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Abstract

The affine structure of jets of sections of a fibred manifold is reviewed. Intrinsic and
coordinate characterisations are provided.

1. Equipment list

We work with infinitely differentiable objects to which we refer as smooth. We suppose
the reader knows what a locally trivial fibre bundle is, and what a vector bundle is. The
material here is extracted primarily from [?] and [Saunders 1989].

1.1. Fibred manifolds and their jet spaces. A fibred manifold is a surjective sub-
mersion π : Y → X. If π : Y → X and π′ : Y′ → X′ are fibred manifolds, a fibred morphism
from Y to Y′ is a pair (F, f) where F : Y → Y′ and f : X → X′ are smooth maps such that
the following diagram commutes:

Y
F //

π

��

Y′

π′

��
X

f
// X′

We will also say that F is a fibred morphism over f in this case.
The vertical bundle of a fibred manifold π : Y → X is the subbundle Vπ = ker(Tπ) of

TY.
A local section of a fibred manifold π : Y → X is a pair (ξ,U) where U ⊂ X is an open

subset and where ξ : U → Y is a smooth map such that π ◦ξ(x) = x for each x ∈ U.1 For
x ∈ X, a local section (ξ,U) is a local section at x if x ∈ U. Two local sections (ξ1,U1)
and (ξ2,U2) at x are equivalent to order k if, in local coordinates, the first k derivatives
of ξ1 and ξ2 agree at x. One can tediously check, using the higher-order Chain Rule, that
this notion of equivalence is independent of choice of local coordinates. One can also check
that this notion of equivalence defines an equivalence relation on the set of local sections
at x, and we denote the equivalence class of a local section (ξ,U) by jkξ(x). We call jkξ(x)
the k-jet of ξ at x. We denote

Jkπx = {jkξ(x) | (ξ,U) is a local section at x}, Jkπ = ∪x∈XJkπx.

The set Jkπx is the set of k-jets of local sections at x, and the set Jkπ is the set of
k-jets of local sections, or the set of k-jets for short. We adopt the convention that
J0π = Y.
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1Note that the set of local sections of the form (ξ, M) may be empty, i.e., there may be no global sections.
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Let us outline how one puts local coordinates on Jkπ. Let (V, ψ) be an adapted chart
for Y and let (U, φ) be the corresponding chart for X. Let us denote coordinates for (V, ψ)
by (x,y) ∈ Rn ×Rm. Let (ξ,U) be a local section whose local representative is denoted by
x 7→ (x, ξ(x)), so defining ξ : U → Rm. Let x ∈ U and denote x = φ(x). The equivalence
class in Jkπx containing ξ is then uniquely determined by the first k derivatives of the local
representative of ξ, i.e., by ξ(x),Dξ(x),D2ξ(x), . . . ,Dkξ(x). Note that ξ(x) ∈ Rm and
that Djξ(x) ∈ Lj

sym(Rn; Rm) for j ∈ {1, . . . , k}, where Lj
sym(Rn; Rm) denotes the set of

symmetric multilinear maps from
∏j

j=1 Rn into Rm. Thus we define a chart (jkV, jkψ) for
Jkπ by jkV = ∪x∈UJkπx and

jkψ(jkξ(x)) = (x, ξ(x),Dξ(x), . . . ,Dkξ(x)) ∈ Rn×Rm×L1
sym(Rn; Rm)×· · ·×Lk

sym(Rn; Rm).

One can then verify that, if {(Va, ψa)}a∈A is an atlas of adapted charts for Y, then
{(jkVa, jkψa)}a∈A is an atlas for Jkπ. The tedious thing to check is that the overlap
condition is satisfied, but this follows from the higher-order Chain Rule. This gives the
differentiable structure for Jkπ.

Now define a projection πk : Jkπ → X by πk(jkξ(x)) = x. For k, l ∈ N satisfying k > l
we also have projections πk

l : Jkπ → Jlπ defined by the fact that if two local sections are
equivalent to order k, then they are also equivalent to order l. By writing these projections
in local coordinates, one can see that they are surjective submersions. Thus we speak of
Jkπ as the bundle of k-jets, since it has the structure of a fibred manifold.

1.2. Fibred products. A fibred product is most often used to fabricate a fibre bundle
with a desired base space, and with fibres being those of an existing fibre bundle.

1.1 Definition: (Fibred product) Let f : M → X and g : N → X be smooth maps. The
fibred product of M and N with respect to f and g is the subset

M×X N = {(u, v) ∈ M× N | f(u) = g(v)}

of M × N. We also define the projections f∗g : M ×X N → M, g∗f : M ×X N → N, and
f ×X g : M ×X N → X by f∗g(u, v) = u, g∗f(u, v) = v, and f ×X g(u, v) = f(u) (or,
equivalently, f ×X g(u, v) = g(v)), respectively. •

In general, the fibred product will have no useful structure. However, the following
important case will come up for us.

1.2 Proposition: (Fibred products of fibred manifolds) If π1 : Y1 → X and π2 : Y2 → X
are fibred manifolds, then the following statements hold:

(i) Y1 ×X Y2 is a closed submanifold of Y1 × Y2;
(ii) π∗1π2 : Y1 ×X Y2 → Y1, π∗2π1 : Y1 ×X Y2 → Y2, and π1 ×X π2 : Y1 ×X Y2 → X are fibred

manifolds.

Note that we can regard Y1 ×X Y2 as a fibred manifold in three different ways, so it is
important to understand which way is intended in any situation.

In the case of fibred manifolds, we have the following useful feature of fibred products.

1.3 Proposition: (Pull-back fibred manifold) Let π : Y → X be a fibred manifold and let
f : M → X be a smooth map. The fibred product Y ×X M is a fibred manifold over M with
projection f∗π, and we denote f∗Y = Y ×X M. Moreover, if π : E → X is a vector bundle,
then so too is f∗π : f∗E → M.
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The resulting fibred manifold is denoted by f∗π : f∗Y → M and is called the pull-back
of Y to M.

1.3. Affine spaces and affine bundles. An affine space is a generalisation of a vector
space where, roughly speaking, some of the structure of the vector space is stripped away.

1.4 Definition: (Affine space) Let V be a vector space. An affine space modelled on V
is a set A with a map Φ: V × A → A satisfying the following properties:

(i) Φ(0V, x) = x for every x ∈ A;
(ii) Φ(v1 + v2, x) = Φ(v1,Φ(v2, x)) for every v1, v2 ∈ V and x ∈ A;
(iii) for x1, x2 ∈ A there exists v ∈ V such that x2 = Φ(v, x1);
(iv) if, for any x ∈ A, Φ(v, x) = x, then v = 0V. •

We immediately dispense with the notation Φ and denote Φ(v, x) = x + v. Also, if
x1, x2 ∈ A, then we denote by x2 − x1 ∈ V the (necessarily unique) element of V for which
x2 = x1 +(x2−x1). Note that the expression x1 +x2 is undefined for x1, x2 ∈ A: one cannot
add points in an affine space, but can only add to them vectors from V.

The notion of an affine space can be adapted to the notion of an affine bundle.

1.5 Definition: (Affine bundle) Let σ : V → X be a vector bundle. An affine bundle
modelled on V is a locally trivial fibre bundle π : A → X with a smooth map Φ: V×X A → A
such that

(i) Φ is a fibred morphism over idX and
(ii) for each x ∈ X, the map Φ|σ−1(x) × π−1(x) makes π−1(x) an affine space modelled

on the vector space σ−1(x). •

1.4. Germs of functions. Let x ∈ X. A local function at x is a pair (f,U), where U

is a neighbourhood of x and where f : U → R is a smooth function. Two local functions
(f1,U1) and (f2,U2) at x are equivalent if there exists a neighbourhood U of x such that
U ⊂ U1, U ⊂ U2, and f1|U = f2|U. This notion of equivalence is an equivalence relation,
and the set of equivalence classes is called the set of germs of functions at x. We denote
by C∞

x (X) the set of germs of functions at x, and we denote an element of C∞
x (X) by [f ]x.

Let us denote
Mx = { [f ]x ∈ C∞

x (X) | f(x) = 0} .

For those who like algebra, C∞
x (X) is a commutative unit ring with addition and multipli-

cation defined by
[f ]x + [g]x = [f + g]x, [f ]x[g]x = [fg]x.

Moreover, if we define scalar multiplication over R by a[fx] = [af ]x, then C∞
x (X) is a R-

algebra. One can easily check that these definitions are independent of representative. One
can also show that Mx is an ideal of C∞

x (X), and is moreover the unique maximal ideal in
C∞

x (X). Let us denote by M k
x the k-fold product of the ideal Mx with itself. Thus

M k
x = {[f1

1 · · · f1
k ]x+· · ·+[f l

1 · · · f l
k]x | [f i

j ]x ∈ Mx(X), i ∈ {1, . . . , l}, j ∈ {1, . . . , k}, l ∈ N}.

Note that if k < l then M l
x ⊂ M k

x (essentially because the product of two functions
vanishing at x is also a function vanishing at x). One can show that the functions in M k

x
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are exactly those which, when their Taylor expansion about x is computed in a coordinate
chart about x, have a Taylor series that begins at degree k (see [Golubitsky and Guillemin
1973, Lemma 3.9]).

The following result gives the most important feature of the ideals M k
x for us. We

denote by [f ]x,k the equivalence class of [f ]x ∈ M k
x in M k

x /M
k+1
x .

1.6 Theorem: (Characterisation of M k
x /M

k+1
x ) There exists a unique isomorphism (of R-

vector spaces) from M k
x /M

k+1
x to Sk(T∗

xX) such that [f ]x,k is mapped to the kth derivative
of f at x (this defining an element of Sk(T∗

xX) since f vanishes to order k).

Once one believe our assertion, stated before the theorem, about the character of M k
x ,

the theorem is more or less obvious.

2. The affine structure of jet bundles

In this section we indicate how to give the fibred manifold πk
k−1 : Jkπ → Jk−1π the

structure of an affine bundle. As we shall see, the vector bundle on which the affine bundle
is modelled is π∗k−1Sk(T∗X)⊗ (πk−1

0 )∗Vπ.

2.1. The intrinsic version. We let π : Y → X be a fibred manifold, x0 ∈ X, (ξ,U) a local
section at x0, [f ]x0 ∈ M k

x0
, and v ∈ Vξ(x0)π. Let us denote the representative of [f ]x0 in

M k
x0
/M k+1

x0
' Sk(T∗

x0
X) by [f ]x0,k. We consider a deformation of ξ, by which we mean a

smooth map σ : U× I → Y such that

1. I ⊂ R is an interval for which 0 ∈ int(I),

2. σ(x, 0) = ξ(x) for all x ∈ U, and

3. π ◦σ(x, t) = x for all (x, t) ∈ U× I.

Thus, for fixed t ∈ I, the map x 7→ σ(x, t) defines a local section. Let us additionally
suppose that

d
dt

∣∣∣
t=0

σ(x0, t) = v,

this making sense since the curve t 7→ σ(x0, t) has its image in the fibre over x0. Now, with
this data, define a local section (ξ[f ]x0,k,v,U) by ξ[f ]x0,k,v(x) = σ(x, f(x)).

The following lemma records the useful fact about this local section.

2.1 Lemma: (Property of deformation) The k-jet of ξ[f ]x0,k,v at x0 is uniquely determined
by

(i) the k-jet of ξ at x,
(ii) [f ]x0,k ∈ M k

x0
/M k+1

x0
' Sk(T∗

x0
X), and

(iii) v ∈ Vξ(x0)π.
Moreover, jk−1ξ[f ]x0,k,v(x0) = jk−1ξ(x0).

We shall adopt the suggestive notation

jkξ[f ]x0,k,v(x0) = jkξ(x0) + [f ]x0,k ⊗ v.
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The lemma tells us that at least the object on the left only depends on the objects used on
the right. The next result tells us that the notation is justified, and that in fact the previous
equation exactly expresses the affine structure of the set of k-jets having equal k − 1-jets.

2.2 Theorem: (The affine structure of jet bundles) For each p ∈ Jk−1πx0, the set
(πk

k−1)
−1(p) is an affine space modelled on Sk(T∗

x0
X) ⊗ Vπk−1

0 (p)π, and the affine structure
satisfies

jkξ(x0) + [f ]x0,k ⊗ v = jkξ[f ]x0,k,v(x0).

In particular, πk
k−1 : Jkπ → Jk−1π is an affine bundle modelled on π∗k−1Sk(T∗X)⊗(πk−1

0 )∗Vπ.

We do not intend to offer coordinate-independent proofs of these results. The most
direct proofs are in coordinates, and we next state coordinate versions of the preceding
constructions.

2.2. The coordinate version. In this section we give the coordinate construction of the
section ξ[f ]x0,k,v from the preceding section, and show that it does indeed have the properties
stated.

Since we wish to work locally, let us simply suppose that Y = U×W with U ⊂ Rn and
W ⊂ Rm open sets, that X = U, and that π : U×W → U is projection onto the first factor.
Let x0 ∈ U, let [f ]x0 ∈ M k

x0
, and let v ∈ Rm (note that vertical vectors are, essentially,

vectors in Rm). Now consider a section ξ given by ξ(x) = (x, ξ(x)), defining ξ : U → W.
A deformation of ξ is then a map σ : U × I → V of the form σ(x, t) = (x,σ(x, t)) where
σ(x, 0) = ξ(x) for all x ∈ U. We suppose that

d
dt

∣∣∣
t=0

σ(x0, t) = v.

To see that such a deformation exists, we could take σ(x, t) = x + tv. But we wish to
allow σ to be any deformation with this property. Now we define a section ξ[f ]x0,k,v by
ξ[f ]x0,k,v(x) = ξ(x, f(x)), and write

ξ[f ]x0,k,v(x) = (x, ξ[f ]x0,k,v(x)),

so defining ξ[f ]x0,k,v : U → V. Note that

ξ[f ]x0,k,v(x) = σ(x, f(x)).

Let us compute the first k derivatives of ξ[f ]x0,k,v. First the first derivative. We have

∂ξ[f ]x0,k,v

∂xi
(x) =

∂σ

∂xi
(x, f(x)) +

∂σ

∂t
(x, f(x))

∂f

∂xi
(x).

Since σ is a deformation of ξ and since f(x0) = 0,

∂σ

∂xi
(x0, f(x0)) =

∂ξ

∂xi
(x0).

If k = 1 then we have

∂ξ[f ]x0,k,v

∂xi
(x0) =

∂ξ

∂xi
(x0) + v

∂f

∂xi
(x0).
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By Theorem 1.6 it follows that [f ]x0,1 is uniquely determined by ∂f
∂xi (x0), i ∈ {1, . . . , n}.

Thus we see that Lemma 2.1 follows in this case.
If k > 1 then ∂f

∂xi (x0) = 0 since f vanishes to order k, and so

∂ξ[f ]x0,k,v

∂xi
(x0) =

∂ξ

∂xi
(x0).

Now let us compute the second derivative:

∂2ξ[f ]x0,k,v

∂xj∂xi
(x, f(x)) =

∂2σ

∂xj∂xi
(x, f(x)) +

∂2σ

∂t∂xi
(x, f(x))

∂f

∂xj
(x, f(x))

+
∂2σ

∂xj∂t
(x, f(x))

∂f

∂xi
(x) +

∂σ

∂t
(x, f(x))

∂2f

∂xj∂xi
(x).

If k = 2 then the terms involving the first derivatives of f vanish at x0, and we are left with

∂2ξ[f ]x0,k,v

∂xj∂xi
(x0, f(x0)) =

∂2ξ

∂xj∂xi
(x0, f(x0)) + v

∂2f

∂xj∂xi
(x0).

Again, Theorem 1.6 gives Lemma 2.1 in this case.
It is hopefully now somewhat clear that one can fabricate an inductive proof to show

that, for any k ∈ N, we have

∂ξ[f ]x0,k,v

∂xi1
(x0) =

∂ξ

∂xi1
(x0),

∂2ξ[f ]x0,k,v

∂xi1∂xi2
(x0) =

∂2ξ

∂xi1∂xi2
(x0),

...

∂k−1ξ[f ]x0,k,v

∂xi1 · · · ∂xik−1
(x0) =

∂k−1ξ

∂xi1 · · · ∂xik−1
(x0)

∂kξ[f ]x0,k,v

∂xi1 · · · ∂xik
(x0) =

∂kξ

∂xi1 · · · ∂xik
(x0) + v

∂kf

∂xi1 · · · ∂xik
(x0).

(2.1)

An appeal to Theorem 1.6 then gives Lemma 2.1.
To prove Theorem 2.2 is now more or less straightforward, given (2.1). Indeed, it re-

ally amounts to the observation that the vector spaces Lk
sym(Rn; Rm) (where the objects

∂kξ
∂xi1 ···∂xik

(x0) live) and Sk((Rn)∗)⊗Rm (where the objects v ∂kf
∂xi1 ···∂xik

(x0) live) are isomor-
phic.

References

Golubitsky, M. and Guillemin, V. [1973] Stable Mappings and Their Singularities, num-
ber 14 in Graduate Texts in Mathematics, Springer-Verlag, New York–Heidelberg–Berlin,
ISBN 0-387-90072-1.

Saunders, D. J. [1989] The Geometry of Jet Bundles, number 142 in London Math-
ematical Society Lecture Note Series, Cambridge University Press, New York/Port
Chester/Melbourne/Sydney, ISBN 0-521-36948-7.


	Equipment list
	Fibred manifolds and their jet spaces.
	Fibred products.
	Affine spaces and affine bundles.
	Germs of functions.

	The affine structure of jet bundles
	The intrinsic version.
	The coordinate version.


