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1. Introduction

Before I get to the actual writing of this paper, let me say a few words about the
manner and spirit in which it is written. Normally when writing technical articles I try
to be rigorous and precise, giving clear definitions, stating clear theorems, etc. However, I
believe that this should not be the tone of this article, given the intent of the special issue for
which it is being written. Therefore, I make no claims of the article being precise, rigorous,
or even remotely self-contained. Readers looking for a summary of the differential geometric
method in mechanics will not find it here. Many such summaries have been written, and
many of them are good. Moreover, many books have been written on the topic of differential
geometric modelling of mechanical systems, and many of these are good. A reader who has
an inkling that they want to learn the differential geometric method will already have
ventured into this part of the literature, so it seems pointless to simply reproduce it here.

Instead I aim to give the reader some insights into why I think differential geometric
modelling is important. In doing so I will (1) make free use of intuitive “definitions” of
concepts and (2) make free use of terminology and notation that I have not defined, but
is hopefully either clear or for which the absence of a precise definition is inobtrusive. My
feeling is that, as soon as I step onto the slippery slope where I disallow myself to do either
of these two things, then I will end up writing a paper that I have already written before.
And again, I think this is pointless.

One of my hopes for this article is that it will show that there are real advantages to
be had from the differential geometric techniques of modelling and control of mechanical
systems. Consistent with this, I will also make the point that there are disadvantages to not
using differential geometric techniques. Moreover, I will illustrate this latter point through
particular instances. Therefore, the article will be, in a very few places I hope, somewhat
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provocative. In keeping with this, I have decided to write the article in a less formal and
more personal style.

That all out of the way, let me get to the actual substance of the paper. Much of
the ten or so years I have been doing research has been dedicated to control theory for
mechanical systems. My work in this area has been of a pretty mathematical flavour, but
with occasional and, I think, substantial diversions into specific problems that are intended
to illustrate the value of what I do in practice. The most common feedback I get from
applied researchers not familiar with the mathematics I use is (1) “I do not understand your
notation” and (2) “I am not sure you are getting any mileage from all of the mathematics.”
In this paper I will attempt to address these complaints.

First let me address the notation matter since I feel that it often has little substance
as a criticism. In saying, “I do not understand your notation,” I often get the feeling that
the complainant feels that I am simply using obtuse terminology in order to show off and
make my work appear to have some substance. In this, there is the implicit suggestion that
the notation is just that: notation. But this is not the case. Behind the notation are real
concepts and ideas. To not use the notation I use, and instead use notation more familiar
to whomever might not like mine, would be to exactly step away from those concepts and
ideas that I actually use to form the contribution of the work. I think that the contribution
would simply not exist were it not for the fact that the problem is formulated using the ideas
that I actually use, and that includes using the attendant notation. So please, dear reader,
do not make the mistake of believing that notation different from yours is simply notation;
it is possible that behind the notation lies an idea. And maybe it is this idea, not just
its representation by some particular notation, that is preventing you from understanding
what is being presented.

The other complaint—that of whether differential geometric methods actually con-
tribute anything in practice—has real substance, and it is to this matter that this paper is
primarily addressed. There is wonderful elegance and clarity in the differential geometric
formulation of mechanics. Much of the work done in the area of overlap between differential
geometry and mechanics—indeed, almost all of it until, maybe, the past fifteen years—has
been in understanding the structure of the mathematical models of the mechanics. While
such research is certainly justified by its outcome, to an engineer looking for solutions to
specific problems, it is not clear that the differential geometric formulation contributes to
these ends. Thus any skepticism you might feel towards differential geometric techniques is
justified, at least until it is clearly shown by people like me that these techniques contribute
towards the solution of problems that are of interest to you. What I will try to do in this
paper is indicate some of the kinds of problems where differential geometric ideas have
made a clear and decisive contribution. I will argue that this contribution might arise in
two ways.
1. It is sometimes the case that, merely by formulating a problem in differential geometric

language, the right questions reveal themselves. This is an often overlooked contribution
of precise mathematical formulations in general. In solving a problem it is often the
question that is the real problem. Sometimes, once one has the right question, the
problem either (a) solves itself or (b) reveals itself to be, in a precise way, impossible.
In either event, knowing the right question is much more than half the battle.

2. Sometimes the question one is asking is perfectly clear, and it is the solution that is the
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real problem. In some such cases (but definitely not all!) differential geometric methods
are just the thing, and can lead one to unexpectedly simple solutions.
I should make some effort to position what I say in this paper relative to the growing

volume of literature on differential geometric methods for control of mechanical systems.
It is impossible to give an accurate overview of the entirety of this research area, and I
will not attempt to do so. Instead I will identify research directions that have achieved a
somewhat polished state. Probably the first serious progress in uniting geometric mechan-
ics and geometric control theory was made along Hamiltonian lines. The port-controlled
Hamiltonian approach is representative of this, and a huge amount of work has been done
here. We refer to the papers of Dalsmo and van der Schaft [1998], van der Schaft [2000]
as representative of this work. A book that allies this Hamiltonian approach with topics of
interest to readers of this journal is that of Stramigioli [2001].

Another significant body of research, this connected firmly with the origins of geometric
mechanics, is that undertaken by researchers including John Baillieul, Anthony Bloch,
Peter Crouch, P. S. Krishnaprasad, Naomi Leonard, Jerry Marsden, and Dmitry Zenkov.
An account of some of this work can be found in the recent book of Bloch [2003].

The approach to mechanics and control taken in this paper is the one developed in detail
in my book [Bullo and Lewis 2004] coauthored with Francesco Bullo from the University of
California, Santa Barbara. In this book we develop from “first principles” an approach to the
modelling of mechanical systems using Riemannian and affine differential geometry. After
this we outline some of the control problems that can be addressed using the differential
geometric modelling techniques. We do not attempt to fairly summarise the content of this
book. One of the aims, instead, is to try to give the reader an idea of whether reading this
book is worth their effort. For some readers I believe it will be worth the effort, but for
others it may not be.

2. Modelling mechanical systems using affine differential geometry

In this section I present a very quick overview of Chapter 4 of [Bullo and Lewis 2004].
The intention is to introduce the major mathematical players in the affine differential geo-
metric formulation of mechanics. A novice reader expecting to read this section and walk
away understanding affine differential geometry and its use in mechanics will be disap-
pointed. The fact of the matter is that, if you are starting with only scant knowledge of
differential geometry, there is simply no way one can appreciate a geometric formulation
of mechanics in an afternoon. It will take a significant investment of effort and, more im-
portantly, a probable abandoning of certain preconceptions learned during the course of a
more classical mechanics education. Thus, what I attempt to do in this section is alert the
reader to the “brute facts” of a geometric formulation of mechanics. These are the things
that they will have to come to grips with in order to merely get off the ground.

2.1. The configuration manifold. One of the main reasons why differential geometry
is an effective tool for formulating mechanics is that mechanical systems evolve naturally
on a configuration space that is a manifold. That is to say, the set of configurations of a
mechanical system is in natural 1–1 correspondence with a set that has the structure of a
differentiable manifold; this manifold is called the configuration space and typically denoted
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by Q. This idea is stated clearly by Bullo and Lewis [2004].
At this point I could define what a manifold is, but this seems pointless since this

definition can be found in many places, including in [Bullo and Lewis 2004]. Moreover,
the reader will probably have a very good idea, or at least some intuition, about what a
manifold is. Instead, therefore, let me indicate why the notion of a manifold is important
in robotics. The reader is surely familiar with the fact that the configurations of a rigid
body fixed at a point in some inertial frame are in 1–1 correspondence with the set SO(3)
of 3 × 3 orthogonal matrices with determinant 1. What is the best way to view SO(3)?
Some people choose to parameterise SO(3) with Euler angles. This makes it appear as
though SO(3) is some subset of 3-dimensional Euclidean space, although clearly it is not.
Other representations of SO(3) are used (e.g., quaternion representations) to attempt to
get a handle on SO(3). But from my point of view, SO(3) is a manifold and that is that.
(Actually, SO(3) is a very special manifold, since it is also a Lie group, and this Lie group
structure is extremely important in robotics. However, I elect not to get into this aspect
of rigid body modelling here, but refer to [Bullo and Lewis 2004, Murray, Li, and Sastry
1994].) A manifold is, essentially a set that can locally be parameterised by Euclidean space
(e.g., by Euler angles), and different parameterisations are required to be compatible with
one another. A specific choice of parameterisation is sometimes very helpful in working
on a concrete example. And the existence of parameterisations in general is sometimes
useful in that it allows you to believe, at least temporarily, that you are working with
familiar calculus in Euclidean space (typically by saying, “Let (q1, . . . , qn) be coordinates
for Q”). However, the important thing about manifolds is that, when used properly , they
force a coordinate independent restriction on the problem formulation. Thus one is forced
to deal with the real structure of the problem and not one tacked on, ad hoc, by a choice
of coordinates.

Let me try to explain this in a very concrete context. In Figure 1 I have depicted two
simple systems, systems that are frequently used as benchmark-type systems to implement
algorithms and so on. In the top left is a simple mobile robot. Let me suppose the three
wheels are actuated, so this is really just a fully actuated planar rigid body. The objective
is to steer the body to the × with a prescribed orientation. In the bottom right in Figure 1
I depict the classical pendulum/cart system where the objective is to balance the pendulum
in the upright configuration by application of a force to the cart. One approach to modelling
the mobile robot problem is to declare the coordinates describing the configurations of the
system to be (x, y, θ), and then proceed as if the configuration space is R3. Similarly, for the
pendulum, one could take coordinates (x, θ) and proceed as if the configuration space is R2.
In practice this is often accentuated by writing the coordinates as [x y θ]T and [x θ]T to drive
home the fact the these are “coordinate vectors.” But the configuration spaces are not R3 or
R

2 since, in each case, θ = 0 and θ = 2π describe the same configuration. The configuration
spaces are SE(2) (which is naturally diffeomorphic to R2 × S1) and R× S1, where S1 is the
unit circle. (Other representations of the configuration spaces are possible, but they will
be equivalent to what I have given in the precise way that they are diffeomorphic.) A very
good question is, “Is it important to make this distinction?” Apparently it is, and for the
following reason. I have read or reviewed tens of papers and attended tens of talks where
it is claimed that a continuous globally stabilising feedback law has been designed for the
mobile robot system or the pendulum/cart system (or something like them). But this is
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Figure 1. These systems are not globally stabilisable using con-
tinuous feedback!

impossible because of the topology of the configuration manifold!1 That is to say, merely
by believing that the configuration manifold is Euclidean space many researchers are led to
claim something impossible. I once watched an hour long talk where a researcher described
a research programme, involving several people, the entire aim of which was to design a
global smooth stabilising feedback law for the pendulum/cart system. I was pleased to
note, at least, that the programme had not yet been successful!

Returning to the question asked in the title of the paper, a partial answer is this. By
formulating mechanical problems in terms of differential geometry, one must recognise that
the configuration manifold is a manifold. Doing this properly often forces a recognition of
important features of the problem structure.

2.2. The tangent bundle to the configuration manifold. The configuration manifold
describes the set of configurations of a mechanical system. The tangent bundle of the
configuration manifold describes the set of configurations and velocities of a mechanical
system. Intuitively, the tangent space at a point q ∈ Q, denoted by TqQ, is the set of all
possible velocities possible at this configuration. From this intuitive description I hope it is

1Most simply, the salient feature of S1 is that any continuous R-valued function on S1 that changes sign
once must change sign at least twice. Less simply, the Euler characteristic of S1 is zero.
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evident that TqQ is a vector space of the same dimension as Q. The tangent bundle, denoted
by TQ, is the union of all tangent spaces. The tangent bundle itself is a differentiable
manifold, and inherits from Q a differentiable structure in a natural way. Coordinates for
TQ are often denoted by ((q1, . . . , qn), (v1, . . . , vn)). Thus TQ has twice the dimension of
Q. The natural differentiable structure for TQ works out very nicely since it demands that,
if one has two compatible sets of coordinates (q1, . . . , qn) and (q̃1, . . . , q̃n) for Q, then the
corresponding velocities obey the very Chain Rule-like formula

ṽi =
∂q̃i

∂qj
vj , i ∈ {1, . . . , n}.

(Here I use the summation convention commonly employed in differential geometry where
summation is implied over indices that are repeated.) The way one should think of the
tangent bundle is as the state space for the system. That is to say, the dynamics of the
system are uniquely determined by initial conditions in the tangent bundle, this by virtue of
the equations of motion being second-order (as we shall soon see, in case you have forgotten).

There is one caveat I would like to make concerning the tangent bundle. The represen-
tation of tangent bundle coordinates as ((q1, . . . , qn), (v1, . . . , vn)) would seem to imply that
there is some sort of “product structure” to the tangent bundle. That is to say, it appears
that the tangent bundle is the Cartesian product of the configuration manifold and the set
of velocities. This is not the case. It is true that TQ is locally a product, but even this
local product representation is not natural; it arises from a specific choice of coordinates
and different coordinates give different local product representations. Thus, while the co-
ordinates for TQ seem to validate the notation of representing points in TQ as (q, v), this
representation is, in a very precise way, incorrect. It certainly is the case that one would
like to be able to indict the configuration at which a velocity lives. A good way to do this is
by writing a point in TQ as vq, thus declaring by the notation that this is a tangent vector
in the tangent space at q ∈ Q.

2.3. External forces. In a geometric setting for mechanics forces take values in the
cotangent bundle. Let me quickly describe the cotangent bundle. The cotangent space at
q ∈ Q is the dual space of TqQ (i.e., the set of R-valued linear maps on TqQ) and is denoted
by T∗qQ. The cotangent bundle is the union of all the cotangent spaces and is denoted by
T∗Q. Often authors feel compelled to attempt to give some intuitive idea of what cotangent
vectors are, typically because it is felt that cotangent vectors are somehow more mysterious
than tangent vectors. My own view is that the definition is perfectly adequate, and one just
has to accept it and learn that various physical quantities, for example forces, naturally are
represented as elements of the cotangent bundle.

But why should forces take values in the cotangent bundle? Well, what does a force do?
This is actually a fairly involved metaphysical question, but let me sidestep the metaphysics
and just answer the question: A force does work on a system as it moves. Precisely, the
situation is this. Suppose that a mechanical system undergoes a motion described by a
curve t 7→ γ(t) in Q. As it undergoes this motion, a force t 7→ F (t) is applied to the system
(being a little vague about just where F lives for the moment). The work done is then

W =
∫
I
F (t) · γ′(t) dt,
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where I is the time interval on which the motion is defined, i.e., the work is the integral
of the product of force with velocity. I have just written the product F (t) · γ′(t) as if it
means something, but let me consider what F must be in order for this expression to have
meaning. The expression F (t) ·γ′(t) should live in R (work is a scalar quantity) and should
be linear in γ′(t). Thus F (t) can live no place other than T∗γ(t)Q. This is the explanation I
give about why forces are cotangent bundle-valued, and my undergraduate students seem
to buy it. Note that the “·” in the expression F (t) · γ′(t) is not the “dot product.” It
represents an element of a dual space acting on a vector.

Forces in mechanics, at least when one is considering the control theory of mechanical
systems, come in two flavours: external forces coming from the environment (potential
forces, friction and dissipative forces, etc.) and control forces. Let me denote the total
uncontrolled external force by F , noting that F may be a function of position, velocity, or
time. The total control force I write as a linear combination of forces F 1, . . . , Fm. Thus
the control force is

m∑
a=1

uaF a,

where I ask that the forces F a be functions only of position, but allow the controls ua to
be functions of position, velocity, or time, as necessitated by the control scheme used. The
ua’s are the controls.

2.4. The kinetic energy metric. The key to the affine differential geometric approach
to mechanics is the fact that the kinetic energy of the system defines a Riemannian metric
on the configuration space. Researchers in robotics will know this Riemannian metric as the
“inertia matrix,” the “mass matrix,” or something similar. In the classical way of looking
at things, the kinetic energy metric is a symmetric positive-definite matrix-valued function
of configuration. In the geometric way of looking at things, the kinetic energy metric is a
smooth assignment of an inner product to each tangent space of the configuration space. In
differential geometry such an assignment is called a Riemannian metric. In the particular
case where the assignment comes from the kinetic energy for a mechanical system we call
the corresponding Riemannian metric the kinetic energy metric.

The notation used in [Bullo and Lewis 2004] for the kinetic energy metric is G. Thus
the inner product on the tangent space at q ∈ Q is denoted by G(q) (in the geometric
formulation, the kinetic energy metric is a genuine map, it being a section of a certain
tensor bundle), and the inner product of two tangent vectors uq, vq ∈ TqQ is denoted by
G(q)(uq, vq), or simply by G(uq, vq) since the point q ∈ Q is explicit in the notation already.
Therefore, the kinetic energy is the function on TQ given by

KE(vq) =
1
2
G(vq, vq).

Once one has at hand a physical model for the system, including useful representations
of the configuration space and its tangent bundle, the actual task of writing the kinetic
energy metric is actually quite simple, at least in principle. Of course, in practice there
are genuine issues involved with determining the inertial properties of one’s system, etc.,
but there is not much one can say about these matters, within or without a geometric
formulation of mechanics.
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There is a useful bit of notation associated with a Riemannian metric G. Since I have
found that this notation can be off-putting to many readers, let me devote a few moments
to an apology for it. Given a Riemannian metric G on Q there are naturally defined maps
G
[ : TQ→ T∗Q and G] : T∗Q→ TQ defined by

G
[(vq) · uq = G(uq, vu), uq, vq ∈ TqQ,

αq ·G](βq) = G
−1(αq, βq), αq, βq ∈ T∗qQ,

where by G
−1 I denote the inner product on T∗qQ induced by that on TqQ. If Gij ,

i, j ∈ {1, . . . , n}, are the components of G in a set of coordinates, then G[ is simply multi-
plication by this matrix of components. If Gij , i, j ∈ {1, . . . , n}, are the components of the
inverse matrix with components Gij , then G] is multiplication by this inverse matrix. The
reason for the funny notation [ and ] is that, in terms of indices, G[ takes an object whose
indices are superscripts (a tangent vector) and converts them to an object whose indices
are subscripts (a cotangent vector). Thus G[ “flattens” the indices. In a like manner, G]

raises or “sharpens” the indices.

2.5. The Levi-Civita connection. The components of the description of a mechanical
system I have described thus far, the configuration manifold, its tangent bundle, forces, and
the kinetic energy metric, will be well known to anyone in robotics, although not always
necessarily in just the way that I think of these things. However, the Levi-Civita connection
that I will describe now is, if you are not familiar with it, really something new. While it
can be related to some things that may be familiar, it is precisely none of these things. The
Levi-Civita affine connection is what it is, and, for those unfamiliar with it, this will take
a little hard swallowing.

Since I am making the affine connection formulation of mechanics the centrepiece of this
article, I ought to say what an affine connection is. I suppose the reader to be familiar with
the basic concept of a vector field on a manifold and some of the notation surrounding the
differential geometry of dealing with vector fields. Let me work with a manifold Q (which
may or not be the configuration manifold for a mechanical system). An affine connection2

on Q is a mapping that assigns to two vector fields X and Y a third vector field denoted
∇XY , and this assignment has the following properties:
1. the map (X,Y ) 7→ ∇XY is R-bilinear;
2. for vector fields X and Y and a function f we have ∇fXY = f∇XY ;
3. for vector fields X and Y and a function f we have ∇X(fY ) = f∇XY + (L Xf)Y ,

where L X is the Lie derivative with respect to X.
The vector field ∇XY is called the covariant derivative of Y with respect to X. So this is
the definition, and how very uninsightful it is! However, the notion of an affine connection
comes up very naturally in mechanics, and I will explain this as we go along. Let me first
say a few general things about affine connections.
1. An affine connection is extra structure on a manifold. That is to say, manifolds do

not come equipped with a nice natural affine connection that you can go ahead and
2What I call an “affine connection” is called a “linear connection” by some authors, and these authors have

something else (something that is related, however) in mind when they say “affine connection.” However,
the use of “affine connection” as I use it is fairly widespread.
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start using. You have to introduce your own. Thankfully, in mechanics, there are affine
connections that come from the mechanical problem data. We shall see how these arise.

2. An affine connection ∇ is described in coordinates (q1, . . . , qn) by writing

∇ ∂

∂qj

∂

∂qk
= Γijk

∂

∂qi
,

which is always possible for n3 functions Γijk, i, j, k ∈ {1, . . . , n}. These are called the
Christoffel symbols for the affine connection and they clearly depend on a choice of
coordinates. Using these, the covariant derivative of two general vectors fields is easily
written:

∇XY =
(∂Y i

∂qj
Xj + ΓijkX

jY k
) ∂

∂qi
.

3. Associated with every Riemannian metric G is a unique affine connection, called the

Levi-Civita connection and denoted (by me) as
G

∇. There is a nice intrinsic characteri-

sation of
G

∇ and for this I refer the reader to [Bullo and Lewis 2004]. Here let me give a
very hands-on, but very grimy, characterisation by giving the formula for its Christoffel
symbols:

G

Γijk =
1
2
G
il
(∂Glj
∂qk

+
∂Glk
∂qj

− ∂Gjk
∂ql

)
.

We shall see in Section 2.7 where this affine connection arises from.
4. Associated with an affine connection ∇ are special curves on Q called the geodesics of
∇. These admit a nice intrinsic description too, but let me simply give the differential
equation in coordinates that these curves must satisfy:

q̈i(t) + Γijkq̇
j(t)q̇k(t) = 0, i ∈ {1, . . . , n}. (2.1)

In coordinate-free language this equation is written as ∇γ′(t)γ′(t) = 0. Thus ∇γ′(t)γ′(t)
is the slick way of writing what is on the left-hand side of (2.1), where t 7→ γ(t) is the
curve that in coordinates has the form t 7→ (q1(t), . . . , qn(t)).
It is through geodesics that one can most easily begin to get at what an affine connection
“means.” So let me say a few words about this.

(a) If ∇ =
G

∇ is the Levi-Civita connection, then geodesics are those curves which
locally minimise length.

(b) Note that the coordinate expression in (2.1) for ∇γ′(t)γ′(t) is a sum of “q̈i” and
“γijkq̇

j(t)q̇k(t).” It is an act of unspeakable violence to break these terms apart.
These terms always belong together, and together they mean “∇γ′(t)γ′(t).” Sepa-
rately they mean absolutely, positively nothing.3 One consequence of this is that
the expression “∇γ′(t)γ′(t)” gives a way of understanding the acceleration along the
curve γ. But note that this expression of acceleration is not intrinsic, it depends
on a choice of affine connection. Some lengths are taken in Section 4.3.5 of [Bullo
and Lewis 2004] to describe this.

3Okay, I am telling a fib here for emphasis. The expression q̈i makes sense as a local coordinate for
the second jet bundle. But I do not wish to go in that direction, so let me stick to my expression of the
unspeakable violence of rendering these terms asunder, since you cannot be led wrong in accepting it.
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The primary message of the preceding discussion is this:

Associated in a unique way with the kinetic energy metric G for a mechani-
cal connection is an affine connection called the Levi-Civita connection. The
importance of this will be made clear in Section 2.7.

2.6. Nonholonomic constraints. The final ingredient in my description of mechanics
before I write the equations of motion is nonholonomic constraints. Sometimes it seems to
me as if there are as many techniques for deriving the equations of motion in the presence
of nonholonomic constraints as there are people who have thought about doing this. These
methods are, at least the correct ones, all distinguished by one simple fact: they are all
the same! That is to say, Method X for writing equations of motion for a system subject
to nonholonomic constraints is correct if and only if it agrees with Newton’s and Euler’s
equations in the intersection where Method X and Newton’s and Euler’s equations apply.
Many authors claim mystical advantages of their correct technique over other (necessarily
equivalent) correct techniques. The mystical advantages too often are described in some
metaphysical form, and Newton and Euler do not even get mentioned. My take on this is:
If your technique is equivalent to Newton and Euler, then you are correct and so is everyone
else whose method is equivalent to Newton and Euler. There can be real issues in practice,
such as coming up with a technique that is easy to implement. However, there are no “in
principle” advantages of any one correct method over any other correct method.

That all being said, let me just say here what I mean when I say “nonholonomic con-
straint,” and how these constraints get accounted for in the equations of motion. A non-
holonomic constraint on a configuration manifold Q is a distribution D on Q. That is, we
select a subspace Dq of each tangent space TqQ that describes the set of velocities admissible
at that configuration. Other generalisations are possible, for example, to time-dependent
or nonlinear constraints. But this complication adds little to the conceptual picture.

The way in which nonholonomic constraints get incorporated into the equations of
motion is by adding a force, called the constraint force, to the equations of motion. A
constraint force is, by definition, one that does no work on admissible velocities. That is,
at a configuration q ∈ Q, a force λq ∈ T∗qQ is a constraint force if λq · vq = 0 for every
vq ∈ Dq. The idea, as we shall see clearly in the next section, is that a constraint force is
introduced into the problem as an unknown to be solved for, a little like, but not exactly
like, a Lagrange multiplier.

2.7. The equations of motion. As I suggested in the preceding section, the equations
of motion for a mechanical system are given by Newton’s and Euler’s equations that are
based on simple laws of force and moment balance. The precise variant of Newton’s and
Euler’s equations one wishes to use—for example, the standard Euler–Lagrange equations,
the Gibbs–Appell equations, Gauss’s Principle of Least Action, the Principle of Virtual
Work—is subject to taste. For my approach, the key is the following result.

2.1 Theorem: (General equations of motion) Consider a mechanical system with config-
uration manifold Q, kinetic energy metric G, external force F , control force

∑m
a=1 u

aF a,
and nonholonomic constraint D. For a curve t 7→ γ(t) the following are equivalent:

(i) the force/moment balance equations of Newton/Euler hold along γ;
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(ii) γ satisfies the equations

G
[(
G

∇γ′(t)γ′(t)) = F (t, γ′(t)) +
m∑
a=1

ua(t)F a(γ(t)) + λ(t),

γ′(t) ∈ Dγ(t),

where t 7→ λ(t) is a constraint force along γ.

For unconstrained systems, i.e., where the nonholonomic constraint is D = TQ, this
immediately gives the following corollary.

2.2 Corollary: (Equations of motion for unconstrained systems) Consider an uncon-
strained mechanical system with configuration manifold Q, kinetic energy metric G, external
force F , and control force

∑m
a=1 u

aF a. For a curve t 7→ γ(t) the following are equivalent:
(i) the force/moment balance equations of Newton/Euler hold along γ;

(ii) γ satisfies the equations

G
[(
G

∇γ′(t)γ′(t)) = F (t, γ′(t)) +
m∑
a=1

ua(t)F a(γ(t)).

It is perhaps worth comparing these equations with the equations of motion in the
usual form seen in the robotics and mechanics literature. The usual form of the equations
is something like

M(q)q̈ +C(q, q̇)q̇ +N(t, q, q̇) = Bu.

In components the equations of Corollary 2.2 are

Gilq̈
l +Gij

G

Γljkq̇
j q̇k = Fi(t, q, q̇) +

m∑
a=1

uaF ai (q).

Thus we can directly compare the terms in the two equations as per Table 1. Note that I

Table 1. Comparison of terms in “classical,” “geometric com-
ponent,” and “intrinsic” formulation of equations of motion

Classical form Geometric coordinate form Intrinsic form

M(q)q̈ +C(q, q̇)q̇ Gilq̈
l +Gij

G

Γljkq̇
j q̇k

G

∇γ′(t)γ′(t)
N(t, q, q̇) −Fi(t, q, q̇) −F (t, γ′(t))
Bu

∑m
a=1 u

aF ai (q)
∑m
a=1 u

aF a(γ(t))

do not separate M(q)q̈ + C(q, q̇)q̇, and neither should you, given my comments in item
4b in Section 2.5.

For systems with nonholonomic constraints the usual way to proceed is to eliminate
the constraint force in some way. In terms of the affine connection picture I am painting,
the magical thing is that, after elimination of the constraint force, one still gets equations
involving an affine connection. I will not explain the way this works here since the most
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direct explanation involves manipulations with affine connections that are one step beyond
elementary, and I do not want to get into too much intricate stuff. The elimination of the
constraint force also results in a modification of the external and control forces. Let me just
summarise descriptively the final tagline and refer to [Bullo and Lewis 2004] for a thorough
discussion of how this works.

For a mechanical system with with configuration manifold Q, kinetic energy
metric G, external force F , control force

∑m
a=1 u

aF a, and nonholonomic con-

straint D, there exists (1) an affine connection
D

∇ depending on G and D, (2) a
TQ-valued map Y depending on F , G, and D, and (3) vector fields Y1, . . . , Ym,
depending on F 1, . . . , Fm, G, and D, such that, for a curve t 7→ γ(t) the fol-
lowing are equivalent:

(i) the force/moment balance equations of Newton/Euler hold along γ;
(ii) γ satisfies the equations

D

∇γ′(t)γ′(t)) = Y (t, γ′(t)) +
m∑
a=1

ua(t)Ya(γ(t)),

γ′(0) ∈ Dγ(0).

(2.2 )

Therefore, the point is that the equations of motion are given by the equations (2.2), and
a fundamental rôle in the equations is played by an affine connection.

3. Some problems whose solution is facilitated by using differential
geometry

The bottom line of the preceding section is equations (2.2), which include the equations
of motion for a large class of mechanical systems. These equations are very nice since
they are so compact, general, and revealing of the geometric structure of the problem.
However, the fact of the matter is that, if this is the end of what we can do with the
affine connection formalism, then serious questions can be raised about whether there is a
payoff in learning the mathematics necessary to understand the formulae. Thankfully, there
are problems beyond the mere formulation of the equations of motion that are effectively
addressed within the differential geometric framework. In this section I investigate some of
these. Since everything I will talk about here has already appeared in the literature, and
since a detailed presentation of the results would necessitate reproducing huge chunks of
the papers in question, I instead describe the results in the papers in question rather than
reproduce them. I think that this approach is more in keeping with the objectives of the
paper.

3.1. Controllability. One of the fundamental problems in the control of mechanical
systems is, “Can a system be steered from Point A to Point B?” This is a controllability
question. For systems that are fully actuated, i.e., when the control forces F 1, . . . , Fm

span T∗qQ for each q ∈ Q, these controllability questions are trivial since one can always
apply a force to make the system go wherever you want. However, for underactuated
systems, controllability questions are generally extremely difficult. Moreover, if the system
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is underactuated and if there are no uncontrolled external forces (e.g., no potential forces, so
ruling out the multitude of pendulum systems that are often considered), then controllability
becomes a very difficult problem. The approach I take here is to give a brief general
discussion of the sort of controllability problems I will consider, and then look at an example
where I outline the controllability that can be deduced based on some more or less recent
work that is heavily steeped in techniques of differential geometry.

The controllability problem I consider is purely a local one. Namely, I consider a me-
chanical system with configuration manifold Q and whose equations of motion are

∇γ′(t)γ′(t) =
m∑
a=1

ua(t)Ya(γ(t)), (3.1)

recalling from Section 2.7 that this equation models mechanical systems, possibly with
nonholonomic constraints, that are subject to no uncontrolled external forces. I let q0 ∈ Q
and denote by RQ(q0,≤ T ) the set of configurations reachable from q0 in time at most T .
The system is small-time locally configuration controllable (STLCC) from q0 if q0 is an
interior point of RQ(q0,≤ T ). This definition is a bit pared down from the most general
definition, and I refer to [Bullo and Lewis 2004] for the full details. The results I will refer
to in this section are from the work of Bullo and Lewis [2003b], Lewis [2000], Lewis and
Murray [1997], Lewis and Tyner [2004]. All of the results in these papers rely heavily on
the affine connection structure of the system equations (3.1).

As an example of the sort of system whose controllability can be described by the
results I refer to, I consider the planar rigid body system depicted in Figure 2. This is a

F

h

Figure 2. A controlled planar body

system moving on a planar surface orthogonal to the direction of the gravitational field,
and I assume that there are no friction forces. One might want to think of this system as an
idealised model of a hovercraft whose motive force is supplied by a single thrust fan for which
the direction and magnitude of the force can be varied. One problem of interest for this
system is to steer the system from rest in a configuration qA to rest in a configuration qB. In
order to do this, one would require that qB be in the set of configurations reachable from qA.
Thus the controllability problem is fundamental to this motion planning problem. In [Lewis
and Murray 1997] it is shown that this system is, indeed, STLCC from every configuration.
The results in [Lewis and Murray 1997] are an affine differential geometric formulation
of general accessibility results of Sussmann and Jurdjevic [1972] and local controllability
results of Sussmann [1987].
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Let me now consider a slight alteration of the system by supposing that the direction
of the force is now fixed, say at an angle of π

2 as shown in Figure 3. Effectively, this

F

π

2

h

Figure 3. A controlled planar body with a single control input

system now has a single-input. It turns out that the controllability of this system cannot
be determined using the results of Lewis and Murray [1997]. However, these results were
refined in a certain direction in [Bullo and Lewis 2003b] where it is shown that this system,
and indeed any single-input system of the form (3.1), is controllable from at most a “thin”4

set of points.
Finally let me consider another alteration of the model as depicted in Figure 4. For

F

h

τ

Figure 4. A controlled planar body with the fan dynamics mod-
elled

this model, the fan is assumed to have inertia, so this adds an extra degree of freedom to
the model. Once again, this system was one whose controllability I was unable to analyse
when I first encountered it. However, after some work by Lewis and Tyner [2004] it was
shown that this system was only STLCC from the configurations shown in Figure 5 and
SE(2)-translations of these configurations.

The point of the presentation in this section might be said to be the following.
1. Underactuated mechanical systems often have subtle local controllability properties.

This is clearly evidenced in this section by the difficulty of determining the controllability
4Precisely, a set that is locally the set of zeros of a finite collection of analytic functions.
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Figure 5. The configurations from which the planar body with
fan dynamics is controllable

of a simple planar body system with some simple, natural variations in the model.
2. By understanding the geometric structure of the model of the system, particularly the

rôle played by the affine connection, it is possible to develop general results that allow
the analysis of some nontrivial examples.
Moreover, the controllability results referred to in this section lead naturally to some

techniques in motion planning that I now describe.

3.2. Trajectory planning using decoupling vector fields. In this section I shall
describe what can be achieved in terms of converting the controllability results used in the
preceding section to motion planning results. The idea I describe here was motivated by
explorations of Arai, Tanie, and Shiroma [1998], Lynch, Shiroma, Arai, and Tanie [2000].
The initial geometric presentation is due to Bullo and Lynch [2001] and the most polished
form of the results appear in [Bullo and Lewis 2003b]. The idea is fairly simple. For a given
mechanical system whose equations of motion are given by

∇γ′(t)γ′(t) =
m∑
a=1

ua(t)Ya(γ(t)), (3.2)

one seeks vector fields X1, . . . , Xk, called decoupling vector fields, that have the property
that their integral curves, and any reparameterisations of these integral curves, can be
followed by a trajectory of the system (3.2). One then hopes to find sufficiently many
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such vector fields that any motion planning problem can be solved by concatenating their
integral curves.

Again, rather than restating the results which are given in the language of affine differ-
ential geometry, let me give a problem for which the ideas lead to a solution of the motion
planning problem. The system we consider is the snakeboard system introduced by Lewis,
Ostrowski, Murray, and Burdick [1994]. The motion planning strategy we present here is
described by Bullo and Lewis [2003a].

The snakeboard system is shown in Figure 6. This is an example of a system with

ℓ

Figure 6. The snakeboard

nonholonomic constraints. The idea of the system is that there is a central coupler at
each end of which are wheels whose angle relative to the coupler is controllable. Atop the
coupler, between the wheels, is an inertial rotor that is also controlled. Thus the system
has five degrees of freedom and two controls. The objective is to steer the snakeboard from
an initial configuration at rest to a desired configuration at rest. Bullo and Lewis [2003a]
show that the snakeboard has two decoupling vector fields and indicate how to use these to
explicitly solve the motion planning problem. In Figure 7 we show trace of a solution of the
motion planning problem where the snakeboard is steered from the position at the origin
to a specified final position. The motion planning controller that generates Figure 7 is very
simple, but is directly derived from the controllability results of Bullo and Lewis [2003b].

Other systems where the motion planning problem can be solved are given in Chapter 13
of Bullo and Lewis [2004].

The point of what we say in this section includes the following.
1. The idea of motion planning using decoupling vector fields is an excellent example of

one where the right question is suggested by the differential geometric formulation.
2. Controllability is often seen as being a somewhat esoteric undertaking. Very often

systems are controllable in a simple way, and in such cases sophisticated controllability
techniques are more than what is needed. However, mechanical systems provide a rich
class of systems where controllability is often not easy to characterise. Moreover, by
understanding the controllability properties of a system, it is possible that one might
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Figure 7. A solution of the snakeboard motion planning prob-
lem

be able to derive explicit solutions to the motion planning problem.
3. While the affine connection formulation of nonholonomic systems is fairly complicated,

the application of this formulation to the solution of the motion planning problem for
the snakeboard justifies the complication.

3.3. Energy shaping. The last idea we discuss in this section is something that is actually
very complicated, and is still the topic of ongoing research. The idea is this. Suppose one
is given a mechanical system, let me call it the “open-loop system,” with kinetic energy
metric Gol and with the uncontrolled external forces being those coming from a potential
function Vol. Using feedback, one wishes to transform the system into a mechanical system,
let me call it the “closed-loop system,” with kinetic energy metric Gcl and external forces
being those coming from a potential function Vcl. The value of this idea is that much
can be said about the behaviour of a mechanical system by knowing properties of the
potential function. In particular, equilibria and their stability are easily determined from
the potential. Thus this technique of “energy shaping,” i.e., changing the energy of the
system using feedback, is a useful tool for stabilisation. The original idea of potential
shaping for fully actuated systems dates to [Takegaki and Arimoto 1981]. The situation in
the underactuated case was worked out by van der Schaft [1986]. The possibility of shaping
the kinetic energy was considered first in a Lagrangian setting by Bloch, Chang, Leonard,
and Marsden [2001], Bloch, Leonard, and Marsden [2000] and in a Hamiltonian setting by
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Ortega, Spong, Gómez-Estern, and Blankenstein [2002].
These ideas of energy shaping lead to partial differential equations and, particularly

when kinetic energy shaping is considered, these partial differential equations are extremely
complicated. It is difficult to even give conditions ensuring that these partial differential
equations have solutions. A rather course general result is given by Auckly and Kapitanski
[2002], and they make use of some Riemannian geometry in their development. A fairly
refined result concerning part of the problem is given by Lewis [2006]. In both cases, the
results are too complicated to reproduce here. But the point is this.
1. Sometimes very natural engineering questions can lead to extremely challenging prob-

lems that require sophisticated mathematics for their solution.

4. In conclusion

In this paper I have attempted to illustrate that there is value in the differential geomet-
ric approach to modelling and control of mechanical systems. In particular, in Section 3 I
have attempted to make it clear that this value extends beyond a mere elegant formulation
of the equations of motion. What I hope is that an uninitiated reader interested in the
differential geometric approach might now attack the daunting literature with something
of a sense of purpose, knowing that there are possible rewards awaiting them at the end of
their journey.
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