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Abstract

We prove Frobenius’s Theorem for codistributions using Spencer theory. Specifically,
we formulate the theorem as a partial differential equation and apply the conditions for
formal integrability of Goldschmidt [1967].

1. Introduction

Frobenius’s Theorem for codistributions (i.e., subbundles of the cotangent bundle) states
that the codistribution is integrable if and only if the exterior derivative of every one-form
taking values in the codistribution lies in the algebraic ideal generated by the codistribution.
The standard proofs of this theorem are actually not too difficult, and can be found in many
basic texts on differential geometry. Here we will give a difficult proof, valid only in the
analytic category (the result actually holds in the C∞ category). Clearly then, the result
we prove is not of significant interest. However, the proof perhaps is. We prove the theorem
using Spencer’s theory as manifested for linear partial differential equations by Goldschmidt
[1967]. This turns out to be a not quite trivial application of the theory.

2. The result

Let X be a manifold of pure dimension n and let F be a codistribution on X, i.e., F

is a subbundle of T∗X. To keep things simple, let us suppose that F is indeed a subbun-
dle, i.e., that its rank is locally constant. When this is not the case, things get compli-
cated [Freeman 1984, Malgrange 1976, 1977].

2.1 Definition: (Integrable codistribution) A codistribution F on X is integrable if and
only if, for each x0 ∈ X, there exists a coordinate chart (U, φ) about x0 such that, in the
coordinates (x1, . . . , xn) of the chart, we have

Fx = spanR{dx1(x), . . . ,dxm(x)}

for each x ∈ U. •
To state Frobenius’s Theorem we need some notation.

2.2 Definition: (Algebraic ideal) Let V be a R-vector space and let F∗ be a subspace of
V∗. The algebraic ideal of F∗ is the subspace I(F∗) of

∧
(V∗) generated by elements of the

form α ∧ Ω for α ∈ F∗ and Ω ∈
∧

(V∗). For k ∈ Z≥0 we denote Ik(F∗) = I(F∗) ∩
∧

k(V
∗). •
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Extending the definition to the geometric setting we define

I(F) = ∪x∈XI(Fx), Ik(F) = ∪x∈XIk(Fx).

We can now state Frobenius’s Theorem.

2.3 Theorem: (Frobenius’s Theorem) Suppose X is an analytic manifold and F is an
analytic codistribution. Then F is integrable if and only if dα ∈ Γ(I2(F)) for every α ∈
Γ(F). •

As we mentioned above, the theorem is actually true for C∞-codistributions. Our proof
using the formal integrability of partial differential equations relies on analyticity, however.

3. The proof of the result

We now prove Frobenius’s Theorem. As we shall see, the “only if” part of the proof
is straightforward. For the “if” part of the proof we shall first reduce the task to a linear
partial differential equation. Then we apply Spencer theory.

3.1. The easy part of the proof. It is immediate that if F is integrable then dα ∈
Γ(I2(F)) for every α ∈ Γ(F). Indeed, let x0 ∈ X and let (U, φ) be a chart about x0 for which

Fx = spanR{dx1(x), . . . ,dxm(x)}

for each x ∈ U. If α ∈ Γ(F) we have

α|U = α1dx1 + · · ·+ αmdxm

for analytic functions αj : U → R. We then have

dα|U =
m∑

j=1

n∑
k=1

∂αj

∂xk
dxk ∧ dxj ,

which is clearly a two-form in Γ(I2(F)).

3.2. Reduction of the hard part of the proof to a partial differential equation.
We now embark on the proof of the fact that if dα ∈ Γ(I2(F)) for every α ∈ Γ(F) then F is
integrable.

We first reduce this to a partial differential equation.

3.1 Lemma: A codistribution F on X is integrable if and only if, for each x0 ∈ X and for
each αx0 ∈ Fx0, there exists a section α of F such that dα = 0 in a neighbourhood of x0

and α(x0) = αx0.

Proof: “Only if”: Let (U, φ) be a chart about x0 for which

Fx = spanR{dx1(x), . . . ,dxm(x)}

for each x ∈ U. For αx0 ∈ Fx0 we can write

αx0 = a1dx1(x0) + · · ·+ amdxm(x0)
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for a1, . . . , am ∈ R. Then define

α(x) = a1dx1(x) + · · ·+ amdxm(x),

noting that α is a section of F, α(x0) = αx0 , and dα = 0.
“If”: Let {α1

x0
, . . . , αm

x0
} be a basis for Fx0 and let α1, . . . , αm be corresponding sections

of F in a neighbourhood of x0 such that αj(x0) = αj
x0

and dαj = 0 for j ∈ {1, . . . ,m}. By
the Poincaré Lemma let f1, . . . , fm be analytic functions such that df j = αj in a neigh-
bourhood V of x0, j ∈ {1, . . . ,m}. Now define Φ: V → Rm by Φ(x) = (f1(x), . . . , fm(x)).
Since {df1(x0), . . . ,dfm(x0)} are linearly independent, the Regular Value Theorem ensures
the existence of a coordinate chart (U, φ) for X about x0 with the following properties:

1. φ takes values in Rm × Rn−m;

2. the local representative of Φ has the form (x1,x2) 7→ x1.

One can readily verify that this chart has the property required in the definition of an
integrable codistribution. �

Thus the thing we need to prove is this:

If F is a codistribution having the property that dβ ∈ Γ(I2(F)) for every β ∈
Γ(F), then, for every x0 ∈ X and for every αx0 ∈ Fx0 there exists α ∈ Γ(F)
such that α(x0) = αx0 and dα = 0 in a neighbourhood of x0.

This statement is easily converted into a linear partial differential equation. We let
π : F → X be the vector bundle projection so that Jkπ, k ∈ Z≥0, are the associated jet
bundles. The canonical projections are denoted by πk : Jkπ → X and πk+l

k : Jk+lπ → Jkπ,
k, l ∈ Z≥0.

Let DF : Γ(F) → Γ(
∧

2(T
∗M)) be the first-order differential operator DF(α) = dα. We

let ΦF : J1π →
∧

2(T
∗X) be the corresponding vector bundle map satisfying ΦF(j1α(x)) =

dα(x). We then define RF = ker(ΦF) which is a first-order linear partial differential equa-
tion. Lemma 3.1 says that proving the following theorem is enough to prove the “hard
part” of Theorem 2.3.

3.2 Theorem: (The hard part of Frobenius’s Theorem) Let X be an analytic manifold and
let F be an analytic codistribution. Suppose that dα ∈ Γ(I2(F)) for every α ∈ Γ(F). Then,
for every p0 ∈ RF there exists an analytic solution α of RF defined in a neighbourhood of
x0 = π1(p0) such that j1α(x0) = p0.

The proof of this theorem will occupy us for the remainder of this note.

3.3. The algebraic part of the hard part of the proof. If V is a R-vector space,
we denote by ⊗k

j=1V
∗, Sk(V∗), and

∧
k(V

∗) the vector spaces of (0, k)-tensors, symmetric
(0, k)-tensors, and skew-symmetric (0, k)-tensors, respectively, on V. By

∧
(V∗) we denote

the set of all skew-symmetric tensors.
We suppose that V is a finite-dimensional R-vector space with V∗ its dual space. We

let E and F be subspaces of V with the property that V = E ⊕ F. We denote the corre-
sponding decomposition of V∗ as V∗ = E∗⊕F∗. The decomposition also induces direct sum
decompositions of the vector spaces ⊗k

j=1V
∗, Sk(V∗), and

∧
k(V

∗). For example, we have∧
2(V

∗) =
∧

2(E
∗)⊕

∧
2(F

∗)⊕ (E∗ ⊗ F∗)
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and
S2(V∗) = S2(E∗)⊕ S2(F∗)⊕ (E∗ ⊗ F∗).

(One can think of these decompositions as they manifest themselves for skew-symmetric
(resp. symmetric) matrices. If one writes such a matrix in four blocks, one has two skew-
symmetric (resp. symmetric) diagonal blocks, and the two off-diagonal blocks differ by a
transpose, so it suffices to determine only one of these.) Using these decompositions we have
natural inclusions of, for example, Sk(F∗) and

∧
k(F

∗) in Sk(V∗) and
∧

k(V
∗), respectively.

Moreover, the images of these inclusions have natural complements, so there are also natural
projections onto the subspaces. We shall take all of these inclusions and projections for
granted in our discussions to follow. We shall also use the decomposition V = E ⊕ F, and
the induced decompositions of the tensor algebra, to identify quotients with complements.
We will do all of this without explicit indication.

Let Alt : ⊗k
j=1 V∗ →

∧
k(V

∗) be the projection defined by

Alt(A)(v1, . . . , vk) =
1
k!

∑
σ∈Sk

sign(σ)A(vσ(1), . . . , vσ(k)),

where Sk denotes the permutation group on k symbols. Let σ : V∗ ⊗ F∗ →
∧

2(V
∗) be

the restriction of 2Alt to V∗ ⊗ F∗. Explicitly, writing elements of V with respect to their
decomposition in E⊕ F,

σ(α⊗ β)(u1 ⊕ u2, v1 ⊕ v2) = α(u1 ⊕ u2)β(v2)− α(v1 ⊕ v2)β(u2),

for α ∈ V∗ and β ∈ F∗. Now define σ1 : S2(V∗) ⊗ F∗ → V∗ ⊗
∧

2(V
∗) by σ1 = idV∗ ⊗σ.

Explicitly,

σ1(B ⊗ β)(u1 ⊕ u2, v1 ⊕ v2, w1 ⊕ w2)
= B(u1 ⊕ u2, v1 ⊕ v2)β(w2)−B(u1 ⊕ u2, w1 ⊕ w2)β(v2),

for B ∈ S2(V∗) and β ∈ F∗. The map σ1 is readily verified to be the first prolongation of σ.
We shall be interested in the kernels and cokernels of the maps σ and σ1. For σ we have

the following result.

3.3 Lemma: We have ker(σ) = S2(F∗) and coker(σ) =
∧

2(E
∗).

Proof: For the assertion concerning ker(σ) consider the following commutative diagram:

0

��

0

��
0 // S2(V∗) ∩ (V∗ ⊗ F∗) //

��

V∗ ⊗ F∗
σ //

��

∧
2(V

∗)

0 // S2(V∗) // V∗ ⊗ V∗
2Alt // ∧

2(V
∗) // 0

The bottom row is exact (it is essentially the decomposition of a (0, 2)-tensor into its
symmetric and skew-symmetric parts). One can then easily show that the top row is exact
since σ = 2Alt|V∗ ⊗ F∗. It remains to show that S2(V∗) ∩ (V∗ ⊗ F∗) = S2(F∗). Since
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V∗ ⊗ F∗ = (E∗ ⊗ F∗) ⊕ (F∗ ⊗ F∗) it follows that S2(F∗) ⊂ S2(V∗) ∩ (V∗ ⊗ F∗). Now let
A ∈ S2(V∗) ∩ (V∗ ⊗ F∗). Then

A(u1 ⊕ u2, v1 ⊕ v2) = A(u1 ⊕ u2, 0⊕ v2) = A(0⊕ v2, u1 ⊕ u2)
= A(0⊕ v2, 0⊕ u2) = A(0⊕ u2, 0⊕ v2),

(3.1)

since A ∈ V∗⊗ F∗ and since A is symmetric. Thus A ∈ S2(F∗). This gives ker(σ) = S2(F∗).
Now we prove that coker(σ) =

∧
2(E

∗). First we note that the sequence

V∗ ⊗ V∗
2Alt // ∧

2(V
∗) // 0

is exact since 2Alt is, up to a factor of 2, the natural projection. Thus 2Alt is surjective
and so coker(2Alt) = 0. Now we note that V∗ ⊗ V∗ = (V∗ ⊗ E∗) ⊕ (V∗ ⊕ F∗). Therefore,
to find coker(σ) we need only find a complement to image(σ) in image(2Alt) and then take
the direct sum of this complement with coker(2Alt) (the latter being trivial in this case).
One can readily ascertain that

2Alt(V∗ ⊗ E∗) =
∧

2(E
∗)⊕ (E∗ ⊗ F∗), 2Alt(V∗ ⊗ F∗) =

∧
2(F

∗)⊕ (E∗ ⊗ F∗).

Therefore, image(2Alt) = image(σ) ⊕
∧

2(E
∗). Thus coker(σ) =

∧
2(E

∗) ⊕ coker(2Alt) =∧
2(E

∗). �

To state the analogous result for σ1 we need some notation.
1. For a subspace Λ of V∗, let I(Λ) be the ideal generated in

∧
(V∗) by Λ and let I2(Λ) =

I(Λ) ∩
∧

2(V
∗).

2. Define τ1 : V∗ ⊗
∧

2(V
∗) →

∧
3(V

∗) by

τ1(B)(u, v, w) = B(u, v, w) + B(w, u, v) + B(v, w, u).

Now we have the following result.

3.4 Lemma: We have ker(σ1) = S3(F∗) and image(σ1) = (V∗ ⊗ I2(F∗)) ∩ ker(τ1). In
particular, if

τ : V∗ ⊗
∧

2(V
∗) → coker(σ1), τ2 : V∗ ⊗

∧
2(V

∗) → V∗ ⊗
∧

2(E
∗)

are the canonical projections, then ker(τ) = ker(τ1) ∩ ker(τ2).

Proof: Define σ̄1 : S2(V∗)⊗ V∗ → V∗ ⊗
∧

2(V
∗) by

σ̄1(B ⊗ β)(u, v, w) = B(u, v)β(w)−B(u, w)β(v)

for B ∈ S2(V∗) and β ∈ V∗. Note that σ1 = σ̄1|S2(V∗)⊗F∗. Now consider the commutative
diagram

0

��

0

��
0 // S3(V∗) ∩ (S2(V∗)⊗ F∗) //

��

S2(V∗)⊗ F∗
σ1 //

��

V∗ ⊗
∧

2(V
∗)

0 // S3(V∗) // S2(V∗)⊗ V∗
σ̄1 // V∗ ⊗

∧
2(V

∗)



6 A. D. Lewis

We claim that the bottom row is exact. Indeed, by definition of σ̄1,

ker(σ̄1) = {B ∈ S2(V∗)⊗ V∗ | B(u, v, w) = B(u, w, v), u, v, w ∈ V}.

Thus ker(σ̄1) are those elements of ⊗3
j=1V

∗ that are symmetric in the first two and last two
entries. Thus ker(σ̄1) = S3(V∗), which is exactness of the bottom row. Now it is easy to
show that the top row is also exact (this is the same argument as in the first part of the
Lemma 3.3). The form for ker(σ1) asserted in the lemma will follow if we can show that

S3(V∗) ∩ (S2(V∗)⊗ F∗) = S3(F∗).

This can be shown along the lines of (3.1), using symmetry of A and the fact that A ∈
S2(V∗)⊗ F∗.

For the assertion about image(σ1), we first claim that the sequence

S2(V∗)⊗ V∗
σ̄1 // V∗ ⊗

∧
2(V

∗)
τ1 // ∧

3(V
∗) // 0 (3.2)

is exact, i.e., that coker(σ̄1) =
∧

3(V
∗). One can easily verify that τ1 ◦ σ̄1 = 0. This gives

image(σ̄1) ⊂ ker(τ1). Also, τ1 is clearly surjective since if Ω ∈
∧

3(V
∗) then Ω = τ1(1

3Ω).
The exactness of the sequence above will now follow if we can show that dim(image(σ̄1)) =
dim(ker(τ1)). This identity is readily verified from the following formulae:

dim(image(σ̄1)) = dim(S2(V∗)⊗ V∗)− dim(ker(σ̄1)),
dim(ker(τ1)) = dim(V∗ ⊗

∧
2(V

∗))− dim(image(τ1)),

along with the facts that ker(σ̄1) = S3(V∗) and image(τ1) =
∧

3(V
∗).

Next we claim that the sequence

V∗ ⊗ I2(F∗) // V∗ ⊗
∧

2(V
∗)

τ2 // V∗ ⊗
∧

2(E
∗) // 0 (3.3)

is exact. Let us first give the explicit formula for τ2:

τ2(B)(u1 ⊕ u2, v1 ⊕ v2, w1 ⊕ w2) = B(u1 ⊕ u2, v1 ⊕ 0, w1 ⊕ 0).

If B ∈ V∗ ⊗ I2(F∗) then τ2(B) = 0 by definition of I2(F∗). Thus V∗ ⊗ I2(F∗) ⊂ ker(τ2). We
next claim that τ2 is surjective. Indeed, let B ∈ V∗ ⊗

∧
2(E

∗) and note that τ2(B) = B.
Now the exactness of (3.3) will follow if we can show that

dim(V∗ ⊗ I2(F∗)) = dim(ker(τ2)).

However, this follows by a direct computation, noting that

I2(F∗) =
∧

2(F)⊕ (E∗ ⊕ F∗).

We claim that image(σ1) = (V∗ ⊗ I2(F∗)) ∩ image(σ̄1). Exactness of the sequences (3.2)
and (3.3) ensures that this is equivalent to the assertion that image(σ1) = ker(τ1)∩ker(τ2).
One can check directly, using the definitions of τ1 and τ2, that if B ∈ image(σ1) then
τ1(B) = 0 and τ2(B) = 0. Thus image(σ1) ⊂ ker(τ1) ∩ ker(τ2). For the converse inclusion,
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let B ∈ ker(τ1)∩ker(τ2). Then, since B ∈ ker(τ1) = image(σ̄1), there exists A ∈ S2(V∗)⊗F∗

such that

B(u1 ⊕ u2, v1 ⊕ v2, w1 ⊕ w2) = A(u1 ⊕ u2, v1 ⊕ v2, w2)−A(u1 ⊕ u2, w1 ⊕ w2, v2).

Define A′ ∈ S2(V∗)⊗ F∗ by

A′(u1 ⊕ u2, v1 ⊕ v2, w2) = A(u1 ⊕ u2, 0⊕ v2, w2).

Then

σ1(A′)(u1 ⊕ u2, v1 ⊕ v2, w1 ⊕ w2) = A(u1 ⊕ u2, 0⊕ v2, w2)−A(u1 ⊕ u2, 0⊕ w2, v2)
= B(u1 ⊕ u2, 0⊕ v2, 0⊕ w2)
= B(u1 ⊕ u2, v1 ⊕ v2, w1 ⊕ w2),

using the fact that B ∈ ker(τ2). Thus ker(τ1) ∩ ker(τ2) ⊂ image(σ1).
The final assertion has already been proved during the course of the preceding argument.

�

Let us define G = S2(F∗) ⊂ V∗ ⊗ F∗ and G1 = S3(F∗) ⊂ S2(V∗)⊗ F∗. We note that, by
definition of σ1, G1 is the first prolongation of G. The following lemma gives an extremely
important property of the subspace G.

3.5 Lemma: The subspace G ⊂ V∗ ⊕ F∗ is involutive.

Proof: Let {v1, . . . , vn} be a basis for V with the property that {v1, . . . , vm} forms a basis
for F∗. We claim that this basis is quasi-regular which will show involutivity. We have

G = ker(σ) = S2(F∗) ' R2[x1, . . . , xm]
Gv1 = {B ∈ G | v1 B = 0} ' R2[x2, . . . , xm]

Gv1,v2 = {B ∈ G | v1 B = v2 B = 0} ' R2[x3, . . . , xm]
...

Gv1,...,vm−1 = {B ∈ G | v1 B = · · · = vm−1 B = 0} ' R2[xm],

where R2[ξ1, . . . , ξk] denotes the homogeneous polynomials of degree 2 in indeterminates
ξ1, . . . , ξk. Note that Gv1,...,vk

= {0} for k ≥ m. We have

dim(Gv1) = 1
2m(m− 1)

dim(Gv1,v2) = 1
2(m− 1)(m− 2)

...
dim(Gv1,...,vm−1) = 1

22 · 1.

Therefore,

dim(G) +
m−1∑
j=1

dim(Gv1,...,vj ) =
m∑

j=1

1
2j(j + 1) = 1

6m(m + 1)(m + 2) = dim(G1),

giving involutivity, as desired. �
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3.4. The geometric part of the hard part of the proof. Let τ : F → X be a vector
bundle and let ∇ be a connection in F. The T∗X⊗F-valued first-order differential operator
ξ 7→ ∇ξ gives a vector bundle map Φ∇ : J1τ → T∗X ⊗ F defined by Φ∇(j1ξ(x)) = ∇ξ(x).
One can readily check that the symbol of Φ∇ is σ(Φ∇) = idT∗X⊗F. Thus Φ∇ defines a
splitting on the left of the exact sequence associated with the jet bundle J1τ :

0 // T∗X⊗ F // J1τ //

Φ∇

bb F // 0 (3.4)

We shall use this fact below when checking the compatibility conditions for the potential
shaping partial differential equation.

Now we let X be a manifold and focus on the case when∇ is an affine connection on X; the
reader will understand that ∇ now means something different than in the constructions
immediately above. We first recall [Nelson 1967] that there is a formula relating the exterior
derivative and the covariant differential.

3.6 Lemma: If Ω is a differential k-form on X then dΩ = (k + 1)Alt(∇Ω).

The constant in the lemma relating d and Alt ◦∇ will vary depending on one’s convention
for the definitions of d and Alt.

Next we suppose that we have a subbundle Λ of T∗X. Given an affine connection ∇ on

X one can construct from it an affine connection
Λ

∇ that restricts to the subbundle coann(Λ)
that is annihilated by Λ. To see how this can be done, we refer to [Lewis 1998]. It is easy

to see that
Λ

∇ also restricts to the subbundle Λ: for a coann(Λ)-valued vector field X and a
Λ-valued one-form λ we have

〈λ;X〉 = 0 =⇒
〈 Λ

∇Y λ;X
〉
+

〈
λ;

Λ

∇Y X
〉

=
〈 Λ

∇Y λ;X
〉

= 0

for every vector field Y .
We now have the following result.

3.7 Lemma: If Λ is a regular codistribution, if ∇ is an affine connection restricting to Λ,
and if Ω ∈ Γ(Ik(Λ)), then ∇Ω ∈ Γ(T∗X⊗ Ik(Λ)).

Proof: Let U be an open subset of X such that Λ is generated by {λ1, . . . , λm}. Then
Ω ∈ Γ(Ik(Λ)) if and only if

Ω =
m∑

j=1

Ωj ∧ λj

for some (k − 1)-forms Ω1, . . . ,Ωm. Then, for a vector field X,

∇XΩ =
m∑

j=1

∇XΩj ∧ λj +
m∑

j=1

Ωj ∧∇Xλj

Clearly ∇XΩj ∧ λj ∈ Γ(Ik(Λ)), j ∈ {1, . . . ,m}. Since ∇ restricts to Λ it also follows that
Ωj ∧∇Xλj ∈ Γ(Ik(Λ)), j ∈ {1, . . . ,m}. �
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3.5. The rest of the hard part of the proof. The strategy for the remainder of the
proof is to prove the formal integrability of the partial differential equation RF. It then
follows from a general result of Malgrange [1972a, 1972b] that analytic solutions exist as
stated. (This also follows from the Cartan–Kähler Theorem for partial differential equa-
tions.)

Following [Pommaret 1978, Corollary 2.4.9] we have the following result which was
proved by Goldschmidt [1967]. We denote by ρ1(RF) ⊂ J2π the first prolongation of RF.

3.8 Theorem: The partial differential equation RF is formally integrable in a neighbour-
hood of x0 if

(i) it has an involutive symbol at every point in that neighbourhood, if
(ii) the first prolongation of the symbol is a vector bundle, and if
(iii) ρ1(RF) projects surjectively onto RF in that neighbourhood.

In the remainder of the proof we will let E be a subbundle of T∗X which is complementary
to F: T∗X = E ⊕ F. This is valid in a neighbourhood U1 of x0 since x0 is a regular point
for F (recall that we are assuming that F has locally constant rank). Note that this gives
a corresponding direct sum decomposition TX = coann(F) ⊕ coann(E). We shall use this
decomposition below without explicit reference. As we did in Section 3.3, we shall also
suppose that this decomposition gives rise to decompositions of the tensor algebra, and we
shall use these decompositions to give explicit inclusions and projections from and onto
various subspaces of tensors.

Let us first determine the symbol G(RF) for RF.

3.9 Lemma: We have G(RF) = S2(F).

Proof: Note that G(RF) = ker(σ(ΦF)), where σ(ΦF) is the symbol of ΦF. A direct compu-
tation (in coordinates, for example) using the definition of ΦF gives

σ(ΦF)(α⊗ β)(u1 ⊕ u2, v1 ⊕ v2) = α(u1 ⊕ u2)β(v2)− α(v1 ⊕ v2)β(u2)

for α ∈ T∗xX, β ∈ Fx, u1, v1 ∈ coann(Fx), and u2, v2 ∈ coann(Ex). By Lemma 3.3 our claim
about G(RF) follows. �

From the preceding lemma and from Lemma 3.5 we know that G(RF) is involutive.
Let us give the first prolongation of G(RF), which we denote by ρ1(G(RF)).

3.10 Lemma: We have ρ1(G(RF)) = S3(F).

Proof: We make the following observations:
1. G(RF)x is the kernel of the map σ used in Section 3.3 if we take V∗ = T∗xX and F∗ = Fx;
2. the map σ1 in Section 3.3 is the first prolongation of σ.
An application of Lemma 3.4 gives the result. �

We can then see that the first prolongation of G(RF) is a vector bundle on the open
subset U2 of X on which F is a vector bundle. Clearly x0 ∈ int(U2).

We have now to verify only the third of the hypotheses of Theorem 3.8.
Let K = coker(σ1(ΦF)) and denote by τ the canonical projection from T∗X ⊗

∧
2(T

∗X)
to K. We let χ :

∧
2(T

∗X) → X be the canonical projection.
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Following [Pommaret 1978, page 69] we have the following commutative and exact
diagram:

0

��

0

��
S2(T∗X)⊗ F

��

σ1(ΦF) // T∗X⊗
∧

2(T
∗X) τ //

��

K // 0

0 // ρ1(RF) //

��

J2π
ρ1(ΦF) //

��

J1χ

��
0 // RF

// J1π

��

ΦF // ∧
2(T

∗X)

��
0 0

All unmarked arrows are either canonical inclusions or canonical projections. We define a
map κ from RF to K as follows. Let p ∈ RF and denote x = π1(p). Then ΦF(p) = 0x. Choose
p′ ∈ J2π such that π2

1(p
′) = p and define ω = ρ1(ΦF)(p′) ∈ J1χ. Then, by commutativity of

the diagram, χ1
0(ω) = ΦF(p) = 0x ∈

∧
2(T

∗X). Therefore, by exactness of the third column,
ω is the image of A ∈ T∗xX⊗

∧
2(T

∗
xX). It thus makes sense to define κ(p) = τ(A). One can

easily show that this definition of κ is independent of the choice of p′. Pommaret [1978,
Theorem 2.4.1] shows that p lies in the image of the projection of ρ1(RF) to RF if and only
if κ(p) = 0.

Let us give a way of explicitly constructing κ, as this will be essential in our proof. Let
p ∈ RF and x = π1(p). We let ∇ be an affine connection on X and let α be a section of F

such that j1α(x) = p. Thus dα(x) = 0x. Then define p′ = j2α(x) so that

ρ1(ΦF)(p′) = j1dα(x).

We next claim that
j1dα(x) = ∇dα(x),

where we identify the fibre of J1χ over dα(x) ∈
∧

2(T
∗X) with T∗xX⊗

∧
2(T

∗
xX). This follows

from (3.4), combined with the fact that dα(x) = 0x. Then we have

κ(p) = τ(j1dα(x)) = τ(∇dα(x)).

The point is that this representation of κ is independent of the affine connection ∇.
Let τ1 : T∗X⊗

∧
2(T

∗X) →
∧

3(T
∗X) be defined by

τ1(B)(u, v, w) = B(u, v, w) + B(w, u, v) + B(v, w, u), u, v, w ∈ TxX.

Denote by τ2 : T∗X⊗
∧

2(T
∗X) → T∗X⊗

∧
2(E) the canonical projection. By Lemma 3.4 we

have
ker(τ) = ker(τ1) ∩ ker(τ2). (3.5)
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Now let ∇ be an arbitrary torsion-free affine connection on X and let p ∈ RF with x ∈ X.
Using Lemma 3.6 and the definition of τ1 we may easily show that

τ1(∇dα(x)) = d ◦dα(x) = 0, x ∈ X, (3.6)

for any section α of F for which j1α(x) = p.
Now let p ∈ RF and let α have the property that j1α(x) = p where x = π1(p). Assume

that ∇′ is an affine connection that restricts to F in the sense discussed in the run up to
Lemma 3.7. (Note that this means that we will generally have to sacrifice ∇′ being torsion
free.) We then compute

τ2(∇′dα(x)) = 0 (3.7)

using Lemma 3.7 and the fact that dα ∈ Γ(I2(F)).
Let us now wrap up all of the above arguments. Let p ∈ RF and let α be a section of F

such that j1α(x) = p for x = π1(p). By (3.6) we have

τ1(j1dα(x)) = τ1(∇dα(x)) = 0, x ∈ X.

By (3.7) we have
τ2(j1dα(x)) = τ2(∇′dα(x)) = 0, x ∈ U2.

Therefore, by (3.5) we have τ(j1dα(x)) = 0, giving κ(p) = 0.
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