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Preface

Many geometric problems in analytic formulation lead to important classes of PDEs.
Naturally, since all such equations arise in geometric context, geometric methods
play a crucial role in their investigation. A classical example is given by the Eu-
clidean Minkowski problem: the study of hyperovaloids with prescribed Gauf3 cur-
vature in terms of the Euclidean unit normal field. For the history up to the early
70’s see Pogorelov’s monograph [77] from 1975 and the paper of Cheng and Yau
[25] from 1976. The study of Minkowski’s problem and the related regularity was
essential for the understanding of certain Monge-Ampere type equations on the Eu-
clidean sphere.

Our monograph is devoted to the interplay of global differential geometry and
PDEs, more precisely to the study of some types of non-linear higher order PDEs;
most of them have their origin in the affine hypersurface theories. Particular ex-
amples include the PDEs defining affine spheres and affine maximal hypersurfaces,
resp., and the constant affine mean curvature equation.

Wide use of geometric methods in studying PDEs of affine differential geometry
was initiated by E. Calabi and continued by A.V. Pogorelov, S.Y. Cheng-S.T. Yau,
A.-M. Li, and, during the last decade, e.g. by N.S. Trudinger-X.J. Wang, A.-M.
Li’s school, and other authors.

The contributions of E. Calabi and S.Y. Cheng-S.T. Yau had a particularly deep
influence on the development of this subject. According to the foreword in [25] this
paper originated from discussions with E. Calabi and L. Nirenberg and results of
both on the same topic; for further historical details and references we refer to [19],
[20], [58], [76].

In problems involving PDEs of Monge-Ampere type it is often the case that the un-
known solution is a convex function defining locally a nonparametric hypersurface
for which it is possible to choose a suitable relative normalization and investigate
the induced geometry. We refer to this process as geometric modelling. The choice
of the normalization can be described in a unified and systematic manner in the
context of relative hypersurface theory; for this theory see [58], [87], [88].
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The next step involves derivation of estimates of various geometric invariants; a
correct choice of a normalization is very important for successful completion of this
step. Ultimately, such estimates are crucial for proving the existence and unique-
ness, respectively, of solutions to the PDE.

In chapter 1 we start with a summary of basic tools; very good sources for that
are the monographs [37], [50] and [58]. For a better understanding of the modelling
techniques, in chapters 2 and 3 the authors give a selfcontained summary of relative
hypersurface theory. Moreover, for the global study, we consider different notions
of completeness in sections 4.2 and 5.9.

Chapters 4-6 are the central part of the monograph. They contain important
PDEs from affine hypersurface theory: the PDEs for affine spheres, affine maximal
surfaces, and constant affine mean curvature hypersurfaces. The PDE for improper
affine spheres over R? first was studied by Jorgens in the paper [49]; Calabi [19]
extended the result to the dimensions n < 5, and finally Pogorelov to any dimension
[76]. Later, Cheng and Yau extended Pogorelov’s version and gave a simpler and
more analytic proof in [25]; concerning this paper and Calabi’s influence, see our
remarks above. Nowadays, in the literature the Theorem is cited as Theorem of
Jorgens-Calabi-Pogorelov. In section 4.4 we present the geometric Calabi-Cheng-
Yau proof for this theorem, [19], [25]. Afterwards we study a generalization of this
theorem. As the proof of the generalization is relatively simple in dimensions n < 4,
we use both proofs for a comparison of the geometric modelling procedure:

(i) In the proof of the Theorem of Jorgens-Calabi-Pogorelov we use Blaschke’s nor-
malization.

(ii) In the second example we give a proof of the generalization. Now we use a
constant normalization of a graph and its induced geometry; to our knowledge it
was first used by Calabi within this context.

Sections 4.5.5 and 4.6.2 present such comparisons of proofs with different mod-
elling, emphasizing the interplay between the geometric model chosen and the PDE
considered. In arbitrary dimension the proof of the extension of the Theorem of
Jorgens-Calabi-Pogorelov is complicated, thus we carefully structure the proof as
guideline for the reader (see section 4.5.7).

In chapter 5 we derive the Euler-Lagrange equation of affine maximal hypersur-
faces. The topic of this chapter is given by different versions of the so called “Affine
Bernstein Problem”, in particular the “Affine Bernstein Conjectures” in dimension
n = 2. They are due to Chern and Calabi, resp., and were solved during the last
decade. In 2000, Trudinger and Wang solved Chern’s conjecture in dimension n = 2
[91]; later, Li and Jia [52], and also Trudinger and Wang [92], solved Calabi’s con-
jecture for two dimensions independently, using quite different methods. In section
5.7 we treat Calabi’s Affine Bernstein Problem in dimensions n = 2 and n = 3.
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The final chapter studies constant affine mean curvature hypersurfaces. In di-
mension n = 2 the problem was solved in case the constant is positive; in case
the constant is zero we have again the “Affine Bernstein Problems”. The case of
negative constant mean curvature has been solved partially only, so far. For any
bounded convex domain, we can construct a Euclidean complete affine hypersurface
with negative constant affine mean curvature solving a boundary value problem for
a fourth order PDE.

The monographs [5] and [37] give a good basis for the geometric theory of Monge-
Ampere equations. Our monograph gives a geometric method for the study of
Monge-Ampere equations and fourth order nonlinear PDEs arising in affine differ-
ential geometry. There are recent related papers from A.-M. Li’s school (e.g. [24]),
and there are extensions to Kéihler geometry and projective Blaschke manifolds [63].
Other interesting results concern global affine maximal surfaces with singularities,
see e.g. [2], [3], [4], [34], [69].

The authors present three generations of geometers. U. Simon finished his doc-
toral thesis with K.P. Grotemeyer at the FU Berlin in 1965, and from his lectures
he became interested in global differential geometry. U. Simon became a professor
of mathematics at TU Berlin in 1970. A.-M. Li started his studies at Peking Uni-
versity in 1963, but because of the cultural revolution he could not finish his MS
before 1982. Following a recommendation of S.S. Chern, he came as AvH fellow to
the TU Berlin in 1986 the first time, and there he finished his doctoral examina-
tion with U. Simon, U. Pinkall and K. Nomizu. A.-M. Li has been a professor of
mathematics at Sichuan University since 1986, successfully guiding research groups
since then. A.-M. Li was also the advisor of F. Jia (PhD 1997) and R. Xu (PhD
2008) at Sichuan University, both are now professors themselves, F. Jia at Sichuan
University (1997), R. Xu at Henan Normal University since 2008.

The homepages of our Chinese-German cooperation give some more details, for the
momentary project see http://www.math.tu-berlin.de/geometrie/gpspde/.
Blaschke’s interest in the global study of submanifolds was important for Chern’s
decision to go to Hamburg in 1934, and not to Gottingen. Their interest in global
problems influenced the following generations. We aim to stimulate young geome-
ters again.

Acknowledgements. The authors thank the following institutions for finan-
cial support that made possible joint work on the topic at Chengdu and Berlin,
respectively: Alexander von Humboldt Stiftung (AvH), Deutsche Forschungsge-
meinschaft (DFG), Dierks von Zweck Stiftung Germany, NSF China (10631050,
10926172, 10871136), RFDP, Sichuan University, TU Berlin and Henan Normal
University. Moreover, TU Berlin made it possible that the authors could work to-
gether on this monograph in Berlin for several months in 2008 and 2009.
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We thank Mr. Min Xiong, Sichuan University, for a careful reading of our
manuscript, and Vladimir Oliker from Emory University for very helpful discus-
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A.-M. Li, R. Xu, U. Simon, F. Jia
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Chapter 1

Basic Tools

1.1 Differentiable Manifolds

1.1.1 Manafolds, connections and exterior calculus

We denote by M a connected differentiable manifold of dimension n > 2. At a point
p € M we denote the tangent space by T;, M and its dual by T7 M, accordingly the
tangent bundle by TM and the cotangent bundle by T*M. As far as there is no
emphasis on the degree of differentiability the term “differentiable” means C'*°; as
usual we write f € C°°(M) when f is a C°°-function on M. We denote vectors and
vector fields by v, w, ... and the space of vector fields by X(M).

Connections. We denote an affine connection by V, and use this symbol also to
indicate covariant differentiation in terms of V in case we are using the invariant
calculus. All connections considered are torsion free.

The covariant differentiation of a one-form 7 is defined by:

(Von)(w) := v(n(w)) = n(Vyw).
Exterior calculus. An alternating (0, r)-tensor field on M is called an exterior
differential form of degree r, or simply an r-form. Denote by A"(M) the set of all
smooth exterior differential forms of degree r and define

AM) == AO(M) & AL (M) & ... & A™(M),

where A°(M) := C°°(M). With respect to exterior multiplication A the set A(M)
is an associative algebra, called the ezterior algebra on M.

It is well known that there is a unique linear map d : A(M) — A(M), called the
exterior differentiation, that satisfies the following rules:

(i) d:A"(M)— A"TH(M),

(ii) d(f):=df for f € C>(M),

(iii) for a € A"(M) and 8 € A*¥(M) we have: d(a A 3) = da A B+ (—1)"a Adp,
(iv) d-d=0.

The exterior derivative and the covariant derivative of n are related by:
dn(v,w) = (Von)(w) = (Vun)o.
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In affine hypersurface theory there appear different affine connections, in such cases
we use additional marks. For f € C°(M), we write Hessy f for the V-covariant
Hessian.

Cartan’s Lemma. Let {w!,....,w"} be a system of linearly independent 1-forms
for 1<r <n and{n',...,n"} be another system of 1-forms satisfying

T

Z w* An®=0.

s=1
Then

ks
s __ s p
=Y e
p=1

with symmetric coefficients Cp-

Cartan’s moving frames. Let O C M be an open set and {eq,...,e,} dif-
ferentiable vector fields on O which are pointwise linearly independent. We call
{e1,...,en} a moving frame on O. Via duality there are linearly independent, dif-
ferentiable one-forms {w!, ..., w"}.

For any tangent vector v in T'O one has

Voej = Z w;’?(v) ek
k

For v = ¢; one usually adapts a notation from the so called local calculus (see below)
and writes:

k k
wj (e;) :== L'

one calls the coefficients I'}; Christoffel symbols. The coefficients w} are linear in v;
thus the collection {w;c | 5,k =1,...,n} forms a matrix of differentiable one-forms;
they are called connection one-forms.

The connection one-forms appear again in the first Cartan structure equations,
giving the exterior derivative of w®:

dw' = g w? Aw;.
J
Curvature. For a given connection V consider the curvature tensor R := Ry:

R(v,w)z :=V,Vyz = VyViz — Vi )2

This definition follows the sign-convention in [50]. For fixed tangent vectors v, w
one considers R(v,w) : z — R(v,w)z as linear operator, called curvature operator.
Taking the trace ¢r of this linear map, we get a (0,2)-tensor field, the Ricci tensor,
denoted by Ric:

Ric(v,w) : tr{z — R(z,v)w}.

It is symmetric if and only if the connection locally admits a parallel volume form;
this volume form is unique modulo a non-zero constant factor.
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Define the 2-form Q(v, w) := w*(R(v,w)e;), then Cartan’s second structure equa-
tions read

dw? = wa Awp + Q5.
K

Local notation. Consider a local Gauf} basis {01, ..., 9, } associated to local coor-
dinates {z!,...,2"}. As usual we write the dual one-forms as {dz?,...,dz"}. Using
local coordinates, it is convenient to denote a point with coordinates {z1,...,2"}
just by x.

A connection V locally is uniquely determined by its coordinate-components Ffj,
called Christoffel symbols, implicitly defined by:

Vo,0; =T7; O

A connection V is torsion free if and only if the Christoffel symbols satisfy the sym-
metry relation I‘fj = I‘;’CZ As already stated, we consider torsion free connections
only.

Concerning the curvature tensor, we write R(9;, ;)0 =: R"
tion for the Ricci tensor Ric(9;,0x) = R, =: Ry

In a local coordinate system, we denote partial derivatives of f € C°°(M) by

fi=0if, [fij =0i0;f, ete.,

while we denote covariant derivatives in terms of a given connection by

ki; On and by contrac-

fis fiis etc.

Bianchi identities. The curvature tensor satisfies two cyclic identities; in local
notation, for torsion free connections, they have the following form:

Rijkl + Riklj + Riljk =0,

Rygim + B + Rypgy = 0.
Ricci identities. Higher order covariant derivatives do not commute in general;
their difference depends on the curvature of the connection. We will apply this in
case of a torsion free connection. Let T' be an (r, s)-tensor field. We write the Ricci

identities in local notation:

S

J1-- 7 _ J1-eJr J1-- J;D 1hjp+1---Jr pip
T kl 1111 ,lk - z : Til...iq_lhiq+1... zqkl § T R™ hkl *
q=1

The covariant Hessian. For f € C°°(M) and a given torsion free connection V
the covariant Hessian is defined by

(Hessv f)(v,w) :=v(wf) — (V,w)f.
As V is torsion free, the (0,2)-field Hessy f is symmetric.
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1.1.2 Riemannian manifolds

A manifold M together with a differentiable, symmetric, positive definite 2-form g
on M is a Riemannian manifold, in short notation (M, g). The metric tensor g, in
short metric, induces the following structures: A distance function d : M x M — R,
thus (M,d) is a metric space; on each tangent space one has an inner or scalar
product, again denoted by g; a norm on r-forms, denoted by || A||4 for an r-form A;
and the Riemannian volume form dV := dV (g).

Fundamental Theorem and Ricci Lemma. There is exactly one torsion free
connection on M, denoted by V(g), that is compatible with the metric g, which
means:

0 = V(9 9ij = Okgij — Tty gin — s gnj»

or in Cartan’s notation

0= dgij - Zgz'kwf - ngjwf-

This connection is called the Levi-Civita connection of g, the compatibility condition
is called the Ricci Lemma. The Ricci Lemma expresses the fact that the metric g
is parallel with respect to the Levi-Civita connection: V(g) g = 0. It follows from
the Ricci Lemma that V(g) is completely determined by g.

Curvature. Following the sign-convention from above, the Levi-Civita connection
defines the curvature tensor R(g) as (1,3)-tensor field and its symmetric Ricci tensor
Ric(g). Contraction by the metric gives the normed scalar curvature k, defined by
n(n — 1)k := try Ric(g).

If there is no risk of confusion we will skip the mark g and simply write w, V, R,
., |JA|| etc; moreover, if the context is clear, we will also write R = R(g) for the
Riemannian curvature tensor which is a (0,4)-form.

The metric defines a conformal Riemannian class, and for n > 3 the simplest in-
variant of this class is the Weyl conformal curvature tensor W:

(n —2)W(u,v)w :=(n — 2)R(u,v)w — nk(g(v,w)u — g(u, w)v)
— [Ric(u, w)v — Ric(v,w)u 4+ Ric*(v)g(u, w) — Ric*(u)g(v, w)].

Here Rict is the g-associated Ricci operator. It is well known that the Riemannian
curvature tensor is an algebraic curvature tensor, see [36]. It has an orthogonal
decomposition into 3 irreducible components with respect to the orthogonal group
associated to g; see pp. 45-49 in [6]. One component, namely the conformal curva-
ture tensor, is totally traceless; the second is Ricci-flat; the third one looks - modulo
a constant non-zero factor - like a curvature tensor of constant curvature.

Orthonormal frames. On a Riemannian manifold (M, g) one often picks frames

{e1,...,en} to be orthonormal at every point of an open set O. Then
w;?(v) = g(Vyej, ex), which implies

wf—!—wi:() and Q?—f—Qf;:O.
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Local notation. With respect to a Gaufl basis or a frame, the matrix associated
to g usually is written (gi;), and its inverse matrix by (g%), thus the coefficients
satisfy gi;9* = 6F. As usual the operations of lowering and raising indices via the
metric g are defined; obey the Einstein summation convention.

For the local notation of derivatives we refer to the notational convention above; in
the Riemannian case, for covariant derivatives, we use the Levi-Civita connection;
all exceptions will be explicitly stated.

The Laplacian. For f € C*(M), we write Hess, f for the covariant Hessian in
terms of the Levi-Civita connection, its {race with respect to g, denoted by trg,
defines the Laplace operator:

A fri=trgHessyf.
In terms of a local representation of the metric g, the Laplacian reads:

@“¢£EES§%)

A:

1 0
Ao 2 00

1.1.3 Curvature inequalities

Lemma. Let (M,g) be an n-dimensional Riemannian manifold. We consider
the Riemannian curvature tensor R, the Ricci tensor Ric and the normed scalar
curvature k. Then we have the inequalities:

| Ric||* > n(n — 1)* &2, (1.1.1)
IRI* > 25 || Ric|, (1.1.2)
|R|I? > 2n(n — 1)x?% (1.1.3)

Equality in the first relation holds if and only if (M,g) is Einstein. The second
equality holds if and only if (M, g) is conformally flat, the third if and only if (M, g)
has constant sectional curvature.

Proof. Proofs of this type of inequalities are standard. To prove the first inequality,
calculate the squared norm of the traceless part of the Ricci tensor:

0 < ||Ric— (n—Drg|>

To prove the second inequality, consider the Weyl conformal curvature tensor W
from section 1.1.2 above and calculate 0 < ||R — W||?. The third inequality is a
combination of the two foregoing inequalities. For the discussion of equality in this
case recall that a conformally flat Einstein space is of constant sectional curvature.

|

Inequalities for r-forms. As far as we know inequalities of the above type were
used by E. Calabi the first time. Let (M, g) be a Riemannian manifold.

1. In case an r-form satisfies symmetries and skew-symmetries like arbitrary cur-
vature tensors, the above examples indicate how to prove optimal inequalities.
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2. The following sketches a simple method to prove optimal inequalities for arbi-
trary r-forms on (M, g); see [75]. Let D be an r-form for » > 2. Let o(D) be the
normed, totally symmetrized tensor coming from D :

1
U(D)il...ir = F ZDU(il)...U(ir);

here the summation runs over all permutations o of the r-tuple. Let D be the
traceless part of o(D) with respect to the metric g. Then

0<|D|* < |D|>

Equality on the right holds if and only if D itself is totally symmetric and traceless.

1.1.4 Geodesic balls and level sets

Let 2 C R™ be a domain; a function f: Q — R is called conwvez if, for all 0 <t <1
and x,y € {2 such that tx + (1 — ¢)y € Q, we have

flz+ (1 =t)y) <tf(z)+ (A —-1)f(y)

Let f be a smooth convex function defined on R™. Given a constant C' > 0 and

t@) = f(zo) + (grad f)(zo) - (z — o) a supporting hyperplane to f at (zo, f(z0)),
a section of f at height C' is the level set

St(xo,C) :={z e R" | f(z) < l(x)+ C}.

In particular, if we neglect the point where f attains its minimum, we use a shorter
notation to denote the level set

S¢(C) :={z eR"| f(z) < C}.

This set is convex. We remark that in case the convex function f is defined only on
a convex open set ) C R™, the sections of f at 29 € Q mean the sets S¢(xo,C) C .
Denote by S(£2,C) the class of strictly convex C*°-functions f, defined on €2, such
that

igff(;v) =0, flz)=C on 09

Bpr(p) denotes the open Euclidean ball with center at p and with radius R.

B, (p, G) denotes the open geodesic ball with respect to the metric G, centered at
p with radius a.

I |l denotes the norm of a vector or a tensor with respect to the Riemann metric
G, while || - || g denotes the norm of a vector with respect to the canonical Euclidean
metric.
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1.2 Completeness and Maximum Principles

1.2.1 Topology and curvature

We list some results about completeness in a form that we will need. For the first
three theorems, see [33]. Standard references for maximum principles are [35] and

[78].

Theorem. (H. Hopf- W. Rinow). For a Riemannian manifold (M, g) the following
conditions are equivalent:

(1) (M,d) is a complete metric space;

(ii) (M, V) is geodesically complete;

(iii) every topologically closed and bounded subset is compact.

Theorem. (J. Hadamard - E. Cartan). Let (M, g) be complete with non-positive
sectional curvature. Then, for every p € M, the exponential map is a covering map.
In particular, if M is simply connected then M is diffeomorphic to R™.

The following theorem originates from a result of Hadamard for compact surfaces
without boundary and was extended in several steps to a very general result [100];
we need the following part of it.

Theorem. (J. Hadamard - R. Sacksteder - H. Wu). Let (M, g) be an n-dimensional
complete, noncompact, orientiable hypersurface in R™1 with positive sectional cur-
vature. Then there exists p € M such that M can be represented as graph of a
non-negative, strictly convex function over the tangent plane T,M C R"*1,

Theorem. (S.B. Myers). Let (M,g) be complete with Ricci curvature positively
bounded from below:

Ric> (n—1)-c%g
where 0 < ¢ € R. Then the diameter satisfies diam (M, g) < diam (S™(%)), where
% is the radius. In particular, M is compact with finite fundamental group.

1.2.2 Maximum principles

Maximum principle. (E. Hopf). In a bounded domain Q@ C R™, let us consider
a second order differential operator of the form

with continuous, symmetric, positive definite coefficient matriz (a;;(x)), continuous
functions b; and x € Q). Assume that the differentiable function f : — R satisfies
the conditions

() Lf>0inQ;

(ii) there is a point xg € Q such that f(x) < f(xo) for all x € Q.

Then fis constant in Q : f(x) = f(x0).
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Remark. (i) Of course, one can reverse all inequalities; then the assertion holds
true.
(ii) Trivially, the Laplacian is a special case of an elliptic operator.

Harmonic functions. (S.T. Yau [104]). Let (M, g) be a complete, non-compact
Riemannian n-manifold with nmon-negative Ricci curvature. Then every positive
function u: M — R that is harmonic, Au = 0, must be constant.

1.3 Comparison Theorems

Laplacian Comparison Theorem. Let (M,g) be an n-dimensional complete,
simply connected Riemannian manifold of constant curvature K and (M,g) an n-
dimensional complete Riemannian manifold with Ricci curvature bounded from be-
low: Ric> (n—1)K -g. Letp € M and p € M be fized points, and denote by
7 the geodesic distance function from p to & on M, and by r from from p to x on
M ; assume that the distance functions are differentiable in their arguments. If, for
€M and & € M, we have r(z) = 7(Z) then

Ar(z) < Ai(3),
where A and A denote the Laplace operators on (M, g) and (M, §), respectively.
For a proof see the Appendix A.2.4 in [58].

From the Laplacian Comparison Theorem we have the following

Theorem. Let (M,g) be an n-dimensional complete Riemannian manifold with
Ricci curvature bounded from below by a constant K < 0. Then the geodesic distance
function r satisfies

rAr(z) <(n—-1)1+v—-K-r).
To state the following comparison Lemma about the normal mapping, we first recall
two definitions from [37]. Up to the end of section 1.3, let © be an open subset of

R" with coordinates (2!,...,2"), and let u : Q2 — R. If E is a set, then P(E) denotes
the class of all subsets of E.

The normal mapping. ([37], p.1). The normal mapping of u, or subdifferential
of u, is the set valued function Ou : Q — P(R™) defined by
Ou(zo) = {p | u(x) > u(zo) +p- (x —x0), for all x € Q}.

Given E C Q, we define Ou(E) :=J,cp Ou(z).

Viscosity solution. ([37], p.8). Let Q € R" be a bounded domain with coordinates
(xt,...,2"), let u € C(Q) be a convex function, and f € C(Q), f > 0. The function

u 18 a wviscosity subsolution (supersolution) of the equation det (af;“wj) =finQ

if, whenever a convex function ¢ € C*(Q) and xo € Q are such that

(u—¢)(z) < (=)(u— ¢)(x0)
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for all © in a neighborhood of xq, then we must have

det ((% g;) (z0) 2 (<) f(20)-

Normal mapping comparison Lemma. ([37], p.10). Let  C R" be a bounded
open set, and u, v € C(Q). Ifu = v on IQ and v > u in Q, then the normal
mappings satisfy

ov(2) C Ou(Q).

A comparison principle for Monge-Ampére equations. ([16] or [37], p.25).
Let Q be a bounded open subset of R™, n > 2, and let f € C°(Q) be a positive
function. Assume that w € C°(Q) is a locally convex viscosity subsolution (super-
solution) of

det (5245 ) = f in
and v € C°(Q) N C2%(Q) is a locally convex supersolution (subsolution) of
det (é)w‘awﬂ) =f in Q

Assume also that

Then

1.4 The Legendre Transformation

Consider a locally strongly convex hypersurface  : 2 — R"*!, defined on a domain
Q C R™ and given as graph of a strictly convex function

f:Q—-R, r= (2 ., 2") — f(x) = fla', ..., a").

Consider the Legendre transformation of f

5 = {)mfm i:1727"'7na U(é) ::u(gla"')fn . leaazfz - f )

and denote by Q* the Legendre transform domain of f, where v : Q* — R and

Q= {(gl(w)7 7fn(w)) | x e Q}

Vice versa we have
ot =L, and f(x E f
d€; i

In the following we keep in mind the bijective relatlon x <« & between corresponding
points of the transformation and consider the functions f = f(z) and v = u(§) at
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such corresponding points, resp. This gives an involution of the relations. One
calculates

o _ oz’ f 9
o€, gfj - a_g]" and Oxt Oxd ~—  Oxd °
It follows that the matrix
(#35)

is inverse to the matrix

9% f
Ox® OxJ :
T

We will use this transformation for the representation of graph hypersurfaces and
the solution of Monge-Ampere equations. The fact that both matrices are inverse
has advantages for calculations. We define two auxiliary functions p and ® as follows

[aet (524)] ™ = ol) = p(6) = [det (528)] 7

ij 0lnp 01 ij 0lnp 01
qu a;lip agrcljp = CIJ(x) — <I>(§) _ Zuw agip agjp.
As above f;; denotes the components of the Hessian matrix and f% f;, = 6% gives its
inverse matrix. The two expressions for p show that we can consider p as a function

in terms of the xz-coordinates and also as a function in terms of the £-coordinates;
analogously, this view point holds for ®, too.




Chapter 2

Local Equiaffine Hypersurfaces

2.1 Hypersurfaces in Unimodular Affine Space

In this chapter we summarize the local equiaffine hypersurface theory. We use
Cartan’s calculus of exterior forms and a standard local calculus. As the monograph
[58] contains a detailed development of the theory in Cartan’s calculus, in a local
notation and also in Koszul’s calculus, our introduction here has a more condensed
form.

A reader who is familiar with affine hypersurface theory in Cartan’s calculus
can skip chapter 2. For a reader not familiar with that, chapter 2 offers a guided
survey; we give some proofs that can be used as introductory exercises, while more
details can be found in the monographs [58], [73], [88].

2.1.1 The ambient space

In order to define the unimodular affine structure of a space one uses the associated
vector space; that means:

Let A"t denote the real affine space of dimension n + 1 and V the associated real
vector space of the same dimension, V* its dual space. They are equipped with the
following structures:

e (,):V*xV — R the canonical scalar product;

e there is a one-dimensional vector space of determinant forms over V; de-
terminant forms are denoted by Det, we can use them as volume forms;
correspondingly there is a one-dimensional vector space of dual determi-
nant forms over V*, they are denoted by Det*;

e we denote the directional derivation in V and V* by the same symbol V.

The three structures satisfy the standard compatibility conditions. Thus the struc-
ture of an affine space is defined using its associated vector space. Considering A™+!
as a differentiable manifold,there is a tangent space T, A"*! at each point p € A"+,
The duality allows to extend the concept of the well known cross product construc-
tion in the Euclidean 3-space to the affine setting in any dimension. Consider a

11
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linearly independent family {wi,...,w,} C V and W := span{wy, ..., w, }; via du-
ality there is a 1-dimensional subspace W* C V* such that w*(w;) = 0 for any
w* € W*. A basis for W* can be explicitly calculated from the cross product con-
struction as follows: For a fixed non-trivial determinant form Det, we define the
cross product [wy, ..., wy]

[,...,]:HV—>V*

by

([wiy .oy wy], 2) := Det(wy, ..., wy, 2) Vz.

Affine mappings that preserve the affine structure are defined via linear mappings
between the associated vector spaces, and additional translations in A"+, An affine
transformation A : A"t — A" is an affine mapping of maximal rank, that means
the associated linear mapping A : V' — V is an automorphism, A € GL(n + 1,R).
Fixing a coordinate system, that is an origin in A"*! and a basis of V, we can
express an affine transformation in matrix notation:

T=A-z+d,

where Z,2 € R"™! denote the coordinate vectors of points in A1, and d € R*t!
describes a translation. Affine geometry studies geometric properties of subsets of
A" that are invariant under affine transformations.

The unimodular space. In case we fix a determinant form Det as volume form
over V. its dual determinant form is denoted by Det*. An affine transformation
with
detA=1, ie, AeSL(n+1,R),

is called unimodular or equiaffine; here det A denotes the determinant of the matrix
A. Equiaffine geometry is the study of geometric properties that are invariant under
unimodular transformations; their invariants are called unimodular or equiaffine.
Volume is a unimodular invariant, while distance and angle are not preserved under
unimodular transformations; they are preserved under Euclidean motions. We will
use the notation A™*! also for the unimodular affine space as the context will be

clear. In particular, in all sections of Chapter 2, A"*! denotes the unimodular affine
space.

Notational convention. Our convention for the range of indices is as follows:

1§a757%“'§n+1>

1SZ7]ak7§n7

as usual we adopt Einstein’s summation convention.
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2.1.2 Affine hypersurfaces

A hypersurface consists of an n-dimensional differentiable manifold M and an im-
mersion

x: M — AMHL (2.1.1)

In a short terminology we write x for a hypersurface. We fix a coordinate system in
A" then it is standard to denote the position vector of the hypersurface x with
respect to a fixed origin with the same symbol z.

A unimodular affine frame, or simply a frame, is a point p € A™T! together with
n + 1 tangent vectors ey, - ,e,41 € TpA”le satisfying the condition

Det(ey, -+ ,eny1) = 1. (2.1.2)

The importance of frames in affine geometry lies in the fact that there is exactly
one unimodular affine transformation carrying one frame into another.
In the space of all unimodular frames we consider the expressions

dz :Zwaea, (2.1.3)

deq, :ngeg. (2.1.4)
B

The coefficients are differentiable, and the tangent fields e, to A"*! define a frame
field. The coefficients w®, w? are called the Maurer-Cartan forms of SL(n+1,R).
Differentiating (2.1.2) and using (2.1.4) we get

> wi=0. (2.1.5)

Exterior differentiation of (2.1.3) and (2.1.4) gives the structure equations of A™+!
or the Maurer-Cartan equations of SL(n + 1,R) :

dw® = Zwﬁ Awg, (2.1.6)
B

dwP = ng A w?. (2.1.7)
B!

Now the important step is that we restrict to the submanifold of frames such that
x lies on the hypersurface, and ey, - - , e, span the tangent hyperplane at . Then

W't =0 (2.1.8)
and the equation (2.1.6) gives

> Wi AWt =0, (2.1.9)
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2.2 Structure Equations and Berwald-Blaschke Metric

Let 2 : M — A"t be a C° hypersurface. Since the investigation is local, we may
identify M with (M ). Then the tangent space T, M at p € M can be identified
with an n-dimensional subspace, denoted by T,y M, of the tangent space

V= Tz(p)A"“. We can choose a local unimodular affine frame field {p; e, -+, 41}
on M such that p € M and ey, - -, e, € T,M. We call such a frame adapted to M
at p (shortly an adapted frame); with respect to such a frame we have (2.1.3-4);
these equations are called moving frame equations for the hypersurface. Again we
consider the restrictions to M and T, M as in (2.1.8-9), and the forms and fields to
be locally differentiable on M. We apply Cartan’s lemma to (2.1.9) and get

L .
wf* = Z hijuﬂ,
where the local coefficients are symmetric and locally differentiable on M:
hij = hji.

2.2.1 Structure equations - preliminary version
For an adapted frame field we arrive at a preliminary version of the structure equa-
tions associated to the moving frame equations:
Gauf} equation de; = Z Gf ej + Z hijwjenﬂ,
J

Weingarten equation dent1 = Z wfﬂ_l e; + wZi‘% €nt1-
In the following we will discuss the coeflicients of the structure equations. First we
consider the quadratic differential form

Zwi witt = Z hij wiw. (2.2.1)
We assume M to be oriented and state the following Lemma; for the proof we refer
to our detailed exposition in [58].

Lemma.

(i) The expression (2.2.1) is invariant under unimodular affine transforma-
tions in A", although the expression depends on the choice of the local
frame field.

(i) The rank of the quadratic differential form (2.2.1) is an affine invariant.

(i11) Assume that rank(h;;) = n, thus H := det(h;;) # 0. Define

-1
Gij = |[{|m hij; (221&)
and
G=) Giwu (2.2.1.b)

Then G is independent of the choice of the local unimodular affine frame
field, moreover it is an equiaffinely invariant form on the hypersurface.
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A hypersurface with rank G = n is called non-degenerate. The equiaffinely

invariant form G can be used as semi-Riemannian metric. G is definite if and only

if the hypersurface is locally strongly convex. Then, by an appropriate choice of the

orientation, we can assume G to be positive definite, i.e., G is a Riemannian metric

on M.

Nowadays, in a standard terminology, one simply calls G the Blaschke

metric of the hypersurface, in a short terminology one speaks about a Blaschke
hypersurface.

Notational convention. Using G as semi-Riemannian metric, its Levi-Civita
connection induces a covariant differentiation. With respect to G and V := V(G)
we use the local standard notation that we introduced in the foregoing chapter.

(i)

(i)
(iif)

In a coordinate notation, the matrix associated to G is written (G;;) and
its inverse matrix by (G?): the operations of lowering and raising indices
are now defined with respect to the metric tensor G; as already stated, in
the local notation we adopt the Einstein summation convention;

we use orthonormal frames {e, ..., ¢, } and their dual coframes {w?, ..., w"};
the Riemannian volume form of the Blaschke metric G is given by

1
dV = |H|""7 W' A AW

the connection forms &f in the foregoing version of the Gaufl structure
equations define a connection V on M:

Gf = Z ffjwj ,
it is called the induced connection; in the local notation one can express
this connection in terms of its coefficients, the Christoffel symbols r fj; v
is a torsion free, Ricci-symmetric connection; its Christoffel symbols are
symmetric in (¢, j);
we denote the Levi-Civita connection of G by V and its Christoffel symbols

by I'};; we have

kE_ k, g,
%‘—E I3w’;

as both connections are torsion free, we get the symmetry (see also [58],
p.44):

Tk k _ Tk k
Iy -1y =15 =1y,

This gives:
Lemma. The local coefficients

ko ._ Tk k

define a symmetric (1,2)-tensor field A.
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2.2.2 Covariant Gaufl equations - preliminary

We use the moving frame equation for z and its Gauf} structure equation above to
rewrite the Gauf} structure equation in a local covariant notation (see section 1.1.1)
- still in a preliminary version:

Lyij = Z Afj ek + hijenyr. (2.2.3)
k

As the metric is a unimodular invariant, the left hand side is invariant under uni-
modular transformations, it only depends on the choice of the adapted frame; we
aim at unimodularly invariant terms on the right hand side; it is obvious that we
will insert the Blaschke metric into the second term (see the next section).

2.3 The Affine Normalization

We recall the normalization for a hypersurface x in Euclidean space and some of its
basic properties. We identify V and V* and write the inner product by
(,):V xV — R. We consider a fixed point z(p) € (M) where p € M.

(i) The Euclidean unit normal pu(p) at x(p) extends a basis of the tangent
hyperplane T,y M to a basis of Tr(p)A”H.

(ii) p(p) determines T’ ) M.

(iii) We have (i, ) = 1 and thus (u, du(v)) = 0 for any v € T,(,) M; this implies
that du(v) is tangential for any v € T,y (M).

(iv) The deviation du induces the Fuclidean shape operator and thus gives rise
to the understanding of Euclidean extrinsic curvature.

(v) In case that the Euclidean shape (Weingarten) operator has maximal rank,
i defines the Fuclidean Gaufl map, an immersion p: M — S™.

(vi) The pair (z, u) is invariant under Euclidean motions.

Analogously we aim to find an affine invariant normalization. Every transversal
field to an affine hypersurface extends a basis of the tangent hyperplane T, ,)M;
but no transversal field fixes the tangent hyperplane as long as the ambient space
has no Euclidean structure. Instead, to fix the tangent hyperplane at a point, we
consider the dual vector space V* of V := Tz(p)A”H. By duality there is a 1-
dimensional subspace C,,y C V* at any p € M, defining a line bundle along M.
This bundle is called the conormal line bundle.

2.3.1 The affine normal

In a first step we aim to find a field transversal to z(M) that is invariant under
unimodular transformations.
Consider a non-degenerate hypersurface x : M — A"! and fix a coordinate system

in A"t According to section 2.1.2 the position vector x = (z!,- - -, z"*!) with
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component functions z? is a vector valued function. We define a vector field
Y:M—V by
Y :=1Azr =LAzt - Ax™ T, (2.3.1)
n n
where A denotes the Laplacian with respect to the Blaschke metric. As the metric
G is an equiaffine invariant, Y is equiaffinely invariant by construction.
We choose a local adapted frame field {z;e1,- -, en1+1} on M and compute Az:

Y = %A{E = %ZGijxﬂ‘j
=1 Z GY (Afj ek + hijentt)

3 1
LN "G AL e+ |H| 2 e g1, (2.3.2)

Hence
1
Det (e1,- - en,Y) = |H|n+2 £ 0. (2.3.3)

The last two equations are the basis for a proof of the following results for the field
Y defined in (2.3.1).

Apolarity Condition. The following three properties are equivalent:

(a) Y is parallel to en41;

ij Ak _ _ .
(b) GV A =0 for k=1,...m
(c) wZi}+$dln|H|:0.

The wvector Y, satisfying one of the conditions (a)-(c), is called the (equi-)affine
normal of x.
For the proof we refer to [58], section 1.2.

Remarks. (i) When 2 : M — A"*! is locally strongly convex, from the above
calculation one can easily see that Y always points to the concave side of z(M).
(ii) The geometric meaning of the apolarity condition is the following: Both, the
Levi-Civita and the induced connection, have symmetric Ricci tensors. Thus both
connections V and V admit parallel volume forms; in case of the Levi-Civita con-
nection it is the Riemannian volume form. Now the apolarity condition, written in
the form

GYTy; = GYTY,
also implies that both volume forms coincide (modulo a non-zero constant factor).
This geometric argument was chosen by H. Flanders and K. Nomizu to introduce
Y as affine normal; [32], [72].
(iii) While the pair (x,Y) with Y as affine normal field is equiaffinely invariant, the
lines generated by the affine normals define a line bundle; this line bundle is affinely
invariant. This line bundle is called the affine normal bundle.
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Remark. When e, is parallel to Y, the last formula (c¢) and

_ T n+1
de?’bJrl - E Wnt1 €i + Wn+1 En+l

give
1 ,
dY = |H|m+2 > "why e (2.3.4)

We will frequently need condition (c) in the apolarity condition above for explicit
calculations.

Equiaffine frames. From now on we shall choose an adapted frame field
{z;e1,, en,ent1} such that e,y is parallel to Y. We call such a frame an equiaffine
frame; so an equiaffine frame has the three properties:

(i) it is unimodular,
(i) e1,- - -, e, are tangential,

(iii) ey41 is parallel to the affine normal vector Y.

This choice implies the apolarity condition and

1
Y = |H|"¥2 epyr. (2.3.5)

Moreover, (2.3.4) states the Weingarten equation for Y.

2.3.2 Affine shape operator and affine extrinsic curvature

For a hypersurface in Euclidean space the Weingarten equation for the unit normal
implicitly defines the Euclidean shape or Weingarten operator; from this we get the
extrinsic curvature functions.

For an arbitrary p € M, equation (2.3.4) states that dY (v) is tangential to z(M)
for any v € T,M. This situation suggests to search for an affine analogue of the
Euclidean Weingarten operator.

Let z;eq, -+, e, €nt1 be an equiaffine frame on M. Exterior differentiation of (2.3.4)
gives

D whp Awptt=0. (2.3.6)

Since M is non-degenerate, the forms uﬂf*l, wgﬂ, .

dent. Cartan’s lemma and (2.3.6) imply
whiy=— 19w (2.3.7)

where the coefficients, implicitly defined in (2.3.7), are symmetric:

-, w1 are linearly indepen-

19 =9t
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We insert the relation w?! = hi; wl into (2.3.7) and obtain
[ J
Whip = — g l;- W, (2.3.8)

J
=" hji*.
k
The associated quadratic differential form reads
' 1 ij 1 1
B = _ZW;HW;H = Zl” wit w;”r
i 4,3
=> 1 hghjere =Y Bjw o (2.3.9)
Exercise. (i) The quadratic differential form B is invariant under a change of

frames keeping the affine normal field fixed.
(ii) The quadratic differential form B is symmetric.

The Weingarten form. We call the symmetric quadratic form B (equi)-affine
Weingarten form. The symmetry of B implies that the associated operator B,
implicitly defined by G(Bfv,w) := B(v,w), is self adjoint with respect to the
Blaschke metric Gj it is called the (equi)-affine shape or Weingarten operator. On
locally strongly convex hypersurfaces, where G is (positive) definite, the eigenvalues
A, Az, -+, A, of B are real; they are unimodular invariants and are called (equi)-
affine principal curvatures. The associated eigendirections are called (equi)-affine
principal curvature directions. In a local notation, we write the coefficients of B
also by |H|n+r2113 = B/

The affine extrinsic curvature functions. On a non-degenerate hypersurface
consider the characteristic polynomial of B!; its coefficients are the (non-normed)
affine extrinsic curvature functions. On a locally strongly convex hypersurface they
coincide with the elementary symmetric functions of the eigenvalues:

<">LT:: S A, r=12-0n Le=10 (2.3.10)

1<i1 < <in<n

We call Ly the (equi)-affine mean curvature and L, the (equi)-affine Gauf-
Kronecker curvature.

Theorem. Let x be non-degenerate and let its dimension n be even. Then one can
calculate the affine Gauf-Kronecker curvature from the induced connection V.

For a proof see [74].

2.3.3 The affine conormal

In the introduction to section 2.3 we listed elementary properties of the Euclidean
normalization of a hypersurface. In section 2.3.1 we defined the affine normal Y.
The pair (z,Y) is invariant under unimodular transformations of A"*1. In analogy
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to the Euclidean unit normal the transversal field Y has the property that dY (v) is
tangential to x(M) for any tangent vector v € M. But Y does not fix the tangent
plane. We recall the notion of the conormal line bundle along M and call any
nowhere vanishing section of this bundle a conormal field on M. We are going to
search for a conormal field that is invariant under unimodular transformations.
First let us recall some elementary facts from multilinear algebra.

Let 71,72, -+, Mn+1 be a basis of V. Then there exists a canonical isomorphism from
the vector space of exterior n-forms to V*, which is given by

n

i:/\V—>V* where i (a) (v) = a, ae/n\V, a€eR
if and only if

aNv=a-m AN NN Npt1.
Thus we can identify A"V and V* via this isomorphism.

Definition. Let x : M — A"™*! be a non-degenerate hypersurface. For every
p € M and for V = Tw(p)A"H, there exists a unique U € V* satisfying the following
two conditions:

(U,dx(v)) =0, veT,M, U, Y) =1.
The vector U € V* is called the affine conormal vector of M at p.
As above identify V' and Tgc(p)A"Jrl and consider an equiaffine frame
{z;e1,e2, - -,€nt1}. Then U can be identified with
=1
|[H|n+2 e; Aeg A+ Aep. (2.3.11)

This expression corresponds to the cross product construction via duality, stated in
section 2.1.1.

Covariant structure equations for the conormal. The conormal of a non-
degenerate hypersurface x satisfies the system of vector valued PDEs:

Uij=—-Y AUy —B;U (2.3.12)
and the Schridinger type PDE
AU =—-nL, U. (2.3.13)
For a proof see section 1.3.1 in [58].

Lemma. (a) On a non-degenerate hypersurface we have
(Ui, e5) = — Gij.
In particular, this implies rank dU = n.

Moreover, in a short notation, we have the following linear systems of equations:
(b) For U given at a point, the system

U, Y) =1, ({dUY)=0



Local Equiaffine Hypersurfaces 21

uniquely determines Y .
(¢) Vice versa, for' Y given, the system

<U7 Y> = 17 <U’ dY> =
uniquely determines U.

(d) As a consequence, at any p € M, the relation Y < U is bijective.

Proof. U fixes the tangent plane, thus, for any tangential frame, we have
(U,e;) = 0. Exterior differentiation of the equation (U,Y) =1 gives
0= (UnY)w' +[H|"2 Y (Uyeq) wypq = Y (Ui Y) o'
Hence
U,Y) =0, i=12,-n.
Analogously an exterior differentiation of the equation (U, e;) = 0 implies
0 :Z Uj,ei) Ywd + Z(U, wfej —l—wf*lenH}
Z (Uj, ;) + Gij) .

This gives the assertion. |

2.3.4 The conormal connection

In (2.2.2) we defined the difference tensor
A=V -V.

One easily verifies that also V* := V — A defines another torsion free, Ricci-
symmetric connection. Using this connection one can rewrite the Gau3 conormal
structure equations from (2.3.12) in the local form

Uj =Y T3 U — Bi;U

with Christoffel symbols I‘;‘f.
Exercise: The connection V* is projectively flat; see [73], p.17.

2.3.5 Affine Gaufl mappings

A unimodular or Blaschke hypersurface is a triple (z,U,Y") with (U,Y) as equiaffine
normalization of x. Recall the statements about the properties of the Euclidean
normalization in the beginning of section 2.3. The subsections following these
statements show that the affine normalization allows to list properties similar to
the Euclidean case.

For a non-degenerate hypersurface we know that the mapping U : M — V* always
has maximal rank, thus it defines an immersion; moreover, it is easy to show that
its position vector, again denoted by U, is always transversal to U(M). This im-
mersion itself is non-degenerate if and only if the Weingarten form B has maximal
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rank. In this case we call the mapping U : M — V* the affine conormal Gaufi map,
and we can use B as unimodular metric of this hypersurface; then we call U (M)
affine conormal indicatriz.

The situation for Y : M — V is different: We have rankY = n if and only if
rank B = n, and only in this case Y is an immersion. But then Y is also transver-
sal to Y (M) and this hypersurface is also non-degenerate; again we can use B as
unimodular metric. We call Y : M — V the affine normal Gaufi map and the hy-
persurface Y (M) the affine normal indicatriz. The fact that both affine indicatrices
have the same unimodular metric in particular implies that the affine conormal in-
dicatriz is locally strongly convex if and only if the affine normal indicatriz is locally
strongly convex.

Affine Gau3 maps and Euclidean structure. In the case rank B = n it is
often convenient to consider the two hypersurfaces, defined from the affine Gaufl
maps, as follows: We consider a Euclidean inner product (, ): V xV — Ron V
and identify V and V* as usual. The three relations
U, Yy=1, (U,dY)=0, (dU,Y)=0
imply that both affine Gaufl indicatrices are a polar pair, that means they corre-
spond via an inversion at the unit sphere. For an equiaffine frame {eq,...,e,} we
can calculate the conormal with the cross product construction:
U = [det(G)] "2 - [eq, .., en).-
For the affine normal indicatrix we have the relation (see [58], p.52, (1.2.3.10))
[Y1,...,Yn] = (=1)" det B [ey, ..., en].
Using the Euclidean structure of V', we can express the conormal in terms of the
Euclidean unit normal p of z:
U=|K|7 p.
Here K is the Buclidean Gauf3-Kronecker curvature of the hypersurface z; see [88],
section 6.2.4.

2.4 The Fubini-Pick Form

In the covariant form of the structure equations there appears the symmetric (1,2)-
tensor field A which was defined in (2.2.2). As before we use an equiaffine frame
{z;e1,- -, en,eny1} on M. To A associated there is the cubic form or Fubini-Pick
form:

A = Z Agj Wik (2.4.1)
with local components

Aijlc = Z Gil Aék

As usual, in a local notation, we simply write A‘;jk =: Ayji. In case the meaning is
clear one also sometimes simplifies the notation for A°, just writing the cubic form
by A. We will prove
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2.4.1 Properties of the Fubini-Pick form

Lemma. We have: (i)

=1
Ajjk = —%|H|”Jr2 hijk, (2.4.2)
where S hije Wb == dhij + hijwi il — Y hawh — 3 hyj W
(ii) A’ is totally symmetric:
Aijre = Ajir = Aikj- (2.4.3)

(iii) The cubic form A® is invariant under unimodular transformations.

(iv) By definition the difference tensor A measures the deviation of the two con-
nections V and V.

For a proof see [58], section 1.2.2.

2.4.2 The Pick invariant

We recall the Gaufl structure equations for x from section 2.2.2; in the covariant
form below there appear A and G as coefficients, both are equiaffinely invariant
tensor fields. The simplest scalar invariant of the metric and the cubic form is
defined by

J = ﬁ ZG”GJmGkTA”k Almr = ﬁHAHa

where the tensor norm || - || is taken with respect to the Blaschke metric G. J is
called the Pick invariant. If A = 0 then trivially J = 0; on locally strongly convex
hypersurfaces G is (positive) definite, we then have the implication: J =0= A = 0.

2.4.3 Structure equations - covariant notation

We recall the preliminary versions of the structure equations in sections 2.2.1 and
2.2.2. We clarified that the Blaschke metric G, the cubic form A”, the affine normal
Y and the affine shape operator are invariant under unimodular transformations.
Thus we rewrite the structure equations in terms of G-covariant differentiation and
with equiaffinely invariant coefficients as follows:

Gaufl equation for x T = Z Afj e, +Gi; Y.
Weingarten equation Y, =— Z Bji- €;.

Gaufl equation for U Usj=— ZAZ- U — Bi; U.
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2.4.4 The affine support function
Definition. Let b be a fixed vector in V. The function A : M — R defined by
A(p) :== (U,b—z(p)), peM,

is called the affine support function relative to the vector b € R"+1,

The support function satisfies PDEs that play an important role for global investi-
gations. We are going to compute the Laplacian of A. Let dA = > A;w’. From
the definition of the conormal it follows that

dA = (dU, b—z) — (U, dz) = Y (Ui, b—2)w
Hence
A= (U;, b—x).
We calculate the second covariant derivative (called the covariant Hessian of A(x))
> AW =dA =) Wl A

=(dU;, b— ) — (Ui, da) = > w! A

=(dU; — Zw- Uj, b—ux) — Z(Ui,ejﬂu]

_Z ijs b — (Ui, €;)) W

Therefore, the G-covariant Hessian of A satisfies
Aij= (Uij, b—x) — (U, €;). (2.4.4)
The covariant conormal structure equations and the apolarity condition imply:
Covariant PDEs for the support function.
==Y Af Ay — BijA + Gij. (2.4.5)
AN +nLiA =n. (2.4.6)

Note that the equations have the same form for any b € V. Moreover, (2.4.5)
implies that on any hyperovaloid there exist points such that the Weingarten form
is (positive) definite.

2.5 Integrability Conditions

2.5.1 Integration via moving frames

Like the structure equations in Euclidean hypersurface theory, the affine structure
equations of Weingarten and Gaufl for a hypersurface

deny1 :ZUJ;JA €, (251)
de; = wa ej+wienty
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give a linear system of first order PDEs for a local frame {ej,- - -, en,€nt1}. The
coefficients define linear forms that are related to the two connections V, V, the
quadratic form G, the cubic form A and the Weingarten operator:

i ik n+l _ ik i _ j ok
Wn+1—_§lwk ——§lkw, wi_E:Fikw7

—1
n+l _ T P -
Wl = E hijw’, where Gj; = |H|n+2 hy;.

From the integration theory for such linear systems we know that there exists at
most one solution {ey,- - -, e, e,t1} for given coefficients and given initial values.
In particular, such a solution determines

dr = Z wie; ,

and a second integration locally gives the hypersurface x itself. Thus, roughly speak-
ing, the coefficients must contain all geometric information about the hypersurface
x. The existence of a solution of the system depends on the fact that the coefficients
satisfy integrability conditions. We are going to clarify this.

Choose a local equiaffine frame field {z;eq,- - -, en, eny1} over M such that

€nt+1 = Y, Gij = 5”

Theorem. The integrability conditions of the system

a) dr =Y wie;,

_ J n+1
de; =Y wjej +w!" " enyi,

(

(b)

(c) dent1 = quiu-l €is
(

d) w?“ =W, wzi% =0

()  Xwi=0,

(f) dw' =Y Wi AW,

@ dd Xl nel bt A, ot

() dwipy =YW AWl }

The equations (e)-(h) between the linear differentiable forms w', w], wi ., are suf-
ficient for the integration of the systems (a)-(d).

Proof. Since w™*! = 0, the proof follows from the relations (a)-(d); apply the rules
of exterior differentiation from section 1.1.1. |

Terminology. In the terminology of moving frames the integrability conditions
(e)-(h) are called structure equations, which means that they are necessary and
sufficient for the existence of the hypersurface structure. But from our foregoing
study we know that also the equations of Gaufl and Weingarten are called structure
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equations, as their coeflicients contain all information on the geometry of the hyper-
surface. To avoid any misunderstanding, we will use the terminology integrability
conditions for the system (e)-(h) and structure equations for the equations of Gauf3
and Weingarten.

2.5.2 Covariant form of the integrability conditions

The integrability conditions give information about the dependence of the invariants
that appear in the structure equations. We are going to express these conditions in
terms of the quadratic and cubic forms G, B, and A. We state:

Integrability Conditions. In covariant form the integrability conditions read:

Aijig — Aijie =% (GiBji + G Bi — GuBjr — G Bir) (2.5.2)
Rijrr = > (A7 A — A Apji)

+ 2 (GuBji + G B — Gy Bji, — Gji,Ba) (2.5.3)

Bikj — Bijk =Y _ (BjAly — ByAl)) . (2.5.4)

For the proof we refer to [58], pp. 73-75.
While (2.5.3) is called an integrability condition of Gauf type, the other two systems
are said to be of Codazzi type; this notion is analogous to the Euclidean theory.

Corollary. By contraction the integrability conditions imply

ZAé‘m =% (L1Gjr — Bjx) , (2.5.5)
Rip =Y Ap AL, + 52 By + 2L1Gi, (2.5.6)
Z Blic,i =nLiy + Z BliAlik, (2.5.7)

where Ly is the affine mean curvature as before, and Ry, denote the local components
of the Ricci tensor of (M, G).
From (2.5.6) we obtain, by another contraction, the so called
Equiaffine Theorema Egregium.
k=J+ L, (2.5.8)

where

K= O GG R (2.5.9)
According to our notation in Riemannian geometry R = n(n — 1)k is the scalar

curvature and k the normed scalar curvature of the metric G.

Corollary. The form B can be expressed in terms of G, A and their derivatives:

The proof follows from (2.5.5) and the Equiaffine Theorema Egregium; see [58],
p.76.



Local Equiaffine Hypersurfaces 27

2.6 Fundamental Theorem

As already stated the integrability conditions are necessary and sufficient for the
integration of the structure equations of Gaul and Weingarten; one gets a local
frame {ey, ..., en41}. Another integration gives the hypersurface.

Uniqueness Theorem. Let z, zf : M — A™! be two non-degenerate hypersur-
faces such that

G = G¥, A= A%
Then x, =t differ by a unimodular affine transformation; that means both hypersur-
faces are equi-affinely equivalent.

Existence Theorem. Let (M,G) be an n-dimensional semi-Riemannian manifold
with metric G. Suppose that a symmetric cubic covariant tensor field

A= Z Aijk wi ijk
is given on M. If G and A satisfy the apolarity condition and the integrability
conditions then there exists a non-degenerate immersion x : M — A" such that
G and A are the Blaschke metric and the Fubini-Pick form for the immersion,
respectively.

For a proof see [58], section 1.5.3.

Terminology. It is a consequence of the uniqueness Theorem that the pair (G, A)
is a fundamental system of the hypersurface, that means one is able to determine
all unimodular invariants of the hypersurface, and thus its geometry, from G and
A. Because of the relations

V=V+4, V'=V-4

one can also consider the pairs (G, V) or (G, V*) as fundamental systems.

Different versions of the Fundamental Theorem. There exist different ver-
sions of the Fundamental Theorem, namely to each fundamental system there is a
modified version of the existence and uniqueness theorem. For proofs we refer to
[88], chapter 4, and Theorem 3.5 in [86]. We will come back to the Fundamental
Theorem in section 3.3.7 below.

2.7 Graph Immersions with Unimodular Normalization

Let 2 C R™ be a domain and = : M — A"*! be the graph of a strictly convex
smooth function

2" = f(at, 2", where (z,-- -, 2") e QC R™.
We choose the following unimodular affine frame field:

i =(0,..,0,1,0,..,0, L) for i=1,..,n and eus1=(0,---,0,1).
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Then the Blaschke metric is given by

G = [det (2 f)}"_—*g I di da,

and the affine conormal vector field U can be identified with

—1
{det (am{w” " (_ %7 R 8(1{“ 1)
In the following we give some basic formulas with respect to the Blaschke metric;
we will use them in later chapters.
The formula AU = —nL U implies that z(M) is a locally strongly convex
hypersurface with constant affine mean curvature L, =: L if and only if f satisfies
the following PDE

o [ ()] = e (EE)] T e

where A denotes the Laplacian with respect to the Blaschke metric, which was
defined in subsection 1.1.2. Recall the definition

—1
_o2f |
= [ ()]

from section 1.4. Then (2.7.1) gives

Ap = —nLp. (2.7.2)

Note that, in terms of z', ..., 2", we have (det(Gy))z = %. By a direct calculation
we get

7 2 i 1 Y
A= Z G 7 8118:2] - Z f J 81;_7 azz P aj;z BDi (273)

where (f%/) denotes the inverse matrix of (f;;) and f;; = ax» azj Taking the differ-
entiation of the equation ) fikfkj = 5; one finds

6 ik ka - 6
awz Jrj = — Zfz a@g :7%2%’)]"
i,k ik
It follows that
aftk k 0,
aj;i = n+2 ij a7 (2.7.4)

We insert (2.7.4) into (2.7.3) and obtain
=5 Zf” 07027 + Zf” D7 awm- (2.7.5)

To find the affine normal Y and calculate the affine Weingarten tensor B, we let
(see [27])

* . * i
e; = e, 1 <1< n, €nt1 = Ent1 + E Ay 4164,
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where e} | is in the affine normal direction. Since (dU, e}, ;) = 0, the coefficients

al,, are determined by
E an+1fﬂ = awm

. 0o
Upy1 = Zfﬂmlnf%

It follows that

and hence
ii 0
e:;_;’_l = €n+41 + ijlw 1np * €.
Therefore
1 1 1
Y:Hn+2e:;+1:Hn+2 Zfﬂ lnp e; + _I%[n-%—2en+17

f
where H = det ( re 811) .
Let x denote the position vector of the hypersurface M. We have

dx = Z w%e
=Zw§eﬁ

The w®,w? are the Maurer-Cartan forms of the unimodular affine group. We
compute

wﬁm = dafwl - aiwldlnp
=2 (55 (Mg np) = fHoZ np - g Inp) w'.
Therefore the affine Weingarten tensor is
Bij =) (—a (F % np) + £ n pglz np) fi

_1_9%p 2 9p 9p Z fF 9p Ofij
p BwiazJ p2 Ozt dxd + o Ozl Bz - (276)

From section 1.4, recall the Legendre transformation relative to f, and denote again
by Q* the Legendre transformation domain of f, i.e. u: Q2* — R and

O ={(&(2), .., &n(2)) | = € O}

Considering a locally strongly convex graph, it is an advantage that we can express
the basic formulas in terms of the z-coordinates as well in terms of the {-coordinates.
In terms of the coordinates (&1, ...,&,) and u(§) the Blaschke metric is given by

Gij =

and ( ¢, (;2. ) is the inverse matrix of (W) We have
= et (522)] 7" @.17)
det (Gy) = p" ™1,

= T S (G“s/det(le)a%j)

(see [58], p.91). By a similar calculation as above we get
_1 ij__0° ij Op
A=32 wates — 7 2w st v (2.7.8)
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2.8 Affine Spheres and Quadrics

As before we consider non-degenerate hypersurfaces with unimodular normalization.

2.8.1 Affine hyperspheres
For proofs and details we refer to section 2.1 in [58].

Definition. A non-degenerate hypersurface z in A™*! is called an affine hyper-
sphere if the affine normal line bundle has one of the following two properties:

(i) All affine normal lines meet at one point ¢y € A"T!; in this case z is called a
proper affine hypersphere with center cg.

(ii) All affine normal lines are parallel in A™*1; in this case z is called an improper
affine hypersphere.

Proposition. Let M be a non-degenerate hypersurface in A™T1.

(a)  The following three properties (a.1)-(a.3) are equivalent:

(a.1) M is an affine hypersphere.

(3.2) B= Ll -G

(a.3) Bf =1L, -id.

(b)  For an affine hypersphere we have L; = const for alli=1,...,n.

Definition and Remark. Assume that z is locally strongly convex; that means
that the Blaschke metric G is (positive) definite. In this case the affine Weingarten
operator Bf has n real eigenvalues A1, A2, - - -, \n, the affine principal curvatures.
Then:

(i) The relation B = Ly - G is equivalent to the equality of the affine principal
curvatures:

A= ==\,
(ii) All affine principal curvatures are constant.

(iii) An affine hypersphere is called an elliptic affine hypersphere if L; > 0; it is
called hyperbolic if L < 05 it is called parabolic if L1 = 0. Obviously the parabolic
affine hyperspheres are exactly the improper affine hyperspheres.

(iv) For an elliptic affine hypersphere, the center is on the concave side of x(M).
For a hyperbolic affine hypersphere the center is on the convex side of x(M). For a
parabolic affine hypersphere we may consider the center to be at infinity.

(v) For a hypersurface in Euclidean space with Euclidean Weingarten operator S
and mean curvature H the equation S = H - id implies H = const; if H = 0 we
have a hyperplane, if H # 0 we have a sphere with curvature equal to H > 0.

In contrast to the Euclidean case the situation in the affine case is very complicated.
There is an abundance of affine spheres, one knows many examples, but one is
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far from a classification. Only under strong additional assumptions there exist
partial classifications. See e.g. the local classification of affine spheres with constant
sectional curvature in [95], [96]; even under such strong additional conditions this
classification is not yet finished.

Lemma. (i) A non-degenerate hypersurface is an affine hypersphere if and only if
the cubic form satisfies the covariant PDE

Aijrg = Aijik
with respect to the Levi-Civita connection.

(ii) Both, V A and V'V A, the covariant derivatives in terms of the induced con-
nection V, are totally symmetric if and only if x is a quadric (i.e., A=0) or x is
an improper affine sphere (i.e., B=0).

Proof. (i): Apply (2.5.2). For (ii) see [11]. |

2.8.2 Characterization of quadrics

Theorem. (i) Any hyperquadric is an affine hypersphere. The quadric has a center
if L1 # 0.

(ii) A non-degenerate hypersurface x is a quadric if and only if the cubic form A°
vanishes identically on M.

For a proof see [9] or section 1.4 in [58] (there we consider only locally strongly
convex hypersurfaces). See also section 7 in [88] together with a clarifying Remark
2.2.(b) in [56]. In section 3.4 below we will generalize the foregoing Theorem.
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Chapter 3

Local Relative Hypersurfaces

E. Miiller was the first to extend the development of a unimodular hypersurface
theory to a so called relative hypersurface theory. This concept is not only of interest
from the geometric view point, but one can also apply it for the geometric solution
of PDEs. Here we summarize the material necessary for our purposes. For details
we refer to the two monographs [58] and [88], for a survey to [86]. For a unifying
approach studying invariants that are independent of the choice of the normalization
see [87].

In the following summary of the basic formulas we use the invariant and the local
calculus; in this way we present the basic formulas from the affine hypersurface
theories in three different terminologies, namely: in Chapter 2 Cartan’s calculus
together with a standard local calculus, in Chapter 3 the invariant calculus of Koszul
and again a local description.

3.1 Hypersurfaces with Arbitrary Normalization

Recall section 2.1.1. In the following section A"*! denotes a real affine space of
dimension n + 1. We identify geometric objects with respect to the general affine
transformation group.

3.1.1 Structure equations

Normalizations. We consider a hypersurface as in (2.1.2). A normalization is a
pair (U, z) where U : M — V* is a conormal field as in section 2.3.3, and z : M — V
is transversal to the hypersurface x(M), both satisfying the relation (U, z) = 1. A
triple (x, U, z) is called a normalized hypersurface.

Structure equations. In analogy to Chapter 2 we can write down structure
equations of Gaufl and Weingarten type for a hypersurface x with normalization

33
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(U, 2):
Vpdz(w) =dz(V,yw) + hlv,w) z,
dz(v) =dx(—Sv) + 0(v) 2.
We list the following elementary facts.

Properties of the coefficients. For a given triple (z,U, z) the coefficients in
the structure equations have the following properties:

(i) V is a torsion free connection on M; V is called the induced connection of
(2, U, 2);

b is a symmetric bilinear form over each tangent space;

S is a linear operator on each tangent space;

0 is a one-form;

(i)
(iii)
(iv)

(v) all coefficients are differentiable, they are invariant under the action of the

general affine transformation group.

Lemma. For a given hypersurface x and two different normalizations (U, z) and
(Ut, 2%), the induced bilinear forms b and b in the structure equations satisfy

b* = q- b for some non-zero factor ¢ € C>®(M). As a consequence, the rank of
h does not depend on the choice of the transversal field z, it is a property of the
hypersurface x itself.

Non-degenerate hypersurfaces. x is called non-degenerate if, for an arbitrary
normalization, rankh = n. If z is non-degenerate the class € = {h} can be
considered as a conformal class of semi-Riemannian metrics; in the definite case,
by an appropriate orientation of the normalization, the class € is positive definite
and thus it is a class of Riemannian metrics.

Equivalence-Lemma. For x the following properties are equivalent:
(i) x is non-degenerate;
(i1) there exists a conormal field U such that, for an arbitrary frame {v1, ..., vn }:
rank (AU (v1), ...,dU (v, ), U) = n + 1;
(iii) for any conormal field U and any frame the rank-condition in (i) is satis-
fied.
As a consequence, for z non-degenerate, any conormal field defines an immersion
U.M—-V*

with transversal vector field U. Thus one can write down structure equations of
Gaufl type for any conormal field U:

VodU(w) = dU(Viw) + A< Ric*(v,w) (=U).
U: M — V* is called the conormal indicatriz of (z,U, z). One verifies:

Properties of the coefficients. For x non-degenerate with normalization (U, 2)
we have:
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(i) The connection V* is torsion free connection with symmetric Ricci tensor
Ric* on M; V* is called conormal connection; it is well known that the
Ricci-symmetry is equivalent to the fact that V* admits a parallel volume
form dV*, i.e., V*dV* = 0; the volume form is unique modulo a non-zero
constant factor;

(ii) the induced invariants h and V* satisfy so called Codazzi equations, i.e.,
the covariant derivative V* fj is a totally symmetric cubic form;

(iii) all conormal connections V* are projectively equivalent, i.e., they have the
same unparametrized geodesics; the class P = {V*} is projectively flat.

3.1.2 Fundamental theorem for non-degenerate hypersurfaces

Uniqueness Theorem. Let (z,U,2) and (2%, U*, 2*) be non-degenerate hypersur-
faces with the same parameter manifold: =, ¥ : M — A", Assume that

h=b' and V* = V*H
Then (z,U, 2) and (z*,U%, 2%) are equivalent modulo a general affine transformation.

Existence Theorem. On a connected, simply connected differentiable manifold
M there are given:

(i) a conformal class € = {h} of semi-Riemannian metrics;
(i) a projectively flat class P = {V*} of torsion free, Ricci-symmetric connec-
tions;
(iii) there exists a pair (V*,h) such that they satisfy Codazzi equations.

Then there exists a non-degenerate hypersurface x such that € = {b} is the class of
induced bilinear forms, and P = {V*} the induced class of conormal connections in
the Gauf structure equations.

3.2 Hypersurfaces with Relative Normalization

From now on we consider non-degenerate hypersurfaces only. Following the ge-
ometric arguments in [87], one can restrict to the subclass of so called relative
normalizations, namely: Two transversal fields z, z! are called equivalent if they
satisfy

<U7 Z> = <U, Zﬁ>

for one - and then for any - conormal field U. In each equivalence class there is
exactly one representative Y of this class, satisfying the relations

(U,dY (v)) = 0, (dU(v),Y) =0, (U,Y)=1.

We call Y a relative normal, the pair (U,Y) with (U,Y) = 1 a relative normaliza-
tion, and the triple (z,U,Y") with z non-degenerate a relative hypersurface. It is
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a consequence of the definition of a relative normalization that there is a bijective
correspondence between conormals and relative normals. Moreover, for any two
normalizations (U, z) and (U, z*) of 2 in the same equivalence class, the symmetric
bilinear forms coincide, h = h¥, and also the conormals, U = U*, thus the conormal
connections coincide: V* = V*f. As the pair (V*,h) is a fundamental system for
the triple (z,U,Y), it represents triples with equivalent transversal fields. The fore-
going justifies our claim that one can restrict to the distinguished class of relative
normalizations.

3.2.1 Relative structure equations and basic invariants

For a relative hypersurface (z,U,Y") the structure equations read:

Gaufl equation for x Vpdz(w) = dz(Vyw) + hlv,w)Y,
Weingarten equation dY (v) = dx(—Sv),

Gaufl equation for U VodU (w) = dU(Viw) + L5 Ric* (v, w) (—U).

For relative normalizations the geometric properties of most coefficients are better
than in the case of arbitrary normalizations.

Properties of the coefficients. Let (x,U,Y) be a relative hypersurface. Then:

(i) The induced connection V is torsion free and Ricci-symmetric.
(i1) The relative shape operator S is h-self-adjoint and satisfies

(n—1)S"(v,w) := (n — 1)§(Sv, w) = Ric*(v,w).

Its trace gives the relative mean curvature nLi:=trS.
(iii) The triple (V, b, V*) is conjugate, that means it satisfies the following gen-
eralization of the Ricci Lemma in Riemannian geometry:

ub(v,w) =H(Vyv,w) + h(v, Viw).

(iv) The Levi-Civita connection V(h) of the non-degenerate relative metric
satisfies

V(h) = 1(V+ V).

It is a trivial consequence that any two of the three connections determine
the third one.

(v) The covariant derivatives are totally symmetric (Codazzi equations) and
satisfy

Vih= —Vh.



Local Relative Hypersurfaces 37

Cubic form and Tchebychev vector field. In analogy to the equiaffine theory
we define:

A, w) :=Vow — V(§)oyw and A’ (u,v,w) := h(u, Av, w)).

A® is called the relative cubic form. In contrast to the unimodular theory this time
the trace of A in general is non-zero, that is the apolarity condition is not valid. In
fact: the apolarity condition characterizes the equiaffine normalization within the
class of all relative normalizations [88].

We define the relative Tchebychev form T° as the trace of a linear mapping by

nT’(v) := tr{w — A(w,v)}
and the associated relative Tchebychev vector field T by
b(T,v) :=T"(v)

for all tangent fields v. One can easily show that the one-form 7 is closed and thus
T is the gradient of a potential function.

Relative structure equations in covariant local notation.
We rewrite the structure equations in terms of h-covariant differentiation and with
affinely invariant coefficients as follows:

Gaufl equation for x: Z 5= Z Afj zr + by Y
Weingarten equation : Y, = — Z S;- ;.
Gaufl equation for U : = ZA”C Up — B U,

where the relative Weingarten form satisfies (n —1)B;; = (n— l)hika = R};.
The relative support function. Let b be a fixed vector in V and U a relative
conormal of . The function A : M — R defined by

A(p) .= (U,b—z(p)), pe M,

is called the relative support function of (x,U,Y") with respect to the fixed point
be R

In analogy to the Euclidean and the unimodular case the relative support function
satisfies important PDEs; compare section 2.4.4:

A= ZAk Ap — AB;j + by,
AA +nT(grady A) + nLiA =n.

The relative Pick invariant. In analogy to the unimodular theory we define
the relative Pick invariant by

J = ﬁ Z bllh‘]mbkrAzjk Almr = n(n— 1) HA||2

where the tensor norm || - || is taken with respect to the relative metric b.



38 Affine Bernstein Problems and Monge-Ampére Equations

3.2.2 Relative integrability conditions

Like in the unimodular theory one derives the integrability conditions for relative
hypersurfaces. They give information about relations between the invariants that
appear in the relative structure equations. We are going to express these conditions
in terms of the quadratic and cubic forms b, S°, and A°. Locally write Sij = S’fj.
We express the integrability conditions in terms of the metric h and the cubic form
A, in analogy to the classical approach in Blaschke’s unimodular theory. We state:

3.2.3 Classical version of the integrability conditions

In covariant form the integrability conditions read:

Aijig — Aijie = 5 (0ieSj1 + 680 — baSjk — bjSik) .
Rijin = Z (A Amje — AR Amjt) + 5 (hieSi + 908k — buSie — bjeSa) ,

Sik — Sijk = > (SiAly, — SwAL) .
By contraction, the integrability conditions imply:
(@) Y A%, —nT g =% (Libjr — Si),
(0) R(h)ir =X AT AL, —nTi AL + 5(n = 2)Sik + 5 L1 b,
(o) > S}“ =nLi,+> SjAL —nS, T,
where R(h);r denote the local components of the Ricci tensor Ric(h) on (M, ).
Relative Theorema Egregium.

k(h) = J + Ly — 2|7

According to our notation in Riemannian geometry, x(h) is the normed relative
scalar curvature of the relative metric .

3.2.4 Classical version of the fundamental theorem

Uniqueness Theorem. Let (z,U,Y) and (x*, U, Y*) be non-degenerate hyper-
surfaces with the same parameter manifold: x, x* : M — A™1. Assume that

h=b' and A= A%

Then (z,U,Y) and (z*, U, Y*?) are equivalent modulo a general affine transforma-
tion.

Existence Theorem. On a connected, differentiable manifold M there are given:

(i) a semi-Riemannian metric b;
(i) a totally symmetric cubic form A
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such that the integrability conditions in the classical version are satisfied. Then
there exists a relative hypersurface (x,U,Y) such that b is the relative metric and
A® the relative cubic form.

3.3 Examples of Relative Geometries

There are several distinguished relative geometries that play an important role in
affine hypersurface theory. In case we are going to use different normalizations of
a centroaffine hypersurface = at the same time, we use marks to identify geometric
objects of different relative geometries. For more details we refer to [88] and [8].

3.3.1 The Fuclidean normalization

To identify Euclidean invariants of  we will use the mark “E”.

If V is equipped with a Euclidean inner product, we identify V and V* according
to the Theorem of Riesz. A hypersurface = is non-degenerate if and only if the
Euclidean Weingarten operator S(E) has maximal rank; this is equivalent to the
fact that the Euclidean second fundamental form I71 has maximal rank. For a
Euclidean normalization, according to the Gaufl structure equations, hH(E) = IT is
the relative metric. Let p denote the Fuclidean unit normal field of the hypersurface
x. At the same time, the Euclidean normal p is the conormal field in this geometry,
thus (U(E),Y(E)) = (u, p) is a relative normalization. We denote by I, I, II1], the
three Fuclidean fundamental forms, resp. The induced connection V(E) coincides
with the Levi-Civita connection V(I) of the first fundamental form I, while
V*(E) = V(III). We have the relations

2C°(E) = V*(II1)II = —V(I)II

for covariant derivations of the second fundamental form, and the following expres-
sion for the Tchebychev form

T°(E) = —5=d In|L,(E)];

here L,(E) = det S(E) denotes the Euclidean Gauf-Kronecker curvature. The
geometry induced from the Euclidean normalization is invariant under motions.
The relative view point helps to unify methods of proof, in particular in extrinsic
curvature theory; for more details see e.g. sections 6.1 and 6.4.2 in [88].

3.3.2 The equiaffine (Blaschke) normalization

»

To identify equiaffine invariants of  we will use the mark “e
As in Chapter 2, in the ambient space we fix a determinant form Det as volume
form, the associated invariance group is the unimodular group. There is a (modulo
orientation) unique normalization (U(e),Y (e)) within all relative normalizations,



40 Affine Bernstein Problems and Monge-Ampére Equations

characterized by the vanishing of its Tchebychev field: T'(e) = 0 (apolarity condi-
tion). The transversal field Y := Y (e) in this normalization historically is called the
affine normal field. Nowadays the unimodular geometry is often called Blaschke ge-
ometry; this terminology should honour Blaschke’s many contributions to this field
(without ignoring important contributions by other authors). The geometry induced
from the Blaschke normalization (U(e),Y := Y (e)) was sketched in Chapter 2, in
particular we have G(v, w) = h(e)(v, w). As stated before, this geometry is invariant
under the unimodular transformation group (including parallel translations).

3.3.3 The centroaffine normalization

“,
C

We will use the mark to identify centroaffine invariants of x.
For a non-degenerate hypersurface it is well known that the set

{p€e M | z(p) tangential}

is nowhere dense. Thus the position vector = is transversal almost everywhere;
this property is independent of the choice of the origin. These facts and continuity
arguments admit to restrict the investigations to the following situation:

One fixes the origin and this way identifies A"+ with V, then we consider non-
degenerate hypersurfaces with transversal position vector in V'; as before we denote
the position vector again by z. We call a hypersurface with always transversal
position vector centroaffine; see pp. 15 and 37-39 in [73]. For such a hypersurface
one can choose Y (c) := ex as relative normal where ¢ = +1 or ¢ = —1 is chosen
appropriately (see below). The conormal U(c) is oriented always such that

(U(c), Y(0)) = 1.

We recall the following definitions. A locally strongly convex, centroaffine hyper-
surface is called to be of

(i) hyperbolic type, if, for any point x(p) € V, the origin 0 € V and the hyper-
surface are on different sides of the affine tangent hyperplane dz (T, M); the
centroaffine normal vector field then is given by Y (¢) := 4z (examples are
hyperbolic affine hyperspheres in R"*! centered at 0 € R"*1); according
to the choice Y(¢) = x we modify the definition of the support functions
and set A := (U, z);

(i) elliptic type, if, for any point z(p) € V, the origin 0 € V' and the hypersur-
face are on the same side of the affine tangent hyperplane dx(7,M); now
the centroaffine normal vector field is given by Y (¢) := — z (examples are
elliptic affine hyperspheres in R"*! centered at 0 € R**1).

The different orientations of the centroaffine normalization on locally strongly con-
vex hypersurfaces guarantee that the centroaffine metric, denoted by §(c), is positive
definite in both cases.
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3.3.4 Graph immersions with Calabi metric

In section 2.7 we considered a graph immersion equipped with a Blaschke geometry.
Calabi [19] considered a different normalization as follows (we use the mark “ca” to
identify this geometry).
Let f be a strictly convex C*° function defined on a domain 2 C R™, and consider
the graph hypersurface

M = {(z, f(2)) | 2"T" = f(2',...,2"), (2%, ...,2™) € Q}.

For M we choose the canonical relative normalization given by
Y :=Y(ca) :=(0,0,...,1), then the conormal field U := U(ca) is given by
U= (_f17 ey _fna ]-) 3
here the reader should recall the notation for partial derivatives from section 1.1.1.

We consider the Riemannian metric $ := h(ca) on M, defined by the Hessian of
the graph function f:

= Z fijd;vid;vj,
where as before f;; = 0;0;f. Then $ is the relative metric with respect to the
relative normalization defined by Y (ca). This metric is very natural for a convex
graph; we call it the Calabi metric, in the literature one also finds the terminology
Hessian metric. Using the conventions in a local notation, as before we denote the
inverse matrix of the matrix (f;;) by (f%), thus f;; - f7% = §i.
For some basic formulas see pp. 39-40 in [73], here we list some more.
Denote by = = (2%, ..., 2", f(x!, ...,2™)) the position vector of M. In covariant form,
the Gauf$ structure equation reads

T4 = ZAZ{E]C + fl‘jY. (331)

One calculates the following relations (see e.g. [76]): The Levi-Civita connection
with respect to the metric § is determined by its Christofffel symbols

rh =33 M fi,
and the Fubini-Pick tensor A;;, and the Weingarten tensor satisfy
Aiji = =5 fijk,  Bij = 0.
The relative Tchebychev vector field is given by
T:=21%"f9A% 0.
Consequently, for the relative Pick invariant, we have:
J = oD SFUE figh i
The integrability conditions and the Ricci tensor read
Rijer = Y f™ (AjemAnit — Askm Anj), (3.3.2)
Aijrg =Aijik, (3.3.3)
Rik =Y f™ Y (Aimi Anjt — Aimi Anij)- (3.3.4)
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The scalar curvature satisfies
R=n(n—1r=> f*f™ Y (ApniAmjk — AnjiAikm)- (3.3.5)

In terms of the Calabi metric $) of a graph hypersurface we calculate its Laplacian;
for this we recall the auxiliary functions

-1 1 n n
pim [et(fiy) 7, @.= Y pidleohy

Moreover, we consider the Legendre transform function u of f (see section 1.4) and
recall the involutionary character, using different coordinates = and &; in particular
we have

_ Z ij 9% n+2 Z ij
A= f BwiBwJ f wJ Bwl
_ ij 82 n+2 ij Op
> v e > u ot g -

Hence
A (Z(gck)2) = 22 o+ L) (gradlnp7 grad(Z(xk)2)) , (3.3.6)
A (Z(gﬁ) =23 w12 (grad In p, grad(Z({k)Q)) , (3.3.7)

and

A = —m526 (gradIn p, grad &) . (33.8)

3.3.5 The family of conformal metrics G(®)

The Calabi metric $ from section 3.3.4 generates a conformal class of metrics as
follows:

For a fixed a € R, set G(® := p*$, here and later we call G an a-metric. Then,
for any smooth function F', we have

AF = p*A® F — (222 6 (grad In p, gradF), (3.3.9)

where A(®) is the Laplacian with respect to the a-metric.

a-Ricci curvature. Denote by RE;‘) the Ricci curvature with respect to the a-
metric, then (see [83])

W>m——®m +222(In p®) ,(In p*)
— 2 (A(np*) + 252 | gradIn p® ||?) Hi;, (3.3.10)

here “” denotes the covariant derivation with respect to the Calabi metric $).
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3.3.6 Comparison of different relative geometries

As already stated in section 3.1, all relative metrics define a conformal class € = {h}
and all conormal connections a projectively flat class P = {V*} with torsion free,
Ricci-symmetric connections. As the changes within a conformal and a projective
class, resp., are well known, it is relatively easy to calculate the change from one
relative geometry of = to another. This was done in chapters 5 and 6 of [88], for
details we refer to this reference; see also [87]. Here we state only three relations of
this type:

1. The two relative metrics 11 := h(E) and G := h(e) are related by

G = b(e) = | det (S(E)) |72 - b(E).

2. The two relative metrics G := h(e) and h(c) and the support function A(e) are
related by

A~1(e) - ble) = (o).
3. The centroaffine Tchebychev field T'(c) satisfies
T(c) = t2 grady .y In A(e).

— 2n

3.3.7 Daifferent versions of fundamental theorems

In relative geometry one can state different versions of a Fundamental Theorem,
using different fundamental systems (V* h), or (V,h), or (4,h), or even the
conformal class € = {h} together with the projectively flat class I = {V*}, [86].
Which version one will apply depends on the purpose.

The integrability conditions of the classical Blaschke version, based on the funda-
mental system (A, h), have a very complicated form; this is a disadvantage. But
this version is useful for the application of subtle tools from Riemannian geometry,
like maximum principles or the Laplacian Comparison Theorem.

The integrability conditions for the version in terms of (V*,h) are geometrically
very transparent, depending on the fact that the connection V* is projectively
flat; the versions using the pairs (V,h) or together the classes P and €, resp., are
modifications of the version using (V*,h). These versions lead to a much better
understanding of the theory, based on the results in [28].

3.4 Gauge Invariance and Relative Geometry

To investigate the geometry of a given non-degenerate hypersurface, we have dif-
ferent possibilities for an appropriate choice of a normalization; even within the
distinguished class of relative normalizations there are infinitely many possibilities.
In general, the geometric invariants are different for different relative normaliza-
tions. Additionally, for most of the relative geometries the associated invariance



44

Affine Bernstein Problems and Monge-Ampére Equations

group is still unknown; see [8].

As a consequence, there was a systematic search for affine invariants that are in-
dependent of the relative normalization. This was done in [87]. For our purpose it
is sufficient to state the following facts; for details see [87] and further references
given there.

(i)

(iii)

The change from one relative normalization to another is equivalent to the
gauge transformations of a related Weyl geometry; see [10]. For this reason,
invariants that are independent of the relative normalization, are called
gauge invariants.

Starting with a tentative relative normalization, one can construct the
equiaffine normalization (U(e),Y = Y (e)) modulo a constant non-zero fac-
tor, and thus one can determine all equiaffine invariants modulo a constant
non-zero factor: they only depend on the hypersurface itself (modulo a fac-
tor). This way one proves:

All equiaffine invariants are gauge invariants (some modulo a factor).
This implies that properties of important classes of hypersurfaces in the
unimodular theory like affine spheres, extremal hypersurfaces, etc., do not
depend on the special choice of the normalization, the definitions of the
classes are gauge invariant.

For any two relative normalizations (U,Y) and (U*,Y*) of = one has

At p=AFTLph
As the centroaffine support function satisfies A(¢) = 1, we see that
B(c) = A~ -1

for any relative normalization. From this the centroaffine metric and its
intrinsic geometry are gauge invariant; one can finally prove that this is
true for all centroaffine invariants.

The Calabi geometry from section 3.3.4 is a gauge invariant geometry. Con-
sider an arbitrary relative normalization (U,Y) and the Calabi normaliza-
tion

(U(ca),Y (ca)) = (=01 f,...,—0nf,1),(0,...,0,1)).
Then
U(ca) = qU
where 0 < g € C*°(M) and
(=01 f, .y —Onf,1),Y) =q.

Therefore one can easily construct (U(ca),Y (ca)) from an arbitrary nor-
malization (U,Y). Thus the Calabi geometry is gauge invariant.
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We give two examples of gauge invariants, i.e., we express them in terms of an
arbitrary relative normalization.

The traceless tensor field A and the characterization of quadrics. On a
non-degenerate hypersurface, let U be an arbitrary conormal field; from U one can
define the corresponding metric h and the projectively flat connection V*, and from
this A and T'. Define the symmetric (1,2) tensor field A as traceless part of A:

A(v,w) == A(v,w) — 25 (T (v)w + T (w)v + h(v, w)T);

then

(a) g is a gauge invariant;
(b) A= A(e), thus A = 0 if and only if the hypersurface is a hyperquadric;
(c) we calculate

~ 2
IAI? = [IAII* = 22517112

Here the norms are defined via the relative metric used. In case that x is
locally strongly convex and the orientation of the normalization is appro-
priate, any relative metric is positive definite. Then the foregoing identity
allows to estimate || A[|? in terms of ||T||2.

Affine spheres. Consider a non-degenerate, centroaffine hypersurface. We define

T =T+ %2dnA
and T implicitly by b(c)(T,v) := T°(v). We state:

(i) T =0if and only if z is a proper affine sphere.

(i) T =T(c) = e grady .y In A(e); compare section 3.3.6 above.

Completeness conditions. Below we are going to consider different types of
completeness conditions. It is a consequence of the foregoing facts that all such
completeness conditions are gauge invariant conditions; see [87].

Euler-Lagrange equations. In the following we will investigate classes of hyper-
surfaces that satisfy Euler-Lagrange equations of certain variational problems. One
verifies that such Euler-Lagrange equations are again gauge invariant relations; see
[87].
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Chapter 4

The Theorem of Jorgens-Calabi-Pogorelov

In this chapter we are going to use geometric tools for the solution of certain types
of Monge-Ampere equations. For this interplay of global affine differential geometry
and PDEs we use the terminology geometric modelling technique. E. Calabi, A.V.
Pogorelov, S.Y. Cheng, S.T. Yau, N.S. Trudinger, X.J. Wang, A.-M. Li and other
authors (see e.g. [19], [20], [25], [54], [55], [60], [61], [62], [76], [91], [92]) developed
the following method of geometric modelling:

One interprets the unknown convex function in the PDE as locally strongly convex
global graph and chooses an appropriate relative normalization. The aim is to use
special induced geometric structures of relative hypersurface theory to express the
given PDE in terms of geometric invariants, while global assumptions for the PDE
are interpreted in terms of appropriate geometric completeness conditions. For
the solution of the PDE considered, it is crucial to estimate appropriate geometric
invariants that are related to the problem.

In this chapter we will give typical examples of this geometric modelling, studying
PDEs that are related to affine spheres and some generalizations of such PDEs.
For the convenience of the reader we recall the notation for the unimodular theory
from Chapter 2, and Calabi’s relative normalization for a graph from section 3.3.4.
In sections 4.1-4.3 we summarize tools for the proofs of our results in sections 4.4-4.6.

4.1 Affine Hyperspheres and their PDEs

We consider affine hyperspheres and derive their PDEs. We will treat the two
types separately: improper and proper affine hyperspheres. We characterize affine
hyperspheres in terms of their PDEs. As the global results in this monograph only
concern locally strongly convex hypersurfaces, in proofs we will restrict to this case.

4.1.1 Improper affine hyperspheres

Let x be a locally strongly convex parabolic affine hypersphere in A"*!. By a
unimodular affine transformation we can assume that the affine normal Y is given

47
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by
Y:(Ou"'aovl)v

and that z(M) is locally described in terms of a strictly convex function f, defined
on a domain Q@ C R" :

"= f (xl, - -,x") .
We choose a local unimodular affine frame field for x as follows:
i =(0,..,0,1,0,..,0,8;,f), i=1,...,n, enp1=(0,..,0,1). (4.1.1)
The Gauf} structure equations for z from section 2.4.3, and the relations
(Uyeny1) =1, (Ue;) =0, for i=1,...,n,
give (see section 3.3.4)
hij = 0;0: f.
Equation (2.3.2) and the apolarity condition imply Y = |H \ﬁ ént1 = €nt1 and
H = det (0;0;f) = 1. (4.1.2)
Conversely, suppose that M is locally given by the strictly convex graph
et = f (xl, .. .’xn) ;

and that f satisfies the PDE (4.1.2). Considering the frame field (4.1.1), we have
dln H =0 and de,+1 = 0. Hence

witl = 0.
It follows that e,+1 = (0, --,0,1) is the affine normal vector ¥ at each point of

x2(M). This shows that z is a parabolic affine hypersphere.

Theorem. z is a parabolic affine hypersphere with constant affine normal vector
(0,--+,0,1) if and only if f satisfies the PDE (4.1.2) of Monge-Ampére type.

4.1.2 Proper affine hyperspheres

Let = be an elliptic or hyperbolic affine hypersphere and assume that x locally is
given as a graph of a strictly convex C'°°-function on a domain 2 C R™:

x"“zf(xl,---,x”), (xl,---,x”)eﬂ.
Consider the Legendre transformation from section 1.4:
F:Q—R" where (z', - 2")— (&, &) (4.1.3)

and
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When 2 is convex, F :Q — F(Q) is a diffeomorphism. Then the hypersurface can
be represented in terms of (£1,&2,- -+, &,) as follows~

_ 1 n 1 n _ ou
= (e f (e am) = (B 2 —uk Y6 ). (1)
The affine normal satisfies (2.3.1) and (see p. 91 in [58])

d -2 9 -
V=tao=(p e 0t g ety G 2) ()
where p is defined in section 1.4.

The relations (4.1.4) and (4.1.5) imply that the necessary and sufficient condition
for the equality Y = — Lz is given by the relation

p= L+u , L1 =const#0, (4.1.6)
ie.,

—n—2
det (a,E - ) = (L1u) (4.1.6.a)
where L, is a constant. We summarize the foregoing results:

Theorem. Let x be an immersed hypersurface in A™T' which locally is given as
graph of a strictly convex C*° -function x" Tt = f (ml, ce a:") over a convexr domain.
Then x is an elliptic or hyperbolic affine hypersphere with center at the origin if and
only if the Legendre transform function u of f satisfies the PDE of Monge-Ampére

type (4.1.6.a).

As a consequence of the two foregoing theorems we can state the following:

Any solution of the Monge-Ampere equation (4.1.2) locally defines an improper
affine sphere given as the graph of this solution. Any solution of the Monge-Ampére
equation (4.1.6.a) similarly locally defines a proper affine sphere.

The characterization of affine spheres in terms of their PDEs explains our statement
at the end of section 2.8, namely that both classes of affine spheres are very large.

4.1.3 The Pick invariant on affine hyperspheres

We recall a well known inequality for the Laplacian of the Pick invariant on affine
hyperspheres. For n = 2 it first was obtained by W. Blaschke [9]. For higher di-
mensional affine spheres it was obtained by E. Calabi [19] in the case of parabolic
affine hyperspheres, and for arbitrary affine hyperspheres by R. Schneider [82] (with
a minor misprint of a constant) and also by Cheng and Yau [25]. U. Simon calcu-
lated AJ for arbitrary non-degenerate hypersurfaces and applied his formula to get
some new characterization of ellipsoids (cf. [84], [85]). There are extension to the
cubic form in relative geometry [56] and for Codazzi tensors of arbitrary order in
Riemannian geometry [67], [68].

Lemma. On a locally strongly convez affine hypersphere we have:
DA > VAP +n(n — 1) (n+ 1)J(J + L), (4.1.7)
here VA denotes the covariant derivative of the Fubini-Pick form A.
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4.2 Completeness in Affine Geometry

In affine differential geometry there are different notions of completeness for a locally
strongly convex hypersurface x. Principally, one can consider the completeness of
any relative metric. In subsection 4.2.1 we list the completeness notions that are of
importance for our investigations. In later sections we will study relations between
different notions of completeness.

4.2.1 Affine completeness and FEuclidean completeness

Definition. (1) Affine completeness of M, that is the completeness of the Blaschke
metric G (sections 2.2.1 and 2.7) on M;

(2) Calabi completeness of M, that is the completeness of the Calabi metric $
(section 3.3.4) on M;

(3) Euclidean completeness of M is the completeness of the Riemannian metric
induced from an arbitrary Euclidean metric on the affine space A™*!.

Lemma. [81]. The notion of Euclidean completeness on M is independent of the
choice of a FEuclidean metric on A™T1.

Proof. Consider two inner products on V, denoted by ( , ) and ({ , )); they

define two Euclidean metrics on A1, Let 71,702, - -, 9ny1 and 1,2, - -, fni1 be
orthonormal bases in V' relative to (, ) and (( , }), respectively, related by
Na = Z Cg UL

where C = (C?) € GL(n + 1,R). The Euclidean structures of V induce Euclidean
metrics on M; we can write them in the form

da?

dz?

ds* = (da',da?,- - -, da™) = (dz)" - (dz);

d$n+1
ds* =(C-dz)" -C-dx =dz™ -C"C - dux;
here we use an obvious matrix notation, and C'” denotes the transposed matrix of
C. Let p and X\ denote the largest and smallest eigenvalues of the product matrix
C7C, respectively; they are positive. Then
Mds? < ds? < ,udsQ.
This means that a curve in M has infinite length in one metric if and only if its length
is infinite in the other metric. Thus the two notions of Euclidean completeness,
induced on M from different Euclidean structures on A"t!, are equivalent. This

justifies to use the notion of Fuclidean completeness in affine hypersurface theory.
[ |
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Remarks and Example.
(i) A global graph in R™*! over R™ is Euclidean complete.

(ii) Generally, the notions of affine completeness and Euclidean completeness on
M are not equivalent. R. Schneider gave the following example [81]:
Consider the graph given by

P f () = ) (R )

z(M) = {( l,xz,f(wl,xQ)) | 0<2! <00, —c0<a?< 0o} .
It is not difficult to check that x is locally strongly convex and FEuclidean complete.
On the other hand, the Blaschke metric G of x is given by
Gii=(z")7%, Gi2=Ga =0, Gy = ()i,

On M, consider the curve

zt(t)=t, 22(t)=0, 1<t < oo.

i

Its affine arc length is

l:/m\/mdt:/oot_% dt < oo.
This shows that M is not ;fﬁne complete. 1
(iii) In [92] Trudinger and Wang proved the following

Theorem. Let n > 2. If M is an affine complete, locally uniformly convex hyper-
surface in R" 1, then M is Euclidean complete.

(iv) In sections 5.9 and 6.1 below, we will study relations between the different
notions of completeness under additional assumptions.

4.2.2 The Cheng-Yau criterion for affine completeness

It follows from Schneider’s example that one needs additional assumptions to prove
that Euclidean completeness implies affine completeness. The first result of this
type is due to Cheng and Yau [25]; they proved that for an affine hypersphere
the Euclidean completeness implies the affine completeness. In section 6.1 we will
extend this result for surfaces with constant affine mean curvature. Another related
result was proved in [98].

Theorem. FEvery Euclidean complete affine hypersphere is affine complete.

We state a generalization of the result of Cheng and Yau; it is obvious that their
Theorem is a corollary of the following criterion.

Completeness Criterion. Let M be a locally strongly convex, Euclidean complete
hypersurface in A"tL. If there is a constant N > 0 such that the G-norm of the
Weingarten form B is bounded from above:

| Blle< N, (4.2.1)
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then M is affine complete.

To prove the Completeness Criterion we will apply the Estimate Lemma below.
The proof of the Lemma follows in the next subsection.

Special choice of the coordinate system. We consider a non-compact, Eu-
clidean complete, locally strongly convex hypersurface z : M — A"T!. From
Hadamard’s Theorem in section 1.2 the hypersurface x is the graph of a strictly
convex function f:

xTH—l = f (mla' o 7xn) B
defined on a convex domain {2 C R™. Hence z is globally strongly convex.
Claim: We may assume that the hyperplane 2"t = 0 is the tangent hyperplane
of x at some point zo = (!,42,---,4") € M, and that z¢ has the coordinates

(0,---,0). This can easily be seen from the following:
For f given as above, define

f@ =f (@t am) = 30 gE (@) (o =) = f (i)

for any (z',---,2") € Q. Then the graph of f(¥) has the required properties. Since
the above transformation is affine, our claim is proved.

Remark. With respect to this special choice of the coordinate system we have
f > 0; for any number C' > 0, denote the section (for the definition see section 1.1.4
above or section 3.1 in [37])

S¢(0,C):={peQ | 2" = f(a',--,2") < C}.

Estimate Lemma. Consider a non-compact, Euclidean complete, locally strongly
conver hypersurface x with graph function f and with the special choice of the co-
ordinates just described. Assume that there exists a real positive N such that the
norm of the Weingarten form is bounded above as in (4.2.1). Then:

(i) There exists N* > N such that the Laplacian satisfies the following estimate:
B < N (4.2.2)
(ii) There exists a positive real Q such that f satisfies the following gradient esti-

mate:

lewd I < Q. (4.2.3)

Proof of the Completeness Criterion. We apply the Estimate Lemma. Let
po € M. For any unit speed geodesic o starting at pg

o:[0,S] - M
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we have

I < erad f]| < Q(1+ f).

It follows that

GO
S>3 /O L (4.2.4)

Since

and f : Q@ — R is proper in the topological sense (i.e., the inverse image of any
compact set is compact), (4.2.4) implies the affine completeness of (M, G). |

4.2.3 Proof of the Estimate Lemma

(i) Suppose that there is constant N > 0 such that (4.2.1) is satisfied. Consider
the function

p:=(C- N} (4.2.5)

defined on Sf(0,C). Obviously ¢ attains its supremum at some interior point z*
of S¢(0,C). Without loss of generality we may assume that |[Af| # 0 at «*; then
grad ¢ = 0 at 2*. Choose a local orthonormal frame field {e1, -+, e, } of the Blaschke
metric on M such that, at z*:

fi=llgrad f|| and f;=0 for 2<i<n,
where f; satisfies df = Y f;w’. Then, at z*,

—£alAf] falag] Al _
17— @D H C- N T =0

It follows that
A
Taking the (n + 1)-st component of the identity

(Aﬁ)’l = TLY:Z‘ = —TLZBU‘ X g,
J

we get
(Af)z = —nz Bijf,j and |Af|1 S TLNfJ.

J
Hence, from the assumption, at x*,

falAf]
7 S nihfa

Note that f(zo) = infg,0,c) f()-
In the case * # xo we have f1 = ||grad f| > 0. It follows that

IlATJ;I <nN and ¢ < (C—f)nN < CnN. (4.2.6)
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(4.2.6) holds at x* where ¢ attains its supremum.
In the case x* = x¢ we have
A
p < CBH . = CIAf(20)].
Let N* :=max {nN, |Af(xo)| }. Then, at any point of S;(0,C):

1Af] CNt
1+f = c-f -

For C' — oo we arrive at the asserted estimate in (i).

(ii) Now we are going to prove the gradient estimate for f. Consider the function

— — llgrad £
vi= e {52 } L
defined on S¢(0, C), where m is a positive constant to be determined later. Clearly,
1 attains its supremum at some interior point z* of S;(0,C). We can assume that
lgrad f|| > 0 at z*. Choose a local orthonormal frame field {ey, -+, e,} on M such
that, at x*,

fo=llgrad fll, fi=0 (2<i<n).
Then, at z*,

’l,/)ﬂ' =0 and Z ¢,ii S 0.

We calculate both expressions explicitly. At x*, we finally get:
Tk > (£5)7 — 2 (f,j)2+22f,j fii =0, (4.2.7)

J J
[(C 2 + 1+f:| (fl) fll + [(C 3 + (1+f ] (fl)
- {ﬁ + m} (AF) (F1)2+2D (Fi)> +2 > fifjii < 0. (4.2.8)
We insert (4.2.7) into (4.2.8) and obey the inequality ﬁ > 0; we get

_[ﬁ“ﬂ—%f} (F)* = & (F) +2 3 (L)
[ + 2] AN G2 +23 1 <0 (4.2.9)

Let us now compute the terms f ;; and f j;. An application of the Ricci identities

shows:
S Fibii=Y Fi(Af);+ Y Rijfif;

We apply the integrability conditions and insert the Ricci tensor into the foregoing
expression

—2
Rij = E Amii Amij + "5=Bij + 5 L1045,
moreover we use the Weingarten structure equation

(Af);=-n)_ Bijfi
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to obtain

S Fitgi =Y (Amn)® (f1)* = 22 Bu (£1)° + 5 La(f1)° (4.2.10)
We take the (n + 1)-st component of = ;; = > Aijp 1 + 52 Az % 0;; and get
fij = Aij fa+ 5L 4;,

2
(i) =>] (Aijl fa+4L 5z’j) => (A fa)?+ (A% (4.211)
Combination of (4.2.10) and (4.2.11) gives

S Fifai =Y (Fi)+ 3L (f1)° = %2 Bu (f1)° — 2(Af). (4.2.12)
We apply the inequality of Schwarz and obtain:

2
fll +Z u fll +_<qu>

> (fa) >
i>1 =
= n’ll(fn)Q—!-% _ %
> (2 - 8) (Fn)? - Sl (a2 -

for any 0 > 0. Next we insert (4.2.12) and (4.2.13) into (4.2.9), together with (4.2.7)
this implies the following inequality:

(2 -9) [ + 121) - e ) () = [ + 227) A1) - (1

+(nLi — (n+2)B1)(f1)? — [% + %} (Af)?
We choose the following values for § and m:
0 < (n ) and m=4(n—1)C.

We use the next inequality to simplify the foregoing one
1 m 2 2 2m 1 m 2 2
(7 ) [ + 2] — e 2 (o —9) [ + )

and additionally use the abbreviations:

m . . 4—4(n—1)0
QIZW—F%, a.—ﬁ—5>0, b—ﬁ+%>0

Then we arrive at the inequality:
9> (f)* = (g-|Afl = nLi+ (n+2) Bu) - (f1)* = b(Af)?

The left hand side is a quadratic expression in ( ]‘71)2 . Consider its zeros, it follows
that

(fa)? < 2 [g1Af1 4| = nLy + (n+2) Bu| + gvab- |Af]]
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To further estimate this expression we use the assumptions, (4.2.2) and the definition
of G; we have the three inequalities

9>, |Af] < NR1L+ ),

| =nLi+ (n+2)Bi1| < 2(n+1)||Bllg < 2(n+1)N,
and insert these inequalities into the foregoing to get an upper bound for ( f71)2 :
(f1)? < & (N1 +Vab) + (n+ DN) (1+ f)°.
With our special choice of § and m and from the definition of ¢ we finally get:
P < L (Nﬁ(1+x/5)+(n+1)zv);

a

this inequality holds at x*, where v attains its supremum. Hence, at any point of
S¢(0,C), we have

lsd fP < L (NF(1+ Vab) + (n+ 1) V) exp {2220E )

Let C' — oo, then

”gﬁdfﬂl < exp {2(n —1)} \/% (Nti(l + \/%) +(n+1) N) = Q, (4.2.14)

where @ is a constant. This proves the assertion (ii) in the Estimate Lemma. N

4.2.4 Topology and the equiaffine Gaufi map

There are several results on geometric properties of the equiaffine Weingarten op-
erator, but sometimes assumptions on it - like that B is positive definite (see e.g.
[40], [66], [90]) - seemed to be of more technical character. Thus, for a better
geometric understanding, we list some known local properties:

(i) The condition rank S(e) = n is gauge invariant;

(ii) im R C im B,

(iii) if rank B = n then both Gaufl mappings Y : M — V and U : M — V* are
immersions and B can be interpreted as their equi-centroaffine “spherical” metric;
(iv) (n — 1)B = Ric*; this relation generalizes a well known property of the spher-
ical metric in Euclidean geometry, namely that it is a metric of constant sectional
curvature (thus, like in the affine case, the spherical metric coincides with the Ricci
tensor of the conormal connection modulo a non-zero constant factor).

Moreover, there are global properties of the Gaul map that are analogues to
results of Osserman et al. in the Euclidean theory of minimal surfaces; the following
is a typical example, for details see [58], p.233. We will define the notion affine
maximal in the next chapter, section 5.2.

Theorem. Let x : M — A3 be a locally strongly convex, affine complete, affine
maximal surface. If the Gaufs map omits 4 or more points in general position
together with their antipodal points, then x(M) is an elliptic paraboloid.
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The affine Gau3 map and completeness

As before we restrict to locally strongly convex hypersurfaces with Blaschke struc-
ture. We recall

a. the Completeness Criterion from above,

b. the subsection “Completeness and Maximum Principles” from section 1.2,

c. the relation for the Ricci tensor from section 2.5.2:

Ry, = ZAZLAﬁnk + 22 B, + 2L1 G

In this relation, the expression Y AMA! | is always non-negative, and the metric
G is positive definite. Now assume that the Weingarten form is bounded below,
say B > 9§ - G for some § € R. Then the affine mean curvature is bounded below:
L, > 6. This finally implies that the Ricci tensor is bounded from below. Thus we
can state a few additional properties that emphasize some analytical and topological

properties.

(i) If n > 2, if additionally the Weingarten form B is bounded from below and
(M, Q) is complete and non-compact then one can apply the Maximum Principle
of Omori-Yau [104]. Moreover, if B is positive semi-definite and the affine mean
curvature L is positively bounded from below then the Ricci curvature is positively
bounded from below and then metric completeness implies compactness.

In dimension n = 2 we do not need an assumption on B; it is sufficient to assume
that L; is bounded from below to apply Omori-Yau; moreover, if Ly positively
bounded from below this implies compactness.

(ii) If ||B|| is bounded from above then any Euclidean complete hypersurface is
affine complete. In particular, this yields for any global graph over R".

(iii) If B satisfies §1 -G < B < d3-G for §; € R and 0 < d2 € R and M is Euclidean
complete, then (M, G) is affine complete and one can apply the extended Maximum
Principle for weak solutions on (M, G), see [18]. In dimension n = 2, in analogy to
the statement in (i) above, we can restrict the assumption to L.

The affine Gau3 map and compactness

The following is another consequence from the above relation between the Ricci
tensor Ric and the affine spherical metric B:

If (M, G) is complete and B is positively bounded from below then its Ricci tensor is
positively bounded from below, thus M is compact (Myers’ Theorem). In dimension
n = 2 it is sufficient to assume that L; is positively bounded from below.

In this context, we would like to recall the Gaul conormal equation from section
3.2.1 and the relation Ric* = (n — 1)B. In particular we see the following: If Ric*
is (positively) bounded from below then Ric is (positively) bounded from below. This
shows how curvature properties of V* and the topology of M are related.

The foregoing statement raises the question whether B is always (positive) definite
on hyperovaloids; this was stated by Santalo [79]. R. Schneider gave the following
counterexample in [80], pp. 84-86. We sketch his construction as it is not printed
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in a journal.

Counterexample. Let R3 := {(2!, 2%, 23) | 2' € R} be equipped with a Euclidean
inner product { , ) : R?® x R® — R, thus we can identify R® and its dual vector
space. In the (22, 2®)-plane consider three points defining a triangle, e.g.

P.=(0,—a,0), Py = (0,+a,0), Py=(0,0,10a).

Rotate this triangle around the z3-axis; this gives a convex body with a surface C
(cut piece of a cone) as boundary; this surface is analytic almost everywhere. We
apply an approximation theorem of Minkowski, see [12], p.36:

C' can be approximated by a sequence {C;};en of convex bodies; as boundaries they
have analytic ovaloids {B;}ien, that means their Euclidean Gaufl curvature K; is
positive. Consider the three unit vectors in the (22, 23)-plane in direction to the
outside of the given triangle:

EO = (070,1)7 E1 1 line (P_,P()), EQJ_line (P+,P0).

On each ovaloid {B;} there is exactly one point P, o, P;1, P2 with prescribed
unit normal FEy, Ej, FEs, respectively. Thus we have three sequences with

lim Pio=Fy, limF_ =P, limP =P,
and for the corresponding Euclidean Gaufl curvatures:
hm KZ‘)Q = 00, hm Ki), = 07 hm Ki7+ =0.

We recall the section about the affine Gaufl map and Euclidean structures. The

1
conormal indicatrices B} of B; satisfy: U; = K*** - ;. Here p; is the unit
normal of B;. We arrive at

lim [[Uipl| =0 and lim [|U; 4| =lim [U;_| = oo.

The last relations imply that, for sufficiently large 7, the closed conormal indicatrices
B} cannot be anymore ovaloids. As already stated, this then yields also for the
corresponding normal indicatrices.

The final question in this context is now: what do we know about B on hyperoval-
oids?

Proposition. On any hyperovaloid there are open subsets where B is (positive)
definite. On such subsets the curvature functions L, are positive for allT =1,...,n.

Proof. We consider local maxima of the affine support function A; in such a point
we have:

AB =G — HessA > 0. |
Corollary. If L,, # 0 on a hyperovaloid then B is positive definite.

Theorem. There are no hyperovaloids satisfying L1 <0 on M.



The Theorem of Jorgens-Calabi-Pogorelov 59

4.3 Affine Complete Elliptic Affine Hyperspheres

Using (4.1.7), we prove the following theorem of Blaschke (n = 2) and Deicke
(n>2):

Theorem. Let x : M — A™*! be a compact affine hypersphere without boundary.
Then x(M) is an ellipsoid.

Proof. We recall (2.4.5) and the fact that, on any ovaloid, there are points such
that B is (positive) definite. Since an affine hypersphere satisfies L1 = const, we
have L; > 0. It follows from (4.1.7) that J is a subharmonic function on a compact
manifold without boundary. The maximum principle implies J = const, and (4.1.7)
gives J = 0; therefore z is a compact quadric and thus an ellipsoid. |

Corollary. (i) Let M be an affine complete elliptic affine hypersphere. Then M is
an ellipsoid.

(ii) Let M be a FEuclidean complete elliptic affine hypersphere. Then M is an
ellipsoid.

Proof. (i) The hypersphere is elliptic, thus L1 = const > 0. Then the Ricci tensor
is positively bounded from below, and Myers’ Theorem implies that M is compact.
(ii) Apply the foregoing Corollary and the statement of Cheng and Yau in section
4.2.2. |

4.4 'The Theorem of Jorgens-Calabi-Pogorelov

The purpose of this section is to prove a Theorem of Jorgens-Calabi-Pogorelov (see
[76] for the result in any dimension). Our proof here is based on [20] and results of
Cheng and Yau [25]. Another proof of this Theorem was given by Jost and Yin in
(48].

Theorem. (Jérgens-Calabi-Pogorelov). Let f : R" — R with z := (2!, - - 2") —
f(x) be a strictly convex differentiable function defined for all x € R™. If f satisfies
the Monge-Ampére equation

82
det (—axi afzj) =1
then f must be a quadratic polynomial.
The Theorem of Jorgens-Calabi-Pogorelov concerns the solution of a certain PDE

without specific geometric context, but the following proof uses tools from equiaffine
hypersurface theory.

Proof. We indicate the steps of the proof.
Step 1. Consider the convex graph M:

M = {(331,' . .7xn’xn+1) |$n+1 — f(I), T = (3:1,_ . .’xn) ER”}.
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We equip this hypersurface with the Blaschke geometry. We know:

e From the PDE the hypersurface M is a parabolic affine hypersphere with
constant affine normal. We aim to prove that the affine sphere is also a
quadric, then it must be an elliptic paraboloid and the assertion will be
proved.

e By our assumptions M is Euclidean complete; the Cheng-Yau Completeness
Criterion states that M is also affine complete.

e For an improper affine sphere, from the integrability conditions we see that
the Ricci curvature satisfies Ric(G) > 0.

Step 2. To prove that M is a quadric we have to show that the Pick invariant
vanishes identically. From formula (4.1.7) we can estimate AJ from below. We are
going to derive a second PDE for J, giving an estimate for A J from above. We
denote by r the geodesic distance function (with respect to the Blaschke metric G)
from a fixed point pg. For any a > 0, let B,(po,G) = {p € M | r(p) < a} be the
closed geodesic ball with radius a around pg. Define F' : B,(po, G) — R by

F(p) = (a® = r*(p))*J (p),

where J denotes the Pick invariant in the Blaschke geometry (see section 2.4.2). F'
attains its supremum at some interior point p* of B,(po, G). We may assume that
r? is a C%-function in a neighborhood of p*, and that .J (p*) > 0. We choose a local
orthonormal frame field of the Blaschke metric. Then, at p*,

Ei = O, and Z F“ < 0. (441)

To derive a second PDE for AJ, we calculate both expressions explicitly; as before
the norm is defined in terms of the Blaschke metric G:

. r2) ;
AR VR (4.4.2)
(J.: A(r?
A N g Z(a2 T2)2 - a}_rz < 0. (4.4.3)
We insert (4.4.2) into (4.4.3) and get
2
A7 < gqrllendrl g lendrl® oy A (4.4.4)

From step 1 recall that (M, G) is a complete Riemann manifold with nonnegative
Ricci curvature. Thus the Laplacian Comparison Theorem (see section 1.3) implies
the inequality:

rAr <n—1. (4.4.5)

Now we discuss this differential inequality (4.4.4):
If p* = po then we have r(pg, p*) = 0.
Otherwise, if p* # po, from (4.4.4) and the estimate rAr < n — 1, it follows that

A <o b (4.4.6)

J aZ—r2
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(4.4.6) obviously holds also if p* = py.
Step 3. From Step 2 we have two estimates for AJ, one from below and one from
above. We combine both differential inequalities and get:

2n+1)J < 2 o + S (4.4.7)
Multiply both sides of (4.4.7) by (a? — r2)?. At p* we obtain
(a® —7?)? J < 200 g2 (4.4.8)

(4.4.8) holds at p* where F attains its supremum. Hence, at any interior point of

B.(po, G), we finally arrive at the upper estimate:

= n4+1 (a2—r2)2 — n+1 a2(1—2—3)2 .

J < 2(n+6) . a? 2(n+6) . 1

Step 4. If a — oo then J — 0. Hence the Blaschke cubic form satisfies A = 0,
and that means the improper affine sphere is a quadric. The improper affine sphere
has a constant field of affine normals, and therefore we can apply the calculation of
A in terms of the graph of the function from section 3.3.4. The cubic form satisfies

0= Aijr = — 5 fiji-
Thus f is a quadratic polynomial. This completes the proof of the Theorem of
Jorgens-Calabi-Pogorelov in any dimension. |

4.5 An Extension of the Theorem of J6rgens-Calabi-Pogorelov

To extend the result from the foregoing section, it is natural to study geometric
situations where the Monge-Ampere equation in the Theorem of Jorgens-Calabi-
Pogorelov appears in a more general form; in particular one will try to find geo-
metric situations where the constant in this PDE is replaced by a suitable function.
To make this investigation plausible, we summarize some background from Affine
Kahler geometry.

4.5.1 Affine Kdhler Ricci flat equation

The Theorem of Jorgens-Calabi-Pogorelov was recently extended by L. Caffarelli
and Y.Y. Li [16]. We are going to give another extension.

Theorem 4.5.1. [61]. Let u: R" — R, (&1,...,&) — u(&y, ..., &), be a strictly
convexr C®-function. If u satisfies the PDE of Monge-Ampere type

2
det (%{;‘&) :exp{—Zcig—g —co}, (4.5.1)
where cq, c1,...,¢n are real constants, then u must be a quadratic polynomial.

A more precise statement of the assertion in the theorem says that there exists a
solution of the PDE (4.5.1) defined on R™ only if ¢; = ... = ¢,, = 0.
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Our proof will show that we can state a stronger version of the foregoing theorem
as follows.

The Extended Theorem for domains. Let u(q, ..., &) be a strictly convex C*°-
function defined on a convex domain @ C R™. If u(§) satisfies the PDE (4.5.1), and
if u(§) — oo for & — 99, then u must be a quadratic polynomial.

Remark. While we proved the Theorem of Jorgens-Calabi-Pogorelov with geo-
metric tools from unimodular hypersurface theory, now we will use Calabi’s relative
normalization as tool for the proof. This way we demonstrate the appropriate ge-
ometric modelling for solving certain classes of PDEs. As already stated, before
giving the proof, we consider another geometric background of the PDE (4.5.1).

A Dbackground from Affine Kéhler geometry. The Monge-Ampere
equation (4.5.1) has another geometric background in affine Ké&hler geome-
try. Consider the Legendre transformation of u from section 1.4; in terms of
2l .. 2™ and f(x!,...,2"), the PDE (4.5.1) can be written as

det (%) = exp {Z cix' + co} , (4.5.2)

or equivalently

5l (ndet (554 ) ) = 0. (4.5.3)
Let M be a graph defined by the function z"*! = f(z?, ..., 2"), namely,
M :={(z, f(z)) |z eR"}.

Following [19] and [76], we consider the Calabi metric from section 3.3.4:
9= fijda'da’. (4.5.4)

We note that any affine Kéhler manifold can be considered as a totally real subman-
ifold of a complex Kéahler manifold in the following way. For each coordinate chart
(x',22,...,2"), we can consider a tube over the coordinate neighborhood with a
complex coordinate system (z! ++v/—1y*, 2% +/—1y?, ..., 2" +/—1y"). The affine
coordinate transformations naturally piece together these tubes to form a complex
manifold. The Hessian metric $ can be naturally extended to a Kéhler metric of
the complex manifold. The Ricci tensor Ric($)) and the normed scalar curvature

k(9) of this Kéhler metric satisfy the relations
R(9)i; = ~ g3 (ndet (fin)).
2
n(n —1k($H) = Z fw 0 lgwdfgw{u)])
We call Ric($)) and k($) the affine Kahler Ricci curvature and the affine Kahler
scalar curvature of the affine Kahler metric, resp. We state:

Regarding equation (4.5.3), it follows that the affine Kahler metric $) is Ricci flat.
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Remark. We point out that we do not have global uniqueness for solutions of the
equation (4.5.2) on R™. For example, the functions f, f*:R™ — R, given by

n

Z(gcl)2 and  ff(x!, .., 2") ;= exp{z'} + Z(xl 2
i=2

i=1

kﬁ
—~
8
N
"
3
S~—
Il

both satisfy (4.5.2).

4.5.2 Tools from relative geometry

As indicated in the beginning of Chapter 4, to solve the Monge-Ampere equation
in Theorem 4.5.1, we use tools from a different relative hypersurface geometry in
Chapter 3. Now we will apply Calabi’s geometry.

Let f be a strictly convex C*° function defined on a domain 2 C R™, and consider
the graph hypersurface

M = {(x, f(2)) | 2" = f(2',...,2"), (2%, ...,2") € Q}.

For M we choose the canonical relative normalization of Calabi, given by

Y = (0,0,...,1). In section 3.3.4 we listed basic geometric invariants up to the
calculation of the Laplacian. We apply this to calculate the Laplacian for the
functions u and its Legendre transform, the graph function f; for this we recall
the notation from section 1.4; we recall the involution in the choice of coordinate
systems.

—1

= [ (a35)] ™ = ot (52)]

then in terms of the coordinates x:
Af=n+ "2—J;2 $H(grad p, grad f), (4.5.5)
and in terms of the coordinates &:

Au=mn— Sﬁ(grad p,gradu). (4.5.6)

4.5.3 Calculation of A® in terms of the Calabi metric

In the next step, we recall the definition of the second auxiliary function ® from
section 1.4, given in terms of u and f, resp., and thus for both possible choices of
coordinates.

The geometric meaning of ®.

As we are using Calabi’s relative normalization, we would like to point out the
geometric meaning of ®:

¢ = n+2)2 HT||2

As stated in section 3.3.2, the Tchebychev vector field T of a relative hypersur-
face (x,U,Y) vanishes identically if and only if the normalization is the Blaschke
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normalization; as we apply Calabi’s normalization, this means that, for & = 0, Cal-
abi’s and Blaschke’s normalization coincide; that means that the hypersurface is an
improper affine sphere. From the definition of p, this finally will give:

det(u;;) = const

everywhere on M. This is the original Monge-Ampere equation for improper affine
hyperspheres. Thus, from the geometric meaning, we see that our aim is to prove
¢ =0.

Reformulation of the PDE.

We consider the extended PDE (4.5.1) and reformulate it in terms of its Legen-
dre transform function f = f(x): (4.5.2) or equivalently (4.5.3). From this we
reformulate the original PDE (4.5.1) in terms of the auxiliary function p as follows:

0= g2 (Indet (fin) = —(n+2) (2 — & 2); (4.5.7)
finally we get:
n rad p||?

In the following, let f(z,...,2™) be a smooth, strictly convex solution of the
PDE

Ap= —p lered el (4.5.9)

where p is defined above, and 8 € R is a constant. Recall section 1.4 and the fact
that the PDE (4.5.1) can be expressed in both coordinate systems, in terms of (z)
as well as in terms of (£). For f(z?,...,2"), we shall derive an estimate for A®.

Proposition 4.5.2. Let f(z!,...,a") be a strictly convex C*° function satisfying
the PDE (4.5.9). In terms of the Calabi metric, the Laplacian of ® satisfies the
following inequality'

AD > 26 Z pis) 4 n(1=9) ngadtI)H2 (26(n72+6) i 2n+2n574) % (grad®, grad In p)

Q(n 1) n—1 n—1

(28%+4B8)(1-86)42—2n8  (n+2)*(n—1)
+ n—1 8n

for any 0 <6 < 1.

Proof. At p € M we choose a local orthonormal frame field of the metric . Then

AP — 22(/9,;-21)2 + QZ Bibi Zmplpﬂ (6 + 28) 0>

where we used (4.5.9).

We discuss two cases, namely ®(p) = 0 and ®(p) # 0.
1. Assume ®(p) = 0, then ® takes a minimum at p and thus grad p(p) = 0: then,

at p,
A@zzz“’;—gf

and
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2. Assume ®(p) # 0. Around p we choose a local orthonormal frame field of the
metric §) such that p1(p) = |lgradpl| (p) >0, pi(p) =0 forall i>1. Then

)2 S s 2
A =2(1-5+08) Lk 23" b _gleadon (54 25)9?
for any 0 < § < 1. Applying the inequality of Schwarz and (4.5.9) we get

22 p,i)° > 2(p11) +4Z,0u + 2 (Ap— pa1)’

i>1
2 2 4
_ n2f1 (p’n)Q n 42(&“)2 + % (P,l)pp,ll + % (pl,)12) )
i>1
An application of the Ricci identities and (4.5.9) shows that
2 2
p% Z p.ip.jii = =43 7(’)’12)3’)‘“ + 2697 + 2311—(’);2)
We insert (4.5.11) and (4.5.12) into (4.5.10) and obtain

A® 23 (p, + 2009 (o u>2 40— 5)2 (p1i)? + 2Ry; 22
>1 g
(45(n 2+6) +8) (p1LP11 i (26 (1-9) +6+4ﬂ) P2,
Note that

. . 2
(I)i -9 P,lg,li ) P,t(l’s,l) .
s P p

Hence

STy e g ey )
Then (4.5.13) and (4.5.14) together give
AD > n(1—4) (<I>q>) (2ﬁ(n 2+46) 44— 2%1:15)) (1)71&

(n 1) n—1 -
2 — —2n
+ /23_(2S Z(Pﬂ'j)Q + 2R3 (p,’)12) + 28 +45);1715)+2 2 5<I>2,

where we use the relation

(P,1)2P,11 _ l(I) P (1)2
s T %a, + O

Using the same method as in deriving (4.5.11), we get

Z(Aml1)2 > (A111)® +2 Z(Ai11)2 + ﬁ (Z Ay — 14111)2

i>1

> Z(Aul)Q - %Aln ZAiil + ﬁ (Z Am)z

Note that > A;;; = 22 % Therefore

p—1_2z mil) 200" (n+2)A111(p1

02

2( )2 _ () (n+2) (p1)® | (n+2)% 52
= 1 Z pl n—1 An pp‘}3 + 2(n71)(1) :

(4.5.10)

(4.5.11)

(4.5.12)

(4.5.13)

(4.5.14)

(4.5.15)

(4.5.16)
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The inequality of Schwarz gives

2Ry (p) Ll > — 2 nl) g2, (4.5.17)
A combination of (4.5.15) and (4.5.17) yields Proposition 4.5.2. [

Proposition 4.5.3. Let f be a strictly conver C* function satisfying the PDE
(4.5.2). Then the Laplacian of ® satisfies the following inequality:

2 2
AP > 1 ”grad oI 4 "22(3@;)10 H(grad @, grad Inp) + % o2,
Proof. We reformulated the PDE (4.5.2), and arrived at (4.5.8). In (4.5.15) we

choose 3 = —"—*4 and 6 = 0 and get
Z(‘D) 7L—4q>1P1 2R11(

p

2
eal 4 g2 (45.18)

In the following we calculate the term 2R;;2%~. Choose coordinates z?, ..., 2"

around p such that f;;(p) = J;; and 6” = ||grad pl|(p) > 0, ggﬁ( ) =0forall i > 1.
From (4.5.7) we easily obtain

Pij = Pij — l—‘fjpk = pij + Aijlpyl = % + Az‘jlp,l. (4.5.19)
We insert (4.5.19) into the foregoing expression for & ;:

(e, 1)
p?

)

o, =2 P,lp/;,u _9 P,i(/fg,l)Q =2 Ay (Pb12)2.
It follows that

. 3
TP s Yoo s as)
Therefore, by (4.5.16) and (4.5.20), we obtain
(p1)* n__Y(24)° n+1 n+2 i n+2 2
2Ry B4 > g 2A2a) LNl 4 )1)Q> (4.5.21)
We insert (4.5.21) into (4.5.18), this ﬁnlshes the proof of Proposition 4.5.3. [

4.5.4 Extension of the Theorem of Jorgens-Calabi-Pogorelov -
proof for n < 4

In dimension n < 4 the proof of Theorem 4.5.1 is relatively simple. First we consider
this case. We use the Calabi metric; recall section 3.3.4 and the definitions of p and
®. As sketched above we aim to show that ® = 0 on M everywhere.
Step 1. Subtracting a linear function we may assume that

u(0) =0, gradu(0)=0, u(£) >0, vE e R™.

Then, for any constant C' > 0, recall the notation for the level set from section 1.1.4

Su(0,C) == {¢ [ u(§) < C}.
Step 2. In the next two steps, step 2 and step 3, we derive two differential inequal-
ities for A®. To derive an upper bound for A®, we use an auxiliary function F' on
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a level set (step 2). A lower bound for A® in terms of &-coordinates follows from
Proposition 4.5.3, where we reformulated the PDE (4.5.1) in terms of ®; here we
point out that the function ® is a geometric invariant that does not depend on the
choice of coordinates. Namely, for a function u = u(&) satisfying the PDE (4.5.1),
we can reformulate Proposition 4.5.3 in terms of the &-coordinates.

To derive a differential inequality for A®, consider the function

F(¢) = exp {72 } @,
defined on S, (0, C), where m is a positive constant to be determined later. Clearly,
F attains its supremum at some interior point p*. Then, at p*,
(I> K

—vuZ—O

% 2@ 3 (w)? — v Au <0, (4.5.22)

where the norm is taken with respect to the Calabi metric; we fix the notation

’y::ﬁ and ’y, ::2#.
Note that (4.5.22) gives an upper bound for A®.

Step 3. Proposition 4.5.3 gives a lower bound for A®; we combine both inequalities
and insert Proposition 4.5.3 and formula (4.5.6) into (4.5.22); we get

n 2 ’ n n— iU g
(nt21) ‘I’+(ﬁ“/2—7 )Z(UZ)Q ny + (+721)(1 3) Zp/,J i<,

We apply the inequality of Schwarz:

n+2)(n—3) E i Ui 2 2 n+2 2(n—3)2
( n)(l pp < 2<n1—1)“/ Z(”ﬂ’) + %qx

Therefore
(7’L+2) gi (17)7/ 3))@ + (mA’/Q_’y’)Z(UJ)Q _ n,ygo

Now, if n < 4, this implies an upper bound for ® in terms of &-coordinates:
n+2 ’
é(n )1) @+ (ﬁ 7= ) Z(%i)g —ny<0.

We choose m = 8(n — 1)C, then the factor satisfies 2( 0 72— 4" >0. Finally
at p*:

exp {22 o < &, (4.5.23)

—Uu

where b is a positive constant depending only on the dimension n. In the calculation
of (4.5.23) and later we often use the fact that

2
exp {_ o } [(emm
has a universal upper bound. Since the function F' attains its supremum at p*,
(4.5.23) holds everywhere in S, (0,C). For any fixed point p, we let C' — oo, then
®(p) = 0. Therefore ® = 0 everywhere on M. This finishes the proof in dimension
n < 4. [ |
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4.5.5 Comparison of two geometric proofs

We would like to comment on the proofs of two Theorems, namely that of Jorgens-
Calabi-Pogorelov in section 4.4 and its extension for n < 4 in the foregoing section;
see also [89]. While both proofs use geometric modelling techniques and thus are
appropriate to demonstrate the geometric ideas, the proof for n > 4, in the sections
following below, is quite technical and complicated and thus not ideal to survey and
comment on geometric modelling techniques.

The Theorem of J6rgens-Calabi-Pogorelov. Our proof of the Theorem
of Jorgens-Calabi-Pogorelov starts with the geometric interpretation of the given
Monge-Ampere equation (4.1.2), using the local characterization of a locally strongly
convex improper affine hypersphere in terms of a PDE, as described in sections 4.1.1
- 4.1.2. We aim to show that the improper affine hypersphere is also a quadric, then
it must be an elliptic paraboloid, and we arrive at the polynomial solution.

For our geometric modelling we use Blaschke’s geometry. A locally strongly convex
quadric can be characterized by the vanishing of its Pick invariant J. Therefore we
aim to estimate J from above.

In a first step, we use the known fact that the Euclidean completeness implies
the affine completeness (section 4.2.2); we recall that the Ricci curvature is non-
negative. In the second step, we use two differential inequalities for the Pick invari-
ant, namely:

(i) For A J, we have the relation in section 4.1.3 as a first differential inequality,
giving a lower estimate for A J.

(i)  To derive a second differential inequality for A J in Step 2 of the proof, we
define the auxiliary function

F(p) == (a® — r*(po,p))* - J(p)

on a geodesic ball B,(pg, G) and apply the Laplacian Comparison Theorem; this
gives an upper estimate for A J.

The combination of both inequalities gives an upper estimate for J(p) at an arbitrary
point p € By (po, G):

2(n+6) a? _ 2(n+6) 1
Jp) < 55T @smr = T 'a2(1—%)2'

In the final step, for a — oo (completeness of the Blaschke metric), we get the
assertion.

The extended Theorem for n < 4. For the given PDE (4.5.1) we consider
the Legendre transform function f of v and the locally strongly convex graph hy-
persurface defined by f. Recall that the Legendre transformation is a useful tool
when studying Monge-Ampere equations.

Now we use Calabi’s graph normalization of f for our geometric modelling (sec-
tion 3.3.4). We aim to show that the Tchebychev vector field T in this geometry
vanishes identically, then the normalization must coincide with Blaschke’s normal-
ization (section 3.3.2), and in this geometry a constant affine normal characterizes
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an improper affine hypersphere (section 4.4.1). This way we want to reduce the
problem to the foregoing Theorem.
Again we derive two differential inequalities, now using the auxiliary function

2
P = (;LJ,.LQ)? ’ HT||27

where the norm is taken with respect to the Calabi metric, and aim to prove & = 0.
For this we are going to estimate ®, combining the following steps (i) and (ii):

(i)  The first differential inequality for A® directly comes from Proposition 4.5.3,
giving a lower estimate for A®, where we use the Legendre transformation of f.
(ii)  The second differential inequality, giving an upper estimate for A®, comes
from a derivation of the auxiliary function

F(&) i=exp { — o2 } @(¢)

on a level set:
S5.(0,0) :={¢£ e R" | u(§) < C}.

We use the involutionary character of the Legendre transformation and combine
both differential inequalities; this leads to an upper bound at interior points of the
level set:

exp {22 o < &
We apply the Euclidean completeness; C' — oo then gives ® = 0 and thus 7"= 0 on
M.
The comparison of both proofs clearly shows the importance of the geometric
modelling, the analogies in deriving two different differential inequalities on typical
domains (related to the completeness conditions considered), and the final limiting

procedure.

4.5.6 Technical tools for the proof in dimension n > 5

In dimension n > 4 the proof of the extension of the Theorem of Jorgens-Calabi-
Pogorelov is much more difficult than for n < 4. We will prove several estimates
that we will need for the proof of Theorem 4.5.1. As pointed out in the beginning
of section 4.5.2, for a given strictly convex function f we consider its Legendre
transform function u and also the graph hypersurface, defined by f, together with
the canonical normalization introduced by Calabi (sections 3.3.4 and 4.5.2).
Notational agreement. In this section a pair of functions, denoted by u and
f, is always a pair of Legendre transformation functions defined on corresponding
Legendre transform domains. As before we use

1 —1
. &u Y| "2 _ 0* n¥2
pe= e (o)™ = o (5

d 2
o= leradpl?

and
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From section 1.4 recall that we can express such terms in both coordinate systems,
denoted by x and &.

If k£ € N and we have pairs of functions (u*), f(*)), an obvious analogous notation
yields.

I. A gradient estimate for 2(3—3)2.

Consider R™ with the canonical Euclidean structure and a bounded convex domain
Q C R™. From [37], p.27, it is known that there exists a unique ellipsoid E, which
attains the minimal volume among all ellipsoids that contain 2 and that are centered
at the center of mass of €2, such that

Tf%ECQCE,

where n~% E means the (n’%)—dilation of E with respect to its center. Let T be
an affine transformation such that T(E) = B1(0), the Euclidean ball with radius 1
around 0 € R™. Put Q := T(2). Then

B _3(0) C Q2 C Bi(0). (4.5.24)

A convex domain Q is called normalized if ¥ is the identity mapping, and the
minimal ellipsoid is the unit ball with center of mass at 0.

Lemma 4.5.4. Let Q) CR™ be a sequence of smooth normalized convex domains,
and u®) be a sequence of strictly convex smooth functions defined on Q. Assume
that
igIzlf uF) = 4 (*) (gx) =0, u® =C>0 on 0.
k
Then there are constants d > C, b > 0, independent of k, such that
ou®\?

X 0&; _
B CES IO N <b k=12,... on i,

where f*®) is the Legendre transformation function of u®) relative to 0.

Proof. We may assume (if necessary we consider a subsequence) that the sequence
of domains €, converges to a convex domain 2 (for more details see Lemma 5.3.1
in [37]) and the sequence of functions u®) locally uniformly converges to a convex
function u™ in Q. As dist(0, 0€) > %n’%, we have the uniform estimate

n 2
S (52) ) < anic? (4.5.25)
i=1
For any k, define
i® = ul® =37 2 (0)6 — u® (). (4.5.26)

Then
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where Cj is a constant depending only on n and C. As Bn_ 3 (0) C Qk, we have

d ~(k)||12 2
lgrad @I\ pq a2 < 0 S < 4ndCE
(1+ fk)2 (cn.)
on the ball B, _4(0), where f®) is the Legendre transformation of @(®) relative

2-1n"2 2-1n"2
assume, by an orthonormal transformation, that p has coordinates p = (£1,0,...,0)
with & > 0. Then, at p,

; - ; (o)
Co+ f® > a4+ f) = 282 ¢,

1

aa® \?
7( il ) < i < 4n3
(Co+ f®0)2 ~ & '

Therefore there exist constants d > 1, b > 0, depending only on n and C, such that

to 0, and dy  := dist (B 3 (O),@Qk). For any p € Q,\B 3(0) we may

It follows that

(855(’“))2
CENCI

where % denotes the radial derivative. From (4.5.25) and (4.5.26) we get

2 _ 2
(242) <2 (22) + sn°c?

Note that
B = %~ % 0) FO = 19+ u®(0). (45.27)

Then

(au(k) 2

or

e <Y

for some constants d’ >1 and o >0, independent of k. Note that
MO)
leradu® )] = e - | 257 )]

where ay, is the angle between the vectors grad u(®)(p) and ag—(:)(p). Since u®) = C
on 0%y, the vector grad u(k)(p) is perpendicular to the boundary of the domain €
at any p € 0Q. As  is convex and 0 € €2, it follows that the sequence Coslak
a uniform upper bound. This proves Lemma 4.5.4. |

has

Remark. From the second equation in (4.5.27) we know that
f(k) > —C, on .
Thus we may choose d in Lemma 4.5.4 such that the following holds for any k € N :

d+ f® > 2, %gL on Q. (4.5.28)
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II. Further estimates.

From now on we assume that n > 5. We denote by S(£2,C) the class of strictly
convex C'*°-functions u, defined on 2, such that

igfu(f) =0, ulon = C,

where C' is a positive constant. Assume that 2 C R™ is a normalized domain, and
u € S(Q,C) with u(p) = 0. We introduce the abbreviations:

A := max | ex {— m }L{’W ,
o { PUT T

— m (v +20)p®
B.—mgx{exp{—m-f-T}u}’

2na
(d+f)n+2
where
a:=n+2, for n=>5 and 6;
a:z%—i—%_l, for n>"7,
and
zk 2
m = 32(n+ 2)C, Ti=¢€ (Zdif)é .
From Lemma 4.5.4 we choose the constants € and d such that
1 [utf]
T<%7 d+f227 d+f S]-

on the normalized domain 2.
The following lemmas are important tools for the proof of the extension of
Pogorelov’s Theorem.

Lemma 4.5.5. Let Q C R™ be a normalized domain, and u € S(Q2, C) with u(p) =0
which satisfies the equation (4.5.1). Then there is a constant di > 0, depending only
on n and C, such that

A<dy, B<d.

Proof. Again we consider the graph hypersurface, defined by the Legendre trans-
form function f of u, together with the normalization by a constant transversal field
such that we can apply the tools from sections 3.3.4 and 4.5.2 as before.

First step. We will prove the inequality A < 30B.
To this end, for 0 < a € R, recall the definitions of the functions p and ® from
section 1.4 and consider the following function

= _om | _ p%®
F.—exp{ C*“}(dJrf)%
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defined on 2. Clearly, F' attains its supremum at some interior point p* of 2. Thus,
at p*,

d
A(I:b Z(@zl) + n+2aq) 2na | Af

N2

+20 . 2 N )~y Au <0, (4.5.30)

where again denotes covariant derivation with respect to the Calabi metric $.

In the calculation of (4.5.30) we used (4.5.8). Next we insert the relations (4.5.5),
(4.5.6) and Proposition 4.5.3 into (4.5.30) and get:

[”T”a + (n+2)2] d +

n—1

wo
b

Z(‘P) n+2 P uipi
n— 1 + + T pp

E f,i P.i + 2na | Z(fl) n?—3n—10 <I>,i P
(d+f)p n+2  (d+f)? 2(n—1) o P

-7 Z(U’,l 717—% d+f§0

This and (4.5.29) give

—no

. 2 2
[w + 2. Lo &} + [2(“” a4 2 ]cb

n— 1 P n—1 n—1
+2)(n—3 i Py fiipi

P R - R,
'i 2

R ) ST e T, (4531

Obey the inequality
Ou Of ij Ou
|Swifal _ 12 9gpeF wavl 1IN &pg ]l g
Ey a+7 = —ar - = @ =1 (4.5.32)

and insert it into (4.5.31):

2 2 n?a? no > (fi )2
ﬁ (7) Z(U,i) + {4(114:12)2(” 1) + 721+2] (d+h?z

(n+2)(n—3)—2a Z Ui pi (atn+2)? _ 2n%a
+ n—1 P + n—1 q) n+2

dnala+n+2) > fip na
- (n—(l)(n+2) : d+f)pp -7 Z —( m)’yﬁ 0. (4.5.33)

We discuss two cases:
(i) For the dimension n = 5 and 6 we choose o = n + 2. In this case it is easy to
check that

4n’a? 2na 2n(3n—1)

(n+2)2(n—1) + n+2 n—1

Using the inequality of Schwarz we get

(n+2)(n—3)—2a > uip,; 2 ("+2) (n—5)2
n—1 v p £ — 2(n—-1) Z + (n—1) q)’
dna(a+n+2) Y flip. < 2n(3n—1) 3 (f,:)° 8n(n+2)?2 ®

D42 @ P = =1 (@+H® T Brn—Dn-D
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(ii) For n > 7 we choose o = W + 271, Then it is easy to check that
4n2a? 2na 4n?a? (n+2)(n—1) 4n>a?
(n+2)2(n—1) + n+2 — m+2)Z(n—1) (1 + 2na ) > (n+2)(n2-1)"

Again we use the inequality of Schwarz and have

1,20 Yipi 1 2 2 | n—1
V== S ey Z(Uz) + 25,

n(2n+5)a Y fip.i 4an’a? S (£.4)? (2n+5)*(n—1)
Wtz @ De = ERmED (@ hr T T 2

After the separate discussions of n = 5,6 in (i) and n > 7 in (ii), we return to
(4.5.33) for all n > 5. Note that ﬁ’ﬁ > ~'. From (4.5.33) and the inequalities
above we get:

1 (n+2)2 4 2n?
B0 — (n+ i)y - 28 <0,

This finally gives the claim in the first step.

Second step. Now we consider the following function

F = exp{— T +T} . {yt2o)or.
o (a+f) w5

defined on 2. Clearly, F attains its supremum at some interior point ¢* € . Thus,
at ¢*,

—yui+ I b 2 e Ll (4.5.34)
and with the definition ~ "= (CG_—mu)4
(ﬂm - % -7 ) D () + (vl?a B 7) Au
+Ar 4z - 2 (2 - HLE) <o (4.5.35)

We use the inequality of Schwarz and the calculation of the Laplacian in section
3.3.4 to derive the following two relations:

2 £ 2 ()
Y (r)? < 8er gty + 877 2L (4.5.36)
_AREN) H(grad(¥ (z*)?) , grad )
AT =€ =g — 4 d+7)?
S (M) Af SR S (h)°
— 26 S T be Ty

= @y [ZZf” + 22 g (grad Inp, grad (Z(mk)z))}

4e $(grad (X (=")?), grad f) 1 e @R (L)
ECETHE d+f N AR L

) (a:k)2 9(grad Inp, grad f)
(d+1)3

sz
- 2ne%igr—f))3 — (n+2)e

2 @ Zf” — 277 %(f;))j - 3(7112)2 7O — 2nT. (4.5.37)
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Note that % > a >n+2and (4.5.34); we obtain
, 2
_ 1 Y Ui 2na [
® a2 Z <_7u7i + Y2« + T~ n_+2d+f)

, 2
> X (et ot~ B3 ) -
2 2, 2 YU 1 Y 1 2
230 ) (W) + e Gihr — e e — @ )
where we use the fact (4.5.32).
Now we insert (4.5.5), (4.5.6), (4.5.34) and (4.5.36-37) into (4.5.35) and use the
inequality of Schwarz; this gives

it
€

5-@—]})2—a0©—a17—3na§0

iy nt2
for some constants ag > 0 and a; > 0, depending only on n. Since > f* >np n ,

we get

L S%(ao¢+2a1’y+6a).
It follows that
14242
B " na <as A+ asB

for some positive constants as and az. In the first step we proved A < 30 - B, this
finally gives

B S d17 A S dl
for some constant d; depending only on C' and n. This proves Lemma 4.5.5. ]

For the next Lemma we introduce the following notation and assumptions. Let
u(§) € S(Q,C) (see section 4.5. II). Consider the function

Féimexp {— gt 4 7] Q- lgrad K, (4.5.39)

where Q > 0, 7% > 0 and K are smooth functions defined on the closure Q. F*
attains its supremum at an interior point p*. We choose a local orthonormal frame
field on M such that, at p*, the function K satisfies K 1 = ||grad K|, and K ; = 0,
for all ¢ > 1.

Lemma 4.5.6. Under the forgoing notations and assumptions, at the point p*, we
have the following estimates

2 (5 8- 1) (Ka)? +2 3 K (AK),
+2(1-0) Y A2y (Kq)? - B2 0(K))? - 5tz (AK)?
[0 S —vAurar+ 42 - 2@ (k)2 <0 (45.39)

for any positive number 0 < § < 1.
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Proof. We can assume that ||grad K||(p*) > 0. Then, at p*,
Fi=0 and Y F% <0

Using the definition of F*, we calculate both expressions explicitly and get

(—yui i+ B ) DK+ 2Y KKy =0, (4.5.40)
25 (Ki)? + 2) K K + 2 (—’yu,i +r 4 %1‘) KK
+ o e - rhu+ AT+ A2 - G (K2 <0 (4541)
Let us simplify (4.5.41); (4.5.40) implies
2K 35 = (yus = % - %) K. (4.5.42)

Apply the inequality of Schwarz to (4.5.41):
2> (Kij)? >2(K1)* + ;25 (AK — K 11)? +4) (K1)

i>1
>2 (32 = 8) (Ka)? + 43 (K1) — sl (AK)?  (45.43)
j>1
for any 6 > 0. Inserting (4.5.42) and (4.5.43) into (4.5.41), this gives:
2 (5 =0 1) (Kan)? 42 ) K K jii — st - (AK)?

+ [—7, Z(UZ)Q — yAu + Arf + % — Z(QLQ)} (K 1)? < 0. (4.5.44)

For the third order terms K j; we apply the Ricci identity with respect to the
Calabi metric and obtain:

2 K Kji=2)Y K;(AK);+2R;(K,)
—2ZK AK), +2ZAmll —(n+2) ZAllk (K q)?
>2 Y K (AK);+2(1-0 ZAM )2 - D% g ()2,

We insert the last inequality into (4.5.44); this proves the assertion of Lemma 4.5.6.
|

Lemma 4.5.7. Let Q C R™ be a normalized domain, and u € S(Q2, C) with u(p) =0
which satisfies the equation (4.5.1). Then there is a constant ds > 0, depending
only onn and C, such that

64(n—1)C} P Y uis
exps — . — < d
p{ Cru (@rpriz =P

on ), where « is the constant in Lemma 4.5.5.

Proof. Recall the definition of the function F* in (4.5.38) and choose now the
following explicit functions

ka [e%
™= e. (ng_f))2, K :=az!, Q= —ya—
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First step. We want to give a lower estimate for the following expression:

2 Z K’j(AK)’j +2(1-9) Z AmliAmle7iK7j~
For this purpose we recall the expression for the Laplacian from the end of section
3.3.4 and the fact that, in local terms, the Hessians of the graph functions f and u,

namely f;; and u;;, give the Calabi metric, resp., and f% and u% give the inverse
matrices, resp. Now we calculate the following two relations

AK =22 . g(grad In p, grad K),
2 .
23 K (AK),; =(n+2) (”“ ()P = O (K2 1Y KK ”7)
.. n 2
>(n+2)Y L8 KK -6y (Ku)? — S o (K )2

In terms of the coordinates &1, ..., &, we calculate the sums

D (Ky)?  and > AL, (K))

We recall the expression for the Christoffel symbols of the Levi-Civita connection:
l"fj = 13 uFly;;, then

for § < 3 +2)

K j = Ulij — § ulku uhj: ull]7

2 k., gl
Z(K,ij) =1 ZUZ u?' urj uig,
Z 2 2 _1 Z ik, jl Z 2
Amll (KJ) =1 u' u? Ujjp Uklq uP” U1y u?® Urs = (K7ij) .

We apply (4.5.7) and calculate in terms of the coordinates !, ..., 2™

Pij _ pi , Pi Pu _ pb PJ k Pr
Pig — pi P gnd > Al
P PP + i op-

This gives
Tl+2 ZPU K K < 52 _|_ (n+4()s ~(I>(K’1)2 (4545)

and
ZZKJ(AK)J + 2(1 - 6) ZAmli Amlj K,i K,j
> (2-40) Y (K )2 — 2 9 (K )2 (4.5.46)

Second step. In (4.5.41) the following expression appears (on the left hand side),
and we calculate:

)2 noa-r+mn n
29 - 2(32,» > _(nodni 2 g _9p(a 4 1). (4.5.47)
Next we calculate (4.5.42) and use (4.5.32):

S(Kw)? =13 [yus—a- 2+ (23 +2

(43 [ (i’r; +2) &

|: Z 4712(12 > (f)
n12)2 (d+)?

- %oﬂ(b(K,l)Q —i(K,)? Z(T}g)? —ay(K1)?  (4.5.48)

] (K 1)?

)-#
}2 B () (5
] (K

Y

Y
m|"‘
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for some positive constant a4.

In the definition of the function F* there appear constants m and C, while the
constant m > ¢ > 0 in Lemma 4.5.6 is arbitrary so far and appears in (4.5.45);
now we choose

§= 1o

CED) and m = 64(n — 1)C,

insert (4.5.36-37) and (4.5.46-48) into (4.5.39) and apply again the inequality of
Schwarz; we get:

it
€

X (0124_—]})2 —as® —agy—ar < 0. (4.5.49)

The constants ay, ..., a7, that appear in the foregoing calculations, depend only on
the dimension n. Note that

ZJM > upy = (K1)*

Using Lemma 4.5.5 we obtain that

exp{-g ) — s < d
p{ C—u (d+f)72l_+2+2 = “2

for some constant ds that depends only on n and C'. Similar inequalities for u;; are
true. Thus the proof of Lemma 4.5.7 is complete. ]

To sum up, from Lemmas 4.5.5 and 4.5.7, we get the following estimates using our
notational agreement from the beginning of section 4.5.6.

Proposition 4.5.8. Let Q C R"™ be a smooth normalized convex domain and 0 the
center of Q. Let u be a strictly convexr C*° function defined on Q). Assume that

igfuz(), u=C>0 on 09

and u satisfies the PDE (4.5.1). Then there exists a constant

a:=n+2, for n=2>5 and 6;
o= 7("”)2("_3) + oL for n>"7,
such that
—L o <ds, —2% - <d, %Sd?:
(d+f)n+2 (d+f)m+? (d+f)n+2

on Su(%) ={{eR"|u< %} for some constants d > C and d3 > 0, where d3
depends only on n and C.
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4.5.7 Proof of Theorem 4.5.1 -n > 5

Now we come back to the Monge-Ampere equation in the version (4.5.3) for the
Legendre transform function f of the strictly convex function u : R® — R. We
recall our notational agreement from section 4.5.6. We equip R™ with the canonical
Euclidean structure.

Step 1. Let p € R™ be any point. By subtraction of a linear function we may
assume that u satisfies

gradu(p) =0,  u(€) >u(p) =0, VEER™

Choose a sequence {C}} of positive numbers such that Cj, — 0o as k — co. In
analogy to section 4.5.4 we have, for any C}, that the level set

Su(p, Cr) :={& | u(§) < Cr}
is a bounded convex domain. Define the sequence u(® : R” — R by
u® (€)= %i), k=1,2,...

By g denote the center of mass of Sy (p,Ck). We repeat an argument from the
beginning of section 4.5.6, see [37]: For each k there exists the unique minimum
ellipsoid Ej of S, (p, Ck), centered at g, such that

n" 2By C Su(p,Ck) C E.
For fixed k define a linear transformation T} : R — R™ by
Tp: &= al&+b;
such that
Ti(qr) =0, Tx(Ex) = B1(0).
Then
B _s (0) C Qp :=Tk(Sulp, Cr)) C B1(0).

Thus we obtain a sequence of convex functions
M) = u® (SBE ~ 1), S 0E — 1)
where @*) : @, — R, in terms of the new coordinates £;, and where (b?) = (al)~?.

Step 2. We simplify the notation and proceed with «*) : Q; — R instead of @),
and ¢ instead of 5 . Considering appropriate subsequences, we then may assume that
the domains 2, converge to a convex domain  and the functions u(*) (&) converge
to a convex function, locally uniformly in . For any fixed function u*) consider
its Legendre transformation with coordinates

; (k)
= ou

0¢;

and its Legendre transform functions

f(k)(xlv ’x’ﬂ) = Zfz 8(};5(?) o u(k)(gl’ "'5577«)3 (517 7671) € Qka
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defined on the associated Legendre transform domains
Q= {0 | @' = 2L

Obviously, any f*) satisfies the PDE of type (4.5.3), therefore there exist real
constants dgk), - d,(lk), d((Jk) such that

det (%) = exp {Z dl(.k)mi + dék)} . (4.5.50)

Step 3. Now we will use our technical tools from the foregoing section, namely for

each function u(®¥) we apply Proposition 4.5.8, where we set C' = 1. This way we
get the following uniform estimates

(k) (k)ya . g (k) (k) (k)
— < dy, ()@ < dy, (P> > g <

on 2na 2na |5 d4
d+fENH" d+fR))™ FANICONND
(d4 )" +2 (d4fO2) "2 (d4fO2)™+2

on S, (T*(p), %) for the same appropriate constant dy > 0, where « is a positive
constant.

Step 4. Let Br(0) be a Euclidean ball of radius R such that
S (TH(p), ) C B g(0), for all k. The comparison theorem for the normal map-
ping (see section 1.3) yields

B} (0) C Qf
for every k, where § = 5= and B}(0) = {z | Y (2*)? < 6?}. Note that u*(T*(p)) = 0

and its image under the normal mapping is (z!,...,2™) = 0. Restricting to B} (0),
we have

RS0 =St < R

where R’ = % +1. Thus the sequence { f(*} locally uniformly converges to a convex
function f°° on B (0); moreover, applying the foregoing to the terms of the form
(d+ f®), we conclude that there exist uniform estimates

pM) < ds, (p™)2 @™ < ds, (p™)* > ulf) < ds (4.5.51)
on Bg‘ (0) for the same appropriate constant ds > 0.

Step 5. Below we apply the following Lemma to any function f*) from step 4.
Lemma 4.5.9. Let f : x +— f(z) be a smooth strictly convex function defined on
B}(0) satisfying

—R' < f<R.

Then there exists a point p* € B;(0) such that, at p*,

n
’ n+2 n+1
L ()72 =,

where p was defined in terms of f according to our notational agreement above.
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Proof. Assume the assertion in Lemma is not correct. Then
% > dg on B}(0).
It follows that
det(fi;) > (dg)"*? on B3(0).

Define the function

FH(z) = (<c§3:j2) " (Z(ﬂf - 52) +2R" on B0

Then
det(F%) =1 - (de)"™* < det(fi;) on B;(0)
and
F¥(z) > f(z) on 0B(0).
The comparison principle for Monge-Ampere equations (see section 1.3) implies
F¥(a) > f(x) on Bj(0).
On the other hand we have

dn+2 L
6

FH(0) = — (2n+1);52+2R’: —2R' < f(0).

This is a contradiction, thus Lemma 4.5.9 is proved. |

Step 6. We are now ready for the final steps of the proof of the extension of
Pogorelov’s Theorem. From Lemma 4.5.9 and the uniform estimates in (4.5.51)

it follows that, for fixed k, there exists a point pp € Bj(0) such that the four

functions  p*), G ®® and 3, u'¥ are uniformly bounded at pg. Therefore

there are constants
0 < M <N <

that are independent of k, such that we get the following lower and upper bound
for the eigenvalues v(¥) of the matrix ( fi(f)) at pg:

A < P (pr) < A%
Since each f(¥) satisfies the PDE (4.5.50), we have
o) = N~ f 0 (1n p®));(1n p®)); = Lr S f DTl
where the coefficients dgk) appeared in the PDE for f(). From this it follows that
D@ <+ 27N e®(py) < d
for some constant d7y > 0. Thus
n o8 2 k
lerad np |2 = 37 (2522)" = L S (@)? < d, (4.5.52)

where || - || denotes the norm with respect to the Euclidean metric.
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Step 7. For any unit speed geodesic, starting from py, it follows that

2222 < lgrad Inp®)|, < dr. (4.5.53)

Thus, for any point ¢ € B;(0), we have

P (pr) - exp{ — |g — pildr} < p®(q) < p® (pr) - exp{lg — prldr}.  (4.5.54)

In particular, we choose q to be the point with coordinates z* = 0 for all i > 1; that
are the z-coordinates of the point p as considered in the beginning of Step 4. From
the inequalities in (4.5.51) it follows that

o) (g) = Lematen I (g) < dy (4.5.55)
for some constant dg > 0 that is independent of k.
Step 8. Now assume that ®(p) # 0, then a direct calculation gives
3" (q) = Cp®(p) — 00, as k — oo.
This contradicts (4.5.55), thus
d(p) =0.

Since p is arbitrary we conclude that & = 0 everywhere. Consequently we arrive at
the PDE

93u _
det (agiagj) = const > 0.

Thus M is a Euclidean complete parabolic affine hypersphere and therefore an

elliptic paraboloid. The proof of the extension of Pogorelov’s Theorem is now
complete. [

4.6 A Cubic Form Differential Inequality with its Applications

The following well-known result of E. Calabi is related to the Theorem of Joérgens-
Calabi-Pogorelov from section 4.4. There we assumed Euclidean completeness, while
the following Theorem states that every affine complete, parabolic affine hyper-
sphere is an elliptic paraboloid [19]. From an analytic point of view this result can
be restated as follows:

Theorem 4.6.1. Let f be a smooth, strictly convex solution of

det (5245) =1 on ©

Oz
and M = {(z, f(z)) | © € Q} be the graph defined by f. If M is affine complete

then f must be a quadratic polynomial.

Here we give the following generalization. For the definition of an a-metric we refer
to section 3.3.5.
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Theorem 4.6.2. [62]. Let f(x!,...,a™) be a strictly convex C™-function defined
on a domain Q C R™ satisfying the PDE (4.5.2). If a # n + 2 and the graph
hypersurface M = {(z, f(x))} is complete with respect to the a-metric then M must
be an elliptic paraboloid.

Remark. In case @ = n + 2, the foregoing theorem is wrong. We give a counter
example: the graph

h(z',...,2™) = exp{z'} + Z(ml)Q
=2
is an (n + 2)-complete solution of the PDE (4.5.2).

Remark. In case a = 0, we get the following theorem [47].

Theorem. Let M be an affine Kdhler manifold. If the Hessian metric of M is
affine Kdhler-Ricci flat and complete, then M must be R™ /T, where T is a subgroup
of the group of isometries which acts freely and properly discontinuously on R™.

4.6.1 Calculation of AJ in terms of the Calabt metric

In the following we will use the Calabi metric to calculate. Recall the definition of
the functions p and ® from section 3.3.4:

n rad p||?
= —3mdet(fiy) = 22 Imp, @.=1E0rl — 4 | gradp||?.

Lemma 4.6.3. Consider a locally strongly convex graph hypersurface with Calabi’s
normalization. In terms of the Calabi metric, the Laplacian of the relative Pick
invariant J (see section 3.3.4) satisfies

n—+2 4
AJ 2 iy > Aijk gk + ae || VAP +2J° - (n£2)” g2,
here VA denotes the covariant derivative of A, and V denotes the Levi-Civita con-
nection V = V(9).

[

Proof. Choose a locally $)-orthonormal frame field z;e, ..., e, and denote by “,
the covariant derivation with respect to the Calabi metric . The Ricci identity
and the Codazzi equations (3.3.3) give

AAgj, = Z Aijin = Z Aiji ki
= Z Aijrue + Z Aijr Ryl + Z A Rrjrr + Z ArjiRrikl
= Q.ijk T Z Aijr Ryl + Z A Rrjr + Z ArjiRriki .- (4.6.1)

MDAT =3A (Z Azgjk) = (Aijka)® + Y Aije Aijiu
= Z Aijk @ik + Z(Aijk,l)Q + Z AijrAijr Ry
+ Z(AijkAirl — Aij1Airr) Rrj.- (4.6.2)

Therefore
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For any p € Q, by an appropriate coordinate transformation, we may assume that
fij(p) = 0i; and R;;(p) = 0 for i # j. From (3.3.4) we have

E 2 E el
ii =12 fml] % fmii Szm In
m

m,j
>3 (Z(fmiz‘)Q +(n42)) " fonii 52w In p)
> -2l (4.6.3)

Inserting (3.3.2) (4.6.3) into (4.6.2) we get
%AJ = Z Aijiepijre + Z(Aiij)Q + Z(szkl 2+ Z AijiAijr Rk
>3 Aikpan + IIVAI2 + 3 (Rig)? — S50 42,)0. (4.6.4)

By (1.1.3), (3.3.5) and the inequality of Schwarz we have

Z(Rijkz)2 > #1) (Z A%y~ Z i)2)2
> 2n(n 1) (Z Azgk) %@2 (465)

We substitute (4.6.5) into (4.6.4) and use the inequality of Schwarz; we finally get

4
AT > 25" Agkpign + g VAR + 277 — B2 02, n

In particular, if f satisfies the PDE (4.5.2), we choose the coordinates (z1,...,2™)
at p such that f;;(p) = d;;, then we have

@ik = 222 ((In p)iAijt) 4, = 242 ((In ) m Apim Aijt + (0 p) 1 Aiji k) -
Young’s inequality [38] and the inequality of Schwarz give

77,(nn+21) Z A'L]kAZ]lAklm (hl p)
n 2
nzln-i?l) ZAijkAijl,k(lnp)J < ﬁ Z(Aijk 1)2 + ( +2) Jd
n(n— 1) Z z]kl + J2 + (n;;g 2. (467)

I A

172 4+ 8n(n— 1)*(n +2)* @2, (4.6.6)

N

\ /\

We insert (4.6.6) (4.6.7) into Lemma 4.6.3 and obtain the following corollary:

Corollary 4.6.4. If [ satisfies the PDE (4.5.2) then we have

AJ > J? —10(n + 2)%®2. u
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4.6.2 Proof of Theorem 4.6.2

It is our aim to prove ® = 0; from the definitions of ® and p, this relation implies
that the a-metric and $) coincide modulo a positive constant factor, and thus

det(fi;) = const

everywhere on M. Then Theorem 4.6.2 follows from Theorem 4.6.1.
Denote by r(pg, p) the geodesic distance function from py € M with respect to
the metric G(® from section 3.3.5. For any positive number a, let

Ba(po,G'™) := {p € M| 7(po,p) < a}.
In the following we derive an estimate for % in a geodesic ball By (po, G(*)). Set

A:= _ max {(a2 — 7"2)23} , B:= _ max {(aQ — 7"2)2%} .

Ba(po,G(™) P Ba(po,G(®) r

Lemma 4.6.5. Let f(z',...,2") be a strictly convex C*°-function defined on
Ba(po, G\). If f satisfies the PDE (4.5.2) and o # n + 2 then there exists a
constant C' > 0, depending only on n,«, such that

A< Ca®, B<Cd®.
Proof. Step 1. We will show that
A< CyB3a+ Cya?,

where C7,Cys are positive constants depending only on «,n. In analogy to section
4.4 where we used the Blaschke metric, consider the function

F = (a® - 7“2)2,0%,
defined on B, (pg, G'). Obviously, F attains its supremum at some interior point
p*. We may assume that r2 is a C?-function in a neighborhood of p*, and ®(p*) > 0.
Choose an orthonormal frame field on M around p* with respect to the Calabi metric
9. Then, at p*,

[} i 4rr % 7

T e« p/; =0, (4.6.8)
)2 n+2)a r2p® rAr >

A<I;I> Z(;DI);) ( 22) (p - (a82_£2)2 - f2—T2 - a.g/ir2 <— 07 (469)

where we use the fact

d 2
Ap =l grad r |P=

“.” denotes the covariant derivative with respect to the Calabi metric $ as before.
We insert Proposition 4.5.3 into (4.6.9) and get

1 |lgrad <I>\|2 n%—3n—10 i P (n+2)® (7L+2)a __124%p* drAr
— E = P <0.

n—1 P2 2(n—1) p n—1 (aZ=r2)2 ~ @22

Substituting (4.6.8) and using the inequality of Schwarz yields
(Oc—(n+2))2—eq> - Ol (agi/?;)g _ ArAr S O (4610)

n—1 a?—7r2
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where € is a small positive constant to be determined later, and C is a positive
constant depending only on n,« and e.

Now we calculate the term f{ _AT Denote a* = r(pg, p*). Assume that
2\ _ &/ J } _J

max =20 = 2(p), max 2 b = =(q).

Bq+ (po, G<a>){ } e @) Be+ (po, G<a>){ (@)

From the PDE (4.5.2) and the definition of the a-Ricci curvature in (3.3.10), we
have

(0% n— o 2 n o n «
R = Rij— 522 () g Aijrt U2 (In p) s (ln p) 5 — 3 (522 + 2220 05,

For any p € Bg-(po, G'), by an appropriate coordinate transformation, we may
assume that f;;(p) = d;; and R;;(p) = 0 for ¢ # j. Then from (4.6.3), using the
inequality of Schwarz, we know that the Ricci curvature Ric(M,G(®) with respect
to the a-metric on B« (pg, G(*)) is bounded from below by

Ric(M,G) > ~C3 (2(5) + £ (q)) (4.6.11)

e
for some positive constant Cs, depending only on n, a. By the Laplacian Compari-
son Theorem (see section 1.3), we get

rA@®r < (n —1) (1—|—C’2 (\/%(f)) + \/pia(q)) r).

Thus, using the expression for the Laplacian A(®) in (3.3.9), we obtain

* rA@p n—2)ar *
drde (p*) =42°74 <p>—2< 207 & (grad n p, grad r)(p*)

a?—r2 a?—r2 aZ—r2
R ey
+ 25 O(0") + Cs 5Ly (07) (4.6.12)

for some positive constant Cs depending only on n, €, a.
We insert (4.6.12) into (4.6.10), this gives

(a—(n+2))2_252 < C4a2)2 + 4(n—1)aCs ( %(p‘) + 03 pia(q)) , (4613)

n—1 p* — (a?—r a?—r?

where Cy is a positive constant depending only on n, €, c.

Step 2. To derive an upper bound for % from (4.6.13), note that
A= (a® = 1?)*(p) ;5 () = (a® = 1*)*(p") 5= (),
B> (a® —1%)*(q) 2 (a) = (a® = r*)*(p") 2% (a).
Multiplying both sides of (4.6.13) by (a® — r2)2(p*), we have
(a2 3¢ 4 < OyBEa + Cga?, (4.6.14)

n—1
for some positive constants Cs, Cg depending only on €, o, nn.

In case a # n+2, we may choose € small enough such that % > 0. Then

A< C7B%a + Csa?, (4.6.15)
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where C7, Cyg are positive constants depending only on «, n.
Step 3. We will prove the inequality

B S 013./4 + 014Cl2
for some positive constants C13, C14 depending only on n, c.
Consider the following function

B (2 2\2 g

Fi=(a"—1")"%
defined on B, (po, G(®). Obviously, F attains its supremum at some interior point
q*. Then, at ¢*, we get

Ji 4rr ; i

S — ozp,; =0, (4.6.16)
)2 n+2)a r2p% rAr >

AJJ Z((}]?L) ( 22) ®— ((182_;?2)2 - ;2—7’2 - aglp—r2 <0. (4617)

We discuss two cases:
Case 1. L (¢*) < %(q*), then

p
B=(a®—1")?%(q") < (a® 1) % (¢") < A

Y

Then Step 3 is complete.

Case 2. p%(q*) > /;%(q*). We use Corollary 4.6.4, the inequality 1 > 2(¢*),
(4.6.16) and the inequality of Schwarz to obtain

J— Cgd — MaZp"_ drdr (4.6.18)

(a2—r2)2 a2—r2

where Cy is a positive constant depending only on n, .

Denote b* := r(po, ¢*). Assume that

@ D [~ J J
max o (= e ) _ max b= = .
Eb*(po,G<ﬂ>){p } P (1) By (po,G(®)) {P } P (1)
As in step 1, from the inequality of Schwarz and Young’s inequality (see [38]) we
get, at ¢,
n—1)a <« ~ a2 p®
e o An=DaCsp (\/,;%(pl) + \/pia(ql)) + 04+ Chp 5oy, (46.19)

for some positive constant Cyo depending only on n, a.
We insert (4.6.19) into (4.6.18) and use the inequality of Schwarz again, then:

(@® — 2L (q") < Cui(a® — P22 (q") + (a* — )(¢") Z (1)
+1(a® - 7“2)2((1*)%@1) + C120?,
where C11,C2 are positive constants depending only on n, .
Using the same method as in Step 1, we obtain the inequality

B < Ciz3A+ 014a2 (4620)
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for some positive constants C13, C14 depending only on n, . Step 3 is complete.

Step 4. From (4.6.20) and (4.6.15), there exits a positive constant C' depending
only on n, « such that

A< Ca®, B<Cd [ |
Proof of Theorem 4.6.2. Using Lemma 4.6.5, at any interior point of
B (po, G'®), we obtain

2 < a®

o (a2—r2)2"

For a — oo we get
P =0.

This means that M is an affine complete parabolic affine hypersphere. We apply
Theorem 4.6.1 and conclude that M must be an elliptic paraboloid. This completes
the proof of Theorem 4.6.2. [ |

Comment on the proof. Recall the comparison of two geometric proofs from
section 4.5.5. In a similar way we would like to comment on the proof of Theorem
4.6.2.

Again we use the Calabi normalization and the Calabi metric for the geometric
modelling; we aim to show that ® = 0 on M, that means to show that the Tcheby-
chev vector field satisfies T = 0 (compare the comment on the extension of the
Theorem of Jorgens-Calabi-Pogorelov for n < 4 in section 4.5.5); this way we aim
to reduce the problem to Calabi’s Theorem 4.6.1.

As before we apply two differential inequalities.

(i) The first one is given in Corollary 4.6.4; it is an analogue of (4.1.7).

(ii)  For a second differential inequality (4.6.9) we consider the functions

(2 228 e (2 _ 2\2
F:=(a®—1%) o and F:=(a*—1°) e

on the geodesic ball B, (po, G(O‘)) with respect to the metric G(®), and apply the
Laplacian Comparison Theorem again to get (4.6.13) (note: according to the as-
sumptions the a—metric is complete).

To get an upper estimate for ® on the geodesic ball we need the joint estimate for
the maxima A and B in Lemma 4.6.5; this need follows from (4.6.15) and (4.6.20).
For any interior point p € B, (po, G(®) this finally leads to the estimate

P 1
p_&(p) S C a2(1_;%_)2-

We apply the completeness assumption: then ®(p) — 0 for a — co.



Chapter 5

Affine Maximal Hypersurfaces

5.1 The First Variation of the Equiaffine Volume Functional

We consider a non-degenerate hypersurface z : M — R"! in unimodular affine
space and a (sufficiently small) domain D C M with boundary 9 D; its volume is

V(D) = /D av, (5.1.1)

where the equiaffine volume form was calculated in section 2.2.1. We wish to com-
pute the first variation 6V (D) of V, keeping the boundary 0 D fixed, cf. [27].

We describe this situation analytically. For this, let I be the open interval
—% <t< % and f: M x I — R™"! be a smooth mapping such that its restriction
to M x {t}, for any ¢ € I, is an immersion, and where f (p,0) = z (p) for p € M.
We consider a frame field e, (p,t) over M x I such that, for every ¢t € I, e; (p,t)
are tangent vectors, and e, 11 (p, t) is parallel to the affine normal of the immersion
f (M xt)at (p,t). We pull the forms w®,w? in the frame manifold back to M x I;
since the vectors e; span the tangent hyperplane at f(p,t), we have

W't = qadt. (5.1.2)
Its exterior differentiation gives
S W AW 4 dt A (awpi] + da) = 0. (5.1.3)
Thus we can set
Wt = " hijw! + hadt, (5.1.4)

aw T} + da = Z hiw' + hdt,
where, as before,
hij = hji.
Exterior differentiation of (5.1.4) gives
3 (dhij =S hawk =3 b+ hy w;;ﬁ) Awl

+3 (dhi =S hewt +hwltt -0 hy wa_H) Adt = 0. (5.1.5)

89
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Hence we can write (see section 2.4.1):
dhi; = Z hik wF + Z Rk wh — hijwitl + Z hiji WF + pi;dt, (5.1.6)
dh; = thwf — hiwit + aZhijwiﬂ + Zpijwj + ¢ dt,
where h;j;, is symmetric in all three indices, and
Pij = Pji-
Let (H) be the adjoint matrix of (hs), so that, with H := det(h),
> HY hj =6} H. (5.1.7)
By (5.1.6) we have
dH =Y H9dhij = — (n+2) HwT1 + > H7 hijw® + > HY pijdt. (5.1.8)
An appropriate change of frames
er = Zafek, enyl = A le, +Zafl+1ei,
where A = det (af), gives
> HY hij =0.
Geometrically this means that e, is parallel to the affine normal of the hyper-

surface f (M xt) at f(p,t). Now the resulting equation (5.1.8) can be written
as
fronii + iz dln[H| = bdt, (5.1.9)

where
b X,

For later application we differentiate (5.1.7) and use (5.1.6) to obtain

dHY :Z_H“‘ wi - Zijw,i + HY (wZIiL + dln |H|)

— 5> H*H hyypw” — 5y H* H py dt. (5.1.10)
We abbreviate
ht = Z HYh;.
(5.1.6) and (5.1.10) imply
dh' = —hFwi +hidIn[H| + aHwlyy — % Y H* W hyge "

+Y HYpjwh — £ H®hlpydt+ > HY g;dt. (5.1.11)
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We use (2.1.5) and the Maurer-Cartan equations (2.1.6) and obtain

d(wl/\ /\w")

91

_ Z(_l)i—lwl/\ A wi_l/\(wi/\w2+w"+1/\w;+1)/\wi+1/\--~/\w"
i

_ n+1 1 n
=Whg AW A Aw

+ WA WA AT AW AW A AW,
[

Pulling back under f, we get

\H|""2d (|H|%+2 Frwh A /\w"))

1

- (f*w:;ﬁ + L dIn|H| - n|H| 7 Lladt) AP (WA -

n+2
= (b—n|H|7#2 Lla) dt AW A AWt
where w*? is defined from f*w® by “splitting off 7 the term in dt:
ffw' = w* + ad'dt.
Analogously we decompose the operator d on M x I :
dy + dt ;.
In the above equation we equate the terms in dt and get

% (|H|";+2w*1/\ /\w*")

(5.1.12)

A w")

(5.1.13)

(5.1.14)

+ dy {|H|"}r22(—1)iaiw*l/\ C /\w*ﬂ‘*l /\w*7i+1/\ . /\w*n}

%

:|H|"+r2 (b—n|H|_"+f2L1a)w*1/\ coe AWt

On D we have a* = 0. Integrating over D and setting ¢t = 0, we find the first

variation of the volume

0 1
V' (0) = E/D|H|"iz WA AW =

. /D (b= HI"™ Lia) aV |

The last expression can be simplified; we prove the following:

Lemma 5.1.1. For t = const, the form

(b— 225 |HI7™ Lia) av = (b|H™ — 25 Lia)w! A -

is exact and its integral over D, for t =0, is zero.

(5.1.15)

Aw™
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Proof. We introduce the form

Q= (nfll)! Z hil wb VAN /\wi"

eil"'in
=D (D) W A AT R AT A AT, (5.1.16)
where €, ...;, is +1 or —11if {i1, - - -, 4y} is an even or odd permutation of

{1,2, - - -, n}, and otherwise is zero. From (2.1.5) and (5.1.11) we find
dQ = (Wit + YA + { a) li+(n+2) }le/\ c AW (5.1.17)
It follows that
_n+1
d(|H| i Q) \H| w2 (dQ il din |H| /\Q) .
By (5.1.9) we have, for t = const,
d(|H|_%;Q) (sgn H) { ale +(n+2) }|H|n+r2w1/\ s Aw™ (5.1.18)

Here sgn denotes the sign.
For the variation, we assume that h;(p,0) = 0 for p € 0D. Hence the lemma follows.

|
Together with (5.1.15) we arrive at the following result.
Proposition 5.1.2.
Vv’ (0) = nnn;;l) / |H| s LyadV |t -0 - (5].].9)

Corollary 5.1.3. On a locally strongly convex hypersurface, if V' (0) = 0 for an
arbitrary function a : D x I — R, satisfying

a(p70):0, hl(p70):0ﬂ peaDv

we must have L1 = 0, i.e., M is an affine extremal hypersurface.

5.2 Affine Maximal Hypersurfaces

5.2.1 Graph hypersurfaces

Let x : M — R™*! be a locally strongly convex hypersurface; the parameter man-
ifold M may be open or compact, and if it has a boundary M this should be
smooth.

Definition 5.2.1. (a) An allowable interior deformation of x is a differentiable
map f: M x I — R""! where I := (—¢, ¢) with ¢ > 0 is an open interval such
that f has the following properties:

(i) For eacht € I the map z; : M — R"*! defined by x; (p) = f (p,t), is a locally
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strongly convex hypersurface, and x¢y = = for ¢t = 0.

(ii) There exists a compact subdomain N C M, where N is the closure of a
connected, open subset of N C M with smooth boundary 0N, and where N may
contain, meet, or be disjoint from dM, such that, for each p € M \ N and all
tel, f(pt)=x(p).

(iii) For each p € ON and for all t € I, f(p,t) = x(p), the tangent hyperplane
dzy (p) coincides with dx (p).

(b) A locally strongly convex hypersurface zf : M — R"*! is said to be interior-
homotopic to z, if there exists an allowable interior deformation f : M x I — R"*+1
with I = (—¢, 1+ ¢) such that zo = 2, 21 = 2F.

In the sequel, when we study variations of the affine invariant volume of x (M)
under interior deformations, we may replace M, without loss of generality, by the
compact subdomain N C M, or, from the beginning, simply assume that M is
compact with smooth boundary.

Definition 5.2.2. Let z : M — R"*! be a locally strongly convex hypersurface. If
Ly =0on M then x (M) is called an affine mazimal hypersurface.

It is a consequence from (5.1.19) that affine maximal hypersurfaces are critical points
of the equiaffine volume functional. Considering the analogy that in the Euclidean
and in the affine hypersurface theory both Euler-Lagrange equations are given by
the vanishing of the trace of the associated shape operator, Blaschke and his school
originally called hypersurfaces with L; = 0 affine minimal hypersurfaces without
calculating the second variation of the volume functional. 60 years later this was
done by Calabi [21], and he suggested to call locally strongly convex hypersurfaces
with Ly =0 affine mazimal hypersurfaces because of the following result (in fact,
Calabi’s result is a little more general than the following Theorem 5.2.3, see [21]).

Theorem 5.2.3. Let z, z : Q — R™! be two graphs, defined on a compact
domain by locally strongly convex functions f, f¥, namely

" = f(2) and 2" = i (x), where = (z' - 2")
resp.; we use an obvious notation to demote invariants of ﬂ. Assume that, at the
boundary 09, we have the relations f = f* and aazfi = gﬁi fori=1,2 - n. If

L1 =0 on Q then

/dvz/dvﬁ,
Q Q

and equality holds if and only if f = f* on Q.

Proof. Choose an allowable interior deformation defined by the linear interpolation
2t fi(@) = (L=t f (@) +f (@) = F@)+t (fF @) — f(2), ae® 0<t<L
Then f; () is locally strongly convex everywhere in . Let p; (x),- - -, un(x), for
each x € (), denote the eigenvalues of the matrix

=% (i~ ) -
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where we use the local notation from sections 1.1.1 and 3.3.4. For each ¢, the
eigenvalues of the matrix

n
ik _9°
(St
k=1
are positive, namely they are given by
1+ tp; (x), 1<i<n.

The volume element dV; of x; satisfies

v, = [det( i )}#Qdml/\ o Adzt = f[(1+tm(a:))#2dv

Oxi Oz’
=1

We apply the well known geometric-arithmetic-mean inequality to the (n + 2) pos-

itive numbers 1, 1, 14+ tuy, ..., 1 +tu, and get
v, < =15 <2+Z(1+w(x>)> v = |1+ 4 (me)
=1 =1

equality holds if and only if either t = 0 or p1 () = p2 () = -+ = pp (z) = 0. Then

iy = o (3t ) av
=1

implies
9(dVy)
dV, < dV + t ——= |i=0 -
t + ot lt=0
Thus
0
dv; < dV +t = dV} lt=0 -
Q ot
From formula (5.1.19) and L; = 0 we have
0
o dW lt=0=
therefore
/ avt < / av .
Q Q
The equality [, dV* = [,dV implies that p1(z) = p2(z) =+ = pn (z) =0
for all z € . This means that ( fij — ffj) is identically zero. As f = f* on the
boundary 952, we finally have f = f* on €. [ |

While the foregoing result is restricted to locally strongly convex graph hypersur-
faces in arbitrary dimension, Calabi proved that, for any affine extremal locally
strongly convex surface in R3, the second variation, under all interior deformations
of the equiaffinely invariant volume functional, is negative definite (see [21], Theo-
rem 1.3).
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5.2.2 The PDE for affine mazximal hypersurfaces

We derive the differential equation of an affine maximal hypersurface. Again, let
x: Q — R"! be the graph of a strictly convex function

" = f(at, 2™, where (- 2z") € Q CR™
We choose a unimodular affine frame field as in section 2.7 and recall from there the
representation of the Blaschke metric G and the conormal field U. The conormal
field satisfies the Schrédinger type PDE (2.3.13), where L; = 0 for an affine maximal
hypersurface. This gives:

Theorem 5.2.4. Let x : M — R" be a locally strongly convex hypersurface,
given as graph of a function f; x is an affine maximal hypersurface if and only if f

satisfies .
a{ faet (5254)] 7 } =0

Remarks. (a) In section 1.1.2 there is the local representation of the Laplacian.
(b) Obviously, any parabolic affine hypersphere is an affine maximal hypersurface.
In particular, the elliptic paraboloid

S T T
is an affine-complete, affine maximal hypersurface.

About complete affine maximal surfaces there are two famous conjectures, one is
Chern’s conjecture (see [26], [27]), the other is called Calabi’s conjecture [21].

Chern’s conjecture 5.2.5. Let 23 = (2!, 22) be a strictly convex function defined
for all (z*,2%) € R%. If the graph M = {(z*, 22, f(2',2?)) | (2!, 2?) € R?} is an
affine maximal surface then M must be an elliptic paraboloid.

Calabi’s conjecture 5.2.6. A locally strongly convex affine complete surface
x: M — R3 with affine mean curvature L1 = 0 is an elliptic paraboloid.

These conjectures were generalized to higher dimensions [58]. The two conjectures
above differ in the assumption on the completeness of the affine maximal hyper-
surface considered. Both problems are called an affine Bernstein problem. Both
problems were long standing open problems.

Remark. We recall different notions of completeness in affine hypersurface theory
from section 4.2. In Chern’s conjecture one assumes Euclidean completeness, in
Calabi’s conjecture one assumes affine completeness. In section 4.2 we showed
that both completeness assumptions are not equivalent. In 2000, Trudinger and
Wang [91] solved Chern’s conjecture in dimension n = 2. Later, Li and Jia [52],
and also Trudinger and Wang [92], solved Calabi’s conjecture for two dimensions
independently, using quite different methods. Li and Jia used a blow up analysis
to show that, for an affine complete maximal surface, ||Bl|¢ (the tensor norm of
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the Weingarten tensor B) is bounded above, then they used a result of Martinez
and Milan [70] to complete the proof of Calabi’s conjecture (for details see section
5.5 below). Trudinger and Wang showed that, for affine maximal surfaces, affine
completeness implies Euclidean completeness (see section 4.2.1); then the proof of
Calabi’s conjecture follows from the proof of Chern’s conjecture. So far the higher
dimensional affine Bernstein problems are unsolved. In this monograph we first
give a proof of Calabi’s Conjecture, and then give two different proofs of Chern’s
Conjecture in two dimensions.

As a first step we state a result of Calabi. Under an additional assumption, he
proved the following result [21].

Proposition 5.2.7. Let ¢ : M — R? be a Euclidean complete affine mazimal
surface. If M is also affine complete then x(M) is an elliptic paraboloid.

Proof. Since x (M) is locally strongly convex and Euclidean complete, it follows
from the theorem of Hadamard-Sackstedter-Wu (see section 1.2.1 ) that x(M) is the
graph of some positive convex function, say f(x',z?). The normed scalar curvature
satisfies the equiaffine Theorema Egregium: x = J + L1 = J > 0; f is convex thus

det (%) > (; the PDE for an affine maximal surface reads

1

— ’r V] 4\ _
The positive function F' is harmonic on a complete Riemannian 2-manifold with
non-negative curvature, thus F' = const according to a theorem of Yau ( see section
1.2.2). From section 4.1.1 we know that the equation det (%) = const leads

to an improper affine sphere, and the completeness of (M, G) gives the assertion.
|

5.3 An Affine Analogue of the Weierstrass Representation

5.3.1 The representation formula

Again, we consider a Euclidean inner product on V' with normed determinant form
Det. We study affine maximal surfaces in R3.

Let x : M — R3 be a locally strongly convex surface. Choose isothermal pa-
rameters u, v with respect to the Blaschke metric G, and let ey := Oy = T,
€eg 1= 8v33 = Ty, denote U, := g—g, U, = 88—[1{ Then G111 = Gag > O,G12 = Go =0.
We have

<Ua ﬂju> = 07 <UU7xu> = 07 <U’LL7xu> = - Gll)
(U, 24) =0, (Uy,ay) =0, (Up,2y) =— Gaa, (5.3.1)
(UY)=1, (Uu,,Y)=0, (U,Y)=0.
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We use the cross product construction from section 2.1.1; then
2y = AU, Uy, xy = plU, Uy, (5.3.2)
Det(zu,20,Y) - Det(Uy, U, U) = G34,

where A, p are differentiable functions. Since

Det(xy, 2, Y) = | det(hy)|5 = G,

we have
Det(U,,U,,U) = G11 > 0.
From (5.3.1) and (5.3.2),
—G11 = (Uy,zy) = =X Det(U,,U,,U) = =X - G11.
Hence A = 1. Similarly, we have p = —1. Consequently
xy = (U, Uy), xy = —[U, Uy). (5.3.3)
Thus we obtain the following analogue of the Weierstrass representation:
= / U, U)du — [U,Ud]dv. (5.3.4)
If (M) is an affine maximal surface, then
AU =0,
where, in the given coordinate system, the Laplacian simplifies to:
A= pawtom (e + 8 -

It follows that the components U (u,v), U%(u,v) and U3(u,v) of U are harmonic
functions.

Conversely, consider a given triple of functions
U = (U (w,0), U(u,v), U%(u,v)).

defined on a simply connected domain 2 C R?, that satisfies the following two
conditions:

(i) U, U2, U? are harmonic with respect to the canonical metric of R?;
(i) Det(U,,U,,U) > 0in Q.

Then we can construct an affine maximal surface z :  — A? as follows:
(u,v)
x(u,v) :/ U, U,)du — [U,U,]dv, (5.3.4)
(uo0,v0)

where (ug,v9), (u,v) € . The surface is well defined because the integrability
conditions are satisfied:

[UvUv]v+[U7Uu]u = [U7Uuu+va] = 0.
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Now let us prove that the surface, defined by (5.3.4)’, is a locally strongly convex
affine maximal surface. From (5.3.4)" we have

xy = [U, Uy, Xy = —[U, Uy, (5.3.3)
[, 2y] = Det(U,, U,,U) - U. (5.3.5)
Define
— U
€3 = Det(U.,U,,0)(U,U)
then

Det(xy, xy,e3) = 1,

i.e., {x; 2y, Ty, e3} is a unimodular affine frame field, and the structure equations of
Gauf} read

vy =Y TEa, + hijes, 1<ij<2
From (5.3.3) and (5.3.5) we have
hi1 = hay = [Det(Uy, U,,U)]?, hi2 = hay = 0.
Hence the bilinear form h and the Blaschke metric G satisfy

Gij = [det (hkl)]ii hij,

ie., G111 = Goy = Det(Uu, U,, U) and G2 = Go1 = 0.

Thus G is positive definite and therefore (M) is locally strongly convex. The
conormal vector is given by

I

[det ()] ™% - [y, 20] = U.

Since U'(u,v), U%(u,v) and U3(u,v) are harmonic functions, x(M) is an affine
maximal surface. We summarize the foregoing results:

Affine Weierstrass Representation. Consider R with a Buclidean inner prod-
uct (, ) : R3 x R® = R and a smooth map U : Q — R3, where Q C R? is a simply
connected domain. Define x : Q) — R3 by

(u,v)
(u,v) = / U, U] du — [U, U] do.
(uwo,v0)

Then x is an affine mazimal surface if and only if U with components U' (i =1,2,3)
satisfies the above conditions (i) and (ii).
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5.3.2 Examples

In the following we give some examples of affine maximal surfaces.
Example 1. Consider Q = R? and define U : R? — R3 by U := (1, u,v); then

= (3(u®+v%), —u, —v)
is an elliptic paraboloid.

Example 2. Consider  := {(u,v) € R? | u >0} and define U : @ — R3 by
U:= (1,u® —v%,v), then

Det(Uy,U,,U) = 2u.
The construction above gives
T = (%u?’ + uv?, —u, —2uv) , u > 0.

Example 3. Let Q := {(u,v) €R?* |u >0, v <0} and define U := (u,v,2uv),
then

Det(U,,U,,U) = —2uwv.
The integration of (5.3.4)" gives

v = (-20% -2, L1(u?+0?)), u>0,v<0.

From the point of view of local differential geometry, the formula (5.3.4) admits
the construction of all affine maximal surfaces.

5.4 Calabi’s Computation of AJ in Holomorphic Terms

This section contains a different and very elegant computation of AJ in terms of
the Blaschke geometry; it is due to Calabi; he used holomorphic parameters in an
elegant special notation. We will follow this notation.

First of all, let us express the structure equations of an affine surface in terms of
holomorphic parameters (see [22], [99]).

Let  : M — R? be a locally strongly convex surface. The affine structure of
R? induces an orientation and a conformal structure on M, namely by suitably
oriented relative normalizations (see section 3.1). On R3, define additionally an
appropriate Euclidean structure; then the conformal class contains the (positive
definite) Euclidean second fundamental form of x

IT=) hjw'e’ (5.4.1)

as relative metric with respect to the Euclidean normalization. M can be naturally
regarded as a Riemannian surface. Choose isothermal parameters u, v with respect
to (5.4.1) and let £ = v+ +/—1-v. The Blaschke metric can be written as

G =2F(&8) | dg | (5.4.2)
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where d€ = du++/—1-dv. As before, denote the components of the cubic Fubini-
Pick form (see section 2.4) and the affine Weingarten form (see section 2.3.2), with

respect to the local coordinate system (u,v), by Aj;jx and B;j, respectively. Define
« and 3 by

o= % (Alll + \/—_Aggg) (543)
ﬁ = é (Bu B2y \/_Blg) (544)

Then the Fubini-Pick form and the Weingarten form can be expressed by

A = a(d€)® + a(d)?, (5.4.5)
B = B(d€)* + 2F Lydédé + B(d€)>.

We use the Cauchy-Riemann operators
d _1(d ) o _1(d )
=z(m—-V-13) ad Z=35(5+V-13).

From the theory of complex manifolds, every complex tensor bundle on M is reduced
to a direct sum of bigraded complex line bundles E, ;, where r and s are integers:
locally E, , is generated by d¢” ®dE%; here d¢7 and dE®, for r or s negative, denote

the contravariant tensors ( ag) ' or (a%) ) , respectively. The tensor products are
regarded to be commutative unless specified otherwise. Thus the metric coefficient
F' is the fibre coordinate of a cross section in F ;. The tangent bundle of M
tensored With C splits into the direct sum of £_; o and Ep,_1, locally generated by
@ and a respectively.

The Lev1—C§1v1ta operator V of covariant derivation on smooth sections in E,  splits

into
V=V +V", (5.4.7)

where V' is of bidegree (1,0) and V" of bidegree (0,1). They satisfy the following:
(1) V,V’" and V” are linear derivation operators, i.e., for any complex number ¢
and arbitrary smooth sections f, fi, f2 in E, s and g in Ej, 4, each of them, say V,
satisfies

(i) V(cg) = ¢Vg;

(i) V(fi+ f2) = Vi + V[

(i) V(f ®@g) = (V) @ g+ f @ (Vyg);

it f=rf (5,5) and g =g (5,5) are the local coeflicients of smooth sections in
E, o and in Ey s, respectively, then the local coeflicients of V”f in E,; and of
af(£.€) 99(£.€) .

5% and oE

Vg in E;, are

(3) for scalar f, V'f = g—{g and V' f = ‘;—g;

(4) for the metric coefficient F' we have V'F' = V"F = 0.
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From the properties above one can derive the formulas for the general case, where
f is a smooth section in F,. :

T —r o) n
Vf=F &(F7f) =% —rf2nL, (5.4.8)
Ne 18 O (pp—sgy  Of OlnF

V'f=F aE(F )= e — s e (5.4.9)

Computing the second covariant derivatives, one obtains the Ricci identity
V' V'f=V'V"f-V"V'f=(s—r)Ffk, (5.4.10)

where as before
_ _p-19°hnF

k=—F 95t (5.4.11)

denotes the intrinsic Gauflian curvature of the Blaschke metric. The Laplace oper-
ator of the Blaschke metric reads

_ 2 &
A= F peot - (5.4.12)

Since w and v are isothermal parameters relative to (5.4.1), we have

Det (xg,xg, xfz) = Det (xg,xg, xgz) =0,
— /=1 Det (xg, mg,xgg) =F?>0, (5.4.13)

xr

where z¢ = g—f, Tg = ‘;—%, Tgz = %, etc. The affine normal vector field Y and
the conormal vector field U of x(M) satisfy the relations
Y = Flag, (5.4.14)

U=—V-1F"[z¢zg, (5.4.15)
where the brackets denote the complex “cross” product (see section 2.1.1) on the
complexification 7R3 @ C of R3.

{xg, Tg, Y} is a complex frame field on z(M), and {U, Ug, Ug} is a complex frame
field on the immersed surface U : M — V*. These two frame fields satisfy the
following relations:

Det (z¢,x¢,Y) = Det (U,Ug,Ug) = V—1F, (5.4.16)
U 0 01
Ue | - (ze,26,Y)=| 0 —FO0 (5.4.17)
Us ~F 00
where the operation “-7 : (R* ® C) x (R*® C) — C denotes the complex inner

product. The covariant structure equations in section 2.4.3 can be rewritten in the
form
V' (wg, 26, Y) = (Flawg, FY, — Lize — F~'Bag)
(5.4.18)
A (xg,xg,Y) = (FY, Flaz, — Lyzg — Fflﬁxg) ,

V' (U,Ue,Ug) = (Ue, — BU — F*aUg, — L1 FU),
(5.4.19)
V" (U,Ug,Ug) = (Ug, — L1 FU,—BU — F~taU) .
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From (5.4.18) and (5.4.19) we obtain

a=—v—1Det (Y,z¢,x¢2) = V=1 Det (U, U, Ug2) , (5.4.20)
B ==1Det(Y,x¢,Ye) = V=1 F ' Det (U, Ug, Ugz) . (5.4.21)

In local terms define the forms

G:=a(d)?® and  B:=p(d6)>.

Obviously, the cubic form & and the quadratic form B are independent of the choice
of the complex parameters, therefore they are globally defined forms on M. We will
call & the Pick form for M. It is easy to see that the zeros of & are the zeros of
the Pick invariant, and the zeros of B are the umbilic points on M. The Codazzi
equations from (2.5.2) and (2.5.4) are expressible as follows

V'a = g—g =-F8 and Va=9=—-Fp, (5.4.22)
V'3 = g_g — F%—Lg + FtaB (5.4.23)

7_ 98 _ oL -1-
The Gauf} integrability condition (theorema egregium) reads
k=F"? aa+ L. (5.4.24)

Let © : M — R3 be an affine maximal surface and let M be simply connected.
Choose a complex isothermal coordinate ¢ = u + /—1 v with respect to the
Blaschke metric such that G = 2F |d¢ |2. Then the components of its conormal
vector field U are harmonic functions, thus there are three holomorphic functions
Z() = (Z(ﬁ)l,Z(é)g,Z(f)B) such that

U=V-1(Z2-2). (5.4.25)

In the following we shall express quantities of the affine maximal surface in terms
of the holomorphic curve Z(¢) and calculate A.J, mainly following Calabi [22].
From (5.4.16), (5.4.19) and (5.4.20) we have

F =—/—=1Det (U,Ue,U¢) = Det (Z - 2,2',2") >0, (5.4.26)
a=v/—1Det (U,Ue,Ug2) = Det (2 — 2,2, 2") (5.4.27)
B=—F1%=Det(2.2,2") [Det (2~ 2,2, Z)] ", (5.4.28)

where 7' = %—? and Z" = %Z, etc.

Proposition 5.4.1. Let v : M — R3 be a locally strongly convexr affine mazimal
surface and € = u+ /—1v be a local complex isothermal parameter with respect to
the Blaschke metric. Then the vector-valued cubic differential form

U = (aY + Bre) (d€)°
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and the scalar valued differential form of degree six
O = (8V'a — aV'p) (d€)°
are holomorphic on M.
To prove the Proposition, we need the following
Lemma 5.4.2. Let a,b,c,d,e be vectors in R® (or in C?). Then
Det (a,b,c) - Det (d,b,e) — Det (a,b,e) - Det (d,b,c) = Det(a,b,d) - Det(c,b,e).

Proof of Proposition 5.4.1. It is sufficient to prove that ¥ and © have the
following representations in terms of Z

U= —=1(2,2"](d)°, © = Det (Z',2",2") (d€)°.
First, from (5.4.16), (5.4.20) and (5.3.3) we get
—V=1F7"[Ue,Ug] ,

ve=3(-vV-15) = 3 (U5 +V-1[U.5]) =v-1[U.U.
Hence

OY e = — 1 2UELLL) g g0 g PUZZZ) g gy g

Det(Z-2,2',2") Det(Z-2,2',2")

Using Lemma 5.4.2, we obtain

Det(Z-2,2'.2") (2, 2] — Det (2, 2. 2") [(Z - 2) . 2]

=Det(2-2,2',2")(2',2"].
Consequently we arrive at the following two equations:
U=—+/—11[2,2") (d€)*,

Det(2',2',2")-Det(Z2—2,2',2"")

/ rn
fVia—aVp=— Det(2-2,2'.2")

Det(2-2,2',2") Det(-2',2',2"")
Det(Z-2,2',2") :

Again we apply Lemma 5.4.2:
—Det (2", 7', Z”) Det (Z — Z,Z’,Z”’) + Det (Z —7,2',72") Det (Z', Z’,Z’”)
= Det (Z - 7,7, Z’) Det (Z',2",2").
Hence
© = Det (Z',2",2") (d€)° . |

Lemma 5.4.3. The affine Weierstrass representation in section 5.3.1 can be rewrit-
ten in terms of the holomorphic curve Z as follows (see [22]):

P | <[z,z] + [17.42) - /[Z,dZ]).
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Calabi [22] computed the Laplacian of J = k = F? - a@ on affine maximal surfaces;
for this computation we again recall the notions of the derivations V', V" and
basic formulas from (5.4.7) - (5.4.23):

INJ =F V"'V (aa) = F*V"(V'a)a+a(V'a))
=F*{(Va)(Va) + (VV'a+3Fka)a + V" (—aF §)}
= |V'a|?+3J2+ F*[-V"(FB)a—F (~FB3 + o (V'B))]
= |V'al* + 3% + ||B]> — 2F 3Re (a V'),

where |[V'a|® = F~*(V'a) (V@) and [|B]|> = F263. By ¢ denote the local
coeflicient of O, i.e.,

o=0BV'a—-aV'8=Det(Z',2",2").
When « # 0, we get the following two relations:
av'g=2(BV'a—y),

5 12
IVal® + 18> = 2F~2Re (£ (39'a - 9)) = |[Va = Z22|" 2] .

Substituting the last inequality into the foregoing calculation of AJ, we get

AT > 3J% - 2] (5.4.29)

(5.4.29) holds at each point where o # 0. Let p be a point such that « = 0. If
there is a neighborhood D of p such that &« = 0 in D, then 8 =0 and so ¢ =0 in
D. Hence (5.4.29) holds. If there is a point in every neighborhood of p such that
a # 0, then it follows from a continuity argument that (5.4.29) holds at p. Thus
(5.4.29) holds everywhere. [ |

5.4.1 Computation of A (J + ||B||2)

Applying the above calculation, Calabi computed

A(J+IBIP) = Allal* +2)81).
Now
Al =7 F2 V"V (88) — 18> F~° (V' (85)) (V" (85))
=8I F~3 [5F~2aaBB + 2F ' Re (V'a) 3%) + (V'B) (V'B)]
— 31BN F=2 [BB(V'B) (V/B) + F~2 aa 3*3* + 2F ' Re (a (V'B) 5°)]
=3l 181+ 3117 1817 + 211817 F~* Re ((V'a) 3°)
— F%|B17° Re (a (V'B) B°).
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It follows from the above calculation of AJ that

AGGT+181) = A (% llol® + 151

2

=mmW+Hva+Fﬁ%w>

=

’ o || o b
+ 18177 ||eB” — aB

+ LIBITH{|IV8 = 218l a — Frag? Y|y
2

4 2 || =% _ .3
>3all” + 18177 ||aB” — ap > 0.

We use this inequality to prove the following theorem which first was obtained by
Martinez and Milan [70]:

Theorem 5.4.4. Let x : M — R? be a locally strongly convez, affine complete,
affine maximal surface. If there is a constant N > 0 such that the norm of the
Weingarten form ||BHé satisfies ||B\|é < N everywhere on M then x(M) is an
elliptic paraboloid.

Proof. The condition ||B||é < N implies that ||3|| is bounded above by a positive
constant C. On the other hand, we have

AGT+B1) =302 =6 - ($T+1181)° - 128
>6 (L7+8l)" - 1202 (5.4.30)

We apply Corollary 2.5.10 from ([58], p.125), which implies that .J+||3|| is bounded
from above. Thus we have a bounded subharmonic function on a complete surface
with x > 0, thus the sum £J + [|3|]| must be a constant. It follows from (5.4.30)
that J = 0 everywhere on M, therefore z(M) is an elliptic paraboloid. |

5.5 Calabi’s Conjecture

In this section we will give a proof of Calabi’s conjecture for two dimensions (see
[52]). For the proof we use the above Theorem 5.4.4 and a useful Lemma of Hofer
[39], which was applied several times in symplectic geometry.

Lemma 5.5.1. ([39], p.535). Let (X,d) be a complete metric space with metric
d, and B,(p,d) := {x|d(p,x) < a} be a ball with center p and radius a. Let ¥
be a non-negative continuous function defined on Bay(p,d). Then there is a point
q € Ba(p,d) and a positive number € < 5 such that

U(z) <2¥(q) for all z € Bc(q,d) and €¥(q) > 2U(p).

As in section 5.4, we choose isothermal parameters u, v such that the Blaschke
metric is given by G = F(du? + dv?), where F' > 0 is a function of u, v. Suppose
that M is an affine maximal surface. The formula AU = —2L,U implies that U is
harmonic with respect to u, v. Let & = u + /—1 v. Define a and 3 as in (5.4.3)
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and (5.4.4), respectively. As before, let || - ||¢ denote the norm with respect to the
Blaschke metric, then we have

lal=(5) " aa=51AlE 813=(5) " B3=51BI%. (651

5.5.1 Proof of Calabi’s Conjecture for dimension n = 2

From the assumption z : M — R3? is a locally strongly convex affine maximal
surface, which is complete with respect to the Blaschke metric. We want to show
that there is a constant N > 0 such that ||B||4 < N everywhere.

We assume that ||B||% is not bounded above. Then there is a sequence of points
pe € M such that || B||%(pe) — oo. We may assume that M is simply connected,
otherwise we consider its universal covering space. As M is non-compact, but
complete with kK = J+ Ly > 0, it is conformally equivalent to the complex plane C.
Then we may choose global isothermal parameters u,v on M such that the Blaschke
metric is given by G = F(du? +dv?). Let By (pe, G) be the geodesic ball with center
p¢ and radius 1. Consider a family W () : Bo(pg, G) — R of functions, £ € N, defined
by

1
U(0) = |lgradIn Fl|c + [|Allc + | B]|&-
In terms of u, v we have
n 2 n 2
leradin FI1% = & ((285)" + (28E)%)
IAIE =+ > (A5, IIBIE = 2= >_(Bi)*.
Using Hofer’s Lemma we find a sequence of points g, and positive numbers ¢, such
that

U(z) < 20

—

q) for all x € B, (q,G), (5.5.2)

eV (qe) > =V (py) — 0. (5.5.3)

The restriction of the surface x to the balls Be,(q;, G) defines a family M (¢) of
maximal surfaces. For every ¢, we normalize M (¢) as follows:

N =

Step 1. Denote by u(f), v(¢) the restriction of the isothermal parameters of M to
M(¢). First we take a parameter transformation:

w(l) = c(Qu(l), o) =c()v(), c(£) >0, (5.5.4)
where ¢(£) is a constant. Choosing ¢(¢) appropriately and using an obvious notation
F, we may assume that, for every ¢, we have F(qs) = 1. Note that, under the
parameter transformation (5.5.4), ¥ is invariant.

Step 2. We use the Weierstrass representation for affine maximal surfaces (see
section 5.3) to define, for every ¢, a new surface M (¢) from M (¢) via its conormal
by
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we introduce new parameters @(¢), 9(¢) by
a(f) = b(O)a(e), o(f) = b(£)s(e), b(£) >0,
where A(¢) and b(¢) are constants. From the foregoing conormal equation one easily
verifies that each M (¢) again is a locally strongly convex maximal surface (see
section 5.3.1). We now choose A(£) = (b(£))3, b(¢) = ¥(g,). Using again an obvious
notation F, ¥, one can see that
F=F, Y= ﬁ\ll(ﬂ).
In fact, the first equation is trivial. Now we calculate the second one. We can easily
get
| gradIn F || g= 7 gradIn F lle -

From (5.5.1), (5.4.20), (5.4.21), (5.4.26) and our choice A\*> = b% we have
IBlZ=218 =25l 61°= b4 I B Il
||A||é=2||07||2= slallP=m 1 AlE-

Then the second equality follows.

We denote B,(qe, G) := {z € M(0)|7(¢)(z,q) < a}, where 7(£) is the geodesic

distance function with respect to the Blaschke metric G on M (f). Then W¥(¢) is

v

defined on the geodesic ball Bz ()(qe, G) with €(€) = e,¥(g) > 1¥(p,) — oo. From
(5.5.2) we have

U(q) =1, U(z) <2, Va € Bepylqe, G).

Step 3. For any ¢ we introduce new parameters &1 (£), £2(¢) as follows:

&) = u(l) —a(l)(qe), &) =0(0) — v(0)(qe)-
Then, at g¢, (£1,&2) = (0,0) for any ¢, and we can identify the parametrization
(€1, &) for any index £. Let #(¢) denote the position vector of M (¢). An appropriate
unimodular affine transformation gives

Z(€)(0) =0, (5.5.5)
e, (£)(0) = e1 = (1,0,0), (5.5.6)
Te, (£)(0) = (071,0)7 (5.5.7)

Y (0)(0) = (0,0, 1). (5.5.8)

Consider the open geodesic balls
Bep) (0,G) = {(&1,6) € R*[7(0)(0,€) < &)}
and the sequence M (¢) of maximal surfaces Z(¢) : Beo(0, G) — R3. They satisfy
(5.5.5) - (5.5.8) and the conditions
F(0)(0) =1, (5.5.9)

VOO =1,  W(OE) <2 VEE By (0,G), (5.5.10)

€(0) — oc.
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It follows from (5.3.1) and (5.5.6) - (5.5.9) that, for any ¢, (Ug,,Us,,U)(0) = I,
where [ is the unit matrix. We need the following lemma

Lemma 5.5.2. Let M be an affine mazximal surface defined in a neighborhood of
0 € R2. Suppose that, with the notations from above,

(4) FO)=1, (Ug,Usg,U)(0) =1,

2\ 3 1 1N\ 2
(i) <% > (2er) ) (£ + (% (> B ) <2.
Denote B.5(0) :={(£1,&2) | €8 + &3 < 3}. Then there is a constant C1 > 0, such
that, for (&1,&2) € B3 (0), the following estimates hold

(1) 3 <F<4

(2) U+ [|Ue, || + |Ue, || < Ch, where || - || denotes the canonical norm in R3;

(3) denoter, = §; then B, (0,G) C {3 +&3 < 1} C B.z(0), where Q. is the
geodesic ball with center 0 and radius r, with respect 2t0 the Blaschke metric

G.

Proof. (1) Consider an arbitrary curve
I={& =a1s, & =ass;al +aj3=1,s>0}

By assumption we have

L(2mEy <o PO)=1

Solving this differential inequality with F(0) = 1, we get

2 2
1 1
(1+“25s> < Fs) < (1455) '

From the assumption we have s < %’ then (1) follows.

(2) Note that the Christoffel symbols are given by ‘9812}7 . Along the curve I' the

structure equation U ;; = — ) Aij,k — B;;U gives an ODE, which can be written

in matrix form:
X — XD, (5.5.11)

where X = (Ug,,Ug,,U), and D is a matrix, whose elements depend on Bij,Afj
and 881—257. From (5.5.11) it follows that

X = D'XT, (5.5.12)
where we use an obvious notation for the transpose of a matrix. Then
dXX) _ pIXTX + X'XD. (5.5.13)

Denote f := tr(X'X). Taking the trace of (5.5.13) we get
¥ = 1r(D'X'X) + tr(X'XD) < Cf, (5.5.14)
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where C is a constant. Deriving the last inequality we use (1) and the condition
(ii). Solving (5.5.14) with the condition (i) we get (2).
(3) From (1) we immediately get (3). [ |

We continue with the proof of Calabi’s conjecture. Since é(¢) — oo, we have the
relation B 5 (0) C Be)(0, G) for £ big enough. In fact, by (1), the geodesic distance
2

from 0 to the boundary of B 5 (0) with respect to the Blaschke metric on M(£) is
2

less than v/2. Using (2) and a standard elliptic estimate, we get a C*-estimate,
independent of ¢, for any k. It follows that there is a ball {7 + &2 < Co} and a
subsequence (still indexed by ) such that U(¢) converges to U on the ball, and
correspondingly all derivatives, where Cy < % is close to % Thus, as limit, we get a
maximal surface M, defined on the ball, which contains a geodesic ball B, (0,G).
We now extend the surface M as follows: For every boundary point p = (£1,, £20)
of the geodesic ball B, (0,G) we first make the parameter transformation:

& = b(& — &) such that, at p, (£1,&) = (0,0), and for the limit surface M we have
ﬁ'(p) = 1. We choose a frame eq, ez, e3 at p such that e; = ;%{1, ey = ;%{2, es =Y.
We have

FO)@) — Fp) =1, (T50.050.00) ()~ 1 as L—oo. ()

It is easy to see that, under the conditions (i’) and (ii) in Lemma 5.5.2, the estimates
(1), (2) and (3) in Lemma 5.5.2 hold again. By the same argument as above we
conclude that there is a ball around p and a subsequence ¢, such that U (£) converges
to U’ on the ball, and correspondingly all derivatives. As limit, we get a maximal
surface M’, which contains a geodesic ball of radius r, around p. Then we return
to the original parameters &1, {2 and the original frame eq, e, e3 at 0. Note that the
geodesic distance is independent of the choice of the parameters and the frames. It
is obvious that M and M’ agree on the common part. We repeat this procedure
to extend M to be defined on By, (0, G), etc. In this way we may extend M to be
an affine complete maximal surface defined in a domain 2 € R?; using (5.5.9) and
(5.5.10) we get

IBllg<4, ¥(0)=1.
By Theorem 5.4.4, M must be an elliptic paraboloid, given by

25 = %((:&)2 ey (5.5.15)

where 2!, 22, 2% are the coordinates in R3 with respect to the frame ey, e, e3.
For a paraboloid we have || A |z=0, || B ”2(";: 0, R = 0 identically, and
G = (dz')? + (dz?)?. Thus

3

| gradln F || 5 (0) = 1. (5.5.16)

We consider In F' as a function of x', 22, Since the scalar curvature vanishes iden-
tically, R = 0, from the formula

AlnF =—-R
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we conclude that In F is a harmonic function. As || gradln F' ||< 2, In F' must be
a linear function. In view of (5.5.15), without loss of generality, we may assume
that In FF = z'. We introduce complex coordinates and write w = &; + v/—1 &,
z = z! + /—1 22, then w(z) is a holomorphic or anti-holomorphic function. We
consider the case that w is holomorphic. For the case that w is anti-holomorphic,
the discussion is similar. Since G = |dz|? = F|dw|?, we have |w/|? = F~1 = ¢~
Let Q = e2. Then |w'Q| = 1. From the maximum principle we get w’@Q = C, where
C is a constant with |C| = 1. So w’ = Ce™2. It follows that w = —2Ce™2 + E,
where F is a constant. Since e~2 has period 27 for x2, we have a covering map
R? — (); this is impossible. We get a contradiction. So ||B||¢ must be bounded
above on M. By Theorem 5.4.4, M is an elliptic paraboloid. We have proved
Calabi’s Conjecture in dimension n = 2. |

5.6 Chern’s Conjecture

In this section we study a nonlinear, fourth order partial differential equation for a
convex function f on a convex domain €2 in R™. The equation can be written as

Z Fljwlj = —_[/ﬁ7 w = |:det (818128frj):| 9 (5'6’]‘)
ij=1
where L : Q0 — R is some given C™ function, (F/) denotes the cofactor matrix of

the Hessian matrix (%) and a # 0 is a real constant.

In the case when a = —Z—Ié and LF = 0, the PDE (5.6.1) is the equation for affine

maximal hypersurfaces (see section 5.2.2).

In the case when a = —1, the PDE (5.6.1) is called the Abreu equation, which
appears in the study of the differential geometry of toric varieties (see [1], [29], [30],
[31]), where L% is the scalar curvature of the Kéahler metric. About the Bernstein
property for the Abreu equation we would like to pose the following conjecture:

Conjecture 5.6.1. Let f(z!,...,2™) be a smooth, strictly convex function defined
for all x € R™. Assume that f satisfies the Abreu equation

Z Fijwij =0, w = [det (%)}

i,7=1

—1

Then f must be a quadratic polynomial.

Note that the PDE (5.6.1) with L¥ = 0 is the Euler-Lagrange equation of a
volume variational problem. In fact, let f(x) be a smooth, strictly convex function
defined in a convex domain 2 € R"™, then

M= {(z',-- 2", f(x)) ] (z},..,2") € Q}
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is a locally strongly hypersurface immersed in R"*!. As in section 3.3.5, for the
above graph, we introduce the a-metric

G = pog,
where $) and p are defined in section 3.3.4, and a = —MSQH); then the G(®)-
volume is given by
a+1
V(f,a)= /Q [det (%)} dzt A - A da, (5.6.2)

Let fi(z) = f(z) + to(z), where p(z) € C§ (), then
%hZOV(ft,a) =(a+1 / [det(fi;)] ZFU@ dat - dz"
— a(a+1) / [det(fi)]71 S FYifdet(fi)]; dat -+ do”
=(a+1) /(ZF” )gpdx -dx”.

It is easy to see that, in case that a # 0 and a # —1, if f is a critical point under
any interior variation then

Z Fij’wij = 0,

i,j=1
where w was defined in (5.6.1).
Denote by A and || - || the Laplacian and the tensor norm with respect to the Calabi
metric 9, respectively. Recall the definition of p from section 1.4. In terms of the
Calabi metric the PDE (5.6.1) can be rewritten as

Ap = —plemad ol 4

2 T Liple TR, (5.6.3)

where
. (n+2)(2a+1)+2
3=t )(2 _
Note that the PDE (5.6.3) with Lf = 0 includes the cases a = 0, a = —1.
In this section we shall prove

Theorem 5.6.2. [55]. Let f be a smooth, strictly convex function defined for all
(r1,22) € R2. If f satisfies the PDE

2
> Flw; =0 (5.6.4)
ij=1

with w from (5.6.1) and a < —% then f must be a quadratic polynomial.
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Remark.
(1) When a = —2 Theorem 5.6.2 gives a new analytic proof for Chern’s conjecture
on affine max1mal surfaces.

(2) When a = —1 Theorem 5.6.2 solves the above Conjecture 5.6.1 affirmatively for
n=2.

(3) In [93] Trudinger and Wang proved that the global solution of the PDE (5.6.4)

on R? with a > 0 must be a quadratic polynomial.

(4) When a = 0, n = 2 and L? = 0 the PDE (5.6.3) reduces to Ap = 3lead el

which is equivalent to
2
> F9 52 Indet(fu)] = 0. (5.6.5)
i,j=1
The global solution of the PDE (5.6.5) on R? is not unique. In fact, the two examples
in section 4.5.1, restricted to n = 2, are global solutions of (5.6.5).

To prove Theorem 5.6.2, we will derive a series of estimates in the subsections
5.6.1 - 5.6.4. The proof of Theorem 5.6.2 follows in subsection 5.6.5.

5.6.1 Technical estimates

Let © be a convex domain and 0 € Q be the center of Q (for the definition of the
center of a bounded convex domain please see section 1.8 in [37]). Let f be a strictly
convex function defined on 2 C R™. Assume that

igfsz7 f=C>0 on 0f).
In the following we use the Calabi metric §). Consider the function
Fo= exp{c——jnf +Tﬁ}Q||grad h|J2, (5.6.6)

where Q > 0, 7% > 0 and h are smooth functions defined on Q. Clearly, F attains
its supremum at some interior point p*. We choose a local orthonormal frame field
such that, at p*, h1 = ||grad h||, h; =0, for all ¢ > 1. By the same calculation as
in the proof of Lemma 4.5.6, we get the following Lemma (for details see [55]):

Lemma 5.6.3. At the point p*, we have the following estimate:
2 (5hy = 0= 1) (han)? + 23 by (AR) ;4201 —8) 3 A%y ()’
_ (n+2) ®(h, )2 — (n % (Ah)?
+ {AT —g Y- gAf+ AR - G <0 (56)

for any 0 < § < 1, where here and later

R m /.
9=t 9 =2@ g
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Consequences. In the following we calculate the expression
23 " hi(AR) ;+2(1=0) > AmiiAmijhih
for the cases h = f and h = &7, respectively.

1. The case h = f.
Using the formula (4.5.5) we have

23 F5(AN) = (n+2) [22(£0)? = L (124 3 fufa ] (5.68)
Note that
fij = Aijnf1+ fij

and
S (Fi)? = AL (f1)? +n+ (n+2)2il (5.6.9)
Similar to (4.5.43) we get
D fa) = G = () +2) (F1)® — 5o (AF)?

i>1
for any 0 < ¢ < 1. Thus combination of (5.6.8) and (5.6.9) gives (recall the definition
of @ from section 1.4)

2Y f(Af);+2(1=0)> Al (fa)
>20500 (f11)% + (4= 88) Y (f1i)” — s (AF)?

i>1
(222 (£0) = (S22 4 (n+2)) B(f1)?
—2n—2(n +2)(1 - §) 2t (5.6.10)

for any 0 < § < 1. In particular, for n = 2, we have

2 fi(Af) +2(1-8) Y A% (fa)?

> AL (£ 4 (4—100) Y (f1:)? — (3+8) 0(£1)* — 2(Af)* 8. (5.6.11)

2. The case h =¢;.
By (3.3.8) we have
Ah = —226(gradIn p, grad h).
It follows that
23" hj(Ah) ;== (n+2) [£22 (1) — L2 + 3 hih 2]
> (n+2)22 (h1)? ~ 8 (hai)? — P2 d(hy)?
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for any 0 < § < £. Now we use the coordinates ', ..., z" to calculate Y (h ;;)* and
> A2 1 (h1)? Recall that the Christoffel symbols satisfy I'f; = 337 f* fi;;. Hence

hij = fiij — %Zflkfklflij = 5 fuij,
Z(h,ij)2 = iZfikfﬂflijflkz,
S A2 (ha) =237 P gy frag 7 fie S Fre =Y (hig)?
Consequently, we obtain
2 Z h;(Ah); +2(1—9) Z At Amijh,ih
> (2-30) Y (hig)? — (n+2) 22 (h)? — 20 (h,)?
> 250 (h11)% + (4= 68) > _(h1i)* — (n+2) 22 (h 1)

i>1

n 2 n 2
— (52 ) aha)? (5.6.12)

forany0<6<§.

5.6.2 Estimates for the determinant of the Hessian

In this subsection we shall estimate the determinant of the Hessian of certain func-
tions from above. For this we use ||| g to denote the norm of a vector with respect to
the canonical Euclidean metric in R™. For affine maximal hypersurfaces, Trudinger
and Wang [91] obtained upper bounds for the determinant of the Hessian.

Lemma 5.6.4. Let f be a nonnegative conver C*° function defined on the section
S¢(C), satisfying the PDE (4.5.9). If 8 > —24* then the following estimate holds:

det(fij) < by fOT T e Sf(C”),
where by is a constant depending only on 3, C > 0, % <1 and maz||grad f| g.
Proof. Consider the function
_ 1

F :=exp {C—inf + eZ(fk)Q} p
defined on the section S¢(C'), where m and € are positive constants to be determined
later. Clearly, F’ attains its supremum at some interior point p* of Sy (C'). We choose
a local orthonormal frame field of the metric $ on M near p*. Then, at p*,

—gfi+e (Z(gk)2) — % =0, (5.6.14)

2

—g'> (f)? —ng—"E2> (gf,i +e (Z(fk)z)) B

+2e) u 4 (14 8)® <0, (5.6.15)
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where g, ¢’ were defined in Lemma 5.6.3. We inserting (5.6.14) into (5.6.15):

2> u =g Y (f0)P g+ (BB (n+2)e Y Lt (Z(gk) )igo. (5.6.16)

s

Using the inequality of Schwarz yields
n+2)%é? i on
(n+2)e 32 (D(6)?) < M grad £ w + 22,

From (5.6.14) we have

B> 302 ()7 —delarad £ Y u

Then

n+2)?2 i
(26 — {(n +4+4+206)+ igjfgﬁ} €*||grad f||%) Zu
+(E2 g% — ) Z(f,i)Q —ng < 0.
Choose € such that

2
[0+ 44 28) + 22522 | max Jgrad % e <1

and m = ﬁfw. Note that 3 u’ > np="+". We use the inequality of Schwarz
and get
% < agg™

for some constant ag depending only on 3, n and max ||grad f||g. Thus we complete
the proof of Lemma 5.6.4. ]

Lemma 5.6.5. Let u be a nonnegative convex C'*° function defined on the section
Su(C), satisfying the PDE (4.5.9). If B < 5 then the following estimate holds:

det(u;5) < bo, for &€ SU(C’),
where by is a constant depending only on 3, C >0, & < 1 and maz||grad u||g .
Proof. Consider the function
F :=exp {C_—i + eZ(xk)Q} p
defined on the section S, (C), where m and e are positive constants to be determined

later. Clearly, F' attains its supremum at some interior point p* of S,,(C'). We choose
a local orthonormal frame field of the metric ) on M near p*. Then, at p*,

—Yu,; + € (2:(3316)2)Z + % =0, (5.6.17)

— Z(Uﬂ')? —ny+ 25 Z 0 <7u7i te (Z(xk)2) z)

+2e) fT— (14 p)® <0, (5.6.18)
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where v and 7’ are the functions defined in section 4.5.4. Inserting (5.6.17) into
(5.6.18) yields

(n+2)ed 2 (D@h?) —9' > (o) —ny+2e Y [T+ (36 @ <0.
Again we use the inequality of Schwarz and get
(420 378 () | < g lerad ully 3 17 + 25,
From (5.6.17) we have

>392 (w)? — 4e?|grad u|F > £7.

Then
(2¢ - [(n—20) + 22| @lgrad ull) 3 4+ (25292 7)Y (wi)? —ny 0.
Choose

{(n —20)+ LQ)} max ||grad u|% - e < 1

_ _16C
and m = Y

. The inequality of Schwarz gives

p < agyniz
for some constant ag depending only on 3, n and max ||grad u||g. Thus we complete
the proof of Lemma 5.6.5. ]

In the following we estimate the determinant det ( Rr m 5 ) from below and above.

We restrict to functions f of two variables. In this case we can estimate the de-
terminant in a convex domain  C R2, while usual estimates hold only in sections,
just like in Lemmas 5.6.4 and 5.6.5. For simplicity, we restrict to the case L¥ = 0
n (5.6.3). In fact, the following Lemmas 5.6.6 and 5.6.7 hold for L* = const, see
Lemmas 6.1.4 and 6.1.5 below, or [53].

Lemma 5.6.6. Let f be a smooth, strictly convex function defined on a bounded
convexr domain @ C R?, satisfying the PDE (4.5.9). As before denote by Q* the
Legendre transformation domain of f. Let Q'™* be an arbitrary subdomain of Q*
with dist(Q™*,00%) > 0. Then the following estimate holds:

det(fij) > bo fOT 6 S QI*,

where by is a constant depending only on dist(Q'*,00*), diam(Y), diam(2*) and
3.

Proof. For any & = (£9,£9) € Q* choose § > 0 such that 0 < § < dist(£p, 9Q*). By
an orthogonal transformation we may assume that {; = 0. Consider the function

Fi=— 25 + " (1+eJF)

defined on B} (0), where 0 := >"(&)?, J* := > (z*)? and m, k, £ and e are positive
constants to be determined later. Clearly, F' attains its supremum at some interior
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point £* of B} (0). We choose a local orthonormal frame field ey, ez of the metric $
on M near £*. Then, at £*,

— a0+ e T+ kP (L4 edP)p = 0, (5.6.19)

— e Y (0% — e A0 + ep" ATF + kp" (1 + €T Ap

(k= 1)p 2 (14 eJ%) D (pa)? + 2ekp" 1> padh < 0. (5.6.20)

Using the formulas (3.3.6) and (3.3.7), we obtain
— (e DG — e Yt e D 0+ 2e0" Y S
+ (k(k = 1) = kB) P2 (L ed%) Y J(p.0)° +2e(k + )" Y paT} 0.
By (5.6.19)
52272)@“1 Z 0> - (52 ";f)“rl ZJZH,
> — 86W 0 diam(2).

Here we used the fact ) J’uﬂﬂ' = 4> 2% < 46 - diam(Q). We choose a positive

number k, depending only on 3, such that k(k — 1 — 3) > 1. The inequality of
Schwarz gives

- _(457;{(;;41_)2 uijfifj - _(522_73_)€e+_1 Z u + Zepk Z f”

— 4 (k+1)%p" Y fIata) — St d(Q7) d(Q) <0, (5.6.21)
where d(Q2*) and d(Q2) denote diam(Q2*) and diam({2), respectively. Choose € such
that 4e(k + 1)2d(Q)? < 1. By A1, Ay denote the eigenvalues of (ag 96 ) = (us5).
From (5.6.21) we have

m 2 m € m *
ep" (M + A2) < {4(55(,%262 + (522 9)él+1} (A% + A%) +5 (5279€)e_+1d(9 )d(€2).

Namely

md? m *
eptt < HELEEE) + S e d(2)d(Q) 0
Using Young’s inequality we have
ktd

€ m * € m % k+2

%Wﬁi(g )d(Q)p? < 5"+ {%de )d(Q)} :
It follows that

Plas (1+€Z( Ic)Q) < ([’;’ﬁ%a

where we choose ¢ = %, and C > 1 is a constant depending only on k, ¢ and d(Q2*),
d(Q2). Then

k+2ck+4

(62—6) T4
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k(k+2)
Choose m = C 2(k+4) | then

— gy + o (1 + eZ(xk)Q) <0.

It follows that
¢
Pt <m(3)
in B3} (0). We use a covering argument to complete the proof of Lemma 5.6.6. W
2
Using the same method we can prove

Lemma 5.6.7. Let f be a smooth and strictly convex function defined on a bounded
convex domain Q C R? satisfying the PDE (4.5.9). Let Q' be an arbitrary subdomain
of Q with dist(Y',0Q) > 0. Denote by Q* the Legendre transformation domain of
f. Then the following estimate holds:

det(fi;) <by for ze,
where by is a constant depending only on dist(Y',09), diam(QY), diam(Q2*) and G.

Proof. Let 2 = (i!,4%) € Q be an arbitrary point. By a translation and subtract-
ing a linear function, we may assume that @ = (0,0), f(&) = 0 and grad f(2) =0
Choose § > 0 such that

0 < § < dist(z, 09).
Consider the function
Fi= — e + or (1 + €b)
defined on B;(0), where

=S, 7= (),

and where m, k, £ and € are real positive constants to be determined later. Clearly,
F' attains its supremum at some interior point & of Bs(0). We choose a local
orthonormal frame field eq, e5 of the metric $ on M near Z. Then, at &,

— B D — e DU - R 2k Y
+h((k+1)+08) A (1+€0) Y (pi)* —2e(k+1) 2= > pib: <0.
We choose a positive number k, depending only on 3, such that
E(k+1+03) > 1.
It follows that
— 2 (B 1) Y0 - e Q) A(Q)

+% (1—26(k+1 )Zf”<0.
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Choose € > 0 such that 4e(k + 1)2diam(Q2*)? < 1. Then we get
k

s k
mk+2
# (1+eb) < ch+4a

(62-J8) k+4 -
where C > 1 is a constant depending only on k, ¢ and diam(Q2*), diam(£2). Choose
m = C%, S % We obtain
— T T oF L(1+e0) <
and Lemma 5.6.7 follows. |

Similar to Lemma 4.5.4, we obtain the following Lemma (for details see [55]):

Lemma 5.6.8. Let Q C R™ be a sequence of smooth normalized conver domains,
f*) be a sequence of strictly convex C> functions defined on Q. Assume that

isglff(k) = f*) =0, P =C>0 on 9.
.

Then there are constants d > C, b > 0 independent of k such that

af(k)

i Ozt
@y <0

E=1,2,... on Q,
where u'®) is the Legendre transformation function of f) relative to 0.

Lemma 5.6.9. Let Q be a normalized conver domain. Assume that f € S(Q,C)
and [ satisfies the PDE (4.5.9) with 3 > 0. Assume that u is the Legendre trans-
formation function of f relative to 0. Then the following estimate holds:

Sl <bo for we S;(C) ={z€Q| f(x) <C},

where C' < C, and by is a constant depending only on %, C, and 3.
Proof. Recall the definition of p and ® from section 1.4. Consider the function
— __m_ 1
F = exp{ o7 —|—P} FCEm)
defined on the level set S¢(C), where

e (&)
Pi= (d+5)2 ’

m = 4C and € is a positive constant to be determined later. From Lemma 5.6.8
we know that P has an upper bound. Clearly, F' attains its supremum at some
interior point p*. ¢, ¢’ are defined as in Lemma 5.6.3. Near p* we choose a local
orthonormal frame field of the Calabi metric $). Then, at p*,

—gfitPi— 5 — 35 =0,

w; w.;)?
—g' > (f)* =29~ QQZPJL +(A 80—+ 2%(5#) +%d(+ﬁ))2 +AP<0.
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Using the inequality of Schwarz we get

2
(o 407) U+ 40 i+ AP -2 - g <0

Now we calculate AP. By (3.3.7)

2 > utt 23 (u)?
> (Py) < 8ePigrays + 8P Iy,

and

AP = eA(Z(§k)2) —4

5(erad ¥ (6% grad w) _ o X6 Au ¢ 5 ()7 ¥ (u)?

€

(d+u)? (d+u)3 (d+u)3

(@F )

(5.6.22)

(5.6.23)

€ i ra )2, grad u
= S |2 u — 29(grad Inp, grad (D (6)?)) — 4202 D) mrad )

2 U, 4 2 2 ra np, grad u 2
TR S(CH5 NUB IS NS LI L T ENI (5

Note that

lerad (D(6)%) 112 =43 uieie;.

Using the inequality of Schwarz we get

e ii > (u)?
AP > s > u' — 18eb® — 60eboz s — deb,

We choose € such that

; B 8
eb < mln{ﬁ, 50027 9) 1} .

Insert (5.6.24) into (5.6.22), then

sy U - (g' + %92) > (fi)?—29-6<0.
Note that

DD =D 176 <bd+u)* ) 17

(5.6.24)

where b is the constant in Lemma 5.6.8. Denote by p1, 2 the eigenvalues of (u®),

we have

H1 H2

s+ ) — (9 + A9%) bld+w)? (F+ &) —29 -6 0.

Thus
s — (0 3) e — (9 + £9°) b0,
where we used the inequality p1 4+ o > 2/pipz. It follows that
exp{—cl_f —l—P} m < b

for some constant b; depending on C' and (.
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5.6.3 Estimates for the third order derivatives

In the following we derive estimates for the third order derivatives, this is the core
of the proof of Theorem 5.6.2. We still restrict to functions of two variables. Let
Q be a normalized domain and f € S(2, C'). Without loss of generality we assume
that ® # 0. We introduce the following notations:

. __m P
A.—méxx{exp{ —C—f}ipo‘(d+u)o‘}’
o _m g llgrad £|* }
D.—mgx{exp{ Cﬁf—i—K} oo (du)e [
where
_ N o
K = Y oxp {7 } sy
and m, o and N are positive constants to be determined later.

Lemma 5.6.10. Assume that Q C R? is a normalized domain and f € S(Q,0O)
satisfies the PDE (4.5.9) with 8 > 0, and that there exists a constant b > 0 such
that in Q:
1
S < b.

Then there are constants o > 0, N and m such that
A < max{d;, aiﬁD},
where dy is a constant depending only on a, C, b and 3.

Proof. To prove this lemma we consider the function

F .= exp{—c’ff}W

defined on 2, where

. P
W=

Clearly, F' attains its supremum at some interior point p* in 2. We may assume
that ®(p*) > 1, otherwise the proof is complete. Choose a local orthonormal frame
field on M with respect to the Calabi metric. Then, at p*,

Wi
W _gf,i:O7

rad W2
S — 5t — ¢fllgrad £ - gAF <0,

A direct calculation gives

Wi =W [% -t —age].

s

From Proposition 4.5.2, we have

AP > led ®I7 | (952 4 453 4 1)92,
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Thus we get

2 2
AWZZ(%J +W{%_Z(¢2l) +6O@+O‘Z(pl+d+u) _dQJr_au}

2
>%‘”2+W{(ﬁa+262+45+1)q>+a2(%+d@u) _é_au}

N2
> W™ W [(Ba+ 262 + 48+ 1)@ — 2a] .
We choose m = 4C, then 2¢’ < g2. Using the inequality of Schwarz we get
[Ba+ 26 + 48] @ — 2¢%||grad f||* — 2a — 29 < 0.

We discuss two cases:
Case (i). If, at p*,

2¢°|lgrad f|* < 2a + 2g,
then,
m 3]
exp {~ 7 | e < ¢

for some constant d’ > 0 depending only on «, 3, b and C.
Case (ii). In the following we assume that

2¢°(|grad f[|*(p*) > 20 + 2g.
Then we have
aB® < 4¢°|grad f|°.
Multiply both sides with exp{—z= 7+ K} d+u)a( p*), we have

m rad 2 %
exp{N}A< & exp{—c—_f + N} & lgrad /17 (),
Note that K (p*) = N. Hence
exp{N}A < O%D
In (i) and (ii) we got upper estimates, thus Lemma 5.6.10 is proved. |

Lemma 5.6.11. Let Q C R? be a normalized convex domain, f € S(Q, C) satisfying

the PDE (4.5.9) with 8 > 0. Assume that there exists a constant b > 0 such that
sy < b

Then there exist constants a > 0, N and m such that

A<dy, D<ds
for some constant d2 > 0 depending only on «, b, 3 and C.

Proof. Without loss of generality we may assume that O%D > d;. We put

42 1 —
F=K Q=g g b=
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n (5.6.6). Suppose that F attains its supremum at the point ¢*. Choose a local
orthonormal frame field with respect to the Calabi metric $ near ¢*. From
Fi(¢*) = 0 we have, at ¢*,

( 9fit+oipli—af —agy K) (f1)?+2> fifs=0.  (5.6.25)
We insert (5.6.11) into (5.6.7) and choose § = 15, and get, at ¢*,
2(f,11)% +2(f12)% + 4251 (f1)% + (B — 388)®(f1)” — 328 + AK(f1)°
(e ) 2o o)
—ay (% + ;11)2 + di—“u) (f1)2<0. (5.6.26)

Consider the inequality (5.6.26). In the following we choose N >> 10 and calculate
estimates for the terms (f11)? + (f12)?, AK and 4%(]“71)2, respectively.

(1) Estimate for (f11)? + (f12)%.
From (5.6.25) we have
2
2 =4 [ofa— Apfata (L +#25) — K] (£0)?
3 4 P u,1 2 2 Kl)
Z N {(Q—c—_f) f,1+04(7+d+u)} (f1)? = 552-(f1)% (5.6.27)

where we used the fact K < N and the elementary inequality
(a+b)?*>(1—-0)a*— (% —1)v?

with a := ((g - ci_f)fa + (p—; + ;4,_2))’ b:=K;,and ¢ := %. Similarly

2(f.12)? > 70 (%2 + JL)Q (f1)? — L E2 (r,)2, (5.6.28)

(2) Estimate for AK.

Ki=K (% - al —aft —gfs), (5.6.29)

2 i Ui 2
AK =200 4 g <(ﬁa+2ﬂ2+4ﬂ+1)‘1’+az (p,;l + dJ:u) )

-K (g’(f,l) +29+ 7=+ nglfl) (5.6.30)

Then we get
AK > Ut K gpeg exla N (g/(f1)% 42+ ). (5.6.31)
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(3) Estimate for 4% (f,1)*.

First, we choose a frame €1, é; such that p ;1 = ||grad p||. Note that

2 . . 2
D, = PPt _ 2p,1(p3,1) .

It is easy to check

(p,11)2;;(P,12)2 < E(;:I)’“)Q —|—2<I)2.
Then
2
,  (P11)?+2(p2)? (ﬁ(pl) TP )

Z (pgg) - p?

< 3((P,11)2p-2i'(P,12)2) +252‘1>2 32( i)° + (6+2ﬂ2)

Next, we return to the frame eq, es. It follows that

alenl(r )2 <26 lerad 2l (£4)% + 4/6 4 26 ®(f.1)?
1/2
<4\/_\/_<{Z( _a(pp,i+d1lz))2:|
HCENC

We apply the inequality of Schwarz and (5.6.29) and get

W[ (% -on—a (3 +25))]
e b ()2 + B dexp {27 § 070+ 0" ()

<

1/2

%
WIVE[Y (afa+a (24 25))] () < s00na(r0?

N
tav 2 [(o- c%f) Jita(% M)} (F0)* + 5 e (F0)"
From Lemma 5.6.10, note that K (p*) = N, then
ra 2 *
ep{N}A< e |- LﬁK}%m )

It follows that, at ¢*,
0 Aexp {227 } o (d+ )" (£2)° < ot g*(F0)"
We inserting (5.6.33), (5.6.34) and (5.6.35) into (5.6.32) and obtain
A (£0) < 5 —”g”?f” () + o (1)
772 (f.1)" + (302N +83)®(f,1)*

Z [(9 — o) fara (B 28] G,

20

4
Tavte
_|_

_|_

+ ;:L))T 1/2) ()% + (12 + 85) (1)

(5.6.32)

(5.6.33)

(5.6.34)

(5.6.35)

(5.6.36)
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We insert (5.6.27), (5.6.28), (5.6.31) and (5.6.36) into (5.6.26), this gives

25 (o cty) fata (Bt )] G2+ X (2 + ) (102

+ (af — 310N = 88) 0(£1)* — 2 (Kg+ 9 — oy ) 22(f.)* — 328

— [N+ 1)+ %+ ol | (F0f 2N+ 1) (4 255) (F0)?
(5.6.37)

We choose N and « such that

14+ N = ie., a=3N0EN) (5.6.38)

3N7
and choose N large enough so that
Ba — 340N — 83 — (M - 8) 3 — 340N > 200N.
We choose m > 2CafBN(N + 1), then
g (N +1) < gh50% N o= < N7ap -
In the following we discuss two cases:

Case 1: ), p’in’i > 0. In this case, by (5.6.38), we have
o [0 otp) fara (5

> 2 (0-cty) U =2+ 1) (9- et5) ) 2 Fed? () Co,

where we used the fact IZderLu il = IgiZ‘ < 1 (see (4.5.28)); here Cj is a constant

depending only on 8. Note that K < N, we have

+ dﬁ)r (f1)2 = @+2N) (9 - 545 ) 22 (f0)°

4 alf, alf, 8N paf. 3.2 2

Then, we have

g ()t 2N +1) (94 22 ) (f1)* = C1 <0
for some constant C; depending only on /.

Case 2: > ’“Tf"i < 0. By the inequality of Schwarz we have
=D [(9— —)f —i—a(”‘ + d+u)] (f1) +aZ(“ + d+u) (f1)?

> ﬁ (g ) (fl) = 2a+3Ng (fl) .

Then

Tetew g (F) =2V +1) (9+ 735 ) (f)? =328 0.
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Consequence: In both cases, we have an inequality of the type
aog?(f1)* = (arg + a2)(f1)* — a3 <0,
where ag, a1, a2 and ag are positive constants depending only on 3. Consequently
exp {—Clﬂc + K} QQWngad fII? < ay.
Together with Lemma 5.6.10, Lemma 5.6.11 follows. |
As a corollary of Lemma 5.6.11, we get the following estimates:

Proposition 5.6.12. Let Q C R? be a normalized convex domain and 0 € Q be the
center of Q). Let f be a strictly convex C*° function defined on ). Assume that

igffz(), f=C>0 on 00
and that f satisfies the PDE (4.5.9) with 3 > 0. Then there exists a constant o > 0
such that, on Q¢ :={z € Q| f(z) < €1,

o ligrad £|?
Farr S35 peargs < ds

for some constant dg > 0 depending only on B and C.

Proposition 5.6.13. Let Q C R? be a normalized convex domain and 0 € € be the
center of Q). Let f be a strictly convex C*° function defined on ). Assume that

igff:O, f=C>0 on 09

and that f satisfies the PDE (4.5.9) with 8 =0, and that there is a constant b > 0
such that, in §Q,

<b.

o=

Then there exists a > 0 such that the following estimates hold on Q% :
K3 llgrad £11°
o < da, oo < dy

for some constant dy > 0 depending only on a, b and C.

Since the proof is very similar to the proof of Proposition 5.6.12, we omit it here.

5.6.4 Estimates for Y fi;
In the following we will derive an upper bound for > fi;.

Proposition 5.6.14. Let Q C R? be a normalized convexr domain. Let f € S(Q,C)
be a smooth and strictly convez function defined in 2, which satisfies the equation
(4.5.9) with 8 > 0. Assume that there are constants ds > 0 and o > 1 such that,
in €,

<d3, %u) < ds.

_®
p(d+u)™ p(d
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Then there exists a constant ds > 0, depending only on «, B, ds and C, such that
exp {_32(2+d3)c} _ > fii < ds

c—f P (d+u)ot? =
on €.
Proof. Put
h_fla Tﬁ_WJFPv Q:WIH)W
n (5.6.6), where
_ 2 (&) o
Pi=etmur W= @
We choose € such that P < = on Q. F attains its supremum at some point p*.

30
Choose a local orthonormal frame field on M with respect to the Calabi metric £

near p*. From F;(p*) = 0 we have, at p*,

(~ofi— ok — (a+ 23 + W, +P)Z(h7j)2+22h,jh,ji:o. (5.6.39)

We insert (5.6.12) into (5.6.7) with 6 := -, and use the inequality of Schwarz, this
gives, at p*,

33 (h1i)? + (AW + AP)(h1)? — 422 (h1)? — a1 ®(h1)? + (o + 1) 25 (h )2

- [(g’ + m&) > (Fa)P+29+2(a+ 2)} (ha)? <0, (5.6.40)

where here and later we use a; to denote constants depending only on « and S.
We calculated AP in Section 5.6.2 (see (5.6.24)). Now we estimate AW. We use
Propositions 4.5.2 and (5.6.12) with § = 73— to obtain

W )2 )2
AW > (1— &) &G0 2l — 0,0 — a5, (5.6.41)

By the inequality of Schwarz we have
glenl < 8a§£2(1;jru)a + 32ap™(d + u)®. (5.6.42)

Now we calculate > (h 1;)2. From (5.6.39) we get

S(hai)? =1 (ofi+al + (a+2) 3

We estimate
iZ(gf,mLa”; + (o +2)
>3 (94 e W) —%Z
= 1+W)Z(9f +( ) W
> MQQZ(JC) -

Wi Pi) (h)?

W, P)

- %Z(Rz‘)z ~ 50’0

W.)?
2<8W, ? %Z(RDQ - 1a°9. (5.6.43)
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In the second inequality above we used the inequality (a+b)% > (1—n)a? — (% —1)b?

with 7 = 1. In the third inequality above we used the fact % = |£T+Z‘ < 1.

We choose m = 32(2 + d3)C, then (g’ + 32(214_d3)g2) < 32(23_%3)92. Since

2 2 -1 ii
(agauéj) = (amafafwj) and (h1)* =" fuufi;f7 = fu,
we have Y- u® > (h1)?. Choose € as in Lemma 5.6.9. We insert (5.6.23), (5.6.24),

(5.6.41), (5.6.42), (5.6.43) into (5.6.40) and obtain
W(h}ﬁ2 —ag® — arg — agp®(d+ u)* — ag < 0.

It follows that

32(24ds3)C d &2
exp{— (ctfs) } plc‘xg(iia_,_f)la“-m <ds

for some constant ds. As ||grad &;||? = f11, we can prove this inequality for any f;;
in the same way. This completes the proof. |

In a similar way we can prove the following Proposition:

Proposition 5.6.15. Let 23 = f(x!,22) be a smooth and strictly convex function
defined on a normalized convex domain ) C R?, which satisfies the equation (4.5.9)
with B8 = 0. Assume that f € S(Q,C), and that there exist constants « > 0 and
dg > 0 such that

L < dy,

o

<dy

Y
=

on Q. Then there is a constant ds > 0, depending only on «, dy and C, such that

32(2+d4)C > fii
exp { 2GSl < ds

on .

Remark. It is easy to see that Propositions 5.6.14 and 5.6.15 hold for any dimen-
sion.

5.6.5 Proof of Theorem 5.6.2

We begin with the following Lemma:

Lemma 5.6.16. Let 2 C R? be a sequence of smooth normalized conver domains,
converging to a convex domain 2, and let fF) € S(Q, C) with f*(¢*) = 0. Assume
that the functions f*) satisfy the PDE (4.5.9) with 3 > 0. Then there exists a
subsequence f(¢) that locally uniformly converges to a convex function f € C°(Q)
with d(po,0Q) > 0, where p, is the point such that f(p,) = 0. Moreover, there
is an open neighborhood N of p, such that f() converges to f, and also all their
derivatives converge, therefore f is smooth and strictly convez in N.
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Proof. Case > 0. Let 0 € € be the center of Q and u®*) the Legendre
transformation function of f*) relative to 0.

To simplify the notations we will use f*) to denote f(**). By Lemmas 5.6.8,
5.6.9 and Propositions 5.6.12, 5.6.14 we have the uniform estimates

(k)
o < dg,

> fi(ik)
o dru)e = do, SararutineTz < ds

1
po (d+ulk))e < po (d+ul
in

Sioo (g, §) == {z € Q| fM < §},
where dg is a positive constant depending only on § and C. We may assume that
qr converges to p,. Let Br(qr) be a Euclidean ball such that Q C B%(qk). Then

the Legendre transformation domain of § satisfies that B} (0) C 0, where § = =
and B} (0) = {¢ | & + & < 6?}. By Lemma 5.6.6, we have

det(fi;) > b3

for £ € B3(0) where b3 is constant depending only on C' and . Restricting to
2
B;(0), we have

- -C< ul®) = Zfil‘i — 0 < 5.

Therefore, the sequence u®) locally uniformly converges to a convex function u>
in Bj(0), and there are constants 0 < A < A < oo such that the following estimates
hold in B3 (0)

2

A<M <A for i=1,2 0, k=12,

where )\gk), ceey ,\SP denote the eigenvalues of the matrix ( fi(jk)). Then, by standard
elliptic estimates, Lemma 5.6.16 follows in case 5 > 0.

Case 8 =0. Denote D := {x | f(z) = 0}. Again we have two subcases.

(1) If D092 = () then there is a constant h > 0 such that the level set satisfies
St(po, h) C ©Q, and so we have a uniform estimate for > (aaf—;f))g in Sy (pr, h).
From Lemma 5.6.4, it follows that there is a uniform estimate for % in S’J(,k)(pk, %)
Then we use Propositions 5.6.13 and 5.6.15 and the same argument as above to
complete the proof.

(ii) In case DO # 0, let p € D 9N. Since the PDE (4.5.9) with 8 = 0 is an

. . . . 1\ 2
equiaffine invariant, we may choose a new coordinate system such that > (agwi )

is uniformly bounded in S ¢ (p,h). Then the same argument shows that f is
smooth in a neighborhood of p, and we get a contradiction. This excludes the case
D (N0 # B and thus completes the proof of this lemma. |

Remark. Here we have shown that there is a uniform estimate

0<by < det(ugf)) < bs < 00
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in Bj(0) for some constants by, bs. We can use the convex body theory and a
2

theorem of Aleksandrov ([13] p.35) to conclude that u> is strictly convex. Then
we can also use the Caffarelli-Gutierrez theory to prove this lemma, for details see
[53].

Proof of Theorem 5.6.2. Let x : M — R? be a locally strongly convex surface,
given as graph of a smooth, strictly convex function f defined for all (z!, 2%) € R2.
Assume that f satisfies the PDE (4.5.9) with 8 > 0. Given any p € M, by adding
a linear function, we may assume that

fp)=0, 2L(p)=0,i=12.

Choose a sequence {Cy} of positive numbers such that Cy — oo as k — oo. Then,
for any C, the section

St(p, Cr) = {(a',2%) € R? | f(a',2%) < O}

is a bounded convex domain in R?. It is well-known that (see section 4.5.6) there
exists a unique ellipsoid Ej which attains the minimum volume among all ellipsoids
that contain S¢(p, C) and that are centered at the center of mass of S¢(p, Cy) such
that

272 B}, C Sy(p,Cx) C Ey.
Let T}, be an affine transformation such that
Ti(Ex) = B1(0) = {(2',2%) e R?* | (2")* + (2?)* < 1}.
Define the functions

-1
() = L5

Then

B__3(0) C Q% C B1(0),

23
where
O = {(xl,x2) e R? | fB) (2! 2?) < 1}.

Taking subsequences we may assume that {3} converges to a convex domain 2 and
{f*)} converges to a convex function £, locally uniformly in Q. By Lemma 5.6.16
the function £ is smooth and strictly convex in a neighborhood of T%(p) € Q. Tt
follows that the functions ®®*)(T%(p)) are uniformly bounded.

Assume that ®(p) # 0; by a direct calculation we have

eW(T*(p)) = Cx®(p) — oo,

thus we get a contradiction, and thus ®(p) = 0. Since p is arbitrary, we have
® = 0 everywhere on M. It follows that det(f;;) = const. So f must be a quadratic
polynomial. This completes the proof of Theorem 5.6.2. |
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5.7 An Affine Bernstein Problem in Dimension 3

In this section we use the following standard notation: we consider a domain

Q CR", n > 2, and a locally strongly convex function f: 2 — R. We consider the
graph 2" ! = f(x!,...,2") and consider the hypersurface M = {(z, f(z)) | = € Q}.
For a fixed point py € M denote by d(po,p) the geodesic distance from p to pg
with respect to the Calabi metric §, and by 7 : p — 7(po,p) = d(po, p) the geodesic
distance function. For any 0 < a € R let By(po,9) := {p € M | d(po,p) < a}
be a closed geodesic ball. From section 1.4 recall the definition of ®, and define
F : By(po, ) — R by

F(p) == (a® — 1 (po, p))*®(p).

Obviously, F' attains its supremum at some interior point p*. We may assume that
r? is a C?-function in a neighborhood of p*, and ® > 0 at p*.

We start this section with Theorem 5.7.1, and extend this result in section 5.8
below.

Theorem 5.7.1. [54]. Let 2" = f(a',---,2™) be a locally strongly convex
function defined in a domain Q@ C R". If M = {(z, f(z)) | x € Q} is an affine
maximal hypersurface, and if M is complete with respect to the Calabi metric $,
then, for dimension n =2 orn =3, M must be an elliptic paraboloid.

We divide the proof of Theorem 5.7.1 into two parts:

(I) We show that, if the maximal hypersurface M is complete with respect to the
metric $ and if the norm of its Ricci curvature || Ric|| g is bounded above then M
must be an elliptic paraboloid.

(IT) We use Hofer’s Lemma (see section 5.5) to verify that || Ric|| s must be bounded.

5.7.1 Proof of Part I

First we prove the following lemma:
Lemma 5.7.2. Let x : M — R"! be a locally strongly convezx affine mazimal
hypersurface, which is given as graph of a locally strongly convex function:

2= f ),

If M is complete with respect to the metric §), and if there is a constant N > 0 such
that | Ricl|sy < N everywhere then, for dimension n =2 orn =3, M must be an
elliptic paraboloid.

Proof. For the structure of the following proof recall section 4.5.5.
Let pg € M be an arbitrary fixed point. Adding a linear function and by an appro-
priate parameter transformation, we may assume that py has coordinates (0, - - - ,0)
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and
Consider the function

defined on B,(po, $). Then, at p*,
F; =0, ZFM <0,

where “,” denotes the covariant differentiation with respect to the Calabi metric.
We calculate both expressions explicitly

“

o} i 2(T2) i

i 2r)e — o, (5.7.1)
)2 ra 7"2 2 r
ae _ Z(;;) _ 2'('5212)! _ iﬁ(ﬂ) <0. (5.7.2)

We insert (5.7.1) into (5.7.2) and get

ra 7"2 2 T‘2 i TAT
A@q) < Sllgrad 7| 28(r%) _ _ 24r® e + o+ 4 A (5.7.3)

(a2 T2)2 a2—r2 T (ll277‘ a2—r2"
Recall that (M, $)) is a complete Riemann manifold with Ricci curvature bounded

from below by a constant —N, (N > 0). We apply the Laplacian Comparison
Theorem and have

rAr < (n—1)(1 4+ VNr).
Consequently, from (5.7.3), it follows that

AL ¢ g ey AV (5.7.4)

Case n = 3. In Proposition 4.5.2, choose = "—’2, 6 = 0, then we have

A>3 IIgrad o _ 3 Zq, £iy lp?, (5.7.5)

Thus by (5.7.1) and the inequality of Schwarz we have

A@ziz 1)2 EZ%'T"'%CD

>-6) @ Lo> o Mon | 1g (5.7.6)
Insert (5.7.6) into (5.7.4); this gives
B< ML u | /Ny (5..7)

Multiply both sides of (5.7.7) by (a? — r?)2. We obtain, at p*,
(a® —r?)2® < bya® + baa®, (5.7.8)

for some positive constants by and bs.
Case n = 2. Choose 3 = ”T’z, 6 = 0 in Proposition 4.5.2, then we have

AD > lered 2IF 4 2 (5.7.9)
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Similar to the case n = 3, it is easy to verify that (5.7.8) holds also for n = 2.
Hence, at any interior point of B, (po, $), we have

1
®<b +b :
TR0 -nR el )2
Let a — oo, then
d=0. (5.7.10)

It follows that
62
det (524 ) = 1.
Thus the Calabi metric and the Blaschke metric satisfy
H=0G.

This means that M is an affine complete parabolic affine hypersphere. By Theorem
4.6.1 we conclude that M must be an elliptic paraboloid. |

5.7.2 Proof of Part II: Affine blow-up analysis

Now we want to show that there is a constant N > 0 such that ||Ric|lg < N
everywhere. To this end, we need Hofer’s Lemma (see section 5.5).
Assume that || Ric||s is not bounded above. Then there is a sequence of points

p¢ € M such that ||Ric||¢(pe) — oo. Let Bi(pe, $) be the closed geodesic ball with
center py and radius 1. Consider a family ¥(¢) : By(ps, $) — R of functions, £ € N,
defined by

U(l) := ||Riclls + ® + 4n(n — 1).], (5.7.11)

where ® and J are defined in section 3.3.4. In this subsection, if no confusion is
possible, we simplify the notation again and write ¥ instead of ¥ (¢). We use Hofer’s
Lemma with U3 and find a sequence of points gy and positive numbers ¢, such that

Wh(x) <208 (q), Y x€ B, (q.9), (5.7.12)

W3 (qr) > 103 (py) — 0. (5.7.13)

The restriction of the hypersurface x to the balls B, (qe, $) defines a family
M (¢) of maximal hypersurfaces. For every ¢, we normalize M (¢) as follows:

Step 1. By adding a linear function and by an appropriate coordinate transforma-
tion we may assume that g has coordinates (0,--- ,0) and

f(0)=0, grad f(0) =0.

We take a parameter transformation:

B(0) = aj(0)a (0), (5.7.14)
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where aj (6) are constants. Choosing a-(é) appropriately and using an obvious
notation f, ¥, we may assume that, for every £, we have fw( ) = d0;;. Note that,
under the parameter transformation (5.7.14), W is invariant.

Step 2. We take an affine transformation by
'(0) = a(0)z'(0), 1<i<mn,
") = X0z (),
where A(¢) and a(f) are constants. It is easy to verify that each M (¢) again is a

locally strongly convex maximal hypersurface. Now we choose A(¢) = a(¢)* = T(qe).
Using again an obvious notation f, U, one can see that

full) = Fu(@), W) = 550(0). (5.7.15)
The first equation in (5.7.15) is trivial. We calculate the second one. From the

definition of ® and Ric (see section 3.3.4) we easily get

Sn®, |Hiclg = s Ridlly, T = 557,

Then the second equality in (5.7.15) follows.

6:

We denote B, (qe, ) := {x € M( ) | 7(0)(qe; x) < a}, where 7(¢) is the geodesic
distance function with respect to the metric f) on M(f). Then ¥(¢) is defined on
the geodesic ball By (qe, ) with d(¢) = ;0= (q¢) > $¥3 (pg) — oo. From (5.7.12)
o (5.7.15) we have

‘T/(QZ) = 17
U(x) <4, Vo€ Bawylqe ). (5.7.16)
We may identify the parametrization and write (£1,---,&,) for any index .

Then f(¢) is a sequence of functions defined in a domain Q(¢) with 0 € ©2(¢). Thus
we have a sequence M (é) of maximal hypersurfaces, given by f(¢), and the following
relations:

fo) =0, %80y =0, 2L 0) =24, (5.7.17)
U(0)(0) =1, (5.7.18)
U(0)(p) <4, Vpe Byp(0,9), (5.7.19)
d(l) - o0, as £ — o0 (5.7.20)

To continue with the proof of Part II of Theorem 5.7.1, we need the following
lemma:

Lemma 5.7.3. Let M be an affine mazimal hypersurface defined in a neighborhood
of 0 € R™. Suppose that, with the notations from above,

() fij(0) = d4y,
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) |Ric||s + P + 4n(n — 1)J < 4.

Denote B%(O) = {(&, - ,511)| >°(&)? < 75} Then there is a constant Cy > 0
such that, for (&1, ,&n) € B% (0), the following estimates hold:

(1) qu‘ <dn,

(2) o < det(fij) < Cr.

(3) Define do by d3 := wrmyr=rer then Ba,(0,9) C {¥(&)* < 5z} € B(0),
where Bg, (0, $) is the geodesic ball with center 0 and radius d, with respect to the
metric 5.

Proof of Lemma 5.7.3.
(1) Consider an arbitrary curve I' = {£1 = a1, -+, & = aps | Y a? =1, s > 0}.
From the assumptions we have

Zfilfjmfkrfijkflmr <4, Zf“-(O) =n.

Since f“fj"ﬂ)””ﬁj;C fimr is independent of the choice of the coordinates &1, . .., &,,
for any point £(s) we may assume that f;; = A;d;;. Then

E f lfJ fk fijkflmn N A Py 12]]@ - fLJLI)CS»
It follows that

> f'i2'i 1 2
7 < o 2o fie <4

and hence

1 (> fi(€s)) _ 1 (e(sNa
(3 fii(€(s) 2 ds (X fuile()) 3 2 fuklEls)a
1 1
S £2,(E() ) 2 2\ 2
Vi ((Z Tt <s>>)3) (Z ak)
< 2¢/n.

Solving this differential inequality with fii(O) =n, we get

7—f_

IN

5, then (1) follows.
(2) Consider again an arbitrary curve
P:{é—l:alsa"' 7§n:ans| Zaz?:]w 820}

From the assumptions we have

From the assumptions we have s <

> fiipipj < 4.
o >~

It follows that
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By (1) we get
1dp(E(s)) < 4y/n.

P ds
Solving this differential inequality with p(0) = 1, we obtain
—4y/ns <1In p(&(s)) < 4v/ns.

Recall that s < 5, then (2) follows.
(3) Denote by Amin, Amas the minimal and maximal eigenvalues of (f;;), resp.
Then, from (1) and (2), we have A4 < 4n and

Cil < det (fz]) < >\mzn)\nmai < (4n)n ! )\mzn (5721)

Hence, by (1) and (5.7.21), the geodesic distance function r satisfies
dny (&) 217 2 gt > (6)% (5.7.22)
and (3) follows. This finishes the proof of Lemma 5.7.3. |

To prove Part IT of Theorem 5.7.1, we apply Lemma 5.7.3 to verify the following
Claim:

Claim: The sequence f(ﬂ) locally uniformly converges in C'*° to a smooth function
f that we consider as graph function of a locally strongly convex hypersurface; this
hypersurface is complete with respect to the Calabi metric and satisfies the mazimal
hypersurface equation with bounded ¥ := lim ¥ (¢).

Once the claim is proved, by Lemma 5.7.2, f must be a quadric. Hence U = 0. But
U(0) = Jim T(0)(0) = 1.

We get a contradiction. Thus we show that there is a constant N > 0 such that
||Ric||s; < N everywhere.

Proof of the Claim: Since d({) — oo, we have B%(O) C Q(¢) for £ big enough.
In fact, by (5.7.22), the geodesic distance from 0 to the boundary of B% (0), with
respect to the metric § on M (£), is less than \/Lﬁ By Lemma 5.7.3 and bootstrap-

ping, we get a C*-estimate, independent of ¢, for any k. It follows that there is a
ball B /= (0) := {Z(@) < (5} and a subsequence (still indexed by ¢) such that
S (é) converges to f on this ball, and correspondingly all derivatives, where Cy < -5
is very close to 4n—2. Thus, as limit, we get a maximal hypersurface M , defined on

this ball B /7=(0), which contains a geodesic ball By, (0, 9). In the following we will
extend the hypersurface M , and inductively show the statement

(*) f() uniformly converges to f in B, a (0,9), m € Z*. Moreover, for each

do
m < 00, Bmd_o(O 9) is bounded in R™.

We verify the statement (*) by induction on m. Assume (*) is true for m. Set

B(m—1):= 8B(m,1)d7o(07§3)
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and
)\E,min(m - 1) = §€Bi(r11'rf;—1) )\mln(sz(g)(g))a
)\€7maX(m —1):= sup )\max(sz(f)(g)),
£eB(m—1)

where D2 f(£) denotes the Hessian matrix of the function f(¢). Since B(m — 1) is
compact, there exists €,,_1 > 0 such that

€m—1 < )\€7min(m - ]-) < )\€7max(m - ]-) < 6;11,1

In fact, this is true for lim ¢ = oo, then by convergence, this is true for all /.
Now we fix an arbitrary &, € B,,—1. Consider the convergence of f(¢) in the
neighborhood of &,. Note that the sequence {f(¢)}¢ converges in Ba, (&, ). We
2

want to show that it converges in By, (£,,$). Again, analogously to step 1 above,
we assume that &, = 0, gradf(¢)(0) = 0. We consider a parameter transformation:

0) =Y al(0)&(0), (5.7.23)

where a{ (¢) are constants. Choosing a{ (¢) appropriately and using an obvious
notation f, (I\J, we may assume that, for every ¢, we have ﬁj (0) = ;5. Note that,
under the parameter transformation (5.7.23), U is invariant. It is easy to verify
that each M (¢) again is a locally strongly convex maximal hypersurface, and

210 (0) = by,

0€;€;
T(0)(p) <4, Vp € Byey(0,9),
d(f) — oo, as {— oo.

Now we apply Lemma 5.7.3 again to conclude that f(ﬂ) converges to fin B /5 (0)

and hence on the geodesic ball By, ({O,.%). Note that the upper and lower bounds
of eigenvalues of (a’ (é)) only depend on A¢min(m —1) and A¢max(m — 1), and hence
on €,_1. Put Ay :=limy . (a](¢)). Hence AL} (B /(0)) is bounded.

Now, we reverse the above affine rescaling and conclude that:

f(&) converges to f in a bounded domain D(&,) = AL} (B v5;(0)) and thus on the
subset Bg, (o, f))

The choice of {, was arbitrary. If { = £, runs over B(m — 1), we conclude that
f(£) uniformly converges to f in B( +1)de (0,9). Moreover, it is easy to see that

0.9 U Db

£eB(m—1)

which is bounded; here D(£) is defined in analogy to D(&,). This proves (*).
Now from (*) the claim follows immediately. This completes the proof of Part II
and thus of Theorem 5.7.1. |

B(m+1 2 (0 ‘6)

Lo 70
2 2
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We pose the following problem for higher dimension:

Problem 5.7.4. Let x : M — R"*! be a locally strongly convex hypersurface, given
as graph of a convex function

x7l+1 = f(xla e 73:”)7

defined on a domain Q C R™. If x(M) is an affine mazimal hypersurface and if
x(M) is complete with respect to the metric 9, is it an elliptic paraboloid ?

5.8 Another Method of Proof for some Fourth Order PDEs

In this section we shall prove Bernstein properties for complete hypersurfaces of
dimension n > 2, satisfying the PDE (4.5.9), where we consider two different com-
pleteness conditions, namely Calabi completeness in Theorem 5.8.1 and Euclidean
completeness in Theorem 5.8.2.

For the proof of Theorem 5.7.1 we used analytic blow up techniques. For the proof
of the following Theorem 5.8.1 we follow ideas of A.M. Li and F. Jia, introduced
in [45]; there both authors studied the constant affine mean curvature equation. In
our proof below we give a lower bound for the Ricci curvature, calculating with the
Calabi metric. Then we apply the Laplacian Comparison Theorem.

Theorem 5.8.1. Let f(x',...,2™) be a strictly convexr C*®-function defined on a
convex domain Q) € R™ satisfying the PDE (4.5.9). Define

M = {(z, f(x)) | 2" = f(x),z:= (2, ...,2") € Q}.

If M is complete with respect to the Calabi metric $ and
_(42)(n—1) 4 (n42)(n—1)
ﬁ g 4/n 17 4/n
Proof. Recall the beginning of the proof of Lemma 5.7.2. Define the geodesic
distance from p, with respect to the Calabi metric: a* = r(po,p*). We discuss the
two cases p* # po and p* = pg.
1. 1In case p* # po we have a* > 0. Let By (po, ) := {p € M | 7(po,p) < a*}.
We choose 6 = 0 and

— 1| then M must be an elliptic paraboloid.

(n+2)(n—1) (n+2)(n—1)
ﬁ g - 4/n - 17 4/n - 1}

in Proposition 4.5.2, and apply the maximum principle, then we have

~max ®= max .
Byx (po,$) 0Bgx (po,9)

Observe that a? — 72 = a® — a*2 on 0B, (po, ), thus it follows that

_max = d(p").
B+ (po,$)

Consider p € B, (po, $); we choose an affine coordinate neighborhood {U, ¢} with
p € U such that
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in U. From (4.6.3) we get

n 2 n 2 *
Rii(p) > — 2 (p) > — 220 ().

We apply the Laplacian Comparison Theorem from section 1.3 and obtain
rAr < (n—1) (1 NGB 7") . (5.8.1)

2. In case p* = py we have r(pg, p*) = 0. Consequently, from (5.7.3), (5.8.1) and
the inequality of Schwarz it follows that

82 <O oy + €@, (5.8.2)

where € > 0 is a small constant to be determined later, and C1 is a positive constant
. . . . AdD

depending only on n and e. (5.8.2) gives an upper estimate for the expression %-.

In the next step we calculate a lower estimate. Namely, by Proposition 4.5.2 with

0 = 0 and the inequality of Schwarz we have

2(hn—_92)2 2 n 2(p—
% 2 _16(546711)7(1?)1252) (a2i2r2)2 + (Q(Zi_i) -4 +223n( 2 6) ®; (5.8.3)

here we used (5.7.1). We combine (5.8.2) with (5.8.3) and have
F(B3,6)® < 02ﬁ7
where

F(67€) = 2(5+1)2 _ (7L+2)2(n_1) B 2

n—1 8n

€

and (s is a positive constant depending only on n and e. We may choose a suffi-
ciently small number €(5) > 0s. t. F(8,¢) > 0. Hence, at p*,

(I’SOBL

(a27,’ﬂ2)2 I’
for some positive number Cs depending only on n and §. Thus, at any interior
point of Bq(po, §), we obtain

2
P < C3ztmye-
For a — oo we get
P =0.

This means that M is an affine complete parabolic hypersphere. We apply Theorem
4.6.1 and conclude that M must be an elliptic paraboloid. This completes the proof
of Theorem 5.8.1. [ ]

Remark. For affine maximal hypersurfaces we know that § = "T_Q in the PDE
(4.5.9). Tt is easy to check that Theorem 5.7.1 is a special case of Theorem 5.8.1.
Following Li and Jia’s idea, several authors obtained similar results, see [44], [71]
and [101] .

In [46] the authors proved the following Bernstein property. However in [46] the
calculations are very complicated. Later, in [102], we gave a relatively simple proof,
using the Calabi metric.
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Theorem 5.8.2. Let x : M — R" be a locally strongly convex hypersurface,
which is given as graph of a locally strongly convex function:

a"th = fat e,
defined on R™. If f satisfies the PDE (4.5.9) then there is a positive constant K (n)

depending only on the dimension n, such that, if |8] > K(n) then f must be a
quadratic polynomial.

To structure the proof of Theorem 5.8.2, we first prove the Propositions 5.8.3
and 5.8.4 below.
For any fixed convex domain 2 C R”, and any constant C' > 0, let f € S(Q2,C) (see
section 1.1.4). Assume that the function ® does not vanish identically on Q. For
the sake of simplicity, we introduce the following notations:

A::mézx{exp{—ciﬂc}@},

1 m
K=o { -~ b .

— __m_ 2 2
D.—mgx{exp{ oy +K}g lgrad | }

where the function g is defined in Lemma 5.6.3, and m is a positive constant to be
determined later. We may assume that |5] > 1.

Proposition 5.8.3. On a convex domain ), assume that f € S(Q, C) satisfies the
PDE (4.5.9). Then there is a positive constant K1(n), depending only on n, such
that, if |8 > K1(n) then the following estimate holds:

A< ag(D+3),

where

— 1602
% = FrTE- Gy > O

Proof. To prove this proposition we consider the function

F :=exp {_Clﬂ‘} P,
defined on €2, where m is a positive constant to be determined later. Clearly, F'
attains its supremum at some interior point p*. Around p* choose a local orthonor-
mal frame field with respect to the Calabi metric $. Recall the definitions of g and
¢’ from Lemma 5.6.3. Then, at p*,

D ;
3 —9/i=0, (5.8.4)
Q_ngad@HQ_ / d 2 Af <0 5.8.5
) 32 gngafH gAf <0. ()
Proposition 4.5.2 with 6 = 0, formula (5.8.4) and the inequality of Schwarz give:
A®  |lgrad @|? 1 |lgrad @|? (8+1)(n—2) Pipi 2(6+1)2  (n+2)?
e e e ?%JF(T—T)‘I’

> gplead el | ((ﬁ+1)2 _ <n+82>2) >

n

> — 2ng?||gradf||? + (@ . %) ®. (5.8.6)
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Again we apply the inequality of Schwarz; it follows that
gAf < ng+ TG 4 12 |grad . (5.8.7)
Choose m > 4C, then ¢’ < ¢g2. Insert (5.8.6) and (5.8.7) into (5.8.5); we obtain

n

((5+1)2 _ (”"f)z) ® — 4ng?||gradf||* — ng < 0. (5.8.8)
Put

o _16n®
90 = B -

then there clearly exists a constant K (n) such that ap > 0 in case that |5] > K1(n).
Therefore

® < apg?|gradf||* + aog. (5.8.9)
Multiply both sides of (5.8.9) with the factor exp {—C’—ff + K} (p*), and use
K(p*) = ﬁ; this gives the asserted inequality
A<ao(D+ ).
Proposition 5.8.3 is proved. ]

Proposition 5.8.4 On a convexr domain ), assume that f € S(2, C) satisfies the
PDE (4.5.9). Then there is a positive constant Ko(n), depending only on n, such
that, if |B] > Ka(n) then the following estimates hold:

A<d  D<h
for some constant di > 0 depending only on B and n.

Proof. First we use Lemma 5.6.3 and (5.6.10) to obtain the following estimates:

6n0 N7 (f 1) 4 (0 2)22 (f)? — 20 (f )2 o (Af)?
+ (AT — g/ (f2)? —gAf + A2 - 2@ ) (f1)><0 (5.8.10)
for any number 6 € (0,1). Put 7% := K, Q := g% in (5.8.10). Assume that F,

defined by (5.6.6), attains its supremum at some point ¢*. Then, from F;(¢*) =0,
we have at ¢*:

(“ofi+ g fat K2) (£ 423 Fafsi =0 (5.8.11)
We use formula (5.8.10) with § = g~; then we know that, at ¢*,
Y (Fa)? 4 (n+ 22 (£1)? = 10(n +2)*®(f1)? — 100n* + AK(f1)?
— (g U+ g+ 282 (- A7) B fa) (F)* 0. (5.8.12)

In the following we compute the two terms > (f1;)> and AK, respectively.
For this we note that K < \T%I’ and also the elementary inequality

(a+b)* > (1—¢g)a® — (£ —1)p*, for anye>0. (5.8.13)
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n (5.8.13) choose

5K
(g_c—f)fl’ b=Ki1, €= 15k

Then, from (5.8.11), it follows that

Ay (fu) =) (gf,i —ogfi— K1)2 (f1)?
> (g ty) 02 Y00 - LR

Next we find that

Ak =EUE 4 (42 - 7@;@”2) — K (¢'(£2)* + gAf) .

CF02 (5.8.14)

K=K (%

By virtue of Proposition 4.5.2 with 0 = g, (5.8.7) and the inequality of Schwarz
we get
K, i)? n
AK >Z( )? _|_41n% (P,p2) _ﬁ((§g2+g/)(fl)2+ng)
n |lgrad @|? _ 8n(n=2)(B+1)+(8+n) i P
+K(1165(n81) =5 in(n—1) Z <1>pp (n+2) q>)
i ii)? n
2RO+ L - (597 + 9 (fa) + )
— K (32 4 (n(8+1)2+ (n+2)%) @) (5.8.15)
Since
)2 i 2 Ta 2
SEU — Sk (% - gfs) = iR 3Kg(r0)2, (5.8.16)
we have
K (p.ij)® X (K.0)*
AK 2 o 3 el 4RO g
— 11 (0 +3)g° + ¢")(f.1)* +ng), (5.8.17)
where

=n(B+1)2+ (n+2)%

The inequality of Schwarz gives

(n+2)20(f1)? < KN @l (£ 192 4 n(n +2)22(f1)2 (5.8.18)

p2
Insert (5.8.14), (5.8.17) and (5.8.18) into (5.8.12) and use the inequality of Schwarz
again; we get

18] 2 4 2 29 2
W(g_—f) (f71) —a®(f1)” —n(n+2)"%(f1)

- (Tﬁ + 7 ) (f1)* = 2ng(f1)* —100n° < 0, (5.8.19)
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where
az == {4 +11(n + 2)%.
Choose m > 2000(n — 1)C so that

< 182 41
9 < B 1)(|ﬂ|+5>29 ’ o7 <29
Thus

(W - o ) 2(f)t = ax®(f1)?
—n(n+2)22(f1)* — 2ng(f1)* — 100n® < 0. (5.8.20)

Choose |3| large enough such that

16(n—1)(|8|+5)|8

B 16(nt3)2(815) > O

ag =
Then
1gz(f,l)4 - a2a3¢(f71)2 —n(n+ 2)%3%(]‘,1)2 - 2n2a§ —100n3as < 0. (5.8.21)

Multiply both sides of (5.8.21) with the factor exp {—CQ—Tf + 2[(} 9%(q*); we have

D? <agexp {—CQTm + 2K} 9% {2a2®(f 1) + 2n(n + 2)* £ (f1)*}

+ exp { 2m s+ 2K} g {4n + 200n3a3}

<agexp {W} (2a2 + 2n(n + 2)? |ﬁ|) AD + a4

<asAD + ay, (5.8.22)
where

as = 18 (4n’a3 + 200n°as), a5 := 6as(az + n(n+2)*|6)).
Recall the definition of ag in Proposition 5.8.3, and note that, when | 3| is sufficiently
large,
2&00,5 = MW (ag + |ﬂ|n( + 2)2) ag ~ ﬁ (5823)
Thus there exists a positive constant Ko(n), depending only on n, such that, if
|ﬁ| > KQ(TL), az >0, 2apas < %,
we get
D< g

where ag is a positive constant depending only on 3 and n. This together with
Proposition 5.8.3 gives Proposition 5.8.4. |

Proof of Theorem 5.8.2. Let f be a strictly convex function satisfying (4.5.9).
Modulo an affine transformation of R"*!, we can assume that f(0) =0 and f > 0
on R™\{0}. Consider the sections of f:

S¢(0,C):={peR™| f(p)<C}, ¥VC>O0.
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They are convex open domains in R™. For any point p € M, choose a sufficiently
large constant Cp > 0 such that p € S¢(0,Co). Then, for all C' > Cy, we have
p € S5(0,Co) C S§(0,C). From Proposition 5.8.4, we know that the inequality

exp{_c7ﬁf} o < %
holds on each section S¢(0,C) with C' > Cj. In particular, we have

exp{—cj—;ﬁ(m}cb(p) <4 (5.8.24)

Now take C' — +oo in (5.8.24); it follows that 0 < ®(p) < 0, which implies the
equation ®(p) = 0. But the choice of p € M was arbitrary, thus ® vanishes
identically on M. This means that p =const and thus M is a Euclidean complete,
parabolic affine hypersphere. An application of Pogorelov’s theorem (see section
4.4) implies that M must be an elliptic paraboloid; this completes the proof of
Theorem 5.8.2. |

5.9 Euclidean Completeness and Calabi Completeness

Recall different notions of completeness given in section 4.2. In this section, under
additional assumptions, we shall prove that, for a graph hypersurface
M = {(z, f(z))} the Euclidean completeness of M implies the Calabi completeness.

Remarks and Examples. (i) Generally, the notions of Calabi completeness and
Euclidean completeness on M are mot equivalent. For example, the global graph
over R™ in R"*! given by

hiz) = exp{a’} + ) (a')?

i=2
is Euclidean complete, but not Calabi complete.

(ii) Generally, the notions of Calabi completeness and affine completeness on M
are not equivalent. For example, the one-sheeted hyperboloid (see [45))

fla'a®) = (14 (@) + (2%)%)2
M = {(z', 22, f(z',2%)) | (2',2%) € R?}
is Euclidean complete and affine complete, but not Calabi complete.

Theorem 5.9.1. Let 2" = f(z) be a strictly convex function defined on a convex
domain Q C R™ satisfying the PDE (5.6.3) with L* = const. Assume that

M = {(z, f(z)) | © € Q} is a Euclidean complete hypersurface and that ® is bounded
then M is complete with respect to the Calabi metric $.

In [45] the authors prove such a conclusion for a locally strongly convex hypersur-
face with constant affine mean curvature, which is a special case of Theorem 5.9.1.
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Namely Theorem 5.9.1 is more general than Theorem 1 of [45]. In the following we
use the Calabi metric to prove Theorem 5.9.1.

Proof. Let p € M be any fixed point. Up to an affine transformation of R"*!, we

may assume that p has coordinates (0,---,0,0) and
foy=0, 2L)y=0, 1<i<n
The key point of the proof of Theorem 5.9.1 is to estimate %. We shall show
that it is bounded if ® is bounded. To estimate %, we consider the following
function
ra 2
Fﬂ:@m{ggw%@}%ﬁ%%— (5.9.1)

defined on the section S¢(0,C), where
U := exp{P},

and m is a positive constant to be determined later. Clearly, F' attains its supremum
at some interior point p* of S¢(0,C). We can assume that ||grad f| > 0 at p*.

Choose a local orthonormal frame field of the Calabi metric ey, --- ,e, on M such
that, at p*, f1=|grad f|]| >0, f; =0 (¢ > 2). Then, at p*,

F, =0, (5.9.2)

> Fi<o. (5.9.3)

Now we calculate both expressions (5.9.2) and (5.9.3) explicitly. By (5.9.2) and
(5.9.3), we have

22 [l + (—gf,i - 21J1—f + \IM) Z(f,j)Q =0, (5.9.4)
QZ(fﬂ'j)z +2 Z [ fgii + QZ (_gf,i - 21f+—f + \I&z‘) 1t
+ [0 S0P - oA + 25 - 285 £ AU 312 <0, (595)

where, as before, g and ¢’ are defined in Lemma 5.6.3.
Let us simplify (5.9.5). From (5.9.4) we have

2= (gfa+ 225 -9, fa. (5.9.6)
Similar to (4.5.43), applying the inequality of Schwarz, we get
2) (Fi9)*>2 (Tl - 5) (fa)? +4 (f10)® = stz (A, (5.9.7)

i>1

for any 0 < 6 < 1. We insert (5.9.6) and (5.9.7) into (5.9.5) and obtain
{2 (nr_ll - 5) — 4} (f,ll)2 + QZ f7jf7j“‘ — W(Af)z
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Now we calculate AW. We use a calculation similar to Proposition 4.5.2 and obtain

AD > 2N "(p;)* — C(n, 5, 8)P°, (5.9.9)
where C(n, 0, 3) is a positive constant depending only on n, § and 5. Then we get
U, =0d,, (5.9.10)

and
AT > TN (2,7 + UL (pi))° = C(n,6,8) 07, (5.9.11)

Let us now compute the terms ) f; f ji from (5.9.8). An application of the Ricci
identity shows that

2> il =2> [i(Af);+2> Rifif;
We use (3.3.4) and (4.5.5) to obtain

23" fifgi =(n+2) (£l + fi22 = £2282) £5 42 Ri(f1)?
=(n+2) (pu (f1)? = %(f )2+ faif it — Ank®(f1) )

+2) Ann(fa)?
>(n+2) 22 (£1)2 = C(n, 5)D(f,1)?
=0 (fa) + 26 AL, (5.9.12)

where § is a positive constant as before, and C'(n, §) is a positive constant depending
only on n and §. A combination of (5.6.9) and (5.9.7) gives

2 fifgi 2(2-66) Y (f1)* - 5oy (AS)°
+ (n+2>’%<f,1>2 — ( n,6)®(f1)* - 2n
>(2-60) Y (f1)? — s (AS)? — 260 Y L1 )2
— 22 (1102 - O(n, 8)D(f1)% — 21 (5.9.13)
We insert (5.9.11), (5.9.13) into (5.9.8) and use (5.9.6):

(s~ 20) (90 + 25 —0) (1) — G (A)? — Cln.0)(11)?
— R (1) 1 S (@,0)%(£0) — C(n, 6, 8)¥D%(f.1) — 2n
+ [—g (F1)? —gAf + 28805 — 2801 (f1)? <0, (5.9.14)
We choose the following values for § and m:
L :m m := 40 (3n + exp{N}) C
where N = sup,cq ®(z). To simplify the expression we denote

— 1 N 4
ay ‘= m - 257 ag ‘= n—1)3°
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= C(n, )N + 22 4 C(n, 5 NIN2, ay:i= —a

az = (n7 ) + 85 + (n, 76) eXp{ } s aq = m.

Recall that ¥ ; = ¥® ;. Then we have
2

a (gf,1+21% ,1) +uy (@, >a,4(gf1—|—2f1) : (5.9.15)

Inserting (5.9.15) into (5.9.14) we get
2 fi 2 _ A _ 2
ag (9fa+ 2755 az(Af)* —as(f1)
+ (—g'(F0)? — gAS + 28— 28L) (£.1)2 — 20 <0, (5.9.16)
Multiply both sides of (5.9.16) by

W' Then we obtain

2 2
aq (gfl +21+f) ((1{;;_1}_)2 — a2 (ﬁ_];) —as ()2

1+
2
— g &k —gar il + ol (A_ff) b —om <0, (59.17)
Using g’ < & 54 2442 to further estimate (5.9.17), we have the following three inequali-
ties:
(f)* £ (f1)?
9w < 0 (gfl +21+1f) i
A 2 25 (f1)°
() <o +ontalll,
Af ) (f1)? (f1)? (f? 25 (f.
2 (&) e < onlipys + g + 2ol
We use the inequality of Schwarz and obtain
2
gAf(lerlf) ng(lerlf)2+n+2 szl (f,1)

a+n?
5n2 as 2 (f)* 10(n+2)? (f£1)? 2 (f1)*
< 94 T 109 (1+1f)4 + "T6a, (I)(1+f)2 + B9 0t

Wy
_g“(gf1+2lﬂlf) (o) | oy g (o)

(1 f) 2a4 2(14 (1+f)2
We insert these inequalities into (5.9.17) and get

(f1)* o J1) 1)?

aipr — 4z — b =0
where we use the abbreviations:

(5.9.18)

= (2n2a2+@+n2)N+2n+a3,
b—2na2—|— —|—2n

The left hand term in (5.9.18) is a quadratic expression in a EERaE f) If one considers
its zeroes it follows that

(f1)?
(1+f <a+vb.

Thus from (5.9.1) we get, with our special choice of § and m

F < exp{exp{N}}(a+ \/1_7),
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which holds at p*, where F' attains its supremum. Hence, at any interior point of
S¢(0,C), we have

lared I < explexp{N}Ha + V) exp { 1npe{NIC (5.9.19)

Let C' — oo then
lgrad f|I” NY 4+ 40(3 N Vb) = 5.9.20
sl 10 < exp {exp{V} + 4030 + exp{N)} (0 + VD) = Q. (59.20)

where @ is a constant.
Using the gradient estimate (5.9.20) we can prove that M is complete with respect
to the Calabi metric, namely: for any unit speed geodesic, starting from p,

o:[0,S] - M
we have
4 < Jlgrad f]| < QU+ ).
It follows that

Tnt1(0(S))
/ A (5.9.21)

Since

and f: Q — R is proper (i.e., the inverse image of any compact set is compact),
(5.9.21) implies that M is complete with respect to the Calabi metric. This com-
pletes the proof of Theorem 5.9.1. ]



Chapter 6

Hypersurfaces with Constant Affine Mean
Curvature

6.1 Classification

The classification of locally strongly convex, affine-complete affine hyperspheres
had attracted many geometers since about 1920. For the history of this problem
and the contributions of different authors we refer to the monograph [58], pp. 84-
85. Obviously, every affine hypersphere has constant affine mean curvature L.
Thus the next interesting and important problem is the classification of locally
strongly convex, complete affine hypersurfaces with constant affine mean curvature
L,. We shall show that the study of locally strongly convex, Euclidean complete
hypersurfaces with constant affine mean curvature L := L is equivalent to the
study of the convex solutions of the fourth order PDE

A Jaet (524)] 7 = -t [aet (5245)] 7 (6.0.0)

where A denotes the Laplacian with respect to the Blaschke metric. Here, we
consider the convex solutions of the equation (6.1.1) for f : R? — R. We shall prove
that

a) if L > 0, then there is no convex solution of (6.1.1) which is defined for all
(xl, xz) € R?%

b) if L =0 and f(z',2?) is a convex solution of (6.1.1), which is defined for all
(z',2?) € R?, then f(a',2?) must be a quadratic polynomial.

In the language of affine differential geometry, we are going to prove the following
theorems:

Theorem 6.1.1. [53]. Ewvery locally strongly convex, Euclidean complete surface
with constant affine mean curvature is affine complete.

To state our Theorem 6.1.2 we introduce the following terminology. A locally
strongly convex hypersurface is called to have finite geometry, if | Bl and || A||x

149
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are bounded, where
1Bl := [|BIl + VB[ + V2B + - +[|V*B],
ANl = Al + VAl + [[V2A] + -+ [ VEA],

and where, according to chapter 2, B denotes the Weingarten form and A the cubic
form. The norm || - || and the covariant derivative V are defined with respect to the
Blaschke metric, and V¥ := V(V*~1),

Using Theorem 6.1.1 we immediately get the following result (see [53]):

Theorem 6.1.2. Let M be a locally strongly convex, Euclidean complete surface in
R3 with constant affine mean curvature L.

(a) If L > 0 then M is an ellipsoid.
(b) If L =0 then M is an elliptic paraboloid.
(c) If L <0 then M has “finite geometry”.

As a corollary of Theorem 6.1.2, we present a new proof of Chern’s conjecture about
affine maximal surfaces. We state the following conjecture for higher dimension:

Conjecture 6.1.3. Let M be a locally strongly convex, Fuclidean complete hyper-
surface in R™ T with constant affine mean curvature L.

(a) If L > 0 then M is an ellipsoid.
(b) If L =0 then M is an elliptic paraboloid.

(c) If L <0 then M has “finite geometry”.

6.1.1 Estimates for the determinant of the Hessian

As in section 5.6.2 we prove two lemmas in order to estimate the determinant of
the Hessian of certain functions from above. We use the definition of p in sections
1.4 and 3.3.4, and formula (3.3.9). In terms of the Calabi metric the PDE (6.1.1)
can be rewritten as

—_n rad 2
Ap = QTM —nLp?. (6.1.2)
In particular, when n = 2, the PDE (6.1.2) reduces to
Ap = —2Lp°.
Note that, when a = —2, the PDE (5.6.3) reduces to
Ap = —%Lﬁpg.

Both equations are of the same type of PDEs. Thus, for a constant affine mean
curvature surface, we can use Lemmas 5.6.6 and 5.6.7 to obtain the estimates for
the determinant:
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Lemma 6.1.4. Let Q be a bounded convexr domain with (0,0) € Q, and f be
a strictly convex function defined on Q satisfying the PDE (6.1.1). Let u be the
Legendre transform function of f and Q'* be an arbitrary subdomain of the Legendre
transform domain Q* such that dist(Q*,00%) > 0. Then the following estimate
holds:

det(u;;) < Ch, for £€Q,

where Cy is a constant depending only on dist(QY*,00%), diam(Q), diam(QY*) and
L]

Lemma 6.1.5. Let Q2 be a bounded convex domain, and f be a strictly convex
function defined on Q satisfying the PDE (6.1.1). Let Q' be an arbitrary subdomain
of Q with dist(Q',00) > 0. Then the following estimate holds:

det(fi;) < Cs, for x € &,
where Cy is a constant depending only on dist(Y',09Q), diam(R?), diam(Q*) and |L|.

6.1.2 Proof of Theorem 6.1.1

Suppose that M is a locally strongly convex, Euclidean complete affine surface.
Obviously, M is affine complete if M is compact. Therefore, it is enough to consider
the case when M is a non-compact, Euclidean complete, locally strongly convex
surface with constant affine mean curvature L. From Hadamard’s Theorem (see
section 1.2.1) M is the graph of a strictly convex function 23 = f(z!,2?) defined
in a convex domain V' C R2. To prove Theorem 6.1.1, we need the completeness
criterion, see section 4.2.2.

Now we use arguments from blow-up analysis to show that there is a constant N > 0
such that the Weingarten form satisfies || B||Z < N everywhere; the proof of this
upper bound will take all of subsection 6.1.2. Then Theorem 6.1.1 follows from the
completeness criterion.

To this end, assume that ||B||% is unbounded. Then there exists a sequence of
points {px} C M such that

2
1BI&(pr) — o0
as k — oo. For each pp € M we may assume that the plane 23 = 0 is the tangent

plane of M at pj and px has the coordinates (0,0). With respect to this coordinate
system, we have f > 0, and for any real number C' > 0 the section

S7(0,C) = {(z",2*) e V | 2® = f(a',2%) < C}
is a bounded convex domain in R2. As already stated several times (see [37], p.27),
there exists a unique ellipsoid E, which attains the minimum volume among all

ellipsoids that contain Sf(0,C) and that are centered at the center of mass of
S¢(0,C) such that

ﬁE C S4(0,0) C E, (6.1.3)
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where ﬁE means the V—dﬂatlon of E with respect to its center. By an or-

thogonal linear transformation, we may assume that the equation of the minimum
ellipsoid F is
1 2 1\2 2 ~2\2
(1—21) +(z—21) =1,

at as

where & is the center of mass of S;(0,C). By the following unimodular affine
transformation

! = C-Z—f-xl, 22 =,/C . g2 z3 =

-a?, (6.1.4)

1
[*
%)

M is given as a graph of a strictly convex function f(fl, z°) defined on a convex

domain  C R2. Denote by L¢ the linear transformation

gl =,/C 2.4t 72 =,/C . g2
al ? az
Then, Lo (E) is the ball Bs with center (, /C -2 it O o ~x'2) and radius
d = /Cajas. Setting Qo = La(S¢(0,C)), (6.1.3) becomes
2\/—35 C Q¢ C Bs. (6.1.5)

Obviously, we have

~

Oc = {(f;l,fﬂ) cQ| fE, ) < 1}

It is easy to see that the function

V:(0,00) =R, V(C)=7-C-a1(C)az(C)
is continuous. Note that V((0,00)) = (0,00). It follows that there exists a number
C®) > 0, such that C®a;(C*))ay(C™*)) = 1. This implies that, by a unimodular
affine transformation (6.1.4) with C' = C®)| M is given by a strictly convex function

) defined in a convex domain in R? such that
B 1 (x(k)) CQ C Bl(x(k)),

3

where
Q= {(",?) | f¥ <1},
Thus, we would obtain a sequence of convex functions {f*)} and a sequence of
points {z(®} such that f*) > 0, and such that B\_1f(a:(k)) C QO C By(z®),
2vV2
Therefore, we may assume, by taking subsequences, that {2} converges to a convex

domain Q and {f®*)} converges to a convex function f, locally uniformly in Q.
For z € 0N, we define foo(v) =lm, . ,cqfoo(¥).

In the following we shall give uniform estimates of det (gg%;g) from below and

above (where u(*) denotes the Legendre transformation relative to f (k)), and use
the Caffarelli-Gutierrez theory to obtain a Hdlder estimate for det ( 0%, 0F ) (see
[15] or [91], Theorem 4.1). Then we use the Caffarelli-Schauder estimate for the

Monge-Ampere equation [14] to get a C%® estimate, to show that the limit surface
is a smooth surface.
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I. Estimate for det (a

az“{;z;) from below.
Let us denote
D= {req| fule) =0},

where Q denotes the closure of Q. It is easy to see that D is a closed subset of  and
(0,0) € D. To estimate det (%), we shall consider different cases according to
the location of D:

Case 1: D C Q.
Case 2: DNOQ # (.

Our aim is to show that the Case 2 cannot take place.
We consider Case 1. In this case, there exists a number b, 0 < b < 1, such that the
set

Qo C Q,
where Qg 1= {(2',2?) € Q| foo(2!,2%) < 2b}. Put
Qpp = {(xl,xg) € Q| f(k)(arl,azz) < b}.
Since {f*)} converges to fo, locally uniformly, we have
Qpp C Qo CQ
for k large enough. It follows that
dist (Qu,p, O0) > d

for k large enough, where d > 0 is a constant independent of k. Now we use Lemma
6.1.5 to conclude that

det (—gjféii) <dy, forz e Qpy, (6.1.6)

where d; > 0 is a constant depending only on |L| and d. Consider the Legendre
transformation relative to f*):

k (k) i (k)
R ST )

Set
% = {(EP @, 67 @) | @'2%) €},
b= {0 @,67 @) | (2,97 € Qo }
Then, by (6.1.6), we have
det (M(k;) >1L for¢e Qb (6.1.7)
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II. Estimate for det (gzua(g)) from above.
108

To get the estimate, we need some important results from the classical theory of
convex bodies in Euclidean space (see [5], [13]). Let F' be a convex hypersurface in
R"*1 and e be a subset of F. We denote by 1 r(e) the Euclidean spherical image
of e. If the set e is a Borel set, the spherical image of the set e is also a Borel set
and therefore it is measurable. Denote by op(e) the area (measure) of the spherical
image ¥ (e) of the Borel set e of F' and call it the integral Gaufian curvature of e.

Denote by A(e) the measure (or area) of the Borel set e on F'. The ratio 7((:)) is

called the specific curvature of e. The following theorems hold (see [5], or [13], p.
35):

Theorem 6.1.6. (A.D. Aleksandrov). A convex surface whose specific curvature
is bounded away from zero is strictly convez.

Theorem 6.1.7. Let a sequence of closed convex hypersurfaces Fy converge to a
closed convex hypersurface F and a sequence of closed subset My of F}, converge to
a closed subset M of F; then

op(M) > limy—ooop, (My).
Claim: First of all, we claim that there exists a ball B3(0) such that
B5(0) C Qpy, for k=1,2,--

In fact, since Q is bounded, there is a ball B, (0) with the center (0,0) and the
radius r; such that

Qp = {(xl,x2) €| foolat,2?) < b} C B, (0).
Since {f*)} converges to fuo locally uniformly in , we see that
Qg = {@a?) e Q| P a?) <t} € B (0)
for k large enough. Consider the convex cone K with vertex (0,0) and the base
{(xl,xQ, )| (2, 2?) € 89,6’%}.
Then we have the normal mapping relation (see section 1.3)

of® (2 4) 2 0K (9.4).

[\SliSy

On the other hand, since
Qk,% - BTI(O)a
we see that (see [5], p.126, or [37], p.1)
DK (ng) 5 B*, (0)

27rq

and the claim follows.
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Next, we want to prove that us, is strictly convex at (0, 0).
In fact, since the functions u*) are convex and bounded, we may assume, by taking
subsequences, that {u(®} converges to a convex function .., locally uniformly in

= {(fl,fg) | S2(&)? < %} Let e be a closed subset of Q*, with e° # 0,

r 27rq

where €° denotes the interior of e. By F and F*) we denote the graphs of the

functions ue : 2%, — R and u®) : Q*, — R, respectively.
27rq 27rq

Set

Fe = {(§1,82,u00(61,82)) | (€1,62) € e},
FF) = {(51752 u (51,52)) | (&1,62) € 6}-

Then, by Theorem 6.1.7 and (6.1.7), we get

OF (Fe) > mk4>ooo'F(79) (Fe(k))
dor((£24)

T e T

> bolimy oo A(FF)
= by A(F,),

where by is a constant depending only d; and diam({?), i.e.,

"AF((Fe > by > 0. (6.1.8)

We apply Theorem 6.1.6 and conclude that u is strictly convex at (0,0).

Now we are ready to estimate det ( 08, 0F ) from above. Since u, is strictly convex

at (0,0), there exists a positive constant 0 < h; < 1, such that
o, = {66 €0y i) <
1

is a bounded convex domain. Then we choose 0 < hy < hy such that Q§h2 C Qs
where

05, = {(&1,&) € Yy, [ use(&r,&2) < 2ha} .

Put
U gy = {(61.8) € % |uM (€1, 62) < 2.
Since u*) converges to us locally uniformly, we have Whg C Q} , and there exists

a constant do > 0 such that

dist (2 p,,0,) > da
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for k large enough. Clearly, there is a uniform estimate

2
S (%) < diam(@),  for €0, .
‘ 2r
Now we use Lemma 6.1.4 to conclude that
w® .
det (gé 9E; ) <ds, for €y, (6.1.9)

for k large enough, where ds > 0 is a constant depending only on diam(f2), ds and
|L|. (6.1.9) gives the upper bound. |

Now we are ready to prove the following lemma:
Lemma 6.1.8. There exists a neighborhood U of (0,0) such that
D*® > 31, DWW <Cyy for k=12, (6.1.10)

where Cs and Cy are constants. Cs depends only on da, diam(QY), |L| and d, while
Cy depends additionally on .

Proof. We set

1 9 O ,  _ v
V=10 P ag Vi T o Vi T agog

Then, by (2.7.8), in terms of the Blaschke metric, we get:

1) = B Yl (342 - AR = p S ut
On the other hand, by (2.7.2), we have
A (%) =Ap=-—-nlLp

and it follows that

Zuijvij —nL =0.
Therefore, setting
U= v — Lu+2|L],
we obtain
> uiWy; =0, (6.1.11)
where (u%) is the inverse matrix of (u;;). By (6.1.7), (6.1.9) and (6.1. 11) we may

use the Caffarelli-Gutierrez theory to obtain a Holder estimate for det ( 0%, 0F ) (see

[15] or [91], Theorem 4.1). Then, to get a C*® estimate, we use the Caffarelli-
Schauder estimate for the Monge-Ampere equation [14]. Finally, by bootstrapping,
Lemma 6.1.8 follows. |

Consequently, from Lemma 6.1.8 it follows that u., is a smooth strictly convex
function in a neighborhood of (0,0), and hence f is a smooth strictly convex
function in a neighborhood of (0,0).
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Now it is our purpose to show that Case 2 in subsection (I) cannot take place. Let
Vi = {(xl 2,23 e R | fP (2t 2?) <2 <1, (:El,xQ)EQ_k},
Voo = {(2",2%,2%) e R? | foo (2!, 2?) <2® <1, (2',2%) € Q}.

Then the sequence of convex bodies {Vi} converges to the convex body V.

Claim: The set D, defined in (1) above, is a line segment or a single point.

To prove this claim, first we show that there exists a ball B}, (0) with center (0,0)
and the radius rg such that

B, (0) C Qf for k=1,2,--

As before, we choose a ball B;(0) with center (0,0) and radius [ such that  C B;(0).
Since 2 converges to {2, we see that

Qi C B;(0)
for k large enough. Then it is easy to see that Q} D B’T{(O) fork=1,2,---
Now we prove our claim. By contradiction let us assume that there exists a ball
B(w) = {@'a%) | D' = (@0))? < &},

such that B.(zo) C D. Since {f*)} converges to fo, locally uniformly, there is a
positive number kg, such that

0< f®(2) <, for € Be(wo), (k> ko).

Clearly, there exists a uniform estimate

2
Z (8(;;:’?)) < %a for xe€ Bi (330), (k > ko)

Put
L e® (k)
%« = {6 @).6"@) |2 € Be @)}
Then we have

O e CB(0)CQp, for k> k.

|3 *

*
k,7

>J>m

Note that B,,(0)* C Qf for k =1,2,---. Hence we use Lemma 6.1.4 to conclude
that there exists a constant d4 > 0, depending only on r¢, diam(f2) and |L|, such
that

det (G52 ) <di for ¢ € Bty (0).
This implies that

det (%) > for weBe(wa), (k> ko). (6.1.12)
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Therefore we can apply the argument of Case 1 to {f*} and conclude that the
function f., is strictly convex at xo. This contradiction shows that D must be a
line segment or a single point.

Now we are ready to prove that Case 2 cannot take place. We shall consider the
following two cases:

Case 2.1. D N 0N contains at most two points.
Case 2.2. D is a line segment with D C 9f).

Case 2.1. Let p € D N 9N and let [ be a supporting line of 2 at p. The line [ and
the unit normal v of the (2!, 2%)-plane determine a plane. We denote this plane by
P. Then the plane P and the (2!, 2?)-plane divide the space R? into four closed
subspaces such that V, lies completely in one of them. Let a be a supporting plane
of V, containing the line [ such that it intersects P and forms an angle Z(«, P) = 0
with P, where 6 > 0 is sufficiently small (see Figure 1). Since p € 0V and «

Figure 1.

is a supporting plane of V., there is a neighborhood U C 9V, which projects
orthogonally and one-to-one onto a convex domain Q) C a. This implies that,
near to the point p, 0V, can be represented as the graph of a convex function g
defined in Q. Obviously, g is strictly convex at p but it is not necessarily smooth
at p. We choose a number b, 0 < b < 1, such that

o = {(ylay2) € QW | g(y1,ye) < b}

is a bounded convex domain in R?. Then we choose a new coordinate system
{y1,y2,ys} such that

1) p has coordinates (0,0,1).
2) The equation of « is y3 = 1.

Since the sequence of convex bodies {V}} converges to the convex body Voo, we
see that the boundary 0V} of Vi can also be represented as the graph of a convex
function ¢(® for sufficiently large k. Obviously, g®*) — g+ 1 in a bounded convex
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domain Q®). Note that the graph of ¢(*) is a locally strongly convex surface with
constant affine mean curvature L. We can therefore apply the argument of Case 1
to {g(k)} and conclude that the function g is a smooth function near the point p.
The contradiction shows that Case 2.1 cannot take place.

Case 2.2. In this case, we have p = (0,0) € 0€2. Let [ be the line containing D. We
choose a new coordinate system {y1,y2,y3} as in Case 2.1 (see Figure 2). Then, the

Figure 2.

boundary 0V, of V, can be represented as the graph of a convex function g defined
on a convex domain Q). With respect to this coordinate system we have g > 1.
The boundary 0V}, of Vj can also be represented as a graph of a convex function
g™ for sufficiently large k. Obviously, g®* — ¢ in Q). Note that the graph of g(¥)
is a locally strongly convex surface with constant affine mean curvature L. Again,
we shall consider different cases according to the location of

=)
D¥ = {(yl,yg) € | g(y1,y2) = 1}.
Case 2.2.1 D! c QO®),
Case 2.2.2 D! N 9NG) # (.

Case 2.2.1 Note that D! is a line segment. Since D! ¢ Q®) we can apply the
argument of Case 1 to Case 2.2.1 and conclude that Case 2.2.1 cannot take place.

Case 2.2.2 In this case, D N 9Q®) contains at most two points. Therefore we can
apply the argument of Case 2.1 to Case 2.2.2 and conclude that Case 2.2.2 cannot
take place.

Now we are in a position to prove that || B||% is bounded. By Lemma 6.1.8, we have
D™ > Oy, |ID'u®| <y, 1=0,1,2,- -

in a neighborhood U of (0,0), where C5 and C4 are constants. Cs depends only
on d,dy,diam(f2) and |L|, and C4 additionally depends on . Note that ||B||% is
equiaffinely invariant. By (2.7.6), we have

18 k
1BII (px) ZG )Gj )B (0,0) >
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where
. : (k)
B(k) _ 1 329(’@). + 9 ap(k.) Bp(’f) Z fFIst gp(k) Of
ij p(k) dxiOxI (p())2 9x7 Oz7 p(k) Oz Ozt
_1
(k) — o f ) 1 (k) _ (k) D2f®
p = |det Oxi10z7 ) Gij =P orioni*
Note that
) ) ; ar® (;m
Ap _ Ap u(k)lz u Z uP)id k)sl
oz7 08, )
82p(k) _ 82 (k) llu(k})sj + Z ap(k) au(k)lb (k)s]
dxtoxI 8518 O&s .

Consequently, from Lemma 6.1.8, it follows that there exists a number N > 0 such
that

IBI|4(pr) <N, k=1,2,--
On the other hand, we have
1Blle(pr) = o0, as & — oo

The contradiction shows that there must exist a number N > 0, such that
| B4 < N on M. Then, by the completeness criterion, Theorem 6.1.1 follows. B

6.1.3 Proof of Theorem 6.1.2

Recall that there is no locally strongly convex, compact hypersurface without
boundary and with non-positive affine mean curvature (see [58], p.121). This im-
plies that M is non-compact if M is a complete, locally strongly convex surface with
constant affine mean curvature L < 0; this concerns the cases (b) and (c) below.

(a) Denote by R the scalar curvature, we have R = 2(J+ L) > 2L > 0 (see (2.5.8)).
Moreover, if M is Euclidean complete, by Theorem 6.1.1, M is also affine complete.
This implies that (M, G) is a complete Riemannian manifold with Ricci curvature
bounded from below by a positive constant 2L > 0. By Myers’ Theorem (see section
1.2.1) M is compact and thus an ovaloid. It follows that M is an ellipsoid (see [58],
p.121).

(b) Since M is a Euclidean complete and also an affine complete affine maximal
surface, by Proposition 5.2.7, M must be an elliptic paraboloid.

(c) Since the tensor norm of the Fubini-Pick tensor is equiaffinely invariant, we
replace || B||Z by this tensor norm; then a similar argument shows that the tensor
norms of the Fubini-Pick tensor and the affine Weingarten tensor and the tensor
norms of their k-th covariant derivatives all are bounded. This completes the proof
of Theorem 6.1.2. ]
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6.2 Hypersurfaces with Negative Constant Mean Curvature

In affine hypersurface theory, many geometric problems can be reduced to the study
of a higher order PDE; for recent work see [53], [54], [57], [58], [59], [61], [62], [65],
[91], [94], [102], [103], ect.

It is an interesting and important problem to classify all locally strongly convex,
complete affine hypersurfaces with constant affine mean curvature. In this direction,
in [53], the authors proved Theorems 6.1.1 and 6.1.2 (see section 6.1), where the first
one, for surfaces with constant affine mean curvature, clarifies the relation between
Euclidean and affine completeness; this result generalizes a known result for affine
hyperspheres (see section 4.2.2).

Trivially, every hyperbolic affine hypersphere has constant affine mean curvature
L < 0. As the class of complete hyperbolic affine hyperspheres is very large, there
are many complete affine hypersurfaces with constant affine mean curvature L < 0.
Recall that there is no explicit classification of all hyperbolic affine hyperspheres so
far; see e.g. [41], [43].

We raise the following
Problems 6.2.1.

(1) Is there a complete affine hypersurface with constant affine mean curvature
L < 0 that is not an affine hypersphere?

(ii) If such a hypersurface in (i) exists, give an explicit representation.

(iii)  Classify all affine hypersurfaces with constant affine mean curvature L < 0.

Let us recall the rough classification of complete hyperbolic affine hyperspheres and
the construction of Euclidean complete affine hypersurfaces with constant affine
Gauf-Kronecker curvature. The classification of complete hyperbolic affine hyper-
spheres is reduced to the study of the following boundary value problem, where
Q) C R" is a bounded convex domain and L < 0 is a real constant:

det(u;;) = (Lu)™""% in Q, (6.2.1)

u=0 on 0. (6.2.2)

This boundary value problem has a smooth and strictly convex solution w (&1, .., &)
in 2. The following theorem is well-known (see [25], [58]).

Theorem 6.2.2. (1) Let Q@ C R™ be a bounded convex domain and L < 0 be a
constant, then there is a unique solution u € C*(Q)(C°(Q) of the boundary value
problem (6.2.1)-(6.2.2). Put

M= {(xvf(m)) }v
where f = f(x) is the Legendre transformation function of u = u(§), then M is a
complete hyperbolic affine hypersphere with constant affine mean curvature L < 0.

(2) Every complete hyperbolic affine hypersphere can be obtained in this way.
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In [57], the authors studied the construction of Euclidean complete hypersurfaces
with constant affine Gaufl-Kronecker curvature. The problem is reduced to the
study of the following two linked boundary value problems, where ¢ is prescribed
on the boundary 9 of the bounded convex domain :

det(uij) = (—u*)™""? in Q, (6.2.3)
u=¢ on 08, (6.2.4)
where u* is the solution of the following boundary value problem
det(uy;) = (—u*)™""% in Q, (6.2.5)
u* =0 on 0f. (6.2.6)

They proved the following:

Theorem 6.2.3. There is a unique solution u € C*(Q) (N C°(Q) of the boundary
value problem (6.2.8) - (6.2.6). The hypersurface M, constructed from the solution
u as in Theorem 6.2.2, is a Euclidean complete hypersurface with constant affine
Gauf-Kronecker curvature.

In this section we study the construction of Euclidean complete affine hypersur-
faces with negative constant affine mean curvature L. In the following subsection
6.2.1 we show that the construction can be reduced to the study of the PDE

> uVi; =nlL, (6.2.7)
where here and later V := [det(uij)]"__é.
Theorems 6.2.2 and 6.2.3 suggest to pose the following conjecture:
Conjecture 6.2.4.

(1) Let 0 > L € R, and let Q C R™ be a bounded convex domain, ¢ be a smooth,
strictly convex function defined in a domain containing €, satisfying

where
_ n(nt2)

d= (2v/n diam(Q)) T

Then there is a solution u € C°(Q) (N C°(Q) of the following boundary value prob-
lem

> uVij=nL in Q, (6.2.8)
U =@ on 0f, (6.2.9)

where det(u;;) = V"2 in Q, (6.2.10)
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V=0 on OfL. (6.2.11)

Again, if we define M = {(z, f(z))} as in Theorem 6.2.2 then the hypersurface
M is a Euclidean complete affine hypersurface with constant affine mean curvature
L <0.

(2) Every Euclidean complete affine hypersurface with negative constant affine mean
curvature can be obtained in this way.

Here we solve the first part of this conjecture, namely we consider the following
boundary value problem: Let €2 be a bounded convex domain with smooth bound-
ary, let o, 1 be given smooth functions on 92 such that v satisfies

Cl'<y<cC
for some constant C' > 0. Solve the problem:
> uV; = -n in Q (6.2.12)
u= @ on 0% (6.2.13)
det(u;;) :== V""" in Q, (6.2.14)
V=1 on 0f. (6.2.15)

Remark. In [94], Trudinger and Wang studied the construction of hypersurfaces
with given affine mean curvature function g defined on a convex domain in the
coordinate plane R2. In our notation, they studied the following boundary value
problem:

N Fiw; =g, we=[det(f;y)] ¢ i Q
where (F') is the cofactor matrix of the Hessian matrix (f;;);
f=¢, w=1vY on 99,
where ¢ and v are prescribed functions on the boundary. As before,
M =A{(z, f(z)) }
describes the hypersurface as a graph over ().
Using the method of Trudinger and Wang, one can prove:

Proposition 6.2.5. The boundary value problem (6.2.12) — (6.2.15) has a unique
solution (u, V') € C°°(2) (N C(R).

The proof follows the lines of [91], thus we omit it here.

Later we are going to apply Proposition 6.2.5 and Proposition 6.2.8 below to con-
struct a hypersurface with constant affine mean curvature L < 0 from the solution
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u of (6.2.12) and (6.2.15) as follows. Put M := {(z, f(x))} as in Theorem 6.2.2,
then M is an affine hypersurface with constant affine mean curvature L < 0.

In particular we are interested to construct Euclidean complete hypersurfaces with
L < 0. To this end we consider the following boundary value problem: Consider
the PDEs (6.2.12) - (6.2.14) and

V=t on 0, (6.2.16)
where () is a bounded convex domain with smooth boundary, ¢t > 0 is a given real
constant, and ¢ is a given smooth function prescribed on the boundary 92 as in
the Conjecture above.

By Proposition 6.2.5 we get a family of solutions (u¢, V;) of the PDEs (6.2.12),
(6.2.13), (6.2.14) and (6.2.16). Let ¢ — 0. We can prove that u; converges to a
smooth, strictly convex function u; from w we can construct a Euclidean complete
hypersurface with affine mean curvature L < 0 as before.

Theorem 6.2.6. [97]. Let Q C R™ be a bounded conver domain with smooth
boundary, ¢ be a smooth strictly convex function defined in a domain containing €,
satisfying

where
_ n(n+2)

d=(2vn diam(Q)) "
Then there is a function u € C*(Q) (N C°(Q) such that

e u satisfies
Zu”‘/;j =nL, det(u;):=V"""2 in  Q, (6.2.17)
u=¢, V=0 on 0f. (6.2.18)
o The hypersurface M, defined by the graph of the Legendre transform func-
tion f of u, is a Fuclidean complete affine hypersurface with constant affine

mean curvature L < 0. Moreover, when n=2, M is also complete with re-
spect to the Blaschke metric.

Remark. For a general convex domain €2, i.e., a domain  with continuous bound-
ary, we approximate {1 by convex domains that have a smooth boundary. The
following result can be easily proved:

Theorem 6.2.7. Let Q2 C R” be a bounded convex domain with continuous bound-
ary, @ be a smooth strictly convexr function defined in a domain containing ), sat-
isfying

where
_ n(n+2)

d= (2v/n diam(Q)) " .
Then there is a function u € C*(Q) [ C°(QY) such that
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e u satisfies

Zu”VM =nL, det(uy)=V"""2 in  Q, (6.2.19)
hrnQ u<lgp, V=0 on Of. (6.2.20)
pg)

o The hypersurface M, defined by the graph of the Legendre transform f of
u, 18 a Fuclidean complete affine hypersurface with constant affine mean
curvature L < 0. Moreover, when n=2, M is also complete with respect to
the Blaschke metric.

The proof is contained in the sections 6.2.1 - 6.2.2.

6.2.1 Proof of the existence of a solution

Recall the definition of p from section 1.4. Denote p; : 85 , Vi gg, Vij %,
then (2.7.8) gives

1 :1Zuw (_Vu V»VJ) _ _ZUUVNJ _ —quijvij'
On the other hand, by (2.7.2) we have
A(F) =Ap=—nLp.

It follows that
> uViy =nL;
as before (u17) is the inverse matrix of (u;;) and V = [det(u,;)]” 7. Thus we have

Proposition 6.2.8. Let x : M — R be a hypersurface given by the graph of a
strictly convex C°-function

2"t = fat ).

Then M has negative constant affine mean curvature L < 0 if and only if the Leg-
endre transformation function u of f satisfies the following second order nonlinear
PDE system
S uiV;; =nL
(6.2.21)
det(uij) =V—n-2

We assume that 2 is a bounded convex domain with smooth boundary. For the
bounded convex domain with continuous boundary we use convex domains with
smooth boundaries to approximate the given domain. As our estimates are uniform,
the result follows. Without loss of generality we assume that L = —1.

The proof of Proposition 6.2.5 is the same as in [91], as already stated we omit it
here. Now we consider the boundary value problem stated in (6.2.12) - (6.2.14) and

(6.2.16). By Proposition 6.2.5 we get a one-parameter family of solutions (u(*), V(1)
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of the system. Let ¢ — 0. We are going to prove that there exists a limit function
u € C®(Q)NC°(Q), which satisfies the equations (6.2.12) - (6.2.14). To this end
we give uniform estimates for |u(|, V) and p®. To simplify the notation in the
following estimates we use u, V, p instead of u®, V®  p®  respectively.

(1) Estimate for V(®,
For any t € (0, 1], consider the function

Fi=nV+4+m)» (&)

defined on 2, where m is a positive constant to be determined later. If F' attains
its maximum at the boundary of 9{2, it is easy to see that V' has a uniform upper
bound. We assume that F' attains its maximum at an interior point &y € 2, then
at &, we have

0=F, =¥ +2m¢,

0> Wik =2 -3 "0 oW
Without loss of generality, we may assume that the matrix (u;;) is diagonal at &,
then we have

0> -2 —4m® >y Gu' +2m u'.
We choose m = 1+, where d := diam(£2). Then

0> —%-l-mZu“,

ie.,

VZU” <

Thus, at &,

It follows that

V < (2v/n diam(Q)) 7T . (6.2.22)
Obviously, (6.2.22) holds everywhere in Q.
(2) Estimate for p.

By the convexity of u, for any point p € €0, the graph of u lies above the tangent
plane of u at p. Subtracting a linear function we may assume that

u(p) =0, gradu(p) =0, u(§) >0, VEe.

Consider the function

F .= exp{CT—fL}p,
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defined on the section S, (p,C) = {£ | u(§) < C}, where p := [det(uij)]";“, and
m > 0 is a constant to be determined later. It is easy to see that F' attains its
maximum at an interior point p* of the domain Sy (p, C'). Around p* choose a local
orthonormal frame field {ey, ..., e,} with respect to the Blaschke metric. Denote by

“won
3

covariant derivation with respect to the Levi-Civita connection. Then, at p*,

we have
—am 5 =0, (6.2.23)
m u,i)? mAu i)?
SImale) A, LUl S0 <, (6.2.24)

By (2.7.8) a direct calculation gives
Au=12-2% Ly, (6.2.25)
We insert (6.2.23), (6.2.25) and (2.7.2) into (6.2.24) and get
nm C—u
T oC—u)? + [1 — %} pig Z(p,i)g + n<0.
We choose m = 2C. Then

2C
L (o=n 2

It follows that

oo {e2}0 < e {5} o < 2 (6220

where ¢ is a universal constant. (6.2.26) holds at p*, where F' attains its maximum.
Therefore (6.2.26) holds everywhere in the section S, (p,C).

(3) Estimate for |u®)].

Adding a constant we may assume that ming{p} = 0. Let (u,V) be a solution
of the system (6.2.12) - (6.2.14) and (6.2.16). Then

u(u+V);; =0 in Q

u+V=¢p+t>0 on 0N
The maximum principle implies
u>-V>—(2vVn diaum(Q))"%1 :
then
Jul < max{p} — min{p} + (2vn diam(Q)) " +1,
where we used the estimate (6.2.22).

The estimate (3) implies that the expression |u(*)| is uniformly bounded for all .
For any compact set D C Q also the gradient ||grad »® || is uniformly bounded on
D. Tt follows that there is a convex function u, defined on €2, such that, for any
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compact set D C €, there is a subsequence u(*) converging uniformly to u on D.
We need to prove that u is smooth and strictly convex. We simplify the notation
and write (9 := u(%). By a standard result ([17], p.369) we can find a smooth
convex function ¢’ such that
det(o);) = 2d,  ¢'laq = ¢log,
where
_n(t2)
d:= (2y/n diam(Q)) ¥
(6.2.22) gives a uniform estimate
det(uf)) > d.

Since u(Y) = ¢ on 99, det(p;;) < %; the maximum principle implies

o>¢ >u in Q.
It follows that
©>¢ >u. (6.2.27)

Let g, = (&5, u(&,)) € M(*) be an arbitrary point. By (6.2.27), there is a support
hyperplane H of M () at g,

H: £n+1 = u(fo) + grad u(go)(g - 60);
and a constant a > 0 such that

e the set
S(&ora) ={£ € Q| u(§) <u(&) +grad u(&o)(§ — &) +ab

is not compact;
e the set

S(&,a—e€)={6€Q | u(§) <ul&)+grad u(&) (€ — &) + (a—€)}

is compact for any € > 0.

Then there is a sequence f((f) — &, such that, for any small € > 0, the sets
Si(e,a— ) = {€ € Q| u(€) < u (€ + grad u (€)(§ — €0) + (a - )}
are also compact for 4 large enough. We use the estimates (1) and (2) to conclude
that the expressions det(ugjl)) are uniformly bounded, both from above and from
below. Finally we apply the Caffarelli-Gutierrez theory (see [15]) and the standard
Caffarelli-Schauder estimate to conclude that u is a smooth function in S(&,,a)
and that u satisfies the system (6.2.12) - (6.2.14). As &, is arbitrary, u is smooth
and strictly convex.
Now we prove

lim u = .
p—0OQ ®

Since w is smooth and strictly convex in 2, the limit of the left hand side exists.
Denote it by ¢’. Obviously, ¢’ < ¢. We are going to prove that ¢’ = ¢. Assume
that there is a point £ € 9 such that ¢'(£) < ¢(£). Without loss of generality we
may assume that
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©=1 ¢ =0, )

= (0, ...,0)7 and the equation of the tangent hyperplane of 92 at ¢ is
§ =0, and  C {& > 0},

e for e > 0 sufficiently small we have ¢’ < & on {& < e} 0.

We construct a function «
U=2u—b& + 3.
We choose b sufficiently large and have @ + % < u® on A/, where
A ={eQ| & <€}

For any positive real 6 > 0, let D5 = {{ € A’ | dist(&,9A’) > §}. Then, for § small
enough and ¢ large enough, we have

a<u® on 0Dy,

det(g) > det(ukl ).

It follows that u(® > & on Ds. For § — 0,7 — oo we get @ < u in A’. But
(&) = £ > ¢/(£), and both, @ and u, are smooth in the interior of A’; this gives a
contradiction. Thus ¢’ = ¢ on 0.

Put

vi=20 and f(x =Y G —u(, ),
M = {(x, f(x))},

then M is an affine hypersurface with constant affine mean curvature —1.

6.2.2 Proof of the Fuclidean completeness

Next we prove that M is Euclidean complete. If we prove that ||grad u||g — oo
when the point tends to the boundary 9 then it is easy to see that M is Euclidean
complete. First we use a method of [57] to show that, for any point £ € 99,
we can find an affine transformation such that «®(£) = 0, and «®(¢) < 0 for
all £ € 9OQ\{¢}. To simplify the notation, in the following we omit the index ¢.
Without loss of generality, we may assume that

g:(ou”'vougn)a gn<0u

and the exterior unit normal vector of 92 at £ is v = (0,...,0,—1). The smooth
boundary is convex, thus locally, i.e., in a neighborhood N, of £ on 92, the bound-
ary 0f) can be expressed by

§n = (.7(51; cee 757171)7
where ¢(&1,...,&,—1) is a convex function such that

@) =0, for i=1,2,...,n—1
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Consider the function
F:=u+b&+...+b& +d,

where b;, d are constants to be determined later.

Claim. We aim to choose b;, d such that F attains its maximum on 0 at &, and

F(§)=0. (6.2.28)
To do this, we take
SE(©) =0, for i=1,2,...,n—1, (6.2.29)
and (6.2.28), (6.2.29) give
b, = S@(fgd, (6.2.30)
bi=—5£(&), for i=1,2,...,n—1

Moreover, at &, we need
o%F
0> o2he = 525 + ( +b ) TEDE;

de | p@+d\ 0%
= 260 851 + (asn R ) 708, -

Denote by A the smallest eigenvalue of the matrix (ag;aqgj) , and by

62 _
maXNg{Ziyj %‘}‘Enl
miny, {\}

d1 = —

90 =

— max || — max

€

If we choose d < dy, then F attains its maximum at ¢ in N, and (6.2.28) holds.
On the other hand, when we restrict F' to 9Q by (6.2.13) and (6.2.30), we have

+§b¢£i + (22 g, + d.

Denote

— €n
G = a%f‘fvi{ £n+5n}max{|¢ O+ Zb@ }

When d < ds, we have F < 0 on 0Q\N.. We choose d = 2min{d;,ds}, then our
claim is proved. ]

Remark. It is easy to see that F' also satisfies (6.2.12), (6.2.14), and that the
Euclidean gradient |grad (F' — u)|| g has a uniform upper bound. So if ||grad F| g
tends to infinity, the term ||grad u||g tends to infinity too.

Lemma 6.2.8. There exist a constant 3 > 0 and a small number tg > 0 such that,
for any t € (0,t0], the gradient of u®) satisfies

lgrad u®||oq > Ct~7,
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where C' is an appropriate positive constant.

Proof. Let £ € 99 be an arbitrary point. For a given ¢ € (0,1], by an appropriate
transformation, we may assume that u(Y)(€) = —t, and u® (¢) < —t for £ € IQ\{E}.
Again, to simplify the notation, we write u, V instead of u®, V() We have

Z u?(u+V);; =0 in Q,
u+V <0 on 0.
We apply the maximum principle and get
-V >u on £,
ie.,
V < |u on €. (6.2.31)
Let Bs(£&) C Q be a disk which is tangent to 99 at &, with radius § and center &.

Denote a := ||grad u(&)||e.

(1) If a = oo the lemma is proved.
(2) Now we assume that a < co. From (6.2.31), for § sufficiently small, we have

V <|ul<25a+t on Bs(&). (6.2.32)
We construct a new function @ on Bs(&o) by
= b(l¢ — &l — %) — t,
where b is a constant to be determined later. Then

52(6) = 240,
det(ﬁij) = (2[))”,

where 7 is the exterior unit normal vector of 9Q at £.

We take b = ls%ﬁ and § = t'=tP where g = %, and where € is a sufficiently

small positive real.

Claim. We claim that a > 2b4.
Assume the contrary, then (6.2.32) gives

det(ui;) > (200 + )72 > (4020 4 )72 > 57 FD = (FDUA=) iy Bs(gy),
while

det(aij) = (Qb)n = 6nt21n—2€ = tn(l—e)z-:L2(1—2e) .

Obviously,

det(uij) > det(ﬂij) in Bg(fg)
for ¢t small. Note that @ = —t > u on 0Bs(§); the maximum principle gives

@ >u on Bs(&). As ﬁ(7;: —t = u(€), we have %(g) < %({), ie, a>26b;
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this gives a contradiction to the assumption. The claim is proved.
Therefore,

|lgrad «® ||z > 26b = Z,
and Lemma 6.2.8 is proved. ]

In the proof of Lemma 6.2.8 we obtained the inequality (6.2.31), this means that
for any ¢ € (0, 1], we have V® < |u®[; then the limit solutions u, V also satisfy
the inequality V' < |u|, We apply the affine transformation used in Lemma 6.2.8;
this gives u®(£) = —t — 0 = u(€), thus we have V(€) = 0. On the other hand, V
is invariant under the transformation in Lemma 6.2.8, and ¢ is an arbitrary point
of 92, so V =0 on 09.

Denote by f®(x) and f(z) the Legendre transformation functions of u® and
u, respectively. For any sufficiently large number R > 0, by Lemma 6.2.8, there
exists a number to > 0 such that, for 0 <t <y, the function f® is defined on
the disk Bp:(0). Since the norms ||grad f®)| are uniformly bounded on Bg:(0),
there is a subsequence f(*) converging to f. Hence f(z) is defined on Bp:(0). As
R! is arbitrary, f(z) is defined on R™, i.e., the hypersurface M constructed from u
is Euclidean complete. When n = 2, by Theorem 6.1.1, M is also complete with
respect to the Blaschke metric. [ |
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