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ABSTRACT. On any general solution of an exterior differential system I, a
system of linear differential equations, called the equations of variation of I, is
defined. Let v be avector field defined on a general solution of I such that
it satisfies the equations of variation and wherever it is defined, v is either
the zero vector or it is not tangential to the general solution. By means of
some associated differential systems and the fundamental theorem of Cartan-
Kdhler theory, it is proved that, under the assumption of real analyticity, v is
locally the deformation vector field of a one-parameter family of general solu-
tions of I. As an application, it is proved that, under the assumption of real
analyticity, every Jacobi field on a minimal submanifold of a Riemannian
manifold is locally the deformation vector field of a one-parameter family of
minimal submanifolds.

0. Introduction. The theory of analytic exterior differential systems was
developed by E. Cartan for the study of infinite pseudo-groups. E. Kédhler com-
pleted the theory and generalized it. It reduces the existence of solutions
(called general) to a purely algebraic problem. Such a general solution depends
on the initial data which in turn depends on arbitrary functions. So it is of
interest to study a family of solutions of an exterjor differential system, in par-
ticular, a one-parameter family of general solutions. For a compatible system [
of ordinary differential equations, the following facts are well known (see for
example [2]). Along any solution N of I, a system of linear differential equa-
tions, called the equations of variation of I, is defined. Any vector field v
defined on N which satisfies the equations of variation is the deformation vector
field of a one-parameter family of solutions of I on N. In particular, if I is the
system which defines geodesics on a Riemannian manifold, we have that every
Jacobi field along a geodesic may be obtained by a variation through geodesics.
The purpose of this paper is to generalize the above to an arbitrary general
solution of an exterior differential system. We will prove the following (see the

Main Theorem):
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On any general solution N of an exterior differential system 1 on a manifold
M, the equations of variation are defined. Let v be a vector field defined on N
which satisfies the equations of variation and such that for m € N, v(m) is either
the zero vector or it is not in Tm(N). Then under the assumption of real analytic-
ity v is locally the deformation vector field of a one-parameter family of integral
manifolds of 1 on N. As an application, we will prove that under the assumption
of real analyticity every Jacobi field defined on a minimal submanifold can be
obtained (locally) as the deformation vector field of a one-parameter family of
minimal submanifolds. This solves the problem as posed in [12] in the real
analytic case.

In $1, we will give a brief summary of Cartan-Kdhler theory of exterior
differential systems. Regular integral elements and involutiveness will be de-
fined in terms of the necessary and sufficient conditions for the existence of a
regular integral chain as proved in [7, p. 40]. This approach may not be the most
natural, but it immediately reduces the problem of finding general solutions
essentially to that of checking the compatibility and ranks of systems of linear
equations. In §$2-5, the Main Theorem will be formulated and proved. We will
begin by establishing that it is sufficient to consider a class of Pfaffian systems
called normal systems. Associated with a normal system, two other differential
systems are defined. By means of the fundamental theorem of Cartan-Kdhler
theory, they will be used to construct the required one-parameter family of inte-
gral manifolds and also to prove that its deformation vector field coincides with
the given vector field. In $6, after some computations we will apply the Main
Theorem to Jacobi fields defined on minimal submanifolds of a Riemannian mani-
fold.

This paper is a continuation of research done at University of California,
in a doctoral thesis under the direction of Professor S. S. Chern. I wish to
thank him for his advice and encouragement.

Throughout this paper all functions, manifolds, submanifolds and associated
differential geometric structures will be assumed to be real analytic. When no
confusion is likely, we will simply regard an immersed submanifold of a manifold
M defined by f: N — M as a subset {(N) of M and its tangent space T (N) at
x € N as a subspace of the tangent space T/(x)(M) of M. To avoid repetition,
we will fix the ranges of the following indices, 1< i, j, k<m n+1<a,f3,y<
n+p;n+p+1<s<n+p+q; n+l1<p,0<n+p+q, 1<A B, C,D<n+p.
Ranges of other indices will vary and will be defined accordingly.

1. Exterior differential systems. In this section, we will give a résume of
Cartan-Kihler theory of exterior differential systems, mainly to establish some

notations and to state the existence theorems which will be used later. Details
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and proofs can be found in [3] and [7]. For an interesting modern survey of the
theory, one can refer to [5].

An exterior differential system (or simply differential system) I on a manifold
M is an ideal (finitely generated) in the ring of analytic differential forms on M which is
also closed under exterior differentiation, i.e. dl C I. We shall denote by I, the set of

all forms of degree v in I. Points of M, at which
(1.1) I, =0,

constitute an analytic subvariety &%(I) of M whose points will be called integral
points or 0-dim integral elements of I. Restricted to a point m € M, I defines a
system of exterior equations I(m) in the vector space Tm(M). At an integral point
m, a k-dim subspace E of T, (M) is called a k-dim integral element of I if E
annihilates I(m). A submanifold N of M is called an integral manifold of I if
for every m € N, Tm(N) is an integral element of I, that is, the restriction (i.e.
pull back) of I to M vanishes identically. For definiteness, let M now be a
manifold of dimension 7 + p (later on, we will also consider differential systems
on manifolds of other dimensions) and 01, cee, Gn be n independent Pfaffian
forms defined on M. An important problem in the application of Cartan-Kéhler

theory is to see if a differential system I has an integral manifold on which
(1.2) 6,A---A6_Lo.

To study this problem we adjointo 6, ..., 6 , p Pfaffian forms 6 _,,,---, 0n+p
such that 6, A ... A 6n+p # 0. Then the forms in I can be expressed in terms

of the 8’s. We put
(1.3) 0= Zbaiei

and denote by b. the vector whose components are b seee s b .. Sub-
i ntl,i ntp,i
stitute (1.3) into the forms of I]. and let I}.(m, bl’ ey, b].) denote the set of co-

efficients of O, A ... A 0]. in these forms. Clearly every equation of the set
(1.4) I].(m,bl,...,b],)zo (Gj=1,.--,n)

is linear in each of the variables &,(v=1, ..., 7). At an integral point m, a
system of solutions (m°, b9, - -+, b°) of (1.1) and (1.4) defines an n-dim integral
element of 1 by (1.3) with bai = b‘;i. We will call an integral point m of |
simple if there exists a neighborhood U of m in M such that N NUisa
submanifold of U of dimension o with equations (1.1). We can now give
sufficient conditions for such an integral manifold of I to exist.

Definition 1.1. (a) I is said to be involutive with independent variables

{0,, -+ 0_} (an ordered set) at a point m° if there exists a system of solutions
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(m®, bcl’, ceey, bz) of (1.1) and (1.4) such that (i) m° is a simple integral point of
I; (ii) in a neighborhood W of (m° bS, + - b;) in M x R™ | the equation (1.4)
reduces to (n + p) — - j independent linear equations with respect to ba,‘

after taking account of the equations

(1.5) I my byyeeey b )= 0.

-1 -1

(b) Let E  be the n-dim integral element defined by a system of solutions
(m®, b°, ... b‘:l) of (1.1) and (1.4) as in (a) and E], be the subspace of E_ on
which 6.4y =... =0, =0. Then we have a chain of integral elements of I
(1.6) {m°}=E0CE1C---CEn_1CEn.
Any chain of integral elements of | which can be obtained in this way by a
suitable choice of the independent Pfaffian forms {61, ey Gn} in (a) is called
an n-dim regular integral chain of I, E (p=0,1, ..., n) is called its uth
component. A (v —1)-dim integral element E, | of I is called regular if it
is the (v — 1)th component of an n-dim (n > v) regular integral chain of I. In
this case, the nonnegative integer r,= rV(EV_ 1’ I) as defined in (a) is called
the character of E,_,.
Remark 1.1. It is clear that, in Definition 1.1 (a), I is also involutive at

any integral point sufficiently close to m° and also that if E, is another

integral element of I defined by (m, by eeey bn) sufficiently close to
(m®, b2, ..., bz), then the integral chain constructed on En as in (b) is also
regular.

Remark 1.2. The definitions of regular integral elements and regular inte-
gral chains given above are equivalent to other existing definitions of such,
but they are more convenient for our present purpose.

Remark 1.3. For a regular (v - 1)-dim integral element E,_, ata point m,
the set of all vectors Y € Tm(M) such that Y spans with E,_, an integral
element of [ is called the polar space H(Eu—l’ I of E,_y; it is a subspace of
Tm(M) of dimension ’v(Ey-r I) + v. In other words, the set of all v-dim inte-
gral elements which extend E,_, locally depends on rV(EV_l, I) parameters.

Definition 1.2. A p-dim integral manifold N of I is called regular if, for
every m € N, Tm(N) is a regular integral element of I and it is called a general
solution if, for every m € N, Tm(N) contains a (u — 1)-dim regular integral
element of I.

The fundamental theorem of Cartan-Kahler theory can be stated as follows:

Theorem 1.1. Let I be an exterior differential system on a manifold M of

dimension n + p. Let N be a (v -1)-dim regular integral manifold of 1
V-1 3 g
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and r,, the character of T (N,_,) at a point m®€ N, _,. Let F bea

(n+ p ~ 1 )-dim submanifold of M such that it contains N,_, and T o(F) con-
tains a unique v-dim integral element E , of 1 which extends E,,_,, that is,

T J(F)NH(E,_|, D=E,. Thenina sufficiently small neighborhood U of m°,
there exists a unique v-dim integral manifold N, of I such that F N u ON, 2
UNN,_ | and T o(N)=E,,

By applying Theorem 1.1 several times, we can prove the following theorem:

Theorem 1.2. Let I be a differential system on a manifold M of dimension
n + p which is involutive with independent variables {61, e, Gn} at m°. Let
E_ be the n-dim integral element defined by a system of solutions (m®, 69, ..,
bfl) of (1.1) and (1.4) which satisfies the conditions in Definition 1.1 (a).
Then in a sufficiently small neighborbood of m® there exist general solutions
of I on which 01 Ao A Gn £ 0. In particular, there exists a general solution

N of I through m® such that Tmo(N) =E,.

Remark 1.4, The general solution N in Theorem 1.2 is in general not unique-
ly determined. Classically this is described as depending on certain arbi-
trary choices of functions [3, p. 75]. For a modern and more precise description
of such, see [9].

2. The Main Theorem. Let I be an exterior differential system on a mani-
fold M of dimension n + p. Since all the results in this paper are local, we
will assume for simplicity that I = @, i.e. the ideal I contains no scalar func-
tion. In order to motivate the following discussions, we will sketch a proof of
the following facts (see also [5, Theorem 3.1D).

For a one-parameter family of n-dim submanifolds of M defined by f: N x
(-1,1) > M (i.e. for every t €(~1, 1), /(N x ¢) is an n-dim submanifold of
M), the vector field v on (N x 0) defined by

@.1n v(f(y, 0)) = 7,3/ 3y, 0))

(where 9/0t is the standard vector field on the interval (-1, 1)) is called the
deformation vector field of the one-parameter family on f(N x 0).

Proposition 2.1. Suppose f: Nx (-1, 1) = M defines a one-parameter
family of integral manifolds of 1. Then its deformation vector field v on

[(N x 0) satisfies the following system of differential equations:
(22)  0=0f*(0)0t|,_o=df§(v | O+ 5y |dO) forall 6¢l,

where | denotes the interior product of a tangent vector and a covector and
fo: N =M is the map defined by f(y) = [(y, 0) for y € N.
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Proof. We will prove that for any form 6 defined on M, we have
(2.3) of*(0)/at|, o =df§(v | 6)+[¥v | db).

It is obvious that (2.3) is true if 6 is a zero-form. By taking exterior derivative
on both sides of (2.3), we can see that if it is true for 0 it is also true for 46.
Using the facts that both the interior multiplication and exterior differentiation
are antiderivations in the ring of differential forms on M, it follows by a straight-
forward computation that if (2.3) is true for forms 6, and 0, it is also true for
the form 6, A 0,. Now, since the ring of differential forms can be locally built
up from O-forms using d and A, the proof of (2.3) is completed. [*(6) is identi-
cally zero for all 0 € I; therefore (2.2) also follows. Q. E. D.

Definition 2.1. Let g: N — M define an integral manifold of I. A vector
field v: g(N) — T(M) defined on g(N) is called an I-field if it satisfies the
following system of differential equations, called the equations of variation of
I on g(N):

(2.4) dg*(v 1 @) +g*(v 1dO) =0 forall 8¢l

Remark 2.1. In the computation of the equations of variation it will be
sufficient to consider the forms in any set of generators of I as an ideal.

The main result of this paper can be stated as follows.

Main Theorem. Let N be an n-dim general solution of an exterior differen-
tial system | on a manifold M of dimension n + p. Let vi N — T(M) be an
I-field on N such that for m € N, v(m) is either the zero vector or it is not in
Tm(M). Then for every m® € N, there exists in a sufficiently small neighborbhood
) of m® in M a one-parameter family of n-dim integral manifolds 'N of I, where
te(-e¢€) and €>0, such that °N = N2 and the deformation vector field

of !N on ON is equal to the restriction of v to ON.

3. Normal exterior differential systems. Under the assumptions of the Main
Theorem it is always possible to choose a system of local coordinates {xl., z )
in a sufficiently small neighborhood U of m° in M such that

(@) N NU can be defined nonparametrically as
(3.1) Za=8,(xp, ey x)
and on N N U can be represented as

(3.2) v(m) = E 7o(xy(m), <o, x,(m)) <5§“> ,

a a

for some analytic functions g, and 7, defined on a suitable open set in R™;
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(b) restricted to 11, I is involutive with independent variables {dxl,
dxn} at every point of U.

Keeping the notations in S1 except with 6, and 0, replaced by dz, and
dx ;. (respectively), if we put

(3.3) Voi = 080/ 0x) (x, (), o x (),

then (m°, &°, ..., b:‘l) which defines the integral element Tmo(N) of I satisfies
the conditions of Definition 1.1 (a). Let P(I) be the exterior differential system
defined on the neighborhood W of (m°, Yy eves b:‘l) which is generated by the

left-hand side of the following equations:

(3.4) Lm, by, b) =0
(3.5) difm by, 5)=0
(3.6) dz,— D b.dx, =0,
3.7) D db, Adx, =0.

One can easily recognize that P(I) is the total prolongation of I (restricted to
U) as defined in [11]. It follows from Theorem 2 in [11] that P(I) is also in-
volutive with independent variables {a’xl, N dxn} at every point of W. By

a straightforward computation, we can see that, upon setting
(3.8) b, =0z, /0x,

(3.9) To; =07, /0%,

(3.1) and (3.8) define a general solution of $(I) and

(3.10) Z a a—- + azz a ab

defines a P(I)-field on it. Let m: W — M be the map defined by
(3-11) "(m; b13 "‘,bn)=m~

Similarly we can also verify that, if w is a #(I)-field on an integral manifold

B of P(I) on which de N A dx £ 0, then ﬂ*(W) is an I-field on the inte-
gral manifold w(B) of I. It is also well known that (3.4) defines a submani-
fold &™(I) of W. In fact, we can select q = E'.’_l (r + j—n) of the &’s such
that they form together with {x, z } a system of coordmates of &™(1) [7, p. 42].
The restriction of P(I) to g"(l) is also involutive with independent variables
{dx|, ... ,dx_}. Note also that a P(I)-field must be tangent to &™(I). The
above considerations lead us to consider a class of Pfaffian systems which

will be called normal systems.
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Definition 3.1. An exterior differential system I on an open set ( C R"+?+4
is called normal with n independent variables, p primary dependent variables and
g secondary dependent variables, or simply a normal system of type (n, p, q) if it
satisfies the following conditions:

(i) I =@

(ii) There exists a system of coordinates {xi, z,, zs} of U, called normal
coordinates of I, and functions B; on O so that I is generated as an ideal by

the following differential forms
(3.12) dz,+ D Bydx, D dB, Adx,
i i

and [ is also involutive with independent variables {dx , ..., dx_} at every
point of . {z,} and {zs} are called respectively primary and secondary de-
pendent variables.

Definition 3.2. A normal solution of a normal system I of type (n, p, q) with
a fixed system of normal coordinates {xi, Zg, 2.} is an n-dim integral manifold
N of I onwhich dx, ALLOA dxn #£ 0 and such that for m € N, the chain of inte-
gral elements on Tm(N) obtained by setting successively dxk =dxp =0 =
dx =0 is an ndim regular integral chain I.

We can see now that to prove the Main Theorem it is sufficient to prove it
for normal solution N of a normal system I of type (n, p, ¢q) with an I-field v
on it such that

(i) with respect to a system of normal coordinates {xi, Z4 zs} of I for

which N is a normal solution, N can be represented nonparametrically in an
open subset of O as

(3.13) z, =g e s x),
(ii) v can be represented as
d
(3.14) v(m) = ; ra(xl(m), cee Xn(m» (a)m

for some analytic functions g, and 7 _ defined on a suitable open set of R™.
Definition 3.3. A normal solution N of a normal system I of type (n, p, q)
together with an I-field v on it which have properties as in (i) and (ii) above

is called a set of normal data of I.

4. Two associated differential systems. In this section I denotes a normal
system of type (n, p, q) on an open set ®© in R"+?+9 with a fixed choice of
normal coordinates {xi, Z 4 zs} and it is generated as an ideal by (3.12). Let
&, be the coordinates of R? and t the coordinate of the open interval (-1, 1).

Denote by T, the differential system on ' x R? x (- 1, 1) generated by the
following differential forms,
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(4.1) dz  + lZBaidxi - €, dt, ZdBai A dx, ~ dé_ A dt.
Let
(4.2) ﬂl:(ﬁxﬁpx(—l,l)—am

be the natural projection map. We will denote by m (= (m, ¢, 1) a point of ® x
R? x (-1, 1) and that of by m.

Proposition 4.1. Let

(4.3) m(m°)=E, CE,C...CE | CE
n

-1 n
be an n-dim regular integral chain of I such that dx A...A dx]. £0 on E.. Then

there exists a chain of integral elements of 1 ,

(4.4) me=E,CE C---CE CE .,
such that ﬂl*(Ej+l): Ej, dt £ 0 on EI and dt /\a’x1 Ao A dx]. £0 on E]-+1'

Furthermore any such integral chain is a regular (n + 1)-dim integral chain of I

and
(4.5) r(Eg D=n+p+q, By D=rlE,_ ), D.
It follows that 1 is involutive with independent variables dt, dx,, . , dx  at

any point of O x R? x (-1, 1).

Proof. Any point m € 0 x R? x (= 1, 1) is a simple integral point of I . We

put
(4.6) dzy=b,odt + Z boidxy Al =agdt+ Y a dx,.
: i
Denote by b, (v=0,1, .- < n) the vector whose components are b, a,,,-

Substituting (4.6) into I,we can see, by a straightforward computation, that

I,(m, by) =0 is generated by the following equations

(4.7) bop—€,=0

?\‘nd in general, ?;“(m, by, by ety bj) = 0 after taking account of

l].(m, by, bysees b].__l) = 0 is generated by the following equations (j is fixed),
ba]. + Ba]. =0,

(4.8)
Z(Ba#;obaj - Baj;abcm) * B = Baj,p=0 =1,y j=1)

(4.9) L Bai;abao * ;= 0,
o
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where we have set Baj;(T: aBa]./azU and Baj;i = aBaj/axi. If we set dz =

Eibm.a’xz, in I and let b, be the vector whose components are b, then it

follows by a similar computation as above that I](ﬂl(m), bysoees b,')= 0 is also
generated by (4.8) after taking account of I]._l(nl(m), by - b]._l) = 0. There-
fore, if (4.3) is defined by (771(7770), b, ..., bfz), we can extend it to an (n 4+ 1)-

dim regular integral chain (4.4) of I by choosing b_, a, arbitrarily, and define

bao . by (4.7) and (4 9) respectlvely It follows from our constructions that
(E) =7 (m) and 7, (E +1) =E.. (4.5) now follows readily from the defini-

tion of the character of a regular integral element and the fact that (4.7) as a

linear system in b, as well as (4.9) as a linear system in a,; are of rank p.

Q. E.D.

Remark 4.1. An examination of the above proof shows that for any (u + 1)-
dim* integral element E Lt of T which extends E W i.s. 771*(E#«+1)s E“, there
ex1sts a umque (p + 2)-d1m integral element E of I such that E/./,+2 B
E,u+1 and 7, (EM‘*Z)_ ST PRER n—l

Remark 4.2. If N is an n-dim mtegral manifold of 1" on which dt A dx A

- A dx #0, then 7 (N) is 4 one-parameter family of integral manifolds of 1
on Wl:\t}Ch dx A oo A dxn £ 0.

I will be used to construct the one-parameter family of integral manifolds
we need. But to prove the deformation vector field of the one-parameter family
to be constructed is the given I-field, we need to consider another associated
differential system.

Let rfU be coordinates of R?*9. Denote by m' (= (m, £,)) a point of O x
R?+7 and also by ,: ® x R?*7 — 0 the natural projection map. Define a
vector field & on 0 x R?*? by

(4:10) En)= Y&, (f‘)

Then let I' be the exterior differential system on ' x RP+9 which is generated

as an ideal by the following differential forms,

(4.11) dz + 3 Bydx, D dB, Nax,
i i

(4.12) dgf—] Q’za‘f ;Baid"l)z + 36 J Zi:dBai A dx,

d{f 1> dB,, /\dxl.g.
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Remark 4.3. With functions g, and 7_ as in (3.13) and (3.14), the submanifold
N of © x R?*? defined by

(4.13) Z,=8,000, ey x ),
(4.14) Eo =1, ey vy x)

in an n-dim integral manifold of I'. This follows readily from the fact that if we
substitute (4.13) into (4.12), we have the equations of variation on the integral
manifold N of I defined by (4.13) for the special type of vector field which can
be represented as the right-hand side of (4.10). Conversely, for any n-dim integral
manifold N' of I' defined (4.13) and (4.14) for some analytic functions g  and
7o 20708/820 is an I-field on the integral manifold 772(N') of I.

We will prove later on that at any point m', I' is also involutive with inde-
pendent variables {dxl, ey, dxn}. However, we will conclude this section by

making some important observations related to I'. We put

(4.15) dz, = ) b, .dx,

i
(4.16) dé, =Y a, dx,.

i
Denote by b. the vector whose components are b, ., a, . and as before, b, the

1 1 [ 1

vector whose components are b, .. By a straightforward computation, we can
see that I];(m’, bll , voo, b)) =0 after taking into account that 11;_ 1(m’, b{ y e, b;_ 1)

=0 is generated by the equations (& being fixed):

bak+Bak=0’

(4.17)) B b
¥ 3 (Buy obor — Bagsobow) * Bapk = Bar; =0 =1 k—1)
o

Ao T ZBak;crfcr: 0,
o

(4.18k)
(Ba#; ook~ Bak;UaU#) + Z (Ba#; o3 PbPk - Bak; o; Pbpﬂ)ga
g o—lp
+ 2 Bopoir = Bapo )or=0  u=1,. k1)
o
where we have set Bopioip= azBau/azU(?zp, Ba#;a;i = 8ZBau/azU(9xi.

Remark 4.4. It is easy to see that I (7, (m'), b, -+, b,) =0 is generated
by (4.17k) after taking account of Ik_l(ﬂz(m’), bl, e, bk—l) =0. If we con-
sider (4.17,) and (4. 18,) as linear equations in b, , and a, , respectively, then
the coefficient matrix of b, , in(4.17,) is exactly the same as the coefficient

matrix of a_, in (4.18)).
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5. Proof of the Main Theorem. In this section, I will denote the same
normal system of type (n, p, q) as in the previous one. We will now prove the
Main Theorem for a normal solution (Definition 3.2) N of I with an I-field v on
it such that they can be defined by a set of normal data (Definition 3.3) of I. As
noted earlier, this will prove the Main Theorem in general.

Let {xi, Z g, zS} be the fixed normal coordinates of I. At any point m € @,
let @ (m) w=1,...,n-1) be the submanifold of U defined by

(5.1) Xo41 = xu+1(m)’ Ty X = xn(m).

We will simply write @v when the point m is clear in the context. Denote by
ﬁvl(m) the differential system on @V(m) obtained by restricting I to @v(m).

One can easily verify that ?Vl(m) is a normal system of type (v, p, q) on my.
In fact, {x Kppoee s X, 2

© . Z } is a system of

n+l” " n+p’ Cnap+l’ T Pnipeg
normal coordinates of 5( J(m) such that R _I(m) is involutive with independent
variables {dx, ..., de} at every point of (f)y; z, and z_ are still the primary
and secondary independent variables respectively; the restriction of (3.12) to

6] Am) also generates R J(m) as an ideal. This is the only set of normal coor-
dinates of R (m) we w1ll use. Let R I(m) and. R I(m) be the restrictions of
I' and T to @ Jm) x RP*? and 6] Am) x R? x (= 1, 1) respectively. They are
actually also the differential systems associated with fR,}(m) (with respect to the
normal coordinates of R A(m) flxed above) as defined in the previous section.
Therefore, by Proposition 4.1, R A (m) is also involutive at every point of

G)V x R? x (-1, 1). For uniformity, we will also denote by mo(m) the submani-
fold of 0 defined by

(5.2) xp=xy(my oy x, = x (m).

We will call any point of ) (m) a normal solution or 0-dim integral manifold of
3{ I(m) and any tangent vector at a point 7° € (0 o(m) of the form X _ £2(9/9z,)
an R l(m) field. A set of normal data of R I(m) consists of a point of 6] (m)
and an R ol(m)-field at that point. We also put R l(m) =1, R I'(m) =1, ﬁ I(m)
_I and lﬁ = .

It follows directly from our definitions that a normal solution or a set of
normal data of Rkl(m) restricts to a normal solution or a set of normal data of
Rk_ll(m) respectively.

The Main Theorem will follow from this proposition:
Proposition 5.1. (1) Let m'® € 0 x R?*? and m° € ® be such that m,(m'®)
=P, ice. m®=(m® &2). Then, for j=1, ..., n, we have PJI.: 1f

(5.3) {m°}=E0CE1C---CEj_1CEj
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is a j-dim regular integral chain of R I(mo) such that dx; N... A dx“ £0 on
E (1 < <), then there exists a ]-dzm integral chain of R I (m°)

(5.4) im'=E) CE] C-~~CE._1CE].,

which projects onto (5.3), that is, m,, (E ) = w Furthermore, any such integral
chain of 5{].1 (m®) is regular and

.5 B o R o) = 0By Ry1Gn).

(2) At any point m® € WO, we bave, for v=0,1,---,m Piz Let N, be a
normal solution of g{yl(mo) which contains m°® and v be an g{vl(mo)-/ield on N,
such that they can be defined by a set of normal data of val(mo). Then in a
sufficiently small neighborhood ‘UV of m° in @V(mo), there exists a one-parameter
family of integral manifolds tNV of .(va(mo), where t € (~¢,,¢,) and €,>0, such
that ONV =N,n UV and the deformation vector field of ‘NV on ONV coincides

with the restriction of v to ONV.

We will prove the proposition in the following order:

(a) Pl and P2 are both true,

(b) PI and P2 _; imply P

(c) P] and P imply P].
We put, for j=1,---,n,

i
(5.6) dz = Z b, %, ¢, = Zaa#dx#
H=1

in R. I(m) and .(R I'(m) (b and b# will have the same meanings as in the pre-

+1°

vious sectlon), we will fmd for p=1,.--,7, (fR 1(m)) (m, TRE , b ) and
(.(R y (m)) (m, g ooy b}:) are the same as I}L(m, 1o by_) and
I (m, 1 _— b ) respectively For these reasons we will write I#(- .+) and
#( ) mstead of (fR I(m)) (-..) and (fRJ.I'(m))#(---) respectively.

Proof of (a). Let (4. 17 )*and (4.18 )* be respectively the linear equations
in b' obtained by setting m = m° and f =& in (4.17 ,) and (4.18,). Then
the equations I (m'S b ) = 0 are generated by (4.17,)* and (4.18 )* By Remark
4.4 the equatlons Il(m A bl) =0 are also generated by (4.17, )% Clearly (4.17 )*
and (4.18,)* as linear equations in b,, and @, (resp.) are both compatible and
of rank p. They are compatible and their ranks are independent of the points

m' or m. Therefore m'®is a regular integral point of {Rll'(mo) and
(5-7) r (mlo9 "(R I’(mo)) = 27'1(7720, ‘(Rll(mo)) = 2q.

This proves P As for P ,let v=2 §°(a/az no The lN can be defined
by any analytxc mapping a: (- €50 €o ) — (f) such that a(0) = m°% a'(0) =
3, £%0/9z,) o and ¢, >0.
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In the remainder of this section j-will be fixed.

Proof of (b). We can assume that x,(m%) = ... = x].(mo) =0. In a neighborhood
of m° in'mj(mo), N, and v are defined by

(5.8) z, =856, -, %),

(5.9) v(m) = Z Ta(xl(m), cee, X (m)) ( > for m € N]..
We put

(5.10) E=700,-..,0

and denote by m'® the point (m°, £2) € m,' x R?*4, Then when we set
(511) §U=Ta(x1,--~,x].),

(5.8) and (5.11) define in a neighborhood of m'® in (f)j x R?*% a j-dim integral
manifold N;. of E(le'(mo).

The restriction of N]. to (ﬁ] (m°) defines a normal solution N _p of
Rj I(m°) and the restrictions of (5.8) and (5.9) to (Dj_l(mo) defme a set of
normal data of ‘(R [(m°). Therefore by PJZ._I, there exists in a neighborhood
of m° in a) (mo) a one-parameter family of integral manifolds tN]. of

-1
R I(mo) (t 6 (S 17 € 1), €_1> 0) which can be defined as
j-1 j=17 € e

(5.12) zo_=fa.(x17""x]-_1; t)

such that

(5.13) folers o150 = goleps - ouxyy, 0),
(afa/at)(xl, AR PIRT 0) = Ta(xl, SRR SIS 0)

in a suitable neighborhood of the origin of Ri~!. For every fixed ¢
3, 0f,/90(8/9z,) is an R._, I(m)-field on

putation that if we put

(5.14) Eo= 0 /0y, -y x,_ 5 )

th—l' It follows by an easy com-

then (5.12) and (5.14) defme a j-dim mtegral manifold N -1 of “R]-ll (m°) ina

neighborhood of the point e = (m °,0) 6@ 1 X Rp X (— 1, 1). N,y is
also an integral manifold of R I(m°) Put E = Tmo(N ). Then it is clear
that

(5.15) m, () = m°, ﬂl*(Ej) = Tmo(Nj—l)’

Since T, (N }) is a regular integral element of R I(mo) it follows readily
from Proposuwn 4.1 and Remark 4.1 that E is also a regular integral element
of R I(m°) If we put
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(5016) r]O' = r]'(Tmo(Ni_l)s R]I(mo))
then the character of E]. is given by
(5.17) 7B RI(m9) = 0.
If we set
(5.18) b5, = (9g, /0x )0, ---,0)  (p=1,---,/)

and denote by &9 the vector whose components are b, then TmO(N,'—l) and
Tmo(N].) as integral elements of S{j_ll(mo) and ?JJ(mO) (resp.) are defined by
(m°, b9, ..., b?—l) and (m° b9, .-, b]‘?) (resp.). bg]. constitute a solution

of the following linear equations in bg].,

(5.19) 1(m® bY, v 82_1, 8) =0

whose rank is p + g - r?. Therefore it is always possible to choose a subset
JCin+l, -, n+p+q} consisting of r]°. distinct members such that (5.19)
together with

(5.20) by~ 8;=0 Ael,

form a compatible linear system of rank p + g. In other words, if F is the

p+q+j- r‘]?)-dim submanifold defined in a suitable neighborhood of m° in
wj(mo) by
(5.21) zy—g,(xp, - x)=0, A€,
then we have

(5.22) FON ON._,

and since Tmo(F) as a subspace of Tmo(mj) is defined by the equations dz, -

E#ﬂ b‘;“dx# =0, we have also

(523) Tmo(F) n H(TmO(Nj—l)’ 3{]_1(m°)) = Tmo(NJ.)'

Associated with F we will construct a submanifold ’1‘5 of (ﬁj x R? x (- 1, 1).
Since all the functions under consideration are real analytic, by writing down
appropriate convergent power series explicitly or otherwise, we can always find
analytic functions G, defined on a neighborhood of (0, ..., 0; 0) in R’ x
(=1, 1) such that

Gx(xl’ “"xj—l’ O; t)sz(xl’ axj_]_; t)a
(5.24) Xe .
(GGA/at)(xl, R 0) =r>‘(xl, ,x],),




348 D. S. P. LEUNG [August

Then F is the (20 + q+7+1—=r°)¢-dim submanifold in a neighborhood of m° in lb x
® x (=1, 1) which is defined by

(5.25) zX—G(x,-u,xj;t):O, Ae].

It follows from (5. 24) that 7, (Tmo(F)) = T o(F) If E ol is any (j + 1)-dim inte-

gral element of fR T (m9 such that TNO(F) D) E 12 E , then we have

(5.26) T F)D> nl*(E].+l) B nl,*(E,.) = Tmo(Ni_l).

But 7, (E )C H(T o(N Vs R I(m°)) therefore by (5. 23) we have "1*(Ej+1) =
T o(N ) However we know by Remark 4. l that such an E. vl always exists
and is umque That is, Two(F) N H(Tmo(N D R 1 (m°)) = 'E]. - By Theorem
1.2, there exists m a nexghborhood Tl] C (b X RP X (l 1) of 7 a (] + 1)-dim
integral manifold N of R T(m9 such that Fn 1] D) N > N ﬂll We can

assume that N 011 is defmed by

(5.27) o= bolxp, x5 1),

(5.28) fa:Ca(xl’ R 1).

Then, in a suitable neighborhood of (0, ... ,0; 0) x RI-1 (- 1, 1), we have
hg(x1 st X s 0;t) = fcr(xl, RERESIE: 1),

(5.29) Ae].

INCITRERE %5 t) = GA(xl, EERE 1.
Let tN]. be the one-parameter family of integral manifolds of “R].I(mcl defined by
(5.27).

If we put

(5.30) z, = bg(xl, ERE 0), :fcr: (aba/at)(xl, cs X 0),

then, in a neighborhood of m’ in (l\)] x RP+4 (5,30) defines a j-dim integral mani-
fold .‘l-(' of R I'(mo) The restriction of .‘l-( to li)]._ x R?*9 defines a (j - 1)-
dim mtegral mamfold N , of ‘(R d (mo) consequently also of RI '(m9). We
put E =T lo(N']. ) Smce 7, (E p=T o(N ) isa regular integral

element of R I(m 9), it follows readlly from P that E is also a regular inte-

-1
gral element of ‘(R I'(m9 and

(5.31) B[, R = 255,

Let F' bethe (2(p + @) + ] - Zr°)od1m submanifold in a neighborhood of m'® in
lﬁ x R?+9 which is defined by the following equations:
Z_G(xl"" ;0)=0
(5.32) »ooA 4 el
¢, - (9G, /00 ys -5 x5 0)=0
Then in a suitable neighborhood 11; C lé)]. x RP*% of m'® we have (by (5.13) and
(5.29))
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F' n‘ll].' DU NU DN/ N U,
(5.33) 7 J = J
' ! ' ! ! '
F'allf SN/ nU DN/ Al

Since m,(F )= F and n,(N' __1) N, _ 5 (5.23) and the uniqueness assertion of

Theorem 1.2 imply that 7 ( ']) ( ) That is,

(5.34) ba_(xl,...,xj;O):go_xl,...,x},;O)
in a suitable neighborhood of (0, - <% 0) x R’

Now if we put
2 .
(5.35) ag, =(9%h, /0t9x, )0, ---; 0 (1<k<j),

then Tm,o(F') as a subspace of Tm,o(mj x R?+49) is defined by the equations

7
0
dz)‘ - szdeK ’

(5.36) f Ael.
j
0
dnf)\— ZadexK
Let b °be the vector whose components are bch’ ng Then E' _qand T 'o()Z )

as mtegral elements of 3{] 1'(m9 and 9{ 1'(m°) (tesp.) are defmed by (m'S
b'lo, SRR b;-?_ ) and (m', b'o .. ]O) (resp) b;.° are solutions of the follow-

. . . 1
ing system of equations in b].:

(5.37) 1]{ (m'®, b1%, -+, bjrg » b,-') =0
o _

(5.20) by — b= 0, re],
o _

(5.38) a)u' - ax]. =0. Ae].

Since E;‘-l is a regular integral element of le'(mo), it follows from (5.31) that
(5.37) is a compatible system of rank 2(p + ¢) - Zr?. Denote by (4.17 )* and
(4.18].)* the linear equations in b;. obtained by setting b = b‘fw, on= Fou
§U= nffr and m = m° in (4.17].) and (4.18].) (resp.). Then (5.37) is generated by
(4.17].)* and (4.18].)*. (4.17].)* also generates (5.19). By Remark 4.4 we know
that the coefficient matrix of bU]. in (4.17].)* is the same as that of g in
(4.18].)*. Now, by our choice of the subset ], (5.19) and (5.20) have rank p + ¢
as linear equations in bU].. Therefore (4.18].)* and (5.38) have rank p + g as
o) In other words, (5.37), (5.20) and (5.38) have rank

2(p + q) as linear equations in b']. (maximal rank). That is,

linear equations in &

(5.39) T udF) OHE!_ |, RI'@)) =T, 0.
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Since Tm,o(N;.) C Tm,o(F') N H(E;._ L ﬁjl'(mo)), therefore Tm,O(N'Z.) = Tm,o(n;.).
By Theorem 1.1 and (5.33) we can conclude that N. N U’ =J'nU'. In particu-
lar, this implies that the restriction of the ﬂjl(mo)-t]ield {, to ]N].n ;72(11'].) coin-
cides with the restriction of the deformation vector of the one-parameter family of
integral manifolds N on ONj to ON]. N 772(11],').

Proof of (c). Let
(5.40) imY=E,CE, C...CE,CE, ,

be a regular integral chain of 5{].+11(m°) such that a’x1 A A dx# £ 0 on E,
(1<p<j+ 1 and m°=(m, £9) € ®j+1(m°) x R+, Let

(5.41) {m'"?} = E, CE| C~~~CE]'_1CE].'

be an integral chain of RJ.I '(m°) such that

(5.42) 7y (E,)=E 0<v<y).

14

By P} such integral chain always exists and furthermore it is also regular.

Applying Theorem 1.2, we can find a general solution N;. of lel(mo) through m'®
such that Tm,o(N;.) = E].'. Restricted to a subset of N', if necessary, this will

give us a normal solution nz(N;) = N, of le(mo) with an le(mo)-field v on it

which can be defined in a neighborhood m° by

4) ZC,:gC,xl,---,xj),
(5.43 9
V(m) = ;rg(xl(m), ) xj(m)) <(9_z—)
o
We may assume that xl(mo) — e = xj.(mo) = 0. (5.43) is a set of normal data of

le(mo). Applying Pf we can construct a one-parameter family of integral mani-
folds tN]. (t e(- € c].) and €;> 0) of ijl(mo) in a neighborhood of m® in

@j(mo) which can be defined as
(5.44) Zo =iy )
and such that

/cr(xl’ Tty x], O)=ga(x1, Ty, xf)’
(545) (a/U/at)(xla "'axj; 0):70_(961, ,x)

j
We put

B, (1) = (8f,/0x, )0, - -+, 0; 1)
(5.46) (1<k<y).

a8 = (8%, /0t9x, )0, - - -, 0; 1)

Denote by ﬁ;((t) the vector whose components are &_ (#), a . (¢) and also by

N
ﬁK(t) the vector whose components are KUK(I). Let c: (- € ej.) — ij(mo) be the
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analytic mapping such that for every fixed ¢ € (- € e].) the coordinates of c(t)
are given by

%, =0,
z = /U(o, -, 05 1)

(5-47) (1 S KS 7)

!

E’; and E; as integral elements of R I'(mo) and R I(mo) (resp.) are defined by

(m?°, ﬁ'(O) K (0)) and (m° & (O) , b (O)) (resp) Tc(z)(th) as an
mtegral element of R I(mo) is defmed by (c(t) ﬁ (), - 3.(t)). Let (4.17; 1)’
be the system of lmear equations in b, . , obtained by setting b, =48, ( t)

and m = c(#) in (4. 17.,1). Also let (4. 18, ) be the linear system in le
obtained by setting b, = KU#(O), Ao = U#(O), £ =62 and m= C(O) in
(4. 18 1). Then it is clear that (4.17j+1)t generates [, (c(t) 4., - ﬁ(z) b.
(4. 17 1) and (4.18 +1) generate I' (m’o, K'(O) E (0), b ) Slnce
E]. 1s a regular mtegral element of ‘(R I(m 9, (4 17 1) 1s a compatible linear
. 0
T ]+1= ]+1(E RHll(mo)). Slnce Tci(O)( N].)
= E]., for t sufficiently close to 0, say |¢| <e, C(t)( N ) is also a regular

integral element (see Remark 1.1) and (4.17”1) is also of rank p + q - 1°

)

j+17
system of rank p + g — 19

j+1°
For every fixed |f| <, consider the following linear system in the variables

t
oiir1 = bo i1t 1

Ay i+ Bg, e =0
(5.49) 2By, AL =B, (b, (0}

+B (c(d)) - (c)=0 @A<p<y

ap; i+l Ba AR
(Bak and B,y.o are the same functions as in previous section.) Note that
(5.48)" is obtained by setting b, .., = A[ . | in (4.17)". Therefore (5.48)'

is a compatible linear system of rank p + g - rj.’ﬂ. It is important to observe
that if we differentiate each equation of (5,48)! with respect to ¢ at ¢= 0 and
making use of the facts that dZ /dz @ and Ba.p.;a;p: Ba.,u;p;o" we will
have precisely (4.18, +1) For t of sufficiently small absolute value, there is
an obvious one-to-one correspondence between (4. 17 1) and (5.48)! which

preserves generators as linear equations in b_ . , and A . . respectively.

: yJ+1
Denote such a correspondence by H (4. 17 1) — (5. 48)’ For L € (4. 17 1)0,

K (L) depends analytically on t. Defme a one-to-one correspondence §:
0 0
(4.17].+1) (4.18j+1) by

(5.49) (L) = HL)/3t|,, for L € (417, )",
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Let § = {L «e., L } be a set of linearly independent generators of (4. 17 1)0.
We claim that S U B(S) is a set of generators for the linear system (4.17 +1)0 U
(4. 18]+ ). Indeed, let 8(L) € (4. 18, 1) then there exist functions ¢1(t) ,
¢a(t) defined for ¢ sufficiently close to 0 such that

(5.50) HL) = OHLL) + -+ g (DKL)

Using elementary linear algebra and the fact that K (L ), oo, ) (L ) as well as
K (L) depend analytically on ¢, one can easily show that ¢ (t) <o ¢a(t) are
actually analytic functions of t. Therefore we have
8(L) = ol (L)/31],_,,
(5.51)
= L, +---+ ¢ (0L, + ¢ (08(L) +--- + ¢, (05(L,).

Therefore there are at most 2(p + ¢ — r]+1) linear independent equations in the
linear system (4. 17 l)ou (4. 18 1) However, it follows from Remark 4.4 that
the coefficient matrrx of A5 i41 in (4. 18 1) is exactly the same as that of

by ;42 in (4. 17,,1)°. Therefore (417, 4 ) U (4.18 +1) is a compatible linear

b, .., and it is of rank 20p+ q - r] ). Thus we

system in the variables a, 1o by

can always find a (j + 1)-dim integral element E b of R l'(mo) such that

E',+ D E and 7, (E ) =E ;+1+ Ve have also proved that s (E g{Hll(mo))
(E & H(m). Now if E is a j-dim integral element of &]1 (m°) defined

by (m'*, '1 s ey b *)ina suffrcrently small neighborhood of (m'®, £(0), .

K (0)), we can construct an integral chain of &]1 (m°)) using subspaces E * of E'*

el == dx;=0 (1<p<y). Under 7,4 this will be pro;ected

onto an integral chain of R]l(mo) which is also regular since it is ‘close’ to the

on which dx

regular integral chain (5.40). Repeating the above argument, we can prove that

1'+1(m'*, b;.*, ey b].l*, b'].+1) is a compatible linear system in b;+1 and
' ' s o
raES R @) = 2r (o, (B9, R 10n)

(5.52)
r +1(Ej, fR I(m ) = s (E fR l'(mo)).

The second equality follows since WZ*(E;*) is ‘close’ to E.. We have thus
proved that we can extend (5.40) to an integral chain of 5{”11’(7710) and any

such extension is also regular. This completes the proof of Proposition 5.1.

6. Applications to Jacobi fields on minimal submanifolds. Let M be a
Riemannian manifold of dimension 7 + p and F(M) be the bundle of orthonormal
frames of M with bundle projection m: F(M) — M. Let w, be the solder 1-forms
and w, p be the 1-forms which define the Riemannian connection of F(M) (see
for example [1]). The local geometry of M is completely determined by the

following structure equations,
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do, = ZB:“’BA"’BA’ Wypt+@gy =0,
6.1) )
A v
dw, g = Lc' Opc Nocg + Qg YYp=-3 Z Rapcp@c N@p-
C,D
Let I be the ideal in the ring of analytic differential forms on F(M) which is
generated by the following forms,

@ s Zwi/\wia,

(6.2) '

0,= Zwl ANeovNo,  Nogg Aoy g A- Ao
1

It is easy to see, using (6.1), that dI C I. Therefore, I defines an exterior dif-
ferential system on F(M).

Proposition 6.1. [ is involutive with independent variables {a)l, L@ s
R Y NPT - PSR wn} at every point e € F(M)
(iwlz, s con_l’ni and {wn+1,n+2, ceey wn+P-1,n+P} are some orderings of

the sets {coz.].; i< j} and {(uaﬁ; a< B} respectively).

Proof. We put

@q = Z“aiwi + _Zaaijmi]‘ + Z 2aBy?@ By
i<j By

i

(6.3)

W0 = Zbiaj“’j +Zbiajk“’jk + sz‘a,@vwﬁ?"
j i<k By

Let b, be the vector whose components are 4, ., b Also let bl.]., i<j

vi’ Tkyi’
(:10'6' a< ) be the vector whose components are @, bk’)’ij (“'yaﬁ' bk'ya,e)'
so put
(6.4) A =nln—1)/2 + p(p = 1)/2.
We will find, for 1 < p < 7 — 1, that the equations I#(e, bl, cee b#) = 0, after
taking into account that 1#_ l(e, hysees hﬂ_ 1) = 0 is generated by
(6.5) ag, =0, b, —h =0 (I<wv<p-1).
u " pav

It is also not difficult to see that there is only one way to extend any system
of solutions of the equations [ 1(e, bl’ cee, bn 1) =0 to a system of
solutions of the equations

l(e, bl,--~,b . b

1n+)\— 122 '”’bn,n—l',

(6.6)

bn+1,n+2’ o bn+p—1,n+p) =0,
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namely, by setting
(6.7) bl.].=ba,8 =0.
After taking account of the equations
(6.8) Lponei® Dro oo by o bygs e by 4 ) =0

the equations I (e, by, -oo s b 1y byys s, 0 0 b )=0 are generat-
ed by
a_ =0,
an
Bram = Pnap =0 A <p<n-1),
(6.9) oy
bnan + Z b#a#= 0.
p=1
It follows that any system of solutions (e b7, «++, b2 _ |, 53,5 -+, b;+p-l,n+p’
b;) of (6.5), (6.7) and (6.9) defines a regular integral flag {e° = E,CE; C...C
En+)\-1 C En“\ of I. It is also easy to see that
(610) rA+n(E)\+n—l’ l) =0. Q.E.D.

Remark 6.1. (6.10) implies that through any (A + n — 1)-dim integral element

E, ,.-1 of I on which

o A hNo Ao, A

11
(6.11) 20

A @, 1,n Awn+1,n+2 ARE Awn+p—1,n+p

there exists a unique (A + n)-dim integral element E,,, of I onwhich
oy AeeNop Ao, A

(6.12) Ao A

n—1,n

Dyt g2 N RO N £

and E N DE}‘M_I.

Remark 6.2. We have proved above that any integral manifold of I on which
(6.11) holds is a general solution of I.

If /: F* — F(M) defines an integral manifold of I on which (6.12) holds,
then dim F* =n(n-1)/2+ p(p =1)/2 + n (=X + n). [(F?) is the bundle space
of the bundle of adapted frames (see for example [1]) of the submanifold 7 © f(F%)
of M. In fact, #w © (F*) is an n-dim minimal submanifold of M since the pull-
backs of ®  through any section of the adapted frame bundle are the mean cur-
vature forms of 7 © f(F?) (see for example [4]). Conversely, given any n-dim
minimal submanifold N of M, the bundle of adapted frames over N considered
as a submanifold of F(M) is a general solution of I. The involutiveness of I
implies the local existence of minimal submanifolds of dimension n. More pre-

cisely, we have the following theorem (see also [10] and [12]).
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Theorem 6.1. Let G _, be an imbedded (n - 1)-dim submanifold of M and
P be an n-dim distribution along G__, such that T (G __,)C P(m) for all m €

G

Then assuming the data are real analytic, for each m° € G there

n-1° n-1
exists mn every sufficiently small neighborbood U of m® a unique imbedded
analytic minimal submanifold N of dimension n such that

1. UsndG _, n,
e

2. T (N)=P(m) forall me G, _, nl
Proof. Let F!(Gn-—l) be the subset of F(M) consisting of all frames (m, e,
., en+p) (i.e. TR en+p is an orthonormal basis of Tm(M)) such that

mE Gn__1 and ZTREE ,"en span P(m). It can be easily seen that F!(Gn—l)
is a submanifold of F(M) of dimension A + » — 1. Indeed, if Gn_1
by the imbedding g: G, _; — M, then F!(Gn_l) realizes a reduction of the group
o(n + p) of the induced bundle g”l(F(M)) over Gn_1 to O(n) x O(p) (for defini-
tions and facts related to induced bundle and reduction of structure group see for
example [8]). Denote also by w,, w, 5 their pullbacks to F!(Gn_l). Then, at
every point of F"(Gn__l), W, o and o, span the cotangent space of F!(Gn_l),

is defined

but only n -1 of the w, are linearly independent while the v ., w4 are

independent among themselves and independent of the ;. On F!(Gn—l) we have
(6.13) w,=0.

Taking the exterior derivative on both sides of (6.13), we have
(6.14) Z(L’i ANw., =0.
1

This implies that, on F!(Gn_l), w,, are independent of @i @ and they are
only linear combinations of the @, Since on F!(Gn—l) only n -1 of the w,;
are linear independent, the restriction of @)a (in (6.2)) to F!(Gn-l) vanishes
identically. F"(Gn~ 1) is therefore a (A + 7 — 1)-dim integral manifold of I on
which (6.11) holds. By Remark 6.1, we have that at every point e° € F!(Gn_l)
there exists a unique (A + n)-dim integral element E n of I on which (6.12)
holds and E, DTeO(F!(Gn_I)). Since 7, (T (G _,), =0, we have by
Theorem 1.1 that there exists, in a sufficiently small neighborhood U of e°

in F(M), a unique mtegral mamfold F?% of I such that T (F“)_ )\+n and ﬁ
DF* DF" (Gn )N EU Then, U = w(‘U) is a neighborhood of m°® = m(e®) and N =
m(F%) is a submamfold of M which have the required properties. Q.E.D.

Let /: F* — F(M) define a (A + n)-dim integral manifold of I on which
(6.12) holds. We will now compute the equations of variation of I on f(F?). Let
7: f(F*) — T(F(M)) be an I-field defined on f(F?). For simplicity, we will
assume that 0 =7, = (7, ;). Infact, only the component-s To= Ty 0g)s =

(r, a)l.a) are of geometric significance. The equations of variation are
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(6.15) df*r Jw,)+ [*¢ J dw ) =0,
(6.16) d/*(r d Zwi/\wia)+/*<r._| dZwi/\in):O,
(6.17) df*r 10,) +[* J d® ) = o.

Set 6, = /*((,JA), 045 = /*(wAB). Considering 7, and 7, as functions defined
on F%, (6.15) can be written as
(6.18) dr, + Zﬁ:rﬁeﬁa- Zriaei=o.

1

One will find (6.16) is merely the exterior derivative of (6.18), that is,
(6.19) Zﬁ: rg A Oy +75d0g) — 2 (dr, A6, +7,,d0) =0,
1
As for (6.17), we have, by straightforward computations,
(6.20) df*(r 1 ®,) = Zl: - 1)i_13dria+ }: rjaeji% NOLA---ANO, A NG,
i

e, = /;;7,8“’1 /\---/\w]._lA @iz AN @
, 1]

A ho,_j Nog Ao,y A--- Ao

n

(6.21) _ ;Eaﬁrﬁwl A ... A wn

_ BZZ:(_ 1)17#3@’8&/\@1 A AD. A Ao,

I3
+ terms at least linear in Do
where we have set 720,8 = 21. Riai,B' Since f(F?) is an integral manifold of I, we

have

(6.22) [Mo)=0, [o,)= Ebiajej,
j

where b. .=bh. . and 2. b. .=0. Using these facts, we have
1ajy i iad

jai
[*( 1 d®,) = Z(— Ditr 505, NOLA o A O.A---NO,
(6.23) B
- %: (Eaﬁ+ oa,B)T,Bel A A Gn,
where we have set Oo3= 21.’]. b

iai”iB;
Therefore, (6.17) can be written as
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zi:(— 1)i_1<dria+ ; rjaeji+ ; Tz‘,66,6a>/\ 61 A /\/O\i

(6.24) —
/\.../\On - %:(Raﬁ+aa/3)r,361 /\.../\6n=0.

(6.18) and (6.24) give the equations of variation of I. Observe that (6.18) implies
the 7., components of an I-field for which 7,= 0 are completely determined once
the 7 components are given.

Recall that f(F?) is the bundle space of the bundle of adapted frames over the
minimal submanifold f(F?) of M. Let e=(e, e)): W — f(F?) be an arbitrary
section of the adapted frame bundle over an open set W of N. Let 7 be an I-field
as above. If we put = 77*(7'), then we can write

(6.25) ) = 3 ryleley) ‘F Y e ().

a

Pulling (6.18) back to W,
(6.26) Z rialel))e*(6)) = dr¥ + ; ’736*(%9 = Z "o :€*0))

3 L

where @; i here denotes the covariantderivative with respect to the induced
normal connection on the submanifold 7 o J(F%) in the direction of e,. If we write
'I—Qaﬁz e*(aa,B)’ then the pullback of (6.24) after taking (6.18) into account is

i

(6.27) Zr’;;i;i+ % (Ea,s + 0,550 Ao A6 ) =0
where we have put

(6.28) dr’;; it E e ].e*(@].l.) * ; 773; ie*(oﬁa) - ; o i;je*(ej)'
7

Therefore, the normal vector field ™ on # 0/_(1-7'“) satisfies the following system of
of partial differential equations,
(6.29) Z_:Tz;i;i-" ;(Raﬁ+aa/jr%=0,
1
which is the so-called Jacobi equation defined on the minimal submanifold 7 o f(F%)
(see, for example, [4] and [12]). Any normal vector field which satisfies (6.29)
is called a Jacobi field. The Jacobi equations were obtained previously in,
for example, [4] or [6] by considering the second variations of the n-dim volume

integral. Itis given in the present form in [4].

Proposition 6.2. Let 7 be an I-field on an integral manifold F® of I such

that (7, w;) =0, then ™= ,(7) is a Jacobi field on w(F?). Conversely, for any
Jacobi field t* on w(F?), there exists an I-field 7 on F* such that m(r)=r*

Proof. We have already proved the first half of the propositim. If 7%=
2, 7%e, is a Jacobi field on m(F?%), by taking different sections of the adapted
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frame bundle F% over m(F?) we can define the 7, components of an I-field 7
on F% by (6.25) and hence also its 7;, components by (6.26). If we put 0 =
(7, ®;) and choose the components 7, 5= (r, @aﬁ>’ = (7 ©;:) arbitrarily,
then we have an I-field 7 on F? such that 7 (r) = 7*. Q.E.D.

Theorem 6.2. Let M be a Riemannian manifold of dimension n+ p and N
be an n-dim minimal submanifold of M. Let v: N — T(M) be a Jacobi field de-
fined on N. Under the assumption of real analyticity, for any point m®° € N there
exists a one-parameter family of minimal submanifolds 'N (t € (— ¢, ¢) and > 0)
in a neighborhood o of m® in M, such that °N =0 A N and the deformation

vector of 'N on °N coincides with the restriction of v to °N.

Proof. The bundle space of the bundle of adapted frames F*(N) of N is an
integral manifold of I. In fact, as noted earlier, it is a general solution of I. By
Proposition 6.2 there exists an I-field 7 on F#(N) such that 7(r) = v and 0=
(r a)i) = (r, a)aﬁ) = (7 “’ij)' Then 7 is an I-field which satisfies the conditions
of the Main Theorem. Since aone-parameter family of integral manifolds of I on
which (6.12) holds is mapped under 7 onto a one-parameter family of minimal
submanifolds, Theorem 6.2 follows now directly from the Main Theorem Q.E.D.
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