lie algebra [G,G] is of codimension one in G. As a consequence,
the vectors hαi with i ∈ {1, ..., n− 1} are linearly dependent i.e. there exists
λ1, .., λn−1 not all equal to zero such that h := λ1hα1 + ... + λn−1hαn−1 = 0.
Let r be the smallest integer such that λr �= 0 and let σ be the n× n matrix
(aij)i,j (modulo z(gln)) with arr = 1 and aij = 0 for i, j �= r. Since h = 0, we
have

〈σ, h〉 = 0. (*)
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On the other hand, since 〈, 〉 is G-invariant, we have 〈σ, hα〉 = 〈σ, [eα, e−α]〉 =
〈[σ, eα], e−α〉 = 〈dα(σ)eα, e−α〉 = dα(σ)〈eα, e−α〉 for any α ∈ Φ. Since
dαr(σ) = 1 and dαi(σ) = 0 for any i > r, we deduce that 〈σ, h〉 =
λr〈eαr , e−αr〉. But the bilinear form 〈, 〉 is non-degenerate, hence by 2.5.1(2),
we have 〈eαr , e−αr 〉 �= 0 which contradicts (*). ��

Remark 2.5.11. Assume that G is simply connected. Then we can proceed as
in (1) of the proof of 2.5.10 to show that the existence of a non-degenerate
G-invariant bilinear form on G implies that p does not divide |P (Φ)/Q(Φ)|.
Hence, when G is of type Bn, Cn or Dn, by 2.5.6 (a), (d) and by 2.5.8, the
Lie algebra G admits a non-degenerate G-invariant bilinear form if and only
if p is good for G.

Proposition 2.5.12. Let G be a connected reductive group. Assume that p is
very good for G, then there exists a non-degenerate G-invariant bilinear form
on G.

Proof: By assumption, the prime p does not divide |(X(T )/Q(Φ))tor|. Thus,
by 2.3.4 and 2.3.1, we may identify G with z(G)⊕G. Since G acts trivially on
z(G), any non-degenerate G-invariant bilinear form on G can be extended to
a non-degenerate G-invariant bilinear form on z(G) ⊕ G � G. So it is enough
to show the existence of a non-degenerate G-invariant bilinear form on G. Let
G = G1...Gn be a decomposition of G as the almost-direct product of its
simple components. By 2.5.8 and 2.5.10, for any simple component Gi of G,
there exists an Gi-invariant non-degenerate bilinear form Bi on Gi := Lie(Gi).
Since p is very good for G, by 2.3.8, we have a decomposition G =

⊕
i Gi and

so the form B =
⊕

iBi provides a non-degenerate G-invariant bilinear form
on G. ��

Remark 2.5.13. We saw in the proof of 2.5.12 that a non-degenerate G-
invariant bilinear form on G can be extended to a non-degenerate G-invariant
bilinear form on G. However it is not true that all non-degenerate G-invariant
bilinear forms on G are obtained in this way. Indeed, the trace form (X,Y ) �→
Tr(XY ) is always non-degenerate on gln while (see 2.5.10) there is no non-
degenerate PGLn-invariant bilinear form on pgln unless p is very good.

We have the following lemma.

Lemma 2.5.14. [Leh96, proof of 4.3] If G admits an G-invariant non-
degenerate bilinear form B(, ), then the restriction of B(, ) to any Levi subal-
gebra of G is still non-degenerate.
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2.5.15. Now we assume that p is very good for G. By 2.5.12, the Lie algebra G
is endowed with a G-invariant non-degenerate bilinear form B(, ) and in view
of 2.3.1 and 2.3.4, we may write G = z(G)⊕G. We have the following lemma.

Lemma 2.5.16. The vector space G is the orthogonal complement of z(G) in
G with respect to B(, ). In particular, the restrictions of B(, ) to z(G) and to
G remain non-degenerate.

Proof: Since p is very good for G (and so for G), by 2.4.4, we have [G,G] = G.
Thus, by 2.5.1(1), the vector space G is orthogonal to z(G). Hence the lemma
follows from the non-degeneracy of B(, ). ��

Remark 2.5.17. Note that if G = GLn(k), the restriction of B(, ) to z(G) is
non-degenerate if and only if the condition “p is very good for G” is satisfied.
However, it is not a necessary condition in the general case. For instance, if
G is simple of type An and p divides both |X(T )/Q(Φ)| and |P (Φ)/X(T )|.
Then z(G) is a one-dimensional vector space and we have G = z(G) ⊕ [G,G],
see 2.5.9 (3.3). By 2.5.10, there exists a non-degenerate G-invariant bilinear
form B(, ) on G. The G-invariance of B(, ) implies that z(G) is orthogonal to
[G,G] with respect to B(, ). Thus the non-degeneracy of B(, ) implies that its
restriction to z(G) is still non-degenerate.

2.6 Centralizers

Let H be a closed subgroup of G with Lie algebra H. For any X ∈ G, recall
(see 2.1.2(iii) and 2.1.3) that we have

2.6.1. Lie(CH(x)) ⊂ CH(x).

When H = G, this inclusion is known to be an equality when x is semi-simple
[Bor, 9.1]. Due to Richardson-Springer-Steinberg, it is also known to be an
equality for any x ∈ G when H = G = GLn or when H = G is simple and p is
very good for G [SS70, I, 5.6] [Slo80, 3.13]. In the following lemma, we extend
the above result of R-S-S to the case where G is an arbitrary reductive group
and p is very good for G.

Lemma 2.6.2. Let x ∈ G, then the inclusion 2.6.1 with H = G is an equality
(i.e the morphism G→ OGx , g �→ Ad(g)x is separable) in the following cases:

(i) x is semi-simple,
(ii) p is very good for G or G = GLn.
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Proof: As noticed above, the lemma is already established in the case where
X is semi-simple and the cases where G = GLn, or G is simple and p is very
good for G.

To show that Lie(CG(x)) ⊂ CG(x) is an equality, it is enough to prove
that dim(CG(x)) = dim(CG(x)).

(a) Assume first that G is semi-simple and write G = G1...Gn where
G1, ..., Gn are the simple components of G. Since p is very good for G, by 2.3.8
we have the following corresponding Lie algebras decomposition G =

⊕
i Gi

where Gi is the Lie algebra of Gi. Let x =
∑

i xi ∈
⊕

i Gi, then CG(x) is the
almost-direct product of the CGi(xi). We thus have

dim(CG(x)) =
∑

i

dim(CGi(xi)). (1)

On the other hand, let y = y1+...+yn be the decomposition of y ∈ G in
⊕

i Gi.
Since [Gi,Gj ] = 0 for i �= j, we have [y, x] =

∑
i[yi, xi]. Hence y ∈ CG(x) if

and only if yi ∈ CGi(xi) for any i. Thus we have CG(x) =
⊕

iCGi(xi) and so

dim(CG(x)) =
∑

i

dim(CGi(xi)). (2)

Since for any i, the group Gi is simple and p is very good for Gi, we have
Lie(CGi(xi)) = CGi(xi) and so dim(CGi(xi)) = dim(CGi (xi)). Then we deduce
from (1) and (2) that dim(CG(x)) = dim(CG(x)).

(b) Assume now that G is reductive. Since p is very good for G, by 2.3.9
we have a decomposition

G = z(G)⊕ G′. (1)

Write x = z+y with z ∈ z(G) and y ∈ G′. Since ZG acts trivially on G we have
CG(x) = ZoG.CG′(x). But G acts trivially on z(G), hence CG′(x) = CG′(y).
We deduce that CG(x) = ZoG.CG′(y). Since ZoG ∩CG′(y) is finite we have

dim(CG(x)) = dimZoG + dim(CG′(y)). (2)

On the other hand, from (1) we see that CG(x) = z(G)⊕ CG′(y) and so that

dim(CG(x)) = dim z(G) + dim(CG′ (y)). (3)

The groupG′ is semi-simple, so using (a) we have dim(CG′ (y)) = dim(CG′(y)).
Hence the equality dim(CG(x)) = dim(CG(x)) follows from (2), (3) and 2.3.4.

��
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Remark 2.6.3. Note that 2.6.1 with H = G may not be an equality if p is not

very good for G. Indeed, consider G = PGL2 with p = 2 and e =
(

0 1
0 0

)

. A

simple calculation shows that
(

0 0
1 0

)

commutes with e. Hence dim(CG(e)) = 2

while CG(e) is of dimension one.

Now we give some various results on centralizers of elements of G which will
be used later. We first start with the following well-known characterization of
the centralizers of semi-simple elements of G (see [SS70, II, 4.1]).

Proposition 2.6.4. For each element w ∈WG(T ), we choose a representative
ẇ of w in NG(T ). Let x ∈ T .

(i) The group CG(x) is generated by T , the Uα such that dα(x) = 0 and
the ẇ such that Ad(ẇ)x = x.

(ii) The group CoG(x) is generated by T , and the Uα such that dα(x) = 0.
(iii) The algebraic group CoG(x) is reductive.

Lemma 2.6.5. [HS85, Proposition 3] Let P = LUP be a Levi decomposition
in G and let P = L ⊕ UP be the corresponding Lie algebra decomposition.
Then the centralizer CUP (x) is connected for any element x of L.

We have the following standard result.

Lemma 2.6.6. Let L be a Levi subgroup of a parabolic subgroup P of G and
let L be the Lie algebra of L. For any element z of L, we have OUP

z ⊂ z+UP .
If CoG(zs) ⊂ L, then the map UP → z + UP given by u �→ Ad(u)z is an
isomorphism.

Proof: Let z ∈ L, we assume that L ⊇ T and that zs ∈ T so that we can
use the notation of 2.2.2. Let α, β ∈ Φ be such that α �= −β and let uα ∈ Uα,
then by 2.2.2 we have

(2) Ad(uα)zs ∈ zs + k.eα,
(3) Ad(uα)eβ = eβ +

∑
{i>o|β+iα∈Φ} cieβ+iα, for some ci ∈ k.

Note also that

2.6.7. if β is a root of L with respect to T (this makes sense since we assumed
that T ⊂ L) and if α ∈ Φ is a root of UP (i.e Gα ⊂ UP ), then for any i > 0
such that iα+ β ∈ Φ, the root iα+ β is a root of UP .

From (2), (3) and 2.6.7, we observe that OUP
z − Z is a subvariety of UP .
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Assume now that CoG(zs) ⊂ L, then since CUP (z) is connected by 2.6.5 and
CUP (z) ⊂ CG(zs), we have CUP (z) = {1} and so OUP

z − z is of dimension
dimUP . On the other hand, by [Bor, Proposition 4.10], the variety OUP

z is
closed in G. We deduce that OUP

z = z + UP . We thus have proved that the
map UP → z + UP given by u �→ Ad(u)z is a bijective morphism. To verify
that it is an isomorphism, it is sufficient to verify that it is separable, that is,
we have to show that Lie

(
CUP (z)

)
= CUP (z). Since CUP (z) = {1}, we have

to show that CUP (z) = {0}. Let v ∈ UP be such that [v, z] = 0. We have
[v, zs] = −[v, zn]. Let BL be a Borel subgroup of L such that z ∈ Lie(BL) ; we
may assume without loss of generality that BL contains T . Then B = BLUP
is a Borel subgroup of G containing T and we denote by Φ+ the positive roots
of Φ with respect to B. We also denote by Φ+

L the positive roots (with respect
to BL) of the root system ΦL of L (with respect to T ). Then we may write
v =

∑
α∈Φ+−ΦL

λαeα and zn =
∑
α∈Φ+

L
βαeα. Assume that v �= 0 and let

αo ∈ Φ+ − ΦL be such that λαo �= 0 and the height of αo (with respect to B)
is minimal among the heights of the roots α ∈ Φ+ − ΦL such that λα �= 0.
Since CoG(zs) ⊂ L, from 2.6.4(ii), we have dαo(zs) �= 0, and so, from 2.2.1(ii),
the vector [v, zs] has a non-zero coefficient in eαo while from the Chevalley
relations 2.2.1(iii)(iv), we see that the vector [v, zn] does not have non-zero
coefficients in eα if α is of same height as αo. Hence we have v = 0. ��

Notation 2.6.8. For any set J contained in a basis of Φ, we denote by ΦJ the
subroot system of Φ generated by J , by LJ the Levi subgroup of G corre-
sponding to ΦJ (i.e the subgroup of G generated by T and the Uα such that
α ∈ ΦJ ) and by LJ the Lie algebra of LJ . If I is a subset of a basis of Φ, we
denote by B(I) the subset of Φ − ΦI consisting of the elements γ such that
the set I ∪ {γ} is contained in a basis of Φ.

Proposition 2.6.9. Let I be a subset of a basis of Φ. The minimal Levi
subgroups of G strictly containing LI are the LΦI∪{α} with α ∈ B(I).

Proof: Let M be a Levi subgroup of G containing LI and let ΦM be the root
system of M with respect to T . Let P be a parabolic subgroup of M such
that P = LIUP is a Levi decomposition of P . Let B be a Borel subgroup of P
containing T , then it defines a basis θ of ΦM and since LI is the unique Levi
subgroup of P containing T , the group LI must be of the form LJ for some
subset J of θ (cf. [DM91, Propositions 1.6, 1.15]). Now, if γ ∈ ΦM is a Q-linear
combination of elements of ΦI , it is a Z-linear combination of elements of θ.
We deduce that γ is a Z-linear combination of elements of J . We thus have
γ ∈ ΦI . We proved that ΦI is Q-closed root subsystem of ΦM (i.e any element
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of ΦM which is a Q-linear combination of elements of ΦI is already in ΦI). By
[Bou, VI, 1, 7, Proposition 24], we deduce that we can extend I to a basis I ′

of ΦM . Using the same argument, we can also prove that I ′ can be extended
to a basis of Φ. Hence, we proved that any Levi subgroup of G containing
strictly LI contains a Levi subgroup of the form LI∪{α} with α ∈ B(I). It is
then clear that minimal Levi subgroups containing strictly LI are of the form
LI∪{α} for some α ∈ B(I). The fact that the Levi subgroups LI∪{α} with
α ∈ B(I) are minimal is clear. ��

Definition 2.6.10. Let L be a Levi subgroup of G, then we say that x ∈ G is
L-regular in G if L = CoG(x).

Lemma 2.6.11. Let L be a Levi subgroup of G and let L be its Lie algebra,
then the L-regular elements in G belong to z(L).

Proof: Let x be L-regular in G, then CG(x) contains a maximal torus T of
L. Write x = t+

∑
α λαeα ∈ G = T ⊕

⊕
α∈Φ(T ) Gα. Since T centralizes x, we

must have λα = 0 for all α ∈ Φ(T ), i.e. x ∈ T . Since CoG(x) = L we deduce
from 2.6.4(ii) and 2.3.2(1) that x ∈ z(L). ��

Definition 2.6.12. Let L be a Levi subgroup of G and let L be its Lie algebra.
If x ∈ z(L) is not L-regular in G, then x is said to be L-irregular.

Lemma 2.6.13. (i) Assume that p is good for G and that p does not divide
|(X(T )/Q(Φ))tor|, then if L is a Levi subgroup of G, the Lie algebra G contains
L-regular elements in G.

(ii) If p is good for G, then for any semi-simple element x ∈ G, the group
CoG(x) is a Levi subgroup of G.

Proof: We first prove (ii). We may assume that x ∈ T . Since p is good for G,
it follows that the set Φx := {α ∈ Φ|dα(x) = 0} is a Q-closed root subsystem
of Φ. Hence by [Bou, VI, 1, 7, Proposition 24], the set Φx is of the form ΦJ
for some subset J of some basis of Φ. Thus by 2.6.4(ii), we have CoG(x) = LJ .

We now prove (i).

We may assume without loss of generality that L is a Levi subgroup of the
form LI for some subset I of some basis of Φ. We want to prove that LI
contains LI -regular elements in G. Recall first that if J is a set contained in
a basis of Φ, then we have
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z(LJ) =
⋂

α∈J
Ker(dα). (1)

From (ii), 2.6.11, 2.6.9 and 2.6.4 (ii), we see that x is LI -regular in G if
and only if

2.6.14.
x ∈ z(LI)−

⋃

γ∈B(I)

(z(LI) ∩Ker(dγ)).

Since B(I) is finite, the assertion (i) will follow from the fact that the subspaces
z(LI) ∩ Ker(dγ), where γ runs over B(I), are of dimension strictly less than
dim z(LI). Hence from (1), it is enough to prove that for any basis Π ′ of Φ
and any inclusions Π ′ ⊇ J � I we have z(LJ) � z(LI).

Consider the following inclusions Π ′ ⊇ J � I with Π ′ a basis of Φ, then it
follows from [DM91, Proposition 1.21] that ZoLJ

� ZoLI
and so (because tori are

smooth) we get that Lie(ZoLJ
) � Lie(ZoLI

). From 2.3.5, we get that p satisfies
2.3.4(i) applied to LI and LJ ; thus Lie(ZoLI

) = z(LI) and Lie(ZoLJ
) = z(LJ).

We deduce that z(LJ) � z(LI). ��

Remark 2.6.15. Let L be a Levi subgroup of G and let L be the Lie algebra
of L. Assume that the set of L-regular elements in G is non-empty, then from
2.6.14 we see that it is an open dense subset of z(L).

Lemma 2.6.16. Let L be a Levi subgroup of G (with Lie algebra L) and let
x ∈ G be L-regular in G. Let g ∈ G be such that Ad(g)x ∈ z(L), then Ad(g)x
is also L-regular in G and we have g ∈ NG(L).

Proof: It is enough to show that g ∈ NG(L). We have CoG(z(L)) ⊂
CoG(Ad(g)x), that is CoG(z(L)) ⊂ gCoG(x)g−1 = gLg−1. Since CoG(z(L)) ⊇ L,
we deduce that L ⊂ gLg−1, i.e. L = gLg−1. ��

Lemma 2.6.17. We assume that k = Fq, that p is good for G and that p does
not divide |(X(T )/Q(Φ))tor|. We also assume that T and B are both F -stable.
Let I be a subset of Π such that the Levi subgroup LI of G is F -stable, i.e.
the set I is τ-stable where τ is as in 2.1.18. If q > |B(I)|, then LFI contains
LI-regular elements in G.

Proof: Recall that the subset of z(LI) consisting of the LI -irregular elements
of G is
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⋃

γ∈B(I)

(z(LI) ∩Ker(dγ)).

Let V = z(LI) ∩ Ker(dγ) for some γ ∈ B(I), then for i large enough, the set
V ∩ F (V ) ∩ ... ∩ F i(V ) is F -stable and contains all the rational elements of
V . On the other hand, from the proof of 2.6.13, we have dimV < dim z(LI).
Thus by [DM91, 3.7], the number of rational LI -irregular elements of G is ≤
|B(I)|qdim(z(LI))−1. Hence, if q > |B(I)|, the number of LI -irregular elements
is less than |z(LI)F | and so rational LI -regular elements must exist. ��

Proposition 2.6.18. [Ste75, Theorem 3.14] The centralizers in G of the
semi-simple elements of G are connected if and only if p is not a torsion
prime for G.

2.7 The Varieties Guni and Gnil

Let Guni be the subvariety of G consisting of unipotent elements and let Gnil
be the subvariety of G formed by nilpotent elements. For any X ⊂ G and
Y ⊂ G, put Xuni = X ∩Guni and Ynil = Y ∩Gnil. Recall that the subvarieties
Guni ⊂ G and Gnil ⊂ G are closed, irreducible of codimension rk(G). It has
been proved [Lus76] that the number of unipotent classes of G is finite for
any p. By 2.7.5, this implies that the number of nilpotent orbits of G is also
finite if p is good for G. In the case of bad characteristics, the finiteness of
nilpotent orbits results from a case by case argument (see [Car72, 5.11] for
the classification of nilpotent orbits in bad characteristics).

The following propositions are well-known.

Proposition 2.7.1. [Leh79] Let P = LUP be a Levi decomposition of a
parabolic subgroup P of G and let P = L ⊕ UP be the corresponding Lie
algebra decomposition.

(i) Let l ∈ L, then the semi-simple part of any element of lUP is UP -
conjugate to the semi-simple part of l.

(ii) Let x ∈ L, then the semi-simple part of any element of x + UP is
UP -conjugate to the semi-simple part of x. That is, for any v ∈ UP , we have
(x+ v)s = Ad(u)(xs) for some u ∈ UP .

The following result is a straightforward consequence of the above propo-
sition.
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Corollary 2.7.2. If P = LUP is a Levi decomposition in G with correspond-
ing Lie algebra decomposition P = L ⊕ UP , then for any unipotent element
l ∈ L and any nilpotent element x ∈ L, we have lUP ⊆ Guni and x+UP ⊆ Gnil.

Proposition 2.7.3. [Spr69] If the canonical morphism π : G → Gad is
separable (which by 2.3.7 is equivalent to p does not divide the torsion of
X(T )/Q(Φ)), then the bijective morphism πuni : Guni → (Gad)uni given by
restricting π to Guni is an isomorphism.

Remark 2.7.4. Consider G = SL2(k) and assume that the morphism π : G→
Gad is not separable (i.e. p = 2). Then the morphism πuni : Guni → (Gad)uni is
not an isomorphism. To see that, it is enough to see that its differential d(πuni)
at 1 = 1G is not an isomorphism. Note that d(πuni) : T1(Guni)→ T1((Gad)uni)
is the restriction morphism of dπ to the tangent space T1(Guni) of Guni at 1.
On the other hand, dimT1(Guni) > 2; indeed dimGnil = 2 and the inclusion
T1(Guni) ⊃ Gnil is strict since Gnil is not a vector space. Hence T1(Guni) = G
since dimG = 3, and so we deduce that d(πuni) = dπ. Since π is not separable,
the morphism dπ = d(πuni) is not an isomorphism.

2.7.5. By a G-equivariant morphism π : Guni → Gnil, we shall mean a mor-
phism π : Guni → Gnil such that π(gxg−1) = Ad(g)π(x) for all g ∈ G and
x ∈ Guni. The existence of G-equivariant isomorphisms Guni → Gnil is dis-
cussed in [Spr69] and in [BR85]. It is proved that if p is good for G, resp.
very good for G, then G-equivariant homeomorphisms, resp. isomorphisms,
Guni → Gnil exist.

We have the following lemma.

Lemma 2.7.6. [Bon04, Proposition 6.1] Let f : Guni → Gnil be a G-
equivariant homeomorphism, then for any Levi decomposition P = LUP in
G with L = Lie(L), we have

(i) f(Luni) = Lnil,
(ii) for any x ∈ Luni, f(xUP ) = f(x) + UP .
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Deligne-Lusztig Induction

From now we assume that k = Fq with q a power of p and that G is defined
over Fq. Let � denote a prime not equal to p and Q� an algebraic closure
of the field Q� of �-adic numbers. In this chapter, we first recall some facts
about the Q�-space C(GF ) of all functions GF → Q� which are invariant under
the adjoint action of GF on GF . We then define, when p is good for G, a
Lie algebra version of Deligne-Lusztig induction [DL76], that is for any F -
stable Levi subgroup L of G with Lie algebra L, we define a Q�-linear map
RG

L : C(LF ) → C(GF ) which satisfies analogous properties to the group case,
like transitivity, the Mackey formula and commutation with the duality map.
We finally formulate as a conjecture a property which has no counterpart in
the group setting, namely that the Deligne-Lusztig induction commutes with
Fourier transforms.

3.1 The Space of GF -Invariant Functions on GF

3.1.1. Let H be an F -stable closed subgroup of G with Lie algebra H. We
denote by C(HF ) the Q�-space of all functions f : HF → Q� which are HF -
invariant i.e. for any h ∈ HF and any x ∈ HF , f(Ad(h)x) = f(x). We
denote by C(HF )nil the subspace of C(HF ) consisting of functions which are
nilpotently supported. If x ∈ HF , we denote by ξHx the characteristic functions
of OHF

x , i.e. ξHx (y) = 1 if y ∈ OHF

x and ξHx (y) = 0 otherwise. The functions
ξHx , with x ∈ HF , form a Q�-basis of C(HF ), and the functions ξHx , with
x ∈ HFnil, form a Q�-basis of C(HF )nil. Sometimes, it will be more convenient
to use the functions γHx := |CH(x)F |ξHx instead of ξHx . We denote by ηHo the
function which takes the value 1 on HFnil and the value 0 on HF −HFnil.

E. Letellier: LNM 1859, pp. 33–43, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We choose once for all an automorphism Q� → Q�, x �→ x such that
ζ = ζ−1 for any root of unity ζ ∈ Q�. We define a non-degenerate bilinear
form (, )HF on C(HF ) by

(f, g)HF = |HF |−1
∑

x∈HF

f(x)g(x).

Note that for x ∈ HF and f ∈ C(HF ), we have (f, γHx )HF = f(x) and
(γHx , f)HF = f(x).

Definition 3.1.2. Let P be an F -stable parabolic subgroup of G and L be an
F -stable Levi subgroup of P . Let P = L⊕UP be the corresponding Lie algebra
decomposition. Recall that πP : P → L denotes the canonical projection.

(i) The Harish-Chandra restriction ∗RG
L⊂P : C(GF )→ C(LF ) is defined by

the formula

∗RG
L⊂P(f)(x) = |UFP |−1

∑

y∈UF
P

f(x+ y), where f ∈ C(GF ), x ∈ LF .

(ii) The Harish-Chandra induction RG
L⊂P : C(LF )→ C(GF ) is defined by

RG
L⊂P (f)(x) = |PF |−1

∑

{g∈GF |Ad(g)x∈PF }
f
(
πP(Ad(g)x)

)
,

where f ∈ C(LF ), x ∈ GF .

We have the following proposition (see [Leh96]).

Proposition 3.1.3. The maps ∗RG
L⊂P and RG

L⊂P are adjoint with respect to
the forms (, )GF and (, )LF , that is, for any f ∈ C(GF ), g ∈ C(LF ), we have
(
RG

L⊂P(g), f
)
GF =

(
g, ∗RG

L⊂P (f)
)
LF . Moreover they are independent of P .

Notation 3.1.4. Since the mapRG
L⊂P is independent of P , we writeRG

L instead
of RG

L⊂P .

3.1.5. We define (following Kawanaka [Kaw82] in the Lie algebra case and
Lusztig, Curtis and Alvis in the group case) the “duality map” DG : C(GF )→
C(GF ). For any F -stable parabolic subgroup P of G, we denote by r(P ) the
semi-simple Fq-rank of P/UP .
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Definition 3.1.6. Let B be an F -stable Borel subgroup of G. For f ∈ C(GF ),
we define DG(f) by

DG(f) =
∑

P⊃B
(−1)r(P )RG

LP
◦ ∗RG

LP
(f)

where the summation is over the set of the F -stable parabolic subgroups P of
G containing B and where LP denotes the Lie algebra of an arbitrarily chosen
F -stable Levi subgroup of P .

Recall that the map DG does not depend on the F -stable Borel subgroup
B and on the choice of the LP .

Proposition 3.1.7. [Kaw82] We have the following assertions.

(i) The duality map DG is an isometry with respect to the form (, )GF .
(ii) DG is an involution, i.e. DG ◦ DG = IdC(GF ).

Proposition 3.1.8. [Leh96, Proposition 3.15] Let L be an G-split F -stable
Levi subgroup of G and let L = Lie(L). Then

DG ◦ RG
L = RG

L ◦ DL.

3.1.9. Now we assume the existence of a G-invariant non-degenerate bilin-
ear form on G defined over Fq which we denote by µ. We fix (throughout
this book) a non-trivial additive character Ψ : F

+
q → Q

×
� . Let H be an F -

stable Lie subalgebra of G such that the restriction of µ to H × H remains
non-degenerate. Let Fun(HF ) be the Q�-space of all functions HF → Q�.
The Fourier transform FH : Fun(HF )→ Fun(HF ) with respect to (µ, Ψ) is
defined as follows:

For any f ∈ Fun(HF ) and any x ∈ HF , define

FH(f)(x) = |HF |− 1
2

∑

y∈HF

Ψ (µ(x, y)) f(y).

Clearly if H is an F -stable closed subgroup of G having H as a Lie algebra,
then FH induces a linear map C(HF )→ C(HF ) denoted again by FH.

For f, g ∈ Fun(HF ), we denote by f.g the pointwise multiplication of
f and g, i.e. (f.g)(x) = f(x)g(x) for x ∈ HF , and we denote by f ∗ g the
convolution product of f and g, i.e.
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(f ∗ g)(x) = |GF |− 1
2

∑

y∈GF

f(x− y)g(y).

Lemma 3.1.10. [Leh96, Lemma 4.2] Let H be the Lie algebra of an F -stable
closed subgroup H of G such that the restriction of µ to H×H remains non-
degenerate. Let f, g ∈ Fun(HF ) and put F = FH.

(i) F is an isometry of Fun(HF ) with respect to the form (, )HF ,
(ii) F2f = f−, where f−(x) = f(−x) for x ∈ HF ,
(iii) F4 = Id,
(iv) F(f ∗ g) = (Ff).(Fg),
(v) F(f.g) = (Ff) ∗ (Fg).

We have the following theorems.

Theorem 3.1.11. [Leh96, Theorem 4.5] Let L be the Lie algebra of a G-split
F -stable Levi subgroup of G, then

(i) FG ◦ RG
L = RG

L ◦ FL,
(ii) FL ◦ ∗RG

L = ∗RG
L ◦ FG .

Theorem 3.1.12. [Leh96, Theorem 4.6] The isometries DG and FG of C(GF )
commute.

3.2 Deligne-Lusztig Induction: Definition and Basic

Properties

3.2.1 Deligne-Lusztig Induction: The Group Case

If X is a variety over k, then we denote by Hi
c(X,Q�) the i-th group of �-adic

cohomology with compact support as in [Del77]. All what we need to know
(in this chapter) about these groups can be found in [DM91, Chapter 10].

3.2.2. Let L be an F -stable Levi subgroup of G, let P = LUP be a Levi
decomposition of a (possibly non F -stable) parabolic subgroup P of G and
let P = L ⊕ UP be the corresponding Lie algebra decomposition. We denote
by LG the Lang map G→ G, x �→ x−1F (x). The variety L−1

G (UP ) is endowed
with an action of GF on the left and with an action of LF on the right. By
[DM91, Proposition 10.2], these actions induce actions on the cohomology and
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so make Hi
c(L−1

G (UP ),Q�) into a GF -module-LF . The virtual Q�-vector space
H∗
c (L−1

G (UP )) :=
∑

i(−1)iHi
c(L−1

G (UP ),Q�) is thus a virtual GF -module-LF .

Notation 3.2.3. If (g, l) ∈ GF × LF , define:

SGL⊂P (g, l) := Trace
(
(g, l−1)|H∗

c (L−1
G (UP ))

)
.

To each LF -moduleM , corresponds thus a virtualGF -moduleRGL⊂P (M) :=
H∗
c (L−1

G (UP )) ⊗LF M (see [Lus76]). Hence, using the basis of the Q�-vector
space of class functions on LF formed by the irreducible characters of LF , the
map RGL⊂P gives rise to a natural Q�-linear map, so-called Deligne-Lusztig
induction and still denoted by RGL⊂P , from the Q�-vector space of class func-
tions on LF onto the Q�-vector space of class functions on GF . More precisely
if f is a class function on LF , the class function RGL⊂P (f) on GF is given by
the following formula:

3.2.4. RGL⊂P (f)(g) = |LF |−1
∑

h∈LF SGL⊂P (g, h)f(h) for any g ∈ GF .

Remark 3.2.5. It is conjectured and proved for q large enough that RGL⊂P is
independent of the parabolic subgroup P having L as a Levi subgroup (see
3.2.25 and 3.2.27 for more details).

We now define the two-variable Green functions; they appear naturally
in the computation of the values of the Deligne-Lusztig induction of class
functions (see 3.2.7 below).

Definition 3.2.6. The function QGL⊂P : GF × LF → Q� defined by

QGL⊂P (u, v)

=

{
|LF |−1Trace

(
(u, v−1)| H∗

c (L−1
G (UP ))

)
if (u, v) ∈ GFuni × LFuni,

0 otherwise.

is called a two-variable Green function.

In the case where L is a maximal torus of G, the two-variable Green
functions become one-variable functions and are the ordinary Green functions
introduced for any reductive groups by Deligne-Lusztig [DL76]. In the case of
G = GLn(F), they were first introduced by Green [Gre55].

The following formula [DM91, 12.2][DM87][Lus86b], so-called the charac-
ter formula for RGL⊂P , expresses the values of the functions RGL⊂P (f), where
f is a class function on LF , in terms of the values of f and in terms of the
values of some two-variable Green functions.
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3.2.7. For any x ∈ GF ,

RGL⊂P (f)(x) = |LF |−1|CoG(xs)F |−1×
∑

{h∈GF |xs∈hL}

|CohL(xs)F |
∑

v∈(Co
hL

(xs)uni)F

Q
Co

G(xs)

Co
hL

(xs)
(xu, v)hf(xsv),

where hL := hLh−1 and hf(y) := f(h−1yh).

To simplify the notation, we usually omit the parabolic subgroup hP ∩CoG(xs)
from the notation QC

o
G(xs)

Co
hL

(xs).

3.2.8 Deligne-Lusztig Induction: The Lie Algebra Case

To define the Lie algebra analogue of Deligne-Lusztig induction, we use the Lie
algebra version of the character formula 3.2.7 where the two-variable Green
functions are transfered to the Lie algebra by means of a G-equivariant home-
omorphism Gnil → Guni (see 2.7.5).

Assumption 3.2.9. From now we assume that p is good for G so that there
exists a G-equivariant homeomorphism ω : Gnil → Guni which commutes with
the Frobenius F .

Remark 3.2.10. Since p is good for G, by 2.6.13(ii), the connected components
of the centralizer in G of the semi-simple elements of G are Levi subgroups of
G. Hence by 2.6.2 and 2.7.6, for any semi-simple element σ ∈ G, the morphism
ω induces a CoG(σ)-equivariant isomorphism CG(σ)nil → CoG(σ)uni.

Definition 3.2.11. With the notation of 3.2.2, the two-variable Green func-
tion QG

L⊂P : GF × LF → Q� is defined by QG
L⊂P(u, v) =

{
|LF |−1Trace

(
(ω(u), ω(v)−1)| H∗

c (L−1
G (UP ))

)
if (u, v) ∈ GFnil × LFnil,

0 otherwise.

Remark 3.2.12. Assume that ω is the exponential map (which is well-defined
if p > 3(hGo − 1)). Let T be an F -stable maximal torus of G contained in a
(possibly non F -stable) Borel subgroup B of G. Assume that σ ∈ T F is T -
regular in G, i.e. CoG(σ) = T . By a result of Kazhdan-Springer [Kaz77][Spr76],
we have

QG
T ⊂B = εGεT q

rk(G)
2 FG(ξGσ ).ηGo

where εG = (−1)Fq−rank(G).
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Definition 3.2.13. Let L be an F -stable Levi subgroup of G and let P = LUP
be a Levi decomposition in G with corresponding Lie algebra decomposition
P = L ⊕ UP .

(i) Let f ∈ C(LF ), then the Deligne-Lusztig induction RG
L⊂P(f) ∈ C(GF )

of f is defined by

RG
L⊂P(f)(xs + xn) = |LF |−1|CoG(xs)F |−1×

∑

{h∈GF |xs∈hL}

|CohL(xs)F |
∑

v∈ChL(xs)F
nil

QCG(xs)
ChL(xs)

(xn, v)Adh(f)(xs + v)

where for any g ∈ GF , gL := gLg−1, gL = Ad(g)L and Adg : C(LF ) →
C(Ad(g)LF ) is given by, Adg(f)(x) = f(Ad(g−1)x).

(ii) Let f ∈ C(GF ), then the Deligne-Lusztig restriction ∗RG
L⊂P(f) ∈

C(LF ) of f is defined by

∗RG
L⊂P (f)(xs+xn) = |CoL(xs)F ||CoG(xs)F |−1

∑

u∈CG(xs)F
nil

QCG(xs)
CL(xs)

(u, xn)f(xs+u).

The group version of 3.2.13(ii) is due to Digne-Michel [DM87].

Remark 3.2.14. The notationRG
L⊂P is used both for Deligne-Lusztig induction

and Harish-Chandra induction; this is justified by 3.2.23. The independence
of RG

L⊂P from the choice of ω will be proved (under some assumptions on p

and q) in chapter 5 (see 5.5.17).

Open problem 3.2.15. Define Deligne-Lusztig induction using �-adic cohomol-
ogy but without using a G-equivariant homeomorphism Gnil → Guni.

Remark 3.2.16. It follows easily from the formulas of 3.2.13 that

(i) for any f ∈ C(LF ), we have

RG
L⊂P(f.ηLo ) = RG

L⊂P(f).ηGo ,

(ii) for any g ∈ C(GF ), we have

∗RG
L⊂P(g.ηGo ) = ∗RG

L⊂P(g).ηLo .
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3.2.17 Basic Properties of RG
L⊂P

We now state some properties of Deligne-Lusztig induction in the Lie algebra
setting. These properties, which are all know in the group case, are proved in
[Let].

As it can be seen from 3.2.4, the function SGL⊂P : GF × LF → Q� plays
a fundamental role in Deligne-Lusztig’s theory. We would like to have such a
function in the Lie algebra setting; this is possible thanks to [DM91, Lemma
12.3] which gives an expression of SGL⊂P (g, l) (where g ∈ GF , l ∈ LF ) in terms
of the values of some two-variable Green functions. More precisely the function
SG
L⊂P : GF × LF → Q� we are looking for is defined as follows.

Definition 3.2.18. For x ∈ GF , y ∈ LF , we define SG
L⊂P(x, y) by

SG
L⊂P(x, y)=

∑

{h∈GF |Ad(h)ys=xs}
|CoL(ys)F ||CoG(ys)F |−1QCG(ys)

CL(ys)(Ad(h−1)xn, yn).

Remark 3.2.19. Note that SG
L⊂P(x, y) = |LF |QG

L⊂P(x, y) for any (x, y) ∈
GFnil × LFnil.

The following lemma is the Lie algebra version of 3.2.4.

Lemma 3.2.20. Let f ∈ C(GF ), g ∈ C(LF ), we have

(1)RG
L⊂P(g)(x) = |LF |−1

∑
y∈LF S

G
L⊂P(x, y)g(y),

(2) ∗RG
L⊂P(f)(y) = |GF |−1

∑
x∈GF S

G
L⊂P(x, y)f(x).

Proposition 3.2.21. The maps RG
L⊂P and ∗RG

L⊂P are adjoint with respect
to the forms (, )GF and (, )LF .

Proof: Let g ∈ C(LF ) and f ∈ C(GF ). We have

(
f,RGL⊂P (g)

)
GF = |GF |−1

∑

x∈GF

f(x)RG
L⊂P (g)(x)

= |LF |−1|GF |−1
∑

x∈GF

∑

y∈LF

f(x)SG
L⊂P(x, y)g(y) by 3.2.20(1)

= |LF |−1|GF |−1
∑

y∈LF

∑

x∈GF

SG
L⊂P(x, y)f(x)g(y).
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The last equality follows from the fact that SG
L⊂P(x, y) ∈ Q. From 3.2.20 (2)

we get that
(
f,RG

L⊂P(g)
)
GF =

(∗RG
L⊂P(f), g

)
LF .

��

We now state the transitivity property of Deligne-Lusztig induction. Let
M ⊂ L be an inclusion of F -stable Levi subgroups of G with respective Lie
algebras M and L. Let P and Q be two parabolic subgroups of G, having
respectively L and M as Levi subgroups, such that Q ⊂ P .

Proposition 3.2.22. We have RG
L⊂P ◦ RL

M⊂L∩Q = RG
M⊂Q.

We have the following proposition.

Proposition 3.2.23. If the parabolic subgroup P is F -stable, then the Deligne-
Lusztig induction RG

L⊂P coincides with Harish-Chandra induction.

Proposition 3.2.24. Let L be an F -stable Levi subgroup of G and P be a
parabolic subgroup of G having L as a Levi subgroup. Let L := Lie(L) and
P := Lie(P ). Let x ∈ LF be such that CoG(xs) ⊆ L, then RG

L⊂P(γLx ) = γGx .

Proof: We compute the values of RG
L⊂P(γLx ). Let y ∈ GF , then

(
RG

L⊂P(γLx ), γGy
)
GF = RG

L⊂P (γLx )(y).

From 3.2.21 we have
(
RG

L⊂P (γLx ), γGy
)
GF =

(
γLx ,

∗RG
L⊂P(γGy )

)
LF .

Combining the above two equations we get that

RG
L⊂P(γLx )(y) = ∗RG

L⊂P(γGy )(x). (1)

Now, by definition we have

∗RG
L⊂P (γGy )(x) = |CoL(xs)F ||CoG(xs)F |−1

∑

n∈CG(xs)F
nil

QCG(xs)
CL(xs)(n, xn)γ

G
y (xs+n).

Since by assumption CoG(xs) ⊆ L, we have CoG(xs) = CoL(xs), and so we get
that

∗RG
L⊂P(γGy )(x) =

∑

n∈CG(xs)F
nil

QCG(xs)
CG(xs)(n, xn)γ

G
y (xs + n).

This formula shows that if xs is notGF -conjugate to ys, then ∗RG
L⊂P (γGy )(x) =

0. Hence we may assume that ys = xs, and we have



42 3 Deligne-Lusztig Induction

∗RG
L⊂P (γGy )(x) = |CG(y)F |−1

∑

n∈OCG(ys)F
yn

QCG(ys)
CG(ys)

(n, xn). (2)

We now compute the quantity QCG(ys)
CG(ys)(n, xn). By definition of Green func-

tions, we have

QCG(ys)
CG(ys)(n, xn) = |CoG(ys)F |−1Trace

((
ω(n), ω(xn)−1

)
|H∗

c (C
o
G(ys)F )

)
.

From [DM91, Proposition 10.8], we deduce that

QCG(ys)
CG(ys)

(n, xn) = |CoG(ys)F |−1Trace
((
ω(n), ω(xn)−1

)
|Q�[C

o
G(ys)F ]

)

= |CoG(ys)F |−1�{g ∈ CoG(ys)F |ω(n)gω(xn)−1 = g}
= |CoG(ys)F |−1�{g ∈ CoG(ys)F |Ad(g)xn = n}.

From the last formula and (2), we deduce that ∗RG
L⊂P(γGy )(x) = |CG(y)F | if

x is GF -conjugate to y and ∗RG
L⊂P (γGy )(x) = 0 otherwise. From (1), it follows

that RG
L⊂P(γLx ) = γGx . ��

3.2.25. We now discuss the validity of the Mackey formula for RG
L⊂P . In

the group case, this has been discussed by many authors including Deligne-
Lusztig [DL83], and Bonnafé [Bon98][Bon00]. According to Bonnafé (personal
communication), the Mackey formula holds if q > 3. Now in [Bon98], it is
proved that the Mackey formula (in the group case) is equivalent to a formula
on two-variable Green functions. In [Let], we prove a similar result in the Lie
algebra setting using the same arguments as in [Bon98]. As a consequence,
we get that the Mackey formula holds in the Lie algebra case if and only if it
does in the group case. We thus have the following theorem.

Theorem 3.2.26. Assume that q > 3, and let P = LUP and Q = MUQ be
two Levi decompositions in G such that L and M are F -stable Levi subgroups
of G. Then the Mackey formula with respect to (G,L, P,M,Q) holds, that is
∗RG

L⊂P ◦ RG
M⊂Q =

∑

x∈LF \SG(L,M)F /MF

RL
L∩xM⊂L∩xQ ◦ ∗R

xM
L∩xM⊂P∩xM ◦Adx

where SG(L,M) denotes the set of x ∈ G such that L∩xM contains a maximal
torus of G.

3.2.27. As in the group case, the Mackey formula as the following consequences
(see [Let] for more details):

(1) If q > 3, the Deligne-Lusztig induction RG
L⊂P does not depend on the

choice of the parabolic subgroup P of G having L as a Levi subgroup.

(2) If q > 3, we have DG ◦ RG
L = εGεLRG

L where εG = (−1)Fq−rank(G).
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Notation 3.2.28. Because of 3.2.27(1), we write RG
L instead of RG

L⊂P .

3.2.29. We now state our conjecture about a commutation formula between
Fourier transforms and Deligne-Lusztig induction. Let FG : C(GF ) → C(GF )
be as in 3.1.9.

Conjecture 3.2.30. For any F -stable Levi subgroup L of G and any function
f ∈ C(LF ), we have

FG ◦ RG
L(f) = εGεLRG

L ◦ FL(f)

where εG = (−1)Fq−rank(G).

Note that if L is G-split, in which case εGεL = 1 and RG
L is the Harish-

Chandra induction, the above commutation formula holds (see 3.1.11(i)). The
conjecture 3.2.30 will be discussed in chapter 6.



4

Local Systems and Perverse Sheaves

In this chapter we introduce the results on local systems and perverse sheaves
which will be used in the following next chapters.

Throughout this chapter, the letter X denotes an algebraic variety over Fq.
As in the previous chapter, we denote by � a prime not equal to p and by
Q� an algebraic closure of Q�. In the following, the finite extensions of Q�

considered are in Q�.

4.0.31. For any finite field extension E of Q�, we have the notion of E-sheaves
as in [Del77, p.85] (see also [FK88][KW01]). By a Q�-sheaf (or sheaf ), we shall
mean an E-sheaf for some finite extension E of Q�. We denote by Sh(X) the
abelian category of Q�-sheaves on X . The constant sheaf on X is denoted by
Q�. If F is a sheaf on X , the support of F will be denoted by Supp (F).

4.0.32. By a local system E on X we shall mean a locally constant Q�-sheaf
on X for which each stalk Ex at x ∈ X is a finite dimensional Q�-vector space.
We denote by ls(X) the full subcategory of Sh(X) consisting of local systems
on X . Recall that a pro-finite group is the projective limit of finite groups,
each given the discrete topology. Pro-finite groups are compact and one says
that a pro-finite group π acts continuously on a set if the stabilizer of any
point is an open subgroup of π. An �-adic representation of a pro-finite group
π on a Q�-vector space V is a group homomorphism f : π → GL(V ) such
that there exists a finite extension E of Q� and an E-structure VE on V such
that f factors through a continuous homomorphism π → GL(VE). We denote
by Rep�−adic(π) the category of �-adic representations of π (the morphisms
being the obvious ones). For a base point x ∈ X , we denote by π1(X,x) the
fundamental étale group of X at x. This is a pro-finite group and when X is
connected we have an equivalence of categories ls(X)→ Rep�−adic(π1(X,x))

E. Letellier: LNM 1859, pp. 45–60, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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mapping E onto the π1(X,x)-module Ex. Under this equivalence, irreducible
local systems on X correspond to irreducible representations of π1(X,x).

4.0.33. As in [BBD82, 2.2.18], we denote by Dbc(X) the bounded “derived
category” of Q�-(constructible) sheaves. By a complex on X we shall mean an
object of Dbc(X). For K ∈ Dbc(X), the i-th cohomology sheaf of K is denoted
by HiK. If f : X → Y is a morphism of varieties, we have the usual functors
f∗ : Sh(X)→ Sh(Y ) (direct image), f! : Sh(X)→ Sh(Y ) (direct image with
compact support), f∗ : Sh(Y ) → Sh(X) (inverse image) and the functors
Rf∗ : Dbc(X) → Dbc(Y ), Rf! : Dbc(X) → Dbc(Y ) and Rf∗ : Dbc(Y ) → Dbc(X)
as in [Gro73, Exposé XVII]; if f is a proper morphism, then we have f∗ = f!
and Rf∗ = Rf!. The right adjoint of Rf! is denoted by f ! and is called the
exceptional inverse image; if f is an open immersion, then f ! = Rf∗. The
functors Rf∗, Rf!, Rf∗ and f ! commute with the shift operations [m] (if
K ∈ Dbc(X), the m-th shift of K is denoted by K[m]; for any integer i, we
have Hi(K[m]) = Hi+mK). We will use freely the well-known properties of
the functors f∗, f!, f∗, Rf∗, Rf!, Rf∗ and f ! (such as base change theorems
and the adjunction properties). If there is no ambiguity we will denote by f∗,
f! and f∗ the functors Rf∗, Rf! and Rf∗.

If j : F ↪→ X is a closed immersion and if K denotes an object in Dbc(F ),
then the object j!(K) ∈ Dbc(X) will be called the extension of K by zero on
X − F .

4.0.34. We denote by DX : Dbc(X)→ Dbc(X) the Verdier dual operator; recall
that DX ◦ DX is isomorphic to the identity functor. From [Ara01, 1.6.6],
if f : X → Y is a morphism, we have the following functor isomorphisms
DY ◦ Rf! � Rf∗ ◦DX and f ! ◦DY � DX ◦ Rf∗. In particular if f is proper
we have DY ◦Rf! � Rf! ◦DX , if f is an open immersion we have Rf∗ ◦DY �
DX ◦ Rf∗ and if f is smooth with connected fibers of same dimension d, we
have Rf∗[2d] ◦ DY � DX ◦ Rf∗ since in that case we have f ! � f∗[2d] by
[BBD82, 4.2.4].

4.0.35. Recall that a perverse sheaf K over X is an object of Dbc(X) which
satisfies the two following conditions.

(i) dim
(
Supp (HiK)

)
≤ −i,

(ii) dim
(
Supp (HiDXK)

)
≤ −i for all i ∈ Z .

We denote by M(X) the full subcategory of Dbc(X) consisting of perverse
sheaves on X . The categoryM(X) is abelian ([BBD82, Théorème 1.3.6]) and
its objects are all of finite length (see [BBD82, Théorème 4.3.1 (i)]). If ξ is
a local system on X , then we will denote by ξ[d] ∈ Dbc(X) the complex K•
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concentrated in degree −d such that K−d = ξ and Ki = 0 if i �= −d. The
functor ls(X) → Dbc(X), ξ �→ ξ[d] is fully faithful for any integer d. Note
that if X is smooth of pure dimension, then for any ξ ∈ ls(X), the complex
ξ[dimX ] is a perverse sheaf on X .

4.1 Simple Perverse Sheaves, Intersection Cohomology

Complexes

Let Y ⊂ X be a locally closed smooth irreducible subvariety ofX . Let Y be the
Zariski closure of Y in X . Then, for a local system ξ on Y let IC(Y , ξ) ∈ Dbc(Y )
be the corresponding intersection cohomology complex defined by Goresky-
MacPherson and Deligne.

4.1.1. The complex K = IC(Y , ξ)[dimY ] is characterized by the following
properties.

(i) HiK = 0 if i < −dimY ,
(ii) H−dim YK|Y = ξ,
(iii) dim

(
Supp (HiK)

)
< −i if i > −dimY ,

(iv) dim
(
Supp (HiDXK)

)
< −i if i > −dimY .

The complex IC(Y , ξ)[dimY ] is thus clearly a perverse sheaf on Y . It
follows from 4.1.1 that the restriction of IC(Y , ξ)[dimY ] to Y is ξ[dimY ].
Moreover, if U is any smooth open subset of Y and ζ is any local system on
U such that ξ|Y ∩U � ζ|Y ∩U , then IC(U, ζ) = IC(Y , ξ).

4.1.2. Let j : Y ↪→ X and j : Y ↪→ X denote the inclusions. There ex-
ists a fully faithful functor j!∗ : M(Y ) → M(X) (see [BBD82]) that takes
ξ[dimY ] to j!(IC(Y , ξ)[dimY ]) for each local system ξ on Y ; we say that
j!(IC(Y , ξ)[dimY ]) is the perverse extension of ξ on X . If ζ is an irreducible
local system on Y , then K = IC(Y , ζ)[dimY ] is a simple object inM(Y ) and
j!K is a simple object in M(X). Moreover by [BBD82, 4.3.1], all the simple
objects inM(X) are obtained in this way for some pair (Y, ζ) as above.

Proposition 4.1.3. [BBD82, 4.2.5, 4.2.6] Let f : X → Y be a smooth mor-
phism with connected fibers of dimension d.

(a) Assume that X is irreducible (and so Y ) and let V be an open smooth
subset of Y , we have the following commutative diagram.
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f−1(V )

fV

��

� � �� X

f

��
V

� � �� Y

Let E be an irreducible local system on V , then the local system f∗
V (E) is

irreducible and we have

IC(f−1(V ), f∗
V (E))[dimX ] � f∗[d](IC(V , E)[dimY ]).

(b) The functor f∗[d] induces a fully faithful functor M(Y )→M(X).

4.1.4. Let Y ×Z be the product of two varieties. We denote by � the bifunctor
(called the external tensor product) Sh(Y )×Sh(Z)→ Sh(Y ×Z) that takes
(ζ, ξ) to pr∗1(ζ) ⊗ pr∗2(ξ) where pr1, pr2 are respectively the projections on
the first coordinate and on the second coordinate. We also have a bifunctor
(also called the external tensor product) � : Dbc(Y ) × Dbc(Z) → Dbc(Y × Z)
that takes (K1,K2) to pr∗1(K1)⊗ pr∗2(K2) where ⊗ denotes 1 the left derived
functor of the tensor product ⊗ : Sh(Y )×Sh(Z)→ Sh(Y ×Z). The external
tensor product (either for sheaves or complexes) commutes with the usual
operations: if f1 : X1 → Y1 and f2 : X2 → Y2 are morphisms, then

(f1)∗K1 � (f2)∗K2
∼−→ (f1 × f2)∗(K1 �K2),

similarly for (f1 × f2)∗, (f1 × f2)! and (f1 × f2)!.

We have the following proposition.

Proposition 4.1.5. [BBD82, Proposition 4.2.8] Let Y ×Z be the product of
two varieties and let K1 and K2 be two perverse sheaves respectively on Y

and Z. Then the complex K1 �K2 is a perverse sheaf on Y × Z.

Lemma 4.1.6. Consider the product Z ×X of a smooth irreducible variety
Z with an arbitrary algebraic variety X. Assume that U ⊂ X is a smooth
irreducible locally closed subvariety of X. Let ξ and E be two local systems

1 In the literature, it is usually denoted by
L⊗.
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respectively on Z and U and let U be the Zariski closure of U in X. Then we
have an isomorphism in Dbc(Z × U) of perverse sheaves

IC(Z × U, ξ � E)[dim (Z × U)] � ξ[dimZ] � IC(U, E)[dimU ].

Proof: Let K1 = IC(U, E)[dimU ] and K = ξ[dimZ] �K1. We need to check
thatK satisfies the four axioms of 4.1.1 which characterize the complex IC(Z×
U, ξ � E)[dim (Z × U)]. We have a canonical morphism

∑

p+q=n

Hp(ξ[dimZ]) �Hq(K1)→ HnK

which is in fact an isomorphism since the complex ξ[dimZ] is a local system
concentrated in degree −dimZ. We thus have, HnK = ξ �Hn+dimZK1. It is
then easy to check (i), (ii) and (iii) of 4.1.1. By [BBD82, 4.2.7 (b)] we have
DZ×UK = DZ(ξ[dimZ]) �DUK1. Since Z is smooth we have

DZ(ξ[dimZ]) = ξ∨[dimZ]

where for a local system L on a variety V , L∨ denotes the dual local system
of L on V . The axiom (iv) of 4.1.1 follows easily. ��

4.2 H-Equivariance

Let H denote a connected linear algebraic group over Fq acting algebraically
on X . We have the notion of H-equivariant sheaves on X defined as follows:

Let π : H ×X → X be the morphism given by the second projection and
let ρ : H ×X → X given by the action of H on X .

Definition 4.2.1. We say that E ∈ Sh(X) is an H-equivariant sheaf on X

if there exists an isomorphism π∗(E) ∼→ ρ∗(E).

We have the following lemma.

Lemma 4.2.2. Let f : X → Y be an H-equivariant morphism between two
H-varieties. Then the following assertions hold,

(i) If E is an H-equivariant sheaf on Y , then f∗(E) is an H-equivariant
sheaf on X.

(ii) If ξ is an H-equivariant sheaf on X, then f∗(ξ) and f!(ξ) are H-
equivariant.
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Proof: We first prove (i). Let E be an H-equivariant sheaf on Y . Since f is
H-equivariant the following diagram commutes:

H ×X ρX−−−−→ X

IdH×f


� f



�

H × Y ρY−−−−→ Y

where ρX denotes the action of H on X . We deduce that

(ρX)∗ ◦ f∗(E) � (IdH × f)∗ ◦ (ρY )∗(E). (1)

Since E is H-equivariant, we have (ρY )∗E � (prY )∗(E) (where prY : H×Y →
Y is the projection on the second coordinate). But (prY )∗(E) � Q� � E , thus
(1) leads to an isomorphism (ρX)∗ ◦ f∗(E) � (IdH × f)∗(Q� � E), and so we
have an isomorphism (ρX)∗ ◦ f∗(E) � (Q� � f∗E) � (prX)∗ ◦ (f∗E) (where
prX : H ×X → X is the projection on the second coordinate). The proof of
assertion (ii) is also easy and involves the base change theorems. ��

We have the following lemma.

Lemma 4.2.3. Let H act on H×X by left translation on the first coordinate
and on X trivially so that the morphism π is H-equivariant. The functor
π∗ : Sh(X)→ Sh(H×X) induces an equivalence of categories between Sh(X)
and the full subcategory of Sh(H × X) whose objects are the H-equivariant
sheaves. Its inverse functor is given by i∗ where i : X → H ×X, x �→ (1, x).

Proof: Let p,m : H×H×X → H×X be defined bym(h, h′, x) = (hh′, x) and
p(h, h′, x) = (h′, x). Consider j : H ×X → H ×H ×X defined by j(h, x) =
(h, 1, x). Let E be an H-equivariant sheaf on H × X with an isomorphism
φ : m∗(E) � p∗(E). Since i ◦ π = p ◦ j and m ◦ j = IdH×X , the isomorphism
j∗(φ) is an isomorphism E ∼→ π∗ ◦ i∗(E). We thus have proved that the functor
π∗ is essentially surjective. It is also fully faithful because π is smooth with
connected fibers; this is proved in [BBD82, 4.2.5] when reducing the proof of
0.1.7(b) to the case of sheaves. We thus deduce that π∗ is an equivalence of
categories between Sh(X) and the full subcategory of Sh(H ×X) consisting
of H-equivariant sheaves. Moreover since π◦i = IdX , we have i∗π∗(L) = L for
any sheaf L on X and so the inverse functor of π∗ is given by the restriction of
i∗ to the full subcategory of Sh(H×X) formed by H-equivariant sheaves. ��

In the following lemma we denote by α : H ×H → H the multiplication
and by p2 : H ×H → H the projection on the second coordinate. As in 4.2.3,
we denote by i : X → H ×X the map x �→ (1, x).
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Lemma 4.2.4. Let E be an H-equivariant sheaf on X. Then there exists a
unique isomorphism φE : π∗(E) ∼→ ρ∗(E) such that

(i) i∗(φE ) : E → E is the identity.
(ii) (α× IdX)∗(φE ) = (IdH × ρ)∗(φE) ◦ (p2 × IdX)∗(φE).

Proof: Let h be an isomorphism π∗(E) ∼→ ρ∗(E). Let φE = h ◦ π∗(i∗h)−1,
then φE : π∗(E)→ ρ∗(E) is an isomorphism which satisfies i∗(φE ) = IdE . Let
f1, f2 : π∗(E) → ρ∗(E) be two isomorphisms such that i∗(f1) = i∗(f2) = IdE .
Then f−1

1 ◦ f2 : π∗(E) → π∗(E) is an isomorphism. Since the functor π∗ is
fully faithful (see proof of 4.2.3) , there exists a morphism g : E → E such
that π∗(g) = f−1

1 ◦ f2. Hence i∗ ◦ π∗(g) = i∗(f−1
1 ) ◦ i∗(f2), so g = IdE ,

that is f1 = f2. We thus proved the existence of a unique isomorphism φE :
π∗(E) � ρ∗(E) which satisfies 4.2.4 (i). First note that (α × IdX)∗(φE ) and
(IdH × ρ)∗(φE ) ◦ (p2 × IdX)∗(φE) are morphisms between the same sheaves.
Let j : X → H ×H ×X , x �→ (1, 1, x), then j∗

(
(α× IdX)∗(φE )

)
= j∗

(
(IdH ×

ρ)∗(φE) ◦ (p2 × IdX)∗(φE )
)

= IdE . Let j̃ : H × X → H × H × X , (g, x) �→
(1, g, x) so that j = j̃ ◦ i and (α × IdX) ◦ j̃ = IdH×X . Let H acts on H ×X
by left multiplication on the first coordinate. Then the sheaves ρ∗(E) and
π∗(E) are H-equivariant on H ×X since ρ is naturally H-equivariant and π

is H-equivariant if we let H acts trivially on X , hence by 4.2.3 we get that
j̃∗
(
(α × IdX)∗(φE )

)
= j̃∗

(
(IdH × ρ)∗(φE ) ◦ (p2 × IdX)∗(φE )

)
. Applying again

4.2.3, we get that j̃∗ is an equivalence of categories from the full subcategory
of Sh(H ×H ×X) of H-equivariant sheaves on H ×H ×X (H acting by left
multiplication on the first coordinate) onto Sh(H ×X). Hence it remains to
see that (α × IdX)∗(φE ) is a morphism between H-equivariant sheaves. But
this follows from the fact that the map α× IdX is H-equivariant if we let H
act by left multiplication on the first coordinate of H×H×X and H×X . ��

Proposition 4.2.5. Let E be an H-equivariant sheaf on X and let φE :
π∗(E) ∼→ ρ∗(E) be the unique isomorphism such that i∗(φE) is the identity on
E. For h ∈ H, define ih : X → H×X, x �→ (h, x). Let H1 be a closed subgroup
of H acting trivially on X, then the map H1 → Aut(E) given by h �→ i∗h(φE)
is a group homomorphism and factors through a morphism H1/H

o
1 → Aut(E).

Proof: For h ∈ H1, we have ρ ◦ ih = π ◦ ih = IdX from which we see that the
map H1 → Aut(E), h �→ i∗h(φE ) is well defined. It is a group homomorphism
because of 4.2.4(ii). Note that the restriction of ρ to Ho

1 ×X is equal to the
restriction π1 of π toHo

1×X . Hence if f : Ho
1×X ↪→ H×X is the inclusion and

i1 : X → Ho
1 ×X , x �→ (e, x), then f∗(φE ) is an isomorphism π∗

1(E)→ π∗
1(E)

such that i∗1f
∗(φE ) is the identity on E . Since Ho

1 is connected, by 4.2.3 the
functor i∗1 : Sh(X)→ ShHo

1
(Ho

1 ×X) is an equivalence of categories. Thus it
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remains to see that the sheaf π∗
1(E) isHo

1 -equivariant, but this follows from the
fact that the morphism π1 isHo

1 -equivariant if we letHo
1 act onX trivially. ��

Remark 4.2.6. If E is irreducible, the group Aut(E) is canonically isomorphic
to Q

×
� , and so E defines a character of H1/H

o
1 .

The category ShH(X) is defined to be the category whose objects are
H-equivariant sheaves on X and whose morphisms are defined as follows.

Let E and L be two H-equivariant sheaves on X and let φ : π∗(E)→ ρ∗(E)
and ψ : π∗(L)→ ρ∗(L) be the two isomorphisms such that i∗(φ) = i∗(ψ) = Id.
Then a morphism E → L in ShH(X) is a morphism of sheaves Ψ : E → L
which makes the following diagram commutative:

π∗(E) π∗(Ψ)−−−−→ π∗(L)

φ



� ψ



�

ρ∗(E) ρ∗(Ψ)−−−−→ ρ∗(L)

Proposition 4.2.7. ShH(X) is a full subcategory of Sh(X).

Proof: Let E and L be two H-equivariant sheaves on X and let φ : π∗(E)→
ρ∗(E) and ψ : π∗(L) → ρ∗(L) be the two isomorphisms such that i∗(φ) =
i∗(ψ) = Id. Let Ψ : E → L be a morphism in Sh(X). We want to show that
ψ◦π∗(Ψ) = m∗(Ψ)◦φ. We have i∗(ψ◦π∗(Ψ)) = Ψ = i∗(m∗(Ψ)◦ψ). Moreover ρ
is clearlyH-equivariant and π becomes H-equivariant if H acts on X trivially,
hence the sheaves π∗(E), π∗(L), ρ∗(E) and ρ∗(L) are H-equivariant sheaves
on H ×X . We deduce from 4.2.3 that ρ∗(Ψ) ◦ φ = ψ ◦ π∗(Ψ). ��

We denote by lsH(X) the full subcategory of ShH(X) consisting of H-
equivariant local systems on X .

Definition 4.2.8. Let K ∈ M(X), K is said to be H-equivariant if there is
an isomorphism φ : π∗(K) ∼→ ρ∗(K) in Dbc(X).

Lemma 4.2.9. Let f : X → Y be a H-equivariant morphism between two
H-varieties. Then the following assertions hold.

(i) If K is a H-equivariant perverse sheaf on Y , and if f∗[d]K (resp.
f ![d]K) is a perverse sheaf for some integer d, then f∗[d]K (resp. f ![d]K) is
also H-equivariant.
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(ii) If K is a H-equivariant perverse sheaf on X, and if f∗[d]K (resp.
f![d]K) is a perverse sheaf for some integer d, then f∗[d]K (resp. f![d]K) is
also an H-equivariant perverse sheaf on Y .

Proof: The proof is entirely similar to that of 4.2.2. ��

4.2.10. If K is an H-equivariant perverse sheaf on X , then as for sheaves,
see 4.2.4, we can show the existence of a unique isomorphism φK : π∗(K) ∼→
ρ∗(K) such that i∗(φK) is the identity and φK satisfies 4.2.3(ii). We denote
by MH(X) the subcategory of M(X) consisting of H-equivariant perverse
sheaves and whose morphisms are defined in the same way as we defined
morphisms in ShH(X). As we did for sheaves, we can prove that MH(X) is
in fact a full subcategory ofM(X). The proof of proposition 4.2.5 works also
for perverse sheaves.

Remark 4.2.11. The definition 4.2.8 on H-equivariance is not the appropriate
one for the case where K ∈ Dbc(X) is not a perverse sheaf or when H is not
connected. For the general definition of H-equivariance see [BL94].

Remark 4.2.12. Since the morphisms π and ρ are smooth with connected fibers
of same dimension, by 4.0.34, the Verdier dual of an H-equivariant perverse
sheaf on X is H-equivariant, hence the restriction of DX to MH(X) is an
equivalence of categoriesMH(X)→MH(X).

Proposition 4.2.13. Let K ∈ M(X) be H-equivariant, then any subquotient
of K is also H-equivariant.

Proof: Let K ′ be a subquotient of K. Then ρ∗(K ′) is a subquotient of ρ∗(K)
and so is a subquotient of π∗(K) since K is H-equivariant. By [BBD82,
4.2.6.2], there exists a complex K ′′ on X such that π∗(K ′′) � ρ∗(K ′). Apply-
ing the functor i∗ (where i : X → H × X , x �→ (1, x)) to both side, we get
that K ′′ � K ′. ��

The following proposition is the H-equivariant analogue of 4.1.2.

Proposition 4.2.14. The simple objects of MH(X) are the perverse ex-
tensions of H-equivariant irreducible local systems on H-stable locally closed
smooth irreducible subvarieties of X.

4.2.15. LetO be an homogeneousH-variety. We are going to describe the well-
known bijection between the isomorphic classes of H-equivariant irreducible
local systems on O and the irreducible characters of A(x) := AH(x). Since the
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bijective morphism f : H/CH(x) → O induces an equivalence of categories
f∗ : ls(O) → ls(H/CH(x)), we may assume that O = H/CH(x). Let π :
H/CoH(x) → H/CH(x) = O be the projection. Then π is a Galois covering
with Galois group A(x), hence the local system π∗(Q�) is a semi-simple local
system on H/CH(x) whose endomorphism algebra is isomorphic to the group
algebra of A(x). The local system π∗(Q�) decomposes as follows.

π∗(Q�) =
⊕

χ∈A(x)∨
(Lχ)χ(1)

where for a group F , we denote by F∨ the set of irreducible Q�-characters of
F and where Lχ is the irreducible local system on O associated to χ as in
4.0.32. Since π is H-equivariant, by 4.2.13, the local systems Lχ are also H-
equivariant. Hence we have defined a map χ �→ Lχ from the set of irreducible
characters of A(x) onto the set of H-equivariant irreducible local systems
on O. Conversely, let E be an irreducible H-equivariant local system on O.
Then the homomorphism ρ : A(x) → Aut(Ex) (see 4.2.5) is an irreducible
representation of A(x) such that if χ is the character of ρ, then E = Lχ.

4.2.16. Let C be an H-stable locally closed smooth irreducible subvariety of
X and let ξ be an irreducible H-equivariant local system on C. Then (C, ξ) is
called a pair of X . We say that a pair (C, ξ) of X is orbital if C is an H-orbit
of X . If H acts by Ad on H := Lie(H), then an orbital pair (C, ξ) of H is said
to be nilpotent if C is a nilpotent orbit. If H acts by conjugation on itself, we
say that an orbital pair (C, ξ) of H is unipotent if C is a unipotent conjugacy
class of H .

If Y is locally closed smooth irreducible subvariety of X and if E is
a local system on Y , then we denote by KX(Y, E) ∈ M(X) the complex
IC(Y , E)[dimY ] extended by zero on X − Y . We say that a simple perverse
sheaf on X is orbital if its is of the form KX(C, ξ) for some orbital pair (C, ξ)
of X . If X = H and H acts by Ad, or if X = H and H acts by conjugation,
then we will write K(C, ξ) instead of KX(C, ξ) if there is no ambiguity.

4.3 Locally (Iso)trivial Principal H-Bundles

Definition 4.3.1. [BR85, 5.2][Ser58] Let H be an algebraic group and let H
act morphically on a variety X on the right. Let π : X → Y be a morphism
which is constant on H-orbits. Then π is a trivial principal H-bundle if there
exists an H-isomorphism φ : H × Y → X (H acts on H × Y on the right by
(h′, x).h = (h′h, x)) such that π ◦ φ = pr2.
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(i) We say that π is a locally trivial principal H-bundle if for any x ∈ Y ,
there exists an open neighborhood U of x such that π−1(U) is a trivial principal
H-bundle over U .

(ii) We say that π is a locally isotrivial principal H-bundle if for any
x ∈ Y , there exists an open neighborhood U of x and an étale covering V → U

such that the pull back V ×Y X is a trivial principal H-bundle over V .

Proposition 4.3.2. [Ser58] Let H be a linear algebraic group and K be a
closed subgroup of H. The projection π : H → H/K is a locally isotrivial
principal K-bundle.

Proposition 4.3.3. [Ser58] Let H and K be as in 4.3.2 with K reductive
and let V be an affine K-variety. We define a right action of K on H × V
by (h, v).k = (hk, k−1.v). We denote by H ×K V the quotient (H × V )/K
(it exists since K is reductive). Let π : H × V → H ×K V be the canonical
projection, then π is a locally isotrivial principal K-bundle.

Proposition 4.3.4. Let H be a connected algebraic group and let X be an
H-variety. Let f : X → Y be a locally isotrivial principal H-bundle. Then
the functor f∗ : Sh(Y ) → ShH(X) is an equivalence of categories with in-
verse functor f∗ : ShH(X) → Sh(Y ). In particular f∗ maps H-equivariant
irreducible local systems over X onto irreducible local systems over Y .

Proof: We may assume without loss of generality that X = H × Y and f is
the projection on the second coordinate.

Let i : Y → H × Y be the injection given by y �→ (1, y). By 4.2.3, f∗ :
Sh(Y ) → ShH(X) is an equivalence of categories whose inverse functor is
given by i∗ : ShH(X)→ Sh(Y ). It remains to prove that the functors f∗ and
i∗ are isomorphic. Since f∗ is a right adjoint to f∗, it is enough to show that
i∗ is also a right adjoint to f∗. Since f ◦ i = IdY , the functor i∗ defines a map
of bifunctors Hom(f∗(.), .) → Hom(., i∗(.)) which is clearly an isomorphism
of bifunctors. ��

Theorem 4.3.5. Let H be a connected algebraic group, let X be an H-variety
and let f : X → Y be a locally trivial principal H-bundle. Let d = dimH. Then
the functor f∗[d] :M(Y )→MH(X) which sends K ∈M(Y ) onto f∗K[d] is
an equivalence of categories.
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Proof: Since f is a locally trivial principal H-bundle and H is connected, the
morphism f is smooth with connected fibers and so the theorem follows from
4.1.3 and [Lus85a, 1.9.3]. ��

We will use the following proposition in chapter 7.

Proposition 4.3.6. Let G be a connected reductive group over an alge-
braically closed field k and let x ∈ G := Lie(G). We assume that p is very good
for G so that L := CG(xs) is a connected Levi subgroup of G (see 2.6.13(ii)),
2.6.18), and Lie

(
CG(y)

)
= CG(y) for any y ∈ G (see 2.6.2). Let j : OLx ↪→ OGx

and j : OLx ↪→ OGx be the inclusions. Then for any G-equivariant local system
E on OGx , we have j

∗(
IC (OGx , E)

)
� IC (OLx , j∗(E)).

Proof: Let y ∈ G be such that ys = xs. Since L = CG(xs), we have
CG(y) = CL(y) and we also have CG(y) = CL(y). Hence we have Lie

(
CL(y)

)
=

Lie
(
CG(y)

)
= CG(y) = CL(y), and so we may identify OGy and OLy respec-

tively with G/CG(y) and L/CL(y). By 4.3.2, the morphism G → G/L is a
locally isotrivial principal L-bundle. So let V → G/L be an étale open set
of G/L such that the projection on the second coordinate G ×G/L V → V

is a trivial principal L-bundle (we take V smooth and irreducible), and let
fV : L × V → G ×G/L V be an L-isomorphism such that the following dia-
gram commutes.

L× V
fV ��

pr2
����

��
��

��
� G×G/L V

pr2
�����

���
���

�

V

where pr2 denotes the projection on the second coordinate. The map fV is
thus of the form (h, v) �→ (gvh, v) for some morphism V → G, v �→ gv. Since
CG(y) = CL(y), the map fV gives rise to an isomorphism fV,y : L/CL(y) ×
V

∼−→
(
G/CG(y)

)
×G/L V . Let v ∈ V , we have the following commutative

diagram.

L/CL(y)× V
fV,y �� G/CG(y)×G/L V

pr1

��
L/CL(y)

fgv ��

iv

��

G/CG(y)

where iv(X) = (X, v) and fgv(X) = gvX . Now let x1, ..., xr ∈ L be such that
OLx =

∐
iOLxi

. Then we have OGx =
∐
iOGxi

(see 7.1.7). Since (xi)s = xs for
any i ∈ {1, ..., r}, the above diagram is available if we replace y by any xi.
Hence by identifying OGxi

and OLxi
respectively with G/CG(xi) and L/CL(xi)

we get the following commutative diagram.
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OLx × V
FV �� OGx ×G/L V

pr1

��
OLx

fgv ��

iv

��

OGx
where iv(x) = (x, v), pr1 is the projection on the first coordinate, fgv = Ad(gv)
and where FV (x, v) = (Ad(gv)x, v). The morphism φ := pr1 ◦ FV is smooth
with connected fibers of same dimension, hence from 4.1.3, we have

φ∗
(
IC(OGx , E)

)
� IC(OLx × V , ψ∗(E)) (1)

where ψ : OLx ×V → OGx is the restriction of φ to OLx ×V . Now we decompose
φ as follows.

OLx × V
α ��

φ

��

OLx ×G

i

��
OGx OGx ×G

ρ��

where α(x, v) = (x, gv), i is the inclusion and ρ is given by the adjoint action
of G on G. Hence if we put K = IC(OGx , E), then using the G-equivariance of
K we get that, φ∗(K) � j∗(K)�Q�. Similarly we see that ψ∗(E) � j∗(E)�Q�.
Hence from 4.1.6 and (1), we deduce that j

∗
(K) � Q� � IC (OLx , j∗(E)) � Q�.

Applying the functor i∗v, we prove the proposition. ��

4.4 F -Equivariant Sheaves and Complexes

Assume now that X is defined over Fq and denote by F the corresponding
Frobenius on X .

Definition 4.4.1. A complex K ∈ Dbc(X) is said to be F -stable if F ∗(K) is
isomorphic to K.

Definition 4.4.2. An F -equivariant complex on X is a pair (K,φ) where
K ∈ Dbc(X) and φ : F ∗(K) ∼→ K is an isomorphism.

A morphism f : (K,φK) → (K ′, φK′) of F -equivariant complexes is a
morphism f : K → K ′ in Dbc(X) which makes the following diagram commu-
tative,
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F ∗(K)
F∗(f) ��

φK

��

F ∗(K ′)

φK′
��

K
f �� K ′

Similarly, we define the notion of F -stable sheaves, F -equivariant sheaves and
morphisms of F -equivariant sheaves on X .

Definition 4.4.3. If (K,φ) is an F -equivariant complex on X, we define the
characteristic function XK,φ : XF → Ql of (K,φ) by

XK,φ(x) =
∑

i

(−1)iTrace(φix,HixK)

where φix denotes the automorphism of HixK induced by φ.

The characteristic function XE,φ : XF → Q� of an F -equivariant sheaf
(E , φ) on X is defined as follows,

XE,φ(x) = Trace(φx, Ex)

where φx : Ex → Ex is the isomorphism induced by φ.

Remark 4.4.4. If (K,φ) and (K ′, φ′) are two isomorphic F -equivariant com-
plexes (or sheaves), then their characteristic functions are equal.

Notation 4.4.5. If K is a complex (or a sheaf) on X , then for any integer r,
we denote by K(r) the r-th Tate twist of K.

Remark 4.4.6. If (K,φ) is an F -equivariant complex (or sheaf), then for any
integer n, recall that XK(n),φ(n) = q−nXK,φ.

We have the following fact.

Lemma 4.4.7. Let (K,φ), (K ′, φ′) be two F -equivariant simple perverse
sheaves on X such that K � K ′ in M(X). Then there is a unique element
c ∈ Q

×
� such that XK,φ = cXK′,φ. Moreover if c = 1, then (K,φ) and (K ′, φ′)

are isomorphic.

Notation 4.4.8. Let (K,φ) be an F -equivariant complex on X , then for any
integer n ≥ 1, we denote by φ(n) : (Fn)∗K ∼→ K the isomorphism defined by
φ(n) = Fn−1(φ) ◦ ... ◦ F (φ) ◦ φ.
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We have (see [Sho88, 18.8]):

Lemma 4.4.9. Let (K,φ) and (K ′, φ′) be two F -equivariant semi-simple per-
verse sheaves on X such that for any n ≥ 1, we have XK,φ(n) = XK′,φ′(n) .
Then K and K ′ are isomorphic in M(X).

4.4.10. Let H be a connected linear algebraic group defined over Fq acting
morphically on X . We assume that this action is defined over Fq and we still
denote by F : H → H the Frobenius on H .

Remark 4.4.11. Let K be an H-equivariant F -stable complex (or sheaf) on X
and let φ : F ∗(K)→ K be an isomorphism. Then the function XK,φ on XF

is HF -invariant i.e. for any h ∈ HF and any x ∈ XF , we have XK,φ(h.x) =
XK,φ(x).

We say that a pair (Z, E) of X , see 4.2.16, is F -stable if Z and E are both
F -stable. Two orbital pairs (O, E) and (C, ζ) of X are said to be isomorphic
if O = C and E is isomorphic to ζ. Let I be a set of representatives of the
isomorphic classes of orbital pairs of X and we denote by IF the subset of
I corresponding to F -stable pairs. For each F -stable H-orbit O of X , we
choose an element xO ∈ OF and we put A(xO) := AH(xO). Let (X/H)F

be the set of F -stable H-orbits of X , then IF is in bijection with the set
∐

O∈(X/H)F H1(F,A(xO)) which by 2.1.20 is in bijection with the HF -orbits
of XF .

Indeed, let O ∈ (X/H)F , then under the bijection of 4.2.15 between iso-
morphic classes of H-equivariant irreducible local systems and irreducible
characters of A(xO), the F -stable local systems corresponds to the F -stable
characters. Moreover we have:

4.4.12. Let H be a finite group and θ : H → H an automorphism of finite
order. Then the number of θ-stable irreducible Q�-characters of H is equal to
the number of elements of H1(θ,H).

Since A(xO) is finite, there is a power qn for which all the elements
of A(xO) are defined over Fqn , i.e. such that Fn = IdA(xO). Hence we
can apply 4.4.12 to (A(xO), F ) and we get that the set of isomorphic
classes of F -stable H-equivariant irreducible local systems on O is in bi-
jection 2 with H1(F,A(xO)) and so we get a bijection between IF and
∐

O∈(X/H)F H1(F,A(xO)).

For each ι ∈ I, put ι = (Oι, Eι). If ι ∈ IF , we choose an F -equivariant
local system (Eι, φι) and we denote by Yι : XF → Q� the characteristic
2 This bijection is not canonical.
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function of (Eι, φι) extended by zero on XF − OFι . The F -equivariant local
system (Eι, φι) leads to a canonical F -equivariant complex (Kι, φι) where
Kι = KX(Oι, Eι) and where φι still denotes the isomorphism F ∗(Kι) → Kι

induced by φι : F ∗(Eι)→ Eι. The characteristic function of (Kι, φι) is denoted
by Xι. We have:

Proposition 4.4.13. The sets {Yι, ι ∈ IF } and {Xι, ι ∈ IF } are both bases
of the space C(XF ) of Q�-valued HF -invariant functions on XF .

Proof: We already saw that these two sets have the right number of ele-
ments to be bases of C(XF ). We thus have to verify that both sets consist
of linearly independent elements. The case of the functions Xι reduces easily
to the case of the functions Yι. Let (O, E) be a pair of X and let x ∈ O.
By 4.2.15, the local system E corresponds to an irreducible representation
ρ : A

(
F (x)

)
→ GL(EF (x)) and the local system F ∗(E) corresponds to an irre-

ducible representation ρ′ : A(x)→ GL(EF (x)). Hence ρ ◦ F is also a represen-
tation of A(x) corresponding to the local system F ∗(E), it is thus isomorphic
to ρ′. We thus assume that ρ ◦F = ρ′. Assume now that (O, E , x) is F -stable
and let φ : F ∗(E) ∼→ E be an isomorphism. Then the representations ρ ◦ F
and ρ of A(x) are isomorphic, that is there exists a Q�-linear isomorphism
αx : Ex ∼→ Ex such that αx ◦ ρ(t) = ρ(F (t)) ◦ αx for all t ∈ A(x). Now let
h ∈ H be such that h.x ∈ OF and let t ∈ A(x) be such that h−1F (h) is
a representative of t in CH(x); then Trace (αh.x) = Trace(αx ◦ ρ(t)). This
defines a function α : OF → Q�, y �→ Trace(αy) which is equal to the func-
tion OF → Q�, y �→ Trace (φy , Ey) for an appropriate choice of φ. Now put
(Oι, Eι, xι, ρι) = (O, E , x, ρ) for some ι ∈ IF , and let γι : A(xι) → Q� be
defined by γι(t) = Trace (αxι ◦ ρι(t)). We may assume that the xι ∈ OFι are
chosen such that if Oι = Oµ for ι, µ ∈ IF , then xι = xµ. To prove the inde-
pendence of the functions Yι, ι ∈ IF , we are thus reduced to show that for
any ι ∈ IF , the functions γµ with µ ∈ Aι := {µ ∈ IF |Oµ = Oι} are linearly
independent. Define γ−1

ι : A(xι) → Q�, t �→ Trace
(
(αxι ◦ ρι(t))−1

)
. It is suf-

ficient to show that for any µ ∈ Aι, we have
∑
t∈A(xι)

γ−1
µ (t)γι(t) = 0 if and

only if ι �= µ. The proof of such a fact is similar to that of the orthogonality
formula for irreducible characters (see for instance [Ser78]). ��



5

Geometrical Induction

In the group case, Deligne-Lusztig induction (see 3.2.1) is defined using the
basis formed by characters. By making the use of Lusztig’s character sheaves,
it is possible to define another “twisted” induction using the basis formed by
the characteristic functions of some simple perverse sheaves so-called character
sheaves. In [Lus90], it is proved, under some restrictions on p and q, that the
two inductions coincide.

Starting from [Lus87] and by adapting Lusztig’s ideas to the Lie algebra
case, we write down a character sheaves theory for reductive Lie algebras
adapted to the study of Fourier transforms. Using the character sheaves on
Lie algebras, we define a “twisted” induction for invariant functions we call
“geometrical induction”. By transferring [Lus90, 1.14] to the Lie algebra case
by means of a G-equivariant isomorphism Guni → Gnil, we show, as in the
group case, that Deligne-Lusztig induction coincides with geometrical induc-
tion. The coincidence of these two definitions will be used (see next chapter) to
study the commutation of Deligne-Lusztig induction with Fourier transforms.

The reader will be able to notice that when establishing the results of 5.1.9,
5.1.14, 5.1.26, 5.1.41 and 5.1.51, analogous to [Lus84], we do not assume, unlike
in [Lus84], that the pair (Σ, E) is “cuspidal” and that Z is the whole center.
Indeed, the proofs of these results do not require such assumptions and it will
be useful here to state these results in that more general context.

Throughout this chapter we make the following assumption, where by a
“cuspidal pair” of G, we mean a cuspidal pair (S, E) of G in the sense of
[Lus84, 2.4] such that S contains a unipotent conjugacy class of G.

E. Letellier: LNM 1859, pp. 61–113, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Assumption 5.0.14. The prime p is acceptable, that is, it satisfies the fol-
lowing conditions:

(i) p is good for G.
(ii) p does not divide |(X(T )/Q(Φ))tor|.
(iii) There exists a non-degenerate G-invariant bilinear form on G.
(iv) p is very good for any Levi subgroup of G supporting a cuspidal pair.
(v) There exists a G-equivariant isomorphism Guni → Gnil.

Remark 5.0.15. Although 5.0.14 (v) might not be necessary, it will be useful
to transfer some results from the group case to the Lie algebra case. The
assumption 5.0.14(iv) will be used to apply 2.5.16.

We have the following properties which can be deduced easily from the
results of the second chapter and the classification of the cuspidal data of G
[Lus84].

Lemma 5.0.16. (i) If p is acceptable for G, then it is acceptable for any Levi
subgroup of G.

(ii) If p is very good for G, it is acceptable for G.
(iii) All primes are acceptable for G = GLn(k).
(iv) If G is simple, the very good primes are the acceptable ones for G.

We choose once for all a Lie algebra isomorphism G � z(G) ⊕ G as in 2.3.1
(note that under our assumption on p, we have Lie(ZoG) = z(G)).

5.1 Admissible Complexes and Orbital Perverse Sheaves

on G

Following [Lus87] we introduce a kind of Harish-Chandra theory for a sub-
class of the class of G-equivariant perverse sheaves on G. This will be achieved
through the definition of cuspidal G-equivariant perverse sheaves on G to-
gether with a functor indG

L⊂P : ML(L) → Dbc(G) defined for any Levi de-
composition P = LUP in G with corresponding Lie algebra decomposition
P = L ⊕ UP .

The above subclass will consist of so-called “admissible complexes” (or
character-sheaves) on G and the cuspidal perverse sheaves on G will be those
admissible complexes which can not be obtained as a direct summand of some
indG

L⊂P(K) with L a proper Levi subgroup of G and K an admissible complex
of L.
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5.1.1 Parabolic Induction of Equivariant Perverse Sheaves

5.1.2. Let P be a parabolic subgroup of G, and LUP a Levi decomposition of
P . Let P = L ⊕ UP be the corresponding Lie algebra decomposition. Recall
that πP : P → L denotes the canonical projection. Define

V1 = {(x, h) ∈ G ×G|Ad(h−1)x ∈ P},

V2 = {(x, hP ) ∈ G × (G/P )|Ad(h−1)x ∈ P}.
We have the following diagram

L π←− V1
π′
−→ V2

π′′
−→ G

where π′′(x, hP ) = x, π′(x, h) = (x, hP ), π(x, h) = πP(Ad(h−1)x).

5.1.3. Let K be an object in ML(L). The morphism π is smooth with
connected fibers of dimension m = dimG + dimUP and is P -equivariant
with respect to the action of P on V1 and on L given respectively by
p.(x, h) = (x, hp−1) and p.x = Ad(πP (p))x. Hence π∗K[m] is a P -equivariant
perverse sheaf on V1 (see 4.1.3 (b)). But π′ is a locally trivial principal P -
bundle (see [Jan87, page 183, (5)]), hence by 4.3.5, there exists a unique
perverse sheaf K̃ on V2 such that

π∗K[m] = (π′)∗K̃[dimP ].

Now we define the induced complex indG
P(K) of K by

indG
L⊂P(K) = (π′′)!K̃ ∈ Dbc(G).

This process defines a functor indG
L⊂P :ML(L)→ Dbc(G).

Remark 5.1.4. Assume that P , L and K are all F -stable and let φ :
F ∗(K) → K be an isomorphism. Then φ induces a canonical isomorphism
ψ : F ∗(indG

L⊂P(K)) ∼−→ indG
L⊂P(K) such that,

RG
L(XK,φ) = XindG

L⊂P (K),ψ (*)

where RG
L is the Harish-Chandra induction (see 3.1.2). Indeed, if we denote

by F2 the Frobenius on V2 defined by F2(x, hP ) = (F (x), F (h)P ) and by
φ̃ : F ∗

2 (K̃) ∼→ K̃ the isomorphism induced by φ, then (*) follows easily from
the formula

Xπ′′
! (K̃),ψ(y) =

∑

x∈(π′′−1(y))F2

XK̃,φ̃(x)

which is a consequence of the Grothendieck trace formula.
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Lemma 5.1.5. We have an isomorphism of functors

indGL⊂P ◦DL � DG ◦ indGL⊂P .

Proof: Since the morphisms π and π′ are smooth with connected fibers of
same dimension and since the morphism π′′ is proper, we get the following
relations:
(i) DV1 ◦ (π∗[m]) � π∗[m] ◦DL,

(ii) DV1 ◦ ((π′)∗[dimP ]) � (π′)∗[dimP ] ◦DV2 ,

(iii) DG ◦ (π′′)! � (π′′)! ◦DV2 .
Hence the lemma follows from 4.2.12. ��

Remark 5.1.6. If K ∈ ML(L) is such that indG
L⊂P(K) ∈ M(G) then

indG
L⊂P(K) is automatically a G-equivariant perverse sheaf on G; this fol-

lows from 4.2.9 since the morphisms π, π′ and π′′ are all G-equivariant if we
let G act on V1 and V2 by Ad on the first coordinate and by left translation
on the second coordinate, and on L trivially.

5.1.7. We now state a transitivity property of induction. Let P = LUP and
Q = MUQ be two Levi decompositions in G, with corresponding Lie algebra
decompositions P = L⊕UP and Q =M⊕UQ, such that L ⊂M and P ⊂ Q.
Then we have the following proposition (see [Lus85a, Proposition 4.2]).

Proposition 5.1.8. Let K ∈ ML(L) and assume that indML⊂P∩M(K) is a
perverse sheaf. Then indGM⊂Q

(
indML⊂M∩P(K)

)
= indGL⊂P(K).

Proof: The proof is entirely similar to that of [Lus85a, Proposition 4.2]. ��

5.1.9 The Complexes indG
L⊂PK(Σ, E)

Let (P,L,Σ, E) be a tuple where P is a parabolic subgroup of G, L is a Levi
subgroup of P and where (Σ, E) is a pair of L = Lie(L) (see 4.2.16) such
that Σ = Z + C with C a nilpotent orbit of L and Z is a closed irreducible
smooth subvariety of z(L). Let P = L⊕UP be the Lie algebra decomposition
corresponding to the decomposition P = LUP .

The admissible complexes will be defined as the simple direct summand of
the complexes of the form indG

L⊂PK(Σ, E) where (Σ, E) is a “cuspidal” pair of
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L (in which case Z = z(L)). However, we will also need to use the complexes
of the form indG

L⊂PK(Σ, E) where (Σ, E) is a (non-necessarily “cuspidal”)
orbital pair of L, i.e. Z = {σ} with σ ∈ z(L).

We keep the notation of 5.1.1.

Define
X1 := {(x, g) ∈ G ×G | Ad(g−1)x ∈ Σ + UP },

X2 := {(x, gP ) ∈ G × (G/P ) |Ad(g−1)x ∈ Σ + UP }.

Remark 5.1.10. Note that the definition of X2 makes sense since by 2.6.6, the
group P normalizes Σ+UP . Note that X1 is closed in V1 since it is the inverse
image of Σ + UP by the morphism G ×G→ G, (x, g) �→ Ad(g−1)x. Therefore
X2 is closed in V2; indeed the morphism π′ of 5.1.2 is open and π′−1(X2) = X1.
Moreover, the morphism X1 → (Σ + UP ) ×G, (x, g) �→ (Ad(g−1)x, g) being
an isomorphism, X1 and X2 are both irreducible.

We have the following commutative diagram.

5.1.11.
Σ

ρ←−−−− X1
ρ′−−−−→ X2

ρ′′−−−−→ G

i



� i1



� i2



� ||



�

L π←−−−− V1
π′

−−−−→ V2
π′′
−−−−→ G

where i, i1, i2 are the natural inclusions and ρ, ρ′ and ρ′′ are given by the
respective restrictions of π, π′ and π′′.

Remark 5.1.12. Note that ρ and ρ′ being obtained respectively from π and π′

by base change, ρ is smooth with connected fibers of dimension m = dimG+
dimUP and ρ′ is a locally trivial principal P -bundle.

The variety Σ is open in its Zariski closure Σ, hence X1,o = ρ−1(Σ) is an
open subset of X1. Using the fact that ρ′ is a quotient map we deduce that
X2,o = ρ′(X1,o) is open in X2. We have,

X1,o = {(x, g) ∈ G ×G|Ad(g−1)x ∈ Σ + UP },

X2,o = {(x, gP ) ∈ G × (G/P )|Ad(g−1)x ∈ Σ + UP }.

Remark 5.1.13. Since ρ is smooth (see 5.1.12), as well as Σ, we get that X1,o

is also smooth. Hence, from the fact that the restriction ρ′o : X1,o → X2,o of
ρ′ is a locally trivial principal P -bundle (see 5.1.12), we deduce that X2,o is
also smooth. Note also that X2,o is irreducible since X2 is irreducible.
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Now let P act on X1 by right translation on the second coordinate and
on Σ by p.x = Ad(πP (p))x with p ∈ P , x ∈ Σ. These actions make ρ into
a P -equivariant morphism from which we deduce that X1,o is P -stable and
since the above action of P on Σ factors through L we also deduce that the
local system E is P -equivariant. As a consequence we get that ρ∗o(E) is a P -
equivariant irreducible local system on X1,o. By 5.1.12, the morphism ρ′o is
a locally trivial principal P -bundle, therefore, by 4.3.4, there exists a unique
irreducible local system E2 on X2,o such that ρ∗o(E) = (ρ′o)

∗(E2). We consider
the complex K2 = IC(X2,o, E2)[dimX2,o] on X2. We have

indG
L⊂PK(Σ, E) = (ρ′′)!K2. (*)

Indeed, if K = K(Σ, E), we have K = i!(IC(Σ, E)[dimΣ]) and so by using
the fact 1 that

(ρ′)∗[dimP ]K2 = ρ∗[m](IC(Σ, E)[dimΣ])

and by applying the proper base change theorem successively to the left square
and the middle square (which are cartesian) of the diagram 5.1.11, we see that
(i2)!K2 = K̃ (see 5.1.1 for the definition of K̃) and so we have (π′′)!◦(i2)!K2 =
(π′′)!K̃. Since ρ′′ = π′′ ◦ i2, we see that (ρ′′)!K2 = indG

L⊂PK(Σ, E).

5.1.14 The Complexes indG
L⊂PK(Σ, E) Are G-Equivariant

Perverse Sheaves

We first establish some intermediate results.

Let (P,L,Σ) be as in 5.1.9. We denote by z(L)reg the set of L-regular
elements in G; by 2.6.13 (i), this set is a non-empty open subset of z(L). We
define

Z = {(x, gP, hP ) ∈ G × (G/P ) × (G/P )| x ∈ Ad(g)(Σ + UP ) ∩ Ad(h)(Σ + UP )}.

We consider the action of G on (G/P ) × (G/P ) by left multiplication on
both coordinates, then we have a partition Z =

⋃
O ZO according to the G-

orbits O on (G/P )× (G/P ). A G-orbit O is said to be good if for (gP, hP ) ∈
(G/P ) × (G/P ), there is a common Levi subgroup of gPg−1 and hPh−1;
otherwise O is said to be bad. Let d = dimG− dimL+ dimΣ.
1 Both (ρ′)∗[dimP ]K2 and ρ∗[m](IC(Σ, E)[dimΣ]) are canonically isomorphic to

IC(X1,o, ρ∗
oE)[dimX1,o] = IC(X1,o, (ρ

′
o)

∗E2)[dimX1,o] in view of 4.1.3 (a) which

by 5.1.12 and 5.1.13 can be applied to (ρ,Σ) and (ρ′, X2,o).

Administrator
ferret
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We have the following proposition which is slightly more general than the
Lie algebra version of [Lus84, Proposition 1.2 (a), (c)] since in our case, Z is
not necessarily the whole center.

Proposition 5.1.15. With the above notation we have:
(1) For any nilpotent G-orbit O of G and u ∈ Lnil we have

dim (O ∩ π−1
P (u)) ≤ 1

2
(dimO − dimOLu ).

(2) For any G-orbit O we have

dimZO ≤ d. (*)

If Z ∩ z(L)reg �= ∅ then the inequality (*) is strict for bad O. In any case we
have dimZ ≤ d.

Proof: We get (1) as a consequence of its group version (see [Lus84, Propo-
sition 1.2 (a)]) via a G-equivariant isomorphism Guni → Gnil. We now prove
(2) by adapting the proof of [Lus84, Proposition 1.2 (c)] to the Lie algebra
case.

Let T be a maximal torus contained in P . By the Bruhat decomposition
of G, any G-orbit O is the G-orbit of (P, ẇP ) for some ẇ ∈ NG(T ). Let
w ∈ WG(T ) and let Ow be the G-orbit of (P, ẇP ) in (G/P ) × (G/P ) where
ẇ ∈ NG(T ) denotes a representative of w. The fibers of the morphism ZOw →
Ow given by (X, gP, gẇP ) �→ (gP, gẇP ) are all isomorphic to (Σ + UP ) ∩
Ad(ẇ)(Σ + UP ); the map ZOw → Ow is in fact a locally trivial fibration. It
follows that

dim
(
(Σ + UP ) ∩Ad(ẇ)(Σ + UP )

)
= dimZOw − dimOw.

Hence to prove the proposition, it is enough to prove that

dim
(
(Σ + UP ) ∩Ad(ẇ)(Σ + UP )

)
≤ dimG− dimL+ dimΣ − dimOw (a)

with strict inequality if Z ∩ z(L)reg �= ∅ and Ow is bad.

An element of (Σ + UP ) ∩ Ad(ẇ)(Σ + UP ) can be written both in the
form x + u with x ∈ Σ, u ∈ UP and in the form y + v with y ∈ Ad(ẇ)Σ,
v ∈ Ad(ẇ)UP . By decomposing x + u = y + v ∈ P ∩ Ad(ẇ)P with respect
to the formula of 2.1.15 with Q := Ad(ẇ)P and M := Ad(ẇ)L, we have
x = z+u′ for some unique z ∈ L∩Ad(ẇ)L, u′ ∈ L∩Ad(ẇ)UP and y = z+ v′

for some unique v′ ∈ Ad(ẇ)L ∩ UP .

Note that we have u+u′ = v+v′. Let Lw = ẇLẇ−1, Pw = ẇP ẇ−1, Lw =
Ad(ẇ)L, Pw = Ad(ẇ)P , Σw = Ad(ẇ)Σ, Zw = Ad(ẇ)Z, Cw = Ad(ẇ)C. Let
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Xw be the subvariety of UP×UPw×(UPw∩L)×(UP ∩Lw)×(L∩Lw) consisting
of (u, v, u′, v′, z) such that u+ u′ = v + v′, z + u′ ∈ Σ and z + v′ ∈ Σw. The
inequality (a) is then equivalent to

dimXw ≤ dimG− dimL+ dimΣ − dimOw (b)

with strict inequality if Z ∩ z(L)reg �= ∅ and Ow is bad. Let

Yw := {(u′, v′, z) ∈ (UP w ∩ L) × (UP ∩ Lw) × (L ∩ Lw)|z + u′ ∈ Σ, z + v′ ∈ Σw}

We have an isomorphism Xw → Yw × {(x, y) ∈ UP × UPw | x = y} given by
(u, v, u′, v′, z) �→ ((u′, v′, z), (u−v′, v−u′)), thus dimXw = dimYw+dim(UP ∩
UPw ). From the fact that Ow and G/(P ∩ Pw) have the same dimension, we
see that dim(UP ∩ UPw ) = dimG − dimL − dimOw. We deduce that (b) is
equivalent to

dimYw ≤ dimΣ

with strict inequality if Z ∩ z(L)reg �= ∅ and Ow is bad.

Let (u′, z) ∈ (UPw ∩ L) × (L ∩ Lw) such that z + u′ ∈ Σ. The product
(Lw ∩ L).(UPw ∩ L) being a Levi decomposition of the parabolic subgroup
Pw ∩ L of L (with corresponding Lie algebra decomposition Pw ∩ L = (L ∩
Lw) ⊕ (UPw ∩ L)), by 2.7.1(ii) we get that (z + u′)s is (UPw ∩ L)-conjugate
to zs. But since z + u′ ∈ Σ = Z + C , we have (z + u′)s ∈ Z. We deduce
that zs ∈ Z. Similarly, if v′ ∈ (UP ∩ Lw) is such that z + v′ ∈ Σw, then
zs ∈ Zw. By the finiteness of the number of nilpotent orbits in L ∩ Lw =
Lie(L ∩ Lw), we see that the image of the projection pr3 : Yw → L ∩ Lw
on the third coordinate is thus contained in ((Z ∩ Zw) + C1) ∪ ... ∪ ((Z ∩
Zw) +Cn) for a finite set of nilpotent (L∩Lw)-orbits Ci of L∩Lw such that
for i ∈ {1, ..., n}, the image of pr3 intersects (Z ∩ Zw) + Ci. Now note that
L ∩ Lw acts on Yw by the adjoint action on the three coordinates and so pr3
is naturally (L∩Lw)-equivariant, hence its image must be (L∩Lw)-invariant.
As a consequence, we see that the image of pr3 is ((Z ∩Zw)+C1)∪ ...∪ ((Z ∩
Zw) + Cn). Now if z ∈ (Z ∩ Zw) + Ci for some i ∈ {1, ..., n}, then pr−1

3 (z)
is isomorphic to {u′ ∈ UPw ∩ L| zn + u′ ∈ C}×{v′ ∈ UP ∩ Lw| zn + v′ ∈ Cw}
which is isomorphic to (π−1

L∩Pw (zn) ∩ C)× (π−1
Lw∩P(zn) ∩Cw).

We deduce from 5.1.15(1) that dim
(
pr−1

3 (z)
)
≤ 1

2 (dimC − dimCi) +
1
2 (dimC − dimCi) and so that

dim
(
pr−1

3 ((Z ∩ Zw) + Ci)
)
≤ dim (Z ∩ Zw) + dimC. (*)

Now Yw =
∐
i∈{1,...,n} pr

−1
3 ((Z ∩ Zw) + Ci). Since the above union of closed

sets is finite, we deduce from (*) that dimYw ≤ dim(Z ∩ Zw) + dimC. We
deduce that
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dimYw ≤ dimZ + dimC

with strict inequality if Z ∩ z(L)reg �= ∅ and Ow is bad since in that case we
always have Z ∩ Zw � Z. ��

We are now going to see a first consequence of 5.1.15 (see proposition
5.1.18 below). We use the notation of 5.1.9 relatively to (P,L,Σ, E).

Remark 5.1.16. Note that the morphism ρ′′ is proper. Indeed the projection
pr2 : G × (G/P )→ G/P on the second coordinate is proper (since the variety
G/P is complete) and as we did for X2 ⊂ V2 (see 5.1.10), we can show that
V2 is closed in G × (G/P ). We deduce that X2 is closed in G × (G/P ) and so
that the restriction of pr2 to X2 (which is ρ′′) is proper.

Notation 5.1.17. Let X3 = ρ′′(X2). By the above remark, X3 is closed in G.

Proposition 5.1.18. The varieties X2 and X3 are both irreducible of dimen-
sion d = dimG− dimL+ dimΣ.

Proof: We already saw that X2 (and thus X3) is irreducible, see 5.1.10.
The fibers of the map X2 → G/P are all isomorphic to Σ + UP . Hence,
dimX2 = dim(G/P ) + dimΣ + dim UP , that is dimX2 = d.

From dimX2 = d we deduce that dimX3 ≤ d. It remains to see that
dimX3 ≥ d; this is in fact a corollary of 5.1.15. Indeed since ρ′′ : X2 → X3

is a morphism between irreducible varieties, there exists an open subset U of
X3 such that for any x ∈ U , dim ρ′′−1(x) = dimX2 − dimX3 = d − dimX3.
To apply 5.1.15, let us introduce f : ρ′′−1(U) ×U ρ′′−1(U) → ρ′′−1(U) the
projection onto the second coordinate. For x ∈ ρ′′−1(U), the fiber of f at x is
isomorphic to ρ′′−1(ρ′′(x)), hence is of dimension d−dimX3. We deduce that
dim(ρ′′−1(U)×U ρ′′−1(U))−dim(ρ′′−1(U)) = d−dimX3, i.e. dim(ρ′′−1(U)×U
ρ′′−1(U)) = 2d−dimX3. On the other hand, ρ′′−1(U)×Uρ′′−1(U) is open dense
in X2×X3X2, thus its dimension is equal to dim(X2×X3X2) = dim(X2,o×X3

X2,o). But X2,o×X3 X2,o = Z where Z is as in 5.1.15, therefore by 5.1.15, we
deduce that 2d− dimX3 ≤ d, i.e. d ≤ dimX3. ��

We have the following proposition.

Proposition 5.1.19. The complex indGL⊂PK(Σ, E) is a G-equivariant per-
verse sheaf.

Proof: We denote by KG the complex indG
L⊂PK(Σ, E) = ρ′′! K2. To show that

KG is a perverse sheaf, we have to show that for any i ∈ Z,
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(i) dim
(
Supp (HiKG)

)
≤ −i and

(ii) dim
(
Supp (HiDGK

G)
)
≤ −i.

Recall that DG denotes the Verdier dual operator on Dbc(G).

Since ρ′′ is proper, we have DG ◦ ρ′′! = ρ′′! ◦ DX2 , hence Supp (HiDGK
G) =

Supp (Hiρ′′! DX2K2). By [Ara01, Corollaire 3.1.4 (d)], we have DX2K2 =
IC(X2,o, E∨2 )[dimX2] where E∨2 denotes the dual local system of E2 on X2.
Hence, since the proof of (i) applies with E2 replaced by any local system on
X2,o, we only prove (i). The proof is inspired from that of [Lus84, Proposition
4.5].

Since ρ′′ is proper, we get that for any x ∈ X3, the stalk Hix(ρ′′! K2) at
x is the hypercohomology with compact support H

i
c(ρ

′′−1(x),K2|ρ′′−1(x)) of
ρ′′−1(x) with coefficient in K2|ρ′′−1(x) (since ρ′′−1(x) is closed in X2 and so is
a complete variety, this is in fact the hypercohomology).

Following the proof of [Lus84, Proposition 4.5], we first exhibit for x ∈ X3

a stratification of ρ′′−1(x), i.e. a partition of ρ′′−1(x) into locally closed
nonempty subsets. Let {Cα|α ∈ A} be the nilpotent orbits of L contained
in C; this provides a stratification Σ =

∐
α∈AΣα with Σα = Z + Cα.

By taking the inverse images of these strata under the map ρ, we get a
stratification X1 =

∐
α∈AX1,α. Since the X1,α are P -invariant for the P -

action on X1 given by right translation on the second coordinate, their im-
ages X2,α = ρ′(X1,α) provides a stratification for X2. Note that X2,α =
{(X, gP ) ∈ G × (G/P )| Ad(g−1)X ∈ Σα + UP }. For x ∈ X3, we stratify
ρ′′−1(x) by ρ′′−1(x)α = ρ′′−1(x) ∩X2,α.

Now if for x ∈ X3, H
i(ρ′′−1(x),K2|ρ′′−1(x)) �= 0, then there exists a stratum

ρ′′−1(x)α such that H
i
c(ρ

′′−1(x)α,K2|ρ′′−1(x)α
) �= 0. Therefore to show (i), it

is enough to show that for any i, and any α ∈ A,

5.1.20. dim {x ∈ X3| Hi
c(ρ

′′−1(x)α,K2|ρ′′−1(x)α
) �= 0} ≤ −i.

Following [Lus84, p.221] (see the case α �= αo) we are reduced to prove the
following assertion.

For any α ∈ A and any i ∈ Z,

5.1.21. dim{x ∈ X3| dimρ′′−1(x)α ≥ i
2 −

1
2 (dimΣ − dimΣα)} ≤ dimX3−i.

We denote byX i,α
3 the set {x ∈ X3| dimρ′′−1(x)α ≥ i

2 −
1
2 (dimΣ − dimΣα)}.

To prove 5.1.21, it is enough to prove the following inequality 2 for any i ∈ Z

and α ∈ A,

5.1.22. dim (X2,α ×X3 X2,α) ≥ dimX i,α
3 + i− dimΣ + dimΣα.

2 This inequality is used implicitly in [Lus84] without proof.
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Indeed, if 5.1.21 is false, then for some i and some α ∈ A, we have
dimX i,α

3 > dimX3 − i and so from 5.1.22, we deduce that

dim(X2,α ×X3 X2,α) > dimX3 − i+ i− dimΣ + dimΣα.

By 5.1.18, this gives

dim (X2,α ×X3 X2,α) > dimG− dimL+ dimΣα

but the last inequality contradicts 5.1.15 (2) applied to (P,L,Σα).

It remains to prove the inequality 5.1.22 for any i ∈ Z and α ∈ A.

Let i ∈ Z, α ∈ A. Note that X i,α
3 is a constructible subset of X3, i.e. a finite

union of locally closed subsets of X3.

Indeed, for any morphism f : X → X ′ of algebraic varieties, the set
{x ∈ X | dim xf

−1(f(x)) ≥ k} is closed in X for any integer k, therefore its
image under f , which is {x′ ∈ X ′| dimf−1(x′) ≥ k} (note that dimf−1(x′) =
Maxf(x)=x′dim xf

−1(x′)) is a constructible subset of X ′.

We choose a locally closed subset V i,α of X3 contained in X i,α
3 and of

maximal dimension, i.e. of same dimension as X i,α
3 .

Since for any z ∈ X i,α
3 , dim ρ′′−1(z)α �= −∞, i.e. ρ′′−1(z) ∩X2,α �= ∅, we

have X i,α
3 ⊆ ρ′′(X2,α) and the fiber at x ∈ X i,α

3 of the restriction ρ′′α of ρ′′ to
X2,α are all of dimension ≥ i

2 −
1
2 (dimΣ − dimΣα). Hence the fibers of the

morphism (of varieties) ρ′′α
−1(V i,α)→ V i,α induced by ρ′′α are all of dimension

≥ i
2 −

1
2 (dimΣ − dimΣα).

We deduce that

dimρ′′α
−1(V i,α)− dimV i,α ≥ i

2
− 1

2
(dimΣ − dimΣα),

that is,

dimρ′′α
−1(V i,α)− dimX i,α

3 ≥ i

2
− 1

2
(dimΣ − dimΣα). (1)

Moreover the fiber at x ∈ ρ′′α
−1(V i,α) of the projection

ρ′′α
−1(V i,α)×X3 ρ

′′
α
−1(V i,α)→ ρ′′α

−1(V i,α)

on the second coordinate is isomorphic to ρ′′α
−1(ρ′′α(x)), hence

dim(ρ′′α
−1(V i,α)×X3 ρ

′′
α
−1(V i,α))−dimρ′′α

−1(V i,α) ≥ i

2
− 1

2
(dimΣ−dimΣα).

We sum this inequality with (1) and we get the inequality 5.1.22.
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We proved that indG
L⊂PK(Σ, E) is a perverse sheaf. The G-equivariance

of indG
L⊂PK(Σ, E) follows from 5.1.6. ��

Definition 5.1.23. We say that two triples (L,Σ, E) and (L′, Σ′, E ′) as in
5.1.9 are G-conjugate if there exists g ∈ G such that, L′ = gLg−1, Σ′ =
Ad(g)Σ and E ′ is isomorphic to Ad(g−1)∗E. If (L,Σ, E) is a triple as in 5.1.9,
then the G-conjugacy class of (L,Σ, E) is the set of triples (L′, Σ′, E ′) which
are G-conjugate to (L,Σ, E).

Remark 5.1.24. Let (L,Σ, E) and (L′, Σ′, E ′) be two triple as in 5.1.9 such
that for some g ∈ G, we have L′ = gLg−1, Σ′ = Ad(g)Σ and E ′ is isomorphic
to Ad(g−1)∗E . Let P = LUP be a Levi decomposition in G with corresponding
Lie algebra decompositions P = L⊕UP , let P ′ = gPg−1 and let P ′ = L′⊕UP ′

be the Lie algebra decomposition corresponding to the decomposition P ′ =
L′UP ′ . Then the complex indG

L⊂PK(Σ, E) is isomorphic to indG
L′⊂P′K(Σ′, E ′).

In the following proposition we use the notion of “perverse sheaves of
geometrical origin” as in [BBD82, 6.2.4].

Proposition 5.1.25. Assume that E is of the form ζ�ξ with ξ ∈ lsL(C) and
ζ ∈ ls(Z) is such that ζ[dimZ] is of geometrical origin. Then the perverse
sheaf indGL⊂PK(Σ, E) is semi-simple.

Proof: Since ρ′′ is proper, from the decomposition theorem of Beilinson, Bern-
stein, Deligne and Gabber (see [BBD82]) it is enough to show that K2 is of
geometrical origin. Since “being of geometrical origin” is stable by the func-
tors j!∗ (see [BBD82, 6.2.4]) we need to show that E2 is of geometrical origin,
i.e that ζ[dimZ] � ξ[dimC] is of geometrical origin. From [BBD82, 6.2.4 (c)],
it is thus enough to see that ξ[dimC] is of geometrical origin. Let u be an
element of C, then the morphism L → C, g �→ Ad(g)u factors through a
bijective morphism f : L/CL(u) → C. Since f∗ : lsL(C) → lsL(L/CL(u)) is
an equivalence of categories , we are reduced to show that f∗ξ[dimC] is of
geometrical origin. But this is a consequence of the fact that f∗(ξ) is a simple
direct summand of π∗(Q�) if π is the Galois covering L/CL(u)o → L/CL(u),
and that the constant sheaf Q� on L/CL(u)o is the inverse image of Q� on a
point. ��
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5.1.26 When the Complexes indG
L⊂PK(Σ, E) Are Intersection

Cohomology Complexes

Let (P,L,Σ, E) be as in 5.1.9. Recall that z(L)reg denotes the set of L-regular
elements in G. In this subsection, we show that if Z ∩ z(L)reg �= ∅, then the
complex indG

L⊂PK(Σ, E) is an intersection cohomology complex.

We assume that Z∩z(L)reg �= ∅, and we denote by Zreg the set Z∩z(L)reg
and by Σreg the set Zreg + C. Then Σreg is open dense in Σ. Let

Y = Y(L,Σ) =
⋃

g∈G
Ad(g)(Σreg)

and
Y2 := {(x, gL) ∈ G × (G/L)|Ad(g−1)x ∈ Σreg}.

We have the following lemma (see [Lus84, Lemma 4.3 (c)]).

Lemma 5.1.27. The map γ : Y2 → ρ′′−1(Y ) defined by γ(x, gL) = (x, gP ) is
an isomorphism.

Proof: Only the surjectivity of γ is proved in [Lus84], which proof simplifies
in the Lie algebra case (essentially because Σ can not have elements with
non-central semi-simple part). Before proving the surjectivity, we prove that
γ is an isomorphism onto its image. For that, we first have to check that the
image of γ is a variety.

By 2.6.6, the image of γ is {(x, gP ) ∈ G × (G/P )|Ad(g−1)x ∈ Σreg + UP },
thus it is an open subset of X2: indeed, it is the image of

{(x, g) ∈ G ×G|Ad(g−1)x ∈ Σreg + UP }

by the quotient map ρ′ and {(x, g) ∈ G ×G|Ad(g−1)x ∈ Σreg + UP } is the
inverse image of Σreg + UP under the morphism X1 → Σ + UP , (x, g) �→
Ad(g−1)x.

Let P act on G × (Σ + UP ) by p.(g, x) = (gp−1,Ad(p)x) and L acts on
G×Σreg by l.(x, g) = (gl−1,Ad(l)x). Then we may identify Y2 with G×LΣreg
and the image of γ with G×P (Σreg+UP ). By 2.6.6, we have an isomorphism
UP × Σreg → Σreg + UP given by the adjoint action. Via this isomorphism,
the P -variety G × (Σreg + UP ) can be identified with the P -variety G ×
(Σreg ×UP ) where P = L×UP acts on G× (Σreg ×UP ) by (l, v).(g, (x, u)) =
(g(lv)−1, (Ad(l)x, lvul−1). Then we have a natural map G × (Σreg × UP ) →
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G×Σreg given by (g, (x, u)) �→ (gu, x) which induces a morphism G×(Σreg×
UP ) → G ×L Σreg. This morphism is constant on the P -orbits, hence gives
rise to a morphism G×P (Σreg ×UP )→ G×LΣreg which is the inverse of γ.

We show now that γ is surjective. Let

Z = {(x, gP ) ∈ G × (G/P )| Ad(g−1)x ∈ Σreg + UP }.

We have to show that ρ′′−1(Y ) = Z. If we let G act on X2 by Ad on the
first coordinate and by left translation on the second coordinate, and by Ad
on G, then the morphism ρ′′ is G-equivariant. This implies that to prove
the inclusion ρ′′−1(Y ) ⊂ Z, it is enough to prove that ρ′′−1(Σreg) ⊂ Z. Let
x ∈ Σreg and g ∈ G be such that Ad(g−1)x ∈ Σ + UP ; let us show that
Ad(g−1)x ∈ Σreg + UP . Write Ad(g−1)x = l + u with l ∈ Σ, u ∈ UP . We
have to show that ls ∈ Zreg and ln ∈ C (note that ln ∈ C and ls is already
in Z). By 2.7.1, there exists v ∈ UP such that Ad(v−1g−1)xs = ls ∈ Z.
Since xs ∈ Zreg, we deduce from 2.6.16 that Ad(v−1g−1)xs ∈ z(L)reg, i.e.
that ls ∈ Zreg := z(L)reg ∩ Z. Therefore, from 2.6.6, there exist an element
v′ ∈ UP such that Ad(v′)l = l+ u. Such an element v′ satisfies

(i) Ad(v′−1g−1)xs = ls and
(ii) Ad(v′−1g−1)xn = ln.

From (i) we deduce that v′−1g−1 ∈ NG(L), and so since xn ∈ C by assump-
tion, we deduce from (ii) and the relation ln ∈ C that Ad(v′−1g−1)C is a an
L-orbit of L which intersects C, hence we have Ad(v′−1g−1)C = C and so by
(ii), ln ∈ C. ��

Lemma 5.1.28. The subset Y is locally closed in G, irreducible and smooth
of dimension dimG− dimL+ dimΣ.

Proof: We saw in the proof of 5.1.27 that ρ′′−1(Y ) is an open subset U of
X2. Moreover we have ρ′′−1(ρ′′(U)) = U . Therefore, from the fact that ρ′′ is
a closed morphism, we get that ρ′′(U) = Y is open in its Zariski closure in G.

Now Y is the image by G × G → G, (g, x) �→ Ad(g)x of the irreducible
subvariety G×Σreg of G× G, therefore Y is irreducible.

We consider the morphism f : G×LΣreg → Y given by f(g, x) = Ad(g)x.
Then we see that f is a Galois covering with Galois group, the stabilizer of
Σ in WG(L). Since G×LΣreg is smooth, by [Gro71, exposé I, Corollaire 9.2],
we deduce that Y is smooth of dimension dimG− dimL+ dimΣ. ��
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Remark 5.1.29. If we denote byWG(Σ) the Galois group of the Galois covering
G×LΣreg → Y , (g, x) �→ Ad(g)x, then by [Gro71, exposé V, Proposition 2.6]
the canonical bijective morphism (G×LΣreg)/WG(Σ)→ Y is an isomorphism.

We have the following lemma (see [Lus84, Lemma 4.3]).

Lemma 5.1.30. (i) X2 is an irreducible variety of dimension dimY ,
(ii) ρ′′ is proper and ρ′′(X2) = Y .

Proof: We already saw that X2 is irreducible and that ρ′′ is proper. From
5.1.18, we know thatX2 and ρ′′(X2) are irreducible of same dimension dimG−
dimL+dimΣ. Moreover from 5.1.28, Y is an irreducible subvariety of ρ′′(X2)
of dimension dimG − dimL + dimΣ, we deduce that Y = ρ′′(X2) and that
dimX2 = dimY . ��

Now we are going to construct a G-equivariant semi-simple local sys-
tem on Y whose perverse extension on G will be canonically isomorphic to
indG

L⊂PK(Σ, E) .

We consider the following diagram

5.1.31. Σ
α←− Y1

α′
−→ Y2

α′′
−→ Y

where
Y1 := {(x, g) ∈ G ×G|Ad(g−1)x ∈ Σreg}

Y2 := {(x, gL) ∈ G × (G/L)|Ad(g−1)x ∈ Σreg}
and α(x, g) = Ad(g−1)x, α′(x, g) = (x, gL), α′′(x, g) = x.

Denote by ξ1 the local system α∗(E) on Y1; it is an irreducible local system
since Σreg is open dense in Σ and Y1 � Σreg × G. The map α being L-
equivariant (with respect to the adjoint action of L on Σ and the action of
L on Y1 given by l.(x, g) = (x, gl−1)), the local system ξ1 is L-equivariant.
Now, the map (x, g) �→ (g,Ad(g−1)x) defines an isomorphism Y1 → G×Σreg
which is L-equivariant for the action of L on G × Σreg given by l.(g, x) =
(gl−1,Ad(l)x). Since Y2 � G ×L Σreg, by 4.3.3 the triple (Y1, Y2, α

′) is a
locally isotrivial principal L-bundle. Thus by 4.3.4 the L-equivariance of ξ1
implies the existence of a unique irreducible local system ξ2 on Y2 such that
(α′)∗ξ2 = ξ1. We consider the direct image (α′′)∗ξ2 on Y . Since α′′ is a Galois
covering with Galois group WG(Σ), the stabilizer of Σ in WG(L), the sheaf
(α′′)∗ξ2 is a semi-simple local system on Y . Now G acts on Y by Ad, on Y1

and Y2 by Ad on the first coordinate and by left translation on the second
coordinate, and on Σ trivially; the morphisms α, α′ and α′′ are then G-
equivariant. We deduce that the local system (α′′)∗ξ2 is G-equivariant. Then
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the complex K(Y, (α′′)∗ξ2) is G-equivariant semi-simple and by 4.2.13, each
of its direct summand is G-equivariant.

Notation 5.1.32. Denote K(Y, (α′′)∗ξ2) by indG
Σ(E).

The following proposition which is the Lie algebra version of [Lus84, Propo-
sition 4.5].

Proposition 5.1.33. We consider a triple (L,Σ, E) as in 5.1.9 such that
Z ∩ z(L)reg �= ∅. Then the complex indGΣ(E) defined above is canonically iso-
morphic to the complex indGL⊂PK(Σ, E) for any parabolic subgroup P of G
containing L as a Levi subgroup.

Proof: Let (P,L,Σ, E) be as in 5.1.9. We use the notation related to
(P,L,Σ, E) introduced before (5.1.9 and 5.1.26). Let K = K(Σ, E) ∈ML(L).
To show that the complex indG

L⊂P(K) is isomorphic to indG
Σ(E), we need to

check that indG
L⊂P(K) satisfies the axioms 4.1.1 which characterize the com-

plex IC
(
Y , (α′′)∗ξ2

)
[dimY ]. We first show that

(1) H−dimY (indG
L⊂PK)|Y is a local system canonically isomorphic to

(α′′)∗ξ2.

The following diagram is clearly commutative.

5.1.34.
Σ

α←−−−− Y1
α′

−−−−→ Y2
α′′
−−−−→ Y

‖


� i



� γ



� i



�

Σ
ρo←−−−− X1,o

ρ′o−−−−→ X2,o
ρ′′o−−−−→ Y

where i denotes the inclusions and γ is given as in 5.1.27. Since the middle
square is commutative we have i∗ ◦ (ρ′o)∗(E2) = (α′)∗ ◦ γ∗(E2). But ρ∗o(E) =
(ρ′o)

∗(E2), thus we have i∗ ◦ ρ∗o(E) = (α′)∗ ◦ γ∗(E2). Using the fact that the
left square commutes, we deduce that α∗(E) = (α′)∗ ◦ γ∗(E2), but α∗(E) =
(α′)∗(ξ2), so γ∗(E2) = ξ2 that is γ∗(K2|X2,o ) = ξ2[dimX2]. We consider the
following cartesian diagram.

Y2
α′′
−−−−→ Y

γ



� i



�

X2
ρ′′−−−−→ Y

From the proper base change theorem applied to the above diagram, we deduce
that the canonical base change morphism (ρ′′! K2)|Y → α′′

∗(ξ2[dimX2]) is an
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isomorphism. Since α′′
∗ : Sh(Y2)→ Sh(Y ) is an exact functor (because α′′ is a

finite morphism), we have α′′
∗(ξ2[dimX2]) = (α∗ξ2)[dimX2] 3. Since dimX2 =

dimY (see 5.1.30 (i)) , we deduce (1).

It remains to check the axioms (i), (iii) and (iv) of 4.1.1. The axiom (i)
follows from the fact that Hix(ρ′′! K2) is the hypercohomology H

i(ρ′′−1(x),
K2|ρ′′−1(x)) which, is equal to 0 when i < −dimY since the complex K2 =
K•

2 satisfies Kr
2 = 0 if r < −dimY . Now it remains to prove the following

inequalities for i > −dimY ,
(a) dim

(
Supp (Hi(indG

L⊂PK))
)
< −i,

(b) dim
(
Supp (Hi(DG ◦ indG

L⊂PK))
)
< −i.

For the same reasons as those evoked in the proof of 5.1.19, the proof of (b)
is entirely similar to that of (a), we thus prove only (a).

The proof of (a) is quite similar to that of 5.1.19 (i); the difference is that
in 5.1.19, it is enough to use that K2 is a perverse sheaf while in the proof of
(a) we need to use that K2 is an intersection cohomology complex.

As in the proof of 5.1.19, for any x ∈ X3, we have a stratification ρ′′−1(x) =
∐
α∈A ρ

′′−1(x)α; we denote by αo ∈ A, the index corresponding to the open
stratum C of C. To prove (a), we are reduced to prove that the inequality
5.1.20 is strict for any α ∈ A and i > −dimY . Let i > −dimY and let
α ∈ A. When α �= αo, following [Lus84], we are reduced to prove 5.1.21
with strict inequalities instead of large inequalities. But then, see 5.1.19,
it is enough to prove that the inequality 5.1.22, where X i,α

3 is replaced
by {x ∈ X3| dimρ′′−1(x)α > i

2 −
1
2 (dimΣ − dimΣα)}, is a strict inequality,

which proof is entirely similar to that of 5.1.22 (we only need to replace large
inequalities by strict inequalities). Following [Lus84], the case α = αo is re-
duced to proving that the inequality 5.1.21 is strict, which proof is entirely
similar to that of [Lus84, Proposition 4.5]. ��

Notation 5.1.35. We denote by Gσ the closed subset of G consisting of the
elements of G whose semi-simple part is G-conjugate to σ.

Remark 5.1.36. The variety Gσ is a finite union of G-orbits; this follows from
the finiteness of nilpotent orbits. When σ ∈ z(G), note that Gσ = σ + Gnil.

5.1.37. Let (P,L,Σ, E) be as in 5.1.9 such that Σ = σ+C for some σ ∈ z(L)
and E = Q� � ζ with ζ ∈ lsL(C). Then by 5.1.25, the G-equivariant complex

3 Note that in the left hand side, (α′′)∗ is a functor Db
c(Y2) → Db

c(Y ) while in the

right hand side, it is a functor Sh(Y2) → Sh(Y ).
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indG
L⊂PK(Σ, E) is semi-simple; moreover by 4.2.13 each direct summand is G-

equivariant. On the other hand we have X3 ⊂ Gσ (see 5.1.17 for the definition
of X3) and so X3 is a finite union of G-orbits. Hence from 4.2.14, we deduce
that the complex indG

L⊂PK(Σ, E) is a finite direct sum of orbital perverse
sheaves on G.

5.1.38. Let (P,L,Σ, E) be as in 5.1.37 such that σ ∈ z(L)reg, i.e. CoG(σ) = L.
Then we have a diagram as in 5.1.31. Let x = σ+u ∈ Σ, we then haveΣ = OLx
and Y = OGx . First note that since CoG(x) = CoL(x), we may regard AL(x)
as a normal subgroup of AG(x). Let ξ2 be the local system on Y2 such that
(α′)∗(ξ2) � α∗(E) and let χ be the irreducible character of AL(x) associated
to E as in 4.2.15, then the G-equivariant local system (α′′)∗ξ2 corresponds to
the character IndAG(x)

AL(x)(χ) of AG(x), where IndAG(x)
AL(x) is the usual induction of

characters as in [Ser78, 3.3]. Moreover if ξ is the L-equivariant local system
on OGx corresponding to a character χ′ of AG(x), then the restriction ξL of ξ
to OLx is the L-equivariant local system corresponding to the restriction of χ′

to AL(x).

Lemma 5.1.39. If CG(σ) is connected, then the complex indGL⊂PK(OLx , E)
is isomorphic to the complex K(OGx , ξ) where ξ is the unique irreducible G-
equivariant local system on OGx such that ξ|OL

x
= E.

Proof: If CG(σ) is connected, then we have AG(x) � AL(x). ��

Since our assumption on p can not ensure that for any Levi subgroup L of
G, the centralizers of the semi-simple elements of L are all connected, we will
need to use the following result.

Lemma 5.1.40. Let (O, ξ) be an orbital pair of G, let x ∈ O and let L =
CoG(xs). Then the complex K(O, ξ) is a direct summand of indGL⊂PK(OLx , ξL)
where ξL is the restriction of ξ to OLx = xs + OLxn

and where P is the Lie
algebra of a parabolic subgroup of G having L as a Levi subgroup.

Proof: The lemma follows from 5.1.38 and the fact that if χ is an irreducible
character of AG(x) and χ′ denotes its restriction to AL(x), then the scalar
product

(
IndAG(x)

AL(x)(χ
′), χ

)
AG(x)

=
(
χ′, χ′)

AL(x)

is non-zero. ��
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5.1.41 Restriction of indG
L⊂PK(Σ, E) to Gσ with σ ∈ z(G)

Let (P,L,Σ, E) be as in 5.1.9. In this subsection we assume that Z = z(L)
and that E = ξ � ζ where ζ ∈ lsL(C) and ξ is a one-dimensional local system
on z(L). We fix an element σ ∈ z(L). Note that E|σ+C = Q� � ζ. We start
with the following lemma.

Lemma 5.1.42. We have IC(Σ, E)|σ+C = IC(σ + C,Q� � ζ).

Proof: Since z(L) is smooth, we deduce from 4.1.6 that IC(Σ, E) � ξ �
IC(C, ζ). Hence if i : {σ} × C → z(L) × C is given by the inclusions, then
IC(Σ, E)|σ+C � i∗

(
IC(Σ, E)

)
� Q� � IC(C, ζ). Applying again 4.1.6, we de-

duce that IC(Σ, E)|σ+C � IC(σ + C,Q� � ζ). ��

Proposition 5.1.43. Assume that σ ∈ z(G). Then the support of the com-
plex indGL⊂PK(σ + C,Q� � ζ) is contained in Gσ and we have a canonical
isomorphism in Dbc(Gσ),

(
indGL⊂PK(Σ, E)

)
|Gσ

∼−→
(
indGL⊂PK(σ + C,Q� � ζ)

)
[dim z(L)]

where we identified indGL⊂PK(σ + C,Q� � ζ) with its restriction to Gσ.

Proof: Note that the triple (P,L, σ+C,Q��ζ) is as in 5.1.9 if we put Z = {σ}.
Hence as in 5.1.11, we have a diagram

5.1.44.

σ + C
ρσ←−−−− Xσ

1

ρ′σ−−−−→ Xσ
2

ρ′′σ−−−−→ G

where (Xσ
1 , X

σ
2 , ρσ, ρ

′
σ, ρ

′′
σ) is defined in terms of P,L, σ+C as (X1, X2, ρ, ρ

′, ρ′′)
is defined in terms of P,L,Σ. Let Kσ

2 ∈ M(Xσ
2 ) be the analogue of K2; we

have (ρ′′σ)!(K
σ
2 ) = indG

L⊂PK(σ + C,Q� � ζ). Let f ′′
σ : Xσ

2 → Gσ be the mor-

phism 4 given by x �→ ρ′′σ(x). Then we have
(
indG

L⊂PK(σ + C,Q� � ζ)
)
|Gσ =

(f ′′
σ )!Kσ

2 .

The following diagram commutes.

5.1.45.

σ + C
ρσ←−−−− Xσ

1

ρ′σ−−−−→ Xσ
2

f ′′
σ−−−−→ Gσ

i



� i



� i



� i



�

Σ
ρ←−−−− X1

ρ′−−−−→ X2
ρ′′−−−−→ G

4 f ′′
σ is well-defined since the image of ρ′′

σ is contained in Gσ.



80 5 Geometrical Induction

where i denotes the inclusions.

From 5.1.42 we have i∗
(
IC(Σ, E)[dimΣ]

)
= IC(σ + C,Q� � ζ)[dimC +

dim z(L)], hence since the left square and the middle square of 5.1.45 commute,
we deduce that i∗(K2) = Kσ

2 [dim z(L)]. Since σ ∈ z(G), the right square of
5.1.45 is cartesian. Hence from the proper base change theorem, the canonical
base change morphism (ρ′′! K2)|Gσ → ((f ′′

σ )!Kσ
2 ) [dim z(L)] is an isomorphism.

��

Remark 5.1.46. The proposition 5.1.43 generalizes as follows: let σ be not
necessarily in z(G), then we have a canonical isomorphism (up to a shift)

(
indG

L⊂PK(Σ, E)
)
|Gσ

∼−→
(
indG

L⊂PK(Gσ ∩Σ, E|Gσ∩Σ)
)
|Gσ .

Note that the right hand side of the above isomorphism might not be the
same as that of 5.1.43 (this happens when Gσ ∩Σ �= σ + C).

The complexes indG
L⊂PK(σ+C,Q� � ζ), with σ /∈ z(G), will appear to be

more important than the complexes
(
indG

L⊂PK(Σ, E)
)
|Gσ , so we preferred to

state 5.1.43 rather than its above generalization which will not be used.

Lemma 5.1.47. The complex
(
indGL⊂PK(Σ, E)

)
|Gσ is a semi-simple per-

verse sheaf on Gσ up to a shift by dim z(L).

Proof: This follows from 5.1.43 and 5.1.37. ��

5.1.48. The isomorphism G � z(G) ⊕ G we have fixed just before 5.1.1 gives
rise to a Lie algebra isomorphism L � z(G) ⊕ (L/z(G)). Let P̂ = P/ZoG,
L̂ = L/ZoG, L̂ = L/z(G), P̂ = P/z(G) and Σ̂ = Σ/z(G). Then L � z(G) ⊕ L̂
and Σ � z(G)× Σ̂.

Lemma 5.1.49. Assume that we have a decomposition E � ξ � Ê with ξ ∈
ls(z(G)) and Ê ∈ lsL̂(Σ̂). Then we have indGL⊂PK(Σ, E) � ξ[dim z(G)] �
indGL̂⊂P̂K(Σ̂, Ê) ∈ M(z(G)⊕ G).

Proof: Let V1, V2, π, π′ and π′′ be defined in terms of (G,P, L) as in 5.1.1
and let V̂1, V̂2, π̂, π̂′ and π̂′′ be defined in terms of (G, P̂ , L̂). Then the lemma
follows from the fact that we have the following decompositions V1 = z(G)×V̂1,
V2 = z(G)× V̂2, and π = Idz(G)× π̂, π′ = Idz(G)× π̂′ and π′′ = Idz(G)× π̂′′. ��

Similarly we can prove the following lemma.
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Lemma 5.1.50. Assume that σ ∈ z(G). Let (O, η) be a nilpotent pair of G
such that the complex K(O, η) is a direct summand of indGL⊂PK(C, ζ), then
the complex K(σ+O,Q��η) is a direct summand of indGL⊂PK(σ+C,Q��ζ).

5.1.51 Introducing Frobenius

Let (P,L,Σ, E) be as in 5.1.9 such that Z∩z(L)reg �= ∅. We keep the notation
of 5.1.9 and 5.1.26. We assume that (L,Σ, E) is F -stable and let φE : F ∗E ∼→ E
be an isomorphism.

The construction of the complex indG
Σ(E) has the following advantage: the

morphisms α, α′ and α′′ of 5.1.31 are F -stable, and so φE induces a canonical
isomorphism φindG

Σ(E) : F ∗(indG
Σ(E)

) ∼→ indG
Σ(E) while when P is not F -stable,

there is no such a direct way to define an isomorphism F ∗(indG
L⊂PK(Σ, E)

) ∼→
indG

L⊂PK(Σ, E).

In this subsection, our interest is to follow the action of the Frobenius in
the construction of the complex indG

L⊂PK(Σ, E).

Let P̃ = F (P ) (note that L is also a Levi subgroup of P̃ ). As in 5.1.9, we
have a diagram

Σ
ρ̃←−−−− X̃1

ρ̃′−−−−→ X̃2
ρ̃′′−−−−→ G

with
X̃1 := {(x, g) ∈ G ×G| Ad(g−1)x ∈ Σ + UP̃ }

X̃2 := {(x, g) ∈ G × (G/P̃ )| Ad(g−1)x ∈ Σ + UP̃ }

and where ρ̃, ρ̃′ and ρ̃′′ are the analogue for P̃ of ρ, ρ′ and ρ′′. We denote
by K̃2 ∈ M(X̃2) the analogue for P̃ of the complex K2 (see 5.1.9). Let F1 :
X1 → X̃1, (x, g) �→ (F (x), F (g)), F2 : X2 → X̃2, (x, g) �→ (F (x), F (g)P̃ ). We
have the following cartesian diagram.

Σ
ρ←−−−− X1

ρ′−−−−→ X2
ρ′′−−−−→ G

F



� F1



� F2



� F



�

Σ
ρ̃←−−−− X̃1

ρ̃′−−−−→ X̃2
ρ̃′′−−−−→ G

Then we can check from the commutativity of the above diagram that φE
induces a canonical isomorphism φ2 : F ∗

2 (K̃2) → K2 and so from the proper
base change theorem applied to the right square of the above diagram, we
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deduce that the base change morphism f : F ∗((ρ̃′′)!K̃2) → (ρ′′)!K2 is an
isomorphism. We have the following proposition (see [Lus85b, 8.2.4]).

Proposition 5.1.52. We keep the above notation. Then the above canon-
ical isomorphism f : F ∗((ρ̃′′)!K̃2) → (ρ′′! )K2 makes the following diagram
commutative

F ∗((ρ̃′′)!K̃2)
f−−−−→ (ρ′′)!K2

F∗(g̃)



� g



�

F ∗(indGΣ(E))
φ

indG
Σ

(E)
−−−−−→ indGΣ(E)

where g and g̃ are the canonical isomorphisms given by 5.1.33.

Proof: Since all complexes occurring in the diagram 5.1.52 are perverse ex-
tensions of local systems on Y , it is enough to check the commutativity of the
restriction to Y of this diagram. For that, we consider the following cartesian
diagram.

5.1.53. Y2
α′′

��

γ̃

��

Y

i

��

Y2
α′′

��

F2

����������

γ

��

Y

F

����������

i

��

X̃2

ρ̃′′ �� G

X2
ρ′′ ��

F2

		��������
G

F



��������

where i is the notation for the natural inclusion and γ, γ̃ are given in 5.1.27.

By definition, f is the composition of the base change morphism F ∗(ρ̃′′)!K̃2
∼→

(ρ′′)!F ∗
2 K̃2 with (ρ′′)!(φ2) : (ρ′′)!F ∗

2 K̃2
∼→ (ρ′′)!K2. We have the following

diagram (the composition of the top arrows is the restriction of f to Y ).

5.1.54.

i∗F ∗(ρ̃′′)!K̃2
∼−−−−→ i∗(ρ′′)!F ∗

2 K̃2
i∗(ρ′′)!(φ2)−−−−−−−→ i∗(ρ′′)!K2



�



�



�

F ∗(α′′)∗γ̃∗K̃2
∼−−−−→ (α′′)∗γ∗F ∗

2 K̃2
(α′′)∗(φ2)−−−−−−→ (α′′)∗γ∗K2
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where we denote (by abuse of notation) φ2 for γ∗(φ2) : γ∗(F ∗
2 K̃2) → γ∗(K2)

and where the unlabeled arrows are the canonical base change morphisms
(which in our case are isomorphisms because the diagram 5.1.53 is cartesian).
The right square of the diagram 5.1.54 is commutative because it is given by
the base change morphism of functors i∗(ρ′′)! → (α′′)∗γ∗. The commutativity
of the left square follows from the definition of base change morphisms.

To simplify the notation we write ξ2 instead of ξ2[dimX2]. As we saw in the
proof of 5.1.33, we have γ̃∗(K̃2) = ξ2 = γ∗(K2). Since F ∗

2 ◦ γ̃∗ = γ∗ ◦ F ∗
2 , the

isomorphism φ2 = γ∗(F ∗
2 K̃2) → γ∗(K2) is thus an isomorphism F ∗

2 (ξ2)→ ξ2
(from 5.1.34, we see that this isomorphism is actually the canonical iso-
morphism induced from φE using the diagram 5.1.31) and an isomorphism
F ∗

2 γ̃
∗K̃2 → γ∗K2, that is

F ∗
2 γ̃

∗K̃2

φ2 ��

||
��

γ∗K2

||
��

F ∗
2 ξ2

φ2 �� ξ2

By applying the functor (α′′)∗ we get (α′′)∗F ∗
2 γ̃

∗K̃2

(α′′)∗(φ2) ��

||
��

(α′′)∗γ∗K2

||
��

(α′′)∗F ∗
2 ξ2

(α′′)∗(φ2) �� (α′′)∗ξ2

We deduce the following commutative diagram.

5.1.55.

F ∗(α′′)∗γ̃∗K̃2
∼ ��

||
��

(α′′)∗F ∗
2 γ̃

∗K̃2

(α′′)∗(φ2) ��

||
��

(α′′)∗γ∗K2

||
��

F ∗(α′′)∗ξ2
∼ �� (α′′)∗F ∗

2 ξ2
(α′′)∗(φ2) �� (α′′)∗ξ2

where the unlabeled arrows are the canonical base change morphisms. Using
γ∗ ◦ F ∗

2 = F ∗
2 ◦ γ̃∗, we see that the top arrows of the diagram 5.1.55 are the

corresponding bottom ones of the diagram 5.1.54. Moreover the composition
of the bottom arrows of the diagram 5.1.55 is the restriction of φindG

Σ(E) to Y
since the isomorphism φ2 : F ∗

2 (ξ2)→ ξ2 is the canonical isomorphism induced
from φE using the diagram 5.1.31. Now if we glue the diagram 5.1.55 together
with the diagram 5.1.54 in the obvious way and if we permute i∗ with F ∗ in
the left hand side of the diagram 5.1.54, we see that the right and left vertical
arrows of the resulting diagram are respectively the restrictions of g and F ∗(g̃)
to Y . ��



84 5 Geometrical Induction

5.1.56 Admissible Complexes (or Character Sheaves) on G

Notation 5.1.57. Consider the non-trivial additive character Ψ : F
+
q → Q

×
� of

3.1.9. We denote by A
1 the affine line over k. Let h : A

1 → A
1 be the Artin-

Shreier covering defined by h(t) = tq − t. Then, since h is a Galois covering of
A

1 with Galois group Fq, the sheaf h∗(Q�) is a local system on A
1 on which

Fq acts. We denote by LΨ the subsheaf of h∗(Q�) on which Fq acts as Ψ−1.
There exists an isomorphism φLΨ : F ∗(LΨ ) ∼→ LΨ such that for any integer
i ≥ 1, we have XLΨ ,φ

(i)
LΨ

= Ψ ◦ TrFqi/Fq
: Fqi → Q

×
� (see [Kat80, 3.5.4]).

Definition 5.1.58. [Lus87] Let K ∈MG(G) be irreducible.

(a) If G is semi-simple, we say that K is a cuspidal admissible complex
if its support is a closure of a single nilpotent orbit in G (i.e if K is of the
form K(O, ξ) for some nilpotent pair (O, ξ) of G) and if for any proper Levi
decomposition P = LUP in G (with corresponding Lie algebras decomposition
P = L ⊕ UP ), we have (πP)!(K|P) = 0 (where 0 denotes the zero object in
Dbc(X)).

(b) If G is reductive, we say that K is a cuspidal admissible complex if it
corresponds, under the identification G � z(G)⊕G, to a complex on z(G)⊕G
of the form K1�K2 where K2 ∈ MG(G) is cuspidal and where K1 ∈M(z(G))
is of the form m∗(LΨ )[dim z(G)] with m : z(G)→ k a linear form and LΨ the
one-dimensional local system on A

1 defined in 5.1.57.

By 4.1.6, we see that any cuspidal admissible complex K ∈ MG(G) is of
the form K

(
z(G) + C,m∗(LΨ ) � ζ

)
for some nilpotent pair (C, ζ) of G and

some linear form m : z(G)→ k.

Definition 5.1.59. Let (C, ζ) be a nilpotent pair of G and let Σ = z(G) +C

and E = m∗(LΨ )�ζ where m is a linear form on z(G). If the complex K(Σ, E)
is a cuspidal admissible complex, then we say that
• the pair (Σ, E) of G is a cuspidal admissible pair (or E is a cuspidal local

system on Σ),
• the pair (C, ζ) is a cuspidal nilpotent pair of G (or ζ is a cuspidal local

system on C).

Remark 5.1.60. In the group case, the varieties Σ supporting a cuspidal local
system (see [Lus84, 2.1]) are inverse images under the map G→ G of isolated
conjugacy classes (see [Lus84, 2.6, 2.7]). Note that in the case of Lie algebras,
the “isolated” orbits in G are the nilpotent orbits; this follows from the fact
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that the connected component of the centralizers in G of the semi-simple
elements of G are Levi subgroups of G. Hence the definition of the varieties
Σ supporting a cuspidal pair of G is consistent with that for groups.

Definition 5.1.61. We say that a triple (L,Σ, E) is a cuspidal datum of G if
L is a Levi subgroup of G and (Σ, E) is a cuspidal admissible pair of Lie(L).
We say that a cuspidal datum (L,Σ, E) of G is F -stable if L, Σ and E are all
F -stable.

Definition 5.1.62. Let K ∈ MG(G) be irreducible. Then we say that K is
an admissible complex (or a character sheaf) on G if it is a direct summand
of indGΣ(E) for some cuspidal datum (L,Σ, E) of G.

Notation 5.1.63. We denote by A(G) the set of admissible complexes on G.

Remark 5.1.64. Let aG : G → G be given by x �→ −x, then a∗G permutes the
admissible complexes on G and maps the cuspidals onto the cuspidals.

We have the following proposition.

Proposition 5.1.65. [Lus87, 3 (a)] Let P = LUP be a Levi decomposition
in G with corresponding Lie algebra decomposition P = L⊕UP . If K ∈ A(L),
then indGL⊂P(K) is a direct sum of finitely many admissible complexes.

Proof: We verify easily that the proof of [Lus87, 3 (a)] remains valid under
our assumption on p. ��

Remark 5.1.66. Let (L,C,m, ζ) be such that (L, z(L) + C,m∗(LΨ ) � ζ) is
a cuspidal datum of G. We identify L with z(G) ⊕ L̂ as in 5.1.48. Let

ˆz(L) = z(L)/z(G) and let Ĉ be the image of C in L̂. Then the local sys-
tem E decomposes as (mz(G))∗LΨ � (m ˆz(L)

)∗LΨ � ζ ∈ ls(z(G) × ˆz(L) × Ĉ)

where mz(G) and m ˆz(L)
are the restrictions of m respectively to z(G) and ˆz(L).

Indeed, if s : A
1 × A

1 → A
1 is the morphism given by the addition on A

1,
then m = s◦(mz(G)×m ˆz(L)

). Hence m∗(LΨ ) = (mz(G)×m ˆz(L)
)∗s∗(LΨ ). From

s∗(LΨ ) = LΨ �LΨ , we deduce that m∗(LΨ ) = (mz(G))∗(LΨ ) � (m ˆz(L)
)∗(LΨ ).

Lemma 5.1.67. With the notation of 5.1.66, let (L,Σ, E) =
(
L, z(L) +

C,m∗(LΨ ) � ζ
)

and let A ∈ A(G) be a direct summand of indGΣ(E). Then
A is of the form (mz(G))∗(LΨ )[dim z(G)] �A with A ∈ A(G).

Proof: Follows from 5.1.49, 5.1.33 and 5.1.66. ��
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Definition 5.1.68. Let K ∈ MG(G), then we say that K is a Lusztig com-
plex over G if it is of the form indGΣ(E) for some cuspidal datum (L,Σ, E) of
G.

Definition 5.1.69. A cuspidal orbital pair of G is an orbital pair of G of the
form (σ + C,Q� � ζ) where σ ∈ z(G) and (C, ζ) is a cuspidal nilpotent pair
of G. An orbital perverse sheaf on G is said to be cuspidal if it is of the form
K(O, ξ) for some cuspidal orbital pair (O, ξ) of G.

Remark 5.1.70. Note that when G is semi-simple, the cuspidal admissible
pairs of G and the cuspidal orbital pairs of G are all nilpotent orbital; thus
in the case where G is semi-simple, we use simply the terminology “cuspidal
pair”. Similarly for complexes, when G is semi-simple, we use the terminology
“cuspidal complex” instead of “cuspidal admissible complex” or “cuspidal
orbital perverse sheaf”.

Remark 5.1.71. Let K be an orbital perverse sheaf on G. Note that K is
cuspidal if and only if for any proper Levi decomposition P = LUP in G with
corresponding Lie algebra decomposition P = L⊕UP , we have (πP )!(K|P) =
0.

5.1.72 Orbital Perverse Sheaves: The Fundamental Theorem

5.1.73. A cuspidal datum of G is a triple (L,Σ′, E ′) where L is a Levi subgroup
of G and where (Σ′, E ′) is a cuspidal pair of L in the sense of [Lus84, Definition
2.4]. Let (L,Σ′, E ′) be a cuspidal datum of G such that Σ′ = ZoLC

′ (with C′

a unipotent class of L) and E ′ = Q� � ζ′ with ζ′ ∈ lsL(C′) ; such a pair
(C′, ζ′) will be called a cuspidal unipotent pair of L. As in [Lus85b, 7.1.7,
8.1.1], we construct a semi-simple perverse sheaf indGΣ′(E ′) ∈MG(G), and for
any parabolic subgroup P of G having L as a Levi subgroup we construct a
complex indGL⊂PK(Σ′, E ′); by [Lus84, Proposition 4.5], these two complexes
are canonically isomorphic. These constructions are completely similar to what
we have done in the Lie algebra case. From [Lus85b, 7], the pair (C, ζ) of G
is a cuspidal unipotent pair of G if and only if for any Levi decomposition
PUP in G, we have (πP )!

(
K(C, ζ)|P

)
= 0 where πP : P → L is the canonical

morphism. Note that the Lie algebra version of this assertion is exactly the
definition of cuspidal local systems on nilpotent orbits.
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Definition 5.1.74. (i) By a unipotent complex over G, we shall mean a
perverse sheaf K of the form

(
indGΣ′(E ′)|Guni

)
[−dimZL] extended by zero on

G−Guni for some cuspidal datum (L,Σ′, E ′) of G as above. If K = K(C′, ζ′)
for some cuspidal unipotent pair (C′, ζ′) of G, then K is called a cuspidal
unipotent complex.

(ii) By a nilpotent complex over G, we shall mean a perverse sheaf K of
the form indGΣ(E)|Gnil

shifted by −dim z(L) and extended by zero on G − Gnil
for some cuspidal datum (L,Σ, E) of G such that E is of G of the form Q� � ζ

on Σ = z(L) + C where L = Lie(L). If K = K(C, ζ) for some nilpotent
cuspidal pair (C, ζ) of G, K is called a cuspidal nilpotent complex.

Remark 5.1.75. By 5.1.33 and by 5.1.41 applied to σ = 0, we see that
if (L,Σ, E1) =

(
L, z(L) + C, (m1)∗LΨ � ζ

)
and (L,Σ, E2) =

(
L, z(L) +

C, (m2)∗LΨ � ζ
)

are two cuspidal data of G where L = Lie(L), then
indGΣ(E1)|Gnil

and indGΣ(E2)|Gnil
are isomorphic; there are actually both isomor-

phic to indG
L⊂PK(C, ζ)[dim z(L)] where P is the Lie algebra of any parabolic

subgroup containing L. Hence the complexes
(
indG

Σ(E)|Gnil

)
[−dim z(L)] ex-

tended by zero on G − Gnil, where (L,Σ, E) runs over the cuspidal data of G,
are all nilpotent complexes. We have a similar result for groups, see [Lus85b].

Notation 5.1.76. We denote by Nil(G) the set of nilpotent complexes over G
and by Uni(G) the set of unipotent complexes over G.

Notation 5.1.77. We denote by Dbc(G)uni the full subcategory of Dbc(G) of
unipotently supported complexes and by Dbc(G)nil the full subcategory of
Dbc(G) of nilpotently supported complexes. If f is a G-equivariant isomor-
phism Guni → Gnil, we denote by (fo)∗ : Dbc(G)nil → Dbc(G)uni the functor
induced by f∗ : Dbc(Gnil)→ Dbc(Guni).

We have the following proposition.

Proposition 5.1.78. Let f : Guni → Gnil be a G-equivariant isomorphism.
Then the functor (fo)∗ : Dbc(G)nil → Dbc(G)uni induces a bijection Nil(G) →
Uni(G) mapping cuspidals onto cuspidals. More precisely, if (L, z(L)+C,Q��
ζ) is a cuspidal datum of G with L = Lie(L), then (fo)∗ maps the nilpotent
complex over G induced by (L, z(L) + C,Q� � ζ) onto the unipotent complex
over G induced by the cuspidal datum

(
L,ZoL.

(
f−1(C)

)
,Q� � f∗(ζ)

)
.

Proof: From the characterization in 5.1.73 of cuspidal unipotent complexes
and cuspidal nilpotent complexes, it is clear from 2.7.6, that, for any nilpotent
pair (C, ζ) of G, the complex (fo)∗(K(C, ζ)) = K

(
f−1(C), f∗ζ

)
is cuspidal if
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and only if K(C, ζ) is cuspidal. Using again 2.7.6, we also have that the functor
(fo)∗ commutes with the parabolic induction of equivariant perverse sheaves.
Hence if we write the elements of Nil(G) and the elements of Uni(G) in terms
of parabolic induction (see 5.1.75), we get the required result. ��

Remark 5.1.79. By 5.1.78, a Levi subgroup of G supports a cuspidal unipotent
pair if and only if its Lie algebra supports a cuspidal nilpotent pair.

Theorem 5.1.80. Let (O, ξ) be a nilpotent pair of G. Then there exists a
unique (up to G-conjugacy) triple (L,C, ζ) such that L is a Levi subgroup of
G and (C, ζ) is a cuspidal nilpotent pair of L = Lie(L), and such that the
complex K(O, ζ) is a direct summand of indGL⊂PK(C, ζ) where P is the Lie
algebra of a parabolic subgroup of G having L as a Levi subgroup.

Proof: This follows from its group analogue [Lus84, Section 6] and 5.1.78. ��

We have the following fundamental theorem for orbital complexes.

Theorem 5.1.81. Let (O, E) be any orbital pair of G. Then there exists a
unique (up to G-conjugacy) triple (L,OL, EL) such that L is a Levi subgroup
of G and (OL, EL) is a cuspidal orbital pair of L = Lie(L), and such that the
complex K(O, E) is a direct summand of indGL⊂PK(OL, EL) where P is the
Lie algebra of a parabolic subgroup of G having L as a Levi subgroup.

Proof: Let x ∈ O and let M = CoG(xs). We denote by M the Lie algebra
of M and by Q the Lie algebra of a parabolic subgroup of G having M as
a Levi subgroup. Let En be an irreducible M -equivariant local system on
OMxn

such that K(O, E) is a direct summand of indG
M⊂QK(OMx ,Q� � En), see

5.1.40. By 5.1.80, there exists a cuspidal datum
(
L, z(L) + C,Q� � ζ

)
of M

such that the complex K(OMxn
, En) is a direct summand of indM

L⊂PMK(C, ζ)
where PM is the Lie algebra of a parabolic subgroup of M having L as a
Levi subgroup. Hence by 5.1.50, the complex K(OMx ,Q� � En) is a direct
summand of indM

L⊂PMK(xs+C,Q��ζ). Hence it follows from the transitivity
property of parabolic induction that the complexK(O, E) is a direct summand
of indG

L⊂PK(xs + C,Q� � ζ).

Let us now prove the unicity up to G-conjugacy. Assume that (L′, σ +
C′,Q� � ζ′) is another triple such that (σ + C′,Q� � ζ′) is a cuspidal or-
bital pair on L′ = Lie(L′) and such that K(O, E) is a direct summand of
indG

L′⊂P′K(σ +C′,Q� � ζ′). Then there exists g ∈ G such that Ad(g)σ = xs.
Hence (Ad(g)C′,Ad(g−1)∗ζ′) is a nilpotent cuspidal pair of Ad(g)L′ ⊂ M.
Hence we may assume that σ = xs and that L′ is a Levi subgroup of M . From
the transitivity of induction, the orbital perverse sheaf K(O, E) is a direct
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summand of indG
M⊂Q

(
indM

L′⊂P′MK(xs + C′,Q� � ζ′)
)
. Hence there exists an

M -equivariant irreducible local system E ′n onOMxn
such thatK(O, E) is a direct

summand of indG
M⊂QK(OMx ,Q� � E ′n) ; note that if CG(xs) is connected, by

5.1.39 we must have E ′n � En. Now if we interpret the local systems E , En and
E ′n in terms of characters as in 5.1.38, then we see from a theorem of Clifford
[Isa94, 6.2], that the local systems En and E ′n must be G-conjugate. As a conse-
quence, we get that the complexes indG

L⊂PK(C, ζ) and indG
L′⊂P′K(C′, ζ′) have

a common direct summand. Hence from 5.1.80 we get that the triples (L,C, ζ)
and (L′, C′, ζ′) are G-conjugate. Since L and L′ are two Levi subgroups of M ,
from the classification of cuspidal data [Lus84] (see also [DLM97, 1.2]), we
get that (L,C, ζ) and (L′, C′, ζ′) are M -conjugate from which we deduce that
(L, xs + C,Q� � ζ) and (L′, xs + C′,Q� � ζ′) are M -conjugate. ��

Recall that, by 4.2.5 and 4.2.10, the group ZG/Z
o
G acts on any G-

equivariant perverse sheaf on G.

Proposition 5.1.82. Assume that G is semi-simple and let χ : ZG → Q
×
� be

a character of ZG. Then there exists at most one cuspidal complex on G on
which ZG acts by χ.

Proof: The group version of 5.1.82 is known from [Lus84]. Hence the above
proposition follows from 5.1.78. ��

Proposition 5.1.83. Assume that G is semi-simple and let (O, ξ) be a cuspi-
dal pair of G. Then the cuspidal complex K(O, ξ) is clean, that is its restriction
to O −O is zero.

Proof: Follows from its group version [Lus86a, 23.1(a)] and from 5.1.78. ��

5.2 Deligne-Fourier Transforms and Admissible

Complexes

After recalling the definition and the properties of Deligne-Fourier transforms,
we expound the main result of [Lus87] and we verify that its proof works for
p acceptable; recall that in [Lus87] the characteristic is assumed to be large.

Notation 5.2.1. Let µ denote the non-degenerate G-invariant bilinear form
on G fixed in 3.1.9. If H and H′ are two Lie subalgebras of G, we denote by
µH×H′ the restriction of µ to H ×H′; if H = H′ we write simply µH. If L is
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a Levi subgroup of G with L = Lie(L), and if σ ∈ z(L), then we denote by
mσ : z(L) → k the k-linear form given by z �→ µ(z, σ). In order to simplify
the notation and since the context should be always clear, we omit the Levi
subgroup from the notation mσ. In view of 5.0.14 (iv), 5.1.79 and 2.5.16, any
k-linear form on z(L) is of the form mσ for some σ ∈ z(L).

5.2.2. Let H be a Lie subalgebra of G such that µH is non-degenerate. The
Deligne-Fourier transform FH : Dbc(H) → Dbc(H) with respect to (µH, Ψ) ,
where Ψ : Fq → Q� is the non-trivial additive character fixed in 5.1.57, is
defined as follows (see [Bry86, 9.1] [KL85, 2.1]).

FH(K) = (pr2)!
(
(pr1)∗K ⊗ (µH)∗LΨ

)
[dimH]

where pr1, pr2 : H × H → H are the two projections and LΨ is the one-
dimensional local system on A

1 defined in 5.1.57.

By abuse of notation, we use the symbol FH to denote both the Deligne-
Fourier transform and the Fourier transform of functions (see 5.2.2 and 3.1.9);
this abuse of notation is justified by the following statement (see [Bry86, 9.2])
which relates Deligne-Fourier transforms of complexes with Fourier transforms
of functions.

5.2.3. Let H be as in 5.2.2. Assume that H is F -stable. Let K ∈ Dbc(H)
be F -stable and let φ : F ∗(K) ∼→ K be an isomorphism. Then φ induces a
canonical isomorphism F(φ) : F ∗(FHK) ∼→ FHK such that

XFH(K),F(φ) = (−1)dimH|HF | 12FH(XK,φ).

The proof of 5.2.3 involves the Grothendieck trace formula applied to the F -
equivariant complex

(
FH(K),F(φ)

)
where F(φ) is the isomorphism induced

by φ and the isomorphism φLΨ : F ∗(LΨ ) ∼→ LΨ of 5.1.57.

5.2.4. Let H be a Lie subalgebra of G. Following [Bry86, 6], we define the
convolution product on Dbc(H) as follows.

For K,K ′ ∈ Dbc(H),

K ∗K ′ := s!(K �K ′)

where s : H×H → H is given by the addition on H.

The following result (see [Bry86, 9.3, 9.6]) is the geometric version of 3.1.10
(ii), (iv), (v).
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Lemma 5.2.5. Let H be as in 5.2.2. Let K,K ′ ∈ Dbc(H) and F = FH.
(i) Let a : H → H, x �→ −x, we have an isomorphism

F ◦ F(K) � a∗(K)(−dimH)

such that if H is F -stable and K is an F -equivariant perverse sheaf , then the
above isomorphism is an isomorphism of F -equivariant perverse sheaves,

(ii) We have an isomorphism F(K ∗K ′) � (FK⊗FK ′)[dimH]. Moreover
if H is F -stable and K, K ′ are F -equivariant perverse sheaves, the above
isomorphism is an isomorphism of F -equivariant perverse sheaves.

(iii) We have an isomorphism F(K⊗K ′) � (FK∗FK ′)[dimH]. Moreover
if H is F -stable and K, K ′ are F -equivariant perverse sheaves, the above
isomorphism is an isomorphism of F -equivariant perverse sheaves.

Remark 5.2.6. The assertion (iii) of 5.2.5 is not in [Bry86], however it can be
easily deduced from (i) and (ii) as this done in the proof of [Leh96, Lemma
4.2] with functions.

We have the following important result (see [Bry86, Corollary 9.11]).

Theorem 5.2.7. If K ∈ Dbc(G) is a perverse sheaf on G, then FG(K) is also a
perverse sheaf on G. The functor FG :MG(G)→MG(G) is an equivalence of
categories. In particular, it permutes the simple G-equivariant perverse sheaves
on G.

The following result which is the geometric version of 3.1.11(i).

Theorem 5.2.8. [Hen01, Theorem 4.3] [Wal01, II.8(2)] Let P = LUP be a
Levi decomposition in G and P = L ⊕ UP be its corresponding Lie algebra
decomposition. Let A ∈ML(L), then we have an isomorphism

FG(indGL⊂PA) � indGL⊂P(FLA)(−dimUP ).

If P , L are F -stable and A is an F -equivariant perverse sheaf, then FG

(indGL⊂PA) and indGL⊂P(FLA) are naturally F -equivariant and the above iso-
morphism is an isomorphism of F -equivariant perverse sheaves.

We now state the main result of [Lus87].

Theorem 5.2.9. [Lus87, Theorem 5] Let A ∈MG(G).
(a) The complex A is admissible if and only if it is the Deligne-Fourier

transform of some orbital perverse sheaf on G.
(b) If G is semi-simple and A is cuspidal, then FG(A) � A.
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The following result is used implicitly in the proof of [Lus87, Theorem 5].

Theorem 5.2.10. Let (L,Σ, E) =
(
L, z(L)+C, (m−σ)∗LΨ � ζ

)
be a cuspidal

datum of G where L = Lie(L) and σ ∈ z(L), and let P be a parabolic sub-
group of G having L as a Levi subgroup. Let P = L ⊕ UP be the Lie algebra
decomposition corresponding to P = LUP . Then, there is an isomorphism

FG
(
indGL⊂PK(Σ, E)

)
� indGL⊂PK(σ + C,Q� � ζ).

5.2.11. We are going to prove the implications 5.2.9(b) ⇒ 5.2.10 ⇒ 5.2.9(a).
The implication 5.2.10 ⇒ 5.2.9(b) being trivial, this will prove that 5.2.10 is
equivalent to 5.2.9(b). The proof of those implications in [Lus87] is very dense
and does not show the problems related to the characteristic, moreover Lusztig
comes down to problems on functions while thanks to 5.2.8, it is possible to
work directly with perverse sheaves.

• We first prove the implication 5.2.9(b) ⇒ 5.2.10. Let (L,Σ, E) be as
in 5.2.10. Thanks to 5.2.8, we are reduced to show that FL (K(Σ, E)) �
K(σ+C,Q��ζ). Hence we may assume that G supports a cuspidal admissible
pair and that L = G. To simplify the notation, we put m = m−σ. Let K =
K(Σ, E), then K = m∗LΨ [dim z(G)] �KG(C, ζ) ∈M(z(G)⊕ G).

By 2.5.16, the bilinear forms µG and µz(G) are non-degenerate; hence the
Deligne-Fourier transforms FG : Dbc(G) → Dbc(G) and Fz(G) : Dbc(z(G)) →
Dbc(z(G)) are well-defined. We have

5.2.12.
FG(K) = Fz(G)(m∗LΨ [dim z(G)]) � FG(KG(C, ζ)).

Indeed, let s : A1×A1 → A1 be given by the addition on k, we have s∗(LΨ ) =
LΨ � LΨ . On the other hand, the form µ decomposes as µ = s ◦ (µz(G) × µG)
since by 2.5.16, the subspaces G and z(G) of G are orthogonal with respect to
µ. We deduce that µ∗LΨ = (µz(G))∗LΨ � (µG)∗LΨ from which 5.2.12 follows.

In view of 5.2.12 and 5.2.9 (b), and sinceKG(σ+C,Q��ζ) = Kz(G)(σ,Q�)�
KG(C, ζ) ∈M(z(G)�G), note that Kz(G)(σ,Q�) is the constant sheaf on {σ}
extended by zero on z(G)− {σ}, it remains to see that

5.2.13.
Fz(G)(m∗LΨ [dim z(G)]) � Kz(G)(σ,Q�).
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We prove that m∗LΨ [dim z(G)] � Fz(G)
(
Kz(G)(−σ,Q�)

)
; then 5.2.13 will be

obtained by applying Fz(G) to this isomorphism. Let pr1, pr2 : z(G)× z(G)→
z(G) be the two projections. Note that (pr1)∗Kz(G)(−σ,Q�) is the extension of
the constant sheaf Q� on {−σ}×z(G) by zero on

(
z(G)×z(G)

)
−
(
{−σ}×z(G)

)
.

Hence the complex (pr1)∗
(
Kz(G)(−σ,Q�)

)
⊗ (µz(G))∗LΨ is the extension of

Q��m∗LΨ ∈ Sh
(
{−σ}×z(G)

)
by zero on

(
z(G)×z(G)

)
−
(
{−σ}×z(G)

)
, from

which we deduce that (pr2)!
(
(pr1)∗

(
Kz(G)(−σ,Q�)

)
⊗ (µz(G))∗LΨ

)
= m∗LΨ .

We have proved the implication 5.2.9(b) ⇒ 5.2.10.

• Let us now prove the implication 5.2.10 ⇒ 5.2.9(a). From 5.2.10, 5.2.7
and 5.1.37, we see that the Deligne-Fourier transform of an admissible complex
of G is an orbital perverse sheaf on G. Hence by 5.2.5 (i), we deduce that any
admissible complex on G is the Deligne-Fourier transform of some orbital
perverse sheaf on G. Conversely, if K is an orbital perverse sheaf on G, then
by 5.1.81, it is the direct summand of the parabolic induction of some cuspidal
orbital perverse sheaf. From 5.2.8, it is thus enough to see that the Deligne-
Fourier transform of a cuspidal orbital perverse sheaf is a cuspidal admissible
complex. From 5.2.10, it is clear that a cuspidal orbital perverse sheaf is
the Deligne-Fourier transform of a cuspidal admissible complex, hence using
5.2.5(i) together with 5.1.64, we see that the Deligne-Fourier transform of a
cuspidal orbital perverse sheaf is an admissible complex. ��

Since by 5.1.64 the functor a∗G permutes the non-cuspidal admissible com-
plexes on G, we have in fact proved in the last paragraph that:

5.2.14. If 5.2.10 holds whenever L � G, and if K is a non-cuspidal orbital
perverse sheaf on G, then FG(K) is admissible non-cuspidal.

Proof of 5.2.9, 5.2.10:

From 5.2.11, we are reduced to proving the assertion 5.2.9(b). We now sketch
Lusztig’s proof of 5.2.9(b). We assume G semi-simple and let K be a cuspidal
complex on G. We first assume that the following result is true.

5.2.15. The complex FG(K) is nilpotently supported.

5.2.16. We now prove 5.2.9(b) by induction on dimG. We thus assume that
5.2.9(b) is true for any simple algebraic group of dimension < dimG. Hence
5.2.14 holds for any L � G (see 5.2.11). Since FG(K) is a G-equivariant simple
nilpotently supported perverse sheaf on G, it is orbital by 4.2.14. Hence FG(K)
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must be cuspidal. Indeed, if not, then by 5.2.14, the complex FG(FG(K)
)
�

a∗G(K) is admissible non-cuspidal which is in contradiction with 5.1.64. Since
the Deligne-Fourier transforms preserve the action of ZG on K, by 5.1.82, we
must have FG(K) � K.

5.2.17. It remains to prove 5.2.15. We proceed by induction on dimG in order
to apply 5.2.14. We consider the notation of 4.4.13 with H = G and X = G.
We denote by Io the subset of I consisting of the cuspidal pairs of G. Since G
is semi-simple, the cuspidal pairs are nilpotent and so Io is finite. We assume
that q is large enough so that IFo = Io. Note that by 5.1.83, for ιo ∈ Io,
the nilpotently supported functions Yιo and Xιo are proportional. Using a
G-equivariant homeomorphism Guni → Gnil defined over Fq, we can transfer
[Lus86a, 24.4(d)] to the Lie algebra setting and we thus deduce that

(
Xιo ,Yι) = 0 for ιo ∈ Io, ι ∈ IF − Io, (*)

where the non-degenerate bilinear form (, ) on C(GF ) is defined by (f, f ′) =
∑

x∈GF f(x)f ′(x). Applying again [Lus86a, 24.4(d)], we get that the func-
tions Xι|GF

nil
with ι ∈ IF − Io are linear combinations of the functions

{Yι| ι ∈ IF − Io}, hence by (*), we deduce that the space spanned by the
functions {Xιo | ιo ∈ Io} is the orthogonal complement of the space spanned
by {Xι| ι ∈ IF − Io}. Now by applying the induction hypothesis we deduce
from 5.2.16 that 5.2.9(b) is true for any group of dimension < dimG, hence
by 5.2.14, we get that the complexes FG(Kι) with ι ∈ IF − Io are ad-
missible non-cuspidal. We deduce from [Lus86a, 24.4(d)], that the functions
FG(Xι)|GF

nil
with ι ∈ IF − Io, are linear combinations of the functions Yι with

ι ∈ IF − Io. Since (, ) is preserved by FG up to a scalar, it follows from (*)
that the space spanned by {FG(Xιo)| ιo ∈ Io} is the orthogonal complement of
the space spanned by {Xι| ι ∈ IF − Io}, from which we deduce that the func-
tions {FG(Xιo)| ιo ∈ Io} and {Xιo | ιo ∈ Io} span the same subspace of C(GF ).
Hence the Fourier transforms of the functions Xιo with ιo ∈ Io are nilpotently
supported. The last assertion being true for any Frobenius Fn with n > 1,
we deduce from 4.4.9, that FG(K) is nilpotently supported for any cuspidal
complex K on G. ��

Corollary 5.2.18. Let A be an admissible complex and let (L,Σ, E) and
(L′, Σ′, E ′) be two cuspidal data of G such that A is a direct summand of both
indGΣ(E) and indGΣ′(E ′). Then (L,Σ, E) and (L′, Σ′, E ′) are G-conjugate.

Proof: Put (L,Σ, E) =
(
L, z(L) + C, (mσ)∗LΨ � ζ

)
and (L′, Σ′, E ′) =

(
L′, z(L′) +C′, (mσ′)∗LΨ � ζ′

)
. We have to show that (L, σ +C,Q� � ζ) and
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(L′, σ′ + C′,Q� � ζ′) are G-conjugate. But taking the Deligne-Fourier trans-
form of A, indG

Σ(E) � indG
L⊂PK(Σ, E) and indG

Σ′(E ′) � indG
L′⊂P′K(Σ′, E ′), we

see that this is a consequence of 5.2.10 together with 5.1.81. ��

Corollary 5.2.19. Let (L,Σ, E) be as in 5.2.10. We assume that M = CG(σ)
is connected (recall that this is always true if p is not a torsion prime for G).
Let Q be a parabolic subgroup of G having M as a Levi subgroup and let
Q =M⊕UQ be the Lie algebra decomposition corresponding to Q = MUQ.

(i) The functor indGM⊂Q induces a bijection between the admissible com-
plexes which are direct summands of indMΣ (E) and the admissible complexes
which are direct summands of indGΣ(E).

(ii) Let A be an admissible complex on G which is a direct summand of
indGΣ(E) and let B be an admissible complex onM such that A = indGM⊂Q(B).
Then, if FG(A) = K(OGx , ξ) with xs = σ, we have FM(B) = K(OMx , ξ|OM

x
)

; in particular such an admissible complex B is unique (up to isomorphism)
and so, by (i), must be a direct summand of indMΣ (E).

(iii) Assume that (L,Σ, E) is F -stable, then the bijection of (i) induces a
bijection between the two subsets consisting of the F -stable objects.

Proof: Let B be an admissible complex which is a direct summand of
indM

Σ (E). By 5.2.9(a), the complex B is of the form FM (K(O, ξ)) for some
orbital pair (O, ξ) of M and by 5.2.10, we have O = σ + On where On is
the orbit formed by the nilpotent elements of O. Hence we deduce from 5.2.8,
5.1.39 and 5.2.9(a) that indG

M⊂Q(B) is an admissible complex on G and that
the map induced by indG

M⊂Q from the set of admissible complexes which are
direct summand of indM

Σ (E) to the set of admissible complex on G is injective.
Since indG

M⊂Q
(
indM

Σ (E)
)
� indG

Σ(E), we get the assertion (i). The assertion
(ii) is a straightforward consequence of 5.2.9(a), 5.2.8, 5.1.39. Now, if σ and
B are F -stable, then the complex K(O, ξ) is also F -stable and so, from 5.1.33
applied to (M,σ +On, ξ) and from the remark at the beginning of 5.1.51, we
see that the complex indG

M⊂Q
(
K(O, ξ)

)
is also F -stable. Applying 5.2.8, we

get that indG
M⊂Q(B) is F -stable. Hence the map of (i) induces a well-defined

map on the F -stable objects; this map is surjective by (ii). ��

Remark 5.2.20. With the notation and assumption of 5.2.19, we see that
the endomorphism algebra of indG

Σ(E) is canonically isomorphic to that of
indM

Σ (E).

5.2.21. We use the notation of 4.4.13 for H = G and X = G. Then by
5.2.9(a), the set I(G) := I of 4.4.13 parametrizes the isomorphic classes of
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the admissible complexes on G and I(G)F := IF parametrizes the isomorphic
classes of the F -stable admissible complexes. For ι ∈ I(G), we denote by Aι
the admissible complex FG(Kι) and for ι ∈ I(G)F , we choose an isomorphism
φAι : F ∗(Aι)

∼→ Aι. Then we have the following proposition which is the Lie
algebra analogue of [Lus86a, 25.2].

Proposition 5.2.22. The set {XAι,φAι
| ι ∈ I(G)F } is a basis of C(GF ).

Proof: This follows from 4.4.13, 5.2.3 and the easy fact that FG transforms
a basis of C(GF ) into a basis of C(GF ). ��

5.3 Endomorphism Algebra of Lusztig Complexes

Let (L,Σ, E) = (L, z(L)+C,m∗LΨ � ζ) with L = Lie(L) be a cuspidal datum
of G. Let σ ∈ z(L) be such that m = mσ where mσ is as in 5.2.1. We use the
notation of 5.1.26 relatively to (L,Σ, E).

Let

NG(E) := {n ∈ NG(L)| Ad(n)Σ = Σ, Ad(n)∗(E) � E}

and let WG(E) be the finite group NG(E)/L.

5.3.1. Following [Lus84] and [Lus85b, 10.2], we are going to describe the en-
domorphism algebra A := End(indG

Σ(E)) in terms of WG(E). Let w ∈ WG(E)
and let δw : Y2

∼→ Y2 be the isomorphism defined by δw(x, gL) = (x, gẇ−1L)
where ẇ denotes a representative of w in NG(E); the map δw does not depend
on the choice of the representative ẇ of w. We have the following cartesian
diagram.

Σ
α←−−−− Y1

α′
−−−−→ Y2

α′′
−−−−→ Y

Ad(ẇ)



� fẇ



� δw



� ‖



�

Σ
α←−−−− Y1

α′
−−−−→ Y2

α′′
−−−−→ Y

where fẇ(x, g) = (x, gẇ−1). From the above diagram we see that any iso-
morphism Ad(ẇ)∗(E) ∼→ E induces a canonical isomorphism δ∗w(ξ2)

∼→ ξ2.
Conversely, since α : Y1 → Σreg is a trivial principal G-bundle if we let G act
on Y1 by left translation on both coordinates and on Σreg trivially, the functor
α∗ : Sh(Σreg)→ ShG(Y1) is an equivalence of categories and so any isomor-
phism δ∗w(ξ2) � ξ2 defines a unique isomorphism Ad(ẇ)∗(E) � E . Since the
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local system ξ2 is irreducible, the Q�-vector space Aw of all homomorphisms
δ∗w(ξ2)→ ξ2 is one-dimensional.

For each w ∈ WG(E), we choose a non-zero element θw of Aw. Note that
for w,w′ ∈ WG(E), we have δw ◦ δw′ = δww′ . Hence for any w,w′ ∈ WG(E),
we have θw′ ◦ δ∗w′(θw) ∈ Aww′ . We thus have a well-defined product on
⊕

w∈WG(E)Aw given by θw.θw′ := θw′ ◦ δ∗w′(θw). This makes
⊕

w∈WG(E)Aw
into a Q�-algebra.

Using α′′
∗ ◦ δ∗w = α′′

∗ we identify Aw with a subspace of A. Then as in
[Lus84, Proposition 3.5], we show that

⊕
w∈WG(E)Aw = A as Q�-algebras. If

φ : Ad(ẇ)∗E ∼→ E is an isomorphism, we denote by θw(φ) the element of Aw
induced by φ. From the previous discussion, the map Hom(Ad(ẇ)∗E , E) →
Aw, φ �→ θw(φ) is an isomorphism of Q�-vector spaces.

5.3.2. We fix w ∈ WG(E) together with a representative ẇ of w in NG(E).
Let P be a parabolic subgroup of G having L as a Levi subgroup and let
Pw = ẇP ẇ−1. Let P and Pw be the respective Lie algebras of P and Pw. Let
(Xw

1 , X
w
2 , ρw, ρ

′
w, ρ

′′
w) be defined in terms of (Pw, L,Σ) as (X1, X2, ρ, ρ

′, ρ′′) is
defined in terms of (P,L,Σ), and let Kw

2 ∈ M(Xw
2 ) be the analogue of K2,

see 5.1.9. We have the following cartesian diagram.

5.3.3.
Σ

ρ←−−−− X1
ρ′−−−−→ X2

ρ′′−−−−→ Y

Ad(ẇ)



� f̃ẇ



� δ̃w



� ‖



�

Σ
ρw←−−−− Xw

1

ρ′w−−−−→ Xw
2

ρ′′w−−−−→ Y

where f̃ẇ : (x, g) �→ (x, gẇ−1) extends the map fẇ : Y1 → Y1 and where
δ̃w : (x, gP ) �→ (x, gPw). Let φ : Ad(ẇ)∗E ∼→ E be an isomorphism; it induces
an isomorphism Ad(ẇ)∗K(Σ, E) � K(Σ, E) which by 5.3.3 induces a canonical
isomorphism hw(φ) : (ρ′′w)!Kw

2
∼→ (ρ′′)!K2 such that the following diagram

commutes.

5.3.4.
(ρ′′w)!Kw

2

hw(φ)−−−−→ (ρ′′)!K2

gw



� g



�

indG
Σ(E) θw(φ)−−−−→ indG

Σ(E)
where the vertical maps are the canonical isomorphisms given by 5.1.33.
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Proposition 5.3.5. Assume that CG(σ) is connected and let M = CG(σ).
We have WG(E) =WM (E) =WM (Q� � ζ).

Proof: We show that the inclusion WM (E) ⊂ WG(E) is an equality. Let
n ∈ NG(E); it satisfies Ad(n)∗m∗(LΨ ) = m∗(LΨ ). But the map m ◦Ad(n) is
the linear form on z(L) given by t �→ µ(t,Ad(n−1)σ). Hence from the fact that
the character Ψ is non-trivial and the fact that the restriction of µ to z(L) is
non-degenerate (see 2.5.16), we deduce that σ = Ad(n−1)σ, that is n ∈ CG(σ).
We thus proved that WG(E) =WM (E). The equality WM (E) =WM (Q� � ζ)
is obvious. ��

Proposition 5.3.6. We use the notation and assumption of 5.3.5 and 5.3.1.
Then we have,

(i) WG(E) = WM (L). Hence by [Lus84, 9.2(a)], the group WG(E) is a
Coxeter group.

(ii) The natural morphism End(indMΣ (E)) → End
(
indMΣ (E)|Mnil

)
is an

isomorphism.

(iii) We can choose the θw ∈ Aw ⊂ A such that for any w,w′ ∈ WG(E),
we have θw.θw′ = θww′ ; that is the map w �→ θw gives rise to an isomorphism
between the group algebra Q�[WG(E)] of WG(E) and End(indGΣ(E)).

Proof: Since, by 5.3.5, we have WG(E) = WM (E), and, by 5.2.20, we have
End

(
indG

Σ(E)
)
� End

(
indM

Σ (E)
)
, we are reduced to prove the proposition

in the case where σ ∈ z(G). We thus assume that σ ∈ z(G), i.e M = G.
We now reduce the proofs of (i) and (ii) to the case where σ = 0, i.e E =
Q� � ζ. Since by 5.3.5 we have WG(E) = WG(Q� � ζ), to prove (i) it is
thus enough to prove it for σ = 0. By 5.1.66 we have a decomposition E =
(mz(G))∗LΨ �

(
m ˆz(L)

)∗LΨ � ζ. But since σ ∈ z(G) and since by 2.5.16, the

space z(G) is orthogonal to G with respect to µ, we have
(
m ˆz(L)

)∗LΨ = Q�. We

deduce from 5.1.49 that indG
Σ(E) � (mz(G))∗LΨ [dim z(L)]�indG

Σ̂
(Ê) where Ê =

Q��ζ. Hence the natural morphism End
(
indG

Σ(E)
)
→ End

(
indG

Σ(E)|Gnil

)
is an

isomorphism if and only if the morphism End
(
indG

Σ̂
(Ê)
)
→ End

(
indG

Σ̂
(Ê)|Gnil

)

is an isomorphism. We thus have reduced the proof of (ii) to the case where
σ = 0.

We now prove that (i), (ii) and (iii) hold for σ = 0; we will prove af-
terwards that (iii) holds for any σ ∈ z(G). Let f : Guni → Gnil be a G-
equivariant isomorphism. Let (CL, ζL) := (f−1(C), f∗ζ) and let (ΣL, EL) :=
(ZoL.C

L,Q� � ζL); then (L,ΣL, EL) is a cuspidal datum of G. Moreover we



5.4 Geometrical Induction: Definition 99

have

NG(E) = NG(EL) := {n ∈ NG(L)|nΣLn−1 = ΣL, (Intn)∗(EL) � EL} (*)

and from [Lus84, Theorem 9.2 (b)] we haveWG(EL) := NG(EL)/L = WG(L),
hence we deduce (i). Put W =WG(EL) =WG(E).

Let us prove the assertion (ii) for σ = 0. By 5.1.78, the complex indGΣL(EL)|Guni

is isomorphic to f∗(indG
Σ(E)|Gnil

)
, and by [Lus84, 6.8.2, 9.2],

dimEnd
(
indGΣL(EL)|Guni

)
= |W|.

Hence
dimEnd

(
indG

Σ(E)|Guni

)
= dimEnd

(
indG

Σ(E)
)
. (1)

As in the group case (see [Lus84, 6.8.3]), we show that the restriction to Gnil
of any irreducible direct summand of indG

Σ(E) is non-zero, hence we get that
the map in (ii) is injective which is thus bijective by (1).

From [Lus84, 6.8.2, 9.2], we have an isomorphism

Q�[W ] ∼→ End
(
indGΣL(EL)|Guni

)

of Q�-algebras, and so via indGΣL(EL)|Guni � f∗(indG
Σ(E)|Gnil

)
, we get that

End
(
indG

Σ(E)|Gnil

)
� Q�[W ]. Thus we can choose the θw|Gnil

such that
(θw|Gnil

).(θv|Gnil
) = θwv|Gnil

for any w, v ∈ W . The assertion (iii) for σ = 0
follows thus from (ii).

Assume now that σ ∈ z(G). By 5.1.75, we have

End
(
indG

Σ(Q� � ζ)|Gnil

)
= End

(
indG

Σ(E)|Gnil

)
.

From the previous discussion we also have End
(
indG

Σ(Q� � ζ)|Gnil

)
= Q�[W ],

hence by (ii) we have End
(
indG

Σ(E)
)

= Q�[W ]. ��

The following result is a consequence of 5.3.6(ii).

Proposition 5.3.7. Assume that σ ∈ z(G). Then the restriction to Gnil of
any simple direct summand of indGΣ(E) is a simple perverse sheaf on Gnil (up
to a shift by dim z(L)).

5.4 Geometrical Induction: Definition

The geometrical induction for invariant functions will be defined using a for-
mula (see 5.4.7) expressing the characteristic functions of the F -equivariant
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admissible complexes in terms of characteristic functions of F -equivariant
Lusztig complexes. To establish this formula, we follow [Lus85b, 10].

5.4.1 Preliminaries

5.4.2. Let (L,Σ, E) be an F -stable cuspidal datum of G and let φ : F ∗(E) ∼→ E
be an isomorphism. For any w ∈ WG(E), we choose arbitrarily a non-zero
element θw ∈ Aw where Aw is the one-dimensional vector space defined in
5.3.1. We fix an element w ofWG(E) together with a representative ẇ of w in
NG(E). By the Lang-Steinberg theorem there is an element z ∈ G such that
z−1F (z) = ẇ−1. Let Lw := zLz−1 and let Lw be its Lie algebra. Then Lw and
Σw := Ad(z)Σ are both F -stable. Let Ew be the local system Ad(z−1)∗(E).
We are going to define an isomorphism φw : F ∗(Ew) ∼→ Ew in terms of φ. By
5.3.1, the automorphism θw defines an isomorphism E � Ad(ẇ)∗(E) which
leads to an isomorphism

F ∗Ad(z−1)∗(E) � F ∗Ad(z−1)∗Ad(ẇ)∗(E). (*)

Since we have Ad(ẇ) ◦ Ad(z−1) ◦ F = F ◦ Ad(z−1), the isomorphism (*)
gives rise to an isomorphism h : F ∗Ad(z−1)∗(E) � Ad(z−1)∗F ∗(E). Then the
isomorphism φw : F ∗(Ew) � Ew is Ad(z−1)∗(φ) ◦ h.

We denote by φG : F ∗(indG
Σ(E)

) ∼→ indG
Σ(E) the natural isomorphism

induced by φ and by φGw : F ∗(indG
Σw

(Ew)
) ∼→ indG

Σw
(Ew) the natural isomor-

phism induced by φw. As in [Lus85b, 10.6], there is a natural isomorphism
j : indG

Σw
(Ew) ∼→ indG

Σ(E) such that the following diagram commutes.

F ∗
(
indG

Σw
(Ew)

)
F∗(j) ��

φG
w

��

F ∗
(
indG

Σ(E)
)

θw◦φG

��
indG

Σw
(Ew)

j �� indG
Σ(E)

As a consequence we get that

XindG
Σ(E),θw◦φG = XindG

Σw
(Ew),φG

w
.

5.4.3. Let (L,Σ, E) be a cuspidal datum of G, let KG = indG
Σ(E) and let

A = End(KG). If A is a simple direct summand of KG , we denote by VA the
abelian group Hom(A,KG). Then VA is endowed with a structure ofA-module
defined by A × VA → VA, (a, f) �→ a ◦ f ; since A is a simple perverse sheaf,
the A-module VA is irreducible. We have a natural isomorphism
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⊕

A

(VA ⊗A) ∼→ KG

where A runs over the set of simple components of KG (up to isomorphism).
For any x ∈ G and any integer i, it gives rise to an isomorphism

⊕

A

(VA ⊗HixA) ∼→ HixKG (*)

under which an element v ⊗ a ∈ VA ⊗ HixA corresponds to vix(a) where vix :
HixA→ HixKG is the morphism induced by v : A→ KG .

Assume now that the datum (L,Σ, E) is F -stable and let φ be an iso-
morphism F ∗(E) � E . The complex KG is thus F -stable and we denote by
φG : F ∗(KG) ∼→ KG the isomorphism induced by φ. Let A be an F -stable sim-
ple direct summand of KG together with an isomorphism φA : F ∗(A) ∼→ A.
This defines a linear map σA : VA → VA, v �→ φG◦F ∗(v)◦φ−1

A such that for any
x ∈ GF and any integer i, the isomorphism σA⊗(φA)ix : VA⊗HixA

∼→ VA⊗HixA
corresponds under (*) to (φG)ix : HixKG ∼→ HixKG . On the other hand, if
B is a simple component of KG which is not F -stable, then (φG)ix maps
VB ⊗HixB ↪→ HixKG onto a different direct summand. It follows that

5.4.4.
XKG ,φG =

∑

A

Tr(σA, VA)XA,φA

where A runs over the set of F -stable simple components of KG (up to iso-
morphism). If for w ∈ WG(E), we replace φG by θw ◦ φG with θw as in 5.4.2
and we keep φA unchanged, then the formula 5.4.4 becomes

5.4.5.
XKG,θw◦φG =

∑

A

Tr(θw ◦ σA, VA)XA,φA .

Following [Lus86a, 10.4] we deduce that

5.4.6.

XA,φA = |WG(E)|−1
∑

w∈WG(E)

Tr((θw ◦ σA)−1, VA)XKG ,θw◦φG

for any F -equivariant complex (A, φA) with A a simple direct summand of
KG .

We use the notation of 5.4.2; by 5.4.2 and 5.4.6 we get that
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5.4.7.

XA,φA = |WG(E)|−1
∑

w∈WG(E)

Tr((θw ◦ σA)−1, VA)XindG
Σw

(Ew),φG
w

for any F -equivariant admissible complex (A, φA) with A a simple direct sum-
mand of KG .

5.4.8. Let A be an F -stable admissible complex on G. Now we prove that
there exists a unique (up to G-conjugacy) F -stable cuspidal datum (L,Σ, E)
of G such that A is a direct summand of indG

Σ(E) ; this will show that we have
a formula like 5.4.7 for any F -equivariant admissible complex (A, φA) on G.

By 5.2.18, we need only to prove the existence of such an F -stable cuspidal
datum (L,Σ, E). Let (L,Σ, E) be a cuspidal datum of G such that A is a
direct summand of indG

Σ(E). Since A is F -stable, it is also a direct summand
of F ∗(indG

Σ(E)
)
� indG

F−1(Σ)

(
F ∗(E)

)
. By 5.2.18, the cuspidal data (L,Σ, E)

and (F−1(L), F−1(Σ), F ∗(E)) are G-conjugate i.e. there exists g ∈ G such
that F−1(L) = gLg−1, F−1(Σ) = Ad(g)Σ and F ∗(E) = Ad(g−1)∗(E). By
Lang-Steinberg theorem, there exists g1 ∈ G such that F (g) = g−1

1 F (g1). Put

(L1, Σ1, E1) := (g1Lg−1
1 ,Ad(g1)Σ,Ad(g−1

1 )∗(E)).

Then the cuspidal datum (L1, Σ1, E1) is F -stable and A is a direct summand
of indG

Σ1
(E1).

Remark 5.4.9. Let A be an F -stable admissible complex on G. Assume that
FG(A) is supported by the Zariski closure of an F -stable G-orbit of the form
σ+O with σ ∈ z(G) and O a nilpotent orbit of G. Then there exists a unique
(up to GF -conjugacy) F -stable cuspidal datum (L,Σ, E) such that L is G-split
and such that A is a direct summand of indG

Σ(E).

Indeed, by 5.4.8, there exists an F -stable cuspidal datum (L,Σ, E) of G
such thatA is a direct summand of indG

Σ(E). Since FG(A) is supported by σ+O
with σ ∈ z(G), the datum (L,Σ, E) is of the form

(
L, z(L)+C, (m−σ)∗LΨ �ζ

)

for some cuspidal nilpotent pair (C, ζ) of L = Lie(L). Since L supports a
cuspidal pair, any two parabolic subgroup of G having L as a Levi subgroup
are NG(L)-conjugate (see [DLM97, 1.1(i)]). As a consequence there is a unique
(up to GF -conjugacy) F -stable G-split Levi subgroup Lo of G which is G-
conjugate to L. Since WG(E) = WG(L), see 5.3.6(i), it is thus possible, as in
5.4.2, to construct an F -stable cuspidal datum (Lw, Σw, Ew) of G, for some
w ∈ WG(E), such that Lo = Lw.
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5.4.10 Geometrical Induction

5.4.11. Let M be an F -stable Levi subgroup of G and let M be the Lie
algebra of M . We are now in position to define the geometrical induction
RG

M : C(MF )→ C(GF ).

We define the geometrical induction RG
M : C(MF ) → C(GF ) using a basis

{XAι,φι |ι ∈ I(M)F } of C(MF ) as in 5.2.22.

Let ι ∈ I(M)F and let (L,Σ, E) be an F -stable cuspidal datum of M such
that Aι is a direct summand of indM

Σ (E).

Let φ : F ∗(E) ∼→ E be an isomorphism. For w ∈ WM (E), let θw be a
non-zero element of Aw ⊂ End(indM

Σ (E)) where Aw is as in 5.3.1. As in 5.4.7
we have

5.4.12.

XAι,φι = |WM (E)|−1
∑

w∈WM(E)

Tr((θw ◦ σAι)
−1, VAι)XindM

Σw
(Ew),φM

w
.

Then we define RG
M(XAι,φι) by

5.4.13.

RG
M(XAι,φι) = |WM (E)|−1

∑

w∈WM(E)

Tr((θw ◦ σAι)
−1, VAι)XindG

Σw
(Ew),φG

w
.

We will prove after the following remark that 5.4.13 does not depend on
the choice of the F -stable cuspidal datum (L,Σ, E).

Remark 5.4.14. (i) Note that the definition of RG
M : C(MF ) → C(GF ) does

not depend on the choice of the isomorphisms φι with ι ∈ I(M)F . Indeed, let
R′G

M be the induction defined on another basis {XAι,φ′
ι
|ι ∈ I(M)F } and let

ι ∈ I(M)F . Since Aι is a simple perverse sheaf, there exists a constant c ∈ Q
×
�

such that φι = cφ′ι. Let σ′
Aι

: VAι → VAι be defined in terms of φM, φ′ι as
σAι is defined in terms of φM, φι. We thus have σAι = c−1σ′

Aι
. Hence for any

w ∈ WM (E), we have (θw ◦σAι)−1 = c(θw ◦σ′
Aι

)−1 and so from 5.4.13, we get
that RG

M(XAι,φι) = cR′G
M(XAι,φ′

ι
). But since XAι,φι = cXAι,φ′

ι
, this proves

that RG
M(XAι,φι) = R′G

M(XAι,φ′
ι
). It is also clear that the induction RG

M does
not depend on the choice of the isomorphisms φ : F ∗(E) ∼→ E . Finally it is
clearly independent on the choice of the isomorphisms θw ∈ Aw since if we
denote by θGw the canonical endomorphism of indG

Σ(E) induced by θw (recall
that θw defines a unique isomorphism Ad(ẇ)∗E � E which induces a canonical
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isomorphism θGw : indG
Σ(E) � indG

Σ(E)), then XindG
Σw

(Ew),φG
w

= XindG
Σ(E),θGw◦φG

by 5.4.2.

(ii) If (M,Σ, E) is an F -stable cuspidal datum of G together with an iso-
morphism φ : F ∗(E) � E , then

RG
M
(
XK(Σ,E),φ

)
= XindG

Σ(E),φG .

(iii) Note that unlike Deligne-Lusztig induction, the definition of geomet-
rical induction does not involve any parabolic subgroup of G.

We have the following lemma.

Lemma 5.4.15. We use the notation of 5.4.11. Assume that XG
M : C(MF )→

C(GF ) is a Q�-linear map such that for any F -stable cuspidal datum (L,Σ, E)
of M and any isomorphism φ : F ∗(E) � E, we have XG

M
(
XindM

Σ (E),φM
)

=
XindG

Σ(E),φG . Then XG
M = RG

M.

The following result will show the transitivity of geometrical induction,
and, together with 5.4.15, it will show the independence of the formula 5.4.13
from the F -stable cuspidal datum (L,Σ, E).

Proposition 5.4.16. For any F -stable cuspidal datum (L,Σ, E) of M and
any isomorphism φ : F ∗(E) � E, we have RG

M
(
XindM

Σ (E),φM
)

= XindG
Σ(E),φG .

Proof: Thanks to 5.4.15, it is enough to show the existence of a Q�-linear map
XG

M : C(MF ) → C(GF ) such that for any F -stable cuspidal datum (L,Σ, E)
of M and any isomorphism φ : F ∗(E) � E , we have XG

M
(
XindM

Σ (E),φM
)

=
XindG

Σ(E),φG . We define XG
M : C(MF ) −→ C(GF ) on each element of the basis

{XAι,φι |ι ∈ I(M)F } using the formula 5.4.13 with the following additional
condition concerning the choice of the F -stable cuspidal datum (L,Σ, E):
for ι ∈ I(M)F , we assume that the F -stable cuspidal data aι = (L,Σ, E)
such that Aι ↪→ indM

Σ (E) is chosen such that if Aµ, with µ ∈ I(M)F , is a
direct summand of indM

Σ (E), then aµ = aι. Now, let ι ∈ I(M)F and put
aι = (L,Σ, E). Put KM = indM

Σ (E) and KG = indG
Σ(E). We want to show

that for any w′ ∈ WM (E), we have XG
M
(
XKM,θw′◦φM

)
= XKG ,θG

w′◦φG where

θGw′ denotes the canonical endomorphism ofKG induced by the endomorphism
θw′ ∈ Aw. Let w′ ∈ WM (E), from 5.4.5, we have

XG
M
(
XKM,θw′◦φM

)
=
∑

ι

Tr(θw′ ◦ σAι , VAι)X
G
M(XAι,φι)

where ι runs over the set Z := {ι ∈ I(M)F |Aι ↪→ KM}. From the definition
of XG

M, we have
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5.4.17. XG
M
(
XKM,θw′◦φM

)
= |WM (E)|−1×

∑

w∈WM(E)

(
∑

ι∈Z
Tr(θw′ ◦ σAι , VAι)Tr

(
(θw ◦ σAι)

−1, VAι

)
XKG,θGw◦φG

)

.

Let A be the endomorphims algebra of KM. Define ρ : A −→ A by
ρ(θ) = φM ◦ F ∗(θ) ◦

(
φM

)−1
. This is an automorphism of Q�-algebras and

for any v ∈ WM (E), we have ρ(Av) = AF−1(v). For any ι ∈ Z, the linear map
σAι : VAι → VAι is A-semi-linear, t hat is σAι(θv) = ρ(θ)σAι(v). Hence from
[Lus85b, (10.3.2)], the term

∑

ι∈Z
Tr(θw′ ◦ σAι , VAι)Tr

(
(θw ◦ σAι)

−1, VAι

)
(*)

is equal to the trace of the linear map A → A, θ �→ θ−1
w ρ−1(θ)θw′ . Recall that

the set {θv|v ∈ WM (E)} is a basis of A such that for any v, v′ ∈ WM (E), we
have θvθv′ ∈ Avv′ , hence for any v ∈ WM (E), we have

θ−1
w ρ−1(θv)θw′ = ε(v)θw−1F (v)w′

for some scalar ε(v). The term (*) is thus equal to
∑

{v∈WM (E)|F (v)−1wv=w′}
ε(v).

The formula 5.4.17 becomes

XG
M
(
XKM,θw′◦φM

)
= |WM (E)|−1

∑

w∈WM (E)
w∼

F
w′






∑

v∈WM (E)
F (v)−1wv=w′

ε(v)XKG ,θGw◦φG






where for two elements v, v′ ∈ WM (E), the expression v ∼
F
v′ means: v

and v′ are F−1-conjugate. Hence to prove the equality XG
M
(
XKM,θw′◦φM

)
=

XKG ,θG
w′◦φG , it remains to show that if v ∈ WM (E) satisfies F (v)−1wv = w′,

then ε(v)XKG ,θGw◦φG = XKG ,θG
w′◦φG .

Assume that v ∈ WM (E) is such that F (v)−1wv = w′. We have

θ−1
w ρ−1(θv)θw′ = ε(v)θv

from which we deduce that θF (v)θw′ρ(θF (v))−1 = ε(v)θw, that is,

θF (v)θw′
(
φM ◦ F ∗(θ−1

F (v)) ◦ (φM)−1
)

= ε(v)θw.
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We thus have

θGF (v)θ
G
w′
(
φG ◦ F ∗(θGF (v))

−1 ◦ (φG)−1
)

= ε(v)θGw.

By composing this equality with φG on the right we get that

θGF (v) ◦ θ
G
w′ ◦ φG ◦ F ∗(θGF (v))

−1 = ε(v)θGw ◦ φG

from which we see that XKG ,θG
w′◦φG = ε(v)XKG ,θGw◦φG . ��

Corollary 5.4.18. The geometrical induction is transitive, that is for any
inclusion L ⊂ M of F -stable Levi subgroups of G, we have RG

M ◦ RM
L = RG

L
where L = Lie(L) and M = Lie(M).

Proof: This is a straightforward consequence of 5.4.16. ��

5.5 Deligne-Lusztig Induction and Geometrical

Induction

Let L be an F -stable Levi subgroup of G and let (C, ζ) be an F -stable cuspidal
nilpotent pair of L = Lie(L). Let P be a parabolic subgroup of G having L as
a Levi subgroup and let P = Lie(P ). For any σ ∈ z(L) we denote by Eσ the
local system (mσ)∗LΨ �ζ on Σ = z(L)+C and by Kσ the complex K(Σ, Eσ);
then Eo = Q� � ζ and Ko = K(Σ, Eo). We fix an isomorphism φ : F ∗(ζ) ∼→ ζ.
Let KG

σ := indG
Σ(Eσ) and KG

o := indG
Σ(Eo). We denote by φGo : F ∗(KG

o ) ∼→ KG
o

the canonical isomorphism induced by 1 � φ : F ∗(Eo) ∼→ Eo.

5.5.1 Generalized Green Functions

Definition 5.5.2. We define the generalized Green function QG
L,C,ζ,φ ∈

C(GF )nil as the characteristic function of (KG
o |Gnil

, φGo |Gnil
) extended by zero

on GF − GFnil, .

The following proposition is the Lie algebra version of [Lus85b, 8.3.2].

Proposition 5.5.3. Let σ ∈ z(L)F , and let φσ : F ∗ (Eσ) ∼−→ Eσ be an
isomorphism extending φ, then if φGσ : F ∗(KG

σ ) ∼−→ KG
σ is the isomorphism

induced by φσ, we have

QG
L,C,ζ,φ(u) = XKG

σ ,φ
G
σ
(u)

for any u ∈ GFnil.
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Proof: There is a gap in the proof of [Lus85b, 8.3.2]. However a complete
proof of [Lus85b, 8.3.2] can be found in [Lus04] where the result [Lus85b,
8.3.2] has been generalized to the case where the reductive group G is not
necessarily connected. Here we adapt Lusztig’s argument to the Lie algebra
case.

Let hP :
(
KG
σ

)
|Gnil

∼→
(
KG
o

)
|Gnil

be the isomorphism as in 5.1.75.
Since L supports a cuspidal pair, by [DLM97, 1.1(i)], the parabolic sub-
groups F (P ) and P are conjugate in NG(L). Let w ∈ WG(L) be such that
F (P ) = Pw := ẇP ẇ−1 with ẇ ∈ NG(L) a representative of w. By 5.1.52, we
have the following commutative diagram.

5.5.4.

F ∗ ((KG
σ

)
|Gnil

) F∗(hPw ) ��

φG
σ |Gnil

��

F ∗ ((KG
o

)
|Gnil

)

φG |Gnil

��(
KG
σ

)
|Gnil

hP ��
(
KG
o

)
|Gnil

We thus have to show that hP = hPw , i.e. that the following diagram com-
mutes.

5.5.5.

(
indG

L⊂PK(C, ζ)
)
[dim z(L)]

∼

���������������������
∼

���������������������

(
KG
σ

)
|Gnil

∼
���������������������

(
KG
o

)
|Gnil

∼
���������������������

(
indG

L⊂PwK(C, ζ)
)
[dim z(L)]

where the arrows are the restriction to the nilpotent set of the canonical
isomorphisms given by 5.1.33.

We thus come down to the following problem:

Let v ∈ WG(L) and let v̇ be a representative of v in NG(L). From 5.3.6(i),
the element v̇ normalizes Σ. Let σ′ = Ad(v̇−1)σ and ζ′ = Ad(v̇)∗ζ. Put
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E ′σ′ = (mσ′)∗LΨ � ζ′ and K ′
σ′ = K(Σ, E ′σ′) ; note that Ad(v̇)∗Eσ = E ′σ′ .

The complexes indG
Σ(E ′σ′) and indG

Σ(Eσ) are then isomorphic and so we get an
isomorphism

5.5.6.
Φ : indG

L⊂P(Kσ)
∼→ indG

L⊂P(K ′
σ′).

Restricting Φ to the nilpotent set, we get an isomorphism

Φn : indG
L⊂PK(C, ζ) ∼→ indG

L⊂PK(C, ζ′)

which depends on v. We want to prove that the isomorphism Φn does not
depend on σ ∈ z(L).

Let T be an F -stable maximal torus of L and let T be its Lie algebra; put
W = WG(T ). We use the notation of 5.1.11 and 5.1.31 relatively to (P,L,Σ).
Let π1 : Σ → z(L) be the first projection and π2 : Σ → C be the second
projection. The morphism X1

ρ−→ Σ
π1−→ z(L) factorizes through a morphism

ρ̃ : X2 → z(L). We have the following commutative diagram.

X2
ρ̃ ��

ρ′′

��

z(L)

χ

��
Y

χ �� T /W

where χ denotes the Steinberg map that maps x ∈ G onto OGxs
∩ T . Assume

that z = Ad(g−1)z′ with z, z′ ∈ z(L) and g ∈ G. Put L′ = g−1Lg. Then L

and L′ are two Levi subgroups of CG(z)o which support a cuspidal pair, hence
from [DLM97, 1.1(ii)] we have hLh−1 = g−1Lg for some h ∈ CG(z)o, i.e. gh ∈
NG(L). We thus proved that two elements of z(L) which are G-conjugate are
conjugate in NG(L). As a consequence we get that χ

(
z(L)

)
� z(L)/WG(L) ↪→

T /W . Let A = z(L)/WG(L). We have the following commutative diagram.

5.5.7.

X2

ρ̃

																		

f

��
ρ′′

��

X1
ρ ��ρ′�� Σ

π1

��

π2 �� C

Y ×A z(L)
p2 ��

p1

��

z(L)

χ

��
Y

χ �� A
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Put K = Kσ, K ′ = K ′
σ′ , ϑ = (mσ)∗LΨ [dim z(L)], ϑ′ = (mσ′)∗LΨ [dim z(L)],

K = IC(C, ζ)[dimC] andK′ = IC(C, ζ′)[dimC]. We haveK = (π1)∗ϑ⊗(π2)∗K
and K ′ = (π1)∗ϑ′ ⊗ (π2)∗K′. Let ϑ2, ϑ

′
2,K2,K′

2 ∈ Dbc(X2) be such that

(ρ′)∗ϑ2[dimP ] = ρ∗π∗
1ϑ[dimG+ dimUP ],

(ρ′)∗ϑ′2[dimP ] = ρ∗ϑ′π∗
1 [dimG+ dimUP ],

(ρ′)∗K2[dimP ] = ρ∗π∗
2K[dimG+ dimUP ],

(ρ′)∗K′
2[dimP ] = ρ∗π∗

2K′[dimG+ dimUP ].

Put K2 = ϑ2 ⊗ K2 and K ′
2 = ϑ′2 ⊗ K′

2. Since (ρ′)∗K2[dimP ] = ρ∗K[dimG +
dimUP ] and (ρ′)∗K ′

2[dimP ] = ρ∗K ′[dimG + dimUP ], we have (ρ′′)!K2 =
indG

L⊂PK and (ρ′′)!K ′
2 = indG

L⊂PK
′. We have the following cartesian diagram.

5.5.8.
Y2

� � γ ��

h

��
α′′

��

X2

f

��
ρ′′

��

Y ×A z(L)reg
� � ��

p1

��

Y ×A z(L)

p1

��
Y

� � �� Y

where γ is given by γ(x, gL) = (x, gP ), see 5.1.27. Let V = Y ×Az(L)reg, then
dimV = dimY = dimY2. The morphism α′′ being finite, the morphism h is
also finite and so h(Y2) = V . Since the morphism ρ′′ is proper, the morphism f

is also proper, in particular it is closed ; we thus have f(X2) = Y ×Az(L) = V .
Let ξ2 and ξ′2 be the local systems on Y2 such that γ∗(K2) = ξ2[dimX2] and
γ∗(K ′

2) = ξ′2[dimX2]. We now prove that f!(K2) = IC
(
V , h∗(ξ2)

)
[dimV ].

From 5.5.8, we have H−dimV (f!K2)|V � h∗(ξ2). Since K2 is an intersection
cohomology complex on X2, we also have Hi(f!K2) = 0 if i < −dimV . It
remains to check that

(i) dim
(
Supp(Hi(f!K2))

)
< −i if i > dimV ,

(ii) dim
(
Supp(Hi(Df(X2)f!K2))

)
< −i if i > dimV .

Clearly we have dim
(
X2 ×f(X2) X2

)
≤ dim

(
X2 ×Y X2

)
. From 5.1.15, we

deduce that

dim
(
X2 ×f(X2) X2

)
≤ dimG− dimL+ dimΣ.

Hence, we prove (i) as we proved (a) in 5.1.33. Since f is proper, the functor f!
commutes with the Verdier dual, hence the proof of (ii) is completely similar
to that of (i).
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Similarly, we prove that f!(K ′
2) = IC

(
V , h∗(ξ′2)

)
[dimV ].

Let WG(L) act on Y ×A z(L) by Ad on the second coordinate; if w ∈WG(L),
we denote by fw the corresponding automorphism of Y ×A z(L). The set V
is then WG(L)-stable and we have a canonical isomorphism (fv)∗(h∗ξ2) �
h∗ξ

′
2. Hence from the properties of intersection cohomology complexes, this

isomorphism extends to a unique isomorphism

Φ′ : (fv)∗(f!K2)
∼→ f!K

′
2.

Then the isomorphism (p1)!(Φ′) is nothing but the isomorphism Φ :
indG

L⊂P(K) ∼→ indG
L⊂P(K ′) of 5.5.6 ; we thus have to show that the restriction

of (p1)!(Φ′) to the nilpotent set does not depend on σ.

Let d = dimG− dimL. From 5.5.7, note that
(
f∗(p2)∗[d]ϑ

)
⊗K2 = K2 and

(
f∗(p2)∗[d]ϑ′

)
⊗K′

2 = K ′
2.

Put ϑ̃ = (p2)∗[d]ϑ and ϑ̃′ = (p2)∗[d]ϑ′. Since the morphism p2 is WG(L)-
invariant, we get that (fv)∗ϑ̃ = ϑ̃′. On the other hand, from the projection
formula we have

f!(K2) � ϑ̃⊗ f!
(
K2

)
and f!(K ′

2) � ϑ̃′ ⊗ f!
(
K′

2

)
.

We deduce that
Φ′ : ϑ̃′ ⊗ (fv)∗

(
f!K2

) ∼−→ ϑ̃′ ⊗ f!K′
2.

We have Φ′ = Idϑ̃′⊗α for some α : (fv)∗
(
f!K2

) ∼→ f!K′
2 which does not depend

on σ. Put N = p−1
1 (Y nil), then Φ′|N = (Idϑ̃′)|N ⊗ (α|N ). But p−1

2 (0) =
N , hence (Idϑ̃′)|N = (p2)∗[d]

(
Idϑ′

n

)
where ϑ′n is the constant sheaf on {0}

shifted by dim z(L). Hence Φ′|N does not depend on σ and so we get that
(p1)!(Φ′|N ) = Φn does not depend on σ. ��

5.5.9 The Character Formula

Let σ ∈ z(L)F . Assume that Eσ is F -stable and let φσ : F ∗(Eσ) ∼→ Eσ be an
isomorphism. We denote by φGσ : F ∗(KG

σ ) ∼→ KG
σ the isomorphism induced by

φσ. We now give a formula which expresses the values of the function XKG
σ ,φ

G
σ

in terms of the values of some generalized Green functions. Let x ∈ GF and
assume that there exists g ∈ GF such that Ad(g−1)xs ∈ z(L). Put Lg = gLg−1

and Lg = Lie(Lg) = Ad(g)(L). We have xs ∈ z(Lg) and so Lg is a Levi
subgroup of CoG(xs). Let Cg = Ad(g)C and let (ζg , φg) be the inverse image
of the F -equivariant sheaf (Eσ, φσ) by Cg → Σ, v �→ Ad(g−1)(xs + v). Note
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that the irreducible local system ζg is isomorphic to Ad(g−1)∗ζ. Then the
following formula is the Lie algebra version of [Lus85b, 8.5].

XKG
σ ,φ

G
σ
(x) = |CoG(xs)F |−1

∑

{g∈GF |Ad(g−1)xs∈z(L)}

QCG(xs)
Lg,Cg,ζg,φg

(xn).

Remark 5.5.10. The proof of the above formula is entirely similar to that of
[Lus85b, 8.5], in particular it uses 5.5.3. We do not prove it here, however we
will prove a similar formula for another kind of complexes (see next chapter).

5.5.11 Generalized Green Functions and Two-Variable Green
Functions

5.5.12. Let f : Guni
∼→ Gnil be a G-equivariant isomorphism defined over

Fq, i.e. which commutes with F . Put (CL, ζL, φL) = (f−1(C), f∗(ζ), f∗(φ))
and denote by KG

o the complex on G induced by the cuspidal datum
(L,ZoLC

L,Q� � ζL). Let φGo : F ∗(KG
o ) ∼→ KG

o be the isomorphism induced
by 1 � φ : F ∗(Q� � ζL) ∼→ Q� � ζL. Let us show that for any v ∈ GFnil,

XKG
o ,φ

G
o
(v) = XKG

o ,φ
G
o
(f−1(v)). (*)

To prove this, by 5.4.2, 5.3.6(i) and 5.4.9, we may assume that P is F -stable
and prove, for any v ∈ GFnil and any w ∈ WG(L), that

XKG
o ,θ

G
w◦φG

o
(v) = XKG

o ,θ
G
w◦φG

o
(f−1(v)) (1)

where θGw and θGw are as in 5.3.6(iii). We denote by {Aι|ι ∈ IFo } the set of
admissible complexes (up to isomorphism) which are direct summand of KG

o .
By 5.3.7, the restriction of Aι[−dim z(L)] to Gnil is a simple perverse sheaf
Kι supported by the Zariski closure of a nilpotent orbit. For ι ∈ IFo , let φι :
F ∗(Kι)

∼→ Kι be an isomorphism and let XG
ι be the characteristic function of

(Kι, φι). We then denote by XGι the characteristic function of (f∗(Kι), f∗(φι)).
By 5.3.6, the irreducible characters of WG(L) are in bijection with Io, and
the F -stable ones are in bijection with IFo . For ι ∈ IFo , let χι be the F -
stable irreducible character corresponding to ι and let χ̃ι be the “preferred”
extension [Lus86a, 24] of χι to the semi-direct product WG(L) � 〈F 〉. Then
with a specific choice of φ and {φι| ι ∈ IFo } (see [Lus92, section 5] or [DLM97,
1.4]), the formula 5.4.5 becomes

XKG
o ,θ

G
w◦φG

o
(v) =

∑

ι∈IF
o

χ̃ι(wF )XG
ι (v) for v ∈ GFnil.

Since P is F -stable, the F -equivariant complex
(
KG
o |Guni , φ

G
o |Guni

)
is the

inverse image by f∗ of
(
KG
o |Gnil

, φGo |Gnil

)
, and so the isomorphisms f∗(φ) and
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{f∗(φι)| ι ∈ IFo } satisfies the same properties as φ and {φι| ι ∈ IFo }. We thus
have

XKG
o ,θ

G
w◦φG

o
(u) =

∑

ι∈IF
o

χ̃ι(wF )XGι (u), for u ∈ GFuni.

Actually to establish this formula, we also use the fact that f∗(Kι), which
(up to isomorphism) does not depend on the choice of f , is the direct sum-
mand of KG

o |Guni corresponding to the irreducible character χι of WG(L).
This fact follows from the explicit computation of the generalized Springer
correspondence [Lus84][LS85] both in the group case and in the Lie alge-
bra case. Recall that the generalized Springer correspondence is the map
Irr(WG(L)) −→ {Kι|ι ∈ Io}. We thus proved (1).

5.5.13. Let ω : Gnil ∼−→ Guni be a G-equivariant isomorphism (defined over
Fq) and let QG

L⊂P be the two-variable Green function as in 3.2.11. Assume
that q is large enough so that [Lus90, 1.14] is available. Then from 5.5.12(*)
and [Lus90, 1.14] we have

QG
L,C,ζ,φ(x) =

∑

v∈LF
nil

QG
L⊂P(x, v)XKo,1�φ(v)

for any x ∈ GF . If L is a maximal torus, then we can drop the assumption on
q by [Sho95].

5.5.14 Geometrical Induction and Deligne-Lusztig Induction

Assume that q is large enough so that the formula in 5.5.13 holds. Let RG
L

be the Deligne-Lusztig induction relatively to ω : Gnil ∼−→ Guni. Recall that
RG

L denotes the geometrical induction (whose definition does not depend on
a G-equivariant homeomorphism Gnil → Guni). Then we have the following
result.

Proposition 5.5.15. Let σ ∈ z(L)F and let φσ : F ∗(Kσ)
∼→ Kσ be an

isomorphism. Then

RG
L
(
XKσ,φσ

)
= RG

L
(
XKσ,φσ

)
.

Proof: Let x ∈ GF , we have
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RG
L
(
XKσ ,φσ

)
(x) = |LF |−1

∑

y∈LF

SG
L⊂P(x, y)XKσ ,φσ (y).

Since the complex Kσ is supported by Σ, we have

RG
L
(
XKσ,φσ

)
(x) = |LF |−1

∑

(t,v)∈z(L)F ×CF

SG
L⊂P(x, t+ v)XKσ ,φσ(t+ v).

But for (t, v) ∈ z(L)F × CF , we have

SG
L⊂P(x, t+ v) =

∑

h∈GF |Ad(h)t=xs

|CoL(t)F ||CoG(t)F |−1QCG(t)
CL(t)(Ad(h−1)xn, v).

Hence, we get that RG
L
(
XKσ,φσ

)
(x) =

∑

(t,v)∈z(L)F ×CF

∑

h∈GF

Ad(h)t=xs

|CoG(t)F |−1QCG(t)
L (Ad(h−1)xn, v)XKσ ,φσ(t+ v).

By interchanging the sums we have

RG
L
(
XKσ ,φσ

)
(x) = |CoG(xs)F |−1×

∑

h∈GF

Ad(h−1)xs∈z(L)

∑

v∈CF

QCG(Ad(h−1xs)
L (Ad(h−1)xn, v)XKσ ,φσ(Ad(h−1)xs + v).

Using the notation of 5.5.9, we may re-write this formula as follows.

RG
L
(
XKσ ,φσ

)
(x) = |CoG(xs)F |−1

∑

h∈GF

Ad(h−1)xs∈z(L)

∑

v∈Ch
F

QCG(xs)
L (xn, v)XKh,φh

(v)

where Kh = K(Ch, ζh). Hence the proposition is a consequence of 5.5.9 and
5.5.12. ��

Theorem 5.5.16. The geometrical induction coincides with Deligne-Lusztig
induction.

Proof: This is a straightforward consequence of 5.5.15, 5.4.15 and 3.2.22. ��

Remark 5.5.17. The theorem shows the independence of RG
L from the choice

of the G-equivariant isomorphism ω.



6

Deligne-Lusztig Induction and Fourier

Transforms

Throughout this chapter, unless specified, we assume that the prime p is
acceptable forG and that q is large enough such that the geometrical induction
coincides with Deligne-Lusztig induction. Fourier transforms considered will
be with respect to (µ, Ψ) as in 5.2. The goal of the chapter is to discuss the
commutation formula conjectured in 3.2.30. We reduce this conjecture to the
case where the function f of 3.2.30 is the characteristic function of a cuspidal
nilpotently supported F -equivariant orbital perverse sheaf. We then prove the
conjecture in almost all cases under a stronger assumption on p.

6.1 Frobenius Action on the Parabolic Induction of

Cuspidal Orbital Perverse Sheaves

Throughout this section we fix a Levi subgroup L of G, a parabolic subgroup
P of G having L as a Levi subgroup and we denote by P , L the respective
Lie algebras of P and L. We assume that L supports a cuspidal nilpotent pair
(C, ζ). When the variety z(L) will be used as a set parametrazing the cuspidal
orbital pairs of L of the form (σ + C,Q� � ζ), σ ∈ z(L), it will be denoted
by S. For any σ ∈ z(L), we put (L,Σ, E1,σ) = (L, z(L) + C, (mσ)∗LΨ � ζ)
where mσ is as in 5.2.1, K1,σ = K(Σ, E1,σ) , E2,σ = Q� � ζ ∈ ls(σ + C) and
K2,σ = K(σ + C, E2,σ) .

In the following, the group L acts on S×L by Ad on the second coordinate
and trivially on the first coordinate, and G acts on S × G by Ad on G and
trivially on S. Following [Wal01, Chapter II], we define a functor indS×G

S×L,P :
ML(S × L)→ Dbc(S × G) and two L-equivariant simple perverse sheaves K1

and K2 on S × L such that, for any σ ∈ z(L),

E. Letellier: LNM 1859, pp. 115–149, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



116 6 Deligne-Lusztig Induction and Fourier Transforms

• the restrictions of K1 and K2 to {σ}×L � L are respectivelyK1,σ[dimS]
and K2,σ[dimS],

• the complexes indS×G
S×L,P(K1) and indS×G

S×L,P(K2) are G-equivariant sim-
ple perverse sheaves on S × G and their restrictions to {σ} × G � G are
respectively

(
indG

L⊂PK1,σ

)
[dimS] and

(
indG

L⊂PK2,σ

)
[dimS].

6.1.1 The Functor indS×G
S×L,P : ML(S × L) → Db

c(S × G)

Define
VS,1 := {(s, x, h) ∈ S × G ×G|Ad(h−1)x ∈ P},

VS,2 := {(s, x, hP ) ∈ S × G × (G/P )|Ad(h−1)x ∈ P}.

We have the following diagram

S × L VS,1
πS�� π′

S �� VS,2
π′′

S �� S × G

where πS = IdS × π, π′
S = IdS × π′ and π′′

S = IdS × π′′ with π, π′ and π′′ as
in 5.1.1.

Let K be an L-equivariant perverse sheaf on S × L. The morphism πS
is smooth with connected fibers of dimension m = dimG + dimUP and is
P -equivariant if we let P acts on VS,1 by p.(s, x, g) = (s, x, gp−1) and on
S × L by p.(s, x) = (s,Ad(πP (p))x). Hence the complex (πS)∗K[m] is P -
equivariant. Since the morphism π′

S is a locally trivial principal P -bundle,
we deduce that there exists a unique perverse sheaf K̃ on VS,2 such that
(π′
S)∗K̃[dimP ] = (πS)∗K[m]. Define

indS×G
S×L,P(K) := (π′′

S)!K̃.

Let G act on S × L trivially and let G act on VS,1 and VS,2 by the adjoint
action on the second coordinate, by left translation on the third coordinate
and trivially on S. Then if the complex indS×G

S×L,P(K) is a perverse sheaf, it is
naturally G-equivariant.

6.1.2 The Complexes indS×G
S×L,PK(Z × C, E)

Let Z be a smooth irreducible closed subvariety of S×z(L); we identify the va-
riety Z×C with a subvariety of S×L via the morphism ((s, z), v) �→ (s, z+v).
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We assume that the fibers of the morphism φ : Z → S given by the projec-
tion on the first coordinate are smooth, irreducible and are all of dimension
dimZ − dimS; if s ∈ S, we denote by Zs the set {z ∈ z(L)|(s, z) ∈ Z} �
φ−1(s). Let ξ be a local system on Z and let E = ξ � ζ ∈ lsL(Z × C). We
denote by K(Z ×C, E) the complex KS×L(Z ×C, E); recall that KS×L(Z ×
C, E) denotes the extension by zero on (S × L) − (Z × C) of the complex
IC(Z × C, E)[dim (Z × C)].

The complexes K1 and K2 mentioned at the beginning of 6.1 will be of
the form K(Z×C, E) for some Z and E as above. Before defining K1 and K2,
we study, as we did with the complexes indG

L⊂PK(Σ, E) in 5.1.9 and 5.1.26,
the general properties of the complexes indS×G

S×L,PK(Z × C, E); most of these
properties will be deduced from the results of 5.1.9 and 5.1.26.

For s ∈ S, let js,G : G → S × G, x �→ (s, x) and let ξs ∈ ls(Zs) be the
inverse image of ξ by Zs → Z, z �→ (s, z). Since Z and Zs are smooth and
irreducible, we verify as in 5.1.42 and 5.1.43 that

6.1.3. (js,L)∗ (K(Z × C, E)) = K(Zs + C, ξs � ζ)[dimS], and

(js,G)∗
(
indS×G

S×L,PK(Z × C, E)
)

=
(
indGL⊂PK(Zs + C, ξs � ζ)

)
[dimS]

for any s ∈ S.

We also have:

6.1.4. The complex indS×G
S×L,P (K(Z × C, E)) is a G-equivariant perverse sheaf

on S × G.

Proof: Let K be the complex K(Z × C, E) and KS×G be the complex
indS×G

S×L,P (K(Z × C, E)). We show that for any i ∈ Z,
(i) dim

(
Supp (HiKS×G)

)
≤ −i and ,

(ii) dim
(
Supp (HiDS×GK

S×G)
)
≤ −i.

Let us prove (i). Let i ∈ Z; we have

Supp (HiKS×G) = {(s, x) ∈ S × G|Hi(s,x)KS×G �= 0}.

For s ∈ S, we denote by Ks the complex K(Zs + C, ξs � ζ). Let prS :
Supp (HiKS×G) → S be the projection on the first coordinate. It follows
from 6.1.3 that

dim
(
pr−1
S (s)

)
= dimSupp

(
Hi+dimS(indG

L⊂PKs)
)
.
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The complex indG
L⊂P(Ks) being a perverse sheaf by 5.1.19, we have

dimSupp
(
Hi+dimS(indG

L⊂PKs)
)
≤ −i− dimS.

Hence we deduce that

dimSupp (HiKS×G) ≤ −i.

The Verdier dual operator commutes with the functor indS×G
S×L,P ; the proof of

(ii) is thus completely similar to that of (i). ��

Remark 6.1.5. Note that 6.1.4 has nothing to do with the fact that the nilpo-
tent pair (C, ζ) is cuspidal.

6.1.6. Define

XS,1 = {(s, x, g) ∈ S × G ×G|Ad(g−1)x ∈ Zs + C + UP },

XS,2 = {(s, x, gP ) ∈ S × G × (G/P )|Ad(g−1)x ∈ Zs + C + UP }.

We have the following commutative diagram

Z × C� �

��

XS,1
ρS�� ρ′S ��

� �

��

XS,2
ρ′′S ��

� �

��

G

||
��

S × L VS,1
πS�� π′

S �� VS,2
π′′

S �� G

where ρS , ρ′S and ρ′′S are given respectively by the restrictions of πS , π′
S and

π′′
S . As in 5.1.10, we show that the varieties XS,1 and XS,2 are irreducible and

respectively closed in VS,1 and VS,2.

Define

XS,1,o = {(s, x, g) ∈ S × G ×G|Ad(g−1)x ∈ Zs + C + UP },

XS,2,o = {(s, x, gP ) ∈ S × G × (G/P )|Ad(g−1)x ∈ Zs + C + UP }.

As in 5.1.9 we prove that the varieties XS,1,o and XS,2,o are respectively
smooth open subsets of XS,1 and XS,2, and we construct a G-equivariant
local system Ẽ on XS,2,o such that
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(ρ′′S)!
(
IC(XS,2,o, Ẽ)[dimXS,2,o]

)
= indS×G

S×L,PK(Z × C, E).

We have the following proposition.

Proposition 6.1.7. The varieties XS,2 and ρ′′S(XS,2) are both of dimension
dimG− dimL+ dim (Z × C).

Proof: The fact that the varietyXS,2 is of dimension dimG−dimL+dim(Z×
C) is clear. Let f : ρ′′S(XS,2)→ S, (s, x) �→ s. We have

f−1(s) � {x ∈ G|∃g ∈ G,Ad(g−1)x ∈ Zs + C + UP }

for any s ∈ S. Moreover for any s ∈ S, we have dimZs = dimZ − dimS.
Hence we deduce from 5.1.18 that the fibers of f are all of dimension dimG−
dimL+dim(Z ×C)−dimS. As a consequence we get that dim (ρ′′S(XS,2)) =
dimG− dimL+ dim(Z × C). ��

6.1.8. Recall that z(L)reg denotes the set of L-regular elements in G. Let

Zreg = {(s, z) ∈ Z|z ∈ z(L)reg}

and for s ∈ S, let (Zs)reg = Zs ∩ z(L)reg. We assume from now and until the
end of this section that Zreg �= ∅. Define

YS,1 = {(s, x, g) ∈ S × G ×G|Ad(g−1)x ∈ (Zs)reg + C},

YS,2 = {(s, x, gL) ∈ S × G × (G/L)|Ad(g−1)x ∈ (Zs)reg + C},

YS = {(s, x) ∈ S × G|∃g ∈ G,Ad(g−1)x ∈ (Zs)reg + C}.

We have a diagram

6.1.9. Z × C YS,1
αS�� α′

S �� YS,2
α′′

S �� YS

where α′
S(s, x, g) = (s, x, gL), α′′

S(s, x, gL) = (s, x) and where αS(s, x, g) =
((s, t), v) if Ad(g−1)x = t+ v with t ∈ (Zs)reg and v ∈ C.

The morphism α′′
S is a Galois covering with Galois group, the normalizer

of Z × C in WG(L) where NG(L) acts on S × L by Ad on L and trivially on
S.

We have the following proposition.

Proposition 6.1.10. The map γS : YS,2 → (ρ′′S)−1(YS) defined by (s, x, gL) �→
(s, x, gP ) is an isomorphism.
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Proof: We verify as in the proof of 5.1.27 that the image of γS is a variety and
that γS induces in isomorphism onto its image; the proof of the surjectivity
of γS reduces easily to 5.1.27. ��

Proposition 6.1.11. The variety YS is a smooth irreducible locally closed
subvariety of S × G of dimension dimG− dimL+ dim (Z × C).

Proof: The proof is completely similar to that of 5.1.28. ��

From 6.1.7 and 6.1.11 we deduce the follwing fact.

Corollary 6.1.12. We have YS = ρ′′S(XS,2).

Now let ξ2 be the irreducible local system on YS,2 such that (α′
S)∗ξ2 =

(αS)∗E . Define
indS×G

Z×C(E) := K(YS , (α′′
S)∗ξ2)

where K(YS , (α′′
S)∗ξ2) = KS×G(YS , (α′′

S)∗ξ2). Since α′′
S is a Galois covering,

the local system (α′′
S)∗ξ2 is semi-simple and so the complex indS×G

Z×C(E) is
semi-simple.

From 6.1.12, note that the supports of the perverse sheaves indS×G
Z×C(E)

and indS×G
S×L,PK(Z × C, E) are both contained in the closed subvariety YS of

S × G; moreover from 6.1.10, we show easily, as in the proof of 5.1.33, that
the sheaf H−dimYS

(
indS×G

S×L,PK(Z × C, E)
)
|YS is canonically isomorphic to

the local system (α′′
S)∗ξ2. We have the following lemma.

Lemma 6.1.13. Assume that (Zs)reg �= ∅ for any s ∈ S, then the complexes
indS×G

Z×C(E) and indS×G
S×L,PK(Z × C, E) are canonically isomorphic.

Proof: Let KS×G = indS×G
S×L,PK(Z × C, E). The sheaf H−dimYS

(
KS×G |YS

)

is canonically isomorphic to the local system (α′′
S)∗ξ2, moreover we have

HiKS×G = 0 if i < −dimYS since KS×G = (ρ′′S)!
(
IC(XS,2,o, Ẽ)[dimXS,2]

)

and dimYS = dimXS,2. It remains to see that for any i > −dimYS ,

(i) dimSupp(HiKS×G) < −i,

(ii) dimSupp(HiDS×GK
S×G) < −i.

Let i > −dimYS . We use the notation of the proof of 6.1.4. Let s ∈ S; from
6.1.11, we have dimYS = dimG− dimL+ dimZ + dimC, hence

i+ dimS > −(dimG− dimL+ dimZs + dimC). (1)
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Since (Zs)reg �= ∅, from 5.1.33, we get that indG
L⊂P(Ks) is an intersection

cohomology complex with support of dimension dimG − dimL + dimZs +
dimC, and so we deduce from (1) that

dimSupp
(
Hi+dimS(indG

L⊂PKs)
)
< −i− dimS.

We have proved that dim
(
pr−1
S (s)

)
< −i for any s ∈ S, hence we deduce that

dimSupp
(
HiKS×G) < −i.

Since the Verdier dual operator commutes with the functor indS×G
S×L,P , the

proof of (ii) is completely similar to that of (i). ��

Remark 6.1.14. The assumption “(Zs)reg �= ∅ for any s ∈ S” in 6.1.13 is not
necessary. Under the assumption 6.1.8, we can prove as in 5.1.33 that the two
complexes indS×G

Z×C(E) and indS×G
S×L,PK(Z × C, E) are isomorphic; however we

will not use this more general result.

6.1.15 The Complexes K1 and K2

Define

• Z1 := S × z(L),

• Z2 := {(z, z)|z ∈ z(L)},

• E1 := (µz(L))∗LΨ � ζ ∈ lsL(Z1 × C),

• E2 := Q� � ζ ∈ lsL(Z2 × C),

• K1 := K(Z1 × C, E1) ∈ML(S × L) ,

• K2 := K(Z2 × C, E2) ∈ML(S × L).

The complexes K1 and K2 are both irreducible and from 6.1.3, we have
(js,L)∗K1 = K1,s[dimS] and (js,L)∗K2 = K2,s[dimS] for any s ∈ S.

Proposition 6.1.16. [Wal01, page 43] Let i ∈ {1, 2}. The G-equivariant
perverse sheaf indS×G

S×L,P(Ki) is isomorphic to indS×G
Zi×C(Ei); moreover it is a

simple perverse sheaf.

We outline the proof of 6.1.16 (see [Wal01]).

The fact that the complex indS×G
S×L,P(K1) is isomorphic to indS×G

Zi×C(E1) follows
from 6.1.13. Note that we can not use 6.1.13 to prove 6.1.16 with i = 2. Fol-
lowing Waldspurger [Wal01], we extended the definition of the Deligne-Fourier
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transform FG into a transformation FS×G : M(S × G) → M(S × G) which
transforms indS×G

S×L,P(K2) into indS×G
S×L,P(K1), see next chapter. The only el-

ement w of the Galois group of α′′
S (with Z = Z1) such that w∗(E1) � E1 is

the neutral element, hence the perverse sheaf indS×G
Z1×C(E1) � indS×G

S×L,P(K1)
is simple. As a consequence we get that indS×G

S×L,P(K2) is also a simple per-
verse sheaf; it is thus an intersection cohomology complex. It follows from the
remark just before 6.1.13 that it is isomorphic to indS×G

Z2×C(E2).

Remark 6.1.17. The proof of 6.1.16 outlined above works if the pair (C, ζ)
is cuspidal and if p is large enough so that the Fourier transforms exist; as
noticed in 6.1.14, we can prove the same result without using the fact that
(C, ζ) is cuspidal and with a better condition on p.

6.1.18. Assume that L, C and ζ are all F -stable. Then the complexes K1

and K2 are both F -stable; let φ1 : F ∗(K1)
∼→ K1 and φ2 : F ∗(K2)

∼→ K2 be
two isomorphisms. Note that φ1 and φ2 induce two isomorphisms φS×G

1 :
F ∗
(
indS×G

Z1×C(E1)
)

∼−→ indS×G
Z1×C(E1) and φS×G

2 : F ∗
(
indS×G

Z2×C(E2)
)

∼−→
indS×G

Z2×C(E2). Let σ ∈ z(L)F . From 6.1.3 and 6.1.16 we deduce isomorphisms

(jσ,G)∗
(
φS×G

1

)
[−r] : F ∗

(
indG

Σ(E1,σ)
)

∼−→ indG
Σ(E1,σ), and

(jσ,G)∗
(
φS×G

2

)
[−r] : F ∗

(
indG

L⊂P(K2,σ)
)

∼−→ indG
L⊂P(K2,σ)

where r = dimS. Put ψG
σ,1 = (jσ,G)∗

(
φS×G

1

)
[−r], ψG

σ,2 = (jσ,G)∗
(
φS×G

2

)
[−r];

we will prove that the characteristic functions of the F -equivariant complexes
(indG

Σ(E1,σ), ψG
1,σ) and (indG

L⊂PK2,σ, ψ
G
2,σ) are respectively the Deligne-Lusztig

induction of XK1,σ ,ψσ,1 and of XK2,σ ,ψσ,2 where ψσ,1 = (jσ,L)∗(φ1)[−r] and
ψσ,2 = (jσ,L)∗(φ2)[−r]. The proof will involve two ingredients, the Lie algebra
version of [Lus90, Theorem 1.14] (see 5.5.13), and the character formula for the
characteristic functions of the F -equivariant complexes

(
indS×G

Z1×C(E1), φS×G
1

)

and
(
indS×G

Z2×C(E2), φS×G
2

)
.

6.1.19 The Character Formula

From now we denote respectively by KS×G
1 and by KS×G

2 the complexes
indS×G

Z1×C(E1) and indS×G
Z2×C(E2) and we assume that the datum (L,C, ζ) is F -

stable. We fix two isomorphisms φ1 : F ∗(K1)
∼→ K1 and φ2 : F ∗(K2)

∼→ K2,
and we denote by φS×G

1 : F ∗ (KS×G
1

) ∼→ KS×G
1 and φS×G

2 : F ∗ (KS×G
2

) ∼→
KS×G

2 the two isomorphisms induced respectively by φ1 and φ2. By analogy
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with 5.5.9, we give an expression of the values of the characteristic functions
of the F -equivariant complexes (KS×G

1 , φS×G
1 ) and (KS×G

2 , φS×G
2 ) in terms of

the values of some generalized Green functions.

We fix s ∈ SF and σ, u ∈ GF with σ semi-simple and u nilpotent such that
[σ, u] = 0.

The character formula

Let i ∈ {1, 2}. Assume that there is x ∈ GF such that (s,Ad(x−1)σ) ∈ Zi.
Then put Lx = xLx−1 and Lx = Lie(Lx). We have σ ∈ z(Lx) and so
Lx is a Levi subgroup of CoG(σ). Let Cx = Ad(x)C and let (Ei,x, φi,x)
be the inverse image of the F -equivariant sheaf (Ei, φi) by Cx → Zi × C,
v �→

(
(s,Ad(x−1)σ),Ad(x−1)v

)
. Note that the irreducible Lx-equivariant lo-

cal system Ei,x is isomorphic to Ad(x−1)∗ζ ∈ ls(Cx); we thus denote Ei,x by
ζx.

We are going to prove the following theorem.

Theorem 6.1.20 (Character formula). With the above notation we have

(i) XKS×G
1 ,φS×G

1
(s, σ+u) = |CoG(σ)F |−1

∑

{x∈GF |Ad(x−1)σ∈z(L)}
QCG(σ)

Lx,Cx,ζx,φ1,x
(u).

(ii) XKS×G
2 ,φS×G

2
(s, σ+u) = |CoG(σ)F |−1

∑

{x∈GF |Ad(x−1)σ=s}

QCG(σ)
Lx,Cx,ζx,φ2,x

(u).

Remark 6.1.21. If σ = 0, the formula 6.1.20(ii) is a result of Waldspurger
[Wal01].

Proof of Theorem 6.1.20(ii)

The proof of 6.1.20(ii) is an adaptation of the proof of [Lus85b, Theorem 8.5].
We start with the following intermediate result whose proof is entirely similar
to that of [Lus85b, Lemma 8.6].

Lemma 6.1.22. There exists an open subset U of CG(σ) containing 0 such
that:

(a) for any element g of CoG(σ), we have Ad(g)(U) = U,

(b) if x ∈ CG(σ), we have x ∈ U if and only if xs ∈ U,

(c) F (U) = U,
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(d) if x ∈ U, g ∈ G such that Ad(g−1)(σ + x) ∈ z(L) + C + UP , then
Ad(g−1)xs ∈ z(L) + UP and Ad(g−1)σ ∈ z(L) + UP ,

(e) if x ∈ U, g ∈ G such that Ad(g−1)(σ+x) ∈ z(L)+C, then Ad(g−1)xs ∈
z(L) and Ad(g−1)σ ∈ z(L).

We fix once for all an open subset U of CG(σ) as in 6.1.22; since 0 ∈ U, it
follows from 6.1.22(b) that CG(σ)nil ⊂ U.

We put Z = Z2 and we use the notation of 6.1.2 relatively to Z. Then we
have

XS,2 = {(t, x, gP ) ∈ S × G × (G/P )|Ad(g−1)x ∈ t+ C + UP },

and YS,2 = {(t, x, gL) ∈ Sreg × G × (G/L)|Ad(g−1)x ∈ t+ C}.

Define

XU
S,2 := (ρ′′S)−1 (S × (σ + U)) = {(t, x, gP ) ∈ XS,2|x ∈ σ + U}.

Let
∆ := {g ∈ G|Ad(g−1)σ ∈ z(L)}, Γ = CoG(σ)\∆/L,

∆̂ := {g ∈ G|Ad(g−1)σ ∈ z(L) + UP }, Γ̂ = CoG(σ)\∆̂/P.

We assume that the set ∆ (and therefore ∆̂) is non-empty.

The canonical map Γ → Γ̂ is a bijection. Indeed, let x ∈ ∆̂, we have
Ad(x−1)σ = z + v for some z ∈ z(L) and v ∈ UP . Since z + v is semi-
simple, by 2.7.1, there exists an element u ∈ UP such that z + v = Ad(u)z,
i.e. xu ∈ ∆; we thus proved the surjectivity of Γ → Γ̂ . Assume now that
x, y ∈ ∆ and x ∈ CoG(σ)yP i.e. x = gyul with g ∈ CoG(σ), l ∈ L and u ∈ UP .
Since Ad(y−1)σ ∈ z(L), we have Ad(u−1y−1)σ = Ad(y−1)σ + UP and so
we deduce that Ad(x−1)σ = Ad(l−1u−1y−1g−1)σ ∈ Ad(u−1y−1)σ + UP .
Hence we deduce that Ad(x−1)σ = Ad(y−1)σ i.e. xy−1 ∈ CG(σ). But
xy−1 = gyuly−1 ∈ CG(σ) if and only if yuy−1 ∈ CG(σ). Since yuy−1 is
unipotent, we have yuy−1 ∈ CoG(σ). We thus proved that x ∈ CoG(σ)yL and
so the injectivity of Γ → Γ̂ .

It is also easy to verify that the set Γ (therefore Γ̂ ) is finite. For Ô ∈ Γ̂ ,
define

XU
S,2,Ô := {(t, x, gP ) ∈ XU

S,2| g ∈ Ô}.
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6.1.23. The sets XU
S,2,Ô with Ô ∈ ∆̂, are open and closed in XU

S,2 and we

have XU
S,2 =

∐
Ô∈Γ̂ X

U
S,2,Ô.

Proof of 6.1.23: Let (t, σ+z, gP ) ∈ XU
S,2 ; then z ∈ U and Ad(g−1)(σ+z) ∈

t+ C + UP . From 6.1.22(d) we get that Ad(g−1)σ ∈ z(L) + UP , hence g ∈ ∆̂
and so we deduce that (t, σ + z, gP ) ∈ XU

S,2,Ô with Ô = CoG(σ)gP . Now let

Ô ∈ Γ̂ ; we can view Ô as a closed CoG(σ)-orbit of G/P . The set XU
S,2,Ô is thus

closed in XU
S,2 since it is the inverse image of Ô by the morphism XU

S,2 → G/P

given by the projection on the third coordinate. From the fact that XU
S,2 is

the (finite) disjoint union of the XU
S,2,Ô , we deduce that the XU

S,2,Ô are also

open in XU
S,2. ��

From now, if O ∈ Γ , we denote by Ô the element of Γ̂ corresponding to
O.

6.1.24. For O ∈ Γ , we fix an element xO of O such that F (xO) = xF (O) ;
note that Ad(x−1

O )σ ∈ z(L), hence xOLx−1
O is a Levi subgroup of CoG(σ). Let

O ∈ Γ , define

• PO = (xOPx−1
O ) ∩ CoG(σ),

• LO = xOLx
−1
O .

We denote by PO and by LO the respective Lie algebras of PO and LO. Put
SO = Ad(xO)S, ZO = {(t, t)| t ∈ z(LO)} and CO = Ad(xO)C.

We denote by (SO)σ−reg the subset of SO consisting of the LO-regular
elements in CG(σ). Define

Yσ,SO,2 = {(t, x, gLO) ∈ (SO)σ−reg × CG(σ) × (Co
G(σ)/LO) |Ad(g−1)x ∈ t + CO},

Xσ,SO,2 = {(t, x, gPO) ∈ SO × CG(σ) × (Co
G(σ)/PO) |Ad(g−1)x ∈ t + CO + UPO},

Yσ,SO = {(t, x) ∈ (SO)σ−reg × CG(σ) | ∃g ∈ Co
G(σ), Ad(g−1)x ∈ t + CO}.

Let α′′
σ,SO : Yσ,SO,2 → Yσ,SO and ρ′′σ,SO : Xσ,SO,2 → Yσ,SO be given by the

projection on the first and second coordinates. Note that Xσ,SO,2, Yσ,SO,2,
Yσ,SO , α

′′
σ,SO , ρ

′′
σ,SO are defined in terms of CoG(σ), PO, LO,ZO, CO as XS,2,

YS,2, YS , α′′
S , ρ′′S are defined in terms of G,P, L,Z, C.
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6.1.25. For O ∈ Γ , define

XU
σ,SO,2 = (ρ′′σ,SO )−1 (SO ×U) ⊂ Xσ,SO,2.

Since U is open in CG(σ) we have following assertion.

6.1.26. XU
σ,SO,2 is an open subset of Xσ,SO,2 for any O ∈ Γ .

6.1.27. We denote by f ′′
O the morphism XU

σ,SO,2 → XU
S,2,Ô given by

(t, x, gPO) �→
(
Ad(x−1

O )(σ + t), σ + x, gxOP
)

We have the following result.

6.1.28. The map f ′′
O is well-defined and is an isomorphism.

Proof: We first verify that the map f ′′
O is well-defined. Let (t, x, gPO) ∈

XU
σ,SO,2, then we have Ad(g−1)x ∈ t+ CO + UPO and so we get that

Ad(x−1
O g−1)x ∈ Ad(x−1

O )t+ C + UP .

We deduce that Ad(x−1
O g−1)(σ+x) ∈ Ad(x−1

O )σ+Ad(x−1
O )t+C +UP and so

that
(
Ad(x−1

O )(σ + t), σ + x, gxOP
)
∈ XU

S,2,Ô. We thus proved that f ′′
O is well-

defined.

The fact that f ′′
O is injective is clear. We prove now the surjectivity of f ′′

O.
Let (r, σ+x, tP ) ∈ XU

S,2,Ô and write t = gxOp with g ∈ CoG(σ) and p ∈ P . Let

h ∈ SO be defined by h = −σ+Ad(xO)r. We verify that (h, x, gPO) ∈ XU
σ,SO,2,

i.e. that Ad(g−1)x ∈ h+CO +UPO . We have Ad(t−1)(σ+x) ∈ r+C+UP and
so Ad(g−1)(σ + x) ∈ Ad(xO)r + CO + UxOPx−1

O
. Since Ad(g−1)x ∈ CG(σ),

we get that Ad(g−1)(σ + x) ∈ Ad(xO)r + CO + UPO , hence Ad(g−1)x ∈
−σ + Ad(xO)r + CO + UPO . We thus proved the surjectivity of f ′′

O. ��

We denote by f̃O the morphism SO × CG(σ) → S × G given by (t, x) �→
(Ad(x−1

O )(σ + t), σ + x). We have the following commutative diagram.

XU
σ,SO,2

ρ′′σ,SO ��

f ′′
O

��

Yσ,SO ∩ (SO ×U)

f̃O
��

XU
S,2,Ô

ρ′′S �� YS ∩ (S × (σ + U))
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and we have the following assertions.

6.1.29. (i) The morphisms XU
S,2 → YS ∩ (S × (σ + U)) and XU

σ,SO,2 →
Yσ,SO∩(SO×U) given respectively by restriction of ρ′′S and ρ′′σ,SO are surjective
and proper.

(ii) The set YS ∩ (S × (σ + U)) is open in YS ∩ (S × (σ + U)) and the set
Yσ,SO ∩ (SO ×U) is an open dense irreducible subset of Yσ,SO ∩ (SO ×U).

(iii) The morphism XU
S,2,Ô → YS ∩ (S × (σ + U)) given by restriction of

ρ′′S is proper with image f̃O
(
Yσ,SO ∩ (SO ×U)

)
and we have

YS ∩ (S × (σ + U)) =
∐

O∈Γ
f̃O
(
Yσ,SO ∩ (SO ×U)

)
.

(iv) The variety XU
S,2,Ô is irreducible.

Proof: The morphisms of (i) are obtained by base change respectively from
ρ′′S : XS,2 → YS and ρ′′σ,SO : Xσ,SO,2 → Yσ,SO which are proper morphisms,
hence they are proper; the fact they are surjective is clear. Let us see (ii). The
fact that YS ∩ (S × (σ + U)) and Yσ,SO ∩ (SO ×U) are respectively open in
YS ∩ (S × (σ + U)) and in Yσ,SO ∩ (SO ×U) is clear. The set SO ×U is an
open subset of SO ×CG(σ), hence the set Yσ,SO ∩ (SO ×U) is open in Yσ,SO .
Moreover it is non-empty since U ⊃ CG(σ)nil and Yσ,SO ∩ (SO ×CG(σ)nil) �=
∅. The variety Yσ,SO being open in Yσ,SO and Yσ,SO being irreducible, we
deduce that Yσ,SO ∩ (SO × U) is a non-empty open subset of Yσ,SO and so
is irreducible and dense in Yσ,SO ∩ (SO ×U). We now prove (iii). By 6.1.23,
the set XU

S,2,Ô is closed in XU
S,2, hence from (i), we get that the morphism

of (iii) is also proper. The fact that ρ′′S
(
XU
S,2,Ô

)
= f̃O

(
Yσ,SO ∩ (SO ×U)

)

is a straightforward consequence of 6.1.28 and (i). Let us prove (iv). From
6.1.6, we know that the variety Xσ,SO,2 is irreducible and from 6.1.26, we
know that XU

σ,SO,2 is an open subset of Xσ,SO,2. Hence we deduce that the
variety XU

σ,SO,2 is irreducible and so from 6.1.28, it follows that XU
S,2,Ô is also

irreducible. ��

6.1.30. Define

Y U
S,2 := (α′′

S)−1
(
S × (σ + U)

)
= {(t, x, gL) ∈ YS,2|x ∈ σ + U},

and for O ∈ Γ , define Y U
S,2,O := {(t, x, gL) ∈ Y U

S,2| g ∈ O}, Y U
S,O := α′′

S(Y U
S,2,O),

and
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Y U
σ,SO,2 := (α′′

σ,SO )−1(SO ×U) ⊂ Yσ,SO,2.

6.1.31. The sets Y U
S,2,O and Y U

σ,SO,2 are non-empty.

Proof: From 6.1.29(ii), we have Yσ,SO ∩ (SO × U) �= ∅ from which we
see that Y U

σ,SO,2 �= ∅. Let v ∈ CO, then the intersection z(LO) ∩ (U −
v) is open dense in z(LO) ; indeed it is non-empty since we have 0 ∈
z(LO) ∩ (U − v) (recall that U ⊃ CG(σ)nil). The intersection z(LO) ∩
(−σ + Ad(xO)(z(L)reg + C)− v) is also a dense open subset of z(LO). In-
deed, −σ+Ad(xO)(z(L)reg+C)−v is an open subset of z(LO)+CO−v. But
z(LO) + CO − v is irreducible and contains z(LO) as an open subset, hence
−σ + Ad(xO)(z(L)reg + C) − v intersects z(LO). As a consequence we have
z(LO) ∩ (U − v) ∩ (−σ + Ad(xO)(z(L)reg + C)− v) �= ∅. Hence there exists
t ∈ z(LO), h ∈ z(L)reg such that (h, σ + t+ v, xOL) ∈ Y U

S,2,O. ��

We have the following assertions.

6.1.32. (i) The map γS : YS,2 → XS,2 given by (t, x, gL) �→ (t, x, gP ) induces
an isomorphism Y U

S,2 → (ρ′′S)−1 (YS ∩ (S × (σ + U))).

(ii) The map γσ,SO : Yσ,SO,2 → Xσ,SO,2 given by (t, x, gLO) �→ (t, x, gPO)
induces an isomorphism Y U

σ,SO,2 → (ρ′′σ,SO )−1(Yσ,SO ∩ (SO ×U)).

Proof: This follows from 6.1.10. ��

We have the following result.

6.1.33. The sets Y U
S,2,O with O ∈ Γ , are open and closed in Y U

S,2 ; they form
a finite partition of Y U

S,2.

Proof: By 6.1.31, the sets Y U
S,2,O are non-empty. Let (t, x, gL) ∈ Y U

S,2 ; we have
Ad(g−1)x ∈ t+C. From 6.1.22 we deduce that g ∈ ∆ and so that (t, x, gL) ∈
Y U
S,2,O with O = CoG(σ)gL. We thus proved that Y U

S,2 is the disjoint union of
the Y U

S,2,O with O ∈ Γ ; this union is finite since Γ is finite. Let O ∈ Γ ; the
isomorphism Y U

S,2 → (ρ′′S)−1
(
YS∩(S×(σ+U))

)
given by (t, x, gL) �→ (t, x, gP )

induces an isomorphism from Y U
S,2,O onto (ρ′′S)−1

(
YS(S × (σ + U))

)
∩XS,2,Ô.

But from 6.1.23, the set XS,2,Ô is open and closed in XS,2, hence (ρ′′S)−1
(
YS ∩

(×(σ + U))
)
∩XS,2,Ô is open and closed in (ρ′′S)−1

(
YS ∩ (S × (σ + U))

)
. As

a consequence, we get that Y U
S,2,O is closed and open in Y U

S,2. ��
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We have the following commutative diagram.

Y U
S,2,O

α′′
S ��

γS

��

Y U
S,O� �

��
XU
S,2,Ô

ρ′′S �� YS ∩
(
S × (σ + U)

)

6.1.34. (i) We have γS
(
Y U
S,2,O

)
= (ρ′′S)−1(Y U

S,O) ∩XU
S,2,Ô .

(ii) The variety Y U
S,O is open dense in f̃O

(
Yσ,SO ∩ (SO ×U)

)
.

Proof: Let us prove (i). Since γS : Y U
S,2 → (ρ′′S)−1

(
YS ∩ (S × (σ + U))

)
is an

isomorphism (see 6.1.32(i)), we have

γS(Y U
S,2,O) = (ρ′′S)−1

(
YS ∩ (S × (σ + U))

)
∩XS,2,Ô.

Hence from the fact that γS
(
Y U
S,2,O

)
⊂ (ρ′′S)−1(Y U

S,O) ∩ XU
S,2,Ô and (ρ′′S)−1

(Y U
S,O) ∩ XU

S,2,Ô ⊂ (ρ′′S)−1
(
YS ∩ (S × (σ + U))

)
∩ XS,2,Ô, we deduce that

γS
(
Y U
S,2,O

)
= (ρ′′S)−1(Y U

S,O) ∩XU
S,2,Ô.

Let us now prove (ii). The morphism γS maps YS,2 onto an open subset of
XS,2, hence γS(YS,2)∩XU

S,2 is open in XU
S,2. Since γS(YS,2)∩XU

S,2 = γS(Y U
S,2),

the isomorphism γS induces an isomorphism from Y U
S,2 onto an open subset of

XU
S,2. By 6.1.33, the set Y U

S,2,O is open in Y U
S,2, hence we deduce that γS(Y U

S,2,O)
is open in XU

S,2,Ô. From (i) we see that γS(Y U
S,2,O) is a union of fibers, hence

from the fact that the morphism ρ′′S : XS,2,Ô → YS ∩ (S × (σ + U)) is proper
(and so closed), it follows that ρ′′S

(
γS(Y U

S,2,O)
)

is open in ρ′′S(XS,2,Ô). We thus
proved that α′′

S(Y U
S,2,O) = Y U

S,O is open in ρ′′S(XS,2,Ô) = f̃O(Yσ,SO ∩ (SO×U))
; the last equality comes from 6.1.29(iii). ��

6.1.35. We now describe the irreducible components of the variety YS ∩ (S ×
(σ + U)).

6.1.36. The irreducible components of YS ∩ (S × (σ + U)) are disjoint. They
are in bijection with the set Γ . The irreducible component corresponding to
O ∈ Γ is Y U

S,O.

Proof: The map Y U
S,2 → YS ∩ (S× (σ+U)) obtained from α′′

S by base change
is a finite surjective morphism, hence it follows from 6.1.33 that the varieties
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Y U
S,O with O ∈ Γ cover YS∩(S×(σ+U)) and are closed in YS∩(S×(σ+U)).

From 6.1.29(ii), the variety f̃O
(
Yσ,SO ∩ (SO ×U)

)
is irreducible, hence from

6.1.34, we deduce that the varieties Y U
S,O with O ∈ Γ are irreducible. The fact

that the union of the Y U
S,O with O ∈ Γ is disjoint is clear from the definition

of Y U
S,O. ��

6.1.37. We now define for each O ∈ Γ an open subset VO of YS∩(S×(σ+U)).
For O ∈ Γ define

VO := Y U
S,O ∩ f̃O (Yσ,SO ∩ (SO ×U)) .

For O ∈ Γ , the set f̃O (Yσ,SO ∩ (SO ×U)) is open in f̃O
(
Yσ,SO ∩ (SO ×U)

)
,

hence from 6.1.34(ii), we see that the set Y U
S,O∩ f̃O (Yσ,SO ∩ (SO ×U)) is open

dense in Y U
S,O. Since Y U

S,O is open in YS∩(S×(σ+U)), we get that the set VO is
open in YS∩(S×(σ+U)). Note also that VO is isomorphic to an open subset of
Yσ,SO which is known to be smooth (see 6.1.11), hence VO is also smooth. This
also shows that VO is of dimension dim(CoG(σ))−dimLO+dim(ZO×CO) i.e.
dimVO = dim(CoG(σ)) − dimL + dim(Z × C). Moreover note that F (VO) =
VF (O). We thus have the following assertion.

6.1.38. The set V =
∐

O∈Γ VO is an F -stable open dense smooth equidimen-
sional subset of YS ∩ (S× (σ+U)). The subsets VO are open and closed in V

(in particular they are the irreducible components of V ) and are of dimension
equal to dim (CoG(σ)) − dimL+ dim (Z × C).

6.1.39. We are now in position to prove the assertion (ii) of the theorem 6.1.20.

For O ∈ Γ , define

Yσ,SO,1 = {(t, x, g) ∈ (SO)σ−reg × CG(σ)× CoG(σ)|Ad(g−1)x ∈ t+ CO},

and let α′
σ,SO : Yσ,SO,1 → Yσ,SO,2 be given by (t, x, g) �→ (t, x, gLO) and

ασ,SO : Yσ,SO,1 → ZO × CO be given by (t, x, g) �→ ((t, t), v) where v ∈ CO is
such that Ad(g−1)x = t+ v.

We denote by YS,2|V the inverse image of V by α′′
S and by YS,1|V the inverse

image of YS,2|V by α′
S . We denote by YS,2,O|VO the inverse image of VO by

α′′
S,2 ; note that this is an open subset of Y U

S,2,O. Put WO = f̃−1
O (VO). We

denote by Yσ,SO,2|WO the inverse image of WO by α′′
σ,SO , and by Yσ,SO,1|WO

the inverse image of Yσ,SO,2|WO by α′
σ,SO . Put W =

∐
O∈Γ WO, we have the

following commutative diagram.
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6.1.40. ∐
O∈Γ (ZO × CO)

∐
hO �� Z × C

∐
O∈Γ Yσ,SO,1

∐
ασ,SO

��

YS,1

αS

��

∐
O∈Γ (Yσ,SO,1|WO)

��

��

∐
α′

σ,SO

��

∐
h′
O �� YS,1|V

��

��

α′
S

��∐
O∈Γ (Yσ,SO,2|WO)

∐
α′′

σ,SO

��

∐
h′′
O �� YS,2|V =

∐
O∈Γ (YS,2,O|VO)

α′′
S

��
W =

∐
O∈Γ WO

f̃ �� V =
∐

O∈Γ VO

where
hO ((t, t), v) =

(
Ad(x−1

O )(t+ σ),Ad(x−1
O )(t+ σ),Ad(x−1

O )v
)

if ((t, t), v) ∈
ZO × CO,

h′O(t, x, g) = (Ad(x−1
O )(t+ σ), σ + x, gxO) if (t, x, g) ∈ (Yσ,SO,1|WO),

h′′O(t, x, gLO) = (Ad(x−1
O )(t+σ), σ+x, gxOL) if (t, x, gLO) ∈ (Yσ,SO,2|WO)

and

where f̃ =
∐

O∈Γ f̃O.

Remark 6.1.41. (i) Note that the map Yσ,SO,2 → YS,2,O given by (t,X, gLO) �→
(Ad(x−1

O (σ + t), σ + X, gxOL) is not well-defined since if t is an LO-regular
element in CG(σ), the element Ad(x−1

O )(σ + t) might not be L-regular in G.
However from our definition of VO, we can verify easily that its restriction
to (α′′

σ,SO)−1(WO) which gives h′′O, is well-defined; similarly for h′O. Moreover
the maps h′′O : (Yσ,SO,2|WO) → (YS,2,O|VO) with O ∈ Γ are isomorphisms;
the map

∐
h′′O is thus an isomorphism.

(ii) The bottom square of 6.1.40 is cartesian.
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We put E = E2 ; recall that E2 is the local system on Z ×C = Z2 ×C defined
in 6.1.15. For O ∈ Γ , let EO be the irreducible LO-equivariant local system on
ZO×CO defined by EO = (hO)∗E ; note that for any O ∈ Γ , the restriction of
the local system (

∐
hO)∗E to ZO×CO is EO and so (

∐
hO)∗E is the direct sum

of the local systems EO extended by zero outside ZO ×CO. Let ξ2 denote the
local system on YS,2 such that (α′

S)∗ξ2 = (αS)∗E (see 6.1.9) and for O ∈ Γ , let
ξO,2 be the local system on Yσ,SO,2 such that (α′

σ,SO )∗(ξO,2) = (ασ,SO )∗(EO).
For O ∈ Γ , we denote by (α′′

σ,SO )∗(ξO,2)|W the local system on
∐

O∈Γ WO
whose restriction to WO is (α′′

σ,SO )∗(ξO,2) and whose restriction to WO′ with
O′ �= O is zero.

Now the local system ((α′′
S)∗ξ2) |V is isomorphic to the local system on V

induced from E using the right vertical diagram of 6.1.40, and the local system
⊕

O∈Γ
(
(α′′
σ,SO )∗(ξO,2)|W

)
is isomorphic to the local system on W induced

from (
∐
hO)∗E using the left vertical diagram of 6.1.40.

Hence from 6.1.41 and the fact that 6.1.40 is commutative, we deduce that
there exists a canonical isomorphism

6.1.42.
f̃∗( ((α′′

S)∗ξ2) |V
)
�
⊕

O∈Γ

(
(α′′
σ,SO )∗(ξO,2)|W

)
.

Since all the maps of 6.1.40 are defined over Fq, this isomorphism is compatible

with the two isomorphisms F ∗
(
f̃∗ (((α′′

S)∗ξ2)|V )
)

∼−→ f̃∗(((α′′
S)∗ξ2)|V ) and

F ∗

(
⊕

O∈Γ

(
(α′′
σ,SO )∗(ξO,2)|W

)
)

∼−→
⊕

O∈Γ

(
(α′′
σ,SO )∗(ξO,2)|W

)

induced respectively by φ = φ2 and (
∐
hO)∗(φ) : F ∗ ((

∐
hO)∗E) � (

∐
hO)∗E .

We put KSO×CG(σ)
O = indSO×CG(σ)

ZO×CO (EO) and KS×G = KS×G
2 ; then the isomor-

phism 6.1.42 can be regarded as an isomorphism

6.1.43.
f̃∗ (KS×G |V

)
[−δ] �

⊕

O∈Γ

(
K
SO×CG(σ)
O |W

)

where δ = dimYS − dimYσ,SO = dimG− dimCoG(σ).

We now show the following assertion.

6.1.44. The isomorphism 6.1.43 is the restriction to W of an isomorphism

f̃∗
(
KS×G |YS∩(S×(σ+U))

)
[−δ] �

⊕

O∈Γ

(
K
SO×CG(σ)
O |∐

O∈Γ Yσ,SO∩(SO×U)

)
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where we still denote by f̃ the isomorphism
∐

O∈Γ
(
Yσ,SO ∩ (SO ×U)

) ∼→
YS ∩ (S × (σ + U)) given by (t, x) �→ f̃O(t, x) if (t, x) ∈ Yσ,SO ∩ (SO ×U).

Proof of 6.1.44: We put K = K2 and we regard K as a perverse sheaf
on Z × C. Let K̃ be the perverse sheaf on XS,2 such that

6.1.45.
(ρ′S)∗K̃[dimP ] � (ρS)∗K[dimG+ dimUP ].

For O ∈ Γ , define

Xσ,SO,1 = {(t, x, g) ∈ SO × CG(σ)× CoG(σ)|Ad(g−1)x ∈ t+ CO + UPO},

and let ρσ,SO : Xσ,SO,1 → ZO × CO be given by (t, x, g) �→ ((t, t), v) where
v ∈ CO is such that Ad(g−1)x ∈ t+ v + UPO , and ρσ,SO : Xσ,SO,1 → Xσ,SO,1

given by (t, x, g) �→ (t, x, gPO).

Put KO = IC(ZO × CO, EO)[dim (ZO×CO)] and let K̃O be the perverse sheaf
on Xσ,SO,2 such that

(ρ′σ,SO)∗K̃O[dimPO] � (ρσ,SO)∗KO[dim (CG(σ)) + dimUPO ].

Since the morphism XS,2 → YS ∩ (S × (σ + U)) given by (t, x, gP ) �→ (t, x)
is obtained by base change from the proper morphism ρ′′S , we find from the
proper base change theorem an isomorphism

6.1.46.
(ρ′′S)!(K̃|XU

S,2
) � ((ρ′′S)!K̃)|YS∩(S×(σ+U)).

Similarly by applying the proper base change theorem to ρ′′σ,SO : Xσ,SO,2 →
Yσ,SO , we get a canonical isomorphism

6.1.47.
(ρ′′σ,SO)!

(
K̃O|XU

σ,SO,2

)
�
(
(ρ′′σ,SO )!K̃O

)
|Yσ,SO∩(SO×U).

On the other hand, we have the following commutative diagram.
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6.1.48.
∐

O∈Γ (ZO × CO)
∐
fO �� Z × C

∐
O∈Γ Xσ,SO,1

∐
ρσ,SO

��

∐
f ′
O ��

∐
ρ′σ,SO

��

XS,1

ρ′S

��

ρS

��

∐
O∈Γ Xσ,SO,2

∐
f ′′
O �� XS,2

where f ′′
O(t, x, gPO) = (Ad(x−1

O )(σ + t), σ + x, gxOP ),

f ′
O(t, x, g) = (Ad(x−1

O )(σ + t), σ + x, gxO) and

fO ((t, t), v) =
(
Ad(x−1

O )(σ + t),Ad(x−1
O )(σ + t),Ad(x−1

O )v
)
.

The inverse image of K by
∐
fO is the complex K ′ given by K ′|ZO×CO =

KO for any O ∈ Γ . If K̃ ′ denotes the complex on
∐

O∈Γ Xσ,SO,2 given by
K̃ ′|Xσ,SO,2 = K̃O, then we have

(
∐

ρ′σ,SO )∗K̃ ′[dimPO] � (
∐

ρ′σ,SO)∗K ′[dim (CG(σ)) + dimUPO ].

Hence from 6.1.45 and the commutativity of 6.1.48, we deduce that

(
∐
f ′′
O)∗K̃[−δ] � K̃ ′

and so we get that

6.1.49.
(
∐
f ′′
O)∗

(
K̃|XU

S,2

)
[−δ] � K̃ ′|∐ XU

σ,SO ,2
.

We now consider the following cartesian diagram.

∐
O∈Γ X

U
σ,SO,2

∐
f ′′
O ��

∐
ρ′′σ,SO

��

XU
S,2 =

∐
Ô∈Γ̂ X

U
S,2,Ô

ρ′′S

��∐
O∈Γ Yσ,SO ∩ (SO ×U)

f̃ �� YS ∩ (S × (σ + U))
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from which we find together with 6.1.49 an isomorphism

f̃∗
(
(ρ′′S)!

(
K̃|XU

S,2

))
[−δ] � (

∐
ρ′′σ,SO)!

(
K̃ ′|∐ XU

σ,SO ,2

)
.

Combined with the isomorphisms 6.1.46 and 6.1.47, we get the isomorphism
6.1.44 extending 6.1.43. ��

As a consequence, it follows from the properties of intersection cohomology
complexes that the isomorphism of 6.1.44 is the unique one extending 6.1.43,
and that it is an isomorphism of F -equivariant complexes if we regard the
two complexes of 6.1.44 as the F -equivariant complexes induced from the F -
equivariant sheaf (E , φ). Put φS×G = φS×G

2 and for O ∈ Γ , let φSO×CG(σ) :
F ∗(K

SO×CG(σ)
F (O)

) ∼→ K
SO×CG(σ)
O be the isomorphism induced by (E , φ).

The isomorphism 6.1.44 gives rise to an isomorphism of stalks

Hi−δ(s,σ+v)K
S×G �

⊕

O∈Γ
Hi

(Ad(x−1
O )s−σ,v)K

SO×CG(σ)
O

where u ∈ CG(σ)Fnil and s ∈ SF are as in 6.1.20. And since the complexes
K
SO×CG(σ)
O are supported by Yσ,SO , it follows that Hi

(Ad(x−1
O )s−σ,v)K

SO×CG(σ)
O

is zero unless Ad(xO)s − σ = 0, i.e Ad(x−1
O )σ = s. Hence taking the char-

acteristic functions in 6.1.44 with respect to φS×G = φS×G
2 and φSO×CG(σ)

(O ∈ Γ ), we get that

XKS×G,φS×G (s, σ+u) =
∑

{O∈Γ |F (O)=O,Ad(x−1
O )σ=s}

X
K

SO×CG(σ)
O ,φSO×CG(σ)(0, u).

But as in [Wal01, page 44, (10)], we prove that

X
K

SO×CG(σ)
O ,φSO×CG(σ)(0, u) = QCG(σ)

LO,CO,ζO,φO(u)

where (ζO, φO) is the inverse image by CO ↪→ ZO × CO, v �→ ((0, 0), v) of
the F -equivariant sheaf ((hO)∗E , (hO)∗(φ)) with hO as in 6.1.40 i.e. (ζO, φO)
is the inverse image of (E , φ) by CO → Z × C, v �→ ((Ad(x−1

O )σ,Ad(x−1
O )σ),

Ad(x−1
O )v).

Hence from the fact that |OF | = |CoG(σ)F | if O ∈ Γ and F (O) = O, we
deduce that

XKS×G,φS×G (s, σ + u) = |CoG(σ)F |−1
∑

{x∈GF |Ad(x−1)σ=s}
QCG(σ)

Lx,Cx,ζx,φx
(u)

where Lx, Cx, ζx, φx = φ2,x are as in 6.1.20(ii). ��



136 6 Deligne-Lusztig Induction and Fourier Transforms

Proof of Theorem 6.1.20(i)

Let (YS,1, YS,2, YS , αS , α′
S , α

′′
S) and (Y1, Y2, Y, α, α

′, α′′) be respectively as in
6.1.8 (with Z = Z1), and as in 5.1.31 (with Σ = z(L) + C). Note that we
have Z1 × C � S ×Σ. We have the following cartesian diagram.

6.1.50.

S ×Σ YS,1
αS�� α′

S �� YS,2
α′′

S �� YS

Σ

js,L

��

Y1

j′s

��

α�� α′
�� Y2

j′′s

��

α′′
�� Y

js,G

��

where js,G(x) = (s, x), j′s(x, g) = (s, x, g), j′′s (x, gL) = (s, x, gL).

From 6.1.50 we find a canonical isomorphism

6.1.51.
(js,G)∗

(
(α′′
S)∗ξS,2

)
� (α′′)∗ξs,2

where ξS,2 is the unique local system on YS,2 such that (α′
S)∗(ξS,2) = (αS)∗E1

and where ξs,2 is the unique local system on Y2 such that (α′)∗ξs,2 � α∗(E1,s);
recall that E1,s := (ms)∗LΨ � ζ.

Moreover, since all the maps of 6.1.50 are defined over Fq, this isomorphism is
compatible with the two canonical isomorphisms F ∗((js,G)∗ ((α′′

S)∗ξS,2)
) ∼−→

(js,G)∗
(
(α′′
S)∗ξS,2

)
and F ∗((α′′)∗ξs,2

) ∼−→ (α′′)∗ξs,2 induced respectively by
φ1 and ψ1,s := (js,L)∗(φ1) : F ∗(E1,s) ∼−→ E1,s. The isomorphism 6.1.51 can be
regarded as an isomorphism

(js,G)∗
(
KS×G

1 |YS

)
[−dimS] � KG

1,s|Y

where KG
1,s := indG

Σ(E1,s). From the properties of intersection cohomology
complexes, this isomorphism is the restriction to Y of an isomorphism

(js,G)∗(KS×G
1 )[−dimS] � KG

1,s

which is compatible with the isomorphisms (js,G)∗(φS×G
1 ) : F ∗(KS×G

1 ) ∼−→
KS×G

1 and ψG
1,s : F ∗(KG

1,s)
∼−→ KG

1,s where ψG
1,s is the canonical isomorphism

induced by ψ1,s. As a consequence we get that

6.1.52.
XKS×G

1 ,φS×G
1

(s, z) = XKG
1,s,ψ

G
1,s

(z)

for any z ∈ GF . Hence the assertion (ii) of 6.1.20 will follow from



6.1 Frobenius Action on the Parabolic Induction 137

6.1.53.

XKG
1,s,ψ

G
1,s

(σ + u) = |CoG(σ)F |−1
∑

{x∈GF |Ad(x−1)σ∈z(L)}
QCG(σ)

Lx,Cx,ζx,φ1,x
(u).

Note that φ1,x : F ∗(ζx) � ζx is the inverse image by Cx → Σ, v �→
Ad(x−1)(σ + v) of ψ1,s : F ∗(E1,s) � E1,s. Hence 6.1.53 is 5.5.9. ��

End of the proof of theorem 6.1.20

6.1.54 Deligne-Lusztig Induction and Geometrical Induction

We use the notation and assumption of 6.1.19. We denote by C(SF × LF )
the Q�-vector space of LF -invariant Q�-valued functions on SF × LF and by
C(SF ×GF ) the space of GF -invariant Q�-valued functions on SF ×GF where
L (resp. G) acts on S×L (resp. on S×G) by Ad on the second coordinate and
trivially on the first coordinate. Then we define the Deligne-Lusztig induction
RS×G
S×L : C(SF × LF )→ C(SF × GF ) by

RS×G
S×L(f)(t, x) = |LF |−1

∑

y∈LF

SG
L⊂P(x, y)f(t, y)

where f ∈ C(SF ×LF ) and (t, x) ∈ SF ×GF , and where SG
L⊂P is the function

on GF × LF defined in 3.2.17.

Remark 6.1.55. Let f ∈ C(SF × LF ) and for t ∈ SF , let ft ∈ C(LF ) be
given by ft(x) = f(t, x), then we have RS×G

S×L(f)(t, x) = RG
L(ft)(x) for any

(t, x) ∈ SF × GF .

We are now in position to state the main result of this section.

Theorem 6.1.56. With the above notation we have

(i) RS×G
S×L(XK1,φ1) = XKS×G

1 ,φS×G
1

.

(ii) RS×G
S×L(XK2,φ2) = XKS×G

2 ,φS×G
2

.

Proof: Let i ∈ {1, 2} and let (s, σ + u) ∈ SF × GF be such that σ is semi-
simple, u is nilpotent, [σ, u] = 0 and (s,Ad(g−1)σ) ∈ Zi for some g ∈ GF . By
6.1.20 we have
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6.1.57.

XKS×G
i ,φS×G

i
(s, σ + u) = |CoG(σ)F |−1

∑

x∈GF

(s,Ad(x−1)σ)∈Zi

QCG(σ)
Lx,Cx,ζx,φi,x

(u).

On the other hand we have

RS×G
S×L (XKi,φi) (s, σ + u) = |LF |−1

∑

x∈LF

SG
L⊂P(σ + u, x)XKi,φi(s, x).

Since the complex Ki is supported by Zi × C, we get that

RS×G
S×L (XKi,φi) (s, σ +u) = |LF |−1

∑

(t,v)∈z(L)F ×CF

(s,t)∈Zi

SG
L⊂P(σ +u, t+ v)XKi,φi(s, t+ v).

But

SG
L⊂P(σ + u, t+ v) =

∑

h∈GF

Ad(h)t=σ

|CoL(t)F ||CoG(t)F |−1QCG(t)
CL(t)

(
Ad(h−1)u, v

)
.

Hence we get that

RS×G
S×L (XKi,φi) (s, σ + u) =
∑

(t,v)∈z(L)F ×CF

(s,t)∈Zi

∑

h∈GF

Ad(h)t=σ

|CoG(t)F |−1QCG(t)
L

(
Ad(h−1)u, v

)
XKi,φi(s, t+ v).

By interchanging the sums we have

RS×G
S×L (XKi,φi) (s, σ + u) = |CoG(σ)F |−1×
∑

h∈GF

(s,Ad(h−1)σ)∈Zi

∑

v∈CF

QCG(Ad(h−1)σ)
L

(
Ad(h−1)u, v

)
XKi,φi

(
s,Ad(h−1)σ + v

)
.

But by definition of (Ch, ζh, φi,h), see 6.1.20, we have

XKi,φi

(
s,Ad(h−1)σ + v

)
= XKh,φi,h

(Ad(h)v)

where Kh = IC(Ch, ζh)[dim(Z × C)] and where we still denote by φi,h the
canonical isomorphism F ∗(Kh)

∼→ Kh induced by φi,h : F ∗(ζh)
∼→ ζh. Hence

it follows that RS×G
S×L (XKi,φi) (s, σ + u) = |CoG(σ)F |−1×

∑

h∈GF

(s,Ad(h−1)σ)∈Zi

∑

v∈Ch
F

QCG(σ)
Lh

(u, v)XKh,φi,h
(v).

Hence 6.1.56 follows from 6.1.57 together with 5.5.13. ��
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6.2 On the Conjecture 3.2.30

6.2.1 Reduction of 3.2.30 to the Case of Nilpotently Supported
Cuspidal Functions

We first reduce the conjecture to the case of characteristic functions of
F -equivariant cuspidal admissible complexes (or cuspidal orbital perverse
sheaves).

Proposition 6.2.2. The following three assertions are equivalent.
(1) For any inclusion L ⊂ M of F -stable Levi subgroups of G with corre-

sponding Lie algebras inclusion L ⊂M, we have:

FM ◦ RM
L = εM εLRM

L ◦ FL.

(2) For any inclusion L ⊂ M of F -stable Levi subgroups of G with cor-
responding Lie algebras inclusion L ⊂ M, and any F -equivariant cuspidal
admissible complex (K,φ) on L, we have:

FM ◦ RM
L
(
XK,φ

)
= εM εLRM

L ◦ FL(XK,φ

)
.

(3) For any inclusion L ⊂ M of F -stable Levi subgroups of G with cor-
responding Lie algebras inclusion L ⊂ M, and any F -equivariant cuspidal
orbital perverse sheaf (K,φ) on L, we have:

FM ◦ RM
L
(
XK,φ

)
= εM εLRM

L ◦ FL(XK,φ

)
.

Proof: The assertions (2) and (3) are particular cases of (1). We assume that
(2) holds. Let us prove (1). By 5.2.22, we have to verify that the commutation
formula holds for the characteristic functions of the F -equivariant admissible
complexes. Let M be an F -stable Levi subgroup of G with Lie algebraM. Let
(A, φA) be an F -equivariant admissible complex onM. By 5.4.12 and 5.5.16,
we have a formula

XA,φA = |WM (E)|−1
∑

w∈WM(E)

Tr((θw ◦ σA)−1, VA)RM
Lw

(XK(Σw,Ew),φw
).

Let us now apply RG
M ◦ FM to this formula. By (2) and the transitivity of

Deligne-Lusztig induction, we get that RG
M ◦ FM(XA,φA

)
= |WM (E)|−1×

∑

w∈WM(E)

Tr((θw ◦ σA)−1, VA)εMεLwRG
Lw

(
FLw (XK(Σw,Ew),φw

)
)
.
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Applying again (2) we finally deduce that

RG
M ◦ FM(XA,φA

)
= εGεMFG ◦ RG

M
(
XA,φA

)
.

Let us now prove (3). Let L ⊂ M be an inclusion of F -stable Levi sub-
groups of G and let (K,φ) be an F -equivariant cuspidal admissible complex
on L. By 5.2.10, the Fourier transform of XK,φ is a function of the form
XK′,φ′ where (K ′, φ′) is an F -equivariant orbital perverse sheaf on L. Hence
the identity in (2) becomes

FM ◦ RM
L (XK,φ) = εMεLRM

L
(
XK′,φ′

)
.

Applying FM to this equality, from 3.1.10(ii), we get that
(
RM

L (XK,φ)
)− = εM εLFM ◦ RM

L
(
XK′,φ′

)
.

But
(
RM

L (f)
)− = RM

L (f−) for any f ∈ C(LF ), hence applying again
3.1.10(ii), we have

RM
L
(
FL ◦ FL(XK,φ)

)
= εMεLFM ◦ RM

L
(
XK′,φ′

)

that is
RM

L ◦ FL(XK′,φ′) = εMεLFM ◦ RM
L
(
XK′,φ′

)
.

Since the above equalities are in fact equivalent this prove the equivalence
between (2) and (3). ��

The following result reduces the proof of 6.2.2(3) to the case of nilpotently
supported cuspidal orbital perverse sheaves.

Theorem 6.2.3. Let (L,C, ζ) be such that L is an F -stable Levi subgroup of G
and (C, ζ) is an F -stable nilpotent cuspidal pair of L = Lie(L). Then there is a
constant c ∈ Q

×
� such that for any σ ∈ z(L)F and any ψ : F ∗(K2,σ)

∼−→ K2,σ

where K2,σ is as in 6.1, we have

FG ◦ RG
L(XK2,σ ,ψ) = cRG

L ◦ FL(XK2,σ ,ψ).

Proof: Define the Fourier transform FS×G : C(SF ×GF )→ C(SF ×GF ) with
respect to (µ, Ψ) by

FS×G(f)(s, x) = |GF |− 1
2

∑

y∈GF

Ψ(µ(y, x))f(s, y)
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with f ∈ C(SF × GF ), (s, x) ∈ SF × GF . We also define the Deligne-Fourier
transform FS×G : Dbc(S × G) → Dbc(S × G) with respect to (µ, Ψ) as follows
(see [Wal01]).

Let p12, p13 : S × G × G → S × G be given by p12(s, x, y) = (s, x) and
p13(s, x, y) = (s, y) and let p23 : S ×G ×G → G ×G be given by p23(s, x, y) =
(x, y), then for K ∈ Dbc(S × G), define

FS×G(K) = (p13)!
(
(p12)∗K ⊗ (p23)∗(µ∗LΨ )

)
[dimG].

The Fourier transform FS×G have the following properties.

6.2.4. (i) The functor FS×G leaves MG(S × G) stable.

(ii) If (K,φ) is an F -equivariant complex on S × G , then φ induces an
isomorphism F(φ) : F ∗(FS×GK

) ∼→ FS×GK such that

XFS×G(K),F(φ) = (−1)dim G |GF | 12FS×G(XK,φ).

(iii) We have

FS×G ◦ indS×G
S×L,P = indS×G

S×L,P ◦ FS×L(−dimUP ).

The assertion (i) of 6.2.4 can be found in [Wal01, Page 38]. As in 5.2.3,
the proof of (ii) involves the Grothendieck trace formula applied to the F -
equivariant complex

(
FS×G(K),F(φ)

)
where F(φ) is the isomorphism in-

duced by φ and by the isomorphism φLΨ of 5.1.57. As noticed in [Wal01, Page
40], since the variety S does not play any role in (iii), we refer to 5.2.8.

Let K1 and K2 be the two perverse sheaves on S × L defined in 6.1.15;
we have FS×L(K2) � K1. Hence from 6.2.4(iii), we get that FS×G(KS×G

2

)
�

KS×G
1 where KS×G

1 and KS×G
2 are as in 6.1.19. Since the pair (C, ζ) is F -

stable, the complexes K1 and K2 are also F -stable. Let φ2 : F ∗(K2)
∼→ K2

be an isomorphism and let φ1 : F ∗(K1)
∼→ K1 be given by φ1 = F(φ2) (see

6.2.4(ii)). As in 6.1.19, we denote by φS×G
1 and φS×G

2 the canonical isomor-
phisms F ∗(KS×G

1

) ∼→ KS×G
1 and F ∗(KS×G

2

) ∼→ KS×G
2 induced respectively

by φ1 and φ2. Since the perverse sheaves KS×G
1 and KS×G

2 are simple (see
6.1.16), from the isomorphism FS×G(KS×G

2

)
� KS×G

1 we get that there ex-

ists a constant c′ ∈ Q
×
� such that φS×G

1 = c′F
(
φS×G

2

)
where F

(
φS×G

2

)
denotes

the isomorphism F ∗ (FS×G(KS×G
2

))
� FS×G(KS×G

2

)
induced by φS×G

2 as in
6.2.4(ii). As a consequence we have
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XKS×G
1 ,φS×G

1
= c′XFS×G(KS×G

2 ),F(φS×G
2 ).

From 6.2.4(ii), it follows that

XKS×G
1 ,φS×G

1
= c′(−1)dimG |GF | 12FS×G(XKS×G

2 ,φS×G
2

)
.

Hence from 6.1.56, we get that

RS×G
S×L

(
XK1,φ1

)
= c′(−1)dimG |GF | 12FS×G (RS×G

S×L
(
XK2,φ2

))
.

But φ1 = F(φ2) by definition, hence from 6.2.4(ii), it follows that

RS×G
S×L

(
FS×L(XK2,φ2

))
= c′|LF |− 1

2 |GF | 12FS×G (RS×G
S×L

(
XK2,φ2

))
.

Restricting the functions of this equality to {σ}×GF with σ ∈ z(L)F , we get

6.2.5.

RG
L
(
FL(XK2,σ,φ2,σ

))
= c′|LF |− 1

2 |GF | 12FG (RG
L
(
XK2,σ,φ2,σ

))

where φ2,σ : F ∗(K2,σ)
∼→ K2,σ is the isomorphism obtained by restricting φ2.

Now if we choose another isomorphism ψ : F ∗(K2,σ)
∼→ K2,σ, then it is

proportional to φ2,σ since K2,σ is a simple perverse sheaf, hence the formula
6.2.5 remains true if we replace φ2,σ by ψ. We thus have proved 6.2.3. ��

From the previous discussion we have the following result.

Corollary 6.2.6. The two following assertions are equivalent.
(1) For any inclusion L ⊂ M of F -stable Levi subgroups of G with corre-

sponding Lie algebras inclusion L ⊂M, we have

FM ◦ RM
L = εM εLRM

L ◦ FL.

(2) For any inclusion L ⊂ M of F -stable Levi subgroups of G with cor-
responding Lie algebras inclusion L ⊂ M, and any F -equivariant nilpotently
supported cuspidal orbital perverse sheaf (K,φ) on L, we have

FM ◦ RM
L
(
XK,φ

)
= εM εLRM

L ◦ FL(XK,φ

)
.

6.2.7 The Main Results

6.2.8. Let L be an F -stable Levi subgroup of G and let (C, ζ) be an F -
stable cuspidal nilpotent pair of L. Let Lo be an F -stable G-split Levi
subgroup of G which is G-conjugate to L. The triple (L,C, ζ) is of the
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form
(
(Lo)w, (Co)w, (ζo)w

)
for some w ∈ WG(Lo) and some F -stable cus-

pidal nilpotent pair (Co, ζo) of Lo = Lie(Lo) (see 5.4.2 and 5.4.9). Let
φ : F ∗(K(C, ζ)

) ∼→ K(C, ζ) and φo : F ∗(K(Co, ζo)
) ∼→ K(Co, ζo) be such

that φ = (φo)w (see 5.4.2). By 5.2.10, there exist two constants γ and γo such
that

FL(XK(Σ,E),1�φ
)

= γXK(C,ζ),φ,

FLo
(
XK(Σo,Eo),1�φo

)
= γoXK(Co,ζo),φo

where Σ = z(L) + C, E = Q� � ζ, Σo = z(Lo) + Co, Eo = Q� � ζo. Note that
the two constants γ and γo do not depend on the choice of the isomorphisms
φ and φo.

Let e : WG(Lo) → Q
×
� be the sign character of WG(Lo). We have the

following result.

Proposition 6.2.9. With the above notation we have

FG ◦ RG
L
(
XK(C,ζ),φ

)
= e(w)γ−1γoRG

L ◦ FL(XK(C,ζ),φ

)

where w ∈ WG(Lo) is such that L = (Lo)w.

Proof:
Put Ao = K(Σo,Q� � ζo), Ko = K(Co, ζo),

A = K(Σ,Q� � ζ), K = K(C, ζ),

and

fAo = XAo,1�φo
, fKo = XKo,φo ,

fA = XA,1�φ, fK = XK,φ.

We thus have

6.2.10. FLo(fAo) = γofKo and FL(fA) = γfK .

We have to show that FG(RG
L(fK)

)
= e(w)γ−1γoRG

L
(
(FL(fK)

)
.

As in the proof of 6.2.2, we see that it is equivalent to show that

FG(RG
L(fA)

)
= e(w)γ−1γoRG

L
(
(FL(fA)

)
.

From 6.2.10 and 4.4.7, we have an isomorphism of F -equivariant complexes

δ :
(
FLo(Ao),F(1 � φo)

)
�
(
Ko, γ

′
oφo
)

where γ′o = (−1)dimLoq
dim Lo

2 γo. Let Po be an F -stable parabolic subgroup of
G having Lo as a Levi subgroup and let Po be its Lie algebra. Put

(
AG
o , ψ

G
o

)
=
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(
indG

Σo
(Eo), indG

Σo
(1�φo)

)
and put

(
KG
o , φ

G
o

)
=
(
indG

Lo⊂Po
(Ko), indG

Lo⊂Po
(φo)

)
.

Then, from 5.2.8 and 5.1.33, the isomorphism δ induces an isomorphism of
F -equivariant complexes

θPo :
(
FG(AG

o )(dimUPo),F(ψG
o )
)
�
(
KG
o , γ

′
oφ

G
o

)
.

Let θw : AG
o

∼→ AG
o be as in 5.3.6(iii) and let θw,n : KG

o
∼→ KG

o be the isomor-
phism induced by the automorphism θw|Gnil

of AG
o |Gnil

= KG
o |Gnil

[dim z(L)].
From [Lus92, 5.5], we have θw,n ◦ θPo = e(w)θPo ◦ F(θw). As a consequence,
θPo induces an isomorphism

6.2.11.
(
FG(AG

o )(dimUPo),F(θw ◦ ψG
o )
)
�
(
KG
o , e(w)γ′oθw,n ◦ φGo

)
.

Now the characteristic function of
(
AG
o , θw◦ψG

o

)
is equal to RG

L(fA) in view
of 5.4.2 and 5.5.16. The characteristic function of (KG

o , θw,n ◦φGo ) is thus equal
to (−1)dim z(L)RG

L(fA).ηG0 , and so it is equal to (−1)dim z(L)RG
L
(
(fA).ηLo

)
=

RG
L(fK) by 3.2.16. Taking the characteristic functions in 6.2.11, we thus get

that
FG(RG

L(fA)
)

= e(w)γoRG
L
(
fK
)
.

On the other hand, from the identity fK = γ−1FL(fA
)

we deduce that

RG
L
(
fK
)

= γ−1RG
L
(
FL(fA

))
.

Hence
FG(RG

L(fA)
)

= e(w)γoγ−1RG
L
(
FL(fA

))
.

��

Remark 6.2.12. With the notation of 6.2.8, put A = K(Σ, E), K = K(C, ζ),
and fA = XA,1�φ, fK = XK,φ. Since A is homogeneous with respect to
homotheties, there exists ν ∈ {1,−1} such that (fA)− = νfA where for f ∈
C(LF ), f−(x) := f(−x). Then we have

FL(fK
)

= νγ−1fA. (*)

Now if we identify L with z(L) ⊕ L and if f ∈ C(LF ) is such that for any
z ∈ z(L)F and x ∈ LF , f(z + x) = f1(z)f2(u) with f1 ∈ C(z(L)F ) and f2 ∈
C(LF ), then we show (as we did with complexes in 5.2.12) that FL(f)(z+x) =
Fz(L)f1(z)FLf2(x) for any z ∈ z(L)F and x ∈ LF . As a consequence, using
the decomposition fA = (−1)dim z(L)(Idz(L)F×fK) ∈ C(z(L)F×LF ) where fK
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is regarded as a function over LF , we see that FL ◦FL(fA) = q−dim z(L)γ2fA
i.e. that γ2 = νqdim z(L). As a consequence from (*), we get that

FL(fK
)

= γq−dim z(L)fA. (1)

Definition 6.2.13. With the notation of 6.2.8, the constant γ is called the
Lusztig constant attached to the cuspidal datum (L,Σ, E) with respect to the
Frobenius F . Put γ̃ = ηLσLγ with ηL = (−1)semi-simple Fq−rank(L) and σL =
(−1)rkss(L). The constant γ̃ is called the modified Lusztig constant attached
to (L,Σ, E) with respect to F .

Remark 6.2.14. Let (L,Σ, E) be an F -stable cuspidal datum of G such that
L is G-split and E is of the form Q� � ζ on Σ = z(L) + C. Denote by γ the
Lusztig constant attached to (L,Σ, E) with respect to F , and for w ∈WG(L),
let γw be the Lusztig constant attached to (Lw, Σw, Ew) with respect to F .
Then the equality γ = εGεLwe(w)γw is equivalent to γ̃ = γ̃w. Now saying that
γ̃ = γ̃w for any w ∈ WG(L) is equivalent of saying that the modified Lusztig
constant attached to (L,Σ, E) does not depend on the Frobenius wF on L for
any w ∈WG(L).

Remark 6.2.15. Let T be an F -stable maximal torus of G with Lie alge-
bra T . Note that the Lusztig constant attached to (T, T ,Q�) is equal to
(−1)rk(G)q

rk(G)
2 and so does not depend on the Fq-structure on G for which

the induced Frobenius endomorphism stabilizes T . As a consequence from
6.2.14, 6.2.9 and 6.2.3 we get that:

FG ◦ RG
T = εGεTRG

T ◦ FT .

Moreover, a theorem of T.Shoji [Sho95] says that [Lus90, 1.14] holds without
restriction on q if the Levi subgroup considered is a maximal torus. Hence
this commutation formula holds without restriction on q.

Theorem 6.2.16. The following assertions are equivalent.
(i) The conjecture 3.2.30 is true.
(ii) For any F -stable cuspidal datum (L,Σ, E) of G as in 6.2.14, the mod-

ified Lusztig constant attached to (L,Σ, E) does not depend on wF for any
w ∈WG(L).

Proof: Follows from 6.2.6, 6.2.9 and 6.2.14. ��

If G is either GLn(k) or a simple group of type E8, F4 or G2 (in which case
p is acceptable for G if and only if it is good), then the only proper Levi
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subgroups of G which support a cuspidal pair are the maximal tori, hence by
6.2.16 and 6.2.15 we have:

Corollary 6.2.17. Assume that G is either GLn(k) or a simple group of type
E8, F4 or G2, and that p is good for G, then the conjecture 3.2.30 is true for
any q.

6.2.18. We can easily reduces 6.2.16(ii) to the case where G is simple. Then
using the classification of cuspidal data of simple algebraic groups [Lus84], we
see that to prove 6.2.16(ii) it is enough to prove that if G is either semi-simple
of type An, or simple of type either Bn, Cn or Dn, and if G supports an
F -stable cuspidal pair (C, ζ), then

(*) the modified Lusztig constant attached to (C, ζ) does not depend on the
Fq-structure on G for which the induced Frobenius endomorphism stabilizes
(C, ζ).

Note that if G is simple of type either Bn or Cn, then the statement
(*) holds since in that case the pair (G,F ) is unique up to isomorphism. If
p > 3(hGo − 1) and if G is semi-simple of type An, then from the explicit com-
putation of the Lusztig constant [DLM97], the assertion (*) follows [DLM03,
6.12]. If p > 3(hGo − 1) and if G is either the simple adjoint group of type Dn

or SO2n(k), then the assertion (*) follows from the explicit computation of
the Lusztig constant [Wal01, V.8]. Actually, in [Wal01, V.8], the adjoint case
G = Gad of type Dn is not explicitely mentioned, but using the canonical
central isogeny f : SO2n(k) → Gad, we see that if (C, ζ) is an F -stable cus-
pidal pair of Gad, then the Lusztig constant attached to (Gad, C, ζ) is equal
to that attached to

(
SO2n(k), f−1(C), f∗(ζ)

)
. The remaining case is the case

where G is simple simply connected of type Dn and SO2n(k) does not admit
a cuspidal pair. As far as I know, this case is still unknown.

Theorem 6.2.19. Assume that p > 3(hGo − 1) and that every simple compo-
nent of G/ZoG of type Dn is either SO2n(k) or the adjoint group of type Dn,
then the conjecture 3.2.30 holds.

Proof: Follows from 6.2.16 and 6.2.18. ��

6.2.20 Lusztig Constants: A Formula

In this section, we give a formula for the Lusztig constant attached to an
F -stable cuspidal pair of the Lie algebra of a simple algebraic group. Such a
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preliminary formula has been obtained by Digne-Lehrer-Michel [DLM97] when
the nilpotent orbit supporting the cuspidal pair is regular, by Waldspurger
[Wal01] for the classical groups Sp2n(k), SOn(k), and by Kawanaka [Kaw86]
for the exceptional groups E8, F4 and G2. Although it has been used by the
previously named authors to compute the Lusztig constants, this formula is
not explicit enough to verify the required property on Lusztig constants (see
6.2.18(*)).

We assume that p > 3(hGo − 1), that G is simple, and that G admits an
F -stable cuspidal pair (C, ζ). We denote by γF the Lusztig constant attached
to (C, ζ) with respect to F .

6.2.21. We fix an element uo ∈ CF . Under our assumption, we can use
Dynkin-Kostant-Springer-Steinberg’s theory on nilpotent orbits on G. Hence
there exists an F -stable Z-grading G =

⊕
i G(i) of G i.e. F (G(i)) = G(i) and

[G(i),G(j)] ⊂ G(i+ j), with the following properties (i)-(vii).
(i) uo ∈ G(2).
(ii) P = ⊕i≥0G(i) is the Lie algebra of an F -stable parabolic subgroup P

of G and L = G(0) is the Lie algebra of an F -stable Levi subgroup L of P .
(iii) G(2) is stable under the adjoint action of L and OLuo

is dense in G(2).
(iv) UP = ⊕i>0G(i).
(v) The group CUP (uo) is unipotent and connected, and the group CG(uo)

is the semi-direct product of CL(uo) and CUP (uo) as an algebraic group.
(vi) We have OGuo

∩
(
⊕i≥2 G(i)

)
= OPuo

.
(vii) The pair (C, ζ) being cuspidal, by [Lus84, 2.8] the element uo is

distinguished i.e. the map ad(uo) : G(0) → G(2) is bijective. Hence we have
G(i) = {0} if i is odd i.e. UP =

⊕
i≥2 G(i), and from (iii) we deduce that

CoL(uo) = {0}.

6.2.22. We now define the generalized Gelfand-Graev functions following
[Kaw85]. Let H1(F,AG(uo)) be the group of F -conjugacy classes of AG(uo).
By setting that 1 ∈ H1(F,AG(uo)) corresponds to the GF -orbit of uo, we
have a well-defined parametrization of the GF -orbits in CF by H1(F,AG(uo))
(see 2.1.20). From 6.2.21(v), we have AG(uo) � AL(uo), hence for z ∈
H1(F,AG(uo)) � H1(F,AL(uo)), we can choose an element uz ∈ G(2)F

which is in the GF -orbit of CF corresponding to z. Let U−
P =

⊕
i≤−2 G(i),

then for each z ∈ H1(F,AL(uo)), we define a linear additive character
Ψz : (U−

P )F → Q� by Ψz(u) = Ψ
(
µ(uz, u)

)
. The corresponding generalized

Gelfand-Graev function Γz : GF → Q� is defined by

Γz(x) = |UFP |−1
∑

{g∈GF |Ad(g)x∈U−
P }

Ψz
(
Ad(g)x

)
.



148 6 Deligne-Lusztig Induction and Fourier Transforms

The G-equivariant irreducible local system ζ corresponds to a unique F -stable
irreducible character (denoted again by ζ) of AG(uo) which can be extended
to a character of the semi-direct product AG(uo)� 〈F 〉 where 〈F 〉 is the cyclic
group generated by the Frobenius F . The restriction to AG(uo).F of this
extended character is constant on the AG(uo)-orbits and so leads to a unique
function ζ̃ on H1(F,AG(uo)) � H1(F,AL(uo)). We then define a nilpotently
supported function Γζ : GF → Q� by

Γζ =
∑

z∈H1(F,AL(uo))

|z|ζ̃(z)Γz .

6.2.23. By [Lus92, 7.6], the function Γζ is proportional to the characteristic
function of the F -equivariant perverse sheaf

(
K(C, ζ), φ

)
for any isomorphism

φ : F ∗(K(C, ζ)) ∼→ K(C, ζ). As a consequence we get that

FG(Γζ) = γFΓζ .

From the classification of the distinguished parabolic subgroups of G, we can
verify that the longest element wo of WG(T ) (with T a maximal torus of L)
normalizes L and Ad(wo) maps G(2) onto G(−2). As a consequence OG−uo

∩
G(−2) �= ∅ and any element of OG−uo

∩G(−2) is distinguished with associated
parabolic subgroup P− = LU−

P . Let u∗o ∈ OG
F

−uo
∩ G(−2)F . From [Lus92,

6.13] we have FG(Γζ)(u∗o) = ζ̃(1)|1||CG(uo)F |q−
dim CG(uo)

2 where by definition
|1| = �{x−1F (x)|x ∈ AL(uo)}. Hence by 6.2.21(v), we deduce that:

γF =
ζ̃(1)|1||CL(uo)F |

Γζ(u∗o)
q−

dim CL(uo)
2 q

dim CUP
(uo)

2 .

Hence the computation of γF reduces to that of Γζ(u∗o). For any z ∈
H1
(
F,AL(uo)

)
we have

Γz(u∗o) = |UFP |−1
∑

g∈(P−)F

Ψz
(
Ad(g)u∗o

)
=
∑

g∈LF

Ψz
(
Ad(g)u∗o

)
.

These equalities come from 6.2.21(vi), 6.2.21(iii) where (uo, P ) is replaced by
(u∗o, P−), and the fact that the restriction of Ψz to

⊕
i<−2 G(i) is trivial. We

thus get that

Γζ(u∗o) =
∑

z∈H1(F,AL(uo))

|z|ζ̃(z)
∑

l∈LF

Ψz
(
Ad(l)u∗o

)
.

Let LL : L → L, t �→ t−1F (t) be the Lang map. Then we have a surjective
map
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L : L−1
L (CL(uo))/CL(uo)→ H1(F,CL(uo)) � H1(F,AL(uo))

which maps tCL(uo) onto the F -conjugacy class of t−1F (t).

For z ∈ H1(F,AL(uo)), let lz ∈ L be such that l−1
z F (lz) = ż where

ż ∈ CL(uo) is a representative of z, and uz = Ad(lz)uo. Then we have a well-
defined map φz : LF → L−1

(z) given by t �→ tlzCL(uo). This map is clearly
surjective and its fibers are all of cardinality

az = �{h ∈ CL(uo)|h−1żF (h) = ż}.

For g ∈ L−1
L (CL(uo)) and x ∈ (U−

P )F , define gΨo(x) := Ψ
(
µ(Ad(g)uo, x)

)
=

Ψ
(
µ(uo,Ad(g−1(x))

)
= Ψo

(
Ad(g−1)x

)
. We thus have:

∑

t∈LF

Ψz
(
Ad(t)u∗o

)
=
∑

t∈LF

tlzΨo(u∗o) = az
∑

l∈L−1
(z)

lΨo(u∗o).

We finally deduce that:

Γζ(u∗o) = |CL(uo)|
∑

l∈L−1
L (CL(uo))/CL(uo)

ζ̃
(
L(l)

)
lΨo(u∗o).

Indeed we have az|z| = |CL(uo)| since by 6.2.21(vii), we have AL(uo) =
CL(uo). Note that L−1

L (CL(uo))/CL(uo) =
(
L/CL(uo)

)F . We define the quan-
tity

σζ := ζ̃(1)−1
∑

l∈
(
L/CL(uo)

)F

ζ̃
(
L(l)

)
Ψ∗
o (Ad(l)uo)

where Ψ∗
o is the additive character of G(2)F defined by Ψ∗

o (v) = Ψ
(
µ(u∗o, v)

)
.

Note that σζ does not depend on the choice of the extension of ζ on AG(uo)�

〈F 〉. Since |1||CL(uo)F | = |CL(uo)|, we thus have

6.2.24.
γF = σ−1

ζ q
d
2

where d = dimCUP (uo)− dimCL(uo).

Remark 6.2.25. From the formula 6.2.24, we see that γF is a “generalized
character sum” [KP00] associated to the regular prehomogeneous vector space
(
L,Ad,G(2)

)
.
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Fourier Transforms of the Characteristic

Functions of the Adjoint Orbits

The goal of this chapter is to give a formula which reduces the computa-
tion of the values of the Fourier transforms of the characteristic functions of
the adjoint orbits of GF to the computation of the values of the generalized
Green functions and the computation of the Lusztig constants attached to the
F -stable cuspidal data of G. As in the previous chapter, we assume, unless
specified, that p is acceptable for G and that q is large enough.

7.1 Preliminaries

7.1.1 A Decomposition of C(GF )

In this subsection, we give a decomposition of C(GF ) which is “conserved” by
Fourier transforms and by Deligne-Lusztig induction.

7.1.2. We denote by J(G) the set of G-conjugacy classes (see 5.1.23) of triples
of the form (L,C, ζ) with L a Levi subgroup of G and (C, ζ) a cuspidal nilpo-
tent pair on L. Note that the Frobenius map F induces a map J(G)→ J(G)
such that if (L,C, ζ) is a representative of O ∈ J(G), then the image of O
is the G-conjugacy class of (F−1(L), f−1(C), F ∗(ζ)). We denote by J(G)F
the subset of J(G) of F -stable elements of J(G). Recall (see 5.4.8) that if
O ∈ J(G)F , it is possible to choose an F -stable representative of O. We also
use the notation of 4.4.13 with X = G and H = G, and we put I(G) := I.
In particular, for each ι = (Oι, Eι) ∈ I(G)F , we have fixed an isomorphism
φι : F ∗(Eι) ∼→ Eι, and we have denoted by Yι the characteristic function of
(Eι, φι) extended by zero on GF − OFι and by Xι the characteristic function
of the F -equivariant perverse sheaf

(
K(Oι, Eι), φι

)
. By 5.1.81, we have a well-

defined surjective map I(G)→ J(G) defined as follows. Let (O, E) ∈ I(G) and

E. Letellier: LNM 1859, pp. 151–158, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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let (L,OL, EL) be as in 5.1.81. Then to (O, E) we associate the G-conjugacy
class of (L,C, ζ) where (C, ζ) is the unique cuspidal nilpotent pair of L such
that OL = z+C with z ∈ z(L) and EL = Q�� ζ. This map restricts to a map
h : I(G)F → J(G)F . Then, for j ∈ J(G)F , we denote by C(GF )j the subspace
of C(GF ) generated by the functions {Xι| ι ∈ I(G)F , h(ι) = j}. By 4.4.13 we
have a decomposition

C(GF ) =
⊕

j∈J(G)F

C(GF )j . (1)

Denote by In(G) the subset of I(G) consisting of nilpotent orbital pairs of G,
and, for j ∈ J(G)F , denote by

(
C(GF )nil

)
j
, the subspace of C(GF )nil generated

by {Xι| ι ∈ In(G)F , h(ι) = j}. Then we also have a decomposition

C(GF )nil =
⊕

j∈J(G)F

(
C(GF )nil

)
j
.

7.1.3. Let L be an F -stable Levi subgroup G with L := Lie(L). From the clas-
sification of cuspidal data [Lus84], the natural map J(L) ↪→ J(G) is injective
(see also [DLM97, 1.2]) and so we may identify J(L) with a subset of J(G).
By 6.1.56(ii), 6.1.55 and 6.1.3, for any j ∈ J(L)F and any f ∈ C(LF )j , we
have RG

L(f) ∈ C(GF )j .

7.1.4. We want to see that the Fourier transforms conserve the decomposition
7.1.2(1). Firstable, if j = (G,C, ζ) ∈ J(G)F , then it is clear that FG leaves sta-
ble the subspace C(GF )j , i.e. the characteristic functions of the F -equivariant
cuspidal admissible complexes on G span the spaces C(GF )j with j ∈ J(G)F .
Hence by 7.1.3, for each j ∈ J(G)F , there is a basis of C(GF )j formed by the
characteristic functions of some F -equivariant Lusztig complexes on G (re-
call that the characteristic functions of the F -stable Lusztig complexes span
C(GF ), see 5.2.22 and 5.4.4). Looking now at the Fourier transforms of these
bases, we see from 6.2.3, that FG leaves the subspaces C(GF )j , with j ∈ J(G)F ,
stable.

Proposition 7.1.5. Let M be an F -stable Levi subgroup of G. Let j ∈ J(M)F

and let (L,C, ζ) be an F -stable representative of j. Assume that the modified
Lusztig constant attached to (L,Σ, E) = (L, z(L)+C,Q�� ζ) does not depend
on the Frobenius wF with w ∈WG(L). Then

FG ◦ RG
M(f) = εGεMRG

M ◦ FM(f)

for any f ∈ C(MF )j.
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Proof: By 7.1.4, the subspaces C(MF )j , with j ∈ J(M)F , have a basis
formed by the characteristic functions of F -equivariant admissible complexes
on M. Hence it is enough to verify the commutation formula when f is the
characteristic function of an F -equivariant admissible complex on M. Hence
the proof is similar to that of 6.2.16. ��

7.1.6 A Geometric Analogue of 3.2.24

We use the notation of 7.1.1 which includes the notation of 4.4.13. We assume
now that G = GLn(k) or that p is very good for G (note that if G is a
simple group, then p is acceptable for G if and only if it is very good for
G). Let ι = (Oι, Eι) ∈ I(G)F and let x ∈ OFι . We denote by M the Levi
subgroup CG(xs). Note that CG(xs) is connected by 2.6.18, hence the local
system Eι|OM

x
is irreducible by 5.1.39; we denote by (OMι , EMι ) the orbital

pair
(
OMx , Eι|OM

x

)
∈ I(M)F . Let φMι : F ∗(EMι ) � EMι be the restriction of φι :

F ∗(Eι) � Eι, and let YMι be the characteristic function of the F -equivariant
sheaf (EMι , φMι ) extended by zero onMF −OMι . We also denote by XMι , the
characteristic function of the F -equivariant perverse sheaf

(
K(OMι , EMι ), φMι

)
.

Lemma 7.1.7. We have Oι =
⋃
g∈GAd(g)

(
OMι

)
.

Proof: Let Q be a parabolic subgroup of G having M as a Levi subgroup.
By replacing (P,L,Σ) by (Q,M,OMι ) in 5.1.26, and by applying 5.1.30(ii) we
get that ⋃

g∈G
Ad(g)

(
OMι + UQ

)
= Oι.

But since xs is M -regular in G, we get from 2.6.6 that
⋃

g∈G
Ad(g)

(
OMι + UQ

)
=
⋃

g∈G
Ad(g)

(
OMι

)
.

��

Proposition 7.1.8. We have RG
L(XMι ) = Xι and RG

L(YMι ) = Yι.

Proof: Write YMι =
∑

O∈Orb(MF ) λOξ
M
xO where Orb(MF ) denotes the set

of MF -orbits of MF and where for O ∈ Orb(MF ), the symbol xO denotes
an element of O. From 3.2.24 and the fact that CG(xs) = CM (xs), we have
RG

M(YMι ) =
∑

O∈Orb(MF ) λOξ
G
xO ; note that λO �= 0 only if O ⊂ OMι . Since

OMι is of the form xs + CMι for some nilpotent orbit CMι of M, we get that
the semi-simple part of xO, for O such that λO �= 0, is equal to xs. As
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a consequence, the functions ξGxO ∈ C(GF ) such that λO �= 0 are linearly
independent. Since the function YMι and Yι coincide over (OMι )F , we deduce
that both Yι and RG

M(YMι ) take the value λO at xO for any O ⊂ (OMι )F .
Now let y ∈ OFι ; its semi-simple part is then G-conjugate to xs. Since CG(xs)
is connected, it follows that ys and xs are actually GF -conjugate. Hence we
get that any GF -orbit of GF supporting Yι is of the form OGF

xO for some
O ∈ Orb(MF ) such that O ⊂ OMι . We thus proved (i).

The proof of (ii) is similar to that of (i) as long as we can see that

(a) the functions Xι and XMι coincide over OMι
F
,

(b) any rational element of Oι
F

is GF -conjugate to an element of OMι
F
.

From 4.3.6, the restriction of the complex K(Oι, Eι) to OMι is nothing but
IC(OMι , EMι )[dimOι]. We thus get that Xι(x) = (−1)dimOι−dimOM

ι XMι (x) for

any x ∈ OMι
F
. Hence (a) follows from the fact that the integer dimOι −

dimOMι is even. From 7.1.7, any element of Oι is G-conjugate to an element
of OMι . Since centralizers in G of semi-simple elements of G are connected,

any element of Oι
F

is thus GF -conjugate to an element of OMι
F
. ��

Proposition 7.1.9. For µ, µ′ ∈ I(G)F , let aµ,µ′ ∈ Q� be such that Xµ =
∑

µ′∈I(G)F aµ,µ′Yµ′ . Then aµ,µ′ �= 0 only if µ and µ′ have the same image by
h : I(G)F → J(G)F , i.e. for any j ∈ J(G)F , the set {Yµ|h(µ) = j} forms a
basis of C(GF )j.

Proof: Using 7.1.8, we see that the proof reduces to the case where µ is a
nilpotent pair. But via a G-equivariant isomorphism Guni → Gnil, the nilpo-
tent case follows from its group version [Lus86a, 24.4(d)]. ��

Remark 7.1.10. Note that thanks to 7.1.8, the computation of the coefficients
aµ,µ′ in 7.1.9 reduces to the nilpotent case.

7.2 Fourier Transforms of the Characteristic Functions

of the Adjoint Orbits

In this section we keep the assumptions and the notation of 7.1.6. We also
assume that ι ∈ I(G)F is such that the modified Lusztig constant attached to
(L, z(L)+C,Q��ζ), with (L,C, ζ) ∈ h(i)F , does not depend on the Frobenius
wF with w ∈ WG(L). We first give a formula for FG(Xι).
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By 7.1.5 and 7.1.8, we have

FG(Xι) = εGεMRG
M ◦ FM(XM

ι ). (1)

Note that OMι = xs + OMι,n and EMι = Q� � EMι,n for some nilpotent
pair (OMι,n, EMι,n) of M. Let fxs be the Fq-linear form MF → Fq given by
z �→ µ(z, xs). Then there is an isomorphism φMι,n : F ∗(EMι,n) � EMι,n such that
FM(XMι ) = (Ψ ◦ fxs).FM(XM

ι,n) where XM
ι,n is the characteristic function of

(
K(OMι,n, EMι,n), φMι,n

)
. We assume that L is contained in M and that it is M -

split. We choose an isomorphism φ : F ∗(ζ) ∼→ ζ. For any w ∈ WM (L), we
denote by (Lw, Cw, ζw, φw) the datum obtained from (L,C, ζ, φ) as in 5.4.2.
As usual, we denote by Lw the Lie algebra of Lw. Then taking the restriction
to nilpotent elements of a formula like 5.4.12, we may write

XMι,n = (−1)dim z(L)|WM (L)|−1
∑

w∈WM (L)

Tr
(
(θMw ◦ σMι )−1, VMι

)
QM

Lw,Cw,ζw,φw

where θMw is chosen as in 5.3.6(iii). Put λMι (w) = Tr
(
(θMw ◦ σMι )−1, VMι

)
. For

w ∈ WM (L), let Kw be the complex K(Cw, ζw) and let Xw be the char-
acteristic function of the F -equivariant complex (Kw, φw). We thus have:
RM

Lw
(Xw) = (−1)dim z(L)QM

Lw,Cw,ζw,φw
since Deligne-Lusztig induction coin-

cides with geometrical induction. Applying 7.1.5, we thus get that

FM(QM
Lw ,Cw,ζw,φw

) = εMεLw(−1)dim z(L)RM
Lw

(FLw (Xw)).

Since xs ∈ z(M), we have

(Ψ ◦ fxs).RM
Lw

(FLw (Xw)) = RM
Lw

(
(Ψ ◦ fLw

xs
).FLw(Xw)

)

where fLw
xs

is the restriction of fxs to LFw . From 6.2.12(1), we have

(Ψ ◦ fLw
xs

).FLw (Xw) = γwq
−dim z(L)XAw,xs ,φw,xs

where Aw,xs = K
(
z(Lw) + Cw,m

∗
xs

(LΨ ) � ζw
)
, γw is the Lusztig constant,

and where φw,xs = m∗
xs

(φLΨ ) � φw . From (1), we finally deduce that

FG(Xι) =

q−dim z(L)|WM (L)|−1
∑

w∈WM(L)

εGεLwλ
M
ι γ

wRG
Lw

(XAw,xs ,φw,xs
). (2)

7.2.1. From now, we choose φ : F ∗(ζ) ∼→ ζ and the isomorphisms F ∗(Eµ) ∼→
Eµ, with µ ∈ In(M)F and h(µ) = j, as in 5.5.12; in particular we have
λMι (w) = χ̃ι(wF ) where χι is the F -stable irreducible character of WM (L)
corresponding to the pair (OMι,n, EMι,n) and where χ̃ι denotes the “preferred
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extension” of χι toWM (L)�〈F 〉. Note that the choice of φι,n : F ∗(Eι,n) ∼→ Eι,n
we just made determine uniquely the isomorphism φι : F ∗(Eι)

∼→ Eι. Now we
see from (2) that the explicit computation of the values of FG(Xι) reduces to
the computation of the values of the generalized Green functions (by 5.5.9)
and to the computation of the Lusztig constants γw which are known in many
cases (see 6.2.20). From 5.5.12, we see that the problem of computing the
values of the generalized Green functions is the same both in the Lie algebra
case and in the group case. By 5.5.12, this problem reduces to the problem of
computing the values of the functions Xµ with µ a nilpotent pair. Lusztig has
invented an algorithm [Lus86a] which allows the computation of the coefficient
aµ,µ′ of 7.1.9 in the case where µ, µ′ are nilpotent pairs. The problem reduces
thus to the computation of the values of the functions Yµ with µ a nilpotent
pair. However, if u ∈ OFµ , the values of the function Yµ can be described (up
to a root of unity) in terms of the values of the corresponding function on
H1(F,A(u)) which is defined in the second paragraph of 6.2.22.

Concerning the computation of the values of the functions FG(Yι), we see
by 7.1.9, that it reduces to the computation of the values of the functions
FG(Xι) (we already outlined) and the computation of the coefficients aµ,µ′ .
But by 7.1.10, the computation of the coefficients aµ,µ′ reduces to the case
where µ, µ′ are nilpotent pairs which coefficients can be computed by Lusztig’s
algorithm.

7.2.2. Concerning the computation of the values of the function FG(ξGx ) for
some x ∈ GF : we know (up to some roots of unity) the base change matrix
between the functions ξGy , y ∈ GF and the functions Yµ, µ ∈ I(G)F , where
the isomorphisms φµ : F ∗(Eµ) � Eµ are chosen as φι in 7.2.1. Hence the
computation of the value of the function FG(ξGx ) reduces to that of FG(Yµ)
for µ ∈ I(GF ) such that Oµ = OGx , which computation is outlined above.
However, since in general the functions ξGx do not belongs to a C(GF )j , with
j ∈ J(G)F , one need to assume the assumption of 7.1.5 for any j ∈ J(G)F
such that, under the decomposition 7.1.2(1), the function ξGx has a non-zero
component in C(GF )j . In particular, one knows how to compute the values of
FG(ξGx ) in the following cases:

(a) p, q and G are as in 6.2.19, although the value of the Lusztig constant
is in general not known in this case.

(b) G and p are as in 6.2.17 (no assumption on q). Note that in these cases
the Lusztig constants are explicitly known [Kaw86].

(c) p and q are as in 6.2.19 and x is a regular element, i.e. dimCG(x) =
rk(G). Indeed, in that case, the j ∈ J(G)F such that under the decomposition
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7.1.2(1) the function ξGx has a non-zero component in C(GF )j , are “supported”
by a regular nilpotent orbit [DLM97, 1.10]. But, the j ∈ J(G)F which are
supported by a regular (nilpotent) orbit satisfy the assumption of 7.1.5 as it
can be seen from the explicit computation of the Lusztig constant [DLM97,
section 2] attached to such j.

(d) p is very good for G (no assumption on q) and x is a semi-simple
element of GF . Indeed, in that case ξGx ∈ C(GF )j where j the G-conjugacy
class of (T, {0},Q�) with T a maximal torus of G.

7.3 Fourier Transforms of the Characteristic Functions

of the Semi-simple Orbits

We now give a more explicit formula for FG(ξGx ) in the situation of 7.2.2(d).
We thus assume that p is very good for G and that x ∈ GF is semi-simple.
Here T is an F -stable maximal torus of M = CG(x) which is M -split and Φ

is the root system of M with respect to T .

Lemma 7.3.1. We have

ξM0 = q−|Φ+||WM (T )|−1
∑

w∈WM(T )

εM εTwQM
Tw
.

Proof: Via the M -equivariant isomorphism ω :Mnil →Muni, it is equivalent
to prove it in the group setting. From [DM91, 12.13] we have

IdM = |WM (T )|−1
∑

w∈WM (T )

RMTw
(IdTw ). (1)

As in [DM91], we denote by DM the dual map. Applying DM to this formula,
we get that

DM (IdM ) = |WM (T )|−1
∑

w∈WM (T )

εM εTwR
M
Tw

(
DTw(IdTw )

)
.

Let StM denote the Steinberg character of MF ; it is equal to DM (IdM ). Since
StTw = IdTw , we have

StM = |WM (T )|−1
∑

w∈WM (T )

εM εTwR
M
Tw

(IdTw ). (2)
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Let ηM0 denote the function on MF that takes the value 1 on MF
uni and 0 on

MF −MF
uni. We have

(StM ).ηMo = |WM (T )|−1RMTw
(hTw

1 )

where hTw
1 (y) = 1 if y = 1 and hTw

1 (y) = 0 otherwise. From [DM91, 9.3], we
see that (StM ).ηMo = q|Φ

+|hM1 whence the result. ��

Remark 7.3.2. Applying FG to 7.3.1 and using 6.2.15, we get the Lie algebra
version of (1) above, from which we deduce the Lie algebra version of (2)
above; the Steinberg function on GF has been defined in [Spr80].

Theorem 7.3.3. We have

FG(ξGx ) = εGεMq
− dim M

2 |WM (T )|−1
∑

w∈WM (T )

RG
Tw

(
Ψ ◦ fTw

x

)

where fTw
x : T Fw → Q

×
� , z �→ Ψ

(
µ(z, x)

)
.

Proof: Since CG(x) is connected (because p is very good), the constant sheaf
Q� is the unique (up to isomorphism) G-equivariant irreducible local system
on OGx . Moreover, the orbit OGx is closed in G, hence the complex K(OGx ,Q�)
is isomorphic to Q�[dimOGx ]. Thus, for an appropriate choice of φι we may
identify Xι of 7.2 with ξGx and XMι,n with ξM0 . Applying the formulas 7.2(2)
and 7.3.1 we get 7.3.3. Note that the Lusztig constant γw of 7.2(2) is then
equal to (−1)rk(G)q

rk(G)
2 . ��

Remark 7.3.4. The 7.3.3 is nothing but the generalization of the Kazhdan-
Springer formula 3.2.12 to the case where the semi-simple element x is not
necessarily regular, although even in the regular case, the formula 7.3.3 is
slighty more general since Kazdan’s result [Kaz77] is available for p large.
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[Bon04] , Eléments unipotent réguliers des sous-groupes de Levi, Canad. J.

Math 56 (2004), 246–276.

[Bor] A. Borel, Linear algebraic groups, Springer-Verlag (second enlarged edi-

tion).

[Bou] N. Bourbaki, Groupes et Algebres de Lie, chap. 4,5,6.

[BR85] Peter Bardsley and R. W. Richardson, Étale slices for algebraic transfor-

mation groups in characteristic p, Proc. London Math. Soc. (3) 51 (1985),

no. 2, 295–317.

[Bry86] Jean-Luc Brylinski, Transformations canoniques, dualité projec-
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Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M.
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