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The discrete heat equation is worked out to illustrate the search of symmetries of 
difference equations. Special attention it is paid to the Lie structure of these symmetries, 
as well as to their dependence on the derivative's discretization. The case of q-symmetries 
for discrete equations in a q-lattice is briefly considered at the end. 

1 I n t r o d u c t i o n  

As it is well known, Lie point symmetries were introduced by Lie for solving 
differential equations, providing one of the most efficient methods for obtaining ex- 
act analytical solutions of partial differential equations [1]. The interest for discrete 
systems in the last years has led to extend the Lie method to the case of discrete 
equations [2-4]. 

A general difference equation, involving one scalar function u(x) of p indepen- 
dent variables x = (xl,  x 2 , . . . ,  xp) evaluated at a finite number of points on a lattice 
will be written in the form 

E ( x ,  T~u(x), Tb'Ax, u(x), T~ 'JA~,Ax#u(x) , . . . )= O, (1) 

where the shift operators T ~, T b`, Tc'J are defined by 

{T2 a l  a2  Tau(x) := ,T~ . . . T ~ u ( x  , a =  (al ,a2, . . . ,ap) ,  i = 1 , 2 , . . . , p ,  
2 ~ i ~ r n i  

with a~, mi,  hi, (mi _< n~), fixed integers, 

Ta'u(x) = u(xl, x2,. . . ,  xi-1, xi + aio'i, x i + l , . . . ,  xv), 

and ai is the positive lattice spacing in the uniform lattice of the variable xi (i = 
1 , . . . , p ) .  The other shift operators T b~, TC'J are defined in a similar way. The 
difference operators Ax~ are defined so that  in the continuous limit they turn into 
partial derivatives. 
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In the following we will make use of the approach presented in [5], based on the 
formalism of continuous evolutionary vector fields [1]. The infinitesimal symmetry 
vectors in evolutionary form for the difference equation of order N given in (1) take 
the general expression 

X ~ = - Q O u = ( ~ ' ~ ( x ' T ~ u ' a = ' a t ) T b A = ' u - ¢ ( x ' T % ' a ~ ' a t ) )  Ou' (2) 

where ~i(x, Tau, a~, at) and ¢(x, TCu, ax, at) are operator valued functions which in 
the continuous limit become the functions ~i(x, u) and ¢(x, u), respectively, giving 
rise to Lie point symmetries. 

The vector fields Xe generate the symmetry algebra of the discrete equation 
(1), whose elements transform solutions u(x) of the equation into solutions fi(x). 
The N-th prolongation of Xe must verify the invariance condition 

prNXeEIE=O ---- 0. (3) 

The prolongation prNXe is 

prNXe = Z T a Q O T , ~ ,  + ~-'~Tb'Q::'OTb, A~,, + ~-~TC'~Q~':~JOT~,jA~ A~ju + . . .  
a b~ c~j 

(a) 

where summations in (4) are over all the sites present in (1). The symbols Q~', 
Q~,x~, are total variations of Q, i.e., Q~:' = A T  Q, QX,:~j = AT AT  Q, . . .  

defined by 

A T f ( x ,  u(x), Axu(X) , . . .  ) = 

-= l [f(x + a, u(x + a), (Axu)(x  + a ) , . . . )  -- f (x ,  u(x), Axu(x) ,  . . . )], 

while the partial variation A~ is 

1 
A x f ( x ,  u(x), Axu(x) , . . . )=~[ f (x+a ,  u(x), ( Axu)(x) ,  . . . ) - - f (x ,  u(x), Axu(x),  . . .)]. 

(5) 

The solutions of (3) gives the symmetries of equation (1) when using the differ- 
ence operator (5). The determining equations for ~ and ¢ are obtained by consider- 
ing linearly independent expressions in the discrete derivatives T a A ~  u, TbAx~j  u, 
. . . .  The Lie commutators of the vector fields X¢ are obtained by commuting their 
first prolongations and projecting onto the symmetry algebra G. 

Since we will restrict here to linear equations we can assume that the evolution- 
ary vectors (2) have the form Xe = (Xu)O~,, where 

2 =  i(z, T°, ax, Gt)Ax, - ¢ ( x , T ° , a x , a t ) .  
i 
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The operators ) f ,  in general, may span only a subalgebra of the whole Lie symmetry 
algebra [5]. 

In Ref. 6 the symmetries were obtained using the above mentioned difference 
operator 

_= = - :, ( 6 )  
o i 

which, when ai ~ 0, goes over into the standard right derivative with respect to xi. 
Since other definitions of the difference operator can be introduced [7], one would 
like to show that  the algebraic structure of the symmetries is independent on the 
choice undertaken (a similar problem has been dealt in Ref. 8.) In this work we will 
also use the left derivative 

I-T:: 
/ " Z  - - - ,  (7) 

o- i 

and the symmetric derivative (which goes into the derivative with respect to xi up 
to terms of order a 2) 

- T ; ,  (8) A s = 

xi 2oi 

In the following we will see that  by an appropriate definition of the Leibniz 
rule we can construct Lie symmetries, in principle, for any difference operator. In 
Section 2 we will introduce this procedure on the example of the discrete heat 
equation. We shall s tudy separately the cases of the discrete derivatives (6)-(8), as 
well as that  of a q-derivative. In this way we will get different representations of 
the same Lie algebra. We conclude with some remarks and comments. 

2 D i s c r e t e  h e a t  e q u a t i o n  

Let us consider the second order difference equation 

( a t  - ~ = ) u ( x )  = 0, 

as a discretization of the heat equation. Since it is linear, we can consider an 
evolutionary vector field of the form 

Xe = QO~, = (~-A~ + ~ A x u  + fu)O~,, (9) 

where T, ~ and f are (operator valued) functions of x , t ,  T x , T t , a ~  and at. The 
determining equation is 

A~Q - A T : ~ Q I A ~ , = , . , ~ ,  = O, 
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whose explicit expression is 

/,t(~/,~u) + A d r / h u  ) + At( fu  ) - 

- [ ~ ( ~ u )  + A x x ( ~ )  + A ~ x ( / ~ ) ] l ~ . x ~ = a , ~  = 0. (10) 

When expression (10) is developed one needs to apply a Leibniz rule and, hence, 
the results will depend from the definition of the corresponding discrete derivative. 
We propose a Leibniz rule having the form 

A~ ( f (x)g(x))  = f ( x ) A , g ( x )  + D , ( f ( x ) )g (x ) ,  (11) 

where Dx( f (x ) )  = [Ax, f(x)] is a function of x, T~ and a~ (similarly for Dr(f  (t))). 
Using the general rule (11) for an arbitrary discrete derivative we obtain from 

(10), equating to zero the coefficients of Axtu, Atu,  Axu and u, respectively, the 
following set of determining equations 

D~(r) = O, 

Dr(r) - 2D~(() = 0, 
(12) 

Dt(~) - D~(~)  - 2D~(f) = 0, 

Dr(f)  - Dx~:(f) = O, 

where Dxx( f )  = D,:(Dx(f)).  Next, starting from (12) we will study separately the 
cases for A + and A ~. 

2.1 Symmetries for right (left) discrete derivatives 

Choosing as in Ref. [5,6] the derivative A + and, consequently, the Leibniz rule 

A+(fg)  = f A + g  + A+( f )Tg ,  

we get from (12), 

A + r  = O, 

(A+r)Tt - 2(A+~)Tx = 0, 

(A+~)Tt _ + 2 - 2 ( A : / ) T x  = 0, 

( A I ) T t  - + : (A~xf)T~ =0.  

The solution of (13) gives 

T = t(2)r2 + trl + 7"o, 

= l x ( r l  + 2tr2)TtT~ 1 + t~l + 40, 

f = ¼x(2)r2Tt2T; -2 + ½tT2Tt + ½x(ITtT~ -I + 7, 

(13)  

(14) 
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where to, 11, r2, ~o, 41 and ~/are arbitrary functions of T~, Tt, and the spacings 
ax and at. The notation x('O, t (n) is for Pochhammer symbols; for instance 

x c n )  = x C x  - - ( n  - 

By a suitable choice of the functions Ti, {i, and 3' we get the following symmetries 
[9] 

P 0  = 

P1 = (A,u)0~, 

W = uO~, 

B = (2tT~-lA~u + xT[lu)O~,  (15) 

D = (2tT[-1Atu + x T [ l A ~ u  + ½u)O~, 

K = ( t 2 T t 2 A t u  - a t t T t 2 A t u  + t x T t l T j 1 A x u  

+ ¼x2Tg2u - ¼a~xTg2u + [tT~-lu)O~. 

Let us note that the above discrete symmetries have a well defined limit when 
a~, at -+ O, which leads to the symmetries of the continuous heat equation. Also, it 
can be checked that with this choice, the symmetries (15) close into a 6-dimensional 
Lie algebra isomorphic to the symmetry algebra of the continuous heat equation, 
for any value of a~, at. 

A second choice for the discrete derivative is A- .  The Leibniz rule becomes 

A - ( f g )  = f A - g  + A - ( f ) T - i 9 .  (16) 

It gives the same results (14) and (15) provided we make the substitution T --* T -I .  

2.2 Symmetries for symmetric discrete derivatives 

Next, let us consider the case of the symmetric derivative A s (8). The commutator 

[At, x] = ½ (T~ + T~- 1) 

can always be rewritten by introducing a function/3~* =/3S(T~) -- 2(T~ + TZ1) -1 
as 

[A,, xflx] = 1. 

This fact will help us in the computation of general commutators, so 

[ASx,/(x)/3:] = (ASxf(x)) Tx/5~ + ( T ; l f ( x )  - f ( x ) )  ~SAS. (17) 

From relation (17) we get the explicit Leibniz rule 

A~ ( f ( x )g (x ) )  = 

[1 1 = f ( x ) A ~ g ( x )  + ~ ( (T[  1 - 1)f(x)) (T~ - (j3~) -1) + ( A ~ f ( x ) ) T x  g(x). 
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This formula allows us to write explicitly the determining equations (12). Their 
solution is given by [9] 

T s -~- t(2)T2 + tT1 -k TO, 

~s Ix  (2tT2 -4- T1 + atTtX3~T2) s -1 s = (3t) & + t 6 + ~ o ,  

f~  = ¼ X(2)T2(3~)2(3~ ) - 2  + ½X~13~(3~) -1  
1 --1 s 3 s - -2  1 s --1 + ~xa~T~T; (&) (Zt) +~tT~(3t) +fo, 

where T2, T1, T0, (1, (0 and f0 are arbitrary functions of T~, Tt, ax and at. Now, 
from these solutions and (9) we obtain, with a suitable choice of T2, T1, T0, (1, (0 
and f0, the following symmetries 

P8 = ( A fu )O , , ,  

P~ = (A~u)O~,  

W ~ = uO~, 

B ~ = ( 2 t 3 ~ A ~ u  + x3~u)Ou,  (18) 

~ ~ ~ ½~)o~, D ~ = ( 2 t 3 t A t u  + x 3 ~ A ~ u  + 

K s = ( ( t 2 ( ~ ; )  2 - t o t ~ ( 3 ; ) a a ~ ) t , f .  + t~Z;ZtA~u 
1 2 s 2 l t ~ ; u ) O u .  -- lxax2(/~x)3A~u-4-~x (Zx) z$-1 t- 

These symmetries dose the same 6-dimensional Lie algebra generated by the oper- 
ators (15), and have a well defined continuous limit. 

2.3 S y m m e t r i e s  for q-derivatives 

In the following we shall extend the preceding method to the case of q-derivatives 
and q-symmetries. We deal briefly with a q-discretized heat equation where the 
q-difference operator is defined by 

with the help of a q-shift operator 

Tx = e qzxOx , 

In this case we have the commutator 

1 
(T~ - 1), 

(q~ - 1)x 

T ~ f ( x )  = f ( q ~ x ) .  

The function 3~(T~) satisfying 

[ ~ ,  x] = T~. 

[ ~ ,  3~ ]  = 1, 
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is formally given by 
j3~(Tx) = (q~ - 1)xOx(Tx - 1) -1. 

Thus, we can perform a change of basic operators {x, Tx} ---* (k, Aq}, where k -- 
~ ( T x ) x ,  so that,  formally, we can express any function f ( x ,  Tz )  as f ( x , T ~ )  -- 

f (k ,  Aq). In this way the determining equations (12) take the form 

~ = 0 ,  

~ -  2~~ = o, 

- - 2 = 0 ,  

Therefore, we obtain solutions that  have similar appearance as the classical sym- 
metries 

p~ = (A~ u)0~, 

P~ = ( a l  u)0~, 
w q  = uO~, 

B q = (2/3t tA q u + /3~x  u)O~,, 

D q = (2/3ttA q u +/3~xAq~ u + ½ u)O~, 

g q -- (T t t 2A  q u + 13z13ttxAq u + ¼"/zx 2 u + ½/3tt u)Ou, 

r,:,,.: r(';'- 1)(-1 + xOx)] 
where 7x = L T~ - 1 J I -q/--~--~ j (for 7t replace x by t). 

3 Conc lus ions  

The key point in obtaining the explicit determining equations (12) and, conse- 
quently, the discrete symmetries is the use of the Leibniz rule defined in (11). Of 
course, this approach is not the only possibility; in fact, it must be checked whether 
it works correctly or not in each case. The choice of a commutator in order to define 
the Leibniz rule implicitly leads us to Lie symmetries, since the natural algebraic 
structure will be given also in terms of commutators. 

Some of the above result deserves some comments. The symmetries associated 
to the symmetric derivatives (Subsection 2.2) include functions/3~ (/3~) of Tt (Tx) 
that  can only be understood as infinite series expansions. Therefore, not all the 
symmetries (18) have a local character, in the sense that  they are not (finite) poly- 
nomials in the operators T~ 1, T~ 1 . Note that  although these discrete symmetries 
give rise to the classical symmetries in the limit ax ~ 0, at ~ 0, one of them, K 8, 
also includes surprisingly a term in (At)2, which vanishes in the continuous limit 
since it is multiplied by a 2. 
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Something similar happens with the q-symmetries (Subsection 2.3): they have 
also a highly non-local character. The origin of this unpleasant feature is that  the 
basic commutator [A~,/~xx] = 1 needs a non-local function ~(T~) .  If we want 
to investigate local symmetries it is necessary to find a commutator which is free 
of this problem. For instance, we could take as starting point the q-commutator: 
[A~, xTZ1]q, = 1, where [A, B]q z = A B  - q ; 1 B A .  However, in this case we have a 
q-algebra [1(3] which is out of the scope of the present article. 

Let us insist that  the procedure here exposed can be straightforwardly applied to 
other discretizations such as for the wave equation [11] or even equations including 
a potential term as long as we stay inside the field of linear equations. Non-linear 
equations need additional improvements in order to have reasonable determining 
equations. 

This work has been partially supported by DGES of the Ministerio de Educaci6n y 
Cultura of Spain under Projects PB98-0360 and the Junta de Castilla y Le6n (Spain). 
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