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I. INTRODUCTION

The original observation of the Raman effect by Ra-
man and Krishnan [1] and Landsberg and Mandelstam
[2] goes back to 1928. However, the observation of
stimulated, as opposed to spontaneous Raman scattering,
was not possible before the development of the laser, as
powerful coherent sources of light did not exist previous-
ly. The first observation of stimulated Raman scattering
(SRS) by Woodbury and Ng [3] quickly followed the in-
vention of the laser.

Basic studies of the Raman effect are almost always
carried out in molecular gases, because gases are far less
susceptible than liquids or solids to self-focusing and have
far less dispersion. Among the molecular gases H, and
D, have both high gain and simple behavior, which
makes them excellent candidates for basic studies.

Transient Raman interactions in H, and other gases
were first observed by Hagenlocker, Minck and Rado [4].
In transient interactions, the light pulse has a short dura-
tion compared to T,, the molecular deexcitation time,
due to molecular collisions. Theoretical studies by Wang
[5], and by Carman et al. [6], and further experimental
studies by Carman and co-workers rapidly followed
[7-9].

While good qualitative agreement was found between
theory and experiment, detailed quantitative comparisons
were not made. Moreover, all these experiments were
carried out in the linear gain regime. Hence, pump de-
pletion and nonlinear pump evolution were not observed.
In later experiments by Duncan et al. [10] these defects
in the early work were rectified and a careful comparison
between theory and experiments showed good agreement.
Unfortunately, second Stokes generation limited how far
into the depleted regime the experiment could go, but
more recent work by MacPherson, Swanson, and
Carlsten [11] has shown that this limitation can be over-
come.

Shortly after the experimental work by Duncan et al.
[10], Hilfer and Menyuk [12,13] carried out simulations
which indicated that in the highly depleted regime the

1050-2947/94/49(4)/2844(9)/$06.00 49

system always tends toward a self-similar solution, an ac-
cordion. This result might seem surprising at first, since
the system possesses a Lax pair in the transient limit [14]
and one might anticipate that solitons should emerge.
This does not happen in either the experiments or simula-
tions carried out in the transient limit. Indeed, Menyuk
[15] has shown that the system cannot have any per-
manent solitons. A key step in resolving this difficulty
was a careful study of the similarity solutions by the
present authors [16], in which the self-similar, or accor-
dion solution, was identified. Shortly thereafter, Menyuk
and coworkers [17,18], using an inverse-scattering ap-
proach originally developed by Kaup [19-21], were able
to show that the system will always tend toward an ac-
cordion solution when there is no frequency mismatch.
It was possible to relate the accordion’s parameters to the
initial data [17,18]. An experiment to observe accordions
was suggested.

All the work described in the last three paragraphs is
concerned with the limit in which pulse durations are
short compared to T,. Transient phenomena can also be
observed when pulse durations are long compared to T,.
The most important of these phenomena are solitons
which have only been observed when a phase flip that is
short compared to T, is imposed upon a pulse that is
long compared to T, [22,23]. Theory indicates that the
dissipation provided by a finite T', plays a crucial role in
soliton formation [20]. Because of this fact and because
attenuation plays an important role in realistic scenarios
for observing accordions, it is important to have a better
understanding of its effects on the similarity solutions.

In this paper we study similarity solutions and other
group-invariant solutions of the SRS equation in the pres-
ence of dissipation (ignored in our previous work [16,17]).
In the physical setting under consideration, these equa-
tions, after suitable normalization, can be written as

aAl_ XA aAz_ X* A
ax 2 39x ro

(1.1)
aX

Et“FgX:AlA;, gZO,
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where 4, and A4, correspond to the complex pump and
Stokes wave envelopes and X corresponds to the material
excitation. The real positive constant g represents the at-
tenuation due to finite T,. The variable x denotes dis-
tance along the Raman cell and ¢ represents retarded
time.

Equation (1.1) for g0 is not integrable—i.e., no Lax
pair exists—so that inverse-scattering techniques do not
apply. The group-theoretical methods that were applied
in the g =0 case [16] do not rely on integrability and we
apply them systematically in the present article. The
symmetry groups which for g =0 gave accordion solu-
tions and travelling waves such as solitons and cnoidal
waves still exist for g#0. They provide reductions to or-
dinary differential equations (ODE’s) that for g70 do not
have the Painlevé property [24]. We are not able to solve
them in terms of any known functions. Instead we ana-
lyze the reduced ODE’s qualitatively and perturbatively.
We also obtain phase-wave and stationary solutions.

In Sec. II we obtain the symmetry group of the SRS
equations with dissipation. The group and its Lie algebra
are much smaller than in the g =0 case. We classify the
one-dimensional subgroups of the symmetry group into
conjugacy classes. In Sec. III we use the individual sub-
groups to perform different reductions to ODE’s and we
solve some of the reduced equations. The effect of dissi-
pation on travelling waves and self-similar solutions is an-
alyzed in Sec. IV.

II. SRS EQUATIONS
AND THEIR SYMMETRY GROUP

As in our previous article [16], in which we treated
SRS with no dissipation, we simplify notation by putting

U1=iAT, UzzAz, U3=X (2.1)
to obtain
—_— LIS IS 1 . .
Uy x =303, v, =3, v;, tguy=ivivy .

(2.2)

The symmetry group of the SRS equations (2.2), i.e.,
the group of local Lie point transformations taking solu-
tions of Eq. (2.2) into solutions can be found using stan-
dard methods [25,26]. In particular, we applied a
MACSYMA program [27] that provided the determining
equations for the symmetries.

From the determining equations we obtain the Lie
algebra of the symmetry group (the “symmetry algebra,”
for short). As a basis for the symmetry algebra L we
choose the following differential operators:

P1=ax, D =xax—%(plap1+pzap2+2p3ap3) y
Po=3, V=—0,+3,, Uh)=h(1)(—3,+3,),

2.3

where A (t) is an arbitrary smooth function of ¢, and we
have introduced the moduli and phases of waves vy :
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ve=pre %, 0<p, <o, 0<¢,<2m, k=1,2,3.
2.4)

The nonzero commutation relations of the Lie algebra

L are
[P,,D]=P,, [P,,U(h)]=U(h), (2.5)

where the dot denotes a time derivative. Thus the Lie
algebra is a direct sum of three Lie algebras, namely,

L=L,eL,eL,, L,={P,,D},
L,={V}, Ly={P,,U(h)} .

(2.6)

The subalgebra L; is infinite dimensional since A ()
can be expanded into a Taylor series (or a Laurent series)
involving infinitely many arbitrary coefficients. Both V
and U (h) generate gauge transformations, constant and
time-dependent changes of phase, respectively. The Lie
group transformations corresponding to the Lie algebra
(2.3) are

=t—t, X=-expld)(x—x,),

U,(X,7)=exp(—d /2)exp[ —iAh (t)]v,(x,t) ,
2.7
U,(%,7)=exp(—d /2)exp{i[Ah (t)—ul}v,(x,t) ,

U5(%,7)= exp(—d) explip)v;(x,t) ,

where d,A,u, x4, ER are the group parameters.
Comparing the Lie algebra L with the one obtained in
the integrable case (i.e., g =0) [16], we see that the sym-
metry is greatly reduced. Indeed, for g =0 Eq. (2.2) is in-
variant under arbitrary reparametrizations of time, i.e.,
the symmetry algebra contains an element of the form

VI )=F (03, —3f(1)p13, +ps3,) - (2.8)

The presence of g0 restricts the arbitrary function f ()
to f(¢)=1, i.e., time translations only. From (2.3) we see
that the symmetries of the SRS Eq. (2.2) are simply space
and time translations, dilations, and the gauge transfor-
mations corresponding to V and U (h).

We shall use the symmetry group to obtain invariant
solutions of the SRS system (2.2) with g7#0. We shall
construct solutions invariant under each of the one-
dimensional subgroups of the symmetry group. To do
this we need a list of all one-dimensional subalgebras of
the symmetry algebra. This can be obtained using stan-
dard methods [26,28,29]. The result is that any one-
dimensional subalgebra of the symmetry algebra L is con-
jugate under the symmetry group G to precisely one of
the following ones:

A(a,B)={D +aPy+BV}, a#0,
A,(a,h)={D +aV+U(h)},
A;(e,8)={P,—€P, +BV}, e==1,

A kh)={P,+kV+U(h)}, k=0,%1,
As(@)={Py+aV},

Ag(h)={U(h)}, h+0,

(2.9)
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where a and f3 are arbitrary real constants and 4 (¢) is an
arbitrary function of .

III. INVARIANT SOLUTIONS

Let us now run through the list of subalgebras (2.9) and
use each of them to reduce the SRS Eq. (2.2) to a system
of ODE’s. These we decouple and, whenever possible,
solve. The difference between the present case and the in-
tegrable case with g =0 treated in Ref. [16] is that the re-
duced equations for g#0 do not necessarily have the
Painlevé property [24]. The solutions may hence have
movable critical points, e.g., logarithmic branch points,
the positions of which depend on the initial conditions.
Nonlinear ODEs that do not have the Painlevé property
are much more difficult to integrate than those that do.

The groups corresponding to 4,,..., A have a non-
trivial action on space-time and hence provide reductions
to ODE’s. Ag, on the other hand, is a purely gauge
transformation and will not lead to a reduction.

The SRS system (2.2) allows a first integral providing
the x-independent quantity

o, _
ax

which we shall use throughout. We shall only be interest-
ed in “nontrivial” solutions, satisfying

I,=1v,*+1v,l% (3.1)

vv,0370 . (3.2)

A. Algebra A4 ,(a,B) and self-similar solutions

A solution invariant under the group generated by
D +aP,+ BV will have the form

t

v, = exp ™ R (&) expli(§)], E=xexp —itl ,
vy =exp | — = [Ry(&) exp |i |n(&)— Bt -0
2= exp | =5 [Ry@exp |1 40— 2t | |, aro,
vy=LguR(ge T (3.3

X
where R; and 1, are real functions of £ and the factor £§%¢
in vy was separated out from R;(&) for future conveni-
ence. We substitute (3.3) into the SRS Equations (2.2),

separate the real and imaginary parts, and obtain the six
real ODE’s:

R,=—E%"'R,Rysing, R ;¥ =—E% 'R,R;cost,
R,=£% 'R;R,sing, R,$,=E% 'R;R, cosy,
R,=—a& “R R, siny, R31[r3=—a§_“gR1chos¢(3,.4)
V=9t ¥, +¢;+BIng .

The reduced system has a first integral inherited from

formula (3.1), namely,
I,=R?+R3. (3.5)

For g =0 another first integral exists, namely,
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I,=RR,R, cosdz-—%R% .
‘For B7#0 this integral does not survive if g#%0. Now, in
order to get another first integral and thus be able to
decouple Eqgs. (3.4), we shall restrict ourselves to the case

(3.6)

B=0. (3.7)
Then we have

v=9,+v,+¢;, (3.8)
and

I,=RR,R;cosy (3.9)
is a first integral (e, I} . =1, ,=0).

We express R,, R, and ¢ in terms of R, as
RZZVTI—;T% ,
R, cosxp:% , (3.10)
Rl\/ll _R%
R;siny=— £R,

V'1,—R}
We differentiate the first equation in the system (3.4) and
obtain an ODE for R ;:

. RRY  gg—1, I3E®TV
R,= P R,— 2
II—RI é— Rl(Il_Rl)
IZgZ(ag—l)
a 2 2
+ R, (I, —Ry{)+——5— (3.11)
£ R}

To simplify Eq. (3.11) we perform the transformation
[16] that in the case when we have g =0 would take Eq.
(3.11) into the equation for the fifth Painlevé transcendent
(30] Py, namely,

W 12
= 3.12
R,= I, W—1 ( )
The function W () satisfies
. 1 1 2, ag—1 .  2a
W= |-+ Wi+ 28w+ L w
W wW—1 3 £
2]% 1
+——gde (W —1)? | -W+— 3.13
Ig 3 (W—1) W (3.13)

For g =0 Eq. (3.13) does indeed reduce to the equation
for P, (§,0,B,7,6=0) [16]. For g#0 Eq. (3.9) does not
pass the Painlevé test [24,31]. The ‘“‘offensive” & depen-
dence due to the fact that g0 cannot be transformed
away. Still less can the solution be expressed in terms of
any known functions.

The asymptotic behavior of the solutions of Eq. (3.13)
will be discussed in Sec. IV. It is worth mentioning that a

different variable was used in Ref. [16], namely,
E=xt% a=—e=+F1. (3.14)

This is due to the fact that for g =0 the subalgebra



49 SIMILARITY REDUCTION AND PERTURBATION SOLUTION . ..

D +aP, is equivalent to D + V(f) for any f(¢)#0, with
V(f) as in Eq. (2.8). In Ref. [16] we chose f (t)=¢t so as
to get the similarity variable (3.14). For g0 this choice
is not available, since we have f =const.

The corresponding equations of Ref. [16] can be
transformed into those of this section (with g =0) by the
group transformation (allowed for g =0)

f=Int, x=x ,
~ _ — - _ (3.15)
R, ,(x,))=VtR ,(x,1), R;(%X,F)=R;(x,1).

A difficulty with interpreting the similarity solution phys-
ically for g#0 is that a reparametrization of time no
longer leaves the SRS equations (2.2) invariant. Hence it
is not possible to transform any initial pulse shape into a
constant, as was the case for g =0. In view of Eq. (3.1)
only very special initial pulses will develop into the self-
similar solution for g#0. Moreover, the similarity solu-
tion corresponds to the situation in which the waves have
“lost memory” of their initial condition. For a pulse that
is zero when ¢t <0 we expect the self-similar solution to be
observed for gt >>1. More work, both analytical and
computational, is needed, before definitive conclusion
about the physical role of self similar solutions for g#0
can be drawn.

B. Algebra 4;(a,B) and traveling-wave solutions

We take A4;(a,B)={Py—aP,+BV}, where a70; we
could actually scale @ to a=e==1 as in Eq. (2.9), but we
find it convenient to keep track of a0 as a velocity.
The reduction formulas are

v =R (§)exp[iyy(§)], &=x tat,

v, =R, (§)expli[¢¥(§)—pt]} , (3.16)

vi=exp[—(g/a)§]R,(§)exp |i

’

vo-L

where a#0, and the exponential in v, was introduced for
convenience. The reduced equations are

R1=—CXP _55 R;R;siny
Ry =—exp *i‘é’ R,R;cosy ,
R2=exp —%g RiR,siny ,
Ry, =exp [~ ££ R R, cosy (3.17)
. 1 )
R3=;exp %é‘ R R,siny ,
R 1/, =1 LR R
3¥3 anP a§ 1R, cosy,

b=t +o,- L.
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As in the case of the algebra 4,(a,B) corresponding to
the self-similar solutions, only one simple first integral of
the system (3.17) exists for g0, S70. In order to be
able to decouple the system in a simple manner for g0,
we again make the restriction =0, so that we have Eq.
(3.8) again. In this case we again have the two first in-
tegrals I, and I, of Egs. (3.5) and (3.9).

We again express R,, R;, and ¥ in terms of R ;:

R,=(I,—R})'? (3.18)
R, cosy h
cosp=—""—"">—+
? R,(I,—R})"?
(3.19)
; g
R K2
vexp | £
R;siny=—————7—~
3 Sy (I,—R})'?
For R, we obtain a second-order equation
; 1 252 4 12 2g
R,=————— |R{R{tIjexp |——
1 R(I,—R?) 43 €xXp a§
. I3
LR, —RH-ER + L exp — 288
a a Ry a
(3.20

Equation (3.20) does not have the Painlevé property, even
for g =0. However, if we put

R,=VH , 3.21)
we obtain
. |1 1 12 .0 28&
= |- —H*+2I -
H [H I,—H ||2 26%P |77,
— 8- Hu,-m). (3.22)
a a

For g =0 Eq. (3.22) does have the Painlevé property.
Moreover, in this case, it has a first integral that is quad-
ratic in H and provides a first-order equation for H.
Denoting

H,=H|,_,, (3.23)
we rewrite the equation for H as

FI(2,=§—(H0—ZI NHy—Z,)Hy—2Z,), (3.24)
where the constants Z; satisfy

2al}
Z,+2Z,+2z,=20,+ 2 K
) 2aI} Kl e
Z\Z,+2Z,Z+Z,Z, =1+ — (3.25)

I, 4
212223:(115 .

The solutions for H, were given earlier [16]. Since we

shall need them below, let us reproduce them here in the
notations that we are now using. We have the following.
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Solitary waves:
(1) Fora>0, Z,<H,<Z,=2Z,,

D. LEVI, C. R. MENYUK, AND P. WINTERNITZ

H,=Z %72, (3.26)
0 2 i Z,-2Z, 172 .
cosh® | ——— (E—&p)

(2) For a<0, 0=Z,=Z,<H,<Z,=I1,=Ka/4,

K <0,
I,
H,= 73 (3.27)
cosh? |— | (£—&)
Periodic (cnoidal) waves:
(3) Fora>0, 0=Z,<H,<Z,<Z,,
Hy=Z,+(Z,—Z,)sn*[p(E—&y),k] ,
172
Z,-2, Z,-7Z,
= |[— L o ki=—— 3.28
p a Z3—Zl ( )
(4) Fora<0, Z,<0<Z,<H,<Z,,
1/2
Z,—2, Z,—2,
=|—— kl=——= . (3.29
p —a ’ Z3_Zl ( )
J
k+v k*+4exp[—2g(t —t,)
R,=R,(1), R,= |1+ zp[ gt o)

vi=¢,(1), $,=—1¢;—¢;,

k+v k*+4exp[—2g(t —t,)]
2

172

= [ |1+

where R,(t) and 9,(¢) are arbitrary functions; k =0, £1,
and t, is an arbitrary constant. The entire x dependence
is in the phases in Eq. (3.30). For g =0 we have
h(t)=k =0, *1, in agreement with Ref. [16].

D. Algebra As(a)

The reduction formulas are
v; =R (x)expliyy(x)),
v, =R, (x)expli[,(x)—at]),
v3=R;(x)expli[¢3(x)+at]) .

(3.33)

The reduced ODEs are easy to solve and we obtain
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When dissipation is present—g7#0—Eq. (3.22) no
longer allows the first integral K, so the solitary and
periodic waves are no longer exact solutions.

Moreover, it can easily be shown that Eq. (3.22) does
not have the Painlevé property for g0 and that the £
dependence cannot be transformed away. This equation
cannot be solved in terms of any known functions, nor
can it be linearized. Some properties of solutions will be
discussed in Sec. IV.

C. Algebra A4,(k,h) and phase-wave solutions

The reduction formulas in this case are

v, =R()exp{i[¥,()—h(t)x]},
v, =R,(t)expli{y,(t)+[h()—k]x}),
v3;=R;(t)exp{i[¥;(1)+kx]] .

(3.30

Substituting into the SRS equation (2.2) we find that non-
trivial solutions exist only for a specific function 4 (z),
namely,

h()=1{k+V k>+4exp[—2g(t—1t)]} . (331
We obtain the phase-wave solutions,
2
] R,(t), Ry=exp[—g(t—1ty)],
(3.32)

R3(t)exp[g(t —ty)]dt ,

I

Ry =V/T, exp(—p(x —xo))(1+ exp —2u(x —x¢)]) "7,
R2=\/—I—1(1+ exp[ —2u(x —x)]) 12,
Iy exp(—p(x —x;))

(1+ exp[ —2u(x —xo) !,

3 ‘/a2_+_g2
1
=L g0, (3.34)
a“+g
_ ax a 0
= — =2~ — % In(1+ exp[ —2u(x —x)D+9?,
1!’1 a2+g2 2g Il( exp[ ,LL(X xo)]) ¢1

23 2
1/;2:__‘/_@%&_ ll’l(1+ exp[—Zy(x —xo)])+1//(2) )

Y3 =—9Y,— ¢, +arctan—§— .

For g =0 the result simplifies and we obtain plane
waves [16]. For a=0 we obtain well-known stationary
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solutions. The algebra 4,(a,h) was left out in this sec-
tion since it leads to trivial solutions with v, =v, =0.

IV. DISCUSSION OF SOLUTIONS

The two cases to discuss are the traveling-wave and
self-similar solutions. As was pointed out in Sec. III, in
these cases the solutions of the reduced ODE cannot be
expressed in terms of known special or elementary func-
tions. We shall apply a perturbative approach in these
cases.

2849

A. Traveling-wave solution

At first let us consider the dissipation coefficient g /a
to be small, positive, but nonzero. We can then expand
the exponentials in Eq. (3.22) and keep only the first
terms. We also expand the solution putting

H=H0(§)+gH1(§)+ te 4.1)

The leading term H, satisfies Eq. (3.24). More
specifically, H, is a real positive and finite solution and
hence has one of the forms (3.26),...,(3.29). In the

linear approximation in g we obtain a linear equation for
H (&), namely,

T2
20 P N W D 0 IS W Rl P ZY I NP P
YWTH, L—Hy [TV HE a—H |2 TR et T
1 1
tHy— I [~ o+ =0 42)
a o I,—H,

For soliton solutions of the g =0 equation, i.e., H, as in Eq. (3.26), Eq. (4.2) is quite simple. Indeed the correction

term in this case satisfies the equation

2I, 4 sinhAE

—_ 2 .
2—cosh“4§ H +242 1

H,—24
! sinhA&cosh A€ !

sinh®? A4 & a

The general solution of Eq. (4.3) is

. . 2
H =c, smh3A§ Yo, |ag s1nh3A§ + smh2A§
cosh” A& cosh"A€ cosh“4§

where c¢; and c, are arbitrary constants. This correction
term can be viewed as modifying the constant back-
ground of the soliton, equal to Z, for H,, as in (3.26). It
must however be remembered that the expansion (4.1) is
only meaningful for 0<(g§/a)<1, i.e., for values of £
such that 0<£<a/g as a> 0, i.e., for small £. Similar re-
sults can be obtained for the “cnoidal wave” solutions
(3.28).

More meaningful results can be obtained when looking

11 ]1/2

=0, A= (4.3)
cosh3 A& al
1 sinhA4§ 4.4)
A coshd € ’ )

for asymptotic solutions, i.e., for £— . We are interest-
ed in the asymptotic behavior of R,, solution of Eq.
(3.20), and as before we consider a>0. Applying the
Boutroux transformation [30] as was done in Ref. [16] for
g =0, we get that

R(§)=Vv(E)exp(—gE/2a) , 4.5)
and v (£) will satisfy the following nonlinear ODE:
2 2 2
loe | = Ewo,~ |21, £ lrrar3 + o VB0
E=exp(—g&/a), (4.6
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where for £— + « and g /a positive E is a small quanti-
ty. We can thus expand v in powers of E,

v=vo(E)+Ev (E)+ -+,

and at lowest order we get

1
Vo= —é{ coshy + sinhy sin2C(£—£&j)} ,
172

I 2
s I V% )

a 4q?

where y and £, are two integration constants.

This is a bounded solution for g <2V al, while for
g >2V al, it is exponentially diverging. However, as
one can easily see from the numerical integration of Eq.
(3.20) plotted in Fig. 1 for g =0, Fig. 2 for g =0.1, and
Fig. 3 for g =2.2, and deduce from Eq. (4.5), the asymp-
totic solution for R (§) is always bounded and for
g <2V al, goes to zero oscillating, while for g >21/al,
goes exponentially to zero.

B. Self-similar solutions

Our starting point in this case is Eq. (3.11) for the real
function R;(§). We are interested in the asymptotic
behavior of R (&) for £— + «. More specifically, since
R (&) is related to the pump amplitude v,, we require
R (§)—>0for £— + oo.

By analogy with the case g =0 of Ref. [16] we look for
a decreasing behavior of the type

R,=AE&, A,p,const,p <0, (4.8)
substitute into Eq. (3.11) and compare leading terms for
&— + 0. Thus we find

1 | ag 1
= — — + -, < — . 4.9)

P=74 T Ty (

In order to obtain an asymptotic expansion we perform
the transformation

|
f
|
R
|

os| \

FIG. 1. Numerical solution of Eq. (3.20) for g =0 with I, =0,
I,=1, and a=1. As initial conditions we put R,(0)=0.99 and
R,(0)=0.
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o8 ||
06 |
04 |+ !

02 R

80 100 120 140

FIG. 2. Numerical solution of Eq. (3.20) for g =0.1 with the
same initial conditions and values of parameters as in Fig. 1.

R(§=EVF (), n=2VE, (4.10)
where F (£) will be expanded into a series
Fm=3 F,(n— @.11)
{n} 1

with F,(n) finite for 7— + o and n a sequence of in-
creasing positive numbers starting with zero. The
redefinition of the independent variable (§—7) is per-
formed to obtain an equation with constant coefficients
for the leading term Fy(7). The overall leading asymp-
totic behavior is extracted in the factor &P, with p the
same as in (4.9). Finally the square root in the transfor-
mation R, —F was needed to simplify the equation for
the leading term. Moreover, for g =0, as we saw before,
this square root is needed to obtain an equation having
the Painlevé property.

Substituting (4.10) into Eq. (3.11) we obtain an equa-
tion for F(7n):

08

06
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02

0 \

[8) 20 40 60 80 100 120 140

FIG. 3. Numerical solution of Eq. (3.20) for g =2.2 with the

same initial conditions and values of parameters as in Fig. 1.
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F? 1
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FF——2——2aIlF2—2I§+;

1

1
2

=

+i3 _—122—2"3(1—2ag)ag112“gF3 =0.
7 | Iy

For g =0 in (4.12) the first three terms are of the order
7% 71, and 7”2, respectively, and the 3 term is ab-
sent. For g#0 we do not wish to interchange the order
of terms and so we impose the further restriction

ag>—1. (4.13)
We now substitute the expansion (4.11) into Eq. (4.12).
The equation for the leading term does not involve the
dissipative constant g and as in Ref. [16] we obtain

21,

V —al,

Fyo(p)= [ cosh8+ sinhdsin2y —al (p—7,)] ,

(4.14)

where & and 7, are integration constants. This solution is

real and bounded for
a<0. (4.15)

In order to go beyond the leading term (4.14) for g#0 we
shall look for a solution of the form

F(n)=Fy(0)+7*® " 'F (0)+o(n*¢™ 1), (4.16)
where 6(7) is given by
— I,
0=2v"—aln+27%%¢ 2g—1] . 4.17
Vi—al 2 1] 4.17)

FIG. 4. Numerical solution of Eq. (3.11) for g =0 with
I,=0.1, I,=1, and a=—1. As initial conditions we put
R,(0)=0.5 and R ,(01)=0.

I_2l-zag,72ag[ — F2F+FF?+4I%F +41,aF)

+— l%( 1—40%g?)F?— Ilzl R8I~ 2ag)FPF — 120 4oty esp
1 1

4.12)

r

The term 7°°¢ in 6 is introduced to avoid secular terms in

the first-order term of the expansion while the constant

term is added to provide a reasonable limit as g —0.
Introducing this ansatz for F(7) in Eq. (4.12) we get

F,(6)=C,[ sinf+tanhd]+C, cosf

IZ%sinh(28) I}sinh?
_2__?_2 Sln9+— sin 9 .
P 7 &

e (4.18)

We see that this first-order correction to F(0) is bound-
ed for any choice of the parameters C,, C,, and 5. We
also note that in the limit of no dissipation (g—0) we
have

N (
0=21/—a1117+21—2 In(7) . (4.19)
1

To illustrate this result and to show the influence of the
dissipative parameter g, we have plotted a numerical
solution of Eq. (3.11) for g =0 and g =0.49 on Figs. 4
and 5, respectively. As one can see by comparing Fig. 4
with Fig. 5, the presence of the dissipation decreases the
amplitude of R () and slightly decreases the frequency
of the oscillations.
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FIG. 5. Numerical solution of Eq. (3.11) for g =0.49 with the
same initial conditions and values of parameters as in Fig. 4.
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