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Abstract

Given an ordinary di�erential equation on a homogeneous manifold, one can construct
a \geometric integrator" by determining a compatible ordinary di�erential equation on the
associated Lie group, using a Lie group integration scheme to construct a discrete time
approximation of the solution curves in the group, and then mapping the discrete trajectories
onto the homogeneous manifold using the group action. If the points of the manifold have
continuous isotropy, a vector �eld on the manifold determines a continuous family of vector
�elds on the group, typically with distinct discretizations. If suÆcient isotropy is present, an
appropriate choice of vector �eld can yield improved capture of key features of the original
system. In particular, if the algebra of the group is \full", then the order of accuracy of
orbit capture (i.e. approximation of trajectories modulo time reparametrization) within a
speci�ed family of integration schemes can be increased by an appropriate choice of isotropy
element. We illustrate the approach developed here with comparisons of several integration
schemes for the reduced rigid body equations on the sphere.

1 Introduction.

Geometric integration techniques have become increasingly popular in the modern approach
to numerical analysis. In the broad sense, \geometric integration" refers to numerical solution
techniques for di�erential equations that preserve inherent geometric structures. Geometric in-
tegrators include symplectic and multisymplectic integrators that preserve the Hamiltonian or
Poisson structure, [10, 12, 21, 35, 46, 9, 45, 2, 3, 29, 6], variational integrators that utilize the
variational character of Lagrangian and canonical Hamiltonian systems, [4, 5, 31, 29], conserva-
tive integrators that preserve �rst integrals or conservation laws, [19, 20, 27, 42, 38, 39, 40, 25, 1],
and symmetric integrators that preserve symmetries of the system, [7, 11, 17, 36]. A geometric
integrator will track solutions over short time intervals as well as a standard scheme of the same
order, e.g. a Runge{Kutta algorithm, while the extra expense required to construct and imple-
ment it will often be rewarded by signi�cantly better performance in capturing the long term
behavior and preserving geometric properties of the solutions.

�Mathematics Department, University of California, Santa Cruz, Santa Cruz, CA 95064 email:

lewis@math.ucsc.edu Supported in part by NSF Grant DMS 98{02378 and by the UCSC Academic Senate

Committee on Research
yDepartment of Mathematics and Institute for Mathematics and its Applications, University of Minnesota,

MN 55455 email: olver@math.umn.edu Supported in part by NSF Grant DMS 98{03154

1



In the more narrow sense, \geometric integration" refers to a family of Lie group integra-
tors for ordinary di�erential equations and discretizations of partial di�erential equations. The
rotation group plays a crucial role in many formulations of elasticity and plasticity and the
advantages of exact rotations in numerical simulations of such materials, implemented via ei-
ther the Rodriguez formula for the true exponential or the Cayley transform, have been amply
demonstrated [41, 42, 40, 37]. Discretizations of speci�c dynamical systems on Lie groups that
preserve not only the group structure, but additional geometric structures, have been used in
the study of integrable systems; see, e.g. Moser and Veselov [31], Lewis and Simo [25], and
McLaughlin and Scovel [28], for schemes preserving the group structure, the symplectic struc-
ture, and all point invariants of the generalized rigid body. Geometric integration schemes for
general Lie groups and their associated bundles have been developed by Lewis and Simo [25, 26]
and Munthe-Kaas, Iserles, N�rsett and their collaborators, [32, 15]. In particular, Munthe-Kaas
[32] extended the classical Runge-Kutta algorithms to arbitrary Lie groups, creating a large,
versatile family of geometric integrators. In general, if a Lie group G acts freely and transitively
on a manifold M , then a di�erential equation on M uniquely determines a di�erential equation
on G. Thus, replacing the original di�erential equation on M by the equivalent di�erential
equation on G allows one to apply an appropriate Lie group integrators. The advantages of this
approach over traditional integrators, e.g., a Runge{Kutta scheme, are discussed at length in
the previously cited references.

If the action is transitive, but some points have continuous isotropy, then this construction is
no longer unique | a given 
ow on M will correspond to continuous families of 
ows on the Lie
group G. The purpose of this paper is to exploit this nonuniqueness in the design of geometric
integration schemes that capture key features of the true dynamical system more accurately than
other algorithms within a given class. We also show how to use isotropy to maintain the validity
of conservation laws during the numerical approximation procedure. We illustrate our approach
using 
ows on spheres, such as those arising in rigid body mechanics and micromagnetics, [24].
We have extensively tested several geometric integrators of various orders for the reduced free
rigid body equations on the sphere. Further applications will be discussed elsewhere.

Our approach is reminiscent of the methods of Krupa, [18], who, in the compact group
setting, applied an equivariant splitting of the dynamics into tangential and normal (isotropy)
components to analyze stability and bifurcations of equilibria. The emphasis on isotropy and
the utilization of any available freedom in generator selection is motivated in part by the �rst
author's stability and bifurcation analyses of symmetric relative equilibria, [22, 23]. Our methods
were originally inspired by the new equivariant approach to moving frames developed by the
second author and Mark Fels, [13, 33]. In future work, we intend to apply the moving frame-
based invariant numerical algorithms proposed in [34] to the systems under consideration in this
paper.

2 The Basic Framework.

Let G be a Lie group acting transitively on a manifold M and let g denote its Lie algebra
of right-invariant vector �elds on G. For simplicity, we shall assume that M is an embedded
submanifold of a vector space V. The tangent space TM jm at each m 2 M is then identi�ed
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with a subspace of V. Given m 2M , let Gm = fg �m = mg � G denote the isotropy subgroup
of m 2 M and gm � g its Lie subalgebra. In applications, G acts intransitively on the entire
vector space, and M is a regular group orbit.

Let 
: g ! X denote the associated Lie algebra homomorphism1 from the Lie algebra of G
to the space of vector �elds X = X(M) on M . By transitivity, given a vector �eld X 2 X, we
can construct a map  :M ! g such that X(m) = 
( (m))(m). The map  is only prescribed
up to isotropy. In other words,

X(m) = 
( (m) + �(m))(m); (2.1)

for any map �:M ! g satisfying �(m) 2 gm for all m 2M .
A time-dependent vector �eld on M is de�ned as a smooth map X: I ! X from an interval

I � R to the space of vector �elds. According to (2.1), at each m 2M and t 2 I, we can write

X(m; t) = 
( (m; t) + �(m; t))(m); (2.2)

where  (m; t) 2 g, while �(m; t) 2 gm for all m 2 M and t 2 I. We consider the associated
non-autonomous 
ow m(t) = Ft;t0(m) de�ned as the solution to the initial value problem

dm

dt
= X(m; t); m(t0) = m:

Since X(m; t) is everywhere tangent to M , the 
ow Ft;t0(m) 2 M remains in M at all times
(where de�ned), and our numerical approximations should reproduce this property as accurately
as possible.

Let �t > 0 denote the step size for the numerical algorithm, which may be �xed or variable.
Our goal is to numerically approximate the time-dependent 
ow Ft;t0 at the subsequent time

t = t0 + �t by a map eF�t;t0 :M ! M . The numerical algorithm will then approximate the

ow by iterating this procedure2 over the desired time interval. In accordance with standard
procedures, we shall only analyze the local truncation error of the algorithm due to one iteration.
Thus, without loss of generality, we may take the initial time t0 = 0 from now on, and write

Ft(m) = Ft;0(m) = exp(X(m; t)) �m; m 2M; (2.3)

for the time-dependent 
ow, and eF�t = eF�t;0 for its numerical approximation. We shall further

assume that the algorithm eF�t is obtained by evaluating a smooth time-dependent map eFt:M !
M at time t = �t. In our analysis, we shall ignore the machine-dependent e�ects of numerical
approximation, e.g., round-o� error, and assume that we can exactly compute the algorithmic

ow to a speci�ed order of truncation.

By transitivity of the group action, we can write our algorithm in the form

eFt(m) = g(m; t) �m; (2.4)

1Here is where right-invariance is required.
2For simplicity, we restrict our attention to single step algorithms.
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where g:M � I ! G de�nes a time-dependent map from the manifold to the group. Assuming
that g(m; t) is suÆciently near the identity, we can regard

g(m; t) = exp(�(m; t))

as arising from exponentiation of a Lie algebra-valued map � :M � I ! g, and thus

eFt(m) = exp(�(m; t)) �m: (2.5)

Appropriate maps � can be determined using standard families of algorithms (e.g. Runge{Kutta
methods) with correction terms, if needed, constructed using the Lie bracket of the algebra g,
as, for example, in [32].

In some situations, it is useful to generalize this framework by replacing exp with some form
of \algorithmic exponential" Exp: g ! G. One important example is the Cayley transform
for the orthogonal O(n) and symplectic Sp(n) Lie groups, [44]. See [41, 42, 25, 26, 16] and
the references therein for discussions of algorithmic exponentials, including applications of the
Cayley transform to geometric integration. The computations in all cases are similar, and the
reader will not lose much by assuming all exponentials are of standard type in this paper.

As we shall see, modi�cation of the Lie algebra element used in the update, i.e. replacing
(2.5) by eFt(m) = Exp(�(m; t) + �(m; t)) �m; (2.6)

where the isotropy \improvement" �(m; t) 2 gm for all m 2 M and all t 2 I, can change the
qualitative features of the algorithmic trajectories, e.g. altering the apparent stability properties
of equilibria or the conservation properties. Furthermore, in the presence of suÆcient isotropy,
given �, it is possible to design a map � such that the associated algorithmic update (2.6) captures
the trajectories of the system to a higher order than is captured by the update determined by the
original algorithm (2.5). In what follows, we shall consider families of algorithms in which the
basic in�nitesimal update' � is determined by some \standard" algorithm and speci�ed choice
of  , while the isotropy improvement term � is speci�ed as a function of � and m.

Our primary goal is to exploit the ambiguity in the isotropy components of the generator
and the in�nitesimal update to increase the order of accuracy of a given algorithm. Therefore,
we begin by formally de�ning the order of an approximation, based on the approximate and
exact maps having the same Taylor expansion to order n.

De�nition 1 Let Ft; eFt:M !M be smooth time-dependent maps with F0(m) = m = eF0(m).

We shall say that eFt(m) is an order n approximation of Ft(m) at m 2M if

lim
t!0

eFt(m)� Ft(m)

tn
= 0; i.e. eFt(m)� Ft(m) = O(tn+1):

We shall say that eFt is an order n approximation of Ft if eFt(m) is an order n approximation of
Ft(m) for all m 2M .
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3 Algorithms on the Sphere.

As a warm-up to a general theory, we �rst treat the \simplest" case | the standard linear action
of the rotation group G = SO(3) on R3 . The orbits are spheres, and, without loss of generality,
we concentrate on the unit sphere M = S2 = f km k = 1 g � R3 . We note that the isotropy
subgroup Gm ' SO(2) for each m 2 S2 consists of the rotations around the axis through m.

To keep the presentation simple, we consider an autonomous vector �eld X on S2 with 
ow
Ft. Let !:S

2 ! R3 denote the unique map satisfying

X(m) = !(m)�m and h!(m);m i = 0 for all m 2 S2:
Here we are making the usual identi�cation of R3 ' so(3) with the Lie algebra of the rotation
group. We expand the 
ow of X in a power series

Ft(m) = m+ t ! �m+ t2

2 [! � (! �m) + _! �m ]

+ t3

6

�
(�k!k2! + ! � _! + �!)�m+ 3 _! � (! �m)

�
+ O(t4):

(3.1)

Here _! = d
dt
! and �! = d2

d2t
! represent the time derivatives of the vector along the 
ow. We

assume that we are not at an equilibrium point, and so

v � k!(m) k 6= 0:

To facilitate the analysis, we introduce the orthonormal basis fm;!=v;m� !=vg and write

!(j) =
dj

dtj
! = ajm+ bj

!

v
+ cj

! �m

v
; j = 0; 1; 2; : : : :

Since h!(m);m i = 0, we have a0 = a1 = 0; in addition, b0 = v and c0 = 0. With respect to our
orthonormal basis, the expansion (3.1) has the form

Ft(m) =

0
@ 1
0
0

1
A+ t

0
@ 0

0
�v

1
A+

t2

2

0
@�v2

c1
�b1

1
A+

t3

6

0
@ �3 b1v

c2
v3 � b2

1
A+ O(t4): (3.2)

On the other hand, an algorithmic update of the form

eFt(m) = exp(�(m; t)) �m; where �(m; t) =

1X
j=1

tj

j!
�j(m);

has the Taylor expansion

eFt(m) = m+ t �1 �m+ t2

2 [ �1 � (�1 �m) + �2 �m ]

+ t3

6 [ (�k �1 k2�1 + 3
2 �1 � �2 + �3)�m+ 3 �2 � (�1 �m) ] + O(t4):

(3.3)

(The �rst two terms in this expression are the same for both the matrix exponential and the
Cayley transform, but di�erences appear at higher orders.) Note that �(m) need not be tangent
to M . We write the expansion (3.3) in terms of the basis used above, setting

�j = �jm+ �j
!

v
+ 
j

! �m

v
; j = 1; 2; : : : ; k �j k2 = �2j + �2j + 
2j :
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Then (3.3) takes the form

eFt(m) =

0
@ 1
0
0

1
A+ t

0
@ 0


1
��1

1
A+

t2

2

0
@ ��21 � 
21
�1�1 + 
2
�1
1 � �2

1
A

+
t3

6

0
@ �3 (�1�2 + 
1
2)


3 � k �1 k2
1 + 3
2(�1�2 + �1�2)

��3 + k �1 k2�1 + 3
2 (�1
2 + 
1�2)

1
A+ O(t4):

(3.4)

Examining the terms in the discretization error
eFt(m)� Ft(m)

t
in order, we conclude that the

algorithm is

a) consistent if and only if �1 = v and 
1 = 0,

b) second order accurate if and only if, in addition, �2 = b1 and 
2 = c1 � �1v,

c) third order accurate if and only if, in addition,

�3 = b2 +
1
2�

2
1v +

3
2c1�1; 
3 = c2 � 3

2 (�2v + �1b1 ):

In general, it can be seen that the method is order n accurate if and only if it is order n � 1
accurate and, in addition, the n{th order coeÆcients satisfy equations of the form

�n = bn�1 +Bn( �1; : : : ; �n�2;�n�1; 
n�1;!; : : : ; !
(n�2) );


n = cn�1 � n
2 �n�1�1 + Cn( �1; : : : ; �n�2;�n�1; 
n�1;!; : : : ; !

(n�2) );

for some functions Bn; Cn that depend upon the earlier terms in the expansion. Note that the
isotropy coeÆcients �j remain as free parameters in the matching of the two 
ows | although
their values do a�ect the higher order coeÆcients in the expansion. In particular, it follows that
if �1 6= 0, then �n�1 can be chosen so as to guarantee that the method is order n accurate.

In many situations, one is primarily interested in capturing the orbits, rather than actual
trajectories. In other words, it may be suÆcient to accurately describe where points in the phase
space go, but not how long it takes them to get there. This freedom permits us to replace the
true 
ow Ft with a 
ow with respect to some reparametrization � = �(m; t) of the time. Both

lows will have the same orbits, but move along them at di�erent speeds. If an algorithm eFt
is an order n � 1 approximation of the true 
ow Ft, then Corollary 4 states that the normal
component of the approximation is accurate to order n. If the reparametrization has the form

�(m; t) = t+
�(m)

(n� 1)!
tn�1

for some function �:M ! R, then

dn

dtn
�
F�(m;t)(m)� Ft(m)

�����
t=0

= �(m)X(m):

Thus an appropriate choice of � can be used to eliminate the error in the direction of X(m). It
follows that an order n� 1 approximation to the 
ow Ft yields order n approximations to the
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orbits of Ft if and only if the n{th order error is parallel to X(m) = m� !(m), i.e. if the n{th
order error in the direction of !(m) is zero.

Using the expansions (3.2) and (3.3), we see that a consistent algorithm of the form (2.6)
captures orbits to second order if

�1 =
c1 � 
2
v

; (3.5)

while a second order accurate algorithm captures orbits to third order if

�2 =
1

v

�
2

3
(c2 � 
3)� b1

v
(c1 � 
2)

�
: (3.6)

For the forward Euler method �Eul(m; t) = t !(m); hence �1 = !(m) and �j = 0, j > 1. In
this case, (3.5) implies that �1 = c1=v yields a scheme that captures orbits to second order.

For the backward Euler method �BEu(m; t) = t !(eFt(m)); it follows that �1 = ! and �2 = 2 _!.
Hence in this case �1 = �c1=v yields second order orbit capture. For the Heun, i.e. second order
Runge{Kutta, method, with

�RK2(m; t) =
t

2
(! + !(Exp(t !) �m)) = t ! +

t2

2
_! +

t3

4
(�! �D!(m)( _! �m)) ;

hence �1 = !, �2 = _!, and �3 =
3
2(�!�D!(m)( _!�m)). Since 
2 = c1, (3.6) implies that setting

�2 =
2

3 v
(c2 � 
3) =

2

3 v

�
c2 � 3

2

�
c2 � 1

v
hD!(m)( _! �m);m� ! i

��

=
1

v

�
1

v
D!(m)( _! �m)� 1

3
�!;m� !

�

yields an algorithm with third order orbit capture (but only second order overall accuracy).
The construction described above can be derived in a particularly simple and geometrically

intuitive manner for the forward Euler method. If we assume that the algorithmic exponential
is given by a rescaling of the matrix exponential (e.g. by the Cayley transform) and impose the
restriction that the isotropy correction term be linear in t, then the update

m 7�! eF�t (m) = exp(�(t;m) (!(m) + �(m)m))

is a rigid rotation about an axis depending only on m. Hence the curve

��(m; �) =
n eF�t (m) : jtj � �

o
is a segment of a circle in S2. This segment will be the best circular approximation at m to
the true orbit segment O(m; �) = f Ft(m) : jtj � � g at m if and only if the geodesic curvatures
of ��(m; �) and O(m; �) agree at m. A straightforward calculation shows that these curvatures
agree if and only if

�(m) = �i(m) := kg(m) jjX(m)jj; (3.7)

where

kg(m) =
h �m;m� _m i
km k k _m k3 (3.8)
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denotes the geodesic curvature of the orbit O(m; �) at m. Equation (3.8) follows immediately
from the general formula

kg(m) =


�00(s); N(�(s)) � �0(s)

�
(3.9)

for the geodesic curvature of a unit speed curve �(s) on a surface with unit normal N(m), using
the fact that N(m) = m=km k on a sphere centered at the origin. If O(m; �) is itself a segment
of a circle, then ��i(m; �) = O(m; �). Hence any torsion{free orbits, e.g. the separatrices of
the reduced rigid body equations, are captured exactly by this version of the forward Euler
method. Note that the choice � � 0, corresponding to using the generator orthogonal to m,
yields segments of great circles.

To compare the orbit capture conditions derived by this geometric argument to those ob-
tained using series expansions, we use the identities

_m = ! �m and �m = _! �m+ ! � (! �m);

the orthogonality condition h!;m i = 0, and the hypothesis that kmk = 1 to express �i(m) in
the form

�i(m) = kg(m) kX(m)k = h �m;m� _m i
k _m k2 =

h _!;m� ! i
v2

=
c1
v
:

Thus the condition �1 = c1=v for second order orbit capture in the forward Euler method is
identical to the condition �1 = �i(m), while the analogous condition for the implicit Euler
method takes the form �1 = ��i(m).

For higher order methods, the axis of rotation used in the update map eF�t is typically
time-dependent and hence the corresponding algorithmic trajectory segment typically is not
circular (i.e. it has nonzero torsion). Hence the simple geometric argument used above cannot
be applied. However, the strategy of curvature{matching can still be used. Since a smooth
curve on a two dimensional manifold in R3 is determined up to a time reparametrization by its
geodesic curvature, we can determine the conditions on the coeÆcients �j, �j , 
j imposed by

the restriction that the curvature of eFt(m) match the curvature of Ft(m) to some order.

Lemma 2 Let X be an everywhere nonzero vector �eld on a surface S � R3 . Let Ft denote the


ow of X, and suppose that eFt is an order n� 1 approximation to Ft for some n � 2. Then, eFt
captures the orbit of m under Ft to order n if and only if the geodesic curvature of the orbit of

m under eFt agrees with the geodesic curvature of the true orbit of m to order n� 2.

Proof: Let N :S ! R3 denote the normal vector �eld on S and let �(s) denote a parametrization
of the true orbit through m by arc length. If we let

Ft(m) =

1X
j=0

tj

j!
m(j) and kg(Ft(m)) =

1X
j=0

tj

j!
k(j)g

denote the series expansions of the 
ow through m and the geodesic curvature (3.9) of the orbit
at m, then

k(j)g =



m(j+2); N(m)�X(m)

�
jjX(m)jj3 + �j

�
m; _m; : : : ;m(j+1)

�
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for some function �j . An entirely analogous relation holds for the coeÆcients em(j) and ~k
(j)
g for

the trajectory of eFt through m. Thus if eFt is an order n � 1 approximation of Ft, and henceem(j) = m(j) for j = 0; : : : ; n� 1, then ~k
(j)
g = k

(j)
g for j = 0; : : : ; n� 3 and

~k(n�2)g � k(n�2)g =


 em(n) �m(n); N(m)�X(m)
�

jjX(m)jj3 : (3.10)

Thus the geodesic curvature ~kg(s) of the approximate orbit agrees with the geodesic curvature
kg(s) of the true orbit to order n�2 if and only if the algorithm captures to order n the component
of the orbit orthogonal to both the normal �eld N and the velocity �eld X, i.e. if and only if it
captures the orbit to order n.

4 The Reduced Free Rigid Body Equations.

We continue to consider the particular case of the rotation group G = SO(3) acting on the unit
sphere M = S2. We regard S2 as a coadjoint orbit and use the symplectic structure


(m)(� �m; � �m) = �hm; � � � i
induced by the Lie{Poisson structure on so(3)� ' R3 . Let I be a positive de�nite symmetric
matrix. The Hamiltonian function

H(m) = 1
2



m; I�1m

�
: (4.1)

generates the vector �eld
X(m) = m� I

�1m (4.2)

corresponding to the symplectic reduction of the free rigid body equations on T �SO(3).
Euler's method for (4.2) is based on the family of maps

F
�
t (m) = Exp(t(�PMI

�1m+ �(m; t)m)) �m;
where PM denotes orthogonal projection onto the tangent space ofM = S2. The scalar function
�:S2�R ! R is arbitrary, and re
ects the isotropy ambiguity in the 
ow. Formula (4.2) implies
that

h �m;m� _m i =


X(m)� I

�1m+m� I
�1X(m);m�X(m)

�
=



X(m); I�1X(m)

� � 
m; I�1m � jjX(m)jj2;
and so (3.7) yields

�i(m) =
h �m;m� _m i

jj _mjj2 =



X(m); I�1X(m)

�
jjX(m)jj2 � 
m; I�1m �

: (4.3)

Note that if I1 � I2 � I3 are the eigenvalues of of the inertia tensor I, then

j�i(m)j � 1

I1
� 1

I3
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for all m 2 S2.
The reduced free rigid body is a conservative system on a two dimensional manifold; in the

case of a triaxial body, when the eigenvalues I1 < I2 < I3 are distinct, the level sets of the
Hamiltonian (4.1) exactly determine the orbits of the system. Thus in this situation it is possi-
ble to specify orbit{preserving schemes without direct reference to the exact 
ow; it suÆces to
require that the scheme preserve the total energy to the desired order. If Exp is at least a second
order approximation to the matrix exponential (e.g. if Exp is the Cayley transform), then the
algorithmic 
ow satis�es

F
�
t (m) = m+ tX(m) + t2

2m2 + O(t3);

where
m2 = (I�1m+ (� � 2H(m));m) �X(m);

and hence

H(F�t (m))�H(m) = 1
2



F
�
t (m)�m; I�1(F�t (m) +m)

�
= t

D
X(m) + t

2m2; I
�1m+ t

2 X(m) + t2

4m2

E
+ O(t3)

= t2

2

�

X(m); I�1X(m)

�
+ (� � 2H(m)) jjX(m)jj2�+ O(t3):

If m is an equilibrium, then F�t (m) = m for any �, while if X(m) 6= 0, then

H(F�t (m))�H(m) = t2

2 (� � �i(m))jjX(m)jj2 + O(t3):

Thus in this situation we can derive the optimality of �i working directly from the energy
constraint.

As the numerical results given below demonstrate, use of the isotropy correction �i yields an
eÆcient, accurate version of the forward Euler scheme for the reduced free rigid body. While the
scheme only captures orbits (and hence the energy) to second order for asymmetric bodies, the
leading constants are quite small, yielding very good approximations even for very large time
steps.

We tested the forward Euler method using three choices of �:

1. �b(m) = 2H(m) =


m; I�1m

�
, corresponding to the `basic' generator !b(m) = I�1m;

2. �o � 0, corresponding to the orthogonal generator !(m) = PMI�1m;

3. �i given by the geodesic curvature improvement (4.3) of !, yielding second order orbit
capture.

As noted above, the separatrix is exactly captured if the in�nitesimal updates �Eulo or �Euli ,
which coincide on the separatrix, are used. On the other hand, when the `basic' in�nitesimal
update �Eulb was used to integrate ten sample trajectories with initial conditions at random points
on the separatrices of rigid bodies with randomly generated inertia tensors, the average errors
over the integration interval [0, 500] were: 9:72 10�2 for �t = 1, 3:89 10�2 for �t = :1, and
1:94 10�3 for �t = :01. In table 3 we give some data generated using these choices of updates

10



Figure 1: Sample trajectories computed over the interval [0, 200] using the time step �t = 0:1
and, left to right, �Eulb , �Eulo , and �Euli . The upper row is computed using the inertia tensor of a
triaxial rigid body, while the lower row is computed for an axisymmetric rigid body.

for ten randomly generated initial conditions and inertia tensors. We provide the errors in the
energy for time steps �t = 10, 1, :1, and :01. Finally, we consider an axisymmetric rigid body,
with two randomly generated eigenvalues; recall that in this situation the choice �Euli , combined
with the use of the true exponential as the algorithmic exponential, yields the exact solution.

If the rigid body is axisymmetric, then all true trajectories consist either of equilibria (the
`poles' and the `equator') or of steady rotations about the axis of symmetry. In this situation
the forward Euler method with the in�nitesimal update �Euli associated to second order orbit
approximation yields the true trajectories when the true exponential map is used as Exp. If the
Cayley transform is used as the algorithmic exponential, then the orbits are captured exactly,
but the algorithmic trajectories di�er from the true trajectories by a time reparametrization.
Note that the basic generator �Eulb and the orthogonal generator �Eulo yield only �rst order orbit
approximations even in the axisymmetric case.

We used four di�erent second order updates, corresponding to four di�erent versions of the
Heun method:

11



�Euln �Eulo �Euli

Triaxial 6:37 10�2 2:23 10�2 4:60 10�6

Axisymmetric 2:46 10�1 1:46 10�1 7:38 10�14

Figure 2: Maximum energy error over the trajectories given in �gure 1, with time step �t = :1.

Triaxial Axisymmetric

�t �Eulb �Eulo �Euli �Eulb �Eulo �Euli

10 9:04 10�2 1:81 10�2 4:56 10�3 3:09 10�3 3:70 10�3 0:00

1 8:53 10�2 8:54 10�3 3:68 10�5 1:55 10�3 6:17 10�4 0:00

:1 9:06 10�3 1:44 10�3 3:55 10�7 2:33 10�4 6:31 10�5 0:00

:01 7:09 10�4 1:62 10�4 3:57 10�9 2:43 10�5 6:32 10�6 0:00

Figure 3: Average energy errors over ten sample runs with randomly generated initial conditions
and inertia tensors, using versions of the forward Euler method and integrated over the interval
[0, 100].

� The standard Heun in�nitesimal update with the `basic' generator:

�RK2b = 1
2(!b(m)� !b(cay(!b(m)) �m))

� The standard Heun in�nitesimal update with the orthogonal generator:

�RK2o = 1
2(!(m)� !(cay(!(m)) �m))

� The improved Heun in�nitesimal update with the basic generator:

�RK2ib (m;�t) := �RK2b (m;�t) + �t3 �ib(m)m

where

�ib(m) :=
h Jn; u i
h Jd; u i ; with

8>><
>>:
uj : = (mkm`)

2

Jnj : = �Ij(Ik + I`)(Ik � I`)
2

Jdj : = 4 I1I2I3I
2
j (Ik � I`)

2

for any cyclic permutation (j; k; `) of (1; 2; 3).

� The improved Heun in�nitesimal update with the orthogonal generator: �RK2io , where �RK2b

is replaced by �RK2o and �ib replaced by an appropriate function �io. (The function �io is a
rational function in m and the components of the inertia tensor, but is signi�cantly more
complicated than �ib.)

12



�t �RK2b �RK2o �RK2ib �RK2io

Triaxial

10 7:42 10�2 1:22 10�2 6:11 10�2 4:99 10�2

1 4:36 10�3 1:06 10�4 9:61 10�4 5:67 10�7

:1 5:03 10�6 1:10 10�7 1:11 10�8 2:14 10�11

:01 5:01 10�9 1:10 10�10 2:94 10�13 9:07 10�15

Axisymmetric

10 2:70 10�3 4:86 10�4 6:34 10�3 1:83 10�3

1 6:99 10�5 8:59 10�7 4:07 10�6 2:44 10�9

:1 7:50 10�8 8:64 10�10 4:28 10�11 2:72 10�14

:01 7:50 10�11 8:78 10�13 0:00 3:81 10�14

Figure 4: Average maximum energy errors over ten sample runs with randomly generated initial
conditions and inertia tensors, integrated over the interval [0, 100] using versions of the Heun
method.

As table 4 shows, the in�nitesimal updates �RK2b and �RK2o yield algorithms that preserve the
energy to third order in the time step. Hence the isotropy improvement functions �ib and �io are
scaled by �t3, to yield a modi�cation of the update, and hence the energy error, at fourth order.
More generally, any choice of generator !gen(m) = !(m) + �(m)m for some scalar function �
satisfying (X � r)� � 0 determines a Heun in�nitesimal update �RK2gen satisfying

H(cay(�RK2
gen (m;�t))�H(m) = O(�t4):

(The normal components of !b and ! are constant on the orbits of the rigid body 
ow.) The
function �ib (respectively �io) was determined by symbolically computing the energy discretiza-
tion for the in�nitesimal update �RK2b (m) + �m (respectively �RK2o (m) + �m) to fourth order
with an unspeci�ed parameter �, then solving the resulting aÆne equation for �. However, the
general discretization error approach described in x3 would have yielded the same results. See x7
for a more detailed and general discussion of the use of conservation laws to determine update
improvements.

If the body is axisymmetric, �RK2ib preserves the energy to �fth order. As table 4 shows, some
of these algorithms appear to have better global energy capture than the single step discretization
energy error analysis (which we carried out symbolically using Mathematica) would suggest.
Plots of the energy errors in the sample integrations, with randomly generated initial conditions
and inertia tensors, show that the energy oscillates about a slow drift away from the correct
value.

We consider six fourth order geometric methods. Four utilize a series expansion for the
generator along a solution curve, while the other two use the RKMK4 algorithm of Munthe-
Kaas, [32, 15], (with the Cayley transform as the algorithmic exponential). Using the Cayley
transform, the map �sy4b determined by the basic generator !b for the rigid body system on S2
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�t �sy4b �sy4o �sy4ib �sy4io �RK4b �RK4o

Triaxial

10 5:67 10�3 3:37 10�2 6:06 10�3 1:90 10�2 6:07 10�2 3:59 10�3

1 3:62 10�6 2:72 10�7 1:55 10�6 1:68 10�7 2:15 10�5 1:46 10�7

:1 3:56 10�10 7:45 10�12 3:56 10�10 7:45 10�12 2:97 10�10 3:06 10�12

Axisymmetric

10 1:10 10�3 2:42 10�5 1:10 10�3 3:54 10�5 4:81 10�4 1:38 10�5

1 3:24 10�8 2:67 10�7 3:24 10�8 2:67 10�7 8:17 10�8 1:70 10�10

:1 3:28 10�13 2:67 10�10 2:28 10�13 2:67 10�10 8:41 10�13 4:85 10�15

Figure 5: Average maximum energy errors over ten sample runs with randomly generated initial
conditions and inertia tensors, integrated over the interval [0, 100] using several fourth order
methods.

is given by

�sy4b (m;�t) =
4X

j=1

�tj

j!
!
(j�1)
b (m) +

�t3

12

�k!b(m)k2!b(m) + _!b(m)� !b(m)
�
+

+
�t4

4!

�k!b(m)k2 _!b(m) + �!b(m)� !b(m) + 2 h _!b(m); !b(m)i!b(m)
�
;

where !
(j)
b (m) = @j

@tj
!b(Ft(m))jt=0. The corresponding algorithm for the rigid body using the

orthogonal generator ! is

�sy4o (m;�t) =
4X

j=1

�tj

j!
!(j�1)(m) +

�t3

12

�k!(m)k2!(m) + h�!(m);mim�+
+

�t4

8
h _!(m); !(m)i!(m):

The in�nitesimal updates �sy4b and �sy4o can be modi�ed by the addition of an appropriate multiple
of the argument m to yield an additional order of energy, and hence orbit, capture. The scalar
improvement functions, which are rational functions of the components of m and the inertia
tensor, were determined by symbolic calculation. Note that the energy improvement term for
the generator �sy4o is identically zero if the body is axisymmetric; hence the results generated by
�sy4o and �sy4io coincide in this case.

The last column of table 6 provides a comparison of the accuracy and eÆciency of the
representative updates tested here. The orbit (energy) accuracy of a given simulation was taken
to be the maximum energy error over the total simulation (100 units of time), while the CPU
time, in seconds was measured using the Mathematica Timing function. The same randomly
generated initial conditions and inertia tensors were used in all of the numerical simulations.

The eÆciency comparisons given in the last column of table 6 and in �gure 7 suggest some
interesting directions of future investigation. These comparisons show that, for the rigid body
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Inf. Discret. Energy Relative Rel. CPU CPU/orbit acc.
update error order error order CPU time within class (ln/ln approx.)

�Eulb 1 1 1 1 1.22 x - 7.58

�Eulo 1 1 1.18 1.18 1.40 x - 10.8

�Euli 1 2 1.45 1.45 .491 x - 8.24

�RK2b 2 3 2.10 1 .402 x - 5.72

�RK2o 2 3 2.42 1.15 .333 x - 5.78

�RK2ib 2 4 2.83 1.35 .248 x - 4.95

�RK2io 2 4 17.14 8.17 .235 x - 4.02

�sy4b 4 4 6.99 1.21 .267 x - 5.24

�sy4o 4 4 5.80 1 .233 x - 5.18

�sy4ib 4 5 8.15 1.40 .249 x - 4.97

�sy4io 4 5 11.24 1.94 .230 x - 4.70

�RK4b 4 4 12.08 2.08 .247 x - 4.22

�RK4o 4 4 13.19 2.27 .249 x - 4.91

Figure 6: Average convergence rates and CPU times. The �rst column gives the conventional
discretization error order of convergence. The second gives the order of convergence of the energy
error; note that this rate is the same for both the single{step and global errors. The third column
gives the average CPU times relative to the in�nitesimal update �Eulb . The fourth column gives
the average CPU times relative to the fastest algorithm of that order of convergence of the
conventional discretization error. The �nal column gives the aÆne approximations to the ln/ln
plots of the average CPU times as functions of the average energy (and hence orbit) errors. All
averages were taken over the same set of ten randomly generated initial conditions and inertia
tensors.

system, the most dramatic gains in eÆciency of orbit capture with the use of an improvement
term occur for low order methods. This suggests that such improvements may be of particular
value in situations, e.g. sti� systems, in which low order implicit methods are the methods
of choice. Note that the improved Euler method is actually the most eÆcient method for low
orbit accuracy simulations, while the (unimproved) symbolically computed fourth order update
using the orthogonal generator is the most eÆcient of the methods tested for high accuracy
simulations. The aÆne approximations of the CPU time/orbit accuracy graphs for these two
methods intersect at a global orbit error of approximately 7:16 10�6.

The signi�cant di�erences in run times between the di�erent fourth order methods illus-
trate some of the design issues involved in geometric integration. The RKMK4 methods, like
their conventional counterparts, have the advantage of great versatility, but the algorithmic ex-
ponential evaluations and pullback corrections required at each stage result in relatively high
computation costs. (Note that the Heun methods tested here do not require pullback correc-
tions to achieve overall second order accuracy; the Heun in�nitesimal updates are simply the
averages of the generator evaluations at the current point and an Euler update of the current
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Figure 7: CPU time as a function of orbit accuracy (ln/ln plots). The upper lefthand plot
gives the data for the Euler methods, with in�nitesimal updates �Eulb , �Eulo , and �Euli ; the upper
righthand plot gives the data for three of the Heun updates: �RK2b , �RK2o , and �RK2ib ; the lower

lefthand plot gives the data for three of the symbolically derived fourth order updates: �sy4b ,

�sy4o , and �sy4ib . The lower righthand plot gives the data for the most eÆcient updates of each

order (in overall accuracy): �Euli , �RK2ib , and �sy4o .

point.) The in�nitesimal updates �sy4 are signi�cantly faster, with equal or superior rates of
convergence, but have the disadvantage that these updates are speci�c to the rigid body sys-
tem; analogous generator expansions and isotropy improvement terms must derived for any new
dynamical system.

Our results do not suggest any clear reason to favor the basic generator over the orthogo-
nal generator, or vice versa. In some algorithms, the basic generator yields the more eÆcient
update; in others, the orthogonal generator gives the more eÆcient scheme. Note, for example,
that the run times for �RK2io are substantially longer than those for �RK2ib , while the symbolically

computed fourth order update �sy4o is both faster and more eÆcient than the corresponding up-
date �sy4b using the basic generator. Some of these di�erences are presumably due to suboptimal
implementation of the schemes; the dramatic di�erence in speed between �RK2io and �RK2ib appears
to be due to the relative complexity of �io in comparison to �ib. Algebraic manipulation of of
the more complicated expressions appearing in some of the updates might lead to signi�cant
improvements in eÆciency.
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5 Higher Order Approximation of Orbits.

Using our experience with the rotation group acting on the sphere as a guide, we now turn to
the general case of interest here, in which a Lie group G acts on M � V. We assume, as before,
that the exact 
ow Ft and its approximation eFt can be expressed in the form

Ft(m) = Exp( (m; t)) �m and eFt(m) = Exp(�(m; t)) �m: (5.1)

The maps  ; �:M � I ! g are assumed to be suÆciently smooth, with

 (m; 0) � 0 � �(m; 0):

Exp can be taken to be standard exponentiation, or an algorithmic alternative. The following
lemma is immediate from the de�nition of the tangent space.

Lemma 3 Let M be an embedded submanifold of a vector space V. Let '(s);  (s) �M be two

continuous curves de�ned for s � 0, having a common endpoint '(0) =  (0) = m 2M . If

lim
s!0+

'(s)�  (s)

s
= Z (5.2)

exists, then Z 2 TM jm is a tangent vector at m.

Note that we do not require either individual curve to be di�erentiable at m. One well-known
example is to let

'(s) = (exp
p
sX)(exp

p
sY )m; '(s) = (exp

p
s Y )(exp

p
sX)m;

where X;Y are two vector �elds tangent to M . In this case, the right hand side of (5.2) yields
the Lie bracket of the vector �elds Z = [X;Y ], which is necessarily tangent to M .

Corollary 4 If eFt:M !M is an order n� 1 � 0 approximation of Ft:M !M , then

dn

dtn
[ eFt(m)� Ft(m) ]

����
t=0

2 TM jm

for all m 2M .

Proof : By the de�nition of an order n� 1 approximation,

Z =
dn

dtn
[ eFt(m)� Ft(m) ]

����
t=0

= n! lim
t!0

eFt(m)� Ft(m)

tn

exists at each m. Now, merely replace s = tn and use Lemma 3.

For a �xed m 2M , we can expand (5.1) as in powers of t, so

 (m; t) = t` v` + O(t`+1); so that Ft(m) = m+ t`w` + O(t`+1)
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for v` = v`(m) 6= 0. We call ` = `(m) the leading order and w` = w`(m) 6= 0 the leading term

of Ft at m. Note that, by Lemma 3, w` 2 TM jm. In most applications, including 
ows of
autonomous vector �elds X away from equilibrium points, ` � 1 and v1 = w1 = X(m).

Let
g(n)m = f �(t) = �1 t+ � � �+ �n t

n j �1; : : : ; �n 2 gm g ' g�n
m

denote the space of gm{valued polynomials of degree n without constant term. Given 
ows as
in (5.1), let us de�ne

K(n)
m =

�
� 2 g(n)m

���� Exp(�(m; t) + �(t)) �m is an order n� 1

approximation of Ft(m) at m

�
: (5.3)

We de�ne the map �(n)m :K(n)
m ! TM jm by

�(n)m (�) =
dn

dtn

h
Exp(�(m; t) + �(t)) �m� Ft(m)

i ����
t=0

: (5.4)

Corollary 4 ensures that �(n)m (�) lies in TM jm. Note that if Exp is at least a �rst order approx-
imation of the true exponential map, then �(1)m is constant.

Our main result on increasing the order of approximation follows. Under a certain range
condition, (5.5), we show that one can, by adjusting the isotropy element and the time paramet-
rization, increase the order of accuracy of the approximate 
ow. The range condition formalizes
the notion of \suÆcient isotropy" mentioned in the introduction.

Theorem 5 Suppose eFt(m) = Exp(�(m; t)) �m is an order n � 1 approximation of the 
ow

Ft(m) = Exp( (m; t)) � m. Assume further that the leading term of the 
ow Ft satis�es the

range condition
cw`(m) 2 Range �(n)m for some c 2 R: (5.5)

Then there exists

a) a Lie algebra-valued polynomial �(m; t) 2 K(n)
m , and

b) an invertible time reparametrization � : (�T; T )! R for some T > 0, satisfying

�(t)� t = O(tn�`+1)

such that the map eF�t (m) := Exp(�(m; t) + �(m; t)) �m (5.6)

is an order n approximation of the reparametrized 
ow F�(t) at m.

Proof: If eFt is already an order n approximation of Ft, then there is nothing to show. By our
hypothesis (5.5), there exists � 2 K(n)

m and c 2 R such that �(n)m (�) = cw`. Thus for any choice
of � satisfying

�(m; t) = t+
c tn�`+1

(n� `+ 1)!
+ O(tn�`+2);
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we have
dn

dtn

h eF�t (m)� F�(t)(m)
i ����

t=0

= �(n)m (�)� � (n�`+1)(m; 0)w` = 0:

For such choices eF�t (m) is an order n approximation of F�(t)(m).

We now consider the order conditions, up to order three, for any algorithm of the form (5.6).
Let Ft denote the 
ow of the system _m = !(m); then

Ft(m) =

�
1+ t ! +

t2

2

�
!2 + _!

�
+
t3

6

�
!3 + 3 _!! + [!; _!] + �!

�
+O(t4)

�
�m:

Let eFt :M !M be an algorithmic update of the form

eFt(m) = Exp(�(m; t)) �m;

where Exp is an n{th order approximation to the true exponential and

�(m; t) =

1X
j=0

tj

j!
�j(m):

Then

eFt(m) =
�
1+ t �1 +

t2

2

�
�21 + �2

�
+ t3

6

�
�31 +

3
2 (�2�1 + �1�2) + �3

�
+ O(t4)

�
�m:

The algorithm eFt is consistent if and only if �1 = ! + �1 for some �1 2 gm. If the algorithm
is consistent, then the local discretization error is

eFt(m)� Ft(m)

t
=

�
t

2
(�1 ! + �2 � _!) + O(t3)

�
�m:

Thus the algorithm is second order accurate if and only if

�2 = _! + [�1; ! ] + �2

for some �2 2 gm. If the second order condition is satis�ed, then the local discretization error is

eFt(m)� Ft(m)

t
=

�
t2

6

�
�3 � �! + ! �1! � 1

2�1!
2 + 3

2�2 ! + 3
2�1 _! + 1

2 [!; _! ]� 1
2�

2
1 !
�
+O(t3)

�
�m:

Thus the algorithm is third order accurate if and only if

�3 = �! + 1
2( [ _!; ! ] + +[ �1; [ �1; ! ] ] + [!; [!; �1 ] ] + 3 [!; �2 ] + 3 [ _!; �1 ] ) + �3

for some �3 2 gm. Clearly, one can continue this process, obtaining general consistency and
accuracy criteria for such algorithms.
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6 Restrictions of Representations.

The most important case is when G acts via a linear representation �:G ! GL(V) on a vector
space V, and our submanifold M � V is a G-orbit. The simplest non-free case is the action of
the rotation group SO(3) on R3 that formed the basis of our examples on the sphere S2 � R3 .
In this section, we analyze our constructions in the general representation-theoretic context.

We use �: g ! X(M) to denote the e�ect of the representation on the Lie algebra. The e�ect
of the map (5.4) on a given Lie algebra-valued polynomial of the form

�(t) = �n�`t
n�` + � � �+ �nt

n 2 K(n)
m for �n�`; : : : ; �n 2 gm

is
�(n)m (�) = �(�n�`)z` + zn � wn = �(�n�`)w` + zn � wn:

Thus, the range condition (5.5) is satis�ed if there exists �n�` 2 gm and c 2 R satisfying

�(�n�`)w` + cw` = wn � zn:

The latter condition is satis�ed for any order n� 1 approximation of Ft provided

�(gm) � w` + spanfw` g � TM jm; (6.1)

where �(gm) � v = f �(�)v j � 2 gm g. If Ft is the 
ow of an autonomous vector �eld X on M ,
then w1 = X(m) 6= 0, unless m is an equilibrium. Hence in this case (6.1) takes the form

gm �X(m) + spanfX(m) g = TM jm: (6.2)

Since G acts transitively on M , (6.1) can be rephrased in terms of the Lie algebra as follows:
Choose  (m) 2 g such that �( (m))m = w`. Then (6.1) is satis�ed if and only if

[ gm;  (m) ] + spanf (m) g+ gm = g; (6.3)

where [ gm;  (m) ] = f [ �;  (m) ] j � 2 gm g. Note that the latter condition does not depend on
the choice of  (m).

Let us introduce a class of subalgebras for which the range condition is immediate.

De�nition 6 A subalgebra h � g is called full if

[ h; � ] + spanf � g+ h = g for every � 2 g n h: (6.4)

It would be interesting to classify Lie algebra and subalgebra pairs that satisfy the full criterion
(6.4).

Lemma 7 If the isotropy subalgebra gm � g is a full subalgebra, then (6.3) follows, and hence

the range condition (5.5)is automatically satis�ed for all order n� 1 approximations of the 
ow.
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Note that if h is a full subalgebra, so is any conjugate subalgebra eh = Ad g �h. This implies that
(6.3) only needs to be checked at a single point m in the orbit.

Example: Suppose G = SO(k) acts on V = Rk via the usual representation. The SO(k) orbits
are the spheres, and we concentrate on the unit sphereM = Sk � Rk . The isotropy subgroup of
any m 6= 0 is Gm � SO(k�1). By the preceding remark, to verify that the isotropy subalgebras
are full, it suÆces to work at the point m = ek = (0; : : : ; 0; 1), whose isotropy subgroup is

H = Gm =

� �
U 0
0 1

� ���� U 2 SO(k � 1)

�
:

Any � 2 so(k) can be written as � = � + zeTk � ekz
T where � 2 h. If � 2 h, then

[ �; � ] = [ �; � ] + (� z)eTk � ek(� z)
T :

Since so(k � 1) � x+ spanfx g = Rk�1 for any nonzero x 2 Rk�1 , the fullness condition (6.4) is
satis�ed. Thus, for the usual action of SO(k) on Sk�1, the range condition (5.5) holds for any
vector �eld and any point m 2 Sk�1.
Remark : If we consider the action Q � S = QSQT of SO(k) on the manifold Sym(k) of k � k
symmetric matrices, then (6.3) is satis�ed for any matrix with k � 1 equal eigenvalues.

7 Conservation Laws.

A structure{preserving algorithm is one that exactly captures one or more features of the exact

ow Ft. In this section we consider the role of isotropy in designing algorithms that preserve
integrals or conservation laws of the 
ow. For simplicity, we will assume that the conserved
quantity depends only upon the coordinates of our trajectory, and not on any derivative.

De�nition 8 A (vector-valued) conservation law or �rst integral of a 
ow Ft(m) is a smooth
map F :M !W onto a vector space W such that

F (Ft(m)) = F (m) for all m 2M:

In general, a conservation law will only be preserved by our approximate 
ow up to a certain
order. To make this precise,

De�nition 9 The �rst integral F :M ! W is said to be conserved to order n � 1 by the
approximating 
ow eFt(m) = Exp(�(m; t)) �m on a subset K �M provided

F (eFt(m))� F (m) = O(tn); for all m 2 K: (7.1)

The Mather Division Theorem, [14], implies that satisfaction of (7.1) at a point m0 is equivalent
to the existence of � > 0 and a smooth map F̂ :M � (��; �)!W satisfying

F (eFt(m))� F (m) = tnF̂ (m; t)
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for all (m; t) in a neighborhood of (m0; 0).
The main result of this section is that, subject to a certain nondegeneracy hypothesis, if F is

conserved to order n� 1 by eFt(m), then we can �nd a suitable isotropy correction �(m; t) 2 gm
such that F is conserved exactly by the modi�ed approximation

�Ft(m) := Exp(�(m; t) + tn�1 �(m; t)) �m: (7.2)

Therefore, one can use the isotropy to retain at least the original order of overall approxima-
tion while conserving the �rst integral exactly. This requires, as above, that our algorithmic
exponential approximate the true exponential to at least �rst order, namely

d

d�
Exp(� �) �m

����
�=0

= 
(�)(m) for all � 2 g: (7.3)

In contrast to the treatment given in Section 5, we do not require any explicit information about
the Taylor expansion of the true 
ow. Rather, we use the Implicit Function Theorem to show
that under appropriate nondegeneracy conditions an isotropy element can be found that yields
a structure{preserving scheme.

Proposition 10 Suppose that the �rst integral F :M ! W is conserved to order n� 1 by the

approximate 
ow eFt(m; 0), whereeFt(m; �) := Exp(�(m; t) + tn�1 �) �m for � 2 gm, (7.4)

for all m 2 K in a compact set K �M . If the maps

�m(�) :=
1

n!

dn

dtn
D(F Æ eFt)(m; 0)(0; �)

����
t=0

(7.5)

map gm onto W , then there exists T > 0 and an isotropy-valued map �:K � (�T; T ) ! g with

�(m; t) 2 gm and

F (eFt(m;�(m; t))) = F (m) for all (m; t) 2 K � (�T; T ): (7.6)

Proof: The linearization condition (7.3) on Exp implies that

Exp(t �(m; t) + tn�1�) �m� Exp(t �(m; t)) �m = O(tn)

for all � 2 gm. Hence

F (eFt(m; �))� F (m) = (F (eFt(m; �))� F (eFt(m; 0))) � (F (eFt(m; 0)) � F (m)) = O(tn)

and the Mather Division Theorem implies the existence of smooth maps F̂m : gm� (��; �)!W
satisfying

F (eFt(m; �))� F (m) = tnF̂m(�; t) and hence DF̂m(0; 0)(�; 0) = �m(�) (7.7)

for every m 2 K and � 2 gm.
The nondegeneracy hypothesis (7.5) on �m implies that there exists a subspace Vm � gm

such that �mjVm is an isomorphism. It follows from (7.7) that for each m 2 K we can apply the
Implicit Function Theorem to the restriction of F̂m to Vm � (��; �), �nding Tm > 0 and a map

�m: (�Tm; Tm)! Vm such that F (eFt(m;�m(t))) = F (m). Taking T := minm2K Tm and setting
�(m; t) := �m(t) yields the result.
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Corollary 11 If there exists a compact set K �M on which

� Exp(t �) �m� exp(t �) �m = O(t3) for all � 2 g

� the map eFt given by (7.4) satis�es �(m; 0) = 0 and F (eFt(m; 0)) � F (m) = O(tn)

� the maps � 7! DF (m)
 ([ �1(m); � ]) (m), where �1(m) := d
dt
�(m; t)jt=0, map gm onto W

for all m 2 K, then the conclusions of Proposition 10 hold.

Proof: The Baker{Campbell{Hausdor� formula implies that

exp(t �) �m = exp(t �) exp(tn�1�) �m = exp

�
t � + tn�1� +

tn

2
[ �; � ] + O(tn+1)

�
�m;

and hence

exp(t � + tn�1�) �m = exp

�
t � � tn

2
[ �; � ]

�
�m+ O(tn+1)

for all � 2 g and � 2 gm. The Mather Division Theorem and the hypothesis �(�; 0) = 0 imply
that there exist � > 0 and a smooth map �̂ : K � (��; �) ! g such that �(m; t) = t �̂(m; t)
for all m 2 K and t 2 (��; �). Thus, using our hypothesis that Exp is at least a second order
approximation to exp, we see that

eFt(m; �)� eFt(m; 0) = exp(t �̂(m; t) + tn�1�) �m� exp(t �̂(m; t)) �m+ O(tn+1)

= exp

�
t �̂(m; t)� tn

2
[ �̂(m; t); � ]

�
�m� exp(t �̂(m; t)) �m+O(tn+1):

Therefore,

�m(�) =
1

n!

dn

dtn
D(F Æ eFt)(m; 0)(0; �)

����
t=0

=
1

n!

dn

dtn
d

d�
F

�
exp

�
t �̂(m; t)� tn

2
[ �̂(m; t); � � ]

�
�m+O(tn+1)

�����
�=0

����
t=0

= �1
2DF (m)


�
[ �̂(m; 0); � ]

�
(m)

maps gm onto W .

Remark: Given z 2W �, set Fz := F �z, i.e. Fz(m) = z�F (m) for allm 2M . Let J : T �M ! g�

denote the momentum map associated to the lifted action of G on M , i.e. J(�m) � � = �m �

(�)(m). Then

z �DF (m)
 ([ �1(m); � ]) (m) = J(dFz(m)) � [ �1(m); � ] =
�
ad��1(m)J(dFz(m))

�
� �

for all m 2 M , � 2 g, and z 2 W �. Thus ��mz = �1
2ad

�
�1(m)J(dFz(m)) and the \ontoness"

condition in Corollary 11 is equivalent to the condition that�
ad��1(m)J(dFz(m))

����
gm

6= 0
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for any nonzero z 2W �.

The condition (7.6) forms a system of equations for the isotropy corrections �(m; t) that
exactly preserve the �rst integral. Using (7.7), we can rewrite this system as

F̂m(�; t) = 0 for � = �(m; t):

In some situations, it may not be cost e�ective to solve this nonlinear equation. In such cases,
we can replace the equation with its linearization

�m(�) + F̂m(0; 0) = 0

at t = 0. If there exists Vm � gm such that �mjVm is an isomorphism, then

�(m) = �(�mjVm)�1F̂ (m; 0; 0)

determines an update m 7! F̂t(m;�(m)) that preserves F to order n.
The `improved' algorithms of the free rigid body equations given in x4 can be regarded as

implementations of this approach, given that the energy level sets coincide with the orbits of the
system. (The only exception arises in the case of an axisymmetric body, for which the `equator'
consists of a circle of equilibria; however, all of the algorithms presented in x4 exactly capture
the equilibria.)

8 Discussion.

In this paper, we have shown how to improve geometric integration algorithms through the
application of isotropy subgroups. While the addition of isotropy terms does not a�ect the
original dynamics, it can have nontrivial e�ects on the numerical approximation algorithms.
We have seen that, under certain nondegeneracy hypotheses, the order of an algorithm can
be increased, and conservative properties maintained by an isotropy modi�cation of the na��ve
version of the original algorithm. In this introductory treatment, our results have been illustrated
by algorithms on the sphere, particularly algorithms for reduced rigid body dynamics of interest
in geometric mechanics. More substantial applications in micromagnetics can be found in [24].
While the examples treated so far indicate the desirability of such isotropy-enhanced geometric
algorithms, the �nal verdict on the signi�cance of our results in practical applications must await
more substantial testing on complicated \real-world" problems.

Several further points are suggested by our results.

� If isotropy is used to improve a stable algorithm, will the resulting algorithm also be
stable? For instance, can an order n � 1 implicit method be combined with an explicit
improvement to yield a stable order n method?

� If the group does not act transitively, the isotropy subalgebras may be non-conjugate
and even of varying dimension. In such situations, it may not be possible to satisfy any
condition to higher order than that of the original algorithm on the entire manifold, but
conditions such as those described above can be used to determine a unique choice of
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generator at points with additional isotropy. For example, if there is a submanifold N of
M such that dim gm > 0 for m 2 N and dimgm = 0 for m 2M nN , then the constructions
described above can be used to specify the map  on N . The smoothness of such a modi�ed
 is not clear.

� Can the conservative and symmetry-preserving properties of the algorithms be further
improved by application of the moving frame based numerical approximations introduced
in [34]?

Acknowledgments. The authors would like to thank Nilima Nigam for many invaluable dis-
cussions.
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