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Abstract. A Lie g roup  analysis is undertaken for a nonlinear system which models the 
motion of a rotating shallow liquid in a rigid basin. The Lie algebra of the symmetry group 
is presented for elliptic and  circular paraboloidal basins. In  the elliptic case, the symmetry 
algebra is a six-dimensional real Lie algebra. In  the circular case, the symmetry algebra 
is nine dimensional.  Finite group transformations are  constructed which, in the circular 
paraboloidal case, deliver a theorem concerning the t ime evolution of a key moment  of 
inertia during the motion. In  the elliptic paraboloidal case, a result concerning the motion 
of the centre of gravity of the liquid is retrieved. The investigation ends with symmetry 
reduction of the original system and  the generation of group-invariant solutions which 
correspond to  various initial data.  

Resume. On d o n n e  I'analyse d'un systeme d'equations differentielles non lineaires decrivant 
le comportement d'un liquide dans  un bassin rigide. On trouve le groupe d e  symktrie qui  
est d e  dimension six si le basin a la forme d'un paraboloyde elliptique et d e  dimension 
neuf pour  un parabolo'ide d e  revolution. Le groupe est utilise pour  etudier le comportement 
temporel global du  systeme. Les sous-groupes d u  groupe d e  symetrie sont utilises pour  
obtenir  des solutions exactes invariantes. 

1. Introduction 

The purpose of this paper is to undertake a group theoretical analysis of a nonlinear 
system of partial differential equations, describing the motion of a shallow ideal liquid 
in a rigid basin, rotating with the Earth. The liquid is subject to the force of gravity 
and  the Earth's rotation manifests itself only through Coriolis force. 

Exact solutions of nonlinear physical problems in three dimensions are hard to 
come by. Exceptions are such completely integrable equations as the Kadomtsev- 
Petviashvili equation [l], the Davey-Stewartson equation [ 2 ]  and a few others, 
integrable by inverse scattering techniques [3-51. These equations describe waves 
propagating in infinite bodies of fluid, such as oceans, channels or straits [6] (of infinite 
length). No integrable nonlinear equations are kitown for waves in a bounded region 
such as a basin, lake or enclosed sea. 
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For equations that d o  not belong to the integrable class, it is of considerable interest 
to obtain exact analytic solutions. Such solutions often elucidate qualitative features 
of the model and  of the physical situation itself. Exact solutions, be they physically 
interesting or not, provide a standard against which numerical solutions can be tested. 
Moreover, exact solutions, whenever they exist, may help in clarifying the dependence 
of the model on the parameters of the problem (choice of initial conditions, shapes 
of boundaries, etc). 

Probably the most interesting nonlinear non-integrable system, from the fluid 
dynamics point of view, is the nonlinear shallow water system, obtained as an approxi- 
mation to the (3 + 1)-dimensional Euler equations [7, 81. When the system is confined 
to a finite basin, the shallow water approximation leads to a system of nonlinear partial 
differential equations, studied by Ball [9-111 and more recently analysed by Thacker 
[12] and  Kirwan and  Liu [13]. 

Most of the applications have concerned tidal or long-wave oscillations in oceans 
[13, 141. Solutions of the shallow water system can be classified in terms of the 
Goldsbrough expansion [15], in which the velocity field and  the depth of the fluid 
above the bottom are expanded in powers of the horizontal coordinates (with time- 
dependent coefficients). The lowest mode in this expansion is the ‘displacement’ 
(motion of the centre of gravity of the fluid), in which the horizontal velocity field 
depends on time alone. The next modes are ‘deformations’, (involving uniform rotation, 
expansion and  distortion of the liquid), in which the horizontal velocity field is linear 
in the horizontal coordinates. ‘Higher modes’ will thus be characterised by higher 
powers of the coordinates present in the velocity fields. 

Ball [9] presented two theorems dealing with transformations of solutions of the 
shallow water system. He showed that when applied to a trivial solution, i.e. a horizontal 
surface and  zero velocity field, these transformations give rise to displacement modes 
and  deformations, respectively. 

In this paper, we use group theory to provide a natural basis for Ball’s theorems, 
to generalise his result and  to obtain new explicit solutions. 

In 9 2, we indicate briefly the derivation of the shallow water system from the Euler 
equations for a basin of an  arbitrary shape. In B 3, we obtain the Lie algebra of the 
symmetry group of local point transformations leaving the equations invariant. To 
obtain an  explicit form of the corresponding vector fields, we specify the boundary to 
be an elliptic or circular paraboloid. The finite group transformations providing, inter 
alia, Ball’s theorems are obtained in B 4. In B 5, we concentrate on the circular 
paraboloid. We determine all subgroups of the symmetry group, having orbits of 
codimension 1 in the space of independent variables and use some of them to reduce 
the shallow water system to ordinary differential equations, which must then be solved. 
The elliptic paraboloidal basin is treated in a similar manner in 5 6. 

2. The governing equations 

In  the present context, the relevant hydrodynamic equations consist of the continuity 
equation for an incompressible fluid 

(2.1) T u  = U, + U, + U’: = 0 

together with the Euler equations of motion for an inviscid incompressible fluid, subject 
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to the force of gravity and  contained in a basin rotating with the Earth: 

p [  U, + UU, + cu, + "U,] -fc + p ,  = 0 

p [  U ,  + Ut', + L'c, + " U , ]  +fu + p\ = 0 

( 2 . 2 ~ )  

(2.2b) 

(2.2c) 

In  the usual notation U, c and w are components of the velocity U, p is the fluid density, 
assumed to be constant, p is the fluid pressure relative to that of the atmosphere and 
the subscripts denote partial derivatives. The constant f is the Coriolis parameter 
(assumed to be constant over the dimensions of the basin) and g is the gravitational 
constant. As is common in oceanographic contexts, the centrifugal contribution is 
neglected [ 161. 

In  what follows, we shall be concerned with the motion of a shallow rotating liquid 
contained in a rigid basin. The geometric configuration is as in Ball [9] and  is shown 
in figure 1. Here 

( 2 . 3 )  

p [  w, + UU', + CW', + ww,] + pg + p :  = 0. 

z = Z (  x, J )  

is the equation of the basin surface underlying the liquid, while 

z = q ( x , y , t ) = Z + h ( x , y , t )  (2.4) 

denotes the free surface. We must now adjoin appropriate boundary conditions to the 
system (2.1), (2.2). The initial conditions are not specified a priori in  the present 
approach. 

t 

X 

Figure 1. Cross section of the basin described by the function I = Z(x ,  j,); h ( x ,  y. r )  is the 
vertical distance from the free surface to the basin and  t)( qj,, r )  = Z +  h. 

The usual boundary conditions consist of the kinematic condition on the free 
surface, that is 

77, + UT, + U77, = w for = 77(x, y ,  t )  ( 2 . 5 ~ )  

together with the assumption 

p = o  for i = V ( X ,  y ,  0 (2 .5b )  

(that the pressure be atmospheric on the free surface). The boundary condition on 
the basin surface is 

u z ,  + cz, = M' for z = Z ( x ,  y ) .  (2.6) 
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The shallow water approximation is now derived in a manner similar to that adopted, 
in the absence of the Coriolis terms, by Keller [17]. Thus, dimensionless variables, 
denoted by a bar, are introduced according to 

, f = x l k  p = y /  k 9 =  z l d  i= t@/ k 

= (gd) - ' l2u  5 = (gd) - l  ?U C = ( d a/ k ) - '  w (2.7) 

P = P I P d  fi = t ) l d  2 = Z / d  f =fkl P t l g d  
where d represents a typical depth and k a typical length in the horizontal direction. 

The 'shallow water' parameter 

= d'/k' (2.8) 

is introduced and will be assumed to be small. Rewriting the governing system (2.11, 
(2.2), (2.5) and (2.6) in dimensionless variables and dropping the bars, we obtain 

U, + U, + w, = 0 

U, + uu, + vu,  - f U  + p ,  + wu, = 0 

U, + uu, + uu, + f u  +PI + wv, = 0 

a[ w, + uw, + ow, + ww;]+ 1 +p: = 0. 

Power series expansions for the quantities 9 ={U, U, w, v , p }  in terms of cr are now 
introduced in the form 

t), + ut), + UT], = W' 

p = o  for z = t) 

uz, + vz, = w 

for z = T ]  

(2.9) 
for z = Z  

9 = 1 9 ' n ) $  (2.10) 
n=n 

and are inserted into the system (2.9).  The terms of order a' yield 

U?'+ U?'+ w p  = 0 

u j ~ i +  uin)u;oi+ U i ~ i u ~ o ~ - f u i o i + p ~ i  - - 0  

( 2 . 1 1 ~ )  

(2.11b) 

(2.11c) 

p ? ) + l  = o  (2.11d) 

for z = 7''' ( 2 . 1 2 ~ )  

p ' o '  = 0 for z = '7") (2.1 2 b )  

u j o ) +  u ~ o ~ u : ~ ~ +  v ~ ~ ~ v j ~ ~ + f u i n ) + p : ~ ~  - 0  - 

t):n~ + u ' n i t ) ~ ~ +  u ' ~ ~ t ) : ~ ~  = w ' O '  

u'O'zy + p)z, = w'") for z = Z. (2.12c) 

We now make a physical assumption, namely that U'')) and U"' are independent of z, 

(2.13) U ' O '  = u y x ,  y ,  t )  U'')) = u ' " ' ( x ,  y ,  t ) .  

Integrating (2.1 l a )  subject to (2.13) and (2.12c), we obtain: 

do' = -( u:oi+ v j O ' ) z +  ( U ' O ' Z ) ,  + (U'O'Z), , (2.14) 

From (2.1 I d )  and (2.12b), we obtain the dimensionless hydrostatic approximation for 
the pressure 

p ' " ' ( x ,  y, z, t )  = - 2  + t)'O'(X, y ,  1 ) .  (2.15) 
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Substituting (2.14) into (2.12a), we obtain an equation independent of z which we 
rewrite as 

(2.16) '7:01+ [ U ' O ' (  '7(") - Z ) ] ,  + [ v'O1( T ] ( O '  - Z ) l X  = 0 .  

In agreement with (2.4), we put 

T]"'(x, y ,  t )  = Z(x, y )  + h""(x, y ,  t )  (2.17) 

and, dropping the superscript (0), we rewrite the remaining first-order equations 
(2.11b, c)  and (2.16) as 

( 2 . 1 8 ~ )  U, + UU, + V U ,  + ( Z +  h ) ,  - f ~  = O  

v , + u u , + v u ,  + ( Z + h ) ,  +fu=O 

h, + ( u h ) ,  + ( v h  ), = 0. 

(2.18 b) 

(2.18 c) 

Using two-dimensional vector notation, we put 4 = ui + uj, where (i, j ,  k )  is the usual 
orthonormal basis of Euclidean 3-space and rewrite (2.18) as 

h, + div( h q )  = 0 a'l + ( 4, V 4 )  + V ( 2 + h ) + f k  x q = 0. (2.19) 

The system (2.18) (or (2.19)) is the zero-order shallow water system with the inclusion 
of Coriolis terms, to which we devote the rest of this paper. Notice that the boundary 
conditions (2.5) and (2.6) have been satisfied to the considered order and that the 
shape of the basin (2.3) is incorporated in equations (2.18a, 6) explicitly via the function 

Below we shall also make use of the shallow water equations (2.18) written in 

a t  

Z(X, Y ) .  

cylindrical coordinates. These are recorded below for convenience. Thus, putting 

x = r cos e 
U ,  = U,= U cos 8 +  v sin 8 

y = r sin 8 
(2.20) 

U,= us = -U sin 8 + v  cos 8 

we can rewrite the system (2.18) as: 

ah ah h a v ,  1 ah h a u 2  
a t  a r  r ar r a8 r ae  
- + U ,  -+- ~ , + h - + -  v 2 - + -  - = O  

a v ,  a v ,  a 1 U, a u ,  

- + v , - - 1 . + f u , + - u 2 u , + - - + - - ( Z + h ) = 0 .  a v ,  av 1 U? a V 2  1 a 

- + u , - + - ( Z +  h ) - f u z - -  u ; + - - = O  
a t  ar  ar r r 88 

a t  ar  r r 88 r 88 

(2.21 a )  

(2.21b) 

(2.21 c)  

3. The Lie algebra of the symmetry group 

We are looking for the Lie group of local point transformations leaving the shallow 
water system (2.18) invariant and hence transforming solutions amongst each other. 

(3.1) 

(3.2) 
are the independent and dependent variables, respectively, and g denotes the set of 

Such transformations will have the form 

X: = A i ( x ,  w, g )  

x = ( X I ,  x2, X J  = (x, y ,  1 )  

w:, = &(x, w, 8 )  
where 

w = ( w i ,  ~ 2 ,  w , ) = ( u ,  u , h )  
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group parameters. The functions .A, and R ,  are such that w ‘ ( x ’ )  is a solution whenever 
w ( x )  is one, and the transformation is defined. 

Instead of constructing the group transformations directly, we follow a standard 
procedure, due to Lie and explained in all books on the subject (see e.g. Olver [18]). 
I t  consists of constructing the corresponding Lie algebra realised by vector fields of 
the form 

x = 7 1 a x  + 7 2 a ,  + 74, + 4 i a u  + 4230  + h a t ?  (3.3) 
where 7, and w, are functions of the independent and dependent variables (3.2). These 
functions are determined from the requirement that the first prolongation pr‘”X of 
the vector field X should annihilate the equations (2.18) on the solution set. We have 
used a specifically written MACSYMA program [19] that greatly facilitates the task of 
implementing the algorithm for finding the symmetry algebra. The program provides 
us with a partially solved set of determining equations. Here they consist of first-order 
linear partial differential equations for the functions 7, and 4 ,  in (3.3). 

Dropping all details, we record that for a basin of the general form 

2 = Z ( X ,  Y )  (3.4) 

71 = ( i & + c , ) x + ( t f a + c 2 ) y + P  

772 = -(;fa + c2)x + ($& + c , ) y  + y 

we find the following expressions for the coefficients in (3.3): 

(3.5) 7 3 = a  

4 ,  = (-;& + c , ) u  + (+fa + c 2 ) u  + i & X  + i f b y  + f i  
4* = -(;fa + c2)u + (-id. + c , ) u  - i f&X +& + i, 
43 = 2(-&i +c, )h .  

In  (3.5), cI and c2 are constants whereas /3 = P ( t ) ,  y = y ( t )  and 7 = a ( t )  are functions 
of time, subject to the constraints 

*.Y = 0 *? = 0 (3.6) 
where 
rl, = Z Y [ ( & &  + C , ) X  + ($fa + c,)y+ p3+ Z,.[-(ifa + C ? ) X +  ($d. + c , ) y  + y ] +  Z ( &  - 2 c , )  

+ a[ f2& + $1 ( x 2  + y 2 ,  + ( p - cif) x + ( ; + f i f ) y .  (3.7) 
The constraints (3.6) are actually very stringent and depend crucially on the shape of 
the boundary given by Z ( x ,  y ) .  

To proceed further, we assume that the basin is an elliptic (or circular) paraboloid. 
Thus, we have 

Z ( x ,  y )  = AX’ + By’ A>0,  B>O (3.8) 
in (3.4). In  passing, we mention that the case A < 0, B < 0 is also of interest and 
corresponds, for example, to a partially submerged mountain in a sea. Most, but not 
all, of the results that follow are also valid in this case. 

The constraints (3.6) then greatly simplify and can be written as 

( A - B ) ( f i + 2 c , ) = O  $ + ( 8 A + f 2 ) &  = O  2 ; + ( 8 B + f 2 ) &  = o  
;+f@ +2By = 0. - f y  + 2AP = 0 (3.9) 

Moreover, these constraints can be completely solved. For A f B, (Y is a constant, 
a = - 2 c 2 / j  For A = E, the second and third equations coincide and can be solved for 
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a ( t ) ,  which then depends on three integration constants. The last two equations yield 
p and y, depending altogether on four constants. 

Below, we present the symmetry algebras in  an appropriate basis. We introduce 
the notation 

fo= R ,  - R 2 = [ 2 ( 0 - a ) ’ +  f 2 ] ’ I 2  ( 3 . 1 0 ~ )  
and notice that for a circular basin, we have A = B and hence 

w =  RI+R2=(8A+f2)’ ’ ’  fo RI - Rz =f: (3.10b) 
For A f B, the symmetry algebra is a six-dimensional real Lie algebra, for which we 
choose a basis to be 
T = a ,  D=xa,+ya,+uaU+tla,+2ha,, 

Y1=cos R , t a y - l ( R I -  E R 2 )  sin R,ta,  - R ,  sin Rita, 

w = R I  + R2 = [2(Jx+~%)~+ f’] ’  ’ 

f 

cos R,ta,.+ R I  cos R,ta,  

-& ( R ,  - 8 R 2 )  sin R,ta,  
f .I . 

Y3 = cos R2ta, -.! ( R2-  2 R I )  sin R2ta,. - R ,  sin R2ta, 

-& ( R2 - & R , )  cos R2tdc 

f 

f - 

( 3 . 1 1 ~ )  

cos R2ta,.+ R2 cos R2ta, 

-!!? ( R2 - R I )  sin Rzta , .  
f 

We shall call the Lie algebra ( 3 . 1 1 ~ )  for the elliptic paraboloid basin LE. This is a 
solvable Lie algebra; its nilradical (maximal nilpotent ideal) is generated by 
{ Y1, Y2, Y3,  Y4} and is Abelian. The operator T corresponds to time translations, D 
to dilations. We shall see in  9 4 that the subgroup of the symmetry group generated 
by the Abelian subalgebra { Y,} corresponds to a translation of the space coordinates 
( x ,  y ) ,  depending periodically on time and compensated for by an appropriate transla- 
tion of the velocities U and 0. 

For a circular basin, we have A = B and the symmetry algebra is larger, namely 
nine dimensional . In  addition to the six basis elements (3.11a) of LE, we obtain three 
more symmetry operators, namely 
R = ya, - xa, + va, - ua, 

K ,  = ; C O S  wt[xa,+ya, - u a , , - v a L + f ( V a , , - x a , ) - 2 h a , , ]  
1 

2w 
+-sin w t [ f ( y a ,  -xa ,  + tla,, -ua , ) -w2(xa ,+ya, )+2a,]  (3.11 b )  

K - - -  - I sin w t [ x a ,  + y a ,  - ua, - ~ a ,  + f ( y a , ,  - xa, 1 -2ha,,] 
1 

2w 
+-cos w r [ f ( y a ,  - x a ,  +va , , -ua l ) -w ’ ( xa ,+ya , )+2a , ] .  
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Furthermore, for B = A, the expressions for Y ,  , . . . , Y4 simplify, since R ,  and Rz are 
now given by (3.106) and we have 

(3.12) 

The additional operator R corresponds to simultaneous rotations in coordinate and 
velocity space. The transformations corresponding to K, and K 2  are somewhat harder 
to interpret. They correspond to a transformation to a moving frame and we shall 
return to them in § 4. 

In order to identify the Lie algebra Lc corresponding to the circular basin, we 
perform a slight change of basis, replacing the time translation T by the linear 
combination 

1 L 3 = - ( T + f f R ) .  w (3 .13 )  

The commutation relations for the Lie algebra Lc in this basis are given in table 1. 
The basis is a canonical one, so chosen that we can immediately read off the Levi 
decomposition (see Levi [20], Jacobson [21]). We have 

Lc = S %, Ro (3.14a) 

where 

are the simple Lie algebra sI(2, R )  and the maximal solvable ideal (radical), respectively. 
The nilradical N of Lc is Abelian and is generated by { Y ,  , Y z ,  Y , ,  Y4}. 

The action of the Lie group corresponding to the algebra { K , ,  K z ,  L , ,  R }  on the 
Abelian ideal { Y , ,  Y z ,  Y 3 ,  Y4} is such that the expression C = Y:+  Y i -  Y i -  Y:  is 
invariant, whereas ehD will scale C; that is, we have 

[ K i ,  C ] = [ K ? ,  C]=[L, ,  C ] = [ R ,  C]=O [DC]=-2C.  (3 .15)  

Table 1. Commutation table for the symmetry algebra L of the circular basin 

0 
- K 2  

Kl 
0 
0 

t Y 2  
-4 Y ,  
; Y ,  

-4 Y, 

K2 

L3 

0 

0 
0 
; Y ,  

-4 Y, 
f Y ,  
-! Y ,  

- K ,  0 0 -f Y ,  f Y ,  
- L 1  0 0 -4 Y ,  ; Y ,  

0 0 0 4 Y, f y ,  
0 0 0 - y ,  - Y ,  
0 0 0 y2 - YI 

- i Y ,  Y ,  - Y 2  0 0 
- i Y ,  Y z  Yl 0 0 
-4 Y ,  Y ,  y4 0 0 

-!Y1 Y ,  - Y ,  0 0 

-f Y4 
+ Y ,  
f Y, 

- y,  
- y.l 

0 
0 
0 
0 
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Thus, C effectively provides an  invariant indefinite metric on N = { Y , ,  Y z ,  Y 3 ,  Y4} 
and an element a,Y, E N can have positive, negative or zero length with respect to this 
metric. The one-parameter subgroups exp A ( R  + 2L3)  and exp A ( R  - 2 L 3 )  provide 
independent rotations in the { Y 3 ,  Y4} and { Y ,  , Y.} spaces. Analysing the action of 
{ K ,  , K 2 ,  L 3 ,  R, D }  on N further it is easy to see that any one-dimensional subspace 
of N is conjugate to { Y , } ,  { Y3}  or { Y ,  + Y3} ,  depending on whether its general element 
has C > 0, C < 0 or C = 0. Similarly, any two-dimensional subspace of N is completely 
characterised by its signature. This will be important in P 5. 

4. The group transformations 

In  order to obtain the group transformations (3.1) leaving the shallow water equations 
invariant, we must integrate the obtained vector fields (3.11). The general element of 
the Lie algebra has the form (3.3). The corresponding one-parameter subgroup of 
group transformations is obtained by solving the system of initial value problems 

where A E g  (see (3.1)). 
Let us first consider the Lie algebra LE with basis (3.11a). The corresponding 

group transformations leave invariant the shallow water equations for both the elliptic 
and  circular paraboloid basins. 

We first obtain the transformation corresponding to the general element 
4 

y = c p‘, y, 
, = I  

o r  the nilradical N ,  then compose i t  with the transformation corresponding 
element 

F = # ~ D + ~ T  

of the factor algebra L , / N .  

(4.2) 

to the 

(4.3) 

The result is that if u(x, y ,  t ) ,  u(x, I; t )  and h(x, y, t )  satisfy the system (2.18) with 
Z given by (3.8), then so d o  

u‘(x’, y ’ ,  t ’ )  = e*[ u(x, J; t )  + X ( t ) ]  

u’(x’,y’, t ’ )=e*[u(x ,p ,  r ) +  Y ( t ) ]  (4.4a) 

h‘(x’, y ’ ,  t )  = e2’h(x, y ,  t )  

x = e-’x’ - X ( t ’  - t o )  

where 

1’ = e-A y ‘ - Y ( f ’ - - t ( J  t = t ’ -  to (4.46) 
with 

X ( t ) = p , c o s R , t + p 2 s i n  R , t + p , c o s R , t + p , s i n  R,r 

(-p, sin R , t + p 2  cos R , t )  

(4.4c) 
(-p3sin R 2 t + p 4 c o s  R 4 t ) .  



4752 D Leui et a1 

Notice that in (4.4), R I ,  R,, f ;  A and B are parameters of the problem ( R I  and R2 are 
given in terms of A, B a n d f  in (3.10)). On the other hand, A, t o ,  p , ,  p 2 ,  p 3  and p4 are 
group parameters, that is, real numbers that we can choose arbitrarily. 

Equation (4.4) provides a generalisation and group theoretical justification of a 
theorem due  to Ball [ I O ] .  Indeed, X (  t )  and Y (  1 )  of ( 4 . 4 ~ )  satisfy equations (3 .9)  for 
p and y. Ball interpreted these X and Y to be the coordinates of the centre of gravity 
of a given volume of liquid. 

X = I hx  dS(  5 hdS) - ‘  Y =  5 I Ity dS(  I h dS)-‘.  (4.5) 

Then from the fact that U and U ’  are solutions of the shallow water equations, follows 
Ball’s statement that the form of the system govering the motion of the liquid relative 
to its centre of gravity is identical to that of the original shallow water system. 

The symmetry group can in particular be used to generate a non-trivial exact 
solution from a solution in which the liquid is orginally at rest, that is 

u ( x , y , t ) = O  (4.6) 

The solution we obtain from (4.4) is 

u ‘ ( x ’ ,  y‘ ,  t ’ )  = e A k ( t ’ -  r , )  
(4.7) 

h ‘ ( x ’ , y ‘ ,  r ’ )  = e 2 A { h , - A [ e - A x ‘ - X ( t ‘ - t , ) ] ’ - B [ e ~ A y ’ -  Y(t’- t ,J]’}  

with X and Y as in ( 4 . 4 ~ ) .  This is a displacement-type solution, described in detail 
by Ball [ 9 ] .  

Let us now restrict ourselves to the case of a circular paraboloid, that is A = B, 
and consider the group transformations corresponding to the additional elements R, 
K ,  and K ,  of the symmetry algebra (3.1 l b ) .  

L’(x,y ,  t ) = O  h ( X ,  V ,  t ) = - ( Ax2 + B y 2 )  + h, . 

u ’ ( x ’ ,  y‘ ,  1’) = eA Y (  t ’  - t o )  

For convenience, we introduce polar coordinates 

x = r cos 6 y = r sin 6 (4.8) 

(4.9) 
As was mentioned in 4 3, the vector fields L ? ,  K ,  and K z  of (3.11b) and (3.13) generate 
an s I (2 ,R)  Lie algebra. A general element of the corresponding Lie group can be 
written as 

(4.10) 

where p, A ,  cy are group parameters ( p  and cy are angles, i.e. 0 s  cy, p < 2 ~ ,  A is a 
‘boost’ parameter, i.e. 0 s  A <E). To obtain the transformation (4.10) in our case, it 
is hence sufficient to integrate separately the vector fields L3 and K , ,  and then to 
compose the results. 

Let us start with the ‘rotation’ L,, which is actually a combination of a physical 
rotation R and a time translation T (3.13). 

Integrating as in (4.11, we obtain 

and  also the radial and  tangential components of the velocity: 

L’, = cos 6u +sin 6t)  u2 = -sin 6u + cos 6u. 

G = eL,@eK~AeL,tr 

~ ’ ( x ‘ ,  y’ ,  t ‘ )  = cos - fa u ( x ,  j; t )  +sin - fa u ( x ,  y, t )  
2w 2w 

fff fff L”(x’,  y ’ ,  t ’ )  = -sin - u ( x ,  y, t )  +cos - u ( x ,  y, t )  
2w 2w 

(4.11a) 

h ’ ( x ’ ,  y ’ ,  t ‘ )  = h ( x ,  y ,  t )  
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where on the right-hand side of (4.11), we have 

a 
t = t ’ - - - .  (4.1 1 b)  y =sin  - fa x ’+cos  - f a  .Y I 

2w 2w w 
f f f  f a  x = COS - .Y’ - sin - y’ 
2w 2w 

In polar coordinates, this transformation simplifies to 

oi(r’ ,  e’, t ’ )  = u,(r ,  8, r j  uS(r’, 8 ’ ,  f ’ )  = U?( r, 6, t )  h’(r’, e’, t ’ )  = h (  r, e, t )  

CY r = r ’  0 = e’+- f a  t = t ’ - - ,  
2w w 

(4.12) 

Let us now find the group transformation corresponding to the vector field K ,  of 
(3.1 1 b ) .  A straightforward, though somewhat lengthy, computation yields the following 
result in polar coordinates: 

h’(r’, e’, t ’ )  = h ( r ,  0, t)[cosh A +sinh A cos wt‘1-I 

oi(r’ ,  e’, t ’ )  = o,(r ,  8, t)[cosh A +sinh A cos ut’ ]  
’ 

w i  

2 
-- sinh A sin wt’[cosh A + sinh A cos w f ’ ] . - ’  

u i (  r’, e’, t ’ )  = u2( r, 8, t)[cosh A +sinh A cos wt’]-’ ’ 

(4.13) f r ‘  +- ( 1 -cosh A - sinh A cos cot’)( cosh A + sinh A cos ut’)- ’  
2 

r = r‘[cosh A + sinh A cos wt’1-I ’ =- tan- ‘  2 [e-’ tan 51 
w 

The most general group transformation leaving the shallow water equations for a 
circular paraboloidal basin invariant is obtained as follows. First perform a rotation 
(4.12) through the angle p, then a boost (4.13) and a further rotation (4.12) through 
a different angle a. Then compose the obtained transformation with the remaining 
transformation (4.4). 

As a special case, we obtain a result similar to one obtained by Ball [9, lo]. Consider 
a four-dimensional subalgebra of the symmetry algebra, the general element of which 
is 

X = a K , +  bK2+cL,+pT T = w L ~  - 4jR.  (4.14) 

Integrating (4.14), we obtain a transformation that can be written as 
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We have put 
1 

I = I (  t ’ )  =- [ a  sin wt ’+  6 cos ut’+ c+pw] I o =  I ( ? )  
w 

(4.16) 

where I ( t ’ )  satisfies the equation 
i’( t ’ )  + w ’ Z (  t ’ )  = U (  c + u p )  = 4K J =fp I2  

and  by b-’, we denote the inverse of the function 4. 
Formulae (4.15) should be compared with Ball’s [ lo] formulae (25)-(30). Their 

form is the same; however our I , ( r )  is a function of time, his Io is constant. Our 
functions h ’ ( p ’ ,  e’, r ’ ) ,  u ; ( p ’ ,  e’, t ’ ) ,  and u ; ( p ’ ,  e’, t ’ )  satisfy exactly the same equations 
as h, U ,  and U’, whereas Ball obtains modified equations in which the parameters f 
and A of the problem are changed. Therefore his transformations d o  not in general 
correspond to a symmetry group of the problem. 

The quantity I ( r )  in (4.16) is interpreted in [IO] as the moment of inertia of the 
liquid about a verical axis through the origin 

I = [ 1 hp’dS. (4.17) 

the constants K and J are then the ‘absolute energy’ of the system and  its total absolute 
angular momentum about a vertical axis through the origin 

K = E +; f J  J = I h r ( p  + f f p )  d S  (4.18) 

and  E is the total energy of the liquid 

E = $h ( uf + 0; + h + 2 4 ’ )  dS. (4.19) 

5. Group-invariant solutions for the circular paraboloid 

Having found the symmetry group of the shallow water equations (2.18) for the case 
of an  elliptic or circular paraboloid basin (3.8), we now wish to use this group to 
reduce the system to one in fewer independent variables, and ultimately to obtain 
particular solutions. The method to be applied is called symmetry reduction and  it 
leads to ‘group-invariant solutions’, that is to solutions invariant under a subgroup of 
the symmetry group of the equation. We are interested in subgroups G o c  G that will 
reduce the system (2.18) to a system of ordinary differential equations  ODE^). The 
condition for this to be so is that the generic orbits of the group Go, when acting on 
the space {x, y, t, U, U, h }  have dimension 4 and  that their projection onto the space 
{x, y ,  t }  have dimension 1. This already implies that Go is at least two dimensional. 
Moreover, in view of the structure of the Lie algebras LE and L,., CO must be precisely 
two dimensional. 

The method consists of several steps, to be performed separately for the elliptic 
and  circular cases. 

1. Find all conjugacy classes of two-dimensional subalgebras of the appropriate 
Lie algebra Lo c L. Conjugacy is to be considered under the corresponding symmetry 
group G. Choose a representative of each conjugacy class, 
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2. Find the invariants of the action of the Lie group G,, = exp Lo when acting on 

3. Express the original equations in terms of these invariants. This will provide a 

4. Solve (if possible) the obtained ODES. 

The shallow water equations (2.18) can, for the boundary (3.8), be written as 

the space of independent and dependent variables, for each subgroup in the list. 

system of three ODES. 

U, + UU, + V U ,  + 2 A x +  h,  - f ~  = O  
( 5 . 1 )  

In addition to the invariance group (4.4) found in 9 4, we note that the system (5.1) 
is invariant under a discrete group, generated by the reflections 

U, + UV, + vu,+ 2 B y +  h, +fu = 0 h, + ( u h ) x  + ( u h ) ,  = 0. 

x '  = E,<X y' = EVy 1' = E,&,.t U' = &,,U 

U' = &,U h ' =  h E,  = * l  E,. = i l .  

We now turn to the case of the circular paraboloidal basin, that is the case with A = B 
in (3.8). The Lie algebra Lc of 9 3 is nine dimensional. The commutation relations 
are given in table 1 and the subgroup structure is quite complicated. We are only 
interested in two-dimensional subalgebras. Classifying them using the algorithm 
developed in [22, 231 and described also in [24], we find that every two-dimensional 
subalgebra of Lc is conjugate, under the symmetry group Gc of the considered 
equations, to precisely one of the subalgebras, given in table 2. The classification 
group Gc includes the discrete transformations (5.2)). 

Table 2. Two-dimensional subalgebras of the symmetry algebra for the circular basin. 
Throughout a, b and E are real parameters with a 3 0, e = * I  and b unrestricted, unless 
a restriction is indicated. The algebras A, are Abelian, B, non-Abelian. For the B algebras, 
the commutation relation in the basis given below is [X, Y ]  = - Y. 

No Basis No Basis 



4756 D Levi et a1 

In view of the large number of conjugacy classes of subalgebras and  subgroups, 
we shall not make use of all of them. We shall concentrate on the simpler ones among 
those that involve rotational invariance, i.e. the subalgebras A I ,  . . . , A, containing R, 
or those that are contained in the ideal N ,  i.e. A l z , .  . . , AI,. Some other subalgebras 
are treated in the context of the elliptic paraboloidal basin. 

Let us start with the algebras AI,, . . . , A , , .  The expressions (3.1 l a )  simplify when 
we put A = B and use (3 .106) .  

1. A,>  = { Y , ,  Y.}. We find the invariants of the corresponding subgroup by putting 

Y , W x , y ,  f ,  U, v , h ) = O  i = 1 , 2  (5 .3)  

where CJ is the general invariant. Solving (5 .3) ,  we find the elementary invariants t, h, 
CY = U - Rly, p = v + R,x. Hence, the reduction to an  ODE is obtained by putting 

U = R , y +  a (  t )  U = -RIx + p (  t )  h = h ( t ) .  (5 .4)  

h = O  & + R , P = O  p - RZa =O. (5.5) 

Substituting into (5 .1)  for A = B, we obtain 

These equations can be immediately solved to yield the solution 

h = h, ( 5 . 6 ~ )  

where h,, a. and Bo are integration constants. In  the polar coordinate frame, ( 5 . 6 ~ )  
is replaced by 

h = bo u1 =a ,cos (R , t -8+8 , )  0 2 =  - R , r + a , , s i n ( R z t - 8 + 8 , ) .  ( 5 . 6 b )  

Since we have h = h, = constant, this solution corresponds to a layer of fluid, the height 
of which is ho (from the underlying surface). Applying the group transformation (4 .13) ,  
we obtain a class of solutions, for which the surface has the form 

U = R , y  + a. cos( Rzt  + 8,) U = - R , x  + cyo sin( R,r + 8,) 

(5 .7 )  
h 0 h =  

cosh A + sinh A cos w t  

and the velocities are obtained by inserting t’, and U, of ( 5 . 6 6 )  into (4 .13) .  

2. AI5  = { Y 3 ,  Y4}. The result in this case is quite similar, namely 

COS( Rl t  - 8 + Oo) h = hO U = - R ~ J J  + U = Rzx + aO sin( R I  t - 8 + 8,) 

and applying (4 .13) ,  we again obtain ( 5 . 7 ) .  

3. A 1 3 = {  Y , ,  Y3}. Here, we have 

ho 
s in (R ,+R, ) t  

h = .  

sin R2t 
sin( R I  + R , ) t  U = RIy - ( R I  + R,) ( x s i n  R , t S y c o s  R , t ) + a ( t )  

COS Rzt 
v = - R , x + ( R ,  + R,) ( x s i n  R , t + y c o s  R , t ) + p ( t )  sin( R I  + R,)t 
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where a and p satisfy a pair of coupled linear equations, namely 

ci s i n ( R , + R 2 ) t - a ( R l + R 2 ) s i n  R , t  sin R,t 

+ p [  R2 sin R I  t cos R,t - R I  cos R ,  I sin R,t] = 0 

0 s in(R,  + R 2 ) t +  "[RI sin R , t  cos R,t - R2 cos R , t  sin R2t ]  

+ p ( R , + R 2 ) ~ o s R l t ~ o s R 2 t = 0 .  

(5.10) 

4. A , 4 = { Y , ,  Y 2 + Y J ,  A l h = { Y 3 ,  Y , + Y J ,  A I 7 = { Y 1 + Y 4 ,  Y 2 + Y 3 } .  In  all these 
cases, we obtain 

h,, 
1 +sin( R I  + R2) t  

h =  ( 5 . 1 1 )  

U = [PI( t ) x  + Q l ( t  ,yI + a ( t )  L; = [P,( t ) x +  Q2( t ) y ]  + p (  t )  ( 5 . 1 2 )  

where PI,  Q, ,  Pz and Q2 are known trigonometric functions of t with periodically 
spaced singularities on the real time axis. The functions a (  t )  and p (  t )  again satisfy 
a pair of coupled first-order linear differential equations with periodic coefficients. 

At this stage, we note that all the solutions obtained so far are what Ball [9] calls 
'deformation' solutions (uniform rotation, expansion and distorsion of the liquid) with 
U and U linear in x and v. The solutions (5.61,. . . , (5.8) are finite; all the other solutions 
have singularities on the real time axis and  are hence non-physical. From the group 
theoretical point of view, the subalgebras A I 2  and A , , ,  yielding finite solutions, are 
distinguished by the fact that the subspaces { Y , ,  Y.} and { Y 3 ,  Y4} are respectively 
positive and negative definite in the metric introduced at the end of 3. The subalgebras 
A I 4  and A l h  correspond to vector spaces with degenerate metrics; A , ,  is completely 
isotropic. 

We now turn to subalgebras containing the rotation R and hence to rotationally 
invariant solutions. In polar coordinates, we have R = -a /ae  and  hence any reduction 
involving R will imply that U , ,  v2 and h are independent of 13. The shallow water 
equations ( 2 . 2 1 )  in the cylindrical frame then reduce to 

h 
h , + ~ ; ~ h , + -  t . ,+hv, , ,=O 

r 

1 
r U , , , +  t i Ic , , ,+2Ar+ h,-.fc2-- v : = O  ( 5 . 1 3 )  

1 
r 

UZ,, + U ,  c,.r +fL;,+- c, c2 = 0. 

Among the algebras A , ,  . . . , A ,  leading to further reductions of ( 5 . 1 3 ) ,  we confine our 
attention here to A , ,  . . . , A, .  

5. A ,  = { R, L J .  The corresponding subgroup leads to static solutions. We have h, 
U ,  and U? as functions of r alone, satisfying 

1 4 L i 2 + f + ;  1 = o  
( h v , )  +- ( h v , )  = 0 

r 
( 5 . 1 4 )  

1 
r 

vlVl  + h +2Ar - f u 2 - -  U: = 0. 
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For the case of vanishing radial velocity, we obtain 

U1 = o  uq = u2( r )  h = - A -  r'+ h O + j  ( f u 2 + s  u i )  d r  (5.15) 

where the angular velocity u2 is an arbitrary function of the radial distance r. In 
general, (5.15) represents a higher mode solution [9, 151. In  the special case of constant 
angular velocity w o ,  we have 

u , = o  v2 = w0r h = hO+ [ $ ~ , ( f ~ +  w,,) - Air'. (5.16) 

This is a deformation mode motion; the surface acquires a paraboloidal shape. For 
U ,  # 0, we obtain 

and the radial velocity satisfies a cubic equation 

( 5 . 1 7 ~ )  

(5.176) 

where ho,  cl and  c, are integration constants. Notice that for r + O ,  (5.176) implies 
ru, + 0 and  hence h + cc for r + 0. The angular velocity U? also diverges for r + 0, unless 
we have c, = 0. Thus we see that (5.17) represents a higher-mode solution, though 
clearly a non-physical one: it corresponds to water piling up  at the centre of the basin. 

6. A2 = { R ,  K , } .  The reduction formulae are 

1 
r 2 r r r [ = T s i n w t  (5.18) P ( 5 )  u2=-4fr+- h = -  a ( [ )  wr Y ( 5 )  

U ]  =-cot w t  +- 
with 

(5.19) 7 U- a y = -  c1 P Y = o  (y'5) '+2(a[).+P---= 0. 
452 5 

For y=O,  we obtain 

(5.20) 

where p ( 5 )  is an arbitrary function. We again note that this is a higher-mode solution, 
albeit a non-physical one. 

For y f 0, we have P = Po = constant and  obtain 

1 
U - - I  (5.21) 

1 wr C l  r 
U,=-cotwt+ , 2 -  , f + P u ;  2 sin uta (5) h = a ( 4 )  7 

where a ( [ )  satisfies a cubic equation 

(5.22) 
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For i f + O ,  i.e. w t +  krr, (5 .22)  has two imaginary solutions for aif and one real one, 
behaving as 

( 5 . 2 3 )  

Thus h(  i f )  can be singular for r + 0 and for t + krrlw.  

7 .  A3 = { R, K 2  + L3}. Here we obtain 

1 ,w t  
[=-;cos - 

2 
P ( 5 )  v,  = - f f r + -  - -  

h=-  ..(if) w wt Y ( 0  v I  = -- r tan -+- r -  2 2 r  r r -  
(5 .24)  

with a, P and y satisfying 

2 ( a € ) ' + ( y * i f ) ' + p '  =o.  (5 .25)  C I  
P Y  = O  aY=T 

For y = 0, we obtain 

w wt  P ( 0  u ? = - ; f r + -  
r ( h ,  - Joe p d i f !  ) uI = - - r tan - 

2 2 
h =  

2 cos2( w r / 2 )  
(5 .26)  

where p ( [ )  is an  arbitrary function. We see that the solution is singular; that is, U, 
diverges for wt  = ( 2 k  + l ) ~ ,  k = integer. 

For y # 0, we have p = Po = constant and  

W ut C l  r t' --lf P" 
2 -  r + -  r2  2 2 a c o s 2 ( w t / 2 )  r 

u I  = -- r tan -+ .(if) h =- 

where . ( i f )  satisfies a cubic equation 

2( a.?y + ( & i f 3  + c&)( aif) + c:if = 0. 

(5.27)  

(5.28) 

8. A,= { R ,  D}.  In this case, the reduction is 

h = r2a( t )  VI = r y ( t )  v2 = r p (  t )  (5.29) 

where 

ci + 4 a y  = 0 

We proceed only with the case a # 0 so that h # 0. Then the system (5.30) yields 

+ 2 p y  + f y  = 0 + + y2- /3 '+2a + 2 A  - f P  =O. (5 .30)  

5 ff' 
& =-  -+4(2  - C;')CY? + w 2 a  (5.31) 4 a  

where P, y are given in terms of a by 

p = - ; f + c , &  Y = - - f f  ( cI = constant). (5.32) 1 .  
4a 

If we now set 
0 = a-1:4 (5.33) 
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then (5.31) reduces to 

.. w - 
R+- R = (c; -2)R- ' .  (5 .34)  

4 

The latter is a special case of Pinney's equation [25]. I f  h and h are known, for t = 0, 
then the initial data 

R(0) = WO sr (0) = 00 (5 .35)  

are determined. The initial value problem consisting of the Pinney equation (5 .34)  
subject to the initial values (5.35) is readily solved to yield 

O=[(W,,COS p t + ( ~ , ~ / p )  sin p t ) ' + ( l / ~ , , ) ~ s i n ~  pr]"? (5.36) 

where p = w / 2  and w: = g(8 - w 2  -4cT)vJ2. Thus, h is given at time r 2 0 by 

r -  
[(wocos p t+ ( t i0 /p ) s in  p t ) ' + ( l / w 0 ) 2  sin' pt]' 

(5 .37a)  
r -  h = - =  
o4 

while the velocity components U, and u2 are expressed in terms of R by 

v2 = r ( - ; f +  c , ~ ' ) .  (5.37 b )  
sr 

o1 = r + -  R 

This solution corresponds to a layer of water of finite depth, pulsating with frequency 

It is of interest to note that recently another solution of the present shallow water 
system in a circular paraboloidal basin has been derived based on Pinney's equation 
[26]. It cannot be obtained directly by symmetry reduction from the system (5 .13) ,  
nor by applying the group transformations of E) 4 to a solution obtained by symmetry 
reduction. It does however have a group theoretical interpretation. The transformations 
of the symmetry group G of an equation can be applied to an arbitrary solution of 
the equation. If, on the other hand, we restrict ourselves to particular types of solutions, 
then in some cases, it is possible to find a larger group G, 2 G that transforms the 
particular solutions into more general solutions of the considered equation. 

Let us consider the solutions (5 .37)  from this point of view. We apply a transforma- 
tion that adds a functions p ( t )  to the depth function h, while leaving the velocities 
unchanged. Thus, we put 

h = r ' a ( t ) + p ( [ )  u1 = ry(  t )  v2  = r p (  r ) .  (5 .38)  

We find that a, p and y satisfy equations (5.31 ) and (5 .32)  as before, whereas p satisfies 

/.i--2py=O. (5.39)  

p = w / 2 .  

This can be solved and  we obtain the new solution 

h = $0-4 - 2 u1 = U? = r ( - $ +  c,R-') (5.40) 

where po is a constant and R is a solution (5 .36)  of Pinney's equation (5 .34) .  
The solution (5.40) corresponds to a moving shoreline that is a circle with a radius 

oscillating in accordance with Pinney's equation. Indeed, putting h (  r, t )  = 0, we obtain 
the shoreline, where the free surface meets the paraboloid, namely 

7 3 ,  

r -  = x -  + y -  = poRZ CL"> 0. (5.41) 
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It is worth mentioning that Pinney’s equation also arises in a similar manner in 
elastodynamics in the context of the large-amplitude radial oscillator of thin-shelled 
tubes of neo-Hookean material (Shahinpoor and Nowinski [ 2 7 ] ,  Rogers and Ames 
[281). 

In conclusion, it is noted that symmetry reductions to ordinary differential equations 
are readily obtained for the other subalgebras involving R,  namely At,  A: and A, are 
readily obtained. However, in view of the complexity of the resulting equations, these 
subgroups are not considered here. 

6. Group-invariant solutions for the elliptic paraboloidal basin 

We now turn to the Lie algebra L F  of ( 3 . 1 1 ~ 1 ,  corresponding to the symmetry group 
G for A # B. Any two-dimensional subalgebra of LE is conjugate under the symmetry 
group of the shallow water equations to precisely one algebra in table 3 .  Notice that 
all these algebras also exist for A = B, that is the circular paraboloidal basin. For 
A = B, the transformations corresponding to { K , ,  K 2 ,  L 3 }  can be used for further 
simplication. As we have seen above, the action of {T ,  K , ,  K 2 ,  L3}  on the space 
{ Y , ,  . . . , Y,} introduces an  invariant 0 ( 2 , 2 )  metric on this space, which influences 
the correspondence between subalgebras of tables 2 and 3. 

Table 3. Two-dimensional subalgebras of the symmetry algebra L, for the elliptic basin. 
The parameters a, b and  c are  real, b 3 0. The algebras M ,  are Abelian, N, non-Abelian. 

No Basis No Basis 

For A = B, we obviously have MI = A I 5 ,  M 5  = A,”” ( a  = 0 ,  b = - f / ( 2 w ) )  and NI = 
Bso. The signature of the space M, can be (+, -), ( - - )  or (0-) and M 2  reduces to 
A I 3 ,  A I 5 ,  or  ,416 for a’< 1 ,  a 2 >  1 ,  or a’= 1 ,  respectively. Similarly, Ms reduces to 
A I 3 ,  A I S ,  or  A, ,  for a 2 / ( 1 + b ’ ) < 1 ,  > 1 ,  or =1,  respectively. For M 4 ,  we can also 
determine the signature of the corresponding space. The result is that for A = B, we have 

M 4 = A 1 2  

M4 = A13 

if 1 - b’ - c z >  0 

if 1 - b’- c 2 >  0 
or  1 - b‘- c 2 < 0  

( 1  - b’-a’)( 1 - b‘- c’) > b’( a - c)’ 

( 1  - b 2 - a 2 ) ( 1  - b 2 -  c’) < b 2 ( a  - c)’ 

( 1  - b‘- a’)(  1 - b 2 -  c‘) > b 2 ( a  - c)’ 

M4 = AI, if 1 - b’ - c’> 0 ( 1  - b’- a’)( 1 - b2 - c’) = b’( a - c)’ 

or b=O c = * l  a’<O (6.1) 
if 1 - b’- c’<O M 4 = A 1 5  ( 1  - b’- a’)(l - b’-c’) > b’( a -c) ’  

M 4 = A 1 6  if  1 - b’- c 2 < 0  (1  - b’- a’)( 1 - b2 - c‘) = b’( a - c)’ 

or b=O c = * l  a’>O 

or b=O c = l  a = * 1 .  
M 4 = A 1 7  if b’+c’=1 c = a  
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Finally, N 2  for A = B is equivalent to B29r B3,), or B3 , ,  for a’+ b2< 1, a’+ b2> 1 ,  or 
u 2 +  b2  = 1, respectively. 

Let us now run through the individual subalgebras and  perform the corresponding 
reductions of equations (5.1). To abbreviate formulae, we introduce the following 
notation: 

1 .  M ,  = { Y 3 ,  Y4} .  The reduction formulae in this case are 

U = -R ,R2x+p(  t )  h = h ( t )  Rz 
R, 

u = - y + a ( t )  

Solving these equations, we obtain a constant-layer deformation mode solution; 

Rz 
R, 

h = ho U = -y + c COSdn( f - to )  

(6.3) 
2A 

R: - 2A 
C sin AI ( t  - to)  a=- (R:-2A - f 2 ) .  

fJiz 
U = - R ~ R ~ x -  

2 B +  f 2 -  R: 

For A = B, this solution is equivalent to (5.8). The ‘boost’ transformation (4.13) is, 
however, not available in this case. 

2. M 2  = { Y1 + a Y 3 ,  Y4} .  The result of the reduction in this case is 

R, 
Ro 

[xR,cos R, r -ys in  R2t ]s in  R,r+-y+a( t )  

, ( 6 . 4 ~ )  
U = -( R: - R:) [xRo COS R,t - y sin R,r]cos R I  t - R2ROx + p (  t )  

D ( t )  

D( t )  = Ro f (a  +cos R , t  cos R 2 t )  + Sofs in  R , t  sin R2t. (6.46) h0 
D ( t )  

h =- 

The functions a ( t )  and p ( t )  satisfy linear equations 

Df i+[ (R: -R: )cosR, r  sin R 2 t ] ~ + { R o f [ f - S o R , ] c o s R l t c o s R , t  

+ So sin R I  t sin R,t + aRo f [ f - R2Ro]}a = 0 

D a + [ ~ ( R : - R ! ) i i n R , r c o r R , t  1 a 
+ f 8 [ R2 sin R , t  sin R,r + R I  cos R, r  cos R2t + R , a ] p  = 0. ( 6 . 4 ~ )  

We again obtain a deformation mode solution. Singularities occur for D ( t )  = 0. For 
la1 > 1 ,  these singularities will not occur for t real; for u 2 s  1, h ( f ) ,  as well as U and 
U, will have singularities for t E R. 
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3 .  M ,  = { Y ,  + a y , ,  Y3+ by,}.  Conceptually the results in this case are similar to 
those for M ,  and M , .  We have 

D ( r ) = R o f [ s i n R , r - b c o s R , t ] [ c o s  R , t + a s i n R , t ] + [ c o s R , t + b s i n R 2 t ]  

x [ aR,,f  cos R,t - S,,f sin R I  t ] .  (6 .5b)  

The functions E l ,  E., F ,  and F2 are non-singular and  may be determined explicitly 
but are not set down here; they depend on t via sin R,t and cos R,t, i = 1,2.  The 
functions a (  t )  and P (  t )  satisfy a coupled pair of linear ordinary differential equations. 
The singularities of h, U and U occur for D( t )  = 0. There are no singularities for real 
t if a'> 1 + b'; for a' c b2+ 1 real time singularities d o  occur. 

4. M ,  = { Y ,  + a Y ,  + by , ,  Y. - by,+ CY,}. The expressions for U ,  U and h again 
have the form ( 6 . 5 ~ )  and a ( r ) ,  p ( t )  again satisfy a system of linear ODES. The 
denominator D ( t )  of (6 .5b)  is replaced by 

D( t )  = [cos R ,  t + a cos R,t + b sin R , r ] f [ S , ,  cos R I  t + bR, sin R2t  + cR, cos R,t] 

- [ s i n R , t - b c o s R , t + c s i n R , t ]  

x f [ b R O  cos R,t - So sin R , t  - aR, sin R 2 t ] .  (6.6) 
The solutions are non-singular if the equation D( t )  = 0 has no solutions for real time 
t. This is the case for 

(1 - b"cc?>O, ( 1  - b 2 - a 2 ) ( 1  - b'-C')> b'(a - c ) ~ }  
and 

( 1  - b'- c2 < 0,  ( 1  - b'- a')(  1 - b2 - c') > b'(a - c ) ? } .  

5 .  M5 = {D,  T } .  Here we have 

and a, P, y satisfy the following system of ODES: 

( P y ) ' - S ( a y ) ' + 3 a y  = 0 
( P  - a ( ) &  - c$+ + 2 y +  a'- fP + 2 A  = O  

( P  - a ( ) b  + y +  aP +fa +2B5 = 0. 
(6 .8)  

(The dot denotes differentiation with respect to the argument 5.) 
While we are not able to solve the system (6.8) in its generality, we can obtain a 

one-parameter family of particular solutions. Indeed, 

a ( 5 )  = a05 P ( 5 )  = P o  Y ( 0  = Y O +  Y 1 t 2  (6.9) 
provides a solution, if the four constants cyO, Po,  yo and y ,  satisfy the three equations 

I - -  a 0  - $%Po 
y, ,=-A+;P(,-$a,p, ,  f y --B-f 

% P o ( %  + P o )  + 2A% + 2BPo = 0. (6.10) 
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Moreover, we can generate a family of further solutions from this one by the transfor 
mation 

h = yl1x2 + y 1 ~ ' 2  - bo U = cy( ) ) '  t' = pox (6.1 1 

(where ho is the transformation parameter). 

?ox2 + ~ 1 - v ~  = ho 

Setting h = 0 ,  we get an equation for the shoreline, in this case a constant ellipse 

(6.12) 

where the constants must be so chosen that yo, y, and  ho all have the same sign (if 
the amount of water and  the dimensions of the basin are finite). 

6. NI = { D, Y3} .  The reduction by the subgroup corresponding to NI yields deforma- 
tion mode solutions of the form 

R, 
R,, 

u = - y + ( R o x s i n  R 2 t + y c o s  R 2 r ) a ( t )  

u=-R , ,R2x+(Roxs in  R , t + y  cos R , t ) p ( t )  

h = ( R , x s i n  R , t + y c o s  R2f )?y ( t )  

with 

(6.13) 

c i = - ( 2 - f ) p - 2 R o s i n  R 2 t y - a ( R o s i n  R, ta+cos  R2 tp )  

p = ( RoR2 - f ) a  - 2 cos R2ry - p (Ro  sin R2ta  +cos R,rp) 

y = -3y(R,, sin R,ta +cos R2 tp ) .  

(6.14) 

Since we did not discuss this reduction for the circular basin in the previous section, 
we shall now show how the equations simplify for A = B. Thus, as a special case, we 
have 

A = B  Ro=-1  R ,  + R2 = w RI - R,=J: (6.15) 

We put 

p = -sin R,ta +cos R,tp 

Using (6.15) and (6.161, we reduce the  ODE^ (6.14) to 

A = cos R2 ta  +sin R2@. (6.16) 

A = ( w - A ) p  c; = -&)A - 2 y +  y = -3yp. (6.17) 
For A = U ,  we obtain 

y = -$(/i + /A?+ w ' )  (6.18a) 
where p satisfies 

/L +5p@ + 3 p w z  =o.  

A = v + w  p = - u / v  

v = v2/ v + w 2 v  + wv2  - 2 4 .  

For A # w, we find 

where v(r) satisfies 

(6.18b 

(6.19a 

(6.196 
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The solution of the shallow water system in this case reduces to the solving of a single 
nonlinear ODE, namely (6.18b) or (6.19b). Moreover (6.196) can be reduced to a 
first-order equation by putting 

and  the problem is reduced to quadratures. For example, for c1 =0,  we obtain 

w W J i - T C ,  cos w(  t - to) 
U =  ’ = - 1 + J I + c , s i n w ( t - r , ) ’  (6.20) 

- 1 + tm sin w ( t - t o )  

A real non-singular solution is obtained for 

- 1 s C’ < 0 (6.21) 

namely (6.13) with (6.15) and 

w m  sin R I (  t - t o )  W- COS R I (  t - to) 
L Y =  

- 1 + m s i n w ( t - t , , )  

= [-I  +- sin w ( t  - to)]” 

= -1 +J~TCZ sin w(t - t o )  
(6.22) 

YO 

Returning to the general case of (6.13) and  (6.14), we note that any such solution, 
once obtained, can be transformed by a transformation in the group G, (corresponding 
to this particular solution) to a family of solutions with a shoreline. To see this, we 
keep U and  U as in (6.13), but put 

(6.23) h = (R,x sin R z t +  y cos R 2 t ) 2 y ( t ) - p ( t ) .  

Then a,  p and y satisfy the same equations (6.14), whereas p ( r )  satisfies 

fi  + (LYR,,  sin R,r + /3 cos R 2 t ) p  = 0. (6.24) 

Hence, p ( t )  is given explicitly as 

p ( r ) = p , , e x p {  -I (aR,sin R2t+/3 cos R 2 t )  dt. ( 6 . 2 5 )  I 
The shoreline is hence a straight line 

R,x sin R,t+y cos R2t = ~ - “ z y - 1 / 2  

that is rotating in time with frequency R,  and has a time-varying intercept, governed 
by the equations (6.24) and (6.14). We note that this exact solution of the shallow 
water equations is a ‘biblical’ one: it corresponds, for example, to the waters of the 
Red Sea being ‘divided’ along a straight path. 

7 .  N 2  = { 0, Y ,  + a Y3 + 6 Y4} .  The equations in this case are somewhat more compli- 
cated and general than for the algebra N I .  We again obtain deformation mode 
solutions, since we have 

U = (4. Q p ) x  - Ppy (6.26) 

h = (Ox - Py )‘ y 
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where 

P = c o s  R , t + a  cos R , t + b  sin R 2 t  

Q = - { S o  sin R , t +  R, (a  sin R z t  - b cos R , t ) J  

R = P  S = Q  

(6.27) 

and the dots denote time derivatives. The functions of time CY, p and y satisfy the 
following ODES: 

P 1 P '  
Q 

ci = -( - - f ) p  - 2 Q y + p  ( G) - a[Qa - P p ]  

(6.28) 

+ = - 3 y [ Q a - P p ] .  

Any solution of this type could again be transformed into a solution with a shoreline 
that is a straight line undergoing a more complicated time evolution. 
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