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Preface

The present work is about the study of the trigonometric sums on finite
reductive Lie algebras of Chevalley’s type in the sense of [Spr76]. This subject
has been introduced to me by my supervisors Gus Lehrer and Jean Michel
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tutelle agreement between the university Paris 6 and the university of Sydney.

The required background is the standard knowledge of the theory of con-
nected reductive groups and finite groups of Lie type [Spr].

It is a great pleasure to thank my supervisors Gus Lehrer and Jean Michel
for their precious advices throughout the elaboration of this work. I am also
very grateful to all the others who red the first drafts and suggested improve-
ments, particularly A. Henderson, T. Shoji, J. van Hamel and the editor.
Finally I would like to thank G. Lusztig who invented the theory I use in this
book.

The preparation of this work has been conducted at the following places:
“Equipe des groupes finis” (Institut de mathématiques de Jussieu, Paris), uni-
versity of Sydney, LAMFA (université de Picardie Jules-Verne), Sophia uni-
versity (Tokyo). It is a pleasure to thank the previously named institutes for
their hospitality. I am grateful to the AEAP (Australian European Award
Program), the French ministry of research and to JSPS (Japanese Society for
the Promotion of Science) for their generous support.
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1

Introduction

Here k is an algebraic closure of a finite field I, with ¢ a power of a prime p.
Let G be a connected reductive algebraic group over k which is defined over
F,. Let G be the Lie algebra of G. Then both G and the adjoint representation
Ad : G — GL(G) are defined over F,. We denote by F': G - G, F: G — G
the Frobenius endomorphisms corresponding to these F,-structures. Assume
that g : G X G — k is a non-degenerate G-invariant symmetric bilinear form
defined over F, and let ¥ : F;, — @Z be a non-trivial additive character where
Q, is an algebraic closure of the field of f-adic numbers with ¢ a prime # p .
We call trigonometric sums [Spr76] the GF-invariant characters of the abelian
group G which are of the form y — Y wco LP(,u(y, x)) for some G*-orbit O of
G¥. They form an orthogonal basis of the Q,-vector space C(G*') of functions
gt — @z which are constant on the GF-orbits of G¥. The Fourier transform
F9:C(GF) — C(GF) with respect to (u,¥) is defined as follows:

FOf) ) = 16171 D (ulz,y) f(v)

yegl

with f € C(G¥) and = € G¥'. The trigonometric sums of G are thus (up to a
scalar) the Fourier transforms of the characteristic functions of the G¥-orbits
of G¥.

The trigonometric sums were first studied by Springer [Spr71] [Spr76] in
connection with the Q,-character theory of finite groups of Lie type (i.e. finite
groups of the form GF'): it was shown by Kazhdan [Kaz77], using the results
of [Spr76], that the values of the Green functions of finite groups of Lie type
[DL76] can be expressed (via the exponential map) in terms of the values of
trigonometric sums of the form y — 3 LP(,u(y, x)) with O a semi-simple
regular GF-orbit of GF'. In [Lus87] and [Lus92], Lusztig has outlined what
should be the Lie algebra version of his character sheaves theory to study
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2 1 Introduction

Fourier transforms and to give a general framework for computing the values
of trigonometric sums. In particular, he has defined the “admissible com-
plexes” on G as well as the generalized Green functions on G¥ which coincide
with the generalized Green functions on G [Lus85b] via any G-equivariant
isomorphism from the nilpotent variety G,;; onto the unipotent variety Gqn;.
Within this framework, he was able to explain most of phenomena observed at
first by Kawanaka like the existence of pairs (f, G) such that f is a nilpotently
supported function on G¥ invariant under the “modified” Fourier transforms
[Kaw82].

In this book, we study trigonometric sums using the techniques developed
principally by Lusztig to study the irreducible Q,-characters of finite groups
of Lie type. The first step is to define a “twisted” induction in the Lie algebra
setting which fits to the study of trigonometric sums, that is, which commutes
with Fourier transforms. Lehrer has proved [Leh96] that Harish-Chandra in-
duction commutes with Fourier transforms, suggesting thus to define the re-
quired twisted induction as a generalization of Harish-Chandra induction. The
definition of the twisted induction we give here (which is somehow a Lie alge-
bra version of Deligne-Lusztig induction [DL76]) uses the “character formula”
where the “two-variable Green functions” are defined in group theoretical
terms and then transferred to the Lie algebra by means of a G-equivariant
homeomorphism w : Gy — Guni (see definition 3.2.13). Our definition of
twisted induction (we call Deligne-Lusztig induction) is thus available if such
a G-equivariant homeomorphism is well-defined which is the case if p is good
for G [Spr69]. The author was informed that Lusztig already knew this defini-
tion at least when w is the usual exponential map (unpublished). Let £ be the
Lie algebra of an F-stable Levi subgroup L of G and let R : C(LF) — C(GT)
denote the Deligne-Lusztig induction. We conjecture the following commuta-
tion formula:

RE o FE(f) = egerF9 o RE(f) (*)

where eg = (—1)Fa=7ank(G) " FL is the Fourier transform with respect to

(s, ¥), and f € C(LF). If L is a Levi subgroup of an F-stable parabolic
subgroup of G, then the formula (*) follows from a result of Lehrer [Leh96)
since in that case R% is the Harish-Chandra induction. If the function f is
the characteristic function of a semi-simple regular orbit, then the formula (*)
follows from Kazhdan-Springer’s work [Spr76][Kaz77] assuming that p is large
enough. When the prime p is acceptable (5.0.14), we define another twisted
induction so-called geometrical induction (see 5.4.10) using the Lie algebra
version of Lusztig’s character sheaves theory. From the result of [Lus90], we
prove that the geometrical induction coincides with the Deligne-Lusztig in-
duction when ¢ is large enough. Since the definition of geometrical induction
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does not involve any map G; — Guni, it proves the independence of our defi-
nition of Deligne-Lusztig induction from the choice of such a map w. Using the
coincidence of these two twisted inductions, we prove the above commutation
formula (*) in many cases (6.2.15, 6.2.17, 6.2.19). More precisely, we show
(assuming that p is acceptable and g is large enough) that this commutation
formula will be available in full generality (i.e. for any reductive group G) if
we can verify that for any G such that G is either semi-simple of type A,,, or
simple of type D,,

(**) the constant coming from Fourier transforms [Lus87] (called Lusztig
constant) attached to an F-stable “cuspidal pair” (C,() [Lus84] with C' a
unipotent conjugacy class of G and ¢ an irreducible G-equivariant local system
on C, does not depend (up to a sign) on the Fy-structure on G (see 6.2.18).

If p > 3(hS — 1) where hS is the Coxeter number of G, then we express
the Lusztig constant attached to (C, () as a “generalized character sum” as-
sociated to the regular prehomogeneous vector space of Dynkin-Kostant type
corresponding to C' (see 6.2.25). Such a formula has been obtained by Digne-
Lehrer-Michel [DLM97] in type A,,, by Kawanaka [Kaw86] in type Es, Fy and
G2, and by Waldspurger [Wal01] if G is of classical type, i.e. G is SOn(k) or
Span (k). Although this formula is not explicit enough to verify (**), it has
been used by the previously named authors to compute explicitly the Lusztig
constants in types A,, Es, F4, G2, and in the case where G is of classical type
(see also [Gec99] for the simple adjoint case). In these cases, it is thus possible
to verify the property (**).

Hence, to prove the conjecture (*) when p > 3(hS — 1), we are reduced to
prove (**) in the case where G is the spin group Spina,(k), i.e. the simply
connected simple group of type D,,, which problem reduces to a problem on
regular prehomogeneous vector spaces of Dynkin-Kostant type. As far as I
know, the assertion (**) with G = Spina, (k) is still an open problem.

Using the commutation formula (*), we reduce the computation of the
trigonometric sums of G to the computation of the Lusztig constants (see
above) attached to the F-stable cuspidal pairs on the F-stable Levi subgroups
of G and the computation of the generalized Green functions. Lusztig has given
an algorithm which reduces the computation of the values of the generalized
Green functions to the computation of some roots of unity whose values are
known in many cases. We thus have a method (up to the above conjecture)
to compute the values of the trigonometric sums of G¥. The commutation
formula (*) has also other applications in the representation theory of finite
groups of Lie type (see for instance [Let04]).
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We shall now give a brief review of the content of the different chapters. In
chapter 2, we give a review on algebraic groups and their Lie algebras of less
accessible material. In particular we give for simple groups of type A,, or sim-
ply connected simple groups of type By, C, or D,, a necessary and sufficient
condition on p to have a non-degenerate G-invariant bilinear form on G. In
chapter 3, we give the definition of Deligne-Lusztig induction in terms of two-
variable Green functions, and we state its basic properties like transitivity,
the Makey formula and commutation with duality. We also state our conjec-
ture on the commutation formula (*) with Fourier transforms. In chapter 4,
we give a review on perverse sheaves and local systems of what is needed. In
chapter 5, we describe the theory of admissible complexes (character sheaves)
on Lie algebras starting from [Lus87] [Lus92] and by adapting Lusztig’s ideas
[Lus84][Lus85b][Lus86a] to the Lie algebra case. While in [Lus87] [Lus92],
the prime p is assumed to be large, here we give a strict bound on p using
the results of chapter 2. Finally, using the theory of admissible complexes
on the Lie algebra, we construct the geometrical induction and we prove (by
transferring [Lus90, 1.14] to the Lie algebra case by means of a G-equivariant
isomorphism G,,;; — Gyn;) its coincidence with the Deligne-Lusztig induction
assuming that ¢ is large enough. In chapter 6, we discuss the conjecture of
chapter 3 and prove it in many cases. We first reduce the conjecture (*) to
the case where f is a “cuspidal” function by using the coincidence of the two
inductions. Then using a construction by Waldspurger [Wal01, chapter 2] to
investigate the Frobenius action on the “parabolic induction” of “cuspidal
orbital” perverse sheaves, the conjecture (*) is further reduced to the case
where f is a cuspidal nilpotently supported function. From this, we reduce
the conjecture (*) to the problem (*¥)
(*). Finally in chapter 7, we show how to compute the values of trigonometric

. We then state our main results on

sums.



2

Connected Reductive Groups and Their Lie
Algebras

The geometrical objects considered are defined over an algebraically closed
field k£ of characteristic p. In this chapter, we first introduce some notation
which will be used throughout this book. We then discuss some properties
about algebraic groups and their Lie algebras related to the characteristic p.
These results will be used to give an explicit bound on p for which the main
result of [Lus87] applies. For any prime r, we choose once for all an algebraic
closure F, of the finite field F, = Z/rZ. Then we denote by F,» the unique
extension of degree n > 0 of F,. in F,..

2.1 Notation and Background

We denote by G, the one-dimensional algebraic group (k — {0}, x), and by
G, the one-dimensional algebraic group (k,+). Let H be a linear algebraic
group over k, i.e. H is isomorphic to a closed subgroup of some GL, (k). We
denote by 1y the neutral element of H and by H° the connected component
of H containing 1. We denote by Lie(H) = H the Lie algebra of H (i.e.
the tangent space of H° at 1y) and we denote by [,] the Lie product on H.
The Lie algebras of GL,(k), SLy(k) and PGL, (k) are respectively denoted
by gl.(k), sln(k) and pgl, (k). Let Zy = {x € H|Vy € H,zy = yx} be the
center of H, and let z(H) = {X € H|VY € H,[X,Y] = 0} be the center of H.
If x € H, we denote by x, the semi-simple part of  and by z,, its unipotent
part. If X € H, then X, denotes the semi-simple part of X and X,, denotes
its nilpotent part.

For an arbitrary morphism f : X — Y of algebraic varieties, we denote by
dy f the differential of f at x. If X is an algebraic group, we put df =di f.

E. Letellier: LNM 1859, pp. 5-31, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



6 2 Connected Reductive Groups and Their Lie Algebras

2.1.1 H-Varieties and Adjoint Action of H on 'H

An algebraic variety on which H acts morphically is called an H -variety. If V' is
an H-variety and S a subset of V', we put Cy(S) := {h € H|Vz € S, h.x = z}
and we denote by C%(S) instead of Cy(S)° its connected component. We
also put Ag(S) := Cy(S)/C%(S). The normalizer {h € H|h.S C S} of S
in H is denoted by Ng(S). Let X be an homogeneous H-variety (i.e. H
acts transitively on X). Then the choice of an element z € X defines an H-
equivariant morphism 7, : H — X, h +— h.z which factors through a bijective
morphism 7, : H/Cy(x) — X. We have the following well-known proposition.

Proposition 2.1.2. The following assertions are equivalent:
(i) The morphism m, is separable.
(11) The natural inclusion Lie(Cy(x)) C Ker(dm,) is an equality.
(#ii) The morphism T; is an isomorphism.

2.1.3. For any h € H, let Int, : H — H be the automorphism of H given by
g +— hgh~!. Then the map Ad : H — GL(H), h — d(Int) is a morphism
of algebraic groups and is called the adjoint action of H on H. We also have
[Ad(h)X,Ad(h)Y] = Ad(R)([X,Y]) for any h € H, X,Y € H. For a closed
subgroup K of H, we use the terminology “K-orbit of H” for the adjoint
action of K on H. If X € H, we denote by OF the K-orbit of X and if
r € H, we denote by CK the K-conjugacy class of z in H. If X,Y are two
elements of H, we say that they are K -conjugate if X € O¥. The differential
of Ad : H — GL(H) at 1 is denoted by ad. It satisfies ad(X)(Y) = [X,Y]
for any X,Y € H. Since the restriction of Ad to Zg is trivial, we thus get
that Lie(Zy) C 2(H). We will see later that this inclusion is not always an
equality.

Let K be a closed subgroup of H with Lie algebra K. For X € H and
x € H, we define
Cre(X) == {Y € KI[Y, X] = 0},
Ci(z) :={Y € K|Ad(2)Y =Y}.
Consider the orbit maps 7 : K — O¥, h — Ad(h)X and p : K — CK,
h + hxh~!. Then by [Bor, III 9.1], we have Ker(dr) = Cx(X) and Ker(dp) =

Ci(z). Hence, by 2.1.2 the orbit map 7 (resp. p ) is separable if and only if
Lie(Ck (X)) = Cx(X) (resp. Lie(Ck(x)) = Cx(x)).
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2.1.4 Reductive Groups

The letter G will always denote a connected reductive algebraic group
over k and we will denote by G its Lie algebra. By a semi-simple algebraic
group, we shall mean a connected reductive algebraic group whose radical
is trivial, i.e. a connected reductive group whose center is finite.

Notation 2.1.5. We denote by G’ the derived subgroup of G, i.e. the closed
subgroup of G which is generated by the elements of the form zyz~'y~! with
x,y € G, and by G’ the Lie algebra of G’. We also denote by G the quotient
G/Zg and by G the Lie algebra of G.

Recall that G’ and G are both semi-simple algebraic groups. Recall also
that G = G/Lie(Z2). We will see that G’ is not always the Lie subalgebra of
G generated the elements of the form [X,Y] with X,Y € G (see 2.4.4).

Definition 2.1.6. Let H be an algebraic group and let Hy, ..., H,, be closed
subgroups of H such that any two of them commute and each of them has a
finite intersection with the product of the others. If H = Hy...H,, then we say
that H 1is the almost-direct product of the H;.

Theorem 2.1.7. [DM91, 0.38] If G is a semi-simple algebraic group, then G
has finitely many minimal non-trivial normal connected closed subgroups and
G is the almost-direct product of them.

Definition 2.1.8. The minimal non-trivial normal connected closed sub-
groups of a semi-simple algebraic group G will be called the simple components
of G. We shall say that G is simple if it has a unique simple component.

The letter B will usually denote a Borel subgroup of G, the letter T a
maximal torus of B and U the unipotent radical of B. Their respective Lie
algebras will be denoted by B,7 and U. The dimension of T' is called the
rank of G and is denoted by rk(G). The rank of G is called the semi-simple
rank of G and is denoted by rkss(G). If P is an arbitrary parabolic subgroup
of G, then we denote by Up the unipotent radical of P and by Up the Lie
algebra of Up. If P = LUp is a Levi decomposition of P with corresponding
Lie algebra decomposition P = £ @ Up, then we denote by mp : P — L and
by mp : P — L the canonical projections. Throughout the book we will make
the following abuse of language: by a “Levi subgroup of G, we shall mean
a Levi subgroup of a parabolic subgroup of G.
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We denote by X (T') the group of algebraic group homomorphisms 7" —
Gy, For any v € X(T), put G, = {v € G|Vt € T, Ad(t)v = y(t)v} and ¢ =
{7 € X(T) - {0}/ G, # {0}}. We have

G6= P 6,=ToPG

yePU{0} acd

For any a € @, we denote by U, the unique closed connected one-dimensional
unipotent subgroup of G normalized by T such that Lie(U,) = G,.

It is known that @ forms a (reduced) root system in the subspace V of
X(T) ® R it generates. The set @ is then called the root system of G with
respect to T' and the elements of @ are called the roots of G with respect to T'.
If there is any ambiguity, we will write @(T') instead of . We denote by ¢V the
set of coroots and by XV (T) the group of homomorphisms of algebraic groups
Gy — T the set @V forms a root system in the subspace VV of XV(T) @ R
it generates. We denote by Q(®P) the Z-sublattice of X(T') generated by &
and by Q(®Y) the Z-sublattice of XV (T) generated by ®V. Recall that we
have an exact pairing (,) : X(T') x XY(T) — Z such that for any a € X(T),
B e XV(T) and t € Gy, we have (oo 8Y)(t) = t{>#") By abuse of notation,
we still denote by (,) the induced pairing between V and V. The Z-lattice of
weights P(®) is defined to be {z € V|(z,#") C Z}. The lattice Q(®) is then
a Z-sublattice of P(®) of finite index.

If G is semi-simple, we have the following inclusions of Z-lattices Q(®) C
X(T) c P(®) and Q(?Y) C XV(T) C P(PY); conversely if one these in-
clusions hold, then G is semi-simple. Moreover we have |P(®)/X(T)| =
[ XY(T)/Q(@)] and so

X (T)/Q(P)||XY(T)/Q(2")] = |P(2)/Q(2)].
Definition 2.1.9. We say that G is

(i) adjoint if X (T) = Q(®);
(i) simply connected if XV (T) = Q(®").

It follows from Chevalley’s classification theorem that each Z-lattice between
Q(P) and P(P) determines a unique (up to isomorphism) semi-simple alge-
braic group over k with root system &. We denote by G4 the adjoint group
corresponding to G and by G4 the simply connected algebraic group cor-
responding to G. Their respective Lie algebras are denoted by G,q and Gs..
When G is semi-simple, the inclusions Q(®) C X (T) C P(P) give rise to
canonical isogenies (i.e surjective morphisms whose kernel is finite and so lies
in the center) 75 : Gs — G and 7aq : G — Gag; the kernel of the later map is
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equal to Zg (see [Ste68, page 45]). Moreover, the canonical isogenies 75, and
Tad are central, that is Ker(dms.) C 2(Gsc) and Ker(dmaq) C 2(G). In fact, for
the later map we have Ker(dm,q) = 2(G).

The choice of the Borel subgroup B containing T defines an order on $U{0}
such that any root is positive or negative by setting &% := {vy € #|G, C B}.
The set II of positive roots that are indecomposable into a sum of other
positive roots is called the basis of @ with respect to B. The elements of IT are
linearly independent and any root of @ is a Z-linear combination of elements
of IT with coefficients all positive or all negative. If 3 =3 . noa € @, then
we define the height of 3 (with respect to IT) to be the integer ) ;7 1a. The
highest root of @ with respect to II is defined to be the root of highest height.
For any Levi subgroup L of G, we denote by Wg(L) the group Ng(L)/L.
The Weyl group of G relative to T is Wg(T). We denote by h, the Coxeter
number of W¢(T). It depends only on G, and so if there is any ambiguity, we
will denote it hS instead of h,.

2.1.10 About Intersections of Lie Algebras of Closed Subgroups of
G

Let M and N be two closed subgroups of G, then we have
2.1.11. Lie(M N N) C Lie(M) N Lie(N).

In general this inclusion is not an equality; it becomes an equality exactly
when the quotient morphism 7 : G — G/N induces a separable morphism
M — w(M) (see [Bor, Proposition 6.12]).

2.1.12. When M NN contains a mazximal torus of G, the inclusion 2.1.11 is
an equality.

The above assertion follows from [Bor, Proposition 13.20]; note that [Bor,
Corollary 13.21], which asserts that 2.1.11 is an equality whenever M and
N are normalized by a maximal torus of G, is not correct since in positive
characteristic, the intersection of two subtori of a maximal torus of G may
have finite intersection while their Lie algebras have an intersection of strictly
positive dimension. For instance, let G = SL3(k) and let T be the maximal
torus of G comnsisting of diagonal matrices, then the set Zg is finite and is
the intersection of the two subtori T, = Ker(«) and T = Ker(8) of T where
T — kX, (ty,to,t7 5 ) = taty and BT — kX, (t,ta, ] 'ty ') v t3t1.
The intersection of the Lie algebras of Ti, and T3 is of dimension 0 unless
p = 3 in which case the intersection is of dimension 1.
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2.1.13. We will need to deal with the question of whether the inclusion 2.1.11
is an equality or not only in the cases where the closed subgroups M and
N involved in 2.1.11 are parabolic subgroups, Levi subgroups or unipotent
radicals of parabolic subgroups.

Let P and @ be two parabolic subgroups G. Let L and M be two Levi
subgroups of P and @ respectively such that L N M contains a maximal torus
T of G (given P and @, such Levi subgroups L and M always exists). We
denote by P, Q, L and M the corresponding Lie algebras of P,Q, L and M.

Proposition 2.1.14. With the above notation, we have:
(1) Lie(PNQ)=PNQ,
(2) Lie(LNM)=LNM,
(8) Lie(L N UQ) =LNUg,
(4) Lie(Up N UQ) =UpNUgy.

Proof: The assertions (1) and (2) are clear from 2.1.12. Let us see (3). From
2.1.11, it is enough to prove that dim (L NUg) = dim (£ NUg). Since LN Ug
is a closed unipotent subgroup of G normalized by T, by [DM91, 0.34], it is
of dimension equal to the number of the U,, with a € &, it contains. On the
other hand the torus 7' normalizes LNUq, therefore by full reducibility of the
adjoint representation of 7" in G, the space £ N Ug is the direct sum of the
Go , @ € D, it contains. Hence the equality dim (L N Ug) = dim (L NUg) is a
consequence of the fact that G, C £ NUg if and only if U, C LN Ug. The
proof of (4) is completely similar. ad

The above proposition together with [DM91, Proposition 2.1] has the fol-
lowing straightforward consequence.

Proposition 2.1.15. With the above notation, we have

PNQ=(LNM)®(LNUg) d MNUp)® UpNUg).

2.1.16 [Fg-Structures

Notation 2.1.17. Let r be a prime and let X be an algebraic variety on F,
defined over Fn. If F': X — X denotes the corresponding Frobenius endo-
morphism, we say that x € X is rational if F(z) = x and we denote by X¥
the set of rational elements of X.
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2.1.18. Let k = F,, and let ¢ be a power of p such that the group G is
defined over F,. We then denote by F': G — G the corresponding Frobenius
endomorphism. The Lie algebra G and the adjoint action of G on G are also
defined over IF; and we still denote by F' : G — G the Frobenius endomorphism
on G. Assume that the maximal torus T of G is F-stable, and denote by
7 the unique automorphism on @ such that for any root @ € @, we have
F(Us) = Uy (qy; it satisfies (7a)(F(t)) = (a(t))? for any « € X(T) and t € T,
If B is also F-stable, then 7 permutes the elements of the basis IT of ¢. Recall
that an F-stable torus H C G of rank n is said to be split if there exists
an isomorphism H = (G,,)" defined over F,. The F -rank of an F-stable
maximal torus T of G is defined to be the rank of its maximum split subtori.
An F-stable maximal torus T of G is said to be G-split if it is maximally split
in G} recall that the G-split maximal torus of G are exactly those contained
in some F-stable Borel subgroup of G. The F,-rank of G is defined to be the
F,-rank of its G-split maximal tori. The semi-simple F,-rank of G is defined
to be the F,-rank of G. We say that an F-stable Levi subgroup L of G is G-
split if it contains a G-split maximal torus; this is equivalent to say that there
exists an F-stable parabolic subgroup P of G having L as a Levi subgroup.

Notation 2.1.19. Let H be a group with a morphism 6 : H — H. We say
that =,y € H are 0-conjugate if and only if there exists h € H such that
x = hy(6(h))~t. We denote by H*(0, H) the set of §-conjugacy classes of H.

2.1.20. Let k = Fq with g a power of p. Let H be a connected linear algebraic
group acting morphically on a variety X. Assume that H, X and the action
of H on X are all defined over Fy. Let F' : X — X and F : H — H be
the corresponding Frobenius endomorphisms. Let z € X and let O be the
H-orbit of z. The orbit © is thus F-stable and OF is a disjoint union of
HF-orbits. By [SS70, I, 2.7] (see also [DM91, 3.21]) we have a well-defined
parametrization of the H -orbits of O by H'(F, Ay (z)). This parametrization
is given as follows. Let y € OF and let h € H be such that y = h.z. Then to
the H¥ -orbit of y, we associate the F-conjugacy class of the image of h=1F(h)
in Ag(x).

2.2 Chevalley Formulas

For any a € @, the symbol e, denotes a non-zero element of G, and h,, denotes
[ease—q]. When p = 0, we assume that the e, are chosen such that the set
{ha,ey|la € I,y € §} is a Chevalley basis of G’ (see [Car72, 4.2] or [Ste68]).
When p > 0 and G’ = G, then G’ is obtained by reduction modulo p from the
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Z-span of a Chevalley basis in the corresponding Lie algebra over C. Hence in
that case, we assume that the e, are chosen such that {hq,e,|a € II,v € ®}
is obtained from a Chevalley basis in the corresponding Lie algebra over C;
the set {ha,ey|a € II,y € } is then called a Chevalley basis of G'. In the
general case, let m denote the canonical central isogeny G. — G’; the choice
of the e, is made such that Bg := {hq,ey|a € I,y € $} is the image by dr
of a Chevalley basis of Gs.. When it is a basis of G’, the set Bg is called a
Chevalley basis of G’. We will see in 2.4, that the existence of Chevalley basis
on G’ # G, is subject to some restriction on p. With such a choice of the e,
for any r € @, we have dr(h,) = 2 and the vector h, is a linear combination of
the h, with «a € II. The last fact can be deduced from the simply connected
case by making the use of the canonical Lie algebra homomorphism Gs. — G'.

2.2.1. We then have the following well-known relations:
(i) [t,h] =0, t,h e T,
(ii) [t,er] = dr(t)e,, t € T,r € P,
(111) ler,es] =0, r € ®,s € d,r+s¢ dU{0},
() ler,es] € Grys, T €D, s €D, r+5s€d.

Using the decomposition G = T @& @, G, and the above formulas, we see
that the subspace of G’ generated by {ha, e |,y € $} is [G, G]. But since the
vectors h, with r € @ are linear combinations of the h, with o € II, the Lie
algebra [G, §] is actually generated by Bg. As a consequence, since G’ is of
dimension |IT| + |®| = |Bg|, we see that G’ = [G, G] if and only if Bg is a basis
of @', i.e. the elements of {h,|a € IT} are linearly independent.

2.2.2. Forr € @, we fixr an isomorphism of algebraic groups x, : G, — U,
such that dx.(1) = e,. The following formulas give the action of U,, with
red®, ongG:

(i) Ad(x,(t))e, = e,

(ii) Ad(x,(t))e—, = e_, + th, — t?e,,

(1ii) Ad(z,-(t))h = h —dr(h)te,, he T,
(

(v) Ad(x,(t
ifr # —s.

)
Ves = es + Z{i>0|i7‘+56‘15} Crs,it'€irts for some cps; € k
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2.3 The Lie Algebra of Zg

Recall that by 2.1.3, we have an inclusion (*) Lie(Zg) C 2(G). In this sub-
section, we give among other things a necessary and sufficient condition on p
for (*) to be an equality. We denote by T the maximal torus T//Z& of G and
by T’ the maximal torus of G’ which contains T

We consider on Lie(Zg) @®G the Lie product given by [t @ v, h@u] := [v,u].

2.3.1. There is an isomorphism of Lie algebras G ~ Lie(Zg) ©G.

Proof: It is enough to prove the existence of a k-subspace V of G such that
G =Lie(Zg)®V and [V, V] C V, so that V ~ G. For a € II, denote by h, €
Lie(T') the image of h,, under the canonical projection 7 — Lie(T'). We choose
a subset I of IT such that E = {h,|a € I} is a basis of the subspace of Lie(T)
generated by {h|a € IT}, and we complete E into a basis E U {Z1, ..., T} of
Lie(T). We choose z; € T such that its image in Lie(T') is T;. Now let V be the
subspace of G generated by X := {z1,...,2n, ha,ey|a € I,y € $}. Since the
image of X in G is a basis of G, we have dim V' = dim G and VNLie(Zg) = {0}.
It follows that G = Lie(Zg) @ V. From 2.2.1, we get that [V, V] C V. O

2.3.2. It follows from 2.2.1 that

2(G) = ﬂ Ker(da), (1)

aell
and from [DM91, Proposition 0.35] that

Zg = () Ker(a). (2)

a€cll

2.3.3. The canonical morphism p : T — T induces an injective group homo-
morphism p* : X(T) — X(T), v — 7 o p mapping bijectively the roots of G
with respect to T onto @. Hence we may identify the roots of G with respect
to T with @. Under this identification, the lattice Q(®) is a Z-sublattice of
X (T). We have the following proposition.

Proposition 2.3.4. We have |(X(T)/Q(®))ior| = |X(T)/Q(®)|. The follow-
ing assertions are equivalent:

(i) p does not divide |(X(T)/Q(P))tor!,

(i1) Lie(Zg) = 2(G).
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Proof: For the sake of clarity, in this proof we prefer to differentiate the
root system @ of G with respect to T from ®. Let r be the rank of G and
s be the semi-simple rank of G. Let {v1,...,7} be a basis of X(T') such
that for some integer s with s < r and some non-zero integers mq, ..., ms,
the set {miv1,...,msys} is a basis of Q(P). We have X (T)/Q(P) = Z" % x
Z)/miZ x ... x Z/msZ and so |(X(T)/Q(D))ior] = [1;—, mi. Now for i €
{1, .., s}, we have m;y; € Q(®) and so, by 2.3.2(2), we have 7,;(z)™ = 1 for
any z € Z&. Hence, if yi,,, denotes the group of m!" roots of unity, we get that
Yi(Z&) C pm,. Since Z2 is connected, we deduce that 7,(Z%) = {1}. Thus,
for i € {1,..,s}, the morphism ~; factors through a morphism 7, : T — G,,,.
We see that {¥;}icq1,...,s3 and {m;7,;}; are respectively bases of the groups
X(T) and Q(®) (from which we see that [(X(T)/Q(P))ior| = |X(T)/Q(P)));
this can be verified by using the fact that dim X (T) = s and the fact that p*
maps 7; onto «y; for i € {1,...,s}. From the fact that {¥,}; is a basis of X (T),
it results that the morphism 7' — G2, given by t — (F,(t),...,7,(t)) is an
isomorphism of algebraic groups. As a consequence, its differential Lie(T) —
k* given by t — (d¥,(t), ..., d¥,(t)) is an isomorphism, i.e. the intersection of
the s hyperplanes Ker(d¥;) of Lie(T) is {0}.

We deduce that the intersection of the s hyperplanes Ker(m;d7¥;) of Lie(T)
is zero if and only if the m; are invertible in k& (i.e if p does not divide
(X (T)/Q(®))tor|). On the other hand, since {m;¥,}; is a basis of Q(®), by
2.3.2 (1) we have .= Ker(m;d7,) = 2(G). We thus proved that the m; are

invertible in k if and only if 2(G) is trivial.

We are now in position to see that the proposition is a consequence of the
fact that any isomorphism of Lie algebras G ~ Lie(Zg) © G as in 2.3.1 induces

an isomorphism from z(G) onto Lie(Z¢g) & 2(G). O

Remark 2.3.5. If the assertion (i) (and so the assertion (ii)) of 2.3.4 holds for
G, it does for any Levi subgroup of G.

Remark 2.3.6. Let m : G — G44 be the composition morphism of the canonical
projection G — G with the canonical central isogeny G — G4, then we have
Ker(m) = Zg and Ker(dr) = z(G), so by 2.1.2, the morphism = is separable
if and only if Lie(Zg) = 2(G).

Using 2.3.6, we see that 2.3.4 has the following consequence.

Corollary 2.3.7. The canonical morphism G — G4 is separable if and only
if p does not divide |(X(T)/Q(P))tor]-
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Corollary 2.3.8. Assume that G is semi-simple and write G = G1...G, where
G1,...,G, are the simple components of G. Assume moreover that p does not

divide | (X (T)/Q(®))or] = |X(T)/Q(®)], then G = @, Lie(G).

Proof: For any i, we denote by G; the Lie algebra of G;. We fix ¢ and let
I be a subset of {1,..,r} which does not contain i. Let = € (3 ;. G;) N Gs.
Since for ¢ # j the group G; commutes with G;, we have [G;,G;] = {0}.
Hence x € 37, ; G; centralizes G; and so x € 2(G;). Since each element of G;
centralizes G; for any ¢ # j, we deduce that z € G. By 2.3.4 we have z = 0.
We deduce that the sum F = ZZ G; is direct. Hence FE is a subspace of G
of dimension ), dim@G; and so since algebraic groups are smooth, we have
dim E = Y, dim G; = dim G. We deduce that G = @B'=" G;. 0

Using the canonical map 7" — T, we identify X (T) with a subgroup
of X(T") and the root system of G’ with respect to 77 with &. Then
[(X(T)/Q(@))1or| = [X(T)/Q(®P)] divides |X(T")/Q(P)|-

Corollary 2.3.9. Assume that p does not diwvide | X (T")/Q(P)|, we have G =
2(G) e g

Proof: Since Lie(Zg) C 2(G), we have Lie(Zg) NG’ C 2(G’) and so by 2.3.4
applied to G', we have Lie(Zs)NG' = {0}. Hence the sum Lie(Z¢g)+G’ is direct
and so it is a subspace of G of dimension dim Zg + dim G’ = dim G; thus we
get that Lie(Zg) @G’ = G. Now, since p does not divide | X (T7)/Q(®P)|, it does
not divide |(X(T)/Q(P))tor|, hence by 2.3.4, we get that G = 2(G)® G’. O

Remark 2.3.10. The assumption “ p does not divide |(X(T")/Q(®P))tor|” is not
sufficient for G = 2(G) @ G’ to hold. Indeed, consider G = G L, (k); the group
(X(T)/Q(D))tor is trivial while the group X (T")/Q(®P) is isomorphic to Z/nZ.
Assume that p divides | X (T”)/Q(®)| = n. Then diagonal matrices (a, ..., a)
with a € k belong to the Lie algebra of Zg but also to sl,, = G’ since na = 0.
Hence Lie(Zg) NG # {0} .

2.4 Existence of Chevalley Bases on G’

We will need the following lemma.
Lemma 2.4.1. [Bor, 8.5]

(i) Let T; : (Gy,)" — Gy, be the i-th projection; the maps T; form a basis of
the abelian group X (G,) of algebraic group homomorphisms (Gp,)" — Gy,
that is for any f € X(G!)) there exists a unique tuple (nq,...,n,) € Z" such
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that f =T{"*... T Let f =T{"*.. T € X(G],), then df : k™ — k is given by
df (z1, ..., xr) = >, nix;.

(ii) Let T, : Gy, — (Gu,)" be given by TV (t) = (1,..,1,¢,1,..,1) (¢ be-
ing located at the i — th rank); the maps T,' form a basis of the abelian
group XY (GL)) of algebraic group homomorphisms G, — (G,,)", that is
for any f € XV(GI,) there exists a unique uple (ni,...,n,.) € Z" such that
f=@)m. (o). If f = (TY)™..(TY)" € XV(G"), then df : k — k" is
given by df (t) = (nit, ..., n.t).

Recall that 7" denotes the maximal torus of G’ contained in T and that
X(T") is a Z-sublattice of P(P).

Definition 2.4.2. The quotient P(P)/ X (T") is called the fundamental group
of G and is denoted by 7 (G).

Note that 71 (Gse) = 1 and m1(Goq) = P(P)/Q(P).

We assume that G is semi-simple.

By Chevalley’s classification theorem, there exists a unique (up to iso-
morphism) connected reductive algebraic group G* over k with a maxi-
mal torus T* of G* such that its root datum (@*, X (T*), ($*)V, XV (T™)) is
(@Y, XV(T),®, X(T)); we refer to [DM91] or [Car85] for the definition of root
datum. We denote by G* the Lie algebra of G*. Since G is assumed to be
semi-simple, the group G* is also semi-simple. We denote by a* the element
of X(T*) = Hom(T*,G,,) corresponding to «¥V € ®¥ and by d(x) the ele-
ment of XY(T*) = Hom(G,,, T*) corresponding to x € X (T'). Then for any
x € X(T') and o € @, we have

2.4.3.

(x,a”) = (", 4(x))-

Proposition 2.4.4. The following assertions are equivalent:
(i) G=19,9].
(1) Bg = {ha,ey| a € II,y € P} is a basis of G.
(i) 2(G*) = {0}.
(iv) p does not divide |71 (G)].

(v) The canonical central isogeny Gs. — G 1is separable.
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Proof: The equivalence between (i) and (ii) follows from the fact that [G, g]
is generated by Bg. Let m : Gs. — G be the canonical central isogeny. The
equivalence between the assertions (v) and (ii) follows from the fact that Bg
is the image by drm of a Chevalley basis of Gs. and that 7 is separable if and
only if dr is an isomorphism. Since we have |P(®)/ X (T)| = | XV(T)/Q(®")|,
the equivalence between (iii) and (iv) is a consequence of 2.3.4 applied to G*.
We propose to prove the equivalence between the assertions (ii) and (iii).

We first prove that for any root a we have daV (k) = [Gq, G—o] (this makes
sense since [Go,G—a] C 7). It is known that for any root o € &, the group
a(G,,) is contained in the subgroup H, of G generated by U, and U_,.
But the group H, is a semi-simple algebraic group of rank one with maximal
torus T N H,; hence it is isomorphic to SLo(k) or PGLa(k). Now a simple
computation in SLa (k) or in PG Lo (k) shows that we have da¥ (k) = [Ga, G—a)-
Hence daV (1) = Ah, for some A € k. Let us see that A = 1. Since (o, a¥) = 2,
we have da o da¥ (1) = 2, and by 2.2, we also have da(hy) = 2. Hence

da¥ (1) = he. (*)

Let r be the rank of G. Let (21, ...,2,) be a basis of X(T') and consider the
isomorphisms of algebraic groups ¢ : T — G!, given by t — (z1(t), ..., z,(t))
and ¢ : G, — T* given by (t1,...,t,) — [, 6(z:)(t;).

Using ¢ and v to identify respectively T* and T with G’ , we identify (as
suggested by 2.4.1) the abelian groups X (T*) and X (7T') with Z". Under these
identifications, for o € @, both " and o* correspond to the same element
(ng,...,n%) of Z". Indeed, for i € {1, ...,7},1et TV : G, — GI, and T} : G, —
G, be the morphisms of 2.4.1; then we have §(z;) = ¢ o T, and x; = T; 0 .
Thus we get that (a* 0 ¢, T)Y) = (a*,d(x;)) and (T}, o) = (x;, ") for any
a € . We deduce from 2.4.3 that (a* 0 ¢, T.Y) = (T}, ¢ o V) = ng.

Let {ou, ..., } = II, then it is clear from (*) that {h,,« € II'} is a basis
n{t ..onf"

of 7 if and only if the matrix M = : : € M, (k) is invertible. On
net LLongr

the other hand, since 2(G*) = (|, Ker(da*), we have 2(G*) = {0} if and

only if the linear map f : Lie(T*) — k" given by f(t) = (daj(¢), ..., da(t)) is

injective, that is if and only if *M (and so M) is invertible. O
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2.5 Existence of Non-degenerate G-Invariant Bilinear
Forms on G

By a G-invariant bilinear form B(,) on G we shall mean a symmetric bi-
linear form B(,) on G such that for any ¢ € G, z,y € G, we have
B(Ad(g)z,Ad(g)y) = B(z,y). A well known example of such a form is the
Killing form defined on G x G by (z,y) — Trace(ad(z) o ad(y)). In this sec-
tion, we want to discuss for which primes p there exists an G-invariant non-
degenerate bilinear form on G. The case of simple groups has been discussed
among other things in [SS70] where it has been proved that the condition “p
is good for G” (see 2.5.2) is enough to have non-degenerate invariant bilinear
forms on G if G is not of type A,. On the other hand, it is known that the
condition “p is very good for G” (see 2.5.5) is sufficient if G is simple of type
A,,. By making the use of 2.3.9 and 2.3.8, we will extend the above results to
the case of connected reductive groups, that is, we will see that the condition
“p is very good for G” is sufficient to have non-degenerate G-invariant bilinear
forms on G. However this is not completely satisfactory since if G = GL,,(k),
the “very good characteristics” for G are the characteristics which do not di-
vide n, while the trace form (X,Y) — Tr(XY) is always non-degenerate on

gly.

As far as I know, no necessary and sufficient condition on p for the exis-
tence of non-degenerate G-invariant bilinear forms on G has been given in the
literature. While the above problem is not so important for reductive groups
without component of type A,, (indeed the “very good characteristics for G”
are then the “good ones for G”, and there are only few “bad characteristics”,
see further), it becomes more important for the others. For this reason, we
will give a necessary and sufficient condition on p in the case of simple groups
of type A,,. We will also treat the cases of simply connected groups of type
B, C,, or D, since no extra work is required for these cases (see 2.5.11).

2.5.1. We start with some general properties of G-invariant bilinear forms on
G. Assume that B(,) is a G-invariant bilinear form on G. Then:
(1) For any x,y,z € G we have

B(l‘, [yv Z]) = B([I’ y]’ Z)'

(2) Let v € ®. For any z in T ® (B, cg_(_a} Y), we have B(z,eq) = 0.

Let us prove (2). Let « € T; since B(,) is G-invariant, for any ¢t € T we
have
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B(Ad(t)z, Ad(t)es) = B(x, eq),

that is a(t)B(z,eq) = B(x,eq). But a # 0, thus we get that B(z,es) = 0.
Now let 5 € & — {—a}; we have «(t)5(t)B(es, ea) = Bleg, eq) for any t € T'.
Since 8 # —a, we have B(eg, eq) = 0. O

Definition 2.5.2 (good characteristics). We say that p is good for G if
p does not divide the coefficient of the highest root of @, otherwise p is said to
be bad for G.

Bad characteristics are p = 2 if the root system is of type B,, C, or D,,
p = 2,3 in type Ga, Fy, Fg, E7 and p = 2,3,5 in type Es (see [Bou, Ch. VI,
4)).

Definition 2.5.3. [Ste75, Definition 1.3] We say that p is a torsion prime of
& when there exists a closed root subsystem @ of & (i.e a root subsystem P’

of @ such that any element of ® which is a Z-linear combination of elements
of @' is already in ®') such that Q(PY)/Q(P"Y) has torsion of order p.

Definition 2.5.4 (torsion primes of G). We say that p is a torsion prime
of G, when it is a torsion prime of ® or when p divides |71 (G)].

This definition is in fact [Ste75, Lemma 2.5]. For the original definition of
torsion primes of G, see [Ste75, Definition 2.1].

Torsion primes of @ are p = 2 when @ is of type B,,, D, or G2, p = 2,3
in type Eg, E7, F4, p = 2,3,5 in type Es. The fundamental group m (G) is a
quotient of the biggest possible fundamental group P(®)/Q(P) whose cardinal
is 7+ 1 in types A, 2 in types B,, C,, Er, 4 in types D,,, 3 in types Fg and
1 in types Fg, Fy or G2 (see [Slo80, page 24]).

Definition 2.5.5 (very good characteristics). We say that p is very good
for G when p is good for G and p does not divide |P(®)/Q(®P)| = |71(Gad)l-

Remark 2.5.6. (a) If & does not have any component of type A,,, then p is
very good for G if and only if p is good for G.

(b) If p is very good for G then it is not a torsion prime of G.

(c) If p is very good for G and G has a component of type A,,, then it is
not necessarily very good for Levi subgroups of G,

(d) If G is of type A, Bp, Cyp or D, then p is very good if and only if p
does not divide |P(®)/Q(®P)|.
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Proposition 2.5.7. [SS70, I, 5.3] Let G be either an adjoint simple group
not of type A, or G = GL, (k). We assume that p is good for G. Then there
exists a faithful rational representation (p, V') of G or a group isogenous to G
(i.e a simple group with same Dynkin diagram as G ) such that the symmetric
bilinear form B(,) on G defined by B(z,y) = Trace(dp(z) o dp(y)) is non-
degenerate. Moreover B(,) is G-invariant.

Corollary 2.5.8. Let G be simple not of type A, and assume that p is good
for G. Then there exists a non-degenerate G-invariant bilinear form on G.

Proof: Let H be a group isogenous to G (with Lie algebra H) and let (H,, =
Gse, ™) be the simply connected cover of H. Since p is very good for G (and
so for H), it is not a torsion prime of H (see 2.5.6 (b)), and so by 2.4.4, the
differential dm : Hse — H of m : Hye — H is an isomorphism. Moreover it
satisfies dm o Ad(h) = Ad(w(h)) o dr for any h € H,.. Hence we deduce that
any Hg.-invariant non-degenerate bilinear form on H,,. induces an H-invariant
non-degenerate bilinear form on H and conversely. Hence, the corollary follows
from 2.5.7. a

In order to do a more accurate study of the type A,, we need the following
well known result.

Proposition 2.5.9. Let G be simple of type Ap,—1 (n > 1). Then recall that
Gsec = Sl and Guq = pgly,. Then we have the following assertions:

(1) We always have sl, = [sly, sl,,]. Moreover dimz(sly,) # 0 if and only
if p is not very good, in which case dimz(sly,) = 1.

(2) We always have z(pgl,) = {0}, moreover pgl, = [pgl., pgl,) if and
only if p is very good. When p is not very good, the Lie algebra pgl, is of the
form k.o @ [pgl,, pgl,] where o is a semi-simple element.

(8) The three following situations occur:

(8.1) p does not divide |P(®)/ X (T)|, then G ~ s,
(8.2) p does not divide | X (T)/Q(®P)|, then G ~ pgl,,
(3.3) p divides both | X (T)/Q(P)| and |P(®)/X(T)|, then G is neither iso-

morphic to pgl, nor to sl,, and has a one-dimensional center. In fact G is of

the form z(G) ® |G, G] =~ 2(G) ® (sl /2(sly)).

Proof: The assertions (1) and the first sentence of (2) follow from 2.4.4 and
2.3.4; the fact that dim z(sl,) < 1 is easy.
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Now we prove the second assertion of (2). Assume that p is not very
good. Recall that for any semi-simple algebraic group G, the Lie alge-
bra [G,§] is generated by {ha,e,|a € I,y € }, moreover by (1), we have
sl, = I[slp,sl,]. Hence if p : SL, — PGL, denotes the canonical cen-
tral isogeny then dp(sl,) = [pgln,pgln]. On the other hand since we al-
ways have Ker(dp) = z(sl,,), we have dp(sl,) ~ sl,/z(sl,). We deduce that
[pgln, pgln] =~ sl,/z(sly). Now since p is not very good, by (1), we have
dim z(sl,) = 1 and so [pgl,,pgl,] is of codimension one in pgl,; the fact
that o in (2) can be chosen semi-simple follows from the fact that for any
connected reductive group G, the Lie algebra [G, G] contains all the nilpotent
elements of G.

Now we describe the situation (3.3). First note that the situations (3.1)
and (3.2) have been already studied, see equivalence between (iv) and (v) in
2.4.4 for (3.1) and in 2.3.7 for (3.2). Let 7 : SL,, — G be the canonical central
isogeny.

Assume that p divides both | X (T)/Q(®)| and |P(®)/ X (T)].

(i) Since p divides |P(®)/X (T)|, the map dr is not injective. Moreover by
(1), the Lie algebra z(sl,,) is one-dimensional, thus we deduce from Ker(dr) C
z(sly,) that Ker(dr) = z(sl,,). As a consequence we have dr(sl,,) ~ sl,,/z(sly)
and so [G, G], which is equal to dr([sl,, sl,]) = drn(sly), is of codimension one
in G and has a trivial center.

(ii) Now since p divides | X (T')/Q(®)|, the Lie algebra G has a non-trivial
center (see 2.3.4). Hence by (i), the Lie algebra z(G) must be one-dimensional.
O

We are now in position to discuss the existence of non-degenerate invariant
bilinear forms on the Lie algebras of simple algebraic groups of type A,,. We
have the following proposition.

Proposition 2.5.10. Assume that G is simple of type A,,. Then G is endowed
with a non-degenerate G-invariant bilinear form if and only if p is very good

for G or p divides both | X (T)/Q(®P)| and |P(P)/ X (T)|.

Proof: Assume that G is of type A,,—1 with n > 1 and that p is very good for
G. Then p does not divide n and so the SL,-invariant bilinear form (X,Y) —
Tr(XY) on sl, is non-degenerate. Moreover the canonical morphism si,, — G
is an isomorphism, hence we can proceed as in the proof of 2.5.8 to show the
existence of a non-degenerate G-invariant bilinear form on G.
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Assume now that p divides both | X (T')/Q(®)| and |P(®)/X (T)|. Then by
2.5.9 (3.3), we have G = z(G) & [G,d]. Since G acts trivially on z(G), any
G-invariant non-degenerate bilinear form on [G, G] can be extended to a non-
degenerate G-invariant bilinear form on G. Hence, it is enough to show the
existence of a non-degenerate G-invariant bilinear form on [G, G| ~ sl,,/z(sl,,).
Define (,) on sl,/z(sl,) by (x + z(sln),y + 2(sln)) = Tr(zy). This is well
defined since z(sl,) ~ k and for any X € sl,,, a € k, Tr(aX) = aTr(X) = 0.
Let 7 : SL,, — G be the canonical central isogeny, then for any ¢ € SL,,
we have dr o Ad(g) = Ad(n(g)) o dm so it is not difficult to check that (,) is
G-invariant. It remains to check that it is non-degenerate. Let = € sl,, and
assume that for any y € sl,, we have Tr(zy) = 0. Then an easy calculation
shows that = € z(sl,,), that is, its image in sl,, /z(sl,,) is zero. We thus proved
the non-degeneracy of (,) on [G, G].

Now assume that there exists a non-degenerate G-invariant bilinear form
(,) on G and that p does not divide | X (T)/Q(®P)| or |P(®)/ X (T)|. We want
to prove that p is very good for G. Two situations occur,

(1) p does not divide |P(®)/X(T)|, then we may assume that G = SL,,.
Let z € 2(G), then by 2.5.1(2), for any o € &, we have (z,e,) = 0, and
since z is central, by 2.5.1(1) we have (z,hs) = 0. But by 2.4.4, the set
{ha,ey|a € I,y € P} is a basis of G, hence the non-degeneracy of (,) implies
that z = 0. We thus proved that z(G) = {0}. By 2.3.4, we deduce that p does
not divide |(X(T)/Q(®P))tor| = |P(®)/Q(P)| and so that p is very good for G.

(2) p does not divide | X (T)/Q(®P)|, then we may assume that G = PGL,,.
Assume that p is not very good (i.e p divides |P(®)/X (T)|).

Let T C G be the set of diagonal matrices modulo Zgr, and let B be
the set of upper triangular matrices modulo Zgy,. For i € {1,...,n — 1}, let
a; : T — k* be defined by a;(t1, ..., tn) = titi__fl; note that do;(t1, ..., tn—1) =
t; —ti+1. The basis IT of @ is equal to {aq, ..., an—1}. Since p is not very good,
by 2.5.9 (2), the Lie algebra [G, G] is of codimension one in G. As a consequence,
the vectors h,, with ¢ € {1,...,n — 1} are linearly dependent i.e. there exists
A1, .., Ap—1 not all equal to zero such that h := Ajhq, + ... + An—1hq, , =0.
Let 7 be the smallest integer such that A, # 0 and let o be the n X n matrix
(@ij)s,; (modulo z(gl,)) with a,» =1 and a;; = 0 for ¢, j # r. Since h =0, we
have

(o) = 0. (*)



2.5 Existence of Non-degenerate G-Invariant Bilinear Forms on G 23

On the other hand, since (,) is G-invariant, we have (o, hy) = (0, [ea,€—a]) =
([o,ea)se—a) = (da(o)eq,e—a) = da(o){eq,e_q) for any o € &. Since
day(0) = 1 and da;(o) = 0 for any ¢ > r, we deduce that (o,h)
Ar{€a,,€_q,). But the bilinear form (,) is non-degenerate, hence by 2.5.1(2
we have (e, ,e_q,.) # 0 which contradicts (*).

~

)

O

Remark 2.5.11. Assume that G is simply connected. Then we can proceed as
in (1) of the proof of 2.5.10 to show that the existence of a non-degenerate
G-invariant bilinear form on G implies that p does not divide |P(®)/Q(®P)|.
Hence, when G is of type By, C, or D,, by 2.5.6 (a), (d) and by 2.5.8, the
Lie algebra G admits a non-degenerate G-invariant bilinear form if and only
if p is good for G.

Proposition 2.5.12. Let G be a connected reductive group. Assume that p is
very good for G, then there exists a non-degenerate G-invariant bilinear form

on G.

Proof: By assumption, the prime p does not divide [(X(T)/Q(®))tor|- Thus,
by 2.3.4 and 2.3.1, we may identify G with 2(G) @ G. Since G acts trivially on
2(G), any non-degenerate G-invariant bilinear form on G can be extended to
a non-degenerate G-invariant bilinear form on 2(G) @ G ~ G. So it is enough
to show the existence of a non-degenerate G-invariant bilinear form on G. Let
G = G1...G, be a decomposition of G as the almost-direct product of its
simple components. By 2.5.8 and 2.5.10, for any simple component G; of G,
there exists an G;-invariant non-degenerate bilinear form B; on G; := Lie(G;).
Since p is very good for G, by 2.3.8, we have a decomposition G = @, G; and
so the form B = @, B; provides a non-degenerate G-invariant bilinear form
onG. O

Remark 2.5.13. We saw in the proof of 2.5.12 that a non-degenerate G-
invariant bilinear form on G can be extended to a non-degenerate G-invariant
bilinear form on G. However it is not true that all non-degenerate G-invariant
bilinear forms on G are obtained in this way. Indeed, the trace form (X,Y) —
Tr(XY) is always non-degenerate on gl, while (see 2.5.10) there is no non-
degenerate PG L,-invariant bilinear form on pgl,, unless p is very good.

We have the following lemma.

Lemma 2.5.14. [Leh96, proof of 4.3] If G admits an G-invariant non-
degenerate bilinear form B(,), then the restriction of B(,) to any Levi subal-
gebra of G is still non-degenerate.
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2.5.15. Now we assume that p is very good for G. By 2.5.12, the Lie algebra G
is endowed with a G-invariant non-degenerate bilinear form B(,) and in view
of 2.3.1 and 2.3.4, we may write G = 2(G) ® G. We have the following lemma.

Lemma 2.5.16. The vector space G is the orthogonal complement of z(G) in
G with respect to B(,). In particular, the restrictions of B(,) to z(G) and to
G remain non-degenerate.

Proof: Since p is very good for G (and so for G), by 2.4.4, we have [G,G] = G.
Thus, by 2.5.1(1), the vector space G is orthogonal to z(G). Hence the lemma
follows from the non-degeneracy of B(, ). O

Remark 2.5.17. Note that if G = GL,(k), the restriction of B(,) to z(G) is
non-degenerate if and only if the condition “p is very good for G” is satisfied.
However, it is not a necessary condition in the general case. For instance, if
G is simple of type A, and p divides both |X(T)/Q(®)| and |P(P)/X(T)|.
Then z(G) is a one-dimensional vector space and we have G = z(G) @ [G, G],
see 2.5.9 (3.3). By 2.5.10, there exists a non-degenerate G-invariant bilinear
form B(,) on G. The G-invariance of B(,) implies that z(G) is orthogonal to
[G, G] with respect to B(, ). Thus the non-degeneracy of B(,) implies that its
restriction to z(G) is still non-degenerate.

2.6 Centralizers

Let H be a closed subgroup of G with Lie algebra H. For any X € G, recall
(see 2.1.2(iii) and 2.1.3) that we have

2.6.1. Lie(Cg(x)) C Cx(x).

When H = G, this inclusion is known to be an equality when z is semi-simple
[Bor, 9.1]. Due to Richardson-Springer-Steinberg, it is also known to be an
equality for any x € G when H = G = GL,, or when H = (G is simple and p is
very good for G [SS70, I, 5.6] [Slo80, 3.13]. In the following lemma, we extend
the above result of R-S-S to the case where G is an arbitrary reductive group
and p is very good for G.

Lemma 2.6.2. Let x € G, then the inclusion 2.6.1 with H = G is an equality
(i.e the morphism G — O, g — Ad(g)z is separable) in the following cases:
(i) © is semi-simple,

(ii) p is very good for G or G = GL,,.
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Proof: As noticed above, the lemma is already established in the case where

X is semi-simple and the cases where G = GL,, or G is simple and p is very
good for G.

To show that Lie(Cq(z)) C Cg(z) is an equality, it is enough to prove
that dim (Cg(z)) = dim (Cg(z)).

(a) Assume first that G is semi-simple and write G = G;...G,, where
G1, ..., Gy, are the simple components of GG. Since p is very good for G, by 2.3.8
we have the following corresponding Lie algebras decomposition G = @, G;
where G; is the Lie algebra of G;. Let x = >, x; € @, G;, then Cg(x) is the
almost-direct product of the Cg, (x;). We thus have

dim(Cgq (x Zdlm (Ca, (x3)). (1)

7

On the other hand, let y = y1 +...+y» be the decomposition of y € G in €, G;.
Since [G;,G;] = 0 for ¢ # j, we have [y,z] = >, [y, 2;]. Hence y € Cg(z) if
and only if y; € Cg, (z;) for any i. Thus we have Cg(z) = @, Cg, (z;) and so

dim(Cg (x Zdlm Cg,(x:)) (2)

Since for any i, the group G; is simple and p is very good for G;, we have
Lie(Cg, (x;)) = Cg, (z;) and so dim(Cg, (x;)) = dim(Cg, (x;)). Then we deduce
from (1) and (2) that dim(Cg(x)) = dim(Cg(z)).

(b) Assume now that G is reductive. Since p is very good for G, by 2.3.9
we have a decomposition

G=z209)@g. (1)

Write x = z4y with z € 2(G) and y € G’. Since Z¢ acts trivially on G we have
Cqo(z) = Z2.Cq:(z). But G acts trivially on z(G), hence Cq/(z) = Cear (y).
We deduce that Cq(x) = Z&.Ce (y). Since Z& N Cqr(y) is finite we have

dim (Ca(x)) = dim 7% + dim (Cor (1)). )
On the other hand, from (1) we see that Cg(z) = 2(G) @ Cg (y) and so that
dim(Cg(x)) = dim 2(G) + dim(Cg (y). 3)
The group G’ is semi-simple, so using (a) we have dim(Cg: (y)) = dim(Cq (y)).

) =
Hence the equality dim(Cg(x)) = dim(Cg(z)) follows from (2), (3) and 2.3.4.
O
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Remark 2.6.3. Note that 2.6.1 with H = G may not be an equality if p is not

very good for G. Indeed, consider G = PGLy with p =2 and e = (8 (1)) A

simple calculation shows that (? 8) commutes with e. Hence dim (Cg(e)) = 2

while C¢(e) is of dimension one.

Now we give some various results on centralizers of elements of G which will
be used later. We first start with the following well-known characterization of
the centralizers of semi-simple elements of G (see [SS70, II, 4.1]).

Proposition 2.6.4. For each element w € W (T), we choose a representative
w of w in Ng(T). Let x € T.

(i) The group Cg(x) is generated by T, the U, such that da(x) = 0 and
the w such that Ad(w)x = x.

(i) The group C&(x) is generated by T, and the Uy such that da(z) = 0.

(tit) The algebraic group C&(x) is reductive.

Lemma 2.6.5. [HS85, Proposition 3] Let P = LUp be a Levi decomposition
in G and let P = L & Up be the corresponding Lie algebra decomposition.
Then the centralizer Cy,. () is connected for any element x of L.

We have the following standard result.

Lemma 2.6.6. Let L be a Levi subgroup of a parabolic subgroup P of G and
let £ be the Lie algebra of L. For any element z of L, we have OYP C z+Up.
If C&(zs) C L, then the map Up — z + Up given by u — Ad(u)z is an
isomorphism.

Proof: Let z € L, we assume that L O T and that z; € 7 so that we can
use the notation of 2.2.2. Let a, 5 € & be such that o # —f and let uy € Uy,
then by 2.2.2 we have

(2) Ad(uqa)zs € 25 + k.€q,

(3) Ad(un)esg = e + Z{i>o|ﬁ+iae¢} Ci€Btia, fOr some ¢; € k.

Note also that

2.6.7. if B is a root of L with respect to T (this makes sense since we assumed
that T C L) and if « € @ is a root of Up (i.e Go C Up), then for any i > 0
such that ia + B € @, the root ia+ 3 is a root of Up.

From (2), (3) and 2.6.7, we observe that OUV? — Z is a subvariety of Up.
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Assume now that C&(zs) C L, then since Cy,(z) is connected by 2.6.5 and
Cup(2) C Cg(zs), we have Cpr,(z) = {1} and so OY? — 2 is of dimension
dimUp. On the other hand, by [Bor, Proposition 4.10], the variety OU? is
closed in G. We deduce that OZUP = z + Up. We thus have proved that the
map Up — z + Up given by u — Ad(u)z is a bijective morphism. To verify
that it is an isomorphism, it is sufficient to verify that it is separable, that is,
we have to show that Lie(Cy, (2)) = Cup,(2). Since Cy,(z) = {1}, we have
to show that Cy,(2) = {0}. Let v € Up be such that [v,z] = 0. We have
[v,zs] = —[v, zn]. Let By, be a Borel subgroup of L such that z € Lie(Br); we
may assume without loss of generality that By contains 7. Then B = B Up
is a Borel subgroup of G containing T' and we denote by & the positive roots
of @ with respect to B. We also denote by @z the positive roots (with respect
to Br) of the root system @y, of L (with respect to T'). Then we may write
v o= Zaeﬁ_% Aata and z, = Zaequr Bata- Assume that v # 0 and let
a, € T — &, be such that \,, # 0 and the height of «, (with respect to B)
is minimal among the heights of the roots a € &+ — @, such that A\, # 0.
Since C&(zs) C L, from 2.6.4(ii), we have dao(zs) # 0, and so, from 2.2.1(ii),
the vector [v, z5] has a non-zero coeflicient in e,, while from the Chevalley
relations 2.2.1(iii)(iv), we see that the vector [v, z,] does not have non-zero
coefficients in e, if « is of same height as «,. Hence we have v = 0. O

Notation 2.6.8. For any set J contained in a basis of @, we denote by & ; the
subroot system of @ generated by J, by L; the Levi subgroup of G corre-
sponding to @ (i.e the subgroup of G generated by T and the U, such that
o € @5) and by L; the Lie algebra of L. If T is a subset of a basis of @, we
denote by B(I) the subset of & — @; consisting of the elements v such that
the set I U {~} is contained in a basis of &.

Proposition 2.6.9. Let I be a subset of a basis of ®. The minimal Levi
subgroups of G strictly containing Ly are the Le, ., with o € B(I).

Proof: Let M be a Levi subgroup of G containing L; and let &, be the root
system of M with respect to T. Let P be a parabolic subgroup of M such
that P = L;Up is a Levi decomposition of P. Let B be a Borel subgroup of P
containing 7', then it defines a basis 6 of @5, and since L is the unique Levi
subgroup of P containing T, the group L; must be of the form L; for some
subset J of 6 (cf. [DM91, Propositions 1.6, 1.15]). Now, if v € & is a Q-linear
combination of elements of @;, it is a Z-linear combination of elements of 6.
We deduce that v is a Z-linear combination of elements of J. We thus have
v € @;. We proved that @; is Q-closed root subsystem of @), (i.e any element
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of @); which is a Q-linear combination of elements of @; is already in @1). By
[Bou, VI, 1, 7, Proposition 24], we deduce that we can extend I to a basis I’
of @)s. Using the same argument, we can also prove that I’ can be extended
to a basis of . Hence, we proved that any Levi subgroup of G containing
strictly L; contains a Levi subgroup of the form Ly with o € B(I). It is
then clear that minimal Levi subgroups containing strictly L; are of the form
Liygay for some a € B(I). The fact that the Levi subgroups Lyqy with
«a € B(I) are minimal is clear. O

Definition 2.6.10. Let L be a Levi subgroup of G, then we say that x € G is
L-regular in G if L = Cg(z).

Lemma 2.6.11. Let L be a Levi subgroup of G and let L be its Lie algebra,
then the L-regular elements in G belong to z(L).

Proof: Let = be L-regular in G, then Cg(x) contains a maximal torus 7' of
L. Writez =t+) Aea€G=Ta @aeqﬁ(T) Go. Since T centralizes x, we
must have A\, = 0 for all a € $(T'), i.e. z € 7. Since C&(x) = L we deduce
from 2.6.4(ii) and 2.3.2(1) that x € z(L). O

Definition 2.6.12. Let L be a Levi subgroup of G and let L be its Lie algebra.
If x € 2(L) is not L-regular in G, then x is said to be L-irregular.

Lemma 2.6.13. (i) Assume that p is good for G and that p does not divide
(X (T)/Q(P))tor|, then if L is a Levi subgroup of G, the Lie algebra G contains
L-regular elements in G.

(ii) If p is good for G, then for any semi-simple element x € G, the group
C&(z) is a Levi subgroup of G.

Proof: We first prove (ii). We may assume that = € 7. Since p is good for G,
it follows that the set @, := {a € @|da(x) = 0} is a Q-closed root subsystem
of @. Hence by [Bou, VI, 1, 7, Proposition 24], the set @, is of the form @
for some subset J of some basis of . Thus by 2.6.4(ii), we have C&(x) = L.

We now prove (i).

We may assume without loss of generality that L is a Levi subgroup of the
form Lj for some subset I of some basis of ®. We want to prove that L;
contains Lj-regular elements in G. Recall first that if J is a set contained in
a basis of @, then we have
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z2(Ly) = ﬂ Ker(da). (1)

acJ

From (ii), 2.6.11, 2.6.9 and 2.6.4 (ii), we see that x is Lj-regular in G if
and only if

2.6.14.
zez(lr)— |J (2(Lr)nKer(dy)).

YEB(I)

Since B(I) is finite, the assertion (i) will follow from the fact that the subspaces
z(Lr) N Ker(dy), where v runs over B(I), are of dimension strictly less than
dim z(Ly). Hence from (1), it is enough to prove that for any basis II’ of ¢
and any inclusions I’ 2 J 2 I we have z(Ly) € z(L).

Consider the following inclusions II' O J D I with IT" a basis of @, then it
follows from [DM91, Proposition 1.21] that Z7 = C Z7 and so (because tori are
smooth) we get that Lie(Zg ) C Lie(Z2 ). From 2.3.5, we get that p satisfies
2.3.4(i) applied to Ly and L;; thus Lie(Z2 ) = 2(Lr) and Lie(Z7 ) = 2(L;).
We deduce that z(Ly) € z(Ly). O

Remark 2.6.15. Let L be a Levi subgroup of G and let £ be the Lie algebra
of L. Assume that the set of L-regular elements in G is non-empty, then from
2.6.14 we see that it is an open dense subset of z(L).

Lemma 2.6.16. Let L be a Levi subgroup of G (with Lie algebra L) and let
x € G be L-regular in G. Let g € G be such that Ad(g)x € z(L), then Ad(g)x
is also L-regular in G and we have g € Ng(L).

Proof: It is enough to show that ¢ € Ng(L). We have C&(z2(L))
C2(Ad(g)x), that is C&(2(L)) C gC&(x)g~* = gLg~'. Since C&(z(L)) 2
we deduce that L C gLg~!, ie. L =gLg™ .

oS n

Lemma 2.6.17. We assume that k =T, that p is good for G and that p does
not divide |(X (T)/Q(P))tor|- We also assume that T and B are both F-stable.
Let I be a subset of II such that the Levi subgroup Ly of G is F'-stable, i.e.
the set I is T-stable where T is as in 2.1.18. If ¢ > |B(I)|, then LY contains
Li-regular elements in G.

Proof: Recall that the subset of z(Ly) consisting of the L-irregular elements
of G is
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U (z(L5) NKer(dy)).
~yeB(I)
Let V = z(Lr) N Ker(dy) for some v € B(I), then for ¢ large enough, the set
VNFEWV)N..NFY(V) is F-stable and contains all the rational elements of
V. On the other hand, from the proof of 2.6.13, we have dimV < dim z(Ly).
Thus by [DM91, 3.7], the number of rational L-irregular elements of G is <
|B(I)|q4™(=(£1)=1 Hence, if ¢ > |B(I)], the number of L;-irregular elements
is less than |2(£;)f| and so rational L;-regular elements must exist. O

Proposition 2.6.18. [Ste75, Theorem 8.14] The centralizers in G of the
semi-simple elements of G are connected if and only if p is not a torsion
prime for G.

2.7 The Varieties G,; and G,.;;

Let Gypi be the subvariety of G consisting of unipotent elements and let G,,;
be the subvariety of G formed by nilpotent elements. For any X C G and
Y c G, put Xyni = X NGuni and Y, = Y NG,y Recall that the subvarieties
Guni C G and G,;; C G are closed, irreducible of codimension rk(G). It has
been proved [Lus76] that the number of unipotent classes of G is finite for
any p. By 2.7.5, this implies that the number of nilpotent orbits of G is also
finite if p is good for G. In the case of bad characteristics, the finiteness of
nilpotent orbits results from a case by case argument (see [Car72, 5.11] for
the classification of nilpotent orbits in bad characteristics).

The following propositions are well-known.

Proposition 2.7.1. [Leh79] Let P = LUp be a Levi decomposition of a
parabolic subgroup P of G and let P = L @ Up be the corresponding Lie
algebra decomposition.

(i) Let | € L, then the semi-simple part of any element of [Up is Up-
conjugate to the semi-simple part of .

(i) Let x € L, then the semi-simple part of any element of x + Up is
Up-conjugate to the semi-simple part of x. That is, for any v € Up, we have
(x +v)s = Ad(u)(zs) for some u € Up.

The following result is a straightforward consequence of the above propo-
sition.
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Corollary 2.7.2. If P = LUp is a Levi decomposition in G with correspond-
ing Lie algebra decomposition P = L @ Up, then for any unipotent element
l € L and any nilpotent element x € L, we have IUp C Gypi and x+Up C G-

Proposition 2.7.3. [Spr69] If the canonical morphism ™ : G — Gaq is
separable (which by 2.3.7 is equivalent to p does not divide the torsion of
X(T)/Q(P)), then the bijective morphism Tuni : Guni — (Gad)uni given by
restricting m to Gyn; 1S an isomorphism.

Remark 2.7.4. Consider G = SLo(k) and assume that the morphism 7 : G —
G o4 is not separable (i.e. p = 2). Then the morphism 7,5; : Guni — (Gad)uni 18
not an isomorphism. To see that, it is enough to see that its differential d(7yn;)
at 1 = 1¢ is not an isomorphism. Note that d(myni) : T1(Guni) — T1((Gad)uni)
is the restriction morphism of dr to the tangent space T1(Gyni) of Gyun; at 1.
On the other hand, dim 71 (Gyn;) > 2; indeed dim G,,;; = 2 and the inclusion
T1(Guni) D Gni is strict since Gy is not a vector space. Hence T1(Guni) = G
since dim G = 3, and so we deduce that d(m,,;) = dr. Since 7 is not separable,
the morphism dr = d(myy;) is not an isomorphism.

2.7.5. By a G-equivariant morphism 7 : Gypn; — Gni, we shall mean a mor-
phism 7 : Guni — Gna such that w(grg™') = Ad(g)n(z) for all g € G and
T € Gyupni- The existence of G-equivariant isomorphisms G,; — Gn is dis-
cussed in [Spr69] and in [BR85]. It is proved that if p is good for G, resp.
very good for GG, then G-equivariant homeomorphisms, resp. isomorphisms,
Guni — gm-l exist.

We have the following lemma.

Lemma 2.7.6. [Bon04, Proposition 6.1] Let f : Guni — Gni be a G-
equivariant homeomorphism, then for any Levi decomposition P = LUp in
G with £ = Lie(L), we have

(i) f(Luni) = Lna,

(it) for any x € Lyn:, f(x2Up) = f(z) +Up.
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Deligne-Lusztig Induction

From now we assume that k = Fq with ¢ a power of p and that G is defined
over [Fy. Let ¢ denote a prime not equal to p and Q, an algebraic closure
of the field Q, of ¢-adic numbers. In this chapter, we first recall some facts
about the Q,-space C(GF') of all functions G — Q, which are invariant under
the adjoint action of G on GF. We then define, when p is good for G, a
Lie algebra version of Deligne-Lusztig induction [DL76], that is for any F-
stable Levi subgroup L of G with Lie algebra £, we define a Q,-linear map
R% : C(LF) — C(GF) which satisfies analogous properties to the group case,
like transitivity, the Mackey formula and commutation with the duality map.
We finally formulate as a conjecture a property which has no counterpart in
the group setting, namely that the Deligne-Lusztig induction commutes with
Fourier transforms.

3.1 The Space of G¥-Invariant Functions on G¥

3.1.1. Let H be an F-stable closed subgroup of G with Lie algebra H. We
denote by C(H!) the Q,-space of all functions f : H — Q, which are H'-
invariant i.e. for any h € HY and any = € H, f(Ad(h)z) = f(z). We
denote by C(HT"),4 the subspace of C(H!") consisting of functions which are
nilpotently supported. If z € H', we denote by £ the characteristic functions
of OfF, ie. (y)=1ifye OfF and £ (y) = 0 otherwise. The functions
B with z € HY, form a Q,-basis of C(HT), and the functions ¢, with

z € HE,, form a Q,-basis of C(H!"),;. Sometimes, it will be more convenient

to use the functions v := |Cy(2)F|¢X instead of ¢H. We denote by n’t the

function which takes the value 1 on ‘HE,, and the value 0 on H¥ — HE,.

E. Letellier: LNM 1859, pp. 33-43, 2005.
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We choose once for all an automorphism Q, — Q,z — T such that
¢ = ¢! for any root of unity ¢ € Q,. We define a non-degenerate bilinear
form (, )y on C(HE) by

(e = 1HF LY f)g(a).
zeHF
Note that for z € HE and f € C(HT), we have (f,vH)yr = f(z) and

Definition 3.1.2. Let P be an F'-stable parabolic subgroup of G and L be an
F'-stable Levi subgroup of P. Let P = L& Up be the corresponding Lie algebra
decomposition. Recall that mp : P — L denotes the canonical projection.

(i) The Harish-Chandra restriction *R%C’P :C(GF) — C(LF) is defined by

the formula

"Récp(H@) =UEI™" Y f@+y), where feC(G"), xeL

yeur

(i) The Harish-Chandra induction R%CP :C(LY) — C(GT) is defined by

Ricp(f)(x) = [PF|7! > f(mp(Ad(g)z)),

{geGF|Ad(g)zePF}

where f € C(LT), z € GF.

We have the following proposition (see [Leh96]).

Proposition 3.1.3. The maps *R%Cp and R%Cp are adjoint with respect to
the forms (,)gr and (,)r, that is, for any f € C(GF), g € C(LY), we have
(R%Cp(g),f)gF = (g,*R%Cp(f))LF. Moreover they are independent of P.

Notation 3.1.4. Since the map ’R%Cp is independent of P, we write R% instead
of R%CP'
3.1.5. We define (following Kawanaka [Kaw82] in the Lie algebra case and
Lusztig, Curtis and Alvis in the group case) the “duality map” Dg : C(G) —
C(GT). For any F-stable parabolic subgroup P of G, we denote by r(P) the
semi-simple F,-rank of P/Up.
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Definition 3.1.6. Let B be an F-stable Borel subgroup of G. For f € C(GF),
we define Dg(f) by

Do(f) = > (-1)PIRE, "R, (f)

PDOB

where the summation is over the set of the F-stable parabolic subgroups P of
G containing B and where Lp denotes the Lie algebra of an arbitrarily chosen
F-stable Levi subgroup of P.

Recall that the map Dg does not depend on the F-stable Borel subgroup
B and on the choice of the Lp.

Proposition 3.1.7. [Kaw82] We have the following assertions.

(i) The duality map Dg is an isometry with respect to the form (,)gr.
(i) Dg is an involution, i.e. Dg o Dg = Idegr).

Proposition 3.1.8. [Leh96, Proposition 8.15] Let L be an G-split F-stable
Levi subgroup of G and let L = Lie(L). Then

DgoRY =R oDs.

3.1.9. Now we assume the existence of a G-invariant non-degenerate bilin-
ear form on G defined over F, which we denote by p. We fix (throughout
this book) a non-trivial additive character ¥ : Ff — @ZX . Let H be an F-
stable Lie subalgebra of G such that the restriction of p to H x H remains
non-degenerate. Let Fun(HT) be the Q,-space of all functions HF — Q,.
The Fourier transform F* : Fun(HY) — Fun(H") with respect to (u,¥) is
defined as follows:

For any f € Fun(HY) and any x € HY', define

FUf) @) = HT 172 3w (u(z,y) fy).

yeHF

Clearly if H is an F-stable closed subgroup of G having H as a Lie algebra,
then F" induces a linear map C(H) — C(H¥) denoted again by F'*.

For f,g € Fun(HY), we denote by f.g the pointwise multiplication of
f and g, ie. (f.9)(z) = f(x)g(z) for z € HF, and we denote by f * g the
convolution product of f and g, i.e.
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(f9)@) =19"17> > fl@—v)gv).

yegr

Lemma 3.1.10. [Leh96, Lemma 4.2] Let H be the Lie algebra of an F-stable
closed subgroup H of G such that the restriction of p to H x H remains non-
degenerate. Let f,g € Fun(HY) and put F = F.

(i) F is an isometry of Fun(HY) with respect to the form (,)pr,

(ii) F2f = f~, where f~(x) = f(—x) for x € HF,

(iii) F* = Id,

(i) F(f *g) = (Ff)(Fg),

(v) F(f-9) = (Ff)* (Fg).

We have the following theorems.

Theorem 3.1.11. [Leh96, Theorem 4.5] Let L be the Lie algebra of a G-split
F-stable Levi subgroup of G, then

(i) F9oRY = RY o F~,

(ii) F£ o *RE = "RG0 F9.

Theorem 3.1.12. [Leh96, Theorem 4.6] The isometries Dg and F9 of C(GT)
commute.

3.2 Deligne-Lusztig Induction: Definition and Basic
Properties

3.2.1 Deligne-Lusztig Induction: The Group Case

If X is a variety over k, then we denote by Hi(X,Q,) the i-th group of (-adic
cohomology with compact support as in [Del77]. All what we need to know
(in this chapter) about these groups can be found in [DM91, Chapter 10].

3.2.2. Let L be an F-stable Levi subgroup of G, let P = LUp be a Levi
decomposition of a (possibly non F-stable) parabolic subgroup P of G and
let P = L & Up be the corresponding Lie algebra decomposition. We denote
by L the Lang map G — G,z +— 2~ F(z). The variety £5'(Up) is endowed
with an action of G¥" on the left and with an action of LY on the right. By
[DM91, Proposition 10.2], these actions induce actions on the cohomology and
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so make H(L;' (Up),Q,) into a GF-module-L7. The virtual Q,-vector space
H: (LG (Up)) =3 (1) HY(LS (Up), Q) is thus a virtual GF-module-L".

Notation 3.2.3. If (g,1) € GF x L, define:
S¢-p(g,1) := Trace ((g,1" ") |H: (LG (Up))).

To each L¥-module M, corresponds thus a virtual G*'-module RY -, (M) :=
H: (L' (Up)) ®@pr M (see [Lus76]). Hence, using the basis of the Q,-vector
space of class functions on LT formed by the irreducible characters of LY, the
map RfC p gives rise to a natural Qy-linear map, so-called Deligne-Lusztig
induction and still denoted by REC p, from the Q-vector space of class func-
tions on L¥" onto the Q,-vector space of class functions on G¥'. More precisely
if f is a class function on L, the class function Rfcp(f) on G is given by
the following formula:

324. RS p(Ng) =|LF|7 Y err SScplg h) f(h)  for any g € GF'.

Remark 3.2.5. Tt is conjectured and proved for ¢ large enough that REC p is
independent of the parabolic subgroup P having L as a Levi subgroup (see
3.2.25 and 3.2.27 for more details).

We now define the two-variable Green functions; they appear naturally
in the computation of the values of the Deligne-Lusztig induction of class
functions (see 3.2.7 below).

Definition 3.2.6. The function chp :GF x LY — Q, defined by

QECP(’UW 7))
B |LE |~ Trace ((u,v_l)\ H:(Eél(Up))) if (u,v) € GE < LE
0 otherwise.

is called a two-variable Green function.

In the case where L is a maximal torus of G, the two-variable Green
functions become one-variable functions and are the ordinary Green functions
introduced for any reductive groups by Deligne-Lusztig [DL76]. In the case of
G = GL,(F), they were first introduced by Green [Gre55].

The following formula [DM91, 12.2][DM8&7][Lus86b], so-called the charac-
ter formula for R, expresses the values of the functions R p(f), where
f is a class function on L in terms of the values of f and in terms of the
values of some two-variable Green functions.
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3.2.7. For any z € GF,
RE-p(f)(x) = |LF|71|CE (zs)" ! x

o Ce(zs
Z ‘ChL(IS)F‘ Z CSL((Q;)S)(IMU)hf(st)v

{heGFlz.ehL) ve(CF, @ un) T
where "L := hLh~=" and " f(y) := f(h™yh).

To simplify the notation, we usually omit the parabolic subgroup hPﬂCg(xs)

from the notation ngof(?;)).
hp, s

3.2.8 Deligne-Lusztig Induction: The Lie Algebra Case

To define the Lie algebra analogue of Deligne-Lusztig induction, we use the Lie
algebra version of the character formula 3.2.7 where the two-variable Green
functions are transfered to the Lie algebra by means of a G-equivariant home-
omorphism G,y — Guni (see 2.7.5).

Assumption 3.2.9. From now we assume that p is good for G so that there
exists a G-equivariant homeomorphism w : Gy — Guni which commutes with
the Frobenius F'.

Remark 3.2.10. Since p is good for G, by 2.6.13(ii), the connected components
of the centralizer in G of the semi-simple elements of G are Levi subgroups of
G. Hence by 2.6.2 and 2.7.6, for any semi-simple element ¢ € G, the morphism
w induces a C&(o)-equivariant isomorphism Cg(0)ni — C&(0)uni-

Definition 3.2.11. With the notation of 3.2.2, the two-variable Green func-
tion Q%Cp (G x L — Q, is defined by Q%Cp(u,v) =

{ILFlece (Wu),w(v) ™) Hi (L5 (UP))) if (u,v) € Gy x LTy,

0 otherwise.

Remark 3.2.12. Assume that w is the exponential map (which is well-defined
if p > 3(h§¥ —1)). Let T be an F-stable maximal torus of G contained in a
(possibly non F-stable) Borel subgroup B of G. Assume that o € T is T-
regular in G, i.e. C&(0) = T. By a result of Kazhdan-Springer [Kaz77][Spr76],
we have e

QF p=ccerq * FI(E)nd

where eg = (—1)Fa—renk(G)
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Definition 3.2.13. Let L be an F-stable Levi subgroup of G and let P = LUp
be a Levi decomposition in G with corresponding Lie algebra decomposition
P=LDUp.

(i) Let f € C(LT), then the Deligne-Lusztig induction R%Cp(f) € C(Gh)
of [ is defined by

RY.cp(N)(@s + 1) = |LF 71O (25)F |~ x

Soode@) Y Q') (@) Adu(f) (@, +v)

{heGF|z.er L} vECH f(ms)F

nil

where for any g € G¥, IL := gLg™t, 9L = Ad(g)L and Ad, : C(LT) —
C(Ad(9)L") is given by, Ady(f)(x) = f(Ad(g~")z).

(ii) Let f € C(GF), then the Deligne-Lusztig restriction *RY p(f) €
C(LE) of f is defined by

REcp () @stan) = [C2a)FIICE @)1 S QE0) ) f (o).
ucCg(zs)F

nil

The group version of 3.2.13(ii) is due to Digne-Michel [DMS7].

Remark 3.2.14. The notation R%Cp is used both for Deligne-Lusztig induction
and Harish-Chandra induction; this is justified by 3.2.23. The independence
of R%CP from the choice of w will be proved (under some assumptions on p
and ¢) in chapter 5 (see 5.5.17).

Open problem 3.2.15. Define Deligne-Lusztig induction using ¢-adic cohomol-
ogy but without using a G-equivariant homeomorphism G,,;; — Gyn;-

Remark 3.2.16. It follows easily from the formulas of 3.2.13 that
(i) for any f € C(LF), we have

REcp(fnf) =R p(f)mg,

(ii) for any g € C(GT"), we have

*R%C”P(g‘nog) = *R%CP(Q)-ng‘
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3.2.17 Basic Properties of ’R%CP

We now state some properties of Deligne-Lusztig induction in the Lie algebra
setting. These properties, which are all know in the group case, are proved in
[Let].

As it can be seen from 3.2.4, the function S¢_, : G x L — Q, plays
a fundamental role in Deligne-Lusztig’s theory. We would like to have such a
function in the Lie algebra setting; this is possible thanks to [DM91, Lemma
12.3] which gives an expression of S¢_ 5(g,1) (where g € GF',l € L) in terms
of the values of some two-variable Green functions. More precisely the function
SgC’P :GF x L — Q, we are looking for is defined as follows.

Definition 3.2.18. For z € G¥',y € LT, we define S%Cp(a:,y) by

o o — Cg(ys _
Sepl@y)= > |C2 (y) T IICE () T |71 QEE ) (Ad(h ™ )z, Y-
{heGF|Ad(h)ys=xs}

Remark 3.2.19. Note that SZ_p(2,y) = |LF|Q% p(z,y) for any (z,y) €
Gt < Ly

The following lemma is the Lie algebra version of 3.2.4.

Lemma 3.2.20. Let f € C(G), g € C(LY), we have
(1)REcp(9)(z) = IL¥ |71 e or SZcp(z,9)9(y),
(2)* REcp(Hy) = GFI7 Cpegr SEep (@ y)f(2).

Proposition 3.2.21. The maps R%C'P and *’R%CP are adjoint with respect
to the forms (,)gr and (,),F.

Proof: Let g € C(LF) and f € C(GF). We have

(fREp(9)gr = 1G 171 Y F@)REcp(9)(@)

zegl

= [LFITHGTITE Y0 Y @) SEep (@ y)g(y) by 3.2.20(1)

zeGF yeLF

= IL77NGTIT Y0 Y SEep(ay) f@)g(y)-

yELF xeGF



3.2 Deligne-Lusztig Induction: Definition and Basic Properties 41

The last equality follows from the fact that SZ_5(z,y) € Q. From 3.2.20 (2)
we get that

(fa R%cp(g))glf = (*R%Cp(f)a g)ﬁF'
O
We now state the transitivity property of Deligne-Lusztig induction. Let
M C L be an inclusion of F-stable Levi subgroups of G with respective Lie

algebras M and L. Let P and @ be two parabolic subgroups of G, having
respectively L and M as Levi subgroups, such that Q C P.

Proposition 3.2.22. We have ’R%CP o Rﬁxtcz:mg = RJgMCQ.
We have the following proposition.

Proposition 3.2.23. If the parabolic subgroup P is F'-stable, then the Deligne-
Lusztig induction R%Cp coincides with Harish-Chandra induction.

Proposition 3.2.24. Let L be an F-stable Levi subgroup of G and P be a
parabolic subgroup of G having L as a Levi subgroup. Let L := Lie(L) and
P := Lie(P). Let x € LT be such that C%(z,) C L, then RE _p(vL) =5.

Proof: We compute the values of R%U,(%f). Let y € G, then

(REcp(v)1s ) gr = Ricr(12)(®)-

From 3.2.21 we have

(R%CP( ) ’yy )gF — (7@7*R%CP( G))LF'

Combining the above two equations we get that

R%CP( Iy )_*R%CP( G)(x) (1)

Now, by definition we have

Recp(§)(@) = 05 )FICG )1 YD QL) (n,wa)rC (tm)
n€lg(xs)f

nil

Since by assumption C&(zs) C L, we have C&(zs) = C¢(zs), and so we get
that
* Cg(xs
Ricp(vg)(z) = Z chgxs;(n,xn)vf(xs +n).
nECg(ws)

nil

This formula shows that if z5 is not G¥'-conjugate to ys, then *R%Cp (*yf)(x) =
0. Hence we may assume that ys = x5, and we have
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*R%CP(%S;)(CU) =|Ca(y)" | Z Qggg;(n,xn) (2)

nEOCG(yS)F

Cg(ys)

o (v) (n,xn) By definition of Green func-

We now compute the quantity Q.
tions, we have

QE W) (n, 3,) = |C2 (o) | MTrace ((w(n),w(za) ™) |H2(CE (y)))
From [DM91, Proposition 10.8], we deduce that
QEE ) (n, ) = |C& () | Trace ((w(n), w(wn) ™) [QelCE (ys)"])
=1C&(ys)" 17"ty € C&(ys) " w(n)gw(zn) ™ = g}
= [C& () "1ty € C&(ys)" |Ad(g)zn = n}.

From the last formula and (2), we deduce that *R%Cp(’yy )(z) = |Ca(y)F] if
z is GF-conjugate to y and *’R%CP (v§)(x) = 0 otherwise. From (1), it follows

that ’R%CP(’yf) =~G. m|

3.2.25. We now discuss the validity of the Mackey formula for R%Cp. In
the group case, this has been discussed by many authors including Deligne-
Lusztig [DL83], and Bonnafé [Bon98][Bon00]. According to Bonnafé (personal
communication), the Mackey formula holds if ¢ > 3. Now in [Bon98], it is
proved that the Mackey formula (in the group case) is equivalent to a formula
on two-variable Green functions. In [Let], we prove a similar result in the Lie
algebra setting using the same arguments as in [Bon98|. As a consequence,
we get that the Mackey formula holds in the Lie algebra case if and only if it
does in the group case. We thus have the following theorem.

Theorem 3.2.26. Assume that ¢ > 3, and let P = LUp and Q = MUgq be
two Levi decompositions in G such that L and M are F-stable Levi subgroups
of G. Then the Mackey formula with respect to (G, L, P, M, Q) holds, that is

*G g _ L x1 " M
RicpoRico = Z Riremcenso© Rene mcprea © Ady
z€LF\Sq(L,M)F /MF

where Sq(L, M) denotes the set of x € G such that LN*M contains a mazimal
torus of G.

3.2.27. As in the group case, the Mackey formula as the following consequences

(see [Let] for more details):

(1) If ¢ > 3, the Deligne-Lusztig induction R%CP does not depend on the
choice of the parabolic subgroup P of G having L as a Levi subgroup.

(2) If ¢ > 3, we have Dg o RY = egerRE where e = (—1)Fa=mank(G),



3.2 Deligne-Lusztig Induction: Definition and Basic Properties 43

Notation 3.2.28. Because of 3.2.27(1), we write R instead of R%Cp.

3.2.29. We now state our conjecture about a commutation formula between
Fourier transforms and Deligne-Lusztig induction. Let F9 : C(GF) — C(GF)
be as in 3.1.9.

Conjecture 3.2.30. For any F'-stable Levi subgroup L of G and any function
fec(Lr), we have

F9 oR%(f) = eGeLR% ofc(f)

where eg = (—1)Fa—rank(G)

Note that if L is G-split, in which case eger, = 1 and ’R% is the Harish-
Chandra induction, the above commutation formula holds (see 3.1.11(i)). The
conjecture 3.2.30 will be discussed in chapter 6.
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Local Systems and Perverse Sheaves

In this chapter we introduce the results on local systems and perverse sheaves
which will be used in the following next chapters.

Throughout this chapter, the letter X denotes an algebraic variety over Fq.
As in the previous chapter, we denote by ¢ a prime not equal to p and by
Q, an algebraic closure of Q,. In the following, the finite extensions of Q,
considered are in Q,.

4.0.31. For any finite field extension E of Qy, we have the notion of F-sheaves
as in [Del77, p.85] (see also [FK88][KWO01]). By a Q,-sheaf (or sheaf), we shall
mean an E-sheaf for some finite extension E of Qg. We denote by Sh(X) the
abelian category of Q,-sheaves on X. The constant sheaf on X is denoted by
Q. If F is a sheaf on X, the support of F will be denoted by Supp (F).

4.0.32. By a local system € on X we shall mean a locally constant Q,-sheaf
on X for which each stalk &, at = € X is a finite dimensional Q,-vector space.
We denote by Is(X) the full subcategory of Sh(X) consisting of local systems
on X. Recall that a pro-finite group is the projective limit of finite groups,
each given the discrete topology. Pro-finite groups are compact and one says
that a pro-finite group 7 acts continuously on a set if the stabilizer of any
point is an open subgroup of 7. An /-adic representation of a pro-finite group
7 on a Q-vector space V is a group homomorphism f : 7 — GL(V) such
that there exists a finite extension E of Q, and an E-structure Vg on V such
that f factors through a continuous homomorphism 7 — GL(Vg). We denote
by Rep¢—adic(m) the category of f-adic representations of 7 (the morphisms
being the obvious ones). For a base point z € X, we denote by 71 (X, z) the
fundamental étale group of X at x. This is a pro-finite group and when X is
connected we have an equivalence of categories Is(X) — Repy—qaic(m1 (X, z))
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mapping € onto the 71 (X, z)-module &,. Under this equivalence, irreducible
local systems on X correspond to irreducible representations of m (X, x).

4.0.33. As in [BBDS82, 2.2.18], we denote by D?(X) the bounded “derived
category” of Q,-(constructible) sheaves. By a compler on X we shall mean an
object of D%(X). For K € Db(X), the i-th cohomology sheaf of K is denoted
by H!K. If f: X — Y is a morphism of varieties, we have the usual functors
fe : SA(X) — Sh(Y) (direct image), fi : Sh(X) — Sh(Y) (direct image with
compact support), f* : Sh(Y) — Sh(X) (inverse image) and the functors
Rf. : DY(X) — DY(Y), Rfi : DUX) — DE(Y) and Rf* : DY(Y) — DY(X)
as in [Gro73, Exposé XVII]; if f is a proper morphism, then we have f, = fi
and Rf, = Rfi. The right adjoint of Rfi is denoted by f' and is called the
exceptional inverse image; if f is an open immersion, then f' = Rf*. The
functors Rf., Rfi, Rf* and f' commute with the shift operations [m] (if
K € Db(X), the m-th shift of K is denoted by K[m]; for any integer i, we
have H (K [m]) = H™™K). We will use freely the well-known properties of
the functors f., fi, f*, Rf., Rfi, Rf* and f' (such as base change theorems
and the adjunction properties). If there is no ambiguity we will denote by fs,
frand f* the functors Rf., Rfi and Rf*.

If j : F — X is a closed immersion and if K denotes an object in D%(F),
then the object ji(K) € D%(X) will be called the extension of K by zero on
X - F.

4.0.34. We denote by Dx : D(X) — DY(X) the Verdier dual operator; recall
that Dx o Dx is isomorphic to the identity functor. From [Ara0l, 1.6.6],
if f: X — Y is a morphism, we have the following functor isomorphisms
Dy o Rfi ~ Rf, 0o Dx and f'o Dy ~ Dx o Rf*. In particular if f is proper
we have Dy o Rfi ~ Rfio Dx, if f is an open immersion we have Rf* o Dy ~
Dx o Rf* and if f is smooth with connected fibers of same dimension d, we
have Rf*[2d] o Dy ~ Dx o Rf* since in that case we have f' ~ f*[2d] by
[BBDS82, 4.2.4].

4.0.35. Recall that a perverse sheaf K over X is an object of D%(X) which
satisfies the two following conditions.

(i) dim (Supp (H'K)) < —i,
(ii) dim (Supp(H'DxK)) < —iforalli € Z .

We denote by M(X) the full subcategory of Db(X) consisting of perverse
sheaves on X. The category M(X) is abelian ([BBD82, Théoreme 1.3.6]) and
its objects are all of finite length (see [BBD82, Théoreme 4.3.1 (i)]). If & is
a local system on X, then we will denote by £[d] € DY(X) the complex K*
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concentrated in degree —d such that K% = ¢ and K* = 0 if i # —d. The
functor Is(X) — DY(X), & ~ ¢[d] is fully faithful for any integer d. Note
that if X is smooth of pure dimension, then for any £ € Is(X), the complex
¢[dim X] is a perverse sheaf on X.

4.1 Simple Perverse Sheaves, Intersection Cohomology
Complexes

Let Y C X be alocally closed smooth irreducible subvariety of X . Let Y be the
Zariski closure of Y in X. Then, for a local system & on Y let IC(Y, €) € D4(Y)
be the corresponding intersection cohomology complex defined by Goresky-
MacPherson and Deligne.

4.1.1. The complex K = IC(Y,&)[dimY] is characterized by the following
properties.

(i) 'K =0 if i < —dimY,

(ii) H Y K]y =€,

(iii) dim (Supp (H'K)) < —i if i > —dimY’,

(iv) dim (Supp (H'DxK)) < —i if i > —dimY .

The complex IC(Y,¢)[dimY] is thus clearly a perverse sheaf on Y. It
follows from 4.1.1 that the restriction of IC(Y,¢)[dimY] to Y is &[dimY].
Moreover, if U is any smooth open subset of Y and ( is any local system on
U such that ¢|ynu =~ (|ynu, then IC(U, () = IC(Y, €).

41.2. Let 5 : Y « X and j : ¥ < X denote the inclusions. There ex-
ists a fully faithful functor ji. : M(Y) — M(X) (see [BBD82]) that takes
¢[dimY] to 7,(IC(Y,€)[dimY]) for each local system ¢ on Y; we say that
J1IC(Y, €)[dim Y]) is the perverse extension of & on X. If ¢ is an irreducible
local system on Y, then K = IC(Y, ¢)[dim Y] is a simple object in M(Y") and
J1K is a simple object in M(X). Moreover by [BBD82, 4.3.1], all the simple
objects in M(X) are obtained in this way for some pair (Y, () as above.

Proposition 4.1.3. [BBD82, /.2.5, 4.2.6] Let f : X — Y be a smooth mor-

phism with connected fibers of dimension d.

(a) Assume that X is irreducible (and so'Y') and let V' be an open smooth
subset of Y, we have the following commutative diagram.
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e U e ¢

Ve————Y

Let € be an irreducible local system on V', then the local system fi(E) is
irreducible and we have

IC(f=1(V), fv(€))]dim X] == f*[d](IC(V, €)[dimY]).

(b) The functor f*[d] induces a fully faithful functor M(Y) — M(X).

4.1.4. Let Y x Z be the product of two varieties. We denote by X the bifunctor
(called the external tensor product) Sh(Y) x Sh(Z) — Sh(Y x Z) that takes
(¢, &) to pri(¢) ® pr3(&) where pri,pra are respectively the projections on
the first coordinate and on the second coordinate. We also have a bifunctor
(also called the external tensor product) X : D%(Y) x D(Z) — DY x Z)
that takes (K1, K3) to pri(Ki) @ pri(Ks) where ® denotes ! the left derived
functor of the tensor product ® : Sh(Y) x Sh(Z) — Sh(Y x Z). The external
tensor product (either for sheaves or complexes) commutes with the usual
operations: if f1 : X7 — Y7 and f5 : Xo — Y5 are morphisms, then

(f1)« K1 W (fo) K2 = (f1 X fa). (K1 K K>),
similarly for (fl X fg)*7 (f1 X fz)g and (f1 X fz)!.
We have the following proposition.

Proposition 4.1.5. [BBD82, Proposition 4.2.8] Let Y x Z be the product of
two wvarieties and let K1 and Ko be two perverse sheaves respectively on Y
and Z. Then the complex K1 X K is a perverse sheaf on'Y x Z.

Lemma 4.1.6. Consider the product Z x X of a smooth irreducible variety
Z with an arbitrary algebraic variety X. Assume that U C X is a smooth
irreducible locally closed subvariety of X. Let & and £ be two local systems

L
! In the literature, it is usually denoted by ®.
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respectively on Z and U and let U be the Zariski closure of U in X. Then we
have an isomorphism in D2(Z x U) of perverse sheaves

10(Z x T, £RE)[dim (Z x U)] ~ €[dim Z) R IC(T, £)[dim U].

Proof: Let K; = IC(U, &)[dimU] and K = ¢[dim Z] K K. We need to check
that K satisfies the four axioms of 4.1.1 which characterize the complex IC(Z x
U,¢ R E)[dim (Z x U)]. We have a canonical morphism

> HP(E]dimZ]) R HY(K,) — H'K

ptg=n

which is in fact an isomorphism since the complex £[dim Z] is a local system
concentrated in degree —dim Z. We thus have, H"K = ¢ I H"TIMZ [ Tt is
then easy to check (i), (ii) and (iii) of 4.1.1. By [BBD82, 4.2.7 (b)] we have
D, K = Dz(¢{[dim Z]) X DK . Since Z is smooth we have

Dy(¢[dim Z]) = £¥[dim 2]

where for a local system £ on a variety V, £V denotes the dual local system
of £ on V. The axiom (iv) of 4.1.1 follows easily. O

4.2 H-Equivariance

Let H denote a connected linear algebraic group over Fq acting algebraically
on X. We have the notion of H -equivariant sheaves on X defined as follows:

Let 7 : H x X — X be the morphism given by the second projection and
let p: H x X — X given by the action of H on X.

Definition 4.2.1. We say that £ € Sh(X) is an H-equivariant sheaf on X
if there exists an isomorphism ©*(£) = p*(&).

We have the following lemma.

Lemma 4.2.2. Let f : X — Y be an H-equivariant morphism between two
H -varieties. Then the following assertions hold,

(i) If € is an H-equivariant sheaf on Y, then f*(&) is an H-equivariant
sheaf on X.

(it) If € is an H-equivariant sheaf on X, then f.(§) and fi(€) are H-
equivariant.
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Proof: We first prove (i). Let £ be an H-equivariant sheaf on Y. Since f is
H-equivariant the following diagram commutes:

HxX 2., Xx

Idefl fl

HxYy -2 . v

where px denotes the action of H on X. We deduce that
(px)" 0 f*(€) =~ (Idu x f)" o (py)"(£). (1)

Since £ is H-equivariant, we have (py )*E ~ (pry)*(€) (where pry : H XY —
Y is the projection on the second coordinate). But (pry)*(£) ~ Q, X &, thus
(1) leads to an isomorphism (px)* o f*(€) ~ (Idg x f)*(Q, K £), and so we
have an isomorphism (px)* o f*(£) ~ (Q, X f*&) ~ (prx)* o (f*€) (where
prx : H x X — X is the projection on the second coordinate). The proof of
assertion (ii) is also easy and involves the base change theorems. O

We have the following lemma.

Lemma 4.2.3. Let H act on H x X by left translation on the first coordinate
and on X trivially so that the morphism w is H-equivariant. The functor
7 : Sh(X) — Sh(H x X)) induces an equivalence of categories between Sh(X)
and the full subcategory of Sh(H x X) whose objects are the H-equivariant
sheaves. Its inverse functor is given by i* wherei: X — H x X, x — (1,z).

Proof: Let p,m : Hx HxX — H x X be defined by m(h,h’, z) = (hh/, ) and
p(h,h',x) = (W, z). Consider j : H x X — H x H x X defined by j(h,z) =
(h,1,z). Let £ be an H-equivariant sheaf on H x X with an isomorphism
¢ :m*(E) ~p*(€). Since iom =pojand moj = Idyxx, the isomorphism
§*(¢) is an isomorphism & = 7* 03*(£). We thus have proved that the functor
7* is essentially surjective. It is also fully faithful because 7 is smooth with
connected fibers; this is proved in [BBD82, 4.2.5] when reducing the proof of
0.1.7(b) to the case of sheaves. We thus deduce that 7* is an equivalence of
categories between Sh(X) and the full subcategory of Sh(H x X) consisting
of H-equivariant sheaves. Moreover since moi = Idx, we have i*7* (L) = L for
any sheaf £ on X and so the inverse functor of 7* is given by the restriction of
i* to the full subcategory of Sh(H x X) formed by H-equivariant sheaves. O

In the following lemma we denote by o : H x H — H the multiplication
and by ps : H x H — H the projection on the second coordinate. As in 4.2.3,
we denote by i : X — H x X the map x — (1, z).
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Lemma 4.2.4. Let £ be an H -equivariant sheaf on X. Then there exists a
unique isomorphism ¢g : T (E) = p*(E) such that

(i) i*(pg) : € — & is the identity.

(i) (o x Idx)*(¢e) = (Idu x p)*(de) o (p2 X 1dx)*(¢¢).

Proof: Let h be an isomorphism 7*(£) = p*(£). Let ¢ = h o w*(i*h)71,
then ¢g : 7(€) — p*(€) is an isomorphism which satisfies i*(¢g) = Idg. Let
fi, fa : m(E) — p*(€) be two isomorphisms such that i*(f1) = i*(f2) = Idg.
Then f;'o fo: () — m*(€) is an isomorphism. Since the functor 7* is
fully faithful (see proof of 4.2.3) , there exists a morphism g : £ — & such
that 7(g) = fy' o fa. Hence i* o *(g) = i*(f; ') 0 i*(f2), so g = Idg,
that is f; = fo. We thus proved the existence of a unique isomorphism ¢¢ :
7*(€) ~ p*(€) which satisfies 4.2.4 (i). First note that (a x Idx)*(¢¢) and
(Idg x p)*(¢e) o (p2 x Idx)*(de) are morphisms between the same sheaves.
Let j: X — Hx Hx X,z — (1,1,z), then j*((a x Idx)*(¢¢)) = j* ((Id g %
p)*(de) o (p2 x 1dx)*(de)) = Ide. Let j tHxX — HxHxX, (g.x) —
(1,9,z) so that j = joi and (o« x Idx) 0o j = Idyxx. Let H acts on H x X
by left multiplication on the first coordinate. Then the sheaves p*(£) and
7* (&) are H-equivariant on H x X since p is naturally H-equivariant and 7
is H-equivariant if we let H acts trivially on X, hence by 4.2.3 we get that
7 ((a x ldx)"(¢¢)) = 7*((du x p)*(¢e) o (p2 x Idx)*(¢¢)). Applying again
4.2.3, we get that j* is an equivalence of categories from the full subcategory
of Sh(H x H x X) of H-equivariant sheaves on H x H x X (H acting by left
multiplication on the first coordinate) onto Sh(H x X). Hence it remains to
see that (« x Idx)*(¢¢) is a morphism between H-equivariant sheaves. But
this follows from the fact that the map a x Idx is H-equivariant if we let H
act by left multiplication on the first coordinate of H x H x X and H x X. O

Proposition 4.2.5. Let £ be an H-equivariant sheaf on X and let ¢g¢ :
7*(E) = p*(€) be the unique isomorphism such that i*(¢g) is the identity on
E. Forhe H, defineiy : X - HxX, x v+ (h,x). Let Hy be a closed subgroup
of H acting triwvially on X, then the map Hy — Aut(E) given by h — i} (d¢)
is a group homomorphism and factors through a morphism Hy/HY — Aut(E).

Proof: For h € Hy, we have poip = woip = Idx from which we see that the
map Hy — Aut(E), h — i;(pe) is well defined. It is a group homomorphism
because of 4.2.4(ii). Note that the restriction of p to HY x X is equal to the
restriction 7y of m to HY x X. Hence if f : HY x X — H x X is the inclusion and
i1: X — H) x X, x — (e,z), then f*(¢g) is an isomorphism 7} (£) — 77 (€)
such that i} f*(pe) is the identity on €. Since HY is connected, by 4.2.3 the
functor i} : Sh(X) — Shge(H x X) is an equivalence of categories. Thus it
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remains to see that the sheaf 7} (£) is H{-equivariant, but this follows from the
fact that the morphism 7, is Hy-equivariant if we let H{ act on X trivially. O

Remark 4.2.6. If £ is irreducible, the group Aut(€) is canonically isomorphic
to @Z, and so & defines a character of Hy/HY.

The category Shy(X) is defined to be the category whose objects are
H-equivariant sheaves on X and whose morphisms are defined as follows.

Let £ and £ be two H-equivariant sheaves on X and let ¢ : 7*(&) — p*(€)
and ¢ : 7 (L) — p*(L) be the two isomorphisms such that i*(¢) = i*(¢) = Id.
Then a morphism €& — £ in Shy(X) is a morphism of sheaves ¥ : € — L
which makes the following diagram commutative:

w (&) T (L)
d! o|
() L (o)

Proposition 4.2.7. Shy(X) is a full subcategory of Sh(X).

Proof: Let £ and £ be two H-equivariant sheaves on X and let ¢ : 7*(£) —
p (&) and ¢ : (L) — p*(L) be the two isomorphisms such that i*(¢) =
i*(¢) = Id. Let ¥ : £ — L be a morphism in Sh(X). We want to show that
Yor* (W) = m*(W)ogp. We have i*(Yor*(¥)) =W = i*(m*(¥)ov). Moreover p
is clearly H-equivariant and m becomes H-equivariant if H acts on X trivially,
hence the sheaves 7* (&), 7*(L), p*(£) and p*(L) are H-equivariant sheaves
on H x X. We deduce from 4.2.3 that p*(¥) o ¢ = ¢ o 7*(¥). O

We denote by Isy(X) the full subcategory of Shy(X) consisting of H-
equivariant local systems on X.

Definition 4.2.8. Let K € M(X), K is said to be H-equivariant if there is
an isomorphism ¢ : 7*(K) = p*(K) in D5(X).

Lemma 4.2.9. Let f : X — Y be a H-equivariant morphism between two
H -varieties. Then the following assertions hold.

(i) If K is a H-equivariant perverse sheaf on 'Y, and if f*[d|K (resp.
f'ld]K ) is a perverse sheaf for some integer d, then f*[d]K (resp. f'|d]K) is
also H -equivariant.
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(i) If K is a H-equivariant perverse sheaf on X, and if f.[d]K (resp.
fild]K ) is a perverse sheaf for some integer d, then f.[d|K (resp. fildK) is

also an H -equivariant perverse sheaf on Y .

Proof: The proof is entirely similar to that of 4.2.2. O

4.2.10. If K is an H-equivariant perverse sheaf on X, then as for sheaves,
see 4.2.4, we can show the existence of a unique isomorphism ¢ : 7" (K) =
p*(K) such that i*(¢x) is the identity and ¢ satisfies 4.2.3(ii). We denote
by My (X) the subcategory of M(X) consisting of H-equivariant perverse
sheaves and whose morphisms are defined in the same way as we defined
morphisms in Shy(X). As we did for sheaves, we can prove that My (X) is
in fact a full subcategory of M(X). The proof of proposition 4.2.5 works also
for perverse sheaves.

Remark 4.2.11. The definition 4.2.8 on H-equivariance is not the appropriate
one for the case where K € D%(X) is not a perverse sheaf or when H is not
connected. For the general definition of H-equivariance see [BL94].

Remark 4.2.12. Since the morphisms 7 and p are smooth with connected fibers
of same dimension, by 4.0.34, the Verdier dual of an H-equivariant perverse
sheaf on X is H-equivariant, hence the restriction of Dx to Mpy(X) is an
equivalence of categories Mg (X) — My (X).

Proposition 4.2.13. Let K € M(X) be H-equivariant, then any subquotient
of K is also H-equivariant.

Proof: Let K’ be a subquotient of K. Then p*(K") is a subquotient of p*(K)
and so is a subquotient of 7*(K) since K is H-equivariant. By [BBD82,
4.2.6.2], there exists a complex K on X such that 7*(K") ~ p*(K’). Apply-
ing the functor i* (where i : X — H x X, z — (1,2)) to both side, we get
that K" ~ K. O

The following proposition is the H-equivariant analogue of 4.1.2.

Proposition 4.2.14. The simple objects of My (X) are the perverse ex-
tensions of H -equivariant irreducible local systems on H -stable locally closed
smooth irreducible subvarieties of X.

4.2.15. Let O be an homogeneous H-variety. We are going to describe the well-
known bijection between the isomorphic classes of H-equivariant irreducible
local systems on O and the irreducible characters of A(x) := Ag(z). Since the
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bijective morphism f : H/Cg(x) — O induces an equivalence of categories
f*:1s(0) — Is(H/Cu(zx)), we may assume that O = H/Cy(x). Let 7 :
H/C%(z) — H/Cu(z) = O be the projection. Then 7 is a Galois covering
with Galois group A(x), hence the local system m,(Q,) is a semi-simple local
system on H/Cg(z) whose endomorphism algebra is isomorphic to the group
algebra of A(x). The local system 7. (Q,) decomposes as follows.

(@)= P )

X€A(z)Y

where for a group F, we denote by FV the set of irreducible Q,-characters of
F and where L, is the irreducible local system on O associated to x as in
4.0.32. Since 7 is H-equivariant, by 4.2.13, the local systems £, are also H-
equivariant. Hence we have defined a map x — L, from the set of irreducible
characters of A(x) onto the set of H-equivariant irreducible local systems
on O. Conversely, let £ be an irreducible H-equivariant local system on O.
Then the homomorphism p : A(x) — Aut(&,) (see 4.2.5) is an irreducible
representation of A(x) such that if x is the character of p, then & = L,.

4.2.16. Let C' be an H-stable locally closed smooth irreducible subvariety of
X and let € be an irreducible H-equivariant local system on C. Then (C,¢) is
called a pair of X. We say that a pair (C, &) of X is orbital if C' is an H-orbit
of X. If H acts by Ad on H := Lie(H ), then an orbital pair (C, ) of H is said
to be nilpotent if C' is a nilpotent orbit. If H acts by conjugation on itself, we
say that an orbital pair (C, &) of H is unipotent if C' is a unipotent conjugacy
class of H.

If Y is locally closed smooth irreducible subvariety of X and if & is
a local system on Y, then we denote by KX (Y,€) € M(X) the complex
IC(Y, €)[dim Y] extended by zero on X — Y. We say that a simple perverse
sheaf on X is orbital if its is of the form KX (C,¢) for some orbital pair (C, &)
of X. If X =H and H acts by Ad, or if X = H and H acts by conjugation,
then we will write K (C, &) instead of KX (C, &) if there is no ambiguity.

4.3 Locally (Iso)trivial Principal H-Bundles

Definition 4.3.1. [BR85, 5.2][Ser58] Let H be an algebraic group and let H
act morphically on a variety X on the right. Let m : X — Y be a morphism
which is constant on H-orbits. Then 7 is a trivial principal H-bundle if there
exists an H-isomorphism ¢ : H XY — X (H acts on H XY on the right by
(W,2).h = (h'h,x)) such that o ¢ = pra.
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(i) We say that 7 is a locally trivial principal H-bundle if for any z € Y,
there exists an open neighborhood U of x such that 7= (U) is a trivial principal
H-bundle over U.

(i) We say that 7 is a locally isotrivial principal H-bundle if for any
x €Y, there exists an open neighborhood U of x and an étale covering V-— U
such that the pull back V xy X is a trivial principal H-bundle over V.

Proposition 4.3.2. [Ser58] Let H be a linear algebraic group and K be a
closed subgroup of H. The projection w : H — H/K ‘s a locally isotrivial
principal K-bundle.

Proposition 4.3.3. [Ser58] Let H and K be as in 4.3.2 with K reductive
and let V' be an affine K-variety. We define a right action of K on H x V
by (h,v).k = (hk,k~1.wv). We denote by H x¥ V the quotient (H x V)/K
(it exists since K is reductive). Let m : H x V. — H x® V be the canonical
projection, then m s a locally isotrivial principal K-bundle.

Proposition 4.3.4. Let H be a connected algebraic group and let X be an
H-variety. Let f : X — Y be a locally isotrivial principal H-bundle. Then
the functor f* : Sh(Y) — Shy(X) is an equivalence of categories with in-
verse functor f. : Shy(X) — Sh(Y). In particular f. maps H -equivariant
irreducible local systems over X onto irreducible local systems over Y .

Proof: We may assume without loss of generality that X = H x Y and f is
the projection on the second coordinate.

Let i : Y — H x Y be the injection given by y — (1,y). By 4.2.3, f* :
Sh(Y) — Shy(X) is an equivalence of categories whose inverse functor is
given by * : Shy(X) — Sh(Y). It remains to prove that the functors f, and
1* are isomorphic. Since f, is a right adjoint to f*, it is enough to show that
1* is also a right adjoint to f*. Since f oi = Idy, the functor i* defines a map
of bifunctors Hom(f*(.),.) — Hom(.,i*(.)) which is clearly an isomorphism
of bifunctors. a

Theorem 4.3.5. Let H be a connected algebraic group, let X be an H-variety
andlet f: X —Y be alocally trivial principal H-bundle. Let d = dim H. Then
the functor f*[d] : M(Y) — My (X) which sends K € M(Y') onto f*K|[d] is
an equivalence of categories.
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Proof: Since f is a locally trivial principal H-bundle and H is connected, the
morphism f is smooth with connected fibers and so the theorem follows from
4.1.3 and [Lus85a, 1.9.3]. O

We will use the following proposition in chapter 7.

Proposition 4.3.6. Let G be a connected reductive group over an alge-
braically closed field k and let x € G := Lie(G). We assume that p is very good
for G so that L := Cg(xs) s a connected Levi subgroup of G (see 2.6.13(ii)),
2.6.18), and Lie(Cq(y)) = Cg(y) for anyy € G (see 2.6.2). Let j : OL — OF
and j : OL — O be the inclusions. Then for any G-equivariant local system
£ on OF, we have j (IC(O_f, £)) ~ IC(OL, j*(£)).

x

Proof: Let y € G be such that ys = z,. Since L = Cg(xs), we have
Ce(y) = Cr(y) and we also have Cg(y) = C,(y). Hence we have Lie(Cy(y)) =
Lie(Ca(y)) = Cg(y) = Cr(y), and so we may identify O and OF respec-
tively with G/Cq(y) and L/CL(y). By 4.3.2, the morphism G — G/L is a
locally isotrivial principal L-bundle. So let V' — G/L be an étale open set
of G/L such that the projection on the second coordinate G xg,, V — V
is a trivial principal L-bundle (we take V' smooth and irreducible), and let
Jv i LXV — G Xxgy V be an L-isomorphism such that the following dia-
gram commutes.

LxV—>G><G/LV

N

where pry denotes the projection on the second coordinate. The map fy is
thus of the form (h,v) — (gyh,v) for some morphism V — G, v +— g,. Since
Cq(y) = Cr(y), the map fy gives rise to an isomorphism fy, : L/CL(y) X
V = (G/Ca(y)) xg V. Let v € V, we have the following commutative
diagram.

L/CL(y) x V —L - G/Caly) xapn V
L/CL(y) for G/Cq(y)

where i, (X) = (X, v) and fg,(X) = goX. Now let 21, ...,z € L be such that
OL =11, OZL . Then we have o¢ =11, O (see 7.1.7). Since (z;)s = @, for
any i € {1,...,r}, the above diagram is available if we replace y by any z;.
Hence by identifying OF and O respectively with G/Ce(z;) and L/Cy(x;)
we get the following commutative diagram.
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Fy

O_g%xV O_fx(;/LV
Tiv \\Ph
OF ———0¢%

where i, (x) = (z, v), pr1 is the projection on the first coordinate, f,, = Ad(g,)
and where Fy (z,v) = (Ad(gy)z,v). The morphism ¢ := pry o Fy, is smooth
with connected fibers of same dimension, hence from 4.1.3, we have

¢"(IC(0F,€)) = IC(OF x V,4*(€)) (1)

where 1 : OL x V' — OF is the restriction of ¢ to OL x V. Now we decompose
¢ as follows.

OL xV oL x @
) |
o R

where a(x,v) = (z, g,), ¢ is the inclusion and p is given by the adjoint action
of G on G. Hence if we put K = IC (OF, £), then using the G-equivariance of
K we get that, ¢*(K) ~ j (K)XQ,. Similarly we see that 1*(£) ~ j*(£)XQ,.
Hence from 4.1.6 and (1), we deduce that j (K) R Q, ~ IC(OL, j*(£)) X Q,.
Applying the functor i}, we prove the proposition. a

4.4 F-Equivariant Sheaves and Complexes

Assume now that X is defined over F, and denote by F' the corresponding
Frobenius on X.

Definition 4.4.1. A complex K € D%(X) is said to be F-stable if F*(K) is
isomorphic to K.

Definition 4.4.2. An F-equivariant complex on X is a pair (K, @) where
K € DY(X) and ¢ : F*(K) = K is an isomorphism.

A morphism f : (K,¢x) — (K',¢x/) of F-equivariant complexes is a
morphism f : K — K’ in D%(X) which makes the following diagram commu-
tative,
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Similarly, we define the notion of F-stable sheaves, F-equivariant sheaves and
morphisms of F-equivariant sheaves on X.

Definition 4.4.3. If (K, ¢) is an F-equivariant complex on X, we define the
characteristic function X 4 : X' — Q; of (K, ¢) by

Xk g(x)= Z(—l)iTmce(qb;,H;K)
where ¢l denotes the automorphism of H.L K induced by ¢.

The characteristic function Xe s : X' — Q, of an F-equivariant sheaf
(€,9) on X is defined as follows,

Xe,o(z) = Trace(pq, &)

where ¢, : E, — &4 is the isomorphism induced by ¢.

Remark 4.4.4. If (K, ¢) and (K',¢’) are two isomorphic F-equivariant com-
plexes (or sheaves), then their characteristic functions are equal.

Notation 4.4.5. If K is a complex (or a sheaf) on X, then for any integer r,
we denote by K(r) the r-th Tate twist of K.

Remark 4.4.6. If (K, ¢) is an F-equivariant complex (or sheaf), then for any
integer n, recall that X () ¢n) = ¢ "Xk ¢-

We have the following fact.

Lemma 4.4.7. Let (K,¢), (K',¢') be two F-equivariant simple perverse
sheaves on X such that K ~ K' in M(X). Then there is a unique element
ce @ZX such that X, = cXgr 4. Moreover if c =1, then (K, ¢) and (K', ¢’)
are isomorphic.

Notation 4.4.8. Let (K, ¢) be an F-equivariant complex on X, then for any
integer n > 1, we denote by ¢("™) : (F")*K = K the isomorphism defined by
60 = F=(¢) o ..o F(¢) 0 6.
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We have (see [Sho88, 18.8]):

Lemma 4.4.9. Let (K, ¢) and (K',¢") be two F-equivariant semi-simple per-
verse sheaves on X such that for any n > 1, we have XK,QWL) = XK/7¢/(71).
Then K and K' are isomorphic in M(X).

4.4.10. Let H be a connected linear algebraic group defined over F, acting
morphically on X. We assume that this action is defined over F, and we still
denote by F': H — H the Frobenius on H.

Remark 4.4.11. Let K be an H-equivariant F-stable complex (or sheaf) on X
and let ¢ : F*(K) — K be an isomorphism. Then the function X 4 on X
is H -invariant i.e. for any h € H” and any z € X', we have Xk 4(h.z) =
XK,¢(.’L').

We say that a pair (Z,€) of X, see 4.2.16, is F-stable if Z and £ are both
F-stable. Two orbital pairs (O, &) and (C, () of X are said to be isomorphic
if O = C and & is isomorphic to (. Let I be a set of representatives of the
isomorphic classes of orbital pairs of X and we denote by I” the subset of
I corresponding to F-stable pairs. For each F-stable H-orbit O of X, we
choose an element zo € OF and we put A(zp) = Ax(re). Let (X/H)F
be the set of F-stable H-orbits of X, then I is in bijection with the set
Hoe(x/mr HY(F, A(z0)) which by 2.1.20 is in bijection with the H% -orbits
of XF.

Indeed, let O € (X/H)¥, then under the bijection of 4.2.15 between iso-
morphic classes of H-equivariant irreducible local systems and irreducible
characters of A(zp), the F-stable local systems corresponds to the F-stable
characters. Moreover we have:

4.4.12. Let H be a finite group and 0 : H — H an automorphism of finite
order. Then the number of 0-stable irreducible Q,-characters of H is equal to
the number of elements of H*(0, H).

Since A(xze) is finite, there is a power ¢" for which all the elements
of A(zp) are defined over Fyn, ie. such that F™ = Id(y,). Hence we
can apply 4.4.12 to (A(zp),F) and we get that the set of isomorphic
classes of F-stable H-equivariant irreducible local systems on O is in bi-
jection ? with H!(F, A(zp)) and so we get a bijection between I' and

H(’)E(X/H)F HY(F, A(zo)).

For each + € I, put ¢ = (0,,&,). If + € I, we choose an F-equivariant
local system (&,,¢,) and we denote by J, : X — @, the characteristic

2 This bijection is not canonical.
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function of (£,,¢,) extended by zero on X — OF. The F-equivariant local
system (&,,¢,) leads to a canonical F-equivariant complex (K,,¢,) where
K, = KX(0,,&,) and where ¢, still denotes the isomorphism F*(K,) — K,
induced by ¢, : F*(€,) — &,. The characteristic function of (K,, ¢,) is denoted
by &,. We have:

Proposition 4.4.13. The sets {V,,c € I} and {X,,. € I'} are both bases
of the space C(XT) of Qp-valued HF -invariant functions on X,

Proof: We already saw that these two sets have the right number of ele-
ments to be bases of C(XT). We thus have to verify that both sets consist
of linearly independent elements. The case of the functions X, reduces easily
to the case of the functions J,. Let (O,€) be a pair of X and let z € O.
By 4.2.15, the local system & corresponds to an irreducible representation
p: A(F(z)) — GL(Ep(y)) and the local system F*(€) corresponds to an irre-
ducible representation p’ : A(x) — GL(Ep(y)). Hence po F is also a represen-
tation of A(z) corresponding to the local system F*(£), it is thus isomorphic
to p’. We thus assume that po F' = p/. Assume now that (O, &, z) is F-stable
and let ¢ : F*(£) = & be an isomorphism. Then the representations p o F
and p of A(x) are isomorphic, that is there exists a Q,-linear isomorphism
ag : E = &, such that oy o p(t) = p(F(t)) o a, for all t € A(z). Now let
h € H be such that h.x € OF and let t € A(z) be such that h='F(h) is
a representative of ¢ in Cy(z); then Trace(ap.,) = Trace(ay o p(t)). This
defines a function a : OF — Qy, y — Trace(a,) which is equal to the func-
tion OF — Qy, y — Trace(¢y,&,) for an appropriate choice of ¢. Now put
(0, &,2,p) = (0,E,z,p) for some ¢ € I¥, and let v, : A(z,) — Q, be
defined by 7,(t) = Trace (a, o p,(t)). We may assume that the z, € OF are
chosen such that if O, = O, for ¢, u € I, then z, = z,,. To prove the inde-
pendence of the functions Y,, ¢ € I, we are thus reduced to show that for
any ¢ € I, the functions v, with u € A4, := {u € I¥|0, = O,} are linearly
independent. Define v, ' : A(z,) — Qy, t — Trace ((ag, o p,(t))71). It is suf-
ficient to show that for any p € A,, we have 3, () ¥, (). (t) = 0 if and
only if ¢ # p. The proof of such a fact is similar to that of the orthogonality
formula for irreducible characters (see for instance [Ser78]). O
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Geometrical Induction

In the group case, Deligne-Lusztig induction (see 3.2.1) is defined using the
basis formed by characters. By making the use of Lusztig’s character sheaves,
it is possible to define another “twisted” induction using the basis formed by
the characteristic functions of some simple perverse sheaves so-called character
sheaves. In [Lus90], it is proved, under some restrictions on p and ¢, that the
two inductions coincide.

Starting from [Lus87] and by adapting Lusztig’s ideas to the Lie algebra
case, we write down a character sheaves theory for reductive Lie algebras
adapted to the study of Fourier transforms. Using the character sheaves on
Lie algebras, we define a “twisted” induction for invariant functions we call
“geometrical induction”. By transferring [Lus90, 1.14] to the Lie algebra case
by means of a G-equivariant isomorphism Gun; — Gnii, we show, as in the
group case, that Deligne-Lusztig induction coincides with geometrical induc-
tion. The coincidence of these two definitions will be used (see next chapter) to
study the commutation of Deligne-Lusztig induction with Fourier transforms.

The reader will be able to notice that when establishing the results of 5.1.9,
5.1.14,5.1.26,5.1.41 and 5.1.51, analogous to [Lus84], we do not assume, unlike
in [Lus84], that the pair (X, &) is “cuspidal” and that Z is the whole center.
Indeed, the proofs of these results do not require such assumptions and it will
be useful here to state these results in that more general context.

Throughout this chapter we make the following assumption, where by a
“cuspidal pair” of G, we mean a cuspidal pair (S,&) of G in the sense of
[Lus84, 2.4] such that S contains a unipotent conjugacy class of G.

E. Letellier: LNM 1859, pp. 61-113, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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Assumption 5.0.14. The prime p is acceptable, that is, it satisfies the fol-
lowing conditions:
(i) p is good for G.
(i1) p does not divide |(X(T)/Q(P))tor]-
(i1i) There exists a non-degenerate G-invariant bilinear form on G.
(v) p is very good for any Levi subgroup of G supporting a cuspidal pair.
(v) There exists a G-equivariant isomorphism Guni — Gnii-

Remark 5.0.15. Although 5.0.14 (v) might not be necessary, it will be useful
to transfer some results from the group case to the Lie algebra case. The
assumption 5.0.14(iv) will be used to apply 2.5.16.

We have the following properties which can be deduced easily from the
results of the second chapter and the classification of the cuspidal data of G
[Lus84].

Lemma 5.0.16. (i) If p is acceptable for G, then it is acceptable for any Levi
subgroup of G.

(i) If p is very good for G, it is acceptable for G.

(i11) All primes are acceptable for G = GL, (k).

() If G is simple, the very good primes are the acceptable ones for G.

We choose once for all a Lie algebra isomorphism G ~ z(G) © G as in 2.3.1
(note that under our assumption on p, we have Lie(Z2) = z(G)).

5.1 Admissible Complexes and Orbital Perverse Sheaves

on G

Following [Lus87] we introduce a kind of Harish-Chandra theory for a sub-
class of the class of G-equivariant perverse sheaves on G. This will be achieved
through the definition of cuspidal G-equivariant perverse sheaves on G to-
gether with a functor ind%cp : My (L) — DY(G) defined for any Levi de-
composition P = LUp in G with corresponding Lie algebra decomposition
P=LSUp.

The above subclass will consist of so-called “admissible complexes” (or
character-sheaves) on G and the cuspidal perverse sheaves on G will be those
admissible complexes which can not be obtained as a direct summand of some
ind%cp(K ) with L a proper Levi subgroup of G and K an admissible complex
of L.
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5.1.1 Parabolic Induction of Equivariant Perverse Sheaves

5.1.2. Let P be a parabolic subgroup of GG, and LUp a Levi decomposition of
P. Let P = L & Up be the corresponding Lie algebra decomposition. Recall
that 7mp : P — L denotes the canonical projection. Define

Vi ={(z,h) € G x G|Ad(h 1)z € P},
Vo = {(z,hP) € G x (G/P)|Ad(h~ ")z € P}.
We have the following diagram

Llv=Swg
where 7’ (z, hP) = z, 7' (x,h) = (z,hP), n(z,h) = mp(Ad(h~1)z).

5.1.3. Let K be an object in My (L£). The morphism 7 is smooth with
connected fibers of dimension m = dimG + dimUp and is P-equivariant
with respect to the action of P on Vi and on L given respectively by
p.(z,h) = (x,hp~ ') and p.x = Ad(7p(p))x. Hence 7* K[m] is a P-equivariant
perverse sheaf on V] (see 4.1.3 (b)). But 7’ is a locally trivial principal P-
bundle (see [Jan87, page 183, (5)]), hence by 4.3.5, there exists a unique
perverse sheaf K on V3 such that

7*K[m] = (7')*K[dim P].
Now we define the induced complex ind$ (K) of K by
indZ»(K) = (71K € D(O).

This process defines a functor ind%cp : Mp(L) — D4(G).

Remark 5.1.4. Assume that P, L and K are all F-stable and let ¢ :
F*(K) — K be an isomorphism. Then ¢ induces a canonical isomorphism
¢ F*(indf_p(K)) — ind_p(K) such that,

R%(XK«ﬁ) = Xindgcp(K),¢ (*)
where RY is the Harish-Chandra induction (see 3.1.2). Indeed, if we denote
by F» the Frobenius on V, defined by Fy(x,hP) = (F(x),F(h)P) and by

¢ : Fy(K) 5 K the isomorphism induced by ¢, then (*) follows easily from
the formula
Xw;'(k)7¢(y) = Z X ()
z€(m" =1 (y)) 2

which is a consequence of the Grothendieck trace formula.
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Lemma 5.1.5. We have an isomorphism of functors

ind}cp o Dg ~ Dg o indlp.

Proof: Since the morphisms 7 and 7/ are smooth with connected fibers of
same dimension and since the morphism 7" is proper, we get the following
relations:

(i) Dy, o (n*[m]) =~ 7*[m] o D,

(i) Dy, o ((x')*[dim P]) ~ (x')*[dim P] o Dy,

(i) Dg o (7)1 == (7)1 0 Dys,.
Hence the lemma follows from 4.2.12. a

Remark 5.1.6. If K € Mp(L) is such that ind?_p»(K) € M(G) then
ind%cp(K ) is automatically a G-equivariant perverse sheaf on G; this fol-
lows from 4.2.9 since the morphisms 7, 7’ and 7" are all G-equivariant if we
let G act on V4 and V5 by Ad on the first coordinate and by left translation
on the second coordinate, and on £ trivially.

5.1.7. We now state a transitivity property of induction. Let P = LUp and
QQ = MUg be two Levi decompositions in GG, with corresponding Lie algebra
decompositions P = LB Up and Q = M P Uq, such that L C M and P C Q.
Then we have the following proposition (see [Lus85a, Proposition 4.2]).

Proposition 5.1.8. Let K € M (L) and assume that indytpon(K) is a
perverse sheaf. Then ind/g\,tcg(indgchmp(K)) = ind};p(K).

Proof: The proof is entirely similar to that of [Lus85a, Proposition 4.2]. O

5.1.9 The Complexes indgcpK(Z,E)

Let (P,L, X, &) be a tuple where P is a parabolic subgroup of G, L is a Levi
subgroup of P and where (X,€) is a pair of £ = Lie(L) (see 4.2.16) such
that Y = Z + C with C a nilpotent orbit of £ and Z is a closed irreducible
smooth subvariety of z(£). Let P = L & Up be the Lie algebra decomposition
corresponding to the decomposition P = LUp.

The admissible complexes will be defined as the simple direct summand of
the complexes of the form ind%cpK (X, &) where (X, ) is a “cuspidal” pair of
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L (in which case Z = z(L)). However, we will also need to use the complexes
of the form ind%cPK(E,E) where (X,€) is a (non-necessarily “cuspidal”)
orbital pair of £, i.e. Z = {0} with o € z(L).

We keep the notation of 5.1.1.

Define
X, :={(z,9) €GxG | Ad(g Ha € ¥ +Up},

Xy :={(x,9P) € G x (G/P) |Ad(¢ )z € ¥ +Up}.

Remark 5.1.10. Note that the definition of X3 makes sense since by 2.6.6, the
group P normalizes Y +Up. Note that X is closed in V; since it is the inverse
image of X 4+ Up by the morphism G x G — G, (x,g) — Ad(g~!)z. Therefore
Xo is closed in Va; indeed the morphism 7’ of 5.1.2 is open and 7'~ 1(X3) = Xj.
Moreover, the morphism X; — (X +Up) x G, (x,g) — (Ad(g~!)x, g) being
an isomorphism, X; and X5 are both irreducible.

We have the following commutative diagram.

5.1.11.

’ 7

X, - x, 2 g

T

[l
Vi Vo —— G

|
>

S A

where i, i1, i are the natural inclusions and p, p’ and p” are given by the
respective restrictions of m, 7’ and 7.

Remark 5.1.12. Note that p and p’ being obtained respectively from 7 and 7’
by base change, p is smooth with connected fibers of dimension m = dim G +
dimUp and p’ is a locally trivial principal P-bundle.

The variety X is open in its Zariski closure X, hence X , = p~1(X) is an
open subset of X;. Using the fact that p’ is a quotient map we deduce that
X2, = p'(X1,0) is open in Xo. We have,

X1,0={(z,9) € G x G|Ad(g™ ")z € ¥ +Up},

Xoo = {(z,9P) € G x (G/P)|Ad(g~ )z € ¥ +Up}.

Remark 5.1.13. Since p is smooth (see 5.1.12), as well as X', we get that X1 ,
is also smooth. Hence, from the fact that the restriction p), : X1, — X2, of
p" is a locally trivial principal P-bundle (see 5.1.12), we deduce that X, is
also smooth. Note also that X» , is irreducible since X5 is irreducible.
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Now let P act on X7 by right translation on the second coordinate and
on X by p.x = Ad(mp(p))x with p € P, € X. These actions make p into
a P-equivariant morphism from which we deduce that X , is P-stable and
since the above action of P on X factors through L we also deduce that the
local system € is P-equivariant. As a consequence we get that p*(€) is a P-
equivariant irreducible local system on Xi,. By 5.1.12, the morphism p/ is
a locally trivial principal P-bundle, therefore, by 4.3.4, there exists a unique
irreducible local system & on X, such that pi(E) = (p),)*(E2). We consider
the complex Ko = IC(E, &>)[dim X5 ,] on X5. We have

indf pK(2,€) = (p" ) Ko. (*)

Indeed, if K = K(X,€), we have K = 4,(IC(X, £)[dim X]) and so by using
the fact 1 that

(¢))" dim P}z = p* [m)(IC(T, £)[dim X))

and by applying the proper base change theorem successively to the left square
and the middle square (which are cartesian) of the diagram 5.1.11, we see that
(i)1 Ky = K (see 5.1.1 for the definition of K) and so we have (/)0 (is)1 Ky =
(7" ) K. Since p” = 7" oy, we see that (p" )1 Ky = ind%cpK(E,c‘)).

5.1.14 The Complexes indiC,PK(Z‘, £) Are G-Equivariant

Perverse Sheaves

We first establish some intermediate results.

Let (P,L,X) be as in 5.1.9. We denote by z(L),cy the set of L-regular
elements in G; by 2.6.13 (i), this set is a non-empty open subset of z(L). We
define

Z = {(z,gP,hP) € G x (G/P) x (G/P)| = € Ad(g)(¥ +Up) N Ad(h)(Z + Up)}.

We consider the action of G on (G/P) x (G/P) by left multiplication on

both coordinates, then we have a partition Z = |J, Zo according to the G-

orbits O on (G/P) x (G/P). A G-orbit O is said to be good if for (9P, hP) €

(G/P) x (G/P), there is a common Levi subgroup of gPg~! and hPh~!;

otherwise O is said to be bad. Let d = dimG — dim L + dim X

! Both (p')*[dim P]K> and p*[m](IC(¥, £)[dim X]) are canonically isomorphic to
IC(X1,0, p5€)[dim X1,0] = IC(X1,0, (05)*E2)[dim X1,,] in view of 4.1.3 (a) which
by 5.1.12 and 5.1.13 can be applied to (p, X) and (p’, X2,0).
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We have the following proposition which is slightly more general than the
Lie algebra version of [Lus84, Proposition 1.2 (a), (¢)] since in our case, Z is
not necessarily the whole center.

Proposition 5.1.15. With the above notation we have:
(1) For any nilpotent G-orbit O of G and u € L,;; we have

dim (O Nyt (u)) < %(dimO — dimOL).
(2) For any G-orbit O we have
dimZo < d. (*)

If ZN2(L)reg # O then the inequality (*) is strict for bad O. In any case we
have dim Z < d.

Proof: We get (1) as a consequence of its group version (see [Lus84, Propo-
sition 1.2 (a)]) via a G-equivariant isomorphism Gyn; — Gni. We now prove
(2) by adapting the proof of [Lus84, Proposition 1.2 (c¢)] to the Lie algebra
case.

Let T be a maximal torus contained in P. By the Bruhat decomposition
of G, any G-orbit O is the G-orbit of (P,wP) for some w € Ng(T). Let
w € Wg(T) and let O, be the G-orbit of (P,wP) in (G/P) x (G/P) where
w € Ng(T') denotes a representative of w. The fibers of the morphism Zp, —
O, given by (X, gP, gwP) — (gP,gwP) are all isomorphic to (X + Up) N
Ad(w)(X + Up); the map Zp,, — O, is in fact a locally trivial fibration. It
follows that

dim (X 4+ Up) N Ad(w)(X +Up)) = dim Zp,, — dim O,,.
Hence to prove the proposition, it is enough to prove that
dim (X +Up) NAd(i)(X + Up)) < dimG — dim L + dim ¥ — dimO,, (a)

with strict inequality if Z N z(L)req # 0 and O, is bad.

An element of (X 4+ Up) N Ad(w)(X + Up) can be written both in the
form = + v with z € X, u € Up and in the form y + v with y € Ad(w)X,
v € Ad(w)Up. By decomposing z +u = y +v € PN Ad(w)P with respect
to the formula of 2.1.15 with Q := Ad(w)P and M := Ad(w)L, we have
x = z+u' for some unique z € LNAd(W)L, v’ € LNAd(w)Up and y = z+ '
for some unique v’ € Ad(w)L NUp.

Note that we have u+u' = v+v'. Let LY = wLw ™', P¥ = wPuw ™!, LY =
Ad(D)L, P* = Ad(w)P, ¥ = Ad(w)Z, 2% = Ad(1)Z, C* = Ad(w)C. Let
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X, be the subvariety of Up xUpw X (Upw NL) X (UpNLY) X (LNLY) consisting
of (u,v,u’,v',z) such that u+ v’ =v+v', z+u € X and z 4+ v € T". The
inequality (a) is then equivalent to

dim X,, <dimG — dim L + dim ¥’ — dim O,, (b)
with strict inequality if Z N 2(L)req # 0 and O,, is bad. Let
Y = {(v,v,2) € Upw NL)x UpNLY) x (LNLY)|z+u" € X,z4+0 € TV}

We have an isomorphism X,, — Y, x {(z,y) € Up X Upw| x =y} given by
(u,v,0/, 0", 2) = (W, v, 2), (u—v",v—u’)), thus dim X, = dimY,, +dim UpN
Upw). From the fact that O, and G/(P N P") have the same dimension, we
see that dim (Up NUpw) = dim G — dim L — dim O,,. We deduce that (b) is
equivalent to

dimY,, <dimJX

with strict inequality if Z N 2(L)eq # 0 and O, is bad.

Let (u/,z) € (Upw N L) x (LN LY) such that z + u' € X. The product
(LY N L).(Up» N L) being a Levi decomposition of the parabolic subgroup
PY N L of L (with corresponding Lie algebra decomposition P* N L = (LN
LY) @ (Upw N L)), by 2.7.1(ii) we get that (z + u')s is (Upw N L)-conjugate
to zs. But since z +u' € ¥ = Z+ C , we have (z + u')s € Z. We deduce
that z; € Z. Similarly, if v* € (Up N LY) is such that z + v € X", then
zs € Zv. By the finiteness of the number of nilpotent orbits in LN LY =
Lie(L N L"), we see that the image of the projection prs : Y,, — £ N LY
on the third coordinate is thus contained in ((Z N Z%)+ C1) U ...U ((ZN
Z%) 4 CY,) for a finite set of nilpotent (L N L™)-orbits C; of £ N L™ such that
for i € {1,...,n}, the image of prs intersects (£ N Z%) + C;. Now note that
LN LY acts on Y, by the adjoint action on the three coordinates and so prs
is naturally (L N L")-equivariant, hence its image must be (L N L*)-invariant.
As a consequence, we see that the image of prs is (ZNZY)4+C1)U...U((ZN
ZY) + Cp). Now if z € (2N 2%) + C; for some i € {1,...,n}, then pry'(z)
is isomorphic to {v' € Upw N L| 2z, +u' € C} x {v' € Up N LY| 2z, + v € C}
which is isomorphic to (72 pw (2n) N C) X (7bqp(2n) NCY).

We deduce from 5.1.15(1) that dim (pr;'(2)) < (dimC — dimC;) +
+(dim C — dim C;) and so that
dim (pr; ' (2N 2¥) + ;) < dim (2N 2") + dim C. (*)

Now Yi = [icqr,...n} pry (2N 2%) + C;). Since the above union of closed
sets is finite, we deduce from (*) that dimY,, < dim(Z N 2Z%) 4+ dimC. We
deduce that
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dimY, <dim Z + dimC

with strict inequality if Z N 2(L)yeq # 0 and O, is bad since in that case we
always have ZN ZY C Z. ad

We are now going to see a first consequence of 5.1.15 (see proposition
5.1.18 below). We use the notation of 5.1.9 relatively to (P, L, X, £).

Remark 5.1.16. Note that the morphism p is proper. Indeed the projection
pra : G x (G/P) — G/P on the second coordinate is proper (since the variety
G/P is complete) and as we did for Xy C V2 (see 5.1.10), we can show that
Vs is closed in G x (G/P). We deduce that X» is closed in G x (G/P) and so
that the restriction of pro to X (which is p”) is proper.

Notation 5.1.17. Let X3 = p”'(X3). By the above remark, X3 is closed in G.

Proposition 5.1.18. The varieties X5 and X3 are both irreducible of dimen-
sion d = dimG — dimL + dim X.

Proof: We already saw that X5 (and thus X3) is irreducible, see 5.1.10.
The fibers of the map Xo — G/P are all isomorphic to X + Up. Hence,
dim X5 = dim (G/P) + dim X' + dim Up, that is dim Xy = d.

From dim X, = d we deduce that dim X3 < d. It remains to see that
dim X3 > d; this is in fact a corollary of 5.1.15. Indeed since p” : X5 — X3
is a morphism between irreducible varieties, there exists an open subset U of
X3 such that for any z € U, dim p”~!(x) = dim X3 — dim X3 = d — dim X3.
To apply 5.1.15, let us introduce f : p”~Y(U) xy p”"~H(U) — p”"~1(U) the
projection onto the second coordinate. For z € p”~1(U), the fiber of f at x is
isomorphic to p”~1(p”(z)), hence is of dimension d — dim X3. We deduce that
dim (p”" =Y (U) xpp" 1 (U))—dim (p”"~1(U)) = d—dim X3, i.e. dim (p" = (U) x ¢/
p"~1(U)) = 2d—dim X3. On the other hand, p"” =1 (U)x yp"~1(U) is open dense
in X3 X x, X2, thus its dimension is equal to dim (X2 X x, X2) = dim (X2, X x,
X2,0). But X5, Xx, X2, = Z where Z is as in 5.1.15, therefore by 5.1.15, we
deduce that 2d — dim X3 < d, i.e. d < dim X3. O

We have the following proposition.

Proposition 5.1.19. The complex ind%CpK(E,E) is a G-equivariant per-
verse sheaf.

Proof: We denote by K¢ the complex ind? K (¥, E) = p' Ka. To show that
K¢ is a perverse sheaf, we have to show that for any i € Z,
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(i) dim (Supp (H'K®)) < —i and
(ii) dim (Supp (H'DgK%)) < —i.
Recall that Dg denotes the Verdier dual operator on D%(G).

Since p” is proper, we have Dg o p}’ = p{' o Dx,, hence Supp (H'DgK®) =
Supp (H'p; Dx,Ks). By [Ara01, Corollaire 3.1.4 (d)], we have Dx,Ks =
IC(X2,0, &Y )[dim X5] where £ denotes the dual local system of & on Xo.
Hence, since the proof of (i) applies with &; replaced by any local system on
X2,0, we only prove (i). The proof is inspired from that of [Lus84, Proposition
4.5].

Since p” is proper, we get that for any z € X3, the stalk H:(p]K2) at
x is the hypercohomology with compact support HZ(p"~!(x), Ka|p-1(s)) of
P/~ (x) with coefficient in Ks|,n-1(,) (since p”~!(z) is closed in X5 and so is
a complete variety, this is in fact the hypercohomology).

Following the proof of [Lus84, Proposition 4.5], we first exhibit for x € X3
a stratification of p”~1(x), i.e. a partition of p”~1(x) into locally closed
nonempty subsets. Let {Cy|a € A} be the nilpotent orbits of £ contained
in C; this provides a stratification ¥ = Hoca o with Xy = Z + C,.
By taking the inverse images of these strata under the map p, we get a
stratification X; = HaeA X1,q- Since the X, , are P-invariant for the P-
action on X; given by right translation on the second coordinate, their im-
ages Xo o = p/(X1,o) provides a stratification for X5. Note that Xz, =
{(X,gP) € G x (G/P)| Ad(g71)X € X, +Up}. For z € X3, we stratify

P 2) by p (@)a = 91 2) N X
Now if for 2 € X3, H'(p" (), K2|,-1(z)) # 0, then there exists a stratum

P~ H(x)q such that H.(p"~(2)a, Kol pr-1(z),) # 0. Therefore to show (i), it
is enough to show that for any i, and any o € A,

5.1.20.  dim{z € Xs| H.(p" ' (2)a, Ka|pr-1(2),) # 0} < —i.
Following [Lus84, p.221] (see the case a # «,) we are reduced to prove the
following assertion.

For any o € A and any i € Z,

5.1.21. dim{z € X3| dimp”" ! (2)q > £ — 2(dim ¥ — dim X,,)} < dim X3—i.
We denote by X3 theset {z € X3| dim p”~(2)o > & — L(dim ¥ — dim ¥,)}.
To prove 5.1.21, it is enough to prove the following inequality 2 for any i € Z
and « € A,

51.22.  dim(Xa,4 Xx, Xo,0) > dim X5 + 4 — dim ¥ + dim ,.

2 This inequality is used implicitly in [Lus84] without proof.
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Indeed, if 5.1.21 is false, then for some ¢ and some a € A, we have
dim X3* > dim X3 — ¢ and so from 5.1.22, we deduce that

dim (X240 Xx; X2,0) > dimXs —i+4¢—dim X + dim ¥,.
By 5.1.18, this gives
dim (Xo,q Xx; X2,0) > dimG — dim L 4 dim X,

but the last inequality contradicts 5.1.15 (2) applied to (P, L, Xy).
It remains to prove the inequality 5.1.22 for any ¢ € Z and a € A.

Let i € Z, o € A. Note that Xg’a is a constructible subset of X3, i.e. a finite
union of locally closed subsets of X3s.

Indeed, for any morphism f : X — X'’ of algebraic varieties, the set
{z € X| dim ., f~(f(z)) > k} is closed in X for any integer k, therefore its
image under f, which is {2z’ € X’| dim f~1(2’) > k} (note that dim f~1(2') =
Max ¢(;)=pdim, f~1(2")) is a constructible subset of X'.

We choose a locally closed subset V% of X5 contained in X3 and of
maximal dimension, i.e. of same dimension as X5

Since for any z € Xy, dim p"~1(2)q # —00, i.e. p""1(2) N Xo0 # 0, we
have X2® C p”(Xa.4) and the fiber at # € X5 of the restriction p” of p to
X2, are all of dimension > 4 - l(dimE — dim X,,). Hence the fibers of the
morphism (of varieties) pll~ 1(V’ @) — V4 induced by p” are all of dimension
>t —1dimXY - dlmEa).

We deduce that
dim p!/ (V) — dim V> % - %(dimZ — dim X,),
that is,
dim p// " (V5) — dim X% > - — %(dimE—dimEa). (1)
Moreover the fiber at € p/~ 1(V’ ') of the projection
pa (V) sy gl (V) = gl (V)
on the second coordinate is isomorphic to p!, ' (p”(x)), hence

dim (ot~ (V) o ™ (V5) = dim gy ™ (V) > £ = 3 (dim ¥~ dimm ).

l\.')ls
l\')l)—l

We sum this inequality with (1) and we get the inequality 5.1.22.
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We proved that ind%cpK (X,€) is a perverse sheaf. The G-equivariance
of indf _p K (X, &) follows from 5.1.6. O

Definition 5.1.23. We say that two triples (L,X,E) and (L', X' &) as in
5.1.9 are G-conjugate if there exists g € G such that, L' = gLg~', X' =
Ad(g)X and &' is isomorphic to Ad(g=)*E. If (L, X, €) is a triple as in 5.1.9,
then the G-conjugacy class of (L, X, ) is the set of triples (L', X', E") which
are G-congugate to (L, X, E).

Remark 5.1.24. Let (L, X,€) and (L', X ') be two triple as in 5.1.9 such
that for some g € G, we have L' = gLg~!, X’ = Ad(g)¥ and &’ is isomorphic
to Ad(g~1)*€. Let P = LUp be a Levi decomposition in G with corresponding
Lie algebra decompositions P = L&Up, let P/ = gPg~! and let P’ = L' ®Up
be the Lie algebra decomposition corresponding to the decomposition P’/ =
L'Up:. Then the complex ind? K (¥, £) is isomorphic to ind%, —p K (', &).

In the following proposition we use the notion of “perverse sheaves of
geometrical origin” as in [BBD82, 6.2.4].

Proposition 5.1.25. Assume that £ is of the form (R with § € ls,(C) and
¢ € 1s(Z2) is such that ([dim Z] is of geometrical origin. Then the perverse
sheaf indgcpK(E,f) is semi-simple.

Proof: Since p” is proper, from the decomposition theorem of Beilinson, Bern-
stein, Deligne and Gabber (see [BBD82]) it is enough to show that K is of
geometrical origin. Since “being of geometrical origin” is stable by the func-
tors ji. (see [BBD82, 6.2.4]) we need to show that & is of geometrical origin,
i.e that ¢[dim Z] X £[dim C] is of geometrical origin. From [BBD82, 6.2.4 (c)],
it is thus enough to see that &[dimC] is of geometrical origin. Let u be an
element of C, then the morphism L — C, g — Ad(g)u factors through a
bijective morphism f : L/Cr(u) — C. Since f* : Isp(C) — lsp(L/Cr(u)) is
an equivalence of categories , we are reduced to show that f*¢[dimC] is of
geometrical origin. But this is a consequence of the fact that f*(£) is a simple
direct summand of . (Q,) if 7 is the Galois covering L/Cr,(u)® — L/Cr(u),
and that the constant sheaf Q, on L/Cf(u)° is the inverse image of Q, on a
point. a
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5.1.26 When the Complexes indiC,PK(Z', &) Are Intersection

Cohomology Complexes

Let (P,L,X,€E) be as in 5.1.9. Recall that z(L),¢, denotes the set of L-regular
elements in G. In this subsection, we show that if Z N z(L),eq # 0, then the
complex ind%cpK (X, &) is an intersection cohomology complex.

We assume that ZNz(L)yeq # 0, and we denote by Z,..4 the set ZNz(L)req
and by Y., the set Z,.4 + C. Then X4 is open dense in Y. Let

Y =Yz = |JAd9)(Zre)
geG

and
Yy := {(z,9L) € G x (G/L)|Ad(g™")x € Xyey}-

We have the following lemma (see [Lus84, Lemma 4.3 (c)]).

Lemma 5.1.27. The map v : Yo — p""~1(Y) defined by v(x,gL) = (x,gP) is
an isomorphism.

Proof: Only the surjectivity of 7 is proved in [Lus84], which proof simplifies
in the Lie algebra case (essentially because X can not have elements with
non-central semi-simple part). Before proving the surjectivity, we prove that
~ is an isomorphism onto its image. For that, we first have to check that the
image of «y is a variety.

By 2.6.6, the image of v is {(z, gP) € G x (G/P)|Ad(g~ ")z € Xyey + Up},
thus it is an open subset of Xs: indeed, it is the image of

{(z,9) € G x G|Ad(g~ ")z € ey +Up}

by the quotient map p’ and {(z,9) € G x G|Ad(g~!)x € Xyeq + Up} is the
inverse image of Y,.; + Up under the morphism X; — Y +Up, (x,9) —
Ad(g~1)x.

Let P act on G x (X +Up) by p.(g9,z) = (9p~ !, Ad(p)z) and L acts on
G X Xyeg by L.(z,9) = (g1~ Ad(l)z). Then we may identify Ya with G xL X,
and the image of v with G x¥ (X, +Up). By 2.6.6, we have an isomorphism
Up X Yyreg — Yreg + Up given by the adjoint action. Via this isomorphism,
the P-variety G X (Xyeq + Up) can be identified with the P-variety G X
(Xreg X Up) where P = L x Up acts on G X (X,eq x Up) by (I,v).(g, (z,u)) =
(g(lv)~1, (Ad(l)x, lvul ). Then we have a natural map G x (X,¢y x Up) —
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G X Xyeq given by (g, (z,u)) — (gu, z) which induces a morphism G x (X4 X
Up) — G x L Xreg- This morphism is constant on the P-orbits, hence gives
rise to a morphism G x* (Zreg xUp) — G x L Yreg which is the inverse of ~.

We show now that  is surjective. Let
Z ={(z,gP) € G x (G/P)| Ad(g™")x € Zyeg +Up}.

We have to show that p”~*(Y) = Z. If we let G act on X5 by Ad on the
first coordinate and by left translation on the second coordinate, and by Ad
on G, then the morphism p” is G-equivariant. This implies that to prove
the inclusion p”"~1(Y) C Z, it is enough to prove that p”"~1(X,..,) C Z. Let
x € Yo and g € G be such that Ad(g~Hz € X + Up; let us show that
Ad(g™Yx € Xyeg + Up. Write Ad(g~ Yz = I+ u with I € X, u € Up. We
have to show that I; € Z,.4 and I, € C (note that [,, € C and [, is already
in Z). By 2.7.1, there exists v € Up such that Ad(v~lg )z, = I, € Z.
Since x5 € Z,ey, we deduce from 2.6.16 that Ad(v =g Yas € 2(L)rey, i-e.
that Is € Z,cq := 2(L)reg N Z. Therefore, from 2.6.6, there exist an element
v € Up such that Ad(v')l =1+ u. Such an element v’ satisfies

(i) Ad(v'"tg~Y)as = I, and

(i) Ad(v'"tg Yay, = l,.
From (i) we deduce that v'~1g=! € Ng(L), and so since x,, € C' by assump-
tion, we deduce from (ii) and the relation I,, € C' that Ad(v/"1g~1)C is a an
L-orbit of £ which intersects C, hence we have Ad(v'"1g~1)C = C and so by
(ii), I, € C. O

Lemma 5.1.28. The subset Y is locally closed in G, irreducible and smooth
of dimension dimG — dimL + dim X.

Proof: We saw in the proof of 5.1.27 that p”~!(Y) is an open subset U of
X5. Moreover we have p”~1(p"(U)) = U. Therefore, from the fact that p” is
a closed morphism, we get that p”(U) =Y is open in its Zariski closure in G.

Now Y is the image by G x G — G, (g,2) — Ad(g)z of the irreducible
subvariety G x X, of G x G, therefore Y is irreducible.

We consider the morphism f : G x% X,.., — Y given by f(g,z) = Ad(g)z.
Then we see that f is a Galois covering with Galois group, the stabilizer of
Y in Wg(L). Since G xE X, is smooth, by [Gro71, exposé I, Corollaire 9.2],
we deduce that Y is smooth of dimension dim G — dim L + dim X a
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Remark 5.1.29. If we denote by W (%) the Galois group of the Galois covering
GxL %, =Y, (9,7) — Ad(g)z, then by [Gro71, exposé V, Proposition 2.6]
the canonical bijective morphism (Gx%X,..;)/Wa(X) — Y is an isomorphism.

We have the following lemma (see [Lus84, Lemma 4.3]).

Lemma 5.1.30. (i) X3 is an @rreducible variety of dimension dimY,

(ii) p" is proper and p’(X2) =Y.

Proof: We already saw that X is irreducible and that p” is proper. From
5.1.18, we know that X5 and p”(X32) are irreducible of same dimension dim G—
dim L +dim X'. Moreover from 5.1.28, Y is an irreducible subvariety of p”(X2)
of dimension dim G — dim L + dim ¥, we deduce that Y = p”(X5) and that
dim X5 =dimY. O

Now we are going to construct a G-equivariant semi-simple local sys-
tem on Y whose perverse extension on G will be canonically isomorphic to
indf pK(2,E) .

We consider the following diagram
5.1.31. Yy Ly, Ly

where
Y1 :={(z,9) € G x G|Ad(g ")z € Tyey}

Yy :={(z,9L) € G x (G/L)[Ad(g™ ")z € Tyeg}
and a(r,g) = Ad(g~ V), o/(z,9) = (z,9L), o (z,9) = x.

Denote by &; the local system a*(€) on Yi; it is an irreducible local system
since Y,e4 is open dense in X and Y} ~ X..; x G. The map o being L-
equivariant (with respect to the adjoint action of L on X and the action of
L on Y; given by l.(z,g9) = (z,g71)), the local system &; is L-equivariant.
Now, the map (z, g) — (g, Ad(g~!)x) defines an isomorphism Y; — G x .,
which is L-equivariant for the action of L on G x X, given by l.(g,z) =
(gl=1, Ad(l)z). Since Yo ~ G xL X,.,, by 4.3.3 the triple (Y1,Y2,d/) is a
locally isotrivial principal L-bundle. Thus by 4.3.4 the L-equivariance of &;
implies the existence of a unique irreducible local system &£ on Y3 such that
(a')*€&; = & . We consider the direct image (a’).& on Y. Since o is a Galois
covering with Galois group W¢ (X)), the stabilizer of X' in W (L), the sheaf
()& is a semi-simple local system on Y. Now G acts on Y by Ad, on V;
and Y3 by Ad on the first coordinate and by left translation on the second
coordinate, and on X trivially; the morphisms «, o’ and o” are then G-
equivariant. We deduce that the local system (o’').& is G-equivariant. Then
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the complex K (Y, (a").&2) is G-equivariant semi-simple and by 4.2.13, each
of its direct summand is G-equivariant.

Notation 5.1.32. Denote K (Y, (').&2) by ind%(€).

The following proposition which is the Lie algebra version of [Lus84, Propo-
sition 4.5].

Proposition 5.1.33. We consider a triple (L, X,€) as in 5.1.9 such that
ZN2(L)reg # 0. Then the complex ind5.(E) defined above is canonically iso-
morphic to the complex ind%cPK(E,E) for any parabolic subgroup P of G
containing L as a Levi subgroup.

Proof: Let (P,L,X,£) be as in 5.1.9. We use the notation related to
(P, L, ¥, ) introduced before (5.1.9 and 5.1.26). Let K = K(X,&) € Mp(L).
To show that the complex ind%cp(K ) is isomorphic to ind$(€), we need to
check that ind%cp(K ) satisfies the axioms 4.1.1 which characterize the com-
plex IC(Y, (a").&)[dim Y]. We first show that

(1) H=9mY (ind?_,K)|y is a local system canonically isomorphic to

(@)+&2.

The following diagram is clearly commutative.

5.1.34.
y Yi Yo

I |

’
p p
yLtx, L X,

— =

"
Po

=l

where i denotes the inclusions and -~y is given as in 5.1.27. Since the middle
square is commutative we have i* o (p))*(&3) = (a/)* 0 v*(&2). But pi(€) =
(p2)*(&2), thus we have i* o p*(€) = (¢/)* 0o v*(£2). Using the fact that the
left square commutes, we deduce that o*(€) = (a/)* o v*(&2), but o*(€) =
()" (&2), so v*(&2) = & that is v*(Kalx,,) = &[dim X5]. We consider the
following cartesian diagram.

YQ'X—N>Y

U

X2 p_} ?
From the proper base change theorem applied to the above diagram, we deduce
that the canonical base change morphism (p{'Ks)|ly — o (§2[dim X5]) is an
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isomorphism. Since o/ : Sh(Y2) — Sh(Y) is an exact functor (because o is a
finite morphism), we have o/ (&2 [dim X)) = (a.&2)[dim X3] 3. Since dim X, =
dimY (see 5.1.30 (i)) , we deduce (1).

It remains to check the axioms (i), (iii) and (iv) of 4.1.1. The axiom (i)
follows from the fact that H:(p|Kz) is the hypercohomology H'(p"~!(z),
K| p—1(3y) which, is equal to 0 when i < —dimY" since the complex K; =
K3 satisfies K5 = 0 if r < —dimY. Now it remains to prove the following
inequalities for ¢ > —dimY’,

(a) dim (Supp (Hi(ind%CpK))) < —i,

(b) dim (Supp (HY(Dg Oind%cpK))) < —i.

For the same reasons as those evoked in the proof of 5.1.19, the proof of (b)
is entirely similar to that of (a), we thus prove only (a).

The proof of (a) is quite similar to that of 5.1.19 (i); the difference is that
in 5.1.19, it is enough to use that K5 is a perverse sheaf while in the proof of
(a) we need to use that K5 is an intersection cohomology complex.

As in the proof of 5.1.19, for any x € X3, we have a stratification p”~!(z) =
[Hoca P’ (z)a; we denote by a, € A, the index corresponding to the open
stratum C of C. To prove (a), we are reduced to prove that the inequality
5.1.20 is strict for any @ € A and i¢ > —dimY. Let ¢ > —dimY and let
a € A. When a # «,, following [Lus84], we are reduced to prove 5.1.21
with strict inequalities instead of large inequalities. But then, see 5.1.19,
it is enough to prove that the inequality 5.1.22, where Xé’a is replaced
by {z € X3| dimp”" " (z)s > % — 3(dim X — dim X,,)}, is a strict inequality,
which proof is entirely similar to that of 5.1.22 (we only need to replace large
inequalities by strict inequalities). Following [Lus84], the case @ = a, is re-
duced to proving that the inequality 5.1.21 is strict, which proof is entirely
similar to that of [Lus84, Proposition 4.5]. O

Notation 5.1.35. We denote by G, the closed subset of G consisting of the
elements of G whose semi-simple part is G-conjugate to o.

Remark 5.1.36. The variety G, is a finite union of G-orbits; this follows from
the finiteness of nilpotent orbits. When o € z(G), note that G, = o + G-

5.1.37. Let (P, L, X, &) be as in 5.1.9 such that X' = o 4+ C' for some o € z(L)
and £ = Q, X ¢ with ¢ € Is(C). Then by 5.1.25, the G-equivariant complex

3 Note that in the left hand side, (). is a functor D2(Y2) — D.(Y) while in the
right hand side, it is a functor Sh(Y2) — Sh(Y).
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ind%cpK (X, &) is semi-simple; moreover by 4.2.13 each direct summand is G-
equivariant. On the other hand we have X35 C G, (see 5.1.17 for the definition
of X3) and so X3 is a finite union of G-orbits. Hence from 4.2.14, we deduce
that the complex ind%cpK (X,€) is a finite direct sum of orbital perverse
sheaves on G.

5.1.38. Let (P, L, X, &) be as in 5.1.37 such that 0 € 2(L)cq, i.e. C&(0) = L.
Then we have a diagram as in 5.1.31. Let = o+u € X, we then have X = OL
and Y = OF. First note that since C(z) = C¢(z), we may regard Ay (x)
as a normal subgroup of Ag(x). Let & be the local system on Y3 such that
(a/)*(&2) ~ a*(€) and let x be the irreducible character of Ay (x) associated
to £ as in 4.2.15, then the G-equivariant local system (a'’).&2 corresponds to
the character Indﬁf((g (x) of Ag(z), where Indﬁf((j)) is the usual induction of
characters as in [Ser78, 3.3]. Moreover if ¢ is the L-equivariant local system
on OF corresponding to a character ' of Ag(z), then the restriction ¢& of &
to OL is the L-equivariant local system corresponding to the restriction of x/

to AL(I)

Lemma 5.1.39. If Cg(0) is connected, then the complex ind} pK(OL,€)
is isomorphic to the complex K(OS, &) where € is the unique irreducible G-
equivariant local system on OF such that flor = €.

Proof: If Cg (o) is connected, then we have Ag(z) ~ A (x). O

Since our assumption on p can not ensure that for any Levi subgroup L of
G, the centralizers of the semi-simple elements of £ are all connected, we will
need to use the following result.

Lemma 5.1.40. Let (O,€) be an orbital pair of G, let x € O and let L =
C&(xs). Then the complex K(O,§) is a direct summand of ind%cpK(Oan,fL)
where £ is the restriction of € to OL = x4 + O%ﬂ and where P is the Lie
algebra of a parabolic subgroup of G having L as a Levi subgroup.

Proof: The lemma follows from 5.1.38 and the fact that if x is an irreducible
character of Ag(z) and x’ denotes its restriction to Ar(x), then the scalar
product
Ag(z) —
(IndAf(w) (X/)7 X) Ac(z) — (X/7 X/)AL(E)

1S non-zero. O
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5.1.41 Restriction of ind¢

rcpK(X,€) to G, with o € 2(G)

Let (P, L, X &) be as in 5.1.9. In this subsection we assume that Z = z(L)
and that & = ¢ X ¢ where ¢ € Is,(C) and £ is a one-dimensional local system
on z(L£). We fix an element o € z(L£). Note that &|,+c = Q, K (. We start
with the following lemma.

Lemma 5.1.42. We have IC(X,€)|,,z = IC(oc + C,Q, K ().

Proof: Since z(£) is smooth, we deduce from 4.1.6 that IC(X,€) ~ ¢ K
IC(C,¢). Hence if i : {o} x C — z(L) x C is given by the inclusions, then
IC(X,8)|,.c ~ i*(IC(X,€)) ~ Q,WIC(C,(). Applying again 4.1.6, we de-
duce that IC(X, &),z ~ IC(oc + C,Q, K (). O

Proposition 5.1.43. Assume that o € z(G). Then the support of the com-
plex md%cpK(o + C,Q; X () is contained in G, and we have a canonical
isomorphism in D%(G,),

(indfcpK(2,)) lg. = (indicpK(o+C.QBQ)) [dim=(L)]
where we identified indgcp[((a + C,Q, X ¢) with its restriction to G, .

Proof: Note that the triple (P, L, 0 +C, Q,X() is as in 5.1.9 if we put Z = {c}.
Hence as in 5.1.11, we have a diagram

5.1.44.

o+ 6 Po Xf— P XQU P g

where (XY, X3, po, pl., plt) is defined in terms of P, L, 0+C as (X1, X2, p, o', p")
is defined in terms of P,L, Y. Let K§ € M(XJ) be the analogue of K»; we
have (p!)1(K¢) = indf pK (o + C,Q, ¥ (). Let f” : X§ — G, be the mor-
phism 4 given by z + p//(2). Then we have (ind%cpK(U +C,Q,R C)) lg, =
(fE K3

The following diagram commutes.

o4+ C 2 xo L=, xg

5.1.45. l l l l

Yy o x L x, L

4 £ is well-defined since the image of p is contained in G,.
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where ¢ denotes the inclusions.

From 5.1.42 we have i* (IC(X,€)[dim X]) = IC(c + C,Q, K ¢)[dimC +
dim z(L£)], hence since the left square and the middle square of 5.1.45 commute,
we deduce that i*(Ky) = KJ[dimz(L£)]. Since o € z(G), the right square of
5.1.45 is cartesian. Hence from the proper base change theorem, the canonical
base change morphism (p'K3)|g, — ((fJ/)1K3) [dim z(L)] is an isomorphism.

O

Remark 5.1.46. The proposition 5.1.43 generalizes as follows: let ¢ be not
necessarily in z(G), then we have a canonical isomorphism (up to a shift)

(ind%cpK(E,S)) g, = (ind%cpK(go N E,Elgmx)) |G-

Note that the right hand side of the above isomorphism might not be the
same as that of 5.1.43 (this happens when G, N X # o + C).

The complexes ind%cpK(U +C,Q,X (), with o ¢ 2(G), will appear to be
more important than the complexes (ind%cpK (X, € )) lg., so we preferred to
state 5.1.43 rather than its above generalization which will not be used.

Lemma 5.1.47. The complex (m chK(E,E)) lg, is a semi-simple per-
verse sheaf on G, up to a shift by dimz(L).

Proof: This follows from 5.1.43 and 5.1.37. O

5.1.48. The isomorphism G ~ z(G) ® G we have fixed just before 5.1.1 gives
rise to a Lie algebra isomorphism £ =~ 2(G) @ (£/2(G)). Let P = P/Zg,
L=1L1)7% L=1L/2G), P ="P/2(G) and & = £/2(G). Then L =~ 2(G) ® L
and X ~ z(G) x %.

Lemma 5.1.49. Assume that we have a decomposition € ~ ¢ K E with & €
15(2(G)) and & € lsi(f]). Then we have ind%CpK(E,é') ~ ¢[dimz(G)] K

ind%CﬁK(ﬁ,é’) eEM(2(G)@G).

Proof: Let V4, Vo, 7, ' and 7" be defined in terms of (G, P, L) as in 5.1.1
and let Vi, Vs, #, #/ and 7" be defined in terms of (G, P, ﬁ) Then the lemma
follows from the fact that we have the following decompositions Vi = z(G)x V4,
Vo = 2(G) x Vo, and 7 = Id, gy x 7, ' = Id,(g) x &' and 7" = Id gy x 7. O

Similarly we can prove the following lemma.
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Lemma 5.1.50. Assume that o € z(G). Let (O,n) be a nilpotent pair of G
such that the complex K(O,n) is a direct summand of indgcpK(C, (), then
the complex K (0 +0,Q,Xn) is a direct summand of ind%CpK(o—l-C’, Q,X0).

5.1.51 Introducing Frobenius

Let (P,L, X, &) be as in 5.1.9 such that ZNz(L),eq # 0. We keep the notation
of 5.1.9 and 5.1.26. We assume that (L, >, ) is F-stable and let ¢g : F*€ = &
be an isomorphism.

The construction of the complex ind%(€) has the following advantage: the
morphisms «, o’ and o of 5.1.31 are F-stable, and so ¢¢ induces a canonical
isomorphism ¢y, () : F* (ind% €)= ind%(£) while when P is not F-stable,
there is no such a direct way to define an isomorphism F* (ind%cpK (X, € )) =
ind% K (%, E).

In this subsection, our interest is to follow the action of the Frobenius in
the construction of the complex ind%cpK (X,8).

Let P = F(P) (note that L is also a Levi subgroup of P). As in 5.1.9, we
have a diagram

~/ ~11

e X, 2 X, 2 G

with
Xy :={(z,9) €Gx G| Ad(g )z € ¥ +Up}
Xy :={(z,9) € G x (G/P)| Ad(g ")z € T +Up}
and where 5, 5’ and " are the analogue for P of p, p/ and p”. We denote
by K2 € M(X32) the analogue for P of the complex K> (see 5.1.9). Let F} :
X1 — X17 (Iag) = (F(I)7F(g)), Fy: Xy — X27 (Iag) = (F(I)7F(Q)P) We
have the following cartesian diagram.

F X 2 X, 2 —g

S

P bel 7 X, P’ G
Then we can check from the commutativity of the above diagram that ¢¢
induces a canonical isomorphism ¢s : Fg*(f(g) — K5 and so from the proper
base change theorem applied to the right square of the above diagram, we
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deduce that the base change morphism f : F*((5")1Ks) — (p”)i1K> is an
isomorphism. We have the following proposition (see [Lus85b, 8.2.4]).

Proposition 5.1.52. We keep the above notation. Then the above canon-
ical isomorphism f : F*((7")ZWK2) — (p})Ka makes the following diagram
commutative

F* (0" 1K2) —T— (0")1k

F*(g)l p

md% &)

¢
P (ind(€)) —2Z indg,(€)

where g and g are the canonical isomorphisms given by 5.1.33.

Proof: Since all complexes occurring in the diagram 5.1.52 are perverse ex-
tensions of local systems on Y, it is enough to check the commutativity of the
restriction to Y of this diagram. For that, we consider the following cartesian
diagram.

5.1.53. Y, — "y

where ¢ is the notation for the natural inclusion and ~, 4 are given in 5.1.27.

By definition, f is the composition of the base change morphism F*(5" ) Ko =
(P"WF3 Ky with (p")i(¢) = (0" WFiKy = (p")1Ka. We have the following
diagram (the composition of the top arrows is the restriction of f to Y).

5.1.54.

~

PP Ry —— (0" Py Ky (") K

| | l

F*(Oz”)*:y*KQ _~ (O[H)*'Y*FQ*KQ M} (OLH)*’Y*KQ

i* (0" )1(¢2)
— T
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where we denote (by abuse of notation) ¢y for v*(¢2) : v*(Fi Ky) — v*(K>)
and where the unlabeled arrows are the canonical base change morphisms
(which in our case are isomorphisms because the diagram 5.1.53 is cartesian).
The right square of the diagram 5.1.54 is commutative because it is given by
the base change morphism of functors i*(p” )1 — (a’’).v*. The commutativity
of the left square follows from the definition of base change morphisms.

To simplify the notation we write &, instead of £2[dim X5]. As we saw in the
proof of 5.1.33, we have 7*(Ky) = & = *(K3). Since Fj o 7* = v* o Fy, the
isomorphism ¢o = v*(F5 Ky) — 7*(K>) is thus an isomorphism Fj (£5) — &
(from 5.1.34, we see that this isomorphism is actually the canonical iso-
morphism induced from ¢¢ using the diagram 5.1.31) and an isomorphism
Fy3*Ky — v* K, that is

o ¢ *
F3y Ky : 7 K>

|

G ——————— &

By applying the functor (o). we get (411), s+ &, —= % () 47K,

l lll
(@) (b2)

(@) F5 6 ———————(a").&2

We deduce the following commutative diagram.

5.1.55.
F*(a). 3" By~ (a").F35* Ry "% s (). K

||l l ln
F*(0")&s = (@), By — o ().

where the unlabeled arrows are the canonical base change morphisms. Using
v* o Fy = F5 o~*, we see that the top arrows of the diagram 5.1.55 are the
corresponding bottom ones of the diagram 5.1.54. Moreover the composition
of the bottom arrows of the diagram 5.1.55 is the restriction of ¢ind%(£) toY
since the isomorphism ¢9 : F(£2) — & is the canonical isomorphism induced
from ¢¢ using the diagram 5.1.31. Now if we glue the diagram 5.1.55 together
with the diagram 5.1.54 in the obvious way and if we permute ¢* with F* in
the left hand side of the diagram 5.1.54, we see that the right and left vertical
arrows of the resulting diagram are respectively the restrictions of g and F*(g)
to Y. ad
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5.1.56 Admissible Complexes (or Character Sheaves) on G

Notation 5.1.57. Consider the non-trivial additive character ¥ : F} — @Z of
3.1.9. We denote by A the affine line over k. Let h : Al — A! be the Artin-
Shreier covering defined by h(t) = t2 —t. Then, since h is a Galois covering of
A' with Galois group F,, the sheaf h.(Q,) is a local system on A! on which
F, acts. We denote by Ly the subsheaf of h.(Q,) on which F, acts as ¥~ 1.
There exists an isomorphism ¢, : F*(Ly) = Ly such that for any integer

i> 1 wehave X, o =WoTrs s, : Fy — Q) (see [Kat80, 3.5.4]).

Definition 5.1.58. [Lus87] Let K € Mg(G) be irreducible.

(a) If G is semi-simple, we say that K is a cuspidal admissible complex
if its support is a closure of a single nilpotent orbit in G (i.e if K is of the
form K(O,&) for some nilpotent pair (O,&) of G) and if for any proper Levi
decomposition P = LUp in G (with corresponding Lie algebras decomposition
P =LdUp), we have (mp)((K|p) = 0 (where 0 denotes the zero object in
DY(X)).

(b) If G is reductive, we say that K is a cuspidal admissible complex if it
corresponds, under the identification G ~ 2(G) ® G, to a complex on z(G) &G
of the form K1 K, where Ko € Mg(G) is cuspidal and where K1 € M(2(G))
is of the form m*(Lyg)[dimz(G)] with m : 2(G) — k a linear form and Ly the

one-dimensional local system on Al defined in 5.1.57.

By 4.1.6, we see that any cuspidal admissible complex K € Mg(G) is of
the form K (z(G) + C,m*(Ly) K () for some nilpotent pair (C,¢) of G and

some linear form m : z2(G) — k.

Definition 5.1.59. Let (C, () be a nilpotent pair of G and let ¥ = z(G) + C
and & = m* (L)X where m is a linear form on z(G). If the complex K (X, £)
s a cuspidal admissible complex, then we say that

o the pair (X,€) of G is a cuspidal admissible pair (or & is a cuspidal local
system on X)),

e the pair (C,¢) is a cuspidal nilpotent pair of G (or ¢ is a cuspidal local
system on C').

Remark 5.1.60. In the group case, the varieties X’ supporting a cuspidal local
system (see [Lus84, 2.1]) are inverse images under the map G — G of isolated
conjugacy classes (see [Lus84, 2.6, 2.7]). Note that in the case of Lie algebras,
the “isolated” orbits in G are the nilpotent orbits; this follows from the fact



5.1 Admissible Complexes and Orbital Perverse Sheaves on G 85

that the connected component of the centralizers in G of the semi-simple
elements of G are Levi subgroups of GG. Hence the definition of the varieties
X supporting a cuspidal pair of G is consistent with that for groups.

Definition 5.1.61. We say that a triple (L, X, €) is a cuspidal datum of G if
L is a Levi subgroup of G and (X,€) is a cuspidal admissible pair of Lie(L).
We say that a cuspidal datum (L, X,E) of G is F-stable if L, X and &€ are all
F'-stable.

Definition 5.1.62. Let K € Mq(G) be irreducible. Then we say that K is
an admissible complex (or a character sheaf) on G if it is a direct summand
of ind%:(E) for some cuspidal datum (L, X&) of G.

Notation 5.1.63. We denote by A(G) the set of admissible complexes on G.

Remark 5.1.64. Let ag : G — G be given by x +— —x, then ag permutes the
admissible complexes on G and maps the cuspidals onto the cuspidals.

We have the following proposition.

Proposition 5.1.65. [Lus87, 3 (a)] Let P = LUp be a Levi decomposition
in G with corresponding Lie algebra decomposition P = LOUp. If K € A(L),
then ind%cp(K) s a direct sum of finitely many admissible complexes.

Proof: We verify easily that the proof of [Lus87, 3 (a)] remains valid under
our assumption on p. O

Remark 5.1.66. Let (L,C,m,() be such that (L,z(L) + C,m*(Ly) X () is
a cuspidal datum of G. We identify £ with 2(G) & L as in 5.1.48. Let
z( ) = 2(£)/2(G) and let C' be the image of C' in £. Then the local sys-
tem £ decomposes as (m(g)) Lo X (m Z(L)) Ly B € 1s(2(G) x 2(C) x C)
where m.(gy and m_ ) are the restrictions of m respectively to z(G) and z(k)
Indeed, if s : A x A! — Al is the morphism given by the addition on A!,

then m = so(mg) x mz(k)). Hence m*(Ly) = (mz(g) X m k)) (Eg,) From
5" (Ly) = Ly W Ly, we deduce that m*(Ly) = (mg))* (L) W (m, ) (Ly).

Lemma 5.1.67. With the notation of 5.1.66, let (L,X,€) = (L,z(L) +
C,m*(Ly) K () and let A € A(G) be a direct summand of ind%, (). Then
A is of the form (mg))* (Lw)[dimz(G)] R A with A € A(G).

Proof: Follows from 5.1.49, 5.1.33 and 5.1.66. a
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Definition 5.1.68. Let K € M¢(G), then we say that K is a Lusztig com-
plex over G if it is of the form md%(é’) for some cuspidal datum (L, X, &) of
g.

Definition 5.1.69. A cuspidal orbital pair of G is an orbital pair of G of the
form (o + C,Q, X () where o € z(G) and (C,¢) is a cuspidal nilpotent pair
of G. An orbital perverse sheaf on G is said to be cuspidal if it is of the form
K(O,¢) for some cuspidal orbital pair (O,€) of G.

Remark 5.1.70. Note that when G is semi-simple, the cuspidal admissible
pairs of G and the cuspidal orbital pairs of G are all nilpotent orbital; thus
in the case where G is semi-simple, we use simply the terminology “cuspidal
pair”. Similarly for complexes, when G is semi-simple, we use the terminology
“cuspidal complex” instead of “cuspidal admissible complex” or “cuspidal
orbital perverse sheaf”.

Remark 5.1.71. Let K be an orbital perverse sheaf on G. Note that K is
cuspidal if and only if for any proper Levi decomposition P = LUp in G with
corresponding Lie algebra decomposition P = L ®Up, we have (mp )i1(K|p) =
0.

5.1.72 Orbital Perverse Sheaves: The Fundamental Theorem

5.1.73. A cuspidal datum of G is a triple (L, X', £’) where L is a Levi subgroup
of G and where (X7, £’) is a cuspidal pair of L in the sense of [Lus84, Definition
2.4]. Let (L, X', &) be a cuspidal datum of G such that X' = Z9C’ (with C’
a unipotent class of L) and & = Q, X ¢’ with ¢’ € Is;(C’); such a pair
(C',¢") will be called a cuspidal unipotent pair of L. As in [Lus85b, 7.1.7,
8.1.1], we construct a semi-simple perverse sheaf ind$, (') € M(G), and for
any parabolic subgroup P of G having L as a Levi subgroup we construct a
complex ind¥_ p K (X', '); by [Lus84, Proposition 4.5], these two complexes
are canonically isomorphic. These constructions are completely similar to what
we have done in the Lie algebra case. From [Lus85b, 7], the pair (C,() of G
is a cuspidal unipotent pair of G if and only if for any Levi decomposition
PUp in G, we have (7p)i(K(C,()|p) =0 where mp : P — L is the canonical
morphism. Note that the Lie algebra version of this assertion is exactly the
definition of cuspidal local systems on nilpotent orbits.
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Definition 5.1.74. (i) By a unipotent complex over G, we shall mean a
perverse sheaf K of the form (m S (5’)\(;um) [—dim Z1] extended by zero on
G — Gyni for some cuspidal datum (L, X', E") of G as above. If K = K(C', (")
for some cuspidal unipotent pair (C',¢") of G, then K is called a cuspidal
unipotent complex.

(#i) By a nilpotent complex over G, we shall mean a perverse sheaf K of
the form ind%(€)|g,., shifted by —dimz(L) and extended by zero on G — Gy
for some cuspidal datum (L, X,E) of G such that & is of G of the form Q,X ¢
on X = z(L) 4+ C where L = Lie(L). If K = K(C,() for some nilpotent
cuspidal pair (C,¢) of G, K is called a cuspidal nilpotent complex.

Remark 5.1.75. By 5.1.33 and by 5.1.41 applied to ¢ = 0, we see that
if (L,Y,&) = (L,2(£) + C,(m1)*Ly W () and (L, X,&) = (L,z2(L) +
C,(m2)*Ly X () are two cuspidal data of G where £ = Lie(L), then
ind$.(€1)|g, ., and ind$(&2)|g,,, are isomorphic; there are actually both isomor-
phic to indf K (C,¢)[dim 2(L)] where P is the Lie algebra of any parabolic

subgroup containing L. Hence the complexes (ind%(é’)\gw) [—dim z(L)] ex-

tended by zero on G — G,i;, where (L, X, €) runs over the cuspidal data of G,
are all nilpotent complexes. We have a similar result for groups, see [Lus85b].

Notation 5.1.76. We denote by Nil(G) the set of nilpotent complexes over G
and by Uni(G) the set of unipotent complexes over G.

Notation 5.1.77. We denote by DY(G)yn; the full subcategory of D2(G) of
unipotently supported complexes and by D2%(G),. the full subcategory of
D4(G) of nilpotently supported complexes. If f is a G-equivariant isomor-
phism Guni — Gnir, we denote by (fo)* : D2(G)nit — D2(G)uni the functor
induced by f* : D%(Gnit) — DE(Guni)-

We have the following proposition.

Proposition 5.1.78. Let [ : Guni — Gna be a G-equivariant isomorphism.
Then the functor (f,)* : D2(G)nit — D(GQ)uni induces a bijection Nil(G) —
Uni(G) mapping cuspidals onto cuspidals. More precisely, if (L, z(£)+C, Q,X
¢) is a cuspidal datum of G with L = Lie(L), then (f,)* maps the nilpotent
complex over G induced by (L,z(L) + C,Q, X ¢) onto the unipotent complex
over G induced by the cuspidal datum (L, z3. (f’l(C’)) ,Q,X f*(C))

Proof: From the characterization in 5.1.73 of cuspidal unipotent complexes
and cuspidal nilpotent complexes, it is clear from 2.7.6, that, for any nilpotent
pair (C,¢) of G, the complex (fo)*(K(C,()) = K(f~*(C), f*¢) is cuspidal if
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and only if K (C, () is cuspidal. Using again 2.7.6, we also have that the functor
(fo)* commutes with the parabolic induction of equivariant perverse sheaves.
Hence if we write the elements of Nil(G) and the elements of Uni(G) in terms
of parabolic induction (see 5.1.75), we get the required result. O

Remark 5.1.79. By 5.1.78, a Levi subgroup of G supports a cuspidal unipotent
pair if and only if its Lie algebra supports a cuspidal nilpotent pair.

Theorem 5.1.80. Let (O,€) be a nilpotent pair of G. Then there exists a
unique (up to G-conjugacy) triple (L, C, () such that L is a Levi subgroup of
G and (C,C) is a cuspidal nilpotent pair of L = Lie(L), and such that the
complex K (O, () is a direct summand of ind%CpK(C, ¢) where P is the Lie
algebra of a parabolic subgroup of G having L as a Levi subgroup.

Proof: This follows from its group analogue [Lus84, Section 6] and 5.1.78. O

We have the following fundamental theorem for orbital complexes.

Theorem 5.1.81. Let (O,&) be any orbital pair of G. Then there exists a
unique (up to G-conjugacy) triple (L, OF,EF) such that L is a Levi subgroup
of G and (OF &L) is a cuspidal orbital pair of L = Lie(L), and such that the
complex K(O,E) is a direct summand of md%cpK(OL,é'L) where P is the
Lie algebra of a parabolic subgroup of G having L as a Levi subgroup.

Proof: Let z € O and let M = C&(zs). We denote by M the Lie algebra
of M and by Q the Lie algebra of a parabolic subgroup of G having M as
a Levi subgroup. Let &, be an irreducible M-equivariant local system on
O such that K (O, €) is a direct summand of ind%CQK(Oy,@Z X&), see
5.1.40. By 5.1.80, there exists a cuspidal datum (L, 2(L)+C,Q, K C) of M
such that the complex K (O} &,) is a direct summand of ind%% 5 K (C,¢)
where PM is the Lie algebra of a parabolic subgroup of M having L as a
Levi subgroup. Hence by 5.1.50, the complex K(OM Q, X &,) is a direct
summand of indﬁ/lcp mK(x,+C,Q,X(). Hence it follows from the transitivity
property of parabolic induction that the complex K (O, &) is a direct summand
of ind% pK (x5 +C,Q, K ().

Let us now prove the unicity up to G-conjugacy. Assume that (L',o +
C',Q, X (') is another triple such that (o + C’,Q, X ¢’) is a cuspidal or-
bital pair on £’ = Lie(L’) and such that K(O,€) is a direct summand of
ind%, _p K (o + C',Q, K ¢'). Then there exists g € G such that Ad(g)o = .
Hence (Ad(g)C’,Ad(g~1)*¢’) is a nilpotent cuspidal pair of Ad(g)L" C M.
Hence we may assume that ¢ = z; and that L’ is a Levi subgroup of M. From
the transitivity of induction, the orbital perverse sheaf K(O,&) is a direct
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summand of ind, o (ind}-par K (x5 + C',Q, K ¢')). Hence there exists an
M-equivariant irreducible local system &£/, on O} such that K (O, ) is a direct
summand of indﬁACQK(Oi”,@Z X &) ; note that if Cg(xs) is connected, by
5.1.39 we must have &£/ ~ &,. Now if we interpret the local systems &, &, and
E! in terms of characters as in 5.1.38, then we see from a theorem of Clifford
[Isa94, 6.2], that the local systems &, and £/, must be G-conjugate. As a conse-
quence, we get that the complexes ind%cpK(C, ¢) and ind%,cp,K(C’, ¢’) have
a common direct summand. Hence from 5.1.80 we get that the triples (L, C, {)
and (L', C’, (") are G-conjugate. Since L and L’ are two Levi subgroups of M,
from the classification of cuspidal data [Lus84] (see also [DLM97, 1.2]), we
get that (L, C, ) and (L', C", (") are M-conjugate from which we deduce that
(Lyzs +C,Q,X () and (L', zs + C',Q, X (') are M-conjugate. O

Recall that, by 4.2.5 and 4.2.10, the group Zg/Zg acts on any G-
equivariant perverse sheaf on G.

Proposition 5.1.82. Assume that G is semi-simple and let x : Zg — @Z be
a character of Zg. Then there exists at most one cuspidal complex on G on
which Z¢g acts by x.

Proof: The group version of 5.1.82 is known from [Lus84]. Hence the above
proposition follows from 5.1.78. a

Proposition 5.1.83. Assume that G is semi-simple and let (O, €) be a cuspi-
dal pair of G. Then the cuspidal complex K (O, &) is clean, that is its restriction
to O — O is zero.

Proof: Follows from its group version [Lus86a, 23.1(a)] and from 5.1.78. O

5.2 Deligne-Fourier Transforms and Admissible
Complexes

After recalling the definition and the properties of Deligne-Fourier transforms,
we expound the main result of [Lus87] and we verify that its proof works for
p acceptable; recall that in [Lus87] the characteristic is assumed to be large.

Notation 5.2.1. Let p denote the non-degenerate G-invariant bilinear form
on G fixed in 3.1.9. If H and H’ are two Lie subalgebras of G, we denote by
U sy the restriction of p to H x H'; if H = H’ we write simply py. If L is
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a Levi subgroup of G with £ = Lie(L), and if ¢ € z(L£), then we denote by
me : 2(L) — k the k-linear form given by z — u(z,0). In order to simplify
the notation and since the context should be always clear, we omit the Levi
subgroup from the notation m,. In view of 5.0.14 (iv), 5.1.79 and 2.5.16, any
k-linear form on z(£) is of the form m, for some o € z(L).

5.2.2. Let ‘H be a Lie subalgebra of G such that py is non-degenerate. The
Deligne-Fourier transform F’* : D%(H) — Db(H) with respect to (uw,¥) ,
where ¥ : F, — Q, is the non-trivial additive character fixed in 5.1.57, is
defined as follows (see [Bry86, 9.1] [KL85, 2.1]).

FHK) = (pro) ((pr1)" K ® (p30)* Lo ) [dim H]

where pri,pre : ‘H x H — 'H are the two projections and Ly is the one-
dimensional local system on A' defined in 5.1.57.

By abuse of notation, we use the symbol F’* to denote both the Deligne-
Fourier transform and the Fourier transform of functions (see 5.2.2 and 3.1.9);
this abuse of notation is justified by the following statement (see [Bry86, 9.2])
which relates Deligne-Fourier transforms of complexes with Fourier transforms
of functions.

5.2.3. Let H be as in 5.2.2. Assume that ‘H is F-stable. Let K € DY(H)
be F-stable and let ¢ : F*(K) = K be an isomorphism. Then ¢ induces a
canonical isomorphism F(¢) : F*(FHK) = F"K such that

m i
Xrn(K),F(¢) = (=) "1 2 FTY (X k).

The proof of 5.2.3 involves the Grothendieck trace formula applied to the F-
equivariant complex (F''(K), F(¢)) where F(¢) is the isomorphism induced
by ¢ and the isomorphism ¢z, : F*(Ly) = Ly of 5.1.57.

5.2.4. Let H be a Lie subalgebra of G. Following [Bry86, 6], we define the
convolution product on D2(H) as follows.

For K, K' € DY(H),
KxK' :=s5(KXK')
where s : H x H — H is given by the addition on H.

The following result (see [Bry86, 9.3, 9.6]) is the geometric version of 3.1.10
(i), (iv), (v).
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Lemma 5.2.5. Let H be as in 5.2.2. Let K, K' € DY(H) and F = F".
(i) Let a - H — H, x — —x, we have an isomorphism

FoF(K)~a*(K)(—dimH)

such that if H is F'-stable and K is an F-equivariant perverse sheaf , then the
above isomorphism is an isomorphism of F-equivariant perverse sheaves,

(i) We have an isomorphism F(K xK') ~ (FK @ FK')[dimH]. Moreover
if H is F-stable and K, K' are F-equivariant perverse sheaves, the above
isomorphism is an isomorphism of F-equivariant perverse sheaves.

(iii) We have an isomorphism F(K®K') ~ (FK«FK')[dimH]. Moreover
if H is F-stable and K, K' are F-equivariant perverse sheaves, the above
isomorphism is an isomorphism of F-equivariant perverse sheaves.

Remark 5.2.6. The assertion (iii) of 5.2.5 is not in [Bry86], however it can be
easily deduced from (i) and (ii) as this done in the proof of [Leh96, Lemma
4.2] with functions.

We have the following important result (see [Bry86, Corollary 9.11]).

Theorem 5.2.7. If K € D%(G) is a perverse sheaf on G, then F9(K) is also a
perverse sheaf on G. The functor F9 : Ma(G) — Ma(G) is an equivalence of
categories. In particular, it permutes the simple G-equivariant perverse sheaves

on G.
The following result which is the geometric version of 3.1.11(i).

Theorem 5.2.8. [Hen01, Theorem 4.3] [Wal01, 11.8(2)] Let P = LUp be a
Levi decomposition in G and P = L & Up be its corresponding Lie algebra
decomposition. Let A € My (L), then we have an isomorphism

FO(indlcpA) =~ ind}p(F*A)(—dimUp).

If P, L are F-stable and A is an F-equivariant perverse sheaf, then F9
(ind%CpA) and ind%cp(]iA) are naturally F-equivariant and the above iso-
morphism is an isomorphism of F-equivariant perverse sheaves.

We now state the main result of [Lus87].

Theorem 5.2.9. [Lus87, Theorem 5] Let A € Ma(G).
(a) The complex A is admissible if and only if it is the Deligne-Fourier
transform of some orbital perverse sheaf on G.

(b) If G is semi-simple and A is cuspidal, then F9(A) ~ A.
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The following result is used implicitly in the proof of [Lus87, Theorem 5].

Theorem 5.2.10. Let (L, X,&) = (L,2(£)+C, (m_y)* Ly ®C) be a cuspidal
datum of G where L = Lie(L) and o € z(L), and let P be a parabolic sub-
group of G having L as a Levi subgroup. Let P = L ® Up be the Lie algebra
decomposition corresponding to P = LUp. Then, there is an isomorphism

F9 (m 9 _pK(Y, 5)) ~ indd p K (o + C,Q, R Q).

5.2.11. We are going to prove the implications 5.2.9(b) = 5.2.10 = 5.2.9(a).
The implication 5.2.10 = 5.2.9(b) being trivial, this will prove that 5.2.10 is
equivalent to 5.2.9(b). The proof of those implications in [Lus87] is very dense
and does not show the problems related to the characteristic, moreover Lusztig
comes down to problems on functions while thanks to 5.2.8, it is possible to
work directly with perverse sheaves.

e We first prove the implication 5.2.9(b) = 5.2.10. Let (L, X, &) be as
in 5.2.10. Thanks to 5.2.8, we are reduced to show that F* (K (X,€)) ~
K(o+C,Q,X(). Hence we may assume that G supports a cuspidal admissible
pair and that L = G. To simplify the notation, we put m = m_,. Let K =
K(X,€), then K = m*Ly[dim2(G)] K K9(C, () € M(2(G) & G).

By 2.5.16, the bilinear forms pg and p.(g) are non-degenerate; hence the
Deligne-Fourier transforms 79 : D(G) — D(G) and F*(9) : DV(2(G)) —
Db(2(G)) are well-defined. We have

5.2.12. o
FIK) = F* 9 (m* Lg[dim z(G)]) B FI(K9(C,C)).

Indeed, let s : A; X A; — A; be given by the addition on &, we have s*(Ly) =
Ly W Ly. On the other hand, the form p decomposes as 1 = s o (u.(g) X fig)
since by 2.5.16, the subspaces G and z(G) of G are orthogonal with respect to
p. We deduce that p* Lo = (p1.(g))* Lo W (ug)* Ly from which 5.2.12 follows.

_Inview of 5.2.12 and 5.2.9 (b), and since K9 (0+C, Q,X() = K*(9(0,Q,)K
K9(C,¢) € M(2(G)XG), note that K*9)(c,Q,) is the constant sheaf on {o}
extended by zero on z(G) — {0}, it remains to see that
5.2.13.

FAD(m* Lg[dimz(G)]) ~ K9 (0,Qy).
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We prove that m*Ly[dim z(G)] ~ F*(9) (K*9(-0,Q,)); then 5.2.13 will be
obtained by applying F*(9) to this isomorphism. Let pri, pry : 2(G) x 2(G) —
2(G) be the two projections. Note that (pr)*K*(¥) (—o,Q,) is the extension of
the constant sheaf Q, on {—o} xz(G) by zero on (2(G)x 2(G)) — ({—o} x2(G)).
Hence the complex (pry)*(K*9)(—0,Q;)) ® (12(g))* Lo is the extension of
Q/Xm* Ly € Sh({—0}x2(G)) by zero on (2(G) x 2(G)) — ({—c} x2(G)), from
which we deduce that (pra); ((pr1)* (K29 (—0,Q;)) ® (1t2(g))* L) = m*Ly.

We have proved the implication 5.2.9(b) = 5.2.10.

e Let us now prove the implication 5.2.10 = 5.2.9(a). From 5.2.10, 5.2.7
and 5.1.37, we see that the Deligne-Fourier transform of an admissible complex
of G is an orbital perverse sheaf on G. Hence by 5.2.5 (i), we deduce that any
admissible complex on G is the Deligne-Fourier transform of some orbital
perverse sheaf on G. Conversely, if K is an orbital perverse sheaf on G, then
by 5.1.81, it is the direct summand of the parabolic induction of some cuspidal
orbital perverse sheaf. From 5.2.8, it is thus enough to see that the Deligne-
Fourier transform of a cuspidal orbital perverse sheaf is a cuspidal admissible
complex. From 5.2.10, it is clear that a cuspidal orbital perverse sheaf is
the Deligne-Fourier transform of a cuspidal admissible complex, hence using
5.2.5(1) together with 5.1.64, we see that the Deligne-Fourier transform of a
cuspidal orbital perverse sheaf is an admissible complex. a

Since by 5.1.64 the functor ag permutes the non-cuspidal admissible com-
plexes on G, we have in fact proved in the last paragraph that:

5.2.14. If 5.2.10 holds whenever L C G, and if K is a non-cuspidal orbital
perverse sheaf on G, then F9(K) is admissible non-cuspidal.

Proof of 5.2.9, 5.2.10:

From 5.2.11, we are reduced to proving the assertion 5.2.9(b). We now sketch
Lusztig’s proof of 5.2.9(b). We assume G semi-simple and let K be a cuspidal
complex on G. We first assume that the following result is true.

5.2.15. The complex F9(K) is nilpotently supported.

5.2.16. We now prove 5.2.9(b) by induction on dim G. We thus assume that
5.2.9(b) is true for any simple algebraic group of dimension < dim G. Hence
5.2.14 holds for any L € G (see 5.2.11). Since F9(K) is a G-equivariant simple
nilpotently supported perverse sheaf on G, it is orbital by 4.2.14. Hence F9(K)
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must be cuspidal. Indeed, if not, then by 5.2.14, the complex F9Y (_7_-g (K)) ~
ag(K) is admissible non-cuspidal which is in contradiction with 5.1.64. Since
the Deligne-Fourier transforms preserve the action of Z5 on K, by 5.1.82, we
must have F9(K) ~ K.

5.2.17. It remains to prove 5.2.15. We proceed by induction on dim G in order
to apply 5.2.14. We consider the notation of 4.4.13 with H = G and X = G.
We denote by I, the subset of I consisting of the cuspidal pairs of G. Since G
is semi-simple, the cuspidal pairs are nilpotent and so I, is finite. We assume
that ¢ is large enough so that I' = I,. Note that by 5.1.83, for ¢, € I,,
the nilpotently supported functions ), and X, , are proportional. Using a
G-equivariant homeomorphism Gyn; — Gpi defined over Fy, we can transfer
[Lus86a, 24.4(d)] to the Lie algebra setting and we thus deduce that

(X.,,Y)=0 for 1, € I,oe I¥ — 1, (*)

where the non-degenerate bilinear form (,) on C(GY) is defined by (f, f’) =
> wegr f(x)f'(x). Applying again [Lus86a, 24.4(d)], we get that the func-
tions XL\gfil with ¢« € I — I, are linear combinations of the functions
{V.|v € I — 1}, hence by (*), we deduce that the space spanned by the
functions {X, |t € I,} is the orthogonal complement of the space spanned
by {X,|t € I' —1,}. Now by applying the induction hypothesis we deduce
from 5.2.16 that 5.2.9(b) is true for any group of dimension < dim G, hence
by 5.2.14, we get that the complexes FY(K,) with ¢ € I — I, are ad-
missible non-cuspidal. We deduce from [Lus86a, 24.4(d)], that the functions
F9 (XL)\gfil with « € I¥ — I,,, are linear combinations of the functions Y, with
v € IF — 1,. Since (,) is preserved by F9 up to a scalar, it follows from (*)
that the space spanned by {F9(X,,)|t, € I,} is the orthogonal complement of
the space spanned by {X,|c € I — I,}, from which we deduce that the func-
tions {F9(X,,)| o € I,} and {X,, |1, € I,} span the same subspace of C(GF).
Hence the Fourier transforms of the functions X, with ¢, € I, are nilpotently
supported. The last assertion being true for any Frobenius F™ with n > 1,
we deduce from 4.4.9, that F9(K) is nilpotently supported for any cuspidal
complex K on G. ad

Corollary 5.2.18. Let A be an admissible complex and let (L,X,E) and
(L', X &) be two cuspidal data of G such that A is a direct summand of both
nd%(€) and ind%,(E'). Then (L, X,E) and (L', X", E") are G-conjugate.

Proof: Put (L,X,&) = (L,z2(£) + C,(me)*Ly K () and (L', X", &) =
(L', 2(L") + C', (mo)* Ly K ('). We have to show that (L, +C,Q,X () and
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(L',o' +C',Q, K (') are G-conjugate. But taking the Deligne-Fourier trans-
form of A, ind$.(£) ~ ind_» K (¥,&) and ind$, (£') =~ ind%,  p K (X', "), we
see that this is a consequence of 5.2.10 together with 5.1.81. ad

Corollary 5.2.19. Let (L, X, E) be as in 5.2.10. We assume that M = Cg(0o)
is connected (recall that this is always true if p is not a torsion prime for G).
Let @ be a parabolic subgroup of G having M as a Levi subgroup and let
Q=M@ Ug be the Lie algebra decomposition corresponding to Q = MUg.

(i) The functor indﬁACQ induces a bijection between the admissible com-
plexes which are direct summands of indjzw () and the admissible complexes
which are direct summands of ind%(E).

(ii) Let A be an admissible complexr on G which is a direct summand of
ind%,(E) and let B be an admissible complex on M such that A = in vcol(B).
Then, if FO(A) = K(OF,§) with x, = o, we have FM(B) = K(OM,&|om)
; in particular such an admissible complex B is unique (up to isomorphism)
and so, by (i), must be a direct summand of indy (€).

(i11) Assume that (L, X E) is F-stable, then the bijection of (i) induces a
bijection between the two subsets consisting of the F-stable objects.

Proof: Let B be an admissible complex which is a direct summand of
ind4!(£). By 5.2.9(a), the complex B is of the form FM (K(O,¢)) for some
orbital pair (O,¢) of M and by 5.2.10, we have O = o + O,, where O,, is
the orbit formed by the nilpotent elements of O. Hence we deduce from 5.2.8,
5.1.39 and 5.2.9(a) that ind%CQ(B) is an admissible complex on G and that
the map induced by ind%cg from the set of admissible complexes which are
direct summand of ind%!(€) to the set of admissible complex on G is injective.
Since ind%cg(indg (€)) ~ ind{,(€), we get the assertion (i). The assertion
(ii) is a straightforward consequence of 5.2.9(a), 5.2.8, 5.1.39. Now, if o and
B are F-stable, then the complex K (O, ¢) is also F-stable and so, from 5.1.33
applied to (M, o + O,, &) and from the remark at the beginning of 5.1.51, we
see that the complex ind%,lCQ(K((’),f)) is also F-stable. Applying 5.2.8, we
get that ind%/lcg(B) is F-stable. Hence the map of (i) induces a well-defined
map on the F-stable objects; this map is surjective by (ii). O

Remark 5.2.20. With the notation and assumption of 5.2.19, we see that
the endomorphism algebra of ind%(é’) is canonically isomorphic to that of
ind3 (€).

5.2.21. We use the notation of 4.4.13 for H = G and X = G. Then by
5.2.9(a), the set I(G) := I of 4.4.13 parametrizes the isomorphic classes of
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the admissible complexes on G and I(G)¥ := I parametrizes the isomorphic
classes of the F-stable admissible complexes. For « € I(G), we denote by A,
the admissible complex F9(K,) and for « € I(G)¥, we choose an isomorphism
ba, : F*(A,) = A,. Then we have the following proposition which is the Lie
algebra analogue of [Lus86a, 25.2].

Proposition 5.2.22. The set {Xa, ¢, | t € 1(G)F'} is a basis of C(GF).

Proof: This follows from 4.4.13, 5.2.3 and the easy fact that F9 transforms
a basis of C(G¥) into a basis of C(GT"). O

5.3 Endomorphism Algebra of Lusztig Complexes

Let (L, X,&) = (L,2(L)+C,m* Ly K () with L = Lie(L) be a cuspidal datum
of G. Let o € z(L) be such that m = m, where m, is as in 5.2.1. We use the
notation of 5.1.26 relatively to (L, X, £).

Let
Ng(€) :={n e Ng(L)| Ad(n)X = X, Ad(n)*(£) = &}
and let Wg(€) be the finite group Ng(€)/L.

5.3.1. Following [Lus84] and [Lus85b, 10.2], we are going to describe the en-
domorphism algebra A := End(ind%.(£)) in terms of Wg/(€). Let w € Wa (&)
and let &, : Yo = Ya be the isomorphism defined by d,,(z,gL) = (x, g1~ L)
where w denotes a representative of w in Ng(&); the map §,, does not depend
on the choice of the representative w of w. We have the following cartesian
diagram.

’ "

Yy —2 v ->.v =2

Y
Ad(u’;)l fwl ml Hl
oy

’

Yy —2_v -7

where fy(z,9) = (z,g9w™"!). From the above diagram we see that any iso-
morphism Ad(w)*(£) = & induces a canonical isomorphism &7 (£) — &.
Conversely, since a: Y1 — X4 is a trivial principal G-bundle if we let G act
on Y7 by left translation on both coordinates and on X4 trivially, the functor
o 1 Sh(Xreq) — Sha(Y1) is an equivalence of categories and so any isomor-
phism &% (£3) ~ & defines a unique isomorphism Ad(w)*(€) ~ &. Since the
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local system & is irreducible, the Q,-vector space A,, of all homomorphisms
0% (&2) — & is one-dimensional.

For each w € Wg(€), we choose a non-zero element 6,, of A,,. Note that
for w,w’ € Wg(E), we have &y, 0 6yr = . Hence for any w, w’ € Wg (),
we have 6, 0 8%,(0y) € Ayy. We thus have a well-defined product on
®w€WG(5) Ay given by 6,,.0, 1= 0, 0 6%,(0y). This makes @wewg(a Aw
into a Q,-algebra.

Using o) o 6% = o! we identify A, with a subspace of A. Then as in
[Lus84, Proposition 3.5], we show that ®wEWG(5) A, = A as Q-algebras. If
¢ : Ad(w)*E = £ is an isomorphism, we denote by 6,,(¢) the element of A,
induced by ¢. From the previous discussion, the map Hom(Ad(w)*E, &) —
Aw, ¢+ 0,(¢) is an isomorphism of Q,-vector spaces.

5.3.2. We fix w € Wg(€) together with a representative w of w in Ng(€).
Let P be a parabolic subgroup of G having L as a Levi subgroup and let
P* =wPw~t. Let P and P* be the respective Lie algebras of P and P“. Let
(X3, XY, pw, Py, Pir) be defined in terms of (PY, L, X)) as (X1, X2, p, 0, p") is
defined in terms of (P, L, X), and let K3 € M(XY) be the analogue of Ko,
see 5.1.9. We have the following cartesian diagram.

5.3.3. / )
f # X1 L X2 L ?

Ad(uv)l fwl swl ul

f Pw X{U Pw X%U P ?

where fi : (z,9) — (x,gw™") extends the map f, : Y1 — Y; and where
bw : (x,9P) — (z,gP"). Let ¢ : Ad(w)*E = € be an isomorphism; it induces
an isomorphism Ad(w)*K (X, £) ~ K(X, £) which by 5.3.3 induces a canonical
isomorphism hy,(¢) : (p )W KY = (p"”)1Ks such that the following diagram
commutes.

5.3.4.

(PhEg = (oK

SR

ind%(&) 29 inad(e)

where the vertical maps are the canonical isomorphisms given by 5.1.33.
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Proposition 5.3.5. Assume that Cg (o) is connected and let M = Cg(0).
We have Wg(g) = W]\/[(g) = W]\/[(Qg X C)

Proof: We show that the inclusion Wy (€) C Wg(€) is an equality. Let
n € Ng(€); it satisfies Ad(n)*m*(Ly) = m*(Ly). But the map m o Ad(n) is
the linear form on z(£) given by ¢ — (¢, Ad(n=1)o). Hence from the fact that
the character ¥ is non-trivial and the fact that the restriction of p to z(£) is
non-degenerate (see 2.5.16), we deduce that ¢ = Ad(n~!)o, that isn € Cg(0).
We thus proved that Wg(€) = Was(€). The equality Wi (€) = Wi (Q, X ()
is obvious. O

Proposition 5.3.6. We use the notation and assumption of 5.5.5 and 5.3.1.
Then we have,

(i) Wa(E) = Wy (L). Hence by [Lus84, 9.2(a)], the group Wa(E) is a
Cozeter group.

(ii) The natural morphism End(ind (£)) — End (mdg (5)\/\4””) is an

isomorphism.

(iii) We can choose the 0,, € A, C A such that for any w,w" € Wg(E),
we have 0.0, = Oy ; that is the map w — 0y, gives rise to an isomorphism
between the group algebra Q[Wa(E)] of Wa(E) and End(ind:(E)).

Proof: Since, by 5.3.5, we have Wg(E) = Wi (€), and, by 5.2.20, we have
End (ind%(é’ )) ~ End (indg{ (& )), we are reduced to prove the proposition
in the case where o € 2(G). We thus assume that o € 2(G), i.e M = G.
We now reduce the proofs of (i) and (ii) to the case where o = 0, i.e & =
Q; X ¢. Since by 5.3.5 we have Wg(E) = Wa(Q, X ), to prove (i) it is
thus enough to prove it for 0 = 0. By 5.1.66 we have a decomposition & =
(mz(g)) Lo X (mz(»ﬁ))*ﬁg, X ¢. But since 0 € z(G) and since by 2.5.16, the
space z(G) is orthogonal to G with respect to u, we have (mz(z))*ﬁgp = Q. We

deduce from 5.1.49 that ind%.(€) ~ (m(g))* Lo[dim z(ﬁ)]@indg(é) where £ =
Q,X(. Hence the natural morphism End(ind% &) — End(ind% (€)lg...) is an

isomorphism if and only if the morphism End (mdg(é)) — End (indg(éﬂgnﬂ)
is an isomorphism. We thus have reduced the proof of (ii) to the case where
o=0.

We now prove that (i), (ii) and (iii) hold for ¢ = 0; we will prove af-
terwards that (iii) holds for any o € 2(G). Let f : Guni — Gnit be a G-
equivariant isomorphism. Let (CL,¢E) := (f~1(C), f*¢) and let (2L, L) .=
(Z2.CE,Q, X ¢L); then (L, XL, EL) is a cuspidal datum of G. Moreover we
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have
Ng(€) = Ng(EF) := {n € Ng(L)[nZ*n~" = £F (Int,)* (EF) ~ X} (%)

and from [Lus84, Theorem 9.2 (b)] we have Wg (£F) := Ng(EL)/L = W (L),
hence we deduce (i). Put W = Wg(EL) = We (€).

Let us prove the assertion (ii) for o = 0. By 5.1.78, the complex ind$.. (£7)|¢
is isomorphic to f* (ind%(é‘)\gml), and by [Lus84, 6.8.2, 9.2],

uni

dim End (ind¥: (£5)|q,...) = [W].
Hence
dim End(ind$.(€)|g.,,..) = dim End(ind%.(&)). (1)

As in the group case (see [Lus84, 6.8.3]), we show that the restriction to G,
of any irreducible direct summand of ind%(£) is non-zero, hence we get that
the map in (ii) is injective which is thus bijective by (1).

From [Lus84, 6.8.2, 9.2], we have an isomorphism
QW] = End(indSe (£5),..)

of Q,-algebras, and so via ind$. (£F)|q,., ~ f* (ind%(é‘)\gml), we get that
End(ind%(é‘)\gml) ~ QW]. Thus we can choose the 6,]g,, such that
(OwlG,i)-Ovlg,s) = Owolg,,, for any w,v € W. The assertion (iii) for o = 0
follows thus from (ii).

Assume now that o € z(G). By 5.1.75, we have
End (lnd%(@l X C)|gnil) = End (lnd%(g)‘gnll) :
From the previous discussion we also have End (ind% QX ()\gm,l) =Q,W),
hence by (ii) we have End (ind%(é’)) =Q,W). O

The following result is a consequence of 5.3.6(ii).

Proposition 5.3.7. Assume that o € z(G). Then the restriction to Gn; of
any simple direct summand of mdgx(f) is a simple perverse sheaf on Gy (up

to a shift by dimz(L)).
5.4 Geometrical Induction: Definition

The geometrical induction for invariant functions will be defined using a for-
mula (see 5.4.7) expressing the characteristic functions of the F-equivariant
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admissible complexes in terms of characteristic functions of F-equivariant
Lusztig complexes. To establish this formula, we follow [Lus85b, 10].

5.4.1 Preliminaries

5.4.2. Let (L, X, ) be an F-stable cuspidal datum of G and let ¢ : F*(£) = &
be an isomorphism. For any w € Wg(€), we choose arbitrarily a non-zero
element 0, € A, where A, is the one-dimensional vector space defined in
5.3.1. We fix an element w of Wg(€) together with a representative w of w in
N¢(€). By the Lang-Steinberg theorem there is an element z € G such that
27 F(z) =™t Let L, := zLz~! and let £,, be its Lie algebra. Then L, and
Y := Ad(2)X are both F-stable. Let &, be the local system Ad(z~1)*(€).
We are going to define an isomorphism ¢,, : F*(E,) — &, in terms of ¢. By
5.3.1, the automorphism 6,, defines an isomorphism & ~ Ad(w)*(€) which
leads to an isomorphism

F*Ad(z71)*(€) =~ F*Ad(z71)*Ad(w)*(E). *)

Since we have Ad(w) o Ad(271) o F = F o Ad(z71), the isomorphism (*)

gives rise to an isomorphism h : F*Ad(z71)*(€) ~ Ad(z~1)* F*(€). Then the
isomorphism ¢, : F*(E,) ~ &, is Ad(z71)*() o h.

We denote by ¢9 : F* (ind%(é‘)) = ind$(€) the natural isomorphism

induced by ¢ and by ¢9 : F* (ind%w (Ew)) = ind%w (Ew) the natural isomor-

phism induced by ¢,,. As in [Lus85b, 10.6], there is a natural isomorphism
R ind%w (Ew) = ind%(€) such that the following diagram commutes.

P (indg, (€)) FO_ p (imdg. (&)

ldﬁ lewoasg

ind$, (£,) ——— ind%,(€)

As a consequence we get that

Xind%(é‘)ﬁwoqﬁg = Xind%w (Ew),99"

5.4.3. Let (L,%,&) be a cuspidal datum of G, let K9 = ind%(£) and let
A =End(K9). If A is a simple direct summand of K9, we denote by V4 the
abelian group Hom(A, K9). Then V, is endowed with a structure of .A-module
defined by A x V4 — Va4, (a, f) — ao f; since A is a simple perverse sheaf,
the A-module V4 is irreducible. We have a natural isomorphism
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Pvae )= K9
A

where A runs over the set of simple components of K9 (up to isomorphism).
For any = € G and any integer i, it gives rise to an isomorphism

P(va® HLA) S HLKT (*)
A

under which an element v ® a € V4 ® H. A corresponds to ve(a) where vl :
H:A — HLKY is the morphism induced by v : A — K9.

Assume now that the datum (L, X, E) is F-stable and let ¢ be an iso-
morphism F*(£) ~ &£. The complex K9 is thus F-stable and we denote by
#9 : F*(K9) = K9 the isomorphism induced by ¢. Let A be an F-stable sim-
ple direct summand of K9 together with an isomorphism ¢4 : F*(A) = A.
This defines a linear map o4 : V4 — Vy, v — qﬁgoF*(v)ogb;‘l such that for any
r € G and any integer 4, the isomorphism cA®(d4)% : VAQHLA = VaxHL A
corresponds under (*) to (¢9)% : HLKY = HIKY9. On the other hand, if
B is a simple component of K9 which is not F-stable, then (¢9). maps

€T

Vg ® HEB — H.LKY onto a different direct summand. It follows that

5.4.4.

XK97¢9 = Z TI“(O'A, VA)XA,¢A
A

where A runs over the set of F-stable simple components of K9 (up to iso-
morphism). If for w € Wg(€), we replace ¢9 by 6, o ¢9 with 6, as in 5.4.2
and we keep ¢4 unchanged, then the formula 5.4.4 becomes

5.4.5.
X K9 0,069 = ZTT(% 004,Va)Xa,p,-

A
Following [Lus86a, 10.4] we deduce that
5.4.6.

Xags =Wa@)|™" D Tr((fwooa)™, Va)Xko.g, 060
wEWG(E)

for any F-equivariant complex (A, ¢4) with A a simple direct summand of
K9,
We use the notation of 5.4.2; by 5.4.2 and 5.4.6 we get that
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5.4.7.

Xaga=Wa@)™H > Tr((bw OUA)_lva)Xind%w (E0).09
weEWaG(E)

for any F-equivariant admissible complex (A, ¢4) with A a simple direct sum-
mand of K9.

5.4.8. Let A be an F-stable admissible complex on G. Now we prove that
there exists a unique (up to G-conjugacy) F-stable cuspidal datum (L, X, &)
of G such that A is a direct summand of ind%,(£); this will show that we have
a formula like 5.4.7 for any F-equivariant admissible complex (A, ¢4) on G.

By 5.2.18, we need only to prove the existence of such an F-stable cuspidal
datum (L, X, E). Let (L,X,€) be a cuspidal datum of G such that A is a
direct summand of ind%(£). Since A is F-stable, it is also a direct summand
of F* (ind%(é’)) ~ ind%,l(z) (F*(£)). By 5.2.18, the cuspidal data (L, X,€)
and (F~Y(L),F~1(X),F*(£)) are G-conjugate i.e. there exists g € G such
that F~Y(L) = gLg™', F71(¥) = Ad(g9)¥ and F*(£) = Ad(g~1)*(€). By
Lang-Steinberg theorem, there exists g; € G such that F(g) = g; *F(g1). Put

(L1, 21,&1) = (g1Lgy ', Ad(g1) 2, Ad(g; 1)* (€)).

Then the cuspidal datum (Lq, 27, &) is F-stable and A is a direct summand
of ind¥, (&1).

Remark 5.4.9. Let A be an F-stable admissible complex on G. Assume that
FY9(A) is supported by the Zariski closure of an F-stable G-orbit of the form
o+ O with o € 2(G) and O a nilpotent orbit of G. Then there exists a unique
(up to GF'-conjugacy) F-stable cuspidal datum (L, X, £) such that L is G-split
and such that A is a direct summand of ind%(€).

Indeed, by 5.4.8, there exists an F-stable cuspidal datum (L, X,E) of G
such that A is a direct summand of ind$.(&). Since F9(A) is supported by 0+0O
with o € 2(G), the datum (L, X, £) is of the form (L, (L) +C, (m_,)* Ly X()
for some cuspidal nilpotent pair (C,¢) of £ = Lie(L). Since L supports a
cuspidal pair, any two parabolic subgroup of G having L as a Levi subgroup
are Ng(L)-conjugate (see [DLM97, 1.1(i)]). As a consequence there is a unique
(up to G¥-conjugacy) F-stable G-split Levi subgroup L, of G which is G-
conjugate to L. Since Wg(€) = Wg (L), see 5.3.6(i), it is thus possible, as in
5.4.2, to construct an F-stable cuspidal datum (L, Xy, &) of G, for some
w € We(E), such that L, = L,,.
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5.4.10 Geometrical Induction

5.4.11. Let M be an F-stable Levi subgroup of G and let M be the Lie
algebra of M. We are now in position to define the geometrical induction
R, : C(MF) — c(G").

We define the geometrical induction RS, : C(MF) — C(GF) using a basis
{Xa4,.06,|t € I(M)F} of C(MT) as in 5.2.22.

Let ¢ € I(M)f and let (L, X,€) be an F-stable cuspidal datum of M such
that A, is a direct summand of ind3/ (€).

Let ¢ : F*(£) = & be an isomorphism. For w € Wy (€), let 6, be a
non-zero element of A, C End(ind$!(€)) where A,, is as in 5.3.1. As in 5.4.7
we have

5.4.12.

XA“¢L = |W]V[(5)|71 Z Tr((@w O O'AL)*l’ VAL)Xindgw (Ew)7¢wM'
wEWN (E)

Then we define R%,(X4,,4,) by
5.4.13.

R (Xas) =Wu(@™" > Tr(bwooa,)™ Va)Xinag, (€.).65"
wEWN (E)

We will prove after the following remark that 5.4.13 does not depend on
the choice of the F-stable cuspidal datum (L, X, £).

Remark 5.4.14. (i) Note that the definition of R, : C(MF) — C(G¥) does
not depend on the choice of the isomorphisms ¢, with ¢ € I(M)¥. Indeed, let
R’%A be the induction defined on another basis {X4, ¢/ [c € I(M)F} and let
v € I(M)F. Since A, is a simple perverse sheaf, there exists a constant ¢ € Q,
such that ¢, = c¢;. Let o)y : Va, — Va, be defined in terms of M, ¢ as
04, is defined in terms of &M, #,. We thus have oa, =c 1
w € Wi (€), we have (0 004,)” ! = ¢(0poo’y )~ and so from 5.4.13, we get
that RY,(Xa,.4,) = CR/%A(XAL,#)- But since X4, ¢, = X4, ¢/, this proves
that RS, (X, 4.) = R’%A(XA“(M). It is also clear that the induction RS, does
not depend on the choice of the isomorphisms ¢ : F*(£) = £. Finally it is
clearly independent on the choice of the isomorphisms 6, € A, since if we
denote by #9 the canonical endomorphism of ind%.(£) induced by 6, (recall
that 6,, defines a unique isomorphism Ad(w)*& ~ & which induces a canonical

o’y . Hence for any
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isomorphism 69 : ind%.(€) ~ ind$(€)), then XindS, (£4),69 = Xindd,(€),69049
by 5.4.2. v

(ii) If (M, X, &) is an F-stable cuspidal datum of G together with an iso-
morphism ¢ : F*(£) ~ &, then

R%/l (XK(275)7¢) = Xind%(£)7¢g .

(iii) Note that unlike Deligne-Lusztig induction, the definition of geomet-
rical induction does not involve any parabolic subgroup of G.

We have the following lemma.

Lemma 5.4.15. We use the notation of 5.4.11. Assume that X, : C((MT) —

C(GT) is a Q,-linear map such that for any F-stable cuspidal datum (L, X, )

of M and any isomorphism ¢ : F*(€) ~ &, we have X/%t (Xind/Z\A(g)7¢M) =
g _ pg

de%(g)’d)g. Then X3, = R3,.

The following result will show the transitivity of geometrical induction,
and, together with 5.4.15, it will show the independence of the formula 5.4.13
from the F-stable cuspidal datum (L, X, £).

Proposition 5.4.16. For any F-stable cuspidal datum (L, X E) of M and
any isomorphism ¢ : F*(€) ~ &£, we have Rﬁ/l (Xind./z\/l(g)7¢/\/l) = X inag.(£),69 -

Proof: Thanks to 5.4.15, it is enough to show the existence of a Q,-linear map
X5, : C(MF) — C(GT) such that for any F-stable cuspidal datum (L, X, €)
of M and any isomorphism ¢ : F*(£) ~ &, we have X§, (Xindjz\:A(g)7¢M) =
Xinag (£),49- We define X§ 1 C(MF) — C(GT) on each element of the basis
{X4,.6,|t € I[(M)F} using the formula 5.4.13 with the following additional
condition concerning the choice of the F-stable cuspidal datum (L, X, &):
for 1 € I(M)¥, we assume that the F-stable cuspidal data a, = (L, X, €)
such that A, — ind$!(€) is chosen such that if A, with g € I(M)F, is a
direct summand of ind$!(€), then a, = a,. Now, let ¢ € I(M)F and put
a, = (L, ¥,€). Put KM = ind$!(€) and K9 = ind%(E). We want to show
that for any w' € Wy (€), we have X/g\/l (XKM,gw/O¢M) = XKg795/0¢g where
95, denotes the canonical endomorphism of K9 induced by the endomorphism
O € Ay. Let w' € Wy (E), from 5.4.5, we have

X5 (Xgeanp,,09m) = Y Tr(0ur 004, Va,) X5,(Xa,.0,)

where ¢ runs over the set Z := {1 € I[(M)F|A, — KM}. From the definition
of X/gv17 we have
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5417, X (Xgmp,0pm) = W (€)1 x

Z (Z Tr(0y 004, VAL)TT((HU, o UAL)_l,VAL)XKgﬂgwg) .

wEWM(E) \LEZ

Let A be the endomorphims algebra of K. Define p : A — A by
p(0) = oM o F*(0) o (qu)A. This is an automorphism of Q,-algebras and
for any v € Wi (€), we have p(A,) = Ap-1(y). For any ¢ € Z, the linear map
o4, : Va, — Vy, is A-semi-linear, t hat is o4, (0v) = p(0)o 4, (v). Hence from
[Lus85b, (10.3.2)], the term

ZTr(Hw/ oaAL,VAL)Tr((Ow OUAL)fl,VAL) *)
eZ

is equal to the trace of the linear map A — A, 0 — 60, p=1(0)0.,,. Recall that
the set {0,|v € W (E)} is a basis of A such that for any v,v" € W (€), we
have 0,0, € Ay, hence for any v € Wy, (€), we have

00 07 (0) 0w = (V)01 F(vyur

for some scalar e(v). The term (*) is thus equal to
Z g(v).
{veWn (E)|F(v) " twv=w’}

The formula 5.4.17 becomes

X (X, 00m) = V(€)Y Y. e(0)Xkopgap
wEW 1 (E) vEW 1 (€)
w;w/ F(v)~lwo=w’

where for two elements v,v" € Wy (€), the expression v ~ v’ means: v
F

and v" are F~!-conjugate. Hence to prove the equality X/gvl (XKMvewlod)M) =

X6 99,049+ it remains to show that if v € Wi (&) satisfies F(v) two =/,

then €(U)XKQ795)O¢Q = XKg795/0¢9-

Assume that v € Wy (&) is such that F(v) 'wv = w’. We have
02151 (00)0ur = £(0)0,

from which we deduce that GF(U)Qw/p(HF(U))_l = ¢(v)b,, that is,

O (0w (6™ 0 F*(0(,)) 0 (6™) 1) = e(0)bu.
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We thus have
07 ()0 (67 0 F*(0F,)) " 0 (¢9)71) = e(v)d.
By composing this equality with ¢9 on the right we get that
9}g7'(v) © egﬂ 0¢? 0 F*(azgr(v))_l = e(v)0, 0 ¢°
from which we see that XKg795/0¢g = e(v)X K9 69 0¢9 - O

Corollary 5.4.18. The geometrical induction is transitive, that is for any
inclusion L C M of F-stable Levi subgroups of G, we have R/gw o RM = R%
where L = Lie(L) and M = Lie(M).

Proof: This is a straightforward consequence of 5.4.16. O

5.5 Deligne-Lusztig Induction and Geometrical
Induction

Let L be an F-stable Levi subgroup of G and let (C, {) be an F-stable cuspidal
nilpotent pair of £ = Lie(L). Let P be a parabolic subgroup of G having L as
a Levi subgroup and let P = Lie(P). For any o € z(L£) we denote by &, the
local system (my)*Ly K¢ on X' = z(L£)+C and by K, the complex K (X, &,);
then &, = Q,X ¢ and K, = K(X,&,). We fix an isomorphism ¢ : F*(¢) = (.
Let K9 :=ind%(&,) and K9 := ind%(E,). We denote by ¢9 : F*(K9) & K9
the canonical isomorphism induced by 1 X ¢ : F*(&,) = &,.

5.5.1 Generalized Green Functions

Definition 5.5.2. We define the generalized Green function Q%C(q& €
C(GF)nu as the characteristic function of (K9|g, ., #9|g,.) extended by zero

on GF — gfﬂ, .

The following proposition is the Lie algebra version of [Lus85b, 8.3.2].

Proposition 5.5.3. Let 0 € z(L)F, and let ¢, : F* () — &, be an
isomorphism extending ¢, then if ¢ : F*(K9) =~ K9 is the isomorphism
induced by ¢, we have

Q%7C7(7¢(u) = X K9 49 (u)

F
nil*

for anyu e g
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Proof: There is a gap in the proof of [Lus85b, 8.3.2]. However a complete
proof of [Lus85b, 8.3.2] can be found in [Lus04] where the result [Lus85b,
8.3.2] has been generalized to the case where the reductive group G is not
necessarily connected. Here we adapt Lusztig’s argument to the Lie algebra
case.

~

Let hp : (KJ)lg,, — (KZ)lg,. be the isomorphism as in 5.1.75.
Since L supports a cuspidal pair, by [DLM97, 1.1(i)], the parabolic sub-
groups F'(P) and P are conjugate in Ng(L). Let w € Wg(L) be such that
F(P) = Pv% :=wPw~! with @ € Ng(L) a representative of w. By 5.1.52, we
have the following commutative diagram.

5.5.4.
% F*(hpw) "
F ((Kg)‘gnil) —P>F ((Kog)|gm‘z)

G G
56,4 76,0

(K)o b (K9) g,

We thus have to show that hp = hpw, i.e. that the following diagram com-
mutes.

5.5.9.

1ndLCpK (C,¢))[dim z(L

/\
\/

(indf - pu K (C, ¢))[dim 2(£

( ‘gnzl ‘gnzl

where the arrows are the restriction to the nilpotent set of the canonical
isomorphisms given by 5.1.33.

We thus come down to the following problem:

Let v € W (L) and let © be a representative of v in Ng(L). From 5.3.6(1),
the element ¥ normalizes Y. Let o/ = Ad(v~1)o and ¢/ = Ad(d)*¢. Put
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&, = (me)* Ly R and K., = K(X,&,) ; note that Ad(v)*E, = &L..
The complexes ind$(£”,) and ind%.(€,) are then isomorphic and so we get an
isomorphism

5.5.6.
@ indf p(K,) > indl p(KL).

o!

Restricting @ to the nilpotent set, we get an isomorphism
@, :ind? pK(C,¢) = ind? pK(C,()

which depends on v. We want to prove that the isomorphism @, does not
depend on o € z(L).

Let T be an F-stable maximal torus of L and let 7 be its Lie algebra; put
W = Wa(T). We use the notation of 5.1.11 and 5.1.31 relatively to (P, L, X).
Let m : X — z(L) be the first projection and my : ¥ — C be the second
projection. The morphism X; < X ™5 z(L£) factorizes through a morphism
p: Xo — z(L£). We have the following commutative diagram.

Xo—2 52 (0)
Y T/W

where y denotes the Steinberg map that maps x € G onto Oi N 7. Assume
that z = Ad(g~1)2’ with 2,2’ € 2(£) and g € G. Put L' = g~'Lg. Then L
and L’ are two Levi subgroups of C¢(2)° which support a cuspidal pair, hence
from [DLM97, 1.1(ii)] we have hLh™! = g~ Lg for some h € C(2)?, i.e. gh €
N¢g(L). We thus proved that two elements of z(£) which are G-conjugate are
conjugate in N (L). As a consequence we get that x(2(£)) ~ z(£)/Wg(L) —
T/W.Let A= 2z(L)/Wg(L). We have the following commutative diagram.

5.5.7.
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Put K = K,, K' = K!,, 9 = (my)*Ly[dimz(L)], ¥ = (me)* Lo [dim z(L)],
K =1C(C, C)[dim C)and K' = IC(C, ¢")[dim C]. We have K = (71)*9®(m2)*K
and K’ = (m1)* ® (m2)*K'. Let ¥q, 9%, Ka, Ky € D5(X3) be such that

(p")*92[dim P] = p*ni9[dim G + dim Up],
(p")*9%[dim P] = p*¢' 7} [dim G + dim Up),
(p")*Kaldim P] = p*n5K[dim G + dim Up),

KL[dim P] = p*mi K [dim G + dim Up]|.

(P')" K P Ty

Put K2 = 92 ® Ko and K} = ¥, ® K. Since (p)* K3[dim P] = p*K[dim G +
dimUp] and (p')*Kj[dim P] = p*K'[dim G + dimUp], we have (p") 1Ko =
indf _»K and (p")1 K} = ind%_p»K'. We have the following cartesian diagram.

5.5.8.
~

Yg( X2

| lf

a’ Y x4 Z(E)Teg(—> Y X A Z(ﬁ) o’

Y°© Y

where v is given by vy(z, gL) = (z, gP), see 5.1.27. Let V. =Y x 4 2(L)eg, then
dimV = dimY = dimY5. The morphism «” being finite, the morphism A is
also finite and so h(Y3) = V. Since the morphism p” is proper, the morphism f
is also proper, in particular it is closed ; we thus have f(X2) =Y x 42(L) = V.
Let & and &} be the local systems on Ya such that v*(K3) = &[dim X3] and
v*(K%) = &[dim X,]. We now prove that fi(Kz) = IC(V,h.(&))[dim V].
From 5.5.8, we have H~4mV (£ Ky)|y ~ h,(£2). Since Ko is an intersection
cohomology complex on Xo, we also have H!(fiKs) = 0 if i < —dim V. It
remains to check that

(i) dim (Supp(H'(fiK2))) < —i if i > dim V/,
(i) dim (Supp(H*(Dy(x,) fiK2))) < —i if i > dim V.
Clearly we have dim (X2 X f(x,) X2) < dim (X3 x3 X2). From 5.1.15, we
deduce that
dim (Xg X £(Xs) Xg) <dimG —dim L + dim X

Hence, we prove (i) as we proved (a) in 5.1.33. Since f is proper, the functor f
commutes with the Verdier dual, hence the proof of (ii) is completely similar
to that of (i).
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Similarly, we prove that fi(K3) = IC(V, h.(&))[dim V].

Let Wg(L) act on Y x 4 z(£) by Ad on the second coordinate; if w € Wg (L),
we denote by f, the corresponding automorphism of Y x 4 z(£). The set V
is then Wg(L)-stable and we have a canonical isomorphism (f,)*(h.&2) ~
h«&,. Hence from the properties of intersection cohomology complexes, this
isomorphism extends to a unique isomorphism

(o) (fiK2) = fIK).

Then the isomorphism (p1)1(?’) is nothing but the isomorphism &
indf p»(K) = indf_p(K’) of 5.5.6; we thus have to show that the restriction
of (p1)1(9’) to the nilpotent set does not depend on o.

Let d = dim G — dim L. From 5.5.7, note that
(/* (po) [d9) © Ko = K and (f*(pa)"[d}9") © K} = K.

Put J = (p2)*[d]Y and o’

= [d}¥. Since the morphism po is Weg(L)-
invariant, we get that (f,)*d

(»
= On the other hand, from the projection

2)*
.
formula we have

fi(K2) ~ 9@ fi(Ka) and fi(K3) ~ 9 @ fi(K}).

‘We deduce that
9 @ ()" (fiKa) =0 ® A

We have ¢’ = Id; ®a for some o : (f,)* (fgng) = £k} which does not depend
on o. Put N' = p; ' (YVyu), then &'|y = (Idg)|y @ (a|y). But p;'(0) =
N, hence (Idg)|x = (p2)*[d](Idy, ) where 9/, is the constant sheaf on {0}
shifted by dim z(L£). Hence &'|nr does not depend on o and so we get that
(p1)1(P'|n) = Py, does not depend on o. O

5.5.9 The Character Formula

Let 0 € 2(£)F. Assume that &, is F-stable and let ¢, : F*(E,) = &, be an
isomorphism. We denote by ¢¢ : F*(KY) = K¢ the isomorphism induced by
¢o. We now give a formula which expresses the values of the function X g 49
in terms of the values of some generalized Green functions. Let 2 € G and
assume that there exists g € G¥" such that Ad(g~!)xs € 2(L). Put L, = gLg ™!
and £, = Lie(Ly) = Ad(g)(L£). We have =, € 2(L,) and so L, is a Levi
subgroup of C&(z). Let Cy = Ad(g)C and let (¢4, ¢4) be the inverse image
of the F-equivariant sheaf (€5, ¢,) by Cy — X, v — Ad(g~1)(zs + v). Note
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that the irreducible local system (, is isomorphic to Ad(g~!)*¢. Then the
following formula is the Lie algebra version of [Lus85b, 8.5].

o — Cg(zs
Xicg g (@) = 1Calws) |7 > Q5 iy, (n):
{geGF| Ad(g~Y)zs€2(L)}

Remark 5.5.10. The proof of the above formula is entirely similar to that of
[Lus85b, 8.5], in particular it uses 5.5.3. We do not prove it here, however we
will prove a similar formula for another kind of complexes (see next chapter).

5.5.11 Generalized Green Functions and Two-Variable Green
Functions

5.5.12. Let f : Guns 5 Gni be a G-equivariant isomorphism defined over
F,, i.e. which commutes with F. Put (CL,¢E, ¢l) = (f71(C), f*(C), f*(¢))
and denote by K& the complex on G induced by the cuspidal datum
(L, Z9CF Q, W ¢L). Let ¢F : F*(KS) & K& be the isomorphism induced
by 1K ¢ : F*(Q, X ¢*) = Q, K ¢E. Let us show that for any v € GF

nil»

Xig,05(v) = Xgg 40 (f 7 (v). ()

To prove this, by 5.4.2, 5.3.6(i) and 5.4.9, we may assume that P is F-stable
and prove, for any v € G, and any w € W (L), that

X k9,69 009 (V) = X6 gaops (f(v)) (1)

where 69 and 0 are as in 5.3.6(iii). We denote by {4,|c € IF'} the set of
admissible complexes (up to isomorphism) which are direct summand of K¢.
By 5.3.7, the restriction of A,[—dimz(L)] to G, is a simple perverse sheaf
K, supported by the Zariski closure of a nilpotent orbit. For « € I let ¢, :
F*(K,) = K, be an isomorphism and let X9 be the characteristic function of
(K., ¢.). We then denote by X the characteristic function of (f*(K,), f*(#,))-
By 5.3.6, the irreducible characters of W (L) are in bijection with I,, and
the F-stable ones are in bijection with IX. For + € IF, let x, be the F-
stable irreducible character corresponding to ¢ and let y, be the “preferred”
extension [Lus86a, 24] of x, to the semi-direct product W (L) x (F'). Then
with a specific choice of ¢ and {¢,|: € IF'} (see [Lus92, section 5] or [DLM97,
1.4]), the formula 5.4.5 becomes

X K9 ,09009 (V) = Z X (wF)XF (v)  for v e Ghy.

eIl

Since P is F-stable, the F-equivariant complex (K&|g...,#5|G...) is the
inverse image by f* of (K¢|g,..,#9|g,. ), and so the isomorphisms f*(¢) and
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{f*(¢,)| ¢ € IF'} satisfies the same properties as ¢ and {¢,|¢ € IF'}. We thus
have

X6 06006 () = > Xu(wF)XC(u),  forue GL,,.
eIl

Actually to establish this formula, we also use the fact that f*(K,), which
(up to isomorphism) does not depend on the choice of f, is the direct sum-
mand of K%|g,,, corresponding to the irreducible character x, of Wg/(L).
This fact follows from the explicit computation of the generalized Springer
correspondence [Lus84][LS85] both in the group case and in the Lie alge-
bra case. Recall that the generalized Springer correspondence is the map
Irr(Wg (L)) — {K,|t € I,}. We thus proved (1).

5.5.13. Let w : Gpit — Guni be a G-equivariant isomorphism (defined over
F,) and let Q%Cp be the two-variable Green function as in 3.2.11. Assume
that ¢ is large enough so that [Lus90, 1.14] is available. Then from 5.5.12(*)
and [Lus90, 1.14] we have

Q7 cc.(r) = Z 9l p(z,v) Xk, 154 (v)

veLE,

for any 2 € G¥. If L is a maximal torus, then we can drop the assumption on
¢ by [Sho95].

5.5.14 Geometrical Induction and Deligne-Lusztig Induction

Assume that ¢ is large enough so that the formula in 5.5.13 holds. Let R%
be the Deligne-Lusztig induction relatively to w : G, 5 Guni- Recall that
R% denotes the geometrical induction (whose definition does not depend on
a G-equivariant homeomorphism G,;; — Guni). Then we have the following
result.

Proposition 5.5.15. Let 0 € z(L)F and let ¢, : F*(K,) = K, be an
isomorphism. Then

R% (XK67¢0) = R% (XKmd’o) N

Proof: Let 2 € GF', we have
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RE(Xk, 0,) (@) = [LFI7 Y7 SEp(@,9) Xk, 6, (1)
yeLF

Since the complex K, is supported by X, we have

RE(Xkp0,) @) = [LFI70 Y SEp@t+0)Xk, 4, (t+0).
(tw)ez(L)FxCT T

But for (t,v) € 2(L£)F x 6F, we have

o o — C, _
SG (@, t+v) = S erwRllce®mT T Qe (Ad(h T, v).
hEGF | Ad(h)t=x,

Hence, we get that RY (Xk,,0,) (@) =

o — C _
> Y 0T QLD (Ad(h e, v) Kk, 6, (t 4 0).
(tw)ex(L)FxT" | hecl

By interchanging the sums we have

RE(Xk,0,)(x) = |C& ()"

Z Z Qig(Ad(hﬂrs) (Ad(h_l)ﬂ;‘n, 'U)XKU,¢U (Ad(h_l)ﬂ;‘s +v).

hegF Yoii
Ad(h—Dyzsez(L) vel

Using the notation of 5.5.9, we may re-write this formula as follows.

RE(Xko0.) (@) = [Co@)" 170 30 30 Q% (@, 0) X 0, (0)

heGF & F
Ad(h—D)zsez(L) vECH

where K, = K(Ch, (r). Hence the proposition is a consequence of 5.5.9 and
5.5.12. a

Theorem 5.5.16. The geometrical induction coincides with Deligne-Lusztig
induction.

Proof: This is a straightforward consequence of 5.5.15, 5.4.15 and 3.2.22. O

Remark 5.5.17. The theorem shows the independence of R% from the choice
of the G-equivariant isomorphism w.



6

Deligne-Lusztig Induction and Fourier
Transforms

Throughout this chapter, unless specified, we assume that the prime p is
acceptable for G and that g is large enough such that the geometrical induction
coincides with Deligne-Lusztig induction. Fourier transforms considered will
be with respect to (i, ¥) as in 5.2. The goal of the chapter is to discuss the
commutation formula conjectured in 3.2.30. We reduce this conjecture to the
case where the function f of 3.2.30 is the characteristic function of a cuspidal
nilpotently supported F-equivariant orbital perverse sheaf. We then prove the
conjecture in almost all cases under a stronger assumption on p.

6.1 Frobenius Action on the Parabolic Induction of
Cuspidal Orbital Perverse Sheaves

Throughout this section we fix a Levi subgroup L of GG, a parabolic subgroup
P of G having L as a Levi subgroup and we denote by P, L the respective
Lie algebras of P and L. We assume that £ supports a cuspidal nilpotent pair
(C, ). When the variety z(£) will be used as a set parametrazing the cuspidal
orbital pairs of £ of the form (o + C,Q, K (), 0 € z(£), it will be denoted
by S. For any o € z(£), we put (L, X, &1 ,) = (L, 2(L) + C, (ms)* Ly K ()
where m, is as in 5.2.1, K1, = K(X,&14) , E2.0 = QX ¢ € Is(o + C) and
K27U = K(O’ + C, 82,0) .

In the following, the group L acts on S x £ by Ad on the second coordinate
and trivially on the first coordinate, and G acts on S x G by Ad on G and
trivially on S. Following [Wal01, Chapter II], we define a functor indgizp :
M (S x L) — DS x G) and two L-equivariant simple perverse sheaves K
and K» on S x £ such that, for any o € z(L),

E. Letellier: LNM 1859, pp. 115-149, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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e the restrictions of K7 and Ks to {0} x £ ~ L are respectively K1 ,[dim S]
and K ,[dim 5],

o the complexes indg %7 » (K1) and ind3%7 5 (K>) are G-equivariant sim-

ple perverse sheaves on S x G and their restrictions to {c} x G ~ G are
respectively (ind%cpKLo) [dim S] and (ind%cPKg,g) [dim S].

6.1.1 The Functor indgi‘ifp : Mr(S x L) — DS X G)

Define
Vs1:={(s,z,h) € S x G x G\Ad(hil)x € P},

Vso = {(s,2,hP) € S x G x (G/P)|Ad(h" ")z € P}.

We have the following diagram

1"
s

Vs,2 SxG

7
s

SxL s Vs

where 7g = Idg x 7, g = Idg x n" and 7§ = Idg x 7" with 7, 7’ and 7" as
in 5.1.1.

Let K be an L-equivariant perverse sheaf on S x £. The morphism 7g
is smooth with connected fibers of dimension m = dimG + dimUp and is
P-equivariant if we let P acts on Vs by p.(s,z,9) = (s,z,gp~!) and on
S x L by p.(s,z) = (s,Ad(mp(p))z). Hence the complex (wg)*K[m] is P-
equivariant. Since the morphism 7 is a locally trivial principal P-bundle,
we deduce that there exists a unique perverse sheaf K on Vs,2 such that

(m)*K[dim P] = (7g)*K[m]. Define
indgXZ p(K) = (w§).K.

Let G act on S x L trivially and let G act on Vg1 and Vg2 by the adjoint
action on the second coordinate, by left translation on the third coordinate
and trivially on S. Then if the complex indgizp (K) is a perverse shealf, it is
naturally G-equivariant.

6.1.2 The Complexes indgizﬂ,K(Z x C,E)

Let Z be a smooth irreducible closed subvariety of S x z(£); we identify the va-
riety Z x C' with a subvariety of S x £ via the morphism ((s, 2),v) — (s, z+v).
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We assume that the fibers of the morphism ¢ : Z — S given by the projec-
tion on the first coordinate are smooth, irreducible and are all of dimension
dim Z — dim S; if s € S, we denote by Z, the set {z € z(L)|(s,z) € Z} ~
¢71(s). Let € be a local system on Z and let £ = (K¢ € Is (2 x C). We
denote by K(Z x C,€&) the complex K5*£(Z x C, £); recall that K°*£(Z x
C, &) denotes the extension by zero on (S x L) — (Z x C) of the complex
IC(Z x C,&)[dim (2 x O)].

The complexes K7 and K> mentioned at the beginning of 6.1 will be of
the form K(Z x C, &) for some Z and £ as above. Before defining K; and Ko,
we study, as we did with the complexes ind%cPK(E,E) in 5.1.9 and 5.1.26,
the general properties of the complexes indgig’pK (Z x C,&); most of these
properties will be deduced from the results of 5.1.9 and 5.1.26.

For s € S, let jog : G — S x G, xz — (s,z) and let & € Is(Z;) be the
inverse image of £ by Z;, — Z, z — (s,2). Since Z and Z, are smooth and
irreducible, we verify as in 5.1.42 and 5.1.43 that

6.1.3. (Js.2)* (K(ZxC,E)) =K(Z,+ C, & K(Q)[dimS], and
(Js.g)" (indﬁi%ﬂjK(Z X 075)> = (m repK(Zs +C 6 K C)) [dim S]

for any s € S.

We also have:

6.1.4. The complez indgizp (K(Z x C,€)) is a G-equivariant perverse sheaf
on S xG.

Proof: Let K be the complex K(Z x C,€) and K°*9 be the complex
indgig,p (K(Z x C,&)). We show that for any i € Z,

(i) dim (Supp (H'K5*9)) < —i and ,

(ii) dim (Supp (H'DgxgK®*9)) < —i.

Let us prove (i). Let ¢ € Z; we have
Supp (H'K5*9) = {(s,x) € S x Q|H"S,$)KSXQ # 0}.

For s € S, we denote by K, the complex K(Z, + C,& X (). Let prg :
Supp (H'K®*9) — S be the projection on the first coordinate. It follows
from 6.1.3 that

dim (prgl(s)) = dim Supp (H”dims(ind%csz)) .
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The complex ind%cp (K,) being a perverse sheaf by 5.1.19, we have
dim Supp (Hi+dims(ind%Csz)) < —i—dim§.
Hence we deduce that
dim Supp (H'K°*9) < —i.

The Verdier dual operator commutes with the functor indgi%yp; the proof of

(ii) is thus completely similar to that of (i). O

Remark 6.1.5. Note that 6.1.4 has nothing to do with the fact that the nilpo-
tent pair (C, () is cuspidal.

6.1.6. Define

Xs1=1{(s,2,9) €S xGxG|Ad(g "x € Z,+C +Up},

Xso=1{(s,2,gP) € S x G x (G/P)|Ad(g )z € Z, +C +Up}.

We have the following commutative diagram

s

ZxC rs Xs1 Xs.2 rs g
| | | |
§x L~—T5 Vs s Vog —= g

where pg, ply and p§ are given respectively by the restrictions of 7g, 7 and
wg. As in 5.1.10, we show that the varieties X g, and Xg 2 are irreducible and
respectively closed in Vg1 and Vg o.

Define

Xs1.0=1{(s,7,9) €S xGxG|Ad(g )z € Z, +C +Up},

Xs2.0=1{(s,7,gP) € S x G x (G/P)|Ad(g")x € Z,+ C +Up}.

As in 5.1.9 we prove that the varieties Xg1, and Xg2, are respectively
smooth open subsets of Xg; and Xg2, and we construct a G-equivariant
local system £ on Xg 2, such that
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X

(08 (1C(Ks2.0, E)[dim X)) = ind 3¢ p K (2 x C.£).
We have the following proposition.

Proposition 6.1.7. The varieties Xg 2 and p’é(ng) are both of dimension
dimG — dimL + dim (Z x C).

Proof: The fact that the variety Xg 2 is of dimension dim G—dim L+dim (Z x
C) is clear. Let f: p's(Xs2) — S, (s,x) — s. We have

FYs)~{reg|Ige G ,Ad(g Nz € Z,+C +Up}

for any s € S. Moreover for any s € S, we have dim Z; = dim Z — dim S.
Hence we deduce from 5.1.18 that the fibers of f are all of dimension dim G —
dim L +dim (Z x C) —dim S. As a consequence we get that dim (p%(Xs2)) =
dimG — dim L + dim (Z x C). O

6.1.8. Recall that z(L),., denotes the set of L-regular elements in G. Let
Zreg ={(s,2) € 2|z € 2(L)reg}

and for s € S, let (Z5)reg = Z5s N 2(L)reg. We assume from now and until the
end of this section that Z,., # (). Define

Ysi1={(s,z,9) € S x G x G|Ad(g Mz € (Zs)reg + C1,

Yso={(s,z,9L) € S x G x (G/L)| Ad(g Yz € (Zs)reg + C1,
Ys = {(s,2) € S x G|3g € G, Ad(g7 ")z € (Z)reg + C}.

We have a diagram

"

s
Y52 Ys

’
Qg

6.19. ZxC=—2 Ysu
where o/s(s,x,g) = (s,x,9L), a(s,z,gL) = (s,x) and where ag(s,z,g) =
((s,t),v) if Ad(g7 )z =t +v with t € (Z5),c and v € C.

The morphism o is a Galois covering with Galois group, the normalizer
of Z x C in Wg(L) where Ng(L) acts on S x £ by Ad on £ and trivially on
S.

We have the following proposition.

Proposition 6.1.10. The map vs : Ys2 — (p%) " (Ys) defined by (s,x,gL) —
(s,x,gP) is an isomorphism.
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Proof: We verify as in the proof of 5.1.27 that the image of g is a variety and
that g induces in isomorphism onto its image; the proof of the surjectivity
of vg reduces easily to 5.1.27. a

Proposition 6.1.11. The variety Ys is a smooth irreducible locally closed
subvariety of S x G of dimension dimG — dim L + dim(Z x C).

Proof: The proof is completely similar to that of 5.1.28. O
From 6.1.7 and 6.1.11 we deduce the follwing fact.
Corollary 6.1.12. We have Ys = p’i(Xs,2).

Now let & be the irreducible local system on Yso such that (og)*ée =
(as)*E. Define
indz5%(€) = K(Ys, (a§).&)
where K (Ys, (@%).&) = K9%9(Ys, (a/).&2). Since o/ is a Galois covering,
the local system (o/4).£2 is semi-simple and so the complex ind3%% (€) is
semi-simple.

From 6.1.12, note that the supports of the perverse sheaves indi,xxgc(é’)

and ind2%9 K (Z x C, ) are both contained in the closed subvariety Yg of
SXL,P

S x G; moreover from 6.1.10, we show easily, as in the proof of 5.1.33, that
the sheaf H~dimYs (indgigpl((z X C,E)) lys is canonically isomorphic to

the local system (a$).&2. We have the following lemma.

Lemma 6.1.13. Assume that (Z5)req # 0 for any s € S, then the complexes

ind3 3 L(€) and ind3% 7 pK(Z x C,E) are canonically isomorphic.

Proof: Let K%9 = ind‘;X%pK(Z x C,&). The sheaf H~-4mYs (K9x9|y )

X
is canonically isomorphic to the local system (a%).&2, moreover we have

HIKS*9 = 0if i < —dimYy since K5%9 = (p4), (IC(X57270,£)[dimXS72])
and dimYs = dim X5 5. It remains to see that for any ¢ > —dim Y,

(i) dim Supp(H!K5*9) < —i,

(ii) dim Supp(H'DgxgK**9) < —i.
Let ¢ > —dimYs. We use the notation of the proof of 6.1.4. Let s € S; from
6.1.11, we have dimYgs = dim G — dim L + dim Z + dim C, hence

i+dimS > —(dimG — dim L + dim Z, 4+ dim C'). (1)
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Since (Z)req # 0, from 5.1.33, we get that indZ_p(K,) is an intersection
cohomology complex with support of dimension dimG — dim L 4+ dim Z, +
dim C, and so we deduce from (1) that

dim Supp (Hi+dims(ind%cpK5)) < —i—dimS.
We have proved that dim (prgl(s)) < —i for any s € S, hence we deduce that
dim Supp (H'K5*9) < —i.

Since the Verdier dual operator commutes with the functor indgigfp, the
proof of (ii) is completely similar to that of (i). O

Remark 6.1.14. The assumption “(Z;)yey # 0 for any s € S” in 6.1.13 is not
necessary. Under the assumption 6.1.8, we can prove as in 5.1.33 that the two
complexes ind3 %% (€) and indgig’pK (£ x C, &) are isomorphic; however we
will not use this more general result.

6.1.15 The Complexes K; and K>

Define
e Z1:=5xz(L),
o 2y = {(,2)]z € 2(L))},
o & = (p(e)) Lo W €lsp (21 x O),
& =Q,K( els(22 x O),
e K1 :=K(Z, xC,&)eMp(SxL),
o Ko :=K(Z3xC,&E) e ML(S xL).
The complexes K; and K are both irreducible and from 6.1.3, we have

(Jo,c)* K1 = K1 5[dim S] and (js,2)* K2 = K» ¢[dim S] for any s € S.

Proposition 6.1.16. [Wal01, page 43] Let i € {1,2}. The G-equivariant
perverse sheaf zndﬁi%p(K,) is isomorphic to indixxgc(&»); moreover it is a
simple perverse sheaf.

We outline the proof of 6.1.16 (see [WalO1]).

The fact that the complex indgig’p(K 1) is isomorphic to indgjxgc(é’l) follows

from 6.1.13. Note that we can not use 6.1.13 to prove 6.1.16 with ¢ = 2. Fol-
lowing Waldspurger [Wal01], we extended the definition of the Deligne-Fourier



122 6 Deligne-Lusztig Induction and Fourier Transforms

transform FY into a transformation F5*9 : M(S x G) — M(S x G) which
transforms indgizp(Kg) into indgig,p(Kl), see next chapter. The only el-
ement w of the Galois group of o (with Z = Z;) such that w*(&) ~ & is
the neutral element, hence the perverse sheaf ind%fxgc(é’l) ~ indgigp(l( 1)
is simple. As a consequence we get that indgizp(Kg) is also a simple per-
verse sheaf; it is thus an intersection cohomology complex. It follows from the

remark just before 6.1.13 that it is isomorphic to indgjxgc(é'g).

Remark 6.1.17. The proof of 6.1.16 outlined above works if the pair (C,()
is cuspidal and if p is large enough so that the Fourier transforms exist; as
noticed in 6.1.14, we can prove the same result without using the fact that
(C,¢) is cuspidal and with a better condition on p.

6.1.18. Assume that L, C' and ¢ are all F-stable. Then the complexes K3
and K, are both F-stable; let ¢1 : F*(K;) = K; and ¢ : F*(K3) = Ka be
two isomorphisms. Note that ¢; and ¢2 induce two isomorphisms qﬁf xg .
P (ind$ 80 (€) = ndffo(&) and 659 ¢ P (ndZfu(&) =

indiyzxgc(é'g). Let 0 € 2(£)F . From 6.1.3 and 6.1.16 we deduce isomorphisms

(o) (6779) [=1]: F* (ind$:(€1,0)) > ind%(€r,0), and

Goio) (65°9) [=1]: F* (ndfcp(K)) = indZep(Kao)

where 7 = dim S. Put 1/131 = (Jo,g)* (¢1S><g) [—7], 1/132 = (Jo,0)"* ( QSXQ) [—7];
we will prove that the characteristic functions of the F-equivariant complexes
(ind$: (&1 .5), qplgﬁ) and (ind% _pKs o, ¢2g70) are respectively the Deligne-Lusztig
induction of Xk, , 4, , and of Xk, , 4, ., where 151 = (jo)*(¢1)[—7] and
Vo2 = (Jo,c)*(¢2)[—r]. The proof will involve two ingredients, the Lie algebra
version of [Lus90, Theorem 1.14] (see 5.5.13), and the character formula for the

characteristic functions of the F-equivariant complexes (indgffc (&), f Xg)

and (ind2 56 (&), 65%9).

6.1.19 The Character Formula

From now we denote respectively by Kf %9 and by Kf %9 the complexes
indgffc(é'l) and indgjxgc(é’g) and we assume that the datum (L, C, () is F-
stable. We fix two isomorphisms ¢; : F*(K;) = K and ¢o : F*(Ks) = Ko,

and we denote by ¢7*9 : F* (K779) 5 K7*9 and ¢5*9 : F* (K*9) =
KQS %9 the two isomorphisms induced respectively by ¢; and ¢o. By analogy
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with 5.5.9, we give an expression of the values of the characteristic functions
of the F-equivariant complexes (K7 *9, ¢7*9) and (K59, ¢5*9) in terms of
the values of some generalized Green functions.

We fix s € S¥ and o, u € GF with o semi-simple and u nilpotent such that
[o,u] = 0.

The character formula

Let i € {1,2}. Assume that there is z € G such that (s,Ad(z7!)o) € Z,.
Then put L, = xLz~! and L, = Lie(L,). We have ¢ € z(L,) and so
L, is a Levi subgroup of C&(c). Let C; = Ad(z)C and let (& 4, i)
be the inverse image of the F-equivariant sheaf (&;,¢;) by C, — Z; x C,
v ((s,Ad(z71)o), Ad(z7!)v). Note that the irreducible L-equivariant lo-
cal system &; , is isomorphic to Ad(z~1)*¢ € Is(C,); we thus denote &; , by
<w~

We are going to prove the following theorem.

Theorem 6.1.20 (Character formula). With the above notation we have

. o — Cg(o
(’L) XKISX97¢f><g(SaO-+u) = ‘CG(U)F‘ ! Z Qﬁf,(Ci,Cz7¢1,z (u)
{zeGF|Ad(z—1)oc2(L)}

.. o — Cg(o
(i) XKé‘ng@gxg(S,O’-f-u) = |CG(0)F\ 1 Z Qﬁf,(CZ,Cz,rﬁz,z (u).
{zeGF|Ad(z—1)o=s}

Remark 6.1.21. If o = 0, the formula 6.1.20(ii) is a result of Waldspurger
[Wal01].

Proof of Theorem 6.1.20(ii)

The proof of 6.1.20(ii) is an adaptation of the proof of [Lus85b, Theorem 8.5].
We start with the following intermediate result whose proof is entirely similar
to that of [Lus85b, Lemma 8.6].

Lemma 6.1.22. There exists an open subset U of Cg(o) containing 0 such
that:

(a) for any element g of C&(0), we have Ad(g)(U) = U,

(b) if © € Cg(0), we have x € U if and only if x5 € U,

(c) F(U) = U,
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(d) if z € U, g € G such that Ad(g~')(c + x) € z(L) + C + Up, then
Ad(g™Yzs € 2(L) +Up and Ad(g~1)o € 2(L) + Up,

(e)ifr € U, g € G such that Ad(g~1)(oc+x) € 2(L)+C, then Ad(g~ )z, €
2(L) and Ad(g~')o € 2(L).

We fix once for all an open subset U of Cg(o) as in 6.1.22; since 0 € U, it
follows from 6.1.22(b) that Cg(o),y C U.

We put Z = Z, and we use the notation of 6.1.2 relatively to Z. Then we
have

Xso={(t,z,gP) € S x G x (G/P)|Ad(g )z €t +C +Up},
and Yso = {(t,,gL) € Syeyg x G x (G/L)|Ad(g~ 1)z € t + C}.
Define

ng = ()1 (S x (0 +U)) = {(t,z,gP) € Xs2|x € 0 + U}.

Let
A:={geGlAd(g o € 2(L)}, I =Cgo)\A/L,

A:={geGIAd(g o € 2(L) +Up}, I'=Ce(a)\A/P.
We assume that the set A (and therefore A) is non-empty.

The canonical map I' — I'is a bijection. Indeed, let = € A, we have
Ad(z71)o = 2z + v for some 2z € 2(L) and v € Up. Since z + v is semi-
simple, by 2.7.1, there exists an element u € Up such that z + v = Ad(u)z,
i.e. zu € A; we thus proved the surjectivity of I' — I". Assume now that
z,y € Aand x € C&(0)yP ie. x = gyul with g € C&(0), ! € L and u € Up.
Since Ad(y~!)o € 2(L), we have Ad(u~ty=1)o = Ad(y~!)o + Up and so
we deduce that Ad(z=!)oe = Ad(~'u=ty~tg Yo € Ad(u~ty ')o + Up.
Hence we deduce that Ad(z~!)o = Ad(y~')o ie. zy~' € Cg(o). But
ry~! = gyuly™' € Cg(o) if and only if yuy~! € Cg(o). Since yuy=?' is
unipotent, we have yuy~! € CZ(c). We thus proved that x € C&(o)yL and
so the injectivity of I" — I.

It is also easy to verify that the set I" (therefore I") is finite. For O € I',
define

XY, o= {(t.z,gP) € XT,| g € O}.



6.1 Frobenius Action on the Parabolic Induction 125

6.1.23. The sets X;J2 o with O € A, are open and closed in XgQ and we

have XSQ—HOeFXU

Proof of 6.1.23: Let (t,0+ z,gP) € XgQ; then z € U and Ad(g 1) (0 +2) €
t +C + Up. From 6.1.22(d) we get that Ad(g~")o € 2(£) + Up, hence g € A
and so we deduce that (t,0 + z,gP) € XU 5 With O = C%(0)gP. Now let

O € I'; we can view O as a closed C%(0)- orblt of G/P. The set XS 2018 thus

closed in XgQ since it is the inverse image of o by the morphism X&2 — G/P
given by the projection on the third coordinate. From the fact that XgQ is
the (finite) disjoint union of the XS7 200 e deduce that the X;J, o are also
open in X¥ S a

From now, if O € I', we denote by O the element of I’ corresponding to
0.

6.1.24. For O € I', we fix an element zo of O such that F'(z0) = 2p0);
note that Ad(zy,")o € 2(L), hence xoLzy," is a Levi subgroup of C&(o). Let
O € I', define

e Po = (zoPxy') N CY(0),
o Lp= xoanl.

We denote by Pp and by Lo the respective Lie algebras of Po and Lo. Put
So = Ad(.’[:o)s, Z0 = {(t,t)‘t S Z(ﬁ@)} and Co = Ad(l‘o)c.

We denote by (So)s—req the subset of So consisting of the Lo-regular
elements in Cg (o). Define

Yo.502 = {(t,2,9L0) € (S0)s-reg X Cg(0) x (C&(0)/Lo) |Ad(g™ ")z € t + Co},

Xo.50.2 = {(t,z,9Po) € So x Cg(c) x (C&(c)/Po) | Ad(g” ")z € t + Co +Up, },

Yo.50 = {(t,2) € (S0)o—reg X Cg(o)|3g € Cg(o),Ad(gfl)m et+Co}.

Let o g,
projection on the first and second coordinates. Note that X, s, .2, Y 50,2,
Yo,505 0 505 Pa.5, are defined in terms of Cg (o), Po, Lo, 20, Co as Xs2,

Y52, Ys, o, p¥ are defined in terms of G, P, L, Z,C.

1 Yo 502 — Yo 5, and pl So Xs.50,2 — Ys,5, be given by the
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6.1.25. For O € I', define

ng@z = (Pg,so)fl (So xU) C Xo,50,2-

Since U is open in Cg(o) we have following assertion.

6.1.26. X(HSO,Q is an open subset of X5 5.2 for any O € I'.

6.1.27. We denote by f¢5 the morphism X(ES@2 — X;{Z@ given by

(t,z,9Po) — (Ad(z5") (0 + 1), 0 + 2, gr0 P)
We have the following result.

6.1.28. The map f( is well-defined and is an isomorphism.

Proof: We first verify that the map f/5 is well-defined. Let (t,z,gPo) €
X;{S@,m then we have Ad(g~1)z € t + Co +Up, and so we get that

Ad(zptg Hr € Ad(zpM )t + C + Up.

We deduce that Ad(zp,'g™1) (0 +2) € Ad(2p")o +Ad(zy," )t + C +Up and so
that

(Ad(zp") (0 +t),0 + 2, 920P) € X;{z,é‘ We thus proved that f7 is well-
defined.

The fact that f7} is injective is clear. We prove now the surjectivity of f75.
Let (r,oc+z,tP) € X;{Q,@ and write t = grop with g € C&(c) and p € P. Let
h € So be defined by h = —o+Ad(zo)r. We verify that (h, z, gPo) € X g, o,
i.e. that Ad(¢g~ ")z € h+Co+Up,. We have Ad(t~1)(c+x) € r+C+Up and
so Ad(g71) (0 + x) € Ad(xo)r + Co + U, pazt- Since Ad(g™Yz € Cg(o),
we get that Ad(g~!)(oc + z) € Ad(xo)r + Co + Up,, hence Ad(g~1)z €
—o + Ad(zo)r + Co + Up,. We thus proved the surjectivity of f5. O

We denote by fo the morphism So x Cg(0) — S x G given by (t,z) —
(Ad(zp")(0 +t),0 + 2). We have the following commutative diagram.
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and we have the following assertions.

6.1.29. (i) The morphisms X§, — Ys N (S x (0 + U)) and X 500 =
Yo,50N(So xU) given respectively by restriction of p§ and p;, g, are surjective
and proper.
(ii) The set Ys N (S x (o0 +U)) is open in Ys N (S x (o0 +U)) and the set
Y, .50 N (So x U) is an open dense irreducible subset of Yy 5, N (So x U).
(i1i) The morphism XU 5 Ys N (S x (o 4+ U)) given by restriction of

P4 is proper with image fo ( v.50 N (So X U)) and we have

Ysﬂ(SX U—I—U Hfo O'So (SoXU)).
Oerl’

(iv) The variety X;{Q’@ is irreducible.

Proof: The morphisms of (i) are obtained by base change respectively from

L Xs2 — Ys and p;SO : X0.50,.2 — Yo.5, which are proper morphisms,
hence they are proper; the fact they are surjective is clear. Let us see (ii). The
fact that Ys N (S x (o + U)) and Y, s, N (So x U) are respectively open in
YsN (S x (0 +U)) and in Y, 5, N (So x U) is clear. The set So x U is an
open subset of So x Cg(), hence the set Y, s, N (So x U) is open in Y, g,
Moreover it is non-empty since U D Cg(0)ny and Yy s, N (So x Cg(0)nit) #
(). The variety Y, s, being open in Y, s, and Y, s, being irreducible, we
deduce that Y, s, N (So x U) is a non-empty open subset of Y, s, and so
is irreducible and dense in Y, s, N (So x U). We now prove (iii). By 6.1.23,

the set X;JQ 5 18 closed in ng, hence from (i), we get that the morphism

of (iii) is also proper. The fact that p% (X;J2 o) f@( 750 N (So x U))

is a straightforward consequence of 6.1.28 and (i). Let us prove (iv). From
6.1.6, we know that the variety X, g, 2 is irreducible and from 6.1.26, we
know that X 50,2 is an open subset of X, 5, 2. Hence we deduce that the
variety XU’ So.2 18 irreducible and so from 6.1.28, it follows that X;{z, & is also
irreducible. O

6.1.30. Define

Ystf2 = (a§)" (S x (6 4+ U)) ={(t,2,gL) € Ys2|z € 0 + U},

and for O € I', define Yg{lo ={(t,z,gL) € YSIfZ\ g€ O}, YSIfO = o/é(YSI’JQ’O),
and
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YOEJS(QQ = (a:J/',So)_l(SO X U) C YO’;SO72'

6.1.31. The sets YS 2.0 and Y, S 2 are non-empty.

Proof: From 6.1.29(ii), we have Y, s, N (So x U) # @ from which we
see that Y% , # 0. Let v € Co, then the intersection z(Lp) N (U —
v) is open dense in z(Le); indeed it is non-empty since we have 0 €
z(Lo) N (U — v) (recall that U D Cg(o)ni). The intersection z(Lp) N
(—o + Ad(z0)(2(L)reg + C) —v) is also a dense open subset of z(Lp). In-
deed, —o +Ad(x0)(2(L)reg +C) — v is an open subset of z(Lp) +Co —v. But
2(Lo) + Co — v is irreducible and contains z(Lp) as an open subset, hence
—0 + Ad(z0)(2(L)reg + C') — v intersects z(Lp). As a consequence we have
2(Lo) N (U —v) N (=0 +Ad(z0)(2(L)reg + C) — v) # 0. Hence there exists
t € 2(Lo), h € 2(L)reg such that (h,o +t+v,20L) € YT, o 0

We have the following assertions.

6.1.32. (i) The map vs : Ys2 — Xg o gwen by (t,z,gL) — (t,x,gP) induces
an isomorphism YS?Q — (%) 1 (Ys N (S x (o +1))).

(11) The map Yo.50 : Yo,50,2 = Xo.50,2 gwven by (t,z,9Lo) — (t,z,9Po)
induces an isomorphism Y5 o2 = (P4 50) " (Yo,50 N (So x U)).

Proof: This follows from 6.1.10. a

We have the following result.

6.1.33. The sets Yslfz,o with O € I', are open and closed in Yslfz ; they form
a finite partition of Yslfz.

Proof: By 6.1.31, the sets Y:;,Jzo are non-empty. Let (¢, z,gL) € Yslfz ; we have
Ad(¢g~ Yz € t+ C. From 6.1.22 we deduce that g € A and so that (t,z,gL) €
Y o with O = C&(0)gL. We thus proved that Yg? is the disjoint union of
the Yg{lo with O € I'; this union is finite since I" is finite. Let O € I'; the
isomorphism Yg%, — (pg)~" (YSD(SX (a—i—U))) given by (¢,x,9L) — (t,x,gP)
induces an isomorphism from Yg?, o, onto (p§)~! (Ys(S x (o + U))) N Xs 2.0

But from 6.1.23, the set X, ; is open and closed in X2, hence (p)~ (YS N
(x(c+1U)))N Xg5.0 is open and closed in (p§)~ HYs N (S x (0 +1U))). As
a consequence, we get that Yslfz,o is closed and open in YS,2~ a
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We have the following commutative diagram.

"

Yiho : Yso
WSl J/\
p// _
X;JQ,@ 5 Ys N (S x (o + U))

6.1.34. (i) We have ~s (YSI,JzO) = (pg)’l(YS[fO) ﬂX;{Q’@ .

(i) The variety Y;fo is open dense in fo (Yo,50 N (So x U)).

Proof: Let us prove (i). Since ys : Y5 — (p%) "' (Ys N (S x (0 4+ U))) is an
isomorphism (see 6.1.32(i)), we have

VS(Ys[fz,o) =(pg) " (Ys N (S x (e +1)))N X200

Hence from the fact that vs (Y§h o) C (04) ' (Yop) N XS, 5 and (p§)~"

52,0
(Ysio) N X;JZ@ C (P§) M (Ysn (S x (e +1U)))n X490, we deduce that

Ys (Yslfz,o) = (Pg)il(ystfo) N ng,@

Let us now prove (ii). The morphism s maps Ys 2 onto an open subset of
Xs,2, hence v5(Ys,2) QXEQ is open in X§,. Since v5(Ys,2) QXEQ =7s5(Ysh),
the isomorphism ~g induces an isomorphism from YS?Q onto an open subset of
XgQ. By 6.1.33, the set Y;flo is open in YSIfZ, hence we deduce that VS(YSI?ZO)
;27@. From (i) we see that ’YS(YS%,@) is a union of fibers, hence
from the fact that the morphism p§ : X¢, 5 — YN (S X (0 + U)) is proper
(and so closed), it follows that p'§ (’yS(YSIfQ’O)) is open in p§(Xg , ). We thus
proved that O[,/S/’(YSEJZO) = YSI’JO is open in p§(Xg, 5) = fo(Ya.50 N(So x U))
; the last equality comes from 6.1.29(iii). O

is open in X

6.1.35. We now describe the irreducible components of the variety Yg N (S x
(c +U)).

6.1.36. The irreducible components of Ys N (S x (o + U)) are disjoint. They
are in bijection with the set I'. The irreducible component corresponding to
Oel s YS':JO.

Proof: The map YSIfQ — YsN (S x (04 U)) obtained from o/} by base change
is a finite surjective morphism, hence it follows from 6.1.33 that the varieties
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Yoo with O € I cover YsN (S x (04 U)) and are closed in Ys N (S x (o +1U)).
From 6.1.29(ii), the variety fo (Ys,50 N (So x U)) is irreducible, hence from
6.1.34, we deduce that the varieties YSIfO with O € I' are irreducible. The fact
that the union of the YS':JO with O € I' is disjoint is clear from the definition
of Ystfo. O

6.1.37. We now define for each O € I'" an open subset Vo of YsN (S x (04 U)).
For O € I' define

Vo = YJ};T(’) ﬂfo (Ya,So N (SO X U)) :

For O € T, the set fo (Yo.50, N (So x U)) is open in fo (Y50 N (So x U)),
hence from 6.1.34(ii), we see that the set Ystfaﬂfo (Ys,50 N (So x U)) is open
dense in Y. Since YS% is open in YsN (S x (c+1U)), we get that the set Vo is
open in YgN (S x (c+U)). Note also that Vp is isomorphic to an open subset of
Y5, s, which is known to be smooth (see 6.1.11), hence V is also smooth. This
also shows that Vo is of dimension dim (C&(c)) —dim Lo +dim (Zo x Co) i.e.
dim Vo = dim (C& (o)) — dim L + dim (Z x C). Moreover note that F(Vp) =
V(o). We thus have the following assertion.

6.1.38. The set V = [[pcr Vo is an F-stable open dense smooth equidimen-
sional subset of Ys N (S x (6 4+U)). The subsets Vo are open and closed in V
(in particular they are the irreducible components of V') and are of dimension
equal to dim(C&(0)) — dimL + dim(Z x C).

6.1.39. We are now in position to prove the assertion (ii) of the theorem 6.1.20.

For O € I', define
Y5 501 = {(t,:mg) S (So)g_reg X Cg((f) X Cg;((f)‘ Ad(g_l)x et+ Co},

and let a;SO : Yo501 — Yo,50,2 be given by (t,2,9) — (t,2,9Lo) and
Uo.So : Yo.50.1 — Z0 X Co be given by (t,z,9) — ((t,t),v) where v € Cp is

such that Ad(g~ Yz =t + v.

V' the inverse

We denote by Yg 2|V the inverse image of V' by o4 and by Ys i
image of Yg 2|V by a's. We denote by Ys 2 0|Vo the inverse image of Vo by
g »; note that this is an open subset of Yslfz,o- Put Wo = fal(V@). We
Wo
the inverse image of Yo 5, 2|Wo by af, g, Put W = [[. Wo, we have the
following commutative diagram.

denote by Y 5, ,2|Wo the inverse image of Wo by ] g, and by Y5 54,1



6.1 Frobenius Action on the Parabolic Induction 131

h
6.140. [, (Zo x Co) Hho ZxC
I @o,s0 as
HOEF Yo‘,S@,l YS,l
& 11 At U
Hoer(Yo,s0,11Wo) = Vo1V
I O‘{:,so O‘/s
II k& o
Hoer(Ys,50.21Wo) Yso|V = [per(Ysz2,0lVo)
I ag,so O‘/s/
f

W= HOEF Wo V= HOeF Vo

where
ho ((t,t),v) = (Ad(zg")(t + o), Ad(z5") (t + o), Ad(z5 )v) if ((t,t),v) €
ZO X Co,

h’o(t,x,g) = (Ad(xél)(t +0’),O’—|—x,gx(')) if (t,x,g) € (Yd,So,l

Wo),

h¢(t,x,gLo) = (Ad(x(_ol)(t+a), o+z,gzol) if (t,2,9L0) € Yy 55,2|Wo0)
and

where f = Hoer fo.

Remark 6.1.41. (i) Note that the map Y5 5,2 — Y520 given by (¢, X, gLo) —
(Ad(zp' (0 +t),0 + X, groL) is not well-defined since if ¢ is an Lo-regular
element in Cg(c), the element Ad(zy')(c + t) might not be L-regular in G.
However from our definition of Vi, we can verify easily that its restriction
to () g,,) "' (Wo) which gives h{, is well-defined; similarly for h,. Moreover
the maps hy : (Yo,50,2|Wo) — (Ys2.0|Vo) with O € I' are isomorphisms;
the map [[ hY is thus an isomorphism.

(ii) The bottom square of 6.1.40 is cartesian.
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We put € = & ; recall that & is the local system on Z x C' = Z5 x C defined
in 6.1.15. For O € I', let £» be the irreducible Lp-equivariant local system on
Zo x Co defined by Eo = (hp)*E ; note that for any O € I, the restriction of
the local system ([ [ ho)*E to Zo0 X Co is Eo and so ([ ho)*E is the direct sum
of the local systems £» extended by zero outside Z» x Co. Let & denote the
local system on Yg 2 such that (ay)*&e = (as)*E (see 6.1.9) and for O € I', let
£o,2 be the local system on Y, s, 2 such that (a;, 5,)*(§0,2) = (@0,50)" (€0)-
For O € I', we denote by (o] 5, )«(§o2)|w the local system on [[pe Wo
whose restriction to Wo is () g, )«(£0,2) and whose restriction to Wo: with
O’ # O is zero.

Now the local system ((a/§)«&2) |y is isomorphic to the local system on V'
induced from & using the right vertical diagram of 6.1.40, and the local system
DPocr ((Oéiﬁ,so)*(faz)lvv) is isomorphic to the local system on W induced

from (][ ho)*E using the left vertical diagram of 6.1.40.
Hence from 6.1.41 and the fact that 6.1.40 is commutative, we deduce that
there exists a canonical isomorphism

6.1.42. )
F (@& Iv) = B ((a.50)+(E0.2)lw)-

oer

Since all the maps of 6.1.40 are defined over g, this isomorphism is compatible
with the two isomorphisms F* (f* (((ag)*@)m) s P (((0).)]v) and

F (@ ((Of&so)*(&o,z)w)) = P (A s0)+(€0.2)lw)

oer oer
induced respectively by ¢ = ¢ and ([[ho)*(¢) : F* ([T ho)*E) = (] ho)*E.
We put K50 xCslo) = indgzxxgi(o) (Eo0) and K5%9 = K$*9 ; then the isomor-
phism 6.1.42 can be regarded as an isomorphism

6.1.43. )
f* (KSXQ|V) [—5] ~ @ (KgoXCg(o)‘W)

oer
where § = dimYg — dimY, g, = dim G — dim C& (o).

We now show the following assertion.

6.1.44. The isomorphism 6.1.43 is the restriction to W of an isomorphism

* Sx¢G ~ SoxCg(0)
f (K x \Tsn(5x(a+u))) [—0] ~ @ (KooX ¢ ‘Hoepyg,son(soxu))
Oer
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where we still denote by f the isomorphism Hoer (Yo.50 N (So x U)) &
Ys N (S x (0 +U)) given by (¢,z) — fo(t,z) if (t,7) € Yo.5, N (So x U).

Proof of 6.1.44: We put K = K, and we regard K as a perverse sheaf
on Z x C. Let K be the perverse sheaf on Xg 5 such that

6.1.45.
(ps)*K[dim P] ~ (pg)*K[dim G + dim Up].

For O € I', define
Xo,50,1 = {(t,x,g) € Sp x Cg(o) X C%(O')|Ad(g_1).’[: S t+C_o+Z/[po},

and let py.s5o @ Xo,501 — 20 % Co be given by (t,z,9) — ((t,t),v) where
v € Co is such that Ad(g™ ")z € t + v +Upy, and py 56 : X501 — Xo.50.1
given by (¢, ,9) — (t,2,9F0).

Put Kp =IC(Zp X Co,Ep)[dim (2o x Co)] and let Ko be the perverse sheaf
on Xg 5,2 such that

(Pr.50)" Koldim Po] = (pg,s50) " Koldim (Cg(0)) + dimUp, .

Since the morphism Xgo — Ys N (S x (o + U)) given by (t,z,gP) — (t,7)
is obtained by base change from the proper morphism p§, we find from the
proper base change theorem an isomorphism

6.1.46.

(P%)!(legz) ~ (P[5 (s x (04 0))-

"
o,So

Similarly by applying the proper base change theorem to p
Y5, 5., we get a canonical isomorphism

6.1.47.

: XO'7S(9,2 -

(pZ7So)1([~(O‘XU ) = ((pg,So)!KONmﬂ(SOXU)'

,50,2

On the other hand, we have the following commutative diagram.
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6.1.48.
Loer(Zo x Co) dre ZxC
I po,50 ps
Hoer Xo.50.1 Lo Xs1
e s, o's
11 /5

HOGFXU7SO,2

Xs2

where f4(t,x,gPo) = (Ad(zp") (0 + 1), 0 + x, gro P),
otz 9) = (Ad(zp") (0 +1),0 + 2, gr0) and
fo ((t,t),v) = (Ad(zg") (o +t), Ad(z5") (0 + t), Ad(zp" )v).

The inverse image of K by [] fo is the complex K’ given by K ’|m —
Ko for any O € I'. If K’ denotes the complex on Hoer Xo,50,2 given by
K/\X(,,sa2 = Ko, then we have

Hposo '[dim Pp] =~ HpUSo 'ldim (Cg (o)) + dimUp,].
Hence from 6.1.45 and the commutativity of 6.1.48, we deduce that
(Lf5)" K[-6] ~ K
and so we get that

6.1.49.
(118)" (Klxy, ) (=0 = Kl xo

0'502

We now consider the following cartesian diagram.

1I f& U _ U
Hoer Xalso.2 Xs2 = Hoer Xs,zé

I Pla/,so Ps

Hoer Yo.50 N (So x U) Ys N (S x (o + 1))
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from which we find together with 6.1.49 an isomorphism

(09 (Klxg,) ) =0 = (e 500 (K xe,, ) -

Combined with the isomorphisms 6.1.46 and 6.1.47, we get the isomorphism
6.1.44 extending 6.1.43. a

As a consequence, it follows from the properties of intersection cohomology
complexes that the isomorphism of 6.1.44 is the unique one extending 6.1.43,
and that it is an isomorphism of F-equivariant complexes if we regard the
two complexes of 6.1.44 as the F-equivariant complexes induced from the F-
equivariant sheaf (€, ¢). Put ¢5*9 = ¢5*9 and for O € T, let $pS0*Ca(@) .

F* (stg)cg(”)) = KgoXCg(o') be the isomorphism induced by (€, ¢).

The isomorphism 6.1.44 gives rise to an isomorphism of stalks

SxG ~ 1 So XCg (0’)
K - (@_‘H(Ad(zal)sfo‘,v)[(o
€

H7.§

s cr+v

where u € Cg(0)f,, and s € ST are as in 6.1.20. And since the complexes
KSOXCQ( o) SoxCg (o)
o (Ad(zg')s—o,w)” O

is zero unless Ad(zp)s — o = 0, i.e Ad(vy')o = s. Hence taking the char-
acteristic functions in 6.1.44 with respect to ¢°*9 = ¢§xg and ¢S *Cq(o)
(O € I'), we get that

are supported by YU S0, it follows that H?

Xgsxg gpsxa(s,0+u) = Z X.KgoXCg(o‘)7¢Soxcg(o.)(O,u).
{0€erF(0)=0,Ad(zy" )o=s}

But as in [Wal01, page 44, (10)], we prove that

Cg(o
XKgOXCQ(U),¢SoXCg(U)( ) QLZ(CO Co,tﬁo( )

where (o, do) is the inverse image by Co — Zo x Co, v — ((0,0),v) of

the F-equivariant sheaf ((hp)*E, (ho)*(¢)) with heo as in 6.1.40 i.e. (Co, po)

is the inverse image of (£,¢) by Co — Z x C, v — ((Ad(zg")o, Ad(z,")o),
Ad(zph)o).

Hence from the fact that |OF| = |C&(0)F| if O € I and F(O) = O, we
deduce that

o —_ Cg(o
XKSXQ7¢,S><Q(870' +’LL) = ‘CG(O')F| 1 Z Qﬁg(c szd’z( )
{z€eGF|Ad(z—1)o=s}

where Ly, Cy, Cp, ¢p = (2., are as in 6.1.20(ii). O
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Proof of Theorem 6.1.20(i)

Let (Ys,1,Ys2,Ys, ag,af, %) and (Y1,Y2,Y,a,a’,a”) be respectively as in
6.1.8 (with Z = Z), and as in 5.1.31 (with X' = 2(£) 4+ C). Note that we
have Z; x C ~ S x Y. We have the following cartesian diagram.

6.1.50.

as

S x X YS
Js.z j. gy Js,g
a a/ a//
P Y1 Ys Y

where jog(z) = (s, 2), ji(z,9) = (s, 7, 9), j{(z,9L) = (s,z,9L).
From 6.1.50 we find a canonical isomorphism
6.1.51.
(Js,0)" ((@%)x€s,2) = (a)&s 2

where £g 5 is the unique local system on Yy o such that (as)*(£s,2) = (ag)*&
and where &, o is the unique local system on Y5 such that (/)*€s 2 ~ a*(&1,5);
recall that &1 s := (ms)* Lo K (.

Moreover, since all the maps of 6.1.50 are defined over [y, this isomorphism is
compatible with the two canonical isomorphisms F* ((js,g)* ((0/4)+&s,2) ) —
(Js,0)* ((04)+&s,2) and F*((a)u&s2) — (o). 2 induced respectively by
¢1 and ¥y s := (Js.2)*(¢1) : F*(E1,5) — &1,5. The isomorphism 6.1.51 can be
regarded as an isomorphism

(js.g)* (K77 ve) [—dim S] ~ KY |y

where Klg, s = ind%(é’l,s). From the properties of intersection cohomology
complexes, this isomorphism is the restriction to Y of an isomorphism

(Js.0)* (K7*9)[~dim 8] = K7,

~

which is compatible with the isomorphisms (js.g)*(¢7*9) : F*(Ky*9) —>
K79 and 4f , : F*(KY,) = K{, where ¢{ , is the canonical isomorphism
induced by 7 5. As a consequence we get that
6.1.52.

XKISX97¢'ISX9 (s,2) = XKf,sv%g,s(Z)

for any 2 € GF'. Hence the assertion (ii) of 6.1.20 will follow from
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6.1.53.

o — Cg(o
XKlg,s’wlg,s (U + ’lL) = |CG(O-)F| ! Z Q£5a027417¢'1 1( )
{zeGF|Ad(z—Y)oez(L)}

Note that ¢1,, @ F*({s) ~ (, is the inverse image by C;, — X, v
Ad(z7 (o 4+v) of P15 : F*(&15) ~ &E1,5. Hence 6.1.53 is 5.5.9. O

End of the proof of theorem 6.1.20

6.1.54 Deligne-Lusztig Induction and Geometrical Induction

We use the notation and assumption of 6.1.19. We denote by C(S¥ x £F)
the Q,-vector space of L¥-invariant Q,-valued functions on S¥ x £¥ and by
C(ST x GF') the space of GF-invariant Q,-valued functions on S x G¥ where
L (resp. G) acts on S x L (resp. on S x G) by Ad on the second coordinate and
trivially on the first coordinate. Then we define the Deligne-Lusztig induction
RIZLC(ST x LF) — (ST x GF) by

Réi%( Htz LF‘ ! Z SLCP z,y)f(ty)
yelF

where f € C(ST x L) and (t,z) € ST x G, and where SZ_, is the function
on G¥ x L£F defined in 3.2.17.

Remark 6.1.55. Let f € C(S¥ x £F) and for t € ST, let f; € C(LF) be
given by fi(z) = f(t,z), then we have RS:%(f)(t,z) = RE(fi)(z) for any
(t,z) € ST x GF.

We are now in position to state the main result of this section.
Theorem 6.1.56. With the above notation we have

(i) REXZ (XK1 1) = Xesxo ysxo.

(ii) Rgi%(Xsz) = Xfog7¢§xg.
Proof: Let i € {1,2} and let (s, +u) € ST x G be such that o is semi-

simple, u is nilpotent, [o,u] = 0 and (s, Ad(g~!)o) € Z; for some g € G¥'. By
6.1.20 we have
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6.1.57.

_ C
Xysws goxols,0+u) = |Ca()" [0 > Q@ (w).
x F
(s,Ad(fﬁ)a)ezi

On the other hand we have

,R’gi% (Xki0:) (8,0 +u) = |LF‘71 Z Sgc”P(U +u, )Xk, ¢ (8, 7).
zeLF

Since the complex K; is supported by Z; x C, we get that

Rgi% (XK'iv(f’i)(s?U—*—u) = ‘LF|71 Z SlglCP(o-'i_uvt""U)XKia%(sat+U)'
(t,w)ez(L)F xTF
(s,t)EZ;
But
— Cg(t _
Sleplotut+v)= > [C2"ICeHT|1 Qo) (Ad(h™u,v) .
heagt
Ad(h)t=0

Hence we get that
Rgiﬁ (XKMM) (s,0+ U) =

S > 1ca®TIef Y (Ad(h T u,v) X st + o).
(t,w)ez(L)F xcF  hegF
(s,t)EZ; Ad(h)t=0c

By interchanging the sums we have

RGLE (Xki:) (8,0 4 u) = |[C&(0)"|7! x

S S QPN (Ad(h Yy, 0) X, g, (5, Ad(h o + ).
(s,Ad(hhefif;U)EZ' vel”
But by definition of (Cp, (p, ¢4,1), see 6.1.20, we have
Xk 00 (8,Ad(R™ o +v) = Xk, 0., (Ad(R)v)

where Kj, = IC(Ch, ¢4)[dim (Z x C)] and where we still denote by ¢; ), the
canonical isomorphism F*(K}p) = K}, induced by ¢; 5 : F*((n) = (. Hence
it follows that Re<% (Xk,.4:) (5,0 +u) = [C%(a)F |1 x

> Z QL% (u, v)Xk, 0, (V).

hegF
(s,Ad(h—1)o)ez; el

Hence 6.1.56 follows from 6.1.57 together with 5.5.13. ad



6.2 On the Conjecture 3.2.30 139

6.2 On the Conjecture 3.2.30

6.2.1 Reduction of 3.2.30 to the Case of Nilpotently Supported
Cuspidal Functions

We first reduce the conjecture to the case of characteristic functions of
F-equivariant cuspidal admissible complexes (or cuspidal orbital perverse
sheaves).

Proposition 6.2.2. The following three assertions are equivalent.
(1) For any inclusion L C M of F-stable Levi subgroups of G with corre-
sponding Lie algebras inclusion L C M, we have:

FMoRM = eprer RM o F-.

(2) For any inclusion L C M of F-stable Levi subgroups of G with cor-
responding Lie algebras inclusion L C M, and any F-equivariant cuspidal
admissible complex (K, ¢) on L, we have:

fM o Rz/l (XK7¢) = GMGLRQA OfL(XK@).

(8) For any inclusion L C M of F-stable Levi subgroups of G with cor-
responding Lie algebras inclusion L C M, and any F-equivariant cuspidal
orbital perverse sheaf (K, ®) on L, we have:

fM o Rz/l (XK7¢) = GMGLRQA OfL(XK@).

Proof: The assertions (2) and (3) are particular cases of (1). We assume that
(2) holds. Let us prove (1). By 5.2.22, we have to verify that the commutation
formula holds for the characteristic functions of the F-equivariant admissible
complexes. Let M be an F-stable Levi subgroup of G with Lie algebra M. Let
(A, $4) be an F-equivariant admissible complex on M. By 5.4.12 and 5.5.16,
we have a formula

Xaga=Wu@™ Y Tr((Bwooa)™, Va)RE (Xk(zu,60).6u)-
wGWM(S)

Let us now apply Rjgw o FM to this formula. By (2) and the transitivity of
Deligne-Lusztig induction, we get that RS, o FM (X4 4,) = Wu (€)1 x

> Tr((Bwooa) " Vaener, RE, (F& (Xk (2 .c0)00))-
wGWM(S)
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Applying again (2) we finally deduce that

RSy 0 M (X p0.) = caennF o Ry (Xa).

Let us now prove (3). Let L C M be an inclusion of F-stable Levi sub-
groups of G and let (K, ¢) be an F-equivariant cuspidal admissible complex
on L. By 5.2.10, the Fourier transform of X 4 is a function of the form
Xg,¢r where (K',¢') is an F-equivariant orbital perverse sheaf on £. Hence
the identity in (2) becomes

.7:M o RQA(X[Q(#) = EN[GLRQA (XK’,¢’)~
Applying FM to this equality, from 3.1.10(ii), we get that
(RZ\A (XK7¢,))_ = 6M6L.7:M o RQA (XK/7¢,/).

But (R2'(f)) = RX(f") for any f € C(LF), hence applying again
3.1.10(ii), we have

RIFE 0 FF Xk ) = emer FM o R (X g0)
that is
RQA OfL(XK/7¢/) = EIVIGL-,FM ORQA (XK’7¢/)‘

Since the above equalities are in fact equivalent this prove the equivalence
between (2) and (3). O

The following result reduces the proof of 6.2.2(3) to the case of nilpotently
supported cuspidal orbital perverse sheaves.

Theorem 6.2.3. Let (L, C, () be such that L is an F-stable Levi subgroup of G
and (C, ¢) is an F-stable nilpotent cuspidal pair of L = Lie(L). Then there is a
constant ¢ € Q, such that for any o € 2(L)F and any ¥ : F*(Ksy) — Ko 4
where Ky o is as in 6.1, we have

FToRE Xz p0) = RE 0 FE (Xt 0)-

Proof: Define the Fourier transform F9*9 : C(S¥ x GI') — C (ST x GF') with
respect to (pu, ¥) by

FO(f)(s,2) =167 172 Y w(uly,x))f(s,y)

yegr
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with f € C(ST x GF'), (s,z) € ST x GF'. We also define the Deligne-Fourier
transform F5*9 : D5(S x G) — D5(S x G) with respect to (u,¥) as follows
(see [Wal01]).

Let p12,p13 : S x G x G — S X G be given by pi12(s,z,y) = (s,z) and
p13(s,z,y) = (s,y) and let pag : S X G X G — G X G be given by pas(s,z,y) =
(z,y), then for K € D%(S x G), define

FE9(K) = (pra)i ((p12)* K @ (pas)* (1" L)) [dim G].

The Fourier transform F*9 have the following properties.

6.2.4. (i) The functor F5*9 leaves Mg(S x G) stable.

(i) If (K, ¢) is an F-equivariant complex on S x G , then ¢ induces an
isomorphism F(¢) : F* (FS*9K) = FS*9K such that

im 1
X poss (i), 7(0) = (—1) P 9IGF [ FSX9 (X )
(1ii) We have

FG o indgs] p = indgx? p o F&E(—dimUp).

The assertion (i) of 6.2.4 can be found in [Wal01l, Page 38]. As in 5.2.3,
the proof of (ii) involves the Grothendieck trace formula applied to the F-
equivariant complex (F5*9(K),F(¢)) where F(¢) is the isomorphism in-
duced by ¢ and by the isomorphism ¢, of 5.1.57. As noticed in [Wal01, Page
40], since the variety S does not play any role in (iii), we refer to 5.2.8.

Let K7 and K> be the two perverse sheaves on S x £ defined in 6.1.15;
we have F5*£(K5) ~ K;. Hence from 6.2.4(iii), we get that 75%9 (K5*9) ~
K279 where K279 and K$*9 are as in 6.1.19. Since the pair (C,() is F-
stable, the complexes K7 and K are also F-stable. Let ¢ : F*(K3) 5 Ky
be an isomorphism and let ¢; : F*(K1) = K; be given by ¢1 = F(¢2) (see
6.2.4(ii)). As in 6.1.19, we denote by ¢7*9 and ¢5*9 the canonical isomor-
phisms F*(K7*9) 5 K9 and F*(K5*9) = K5*9 induced respectively
by ¢1 and ¢o. Since the perverse sheaves K7 *9 and K59 are simple (see
6.1.16), from the isomorphism F5*9 (K5*9) ~ K7*9 we get that there ex-
ists a constant ¢’ € Q, such that ¢5*9 = ¢/ F(¢579) where F(¢579) denotes
the isomorphism F* (F5*9(K5*9)) ~ F5*9(K5*9) induced by ¢5*9 as in
6.2.4(ii). As a consequence we have
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Xgegxo g570 = € Xpouo(x5x9), po579)

From 6.2.4(ii), it follows that

im 1

Xfog,%sw =d(-1)¢ g|gF|2.7:S><g(XKésxg7¢§xg).

Hence from 6.1.56, we get that

im 1

Rgig(XKlvd’l) = C/(_l)d g|gF|2fS><g (Rgii(XKmd’Q)) .
But ¢ = F(¢2) by definition, hence from 6.2.4(ii), it follows that
REZG(FSE (Xicpr)) = L7 HGF BP0 (REZE (Krcar))

Restricting the functions of this equality to {o} x G with o € 2(£)F

6.2.5.

, we get

R%(]:L (XK2,U7¢2,U)) = C/|‘CF _%‘QF‘%]‘-Q (R%(XK2,U7¢'2,U))

where @25 : F*(K2,5) = K5 » is the isomorphism obtained by restricting ¢-.

Now if we choose another isomorphism v : F*(Kz ) = K5 5, then it is
proportional to ¢2 , since Ky, is a simple perverse sheaf, hence the formula
6.2.5 remains true if we replace ¢2 , by 1. We thus have proved 6.2.3. a

From the previous discussion we have the following result.
Corollary 6.2.6. The two following assertions are equivalent.

(1) For any inclusion L C M of F-stable Levi subgroups of G with corre-
sponding Lie algebras inclusion L C M, we have

FMoRM = epre, RY o F-.

(2) For any inclusion L C M of F-stable Levi subgroups of G with cor-
responding Lie algebras inclusion £L C M, and any F -equivariant nilpotently
supported cuspidal orbital perverse sheaf (K, ¢) on L, we have

fM o Rz/l (XK7¢) = GMGLRQA OfL(XK@).

6.2.7 The Main Results

6.2.8. Let L be an F-stable Levi subgroup of G and let (C,{) be an F-
stable cuspidal nilpotent pair of £. Let L, be an F-stable G-split Levi
subgroup of G which is G-conjugate to L. The triple (L,C,() is of the
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form ((Lo)w, (Co)w, (o)w) for some w € Wg(L,) and some F-stable cus-
pidal nilpotent pair (C,,(,) of £, = Lie(L,) (see 5.4.2 and 5.4.9). Let
6 : F*(K(C,0)) = K(C,¢) and ¢, : F*(K(Cy,C)) = K(Co,Co) be such
that ¢ = (¢o)w (see 5.4.2). By 5.2.10, there exist two constants v and ~, such
that

FE (Xk(2,.6),188) = VXK(C,0),5
FEo (XK (£,,£)186,) = Vo XK (Corto) b0

where ¥ = 2(L) +C, £ =Q,K(, X, = 2(L,) + Cy, & = Q, K (,. Note that
the two constants v and v, do not depend on the choice of the isomorphisms

¢ and ¢,.

Let e : Wg(L,) — @; be the sign character of Wg(L,). We have the
following result.

Proposition 6.2.9. With the above notation we have

FOoRE(Xk(c0).6) = W)y oRE 0 FX (Xk(c,0).0)

where w € Wa(Ly) is such that L = (L) .
Proof: B
Put A, = K(X,,Q W (), Ko = K(Co, o),

A=K QR(), K =K(C,(),
and

fa, =X, 86,0 fr, = XKy 605

fa=Xu1re, fx = XK ¢
We thus have
6.2.10. F°(fa,) = Yofk, and FE(fa) = vfx.
We have to show that F9 (R%(fK)) = e(w)v‘lfyoR%((fﬁ(fK)).

As in the proof of 6.2.2, we see that it is equivalent to show that
FIRE(f4)) = e(w)y RE((FE(fa))-
From 6.2.10 and 4.4.7, we have an isomorphism of F-equivariant complexes

§: (F&(Ao), FUR ¢,)) = (Ko, 75b0)

dim £, 4m Lo

where v, = (—1) ¢~ 2 7. Let P, be an F-stable parabolic subgroup of
G having L, as a Levi subgroup and let P, be its Lie algebra. Put (Ag, z/Jg) =
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(ind$, (&,),indS, (1K¢,)) and put (K9, ¢9) = (ind%  p. (K,),ind% p._(¢o))-
Then, from 5.2.8 and 5.1.33, the isomorphism ¢§ induces an isomorphism of
F-equivariant complexes

Op, + (FI(AD(AmUp,), F(47)) = (KJ,7,67).

Let 0, : A9 = A9 be as in 5.3.6(iii) and let 0, ,, : K¢ = K9 be the isomor-
phism induced by the automorphism 6,]g,,, of AYlg ., = K9|¢. . [dimz(L)].
From [Lus92, 5.5], we have 0., ,, 0 0p, = e(w)0p, o F(f,). As a consequence,
0p, induces an isomorphism

6.2.11.

(.’Fg(Ag)(dim UP0)7 -7:(9711 © ong)) = (Kg7 e(w)’ygew,n © ¢g)

Now the characteristic function of (Ag, O oq/)og) is equal to ’R% (fa) in view
of 5.4.2 and 5.5.16. The characteristic function of (K¢, 0., ,0¢¢) is thus equal
to (—1)3m = LRI (f4).nf, and so it is equal to (—1)dimZ(L)R%((fA).nf) =
RY(fx) by 3.2.16. Taking the characteristic functions in 6.2.11, we thus get
that

FO(RE(f)) = e(w)1oRE(fx).

On the other hand, from the identity fx =y 1F* (fA) we deduce that
RE(fre) =7 "RE(FE(£4)-

Hence
FIRE(fa)) = e(w)yoy "RE(FZ(fa)).
O

Remark 6.2.12. With the notation of 6.2.8, put A = K(X,&), K = K(C,(),
and fa = X41x¢, f&K = Xk,¢. Since A is homogeneous with respect to
homotheties, there exists v € {1, —1} such that (fa)~ = vfa where for f €
C(LY), f~(x) := f(—x). Then we have

FE(fx) = vy fa. (*)

Now if we identify £ with z(£) ® £ and if f € C(LY) is such that for any
z€z(L)F and x € ZF, f(z+ ) = fi(2) f2(u) with f; € C(2(£)F) and f> €
C’(ZF)7 then we show (as we did with complexes in 5.2.12) that F*(f)(z+x) =
FAL) f1(2)FE fo(z) for any z € 2(L£)F and z € ' Asa consequence, using
the decomposition f4 = (—1)3m=£)(Id, 0y r % fx) € C(z(ﬁ)FxZF) where fx
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is regarded as a function over ZF, we see that F£ o FE(fa) = g Im=E)q2
dim=(£) " As a consequence from (*), we get that

FE(fr) =g ™ fa. (1)

i.e. that 42 = vq

Definition 6.2.13. With the notation of 6.2.8, the constant v is called the
Lusztig constant attached to the cuspidal datum (L, X&) with respect to the
Frobenius F. Put ¥ = nropy with ny, = (—1)semi-simple Fg=rank(L) qpnd o) =
(—=1)7*s=(E) | The constant 7 is called the modified Lusztig constant attached
to (L, X, &) with respect to F.

Remark 6.2.14. Let (L, X, &) be an F-stable cuspidal datum of G such that
L is G-split and & is of the form Q, X ¢ on X = z(L) + C. Denote by 7 the
Lusztig constant attached to (L, X, £) with respect to F, and for w € Wg(L),
let v be the Lusztig constant attached to (L., Xy, Ew) with respect to F.
Then the equality v = eger,, e(w)y™ is equivalent to ¥ = 4. Now saying that
4 =AY for any w € Wg(L) is equivalent of saying that the modified Lusztig
constant attached to (L, X, ) does not depend on the Frobenius wF on L for
any w € Wg(L).

Remark 6.2.15. Let T be an F-stable maximal torus of G with Lie alge-
bra 7. Note that the Lusztig constant attached to (7,7, @5) is equal to
(—I)Tk(G)q% and so does not depend on the [Fy-structure on G for which
the induced Frobenius endomorphism stabilizes T'. As a consequence from

6.2.14, 6.2.9 and 6.2.3 we get that:
F9o ’Rg = eGeT’Rg o FT.

Moreover, a theorem of T.Shoji [Sho95] says that [Lus90, 1.14] holds without
restriction on ¢ if the Levi subgroup considered is a maximal torus. Hence
this commutation formula holds without restriction on q.

Theorem 6.2.16. The following assertions are equivalent.

(i) The conjecture 3.2.30 is true.

(it) For any F-stable cuspidal datum (L, X,E) of G as in 6.2.14, the mod-
ified Lusztig constant attached to (L, X,E) does not depend on wF for any
w € Wg(L).

Proof: Follows from 6.2.6, 6.2.9 and 6.2.14. a

If G is either GL, (k) or a simple group of type Eg, Fy or G5 (in which case
p is acceptable for G if and only if it is good), then the only proper Levi
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subgroups of G which support a cuspidal pair are the maximal tori, hence by
6.2.16 and 6.2.15 we have:

Corollary 6.2.17. Assume that G is either GL, (k) or a simple group of type
Es, Fy or Ga, and that p is good for G, then the conjecture 3.2.30 is true for

any q.

6.2.18. We can easily reduces 6.2.16(ii) to the case where G is simple. Then
using the classification of cuspidal data of simple algebraic groups [Lus84], we
see that to prove 6.2.16(ii) it is enough to prove that if G is either semi-simple
of type A,, or simple of type either B,,, C, or D,, and if G supports an
F-stable cuspidal pair (C, (), then

(*)  the modified Lusztig constant attached to (C, ¢) does not depend on the
F,-structure on G for which the induced Frobenius endomorphism stabilizes

(€, Q).

Note that if G is simple of type either B, or C),, then the statement
(*) holds since in that case the pair (G, F') is unique up to isomorphism. If
p > 3(hG — 1) and if G is semi-simple of type A,,, then from the explicit com-
putation of the Lusztig constant [DLM97], the assertion (*) follows [DLMO03,
6.12]. If p > 3(h¥ — 1) and if G is either the simple adjoint group of type D,
or SOs,(k), then the assertion (*) follows from the explicit computation of
the Lusztig constant [Wal01l, V.8]. Actually, in [Wal01, V.8], the adjoint case
G = Guq of type D, is not explicitely mentioned, but using the canonical
central isogeny f : SOa, (k) — Guq, we see that if (C,() is an F-stable cus-
pidal pair of G4, then the Lusztig constant attached to (Guq, C, () is equal
to that attached to (SO, (k), f~1(C), f*(¢)). The remaining case is the case
where G is simple simply connected of type D,, and SOz, (k) does not admit
a cuspidal pair. As far as I know, this case is still unknown.

Theorem 6.2.19. Assume that p > 3(h§ — 1) and that every simple compo-
nent of G/Zg of type Dy, is either SOay (k) or the adjoint group of type Dy,
then the conjecture 3.2.30 holds.

Proof: Follows from 6.2.16 and 6.2.18. O

6.2.20 Lusztig Constants: A Formula

In this section, we give a formula for the Lusztig constant attached to an
F-stable cuspidal pair of the Lie algebra of a simple algebraic group. Such a
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preliminary formula has been obtained by Digne-Lehrer-Michel [DLM97] when
the nilpotent orbit supporting the cuspidal pair is regular, by Waldspurger
[Wal01] for the classical groups Spa,(k), SO, (k), and by Kawanaka [Kaw86]
for the exceptional groups Fs, Fy and Gs. Although it has been used by the
previously named authors to compute the Lusztig constants, this formula is
not explicit enough to verify the required property on Lusztig constants (see
6.2.18(%)).

We assume that p > 3(h$ — 1), that G is simple, and that G admits an
F-stable cuspidal pair (C, (). We denote by v the Lusztig constant attached
to (C, () with respect to F'.

6.2.21. We fix an element u, € CF. Under our assumption, we can use
Dynkin-Kostant-Springer-Steinberg’s theory on nilpotent orbits on G. Hence
there exists an F-stable Z-grading G = @, G(i) of G i.e. F(G(i)) = G(i) and
[G(i),G(j)] C G(i + j), with the following properties (i)-(vii).

(i) uo € G(2).

(ii) P = @i>0G (i) is the Lie algebra of an F-stable parabolic subgroup P
of G and £ = G(0) is the Lie algebra of an F-stable Levi subgroup L of P.

(iii) G(2) is stable under the adjoint action of L and OL is dense in G(2).

(iv) Up = Di>0G (7).

(v) The group Cy, (u,) is unipotent and connected, and the group Cg (u,)
is the semi-direct product of Cr(u,) and Cy, (u,) as an algebraic group.

(vi) We have O N (@22 G(i)) = OF .

(vii) The pair (C,¢) being cuspidal, by [Lus84, 2.8] the element u, is
distinguished i.e. the map ad(u,) : G(0) — G(2) is bijective. Hence we have
G(i) = {0} if i is odd i.e. Up = @,~,G(i), and from (iii) we deduce that
€5 (us) = {0},

6.2.22. We now define the generalized Gelfand-Graev functions following
[Kaw85]. Let H*(F, Ag(u,)) be the group of F-conjugacy classes of Ag(u,).
By setting that 1 € H'(F, Ag(u,)) corresponds to the G¥-orbit of u,, we
have a well-defined parametrization of the G¥-orbits in C¥ by H'(F, Ag(u,))
(see 2.1.20). From 6.2.21(v), we have Ag(u,) ~ Ar(u,), hence for z €
HY(F, Ag(u,)) ~ HY(F,Ar(u,)), we can choose an element u, € G(2)F
which is in the G¥-orbit of C*' corresponding to z. Let Up = @, _, G(4),
then for each z € HY(F,Ar(u,)), we define a linear additive character
v, : Up)" — Q by ¥.(u) = ¥(u(uz,u)). The corresponding generalized
Gelfand-Graev function I, : G — Q, is defined by

I(z) = |UE|! > 7, (Ad(g)z).
{geGF|Ad(g)zelp }
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The G-equivariant irreducible local system ( corresponds to a unique F-stable
irreducible character (denoted again by () of Ag(u,) which can be extended
to a character of the semi-direct product Ag(u,) % (F') where (F') is the cyclic
group generated by the Frobenius F. The restriction to Ag(u,).F of this
extended character is constant on the Ag(u,)-orbits and so leads to a unique
function ¢ on H(F, Ag(u,)) ~ H'(F, AL (u,)). We then define a nilpotently
supported function I : G — Q, by

I = > |2IC(2) .

ZEHI(FaAL(uo))

6.2.23. By [Lus92, 7.6], the function I+ is proportional to the characteristic
function of the F-equivariant perverse sheaf (K (C,0), gzb) for any isomorphism
¢: F*(K(C,¢)) = K(C,¢). As a consequence we get that

FIIy) =" T

From the classification of the distinguished parabolic subgroups of G, we can
verify that the longest element w, of Wg(T') (with T a maximal torus of L)
normalizes L and Ad(w,) maps G(2) onto G(—2). As a consequence 0%, N

G(—2) # 0 and any element of O, NG(—2) is distinguished with associated
parabolic subgroup P~ = LUp. Let ul € (’)9; N G(—2)F. From [Lus92,

dim Cg (uo)

6.13] we have F9(I:)(uz) = C(1)|1]|Cq(uo)Flg~— 2 where by definition
11| = t#{z~1F(z)|z € AL(u,)}. Hence by 6.2.21(v), we deduce that:

F_ 5(1)|1HCL(U0)F| —dimCp (o) dimcl’;P(MO)
a Ie(uy) i ‘

Hence the computation of v reduces to that of I:(ul). For any z €
H'(F,AL(u,)) we have

(uy) = UE[T Y w(Ad(g)uy) = > @ (Ad(g)u
ge(P—)F geLF

These equalities come from 6.2.21(vi), 6.2.21(iii) where (u,, P) is replaced by
(u}, P7), and the fact that the restriction of ¥, to @, _, G (i) is trivial. We
thus get that

Te(ug) = > 2C() Y P (Ad(D)uy).

2€HY(F,Ar (uo)) leLF

Let L1 : L — L, t+ t 1F(t) be the Lang map. Then we have a surjective
map
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L: ‘Czl(CL(UO))/CL(UO) — H'(F,Cr(u,)) =~ H'(F, A (u,))

which maps tCr,(u,) onto the F-conjugacy class of =1 F(t).
For 2 € HY(F, AL(u,)), let I, € L be such that I[7'F(l,) = % where
2 € Cr(u,) is a representative of z, and u, = Ad(l,)u,. Then we have a well-

defined map ¢, : LT — Zil(z) given by t — ¢,Cr(u,). This map is clearly
surjective and its fibers are all of cardinality

a, = t{h € Op(u,)|h ' 2F(h) = £}.

Forg e £;'(Cr(u ))andx € (U ), define 9%, (z) := ¥ (u(Ad(g)uo, x)) =
¥ (p(uo, Ad(g~(2))) = Wo(Ad(g~")z). We thus have:

S v (adt) = 3 o) =an S ().

teL¥ teL¥ 1€L7 ' (2)

We finally deduce that:

I (ug) = [Cr(uo)| > C(LW)) o (uy).

1€LTM(CL(u0))/CL (uo)

Indeed we have a.|z| = |CL(u,)| since by 6.2.21(vii), we have Afr(u,) =
C1(u). Note that £7(Cy(u,))/Cr(uo) = (L/CL(u,))" . We define the quan-
tity
oc=C)T Y (L) (Ad(u,)
te(L/Criun)”

where ¥} is the additive character of G(2)F" defined by ¥ (v) = ¥ (u(u},v)).
Note that o does not depend on the choice of the extension of ( on Ag(uo) X
(F). Since [1||CL(u,)¥| = |CL(u,)|, we thus have
6.2.24.

v =0i'q
where d = dim Cy,, (u,) — dim Cr (u,).

[MSH

Remark 6.2.25. From the formula 6.2.24, we see that v is a “generalized
character sum” [KP00] associated to the regular prehomogeneous vector space

(LA G(2)).
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Fourier Transforms of the Characteristic
Functions of the Adjoint Orbits

The goal of this chapter is to give a formula which reduces the computa-
tion of the values of the Fourier transforms of the characteristic functions of
the adjoint orbits of G to the computation of the values of the generalized
Green functions and the computation of the Lusztig constants attached to the
F-stable cuspidal data of G. As in the previous chapter, we assume, unless
specified, that p is acceptable for G and that q is large enough.

7.1 Preliminaries

7.1.1 A Decomposition of C(GF)

In this subsection, we give a decomposition of C(G¥") which is “conserved” by
Fourier transforms and by Deligne-Lusztig induction.

7.1.2. We denote by J(G) the set of G-conjugacy classes (see 5.1.23) of triples
of the form (L, C, ¢) with L a Levi subgroup of G and (C, () a cuspidal nilpo-
tent pair on L. Note that the Frobenius map F' induces a map J(G) — J(G)
such that if (L,C,() is a representative of O € J(G), then the image of O
is the G-conjugacy class of (F~1(L), f~1(C), F*(¢)). We denote by J(G)¥
the subset of J(G) of F-stable elements of J(G). Recall (see 5.4.8) that if
O € J(G)F, it is possible to choose an F-stable representative of O. We also
use the notation of 4.4.13 with X = G and H = G, and we put I(G) := I.
In particular, for each « = (0,,&,) € I(G)¥, we have fixed an isomorphism
¢, : F*(£,) = &, and we have denoted by ), the characteristic function of
(E.,¢.) extended by zero on GI' — OF and by X, the characteristic function
of the F-equivariant perverse sheaf (K(OL, &), ¢L). By 5.1.81, we have a well-
defined surjective map I(G) — J(G) defined as follows. Let (O, &) € I(G) and

E. Letellier: LNM 1859, pp. 151-158, 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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let (L, 0%, L) be as in 5.1.81. Then to (O, &) we associate the G-conjugacy
class of (L, C, () where (C,() is the unique cuspidal nilpotent pair of £ such
that O = 2+ C with 2 € 2(£) and €L = Q, K. This map restricts to a map
h:I(G)F — J(G)F. Then, for j € J(G)F', we denote by C(G'); the subspace
of C(G) generated by the functions {X,|c € I(G)¥',h(v) = j}. By 4.4.13 we
have a decomposition

c@hH= P c@n; (1)

JEJGF

Denote by I,,(G) the subset of I(G) consisting of nilpotent orbital pairs of G,
and, for j € J(G)F', denote by (C(gF)m-l)j, the subspace of C(G') i generated
by {X,|t € I,(G)F, h(+) = j}. Then we also have a decomposition

C(G )= E (C(G")na);.

JEJ(G)F

7.1.3. Let L be an F-stable Levi subgroup G with £ := Lie(L). From the clas-
sification of cuspidal data [Lus84], the natural map J(£) — J(G) is injective
(see also [DLM97, 1.2]) and so we may identify J(L£) with a subset of J(G).
By 6.1.56(ii), 6.1.55 and 6.1.3, for any j € J(£)F and any f € C(LF);, we
have RY(f) € C(GT);.

7.1.4. We want to see that the Fourier transforms conserve the decomposition
7.1.2(1). Firstable, if j = (G, C,¢) € J(G)F, then it is clear that F9 leaves sta-
ble the subspace C(G¥);, i.e. the characteristic functions of the F-equivariant
cuspidal admissible complexes on G span the spaces C(G); with j € J(G)F.
Hence by 7.1.3, for each j € J(G)F, there is a basis of C(G¥'); formed by the
characteristic functions of some F-equivariant Lusztig complexes on G (re-
call that the characteristic functions of the F-stable Lusztig complexes span
C(GT), see 5.2.22 and 5.4.4). Looking now at the Fourier transforms of these
bases, we see from 6.2.3, that F9 leaves the subspaces C(G%');, with j € J(G)F,
stable.

Proposition 7.1.5. Let M be an F-stable Levi subgroup of G. Let j € J(M)F
and let (L,C,C) be an F-stable representative of j. Assume that the modified
Lusztig constant attached to (L, X, E) = (L, 2(£) + C,Q,X() does not depend
on the Frobenius wF with w € Wg(L). Then

F9oRG(f) = eenRE o FM(f)

for any f € C(MF);.
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Proof: By 7.1.4, the subspaces C(M¥);, with j € J(M)F, have a basis
formed by the characteristic functions of F-equivariant admissible complexes
on M. Hence it is enough to verify the commutation formula when f is the
characteristic function of an F-equivariant admissible complex on M. Hence
the proof is similar to that of 6.2.16. a

7.1.6 A Geometric Analogue of 3.2.24

We use the notation of 7.1.1 which includes the notation of 4.4.13. We assume
now that G = GL,(k) or that p is very good for G (note that if G is a
simple group, then p is acceptable for G if and only if it is very good for
G). Let « = (0,,&,) € I(G)F and let z € OF. We denote by M the Levi
subgroup Cg(zs). Note that Cg(zs) is connected by 2.6.18, hence the local
system & |om is irreducible by 5.1.39; we denote by (OM,EM) the orbital
pair (O}, € |om) € I(M)F. Let ¢ : F*(EM) ~ EM be the restriction of ¢, :
F*(&,) ~ &, and let YM be the characteristic function of the F-equivariant
sheaf (EM, ¢pM) extended by zero on ME — OM . We also denote by XM the

characteristic function of the F-equivariant perverse sheaf (K (OM, €M), oM).

Lt 2L

Lemma 7.1.7. We have O, = Ugec 4 (g)(@)

Proof: Let @ be a parabolic subgroup of G having M as a Levi subgroup.
By replacing (P, L, X)) by (Q, M, OM) in 5.1.26, and by applying 5.1.30(ii) we
get that

U Ad(9) (O} +Uq) = O..

geG

But since x4 is M-regular in G, we get from 2.6.6 that

U Ad(9) (OM + Ug) = | ] Ad(g)(OM).

geG geG

Proposition 7.1.8. We have RE(XM) = X, and RE(YM) = ),.

Proof: Write Y™ = 2 0cOrb(MF) Ao&L where Orb(M*) denotes the set
of M¥-orbits of M and where for O € Orb(M?¥), the symbol zo denotes
an element of O. From 3.2.24 and the fact that Cg(zs) = Cp(zs), we have
RG (VM) = 2 0cOrb(MF) oS, ; note that Ao # 0 only if O C OM. Since
OM is of the form xs + CM for some nilpotent orbit CM of M, we get that
the semi-simple part of xep, for O such that Ao # 0, is equal to zs. As
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a consequence, the functions gfo € C(G") such that Ao # 0 are linearly
independent. Since the function Y and ), coincide over (OM)¥ we deduce
that both Y, and R, (VM) take the value Ao at zo for any O C (OM)F.
Now let y € OF ; its semi-simple part is then G-conjugate to zs. Since Cg ()
is connected, it follows that y, and x, are actually GF'-conjugate. Hence we
get that any GF-orbit of G supporting Y, is of the form ijj for some
O € Orb(M¥F) such that O Cc OM. We thus proved (i).

The proof of (ii) is similar to that of (i) as long as we can see that
——F
(a) the functions &, and XM coincide over OM |

——F ———F
(b) any rational element of O, is G¥'-conjugate to an element of OM "~ .

From 4.3.6, the restriction of the complex K(O,,&,) to OM is nothing but
IC(OM, £M)[dim O,]. We thus get that X, (z) = (—1)dimO.—dim O ¥ M (3) for
any ¢ € WF. Hence (a) follows from the fact that the integer dim O, —
dim OM is even. From 7.1.7, any element of O, is G-conjugate to an element

of OM. Since centralizers in G of semi-simple elements of G are connected,

A~ F . . ———F
any element of O, is thus G¥'-conjugate to an element of OM . a

Proposition 7.1.9. For p,u’ € I(G)F, let a, ,» € Q, be such that X, =
o wer(gyr G Yw - Then ay v # 0 only if p and p' have the same image by
h: 1(G)F — J(G)F, ie. for any j € J(G)F, the set {YV.|h(p) = j} forms a
basis of C(GF');.

Proof: Using 7.1.8, we see that the proof reduces to the case where u is a
nilpotent pair. But via a G-equivariant isomorphism G;,; — Gpi, the nilpo-
tent case follows from its group version [Lus86a, 24.4(d)]. O

Remark 7.1.10. Note that thanks to 7.1.8, the computation of the coefficients
ay, in 7.1.9 reduces to the nilpotent case.

7.2 Fourier Transforms of the Characteristic Functions
of the Adjoint Orbits

In this section we keep the assumptions and the notation of 7.1.6. We also
assume that ¢ € I(G)¥ is such that the modified Lusztig constant attached to
(L, 2(L)+C,Q,X(), with (L, C, ) € h(i)¥, does not depend on the Frobenius
wF with w € Wg(L). We first give a formula for F9(X,).
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By 7.1.5 and 7.1.8, we have
FI(X,) = ecemRS, o FM(XM). (1)

Note that OM = z, + OM and £V = QX S%L for some nilpotent
pair (OM €M) of M. Let f., be the Fg-linear form M* — F, given by
z + p(z,x,). Then there is an isomorphism ¢, : F*(EM,) ~ £} such that
FMXM) = (W o fo,). FMXM) where XM is the characteristic function of
(K((’)%,E%L), f‘/[n) We assume that L is contained in M and that it is M-
split. We choose an isomorphism ¢ : F*(¢) = (. For any w € Wy (L), we
denote by (L, Cu, Cuw, $w) the datum obtained from (L, C,(, ¢) as in 5.4.2.
As usual, we denote by L,, the Lie algebra of L,,. Then taking the restriction

to nilpotent elements of a formula like 5.4.12, we may write

XM= ()@@t Y (0 0 o) T VMO ) e
’LUEW]VI(L)

where 62/ is chosen as in 5.3.6(iii). Put AM (w) = Tr((0% o oM)~1, V,M). For
w € Wy (L), let K, be the complex K(C,,(y) and let X, be the char-
acteristic function of the F-equivariant complex (K, ¢,). We thus have:
RN (Xy) = (—1)dim 2(£) Q%;Cw;Cw7¢w since Deligne-Lusztig induction coin-
cides with geometrical induction. Applying 7.1.5, we thus get that

FMQL i) = nrer, (1) THEORE (FEv (X)),
Since z5 € z(M), we have
(¥ 0 fo,) R, (FE (Xw)) = RE, (o fr).FE (X))
where f£w is the restriction of f,, to £L. From 6.2.12(1), we have

(lI/ o favﬁsw)‘fﬁw (Xw) — ,ywqfdimz(L)XA

w,Tg a¢'w,zs

where A, = K(2(Lw) + Cuw,mi (Lo) ® ), v is the Lusztig constant,
and where ¢y, -, = m} (¢r,) M ¢y. From (1), we finally deduce that

FIX) =

W) Y ecaen AYRE Rawss b)) (2)
weW i (L)

~

7.2.1. From now, we choose ¢ : F*(¢) = ¢ and the isomorphisms F*(,) =
Euy with g € L, (M)F and h(p) = j, as in 5.5.12; in particular we have
MM (w) = %, (wF) where Y, is the F-stable irreducible character of Wy (L)
corresponding to the pair (OM  £M) and where Y, denotes the “preferred

IR RN )
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extension” of x, to Wy (L) x (F). Note that the choice of ¢, ,, : F*(E,.n) = Ein
we just made determine uniquely the isomorphism ¢, : F*(&,) = &,. Now we
see from (2) that the explicit computation of the values of F9(X,) reduces to
the computation of the values of the generalized Green functions (by 5.5.9)
and to the computation of the Lusztig constants v* which are known in many
cases (see 6.2.20). From 5.5.12, we see that the problem of computing the
values of the generalized Green functions is the same both in the Lie algebra
case and in the group case. By 5.5.12, this problem reduces to the problem of
computing the values of the functions &, with u a nilpotent pair. Lusztig has
invented an algorithm [Lus86a] which allows the computation of the coefficient
ay, of 7.1.9 in the case where i, /' are nilpotent pairs. The problem reduces
thus to the computation of the values of the functions ), with p a nilpotent
pair. However, if u € (95 , the values of the function ), can be described (up
to a root of unity) in terms of the values of the corresponding function on
H(F, A(u)) which is defined in the second paragraph of 6.2.22.

Concerning the computation of the values of the functions F9()),), we see
by 7.1.9, that it reduces to the computation of the values of the functions
F9(X,) (we already outlined) and the computation of the coefficients ay, .
But by 7.1.10, the computation of the coefficients a,, , reduces to the case
where p, ¢’ are nilpotent pairs which coefficients can be computed by Lusztig’s
algorithm.

7.2.2. Concerning the computation of the values of the function F9(¢¢) for
some z € GI': we know (up to some roots of unity) the base change matrix
between the functions 55, y € G and the functions Y, u € I(G)F, where
the isomorphisms ¢, : F*(€,) ~ &, are chosen as ¢, in 7.2.1. Hence the
computation of the value of the function F9(£¢) reduces to that of F9(Y,)
for u € I(G") such that O, = OF, which computation is outlined above.
However, since in general the functions £¢& do not belongs to a C(GF);, with
j € J(G)F, one need to assume the assumption of 7.1.5 for any j € J(G)¥
such that, under the decomposition 7.1.2(1), the function ¢$ has a non-zero
component in C(GF);. In particular, one knows how to compute the values of

F9(¢9) in the following cases:

(a) p, ¢ and G are as in 6.2.19, although the value of the Lusztig constant
is in general not known in this case.

(b) G and p are as in 6.2.17 (no assumption on ¢). Note that in these cases
the Lusztig constants are explicitly known [Kaw86].

(c) p and g are as in 6.2.19 and z is a regular element, i.e. dimCg(z) =
rk(G). Indeed, in that case, the j € J(G)F such that under the decomposition
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7.1.2(1) the function £§ has a non-zero component in C(G¥');, are “supported”
by a regular nilpotent orbit [DLM97, 1.10]. But, the j € J(G)¥ which are
supported by a regular (nilpotent) orbit satisfy the assumption of 7.1.5 as it
can be seen from the explicit computation of the Lusztig constant [DLM97,
section 2| attached to such j.

(d) p is very good for G (no assumption on ¢) and z is a semi-simple
element of G, Indeed, in that case £ € C(GF); where j the G-conjugacy
class of (T,{0},Q,) with 7" a maximal torus of G.

7.3 Fourier Transforms of the Characteristic Functions
of the Semi-simple Orbits

We now give a more explicit formula for F9(¢¢) in the situation of 7.2.2(d).
We thus assume that p is very good for G' and that z € G¥ is semi-simple.
Here T' is an F-stable maximal torus of M = Cg(z) which is M-split and &
is the root system of M with respect to T

Lemma 7.3.1. We have

e -
Q@ =T IWn @) S earen, Q4.
wEWM(T)

Proof: Via the M-equivariant isomorphism w : M;; — My, it is equivalent
to prove it in the group setting. From [DM91, 12.13] we have

Iy = [Wa(T) ™" Y Ry (dg,). (1)
weWn (T)

As in [DM91], we denote by D)y the dual map. Applying Dy, to this formula,
we get that

D]V[(IdM) = ‘WM(T)‘_l Z EJVIETngi (DTw (IdTw))
weWn (T)

Let Sty denote the Steinberg character of M¥'; it is equal to Dps(Idys). Since
Str, = Idr,, we have

Sty = Wa (D)™ Y. emer, Ry (Idg,). (2)
weWn (T)
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Let n}! denote the function on M*" that takes the value 1 on MF . and 0 on

MF — MF . We have

(Star)m)" = Wy (T)| 'R} (h{™)

where 1 (y) = 1 if y = 1 and h*(y) = 0 otherwise. From [DM91, 9.3], we
see that (Styr).nM = q\¢+|h11\/_[ whence the result. O

Remark 7.3.2. Applying F9 to 7.3.1 and using 6.2.15, we get the Lie algebra
version of (1) above, from which we deduce the Lie algebra version of (2)
above; the Steinberg function on G has been defined in [Spr80].

Theorem 7.3.3. We have

FOEE) = cgenrg T W (DY Y. RE (o fI)
weWnr (T)

where fIo : TF — @;, 2= W (pu(z, ).

Proof: Since Cg(z) is connected (because p is very good), the constant sheaf
Q, is the unique (up to isomorphism) G-equivariant irreducible local system
on O%. Moreover, the orbit OF is closed in G, hence the complex K (0%, Q,)
is isomorphic to Q,[dim OF]. Thus, for an appropriate choice of ¢, we may
identify X, of 7.2 with £ and X with &}’ Applying the formulas 7.2(2)
and 7.3.1 we get 7.3.3. Note that the Lusztig constant v* of 7.2(2) is then
equal to (—1)T’“(G)q%’z‘c). O
Remark 7.3.4. The 7.3.3 is nothing but the generalization of the Kazhdan-
Springer formula 3.2.12 to the case where the semi-simple element x is not
necessarily regular, although even in the regular case, the formula 7.3.3 is
slighty more general since Kazdan’s result [Kaz77] is available for p large.



References

[Ara01]

[BBDS2]

[BL94]
[Bon9s]
[Bon00]
[Bon04]
[Bor]
[Bou]

[BRS5]

[Bry86]

[Car72]

[Car85)

Alberto Arabia, Faisceaur pervers sur les variétés algébriques complezes,
prépublication de Paris 7 (2001).

A. A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis
and topology on singular spaces, I (Luminy, 1981), Soc. Math. France,
Paris, 1982, pp. 5-171.

Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors,
Springer-Verlag, Berlin, 1994.

C. Bonnafé, Formule de Mackey pour q grand, J. Algebra 201 (1998),
no. 1, 207-232.

, Mackey formula in type A, Proc. London Math. Soc. (3) 80
(2000), no. 3, 545-574.

, Eléments unipotent réguliers des sous-groupes de Levi, Canad. J.
Math 56 (2004), 246-276.

A. Borel, Linear algebraic groups, Springer-Verlag (second enlarged edi-

tion).

N. Bourbaki, Groupes et Algebres de Lie, chap. 4,5,6.

Peter Bardsley and R. W. Richardson, Etale slices for algebraic transfor-
mation groups in characteristic p, Proc. London Math. Soc. (3) 51 (1985),
no. 2, 295-317.

Jean-Luc Brylinski, Transformations canoniques, dualité projec-
tive, théorie de Lefschetz, transformations de Fourier et sommes
trigonométriques, Astérisque (1986), no. 140-141, 3134, 251, Géométrie
et analyse microlocales.

Roger W. Carter, Simple groups of Lie type, John Wiley & Sons, London-
New York-Sydney, 1972, Pure and Applied Mathematics, Vol. 28.

, Finite groups of Lie type, John Wiley & Sons Inc., New York,

1985, Conjugacy classes and complex characters, A Wiley-Interscience
Publication.



160 References

[Del77]

[DL76]
[DL83]

[DLM97]

[DLMO3]

[DMS87]

[DMO1]

[FKsS]

[Gec99]
[Greb5]

[GroT71]

[Gro73]

[HenO1]

[HS85]

[Isa94]

[Jans7]

P. Deligne, Cohomologie étale, Springer-Verlag, Berlin, 1977, Séminaire
de Géométrie Algébrique du Bois-Marie SGA 4%, Avec la collaboration
de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier, Lecture Notes
in Mathematics, Vol. 569.

P. Deligne and G. Lusztig, Representations of reductive groups over finite
fields, Ann. of Math. (2) 103 (1976), no. 1, 103-161.

, Duality for representations of a reductive group over a finite field.
II, J. Algebra 81 (1983), no. 2, 540-545.

F. Digne, G. 1. Lehrer, and J. Michel, On Gel fand-Graev characters of
reductive groups with disconnected centre, J. Reine Angew. Math. 491
(1997), 131-147.

, The space of unipotently supported class functions on a finite
reductive group, J. Algebra 260 (2003), 111-137.

Frangois Digne and Jean Michel, Foncteurs de Lusztig et caractéres des

groupes linéaires et unitaires sur un corps fini, J. Algebra 107 (1987),
no. 1, 217-255.

, Representations of finite groups of Lie type, Cambridge Univer-
sity Press, Cambridge, 1991.

Eberhard Freitag and Reinhardt Kiehl, Etale cohomology and the Weil
conjecture, Springer-Verlag, Berlin, 1988, Translated from the German
by Betty S. Waterhouse and William C. Waterhouse, With an historical
introduction by J. A. Dieudonné.

Meinolf Geck, Character sheaves and generalized Gelfand-Graev charac-
ters, Proc. London Math. Soc. (3) 78 (1999), no. 1, 139-166.

J. A. Green, The characters of the finite general linear groups, Trans.
Amer. Math. Soc. 80 (1955), 402-447.

Revétements étales et groupe fondamental, Springer-Verlag, Berlin, 1971,
Séminaire de Géométrie Algébrique du Bois Marie 1960-1961 (SGA 1),
Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M.
Raynaud, Lecture Notes in Mathematics, Vol. 224.

Théorie des topos et cohomologie étale des schémas. Tome 3, Springer-
Verlag, Berlin, 1973, Séminaire de Géométrie Algébrique du Bois-Marie
1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier.
Avec la collaboration de P. Deligne et B. Saint-Donat, Lecture Notes in
Mathematics, Vol. 305.

Anthony Henderson, Fourier transform, parabolic induction, and nilpotent
orbits, Transform. Groups 6 (2001), no. 4, 353-370.

D. F. Holt and N. Spaltenstein, Nilpotent orbits of exceptional Lie algebras
over algebraically closed fields of bad characteristic, J. Austral. Math. Soc.
Ser. A 38 (1985), no. 3, 330-350.

I. Martin Isaacs, Character theory of finite groups, Dover publications,
INC, 1994.

Jens Carsten Jantzen, Representations of algebraic groups, Academic
Press Inc., Boston, MA, 1987.



[Kat80]

[Kaw82]

[Kaw85]

[Kaw86]

[Kaz77]

[KLS85]

[KPOO]

[KWO1]

[Leh79]
[Leh96]

[Leh97]

[Let)
[Let04]

[LS85)]

[Lus76]
[Lus84]

[Lus85a

References 161

Nicholas M. Katz, Sommes exponentielles, Société Mathématique de
France, Paris, 1980, Course taught at the University of Paris, Orsay, Fall
1979, With a preface by Luc Illusie, Notes written by Gérard Laumon,
With an English summary.

N. Kawanaka, Fourier transforms of nilpotently supported invariant func-
tions on a simple Lie algebra over a finite field, Invent. Math. 69 (1982),
no. 3, 411-435.

, Generalized Gel fand-Graev representations and Ennola dual-

ity, Algebraic groups and related topics (Kyoto/Nagoya, 1983), North-
Holland, Amsterdam, 1985, pp. 175—-206.

, Generalized Gel fand-Graev representations of exceptional simple
algebraic groups over a finite field. I, Invent. Math. 84 (1986), no. 3, 575~
616.

D. Kazhdan, Proof of Springer’s hypothesis, Israel J. Math. 28 (1977),
no. 4, 272-286.

Nicholas M. Katz and Gérard Laumon, Transformation de Fourier et ma-

joration de sommes exponentielles, Inst. Hautes Etudes Sci. Publ. Math.
(1985), no. 62, 361-418.

D. Kazhdan and A. Polishchuk, Generalized character sums associated
to regular prehomogeneous vector spaces, GAFA, Geom. funct. anal. 10
(2000).

Reinhardt Kiehl and Rainer Weissauer, Weil conjectures, perverse sheaves
and l’adic Fourier transform, Ergebnisse der Mathematik und ihrer Gren-
zgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in
Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys
in Mathematics], vol. 42, Springer-Verlag, Berlin, 2001.

Gus Lehrer, Jordan decomposition, preprint (1979).

, The space of invariant functions on a finite Lie algebra, Trans.
Amer. Math. Soc. 348 (1996), no. 1, 31-50.
, Fourier transforms, nilpotent orbits, Hall polynomials and Green

functions, Finite reductive groups (Luminy, 1994), Birkh&user Boston,
Boston, MA, 1997, pp. 291-309.

E. Letellier, Deligne-Lusztig induction for invariant functions on finite
Lie algebras of Chevalley’s type, to appear in Tokyo J. Math.

, Deligne-Lusztig restriction of Gelfand-Graev characters, preprint
(2004).

G. Lusztig and N. Spaltenstein, On the generalized Springer correspon-
dence for classical groups, Advances Studies in Pure Math 6 (1985), 289
316.

G. Lusztig, On the Finiteness of the Number of Unipotent Classes, Invent.
Math. 34 (1976), 201-213.

, Intersection cohomology complexes on a reductive group, Invent.
Math. 75 (1984), no. 2, 205-272.

, Character sheaves. I, Adv. in Math. 56 (1985), no. 3, 193-237.




162 References

[Lus85b]

[Lus86al
[Lus86b]

[Lus87]
[Lus90]
[Lus92]
[Lus04]
[Ser58]
[Ser78]

[Sho88]

[Sho95)]
[S1080]
[Spr]

[Spr69)]
[Spr71]
[Spr76]
[Spr80]

[SS70]

[Ste68]

[SteT75]
[Wal01]

, Character sheaves. II, III, Adv. in Math. 57 (1985), no. 3, 226—
265, 266-315.

, Character sheaves. V, Adv. in Math. 61 (1986), no. 2, 103-155.
, On the Character Values of Finite Chevalley Groups at Unipotent
Elements, J. Algebra 104 (1986), no. 2, 146-194.

, Fourier transforms on a semisimple Lie algebra over F,, Alge-
braic groups Utrecht 1986, Springer, Berlin, 1987, pp. 177-188.

, Green functions and character sheaves, Ann. of Math. 131
(1990), no. 2, 355-408.

, A unipotent support for irreducible representations, Adv. Math.
94 (1992), no. 2, 139-179.

, Character sheaves on disconnected groups. 111, Represent. Theory
8 (2004), 125-144.

Jean-Pierre Serre, Espace fibré algebriques, Séminaire C. Chevalley, t.3,

Anneaux de Chow et applications (1958).

, Représentations linéaires des groupes finis, revised ed., Hermann,
Paris, 1978.

Toshiaki Shoji, Geometry of orbits and Springer correspondence,
Astérisque (1988), mno. 168, 9, 61-140, Orbites unipotentes et
représentations, 1.

, Character sheaves and almost characters of reductive groups. I,
II, Adv. Math. 111 (1995), no. 2, 244-313, 314-354.

Peter Slodowy, Simple singularities and simple algebraic groups, Springer,
Berlin, 1980.

T. A. Springer, Linear algebraic groups, vol. 9, Progress in Mathematics.
, The unipotent variety of a semi-simple group, Algebraic Geom-
etry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford
Univ. Press, London, 1969, pp. 373-391.

, Generalization of Green’s polynomials, Amer. Math. Soc., Prov-
idence, R.I., 1971.

, Trigonometric sums, Green functions of finite groups and repre-
sentations of Weyl groups, Invent. Math. 36 (1976), 173-207.

, The Steinberg function of a finite Lie algebra, Invent. Math. 58
(1980), no. 3, 211-215.

T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic
Groups and Related Finite Groups (The Institute for Advanced Study,
Princeton, N.J., 1968/69), Springer, Berlin, 1970, pp. 167-266.

Robert Steinberg, Lectures on Chevalley groups, Yale University, New
Haven, Conn., 1968, Notes prepared by John Faulkner and Robert Wilson.
, Torsion in reductive groups, Advances in Math. 15 (1975), 63-92.
Jean-Loup Waldspurger, Intégrales orbitales nilpotentes et endoscopie

pour les groupes classiques non ramifiés, Astérisque 269 (2001).



Index

acceptable primes, 62 &0, 115

adjoint, 8
Fg-rank, 11

Fourier transforms, 35

almost-direct product, 7
admissible complex, 85

An(S), 6 f?-z % F F
ag,85 F C(H )—>C(H ),35
A(Q), 85 Jf” : DY(H) — DE(H), 90
ij 97 fo, 126

5, 126

character sheaf, 85

eneralized Green function, 106

characteristic function of an HF -orbit, & o
33

characteristic function of an F-

good primes, 19
Green function (two-variable...), 37, 38

o G, 7
equivariant complex, 58 g7
Chevalley basis, 12 6,7
complex, 46 a’ 7
conjugate (K-conjugate), 6, 72 g; 3
cuspidal admissible complex, 84 ’

. Go, T7
cuspidal datum, 85 5, 145
cuspidal orbital pair, 86 s, 119
cuspidal orbital perverse sheaf, 86 ’

Cy(S), 6 Harish-Chandra induction, 34
highest root, 9

Deligne-Fourier transforms, 90 ha, 11

Deligne-Lusztig induction, 39 ho = hE, 9

Di(X), 46 HY(0,H), 11

Dx : DY(X) — D(X), 46
isogeny, 8

nH, 33 ind? _, 63

ea, 11 ind%.(€), 76

E1,0, 115 ind3%7 5, 115



164 Index

ind2%% (), 120 Q(P), 8
. QZ p(u,v), 38
Js,g, 117 QF cc.pr 106
Ky, 121 regular (L-regular), 28
K6, 115 rk(Q), 7
£, 121 rkes(G), 7
2,0, 115 RY p, 37
K9%9 122 R%U;’ 30
K5*9, 122 RS 137
K(C,¢), 54 e
Kg): 58 semi-simple Fg-rank, 11
K7 (Y,€), 54 semi-simple algebraic group, 7
K[m], 46 semi-simple rank, 7
Lang map, 36 simple components of G, 7

simply connected, 8
split, 11
SECP(97Z)7 37
Sgcp(x,y), 40

Levi subgroup of G, 7
local system, 45
Lusztig complex, 86
Lusztig constant, 145

S F), 45
Lo 84 upp (F),
L, 100 torsion prime, 19
modified Lusztig constant, 145 g:‘,” ?7
Ma(9), 53 o
Mo, 90 , 13
w, 35 .
unipotent complex, 87
K, 89 . .
unipotent pair, 54
nilpotent complex, 87 Up, 7

nilpotent pair, 54 Up, 7

Ny (S), 6
very good primes, 19

orbit (K-orbit of H), 6

orbital pair, 54 Weyl group, 9
orbital perverse sheaf, 54 Wa(L), 9
Of, 6 WG(8)7 96
w, 38

X, 60
perverse extension, 47 H 33
P(®), 8 X(T), 8
wp, 7 Xk,6(x), 58
wp, 7 Xs,1, 118
& = &(T), 8 X510, 118
11,9 Xs,2, 118

v FF Q35 Xs.2.0, 118



X§,, 124
XY, 5, 124
Xo.50.2, 125

X502, 126

V., 59
Ys, 119
Ys,2, 119
Y, 127

Index

Y o0, 127
Yo 50, 125
Yo 50,2, 125
Y502, 127

Zm, b
z(H), 5
2(L)reg, 66

165





