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Abstract

An observer-independent formulation of rigid body dynamics is provided in the
general setting of a Galilean spacetime. The equations governing the motion of a rigid
body undergoing a rigid motion in a Galilean spacetime are derived on the basis of
the principle of conservation of spatial momentum. The formulation of rigid body
dynamics is then studied in the presence of an observer. It is seen that an observer
defines a connection such that there exist rigid motions that are horizontal with respect
to this connection that give the same physical motion of the rigid body, and for which
the general equations of motion are exactly the usual Euler equations for a rigid body
undergoing rigid motion.
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1. Introduction

The main aim of this paper is to understand the dynamics of a rigid body in the
general framework of a Galilean spacetime. We study how the physical motion of a rigid
body is related to “rigid motions”– the set of mappings belonging to the group of Galilean
transformations from a Galilean spacetime to itself, called the Galilean group. We present
a new formulation of rigid body dynamics that is independent of an observer. Note that the
momentum associated with a particle undergoing motion in a Galilean spacetime is thought
of as observer-dependent quantity in the literature (see, for example, [Artz 1981]). In this
paper we take the view that momentum is an intrinsic property of a rigid body in motion,
and that it is possible to define it without using any external structure. An observer merely
affects the way the momentum is measured.

The problem of deriving equations of motion for a rigid body in a Newtonian setting
has a rich history. Galileo (1564–1642) carried out the first systematic study of rigid bodies
in motion. Newton (1643–1727) built on the foundations laid by Galileo, and came up with
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equations of motion for a particle in an inertial frame. Later on, Euler (1703–1783) derived
the equations of motion for a rigid body fixed at a point in R3. A modern treatment of this
subject, from a general point of view of mechanics on Lie groups, can be found in [Abraham
and Marsden 1978, Arnol’d 1989] The rôle of the Galilean structure of the Newtonian
spacetime has been understood in the case of the dynamics of a particle [Arnol’d 1989, Artz
1981]. A Galilean covariant formulation of the classical mechanics of a single particle has
been studied in [Horzela, Kapuścik, and Kempczyński 1994], and, of course, the dynamics
of a rigid body in a fixed Galilean frame has been investigated quite throughly [Arnol’d
1989, Murray, Li, and Sastry 1994]. However, to our knowledge, the rôle played by the
Galilean structure has not been explained for rigid body mechanics. Unlike a particle or a
rigid body fixed at a point in R3, in the general setting of a Galilean spacetime, there does
not exist an exact correspondence between rigid motions and physical motions of a rigid
body. We address this issue in detail and derive the “Galilean–Euler equations” for a rigid
body.

We also show that an observer in a Galilean spacetime, apart from providing a refer-
ence frame for observing Newton’s laws, also provides an isomorphism from the “abstract”
Galilean group to the “standard” or “canonical” Galilean group which consists of rotations,
spatial translations, uniform velocity boosts, and time translations. Furthermore, an ob-
server defines a connection such that, for any given rigid motion, there exists a rigid motion
that is horizontal with respect to this connection that gives the same physical motion of the
body as the given rigid motion, and for which the generalized equations of motion reduce
to the usual Euler equations for a rigid body.

It should be noted that notions of Galilean spacetimes more general than ours have also
been studied in the literature, For example, the full machinery of affine differential geometry
has been used by Rodrigues, Jr., de Souza, and Bozhkov [1995] (see also [Chamorro and
JavierChinea 1979]) while a notion of “inertial relations” has been used in [Castrigiano 1984,
Castrigiano and Süssmann 1984a,b] to characterize more general Galilean spacetimes.

It is also worth noting that Souriau’s approach [Souriau 1997] is different from ours. In
particular, he considers a symplectic formulation and his definition of momenta are based
on the “Lagrange two-form.” Souriau also works with the canonical Galilean group, so
obscuring the rôle of the observer.

This paper is organized as follows. In Section 2, we present the mathematical pre-
liminaries relevant to our investigation. Several important concepts like affine spaces and
subspaces, observers, Galilean spacetimes, and the Galilean group are introduced and their
various properties are described. The notion of a rigid body, along with its attendant fea-
tures, is introduced in Section 3. In particular, the inertia tensor of a rigid body is defined
and its properties are thoroughly explained. In Section 4, the structure of the canonical,
as well as the abstract, Galilean group is investigated in detail. It is shown that an ob-
server induces an isomorphism between the Galilean group and the canonical group. Next,
“canonical velocities” are defined. These are curves in the Lie algebra of the Galilean group.
With this background, we first look at rigid motions in Section 5. Various quantities asso-
ciated with a rigid motion, such as the body and spatial linear and angular velocities, are
defined. Throughout this section, the treatment is observer-independent. The discussion
then focuses on angular and spatial momenta, and finally the generalized equations of mo-
tion (called the Galilean–Euler equations) for a rigid body are derived. In Section 6, the
formulation presented in Section 5 is studied in the presence of an observer. It is shown that,
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in such a case, we recover the familiar quantities associated with the classical treatment of
rigid body mechanics. The Galilean–Euler equations are also studied in the presence of an
observer, and the connection induced by the observer (called the Galilean connection) is
defined. It is shown that, for each constant velocity boost, we recover the classical Euler
equations for a rigid body.

2. Galilean spacetime

In this section, we present the mathematical background and introduce the notation to
be used in the following sections. In Section 2.1, we define affine spaces and subspaces;
the principle objects of interest in this paper. In Section 2.2, we introduce the notion of a
Galilean spacetime and describe the affine spaces naturally associated with it. We also in-
troduce the set of Galilean velocities. Next, we define observers in a Galilean spacetime and
discuss their properties. Finally, in Section 2.5, we define the Galilean group of a Galilean
spacetime and introduce the fundamental maps associated with a Galilean mapping.

2.1. Affine spaces. In this section, we define affine spaces and subspaces, and record
some of their properties. We refer to [Berger 1987] for more details.

2.1 Definition: Let V be a R-vector space. An affine space modeled on V is a pair
(A , φ) where A is a set and φ : V ×A → A is a map with the following properties:

(i) for every x, y ∈ A , there exists v ∈ V such that y = φ(v, x);
(ii) φ(v, x) = x for every x ∈ A implies that v = 0;
(iii) φ(0, x) = x, for each x ∈ A ;
(iv) φ(u+ v, x) = φ(u, φ(v, x)). •

We shall now cease to use the map φ and instead use the more suggestive notation
φ(v, x) = v+x. By definition, if x, y ∈ A , there exists a unique v ∈ V such that y = v+x.
In this case we shall denote v = y − x. By a slight abuse of notation, we shall denote an
affine space (A , φ) simply by A . If A is an affine space modeled on V and we fix a point
x ∈ A , then A is isomorphic to the vector space V . We denote this vector space by Ax.

2.2 Definition: Let A and B be affine spaces. A map f : A → B is an affine map
if, for each x ∈ A , the map f is a R-linear map between the vector spaces Ax and Bf(x). •

A subset B of an affine space modeled on V is an affine subspace if there is a subspace
U of V with the property that B = {u + x | u ∈ U} for some x ∈ B. In this case, B is
itself an affine space modeled on U .

2.2. Time and distance. We begin by giving the basic definition of a Galilean spacetime
and by providing meaning to the intuitive notions of time and distance.

2.3 Definition: A Galilean spacetime is a quadruple G = (E , V, g, τ) where
(i) V is a four-dimensional R–vector space,
(ii) τ : V → R is a surjective linear map called the time map,
(iii) g is an inner product on ker(τ), and
(iv) E is an affine space modeled on V . •
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Points in E are called events–thus E is a model for the spatio-temporal world of New-
tonian mechanics. With the time map, we may measure the time between two events
x1, x2 ∈ E as τ(x2 − x1). Events x1, x2 ∈ E are called simultaneous if τ(x2 − x1) = 0;
that is, if x2 − x1 ∈ ker(τ).

We may define the distance between simultaneous events x1, x2 ∈ E to be equal to√
g(x2 − x1, x2 − x1). Note that this method for defining distance does not allow us to

measure distances between events that are not simultaneous. In particular, it doesn’t make
sense to talk about two non-simultaneous events as occurring in the same place.

Simultaneity is an equivalence relation on E and the quotient we denote by IG = E / ∼,
with ∼ denoting the relation of simultaneity. IG is simply the collection of equivalence
classes of simultaneous events. We call it the set of instants. We denote by πG : E → IG
the canonical projection.

For s ∈ IG , we denote by E (s) the collection of events x ∈ E with the property that
πG (x) = s. Thus events in E (s) are simultaneous. We next denote by VG the vectors v ∈ V
for which τ(v) = 1. We call vectors in VG Galilean velocities. The following result is
easy to prove.

2.4 Proposition: The following statements hold:
(i) for each s ∈ IG , E (s) is a three-dimensional affine space modeled on ker(τ);

(ii) IG is a one-dimensional affine space modeled on R;
(iii) VG is an affine space modeled on ker(τ).

2.3. Observers. An observer is to be thought of intuitively as someone who is present
at each instant. Such an observer should be moving at a “uniform velocity.” Note that,
in a Galilean spacetime, the notion of “stationarity” makes no sense. We now provide our
definition of an observer.

2.5 Definition: An observer in a Galilean spacetime G = (E , V, g, τ) is a one-
dimensional affine subspace O of E with the property that πG |O is surjective. •

The definition thus requires that O not be comprised entirely of simultaneous events.
As a consequence of the definition, we have the following result.

2.6 Proposition: If O is an observer in a Galilean spacetime G = (E , V, g, τ), then, for
each s0 ∈ IG , there exists a unique point x0 ∈ O ∩ E (s0).

Proof: Given s0 ∈ IG , there exists x0 ∈ O such that πG (x0) = s0. Since O is a one-
dimensional affine space with the property that πG |O is surjective, there exists a one-
dimensional subspace W ⊂ V such that

O = {w + x0| w ∈W},

where W is not contained in ker(τ). By construction, x0 ∈ E (s0) ∩ O. This means that,
for each s0 ∈ IG , the intersection E (s0) ∩ O is non-empty. Next, let y0 ∈ E (s0) ∩ O.
Now, y0 ∈ E (s0) implies that y0 − x0 ∈ ker(τ). On the other hand, y0 ∈ O implies that
y0 − x0 ∈W . This means that y0 = x0 which proves the uniqueness of x0. �

This means that an observer does exactly what it should: it resides in exactly one place
at each instant. By requiring that O be an affine subspace, we ensure that it has a “uniform



Rigid body mechanics in Galilean spacetimes 5

velocity” and so is an appropriate reference for observing Newton’s laws. We shall denote
by Os the unique point in the intersection O ∩ E (s).

Since an observer O is a one-dimensional affine subspace, there is a unique one-
dimensional subspace U of V upon which O is modeled. Therefore, there exists a unique
vector vO ∈ U ⊂ VG with the property that τ(vO) = 1. Conversely, given v ∈ VG and x ∈ E ,
there exists a unique observer O such that x ∈ O and v = vO . We call vO the Galilean ve-
locity of the observer O. It provides a reference velocity with which we can measure other
velocities. Indeed, given an observer O, we may define an associated map PO : V → ker(τ)
by PO(v) = v − (τ(v))vO . In particular, if v ∈ VG , we note that v = vO + PO(v). Thus PO

can be thought of as giving the velocity of v relative to the observer’s Galilean velocity vO .
Note that such velocities always live in the three-dimensional vector space ker(τ) that is to
be thought of as the space of velocities that are familiar in mechanics. Such velocities are,
however, only defined relative to an observer.

2.4. World lines. Intuitively, a world line is to be thought of as being the spatio-temporal
history of something moving in the spacetime. We make the following definition.

2.7 Definition: Let G = (E , V, g, τ) be a Galilean spacetime. A world line in G is a
section of πG : E → IG . •

A world line c : IG → E is differentiable at s0 ∈ IG if the limit

c′(s0) := lim
t→0

c(t+ s0)− c(s0)
t

exists. Since c is a section of πG , we have τ(c(t + s0) − c(s0)) = t and so c′(s0) ∈ VG ,
provided it exists. Similarly, for a differentiable world line, if the limit

lim
t→0

c′(t+ s0)− c′(s0)
t

exists, we denote it by c′′(s0), the acceleration of the world line at the instant s0. Since

τ(c′′(s0)) = lim
t→0

τ(c′(t+ s0)− c′(s0))
t

= lim
t→0

1− 1
t

= 0,

we have c′′(s0) ∈ ker(τ).

2.5. Galilean mappings. If Gi = (Ei, Vi, gi, τi), i = 1, 2, are two Galilean spacetimes, a
Galilean mapping from G1 to G2 is a map ψ : E1 → E2 with the following properties:

(i) ψ is an affine map;
(ii) τ2(ψ(x1)− ψ(x2)) = τ1(x1 − x2) for x1, x2 ∈ E1;
(iii) g2(ψ(x1)−ψ(x2), ψ(x1)−ψ(x2)) = g1(x1−x2, x1−x2) for simultaneous events x1, x2 ∈

E1.
The set of Galilean mappings from a Galilean spacetime G to itself is a Lie group (under
composition of Galilean mappings), and we call it the Galilean group of the Galilean
spacetime G . We shall denote this group by Gal(G ) and its Lie algebra by gal(G ). If
ψ ∈ Gal(G ), then there are induced natural mappings of V, IG , and R as follows.
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2.8 Lemma: Let G = (E , V, g, τ) be a Galilean spacetime with ψ ∈ Gal(G ). The following
mappings are well defined:

(i) the mapping ψV : V → V defined by ψV (v) = ψ(v + x0)− ψ(x0), where x0 ∈ E ;
(ii) the mapping ψIG : IG → IG defined by ψIG (s) = πG (ψ(x)), where x ∈ E (s);

(iii) the mapping ψτ : R→ R defined by ψτ (t) = t+ ψIG (s)− s, for s ∈ IG .
Furthermore,
(iv) ψV (v) = ψ(x1)− ψ(x2), where x2 − x2 = v, and
(v) there exists tψ ∈ R such that ψIG (s) = s+ tψ and ψτ (t) = t+ tψ.

Proof: (i) Let x0, x̄0 ∈ E . We have

ψ(v + x0)− ψ(x0) = ψ((v + (x0 − x̄0)) + x̄0)− ψ((x0 − x̄0) + x̄0)
= ψ((x0 − x̄0) + x̄0) + ψ(v + x̄0)− ψ(x̄0)− ψ((x0 − x̄0) + x̄0)
= ψ(v + x̄0)− ψ(x̄0),

where we have used the property

ψ((v1 + v2) + x) = (ψ(v1 + x) + ψ(v2 + x))− ψ(x),

since ψ is an affine map. This property is readily verified using the definition of an affine
map. We will now show that ker(τ) is an invariant subspace for ψV . We let x, x̃ ∈ E have
the property that x− x̃ = u ∈ ker(τ). Then

τ(ψV (u)) = τ(ψ(x)− ψ(x̃)) = τ(u) = 0,

where we have used property (ii) of Galilean mappings.
(ii) Let x, x̃ ∈ E (s). There exists u ∈ ker(τ) such that x̃ = u+ x. Now we compute

πG (ψ(x̃))− πG (ψ(x)) = τ(ψ(x̃)− ψ(x))
= τ(ψV (x̃− x))
= τ(ψV (u)) = 0,

using the fact that ker(τ) is an invariant subspace for ψV .
(iii) We must show that the definition is independent of the choice of s ∈ IG . For s̃ ∈ IG ,

we compute

t+ ψIG (s̃)− s̃ = t+ ψIG (s+ (s̃− s))− s+ (s− s̃)
= t+ ψIG (s+ (s̃− s))− ψIG (s) + ψIG (s)− s+ (s− s̃)
= t+ ψIG (s)− s.

(iv) We have

ψ(x1)− ψ(x2) = ψ((x1 − x2) + x2)− ψ(x2)
= ψV (x1 − x2),

as desired.
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(v) Let x0 ∈ E and let tψ = τ(ψ(x0)− x0). For s ∈ IG , let x ∈ E (s). We then have

ψIG (s)− s = ψIG (s)− πG (x)
= πG (ψ(x))− πG (x)
= τ(ψ(x)− ψ(x0)) + τ(ψ(x0)− x0) + τ(x0 − x)
= τ(ψ(x0)− x0) = tψ,

where we have used the property (ii) of Galilean mappings. This shows that the definition
of tψ is independent of x0, and that ψIG (s) = tψ + s, as desired. From (iii) it also follows
that ψτ (t) = tψ + t. �

2.9 Remarks: 1. In the proof of the lemma we showed that, given ψ ∈ Gal(G ), ψV
leaves ker(τ) invariant. We shall see in the next section that ψV |ker(τ) has a mechanical
interpretation.

2. Using the definition of a Galilean mapping, it is easy to see that VG is also invariant
under ψV . •

Given a Galilean spacetime G , we let O(ker(τ)) denote the g-orthogonal linear mappings of
ker(τ). The Lie algebra of O(ker(τ)) we denote by o(ker(τ)), recalling that it is the collection
of g-skew symmetric linear mappings of ker(τ). We identify ker(τ) with o(ker(τ)) by the
“hat” map (see [Murray, Li, and Sastry 1994]) given by ω 7→ ω̂. This is a generalization of
the map from R

3 to o(3) defined by ω1

ω2

ω3

 7→
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
and may be explicitly defined by choosing an orthonormal basis for ker(τ) and then apply-
ing this transformation to the components in this basis. Since the vector product in R3

commutes with orthogonal transformations, this definition is independent of the choice of
orthonormal basis. In like manner, one can define u1 × u2 for any u1, u2 ∈ ker(τ) as the
generalization of the R3 vector product.

3. Rigid bodies

In order to talk about momenta, we need the notion of a rigid body. In this section we
provide our definition for a rigid body and provide some implications of this definition. We
begin by proving, in our Galilean setting, some of the basic properties of the inertia tensor
of a rigid body.

3.1. Definitions. Let G = (E , V, g, τ) be a Galilean spacetime. A rigid body is a pair
(B, µ), where B ⊂ E (s0) is a compact subset of simultaneous events, and µ is a mass-
distribution on E (s0) with support equal to B. Our definition thus allows such degenerate
rigid bodies as point masses, and bodies whose mass distribution is contained in a line in
E (s0). We denote

µ(B) =
∫

B
dµ
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as the mass of the body.
The center of mass of the body (B, µ) is the point

xc =
1

µ(B)

∫
B

(x− x0)dµ+ x0.

Note that the integrand is in ker(τ) and so too will be the integral. The following lemma
gives some of the basic properties of this definition. If S ⊂ A is a subset of an affine space
A , we let conv(S ) denote the convex hull of S and aff(S ) denote the affine hull of S . If
X is a topological space with subsets T ⊂ S ⊂ X, intS(T ) denotes the interior of T relative
to the induced topology on S.

3.1 Lemma: Let (B, µ) be a rigid body in a Galilean spacetime with B ⊂ E (s0). The
following statements hold:

(i) the expression

xc =
1

µ(B)

∫
B

(x− x0)dµ+ x0

is independent of the choice of x0 ∈ E (s0);
(ii) xc is the unique point in E (s0) with the property that

∫
B(x− xc)dµ = 0;

(iii) xc ∈ intaff(B)(conv(B)).

Proof: (i) To check that the definition of xc is independent of x0 ∈ E (s0), we let x̃0 ∈ E (s0)
and compute

1
µ(B)

∫
B

(x− x̃0)dµ+ x̃0 =
1

µ(B)

∫
B

(x− x0)dµ+
1

µ(B)

∫
B

(x0 − x̃0)dµ

+ (x̃0 − x0) + x0

=
1

µ(B)

∫
B

(x− x0)dµ+ x0.

(ii) By definition of xc and by part (i), we have

xc =
1

µ(B)

∫
B

(x− xc)dµ+ xc,

from which it follows that ∫
B

(x− xc)dµ = µ(B)(xc − xc) = 0.

Now suppose that x̃c ∈ E (s0) is an arbitrary point with the property that∫
B

(x− x̃c)dµ = 0.

Then, by (i),

xc =
1

µ(B)

∫
B

(x− x̃c)dµ+ x̃c,

from which we conclude that x̃c = xc.
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(iii) If xc is on the relative boundary of conv(B) or not in B at all, then there exists a
hyperplane P in E (s0) passing through xc such that there are points in B which lie on one
side of P , but there are no points in B on the opposite side. In other words, there exists
λ ∈ ker(τ)? such that the set

{x ∈ B| λ(x− xc) > 0}

is non-empty, but the set
{x ∈ B| λ(x− xc) < 0}

is empty. But this would imply that∫
B
λ(x− xc)dµ > 0,

contradicting (ii). �

3.2. The inertia tensor. The properties of a rigid body are characterized by three things:
(1) its mass, (2) its center of mass, and (3) its inertia tensor. We now define the latter.
Let x0 ∈ E (s0). The inertia tensor about x0 of a rigid body (B, µ) to be the linear map
Ix0 : ker(τ)→ ker(τ) defined by

Ix0(u) =
∫

B
(x− x0)× (u× (x− x0))dµ.

We denote the inertia tensor about the center of mass of (B, µ) by Ic. Next, we record some
basic properties of the inertia tensor.

3.2 Proposition: The inertia tensor Ix0 of a rigid body (B, µ) is symmetric with respect
to the inner product g.

Proof: Using the vector identity g(u, v × w) = g(w, u× v), we compute

g(Ix0(u1), u2) =
∫

B
g((x− x0)× (u1 × (x− x0)), u2)dµ

=
∫

B
g(u1 × (x− x0), (u2 × (x− x0))dµ

=
∫

B
g(u1, (x− x0)× (u2 × (x− x0)))dµ

= g(u1, Ix0(u2)),

which is what we wished to show. �

3.3. Eigenvalues of the inertia tensor. Since Ix0 is symmetric, its eigenvalues are
real. Furthermore, they are non-negative. The following result demonstrates this, as well
as other eigenvalue related assertions.

3.3 Proposition: Let (B, µ) be a rigid body with B ∈ E (s0) and let x0 ∈ E (s0). Let Ix0

denote the inertia tensor of (B, µ) about x0. The following statements hold:
(i) the eigenvalues of the inertia tensor Ix0 of a rigid body are real and nonnegative;

(ii) if Ix0 has a zero eigenvalue, then the other two eigenvalues are equal;
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(iii) if Ix0 has two zero eigenvalues, then Ix0 = 0.

Proof: (i) Since Ix0 is symmetric, its eigenvalues will be nonnegative if and only if the
quadratic form u 7→ g(Ix0(u), u) is positive-semidefinite. For u ∈ ker(τ), we compute

g(Ix0(u), u) =
∫

B
g(u, (x− x0)× (u× (x− x0)))dµ

=
∫

B
g(u× (x− x0), u× (x− x0))dµ.

Since the integrand is nonnegative, so too will be the integral.
(ii) Let I1 be the zero eigenvalue with v1 a unit eigenvector. We claim that the support

of the mass distribution µ must be contained in the line

`v1 = {sv1 + x0| s ∈ R}.

To see that this must be so, suppose that the support of µ is not contained in `v1 . Then
there exists a Borel set S ⊂ E (s0) \ `v1 such that µ(S) > 0. This would imply that

g(Ix0(v1), v1) =
∫

B
g(v1 × (x− x0), v1 × (x− x0))dµ

≥
∫
S
g(v1 × (x− x0), v1 × (x− x0))dµ.

Since S ∩ `v1 = ∅, it follows that, for all points x ∈ S, the vector x−x0 is not collinear with
v1. Therefore

g(v1 × (x− x0), v1 × (x− x0)) > 0

for all x ∈ S, and this would imply that g(Ix0(v1), v1) > 0. But this contradicts v1 being an
eigenvector with zero eigenvalue, and so the support of B must be contained in the line `v1 .

To see that this implies that the remaining two eigenvectors are equal, we shall show
that any vector that is g-orthogonal to v1 is an eigenvector for Ix0 . First write

x− x0 = f1(x)v1 + f2(x)v2 + f3(x)v3

for functions f i : E (s0)→ R, i = 1, 2, 3. Since the support of µ is contained in the line `v1 ,
we have ∫

B
(x− x0)× (u× (x− x0))dµ = v1 × (u× v1)

∫
B

(f1(x))2dµ

for all u ∈ ker(τ). Now recall the property of the cross product that v1 × (u × v1) = u,
provided that u is orthogonal to v1 and that, v1 has unit length. Therefore, we see that,
for any u that is orthogonal to v1, we have

Ix0(u) =
(∫

B
(f1(x))2dµ

)
u,

meaning that all such vectors u are eigenvectors with the same eigenvalue, which is what
we wished to show.

(iii) It follows from the above arguments that, if two eigenvalues I1 and I2 are zero, then
the support of µ must lie in the intersection of the lines `v1 and `v2 (here vi is an eigenvector
for Ii, i = 1, 2), and this intersection is a single point, that must therefore be x0. From this
and the definition of Ix0 , it follows that Ix0 = 0. �
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Note that, in proving the result, we have proved the following corollary.

3.4 Corollary: Let (B, µ) be a rigid body with inertia tensor Ix0. The following state-
ments are true:

(i) Ix0 has a zero eigenvalue if and only if B is contained in a line through x0;
(ii) if Ix0 has two zero eigenvalues, then B = {x0}, i.e., B is a particle located at x0;

(iii) if there is no line through x0 that contains the support of µ, then the inertia tensor is
an isomorphism.

In coming to an understanding of the “appearance” of a rigid body, it is most convenient
to refer to its inertia tensor Ic about its center of mass. Let {I1, I2, I3} be the eigenvalues of
Ic that we call the principal inertias of (B, µ). If {v1, v2, v3} are orthonormal eigenvectors
associated with these eigenvalues, we call these the principal axes of (B, µ). Related to
these is the inertial ellipsoid which is the ellipsoid in ker(τ) given by

E(B) =
{
x1v1 + x2v2 + x3v3 ∈ ker(τ)| I1(x1)2 + I2(x2)2 + I3(x3)2 = 1

}
,

provided that none of the eigenvalues of Ix0 are zero. If one of the eigenvalue does vanish,
then by Proposition 3.3, the other two eigenvalues are equal. If we suppose that I1 = 0 and
that I2 = I3 = I, then in the case of a single zero eigenvalue, the inertial ellipsoid is

E(B) =
{
x1v1 + x2v2 + x3v3 ∈ ker(τ)| x2 = x3 = 0, x1 ∈

{
− 1√

I
, 1√

I

}}
.

In the most degenerate case, when all eigenvalues are zero, we define E(B) = {0}. These
latter two inertial ellipsoids correspond to cases (ii) and (iii) in Corollary 3.4.

To relate these properties of the eigenvalues of Ic with the inertial ellipsoid E(B), it
is helpful to introduce the notion of an axis of symmetry for a rigid body. We let Ic be
the inertia tensor about the center of mass, and denote by {I1, I2, I3} its eigenvalues and
{v1, v2, v3} its orthogonal eigenvectors. A vector v ∈ ker(τ) \ {0} is an axis of symmetry
for (B, µ) if, for every R ∈ O(ker(τ)) which fixes v, we have R(E(B)) = E(B). The following
result gives the relationship between axes of symmetry and the eigenvalues of Ic.

3.5 Proposition: Let (B, µ) be a rigid body with inertia tensor Ic about its center of
mass. Let {I1, I2, I3} be the eigenvalues of Ic with orthonormal eigenvectors {v1, v2, v3}. If
I1 = I2, then v3 is an axis of symmetry for (B, µ).

Conversely, if v ∈ ker(τ) is an axis of symmetry, then v is an eigenvector of Ic. If I is
the eigenvalue for which v is an eigenvector, then the other two eigenvalues of Ic are equal.

Proof: Write I1 = I2 = I. We then see that any vector v ∈ span
R
{v1, v2} will have the

property that Ic(v) = Iv. Now, let R ∈ O(ker(τ)) fix the vector v3. Because R is orthogonal,
if we have v ∈ span

R
{v1, v2}, then R(v) ∈ span

R
{v1, v2}. Also, if v = a1v1 + a2v2, then,

R(v) = (cos θa1 + sin θa2)v1 + (− sin θa1 + cos θa2)v2 (3.1)

for some θ ∈ R, since R is simply a rotation in the plane spanned by v1, v2. Now let
u ∈ E(B). We then write u = x1v1 + x2v2 + x3v3 and note that

I(x1)2 + I(x2)2 + I3(x3)2 = 1.
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It is now a straightforward calculation to verify that R(u) ∈ E(B) using (3.1) and the fact
that R fixes v3. This shows that R(E(B)) = E(B), and so v3 is an axis of symmetry for
(B, µ).

For the second part of the proposition, let v be an axis of symmetry for (B, µ). Denote
the set of orthogonal mappings that fix v by O(v). That is, let

O(v) = {R ∈ O(ker(τ))| R(v) = v}.

Now R ∈ O(v) has the property that R(E(B)) = E(B), and thus maps principal axes of
(B, µ) to principal axes. Since {v1, v2, v3} form an orthonormal basis for ker(τ), it is clear
that, for every R ∈ O(v), the set {R(v1), R(v2), R(v3)} is also an orthonormal basis. It
can be seen that every vector orthogonal to v is a principal axes and thus, without loss of
generality, we can take v

‖v‖ = v3. It is now clear that Ic acts on v⊥ by scalars, and thus v
is an eigenvector of Ic. The result now follows. �

4. The structure of the Galilean group

As defined previously, the Galilean group of a Galilean spacetime G = (E , V, g, τ) is the
set of affine maps from E to itself that preserve simultaneity of events and the distance
between simultaneous events. In this section, we shall examine the Galilean group and
describe its properties. In Section 4.1 we study the canonical Galilean group and show
that it consists of rotations, translations, velocity boosts, and temporal origin shifts. We
also look at its subgroups and describe the various fundamental objects associated with
it. In Section 4.2, we study the abstract Galilean group Gal(G ). We show that, in the
presence of an observer, the Galilean group is isomorphic to the canonical Galilean group.
Finally, in Section 6.1, we introduce canonical velocities and describe their images under
the isomorphism of the Lie algebras induced by the Lie group isomorphism constructed
previously.

4.1. The canonical Galilean group. In this section, we study the Galilean group
of a canonical Galilean spacetime, which is a generalization of the “standard” Galilean
spacetime R3×R. To be precise, given a Galilean spacetime G = (E , V, g, τ), the canonical
spacetime of G is the Galilean spacetime Gcan := (Ecan := ker(τ)⊕R, V = ker(τ)⊕R, g, τ).
We now investigate the structure of the canonical Galilean group Gal(Gcan). The next
proposition shows that Gal(Gcan) decomposes into rotations, spatial translations, Galilean
velocity boosts, and temporal translations.

4.1 Proposition: The Galilean group Gal(Gcan) of the canonical spacetime Gcan is iso-
morphic to (O(ker(τ))nker(τ))n(ker(τ)×R), where n denotes semidirect product of groups.
The group operation on O(ker(τ))n ker(τ))n (ker(τ)× R) is given by

(R1, r1, u1, t1) · (R2, r2, u2, t2)
= (R1 ◦R2, r1 +R1(r2) + t2u1, u1 +R1(u2), t1 + t2),

where (Ri, ri, ui, ti) ∈ O(ker(τ))n ker(τ))n (ker(τ)× R, i = 1, 2.

Proof: We first find the form of a Galilean transformation φ : Ecan → Ecan . Recall that, since
φ is an affine map, it has the form φ(x, t) = A(x, t)+(r, σ) where A : ker(τ)⊕R→ ker(τ)⊕R
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is R-linear and where (r, σ) ∈ ker(τ)⊕ R. Given vector spaces U and V , we denote the set
of linear maps from U to V by L(U, V ). Let us write A(x, t) = (A11x+A12t, A21x+A22t)
where A11 ∈ L(ker(τ), ker(τ)), A12 ∈ L(R, ker(τ)), A21 ∈ L(ker(τ),R), and A22 ∈ L(R,R).
By property (iii) of Galilean mappings, A11 is a g-orthogonal transformation of ker(τ).
Property (ii) of Galilean mappings implies that

A22(t2 − t1) +A21(x2 − x1) = t2 − t1, t1, t2 ∈ R, x1, x2 ∈ ker(τ).

Thus, taking x1 = x2, we see that A22 = 1. This in turn implies that A21 = 0. Gathering
this information shows that a Galilean transformation has the form

φ :

[
x
t

]
7→
[
R u
0 1

] [
x
t

]
+

[
r
σ

]
,

where R ∈ O(ker(τ)), σ ∈ R, and r, u ∈ ker(τ). This proves the first part of the proposition.
Now, it is easy to see that, if φi, i = 1, 2, are Galilean transformations given by

φi :

[
x
t

]
7→
[
Ri ui
0 1

] [
x
t

]
+

[
ri
σi

]
, i = 1, 2,

then

φ1 ◦ φ2 :

[
x
t

]
7→
[
R1 ◦R2 u1 +R1(u2)

0 1

] [
x
t

]
+

[
r1 +R1(r2) + σ2u1

σ1 + σ2

]
.

which gives us the desired group operation. �

4.2 Remarks: 1. It is clear from this proposition that Gal(Gcan) is a ten-dimensional
group. This is not altogether obvious from the definition.

2. The meaning of the appearance of two semi-direct products in the decomposition
of Gal(Gcan) should be understood correctly. They arise because ker(τ) × R is a
normal subgroup of Gal(Gcan) and the quotient group itself is a semi-direct product
of O(ker(τ)) and ker(τ).

3. A canonical Galilean transformation may now be written as a composition of one of
three basic classes of transformations.

(i) A spatio-temporal shift of origin:[
x
t

]
7→
[
x
t

]
+

[
r
σ

]
,

for r ∈ ker(τ), σ ∈ R.
(ii) A “rotation” of reference frame:[

x
t

]
7→
[
R 0
0 1

] [
x
t

]
,

for R ∈ O(ker(τ)).
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(iii) A (Galilean) velocity boost :[
x
t

]
7→
[

idker(τ) u

0 1

] [
x
t

]
,

for u ∈ ker(τ).
The names we have given these fundamental transformations are suggestive. A shift of

the spatio-temporal origin should be thought of as moving the origin to a new position, and
resetting the clock, but maintaining the same orientation in space. A rotation of reference
frame means the origin stays in the same place, and uses the same clock but rotates the
“point of view”. The final basic transformation, a velocity boost, means that the origin
maintains its orientation and uses the same clock, but now moves with a certain velocity
with respect to the previous origin. •

4.2. The structure of the abstract Galilean group. In the usual presentation of
Galilean invariant mechanics (e.g., [Souriau 1997]), one considers a spacetime R3 × R and
Galilean invariance is imposed by asking that the system admit the Galilean group as a
symmetry group. In this case, the Galilean group naturally breaks down into rotations,
translations, Galilean boosts (constant velocity shifts), and temporal origin shifts. In our
abstract setting, the Galilean group Gal(G ) does not admit such a decomposition. Note
that this is similar to what one sees in an affine Euclidean space where a decomposition of
an isometry into rotation and translation is not possible until one chooses an origin about
which to measure rotations. However, the presence of an observer in a Galilean spacetime
defines, for each instant, an isomorphism from the abstract Galilean group Gal(G ) into the
canonical group Gal(Gcan).

4.3 Proposition: Let G = (E , V, g, τ) be a Galilean spacetime with O an observer. The
following statements hold.

(i) The mapping from V to ker(τ)⊕ R defined by v 7→ (PO(v), τ(v)) is an isomorphism.
(ii) For each s0 ∈ IG , the observer at s0, Os0, induces a natural isomorphism ιOs0 from

Gal(G ) to the group Gal(Gcan). Explicitly, if ψ ∈ Gal(G ) with tψ as defined in
Lemma 2.8, and if Rψ ∈ O(ker(τ)) and rψ,O ∈ ker(τ) satisfy

ψ(x) = (Rψ(x− Os0) + rψ,O) + Otψ+s0 , x ∈ E (s0),

then
ιOs(ψ) = (Rψ, rψ,O , uψ,O , tψ),

where uψ,O = PO(ψV (vO)).

Proof: (i) It suffices to show that the mapping v 7→ (PO(v), τ(v)) is injective. If τ(v) = 0,
then v ∈ ker(τ). Now, if we also have

PO(v) = v − (τ(v))vO = 0,

we must have v = 0, thus the mapping is injective as desired.
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(ii) We first assign to each (R, r, u, t) ∈ Gal(Gcan) a Galilean mapping ψ, and show that
the construction implies that (R, r, u, t) = (Rψ, rψ,O , uψ,O , tψ), thus showing that ιOs0 is
invertible. Now, given (R, r, u, t) ∈ Galcan(G ), we define a map ψ : E → E by

ψ(x) = tvO + (R(x− OπG (x)) + (πG (x)− s0)u+ r) + OπG (x). (4.1)

We now show that this mapping is Galilean. First we show that it is affine. For v ∈ V , we
compute

ψ(v + Os0)− ψ(Os0) = tvO + (R(v + Os0 − Oτ(v)+s0) + ((τ(v) + s0)− s0)u+ r)

+ Oτ(v)+s − (tvO + r + Os0)

= R(v + Os0 − (τ(v)vO + Os0)) + τ(v)(u+ vO)
= R(v − τ(v)vO) + τ(v)(u+ vO)
= R(PO(v)) + τ(v)(u+ vO). (4.2)

Thus the map v 7→ ψ(v + Os0)− ψ(Os0) is linear, so ψ is affine. Similarly, we calculate

τ(ψ(x1)− ψ(x2)) = τ(tvO + OπG (x1))− τ(tvO + OπG (x2))

= t+ πG (x1)− (t+ πG (x2))
= τ(x1 − x2).

So property (ii) of Galilean mappings is satisfied. Next, for s0 ∈ IG , consider y1, y2 ∈ E (s0).
We compute

ψ(y1)− ψ(y2) = tvO +R(y1 − Os0) + (s0 − s0)u+ r + Os0

− (tvO +R(y2 − Os0) + (s0 − s0)u+ r + Os0)
= R(y1 − y2).

Thus ψ satisfies property (iii) of Galilean mappings. Next we show that (R, r, u, t) =
(Rψ, rψ,O , uψ,O , tψ). By restricting ψ to E (s0) we get

(ψ|E (s0))(x) = tvO + (R(x− Os0) + r) + Os0

= (R(x− Os0) + r) + Ot+s0 .

However, the definition of Rψ and rψ,O gives

R(x− Os0) + r = Rψ(x− Os0) + rψ,O ,

for each x ∈ E (s0). Taking x = Os0 gives r = rψ,O , from which it follows that R = Rψ.
Also, for x ∈ E (s0), we have

ψIG (s0) = πG (ψ(x)) = t+ s0.

From Lemma 2.8, it follows that t = tψ. From (4.2) we also have

PO(ψV (vO)) = R(PO(vO)) + τ(vO)u = u,
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using the fact that PO(vO) = 0. This shows that u = uψ,O . We have now shown that, for
every (R, r, u, t) ∈ Gal(Gcan), there is a Galilean mapping ψ such that ιOs0 (ψ) = (R, r, u, t).
Thus we have shown that ιOs0 is surjective. Next we show that it is injective. For this, let
ψ̃ ∈ Gal(G ) be such that, for x ∈ E ,

ψ̃(x) = tvO + (R(x− Os0) + (πG (x)− s0)u+ r) + OπG (x).

that is, suppose that
ιOs0 (ψ̃) = (R, r, u, t) = ιOs0 (ψ).

We shall show that ψ̃ = ψ. Since ψ̃(Os0) = ψ(Os0), using (4.2) this will follow if we can
show that ψ̃V = ψV . As in (i), we note that V ' ker(τ) ⊕ R and the preimage of (u, t)
under this isomorphism is u+ tvO . We also write

ψV (u+ tvO) = A11(u) +A12(t) + (A21(u) +A22(t))vO ,

for linear mappings A11 : ker(τ) → ker(τ), A12 : R → ker(τ), A21 : ker(τ) → R, and
A22 : R → R. The property (ii) of Galilean mappings implies that ψV has ker(τ) as an
invariant subspace. Thus A21 = 0. We next calculate

τ(ψV (tvO)) = τ(ψ(tvO + Os0))− τ(ψ(Os0))
= τ(tvO + Os0)− τ(Os0) = t.

This gives A22(t) = t. With t = 0, property (iii) of Galilean mappings implies that A11 ∈
O(ker(τ)). Thus we have

ψV (u+ tvO) = R̃(u) + t(ũ+ vO), (4.3)

for some R̃ ∈ O(ker(τ)) and ũ ∈ ker(τ). Since ψ|E (s) = ψ̃|E (s) we have

ψV (u) = ψ̃(u+ Os0)− ψ̃(Os0) = Rψ(u),

giving R̃ = R. From (4.2) we also have

PO(ψV (vO) = ũ,

from which we get u = ũ. This shows that ψV = ψ̃V , thus showing that, if ψ1, ψ2 ∈ Gal(G )
satisfy ιOs0 (ψ1) = ιOs0 (ψ2), then ψ1 = ψ2. Therefore, ιOs0 is injective.

Finally we show that ιOs0 is a homomorphism. We let ψ1, ψ2 ∈ Gal(G ) and denote
ιO(ψi) = (Ri, ri, ui, ti), i = 1, 2. We also let ιOs0 (ψ1 ◦ ψ2) = (R12, r12, u12, t12). First, we
compute

(ψ1 ◦ ψ2)V (v) = (ψ1 ◦ ψ2)(v + Os0)− (ψ1 ◦ ψ2)(Os0)
= ψ1(ψ2(v + Os0))− ψ1(ψ2(Os0))
= ψ1(tvO +R2(v + Os0 − Oτ(v)+s0) + τ(v)u2 + r2 + Oτ(v)+s0)

− ψ1(tvO + r + Os0)
= ψ1((tvO + r) +R2(PO(v)) + τ(v)(u2 + vO) + Os0)
− ψ1(tvO + r2 + Os0)
= ψ1,V (R2(PO(v)) + τ(v)(u2 + vO))
= ψ1,V (ψ2,V (v)).
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From this we deduce that

R12(u) + t(u12 + vO) = R1 ◦R2(u) + t(u1 +R1(u2) + vO),

for each (u, t) ∈ ker(τ)⊕ R. Thus we have

R12 = R1 ◦R2, u12 = u1 +R1(u2).

Next we have
ψ1 ◦ ψ2(Os0) = r12 + Ot12+s0 . (4.4)

Also,
ψ2(Os0) = r2 + Ot2+s0 .

Therefore

ψ1 ◦ ψ2(Os0) = ψ1(r2 + Ot2+s0)
= R1(r2 + Ot2+s0 − Ot2+s0) + t2u1 + r1 + Os0+t2+t1

= R1r2 + t2u1 + r1 + Os0+t1+t2 .

Comparing this to (4.4) we get

r12 = R1r2 + t2u1 + r1, t12 = t1 + t2.

Thus we have shown that the group action defined on Gal(Gcan) agrees with that on Gal(G )
under the bijection ιOs0 . �

We end this section by listing some of the subgroups of Gal(G ) that we shall have
occasion to use in the sequel. The following result is easy to prove.

4.4 Proposition: The following statements hold:
(i) the following are subgroups of Gal(G ):

(a) Gal0(G ) := {ψ ∈ Gal(G ) : ψIG = idIG };
(b) N := {ψ ∈ Gal(G ) : ψV |ker(τ) = idker(τ)};
(c) N0 := N ∩Gal0(G ).

(ii) the set Lin(G ) := {ψV | ψ ∈ Gal(G )} is a Lie group.

5. Observer-independent formulation of rigid body mechanics

In this section we formulate rigid mechanics in an observer independent manner. All
of the classical concepts in Eulerian rigid body mechanics—motions, body and spatial
velocities, body and spatial momenta, and the equations of motion—are given definitions
independent of an observer.
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5.1. Rigid motions. A rigid motion in a Galilean spacetime G = (E , V, g, τ) is a
smooth mapping Ψ : R → Gal(G ) with the property that (Ψ(t))IG (s) = s + t , for each
t ∈ R (see Section 2.5). In other words, if we denote Ψt := Ψ(t), then, a rigid motion Ψ
has the property that Ψt(x) ∈ E (t + πG (x)) for each x ∈ E (s). Thus a rigid motion maps
points in E (s) to E (s) at t = 0, and for t 6= 0, the points get shifted by the affine action of
R on IG . Let us give some of the basic properties of rigid motions. The following result is
immediate.

5.1 Lemma: Given a rigid motion Ψ, for each x ∈ E the map IG 3 s 7→ Ψs−πG (x)(x) ∈ E
is a world line.

The next result shows how we can extract the “rotational component” of a rigid motion
for each t ∈ R.

5.2 Proposition: Let Ψ be a rigid motion in a Galilean spacetime G = (E , V, g, τ).
Then, for each t ∈ R, we have Ψt,V |ker(τ) ∈ O(ker(τ)).

Proof: From Lemma 2.8, it is clear that Ψt,V maps ker(τ) to itself. Next for simultaneous
events x1 and x2, we compute

g(Ψt,V |ker(τ)(x1 − x2),Ψt,V |ker(τ)(x1 − x2)) = g(Ψt,V (x1 − x2),Ψt,V (x1 − x2))

= g(Ψt(x1)−Ψt(x2),Ψt(x1)−Ψt(x2))
= g(x1 − x2, x1 − x2),

where we have used the properties of the rigid motion and Lemma 2.8. This shows that
Ψt,V |ker(τ) ∈ O(ker(τ)) as desired. �

This proposition shows that, given a rigid motion Ψ in a Galilean spacetime, we can
associate to this rigid motion a unique map from R → O(ker(τ)). We denote this map by
RΨ.

5.2. Spatial and body velocities. In this section we define the concepts of spatial and
body velocities corresponding to a rigid motion Ψ. Intuitively, the configuration of a rigid
body is given by its “orientation” and “position” (with respect to an initial orientation and
position). To make this precise, let us denote Q := O(ker(τ))× E . If we choose a reference
configuration, say q0 = (R0, x0) ∈ Q, it is easy to see that a Galilean mapping φ ∈ Gal(G )
maps q0 to another point in Q as follows:

Gal(G )×Q→ Q

(φ, (R0, x0)) 7→ (RφR0, φ(x0)), φ ∈ Gal(G ).

This defines an action of Gal(G ) on Q which we represent by Φ. In other words, we have
Φ(φ, (R0, x0)) = (RφR0, φ(x0)). For each q ∈ Q and g ∈ Gal(G ), we define the maps
Φq : Gal(G )→ Q and Φg : Q→ Q by Φq(g) := Φ(g, q) =: Φq(g). The action Φ also defines
an action of Gal(G ) on O(ker(τ)) and E respectively. The latter action is denoted by ΨE .
Given ζ ∈ gal(G ), denote the infinitesimal generator corresponding to ζ at (R0, x0) ∈ Q by
ζQ(R0, x0). It is easy to see that ζQ(R0, x0) can be written as

ζQ(R0, x0) = (ζO(ker(τ))(R0), ζE (x0)),
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where ζO(ker(τ))(R0) is the infinitesimal generator at R0 ∈ O(ker(τ)) corresponding to ζ
of the action of Gal(G ) on O(ker(τ)), and ζE (x0) is the infinitesimal generator at x0 ∈ E
corresponding to ζ of the action of Gal(G ) on E .

Now, given a rigid motion Ψ, define curves ξΨ(t) and ηΨ(t) ∈ gal(G ) as follows:

ηΨ(t) = Ψ−1
t Ψ̇t, ξΨ(t) = Ψ̇tΨ−1

t .

Notice that ξΨ(t) = AdΨtηΨ(t). These curves ξΨ(t) and ηΨ(t) are called “spatial velocity”
and “body velocity,” respectively, in the literature (see, for example, [Murray, Li, and Sastry
1994]) and the interpretation for defining them in this way is somewhat unintuitive. In the
sequel, given a rigid motion Ψ, we think of velocities at a point q0 = (R0, x0) ∈ Q as tangent
vectors defined by the infinitesimal generators corresponding to the curves ηΨ(t) and ξΨ(t),
respectively, at q0. The idea is that a rigid motion generates a curve in Q (starting at
q0) given by Ψt(q0) := (RΨ(t)R0,Ψt(x0)), and the tangent vector to this curve at a point
corresponds to the velocity at that point. We now give our definitions for spatial and body
velocities respectively. First, given a rigid motion Ψ, we define maps Ω, ω : R → o(ker(τ))
by Ω̂Ψ(t) := R−1

Ψ (t)ṘΨ(t) and ω̂Ψ(t) := ṘΨ(t)R−1
Ψ (t), respectively. We also represent by

τang : TQ → T (O(ker(τ))) and τlin : TQ → TE the respective projections. Denote by
Θang : T (O(ker(τ)))→ O(ker(τ))× o(ker(τ)) the right-trivialisation of T (O(ker(τ))). Thus
Θang(vg) = (g, TgRg−1vg) for vg ∈ Tg(O(ker(τ))) and g ∈ O(ker(τ)). Similarly, denote by
Θlin : TE → E × V the natural trivialisation of TE . Let’s us denote by pr2 the projection
onto the second components of O(ker(τ))×o(ker(τ)) and E ×V , respectively. With an abuse
of notation, we represent the maps pr2 ◦Θang and pr2 ◦Θlin by Θang and Θlin respectively.

5.3 Definition: Let Ψ be a rigid motion in a Galilean spacetime G .
(i) The body velocity is the map V b

Ψ : Q× R→ TQ given by

V b
Ψ(R, x, t) = (ηΨ(t))Q(R, x).

The maps V b
Ψ,ang := Θang ◦ τang ◦ V b

Ψ and V b
Ψ,lin := Θlin ◦ τlin ◦ V b

Ψ are called body
angular velocity and body linear velocity , respectively.

(ii) The spatial velocity is the map V s
Ψ : Q× R→ TQ defined by

V s
Ψ(R, x, t) = (ξΨ(t))Q(R, x).

The maps V s
Ψ,ang := Θang ◦ τang ◦ V s

Ψ and V s
Ψ,lin := Θlin ◦ τlin ◦ V s

Ψ are called spatial
angular velocity and spatial linear velocity , respectively. •

Let us make a few comments about these definitions.

5.4 Remarks: 1. We identify the TQ-valued velocities with the corresponding Q ×
(o(ker(τ)) × V )-valued trivialisation. Let us provide some intuition for these defini-
tions. Notice that, for q ∈ Q, we have

d

dt
(Ψt(q)) = TqΦΨt(ξΨ(t)−1ξ̇Ψ(t))Q(q) = TqΦΨt(V

b
Ψ(q, t)).

Therefore, V b
Ψ(q, t) = TqΦΨ−1

t
( ddt(Ψt(q))). The body velocity can therefore be thought

of as the velocity of the curve Ψt(q) at t ∈ R as seen in the “frame” fixed at q.
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2. The definition of spatial velocity is less intuitive. It will become clearer once we prove
Proposition 5.6.

3. It is not clear at this stage how our definitions are consistent with the existing ones.
We shall see, in Section 6.2, that, in the presence of an observer, the body and spatial
velocities correspond to “canonical” velocities. •

The definitions lead to the following relationship between body and spatial velocities,
which we shall have occasion to use.

5.5 Lemma: V s
Ψ(RΨ(t)R,Ψt(x), t) = T(R,x)ΦΨtV

b
Ψ(R, x, t).

Proof: Given an action Φ : G×Q→ Q of a Lie group G on a manifold Q, we have, for ζ ∈ g

and g ∈ G, (Adgζ)Q(g · q) = TqΦgζQ(q). The result follows directly from this equality. �

Next, we write down the expressions for linear and angular velocities.

5.6 Proposition: Let Ψ be a motion in a Galilean spacetime G . Then
(i) V b

Ψ,ang(R, x, t) = Ω̂Ψ(t),

(ii) V b
Ψ,lin(R, x, t) = Ψ−1

t,V ( d
dsΨt(x)),

(iii) V s
Ψ,ang(R, x, t) = ω̂Ψ(t), and

(iv) V s
Ψ,lin(R, x, t) = −Ψt,V ( d

dsΨ
−1
t (x)).

Proof: (i) The projection τang(V b
Ψ,ang(R, x, t)) is actually the infinitesimal generator corre-

sponding to (Ψt,V |−1
ker(τ)Ψ̇t,V |ker(τ)) = Ω̂Ψ(t). We compute

V b
Ψ,ang(R, x, t) =

d
ds

exp(sΩ̂Ψ(t))R
∣∣∣∣
s=0

= Ω̂Ψ(t)R.

Thus V b
Ψ,ang(R, x, t) = Ω̂Ψ(t).

(ii) The body linear velocity V b
Ψ,lin(R, x, t) is the infinitesimal generator corresponding

to ηΨ(t) at x ∈ E of the action of Gal(G ) on E . We compute

V b
Ψ,lin(R, x, t) = TeΦE

x (TΨtLΨ−1
t

Ψ̇t) = TΨt(ΦΨ−1
t

ΦE
x )(Ψ̇t)

=
d
ds

ΦΨ−1
t

ΦE
x ◦ (Ψt+s)

∣∣∣∣
s=0

=
d
ds

ΦΨ−1
t

(Ψt+s(x))
∣∣∣∣
s=0

= TΨt(x)ΦΨ−1
t

d
ds

(Ψt(x)) = Ψ−1
t,V

d
ds

(Ψt(x)).

This is what we wanted to prove.
(iii) This is identical to the proof of part (i).
(iv) The spatial linear velocity V s

Ψ,lin(R, x, t) is the infinitesimal generator corresponding
to ξΨ(t) at x ∈ E of the action of Gal(G ) on E . Notice that, by differentiating ΨtΨ−1

t = idE ,
we get

TΨtRΨ−1
t

Ψ̇t = −TΨ−1
t
LΨtΨ̇

−1
t .
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We compute

V s
Ψ,lin(R, x, t) = TeΦE

x (TΨtRΨ−1
t

Ψ̇t) = −TeΦE
x (TΨtLΨtΨ̇

−1
t )

= − d
ds

ΦΨtΦ
E
x (Ψ−1

t+s)
∣∣∣∣
s=0

= − d
ds

ΦΨt(Ψ
−1
t+s(x))

∣∣∣∣
s=0

= −TΨ−1
t (x)ΦΨt

d
ds

(Ψ−1
t (x)) = −Ψt,V

d
ds

(Ψ−1
t (x)),

as desired. �

Thus, the spatial velocity at (q0, t) ∈ Q × R is obtained by taking the tangent vector
to the curve Ψ−1

t (q0), and then “pushing” this vector by the map (−TΨ−1
t (x)ΦΨt). In other

words, V s
Ψ(q0, t) can be thought of as the velocity of a point in Q traveling thorough q0 at

time t. This is exactly the interpretation of spatial velocity given in [Murray, Li, and Sastry
1994].

5.3. Spatial and body momenta. In this section we define the spatial and body mo-
menta for a rigid body. We identify o(ker(τ)) with ker(τ) by the inverse of the ·̂ map defined
earlier and denote the angular velocities thought of as taking values in ker(τ) by V b

Ψ,ang and
V s

Ψ,ang. Given a rigid body (B, µ), a rigid motion Ψ, and a curve u : R→ ker(τ), we define
the instantaneous inertia tensor Ic(t) : ker(τ)→ ker(τ) by

Ic(t)(u(t)) =
∫

B(t)
(Ψt(x)−Ψt(xc))× (u(t)× (Ψt(x)−Ψt(xc))dµ(t),

where B(t) = Ψt(B) and u(t) ∈ ker(τ). Notice that, since the integrand is in ker(τ), so too
will be the integral. The following result shows what the spatial angular momentum looks
like in terms of the inertia tensor of the body about its center of mass.

5.7 Lemma: Ic(t)(ωΨ(t)) = RΨ(t)Ic(R−1
Ψ (t)ωΨ(t)).

Proof: We represent by B(t) the rigid body after it has undergone the transformation Ψt

and the corresponding mass distribution by dµ(t). We compute

Ic(t)(ωΨ(t)) =
∫

B(t)
(Ψt(x)−Ψt(xc))× (ωΨ(t)× (Ψt(x)−Ψt(xc))) dµ(t)

=
∫

B(t)
(Ψt,V (x− xc))× (ωΨ(t)× (Ψt,V (x− xc))) dµ(t)

=
∫

B(t)
(RΨ(t)(x− xc))× (ωΨ(t)× (RΨ(t)(x− xc))) dµ(t)

= RΨ(t)
∫

B
(x− xc)×

(
R−1

Ψ (t)ωΨ(t)× (x− xc)
)

dµ

= RΨ(t)Ic(R−1
Ψ (t)ωΨ(t)),

where we have used the fact that x−xc ∈ ker(τ), and therefore Ψt,V (x−xc) = RΨ(t)(x−xc).
�

We can now define spatial and body momenta.
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5.8 Definition: Let (B, µ) be a rigid body in a Galilean spacetime G and let Ψ be a
rigid motion.

(i) The spatial momentum is a map pΨ,B : R→ ker(τ)× V given by

pΨ,B(t) =
(
Ic(t)V s

Ψ,ang, µ(B)V s
Ψ,lin

)
(RΨ(t),Ψt(xc), t).

(ii) The body momentum is the map PΨ,B : R→ ker(τ)× V given by

pΨ,B(t) =
(
Ic(t)V b

Ψ,ang, µ(B)V b
Ψ,lin

)
(idker(τ), xc, t). •

The following result can be readily proved using Lemma 5.5.

5.9 Proposition: Let (B, µ) be a rigid body in a Galilean spacetime G and let Ψ be a
rigid motion. Then

(i) pΨ,B(t) = (Ic(t)ωΨ(t), µ(B) d
dsΨt(xc)),

(ii) PΨ,B(t) = (RΨ(t)−1
Ic(t)ωΨ(t), µ(B)Ψ−1

t,V
d
dsΨt(xc)).

Given a rigid body (B, µ), define an equivalence class of Galilean mappings as follows.
Two mappings φ and ψ ∈ Gal(G ) are called B-equivalent if φ(B) = ψ(B). It is easy to
see that this is an equivalence relation. In such a case, we denote the equivalence class
containing φ by [φ]B. In other words, any two mappings in the equivalence class [φ]B map
the rigid body B to the same set of points in E . The following result is readily verified.

5.10 Proposition: φ ∈ [ψ]B if and only if φ(xc) = ψ(xc) and Rφ = Rψ.

Proof: If φ ∈ [ψ]B then, for each x ∈ B, we have φ(x) = ψ(x). Since B is a subset of E (s0)
(which is an affine space modeled on ker(τ)), we can write x ∈ B as x = xc + w for some
w ∈ ker(τ). We thus have

φ(xc + w) = ψ(xc + w),

which implies that
φ(xc + w)− φ(xc) = ψ(xc + w)− ψ(xc).

We thus have φV (w) = ψV (w) and thus Rφw = Rψw. Conversely, assume that ψ is such
that Rψ = Rφ and ψ(xc) = φ(xc). By reversing the argument above, it is easy to show that
φ(x) = ψ(x) for all x ∈ B. �

Given a rigid body (B, µ) and a rigid motion Ψ, a rigid motion Ψ̃ is B-equivalent to Ψ
if Ψ̃t ∈ [Ψt]B for each t ∈ R. The following result is immediate.

5.11 Lemma: Let (B, µ) be a rigid body in a Galilean spacetime and let Ψ be a motion.
If a rigid motion Ψ̃ is B-equivalent to Ψ, then pΨ̃,B = pΨ,B

5.4. Galilean–Euler equations. In this section we derive the equations of motion for
a rigid body in our general framework. As remarked in the Introduction, the problem of
finding the equations of motion for rigid bodies has a rich history. The key observation
of Newton and Euler is that the free motion of a rigid body is completely determined
by imposing conservation of spatial linear and angular momenta. The observation that
this approach generalizes to other physical settings such as hydrodynamics, was first made
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by Arnol’d [1966] (see also, [Abraham and Marsden 1978]). Using his method, the Euler
equations for an incompressible fluid can be written as geodesic equations on a certain
infinite-dimensional Lie group. We note that the Galilean group Gal(G ) of a Galilean
spacetime G does not have a natural invariant metric, and thus we cannot use Arnol’d’s
method in this setup. Intuitively speaking, Gal(G ) is “too big” to uniquely determine the
physical motion of the body. We shall have more to say on this matter in Section 6.5.
We use the principle of conservation of spatial momentum to derive differential equations
in terms of “spatial” as well as “body” quantities that describe the physical motion of
the body. We also show that, if a rigid motion Ψ satisfies these equations for the body
(B, µ), then every rigid motion B-equivalent to Ψ also satisfies the equations. From the
definitions given in the previous section, it can be seen that pΨ,B = (`Ψ,B(t),mΨ,B(t)) =
(RΨ(t)LΨ,B(t),Ψt,VMΨ,B(t)).

5.12 Proposition: (Galilean–Euler equations) Let (B, µ) be a rigid body in a Galilean
spacetime and let Ψ be a rigid motion. The following statements are equivalent:

(i) the spatial momentum pΨ,B is conserved;
(ii) the motion of the body satisfies the spatial Galilean–Euler equations

Ic(ω̇Ψ(t)) = Ic(ωΨ(t))× ωΨ(t)
ẍc(t) = 0,

where ẍc(t) = d2

dt2
(Ψt(xc));

(iii) the motion of the body satisfies the body Galilean–Euler equations

L̇Ψ,B(t) = LΨ,B(t)× ΩΨ(t)

ṀΨ,B(t) = −(ηV (t))V (MΨ,B(t)),

where (ηV (t))V (MΨ,B(t)) is the infinitesimal generator corresponding to ηV (t) =
Ψ−1
t,V Ψ̇t,V of the action of Lin(G ) on V .

Furthermore,
(iv) if Ψ̃ is a rigid motion B-equivalent to Ψ, then Ψ can be replaced with Ψ̃ in the above

statements.

Proof: Conservation of spatial momentum implies that ṗΨ,B(t) = 0. The equation ẍc(t) = 0
immediately follows. To derive the first equation, we note that

Ic(t)ωΨ(t) = RΨ(t)Ic(R−1
Ψ ωΨ(t)).

Therefore,

d
ds
RΨ(t)Ic(R−1

Ψ ωΨ(t)) = ṘΨ(t)Ic(R−1
Ψ ωΨ(t) +RΨ(t)Ic(R−1

Ψ ω̇Ψ(t))

= ω̂Ψ(t)RΨ(t)Ic(R−1
Ψ ωΨ(t)) +RΨ(t)Ic(R−1

Ψ ω̇Ψ(t))
= ω̂Ψ(t)Ic(ωΨ(t)) + Ic(t)ω̇Ψ(t)
= 0,
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by conservation of spatial momentum. Therefore

Ic(ω̇Ψ(t)) = −ω̂Ψ(t)Ic(ωΨ(t)) = Ic(ωΨ)× ωΨ(t)).

Next, we write spatial momentum in terms of the body momentum. That is,

pΨ,B(t) = (RΨ(t)LΨ,B,Ψt,VMΨ,B(t)).

Conservation of spatial momentum implies that

d
ds

(RΨ(t)LΨ,B(t)) = 0 and
d
ds

(Ψt,VMΨ,B(t)) = 0.

The first equation gives

0 = (ṘΨ(t)LΨ,B(t) + (RΨ(t)L̇Ψ,B(t)

= RΨ(t)Ω̂Ψ(t)LΨ,B(t) +RΨ(t)L̇Ψ,B(t).

We therefore get
L̇Ψ,B(t) = −Ω̂Ψ(t)LΨ,B(t) = LΨ,B(t)× ΩΨ(t).

Next, consider the second equation. Written appropriately in terms of the action ΦV of
Lin(G ) on V , the equation becomes

d
ds

ΦV
Ψt,V

(MΨ,B(t)) = 0.

We compute

d
ds

ΦV
Ψt,V

(MΨ,B(t)) = TMΨ,B(t)Φ
V
Ψt,V

ṀΨ,B(t) + TMΨ,B
ΦV

Ψt,V
(ηV (t))V (M)) = 0,

which gives us the requisite equation. The final part of the proposition follows directly from
Lemma 5.11. �

5.13 Remarks: 1. Proposition 5.12 shows that, if a motion Ψ satisfies the
Galilean–Euler equations for a rigid body, so does every motion B-equivalent to Ψ.
In other words, the Galilean–Euler equations hold for an equivalence class of motions
specified by the rigid body.

2. The Galilean–Euler equations are very general because they have been derived in the
setting of an abstract Galilean spacetime without requiring an observer. However, the
generality of the treatment makes certain things less obvious. In particular, it is not
clear how the classical Euler equations fit into this setup and, if they do, whether or
not there is a geometrical explanation for it. We shall see, in the next section, that
the presence of an observer allows us to answer these questions. •



Rigid body mechanics in Galilean spacetimes 25

6. Dynamics of rigid bodies in the presence of an observer

In Section 5, we formulated rigid body dynamics in an observer independent way. In
this section, we shall explore the effect of introducing an observer in this formulation. In
Section 6.1 we introduce canonical velocities associated with a rigid motion in the presence
of an observer. In Section 6.2 we show that, in the presence of an observer, the body and
spatial velocities defined in Section 5 project to the corresponding canonical velocities. In
the next section, we show that the momenta also project to the well known quantities in
the presence of the observer. Finally, in Section 6.4, we illustrate how an observer enables
us to recover the classical Euler equations for a rigid body.

6.1. Canonical velocities. Consider a rigid motion Ψ in a Galilean spacetime G =
(E , V, g, τ). In Section 5.2, we introduced the curves ηΨ(t) and ξΨ(t) ∈ gal(G ) corresponding
to Ψ. The following result provides a decomposition of these curves in presence of an
observer.

6.1 Proposition: Let G = (E , V, g, τ) be a Galilean spacetime with O an observer and Ψ
a rigid motion. For s0 ∈ IG , let ιOs0 (Ψt) = (RΨ(t), rΨ,O(t), uΨ,O(t), t). Then, the following
statements hold:

(i) the image of ηΨ(t) ∈ gal(G ) under the isomorphism of the Lie algebras induced by
ιOs0 is

(Ω̂Ψ(t), VΨ,O(t)−R−1
Ψ (t)uΨ,O(t), R−1

Ψ (t)u̇Ψ,O(t), 1) ∈ gal(Gcan);

(ii) the image of ξΨ(t) ∈ gal(G ) under the isomorphism of Lie algebra induced by ιOs0 is

(ω̂Ψ(t), vΨ,O(t)−t(u̇Ψ,O(t)+uΨ,O(t)×ωΨ(t)), u̇Ψ,O(t)+uΨ,O(t)×ωΨ(t), 1) ∈ gal(Gcan),

where VΨ,O(t) = R−1
Ψ (t)ṙΨ,O(t), and vΨ,O(t) = ṙΨ,O(t) + rΨ,O(t)× ωΨ(t).

Proof: We start by faithfully representing Gal(Gcan) in a vector space. We let W = ker(τ)⊕
R⊕ R and, for g = (R, r, u, t) ∈ Gal(Gcan), define an isomorphism ρg of W by

(µ, σ, ξ) 7→ (R(µ) + σu+ ξr, σ + ξt, ξ).

One readily verifies that the map ρ : Gal(Gcan) → GL(W ) defined by ρ(g) = ρg is a
homomorphism. To see that the representation is faithful, suppose that

(µ, σ, ξ) 7→ (R(µ) + σu+ ξr, σ + ξt, ξ) = (µ, σ, ξ)

for all (µ, σ, ξ) ∈ W . Then we must have σ + ξt = 0, for all σ, ξ ∈ R, implying that t = 0.
Similarly, R(µ)+σu+ξr = µ for all (µ, σ, ξ) ∈W implies that r = 0, u = 0, and R = idker(τ).
Thus the representation is faithful. In block matrix form, the representation of (R, r, u, t)
on W is  R u r

0 1 t
0 0 1

 ∈ GL(W ).
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We then compute  R u r
0 1 t
0 0 1


−1

=

 R−1 −R−1u R−1(tu− r)
0 1 −t
0 0 1

 .
With this expression, both parts follow from direct computation. �

We call the first two components in (i) as, respectively, the canonical body angular
velocity , the canonical body linear velocity , and denote them by Ωcan

Ψ and V can
Ψ,O , re-

spectively. Similarly, we call the first two components in (ii) as, respectively, the canonical
spatial angular velocity , the canonical spatial linear velocity , and represent them
by ωcan

Ψ and vcan
Ψ,O , respectively.

6.2. Linear and angular velocities. Recall that, given a rigid motion Ψ in a Galilean
spacetime, the body linear velocity is the map V b

Ψ,lin : Q× R→ V given by

V b
Ψ,lin(R, x, t) = Ψ−1

t,V (
d
dt

(Ψt(x)),

and the spatial linear velocity is the map V s
Ψ,lin : Q× R→ VG given by

V s
Ψ,lin(R, x, t) = −Ψt,V (

d
dt

(Ψ−1
t (x))).

Let’s see what these velocities look like in the presence of an observer. We look at body
linear velocity first.

6.2 Proposition: Let Ψ be a rigid motion in a Galilean spacetime G = (E , V, g, τ) and
let O be an observer. Then PO(V b

Ψ,lin(R, x, t)) = V can
Ψ,O(t).

Proof: We know that, for each instant s0 ∈ IG , there exists an isomorphism ιOs0 such that,
for a motion Ψ, we have

ιOs0 (Ψt) = (RΨ(t), rΨ,O(t), uΨ,O(t), t).

Also,

Ψt(x) = RΨ(t)(x− OπG (x)) + (πG (x)− s0)uΨ,O(t) + rΨ,O(t) + OπG (x)+t.

Now, for x ∈ O, we have
Ψt(x) = rΨ,O(t) + OπG (x)+t,

so we have
d
dt

(Ψt(x)) = ṙΨ,O(t) + vO .

Next,

Ψ−1
t,V

( d
dt

Ψt(x))
)

= Ψ−1
t,V (ṙΨ,O(t) + vO)

= Ψ−1
t (ṙΨ,O(t) + vO + Os0)−Ψ−1

t (Os0)

= R−1
Ψ (t)(ṙΨ,O(t) + vO + Os0 − O1+s0)−R−1

Ψ (t)uΨ,O(t)

+R−1
Ψ (t)(tuΨ,O(t)− rΨ,O(t)) + (1− t)vO + Os0

−R−1
Ψ (t)(tuΨ,O(t)− rΨ,O(t)) + tvO − Os0

= R−1
Ψ (t)ṙΨ,O(t)−R−1

Ψ (t)uΨ,O(t) + vO .
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From this, the result follows. �

Let us look at the spatial linear velocity now.

6.3 Proposition: Let Ψ be a motion in a Galilean spacetime G = (E , V, g, τ) and let O
be an observer. Then PO(V s

Ψ,lin(R, x, t)) = vcan
Ψ,O(t).

Proof: For x ∈ O, we compute,

Ψ−1
t (x) = R−1

Ψ (t)(tuΨ,O(t)− rΨ,O(t))− tvO + Os0 .

Therefore,

d
dt

(Ψ−1
t (x)) = R−1

Ψ (t)(uΨ,O(t) + tu̇Ψ,O(t)− ṙΨ,O(t))

+ (−R−1
Ψ (t)ṘΨ(t)R−1

Ψ (t))(tuΨ,O(t)− rΨ,O(t)))− vO

= R−1
Ψ (t)(uΨ,O(t) + tu̇Ψ,O(t)− ṙΨ,O(t))

−R−1
Ψ (t)ω̂Ψ(t)(tuΨ,O(t)− rΨ,O(t))− vO

= R−1
Ψ (t)uΨ,O(t) +R−1

Ψ (t)[t(u̇Ψ,O(t) + uΨ(t)× ωΨ(t))]

−R−1
Ψ (t)(ṙΨ,O(t) + rΨ,O(t)× ωΨ(t))− vO

= R−1
Ψ (t)uΨ(t)−R−1

Ψ (t)(vΨ,O(t)
− t(u̇Ψ,O(t) + uΨ,O(t)× ωΨ(t)))− vO .

Let’s call the last expression as Ψ̇−1
t (x). Now, we compute

−Ψt,V (
d
dt

(Ψ−1
t (x)) = Ψt(−Ψ̇−1

t (x) + Os0)−Ψt(Os0)

= RΨ(t)(−Ψ̇−1
t (x) + Os0 − O1+s0) + uΨ,O(t) + rΨ,O(t) + tvO

+ O1+s0 − rΨ,O(t)− tvO − Os0

= RΨ(t)(−Ψ̇−1
t (x)− vO) + uΨ,O(t) + vO

= RΨ(t)
(
R−1

Ψ (t)(vΨ,O(t)− t(u̇Ψ,O(t) + uΨ,O(t)× ωΨ(t))
)

− uΨ,O(t) + uΨ,O(t) + vO

= vΨ,O(t)− t(u̇Ψ,O(t) + uΨ,O(t)× ωΨ(t)) + vO .

From this the result follows. �

We notice that, in the presence of an observer, the spatial linear and body linear veloc-
ities project onto the canonical spatial linear and canonical body linear velocities, respec-
tively.

6.3. Spatial and body momenta. We let G = (E , V, g, τ) be a Galilean spacetime with
Ψ a rigid motion, O an observer and (B, µ) a rigid body with B ∈ E (s0). We next see how
our definitions of spatial and body momenta look when we have an observer O. In such a
case, we have the following result.
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6.4 Proposition: Let G = (E , V, g, τ) be a Galilean spacetime with Ψ a rigid motion,
O an observer, and (B, µ) a rigid body with B ∈ E (s0), and let mΨ,B, `Ψ,B,
MΨ,B, and LΨ,B be as defined in Section 5.3. For s0 ∈ IG , let

ιOs0 (Ψt) = (RΨ(t), rΨ,O(t), uΨ,O(t), t).

Then the following statements hold:
(i) PO(mΨ,B(t)) = µ(B)ṙΨ,O(t);

(ii) PO(`Ψ,B(t)) = RΨ(t)Ic(R−1
Ψ (t)ωΨ(t));

(iii) PO(MΨ,B(t)) = µ(B)V can
Ψ,O(t);

(iv) PO(LΨ,B(t)) = Ic(R−1
Ψ (t)ωΨ(t)).

Proof: (i) We compute

PO(mΨ,B(t)) = µ(B)PO(
d
dt

(Ψt(xc)) = µ(B)PO(ṙΨ,O(t) + vO)

= µ(B)ṙΨ,O(t),

where we have used the computations carried out in Proposition 6.2.
Parts (ii) and (iv) are easily seen to be true since both `Ψ,B and LΨ,B take their values

in ker(τ) and the projection PO is the identity map on ker(τ).
To obtain (iii), we compute

PO(MΨ,B(t)) = µ(B)PO(Ψ−1
t,V (

d
dt

(Ψt(xc)))

= µ(B)PO(Ψ−1
t,V (ṙΨ,O(t) + vO))

= µ(B)PO(R−1
Ψ (t)ṙΨ,O(t)−R−1

Ψ (t)uΨ,O(t) + vO)
= µ(B)V can

Ψ,O(t),

as desired. �

It is worth pointing out that the classical definition of spatial angular momentum re-
quires an observer, and is different from ours. Given an observer O and a rigid motion Ψ,
the classical spatial angular momentum `cl

Ψ,B for a rigid body (B, µ) about its center
of mass xc is defined as

`cl
Ψ,B(t) =

∫
B
PO(Ψt(x)− xc)× PO(

d
dt

(Ψt(x)− xc))dµ.

One can motivate this definition of spatial angular momentum by recalling how it might be
defined for a particle of mass m (see, for example, [Arnol’d 1989]). If a particle is moving
in R3 following a curve t 7→ x(t), then we would define the spatial angular momentum at
time t to be mx(t)× ẋ(t). This is exactly the intuition behind the definition of `cl

Ψ,O . Our
definition of body angular momentum agrees with the classical one, and therefore we do
not need to consider it separately. We shall see in the next section that the equations of
motion derived on the basis of the conservation of classical spatial angular momentum are
equivalent to the general spatial Euler equations. We have the following result.
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6.5 Proposition: Let (B, µ) be a rigid body in a Galilean spacetime G undergoing a
rigid motion Ψ, and let O be an observer with the property that xc ∈ O. Then `cl

Ψ,B(t) =
RΨ(t)Ic(RΨ(t)−1ωΨ(t)) + µ(B)rΨ,O(t)× ṙΨ,O(t).

Proof: We let s0 = πG (xc), and use the isomorphism ιOs0 between Gal(G ) and Gal(Gcan) to
get

Ψt(x) = RΨ(t)(x− OπG (x)) + rΨ,O(t) + tvO + OπG (x), x ∈ B,

which implies that Ψt(x) − xc = RΨ(t)(x − xc) + rΨ,O(t). The result is readily verified by
using part (ii) of Lemma 3.1 in the computation of the integral. �

6.4. Euler equations of a rigid body. In this section we look at the Galilean–Euler
equations, as derived in Section 5.4, in the presence of an observer. Since we consider the
abstract Galilean group in our analysis, derivatives of velocity boosts also appear in the
equations. We first write down the general Galilean–Euler equations in the presence of an
observer.

6.6 Proposition: Let (B, µ) be a rigid body, Ψ a rigid motion, and let O be an observer.
For s0 ∈ IG , let

ιOs0 (Ψt) = (RΨ(t), rΨ,O(t), uΨ,O(t), t)

for each t ∈ R. The following statements hold:
(i) the spatial Galilean–Euler equations for Ψ are equivalent to

Ic(ω̇Ψ(t)) = Ic(ωΨ(t))× ωΨ(t)

r̈Ψ,O(t) = −R̈Ψ(t)(xc − OπG (xc))− (πG (xc)− s0)üΨ,O(t);

(ii) the body Galilean–Euler equations for Ψ are equivalent to

L̇Ψ,B(t) = LΨ,B(t)× ΩΨ(t)

ṀΨ,B(t) = PO(MΨ,B(t))× ΩΨ(t)−R−1
Ψ (t)u̇Ψ,O(t).

Proof: (i) The first spatial Galilean–Euler equation evolves on ker(τ) and thus remains the
same under the projection PO . For the second equation, we compute

0 = ẍc(t) =
d
dt

(
ṘΨ(t)(xc − OπG (xc)) + (πG (xc)− s0)u̇Ψ,O(t) + ṙΨ,O(t) + vO

)
= R̈Ψ(t)(xc − OπG (xc)) + r̈Ψ,O(t) + (πG (xc)− s0)üΨ,O(t),

from which we get the required equation.
(ii) Similarly, the first body Galilean–Euler equation remains unchanged under the pro-

jection onto ker(τ). To get the second equation we use the definition of MΨ,O and the
relation ΨV (v) = RΨPO(v) + τ(v)(uΨ,O + vO), and compute

0 =
d
dt
mΨ,B(t) =

d
dt

Ψt,V (MΨ,O(t))

=
d
dt
(
RΨ(t)PO(MΨ,O(t))) + τ(MΨ,O(t))(uΨ,O(t) + vO)

)
= ṘΨ(t)PO(MΨ,O(t)) +RΨ(t)

d
dt

(PO(MΨ,O(t))) + u̇Ψ,O(t)

= RΨ(t)Ω̂PO(MΨ,O(t)) +RΨ(t)(ṀΨ,O(t))) + u̇Ψ,O(t),
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since MΨ,O(t) ∈ VG and thus ṀΨ,O(t) = d
dtPO(MΨ,O(t)). The result now follows. �

Let us now show that we get the same equations of motion if we use the classical spatial
angular momentum `cl

Ψ,B instead of `Ψ,B. Let us write pcl
Ψ,B = (`cl

Ψ,B,mΨ,B) to denote the
classical spatial momentum. We also call the equations of motion derived on the basis of
the conservation of classical spatial momentum the classical spatial Euler equations.
We have the following result.

6.7 Proposition: Let (B, µ) be a rigid body undergoing a rigid motion Ψ in a Galilean
spacetime G . Let O be an observer with the property that xc ∈ O. The following statements
are equivalent:

(i) the classical spatial momentum pcl
Ψ,B is conserved;

(ii) the motion of the body satisfies the classical spatial Euler equations

Ic(ω̇Ψ(t)) = Ic(ωΨ(t))× ωΨ(t)
r̈Ψ,O(t) = 0.

Proof: As before, we let s0 = πG (xc) and consider the isomorphism ιOs0 , using which, it is
easy to see that the conservation of spatial linear momentum mΨ,B implies that r̈Ψ,O(t) = 0.
It is a simple computation to show that this also implies that

d
dt

(`cl
Ψ,B(t)) =

d
dt

(RΨ(t)Ic(RΨ(t)−1ωΨ(t))) =
d
dt

(lΨ,B(t)).

The result now follows. �

6.5. The Galilean connection. In Proposition 6.6, we wrote down the general form of
the Galilean–Euler equations in the presence of an observer. Since we have considered the
abstract Galilean group in our analysis, we have imposed no restrictions on the velocity
boost ( the “uΨ,O” component) corresponding to a rigid motion. This is the reason why the
derivatives of these velocity boosts appear in the equations given in Proposition 6.6. Recall
that the classical Euler equations for a rigid body do not include these derivative terms
because the velocity boosts are assumed to be “uniform”. In this section, we explain how,
in our general setting, an observer allows us to recover the classical equations of motion
for a rigid body by defining a special geometric structure (namely a principal connection)
on Gal(G ). We refer to [Kobayashi and Nomizu 1963] for the definitions and properties of
principal connections.

Let Q = O(ker(τ))×E and (B, µ) be a rigid body. For the center of mass xc ∈ E of the
rigid body, consider the map

πc : Gal(G )→ Q

ψ 7→ (Rψ, ψ(xc)).

An observer O defines a map πc,O : Gal(G )→ O(ker(τ))× ker(τ)× R given by

ψ 7→ (Rψ, PO(ψ(xc)− xc), τ(ψ(xc)− xc)).
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We also know that, for s0 ∈ IG , there is an isomorphism ιOs0 from Gal(G ) to O(ker(τ)) ×
ker(τ)× ker(τ)× R given by

ψ 7→ (Rψ, rψ,O , uψ,O , tψ).

For xc ∈ O, we can write

ψ(xc) = Rψ(xc − xc) + (πG − s0)uψ,O + rψ,O + tψvO + xc,

and thus we have
PO(ψ(xc)− xc) = (πG (xc)− s0)uψ,O + rψ,O .

Also, τ(ψ(xc)− xc) = tψ, so the map πc,O induces a map

πcan
c,O : Gal(Gcan)→ O(ker(τ))× ker(τ)× R = Gal(Gcan)/ker(τ)

(Rψ, rψ,O , uψ,O , tψ) 7→ (Rψ, (πG − s0)uψ,O + rψ,O , tψ),

where the quotient Gal(Gcan)/ker(τ) corresponds to the following action of ker(τ) on
Gal(Gcan).

ker(τ)×Gal(Gcan)→ Gal(Gcan)
(µ, (R, r, u, s)) 7→ (R, r − (πG (xc)− s0)µ, u+ µ, s).

Thus, ker(τ) acts on Gal(Gcan) by appropriately changing the rψ,O and uψ,O components of
a given ψ ∈ Gal(G ) such that the resulting mapping gives the same physical motion of the
body as ψ, that is, it lies in [ψ]B. We also write π := πcan

c,O ◦ιOs0 : Gal(G )→ Gal(Gcan)/ker(τ).
It is clear that, given ψ ∈ Gal(G ), a Galilean mapping φ ∈ [ψ]B if and only if π(φ) = π(ψ).
We have the following result.

6.8 Proposition: Let (B, µ) be a rigid body in a Galilean spacetime and O be an ob-
server. For fixed s0 ∈ IG , the map ωcan : TGal(Gcan)→ ker(τ) given by

ωcan(XR, Xr, Xu, Xt) = Xu, (XR, Xr, Xu, Xt) ∈ T(R,r,u,t)Gal(Gcan),

is a principal connection 1-form in the bundle πcan
c,O : Gal(Gcan)→ Gal(Gcan)/ker(τ).

Proof: Given X = (XR, Xr, Xu, Xt) ∈ T(R,r,u,t)Gal(Gcan), it is easy to see that

Tπcan
c,O (XR, XR, Xu, Xt) = (XR, Xr + (πG (xc)− s0)Xu, Xt).

The observer O allows us to decompose X into its vertical and horizontal components as
follows. We write

X = hor(X) + ver(X), (6.1)

where

hor(X) = (XR, Xr + (πG (xc)− s0)Xu, 0, Xt),
ver(X) = (0,−(πG (xc)− s0)Xu, Xu, 0).

It can be seen that Tπcan
c,O (ver(X)) = 0, and ωcan(hor(X)) = 0. Thus (6.1) defines an

Ehresmann connection in πcan
c,O : Gal(Gcan)→ O(ker(τ))×ker(τ)×R. Next, the infinitesimal
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generator ζGal(G ) corresponding to ζ ∈ ker(τ) for the action of ker(τ) on Gal(Gcan) is given
by

ζGal(G )(R, r, u, s) =
d

dt

∣∣∣∣
t=0

(R, r − (πG (xc)− s0) exp(ζt), u+ exp(ζt), s)

= (0,−(πG (xc)− s0)ζ, ζ, 0),

and thus, by definition,
ωcan(ζGal(G )(R, r, u, s)) = ζ.

Next, given h ∈ ker(τ) and X = (XR, Xr, Xu, Xt) ∈ T(R,r,u,t)Gal(Gcan), it is easy to see that
ωcan(T(R,r,u,t)ΦhX) = ad(h) · ωcan(X), where Φh : Gal(Gcan) → Gal(Gcan) is the action of
ker(τ) on Gal(Gcan) and adh : gal(Gcan) → gal(Gcan) is defined by adh(β) = TeLhRh−1(β),
β ∈ gal(Gcan). So ωcan is indeed a connection one-form. �

Now, it is easy to see that ker(τ) also acts on Gal(G ) as follows:

ker(τ)×Gal(G )→ Gal(G )
(µ, ψ) 7→ ψµ ◦ ψ,

where ψµ is such that ιOs0 (ψµ) = (idO(ker(τ)),−(πG (xc) − s0)µ, µ, 0) ∈ Gal(Gcan). In other
words, ker(τ) acts on Gal(G ) as a subgroup of N0 that fixes xc. It can be seen that, for any
x ∈ E , we have ψµ(x) = x+ (πG (x)−πG (xc))µ. As a direct consequence of Proposition 6.8,
we have the following corollary.

6.9 Corollary: The ker(τ)-valued one-form on Gal(G ) defined by ωO = (ιOs0 )∗ωcan is
a connection one-form in the bundle Gal(G ) → Gal(G )/ker(τ). We call ωO the Galilean
connection induced by O.

Thus, the Galilean connection ωO induced by O is the pull-back of ωcan to Gal(G )
by ιOs0 . It allows us to recover the classical Euler equations for a rigid body. It may
be recalled that these equations do not contain derivatives of velocity boosts (that is, the
“u̇Ψ,O” terms) corresponding to the given rigid motion. The next proposition shows that,
given a rigid motion, the Galilean connection allows us to choose a rigid motion that gives
the same physical motion of the rigid body as the given rigid motion, and such that the
corresponding Galilean–Euler equations do not contain the “u̇Ψ,O” terms. This is made
precise in the following proposition.

6.10 Proposition: Let (B, µ) be a rigid body in a Galilean spacetime, O be an observer
such that xc ∈ O, and s0 ∈ IG . Then, for every rigid motion Ψ, there exists a rigid motion
Φ with the following properties:

(i) Φ is B-equivalent to Ψ;
(ii) Φt is horizontal with respect to ωO ;

(iii) The Galilean–Euler equations for Φ are equivalent to

Ic(t)(ω̇Φ(t)) = Ic(t)(ωΦ(t))× ωΦ(t)
r̈Φ,O(t) = 0

L̇Φ,B(t) = LΦ,B(t)× ΩΦ(t)

ṀΦ,B(t) = PO(MΦ,B(t))× ΩΦ(t).
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Moreover, given C0 ∈ ker(τ), the rigid motion Φ can be uniquely chosen such that uΦ,O(t) =
C0 for every t ∈ R. In particular, if x(t) = π(Ψt) = (RΨ(t), aΨ,O(t), t), then, Φt is the
horizontal lift of x(t) passing through ι−1

Os0
(RΨ(t0), aΨ,O(t0) − (πG (xc) − s0)C0, C0, t0) for

some (and therefore every) t0 ∈ R.

Proof: For x(t) = π(Ψt) = (RΨ(t), aΨ,O(t), t) ∈ O(ker(τ)) × ker(τ) × R, we have, for each
t ∈ R,

(πcan
c,O )−1(RΨ(t), aΨ,O(t), t)

={(RΨ(t), aΨ,O(t)− (πG (xc)− s0)ũ(t), ũ(t), t) ∈ Gal(Gcan) | ũ(t) ∈ ker(τ)}.

Thus, all rigid motions Φ for which ιOs0 (Φt) ∈ (πcan
c,O )−1(RΨ(t), aΨ,O(t), t) for each t ∈ R,

have the property that π(Ψt) = π(Φt), t ∈ R, and map the rigid body (B, µ) to the same
set of points. Therefore, every such Φ is B-equivalent to Ψ. Now, given C0 ∈ ker(τ), define
a motion Φ by

Φt = ι−1
Os0

(
RΨ(t), aΨ,O(t)− (πG (xc)− s0)C0, C0, t)

)
.

Clearly, Φt is horizontal with respect to ωO and Φt ∈ (πcan
c,O )−1(RΨ(t), aΨ,O(t), t), for

each t ∈ R . It can be directly verified that the curve Φt passes through the point
ι−1
Os0

(RΨ(t0), aΨ,O(t0) − (πG (xc) − s0)C0, C0, t0) at t = t0, for each t0 ∈ R, and thus corre-
sponds to the unique rigid motion Φ with the property that uΦ,O(t) = C0, for all t ∈ R.
From Proposition 6.6 we can see that, for xc ∈ O, the Galilean–Euler equations for the
rigid motion Φ are equivalent to

Ic(t)(ω̇Φ(t)) = Ic(t)(ωΦ(t))× ωΦ(t)
r̈Φ,O(t) = 0

L̇Φ,B(t) = LΦ,B(t)× ΩΦ(t)

ṀΦ,B(t) = PO(MΦ,B(t))× ΩΦ(t).

The result now follows. �

Proposition 6.10 finally explains how the presence of an observer enables us to provide
a geometric explanation of how one can start with the general setup of a rigid body in
a Galilean spacetime and recover the classical Euler equations of motion for a rigid body.
Thus, for a rigid motion, one can restrict oneself to only the horizontal rigid motions without
losing any physical motions of the body. Note that many different motions are B-equivalent,
due to the fact that the Galilean group is “too big” to give a one-to-one correspondence
between rigid motions and motions of the body. Horizontality with respect to the Galilean
connection induced by the observer specifies a relation in N0 that ensures that, with respect
to the observer, the “velocity boost” component of Ψt is constant, and therefore does not
appear in the Galilean–Euler equations.
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ses applications à l’hydrodynamique des fluides parfaits, Université de Grenoble. Annales
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