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D E F O R M A T I O N S  OF I N T E G R A L S  OF  E X T E R I O R  

D I F F E R E N T I A L  SYSTEMS 

DOMINIC S. P .  LEUNG ( I )  

ABSTRACT. On any general  solution of a n  exterior differential sys tem I, a 
sys tem of linear differential equations,  called the equations of variation of I, i s  
defined. Let v be avector  field defined on a general  solution of I such that 
it sa t i s f ies  the equations of variation and wherever it i s  defined, v is  ei ther 
the zero  vector or it is  not tangential  t o  the general  solution. By means of 
some associa ted  differential sys tems and the fundamental theorem of Cartan- 
KHhler theory, it i s  proved that ,  under the assumption of real  analyticity,  v i s  
locally the deformation vector field of a one-parameter family of general solu- 
tions of I. As a n  application,  it i s  proved that ,  under the assumption of rea l  
analyticity,  every Jacobi f ield on a minimal submanifold of a Riemannian 
manifold i s  locally the deformation vector field of a one-parameter family of 
minimal submanifolds. 

0. Introduction. The  theory of analyt ic  exterior differential sys tems  w a s  

developed by E. Cartan for the s tudy of infinite pseudo-groups. E.  KBhler com- 

pleted the theory and general ized it .  It reduces the ex i s tence  of solut ions 

(cal led general) t o  a purely algebraic  problem. Such a general  solut ion depends 

on the initial data which in turn depends on arbitrary functions. So it  is of 

interese t o  s tudy a family of solut ions of a n  exterior differential sys tem,  in  par- 

t icular ,  a one-parameter family of general  solut ions.  For  a compatible sys tem I 

of ordinary different ial  equa t ions ,  the following fac t s  a re  well  known ( s e e  for 

example [2]). Along any  solut ion N of I ,  a sys tem of linear different ial  equa- 

t ions ,  cal led the equat ions of variation of I, i s  defined. Any vector field v 

defined on N which s a t i s f i e s  the equat ions of variation i s  the deformation vector 

field of a one-parameter family of solut ions of I on N. In particular,  if I is the 

sys tem which defines geodes ics  on a Riemannian manifold, we have that  every 

Jacobi  field along a geodes ic  may be obtained by a variation through geodes ics .  

The  purpose of th i s  paper i s  t o  generalize the above t o  a n  arbitrary general  

solut ion of a n  exterior different ial  system. We wil l  prove the following ( see  the 

Main Theorem): 
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On any general solut ion N of an  exterior di f jerent ial  s y s t e m  I on a manifold 

M ,  the equations of variation are dejined. Le t  v be a vector field def ined on  N 

which  s a t i s j i e s  the equations o f  variation and s u c h  that for m E N, v (m)  i s  either 

the zero vector or it i s  not i n  T,(N). T h e n  under the assumption of real analyt ic-  

ity v i s  locally the dejormation vector field of a one-parameter family of integral 

manifolds of I on N. A s  a n  appl icat ion,  we wil l  prove that  under the assumption 

of real analyt ic i ty  every l a c o b i  field defined on a minimal submanifold can be 

obtained ( loca l ly )  a s  the deformation vector field of a one-parameter family o j  

minimal submanijolds. T h i s  s o l v e s  the problem a s  posed in [12] in the rea l  

analyt ic  c a s e .  

In $ 1 ,  we wil l  give a brief summary of Cartan-Kzhler theory of exterior 

differential sys tems .  Regular integral  e lements  and involut iveness  wil l  be de- 

fined in terms of the necessary  and suff icient  condit ions for the ex i s tence  of a 

regular integral  chain a s  proved in [ 7 , p .  401. T h i s  approach may not be the most 

natural,  but it  immediately reduces  the problem of finding general  solut ions 

e s s e n t i a l l y  t o  that  of checking the compatibility and ranks of sys tems  of l inear  

equat ions.  In $$2-5, the Main Theorem wil l  be formulated and proved. We wi l l  

begin by es tab l i sh ing  that  it  is suff icient  t o  consider  a c l a s s  of Pfaffian sys tems  

cal led normal sys tems .  Assoc ia ted  with a normal sys tem,  two other different ial  

sys tems  are  defined.  By means of the fundamental theorem of Cartan-KBhler 

theory, they wil l  be used t o  construct  the required one-parameter family of inte-  

gral manifolds and a l s o  t o  prove that  i t s  deformation vector field coincides with 

the given vector field. In $6, af ter  some computations we will  apply the Main 

Theorem t o  Jacobi  f ie lds  defined on minimal submanifolds of a Riemannian mani- 

fold. 

T h i s  paper i s  a continuation of research  done a t  University of Cal ifornia ,  

in  a doctoral  t h e s i s  under the direct ion of Professor  S. S. Chern. I wish t o  

thank him for h i s  advice and encouragement. 

Throughout th i s  paper al l  functions, manijolds, submanifolds and assoc ia ted  

differential geometric s tructures wi l l  be assumed t o  be real analytic. When no  

confusion i s  l i ke ly ,  w e  wi l l  s imply regard an  immersed submanifold of a manifold 

M def ined by f :  N -+ M a s  a s u b s e t  f ( ~ )o j  M and i t s  tangent space T x ( N )  at 

x E N a s  a subspace  of the tangent space T
f ( x )( M )  o j  M .  T o  avoid repetition, 

we  wi l l  fix the ranges of the following ind ices ,  1 5 i ,  j ,  k 5 n; n + 1 5 a ,  P ,  y 5 
n + p ;  n + p + l < s 5 n + p + q ;  n + 1 5 p , o L n + p + q ;  I S A ,  5,  C , D _ < n + p .  

Ranges of other indices  wi l l  vary and wi l l  be def ined accordingly. 

1. Exterior differential systems. In th i s  sec t ion ,  we wil l  give a re'sume of 

Cartan-Kahler theory of exterior different ial  s y s t e m s ,  mainly t o  e s t a b l i s h  some 

notations and t o  s t a t e  the ex i s tence  theorems which wil l  be used later.  De ta i l s  
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and proofs  c a n  be found in [3] and [7]. For  a n  interest ing modern survey of the 

theory, one c a n  refer to  [5]. 

An exterior differential sys tem (or simply differential system) I on a manifold 

M is an ideal (finitely generated) in the ring of analytic differential forms on M which i s  

also closed under exterior differentiation, i.e. dl C I .  We shall denote by Iv  the set  of 

a l l  forms of degree v in I .  Points of M, a t  which 

const i tute  a n  analyt ic  subvariety 60 ( I )  of M whose points  wil l  be cal led integral  

points  or 0-dim integral e lements  of I .  Restr icted t o  a point m E M ,  I defines a 

sys tem of exterior equat ions I(m) in  the  vector s p a c e  T,(M). At a n  integral  point 

m, a k-dim subspace  E of T,(M) is cal led a k-dim integral element of I if E 

annihi lates  I(m). A submanifold N of M i s  cal led a n  integral manifold of I if 

for every m E N, T,(N) is a n  integral  element of I ,  that  i s ,  the restr ic t ion (i.e. 

pul l  b a c k )  of I to M van ishes  ident ical ly .  For  def in i teness ,  l e t  M now be a 

manifold of dimension n + p ( la ter  on, we wil l  a l s o  consider  differential sys tems  

on manifolds of other dimensions)  and e l ,  .. . ,On be n independent Pfaffian 

forms defined on M. An important problem in the application of Cartan-KBhler 

theory i s  to  s e e  if a differential system I h a s  a n  integral manifold on which 

T o  study th i s  problem we adjoin to  d l ,  ..., On, p Pfaffian forms ,ento 
such  that  d l  A . . . A & 0. Then  the forms in I c a n  be expressed in terms 

of the 8's. We put 

and denote by bi the vector whose components are  bnt lSi ,  . . . , bn+P,i .  Sub- 

s t i tu te  (1.3) into the forms of I .  and le t  l i(m, b l ,  . . . , b . )  denote the s e t  of co- 
I I 

eff icients  of o1 A . . . A Qi in  t h e s e  forms. Clearly every equation of the s e t  

is l inear  in  e a c h  of the variables  b,(v = 1, .. . , j). At  a n  integral point m, a 

s y s t e m  o/'solutions (mO,  b y ,  . . . , bO,) of (1.1) and (1.4) defines an n-dim integral 

e lement  of I by (1.3) wi th  bai = bz i .  We wil l  c a l l  a n  integral point m of I 

simple if there e x i s t s  a neighborhood % of m in  M such  that  G o ( [ )n % is a 

submanifold of % of dimension ro with equat ions (1.1). We can  now give 

suff icient  conditions for such  a n  integral  manifold of I t o  ex i s t .  

Def ini t ion 1.1. (a)  I i s  s a i d  to  be involutive with independent variables  

( d l ,  en] (an ordered s e t )  a t  a point m0 if there e x i s t s  a sys tem of solut ions 
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(mO, by, . , b:) of (1.1) and (1.4) s u c h  that  ( i )  m0 is a simple integral point of 

I; ( i i )  in  a neighborhood W of (mO, by, . . . b z )  i n  M x R n p ,  the equation (1.4) 

reduces to  (n + p) - r - j independent linear equat ions with respec t  t o  b . 
1 a1 

after taking account  of the equa t ions  

(1.5) I .I- 1(m, b l ,  - , b .J- 1) = 0. 

(b) L e t  E n  be the n-dim integral  element defined by a sys tem of solut ions 

(mO, by, . . . b:) of (1.1) and (1.4) a s  in  (a)  and E , be the subspace  of E n  on 
1 

which %i+l  = . .. = On = 0. Then  we have a chain of integral e lements  of I 

Any chain of integral  e lements  of I which c a n  be obtained in th i s  way by a 

su i tab le  choice of the independent  Pfaffian forms (01, .. . , On] in (a)  is cal led 

a n  n-dim regular integral cha in  of I, E (p = 0, 1 ,  . . . , n) is ca l led  i t s  pth 
P 

component. A (v - 1)-dim integral  element E v - of I i s  ca l led  regular  if i t  

is the (v - l ) t h  component of a n  n-dim (n 2 v) regular integral  cha in  of I. In 

th i s  c a s e ,  the nonnegative integer  r, = r,(Ev- I) a s  defined in (a)  i s  i a l l e d  

the character  of E v -

Remark 1 .1 .  It i s  c lea r  t h a t ,  in  Definition 1.1 (a),  I i s  a l s o  involutive a t  

any integral point suff icient ly c l o s e  to  m0 and a l s o  that  if E n  is another  

integral  element of I defined by (m, b l ,  . . . , bn) sufficiently c l o s e  t o  

(mO, b:, , b:), then the integral  chain constructed on E n  a s  in (b) is a l s o  

regular.  

Remark 1.2.  The  defini t ions of regular integral e lements  and regular inte-  

g ra l  cha ins  given above a r e  equivalent  t o  other exis t ing defini t ions of s u c h ,  

but they are  more convenient for our present  purpose. 

Remark 1.3. F o r  a regular (v - 1)-dim integral element E v - l  a t  a point m, 

the s e t  of a l l  vectors  Y E Tm(M) s u c h  that  Y spans  with E,- a n  integral 

e lement  of I i s  cal led the polar s p a c e  H(EV-l ,  I) of E v m l ;  it  is a s u b s p a c e  of 

Tm(M) of dimension r,(Eu-l,  I) + v. In other words, the s e t  of a l l  v-dim inte-  

g ra l  e lements  which extend E,- local ly depends on r,(Ev- l ,  I) parameters .  

Definition 1 .2 .  A p-dim integral  manifold N of I is cal led regular i f ,  for 

every m E N, Tm(N) i s  a regular  integral  element of I and it  is cal led a general  

solut ion i f ,  for every m E N, Tm(N) contains  a ( p  - 1)-dim regular integral  

element of I. 

The fundamental theorem of Cartan-Kahler theory c a n  be s ta ted  a s  follows: 

Theorem 1 .1 .  Let  I be a n  exterior differential sys tem on a manifold M of 

dimension n + p. Le t  Nv- be a (v - 1)-dim regular integral  manifold of I 
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and r ,  the character of T,,(N,-~) at a point m0 E N ,-,. Let  F be a 


( n  + p - r,)-dim submanifold of M such  that it contains N u - and T,,(F) con-


tains a unique v-dim integral element E,, of I which extends E , - l ,  that i s ,  


Tmo(F)n H ( E , - ~ ,  I )  = E,. Then  in a sufficiently small neighborhood 11 of mO, 


there ex i s t s  a unique v-dim integral manifold N u  of I such that F n 3 N ,  3 


11 nN u - ,  and T,o(N) = E,. 


By applying Theorem 1.1 several  times, we can  prove the following theorem: 

Theorem 1.2. Let I be a di f ferential  sys tem on a manifold M of dimension 

n + p which i s  involutive with independent variables { ( I 1 ,  .. . ,8 n J  at mO. Le t  

En be the n-dim integral element defined by a s y s t em  of solutions (mO, by,  . , 
bO,) of (1.1)  and (1.4)  which sa t i s f i e s  the conditions in  Definition 1.1 (a). 

Then in  a sufficiently small neighborhood of mO, there ex is t  general solutions 

of 1 on which ( I 1  A . . . A ( I n  & 0 .  In particular, there ex i s t s  a general solution 

N of I through m0 such that T,o(N) = En. 

Remark 1.4. The general solution N in Theorem 1.2 i s  in general not unique- 

ly determined. Classical ly this i s  described a s  depending on certain arbi- 

trary choices of functions [3, p. 751. For a modern and more precise description 

of such ,  s ee  [9]. 

2. The Main Theorem. Le t  I be an  exterior differential system on a mani- 

fold M of dimension n + p .  Since a l l  the results  in this  paper are local, we 

will assume for simplicity that lo  = 0,  i.e. the ideal I contains no scalar  func- 

tion. In order to motivate the following discussions,  we will sketch a proof of 

the following facts  (see a l so  [ 5 ,  Theorem 3.11). 

For a one-parameter family of n-dim submanifolds of M defined by f :  N x 

(- 1 ,  1 )  -+ M (i.e. for every t E (- 1, I ) ,  f(N x t )  i s  an n-dim submanifold of 

M ) ,  the vector field v on f(N x 0 )  defined by 

(where d/dt  is the standard vector field on the interval (- 1 ,  1 ) )  i s  called the 

deformation vector field of the one-parameter family on { ( N  x 0 ) .  

Proposition 2.1. Suppose f :  N x (- 1 ,  1 )  -+ M def ines a one-parameter 

family of integral manifolds of I .  Then  its deformation vector field v on 

f(N x 0 )  sa t i s f ies  the following s y s t em  of differential equations: 

where _] denotes the interior product of a tangent vector and a covector and 


f o :  N -4 M is the map defined by fo(y)  = f ( y ,  0 )  for y E N .  
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Proof. We wil l  prove tha t  for any form 8 defined on M ,  we have 

It i s  obvious that  (2.3) is true if 8 is a zero-form. By taking exterior der ivat ive 

on both s i d e s  of (2.3), we c a n  s e e  that  if it  i s  true for 8 i t  is a l s o  true for do. 

Using the fac t s  that  both the  interior multiplication and exterior differentiation 

a re  antiderivations in  the ring of differential forms on M ,  i t  follows by a s t raight-  

forward computation that  if (2.3) is true for forms and O 2  i t  i s  a l s o  true for 

the form O 1  A 0 2 .  Now, s i n c e  the ring of differential forms c a n  be locally built 

up from 0-forms using d and A ,  the proof of (2.3) i s  completed. /* (e l  i s  identi- 

ca l ly  ze ro  for a l l  8 E I; therefore (2.2) a l s o  follows. Q. E.  D. 
Definition 2.1. L e t  g: N --+ M define a n  integral manifold of 1. A vector 

field v :  g ( ~ )  -+ T ( M )  defined on g ( ~ )is cal led a n  I-field if it  s a t i s f i e s  the 

following sys tem of different ial  equat ions,  cal led the equat ions of variation o i  

I on g ( ~ ) :  

(2.4) dg*(v J 8) + g* ( v  J do) = O for a l l  8 E I. 

Remark 2.1. In the computation of the equat ions of variation it  wil l  be 


sufficient t o  consider  the forms in any s e t  of generators  of 1 a s  a n  ideal .  


The  main resul t  of th i s  paper  c a n  be s ta ted  a s  follows. 


Main Theorem. Let  N be an  n-dim general solution of an exterior differen- 

tial sys tem I on a manifold M of dimension n + p. Let v :  N -+ T(M) be an 

I-field on N such that for m E N, v (m)  is either the zero vector or it i s  not in 

T,(M). Then  for every m0 E N, there ex i s t s  in a sufficiently small neighborhood 

2 of mO in M a one-parameter family of n-dim integral manifolds ' N  of I ,  where 

t E (- E ,  E )  and r > 0 ,  such that O N  = N n 2 and the deformation vector field 

of ' N  on O N  i s  equal to  the restriction of v to O N .  

3. Normal exterior different ial  sys tems .  Under the assumptions of the Main 

Theorem it is a lways  poss ib le  t o  choose a system of loca l  coordinates  { x i ,  z,) 

in a sufficiently smal l  neighborhood 11 of m0 in M such  that  

(a)  N n 11 c a n  be defined nonparametrically a s  

and on N n 11 c a n  be represented a s  

for some analyt ic  functions ga and ra defined on a sui table  open s e t  in  Rn; 



19721 DEFORMATION O F  INTEGRALS 339 

(b) restr ic ted to  %, I i s  involutive with independent variables  ( d x l ,  . . . , 
dx,] a t  every point of I. 

Keeping the notations in  $1 except  with 8, and Bi replaced by d z a  and 

dx i  (respectively), if we put 

then (mO, by, , bO,) which defines the integral element T,,(N) of I s a t i s f i e s  

the conditions of Definition 1.1 (a).  Le t  Y(1) be the exterior different ial  sys tem 

defined on the neighborhood W of (mO, by, . . . , bO,) which i s  generated by the 

left-hand s ide  of the following equat ions:  

One c a n  e a s i l y  recognize that  !?(I) is the to ta l  prolongation of I ( restr ic ted t o  

%) a s  defined in [ll]. It fol lows from Theorem 2 in [ l l l  that  Y(1) i s  a l s o  in- 

volutive with independent var iab les  { d x l ,  . . . , d x n ]  a t  every point of W. By 

a straightforward computation, we c a n  s e e  tha t ,  upon se t t ing  

(3.8) baL = aza /ax i ,  

(3.9) T a i  = a7,/axi, 

(3.1) and (3.8) define a genera l  solut ion of Y(1) and 

defines a Y(1)-field on i t .  L e t  n : W -+ M be the map defined by 

Similarly we can  a l s o  verify that ,  if w is a ?(I)-field on a n  integral manifold 

B of !?(I) on which d x l  A . . . A dx, & 0, then n,(w) is a n  I-field on the inte- 

gral manifold n(B) of I. It is a l s o  wel l  known that  (3.4) def ines a submani- 

fold Gn(l) of W. In fac t ,  we c a n  s e l e c t  q = Cn-l ( r . + j - n) of the b's such  
1- 1 

that  they form together with {x i ,  zA a sys tem of coordinates of Qn(l) [ 7 ,  p. 421. 

The  restr ic t ion of ?(I) t o  Gn(l) is a l s o  involutive with independent variables  

{dx l ,  . . , dx, b Note a l s o  tha t  a Y(1)-field must be tangent t o  @(I). The  

above considerat ions lead u s  to  consider  a c l a s s  of Pfaff ian sys tems  which 

will  be cal led normal s y s t e m s .  
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Definition 3.1. An exter ior  differential sys tem I on a n  open s e t  0 C RntPt4 

is cal led normal with n independent variables ,  P primary dependent variables  and 

q secondary dependent var iab les ,  or simply a normal sys tem of type (n, P, q) if i t  

s a t i s f i e s  the following condit ions:  

(i) lo = @. 
(ii)  There e x i s t s  a sys tem of coordinates { x i , z,, z,] of m, cal led normal 

coordinates  of I, and funct ions Bai  on 0 s o  that I i s  generated a s  a n  ideal  by 

the following differential forms 

and I i s  a l s o  involutive with independent variables  { d x l , . . . , dx,] a t  eeery 

point of b?. {z,)  and { z S] are  cal led respect ively primary and secondary de- 

pendent variables .  

Definition 3.2. A normal solut ion of a normal sys tem I of type (n, P, q) with 

a fixed sys tem of normal coordinat,es { x 2 ,  z,, z s )  is a n  n-dim integral manifold 

N of I on which dx l  A . . . A  dxn f 0 and such  that for m E N, the chain of inte- 

gral  elements on T,(N) obtained by set t ing s u c c e s s i v e l y  dxk = dxk+l  = = a 

dxn = 0 is a n  n d i m  regular integral  chain I. 

We c a n  s e e  now that t o  prove the Main Theorem It i s  suff icient  t o  prove i t  

for normal solut ion N of a normal system I of type (n, p ,  q) with a n  I-field v 

on it  s u c h  that  

(i) with respec t  t o  a s y s t e m  of normal coordinates { x i ,  z,, z,] of I for 

which N i s  a normal solut ion,  N c a n  be represented nonparametrically in  a n  

open subse t  of a s  

( i i )  v c a n  be represented a s  

for some analyt ic  funct ions go and rLTdefined on a su i tab le  open s e t  of Rn. 

Definition 3.3. A normal solut ion N of a normal sys tem I of type (n, P, q )  

together with a n  I-field v on i t  which have properties a s  in (i) and ( i i )  above 

i s  cal led a s e t  of normal d a t a  of I. 

4. Two associated differential systems.  In th i s  s e c t i o n  I denotes  a normal 

sys tem of type (n, p ,  q) on a n  open s e t  @ in Rn+P+4 with a fixed choice of 

normal coordinates { x i ,  z,, z s )  and it  i s  generated a s  a n  idea l  by (3.12). L e t  

5, be the coordinates  of RP and t the coordinate of the open interval (- 1 ,  1).  
'U 

Denote by I , the different ial  sys tem on 0 x Re x (- 1 ,  1) generated by the 
following differential forms, 
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L e t  

(4 .2)  n l :  I b x  RP x (- 1, I ) - + @  

be the natural projection map. We wil l  denote by 
'V 

m (= (m,t a ,  t ) )  a point of @ x 

RP x (- 1 ,  1 )  and that of @ by m. 

Proposition 4.1. L e t  

be a n  n-dim regular integral cha in  of I s u c h  that d x l A .  . .A  d x j  f 0 o n  E j .  T h e n  
'V. 

there e x i s t s  a chain of integral e lements  of I , 

Cv Cv 'V 

s u c h  that 7 i 1 * ( E j t l )  = Ei,  d t  f 0 on E l  and d t  A d x l  A . . . A d x j  f 0 on E .r f ' ,  
. 

Furthermore any s u c h  integral cha in  i s  a regular ( n  + 1)-dim integral chain of I 

and 

Cv 

It fo l lows  that I i s  inuolutiue w i t h  independent variables  d t ,  d x l ,  . , dxn at  

any point of Ib x RP x (- 1 ,  1 ) .  
'V 

Proof. Any point 
'V 

m E @ x R e  x (- 1 ,  1 )  is a simple integral point of I . We 

Put 

Denote by b,, (v = 0 ,  1 ,  , n )  the vector whose components a re  b,,, a a v .  
-u 

Substituting (4.6)  into I ,  we c a n  see,  by a straightforward computation, that  
% 

I l (m,  b o )  = 0 is generated by the following equat ions 

(4.7)  "baa - ta= 0 
CCI 

and in general ,  l j + l  (m,  b O ,  b l  , . . . , b . ) = 0 after taking account  of 
n, I 
l . ( m ,  bo ,  b l ,  . . . , b .  1 )  = 0 is !generated by the following equat ions ( j  i s  fixed), 

J J -
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where we have s e t  B a j ; D= d B a i / d z D  and Bai;i = d B  . / a x , .  If we s e t  d z D= a1 

2, bDi  d x i  in  I and let  bi be the  vector whose components are  bDi ,  then it  


follows by a s imilar  computation a s  above that  I ( n l ( m ) ,  b l ,  . . . , b . ) = 0 is a l s o  
I 	 1 

generated by (4 .8) after  taking account  of I .  l ( n l ( m ) ,  b l ,  . . . b .  ) = 0 .  There-
I - 1 - 1 

fore, if ( 4 . 3 ) is defined by (n l (mO) , ) ' ; ,  . . . , bO,), we c a n  extend it  t o  a n  (n + 1)-

dim regular integral chain (4 .4)  of I by choosing bs o, aao arbitrarily, and define 

' a0  aal. by -(4 .7)  and (4 .9)  r e s p y t i v e l y .  It follows from our construct ions that  
'U 

nl,(E) = n l ( m )  and n l * ( E j t l )  = E .. (4 .5) now follows readily from the defini- 
I 

t ion of the character  of a regular integral element and the fact  that  (4 .7) a s  a 

linear sys tem in bao a s  wel l  a s  (4.9) a s  a linear system in a a1 are of rank p .  
Q. 	E.  D. 


Remark 4.1. An examination of the above proof shows  that  for any ( p  + 1)- 

'U -

dim-integral element E
P f l  

of I which ex tends  E
P '  

i .e .  ,, nl , (EPt1);  E P ,  there 

5 x i s t s  a unique (p + 2)-dim integral  element E of I s u c h  that  E 3 
'U P+2 P+2 


EPtl and n l * ( E P f 2 ) :  E P + l ,  p  = 1 ,  . , n - 1. 
'U 


Remark 4.2. If N i s  a n  n-dim integral manifold of I on which dt A d x l  A 

'U 

. . . A dx & 0 ,  then n l ( N )  is a one-parameter family of integral manifolds of I 


o n w h i c h  d x l  A . . .  A dxn f 0. 
-
I wil l  be used t o  construct  the one-parameter family of integral manifolds 

we need. But to  prove the deformation vector field of the one-parameter family 

to be constructed i s  the given I-field, we need t o  consider  another assoc ia ted  

differential system. 

L e t  6 ,  be coordinates  of RP+q. Denote by m' (= ( m ,  [,)) a point of @ x 

RP+q and a l s o  by n 2 : @ x RP+q -+ the natural projection map. Define a 


vector field [ on @ x RP+q by 

Then  le t  I' be the exterior different ial  sys tem on @ x Rp+q which i s  generated 

a s  a n  ideal  by the following differential forms, 
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Remark 4.3. With functions go and ru as in  (3.13) and (3.14), the submanifold 

N' o f  x RPtq  defined by 

in an n-dim integral manifold o f  1'. This  follows readily from the fact  that i f  we 

substitute (4.13) into (4.12),  we have the equations o f  variation on the integral 

manifold N o f  I defined by (4.13) for the special type o f  vector field which can 

be represented as  the right-hand side o f  (4.10). Conversely,  for any n-dim integral 

manifold N' o f  I' defined (4.13) and (4.14) for some analytic functions g, and 

r,, C,r,d/az, i s  an I-field on the integral manifold n 2 ( N 1 )  o f  I .  

We will prove later on that at any point m', I' i s  also involutive with inde- 

pendent variables { d x l ,  . . . , dxnj.  However, we will conclude this  section by 

making some important observations related to  1'. We put 

Denote by b;' the vector whose components are b, ;, a ,  and as be fore ,  bi the 

vector whose components are bDi .  By a straightforward computation, we can 

see that ((m' ,  b[ , . . , b:) = 0 after taking into account that 1:- (m' ,  b; , . . , bL-
= 0 i s  generated by the equations ( k  being f ixed):  

where we have set  B a p ;, ; p  = ., d 2B ,  ~ d z , d z ~ ,Bap d 2 B /d z f f dx i .
a iL

, = 
1 

Remark 4.4. 
1 1  

It i s  easy  t o  s ee  that Ik (n2(m1) ,  b l ,  . . . , bk)  = 0 i s  generated 

1 (n2 (m ' ) ,  b l ,  . . . , b k - l )  = 0 .  I fby (4 .17k)  after taking account o f  I k - we con- 

sider (4 .17k) and (4.18 k )  as linear equations in  b, k and a ,  krespect ive ly ,  then 

the coefficient matrix of bUk  in  (4.17k) is  exactly the same as  the coefficient 

matrix of auk in (4 .18k) .  
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5. Proof of the Main Theorem. In th i s  sec t ion ,  I will  denote the same 

normal sys tem of type (n ,  p ,  q )  a s  in  the previous one. We wil l  now prove the 

Main Theorem for a normal solut ion (Definition 3.2) N of I with a n  I-field v on 

it  s u c h  that  they c a n  be defined by a s e t  of normal data (Definition 3.3) of I .  A s  

noted ear l ier ,  th i s  wil l  prove the Main Theorem in general.  

Le t  { x i , z,, z s ]  be the fixed normal coordinates of I .  At any point m E @, 
l e t  @,(m) (v = 1, ... , n - 1 )  be the submanifold of @ defined by 

We wil l  simply write @, when the point m i s  clear in the context. Denote by 

%,l(m) the differential s y s t e m  on @,(m) obtained by restr ic t ing I t o  mv(m). 

One c a n  eas i ly  verify that  %,l(m) is a normal sys tem of type (v,p ,  q )  on  @,. 
In f a c t ,  { x l ,  , x,,, z n t l ,  . , zn tP,  z n t P t l ,  .-.,zntPtq ] i s  a sys tem of 

normal coordinates of R,l(m) s u c h  that  R,\(m) is involutive with independent 

variables  { d x l ,  . . . , dx,] a t  every point of @,; z ,  and zs a r e  s t i l l  the primary 

and secondary independent vqriables  respect ively;  the restr ic t ion of (3.12) t o  

@,(m) a l s o  generates  Rvl(m)  a s  a n  ideal . ,  Th is  is the only s e t  of normal coor- 
Cu 

dinates  of Rvl(m) we wil l  u s e .  L e t  Rv l l (m)  and. %,I (m)  be the restr ic t ions of 
Cu 

I' and I t o  @,(m) x RPf4  and mv(m) x RP x (- 1 ,  1)  respect ively.  They a re  

actually also the differential systems associated with R J m )  (with respec t  t o  the 

normal coordinates of R,l(m) f ixed above) a s  defined in the previous sec t ion .  
Cu 

Therefore, by Proposition 4.1, %,I (m) i s  a l s o  involutive a t  every point of 

@, x R P  x (- 1 ,  1). For  uniformity, we wil l  a l s o  denote by u O ( m )the submani- 

fold of @ defined by 

We wil l  c a l l  any point of o o ( m )  a normal solut ion or 0-dim integral manifold of 

ROl (m)and any tangent vector  a t  a point m0 E m0(rn) of the form C,tyd/dz,)mo 

a n  RoI(m)-f ield.  A s e t  of normal da ta  of q I ( m )  c o n s i s t s  of a point of mo(_m) 

and a n  %ol(m)-fielda t  that  point.  We a l s o  put Wnl(m)= I, Rn1'(rn) = 1'. Rn1(rn) 
Cu 

= I and mn = @. 
It follows direct ly  from our defini t ions that  a normal solution or a s e t  of 

normal data  of Rkl(m)  res t r i c t s  t o  a normal solut ion or a s e t  of normal d a t a  of 

Rk- l(m) respect ively.  

The  Main Theorem wil l  follow from t h i s  proposition: 

Proposition 5.1. (1) Let  m'O E @ x RPt4 and mo E b? be such  that n2(mlo) 

= mo, i.e. m" = (mO,(0,). Then ,  for j = 1 ,  . . , n, we have P I 

1 
. : I f  
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i s  a j-dim regular integral chain of R , 1 ( m 4  such  that d x l  A . . .A d x p  f O on 
J 

E (1 < p < j ) ,  then there ex i s t s  a j-dim integral chain of R j ~ ' ( m O ) ,
iL - -

which projects onto (5.3), that i s ,  n z , ( ~ ; )  = Ep. Furthermore, any such  integral 

chain.of 3 .l'(mO) is regular and 
J 

(2) At any point m0 E m, we have,  for v = 0 ,  1 ,  .- ., n, Pt:  Let  Nv be a 

normal solution of Ryl(mo) which contains m0 and v be an  R,l(mo)-field on Nu 

such that they can be defined by a s e t  of normal data of Rv~(mO) .Then  in a 

suf f icient ly  small neighborhood xu of mO in  m,(mO), there ex is t s  a one-parameter 

family of integral manifolds ' N u  of %,l(mo), where t E (- c,, 6,) and c, > 0 ,  such 

that O N ,  = N u  nqv and the deformation vector field of ' N u  on O N ,  coincides 

with the restriction of v to  ON,. 

We will prove the proposition in the following order: 

(a) P: and P i  are both true, 

(b) P ?  and P2  imply P:,
I 5 - '(c) Pi and Pi imply P: +'. 

We put, for j =  1 ,  , n ,  
i 1 

in . l(m) and % .li(m) (bP and b' will have the same meanings a s  in the pre-
1 1 P 

vious section); we will find, for ,u = 1 ,  . .. , j, ( R j ~ ( m ) ) P ( m .b l ,  . .. , bJ and 

l ( m P m ,  b , ... , b are the same a s  1P (m, b l ,  .. . , b y )  and 

f (m ,  b;  , ... , b;) respectively. For these reasons we will write 1 (. ..) andP 
I '  (. . .) instead of (%j l (m))P( .. .) and ( ~ l i ( m ) ) P (.) respectively.
P 

Proof of (a).  Let (4.171)*and (4.1S1)*be respectively the linear equations 

in bi  obtained by setting m = m0 and [a  = 500 in (4.17') and (4.1S1). Then 

the equations 1; (m'q b;  ) = 0 are generated by (4.17')*and (4.1S1)*. By Remark 

4.4 the equations l l ( m q  b l )  = 0 are a l so  generated by (4.171)*. Clearly (4. 171)* 

and (4.1S1)* a s  linear equations in bDl and a,' (resp.) are both compatible and 

of rank p.  They are compatible and their ranks are independent of the points 

m' or m. Therefore m f 0 i s  a regular integral point of % l ~ ' ( m o )and 

This proves P:. As for P:, let  v = z ,e(d/dz,)m,  The ' N o  can be defined 

by any analytic mapping a: (- co, %) +mO such that a ( 0 )  = ma, ~ ' ( 0 )= 

z, e(d/dz,)mo and co > 0 .  
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In the remainder of this section j will be fixed. 


Proof of (b) .  We can assume that x l ( m O )= .. . = x  .(ma) = 0 .  In a neighborhood 

J 

of m0 i n . @.(ma), N .  and v are defined by 
I 1 

(5.9) d m )  = r , (x l (m),  . . . , x i (m))  (-) for m e N . .
I a 

We put 
0 

(5.10) E,= ~ ~ ( 0 ,. .. ,  0 )  

and denote by m10 the point (ma,c)e U j x Then when we s e t  

(5.8) and (5.11) define in a neighborhood of m10 in m.x Re+' a j-dim integral 
J 

manifold N ;  of %il'(mO). 

The restriction of N 
J 
. to @

J 
.- (ma) defines a normal solution N 

J 
.- of 

%,-,l(rn? and the restrictions of (5.8) and (5.9) to  mi-,(mO) define a s e t  of 

normal data of % 
J - I l(mO). Therefore by P:- there exis ts  in a neighborhood 

of mo in @ .  (m? a one-parameter family of integral manifolds ' N , - , of 
J -

X i - ,  l ( m 9  ( I  E (- 6;- 6,- ,), 6;- ,> 0 )  which can be defined a s  

such that 

f a ( x l ,  . . . ,  X i - l ;  0 )  = g,(x,, . . . ,  x .  
J - 1' o ) ,

(5.13) 
(af,/at)(,  ,, . . . ,xi- ,; O )  = T,(X . . . , X .  O )1 - 1 '  

in a suitable neighborhood of the origin of Ri-I . For every fixed t 

ra t d f d d t )  ( d / d z d  i s  an  %,-,l (m9- f i e ld  on 'N,- It follows by 9 easy  com- 

putation that if we put 

C\, ,L 

then (5.12) and (5.14) define a j-dim integral manifold N - ,  of %;- , l  (ma) in a 
C\, I n, 

neighborhood of the point m0 = (ma,tz,0 )_t W j - ,x_RPx (- 1,  1). Ni- I i s  
C\, 


also an  intqgral manifold of % 
I
.I (mO). Put E 

J 
. = T 2 d N .  

J - ,). Then it i s  clear 

that 
wn, 

(5.15) rrl(rnO)= ma, n l * ( E 1 )= TmO(Ni-,) 

Since Tm0(N.  i s  a regular integral element of %.[(ma) ,it follows readily 
I - JC\, 


from Proposition 4.1 and Remark 4.1 that E .  i s  a l so  a regular integral element 
C\, J 

of R j 1 ( m 9 .  1f we put 
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(5.16) rq = r j ( T m o ( ~ j - %,l(m")) 

w 

then the character  of E .  i s  g iven  by
J 

If we s e t  

and denote by b0 the vector whose components a re  b&, then 'Tmo(N. ) and
iL 1 - 1  

Tm0(Ni) a s  integral e lements  of 9 l ( m 9  and % l (mO)  (resp.) a re  defined by
J 7 

(mO,by ,  . .. , bT- and (mO,b y ,  . .. , b;) (resp.). b0 . constitute a solution 
0 1  

of the following linear equations in b .,
"I 

whose rank is P + q - rO. Therefore i t  is always possible  t o  choose a s u b s e t  
J 

] C in + 1 ,  . , n + p + q\ cons i s t ing  of to d i s t inc t  members such  that  (5.19)
7 

together with 

(5.20) 
b . - b O . = O ,  X € 1 ,

X I  X I  

form a compatible linear sys tem of rank p + q. In other words, if F is the  

( p  + q + j - r0)-dim submanifold defined in a sui table  neighborhood of m0 in  
J 

@ .(ma) by
J 

z X  - g X ( x l ,  . . . ,x .) = 0 ,  X E 1 ,
(5.21) J 

then we have 

and s i n c e  Tmo(F)  a s  a subspace  of T ~ O ( @.) is defined by the equat ions d z X  -
I 

Cp=l  b i p ' x p  = 0 ,  we have a l s o  

,% 

Associated with F we wil l  construct  a submanifold F of @, x R p  x (- 1 ,  1). 

Since a l l  the functions under considerat ion a re  rea l  ana ly t ic ,  by writing down 

appropriate convergent power s e r i e s  explicitly or otherwise,  we c a n  a lways  find 

analyt ic  funct ions G X  defined on a neighborhood of ( 0 ,  . .. , 0 ;  0 )  i n  R; x 

(- 1, 1)  s u c h  that  

G X ( ~ l , . . ~ , ~ j - l , O ; t ) = f X ( ~ I , . . ~ , ~ .1. t ) ,  
(5.24) X € 1 .  

( d G X / d t ) ( x l ,  . . ,x,; 0 )  = r X ( x 1 ,. . , x i ) ,  
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,% 

Then F is the (2p + q + j + 1 - ro)-dim submanifold in  a neighborhood of z0 in  a .x 
1 

RP x (- 1 ,  1 )  which i s  defined by 

(5.25) 	 z X  - G X ( x l ,. . . , x .; t )  = 0 ,  A E 1. 
J 

-u -u 

It follows from (5.24) that  T ~ , ( T ~ ~ F ) )= T o(F). If E .  is any ( j  + 1)-dim inte-  
-u - m ,  ,1 +l  

gral element of %;I (mO) s u c h  that  T;o(F) 3 E i+ 1 
3 Ei ,  then we have 

,% .-b 

(5.26) T , ~ ( F )  3 n l r ( ~ i + 1 )  3 n 1 * ( E i ) = T m o ( N i l ) .  
n, 	 -u 

But C H ( T m d N i - 1 ) ,  %jl(mo)) ,therefore by (5.23) we have n l r ( E i + l ) = 
n, 

T m d N i ) .  However, we know by Remark 4.1 that such  a n  Ei+l  always e x i s t s  
-u , n, 

and is unique. Tha t  i s ,  T;o(F) n H(T;o(Nj- %;I ( m O ) )  = 3. By Theorem 
.x# -1 +I .  


1.2, there e x i s t s  in a neighborhood Q j  C Gix RP x ( 1 ,  1) of mO a ( j  + 1)-dim 

-u n, 	 - u - u - u  -u 

integral manifold N .  of R j l  ( m 9  such  that  F n ' U j 3 N j  3 N j - n Qi. We can  

assume that  Aj  n 
,Iui i s  defined by 

(5.27) 	 z,= h,(xl,  . . .  , x . ;  t ) ,  
1 

(5.28) 	 c a =  [ , (x l ,  . . . , x . ;  t ) .
J 

Then,  i n  a su i tab le  neighborhood of ( 0 ,  . . . , O ;  0 )  x R i m '  x (- 1 ,  I ) ,  we have 

h,(xl,  . . . , 0 ;  t )  = f,(x1, . . . ,X .1 - 1 7  . t ) ,  
(5.29) 	 A E 1. 

h X ( X l ,. . . ,X . ;  t )  = G A ( X 1 ,. . . ,X . ;  t! .  

L e t  ' N j  be  the  one-parameter family of integral manifolds of %il(m9 defined by 

(5.27). 

If we put 

(5.30) z ,  = h , ( ~ ~ ,. . . , x i ;  o ) ,  6,  = ( a h , / a t ) ( ~ ~ ,. .. ,xi; o ) ,  

then,  in a neighborhood of m t O in m .  x (5.30) defines a j-dim integral  mani- 
J 

fold n; of $ f ( m O ) .  The  restr ic t ion of 41; to  mi- x R P + q  defines a ( j - 1)-

dim integral  manifold N;- of li-l l t ( m O ) ,consequently a l s o  of %;I ' ( m 9 .  We 

put E;- = T m  I~N'.. Since n ( E '  ) = T,dNj - !) is a regular integral 2* 1 - 1  


element of Ri1(m0), i t  follows readily from P I  that E ;-I is a l s o  a regular inte-  

1 

gral element of Rj11(m9 and 

(5.31) 	 ri(E = J,%J. l ' (aO))  2r9 

L e t  F t  be  the (2(p + q)  + j - 2 ~ 9 - d i m  submanifold in  a neighborhood of m10 in 

m.x R '+'which i s  defined by the  following equat ions:  

t X - ( a ~ A / a t ) ( ~ , ,  I. . . ,  x . ;  

Then  in a su i tab le  neighborhood 21; C mi x R p + q  of m t Owe have (by (5.13) and 

(5.29)) 

1 
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Since n 2 ( ~ ' )= F and r2 (N1 .  ) = Nj- l ,  .(5.23) and the uniqueness assertion of 
1- 1 

Theorem 1.2 imply that n2(R1.)= r2(Nlj). That i s ,
I 

in a suitable neighborhood of (0, . ; , 0) x R1. 

Now if we put 

(5.35) a", = ( ~ ~ b _ / d t d ~ ~ ) ( o ,. . . ; 0) (1 5 K 5 I ) ,  

then Tml0(F1)a s  a subspace of Tml0(~8,x R P t q )  i s  defined by the equations 

I 

Let  b: be the vector whose components are b:K, aEK. Then E;- and T m lo(R; ) 
a s  integral elements of 2 .  I '(mO) and 3 .I '(mO) (resp.) are defined by (rn",

17,l I 
b y ,  . * , b'.O ) and (mt0, b lo, . , bp)  (resp.). bl.O are solutions of the follow-

I - 1 I 
ing system of equations in b:: 

I 

(5.37) 1; (mlO, b;O, - . . , bI1T bll ) = 0 ,  

(5.35) c1 . - aO.= 0. h E 1.
XI XI 

Since E: i s  a regular integral element of 2.1l(mO), it follows from (5.31) that 
1- 1 I 

(5.37) i s  a compatible system of rank 2(p + q) - 2r9. Denote by (4.17,)* and 
I 

(4.18;)* the linear equations in b! obtained by setting bDp = b&, aTp = a0 
I %' 

to= 5'00 and m = rnO in (4.17 .) and (4. lBi) (resp.). Then (5.37) i s  generated by
I 

(4. 17j)* and (4.1Bj)*. (4. 17j)* also generates (5.19). By Remark 4.4 we know 

that the coefficient matrix of b . in (4.17 .)* i s  the same a s  that of a . in 
g7 I D7 

(4. lBi)*. Now, by our choice of the subset 1, (5.19) and (5.20) have rank P + q 

a s  linear equations in bDi. Therefore (4.18 .)* and (5.38) have rank p + q a s  
I 

linear equations in a mj. In other words, (5.37), (5.20) and (5.38) have rank 

2 ( ~+ q )  a s  linear equations in bfi (maximal rank). That i s ,  
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Since i m I o ( N ; )C T , ~ o ( F ' )  n H ( E ; - %il ' (mO)) ,therefore T,,,(N;) = T,.~(?I:). 


By Theorem 1.1 and (5.33) we c a n  conclude that  N'.  n 3 : =:q! n11:. In particu- 

J J J J


Iar, t h i s  implies that  the  restr ic t ion of the  % l(mO)-field v to  coin-N n ~ ~ ( 3 ; .
J J 

c i d e s  with t h e  restr ic t ion of t h e  deformation vector of t h e  one-parameter family of 

integral manifolds ' N  on Oh1 t o  ONi n n 2 ( B 1 ) .
I J 

Proof of (c). L e t  

be  a regular integral chain of 9. 
J tlI(mO) such  that  dx 1 A . . . dxp 4 0 on E~ 

( 1 p _i j + 1) and mlO= (mO, ( 2 E ZLhj+l(mO)x RPtq .  L e t  

(5.41) I r n l ~ )  = E;,  c E ;  c . . . c E j P l  C El' 

be an integral  chain of % .I ' (mO) such  that  
I 

By P i  such integral chain always e x i s t s  and furthermore it i s  a l s o  regular.  

Applying Theorem 1.2, we can find a general  solution N '  of % j l ' ( m O )through m'Oi
such  that  T m , o ( ~ ' . )= E.'. Restr icted t o  a subse t  of N : ,  if necessary ,  th i s  will  

I I J 
give u s  a normal solution n2(N1.)= N .  of 2 .I(mo) with an % .l(mO)-field v on it 

I J I J 
which can be  defined in a neighborhood m0 by 

We may assume that  x l ( m O )= - - - = x .(mO)= 0, (5.43) is a s e t  of normal d a t a  of 
J 


Ril(rno). Applying P 2 . we c a n  construct a one-parameter family of integral mani- 
I 

fo lds  ' N  . ( t  E (- c ., c .) and ci > 0)  of Rj l (mO)in a neighborhood of m0 in  
J J J 

?Lh.(mO)which c a n  be  defined a s  
J 


and such  that  

t 1 .
 .; 0 )  = g o ( x l ,  . . . , xi) .  

(5.45) 
( a l o / a t )  C X ,  . . . . 

. - ,  

, .,;0 ) = T , ( X ~ .  . . . . xi) .  

We put 

Denote by & k ( t )  the  vector whose components are  g o K ( t ) ,  a o K ( t )  and a l s o  by 

EK(t)  the vector whose components are g,,(t). L e t  c: (- c ., c.)  + Qj(mo) be  the  
J J 


1 
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analytic mapping such that for every fixed t E (- E ~ ,6.) the coordinates o f  c ( t )
J 

are given by  

E >  and E , as integral elements o f  3 .I '(mO)and 3i1(mo) (resp.) are defined by
I J 

(mlO,&; ( O ) ,  . ; .  , &J ( 0 ) )  and (mO,k l ( 0 ) ,  . , (resp.). T ~ ( ~ ) ( ' N ~ )as  an 
integral element o f  3 .l(mO)i s  def ined by ( ~ ( t ) ,g l ( t ) ,  . .. , gi( t)) .  Let  (4.17i+l)t

I 

be the sys tem o f  linear equations in  b,, j + l  obtained b y  setting b,, = & ( t )a ,  
and m = c ( t )  in (4.17i+l) .  A lso  let (4.18i+l)0be the linear sys tem in b : 

1+1 
obtained by setting b = & (o ) ,  a D P= a (o ) ,  t,= t: and m = c (0 )  in,, ,, U P  
(4 .18 .  Then  it i s  clear that (4.17i+l)'  generates l j+l(c(t) ,g l ( t ) ,  .- ,gj(t),  b j+l ) ,

I + 
(4.17; +,lo and (4 .18 ,  ) O  generate 1; +l(m'O,&; (o ) ,  .. ; , g; (o ) ,  bJ! Since 

I + l  
E j  i s  a regular integral element o f  9. l(mO),(4.17 . ) O  i s  a compatible linear 

I t 1  I f 1  
s ys tem o f  rank p + q - where = r ( E i~ j + l Z ( m O ) ) .Since T c ( o , ( O ~ j )

I + 1  
= Ei,  for t su f f i c i en t l y  close t o  0 ,  say  It( < 6 ,  Tc( ' ) ( 'Ni )  i s  also a regular 

integral element ( s e e  Remark 1.1) and (4.17i+l)' i s  also o f  rank p + q - ro 
J t l '  

For every fixed ( tl < 6 ,  consider the following linear system in  the variables 
A ' 

c , j +  1 = + tat,j + ~ :  

(Bak  and B a k ; ,  are the same functions as  in  previous s ec t i on . )  Note that 

(5.48)' i s  obtained by  setting b - A' . in  (4.17)'. Therefore (5.48)'c , j t l  - u , i t l  
i s  a compatible linear system o f  rank p + q - r'?+l. It i s  important to  observe 

J 
that i f  we di f ferentiate each equation o f  (5.48)' with respect t o  t at t = 0 and 

-making use  o f  the fac ts  that d& / d t  = a and B 
;c; P  - B a,;p ;c,a, a, we will 

have precisely (4.18i+1)0. For t o f  su f f i c i en t l y  small absolute value,  there i s  

an obvious one-to-one correspondence between (4.17. ) O  and (5.48)' which 
J + l  

preserves generators as  linear equations in  b and respectively.  

Denote such a correspondence b y  H, :  (4.17. + (5.48)'. For L e (4.17i+1)0,
I +

H ' ( L )  depends analytically on t .  Define a one-to-one correspondence 6 :  

(4 .17j+1)0+ (4 .18j+1)0by  

(5.49) S ( L )  = d H ' ( ~ ) / d t / ~ = ~for L E ( 4 . 1 7 ~+ , ) O  
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L e t  S = ( L 1 ,.. . , La\ be a s e t  .of linearly independent generators of (4.17 . )
0 .

l + l  
We claim that S U S ( S )  is a s e t  of generators for the l inear  sys tem (4.1.7i+1)0 u 
( 4 . 1 8 ~ + ~ ) ~ .  ( t ) ,  . . . ,Indeed, le t  S ( L )  E ( 4 .  18 i+ l )0 ,  then there e x i s t  functions 

$a ( t )  defined for t suff icient ly c l o s e  t o  0 such  that  

Using elementary linear algebra and the fact  that  M t ( ~ J ,  , H t ( L a )  a s  wel l  a s  

H t ( L )  depend analyt ical ly  on t ,  one c a n  eas i ly  show that  q51(t), . . . , are  

actual ly analyt ic  functions of t .  Therefore we have 

Therefore there a re  a t  most 2(p  + q - r;+l) l inear independent equat ions in  the 

linear sys tem ( 4 . 17 .  !4 .18 j+1)0 .  However, it follows from Remark 4.4 that  
I + 

the coefficient matrix of aa,i+l in  (4.18.  is exac t ly  the same a s  that  of 
I + 

bUtii2 in  (4-17i+11' .  Therefore ( 4 . 17 j+ l )0" (4.18 j + l ) O  is a compatible linear 

sys tem in the variables  a a , j+ l>  bu, j+l  and it  i s  of rank 2 (p  + q - r0 ). Thus  we 
I +1 

c a n  always find a ( j  + 1)-dim integral  element E;.+l of 3 l l ' (mO) s u c h  that  
I + 

1 E: and n2,(E1, = E j + l .  We have a l s o  proved that  rj+l(E;. ,  3 i+ l l i (m0) )  = E;.+l ' I 1 + 

2 r i + l ( E ,3 ,  l(mo)). Now if E? is a j-dim integral  e lement  of 3l i ( m o )  defined 


1+l I Iby (mi< b; , . . . , bi *) in a suff icient ly smal l  neighborhood of (mi', B;(o), . . . ,
5'( O ) ) ,  we can construct an integral chain of 3 1 '(rno)) using s u b s p a c e s  of EJ!* 

7 
on which dxp+l = . . . = d x ,  = 0 (1  5 p 5 j ) .  Under n 2 ,  th i s  wil l  be projected 

onto a n  integral  chain of %.l(rno)which i s  a l s o  regular,  s i n c e  it  is ' c lose '  t o  the 
J 

regular integral  cha in  (5.40) .  Repeat ing the above argument, we c a n  prove that  

~ ~ + ~ ( r n ' * ,  compatible linear sys tem in andb;*, .. . , b;*, b>+l) is a b' 
I + l  

The second  equal i ty  follows s i n c e  n 2 , ( ~ ' * ) i s  ' c lose '  t o  E . .  We have thus 
I 7 

proved that  we c a n  extend (5.40)  t o  a n  integral chain of 3 .  l i (mo)  and any 
1 + 1  

such  extension is a l s o  regular.  T h i s  completes the proof of Proposi t ion 5.1. 

6. Applications t o  Jacobi  f ie lds  on minimal submanifolds. L e t  M be a 

Riemannian manifold of dimension n + P and F ( M )  be the bundle of orthonormal 

frames of M with bundle projection n: F ( M )  --+ M .  L e t  wA be the solder  1-forms 

and oABbe the l-forms which define the Riemannian connection of F ( M )  ( s e e  

for example [ I ] ) .  The loca l  geometry of M i s  completely determined by the 

following structure equa t ions ,  
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L e t  I be the idea l  in  the ring of analyt ic  differential forms on F(M) which is 

generated by the following forms, 

It i s  e a s y  t o  s e e ,  using (6 .1) , that  dl C I .  Therefore, I defines a n  exterior d i f -  

ferent ial  sys tem on F(M) .  

Proposition 6.1. 1 i s  inuolutive with independent variables ( a  . . . ,an-

a l 2 3  . . '  an- Ln' an+1,n+2' ' ' an + ~ -l.n+p' On ) at every point e E F ( M )" 

( ( a l 2 ,. . .  and Ian+1,n+2' ' ' ) are some orderings of " a n + p - ~ , n + ~  

the s e t s  {a
27
..; i < j) and ( a4; a < PI respec t ive ly ) .  

Proof. We put 

ma = C a a i h i  + C a a i j a i ;+ C a a p y a m ,  
2 i<j P<Y 

L e t  h .  be the vector whose components a re  ayi ,  hky i .  A l s o  le t  hi;, i  < j 
(h+, a< p )  be the vector whose components a re  a y . ,  h kyij ('y@' hky@)' 

Also  put 

(6 .4)  h = n(n -- 1 )/2 + p ( p  - 1) /2 .  

We will find, for 1 < p < n - 1 ,  that the equat ions lP(e ,  h . . . ,h ) = 0 ,  after 
iL 

taking into account  that  lP-  l ( e ,  h l ,  . . . , hiL- = 0 is generated by 

It is a l s o  not d i f f i cu l t  t o  s e e  that there is only one way to extend a n y  sys tem 

of solut ions of the equat ions I n - l ( e ,  h l ,  . . . , h n - = 0 t o  a sys tem of 

solut ions of the equat ions 
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namely, by set t ing 

(6.7) 	 h . . = h a p2 1  =O. 

After taking account  of the equat ions 

the equat ions I n+A( e ,  h l ,  - - . , h n - l ,  h 1 2 ,  . . . , h n + p - l , n + p ,  h n )  = 0 a re  generat-  

ed by 
a = 0 ,an 

It follows that any sys tem of solut ions ( e O ,  b y ,  - .. , h z - b y 2 ,  - - ., hZtP- ,n  

h z )  of (6.5), (6.7) and (6.9) def ines  a regular integral f lag { e O )= E,, C E l  C - ..C 
C E n + A of I .  It i s  a l s o  e a s y  to  s e e  that  E n + A -

(6.10) 	 7A+n(EA+n- 1) = 0. Q.E.D. 

Remark 	6.1. (6.10) implies that  through any  (A + n - 1)-dim integral e lement  

of I on which E A +n-

o1A . .  . A an-1A a 1 2A . . . 

(6.11) 
On-1 .n  a n + l , n + 2  

A . . .  
A a n + ~ - ~ , n + pf 0 

there e x i s t s  a unique (A + n)-dim integral  element E of I on which 
A +n 

and A+n 3 E A + n - l - 


Remark 6.2. We have proved above that  any integral  manifold of I on which 


(6.11) holds is a general  solut ion of I .  

If /: Fa + F ( M )  defines a n  integral  manifold of I on which (6.12) holds,  

then dim Fa = n(n - 1)/ 2 + p(p - 1)/ 2 + n (= A + n). / ( F a )  is the bundle s p a c e  

of the bundle of adapted frames ( s e e  for example [I]) of the submanifold ?r 0 ! ( F a )  

of M .  In fact ,  ?T 0 / ( F a )  i s  a n  n-dim minimal submanifold of M s ince  the pull- 

backs  of @'),through any sec t ion  of the  adapted frame bundle are  the  mean cur- 

vature forms of ?r 0 l ( ~ ' )( s e e  for example [41). Conversely,  given any n-dim 

minimal submanifold N of M ,  the bundle of adapted frames over N considered 

a s  a submanifold of F(M) is a genera l  solut ion of I .  The  involut iveness  of I 

implies the loca l  ex i s tence  of minimal submanifolds of dimension n. More pre- 

c i s e l y ,  we have the following theorem ( s e e  a l s o  [lo] and  [121). 
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Theorem 6.1. L e t  G n - l  be  a n  imbedded ( n  - 1) -d im  submani fold  of M and 

P ,  be  a n  n-dim d i s t r ibu t ion  along Gn- s u c h  that  T m ( G n - l )  C P ( m )  for a l l  m E 

Gn- T h e n  assumiizg the  da ta  are rea l  a n a l y t i c ,  for e a c h  m0 E Gn- there  

e x i s t s  tn  every  s u f f i c i e n t l y  s m a l l  neighborhood 11 of m0 a unique imbedded 

a n a l y t i c  minimal  submani fold  N of d i m e n s i o n  n s u c h  that  

1 .  1 3 ~  ~ n 1 ,  - ~3 ~ 

2. T m ( N )= P ( m )  for a l l  m E G n - I  n 1. 

Proof. L e t  F!(G,- be the s u b s e t  of F(M) consis t ing of a l l  frames ( m ,  e l ,  

. . .  , e n t p  ) ( i .e .  e l ,  . . . , e n t p  is a n  orthonormal b a s i s  of T m ( M ) )  s u c h  that  

m E Gn- and e l ,  . . . , 'en span  P(m) .  It c a n  be e a s i l y  s e e n  that  F ! ( G , - ~ )  

i s  a submanifold of F(M) of dimension X + n - 1. Indeed, if Gn- i s  defined 

by the imbedding g: Gn-  + M ,  then F!(G,- rea l izes  a reduction of the  group 

O ( n  + p) of the induced bundle g - l ( F ( M ) )  over Gn- t o  O(n)  x O(p)  (for defini- 

t ions and fac t s  related to  induced bundle and reduction of structure group s e e  for 

example [8]). Denote a l s o  by oA,  oA their pullbacks t o  F!(G,- Then ,  a t  

every point of F' (Gn- o i j ,  o4 and oi s p a n  the cotangent s p a c e  of F 1 ( G n -

but only n - 1 of the oi a r e  linearly independent while the o .., o 
11 , ap are 

independent among themselves and independent of the oi. On F'(G,- we have 

Taking the exterior derivative on both s i d e s  of (6.13), we have 

(6.14) 	 mi A oza= 0.  
i 

T h i s  implies that ,  on F ! ( G , - ~ ) ,  oia are independent of o . ,  o4 and they are  
11 

only l inear  combinations of the mi.  Since on F!(G,- only n - 1 of the oi 

are  l inear  independent, the restr ic t ion of O, ( in  (6.2)) to  F ! ( G , - ~ )  vanishes  

identically. F!(G,- is therefore a ( A  + n - 1)-dim integral manifold of 1 on 

which (6.11) holds.  By Remark 6.1,  we have that  a t  every point e0 E F ! ( G n F 1 )  

there e x i s t s  a unique (A + n)-dim integral element E 
X t n  of 1 on which (6.12) 

holds and E 3 T e 0 ( F ! ( G n - )). Since r Xtn(TeO(Gn- I) = 0 ,  we have by 
-2 

Theorem 1.1 that  there e x i s t s ,  in  a suff icient ly smal l  neighborhood 11 of e0 

in  F(M) ,  a unique integral manifold Fa of 1 such  that  = E and %T ~ ~ ( F ' )  
-2 % 

3 F a  ~ F ! ( G , -  n 11. Then,  1= n(%) i s  a neighborhood of m0 = n(eo)  and N = 


n ( F a )  is a submanifold of M which have the required properties. Q.E.D. 


L e t  f :  Fa --+ F(M) define a ( A  + n)-dim integral manifold of 1 on which 


(6.12) holds. We wil l  now compute the equat ions of variation of 1 on / ( F a ) .  L e t  

7: / ( F a )  + T ( F ( M ) )  be a n  I-field defined on / ( F a ) .  For  s implici ty ,  we wil l  


a ssume that  0 = r i  = ( 7 ,  o i ). In fac t ,  only the components T,= 2 a
( r ,  a,), 7 .  = 


( 7 ,  oi,) are of geometric s ignif icance.  The  equat ions of variation a r e  
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Set  OA = /*toA ), OA = f *(aA ). Considering 7, and r ia  a s  functions def ined  

on ,Fa ,  (6.15) c a n  be written a s  

(6.18) d ~ ,+ x i P O P a  - i i y O i  = 0 .  
P Z 

One wi l l  find (6.16) i s  merely the exterior der ivat ive of (6.18), that  i s ,  

A s  for (6.17), we have,  by straightforward computations, 

+ terms a t  l e a s t  l inear  in oY' 


where we have s e t  
-
Rq = xi RiaiP. Since /(Fa) is a n  integral manifold of I, we 

have 

(6.22) /*(a,) = 0, / * a i  = zhiai Oi , 
i 

where h ia j  = h .  . and xi hiai  = 0 .  Using t h e s e  f a c t s ,  we have 
I 

where we have s e t  u a p =  Cit I hiaihipi- 

Therefore,  (6.17) c a n  be wri t ten a s  
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(6.18) and (6.24) give the equat ions of variation of I. Observe that  (6.18) implies  

t h e  ria components of a n  I-field for which ri = 0 are  completely determined once 

the  7 ,  components a re  given. 

Reca l l  that / ( F a )  is the  bundle s p a c e  of the bundle of adapted frames over the 

minimal submanifold / ( F a )  of M. Let  e = ( e i ,  ea) :  W 4 / ( F a )  b e  an arbitrary 

sec t ion  of the  adapted frame bundle over an open s e t  W of N. L e t  r be  an I-field 

a s  above. If we put T*= n,(r), then we can  write 

d e f
(6.25) 	 T * ( x )= x ra(e(x) )ea(x)  = x T ~ X ) ~ , ( X ) .  

a a 

Pulling (6.18) back t o  W ,  

where a ;  i here denotes  the covariantderivat ive with respec t  t o  the  induced 

normal connection on the submanifold n o f ( F a )  in  the  direction of e i .  If we write -
Rap= ei(uap), then the pullback of (6.24) after taking (6.18) into account  i s  

where we have put  

-
Therefore, the normal vector field 7" on ?T 0 f ( F a )  s a t i s f i e s  the following sys tem of 

of partial differential equat ions,  

w h i c h i s  the so-called Jacobi  equation defined on the minimal submanifold ?T o j ( F a )  

( s e e ,  for example, [4] and [121). Any normal vector field which sa t i s f ies  (6.29) 

i s  called a Jacobi  field. T h e  Jacobi  equat ions were obtained previously in ,  

for example, [4] or [61 by considering the second variat ions of the  n-dim volume 

integral.  It i s  given in the present  form in [4]. 

Proposition 6.2. Let r be an I-field on an integral manifold F' of I such 

that ( r, u i , )  = 0, then r*= ?T*(T) i s  a lacobi  field on ? T ( F ~ ) .Conversely,  for any 
Jacobi field T* on d F a ) ,  there ex i s t s  an I-field r on Fa such that n,(~)  = T * .  

Proof. We have already proved the  f i rs t  half of the  propositirn. If T*= 

C a  T*,e, is a Jacobi  field on ?T(F'),  by taking different s e c t i o n s  of the  adapted 



358 D. S. P. LEUNG 

frame bundle F a  over n ( ~ ~ )  r ,  components of a n  1-field rwe can  define the 


on F a  by (6-25) and hence a l s o  i t s  T ,  components by (6.26). If we put 0 = 

z a 

( r ,  w i )  and choose the components rap= ( r ,  asp), r . .  = ( T ,  w . . )  arbitrarily,
21 1 I 

then we have an I-field r on F a  such  that ~ $ 7 )= T * .  Q.E.D.  

Theorem 6.2. Let  M be  a Riemannian manijold of dimension n + p and N 

be an n-dim minimal submanijold of M. Let v: N --+ T ( M )  be a Jacobi  jield de-  

/ ined on N .  Under the assumption o/ real analyt ic i ty ,  /or any point mo E N there 

e x i s t s  a one-parameter /amiIy o/ minimal submani/oIds ' N  ( t  E (- c ,  c )  and c >  0)  


in  a neighborhood o/ m0 in M, such  that O N  = @ n N and t h e  de/ormation 


vector  of t~ on O N  co inc ides  wi th  the restriction of v t o  O N .  

Proof. The  bundle s p a c e  of the bundle of adapted frames F a ( N )  of N i s  an 

integral manifold of 1. In fac t ,  a s  noted earlier,  it i s  a general  solution of I. By 

Proposition 6.2 there e x i s t s  a n  I-field r on F a ( N )  such  that n,(r) = v and 0 = 

( r ,  0 ; )  = ( r ,  = ( r ,  w . . ) .  Then r i s  a n  I-field which s a t i s f i e s  the conditions 
11 

of the  Main Theorem. Since aone-parameter family of integral  manifolds of I on 

which (6.12) holds is mapped under n onto a one-parameter family of minimal 

submanifolds, Theorem 6.2 follows now directly from the  Main Theorem Q.E.D. 
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