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Function theory on Euclidean domains in relation to potential theory, partial
differential equations, probability, and harmonic analysis has been the target of
investigation for decades. There is a wealth of classical literature in the subject.
Geometers began to study function theory with the primary reason to prove a
uniformization type theorem in higher dimensions. It was first proposed by Greene-
Wu and Yau to study the existence of bounded harmonic functions on a complete
manifold with negative curvature. While uniformization in dimension greater than 2
still remains an open problem, the subject of function theory on complete manifolds
takes on life of its own. The seminal work of Yau [Y1] provided a fundamental
technique in handling analysis on noncompact, complete manifolds. It also opens
up many interesting problems which are essential for the understanding of analysis
on complete manifolds. Since Yau’s paper in 1975, there are many developments
in this subject. The aim of this article is to give a rough outline of the history of
a specific point of view in this area, namely, the interplay between the geometry –
primarily the curvature – and the function theory. Throughout this article, unless
otherwise stated, we will assume that Mn is an n-dimensional, complete, non-
compact, Riemannian manifold without boundary. In this case, we will simply say
that M is a complete manifold.

One of the goal of this survey is to demonstrate, by way of known theorems, the
two major steps which are common in many geometric analysis programs. First,
we will show how one can use assumptions on the curvature to conclude function
theoretic properties of the manifold M. Secondly, we will showed that function
theoretic properties can in turn be used to conclude geometrical and topological
statements about the manifold. In many incidents, combining the two steps will
result in a theorem which hypothesizes on the curvature and concludes on either
the topological, geometrical, or complex structure of the manifold.

The references will not be comprehensive due to the vast literature in the subject.
It is merely an indication of the flavor of the field for the purpose of whetting one’s
appetite. As examples of areas not being discussed in this note are harmonic anal-
ysis (function theory) on symmetric spaces, Lie groups, and discrete groups. The
contributors to this subject are Furstenberg, Varopoulos, Coulhon, Saloff-Coste, and
etc. Another point of view which was systematically taken up by Lyons-Sullivan,
and later by Varopoulos, is to relate the group theoretic property of the covering
group to the function theory of a covering space.
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§1 Curvature Assumptions and Notations

In this paper, we will impose different curvature assumptions on various occa-
sions. The two primary notions of curvature we will use are the sectional curvature
and the Ricci curvature. For a given point x ∈ M and a 2-plane section σ ⊂ TxM ,
we denote its sectional curvature by KM (σ). The notation KM (x) means the sec-
tional curvature functional defined on all 2-plane sections at the point x. The Ricci
curvature will be denoted by RicM (x), which is a symmetric 2-tensor at the point
x ∈ M. In the first half of this paper, there are primarily four different types of
curvature assumptions that are related to one another.

(1) Non-negative Ricci curvature: We assume that M has non-negative Ricci
curvature at every point, i.e.,

RicM (x) ≥ 0

for all x ∈ M.
(2) Non-negative Ricci curvature near infinity: There exists a compact subset

D ⊂ M , such that
RicM (x) ≥ 0

for all x ∈ M \ D.
(3) Asymptotically non-negative Ricci curvature: There exists a monotonically

non-increasing function α(r) > 0 satisfying∫ ∞

0

rn−1α(r) dr < ∞,

such that,
RicM (x) ≥ −α(ρ(x)),

where ρ(x) is the distance function from a fixed point p ∈ M.
(4) Almost non-negative Ricci curvature: There exists a sufficiently small ε > 0,

such that,
RicM (x) ≥ −ε ρ−2(x)

for all x ∈ M.
One easily verifies that the above assumptions satisfy the following monotonically

decreasing ordering:
(1) ⇒ (2) ⇒ (3) ⇒ (4).
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We would also like to take this opportunity to point out that assumptions on the
Ricci curvature yield much less information on the manifold as similar assumptions
on the sectional curvature. For instance, the soul theorem of Cheeger-Gromoll
asserts that:

Theorem 1.1. (Cheeger-Gromoll [C-G2]) If M has non-negative sectional curva-
ture, then there exists a compact totally geodesic submanifold N ⊂ M such that M
is diffeomorphic to the normal bundle of N.

The sectional curvature assumption places stringent topological restriction on a
manifold. In particular, M must have the topological type of a compact manifold.
In a similar spirit, Abresch took their argument a step further.

Theorem 1.2. (Abresch [A1-2]) Suppose M has asymptotically non-negative sec-
tional curvature, i.e., there exists a positive, monotonically non-increasing function
γ(r) satisfying ∫ ∞

0

r γ(r) dr < ∞,

such that, KM (x) ≥ −γ(ρ(x)) for all x ∈ M. Then M must have bounded topological
type. Moreover, the number of ends of M and the total Betti number of M can be
estimated in terms of n and γ.

Contrary to the rigid topological restriction imposed on a manifold with the
sectional curvature assumptions in the last two theorems, Sha-Yang [S-Y] showed
that there are manifolds with positive Ricci curvature which has infinite topological
type. In fact, their example is diffeomorphic to R

4 connected sum with k copies of
CP

2, for any k = 1, 2, . . . ,∞. Notice that the notions of asymptotically non-negative
sectional curvature and asymptotically non-negative Ricci curvature differs by a
factor of rn−1 in the integrand. This factor seems to arise more naturally for Ricci
curvature than sectional curvature. However, there are no concrete examples which
indicate that this factor is not a mere technical assumption.

Definition 1.3. Let D ⊂ M be a compact subset of M. An end E of M with respect
to D is a connected unbounded component of M \ D. When we say that E is an
end, it is implicitly assumed that E is an end with respect to some compact subset
D ⊂ M.

From the definition, it is clear that if D1 and D2 are compact subsets with
D1 ⊂ D2, then the number of ends with respect to D1 is at most the number of
ends with respect to D2. This monotonicity property allows us to define the number
of ends of a manifold.

Definition 1.4. M is said to have finitely many ends if there exists 0 < k < ∞,
such that, for any D ⊂ M , the number of ends with respect to D is at most k.

In this case, we denote π∞
0 (M) to be the smallest such k. Obviously, π∞

0 (M)
must be an integer. Also, one readily concludes that there exists D0 ⊂ M , such
that, the number of ends with respect to D0 is precisely π∞

0 (M). If M has infinitely
ends, we will still use π∞

0 (M) = ∞ to denote the number of ends.

§2 Function Theory

Definition 2.1. A Green’s function G(x, y) is a function defined on (M × M) \
{(x, x)} satisfying the following properties:

(1) G(x, y) = G(y, x), and
(2) ∆y G(x, y) = −δx(y),
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for all x �= y.

It was proved by Malgrange [Ma] that every manifold admits a Green’s function.
Recently, Li-Tam [L-T2] gave a constructive argument for the existence of G(x, y).
As in the difference between R

2 and R
n for n ≥ 3, some manifolds admit Green’s

functions which are positive and others may not. This special property distinguishes
the function theory of complete manifolds into two classes.

Definition 2.2. A complete manifold M is said to be non-parabolic if it admits a
positive Green’s function. Otherwise, M is said to be parabolic.

For the sake of future reference, we will outline the construction procedure in
[L-T2] for G(x, y). Let p ∈ M be a fixed point and {Ωi} be a compact exhaustion
of M satisfying

{p} ⊂ Ω1 ⊂ · · · ⊂ Ωi ⊂ · · · ⊂ M

and
∪iΩi = M.

Let Gi(p, ·) be the positive Dirichlet Green’s function on Ωi with pole at p. The fact
that

Ωi ⊂ Ωj

for i ≤ j and the maximum principle implies that

Gi(p, ·) ≤ Gj(p, ·).

In particular, if Gi(p, ·) monotonically converges to some function G(p, ·), then G is
a positive Green’s function, and hence M is non-parabolic. In this case, one checks
readily that G is the minimal positive Green’s function. The minimality property
determines G uniquely.

In the event that Gi(p, ·) ↗ ∞, by defining

ai = sup
∂Bp(1)

Gi(p, ·),

one can show that Gi(p, ·)−ai converges to some function G(p, ·). This function will
indeed be a Green’s function which changes sign and, in this case, M is parabolic.
From this construction, one sees that

G(p, ·) ≤ 0

on M \ Bp(1). Note that G is not unique and may depend on the choice of the
compact exhaustion.

Let us now examine the situation when Gi(p, ·) converges to a positive Green’s
function. It was shown [L-T2] that this occurs if and only if there exists a harmonic
function h defined on M \ Bp(1) with the property that

h = 1 on ∂Bp(1)

and
inf

M\Bp(1)
h = 0.
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To understand the existence of h, we consider the corresponding problem on annuli
of the form Ap(1, r) = Bp(r)\Bp(1). For each r > 1, let hr be the harmonic function
defined on Ap(1, r) with the properties that

hr = 1 on ∂Bp(1)

and
hr = 0 on ∂Bp(r).

Clearly, hr is the minimizer for the Dirichlet integral∫
Ap(1,r)

|∇f |2

among all functions in the space

Hr = {f ∈ H1,2(Ap(1, r)) | f = 1 on ∂Bp(1), f = 0 on ∂Bp(r)}.

If we define
E(r) = inf

Hr

∫
Ap(1,r)

|∇f |2 =
∫

Ap(1,r)

|∇hr|2

then clearly Hr ⊂ HR for r ≤ R. Hence E(r) is a monotonically non-increasing
function of r. Due to the boundary conditions, the sequence hr satisfies hr ≤ hR

for r ≤ R. The fact that hr ≤ 1 because of the maximum principle implies that the
sequence {hr} converges uniformly on compact subsets to a harmonic function h∞.
Moreover, h∞ has the property that

h∞ = 1 on ∂Bp(1).

Clearly, unless h∞ is identically constant 1, the function

h =
h∞ − inf h∞
1 − inf h∞

will be the desired harmonic function we wish to construct.
We now claim that h∞ is the constant function 1 if and only if E(r) ↘ 0. Indeed,

using the fact that hr is harmonic and the boundary conditions, we can rewrite the
integral

E(r) =
∫

Ap(1,r)

|∇hr|2

=
∫

∂Bp(r)

hr
∂hr

∂ν
−

∫
∂Bp(1)

hr
∂hr

∂ν

= −
∫

∂Bp(1)

∂hr

∂ν
.

Hence the strong maximum principle asserts that h∞ is identically constant if and
only if E(r) ↘ 0. In particular, this implies that E(r) ↘ 0 if and only if M is
parabolic. The quantity

lim
r→∞

E(r)

is sometimes called the capacity of M at infinity. With this equivalent condition
for parabolicity, Royden’s theorem [R] follows immediately.
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Definition 2.3. A manifold M is said to be quasi-isometric to another manifold
N if there exists a diffeomorphism φ : M → N and a constant C > 0, such that,

C−1 ds2
M ≤ φ∗(ds2

N ) ≤ C ds2
M .

Theorem 2.4. (Royden [R]) Let M be quasi-isometric to N . Then M is parabolic
if and only if N is parabolic.

Definition 2.5. An end E is said to be a non-parabolic end if it admits a positive
Green’s function with Neumann boundary condition on ∂E. Otherwise, it is said to
be a parabolic end. We will denote Π∞

0 (M) to be the number of parabolic ends of
M .

From the construction of [L-T2] outlined above, one verifies that M is non-
parabolic if and only if it has a non-parabolic end. Indeed, if E is a non-parabolic
end, then it admits a Neumann Green’s function G(x, y). For a fixed x ∈ E, the
strong maximum principle asserts that G(x, ·) must be positive on ∂E. If we define

g = min{G(x, ·), a}

for some sufficiently large constant a > 0, then g is a positive superharmonic func-
tion define on E with

inf
E

g = 0

and
inf
∂E

g = b > 0

for some constant b. Clearly, the function b−1g can be used as a barrier to solve for
a positive harmonic function on E with

h = 1 on ∂E

and
inf
E

h = 0.

The existence of h implies M is non-parabolic as indicated above.
Conversely, if M admits a positive Green’s function then the minimal positive

Green’s function will have the property that

inf
M

G(x, ·) = 0.

Let E be an end with respect to some compact set containing x such that

inf
E

G(x, ·) = 0.

Clearly, the above construction together with G(x, ·)|E can be used to construct a
positive Neumann Green’s function on E.

It is useful to point out that Nakai [N] (also see [N-R]) showed at if M is parabolic
then there exists a Green’s function G(p, ·) with the property that

G(p, x) → −∞ as x → ∞.
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§3 Geometric Criteria for Parabolicity

Though the definition of parabolicity is purely analytical, in some incidents, there
are geometric description of parabolicity. It was first pointed out by Cheng and Yau
[C-Y] that if the volume growth of M satisfies

Vp(r2) ≤ C r2

for some constant C > 0, then M must be parabolic. The sharp condition was
proved by Ahlfors for dimension 2, and later independently by Grigor’yan [G1, G2]
and Varopoulos [V2] for all dimensions, that a necessary condition for a manifold to
be non-parabolic is that there exists p ∈ M, such that, the volume Vp(t) of geodesic
ball centered at p of radius t satisfies the growth condition

(3.1)
∫ ∞

1

t dt

Vp(t)
< ∞.

Observe that this property holds at one point if and only if it holds at all points
of M. Moreover, this condition is clearly invariant under quasi-isometry. The obvi-
ous question is to determine if this condition is also sufficient. Unfortunately, the
following example of Greene (see [V2]) indicated that this is not true in general.
Example: Let M be R

2 endowed with the metric of the form

ds2 =

⎧⎪⎨
⎪⎩

y−2(dx2 + dy2) for y ≥ 2

f(y)(dx2 + dy2) for 0 ≤ y ≤ 2

dx2 + dy2 for y ≤ 0,

where f is any smooth function satisfying f(0) = 1 and f(2) = 1/4. This manifold is
obviously parabolic because it is conformally equivalent to the standard flat metric
on R

2. However, direct computation shows that (3.1) holds.
An interesting phenomenon is that for manifolds with non-negative Ricci curva-

ture, condition (3.1) is also sufficient for non-parabolicity.

Theorem 3.1. (Varopoulos [V1]) If M has non-negative Ricci curvature, then M
is non-parabolic if and only if ∫ ∞

1

t dt

Vp(t)
< ∞

for some p ∈ M , where Vp(t) is the volume of geodesic ball centered at p of radius
t.

In fact, in the case of non-negative Ricci curvature, one can estimate the Green’s
function by the volume growth.

Theorem 3.2. (Li-Yau [L-Y1]) If M has non-negative Ricci curvature, then there
exists positive constants C1 and C2, such that, the minimal positive Green’s function
satisfies

C1

∫ ∞

ρ(x,y)

t dt

Vx(t)
≤ G(x, y) ≤ C2

∫ ∞

ρ(x,y)

t dt

Vx(t)
,

where ρ(x, y) denotes the geodesic distance between x and y.

In 1995, Li-Tam managed to prove that the volume growth condition is sufficient
for non-parabolicity for a larger class of manifolds.
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Theorem 3.3. (Li-Tam [L-T6]) Let us assume that there is a constant C1 > 0 such
that the Ricci curvature of M satisfies

RicM (x) ≥ −C1 ρ−2(x)

for all x ∈ M. Assume that there exists p ∈ M and C2 > 0, such that, the volume
comparison condition

Vp(R) ≤ C2 Vx(R/2),

is satisfied for all x ∈ ∂Bp(R), then M is non-parabolic if and only if

∫ ∞

1

t dt

Vp(t)
< ∞.

Corollary 3.4. If M has non-negative Ricci curvature near infinity and finite first
Betti number, then M is non-parabolic if and only if

∫ ∞

1

t dt

Vp(t)
< ∞

for some p ∈ M.

Corollary 3.5. If M is quasi-isometric to a manifold satisfying the assumption of
Theorem 3.3, then M is non-parabolic if and only if

∫ ∞

1

t dt

Vp(t)
< ∞

for some p ∈ M .

In [L-T6], the authors obtained estimates for the Green’s function on manifolds
satisfying the hypothesis of Theorem 3.3. However, the estimates are not as clean
as those of Theorem 3.4. Recently, Colding-Minicozzi [C-M3] showed that if Mn

with n ≥ 3 has non-negative Ricci curvature and maximal volume growth then the
Green’s function has an asymptotic limit. In a joint work [L-T-W] of Tam, Wang,
and the author, they gave a short proof of the asymptotic limit and also gave sharp
upper and lower bounds for G. In this case, maximal volume growth means that
there exists p ∈ M such that

lim inf
r→∞

r−n Vp(r) > 0.

Bishop comparison theorem implies that, in fact,

θp(r) = r−n Vp(r) > 0

is a monotonically non-increasing function of r. Also, it is easy to see that if

θ = lim
r→∞

θp(r)

then θ is independent of p.
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Theorem 3.6. (Li-Tam-Wang [L-T-W]) Let M be a complete manifold with non-
negative Ricci curvature of dimension at least 3. Assume that M has maximal
volume growth, and let ρ be the distance function to the point p ∈ M. For any
δ > 0, there exists a constant C > 0 depending only on n and θ, so that the
minimal positive Green’s function on M satisfies

(1 + 9δ)1−
n
2

ρ2−n(x)
n(n − 2)θp(δ ρ(x))
≤ G(p, x)

≤ (1 + C(δ + β)) (1 − δ)1−
n
2

ρ2−n(x)
n(n − 2)θ

,

where

β = δ−2n max
r≥(1−δ)ρ(x)

{
1 − θp(r)

θp(δ2n+1r)

}
.

In particular,

lim
x→∞

ρn−2(x)G(p, x) =
1

n(n − 2)θ
.

Let us consider the special case when M is a complete manifold with a rotationally
symmetric metric with respect to a point p ∈ M. If Ap(t) denotes the area of ∂Bp(t),
then let us assume that

(3.2)
∫ ∞

1

dt

Ap(t)
< ∞.

In this case, M is non-parabolic and the minimal positive Green’s function with the
pole at p is given by

(3.3) G(p, x) =
∫ ∞

ρ(p,x)

dt

Ap(t)
.

Indeed, using the fact that Ap(t) is asymptotically

Ap(t) ∼ nωn tn−1

as t → 0, where ωn denotes the volume of the Euclidean unit n-ball, we verify that

∫ ∞

ρ(p,x)

dt

Ap(t)
∼ 1

n(n − 2)ωn
ρ2−n(p, x)

as x → p. Also, since the metric is rotationally symmetric, the Laplacian in terms
of polar coordinates can be written as

∆ =
∂2

∂r2
+

A′
p

Ap

∂

∂r
,

hence

∆

(∫ ∞

ρ(p,x)

dt

Ap(t)

)
= 0
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for x �= p, and (3.3) is verified. In fact, a similar computation will confirm that the
function

(3.4)
∫ ρ(p,x)

1

dt

Ap(t)

is a Green’s function on a rotationally symmetric manifold regardless of parabolicity.
In case (3.2) holds, then (3.4) differs from (3.3) by a additive constant. If (3.2) is
not valid, then (3.4) is still a Green’s function and M is parabolic. Notice that if
M satisfies some non-negativity assumption on the Ricci curvature, then one can
show that tAp(t) is equivalent to Vp(t), which explains the validity of Theorem 3.3.

In a recent works of Holopainen [H2] and Holopainen-Koskela [H-K], the authors
gave a criteria upon which the condition (3.1) is equivalent to non-parabolicity. In
particular, one criterion has the property that it is localized on a cone neighborhood
of a geodesic ray.

Theorem 3.7. (Holopainen-Koskela [H-K]) Let M be a complete manifold. Sup-
pose there exists a geodesic ray γ : [0,∞) → M satisfying the following two proper-
ties:

(1) There exists a constant C1 > 0, such that, for all t > 0 and for all geodesic
ball Bx(2r) ⊂ Bγ(t)( t

2 ) the volume doubling condition

C1 Vx(r) ≥ Vx(2r)

is satisfied.
(2) There exists a constant C2 > 0, such that, for all t > 0 and for all Bx(2r) ⊂

Bγ(t)( t
2 ) the Poincare inequality

C2 r

(∫
Bx(2r)

|∇f |2
)frac12

≥ inf
k∈R

∫
Bx(r)

|f − f̄ |.

is satisfied for all f ∈ H1,2(Bx(r)) with f̄ = Vx(r)−1
∫

Bx(r)
f.

The manifold M is non-parabolic if and only if∫ ∞

1

t dt

Vp(t)
< ∞

for some p ∈ M.

We would like to remark that the authors actually proved a more general ver-
sion of this theorem which holds for the p-Laplacian. Although the hypothesis of
Theorem 3.7 seems technical, it does cover a case which was not known previously.
Using part of the argument in [L-T6], Holopainen’s result improved a special case
of Corollary 3.4 by lifting the finite first Betti number assumption.

Corollary 3.8. Let M be a complete manifold with non-negative Ricci curvature
near infinity and maximal volume growth, then M is non-parabolic.

§4 A Basic Theorem on Harmonic Functions

In this section, we will indicate that various spaces of harmonic functions will
play certain roles in reflecting the topology of the underlying manifold.
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Definition 4.1. Define H∞
D (M) to be the space of bounded harmonic functions

with finite Dirichlet integral on M.

Definition 4.2. Define H∞(M) to be the space of bounded harmonic functions on
M.

Definition 4.3. Define H+(M) to be the space spanned by the set of positive har-
monic functions on M .

Definition 4.4. Define H′(M) to be the space spanned by the set of harmonic func-
tions which are bounded on one side at each end of M. More precisely, a harmonic
function, f, is bounded on one side at each end if there exists a compact set D ⊂ M
such that f is either bounded from above or from below when restricted to each end
with respect to D.

It follows directly from the definitions that these spaces satisfy the monotonic
relations

{constants} ⊂ H∞
D (M) ⊂ H∞(M) ⊂ H+(M) ⊂ H′(M).

In particular, their respective dimensions satisfy

1 ≤ dimH∞
D (M) ≤ dimH∞(M) ≤ dimH+(M) ≤ dimH′(M).

Observe that if M has only one end, then H+(M) = H′(M).

Definition 4.5. A manifold is said to have the strong Liouville property if it does
not admit any non-constant positive harmonic function, i.e., dimH+(M) = 1.

Definition 4.6. A manifold is said to have the Liouville property if it does not
admit any non-constant bounded harmonic function, i.e., dimH∞(M) = 1.

An interesting, but unrelated fact concerning the space H∞
D (M) is a theorem of

Sario-Schiffer-Glasner [S-S-G]. It asserts that if M admits a non-constant harmonic
function with finite Dirichlet integral, then it must also admits a non-constant
bounded harmonic function with finite Dirichlet integral. We are now ready to state
the theorem which relates the dimension of these spaces of harmonic functions to
π∞

0 (M) and Π∞
0 (M).

Theorem 4.7. (Li-Tam [L-T5]) Let M be any complete Riemannian manifold with-
out boundary. The the number of ends, π∞

0 (M), of M satisfies the upper bound

π∞
0 (M) ≤ dimH′(M).

If M is non-parabolic, then we have the improved estimate

π∞
0 (M) ≤ dimH+(M),

and the number of non-parabolic ends, Π∞
0 (M), satisfies the bound

Π∞
0 (M) ≤ dimH∞

D (M).

We should point out that the last case of Theorem 4.7 also follows from the
work of Grigor’yan [G4], where he related dimH∞

D (M) to the number disjoint of
D-massive sets. At this point, perhaps it is useful to consider a few examples so we
have a better understanding of this theorem.
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Example 1: Let M = � k (Rn) be the connected sum of k copies of R
n. If n = 2,

then M is parabolic. In this case,

π∞
0 (M) = k = dimH′(M).

If n ≥ 3, then M is non-parabolic, and

π∞
0 (M) = Π∞

0 (M) = k.

Moreover,
dimH′(M) = dimH+(M) = dimH∞

D (M) = k.

In any event, Theorem 4.7 is sharp.
Example 2: Let M be the hyperbolic plane H

2. In this case,

dimH′(M) = dimH+(M) = dimH∞
D (M) = ∞.

However, M is non-parabolic and has only 1 end.
Example 3: Recall that a well-known theorem of Yau asserts that:

Theorem 4.8. (Yau [Y1]) If M has non-negative Ricci curvature, then M has the
strong Liouville property.

On the other hand, the splitting theorem of Cheeger-Gromoll implies that:

Theorem 4.9. (Cheeger-Gromoll [C-G1]) If M has non-negative Ricci curvature,
then either M = N × R, for some compact manifold N with non-negative Ricci
curvature, or M has only 1 end.

Using these two theorems, we will analyze the situation when M has non-negative
Ricci curvature. First, let us consider the case when M = N×R. In this case, clearly
M is parabolic according to the volume growth condition (3.1) for non-parabolicity.
One also checks easily that the space H′(M) is spanned by the constant function 1
and the function t ∈ R. Hence

dimH′(M) = 2 = π∞
0 (M).

The remaining case is when M has only 1 end. This implies that

H′(M) = H+(M)

from the definition of H′(M). In this case, Yau’s result implies that

dimH′(M) = dimH+(M) = 1.

Hence whether M is parabolic or not, Theorem 4.7 is sharp for manifolds with
non-negative Ricci curvature.

To give a more quantitative description of Theorem 4.7, let us first consider the
case when M is parabolic. For any compact subset D ⊂ M, let {ei}s

i=1 be the set
of all ends. For each i �= 1, there exists a harmonic function fi satisfying

fi(x) → −∞ as x → e1(∞),

fi(x) → ∞ as x → ei(∞),
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and fi is bounded on ej for all j �= 1, i. The notation x → ei(∞) means that
x → ∞ and x ∈ ei. One checks readily that the set {fi}s

i=2 together with the
constant function form a linearly independent set. Hence, s ≤ dimH′(M) and the
first assertion of Theorem 4.7 follows because D is arbitrary.

When M is non-parabolic, for any compact subset D, let {ei}s
i=1 be the set of

parabolic ends with respect to D and {Eα}�
α=1 be the set of non-parabolic ends

with respect to D. If s > 0, then for each 1 ≤ i ≤ s, there exists a positive harmonic
function gi satisfying

inf
Eα

gi(x) = 0 for all α,

gi(x) → ∞ as x → ei(∞),

and gi is bounded on ek for all k �= i. Also, for any 1 ≤ α ≤ �, there exists a bounded
harmonic function hα with the properties that

sup
Eα

hα = 1,

inf
Eβ

hα = 0 for β �= α,

and hα is bounded on ei for all 1 ≤ i ≤ s. Similarly to the parabolic case, the
existence of these harmonic functions implies the inequality asserted in Theorem
4.7.

§5 Historical Background

Before we proceed to discuss various applications of Theorem 4.7, perhaps it
is useful to point out some historical aspects that lead to the development of the
theorem. In his fundamental paper [Y1], Yau introduced the method of gradient
estimate to prove Theorem 4.8. Right after this work, Cheng-Yau [C-Y] provided a
local argument for the gradient estimate which will become a basic technique and
a starting point for the theory of harmonic functions in years to come. The version
of the gradient estimate that is related to the content of this article is as follows:

Theorem 5.1. (Cheng-Yau [C-Y]) Let M be a manifold with boundary, ∂M. Sup-
pose p ∈ M and r > 0 such that the geodesic ball Bp(r) centered at p of radius r
satisfies Bp(r) ∩ ∂M = ∅. If f is a positive harmonic function defined on Bp(r),
then for any 0 < α < 1, there exists a constant C > 0 depending only on n = dimM
and α, such that,

|∇f |(x) ≤ C r−1 f(x)

for all x ∈ Bp(αr). In particular,

f(x) ≤ C f(y)

for all x, y ∈ Bp(αr).

In 1987, in an attempt to understand and generalize Yau’s strong Liouville theo-
rem to a larger class of manifold, the author and Luen-fai Tam considered manifolds
which behave like a manifold with non-negative Ricci curvature. The most elemen-
tary situation which we considered is the case when M is a connected sum of k
copies of R

n as given by Example 1 of the previous section. The example indi-
cated that the validity of Yau’s theorem hinges on Theorem 4.9, even though Yau’s
proof is completely independent of Theorem 4.9. Also, the fact that the manifold
is Euclidean at each end allows us to use the explicit form of the Green’s function
as barriers. In fact, modeling on Example 1, Li-Tam [L-T 1] successfully deter-
mined the spaces of bounded and positive harmonic functions on a manifold with
non-negative sectional curvature near infinity.
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Theorem 5.2. (Li-Tam [L-T1]) Let M be a complete manifold with non-negative
sectional curvature near infinity. It follows that M must have finitely many ends.
Hence there exists p ∈ M and r > 0 such that the number of ends with respect to
Bp(r) is precisely π∞

0 (M). An end E is non-parabolic if and only if

∫ ∞

r

t dt

VE(t)
< ∞.

Suppose {ei}s
i=1 as the set of ends satisfying the volume growth condition

∫ ∞

r

t dt

Vei(t)
= ∞.

where Vei
(t) denotes the volume of the set Bp(t) ∩ ei. Also, let {Eα}�

α=1 be the set
of ends satisfying the volume growth condition

∫ ∞

r

t dt

VEα
(t)

< ∞.

In particular, we have

Π∞
0 (M) = � and π∞

0 (M) = s + �.

If Π∞
0 (M) = 0 then dimH+(M) = 1. If Π∞

0 (M) > 0, then for each ei there exists
a positive harmonic function gi satisfying

gi(x) → 0 as x → Eα(∞) for all α,

gi(x) → ∞ as x → ei(∞),

and gi is bounded on ek for all k �= i. Also, for any 1 ≤ α ≤ �, there exists a bounded
harmonic function hα with the properties that

hα(x) → 1 as x → Eα(∞),

hα(x) → 0 as x → Eβ(∞)

for all β �= α, and hα is bounded on ei for all 1 ≤ i ≤ s. Moreover, the set {hα}�
α=1

spans the space of bounded harmonic functions denoted by H∞(M), and the set
{hα}�

α=1 ∪ {gi}s
i=1 spans the space H+(M). In particular,

Π∞
0 (M) = H∞(M) and π∞

0 (M) = H+(M).

The reason that sectional curvature was assumed is because some of the argu-
ments used in proving Theorem 1.1 can be used to restrict the topology and geom-
etry at infinity of these manifolds. In particular, the fact that these manifolds have
finitely many ends, with each end homeomorphic to a product space N × [0,∞), is
extensively used in the proof. In the paper [L-T1], the authors raised the question
that if we replace the sectional curvature assumption in Theorem 5.2 by the Ricci
curvature, to what extend will the consequences of the theorem still remain valid.
The first obstacle in proving this is to determine if manifolds with non-negative
Ricci curvature near infinity has only finitely many ends.
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Around the same time, Donnelly [D] proved that the space of bounded harmonic
functions, H∞(M), on a manifold with non-negative Ricci curvature near infinity
must be finite. Later, in an unpublished work, Cheng showed that if M has non-
negative Ricci curvature outside a set D with diameter a, and if the Ricci curvature
is bounded from below by −K on D for some K > 0, then there exists a constant
C(n, a

√
K) > 0 depending only on n and a

√
K such that

dimH∞(M) ≤ C(n, a
√

K).

He also proved that H+(M) must be finite dimensional. In view of these develop-
ments, if Theorem 5.2 holds for manifolds with non-negative Ricci curvature near
infinity, then it will imply that M has finitely many ends if M is non-parabolic. In
fact, this provides the motivation behind Theorem 4.7.

§6 Applications to Riemannian Geometry

Theorem 4.7 allows us to estimate the number of ends, by estimating dimH′(M).

Theorem 6.1. (Li-Tam [L-T5]) Assume that M has asymptotically non-negative
Ricci curvature as defined in §1. Then there exists a constant C(α, n) > 0 depending
only on α and n = dimM such that

π∞
0 (M) ≤ C(α, n).

For the special case when M has non-negative Ricci curvature outside some compact
set D, then the estimate on π∞

0 (M) takes the form

π∞
0 (M) ≤ C1 exp(C2 a

√
K) + 1

where a is the diameter of D, −K < 0 is the lower bound of the Ricci curvature on
D, and C1 and C2 are constants depending only on n.

We would like to point out that independently Cai [C] used a Riemannian geomet-
ric method to prove a slightly weaker estimate for the case when M has non-negative
Ricci curvature near infinity. Later, Cai-Colding-Yang [C-C-Y] refined Cai’s argu-
ment and showed that if a

√
K is sufficiently small, then M has at most 2 ends.

This can be viewed as a generalization of the consequence of the splitting theorem
(Theorem 4.9). Using some of the argument of Cai, Liu [Lu] also proved a ball
covering property for these manifolds.

Theorem 6.2. (Liu [Lu]) Let M be a complete manifold with non-negative Ricci
curvature outside a compact set D ⊂ Bp(a). Let −K < 0 be the lower bound of the
Ricci curvature on D. For any µ > 0, there exists a constant C(n, a

√
K, µ) > 0,

such that, for any r > 0 there exists a set of points {p1, . . . , pk} ⊂ Bp(r) with
k ≤ C(n, a

√
K, µ) satisfying

Bp(r) ⊂ ∪k
i=1Bpi(µr).

Observe that the ball covering theorem implies that π∞
0 (M) ≤ C(n, a

√
K, 1/2).

It is interesting to point out that it is still not known if the ball covering property
holds for manifolds with asymptotically non-negative Ricci curvature. Note that
for a non-parabolic manifold, in order to prove that the inequality

dimH∞
D (M) ≥ Π∞

0 (M)
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is indeed an equality, it is necessary to show that any bounded harmonic function
must have a unique infinity behavior up to a scalar multiple at each non-parabolic
end. For example, for the case when M has non-negative sectional curvature near
infinity, the authors [L-T1] showed that a bounded harmonic function must be
asymptotically constant at infinity of each non-parabolic end. One way to show this
is to develop a spherical Harnack inequality, which asserts that there is a constant
depending only on M such that, if f is a positive harmonic function defined on E
then

f(x) ≤ C f(y)

for all x, y ∈ ∂Bp(r) ∩ E. This type of inequality allows us to conclude that if

lim inf
x→E(∞)

f = 0,

then
lim

x→E(∞)
f = 0.

If M has non-negative Ricci curvature on E then using Theorem 5.1, we conclude
that

(6.1) f(x) ≤ C f(y)

for x ∈ ∂Bp(r) and y ∈ Bp(r/2). Hence, if we know that ∂Bp(r) ∩ E is con-
nected, the ball covering property implies that one can iterate the inequality at
most C(n, a

√
K, 1/2) times and obtain the spherical Harnack inequality. It turns

out that if we assume M has finite first Betti number then one can show the basic
connectedness of ∂Bp(r) ∩ E. This line of argument yield the following theorem:

Theorem 6.3. (Li-Tam [L-T6]) Let M be a complete manifold with non-negative
Ricci curvature near infinity. Suppose the first Betti number of M is finite, then all
the inequalities of Theorem 4.7 become equalities. In particular,

π∞
0 (M) = dimH′(M),

and if M is non-parabolic then

π∞
0 (M) = dimH+(M) = dimH′(M)

and
Π∞

0 (M) = dimH∞
D (M).

We do not know of a complete manifold with non-negative Ricci curvature near
infinity, but have infinite first Betti number. It is plausible that the finiteness of
b1(M) is a consequence of the curvature assumption.

We should also point out that, in proving Theorem 3.3, the authors [L-T6] proved
that the ball covering property holds on a manifold satisfying the hypothesis of
Theorem 3.3. However, it is not known that the volume comparison condition
asserted in Theorem 3.3 holds even on manifolds with non-negative Ricci curvature
near infinity and has only 1 end.

Theorem 4.7 can also be applied to study stable minimal hypersurfaces. In 1976,
in their study of stable minimal hypersurfaces, Schoen and Yau [S-Y] showed that a
complete, oriented, stable minimal hypersurface Mn in a manifold of non-negative
Ricci curvature must have

dimH∞
D (M) = 1.

Exploiting this fact, Cao, Shen, and Zhu proved that such a manifold must have
only 1 end.
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Theorem 6.4. (Cao-Shen-Zhu [C-S-Z]) If Mn (n ≥ 3)be a complete, oriented,
stable minimal hypersurface in R

n+1, then

π∞
0 (M) = 1.

Their argument used the Sobolev inequality of Michael-Simon [M-S] to conclude
that each end of M must be non-parabolic. Hence one can apply the estimate to
conclude that

π∞
0 (M) = Π∞

0 (M).

An upshot of their argument is the following general fact on complete manifolds. If
a complete manifold M satisfies a Sobolev inequality of the form

(6.2)

(∫
Bp(r)

|f |2p

) 1
p

≤ C

∫
Bp(r)

|∇f |2

for some constants C > 0, p ≥ 1 and for all f ∈ Hc
1,2(Bp(r), then each end E

of M must either have finite volume or be non-parabolic. In particular, using the
necessary criteria (3.1) for non-parabolicity, one concludes that either the volume
of E is finite or ∫ ∞

1

t dt

VE(t)
< ∞.

This constitutes a gap phenomenon for the volume growth on manifolds satisfying
(6.2). Note that a finite volume end is possible. This can be seen by taking a
complete metric on a 2-dimensional annulus which has constant −1 curvature. One
can arrange the metric to have finite volume on one end, but infinite volume on
the other end. In this case, one verifies easily that (6.2) holds for p = 1. Also, the
manifold is non-parabolic, due to the existence of one non-parabolic end.

§7 Function Theory under Quasi-isometries

Recall that Theorem 2.4 asserts that parabolicity is a quasi-isometric invari-
ant. On the other hand, any topological data is certainly invariant under quasi-
isometries. Therefore, it is interesting to ask if the dimensions of the spaces H′, H+,
and H∞

D are quasi-isometric invariants.
An example of Lyons [Ly] shows that there are manifolds M and N which are

quasi-isometric but

dimH+(M) = 1 and dimH∞(N) > 1.

On the other hand, Grigor’yan [G3, G4] proved that the dimension of the space
H∞

D is invariant under quasi-isometry. This leads us to the question that perhaps
there are spaces of harmonic functions H1 and H2 which play the same roles as H+

and H′ in Theorem 4.7, but their dimensions are quasi-isometric invariants.
Recall that the De Giorgi-Nash-Moser theory implies that if a manifold M is

quasi-isometric to R
n, then it must have the strong Liouville property, namely,

dimH+(M) = 1.

In view of this Yau conjectured that if a manifold M is quasi-isometric to a manifold
with non-negative Ricci curvature then

dimH+(M) = 1.

In fact, this was verified by Grigor’yan and Saloff-Coste independently.
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Theorem 7.1. (Grigor’yan [G5] and Saloff-Coste [S-C1]) Let M be a complete
manifold satisfying the following two properties:

(1) Volume doubling property which asserts that there exists a constant η > 0
depending only on M such that

(7.1) 2η Vp(r) ≥ Vp(2r)

for all p ∈ M and r > 0; and
(2) Weak Poincaré inequality which asserts that there exists a constant C > 0

depending only on M such that

(7.2)
∫

Bp(2r)

|∇f |2 ≥ C r−2 inf
k

∫
Bp(r)

(f − k)2

for all functions f ∈ H1,2(Bp(2r)).

Then
dimH+(M) = 1.

Since both the volume doubling property and the weak Poincaré inequality are in-
variants under quasi-isometries, and they both hold for manifolds with non-negative
Ricci curvature, this implies Yau’s conjecture. Along the same direction, Sung
pushed this one step further.

Theorem 7.2. (Sung [S]) Let M be quasi-isometric to a manifold N with non-
negative Ricci curvature near infinity. If M has finite first Betti number, then all
the inequalities in Theorem 4.7 become equalities. In particular

dimH′(M) = dimH′(N) = π∞
0 (N) = π∞

0 (N).

Moreover if M is non-parabolic then

dimH+(M) = dimH+(N) = π∞
0 (N) = π∞

0 (M),

and
dimH∞

D (M) = dimH∞
D (N) = Π∞

0 (N) = Π∞
0 (M).

A weaker version of isometry was defined by Kanai [K1].

Definition 7.3. A map f : X → Y between two metric spaces X and Y is a rough
isometry if there exists constants k ≥ 1, b > 0, and c > 0, such that, for all y ∈ Y
there exists x ∈ X with the properties that

dY (y, f(x)) ≤ c,

and for any x1, x2 ∈ X

k−1 dX(x1, x2) − b ≤ dY (f(x1), f(x2)) ≤ k dX(x1, x2) + b.

He studied the effect of function theory under rough isometries for a special class
of manifolds.
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Definition 7.4. A complete manifold is said to have bounded Ricci geometry if its
Ricci curvature is bounded from below and its injectivity radius is strictly positive.

In [K1], Kanai showed that if M has bounded Ricci geometry and it is roughly
isometric to R

m then M satisfies the strong Liouville property. He [K2] also showed
that if M is roughly isometric to N and both manifolds have bounded Ricci geom-
etry, then M is parabolic if and only if N is parabolic. In 1993, Holopainen [H1]
generalized these theorems for the p-Laplacian on manifolds with bounded Ricci
geometry and finitely many ends, all of which are roughly isometric to Euclidean
space. Recently Coulhon and Saloff-Coste generalized Kanai’s theorem.

Theorem 7.4. (Coulhon-Saloff-Coste [C-S-C]) Suppose f : M → N is a rough
isometry. Assume that there exists a constant C > 0 such that f satisfies

(7.3) C−1 Vx(1) ≤ Vf(x)(1) ≤ C Vx(1)

for all x ∈ M. Also, assume that both manifolds have Ricci curvatures bounded
from below, then M is parabolic if and only if N is parabolic. Moreover, if M has
non-negative Ricci curvature then N satisfies the strong Liouville property.

In fact, the Ricci curvature lower bound can be replaced by the assumption
that both manifolds satisfy a local parabolic Harnack inequality. Also the non-
negative Ricci curvature assumption can be replaced by a global parabolic Harnack
inequality.

In [C-S-C], the authors define a rough isometry satisfying (7.3) as an isometry
at infinity. An upshot of their analysis is that if a manifold M has Ricci curvature
bounded from below, and it is isometric at infinity to a manifold with non-negative
Ricci curvature, then M must satisfy (7.1) and (7.2). This fact will revisit in the
discussion in §11.

§8 Applications to Kähler Geometry

In this section, we will discuss various applications of harmonic function theory
to Kähler geometry.

Theorem 8.1. (Napier-Ramachandran [N-R]) Let M be a complete Kähler mani-
fold. Assume that M has bounded geometry, or that it admits a pluri-subharmonic
exhaustion function, then the following statements hold:

(a) If π∞
0 (M) ≥ 2 then b1(M) > 0;

(b) If π∞
0 (M) ≥ 3 then there exists a complete Riemann surface Σ and a proper,

surjective, holomorphic map h : M → Σ with compact fibers.

Theorem 8.2. (Li-Ramachandran [L-R]) Let M be a complete Kähler manifold.
Suppose R(x) is function defined on M which is a lower bound of the Ricci curvature
satisfying

RicM (x) ≥ R(x)

for all x ∈ M. Let
R−(x) = max{−R(x), 0}

be the negative part of the function R which is assumed to be integrable, i.e.,

∫
M

R− < ∞.



20 PETER LI

Also assume that
R(x) ≥ −ε ρ−2(x),

for some sufficiently small ε > 0. Then the following statements hold:
(a) If π∞

0 (M) ≥ 2 then M must be parabolic and b1(M) > 0;
(b) If π∞

0 (M) ≥ 3 then there exists a complete parabolic Riemann surface Σ and
a proper, surjective, holomorphic map h : M → Σ with compact fibers.

Let us remark that the curvature assumption in Theorem 8.2 is sharp. In fact,
let us consider M = C

2 \ {p1, . . . , pk}, where {pi} are k well-spaced points in C
2.

For any δ > 0, there exists [L-R] a complete Kähler metric on M such that the
Ricci curvature satisfies

RicM (x) ≥ −(1 + δ) ρ−2(x).

Obviously the conclusion of Theorem 8.2 is invalid. In particular this indicates that
ε has to be less than 1 in the assumption of Theorem 8.2. In this example, we can
also take the number of points k to be infinite.

Theorem 8.3. (Li [L2-3]) Let M be a complete Kähler manifold with non-negative
sectional curvature near infinity. Then the conclusion of Theorem 8.2 holds. More-
over, if π∞

o (M) ≥ 3, then for each end E of M, the fibration

h : E → h(E) ⊂ Σ

is a Riemannian fibration with fiber given by a compact Kähler manifold, N, with
non-negative sectional curvature. Locally E is a Riemannian product of N and
open subsets U ⊂ Σ. Also, Σ is a parabolic surface with non-negative curvature near
infinity.

Corollary 8.4. If M be a complete Kähler manifold with positive sectional curva-
ture near infinity, then M has most 2 ends.

Using a vanishing theorem of Li-Yau [L-Y2], one can prove a rather general
theorem which put a restriction on the number of non-parabolic ends for a Kähler
manifold.

Theorem 8.5. (Li-Tam [L-T5]) Let M be a complete Kähler manifold of complex
dimension m. Suppose R(x) is function defined on M which is a lower bound of the
Ricci curvature satisfying

RicM (x) ≥ R(x)

for all x ∈ M. Let
R−(x) = max{−R(x), 0}

be the negative part of the function R. If∫
M

R− < ∞,

and the Lq-norm of R− over the geodesic ball of radius r centered at some fixed
point p ∈ M satisfies ∫

Bp(r)

Rq
− = o(rβ(q−1))

for some q > m and β < 2/(m − 2), then

Π∞
0 (M) ≤ 1.
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§9 Harmonic Functions of Polynomial Growth

In 1980, Cheng [Cg1] observed that the localized version of the Yau’s gradient
estimate (Theorem 5.1) can be used to show that a manifold with non-negative Ricci
curvature does not admit any non-constant sublinear growth harmonic functions.

Theorem 9.1. (Cheng [Cg]) Let M be a complete manifold with non-negative Ricci
curvature. There are no non-constant harmonic functions defined on M which is
of sublinear growth, i.e.,

|f(x)| ≤ o(ρ(x))

as x → ∞, where ρ(x) denotes the distance function to some fixed point p ∈ M.

In fact, in the same paper, Cheng proved that a similar statement is true for
harmonic maps into a Cartan-Hadamard manifold. Note that on the n-dimensional
Euclidean space, R

n, the set of harmonic polynomials generate all the polynomial
growth harmonic functions. In particular, for each d ∈ Z

+, the space of harmonic
polynomials Hd(Rn) of degree at most d is of dimension

dimHd(Rn) =
(

n + d − 1
d

)
+

(
n + d − 2

d − 1

)

∼ 2
(n − 1)!

dn−1.

Cheng’s theorem asserts that manifolds with non-negative Ricci curvature is quite
similar to R

n for harmonic functions which grow sublinearly. In view of this result,
and the fact that all polynomial growth harmonic functions in R

n are generated by
harmonic polynomials, Yau conjectured that the space of harmonic functions on a
manifold with non-negative Ricci curvature of at most polynomial growth at a fixed
degree must be of finite dimensional. To state this more precisely, let us define the
following spaces of harmonic functions.

Definition 9.2. Let Hd(M) be the space of harmonic functions f defined on a
complete manifold M satisfying the growth condition

|f(x)| = O(ρd(x)).

Note that in this notation, H0(M) = H∞(M).

Conjecture 9.3. (Yau [Y3]) Let M be a complete manifold with non-negative Ricci
curvature. The dimension of Hd(M) is finite for all d ∈ R

+.

In fact, Yau also raised the question if

dimHd(M) ≤ dimHd(Rn)

for manifolds with non-negative Ricci curvature. In 1989, the author and L. F. Tam
[L-T3] considered the case when d = 1.

Theorem 9.4. (Li-Tam [L-T3]) Let M be a complete manifold with non-negative
Ricci curvature. Suppose the volume growth of M satisfies

Vp(r) = O(rk)

for some constant k > 0. Then

dimH1(M) ≤ dimH1(Rk) = k + 1.
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Observe that the assumption on the Ricci curvature and the Bishop comparison
theorem assert that

Vp(r) ≤ ωn rn,

where ωn is the volume of the unit ball in R
n. On the other hand, a theorem of

Yau [Y2] (also see [C-G-T]) asserts that Vp(r) must grow at least linearly. Hence
the constant k in Theorem 9.3 must exist and satisfy 1 ≤ k ≤ n.

Corollary 9.5. Let M be a complete manifold with non-negative Ricci curvature.
Then

dimH1(M) ≤ n + 1.

This theorem leads us to consider two obvious questions.

Question 9.6. (Li-Tam [L-T3]) Let M be a complete manifold with non-negative
Ricci curvature. Suppose the volume growth of M satisfies

Vp(r) = O(rk)

for some constant k > 0. Is it true that

dimHd(M) ≤ dimHd(Rk) =
(

k + d − 1
d

)
+

(
k + d − 2

d − 1

)
?

The answer to this question was affirmatively verified by Kasue [Ka] and Li-
Tam [L-T4], independently, for the case when M is of dimension 2. In fact, they
considered surfaces satisfying a much weaker curvature condition. We will defer the
discussion of this until the next section.

Question 9.7. What can we say about the manifold on which equality is achieved
in the upper bound given by Corollary 9.5, or even Theorem 9.4?

The first result in this direction, was due to the author, where he assumed, in
addition to non-negative Ricci curvature, that the manifold is Kähler.

Theorem 9.8. (Li [L5]) Let M be a complete Kähler manifold with non-negative
Ricci curvature. If

dimH1(M) = 2m + 1

where m = dimC(M), then M must be isometrically biholomorphic to Cm.

Later, Cheeger-Colding-Minicozzi proved this theorem without the Kähler as-
sumption. In fact, they proved a splitting type theorem for the tangent cone at
infinity.

Theorem 9.8. (Cheeger-Colding-Minicozzi [C-C-M]) Let M be a complete mani-
fold with non-negative Ricci curvature. If

dimH1(M) = k + 1

then any tangent cone C(M) at infinity of M must spit into R
k × N where N is a

(possibly singular) metric cone. In particular, if

dimH1(M) = n + 1

then M must be isometric to R
n.

In a recent paper, Wang [W] estimated dimH1(M) for manifolds with non-
negative Ricci curvature outside a compact set and have finite first Betti number.
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Theorem 9.10. (Wang [W]) Let M be a complete manifold with non-negative Ricci
curvature outside the geodesic ball Bp(a) centered at p ∈ M of radius a > 0. Assume
that the first Betti number of M is finite. Suppose that the Ricci curvature on Bp(a)
has a lower bound given by

RicM ≥ −K

for some constant K > 0. There exist a constant C(n, a, K) > 0 depending only on
n, a, and K such that

dimH1(M) ≤ C(n, a, K).

§10 Surfaces of Finite Total Curvature

Definition 10.1. A complete surface M is said to have finite total curvature if
the negative part of its Gaussian curvature is integrable. More precisely, if K(x)
denotes the Gaussian curvature on M and its negative part is defined by

K−(x) = max{−K(x), 0},

then M has finite total curvature if∫
M

K− < ∞.

These kind of surfaces were first studied by Cohn-Vossen [C-V] in connection to
generalizing a Gaussian-Bonnet formula for complete surfaces. He showed that if
for any compact exhaustion Ωi of a complete surface M , the sequence∫

Ωi

K →
∫

M

K

converges to a possibly infinite limit denoted by
∫

M
K, then the inequality

(10.1)
∫

M

K ≤ 2πχ(M)

holds, where χ(M) is the Euler characteristic of M. This inequality is referred to
as the Cohn-Vossen inequality. Later, Huber [Hu] showed that if∫

M

K− < ∞

then M must be conformally equivalent to a compact Riemann surface with finite
punctures. Moreover, the Cohn-Vossen inequality is valid. Note that since

K = K+ − K−

for
K+(x) = max{K(x), 0}

being the positive part of K, the Cohn-Vossen inequality implies that∫
M

K+ ≤
∫

M

K− + 2πχ(M).
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On the other hand, Huber’s theorem asserts that the right hand side is finite, hence∫
M

K+ < ∞

follows as a consequence. An upshot of this is that∫
M

K− < ∞

implies ∫
M

|K| < ∞.

This justifies the term total curvature in Definition 10.1. After Huber, there were
much work done [Fi, Ha, F] in understanding this class of surfaces. In particular,
Hartman – though had not explicitly stated in his paper – showed that the correction
term in Cohn-Vossen inequality can be computed in terms of the volume growth
of each end. Specifically, since M is conformally equivalent to a compact Riemann
surface with finite punctures, M has finitely many ends given by {ei}k

i=1. Moreover,
each end ei is conformally equivalent to a punctured disk, hence must be parabolic.
The finite total curvature assumption implies that the volume growth of M is at
most quadratic. For each end ei, we can define

αi = 1 − lim
r→∞

Vei(r)
π r2

,

with αi ≤ 1. Hartman showed that

2πχ(M) −
∫

M

K = 2π

k∑
i=1

lim
r→∞

(1 − αi).

The next theorem indicates that these constants αi also play an important role in
the function theory of M.

Theorem 10.2. (Li-Tam [L-T4]) Let M be a complete surface with finite total
curvature. Then

dimHd(M) ≤
k∑

i=1

dimHd(1−αi)(R
2),

and if M has quadratic area growth, i.e., αi < 1 for some i, then for any ε > 0

dimHd(M) ≥
k∑

i=1

dimHd(1−αi)−ε(R2) − k′

where k′ is the number of ends with αi = 1. Here we are taking the convention that

dimHd(R2) = 0

for d < 0.

This estimate can be sharpen, when the manifold has non-negative curvature
near infinity.
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Theorem 10.3. (Li-Tam [L-T4]) Let M be a complete manifold with non-negative
Gaussian curvature near infinity, then

dimHd(M) =
k∑

i=1

dimHd(1−αi)(R
2)

for all d ≥ 1.

Note that when we restrict ourselves to manifolds with non-negative Gaussian
curvature, then either M is a cylinder S

1×R or M has only one end. In the first case
when M = S

1 × R, the polynomial growth harmonic functions on M are generated
by the constant function and the linear function t which parameterizes R. Hence

dimHd(M) =
{ 1 if d < 1

2 if d ≥ 1.

When M has only one end, then according to Theorem 10.3,

dimHd(M) = dimHd(1−α)(R2)

where

1 − α = lim
r→∞

V (r)
π r2

.

Hence if M has linear volume growth, then

dimHd(M) = 1

for all d ≥ 1. On the other hand, if M has quadratic volume growth, then the
curvature assumption implies that α ≥ 0 and

dimHd(M) ≤ dimHd(R2).

In either case, Question 9.6 is answered affirmatively for surfaces. We should point
out that Kasue [Ka] independently proved the upper bound in Theorem 10.2.

§11 High Dimensions

Before we discuss the higher dimensional development of Yau’s conjecture, we
would like to point out different points of view of this type of problems. The first
is to consider polynomial growth solutions for elliptic operators in R

n. Let

(11.1) L =
∂

∂xi

(
aij

∂

∂xj

)

be an elliptic operator defined on R
n with measurable coefficients (aij) satisfying

the uniformly bounded conditions,

(11.2) λ (δij) ≤ (aij) ≤ Λ (δij)

for some constants λ, Λ > 0. The Harnack inequality of De Giorgi-Nash-Moser
implies that L has no non-constant bounded solutions. In fact, if we define

Hd(L) = {f ∈ H1,2(Rn) |L(f) = 0, |f |(x) = O(ρd)}



26 PETER LI

then the De Giorgi-Nash-Moser theory implies that there exists d0 > 0 depending
on Λ/λ, such that,

dimHd(L) = 1

for all d < d0. For general d, Avelleneda and Lin [A-L] first considered the special
case when the coefficients (aij) are periodic, Lipschitz continuous functions in all
the variables. They showed that there is a linear isomorphism between polynomial
growth solutions of

L(f) = 0

to harmonic polynomials in R
n, hence gave a precise estimate on dimHd(L). The

Lipschitz condition was later dropped in a paper of Moser-Struwe [M-S]. In a recent
work of Lin [Ln], he considered elliptic operators satisfying both (11.1) and (11.2)
plus an asymptotically conic condition (see Definition 2.1 of [Ln]). The condition
roughly says that the operator is asymptotic to a unique conic operator. With this
extra condition, Lin proved that

dimHd(M) < ∞

for all d > 0. Moreover, the dimension of each Hd(M) can be estimated explicitly
using information on L.

Recently, Zhang [Z] proved a similar dimension estimate for dimHd(L) for a class
of uniformly elliptic operators of divergence form that is more general than those
in [Ln]. He considered those operators which are not necessarily asymptotic to a
unique conic operator, but those who are asymptotic to a periodic family of conic
operators. In this case, he proved that

dimHd(L) ≤ Cdn−1.

Another class of elliptic operators which have some baring to this problem are
uniformly elliptic operators of non-divergence form. Let

(11.3) L = aij
∂

∂xi

∂

∂xj

be an elliptic operator defined on R
n with coefficients (aij) satisfying (11.2). Then

the Harnack inequality of Krylov-Safonov (see [G-T]) implies that there exists d0 > 0
depending on Λ/λ, such that,

dimHd(L) = 1.

In yet another direction, Bombieri-Giusti [B-G] proved a Harnack inequality for
uniformly elliptic operators on area minimizing hypersurfaces M in R

n. Hence in
the same spirit as above,

dimHd(M, L) = 1

for d sufficiently small, where L is a uniformly elliptic operator on M
Recently there has been substantial developments on Yau’s conjecture in higher

dimensions. We will take this opportunity to document various contributions and
give the historical account in this direction. The first partial result was indirectly
given by Bando-Kasue-Nakajima [B-K-N]. They proved that if the sectional curva-
ture, KM of a complete n-dimensional manifold satisfies

|KM (x)| ≤ C ρ−(2+ε)(x)
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for some constants C, ε > 0 and if the volume growth for each end E satisfies

VE(r) ≥ C rn,

then M is asymptotically locally Euclidean. This fact is sufficient [Bk, Ka, Kn] to
imply that

dimHd(M) < ∞
for all d. In a series of papers, Colding-Minicozzi [C-M1-6] proved a number of
theorems which eventually lead to and went beyond Yau’s conjecture. First, they
proved the case when M has non-negative Ricci curvature and has maximal volume
growth. Eventually, they improved their argument to give a dimension estimate
for dimHd(M) for manifolds satisfying the volume doubling property (7.1) and the
Poincaré inequality.

In the context of this section, we will say that a manifold satisfies the Poincaré
inequality if there exists a constant α > 0, such that, the first Neumann eigenvalue
for the Laplacian on Bx(r) satisfies

(11.4) λ1(Bx(r)) ≥ α r−2

for all x ∈ M and r > 0. It is worth pointing out that though (11.4) is stronger than
the weak Poincaré inequality (7.2), a covering argument of Jerison [J] asserts that
the volume doubling property (7.1) together with the weak Poincaré inequality (7.2),
in fact, imply that Poincaré inequality. In [CM6], they also considered a volume
growth property, which asserts that there exists a constant ν > 0 such that

(11.5)
(

r′

r

)ν

Vx(r) ≥ Vx(r′)

for all x ∈ M and 0 < r < r′. Using these conditions, the main result which they
proved can be stated as follows:

Theorem 11.1. (Colding-Minicozzi [CM4-6]) Let M be a complete manifold sat-
isfying the Poincaré inequality (11.4).
1) Suppose M also satisfies the volume doubling property (7.1), then there exists a
constant C > 0 depending only on n and α, such that,

dimHd(M) ≤ C dη

for all d > 1.
2) Suppose M also satisfies the volume growth property (11.5), then there exists a
constant C > 0 depending only on n an α, such that,

dimHd(M) ≤ C dν−1.

for all d > 1.

In particular, this confirms Yau’s conjecture since manifolds with non-negative
Ricci curvature satisfy both the Poincaré inequality [Br] and the volume growth
property [B-C]. In this case, ν = n. This gives a sharp growth rate as d → ∞, as
indicated by the case when M = R

n. We would also like to point out that the first
estimate of Colding-Minicozzi using the volume doubling property is not sharp in
the power of d. The sharp power should be η − 1, since η = n if M = R

n. Also, the
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volume doubling property and the volume growth property are related. It is clear
that, the volume growth property implies the volume doubling property with η = ν.
Moreover, one can easily argue that the volume doubling property (7.1) implies(

2r′

r

)η

Vp(r) ≥ Vp(r′)

for r′ ≥ r. In this sense, the volume doubling property is weaker than the volume
growth property. In view of the relationship between the volume doubling property
and the volume growth property, it is convenient to define the weak volume growth
property which encapsulate both properties. A manifold is said to have the weak
volume growth property if there exists constants C1 > 0 and η > 0 such that

(11.6) C1
(r′)η − rη

reta
Vp(r) ≥ Vp(r′) − Vp(r)

for all p ∈ M and 0 < r ≤ r′.
Due to the work of Grigor’yan [G5] and Saloff-Coste [S-C1, S-C2] it is known that

the volume doubling property (7.1) together with the Poincaré inequality (11.4) is
equivalent to the parabolic Harnack inequality which implies the elliptic Harnack
inequality. Grigor’yan has informed me, by way of an example, that the parabolic
Harnack inequality is stronger than the elliptic Harnack inequality. In any case,
(7.1) and (11.4) imply a mean value inequality of the form

(11.7) Vx(r) f(x) ≤ C2

∫
Bx(r)

f

for some constant C2, and for any non-negative function f defined on Bx(r) satis-
fying

∆f ≥ 0.

In this case, C2 will depend only on η, α, and n. Indeed, it was argued in [S-C2]
that (7.1) and (11.4) imply a Sobolev inequality of the form

(11.8)

(∫
Bx(r)

f
2µ

µ−2

)µ−2
µ

≤ C3 Vx(r)−2/µ

(
r2

∫
Bx(r)

|∇f |2 +
∫

Bx(r)

f2

)

for any compactly supported function f ∈ Hc
1,2(Bx(r)), where C3 > 0 and µ > 2 are

some fixed constants, and x ∈ M and r > 0 are arbitrary. It is now clear that by
running the Moser iteration argument [M] using (7.1) and (11.8), one obtains (11.7).
In fact, Moser’s argument actually implies the mean value inequality not only for
non-negative subharmonic functions, but for non-negative functions satisfying

(11.9) ∆f ≥ −g f

where g is a non-negative function satisfying some appropriate decay condition (see
[L4]). In this case, C2 in (11.7) will depend on µ, C3 and g. In particular, a special
case of this situation is when g has compact support.

Colding-Minicozzi circulated an announcement [C-M4] of Theorem 11.1 in June
1996 together with a number of applications using Theorem 11.1. In [C-M5] and
[C-M6], they proved many of the announced theorems, including Theorem 11.1.
Shortly after the circulation of [C-M6], the author [L6] came up with a simple
argument using a weaker assumption.
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Theorem 11.2. (Li [L6]) Let M be a complete manifold satisfying the weak volume
growth property (11.6). Let K be a linear space of sections of a rank-q vector bundle
E over M . Suppose each u ∈ K satisfies the growth condition

|u|(x) = O(ρd(x))

as the distance ρ to some fixed point p ∈ M goes to infinity for some constant d ≥ 1,
and the mean value inequality

C2

∫
Bx(r)

|u|2 ≥ Vx(r) |u|2(x)

for all x ∈ M and r > 0. Then there exists a constant C > 0 depending only on η
and C1, such that

dimK ≤ q C C2 dη−1.

In their announcement [C-M4], the authors also announced, without indication
of the proof, that Hd(M) is finite dimensional if M is a minimal submanifold in
Euclidean space with Euclidean volume growth. In the same note, they also an-
nounced a finite dimensionality result for polynomial growth harmonic sections of
at most degree d on a Hermitian vector bundle with nonnegative curvature over a
manifold with non-negative Ricci curvature. Shortly after the circulation of [L6],
Colding-Minicozzi circulated a new preprint [C-M7] providing the proofs for the
minimal submanifold and the harmonic sections cases. In this paper, they also used
a form of mean value inequality similar to (11.7). However their argument did not
provide the sharp power in d.

As indicated in the above discussion, as long as |u|2 satisfies an inequality of
the form (11.9) for some compactly supported g, and M also satisfies the Sobolev
inequality (11.8), then the mean value inequality follows as a consequence. In
particular, the following corollaries can be deduced from Theorem 11.2.

Corollary 11.3. Let Mn be a complete manifold satisfying conditions (11.6) and
(11.7) for non-negative subharmonic functions. Then

dimHd(M) ≤ C C2 dη−1

for all d ≥ 1. In particular, if M is quasi-isometric to a manifold with non-negative
Ricci curvature, then

dimHd(M) ≤ C dn−1

for all d ≥ 1.

In view of the discussion after Theorem 7.4, the work of Coulhon and Saloff-Coste
[C-S-C] together with Theorem 11.2 implies that one can also deal with the case
when M is roughly isometric to a manifold with non-negative Ricci curvature.

Corollary 11.4. Let Mn be a complete manifold with Ricci curvature bounded
from below. Suppose M is isometric at infinity to a manifold with non-negative
Ricci curvature, then

dimHd(M) ≤ C dn−1

for all d ≥ 1.

Using the fact that the mean value inequality holds for functions satisfying (11.9),
Theorem 11.2 also implies the next corollary.
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Corollary 11.5. Let M be a manifold whose metric ds2 is obtained by a compact
perturbation of another metric ds2

0 which has non-negative Ricci curvature. Suppose

Hp
d(M) = {u ∈ Λp(M) | δu = 0, |u|(x) = O(ρd(x)) as ρ → ∞}

denotes the space of harmonic p-forms of at most polynomial growth of degree d ≥ 1.
Then

dimH1
d(M) = dimHn−1

d (M) ≤ n C dn−1.

If we further assume that ds2
0 has non-negative curvature operator, then

dimHp
d(M) ≤

(
n
p

)
C dn−1.

Corollary 11.6. Let M be a complete Ricci flat manifold. Suppose Kd(M) is the
space of Killing vector fields on M which has polynomial growth of at most degree
d ≥ 1. Then

dimKd(M) ≤ C dn−1.

Corollary 11.7. Let Mm be a complete Kähler manifold of complex dimension m.
Assume that M satisfies conditions (11.6) and (11.7) for non-negative subharmonic
functions. Suppose E is a rank-q Hermitian vector bundle over M and that the mean
curvature (in the sense defined in [Ko]) of E is non-positive. Let H̄d(M, E) be the
space of holomorphic sections which is polynomial growth of at most degree d ≥ 1.
Then

dim H̄d(M, E) ≤ q C λ d2m−1.

In particular the space of polynomial growth holomorphic functions of at most degree
d ≥ 1 is bounded by

dim H̄d(M) ≤ C λ d2m−1.

Complex and algebraic geometers have been interested in estimating the dimen-
sion of H̄d(M, E) for many years. We would like to refer to the survey article of Mok
[Mk] for a more detail history and reference in this direction. Another interesting
result was due to Wu, Tam and the author, where they considered Kähler manifolds
with at most quadratic volume growth. In this case, no additional assumption on
the manifold is necessary.

Theorem 11.8. (Wu [Wu1-2]) Let M be a complete Kähler manifold. If M has
subquadratic volume growth

Vp(r) = o(r2),

then M does not admit any non-constant polynomial growth holomorphic functions.
If M has quadratic volume growth

Vp(r) = O(r2),

then there exists constants C(m, d) > 0 depending only on m and d such that

dim H̄d(M) ≤ C(m, d).

Theorem 11.2 also applies to uniformly elliptic operators on R
n. The following

corollaries are consequences of the theorem.
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Corollary 11.9. Let

L =
∂

∂xi

(
aij

∂

∂xj

)

be an elliptic operator of divergence form defined on R
n with uniformly bounded

coefficients satisfying (11.2). Let

Hd(L) = {u ∈ H loc
1,2(Rn) |L(u) = 0, |u|(x) = O(ρd(x)) as ρ → ∞}

be the space of L-harmonic functions that has polynomial growth of degree at most
d ≥ 1. Then

dimHd(L) ≤ C dn−1.

Corollary 11.10. Let

L = aij
∂2

∂xi∂xj

be an elliptic operator of non-divergence form defined on R
n with uniformly bounded

coefficients satisfying (11.2). Let

Hd(L) = {u ∈ H loc
2,n(Rn) |L(u) = 0, |u|(x) = O(ρd(x)) as ρ → ∞}

be the space of L-harmonic functions that has polynomial growth of degree at most
d ≥ 1. Then

dimHd(L) ≤ C dn−1.

Corollary 11.11. Let Mn be a complete minimal surface in R
N . Suppose ρ0 is

the distance function of R
N with respect to some fixed point p ∈ M . Assume the

volume growth of M satisfies

V (B0(r) ∩ M) ≤ Crn

where B0(r) ⊂ R
N is the Euclidean ball center at p of radius r. Let L be a uni-

formly elliptic operator defined on M . Suppose Hd(M, L) is the space of L-harmonic
functions f on M satisfying the growth condition

|f |(x) = O(ρd
0(x))

for some d ≥ 1. Then
dimHd(M, L) ≤ C dn−1

for some constant C depending on M and the ellipticity constants of L.

We would like to comment that, the mean value inequality (11.7) is weaker than
the Poincaré inequality (11.5). An interesting fact is that Theorem 11.2 allows one
to prove that

dimH0(M) < ∞
without implying

dimH0(M) = 1.

On the other hand, Theorem 7.1 asserts that the Poincaré inequality and the volume
doubling property imply that

dimH0(M) = 1.
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An example of a manifold satisfying the hypothesis of Theorem 11.2 but

dimH0(M) > 1

is R
n� R

n for n ≥ 3.
In [C-M7], the authors verified that a complete manifold satisfying the assump-

tions of Theorem 3.3 has the volume doubling property and the mean value inequal-
ity. Hence, Theorem 11.2 applies to this case. In a recent preprint of Tam [T], he
relaxed the volume comparison condition of Theorem 3.3. Instead of assuming that
the volume comparison condition holds on the whole manifold, he only assumed that
it hold for each end individually. Note that since the volume growth of each end
may be different, this covers a more general situation. In the same article, he also
considered harmonic forms on surfaces of finite total curvature and on manifolds
with asymptotically non-negative curvature operator .

Surprisingly, as it turned out, Wang and the author observed that the conditions
to ensure the validity of Yau’s original conjecture, namely the finite dimensionality
of Hd(M), can be weaken. If one does not aim for the sharp order estimate as
in Theorem 11.2, the weak volume growth property (11.6) can be replaced by a
polynomial volume growth assumption. Sometimes it is also convenient to replace
the mean value inequality (11.7) by the weak mean value inequality of the form

(11.10) Vx(r) f(x) ≤ C4

∫
Bx(br)

f

for some constants C4 > 0, b ≥ 1, and for any non-negative subharmonic function
f defined on Bx(βr). Note that if the manifold satisfy the weak volume growth
property (11.6), then the weak mean value inequality is equivalent to the mean
value inequality. On the other hand, without the weak volume growth property,
the weak mean value property is, in general, easier to obtain. For example, if a
manifold satisfies the Sobolev inequality (11.8), then the Moser iteration argument
yields the weak mean value inequality.

Theorem 11.12. (Li-Wang [L-W2]) Let M be a complete manifold whose volume
growth satisfies

Vx(r) = O(rν)

as r → ∞ for some x ∈ M and ν > 0. Assume that M also satisfies the weak mean
value inequality (11.10). Then

dimHd(M) ≤ C4(2b + 1)(2d+ν).

As we pointed out, the Sobolev inequality (11.8) implies the weak mean value
inequality. If we choose f ∈ Hc

1,2(Bx(r)) to be the non-negative function satisfying
f = 1 on Bx(1), and f = 0 on M \Bx(2) , then after applying to (11.8), we conclude
that Vx(r) = O(rµ). Hence, Theorem 11.12 can be stated with only the assumption
of (11.8). However, as indicated by a recent paper of Li-Wang [L-W3], one can
actually do much better on the estimate if we assume (11.8).

Theorem 11.13. (Li-Wang [L-W3]) Let M be a complete manifold satisfying the
Sobolev inequality (11.8). Then

dimHd(M) ≤ C dµ



CURVATURE AND FUNCTION THEORY ON RIEMANNIAN MANIFOLDS 33

for some constant C > 0.

It is also worthwhile to point out that Theorem 11.12 can be applied to harmonic
sections of vector bundles. In particular, a weaker estimate as in Corollary 11.7 holds
for manifolds satisfying the conditions of Theorem 11.12. The argument of [L6] and
[L-W2] also can be applied to study d-massive sets [L-W1], which yields interesting
applications to the image structure of harmonic maps.

Recently, Sung-Tam-Wang [S-T-W] considered the effect of dimHd(M) under
connected sums. They proved a formula for dimHd(M1�M2) in terms of
dimHd(M1) and dimHd(M2).

In an attempt to give an affirmative answer to Question 9.6, Li-Wang [L-W3]
recently proved a sharp asymptotic estimate for dimHd(M) when M has non-
negative sectional curvature.

Theorem 11.14. (Li-Wang [L-W3]) Let Mn be a complete manifold with non-
negative sectional curvature. Let us define α by

α = lim
r→∞

r−n Vp(r).

The Bishop comparison theorem asserts that 0 ≤ α ≤ omegan where ωn is the
volume of the unit Euclidean ball. Then the truncated sum of dimHd(M) must
satisfy

lim sup
d→infty

d−n
d∑

i=1

dimHi(M) ≤ 2α

n!ωn
.

Moreover, the equality

lim sup
d→infty

d−n
d∑

i=1

dimHi(M) =
2
n!

holds if and only if M = R
n.

In another recent paper of Li-Wang [L-W4], they also proved a parallel version
of this theorem for uniformly elliptic operators of divergence form. The estimate
depends on the ratio of the ellipticity bounds at infinity. In particular, if

L =
∂

∂xi

(
aij

∂

∂xj

)

is an elliptic operator of divergence form defined on R
n with uniformly bounded

measurable coefficients satisfying (11.2). We define the ellipticity bounds λr and
Λr on the complement of the Euclidean ball of radius r centered at the origin so
that they satisfy

λr (δij) ≤ (aij(x)) ≤ Λr (δij)

for all x ∈ R
n\B0(r). Obviously, both λr and Λr are bounded, monotonic functions,

hence we can define
λ∞ = lim

r→∞
λr

and
Λ∞ = lim

r→∞
Λr.
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Theorem 11.15. (Li-Wang [L-W4]) Let L be a uniformly elliptic operator of di-
vergence form defined on R

n. Let

Hd(L) = {u ∈ H loc
1,2(Rn) |L(u) = 0, |u|(x) = O(ρd(x)) as ρ → ∞}

be the space of L-harmonic functions that has polynomial growth of degree at most
d ≥ 1. Then

d∑
i=1

dimHi(L) ≤
(

Λ∞
λ∞

)n−1 2
n!

(d + 2n)n.

§12 Lp Conditions

Another type of growth conditions which appear naturally in geometric problems
are integrability conditions. For example, a natural question to ask is whether a
manifold possesses any non-trivial L2 harmonic functions. This was first answered
by Yau in 1976. Notice that since the absolute value of a harmonic function is sub-
harmonic, we may generalize this discussion to non-negative subharmonic functions
which satisfy some integrability conditions.

Theorem 12.1. (Yau [Y2]) Let u be a non-negative subharmonic function defined
on a complete manifold M. If u ∈ Lp(M) for some p > 1, then u must be identically
constant. This constant must be zero if M has infinite volume. In particular,
a complete manifold does not admit any non-constant Lp harmonic functions for
p > 1.

It turns out that for p ≤ 1, the situation is not as definitive, but geometrically
more interesting. In a joint work of the author and Schoen [L-S], they studied these
cases and found out that the curvature of M plays a role. In fact, the case p = 1 is
also different from the remaining cases p < 1.

Theorem 12.2. (Li-Schoen [L-S]) Let M be a complete manifold. Suppose p ∈ M
is a fixed point and ρ is the distance function to p. If there exists constants C > 0
and α > 0 such that the Ricci curvature of M satisfies

RicM (x) ≥ −C (1 + ρ2(x))(log(1 + ρ2(x))−α,

then any non-negative L1 subharmonic must be identically constant. Moreover, this
constant must be zero if M has infinite volume.

Theorem 12.3. (Li-Schoen [L-S]) Let M be a complete manifold. Suppose p ∈ M
is a fixed point and ρ is the distance function to p. There exists a constant δ(n) > 0
depending only on n, such that, if the Ricci curvature satisfies M satisfies

RicM (x) ≥ −δ(n) ρ−2(x),

as x → ∞, then any non-negative Lp subharmonic must be identically constant for
p ∈ (0, 1). Moreover, this constant must be zero if M has infinite volume.

In the same paper, Li and Schoen also produced examples of manifolds which
possess non-constant Lp harmonic functions. They showed that for any ε > 0, there
are manifolds with sectional curvature decay at the order of

KM ∼ −C ρ2+ε
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as ρ → ∞, which admit non-constant L1 harmonic functions. Also, for any p < 1,,
there exists manifolds with sectional curvature behave like

KM ∼ −C ρ−2

as ρ → ∞ which admit non-constant Lp harmonic functions. These examples show
that the curvature condition in Theorem 12.3 is sharp and the condition in Theorem
12.2 is almost sharp. In fact, a sharp curvature condition was later found by the
author for the case p = 1.

Theorem 12.4. (Li [L1]) Let M be a complete manifold. Suppose p ∈ M is a fixed
point and ρ is the distance function to p. If there exists a constant C > 0 such that
the Ricci curvature of M satisfies

RicM (x) ≥ −C (1 + ρ2(x)),

then any non-negative L1 subharmonic function must be identically constant. More-
over, this constant must be zero if M has infinite volume.

Other than lower bounds on the Ricci curvature, there are also other conditions
which will imply the non-existence of Lp harmonic functions.

Theorem 12.5. (Li-Schoen [L-S]) Let M be a complete manifold satisfying one of
the following conditions:

(1) M is a Cartan-Hadamard manifold.
(2) M has Ricci curvature bounded from below and the volume of every unit

geodesic ball is uniformly bounded from below.
Then for all p ∈ (0, 1], any non-negative Lp subharmonic function must be constant.

For the sake of application, Yau’s theorem can be relaxed to the following form:

Proposition 12.6. (Yau [Y2]) Let M be a complete manifold. Suppose u is a
non-negative subharmonic function whose Lp-norm satisfies the growth condition∫

Bx(r)

up = o(r2)

as r → ∞ for some fixed point x ∈ M. Then u must be identically constant. More-
over, this constant must be zero if the volume growth of M satisfies

lim sup
r→∞

r−2 Vx(r) > 0

as r → ∞.

The interested reader should also refer to the work of Nadirashvili [N] for a
different type of integrability condition for the Liouville theorem.

§13 Cartan-Hadamard Manifolds

The function theory on a hyperbolic disk is quite different from the Euclidean
plane. Our previous discussion, in many ways models on the Euclidean case. In this
section, we will discuss the higher dimensional analog of the hyperbolic case. With
the intend of proving a uniformization type theorem for higher dimensional Kähler
manifolds, Greene-Wu and Yau asked if a complete, simply connected, Kähler man-
ifold with sectional curvature bounded from above by -1 is biholomorphic to a
bounded domain in C

n. Clearly, to prove such a statement, one needs to produce
many bounded holomorphic functions to be used as embedding functions. The first
step is to study the real analog of this statement and see if one can produce enough
bounded harmonic functions. In fact, Greene-Wu [G-W] posted the following con-
jecture:
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Conjecture 13.1. (Greene-Wu [G-W]) Let M be a Cartan-Hadamard manifold
whose sectional curvature satisfies the upper bound

KM (x) ≤ −C ρ−2(x)

for some constant C > 0, where ρ is the distance function to a fixed point. Then
M must admit a non-constant bounded harmonic function.

In 1983, Sullivan [Su] proved that there are abundance of bounded harmonic
functions on a strongly negatively curved Cartan-Hadamard manifold. Anderson
[An] later used an argument of Choi [Ci] gave another proof of the same statement.
To describe the space of bounded harmonic functions on Cartan-Hadamard manifold
with strongly negative curvature, we need to define the geometric boundary.

Definition 13.2. Let M be a Cartan-Hadamard manifold. We define the geometric
boundary M(∞) of M to be the set of equivalent classes of geodesic rays defined
by the equivalence relation that two geodesic rays γ1(t) and γ2(t) are equivalent if
ρ(γ1(t), γ2(t)) is a bounded function to t ∈ [0,∞).

The geometric boundary M(∞) together with M form a compactification of M ,
and M∪M(∞) has a natural topology inherited from M , namely the cone topology.
The cone Cp(v, δ) about a tangent vector v ∈ TpM of angle δ is defined by

Cp(v, δ) = {x ∈ M | the geodesic γ joining p to x satisfies 〈γ′, v〉 < δ}.

The open sets of the cone topology is generated by the sets of all truncated cones
Cp(v, δ) \Bp(r) and geodesic balls Bq(r), for p, q ∈ M , v ∈ TpM , δ > 0, and r > 0.
Using the Toponogov comparison theorem, one checks [A-S] that if the sectional
curvature of M is strongly negative, i.e.,

−a ≥ KM ≥ −b

for some constants 0 < a ≤ b < ∞, then M(∞) has a natural Ca/b structure.

Theorem 13.3. (Sullivan [Su], Anderson [An])Let M be a complete, simply con-
nected manifold. Assume that the sectional curvature of M satisfy the bound

−a ≥ KM ≥ −b

for some constants 0 < a ≤ b < ∞. Then for any continuous function φ defined on
the geometric boundary M(∞) of M , there exists a function f defined on M∪M(∞)
which is harmonic on M , and

f = φ

on M(∞).

Shortly after this theorem, Anderson and Schoen considered the existence of
positive harmonic functions on the same class of manifolds. In fact, they showed
that the Martin boundary is homeomorphic to the geometric boundary. The Martin
boundary is defined on non-parabolic manifolds. Let p ∈ M be a fixed point and
x, y ∈ M. Suppose G is the minimal positive Green’s function defined on M , then
we defined the normalized Green’s function with pole at y by

hy(x) =
G(y, x)
G(y, p)

.
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Clearly, the normalization yields hy(p) = 1. Let yi be a non-convergent sequence
of points in M , then the sequence {hi(x) = hyi

(x)} of harmonic functions are
uniformly bounded on compact subsets of M . The Harnack inequality implies that
there exists a subsequence {hij} which converges uniformly on compact subsets to
a positive harmonic function h̄ defined on M with the property that h̄(p) = 1. The
corresponding subsequence of points {yij} is denoted to be a fundamental sequence.
We say that two fundamental sequences are equivalent if the corresponding limiting
harmonic functions are the same.

Definition 13.4. The Martin boundary M of a manifold M consists of the equiv-
alent classes of fundamental sequences ȳ = [yi]. To each ȳ ∈ M there associates a
positive harmonic function hȳ from the above construction.

The Martin boundary together with M form a compactification for M . The
topology on M ∪M can be defined by the distance function ρ̄ given by

ρ̄(y, y′) = sup
x∈Bp(1)

|hy(x) − hy′(x)|.

One checks readily that this structure is independent of the choice of p, and this
topology coincides with the topology induced by the Riemannian structure of M.

When M is a complete manifold with non-negative Ricci curvature near infinity
and if M has finite first Betti number and it is non-parabolic, then one can show
that the Martin boundary consists of π∞

0 (M) points. The compactification M ∪M
is simply a 1-point compactification at each end of M.

Theorem 13.5. (Anderson-Schoen [A-S]) Let M be a complete, simply connected
manifold. Assume that the sectional curvature of M satisfies the bound

−a ≥ KM ≥ −b

for some constants 0 < a ≤ b < ∞. Then the Martin boundary M is homeomorphic
to the geometric boundary and the homeomorphism is Cα. In particular, there exist
a Poisson kernel K(x, ȳ) defined on M ×M(∞) which is Cα in the variable ȳ such
that for any positive harmonic function f , there exists a unique, finite, positive,
Borel measure dµ defined on M(∞) such that

f(x) =
∫

M(∞)

K(x, ȳ) dµ(ȳ).

Two years later, Ancona [Ac] generalized this theorem to a larger class of second
order elliptic operator. In particular, a special case of Ancona’s theorem asserts
that the conclusion of Theorem 13.2 holds for manifolds which are quasi-isometric
to a strongly negatively curved Cartan-Hadamard manifold.

Theorem 13.6. (Ancona [Ac]) Let M be a complete, simply connected manifold.
Assume that M is quasi-isometric to a manifold N satisfying the curvature bound

−a ≥ KN ≥ −b

for some constants 0 < a ≤ b < ∞. Then the Martin boundary M of M is homeo-
morphic to N∞.

Other progress has been made to relax the curvature assumption of these theo-
rems. For example, in [H-M], Hsu and Marsh relaxed the bounds on the curvature
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assumption. They generalized Theorem 13.3 to Cartan-Hadamard manifolds whose
section curvature satisfies the estimate

−C ρ−2 ≥ KM ≥ −b

for some constants b > 0 and C > 2. In 1992, Borbély relaxed the lower bound by
assuming that the sectional curvature satisfies

−a ≥ KM ≥ −b eλr

for some constants 0 < a ≤ b < ∞ and λ < 1/3. In this case, he proved that the
Dirichlet problem at infinity can be solved as in Theorem 13.3. Recently, Cheng
proved the existence of non-constant bounded harmonic functions by assuming a
pointwise curvature pinching condition.

Theorem 13.7. (Cheng [Cg2]) Let M be a Cartan-Hadamard manifold. Assume
that the lower bound of the spectrum λ1(M) for the Laplacian on M is positive.
Suppose there exists p ∈ M and a constant C > 0 such that the sectional curvatures
KM (σ) and KM (σ′) satisfy

|KM (σ)| ≤ C |KM (σ′)|

for any pair of 2-plane sections σ and σ′ at x containing the tangent vector of the
geodesic joining x to p. Then for any continuous function φ defined on the geometric
boundary M(∞) of M , there exists a function f defined on M ∪ M(∞) which is
harmonic on M , and

f = φ

on M(∞).

Note that unlike the previous theorems in this section, Cheng’s theorem allows
points where the curvature of M may vanish. The following theorem of Ballmann
also allows this possibility, but rather than a pinching condition he assumed that
the manifold is of rank one.

Definition 13.8. A Cartan-Hadamard manifold is said to have rank one if it ad-
mits a geodesic σ with no parallel Jacobi field along σ perpendicular to σ′.

If M is a Cartan-Hadamard manifold which is irreducible and admits a discrete,
co-compact, isometry group, then it is known [B1, B-S] that either M has rank one
or M is a symmetric space of noncompact type of rank at least 2.

Theorem 13.9. (Ballmann [B2]) Let M be an irreducible, Cartan-Hadamard man-
ifold which admits a discrete, co-compact isometry group. If M has rank one, then
for any continuous function φ defined on the geometric boundary M(∞) of M , there
exists a function f defined on M ∪ M(∞) which is harmonic on M , and

f = φ

on M(∞).

In a subsequent joint paper of Ballmann and Ledrappier [B-L], they showed
that, in fact, one can represent any bounded harmonic function on M by a Poisson
representation formula.
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Theorem 13.10. (Ballmann-Ledrappier [B-L])Let M be an irreducible, Cartan-
Hadamard manifold which admits a discrete, co-compact isometry group. If M has
rank one, then there exists an equivalent class of harmonic measures dνp defined
on M(∞) for each p ∈ M, such that, for any bounded measurable function φ the
bounded function defined by

f(x) =
∫

M(∞)

φ(x̄)dνx(x̄)

is a harmonic extension of φ to M∪M(∞). Conversely, any bounded harmonic func-
tion f can be such represented by some bounded measurable function φ on M(∞).

In view of the theorems of Cheng, Ballmann, and Ballmann-Ledrappier, the
natural questions to ask is whether it is true that the Martin boundaries of these
manifolds are the same as their geometric boundaries? Also, is there a Poisson
representation formula similar to the case of strongly negatively curved Cartan-
Hadamard manifolds? What can one say about the Martin boundary for manifolds
which are quasi-isometric to these manifolds?

Obviously, the set of positive harmonic functions on a complete manifold does
not form a vector space. However, if f and g are positive harmonic functions then
linear combinations of the form

a f(x) + b g(x),

where a, b > 0, is again a positive harmonic function. Hence the set of positive
harmonic functions form a convex positive cone in a vector space. The boundary
points of this convex cone determines the cone itself. A positive harmonic function f
which is a boundary point of this cone has the property that if g is another positive
harmonic function satisfying

g(x) ≤ f(x),

then
g(x) = a f(x)

for some constant 0 < a ≤ 1. This property is called minimal. The set of positive
harmonic functions are given by the positive span of minimal positive harmonic
functions. In his paper [Fr], Freire considered the Martin boundary for the product
of Riemannian manifolds by studying the set of minimal positive harmonic func-
tions.

Theorem 13.11. (Freire [Fr]) Let M = M1 × M2 be a product to two complete
Riemannian manifolds whose Ricci curvatures are bounded from below. If f is a
minimal positive harmonic function defined on M, then f(x) = f(x1, x2) can be
written as a product

f(x) = f1(x1) f2(x2)

of positive functions defined on each factor. Moreover, the functions fi > 0 satisfies

∆ifi(xi) = λi fi(xi)

on Mi with constants λi for i = 1, 2 such that λ1 + λ2 = 0. Also, each fi is
a minimal positive (∆i − λi)-harmonic function. Conversely, the product of two
minimal positive (∆i − λi)-harmonic functions as above yields a minimal positive
harmonic function on M.
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Conférences de l’Union Mathématique Internationale, No. 8, SRO-KUNDIG, Genève,
1986.

[Z] L. Zhang, On generic eigenvalue flow of a family of metrics and its application in
dimension estimates of polynomial growth harmonic functions, preprint.

Department of Mathematics, University of California, Irvine, CA 92697-3875
E-mail address: pli@math.uci.edu


