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Preface

In general it is difficult to obtain analytic approximations of nonlinear prob-
lems with strong nonlinearity. Traditionally, solution expressions of a nonlin-
ear problem are mainly determined by the type of nonlinear equations and the
employed analytic techniques, and the convergence regions of solution series
are strongly dependent of physical parameters. It is well known that analytic
approximations of nonlinear problems often break down as nonlinearity be-
comes strong and perturbation approximations are valid only for nonlinear
problems with weak nonlinearity.

In this book we introduce an analytic method for nonlinear problems in
general, namely the homotopy analysis method. We show that, even if a non-
linear problem has a unique solution, there may exist an infinite number of
different solution expressions whose convergence region and rate are depen-
dent on an auxiliary parameter. Unlike all previous analytic techniques, the
homotopy analysis method provides us with a simple way to control and adjust
the convergence region and rate of solution series of nonlinear problems. Thus,
this method is valid for nonlinear problems with strong nonlinearity. More-
over, unlike all previous analytic techniques, the homotopy analysis method
provides great freedom to use different base functions to express solutions of a
nonlinear problem so that one can approximate a nonlinear problem more ef-
ficiently by means of better base functions. Furthermore, the homotopy anal-
ysis method logically contains some previous techniques such as Adomian’s
decomposition method, Lyapunov’s artificial small parameter method, and
the δ-expansion method. Thus, it can be regarded as a unified or generalized
theory of these previous methods.

The book consists of two parts. Part I (Chapter 1 to Chapter 5) deals
with the basic ideas of the homotopy analysis method. In Chapter 2, the ho-
motopy analysis method is introduced by means of a rather simple nonlinear
problem. The reader is strongly advised to read this chapter first. In Chapter
3, a systematic description is given and a convergence theorem is described for
general cases. In Chapter 4 we show that Lyapunov’s artificial small parame-
ter method, the δ-expansion method, and Adomian’s decomposition method
are simply special cases of the homotopy analysis method. In Chapter 5 the
advantages and limitations of the homotopy analysis method are briefly dis-
cussed and some open questions are pointed out. In Part II (Chapter 6 to
Chapter 18), the homotopy analysis method is applied to solve some non-
linear problems, such as simple bifurcations of a nonlinear boundary-value
problem (Chapter 6), multiple solutions of a nonlinear boundary-value prob-
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lem (Chapter 7), eigenvalue and eigenfunction of a nonlinear boundary-value
problem (Chapter 8), the Thomas-Fermi atom model (Chapter 9), Volterra’s
population model (Chapter 10), free oscillations of conservative systems with
odd nonlinearity (Chapter 11), free oscillations of conservative systems with
quadratic nonlinearity (Chapter 12), limit cycle in a multidimensional sys-
tem (Chapter 13), Blasius’ viscous flow (Chapter 14), boundary-layer flows
with exponential property (Chapter 15), boundary-layer flows with algebraic
property (Chapter 16), Von Kármán swirling viscous flow (Chapter 17), and
nonlinear progressive waves in deep water (Chapter 18). In Part II, only
Chapters 14, 15, and 18 are adapted from published articles of the author.

I would like to express my sincere thanks to Professor P. Hagedorn (Darm-
stadt University of Technology, Germany) and Professor Y.Z. Liu (Shanghai
Jiao Tong University, China) for reading Part I of the manuscript and giv-
ing their valuable comments. Thanks to Robert B. Stern, Jamie B. Sigal,
and Amy Rodriguez (CRC Press) for their editorial help as well as Nishith
Arora for assistance on LATEX. I would like to express my sincere acknowl-
edgement to Professor J.M. Zhu and Professor Y.S. He (Shanghai Jiao Tong
University, China), Professor Chiang C. Mei (Department of Civil and En-
vironmental Engineering, Massachusetts Institute of Technology, Cambridge,
MA) and Professor D.Y. Hsieh (Division of Applied Mathematics, Brown Uni-
versity, Providence, RI) for their continuous encouragement over the years.
Thanks to my co-authors of some articles, Professor Antonio Campo (College
of Engineering, Idaho State University); Professor Kwok F. Cheung (Depart-
ment of Ocean and Resources Engineering, University of Hawaii at Monoa);
Professor Allen T. Chwang (Department of Mechanical Engineering, Hong
Kong University, Hong Kong, China); and Professor Ioan Pop (Faculty of
Mathematics, University of Cluj, Romania), for their cooperation and valu-
able discussions. This work is partly supported by National Natural Science
Fund for Distinguished Young Scholars of China (Approval No. 50125923),
Li Ka Shing Foundation (Cheung Kong Scholars Programme), Ministry of
Education of China, Shanghai Jiao Tong University, and German Academic
Exchange Service (DAAD, Sandwich Programme).
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PART I

BASIC IDEAS

The way that can be spoken of is not the constant way;
The name that can be named is not the constant name.

Lao Tzu, an ancient Chinese philosopher
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1

Introduction

Most phenomena in our world are essentially nonlinear and are described by
nonlinear equations. Since the appearance of high-performance digit comput-
ers, it becomes easier and easier to solve a linear problem. However, generally
speaking, it is still difficult to obtain accurate solutions of nonlinear problems.
In particular, it is often more difficult to get an analytic approximation than
a numerical one of a given nonlinear problem, although we now have high-
performance supercomputers and some high-quality symbolic computation
software such as Mathematica, Maple, and so on. The numerical techniques
generally can be applied to nonlinear problems in complicated computation
domain; this is an obvious advantage of numerical methods over analytic ones
that often handle nonlinear problems in simple domains. However, numerical
methods give discontinuous points of a curve and thus it is often costly and
time consuming to get a complete curve of results. Besides, from numerical
results, it is hard to have a whole and essential understanding of a nonlinear
problem. Numerical difficulties additionally appear if a nonlinear problem
contains singularities or has multiple solutions. The numerical and analytic
methods of nonlinear problems have their own advantages and limitations, and
thus it is unnecessary for us to do one thing and neglect another. Generally,
one delights in giving analytic solutions of a nonlinear problem.

There are some analytic techniques for nonlinear problems, such as per-
turbation techniques [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] that are well known
and widely applied. By means of perturbation techniques, a lot of impor-
tant properties and interesting phenomena of nonlinear problems have been
revealed. One of the astonishing successes of perturbation techniques is the
discovery of the ninth planet in the solar system, found in the vast sky at a
predicted point. Recently, the singular perturbation techniques are considered
to be one of the top 10 progresses of theoretical and applied mechanics in the
20th century [13]. It is therefore out of question that perturbation techniques
play important roles in the development of science and engineering. For fur-
ther details, the reader is referred to the foregoing textbooks of perturbation
methods.

Perturbation techniques are essentially based on the existence of small or
large parameters or variables called perturbation quantity. Briefly speaking,
perturbation techniques use perturbation quantities to transfer a nonlinear
problem into an infinite number of linear sub-problems and then approximate
it by the sum of solutions of the first several sub-problems. The existence of
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perturbation quantities is obviously a cornerstone of perturbation techniques,
however, it is the perturbation quantity that brings perturbation techniques
some serious restrictions. Firstly, it is impossible that every nonlinear problem
contains such a perturbation quantity. This is an obvious restriction of pertur-
bation techniques. Secondly, analytic approximations of nonlinear problems
often break down as nonlinearity becomes strong, and thus perturbation ap-
proximations are valid only for nonlinear problems with weak nonlinearity.
Consider the drag of a sphere in a uniform stream, a classical nonlinear prob-
lem in fluid mechanics governed by the famous Navier-Stokes equation, for
example. Since 1851 when Stokes [14] first considered this problem, many
scientists have attacked it by means of linear theories [15, 16], straightfor-
ward perturbation technique [17], and matching perturbation method [18, 19].
However, all these previous theoretical drag formulae agree with experimen-
tal data only for small Reynolds number, as shown in Figure 1.1. Thus, as
pointed out by White [20], “the idea of using creeping flow to expand into the
high Reynolds number region has not been successful”. This might be partly
due to the fact that perturbation techniques do not provide us with any ways
to adjust convergence region and rate of perturbation approximations.

There are a few nonperturbation techniques. The dependence of pertur-
bation techniques on small/large parameters can be avoided by introducing
a so-called artificial small parameter. In 1892 Lyapunov [21] considered the
equation

dx

dt
= A(t) x,

where A(t) is a time periodic matrix. Lyapunov [21] introduced an artificial
parameter ε to replace this equation with the equation

dx

dt
= ε A(t) x

and then calculated power series expansions over ε for the solutions. In many
cases Lyapunov proved that series converge for ε = 1, and therefore we can
put in the final expression by setting ε = 1. The above approach is called
Lyapunov’s artificial small parameter method [21]. This idea was further em-
ployed by Karmishin et al. [22] to propose the so-called δ-expansion method.
Karmishin et al. [22] introduced an artificial parameter δ to replace the equa-
tion

x5 + x = 1 (1.1)

with the equation
x1+δ + x = 1 (1.2)

and then calculated power series expansions over δ and finally gained the ap-
proximations by converting the series to [3,3] Padé approximants and setting
δ = 4. In essence, the δ-expansion method is equivalent to the Lyapunov’s
artificial small parameter method. Note that both methods introduce an ar-
tificial parameter, although it appears in a different place and is denoted by
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different symbol in a given nonlinear equation. We additionally have great
freedom to replace Equation (1.1) by many different equations such as

δ x5 + x = 1. (1.3)

As pointed out by Karmishin et al. [22], the approximation given by the
above equation is much worse than that given by Equation (1.2). Both the
artificial small parameter method and the δ-expansion method obviously need
some fundamental rules to determine the place where the artificial parameter
ε or δ should appear. Like perturbation techniques, both the artificial small
parameter method and the δ-expansion method themselves do not provide us
with a convenient way to adjust convergence region and rate of approximation
series.

Adomian’s decomposition method [23, 24, 25] is a powerful analytic tech-
nique for strongly nonlinear problems. The basic ideas of Adomian’s decompo-
sition method is simply described in §4.1. Adomian’s decomposition method
is valid for ordinary and partial differential equations, no matter whether
they contain small/large parameters, and thus is rather general. Moreover,
the Adomian approximation series converge quickly. However, Adomian’s
decomposition method has some restrictions. Approximates solutions given
by Adomian’s decomposition method often contain polynomials. In general,
convergence regions of power series are small, thus acceleration techniques are
often needed to enlarge convergence regions. This is mainly due to the fact
that power series is often not an efficient set of base functions to approximate a
nonlinear problem, but unfortunately Adomain’s decomposition method does
not provide us with freedom to use different base functions. Like the artificial
small parameter method and the δ-expansion method, Adomian’s decompo-
sition method itself also does not provide us with a convenient way to adjust
convergence region and rate of approximation solutions.

In summary, neither perturbation techniques nor nonperturbation methods
such as the artificial small parameter methods, the δ-expansion method, and
Adomian’s decomposition method can provide us with a convenient way to
adjust and control convergence region and rate of approximation series. The
efficiency to approximate a nonlinear problem has not been taken into enough
account, therefore it is necessary to develop some new analytic methods such
that they

1. Are valid for strongly nonlinear problems even if a given nonlinear prob-
lem does not contain any small/large parameters

2. Provide us with a convenient way to adjust the convergence region and
rate of approximation series

3. Provide us with freedom to use different base functions to approximate
a nonlinear problem.
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A kind of analytic technique, namely the homotopy analysis method [26,
27, 28, 29, 30], was proposed by means of homotopy [31], a fundamental con-
cept of topology [32]. The idea of the homotopy is very simple and straight-
forward. For example, consider a differential equation

A[u(t)] = 0, (1.4)

where A is a nonlinear operator, t denotes the time, and u(t) is an unknown
variable. Let u0(t) denote an initial approximation of u(t) and L denote an
auxiliary linear operator with the property

Lf = 0 when f = 0. (1.5)

We then construct the so-called homotopy

H[φ(t; q); q] = (1 − q) L [φ(t; q) − u0(t)] + q A[φ(t; q)], (1.6)

where q ∈ [0, 1] is an embedding parameter and φ(t; q) is a function of t and
q. When q = 0 and q = 1, we have

H[φ(t; q); q]|q=0 = L[φ(t; 0) − u0(t)]

and
H[φ(t; q); q]|q=1 = A[φ(t; 1)],

respectively. Using (1.5), it is clear that

φ(t; 0) = u0(t)

is the solution of the equation

H[φ(t; q); q]|q=0 = 0.

And
φ(t; 1) = u(t)

is therefore obviously the solution of the equation

H[φ(t; q); q]|q=1 = 0.

As the embedding parameter q increases from 0 to 1, the solution φ(t; q) of
the equation

H[φ(t; q); q] = 0

depends upon the embedding parameter q and varies from the initial approx-
imation u0(t) to the solution u(t) of Equation (1.4). In topology, such a kind
of continuous variation is called deformation.

Based on the idea of homotopy, some numerical techniques such as the
continuation method [33] and the homotopy continuation method [34] were
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developed. In fact, the artificial small parameter method and the δ-expansion
method can be described by the homotopy if we replace the artificial parame-
ter ε or δ by the embedding parameter q, as shown in Chapter 4. However, al-
though the above-mentioned traditional way to construct the homotopy (1.6)
might be enough from viewpoints of numerical techniques, it is not good
enough from viewpoints of analytic ones. This is manly because we have
great freedom to choose the so-called auxiliary operator L and the initial ap-
proximations but lack any rules to direct their choice. More importantly, the
traditional way to construct a homotopy cannot provide a convenient way to
adjust convergence region and rate of approximation series.

In this book the basic ideas of the homotopy analysis method are described
in details and some typical nonlinear problems in science and engineering are
employed to illustrate its validity and flexibility. To simply show the validity
of the homotopy analysis method, we point out that the 10th-order drag
formula of a sphere in a uniform stream given by the homotopy analysis
method agrees well with experimental data in a considerably larger region
than all previous theoretical drag formulae published in the past 150 years,
as shown in Figure 1.1. In short, the homotopy analysis method is based on
the concept of homotopy. However, instead of using the traditional homotopy
(1.6), we introduce a nonzero auxiliary parameter � and a nonzero auxiliary
function H(t) to construct such a new kind of homotopy

H̃(Φ; q, �,H) = (1−q) L[Φ(t; q, �,H)−u0(t)]−q � H(t) A[Φ(t; q, �,H)], (1.7)

which is more general than (1.6) because (1.6) is only a special case of (1.7)
when � = −1 and H(t) = 1, i.e.,

H(φ; q) = H̃(Φ; q,−1, 1). (1.8)

Similarly, as q increases from 0 to 1, Φ(t; q, �,H) varies from the initial ap-
proximation u0(t) to the exact solution u(t) of the original nonlinear problem.
However, the solution Φ(t; q, �,H) of the equation

H̃[Φ(t; q, �,H)] = 0 (1.9)

depends not only on the embedding parameter q but also on the auxiliary
parameter � and the auxiliary function H(t). So, at q = 1, the solution
still depends upon the auxiliary parameter � and the auxiliary function H(t).
Thus, different from the traditional homotopy (1.6), the generalized homotopy
(1.7) can provide us with a family of approximation series whose convergence
region depends upon the auxiliary parameter � and the auxiliary function
H(t), as illustrated later in this book. More importantly, this provides us
with a simple way to adjust and control the convergence regions and rates of
approximation series.

The homotopy analysis method is rather general and valid for nonlinear
ordinary and partial differential equations in many different types. It has been
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successfully applied to many nonlinear problems such as nonlinear oscillations
[35, 36, 37, 38, 39], boundary layer flows [28, 29, 40, 41, 42, 43], heat transfer
[44, 45], viscous flows in porous medium [46], viscous flows of Oldroyd 6-
constant fluids [47], magnetohydrodynamic flows of non-Newtonian fluids [48],
nonlinear water waves [49, 50], Thomas-Fermi equation [51], Lane-Emden
equation [30], and so on. To show its validity and flexibility, we give many
new applications of the homotopy analysis method in this book.
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FIGURE 1.1
Comparison of experimental data of drag coefficient of a sphere in a uni-
form stream with theoretical results. Symbols: experimental data; solid line:
theoretical results. (Modified from International Journal of Non-Linear Me-
chanics, 37, Shi-Jun Liao, “An analytic approximation of the drag coefficient
for the viscous flow past a sphere”, 1-18, Copyright (2002), with permission
from Elsevier)
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2

Illustrative description

In this chapter we use a simple nonlinear ordinary differential equation as an
example to introduce the basic ideas of the homotopy analysis method.

2.1 An illustrative example

Consider a free sphere dropping in the air from a static state. Let t̃ denote
the time, U(t̃) the velocity of the sphere, m the mass, and g the acceleration
of gravity. Assume that the air resistance on the sphere is a U2(t̃), where a is
a constant. Then, due to Newton’s second law, it holds

m
dU(t̃)

dt̃
= mg − aU2(t̃), (2.1)

subject to the initial condition

U(0) = 0. (2.2)

Physically speaking, the speed of a freely dropping sphere is increased due to
the gravity until a steady velocity U∞ is reached. So, even not knowing the
solution U(t̃) in detail, we can gain the limit velocity U∞ directly from (2.1),
i.e.,

U∞ =
√

mg

a
. (2.3)

Using U∞ and U∞/g as the characteristic velocity and time, respectively, and
writing

t̃ =
(

U∞
g

)
t, U(t̃) = U∞V (t), (2.4)

we have the dimensionless equation

V̇ (t) + V 2(t) = 1, t ≥ 0, (2.5)

subject to the initial condition

V (0) = 0, (2.6)
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where t denotes the dimensionless time and the dot denotes the derivative
with respect to t. Obviously, as t → +∞, i.e., t̃ → ∞ and U(t̃) → U∞, we
have from (2.4) that

lim
t→+∞V (t) = 1, (2.7)

even without solving Equations (2.5) and (2.6).
The exact solution of Equations (2.5) and (2.6) is

V (t) = tanh(t), (2.8)

useful for the comparisons of different approximations.

2.2 Solution given by some previous analytic techniques

For the sake of comparison, we first apply some well-known previous analytic
techniques to solve the illustrative nonlinear problem.

2.2.1 Perturbation method

To give perturbation approximation, we assume that the dimensionless time
t is a small variable (called perturbation quantity) and then express V (t) in
a power series

V (t) = α0 + α1t + α2t
2 + α3t

3 + · · · . (2.9)

Using the initial condition (2.6) we gain α0 = 0. Then, substituting the above
expression into Equation (2.5), we obtain

+∞∑
k=0

⎡
⎣(k + 1) αk+1 +

k∑
j=0

αjαk−j

⎤
⎦ tk = 1,

which holds for any t ≥ 0, provided

α1 = 1, (2.10)

αk+1 = − 1
k + 1

k∑
j=0

αjαk−j , k ≥ 1. (2.11)

We therefore have the perturbation solution

Vpert(t) = t − 1
3
t3 +

2
15

t5 − 17
315

t7 + · · · =
+∞∑
n=0

α2n+1 t2n+1, (2.12)

which converges in a rather small region 0 ≤ t < ρ0, where ρ0 ≈ 3/2, as shown
in Figure 2.1. Note that the convergence region and rate of the perturbation
solution (2.12) are uniquely determined.
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2.2.2 Lyapunov’s artificial small parameter method

By Lyapunov’s artificial small parameter method we first replace Equation
(2.5) by the equation

V̇ (t) + ε V 2(t) = 1 (2.13)

and then write

V (t) = V0(t) + ε V1(t) + ε2 V2(t) + · · · , (2.14)

where ε is an artificial small parameter. Substituting Equation (2.14) into
Equations (2.13) and (2.6) and then balancing the coefficients of power series
of ε, we obtain the equations

V̇0(t) = 1, V0(0) = 0,
V̇1(t) + V 2

0 (t) = 0, V1(0) = 0,
...

which give

V0(t) = t, V1(t) = − t3

3
, V2(t) =

2t5

15
, · · · ,

successively. Finally, setting ε = 1 in Equation (2.14), we have

V (t) = t − 1
3
t3 +

2
15

t5 − 17
315

t7 + · · · =
+∞∑
n=0

α2n+1 t2n+1, (2.15)

which is exactly the same as the perturbation solution (2.12) and thus is
valid in a rather restricted region of t, as shown in Figure 2.1. Note that
the convergence region and rate of the solution (2.15) given by Lyapunov’s
artificial small parameter method are also uniquely determined.

2.2.3 Adomian’s decomposition method

By Adomian’s decomposition method we first replace Equations (2.5) and
(2.6) by

V (t) = t −
∫ t

0

V 2(t)dt. (2.16)

The solution is given by

V (t) = V0(t) +
+∞∑
k=1

Vk(t),

where

V0(t) = t,

Vk(t) = −
∫ t

0

Ak−1(t) dt, k ≥ 1
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and

Ak(t) =
k∑

n=0

Vn(t) Vk−n(t)

is the so-called Adomian polynomial. We gain successively

V1(t) = − t3

3
, V2(t) =

2t5

15
, V3(t) = − 17

315
t7, · · ·

such that

V (t) = t − 1
3
t3 +

2
15

t5 − 17
315

t7 + · · · =
+∞∑
n=0

α2n+1 t2n+1, (2.17)

which is exactly the same as the perturbation result (2.12), and thus is also
valid in a rather small region, as shown in Figure 2.1. Note that the conver-
gence region and rate of the solution (2.17) given by Adomian’s decomposition
method are also uniquely determined.

2.2.4 The δ-expansion method

By the δ-expansion method we first replace Equation (2.5) by

V̇ (t) + V 1+δ(t) = 1, (2.18)

where δ is a real number. Write

V (t) = V0(t) +
+∞∑
n=1

Vn(t) δn. (2.19)

Then we expand V 1+δ(t) in the power series of δ as follows:

V 1+δ = V0 + [V1 + V0 ln V0] δ

+
[
(V1(1 + lnV0) +

1
2
V0 ln2 V0 + V2

]
δ2 + · · · . (2.20)

Substituting Equations (2.19) and (2.20) into Equation (2.18) and balancing
the power series of δ, we have the following equations:

V̇0 + V0 = 1, V0(0) = 0,
V̇1 + V1 = −V0 ln V0, V1(0) = 0,

V̇2 + V2 = −V1(1 + lnV0) − 1
2
V0 ln2 V0, V2(0) = 0,

V̇3 + V3 = −V2(1 + lnV0) − V1

(
1 +

1
2

ln V0

)
ln V0

−1
6
V0 ln3 V0 − V 2

1

2V0
, V3(0) = 0,

...
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Solving the above linear equations successively, we obtain

V0(t) = 1 − exp(−t),

V1(t) = exp(−t)
[
t − π2

6
+ PL

2 (e−t)
]
− (1 − e−t) ln(1 − e−t),

...

where

PL
n (z) =

+∞∑
k=1

zk

kn

is the nth polylogarithm function of z. The first-order approximation is

V (t) ≈ 1 + exp(−t)
[
t − π2

6
− 1 + PL

2 (e−t)
]
− (1 − e−t) ln(1 − e−t). (2.21)

The first several approximations of this kind of solution seem to be valid
in the whole region 0 ≤ t < +∞. However, due to the appearance of the
special function PL

n (z), it becomes more and more difficult to get higher order
approximations.

It is interesting that the solutions given by the perturbation method,
Lyapunov’s artificial small parameter method, and Adomian’s decomposition
method are the same for the illustrative problem. However, this solution is
valid in a rather small region 0 ≤ t < 3/2. This illustrates that, like perturba-
tion approximations, solutions given by previous nonperturbation techniques
such as Lyapunov’s artificial small parameter method and Adomian’s decom-
position method might break down as physical parameters or variables in-
crease and nonlinearity goes stronger. This fact also implies that there might
exist some relationships between them. It should be emphasized that the con-
vergence region and rate of solutions given by all of these previous analytic
methods are uniquely determined, and neither perturbation techniques nor
previous nonperturbation methods such as Lyapunov’s artificial small param-
eter method, Adomian’s decomposition method, and the δ-expansion method
can provide us with a convenient way to control and adjust convergence re-
gion and rate of solution series. Furthermore, the important property (2.7) of
V (t) at infinity, which we obtain without solving the problem, seems useless
for all of these previous analytic techniques. This example illustrates that,
in essence, neither perturbation techniques nor the previous nonperturbation
methods can provide us with any ways to utilize such kinds of valuable in-
formation to approximate a given nonlinear problem more efficiently. Finally,
note that the artificial parameters ε and δ appear in the different places in
Equations (2.13) and (2.18), respectively, but the solution (2.21) given by
the δ-expansion method is valid in the whole region 0 ≤ t < +∞ and thus
is much better than the solution (2.15) given by Lyapunov’s artificial small
parameter method. As mentioned in Chapter 1, Equations (2.13) and (2.18)
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can be regarded as a kind of homotopy, if we define ε and δ as the embedding
parameter. This example illustrates that, in order to approximate a given
nonlinear problem more efficiently, it seems important to properly construct
a homotopy. However, up to now, we have not had any fundamental rules to
direct us.

2.3 Homotopy analysis solution

In this section the basic ideas of the homotopy analysis method are introduced
by the same illustrative problem mentioned above.

2.3.1 Zero-order deformation equation

Let V0(t) denote an initial guess of V (t), which satisfies the initial condition
(2.6), i.e.,

V0(0) = 0. (2.22)

Let q ∈ [0, 1] denote the so-called embedding parameter. The homotopy
analysis method is based on a kind of continuous mapping V (t) → Φ(t; q)
such that, as the embedding parameter q increases from 0 to 1, Φ(t; q) varies
from the initial guess V0(t) to the exact solution V (t). To ensure this, choose
such an auxiliary linear operator as

L[Φ(t; q)] = γ1(t)
∂Φ(t; q)

∂t
+ γ2(t) Φ(t; q), (2.23)

where γ1(t) �= 0 and γ2(t) are real functions to be determined later. From
Equation (2.5), we define the nonlinear operator

N [Φ(t; q)] =
∂Φ(t; q)

∂t
+ Φ2(t; q) − 1. (2.24)

Let � �= 0 and H(t) �= 0 denote the so-called auxiliary parameter and auxiliary
function, respectively. Using the embedding parameter q ∈ [0, 1], we construct
a family of equations

(1 − q) L [Φ(t; q) − V0(t)] = � q H(t) N [Φ(t; q)], (2.25)

subject to the initial condition

Φ(0; q) = 0. (2.26)

It should be emphasized that we have great freedom to choose the auxiliary
parameter �, the auxiliary function H(t), the initial approximation V0(t), and
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the auxiliary linear operator L. It is such freedom that plays important roles
and establishes the cornerstone of the validity and flexibility of the homotopy
analysis method, as shown later in this book.

When q = 0, Equation (2.25) becomes

L [Φ(t; 0) − V0(t)] = 0, t ≥ 0, (2.27)

subject to the initial condition

Φ(0; 0) = 0. (2.28)

According to Equations (2.22) and (2.23), the solution of Equations (2.27)
and (2.28) is simply

Φ(t; 0) = V0(t). (2.29)

When q = 1, Equation (2.25) becomes

� H(t) N [Φ(t; 1)] = 0, t ≥ 0, (2.30)

subject to the initial condition

Φ(0; 1) = 0. (2.31)

Since � �= 0, H(t) �= 0 and by means of the definition (2.24), Equations (2.30)
and (2.31) are equivalent to the original equations (2.5) and (2.6), provided

Φ(t; 1) = V (t). (2.32)

Therefore, according to Equations (2.29) and (2.32), Φ(t; q) varies from the
initial guess V0(t) to the exact solution V (t) as the embedding parameter q
increases from 0 to 1. In topology, this kind of variation is called deformation,
and Equations (2.25) and (2.26) construct the homotopy Φ(t; q). For brevity,
Equations (2.25) and (2.26) are called the zero-order deformation equations.

Having the freedom to choose the auxiliary parameter �, the auxiliary
function H(t), the initial approximation V0(t), and the auxiliary linear op-
erator L, we can assume that all of them are properly chosen so that the
solution Φ(t; q) of the zero-order deformation equations (2.25) and (2.26) ex-
ists for 0 ≤ q ≤ 1, and besides its mth-order derivative with respect to the
embedding parameter q, i.e.,

V
[m]
0 (t) =

∂mΦ(t; q)
∂qm

∣∣∣∣
q=0

(2.33)

exists, where m = 1, 2, 3, · · ·. For brevity, V
[m]
0 (t) is called the mth-order

deformation derivative. Define

Vm(t) =
V

[m]
0 (t)
m!

=
1
m!

∂mΦ(t; q)
∂qm

∣∣∣∣
q=0

. (2.34)
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By Taylor’s theorem, we expand Φ(t; q) in a power series of the embedding
parameter q as follows:

Φ(t; q) = Φ(t; 0) +
+∞∑
m=1

1
m!

∂mΦ(t; q)
∂qm

∣∣∣∣
q=0

qm. (2.35)

From Equations (2.29) and (2.34), the above power series becomes

Φ(t; q) = V0(t) +
+∞∑
m=1

Vm(t) qm. (2.36)

Assume that the auxiliary parameter �, the auxiliary function H(t), the ini-
tial approximation V0(t), and the auxiliary linear operator L are so properly
chosen that the series (2.36) converges at q = 1. Then, at q = 1, the series
(2.36) becomes

Φ(t; 1) = V0(t) +
+∞∑
m=1

Vm(t). (2.37)

Therefore, using Equation (2.32), we have

V (t) = V0(t) +
+∞∑
m=1

Vm(t). (2.38)

The above expression provides us with a relationship between the initial
guess V0(t) and the exact solution V (t) by means of the terms Vm(t) (m =
1, 2, 3, · · ·), which are unknown up to now.

2.3.2 High-order deformation equation

Define the vector


Vn = {V0(t), V1(t), V2(t), · · · , Vn(t)} .

According to the definition (2.34), the governing equation and corresponding
initial condition of Vm(t) can be deduced from the zero-order deformation
equations (2.25) and (2.26). Differentiating Equations (2.25) and (2.26) m
times with respect to the embedding parameter q and then setting q = 0
and finally dividing them by m!, we have the so-called mth-order deformation
equation

L [Vm(t) − χm Vm−1(t)] = � H(t) Rm(
Vm−1), (2.39)

subject to the initial condition

Vm(0) = 0, (2.40)

© 2004 CRC Press LLC 



where

Rm(
Vm−1) =
1

(m − 1)!
∂m−1N [Φ(t; q)]

∂qm−1

∣∣∣∣
q=0

(2.41)

and

χm =
{

0 when m ≤ 1,
1 otherwise. (2.42)

From Equations (2.24) and (2.41), we have

Rm(
Vm−1) = V̇m−1(t) +
m−1∑
j=0

Vj(t)Vm−1−j(t) − (1 − χm). (2.43)

Notice that Rm(
Vm−1) given by the above expression is only dependent upon

V0(t), V1(t), V2(t), · · · , Vm−1(t),

which are known when solving the mth-order deformation equations (2.39)
and (2.40). Thus, according to the definition (2.23) of the auxiliary operator
L, Equation (2.39) is a linear first-order differential equation, subject to the
linear initial condition (2.40). Therefore, the solution Vm(t) of high-order
deformation equations (2.39) and (2.40) can be easily gained, especially by
means of computation software such as Mathematica, Maple, MathLab, and so
on. According to (2.38), we in essence transfer the original nonlinear problem,
governed by Equations (2.5) and (2.6), into an infinite number of linear sub-
problems governed by high-order deformation equations (2.39) and (2.40),
and then use the sum of the solutions Vm(t) of its first several sub-problems
to approximate the exact solution. Note that such a kind of transformation
needs not the existence of any small or large parameters in governing equation
and initial/boundary conditions.

The mth-order approximation of V (t) is given by

V (t) ≈
m∑

n=0

Vn(t). (2.44)

It should be emphasized that the zero-order deformation equation (2.25) is de-
termined by the auxiliary linear operator L, the initial approximation V0(t),
the auxiliary parameter �, and the auxiliary function H(t). Theoretically
speaking, the solution V (t) given by the above approach is dependent of the
auxiliary linear operator L, the initial approximation V0(t), the auxiliary pa-
rameter �, and the auxiliary function H(t). Thus, unlike all previous analytic
techniques, the convergence region and rate of solution series given by the
above approach might not be uniquely determined. This is indeed true, as
shown later in this chapter.
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2.3.3 Convergence theorem

THEOREM 2.1
As long as the series (2.38) converges, where Vm(t) is governed by the high-

order deformation equations (2.39) and (2.40) under the definitions (2.42)
and (2.43), it must be the exact solution of Equations (2.5) and (2.6).

Proof: If the series
+∞∑
m=0

Vm(t)

converges, we can write

S(t) =
+∞∑
m=0

Vm(t)

and it holds
lim

m→+∞Vm(t) = 0. (2.45)

Using the definition (2.42) of χm, we have

n∑
m=1

[Vm(t) − χm Vm−1(t)]

= V1 + (V2 − V1) + (V3 − V2) + · · · + (Vn − Vn−1)
= Vn(t),

which gives us, according to (2.45),

+∞∑
m=1

[Vm(t) − χm Vm−1(t)] = lim
n→+∞Vn(t) = 0.

Furthermore, using the above expression and the definition (2.23) of L, we
have

+∞∑
m=1

L [Vm(t) − χm Vm−1(t)] = L
+∞∑
m=1

[Vm(t) − χm Vm−1(t)] = 0.

From the above expression and Equation (2.39), we obtain

+∞∑
m=1

L [Vm(t) − χm Vm−1(t)] = � H(t)
+∞∑
m=1

Rm(
Vm−1) = 0

which gives, since � �= 0 and H(t) �= 0, that

+∞∑
m=1

Rm(
Vm−1) = 0. (2.46)
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From (2.43), it holds

+∞∑
m=1

Rm(
Vm−1) =
+∞∑
m=1

⎡
⎣V̇m−1(t) +

m−1∑
j=0

Vj(t)Vm−1−j(t) − (1 − χm)

⎤
⎦

=
+∞∑
m=0

V̇m(t) − 1 +
+∞∑
m=1

m−1∑
j=0

Vj(t)Vm−1−j(t)

=
+∞∑
m=0

V̇m(t) − 1 +
+∞∑
j=0

+∞∑
m=j+1

Vj(t)Vm−1−j(t)

=
+∞∑
m=0

V̇m(t) − 1 +
+∞∑
j=0

Vj(t)
+∞∑
i=0

Vi(t)

= Ṡ(t) + S2(t) − 1. (2.47)

From Equations (2.46) and (2.47), we have

Ṡ(t) + S2(t) − 1 = 0, t ≥ 0.

From Equations (2.22) and (2.40), it holds

S(0) =
+∞∑
m=0

Vm(0) = V0(0) +
+∞∑
m=1

Vm(0) = V0(0) = 0.

Therefore, according to the above two expressions, S(t) must be the exact
solution of Equations (2.5) and (2.6). This ends the proof.

Note that the above theorem is valid for the auxiliary linear operator
L defined by (2.23) in a rather general form, where γ1(t) �= 0 and γ2(t)
can be different functions, as illustrated later. This convergence theorem is
important. It is because of this theorem that we can focus on ensuring that
the approximation series converge. It is clear that the convergence of the
series (2.38) depends upon the auxiliary parameter �, the auxiliary function
H(t), the initial guess V0(t), and the auxiliary linear operator L. Fortunately,
the homotopy analysis method provides us with great freedom to choose all of
them. Thus, as long as �, H(t), V0(t), and L are so properly chosen that the
series (2.38) converges in a region 0 ≤ t ≤ t0, it must converge to the exact
solution in this region. Therefore, the combination of the convergence theorem
and the freedom of the choice of the auxiliary parameter �, the auxiliary
function H(t), the initial guess V0(t), and the auxiliary linear operator L
establishes the cornerstone of the validity and flexibility of the homotopy
analysis method.

2.3.4 Some fundamental rules

As mentioned above, we have great freedom to choose the auxiliary linear
operator L, the initial approximation V0(t), and the auxiliary function H(t)
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to construct the zero-order deformation equation. Theoretically, the foregoing
freedom is so great that we can choose a lot of different auxiliary functions
H(t), initial approximations V0(t), and auxiliary linear operators L. How-
ever, from the practical point of view, the freedom seems too great and it is
necessary for us to have some fundamental rules to direct us.

Given a nonlinear problem, the essence of analytic approximation is to
express its solution by a proper set of base functions. It is well known that
a real function f(x) can be approximated by many different base functions
and thus can be more efficiently approximated by a relatively better set of
base functions. The type of base functions is therefore rather important for
the efficiency of approximating a nonlinear problem. The key of efficiently
approximating a given nonlinear problem is to choose a relatively better set
of base functions. Fortunately, using the freedom in the choice of the auxiliary
linear operator L, the initial approximation V0(t), and the auxiliary function
H(t), we can obtain many solution expressions of V (t) presented by different
base functions from which we might choose a better one to approximate a
given nonlinear problem more efficiently.

In many cases, by mean of analyzing its physical background and/or its
initial/boundary conditions and/or its type of nonlinearity, we might know
what kinds of base functions are proper to represent the solution, even without
solving a given nonlinear problem. For example, let

{ek(t) | k = 0, 1, 2, · · ·} (2.48)

denote such a set of base functions for the illustrative problem considered in
this chapter. We can represent the solution in a series

V (t) =
+∞∑
n=0

cn ek(t), (2.49)

where cn is a coefficient. As long as such a set of base functions is determined,
the auxiliary function H(t), the initial approximation V0(t), and the auxiliary
linear operator L must be chosen in such a way that all solutions of the
corresponding high-order deformation equations exist and can be expressed by
this set of base functions. This provides us with a fundamental rule to direct
the choice of the auxiliary function H(t), the initial approximation V0(t), and
the auxiliary linear operator L, called the rule of solution expression. This
rule plays an important role in the frame of the homotopy analysis method,
as shown in this chapter.

As mentioned above, a real function f(x) might be expressed by many
different base functions. Thus, there might exist some different kinds of rule
of solution expressions and all of them might give accurate approximations
for a given nonlinear problem. In this case we might gain the best one by
choosing the best set of base functions.

To further restrict the choice of the auxiliary function H(t), it seems nec-
essary to propose the so-called rule of coefficient ergodicity, i.e., all coefficients
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in the solution expression, such as cn in (2.49), can be modified to ensure the
completeness of the set of base functions. In many cases, by means of the rule
of solution expression and the rule of coefficient ergodicity, auxiliary functions
can be uniquely determined. It is clear that the high-order deformation equa-
tions should be closed and have solutions. This provides us with the so-called
rule of solution existence.

The so-called rule of solution expression, rule of coefficient ergodicity, and
rule of solution existence play important roles and greatly simplify the appli-
cation of the homotopy analysis method.

2.3.5 Solution expressions

Different from the foregoing solution expressions given by the perturbation
and nonperturbation methods mentioned above, the solution given by the ho-
motopy analysis method can be represented by many different base functions,
as shown in this subsection.

2.3.5.1 Solution expressed by polynomial functions

Note that the perturbation solution (2.12) is a power series of t. So, it is
straightforward to use the set of base functions

{
t2m+1 | m = 0, 1, 2, 3, · · ·} (2.50)

to represent V (t), i.e.,

V (t) =
+∞∑
m=0

am t2m+1, (2.51)

where am is a coefficient. This provides us with the first rule of solution
expression of the illustrative problem.

Under the first rule of solution expression and according to the initial
condition (2.22), it is straightforward to choose

V0(t) = t (2.52)

as the initial approximation of V (t), and to choose an auxiliary linear operator

L[Φ(t; q)] =
∂Φ(t; q)

∂t
(2.53)

with the property
L (C1) = 0, (2.54)

where C1 is an integral constant. Under the first rule of solution expression
denoted by (2.51) and from Equation (2.39), the auxiliary function H(t) can
be chosen in the form

H(t) = t2κ. (2.55)
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According to (2.54), the solution of Equation (2.39) becomes

Vm(t) = χmVm−1(t) + �

∫ t

0

τ2κ Rm(
Vm−1) dτ + C1,

where the integral constant C1 is determined by the initial condition (2.40).
It is found that when κ ≤ −1 the term t−1 appears in the solution expres-
sion of Vm(t), which disobeys the first rule of solution expression denoted by
(2.51). In addition, when κ ≥ 1, the base t3 always disappears in the solution
expression of Vm(t) so that the coefficient of the term t3 is always zero and
thus cannot be modified even if the order of approximation tends to infinity.
This, however, disobeys the so-called rule of coefficient ergodicity. In order to
obey both of the first rule of solution expression denoted by (2.51) and the
rule of coefficient ergodicity, we had to set κ = 0. This uniquely determines
the corresponding auxiliary function

H(t) = 1. (2.56)

We now successively obtain

V1(t) =
1
3

�t3,

V2(t) =
1
3

�(1 + �)t3 +
2
15

�
2t5,

V3(t) =
1
3

�(1 + �)2t3 +
2
15

�
2(1 + �)t5 +

17
315

�
3t7,

...

It is found that the corresponding mth-order approximation can be expressed
by

V (t) ≈
m∑

k=0

Vk(t) =
m∑

n=0

µm,n
0 (�)

[
α2n+1 t2n+1

]
, (2.57)

where α2n+1 is the same coefficient as that which appeared in the perturbation
solution (2.12), and the function µm,n

0 (�) is defined by

µm,n
0 (�) = (−�)n

m−n∑
j=0

(
n − 1 + j

j

)
(1 + �)j . (2.58)

Although the initial approximation V0(t), the auxiliary linear operator L,
and the auxiliary function H(t) have been determined, we still have freedom
to choose a proper value of the auxiliary parameter �. Equation (2.57) denotes
a family of solution expressions in auxiliary parameter �. It is easy to prove
that the function µm,n

0 (�) mentioned above has the property

µm,n
0 (−1) = 1, when n ≤ m. (2.59)
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For any a finite positive integer n, it holds

lim
m→+∞µm,n

0 (�) =
{

1, when |1 + �| < 1,
∞, when |1 + �| > 1.

(2.60)

These two properties will be proved later in this chapter. So, when � = −1,
we have from (2.59), (2.57), and (2.12) that

V (t) = Vpert(t). (2.61)

Therefore, the perturbation solution (2.12) is only a special case of the so-
lution expression (2.57) when � = −1, as are the solution (2.15) given by
Lyapunov’s artificial small parameter method and the solution (2.17) given
by Adomian’s decomposition method. Equation (2.57) logically contains the
solution expression given by perturbation method, Lyapunov’s artificial small
parameter method, and Adomian’s decomposition method and thus is more
general.

Note that the coefficients of the solution expression (2.57) depend upon
the auxiliary parameter �. According to (2.60), the necessary condition for
the series (2.57) to be convergent is |1 + �| < 1, i.e.,

−2 < � < 0.

It is interesting that the convergence region of the solution series (2.57) de-
pends upon the value of �. The closer the value of � (−2 < � < 0) is to zero,
the larger the convergence region of the series (2.57), as shown in Figure 2.1.
It is found that the solution series (2.57) converges in the region

0 ≤ t < ρ0

√
2
|�| − 1,

where ρ0 ≈ 3/2 is the convergence radius of the perturbation solution (2.12).
So, as � (−2 < � < 0) tends to zero from below, the solution series (2.57)
converges to the exact solution V (t) = tanh(t) in the whole region

0 ≤ t < +∞.

Unlike all previous analytic techniques, we can adjust and control the conver-
gence region of the solution series (2.57) by assigning � a proper value. The
auxiliary parameter � therefore provides us with a convenient way to adjust
and control convergence regions of solution series.

2.3.5.2 Solution expressed by fractional functions

Although the solution expression (2.57) represented by the base functions
(2.50) can be valid in the whole region

0 ≤ t < +∞
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as � (−2 < � < 0) tends to 0, the order of approximation must be very
high to give an accurate enough result when the absolute value of � (−2 <
� < 0) is small. This kind of approximation is barely efficient, although
theoretically it is better and more general than the solution (2.12) given by
the perturbation method, Lyapunov’s artificial small parameter method, and
Adomian’s decomposition method. It is therefore necessary to choose a better
set of base functions to approximate V (t) more efficiently.

As mentioned before, even without solving Equations (2.5) and (2.6), it is
easy to know the limit velocity

V (+∞) = 1.

The initial approximation (2.52) obviously does not satisfy this property. Gen-
erally, a power series converges in a finite region, therefore, the set (2.50) of
polynomial functions is not proper to efficiently approximate V (t) in the whole
region 0 ≤ t < +∞.

Notice that it holds

lim
t→+∞

1
(1 + t)m

= 0, m ≥ 1.

Thus, a function expressed by the set of base functions

{
(1 + t)−m | m = 0, 1, 2, 3, · · ·} (2.62)

has a finite value as t → +∞. We can assume that the solution V (t) can be
expressed by

V (t) =
+∞∑
m=0

bm

(1 + t)m
, (2.63)

where bm is a coefficient to be determined. This provides us with the second
rule of solution expression of the illustrative problem.

Under the second rule of solution expression and using the initial condition
(2.6) and the limit velocity (2.7), it is straightforward to choose

V0(t) = 1 − 1
1 + t

(2.64)

as the initial approximation of V (t), and to choose the corresponding auxiliary
linear operator

L[Φ(t; q)] = (1 + t)
∂Φ(t; q)

∂t
+ Φ(t; q) (2.65)

with the property

L
(

C2

1 + t

)
= 0, (2.66)
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where C2 is an integral constant. Under the definition (2.65) of L, the solution
of the high-order deformation equation (2.39) becomes

Vm(t) = χmVm−1(t) +
�

1 + t

∫ t

0

H(τ) Rm(
Vm−1) dτ +
C2

1 + t
, m ≥ 1,

where the integral constant C2 is determined by the initial condition (2.40).
Under the second rule of solution expression denoted by (2.63) and from Equa-
tion (2.39), the auxiliary function H(t) should be in the form

H(t) =
1

(1 + t)κ
, (2.67)

where κ is an integer. It is found that, when κ ≤ 0, the solutions of the
high-order deformation equations (2.39) contain the term

ln(1 + t)
1 + t

which incidentally disobeys the second rule of solution expression denoted by
(2.63). When κ > 1, the base (1 + t)−2 disappears in the solution expression
of Vm(t) so that the coefficient of the term (1 + t)−2 is always zero and thus
cannot be modified even if the order of approximation tends to infinity. This,
however, disobeys the so-called rule of coefficient ergodicity. Thus, to obey
both the second rule of solution expression and rule of coefficient ergodicity, we
had to choose κ = 1, which uniquely determines the corresponding auxiliary
function

H(t) =
1

1 + t
. (2.68)

Thereafter, we successively obtain

V1(t) = − �

1 + t
+

2�

(1 + t)2
− �

(1 + t)3
,

V2(t) = −�

(
1 +

7
12

�

)
1

1 + t
+

2�(1 + �)
(1 + t)2

−�

(
1 +

7
2

�

)
1

(1 + t)3
+

10�
2

3(1 + t)4
− 5�

2

4(1 + t)5
,

...

It is found that the corresponding mth-order approximation of V (t) can be
expressed by

V (t) ≈
2m+1∑
n=0

βm,n(�)
(1 + t)n

, (2.69)

where βm,n(�) is a coefficient dependent upon �.
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Note that we still have freedom to choose the auxiliary parameter �. So,
(2.69) is in fact a new family of solution expressions. To investigate the influ-
ence of � on the solution series (2.69), we can first consider the convergence
of some related series such as V ′(0), V ′′(0), V ′′′(0), and so on. It is found that
V ′(0) = 1 holds for all results at any order of approximations, thus it cannot
provide us with any useful information about the choice of �. However, V ′′(0)
and V ′′′(0) are dependent of �. Let R� denote a set of all possible values of �

by means of which the corresponding series of V ′′(0) converges. For brevity,
we call the set R� the valid region of � for V ′′(0). According to Theorem
2.1, for each � ∈ R�, the corresponding series of V ′′(0) converges to the same
result. The curve V ′′(0) versus � contains a horizontal line segment above the
valid region R�. We call such a kind of curve the �-curve, which clearly indi-
cates the valid region R� of a solution series. The so-called �-curves of V ′′(0)
and V ′′′(0) given by the solution expression (2.69) are as shown in Figure 2.2.
From Figure 2.2 it is clear that the series of V ′′(0) and V ′′′(0) given by the
solution series (2.69) are convergent when

−3/2 ≤ � ≤ −1/2.

This is indeed true. For example, for five different values of � in the region
−3/2 ≤ � ≤ −1/2, the series of V ′′(0) and V ′′′(0) given by (2.69) converge
to the corresponding exact value 0 and -2, respectively, as shown in Tables
2.1 and 2.2. It is interesting that the convergence rate of the approximation
series depends upon the value of �, and the series of V ′′(0) and V ′′′(0) given
by (2.69) converge fastest when � = −1, as shown in Tables 2.1 and 2.2.
This indicates that we can adjust the convergence rate of the solution series
(2.69) by means of the auxiliary parameter �. It is also true that, as long as
the series of V ′′(0) and V ′′′(0) are convergent, the series (2.69) converge in
the whole region 0 ≤ t < +∞. Thus, according to Theorem 2.1, all of these
convergent series must be the exact solution of the original nonlinear problem.
For example, when � = −1, the series (2.69) converges to the exact solution
in the whole region 0 ≤ t < +∞, as shown in Table 2.3. In general, by means
of the so-called �-curves, it is straightforward to know the corresponding valid
region of �. Choosing a value of � in the valid region, we can ensure that the
corresponding solution series is convergent. In this way, we can control and
adjust the convergence region and rate of solution series. Thus, the auxiliary
parameter � plays an important role within the frame of the homotopy analysis
method.

Unlike the solution (2.12) given by the perturbation method, Lyapunov’s
artificial small parameter method, and Adomian’s decomposition method, the
solution series (2.69) converges to the exact solution in the whole region 0 ≤
t < +∞ when −3/2 ≤ � ≤ −1/2. The solution series (2.69) is therefore
almost more efficient than (2.57), although, theoretically speaking, both of
them may converge to the exact solution in the whole region 0 ≤ t < +∞.
This is mainly because, for the illustrative problem, the base functions (2.62)
are better and thus more efficient than (2.50).
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Finally, let us investigate the relationship between the solution expression
(2.69) with the perturbation solution (2.12). Substituting � = −1 and

1
1 + t

= 1 − t + t2 − t3 + · · ·

into the 10th-order approximation of V (t) given by (2.69), we have

V (t) ∼ t − 1
3

t3 +
2
5

t5 − 17
315

t7 +
62

2835
t9 + · · · ,

whose first several terms are exactly the same as the perturbation series (2.12).

2.3.5.3 Solution expressed by exponential functions

It is well known that

lim
t→+∞ exp(−nt) = 0, n ≥ 1.

So, a function expressed by the set of base functions

{ exp(−nt) | n ≥ 0 } (2.70)

is finite as t tends to infinity. Considering the limit velocity (2.7), the above
base functions are better than (2.50). Assume that V (t) can be expressed by

V (t) =
+∞∑
n=0

cn exp(−nt), (2.71)

where cn is a coefficient. This provides us with the third rule of solution
expression of the illustrative problem.

Under the third rule of solution expression and from (2.6) and (2.7), it is
straightforward to choose

V0(t) = 1 − exp(−t) (2.72)

as the initial approximation of V (t), and to choose the auxiliary linear oper-
ator

L[Φ(t; q)] =
∂Φ(t; q)

∂t
+ Φ(t; q) (2.73)

with the property
L [C3 exp(−t)] = 0, (2.74)

where C3 is an integral coefficient. In this case, the solution of the mth-order
deformation equation (2.39) becomes

Vm(t) = χmVm−1(t) + � exp(−t)
∫ t

0

exp(τ) H(τ) Rm(
Vm−1) dτ

+ C3 exp(−t), m ≥ 1,
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where the integral constant C3 is determined by (2.40). According to the
third rule of solution expression denoted by (2.71) and from Equation (2.39),
the auxiliary function H(t) should be in the form

H(t) = exp(−κ t), (2.75)

where κ is an integer. It is found that, when κ ≤ 0, the solutions of the
high-order deformation equations (2.39) contain the term

t exp(−t),

which incidentally disobeys the third rule of solution expression denoted by
(2.71). When κ ≥ 2, the base exp(−2t) always disappears in the solution ex-
pressions of the high-order deformation equation (2.39) so that the coefficient
of the term exp(−2 t) cannot be modified even if the order of approximation
tends to infinity. This, however, disobeys the so-called rule of coefficient er-
godicity. Thus, to obey both of the third rule of solution expression denoted
by (2.71) and the rule of coefficient ergodicity, we had to set κ = 1, which
uniquely determines the corresponding auxiliary function

H(t) = exp(−t). (2.76)

Therefore, we have

V1(t) = −�

2
e−t + � e−2t − �

2
e−3t,

V2(t) = −�

2

(
1 +

�

2

)
e−t + �

(
1 +

�

2

)
e−2t − �

2
(1 + �) e−3t

+
�

2

2
e−4t − �

2

4
e−5t,

...

It is found that the corresponding mth-order approximation of V (t) can be
generally expressed by

V (t) ≈
2m+1∑
n=0

γm,n(�) exp(−n t), (2.77)

where γm,n(�) is a coefficient dependent of �.
Equation (2.77) is also a family of solution expressions in the auxiliary

parameter �. To investigate the influence of � on the convergence of the
solution series (2.77), we first plot the so-called �-curves of V ′′(0) and V ′′′(0),
as shown in Figure 2.3. According to these �-curves, it is easy to discover the
valid region of �, which correspond to the line segments nearly parallel to the
horizontal axis. The so-called valid regions of � are enlarged as the order of
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approximations increases, as shown in Figure 2.3. So, it is clear that the series
of V ′′(0) and V ′′′(0) given by (2.77) converge if � belongs to the corresponding
valid regions of �. According to Theorem 2.1, they must converge to the
exact values of V ′′(0) and V ′′′(0), respectively. This is indeed true, as shown
in Tables 2.4 and 2.5 when � = −3/2,−5/4,−1,−3/4 and −1/2. Note that
the series seems to converge fastest when � = −1. Furthermore, as long as
the series of V ′′(0) and V ′′′(0) converge, the corresponding solution series
(2.77) of V (t) also converges to the exact solution (2.8) in the whole region
0 ≤ t < +∞. For example, the approximation result of V (t) given by (2.77),
when � = −1, agrees well with the exact result (2.8), as shown in Table 2.6.
Generally, it is convenient to investigate the influence of � on the convergence
of solution series by means of such kinds of �-curves.

Note that the solution expression (2.77) is valid in the whole region 0 ≤
t < +∞. Comparing Tables 2.4 to 2.6 with Tables 2.1 to 2.3, respectively, we
find that, by means of the same value of �, the solution series (2.77) converges
faster than (2.69), and even the 10th-order approximation of (2.77) when
� = −1 agrees very well with the exact solution. So, the solution expression
(2.77) is better and thus more efficient than (2.69) and, as mentioned before,
(2.69) is more efficient than (2.57). These therefore illustrate that we may
approximate a given nonlinear problem more efficiently by choosing a better
set of base functions within the frame of the homotopy analysis method.

It is found that the mth-order approximation (2.77) of V (t) can be explic-
itly expressed by

V (t) ≈ 1 + 2
m∑

n=1

[(−1)n exp(−nt)] µm,n
0

(
�

2

)

− exp(−t)
[(

1 +
�

2

)
+

�

2
exp(−2t)

]m

, (2.78)

where the function µm,n
0 (x) is defined by (2.58). It is interesting that the func-

tion µm,n
0 (�) appears again. Due to the property (2.59), the above expression

becomes, when � = −2,

V (t) ≈ 1 + 2
m∑

n=1

(−1)n exp(−nt) + (−1)m+1 exp[−(2m + 1) t]. (2.79)

Note that the exact solution (2.8) can be expanded as a series

V (t) ≈ 1 + 2
+∞∑
n=1

(−1)n exp(−nt), (2.80)

which converges to the exact solution in the region 0 < t < +∞ but diverges
at the point t = 0 where it gives either 1 or -1. However, with an additional
term

(−1)m+1 exp[−(2m + 1)],
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the expression (2.79) converges to the exact solution in the whole region 0 ≤
t < +∞ including the point t = 0. In fact, even the third-order approximation
of V (t) given by (2.79), i.e.,

V (t) ≈ 1 − 2 exp(−2 t) + 2 exp(−4 t) − 2 exp(−6 t) + exp(−7 t), (2.81)

agrees very well with the exact solution, as shown in Figure 2.4.
The idea to avoid the appearance of the term such as

ln(1 + t)/(1 + t), t exp(−t)

in approximate expansions is not new. To gain uniformly valid approxima-
tions, some perturbation techniques were developed to avoid the appearance
of the so-called secular terms such as

t sin t, t cos t

in perturbation solutions. This kind of technique goes back to various sci-
entists in the 19th century such as Lindstedt [52], Bohlin [53], Poincaré [54],
Gyldén [55], and so on. The idea was further developed by many scientists
such as Lighthill [56, 57], Malkin [58], Kuo [59, 60], and Tsien [61]. However,
the terms ln(1 + t)/(1 + t) and t exp(−t) tend to zero as t → +∞. Therefore,
these terms do not belong to the so-called secular term in perturbation tech-
niques. Thus, the rule of solution expression can be seen as the generalization
of this idea.

To show that the term t exp(−t) indeed does not belong to the so-called
secular terms in perturbation methods, we point out that V (t) can be ex-
pressed by the base functions

{tm exp(−nt) | m ≥ 0, n ≥ 1} . (2.82)

Using the same initial approximation as (2.72), the same auxiliary linear op-
erator as (2.73) but the auxiliary function

H(t) = 1 (2.83)

different from (2.76), we can obtain in the similar way the corresponding
mth-order approximation of V (t), which can be explicitly expressed by

V (t) ≈ 1 + 2
m+1∑
n=1

m+1−n∑
k=0

σm,n,k
0 (�)

[
(−1)n (−nt)k

k!
exp(−nt)

]
, (2.84)

where
σm,n,k

0 (�) =
1
2

[
µm,n+k

0 (�) + µm,n+k−1
0 (�)

]
. (2.85)

It is interesting that the function µm,n
0 (�) appears once again. By means of

the so-called �-curves of the corresponding V ′′(0) and V ′′′(0), it is found that,
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when −2 < � < 0, the solution series (2.84) converges to the exact solution
(2.8) in the whole region 0 ≤ t < +∞, as shown in Table 2.7.

It should be emphasized that, in the frame of the homotopy analysis
method, the solution V (t) may be expressed by four different base functions
(2.50), (2.62), (2.70), and (2.82), although the illustrative problem has only
a unique solution. Correspondingly, we gain four families of solution expres-
sions (2.57), (2.69), (2.78), and (2.84). Theoretically, all of them can converge
to the same exact solution V (t) = tanh(t) in the whole region 0 ≤ t < +∞.
However, the solution expression (2.57) is least efficient among the four so-
lution expressions and is therefore the worst because it is convergent in a
finite region for a given value of −2 < � < 0. By means of comparing Ta-
bles 2.3, 2.6, and 2.7 with each other, the solution expression (2.78) based on
the pure exponential functions is more efficient than the solution expression
(2.69) based on fractional functions and the solution expression (2.84) based
on combined polynomial and exponential functions, and thus is the best. The
solution expression (2.84) is more efficient than the solution expression (2.69).
This example clearly illustrates that, in the frame of the homotopy analysis
method, the solution of a given nonlinear problem can be expressed by many
different base functions and thus can be more efficiently approximated by a
better set of base function, even if the solution is unique.

Indeed, this illustrative example is very simple and the exact solution is
known. However, it clearly illustrates that, by means of the homotopy analysis
method, convergence region and rate of solution series can be adjusted and
controlled by means of plotting the so-called �-curves and then choosing � in
the corresponding valid regions of �. Even when it is unnecessary to enlarge
convergence regions, we can give a more efficient solution series by assigning
� a proper value. This illustrative example also shows the important roles of
the rule of solution expression and rule of coefficient ergodicity in choosing the
initial approximation, the auxiliary linear operator, and the auxiliary function.

2.3.6 The role of the auxiliary parameter �

As mentioned before, the homotopy analysis method is based on the homo-
topy, a basic concept of topology. The nonzero auxiliary parameter � is intro-
duced to construct the so-called zero-order deformation equation, which gives
a more general homotopy than the traditional one. Thus, unlike all previous
analytic techniques, the homotopy analysis method provides us with a family
of solution expressions in the auxiliary parameter �. As a result, the con-
vergence region and rate of solution series are dependent upon the auxiliary
parameter � and thus can be greatly enlarged by means of choosing a proper
value for �. This provides us with a convenient way to adjust and control
convergence region and rate of solution series given by the homotopy analysis
method, as illustrated above.

In this subsection we prove in a completely different way that convergence
regions of series can be indeed adjusted and controlled by introducing an
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auxiliary parameter. This proof can provide us with a rational base for the
validity of the homotopy analysis method.

First, we emphasize that the definition (2.58) of µm,n
0 (�) is gained in the

homotopy analysis method, which appears in the solution expressions (2.57),
(2.78), and (2.84). It is interesting that the same definition can be deduced
directly from the famous Newtonian binomial theorem. To show this, consider
a series

1
1 + t

= 1 − t + t2 − t3 + · · · = lim
m→+∞

m∑
n=0

(−1)ntn, |t| < 1. (2.86)

Define
x = 1 + � + � t,

which gives
1

1 + t
= − �

(1 − x)
.

When |x| = |1 + � + � t| < 1 and |1 + �| < 1, i.e.,

−1 < t <
2
|�| − 1, −2 < � < 0,

it holds

1
1 + t

= − �

1 − x
= −�

(
1 + x + x2 + x3 + · · ·) = −�

+∞∑
n=0

(1 + � + � t)n.

Thus,
1

1 + t
= lim

m→+∞

[
−�

m∑
n=0

(1 + � + � t)n

]

is valid in the region

−1 < t <
2
|�| − 1 (−2 < � < 0).

We have

−�

m∑
n=0

(1 + � + � t)n

= −�

m∑
n=0

n∑
k=0

(
n
k

)
(1 + �)n−k (� t)k

= −�

m∑
k=0

m∑
n=k

(
n
k

)
(1 + �)n−k

�
k tk
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=
m∑

k=0

(−1)k tk(−�)k+1
m−k∑
i=0

(
k + i

k

)
(1 + �)i

=
m∑

k=0

(−1)k tk

[
(−�)k+1

m−k∑
i=0

(
k + i

i

)
(1 + �)i

]

=
m∑

n=0

(−1)n tn µm,n
−1 (�),

where

µm,n
−1 (�) = (−�)n+1

m−n∑
j=0

(
n + j

j

)
(1 + �)j . (2.87)

Comparing the above to the definition (2.58), we gain the relationship

µm,n
−1 (�) = µm+1,n+1

0 (�). (2.88)

Thus, it holds

1
1 + t

= lim
m→+∞

m∑
n=0

µm+1,n+1
0 (�) [(−1)n tn] (2.89)

in the region

−1 < t <
2
|�| − 1 (−2 < � < 0).

Obviously, the convergence region is −1 < t < 1 when � = −1, −1 < t <
3 when � = −1/2, and −1 < t < 99 when � = −1/50, respectively. In
particular, the convergence region becomes

−1 < t < +∞

as � tends to zero from below. Thus, the convergence region of the series
(2.89) can be indeed adjusted and controlled by the auxiliary parameter �.
What we should emphasize here is that the same definition µm,n

0 (�) is first
obtained in the frame of the homotopy analysis method and then deduced
from the famous Newtonian binomial theorem. This fact logically shows the
validity and reasonability of the homotopy analysis method.

The foregoing ideas can be employed to give such a generalized theorem
as the one below.

THEOREM 2.2
It holds

(1 + t)α = lim
m→+∞

m∑
n=0

µm,n
α (�)

(
α
n

)
tn (2.90)
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for a real number α (α �= 0, 1, 2, 3, · · ·) in the region

−1 < t <
2
|�| − 1 (−2 < � < 0),

where (
α
n

)
=

α(α − 1)(α − 2) · · · (α − n + 1)
n!

and

µm,n
α (�) = (−�)n−α

m−n∑
j=0

(−1)j

(
α − n

j

)
(1 + �)j . (2.91)

Proof: Write x = 1 + � + � t. Let |x| < 1 and |1 + �| < 1, i.e.,

−1 < t <
2
|�| − 1, −2 < � < 0.

By the traditional Newton binomial theorem [62], it holds when |x| < 1 and
|1 + �| < 1 that

(1 + t)α = (−�)−α(1 − x)α = (−�)−α
+∞∑
n=0

(−1)n

(
α
n

)
xn

= (−�)−α
+∞∑
n=0

(−1)n

(
α
n

)
(1 + � + � t)n

= lim
m→+∞(−�)−α

m∑
n=0

(−1)n

(
α
n

)
(1 + � + � t)n.

The sum of the first m terms of above series is given by

(−�)−α
m∑

n=0

(−1)n

(
α
n

)
(1 + � + � t)n

= (−�)−α
m∑

n=0

(−1)n

(
α
n

) n∑
j=0

(
n
j

)
(1 + �)n−j

�
j tj

= (−�)−α
m∑

j=0

tj
m∑

n=j

(−1)n

(
α
n

)(
n
j

)
(1 + �)n−j

�
j

= (−�)−α
m∑

j=0

tj
m−j∑
i=0

(−1)i+j

(
α

i + j

)(
i + j

j

)
(1 + �)i

�
j

= (−�)−α
m∑

j=0

tj
m−j∑
i=0

(−1)i+j

(
α
j

)(
α − j

i

)
(1 + �)i

�
j
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=
m∑

j=0

[(
α
j

)
tj
]m−j∑

i=0

(−1)i

(
α − j

i

)
(1 + �)i (−�)j−α

=
m∑

n=0

µm,n
α (�)

[(
α
n

)
tn
]

,

where

µm,n
α (�) = (−�)n−α

m−n∑
j=0

(−1)j

(
α − n

j

)
(1 + �)j .

This ends the proof.
Although the definition (2.91) is deduced for real numbers −∞ < α < +∞

except integers α = 0, 1, 2, 3, · · ·, it is valid for all real numbers. For any integer
k, we have using the definition (2.91) that

µm,n
k (�) = (−�)n−k

m−n∑
j=0

(
n − k − 1 + j

j

)
(1 + �)j , (2.92)

which contains the definition (2.58) of µm,n
0 (�) and the definition (2.87) of

µm,n
−1 (�). It can be proved that for any real number α ∈ (−∞,+∞) it holds

µm,n
α (−1) = 1 (2.93)

and
lim

m→+∞µm,n
α (�) = 1, when |1 + �| < 1 (2.94)

for any finite positive integer n. According to the definitions (2.58) and (2.91),
it holds for the integer l ≥ 0 that

µm,n
−l (�) = µm+l,n+l

0 (�). (2.95)

The proof of (2.93) is straightforward. When |1 + �| < 1 it holds from the
definition (2.91) that

lim
m→+∞µm,n

α (�)

= (−�)n−α
+∞∑
k=0

(−1)k

(
α − n

k

)
(1 + �)k

= (−�)n−α
+∞∑
k=0

(
α − n

k

)
(−1 − �)k

= (−�)n−α [1 + (−1 − �)]α−n

= 1.

This ends the proof of (2.94).

© 2004 CRC Press LLC 



It should be emphasized that µm,n
0 (�) defined by (2.58) and µm,n

−1 (�) defined
by (2.87) are only special cases of (2.91) when α = 0 and α = −1, respectively.
All of these logically verify the reasonableness and validity of the solutions
(2.57), (2.78) and (2.84) given by the homotopy analysis method.

The rationality of solutions (2.57), (2.78), and (2.84) can be explained
another way. It is known that the Taylor series of any a given function is
unique. According to the property (2.60), when |1 + �| < 1, it holds for any
a given finite positive integer N that

lim
m→+∞

N∑
n=0

(
α2n+1t

2n+1
)
µm,n

0 (�) =
N∑

n=0

α2n+1t
2n+1.

Therefore, given any finite positive integer N , the sum of the first N terms
of the solution (2.57) is the same as the sum of the first N terms of the
perturbation solution (2.12), if the order of approximation tends to infinity.
Thus, the series (2.57) obeys the uniqueness of the Taylor series, but now in
a more general meaning. Let

(α1, α3, α5, α7, · · ·)
denote a point in a space S, where αk (k = 1, 3, 5, · · ·) is the coefficient in the
perturbation solution (2.12). The perturbation solution (2.12) can be regarded
as an approach to the point (α1, α3, α5, α7, · · ·) along such a traditional path
Γ0 defined by:

(α1, 0, 0, 0, · · ·),
(α1, α3, 0, 0, · · ·),
(α1, α3, α5, 0, · · ·),

...

However, the solution series (2.57) can be regarded as an approach to the
same point

(α1, α3, α5, α7, · · ·)
but along such a more general path Γ(�) defined by:

(α1µ
0,0
0 (�), 0, 0, 0, · · ·),

(α1µ
1,0
0 (�), α3µ

1,1
0 (�), 0, 0, · · ·),

(α1µ
2,0
0 (�), α3µ

2,1
0 (�), α5µ

2,2
0 (�), 0, · · ·),

...

Notice that the path Γ(�) depends on the auxiliary parameter �. According
to (2.59), the path Γ(−1) (when � = −1) is exactly the same as the traditional
one Γ0. When |1 + �| < 1 but � �= −1, the path Γ(�) is different from the
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traditional path Γ0. Even in this case, according to the property (2.60), all of
them approach to the same point (α1, α3, α5, α7, · · ·). Therefore, the solution
series (2.57) can be regarded as a kind of limit process along an infinite number
of approaching paths Γ(�) to the same point (α1, α3, α5, α7, · · ·). It is well
known that the result of such kind of limit process often depends upon the
approaching path. For example, consider the limit

lim
(x,y)→(0,0)

√
x2 + y2

|x| .

There are a lot of approaching paths to (0, 0). For simplicity, let us consider
the path y = βx, where β is a real number. It obviously holds that

lim
(x,y)→(0,0)

√
x2 + y2

|x| =
√

1 + β2.

The limit is therefore dependent upon the approaching path to the point (0,0).
This clearly explains why the convergence region of the solution series (2.57)
is dependent upon the auxiliary parameter �, because the function µm,n

0 (�)
defines different approaching paths by different values of �.

According to above explanation, the function µm,n
α (�) can be used to define

different approaching paths for a limit process by different values of α and �.
For the sake of this reason, the function µm,n

α (�) is called the approach function
of the first kind. To generalize the definition (2.85) of σm,n

0 (�), we define

σm,n,k
α (�) =

1
2
[
µm,n+k

α (�) + µm,n+k−1
α (�)

]
(2.96)

as the approach function of the second kind, where |1+�| < 1 and −∞ < α <
+∞. It is easy to prove that, for α ∈ (−∞,+∞) and 0 ≤ n ≤ m + 1, it holds

σm,n,k
α (−1) =

{
1, when 0 ≤ k < m + 1 − n,
1/2, when k = m + 1 − n,

(2.97)

and

lim
m→+∞σm,n,k

α (�) =
{

1, when |1 + �| < 1,
∞, when |1 + �| > 1,

(2.98)

where n and k are finite positive integers.
The approach functions µm,n

α (�) and σm,n,k
α (�) have rather general mean-

ing and therefore could be employed to greatly enlarge convergence regions of
approximation series. For example, from the traditional Taylor series

+∞∑
n=0

f (n)(z0)
n!

(z − z0)n

of a function f(z), we can define the generalized Taylor series of the first kind

lim
m→+∞

m∑
n=0

µm,n
α (�)

[
f (n)(z0)

n!
(z − z0)n

]
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and the generalized Taylor series of the second kind

lim
m→+∞

m∑
n=0

σm,n,0
α (�)

[
f (n)(z0)

n!
(z − z0)n

]
,

where µm,n
α (�) and σm,n,0

α (�) are defined by (2.91) and (2.96), respectively.
The convergence regions of these generalized Taylor series might be greatly
enlarged by choosing proper values of � and α. To illustrate this, we can
generalize the mth-order approximations (2.57), (2.78), and (2.84) by

V (t) ≈
m∑

n=0

µm,n
α (�)

[
α2n+1 t2n+1

]
, (2.99)

V (t) ≈ 1 + 2
m∑

n=1

[(−1)n exp(−nt)] µm,n
α

(
�

2

)

− exp(−t)
[(

1 +
�

2

)
+

�

2
exp(−2t)

]m

(2.100)

and

V (t) ≈ 1 + 2
m+1∑
n=1

m+1−n∑
k=0

σm,n,k
α (�)

[
(−1)n (−nt)k

k!
exp(−nt)

]
, (2.101)

respectively, where |1 + �| < 1 and α ∈ (−∞,+∞). For example, when α =
π/4, the convergence region of the approximation (2.99) becomes larger and
larger as � tends to zero from below, as shown in Figure 2.5. And when � =
−1, all of the 20th-order approximations of (2.100) given by α = ±1/2,±π/4
agree with the exact solution, as shown in Table 2.8. When � = −1/2, all
of the 20th-order approximations of (2.101) given by α = ±1/2,±π/4 agree
with the exact solution, as shown in Table 2.9. So, the functions µm,n

α (�) and
σm,n,k

α (�) have indeed rather general meaning.
In this subsection we point out that the definition (2.58) of µm,n

0 (�), which
is first obtained in the homotopy analysis method, can be independently de-
duced from the Newtonian binomial theorem. Furthermore, we prove that
convergence region and rate of a series can be indeed adjusted and controlled
by introducing an auxiliary parameter. We also point out that the functions
µm,n

α (�) and σm,n.k
α (�) define different approaching paths by different values

of � and α. All of these provide us with a rational base for the validity of the
homotopy analysis method.

2.3.7 Homotopy-Padé method

The homotopy analysis method is based on such an assumption that the series
(2.36) of Φ(t; q) converges at q = 1 for the illustrative problem. Fortunately, as
mentioned above, we have great freedom to choose the initial approximation
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V0(t), the auxiliary linear operator L, the auxiliary function H(t), and the
auxiliary parameter � in the frame of the homotopy analysis method. If all
of them are properly chosen, the series (2.36) can be convergent at q = 1, as
shown above. Besides, the convergence region and rate of the solution series
given by the homotopy analysis method depend upon the auxiliary parameter
�. Therefore, the auxiliary parameter � provides us with a convenient way
to adjust and control the convergence region and rate of solution series, as
shown above.

There exist some techniques to accelerate the convergence of a given series.
Among them, the so-called Padé technique is widely applied. For a given series

+∞∑
n=0

cn xn,

the corresponding [m,n] Padé approximant is expressed by

m∑
k=0

am,k xk

n∑
k=0

bm,k xk

,

where am,k, bm,k are determined by the coefficients cj (j = 0, 1, 2, 3, · · · ,m+n).
In many cases the traditional Padé technique can greatly increase the conver-
gence region and rate of a given series. For example, employing the traditional
Padé technique to the perturbation series (2.12), we have the [1, 1], [2, 2] and
[3, 3] Padé approximants

t,
3t

3 + t2
,

t(15 + t2)
15 + 6t2

,

respectively. In general, the [m,m] Padé approximant can be expressed by

m∑
n=0

am,n
0 tn

m−1∑
n=0

bm,n
0 tn

, when m is an odd number, (2.102)

or
m−1∑
n=0

am,n
0 tn

m∑
n=0

bm,n
0 tn

, when m is an even number, (2.103)

where am,n
0 and bm,n

0 are coefficients. Note that all of these traditional Padé
approximants tend to either infinity or zero as t → +∞. The [4, 4] and [10, 10]
Padé approximants of the perturbation solution (2.12) are as shown in Figure
2.6.
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The so-called homotopy-Padé technique [50] was proposed by means of
combining the above-mentioned traditional Padé technique with the homo-
topy analysis method. To ensure that the series (2.36) is convergent at q = 1,
we first employ the traditional [m,n] Padé technique about the embedding
parameter q to obtain the [m,n] Padé approximant

m∑
k=0

Am,k(t) qk

n∑
k=0

Bm,k(t) qk

, (2.104)

where the coefficients Am,k(t) and Bm,k(t) are determined by the first several
approximations

V0(t), V1(t), V2(t), · · · , Vm+n(t).

Then, setting q = 1 in (2.104) and using (2.32), we have the so-called [m,n]
homotopy-Padé approximant

m∑
k=0

Am,k(t)

n∑
k=0

Bm,k(t)
. (2.105)

For the illustrative problem, the coefficients Am,n(t) and Bm,n(t) are de-
pendent of the base functions used to present the solution V (t). Using the base
functions denoted by (2.62), we have the corresponding [1, 1] homotopy-Padé
approximant

t(12 + 16t + 7t2)
(1 + t)(12 + 4t + 7t2)

and the [2, 2] homotopy-Padé approximant

t(168000 + 362880 t + 238000 t2 + 14160 t3 − 47124 t4 − 36308 t5 − 13419 t6)
3(1 + t)(56000 + 64960 t + 33040 t2 + 12000 t3 − 2508 t4 − 9076 t5 − 4473 t6)

,

respectively. In general, the [m,m] homotopy-Padé approximation can be
expressed by

m2+m+1∑
n=1

am,n
2 tn

m2+m+1∑
n=0

bm,n
2 tn

, (2.106)

where am,n
2 and bm,n

2 are coefficients. It is very interesting that am,n
2 and bm,n

2

are found to be independent of the auxiliary parameter �. Comparing (2.106)
with (2.102) and (2.103), we find that in accuracy the [m,m] homotopy-Padé
approximant is equivalent to the traditional [m2 + m + 1,m2 + m + 1] Padé
approximant. Unlike the traditional Padé approximants (2.102) and (2.103)
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which tend to either infinity or zero as t → +∞, all of the homotopy-Padé
approximant (2.106) correctly tend to 1 as t → +∞. Thus, for a given m, the
[m,m] homotopy-Padé approximant (2.106) is much more accurate than the
traditional [m,m] Padé approximants (2.102) and (2.103). For example, the
[4,4] homotopy-Padé approximant is more accurate and much better than the
traditional [4,4] Padé approximant and is even better than the [10,10] tradi-
tional Padé approximant, as shown in Figure 2.6. In particular, using the base
functions denoted by (2.70), we have the [1, 1] homotopy-Padé approximant

1 − exp(−2t)
1 + exp(−2t)

, (2.107)

which is just the exact solution V (t) = tanh(t). Thus, the so-called homotopy-
Padé method is indeed much more efficient than the traditional Padé tech-
nique.

Similarly, the so-called homotopy-Padé technique can be applied to accel-
erate the convergence of the related series. For example, to accelerate the
series of V ′′(0) and V ′′′(0), we first apply the traditional Padé technique to
the series

∂2Φ(t; q)
∂ t2

∣∣∣∣
t=0

=
+∞∑
n=0

V ′′
n (0) qn

and
∂3Φ(t; q)

∂ t3

∣∣∣∣
t=0

=
+∞∑
n=0

V ′′′
n (0) qn

to get their [m,n] Padé approximants about the embedding parameter q,
respectively, and then set q = 1 to obtain the corresponding [m,n] homotopy-
Padé approximants. The homotopy-Padé approximations of V ′′(0) and V ′′′(0),
corresponding to the solution expression (2.69) expressed by the fractional
functions, are listed in Table 2.10. The homotopy-Padé approximations of
V ′′(0) and V ′′′(0), corresponding to the solution expression (2.78) expressed
by the exponential functions are listed in Table 2.11. In both cases, the
homotopy-Padé technique greatly accelerates the convergence of V ′′(0) and
V ′′′(0).

For the illustrative problem, it is found that all of the [m,m] homotopy-
Padé approximants do not depend upon the auxiliary parameter �. Thus,
even if we choose a bad value of � such that the corresponding solution series
diverges, we can still employ the homotopy-Padé technique to get a conver-
gent result. As shown later in this book for other nonlinear problems, the
[m,m] homotopy-Padé approximants are often independent of the auxiliary
parameter �. However, up to now, we cannot give a mathematical proof about
it in general cases.

All of these illustrate that the so-called homotopy-Padé technique can
greatly enlarge the convergence region and rate of the solution series given
by the homotopy analysis method.
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In summary, we introduce in this chapter the basic ideas of the homotopy
analysis method by means of a simple example. We show that, unlike all
previous analytic techniques, the homotopy analysis method always gives a
family of solution expressions in the auxiliary parameter �, which may be
expressed by different base functions. Using the freedom in choosing the
initial guess, the auxiliary linear operator, and the auxiliary function, we can
express the solution in many different base functions, and thus approximate a
nonlinear problem more efficiently by choosing a better set of base functions.
The rule of solution expression, the rule of coefficient ergodicity, and the rule
of solution existence are proposed to direct the choice of the initial guess,
the auxiliary linear operator, and the auxiliary function. These rules greatly
simplify the application of the homotopy analysis method. We demonstrate
that the convergence region and rate of the solution series may be adjusted
and controlled by means of the auxiliary parameter �. By plotting the so-
called �-curves, it is easy to find out a proper value of � to ensure that the
solution series converge. Furthermore, the so-called homotopy-Padé technique
is proposed to accelerate the convergence of solution series, which is often
much more efficient than the traditional Padé technique.
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TABLE 2.1

Approximations of V ′′(0) given by (2.69) for different values of �.
order � = −1/2 � = −3/4 � = −1 � = −5/4 � = −3/2

5 -0.062500 -0.001953 0 -0.001953 0.062500
10 -0.001953 -1.9 ×10−6 0 -1.9 ×10−6 -0.001953
15 -0.000061 -1.9×10−9 0 1.9×10−9 0.000061
20 -1.9×10−6 -1.9×10−12 0 -1.9×10−12 -1.9×10−6

25 -6.0×10−8 -1.8×10−15 0 1.8×10−15 6.0×10−8

30 -1.9×10−9 -1.7×10−18 0 -1.7×10−18 -1.9×10−9

35 -5.8×10−11 -1.7×10−21 0 1.7×10−21 5.8×10−11

40 -1.8×10−12 -1.7×10−24 0 -1.7×10−24 -1.9×10−12

TABLE 2.2

Approximations of V ′′′(0) given by (2.69) for different values
of �.
order � = −1/2 � = −3/4 � = −1 � = −5/4 � = −3/2

5 -3.312500 -2.138672 -2 -2.251953 -6.937500
10 -2.089844 -2.000278 -2 -1.999516 -1.699219
15 -2.004333 -2.000000 -2 -2.000001 -2.013977
20 -2.000183 -2.000000 -2 -2.000000 -1.99942
25 -2.000007 -2.000000 -2 -2.000000 -2.000023
30 -2.000000 -2.000000 -2 -2.000000 -1.999999
35 -2.000000 -2.000000 -2 -2.000000 -2.000000
40 -2.000000 -2.000000 -2 -2.000000 -2.000000

TABLE 2.3

Comparison of the exact solution (2.8) with the mth-order
approximations of V (t) given by (2.69) when � = −1.

t 10th-order 20th-order 40th-order 60th-order exact
approx. approx. approx. approx. result

1/4 0.2449 0.2449 0.2449 0.2449 0.2449
1/2 0.4621 0.4621 0.4621 0.4621 0.4621
3/4 0.6349 0.6351 0.6351 0.6351 0.6351
1 0.7516 0.7616 0.7616 0.7616 0.7616

3/2 0.9082 0.9053 0.9051 0.9051 0.9051
2 0.9720 0.9644 0.9640 0.9640 0.9640

5/2 0.9982 0.9870 0.9866 0.9866 0.9866
3 1.0082 0.9950 0.9950 0.9951 0.9951
4 1.0110 0.9979 0.9992 0.9993 0.9993
5 1.0082 0.9973 0.9997 0.9999 0.9999
10 0.9984 0.9968 1.0003 1.0001 1.0000
100 0.9987 0.9998 1.0001 1.0000 1.0000
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TABLE 2.4

Approximations of V ′′(0) given by (2.77) for different values of �.
order � = −1/2 � = −3/4 � = −1 � = −5/4 � = −3/2

5 -0.031250 -0.000977 0 -0.000977 0.031250
10 -0.000977 -9.5 ×10−7 0 -9.5 ×10−7 -0.000977
15 -0.000031 -9.3×10−10 0 9.3×10−10 0.000031
20 -9.5×10−7 -9.1×10−13 0 -9.1×10−13 -9.5×10−7

25 -3.0×10−8 -8.9×10−16 0 8.8×10−16 3.0×10−8

30 -9.3×10−10 -8.7×10−19 0 -8.7×10−19 -9.3×10−10

35 -2.9×10−11 -8.5×10−22 0 8.5×10−22 2.9×10−11

40 -9.1×10−13 -8.3×10−25 0 -8.3×10−25 -9.1×10−13

TABLE 2.5

Approximations of V ′′′(0) given by (2.77) for different values of
�.

order � = −1/2 � = −3/4 � = −1 � = −5/4 � = −3/2

5 -2.375000 -2.041016 -2 -2.076172 -3.500000
10 -2.026367 -2.000083 -2 -1.999854 -1.909180
15 -2.001282 -2.000000 -2 -2.000001 -2.004211
20 -2.000054 -2.000000 -2 -2.000000 -1.999825
25 -2.000002 -2.000000 -2 -2.000000 -2.000007
30 -2.000000 -2.000000 -2 -2.000000 -2.000000
35 -2.000000 -2.000000 -2 -2.000000 -2.000000
40 -2.000000 -2.000000 -2 -2.000000 -2.000000

TABLE 2.6

Comparison of the exact solution (2.8) with the approximations
of V (t) given by (2.77) when � = −1.

t 5th-order 10th-order 15th-order 20th-order exact
approx. approx. approx. approx. result

1/4 0.2449 0.2449 0.2449 0.2449 0.2449
1/2 0.4619 0.4621 0.4621 0.4621 0.4621
3/4 0.6342 0.6351 0.6351 0.6351 0.6351
1 0.7596 0.7616 0.7616 0.7616 0.7616

3/2 0.9020 0.9051 0.9051 0.9051 0.9051
2 0.9612 0.9639 0.9640 0.9640 0.9640

5/2 0.9845 0.9866 0.9866 0.9866 0.9866
3 0.9937 0.9950 0.9951 0.9951 0.9951
4 0.9988 0.9993 0.9993 0.9993 0.9993
5 0.9997 0.9999 0.9999 0.9999 0.9999
10 1.0000 1.0000 1.0000 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000
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TABLE 2.7

Comparison of the exact solution (2.8) with the approximations
of V (t) given by (2.84) when � = −1.

t 10th-order 20th-order 40th-order 50th-order exact
approx. approx. approx. approx. result

1/4 0.2449 0.2449 0.2449 0.2449 0.2449
1/2 0.4621 0.4621 0.4621 0.4621 0.4621
3/4 0.6351 0.6351 0.6351 0.6351 0.6351
1 0.7616 0.7616 0.7616 0.7616 0.7616

3/2 0.9051 0.9051 0.9051 0.9051 0.9051
2 0.9640 0.9640 0.9640 0.9640 0.9640

5/2 0.9866 0.9866 0.9866 0.9866 0.9866
3 0.9953 0.9950 0.9951 0.9951 0.9951
4 0.9990 0.9993 0.9993 0.9993 0.9993
5 0.9975 0.9999 0.9999 0.9999 0.9999
10 1.0021 0.9982 0.9999 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000

TABLE 2.8

Comparison of the exact solution (2.8) with the 20th-order
approximation of V (t) given by (2.100) when � = −1 and
α = ±1/2,±π/4.

when when when when exact
t α = −π/4 α = −1/2 α = 1/2 α = π/4 result

1/4 0.2449 0.2449 0.2449 0.2449 0.2449
1/2 0.4621 0.4621 0.4621 0.4621 0.4621
3/4 0.6351 0.6351 0.6351 0.6351 0.6351
1 0.7616 0.7616 0.7616 0.7616 0.7616

3/2 0.9051 0.9051 0.9051 0.9051 0.9051
2 0.9640 0.9640 0.9640 0.9640 0.9640

5/2 0.9866 0.9866 0.9866 0.9866 0.9866
3 0.9951 0.9951 0.9951 0.9951 0.9951
4 0.9993 0.9993 0.9993 0.9993 0.9993
5 0.9999 0.9999 0.9999 0.9999 0.9999
10 1.0000 1.0000 0.9999 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000
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TABLE 2.9

Comparison of the exact solution (2.8) with the 20th-order
approximation of V (t) given by (2.101) when � = −1/2 and
α = ±1/2,±π/4.

when when when when exact
t α = −π/4 α = −1/2 α = 1/2 α = π/4 result

1/4 0.2449 0.2449 0.2449 0.2449 0.2449
1/2 0.4621 0.4621 0.4621 0.4621 0.4621
3/4 0.6351 0.6351 0.6351 0.6351 0.6351
1 0.7616 0.7616 0.7616 0.7616 0.7616

3/2 0.9051 0.9051 0.9051 0.9051 0.9051
2 0.9640 0.9640 0.9640 0.9640 0.9640

5/2 0.9866 0.9866 0.9866 0.9866 0.9866
3 0.9951 0.9951 0.9951 0.9951 0.9951
4 0.9993 0.9993 0.9993 0.9993 0.9993
5 0.9999 0.9999 0.9999 0.9999 0.9999
10 1.0000 1.0000 0.9999 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000

TABLE 2.10

The [m,m] homotopy-Padé approximation of
V ′′(0) and V ′′′(0) corresponding to (2.69).

[m,m] V ′′(0) V ′′′(0)
[1, 1] 0 -3
[2, 2] 0 -2
[3, 3] 0 -2
[4, 4] 0 -2
[5, 5] 0 -2

[10, 10] 0 -2

TABLE 2.11

The [m,m] homotopy-Padé approximation of
V ′′(0) and V ′′′(0) corresponding to (2.78).

[m,m] V ′′(0) V ′′′(0)

[1, 1] 0 -5.57143
[2, 2] 0 -2
[3, 3] 0 -2
[4, 4] 0 -2
[5, 5] 0 -2

[10, 10] 0 -2
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FIGURE 2.1
Comparison of the exact solution (2.8) with the solution expression (2.57).
Symbols: exact solution; solid line: perturbation solution (2.12); dashed line:
solution (2.57) when � = −1/2; dash-dotted line: solution (2.57) when � =
−1/5; dash-dot-dotted line: solution (2.57) when � = −1/10.
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FIGURE 2.2
The �-curve of V ′′(0) and V ′′′(0) given by (2.69) when H(t) = 1/(1 + t).
Dash-dotted line: 20th-order approximation of V ′′(0); solid line: 20th-order
approximation of V ′′′(0).
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FIGURE 2.3
The �-curves of V ′′(0) and V ′′′(0) given by (2.77) when H(t) = exp(−t).
Dash-dotted line: 10th-order approximation of V ′′(0); solid line: 20th-order
approximation of V ′′(0); dashed lined: 10th-order approximation of V ′′′(0);
dash-dot-dotted line: 20th-order approximation of V ′′′(0).
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FIGURE 2.4
The comparison of the third-order approximation (2.81) of V (t) with the exact
solution (2.8). Solid line: third-order approximation (2.81); symbols: exact
solution (2.8).
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FIGURE 2.5
Comparison of the exact solution (2.8) with the solution expression (2.99) at
the 31st-order of approximation when α = π/4. Symbols: exact solution; solid
line: (2.99) when � = −1; dashed line: (2.99) when � = −1/2; dash-dotted
line: (2.99) when � = −1/5; dash-dot-dotted line: (2.99) when � = −1/10.
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FIGURE 2.6
Comparison of the exact solution (2.8) with the homotopy-Padé approxima-
tion (2.106) and traditional Padé approximant (2.103) of V (t). Symbols:
exact solution; solid line: [4,4] homotopy-Padé approximant of V (t); dash-
dotted line: [4,4] traditional Padé approximant of V (t); dash-dot-dotted line:
[10,10] traditional Padé approximant.
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3

Systematic description

In Chapter 2 the basic ideas of the homotopy analysis method are illustrated
by a simple nonlinear problem. Here a systematic description is given for
general nonlinear problems.

3.1 Zero-order deformation equation

In most cases a nonlinear problem can be described by a set of governing
equations and initial and/or boundary conditions. For brevity, let us consider
here only one nonlinear equation in a general form:

N [u(r, t)] = 0, (3.1)

where N is a nonlinear operator, u(r, t) is an unknown function, and r and t
denote spatial and temporal independent variables, respectively.

Let u0(r, t) denote an initial guess of the exact solution u(r, t), � �= 0 an
auxiliary parameter, H(r, t) �= 0 an auxiliary function, and L an auxiliary
linear operator with the property

L [f(r, t)] = 0 when f(r, t) = 0. (3.2)

Then, using q ∈ [0, 1] as an embedding parameter, we construct such a homo-
topy

H[Φ(r, t; q);u0(r, t),H(r, t), �, q]
= (1 − q) {L[Φ(r, t; q) − u0(r, t)]} − q � H(r, t) N [Φ(r, t; q)]. (3.3)

It should be emphasized that the above homotopy contains the so-called auxil-
iary parameter � and the auxiliary function H(r, t). To the best of the author’s
knowledge, the nonzero auxiliary parameter � and auxiliary function H(r, t)
are introduced for the first time in this way to construct a homotopy. So,
such a kind of homotopy is more general than traditional ones. The auxiliary
parameter � and the auxiliary function H(r, t) play important roles within
the frame of the homotopy analysis method. It should be emphasized that
we have great freedom to choose the initial guess u0(r, t), the auxiliary linear
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operator L, the nonzero auxiliary parameter �, and the auxiliary function
H(r, t).

Let q ∈ [0, 1] denote an embedding parameter. Enforcing the homotopy
(3.3) to be zero, i.e.,

H[Φ(r, t; q);u0(r, t),H(r, t), �, q] = 0,

we have the so-called zero-order deformation equation

(1 − q) {L[Φ(r, t; q) − u0(r, t)]} = q � H(r, t) N [Φ(r, t; q)], (3.4)

where Φ(r, t; q) is the solution which depends upon not only the initial guess
u0(r, t), the auxiliary linear operator L, the auxiliary function H(r, t) and the
auxiliary parameter � but also the embedding parameter q ∈ [0, 1]. When
q = 0, the zero-order deformation equation (3.4) becomes

L[Φ(r, t; 0) − u0(r, t)] = 0, (3.5)

which gives, using the property (3.2),

Φ(r, t; 0) = u0(r, t). (3.6)

When q = 1, since � �= 0 and H(r, t) �= 0, the zero-order deformation equation
(3.4) is equivalent to

N [Φ(r, t; 1)] = 0, (3.7)

which is exactly the same as the original equation (3.1), provided

Φ(r, t; 1) = u(r, t). (3.8)

Thus, according to (3.6) and (3.8), as the embedding parameter q increases
from 0 to 1, Φ(r, t; q) varies (or deforms) continuously from the initial approxi-
mation u0(r, t) to the exact solution u(r, t) of the original equation (3.1). Such
a kind of continuous variation is called deformation in homotopy. This is the
reason why we call (3.4) the zero-order deformation equation.

Define the so-called mth-order deformation derivatives

u
[m]
0 (r, t) =

∂mΦ(r, t; q)
∂qm

∣∣∣∣
q=0

. (3.9)

By Taylor’s theorem, Φ(r, t; q) can be expanded in a power series of q as
follows:

Φ(r, t; q) = Φ(r, t; 0) +
+∞∑
m=1

u
[m]
0 (r, t)

m!
qm. (3.10)

Writing

um(r, t) =
u

[m]
0 (r, t)

m!
=

1
m!

∂mΦ(r, t; q)
∂qm

∣∣∣∣
q=0

(3.11)
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and using (3.6), the power series (3.10) of Φ(r, t; q) becomes

Φ(r, t; q) = u0(r, t) +
+∞∑
m=1

um(r, t) qm. (3.12)

Note that we have great freedom to choose the initial guess u0(r, t), the aux-
iliary linear operator L, the nonzero auxiliary parameter �, and the auxiliary
function H(r, t). Assume that all of them are properly chosen so that:

1. The solution Φ(r, t; q) of the zero-order deformation equation (3.4) exists
for all q ∈ [0, 1].

2. The deformation derivative u
[m]
0 (r, t) exists for m = 1, 2, 3, · · · ,+∞.

3. The power series (3.12) of Φ(r, t; q) converges at q = 1.

Then, from (3.8) and (3.12), we have under these assumptions the solution
series

u(r, t) = u0(r, t) +
+∞∑
m=1

um(r, t). (3.13)

This expression provides us with a relationship between the exact solution
u(r, t) and the initial approximation u0(r, t) by means of the terms um(r, t)
which are determined by the so-called high-order deformation equations de-
scribed below.

3.2 High-order deformation equation

For brevity, define the vector


un = {u0(r, t), u1(r, t), u2(r, t), · · · , un(r, t)} .

According to the definition (3.11), the governing equation of um(r, t) can
be derived from the zero-order deformation equation (3.4). Differentiating
the zero-order deformation equation (3.4) m times with respective to the
embedding parameter q and then dividing it by m! and finally setting q = 0,
we have the so-called mth-order deformation equation

L [um(r, t) − χm um−1(r, t)] = � H(r, t) Rm(
um−1, r, t), (3.14)

where χm is defined by (2.42) and

Rm(
um−1, r, t) =
1

(m − 1)!
∂m−1N [Φ(r, t; q)]

∂qm−1

∣∣∣∣
q=0

. (3.15)
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Substituting (3.12) into the above expression, we have

Rm(
um−1, r, t) =
1

(m − 1)!

{
∂m−1

∂qm−1
N
[

+∞∑
n=0

un(r, t) qn

]}∣∣∣∣∣
q=0

. (3.16)

Note that the high-order deformation equation (3.14) is governed by the same
linear operator L, and the term Rm(
um−1, r, t) can be expressed simply by
(3.15) for any given nonlinear operator N . According to the definition (3.15),
the right-hand side of Equation (3.14) is only dependent upon 
um−1. Thus, we
gain u1(r, t), u2(r, t), · · · by means of solving the linear high-order deformation
equation (3.14) one after the other in order. The mth-order approximation of
u(r, t) is given by

u(r, t) ≈
m∑

k=0

uk(r, t). (3.17)

We can construct the zero-order deformation equation in a form even more
general than (3.4). Let A(q), B(q) be complex functions analytic in the region
|q| ≤ 1, called the embedding functions, which satisfy

A(0) = B(0) = 0, A(1) = B(1) = 1, (3.18)

respectively. Let

A(q) =
+∞∑
k=1

αk qk, B(q) =
+∞∑
k=1

βk qk (3.19)

denote the Maclaurin series of A(q) and B(q), respectively. Because A(q) and
B(q) are analytic in the region |q| ≤ 1, we have from (3.18) that

+∞∑
k=1

αk = 1,

+∞∑
k=1

βk = 1. (3.20)

Then, we construct the zero-order deformation equation in a more general
form

[1 − B(q)] {L[Φ(r, t; q) − u0(r, t)]} = A(q) � H(r, t) N [Φ(r, t; q)]. (3.21)

All other related formulae are the same, except the high-order deformation
equation which is now in a more general form

L
[
um(r, t) −

m−1∑
k=1

βk um−k(r, t)

]
= � H(r, t) Rm(
um−1, r, t), (3.22)

where

Rm(
um−1, r, t) =
m∑

k=1

αk δm−k(r, t) (3.23)
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under the definition

δn(r, t) =
1
n!

∂nN [Φ(r, t; q)]
∂qn

∣∣∣∣
q=0

. (3.24)

The zero-order deformation equation (3.4) and the high-order deformation
equation (3.14) are clearly special cases of Equations (3.21) and (3.22) when
A(q) = B(q) = q, respectively.

Note that, in general, a nonlinear problem might be described by a set of
governing equations with related initial/boundary conditions. For the sake
of brevity, only one equation (3.1) is employed here to systematically de-
scribe the basic ideas of the homotopy analysis method. However, the form
of equation (3.1) is so general that it can denote either a governing equation
or a boundary/initial condition. It may be a differential equation, an inte-
gral equation, an integro-differential equation, or an algebraic equation. All
governing equations and boundary conditions can be treated in a similar way,
although for different governing equations and intial/boundary conditions we
should choose different initial approximations, different auxiliary linear oper-
ators, and different types of embedding functions A(q), B(q). In addition, it
is unnecessary for us to assume the existence of any small/large quantities in
governing equations or initial/boundary conditions. Therefore, the analytic
approach described above is very general.

3.3 Convergence theorem

The convergence of a series is important. A series is often of no use if it is
convergent in a rather restricted region. In general cases, we can prove that,
as long as the solution series (3.13) given by the homotopy analysis method
is convergent, it must be the solution of the considered nonlinear problem.

THEOREM 3.1 Convergence theorem
As long as the series

u0(r, t) +
+∞∑
m=1

um(r, t)

is convergent, where um(r, t) is governed by the high-order deformation equa-
tion (3.22) under the definitions (3.23), (3.24), and (2.42), it must be a so-
lution of Equation (3.1).

Proof: Let

s(r, t) = u0(r, t) +
+∞∑
m=1

um(r, t)
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denote the convergent series. Using (3.22) and (2.42), we have

� H(r, t)
+∞∑
m=1

Rm(
um−1, r, t)

=
+∞∑
m=1

L
[
um(r, t) −

m−1∑
k=1

βk um−k(r, t)

]

= L
[

+∞∑
m=1

um(r, t) −
+∞∑
m=1

m−1∑
k=1

βk um−k(r, t)

]

= L
[

+∞∑
m=1

um(r, t) −
+∞∑
k=1

+∞∑
m=k+1

βk um−k(r, t)

]

= L
[

+∞∑
m=1

um(r, t) −
+∞∑
k=1

βk

+∞∑
n=1

un(r, t)

]

= L
[(

1 −
+∞∑
k=1

βk

)
+∞∑
m=1

um(r, t)

]
,

= L
[(

1 −
+∞∑
k=1

βk

)
s(r, t)

]
,

which gives, since � �= 0, H(r, t) �= 0 and from (3.20) and (3.2),

+∞∑
m=1

Rm(
um−1, r, t) = 0. (3.25)

On the other side, we have according to the definitions (3.23) and (3.24), that

+∞∑
m=1

Rm(
um−1, r, t) =
+∞∑
m=1

m∑
k=1

αk δm−k(r, t)

=
+∞∑
k=1

+∞∑
m=k

αk δm−k(r, t) =

(
+∞∑
k=1

αk

)
+∞∑
n=0

δn(r, t),

which gives from (3.20), (3.24), and (3.25)

+∞∑
m=1

Rm(
um−1, r, t) =
+∞∑
m=0

δm(r, t)

=
+∞∑
m=0

1
m!

∂mN [Φ(r, t; q)]
∂qm

∣∣∣∣
q=0

= 0. (3.26)

In general, Φ(r, t; q) does not satisfy the original nonlinear equation (3.1). Let

E(r, t; q) = N [Φ(r, t; q)]
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denote the residual error of Equation (3.1). Clearly,

E(r, t; q) = 0

corresponds to the exact solution of the original equation (3.1). According to
the above definition, the Maclaurin series of the residual error E(r, t; q) about
the embedding parameter q is

+∞∑
m=0

qm

m!
∂mE(r, t; q)

∂qm

∣∣∣∣
q=0

=
+∞∑
m=0

qm

m!
∂mN [Φ(r, t; q)]

∂qm

∣∣∣∣
q=0

.

When q = 1, the above expression gives, using (3.26),

E(r, t; 1) =
+∞∑
m=0

1
m!

∂mE(r, t; q)
∂qm

∣∣∣∣
q=0

= 0. (3.27)

This means, according to the definition of E(r, t; q), that we gain the exact
solution of the original equation (3.1) when q = 1. Thus, as long as the series

u0(r, t) +
+∞∑
m=1

um(r, t)

is convergent, it must be one solution of the original equation (3.1). This ends
the proof.

THEOREM 3.2
As long as the series

u0(r, t) +
+∞∑
m=1

um(r, t)

is convergent, where um(r, t) is governed by the high-order deformation equa-
tion (3.22) under the definitions (3.23), (3.24), and (2.42), it holds that

+∞∑
m=1

Rm(
um−1, r, t) =
+∞∑
m=0

δm(r, t) = 0.

Proof: Using (3.26), the proof of this theorem is straightforward. This
ends the proof.

Note that Equation (3.14) is only a special case of Equation (3.22) when
A(q) = B(q) = q. We therefore have the following.

THEOREM 3.3
As long as the series

u0(r, t) +
+∞∑
m=1

um(r, t)
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is convergent, where um(r, t) is governed by the high-order deformation equa-
tion (3.14) under the definitions (2.42) and (3.15), it must be a solution of
Equation (3.1). It holds therefore that

+∞∑
m=1

Rm(
um−1, r, t) = 0.

According to Theorem 3.1 and Theorem 3.3, we need only focus on choos-
ing the initial approximation u0(r, t), the auxiliary linear operator L, the
embedding functions A(q), B(q), the auxiliary parameter �, and the auxiliary
function H(r, t) to ensure that the solution series (3.13) converges. Theorem
3.2 provides us with an alternative method to estimate the convergence and
accuracy of approximation series given by the homotopy analysis method.

3.4 Fundamental rules

Perturbation techniques and other nonperturbation methods for nonlinear
problems are, more or less, based on some assumptions. Similarly, the ho-
motopy analysis method is also based on the assumptions listed on page 55.
Theoretically speaking, these assumptions impair the method. However, the
homotopy analysis method provides us with great freedom to choose the initial
approximation u0(r, t), the auxiliary linear operator L, the auxiliary param-
eter �, and the auxiliary function H(r, t). Such freedom is so great that it is
almost quite possible for us to satisfy all of these assumptions. This kind of
freedom is therefore a cornerstone of the validity and flexibility of the homo-
topy analysis method.

However, from the view points of practical applications, the freedom seems
too great. It is therefore better to have some fundamental rules to direct us
to choose the initial approximation u0(r, t), the auxiliary linear operator L,
and the auxiliary function H(r, t). We must first emphasize two facts. First,
a solution of a nonlinear problem may be expressed by different sets of base
functions, as illustrated in Chapter 2. Second, in many cases, from physical
characteristics and boundary/initial conditions, it is often not very difficult
to determine the type of base functions convenient to represent solutions of
a given nonlinear problem, even without solving it. So, given a nonlinear
problem, we can first choose a set of base function to present its solutions.
This kind of presentation provides us with the rule of solution expression. For
example, support that we choose a set of base functions

{en(r, t) | n = 0, 1, 2, 3, · · ·} (3.28)
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to represent the solution u(r, t) of Equation (3.1) by

u(r, t) =
+∞∑
n=0

cn en(r, t), (3.29)

where cn is a coefficient. The above expression provides the so-called rule of
solution expression for Equation (3.1). To obey the rule of solution expression,
the initial approximation u0(r, t) must be expressed by a sum of the base
functions, i.e.,

u0(r, t) =
M0∑
n=0

an en(r, t), (3.30)

where an is a coefficient and M0 is an integer. To obey the rule of solution
expression denoted by (3.29), the auxiliary linear operator L must be chosen
in such a way that the solution of the equation

L[w(r, t)] = 0

must be expressed by a sum of the base functions, say,

w(r, t) =
M1∑
n=0

bn en(r, t), (3.31)

where bn is a coefficient and the integer M1 is determined by the highest
order of the derivative of linear operator L, which is generally the same as the
highest order of the derivative of the original equation (3.1). This is because
the solution of the high-order deformation equation (3.22) can be expressed
by

um(r, t) = u∗
m(r, t) + w(r, t),

where u∗
m(r, t) is a special solution of Equation (3.22). Furthermore, to obey

the rule of solution expression denoted by (3.29), the auxiliary function H(r, t)
should be chosen so that the special solution u∗

m(r, t) of the high-order de-
formation equation (3.22) must be expressed by a sum of the base functions,
say,

u∗
m(r, t) = L−1[� H(r, t) Rm(
um−1, r, t)] =

M2∑
n=0

dn en(r, t), (3.32)

where dn is a coefficient and L−1 is the inverse operator of the auxiliary lin-
ear operator L . In this way, the rule of solution expression directs us to
choose the initial approximation u0(r, t), the auxiliary linear operator L, and
the auxiliary function H(r, t). Using the so-called rule of solution expression,
we can easily avoid the appearance of the so-called secular terms in solution
expressions, as illustrated in this book. Therefore, the rule of solution expres-
sion practically provides us with a starting point and therefore plays a very
important role within the frame of the homotopy analysis method.
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It is found that, in most cases, the auxiliary function H(r, t) cannot be
uniquely determined by above-mentioned rule of solution expression. Thus,
more restrictions should be given to direct us to choose the auxiliary function
H(r, t). Note that, from the view point of the completeness, each base en(r, t)
of the set denoted by (3.28) should appear in the solution expression (3.29).
In other words, each coefficient cm,n of the mth-order approximate solution

u(r, t) ≈
m∑

n=1

um(r, t) =
M3∑
n=0

cm,n en(r, t) (3.33)

can be modified as the order of approximation tends to infinity. This pro-
vides us with the so-called rule of coefficient ergodicity, i.e., as the order of
approximation tends to infinity, each base should appear in the solution ex-
pression and each coefficient can be modified. This further restricts the choice
of the auxiliary function. In many cases, using the rule of solution expression
and the rule of coefficient ergodicity, we can uniquely determine the auxiliary
function H(r, t), as illustrated in this book. Thus, the rule of coefficient er-
godicity also plays a very important role within the frame of the homotopy
analysis method.

Using (3.13), the original nonlinear problem is transformed into an infi-
nite number of linear subproblems governed by the high-order deformation
equation (3.14) or (3.22). So, if the original nonlinear problem has a solu-
tion, all of these linear subproblems should have solutions too. Thus, we have
the so-called rule of solution existence, i.e., the initial approximation u0(r, t),
the auxiliary linear operator L, and the auxiliary function H(r, t) should be
chosen so that all of the high-order deformation equation (3.14) or (3.22) are
closed and have solutions, if the original nonlinear problem has a solution.
This rule further restricts the choice of the initial approximation u0(r, t), the
auxiliary linear operator L, and the auxiliary function H(r, t).

The above-mentioned rule of solution expression and rule of coefficient
ergodicity, in addition to rule of solution existence, direct us to choose the
initial approximation u0(r, t), the auxiliary linear operator L, and the auxil-
iary function H(r, t). These rules considerably simplify the application of the
homotopy analysis method.

3.5 Control of convergence region and rate

It is important to ensure that a solution series is convergent in a large enough
region. In general, the convergence region and rate of solution series are
mainly determined by the base functions used to represent the solution series.
Unlike previous analytic techniques, the homotopy analysis method provides
us with great freedom to represent solutions of a given nonlinear problem
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by different base functions. Therefore, by means of the homotopy analy-
sis method, we can gain solution series convergent in a whole region having
physical meanings, as illustrated in this book. The so-called rule of solu-
tion expression is most important and the key, which determines the choice
of the initial approximation u0(r, t), the auxiliary linear operator L, and the
auxiliary function H(r, t).

Even if the initial approximation u0(r, t), the auxiliary linear operator L,
and the auxiliary function H(r, t) are given, we still have great freedom to
choose the value of the auxiliary parameter �. Unlike all previous analytic
techniques, the homotopy analysis method always provides us with a family of
solution expressions in the auxiliary parameter �. It is found that the auxiliary
parameter � often affects convergence region and rate of solution series, as
shown and proved in Chapter 2. The influence of � on the convergence region
and rate becomes obvious, especially when a “bad” set of base function is
chosen, as illustrated in Chapter 2. It is found that the convergence region
and rate of solution series can be easily adjusted and controlled by means
of setting � proper values. Thus, unlike all previous analytic techniques, the
homotopy analysis method provides us with a convenient way to control and
adjust convergence region and rate of solution series.

3.5.1 The �-curve and the valid region of �

Assume that we gain a family of solution series in the auxiliary parameter �

by means of homotopy analysis method. How does one then to choose the
value of � to ensure that the solution series converges fast enough in a large
enough region?

Many nonlinear problems contain important physical quantities such as
frequency of a nonlinear oscillator, wall skin friction of viscous flow, and so
on. Because we have a family of solution expressions in the auxiliary pa-
rameter �, those physical quantities also depend upon �. So, regarding � as
an independent variable, it is easy to plot curves of these kinds of quantities
versus �. For example, assume that

γ = ü(r, t)|r=0,t=0

corresponds to a quantity having important physical meaning, where the dot
denotes the derivative with respect to the time t. Then, γ is a function of
� and thus can be plotted by a curve γ ∼ �. According to Theorem 3.1 or
Theorem 3.3, all convergent series of γ given by different values of � converge
to its exact value. So, if the solution is unique, all of them converge to the
same value and therefore there exists a horizontal line segment in the figure
of γ ∼ � that corresponds to a region of � denoted by R�. For the sake of
brevity we call such a kind of curve the �-curve and the corresponding region
R� the valid region of �, respectively. Thus, if we set � any value in the
so-called valid region of �, we are quite sure that the corresponding solution
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series converge. Certainly, if there exist many such kinds of quantities, we can
plot corresponding �-curves of them. And even if the term denoted by γ has
no physical meanings, we can still plot the corresponding �-curves. Obviously,
the more the so-called �-curves are plotted, the clearer it is to choose the value
of �. It is found that, for given initial approximation u0(r, t), the auxiliary
linear operator L, and the auxiliary function H(r, t), the valid regions of �

for different special quantities are often nearly the same for a given problem,
although up to now we cannot give a mathematical proof in general. In most
cases, using the same �-curve gained by a special quantity such as γ mentioned
above, we can find a proper value of � to ensure that the solution series of
u(r, t) converges in the whole spacial and temporal regions having physical
meanings. So, the so-called �-curve provides us with a convenient way to show
the influence of � on the convergence region and rate of solution series.

3.5.2 Homotopy-Padé technique

The Padé technique is widely applied to enlarge the convergence region and
rate of a given series. Traditionally, the [m,n] Padé approximant of u(r, t) is
expressed by either

m∑
k=0

Fk(r) tk

1 +
n∑

k=1

Fm+1+k(r) tk

or
m∑

k=0

Gk(t) rk

1 +
n∑

k=1

Gm+1+k(t) rk

,

where Fk(r) and Gk(t) are functions. Note that the numerator and denomi-
nator are polynomial of either the spatial variable r or the temporal variable
t.

The Padé technique can be employed within the frame of the homotopy
analysis method. As mentioned before, the homotopy analysis method is
based on such an assumption that the series (3.12) is convergent at q = 1
because the solution series (3.13) is obtained by setting q = 1 in (3.12). So,
it is important to ensure that the series (3.12) is convergent at q = 1. We
first employ the traditional Padé technique to the series (3.12) about the
embedding parameter q to gain the [m,n] Padé approximant

m∑
k=0

Wk(r, t) qk

1 +
n∑

k=1

Wm+1+k(r, t) qk

,
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where Wk(r, t) is a function determined by the first several approximations

uj(r, t), j = 0, 1, 2, 3, · · · ,m + n.

Then, using (3.8), we set q = 1 to get the so-called [m,n] homotopy-Padé
approximant

m∑
k=0

Wk(r, t)

1 +
n∑

k=1

Wm+1+k(r, t)
.

It is found that the [m,n] homotopy-Padé approximant often converges faster
than the corresponding traditional [m,n] Padé approximant. In many cases,
the [m,m] homotopy-Padé approximant does not depend upon the auxiliary
parameter �. In this case, we can gain convergent solution by means of the
homotopy-Padé technique even if the solution series is divergent. However,
up to now, we cannot prove it in general.

It is flexible to apply the homotopy-Padé technique to accelerate related
solution series. For example, we can employ it to accelerate the convergence
of the series

u̇(r, t) = u̇0(r, t) +
+∞∑
n=1

u̇n(r, t).

First of all, from (3.12), we have the series

∂Φ(r, t; q)
∂t

= u̇0(r, t) +
+∞∑
n=1

u̇n(r, t) qn.

Then, applying the Padé technique to the above series about the embedding
parameter q, we have the traditional [m,n] Padé approximation

m∑
k=0

Vk(r, t) qk

1 +
n∑

k=1

Vm+1+k(r, t) qk

,

where Vk(r, t) is a function of r and t. Setting q = 1 in the above expression,
we have using (3.8) the [m,n] homotopy-Padé approximant

u̇(r, t) ≈

m∑
k=0

Vk(r, t)

1 +
n∑

k=1

Vm+1+k(r, t)
.

In summary, the �-curve provides us with a convenient way to determine
the valid region of �. In addition, the so-called homotopy-Padé technique can
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greatly enlarge the convergence region and rate of solution series. In many
cases, the homotopy-Padé technique is more efficient than the traditional Padé
method and is even independent of the auxiliary parameter �. So, by means
of choosing a proper set of base functions, selecting a proper value of �, or
employing the homotopy-Padé technique, we can gain accurate approxima-
tions convergent in a large enough region within the frame of the homotopy
analysis method.

3.6 Further generalization

The homotopy analysis method can be further generalized by means of the
zero-order deformation equation in the form

[1 − B(q)] {L[Φ(r, t; q) − u0(r, t)]}
= A(q) � H(r, t) N [Φ(r, t; q)] + �2 H2(r, t) Π[Φ(r, t; q); q], (3.34)

where u0(r, t),L,H(r, t), �, A(q), and B(q) are defined as before, �2 is the
second auxiliary parameter, H2(r, t) is the second auxiliary function, and
Π[Φ(r, t); q] is an auxiliary operator which equals to zero when q = 0 and
q = 1, i.e.,

Π[Φ(r, t; 0); 0] = Π[Φ(r, t; 1); 1] = 0. (3.35)

All other related formulae are the same, except the high-order deformation
equation in a more general form

L
[
um(r, t) −

m−1∑
k=1

βk um−k(r, t)

]

= � H(r, t) Rm(
um−1, r, t) + �2 H2(r, t) ∆m(r, t), (3.36)

where

∆m(r, t) =
1
m!

∂mΠ [Φ(r, t; q); q]
∂qm

∣∣∣∣
q=0

. (3.37)

In this way, we introduce the additional auxiliary parameter �2 and auxiliary
function H2(r, t), and more importantly, an auxiliary operator Π[Φ(r, t; q); q].
In this way the flexibility of the homotopy analysis method is further in-
creased. Note that the solution series given by Equation (3.36) is now a
family of two parameters, � and �2.

It is rather flexible to choose the auxiliary operator Π[Φ(r, t; q); q] which
satisfies the property (3.35). For example, we can choose

Π[Φ(r, t; q); q] = A(q)[1 − B(q)]F [Φ(r, t; q)], (3.38)
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where F [Φ(r, t; q)] is a function, or

Π[Φ(r, t; q); q] = [1 − A(q)]
{
[Φ(r, t; q)]1+q − Φ(r, t; q)

}
, (3.39)

and so on. However, it is under investigation how to choose the additional
auxiliary parameter �2, the additional auxiliary function H2(r, t), and the
auxiliary operator Π[Φ(r, t; q); q] for a given nonlinear problem in general. For
the applications of the zero-order deformation equation in the form (3.34), the
reader is referred to §4.3 and §12.1.
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4

Relations to some previous analytic methods

In this chapter we reveal the relationships between the homtopy analysis
method and other nonperturbation techniques such as Adomian’s decom-
position method, Lyapunov’s artificial small parameter method, and the δ-
expansion method. We show that these methods can be unified by the homo-
topy analysis method.

4.1 Relation to Adomian’s decomposition method

Adomian’s decomposition method [23, 24, 25] is a well-known, easy-to-use
analytic tool for nonlinear problems and has been widely applied in science
and engineering [63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79].
In Chapter 2 we show by an example that the solution expression (2.17) given
by Adomian’s decomposition method is just a special one of the solution
expressions (2.57) given by the homotopy analysis method. In this section
we prove that the homotopy analysis method logically contains Adomian’s
decomposition method in general.

To simply describe the basic ideas of Adomian’s decomposition method,
let us consider a nonlinear problem governed by

N [u(r, t)] = f(r, t), (4.1)

where N is a nonlinear operator, u is a dependent variable, f(r, t) is a known
function, and r and t denote the spatial and temporal variables, respectively.
Assume that the nonlinear operator N can be divided into

N = L0 + N0, (4.2)

where L0 and N0 are linear and nonlinear operators, respectively. Under this
assumption the original nonlinear equation becomes

L0[u(r, t)] + N0[u(r, t)] = f(r, t). (4.3)

By means of Adomian’s decomposition method we express u(r, t) in such a
series

u(r, t) = u0(r, t) +
+∞∑
n=1

un(r, t), (4.4)
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where
u0(r, t) = L−1

0 [f(r, t)] (4.5)

and
un(r, t) = −L−1

0 [An−1(r, t)], n ≥ 1, (4.6)

in which L−1
0 is the inverse operator of L0, and An(r, t) is the so-called Ado-

mian polynomial defined by (see Cherruault [66] and Babolian et al. [75])

An(r, t) =
1
n!

[
dn

dqn
N0

(
u0(r, t) +

+∞∑
n=1

un(r, t)qn

)]∣∣∣∣∣
q=0

. (4.7)

Unlike Adomian’s decomposition method, the homotopy analysis method
is valid even without the assumption denoted by (4.2). Let L denote an aux-
iliary linear operator, u0(r, t) an initial approximation that is unnecessary to
be given by (4.5), � a nonzero auxiliary parameter, H(r, t) a nonzero auxiliary
function, and q ∈ [0, 1] an imbedding parameter, respectively. By means of the
homotopy analysis method, we construct the so-called zero-order deformation
equation

(1 − q) L [Φ(r, t; q) − u0(r, t)] = � q H(r, t) {N [Φ(r, t; q)] − f(r, t)} , (4.8)

where Φ(r, t; q) is a unknown dependent variable. It clearly holds

Φ(r, t; 0) = u0(r, t) (4.9)

and
Φ(r, t; 1) = u(r, t) (4.10)

when q = 0 and q = 1, respectively. Thus, the unknown function Φ(r, t; q)
governed by Equation (4.8) deforms from the initial approximation u0(r, t)
to the exact solution u(r, t) of the original equation (4.1) as the embedding
parameter q increases from 0 to 1. By Taylor’s theorem and using (4.9) we
expand Φ(r, t; q) in a power series of q in the form

Φ(r, t; q) = u0(r, t) +
+∞∑
n=1

un(r, t) qn, (4.11)

where

un(r, t) =
1
n!

dnΦ(r, t; q)
dqn

∣∣∣∣
q=0

. (4.12)

The zero-order deformation equation (4.8) contains the initial approximation
u0(r, t), the auxiliary linear operator L, the auxiliary parameter �, the auxil-
iary function H(r, t), and more importantly, we have great freedom to choose
them. Assuming that all of them are properly chosen so that the series (4.11)
converges at q = 1, we have, using (4.10), the solution series

u(r, t) = u0(r, t) +
+∞∑
n=1

un(r, t). (4.13)
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Note that in form this expression is the same as (4.4).
Differentiating the zero-order deformation equation (4.8) n times with re-

spect to q and then dividing it by n! and finally setting q = 0, we have the
first-order deformation equation (when n = 1)

L [u1(r, t)] = � H(r, t) {N [u0(r, t)] − f(r, t)} (4.14)

and the nth-order deformation equation (when n ≥ 2)

L [un(r, t) − un−1(r, t)] = � H(r, t) Rn(r, t), (4.15)

where

Rn(r, t) =
1

(n − 1)!
dn−1N [Φ(r, t; q)]

dqn−1

∣∣∣∣
q=0

. (4.16)

We then can prove that Adomian’s decomposition method is just a special
case of the homotopy analysis method under the assumption (4.2). Because
we have great freedom to choose the auxiliary linear operator L and the initial
guess u0(r, t), we certainly can choose

L = L0, u0(r, t) = L−1
0 [f(r, t)]. (4.17)

Setting
� = −1, H(r, t) = 1 (4.18)

and substituting (4.2) and (4.17) into Equations (4.14) and (4.15), we have

L0 [u1(r, t)] = f(r, t) − L0 [u0(r, t)] −N0 [u0(r, t)] (4.19)

and

L0 [un(r, t)]

= L0 [un−1(r, t)] − 1
(n − 1)!

dn−1L0 [Φ(r, t; q)]
dqn−1

∣∣∣∣
q=0

− 1
(n − 1)!

dn−1N0 [Φ(r, t; q)]
dqn−1

∣∣∣∣
q=0

, n ≥ 2, (4.20)

respectively. From (4.17), it holds

f(r, t) − L0 [u0(r, t)] = 0

so that Equation (4.19) becomes, by the definition (4.7),

L0 [u1(r, t)] = −A0(r, t), (4.21)
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where A0(r, t) is an Adomian polynomial. According to definition (4.12), it
holds

L0 [un−1(r, t)] − 1
(n − 1)!

dn−1L0 [Φ(r, t; q)]
dqn−1

∣∣∣∣
q=0

= L0 [un−1(r, t)] − L0

[
1

(n − 1)!
dn−1Φ(r, t; q)

dqn−1

∣∣∣∣
q=0

]

= L0 [un−1(r, t)] − L0 [un−1(r, t)]
= 0. (4.22)

Thus, Equation (4.20) becomes

L0 [un(r, t)] = − 1
(n − 1)!

dn−1N0 [Φ(r, t; q)]
dqn−1

∣∣∣∣
q=0

. (4.23)

Substituting (4.11) of Φ(r, t; q) into the above expression, we have, according
to the definition (4.7) of the Adomian polynomial,

L0 [un(r, t)]

= − 1
(n − 1)!

[
dn−1

dqn−1
N0

(
u0(r, t) +

+∞∑
n=1

un(r, t) qn

)]∣∣∣∣∣
q=0

= −An−1(r, t). (4.24)

So, the solution of Equation (4.21) and Equation (4.24) can be uniformly
expressed by

un(r, t) = −L−1
0 [An−1(r, t)], n ≥ 1, (4.25)

which is exactly the same as the solution (4.6) given by Adomian’s decompo-
sition method. Therefore, Adomian’s decomposition method is just a special
case of the homotopy analysis method under the assumption (4.2) when

u0(r, t) = L−1
0 [f(r, t)], L = L0, H(r, t) = 1, � = −1.

Some points should be emphasized here. First, we have great freedom to
choose the initial guess u0(r, t), the auxiliary linear operator L, and the auxil-
iary function H(r, t) different from the above expressions so that the solution
of high-order deformation equations (4.14) and (4.15) can be expressed by bet-
ter base functions than those employed by Adomian’s decomposition method
that often uses polynomials. Second, it is unnecessary for us to assume that
the nonlinear operator N should be divided into the form (4.2). Finally but
most importantly, solutions given by the homotopy analysis method contain
the auxiliary parameter �, which provides us with a simply way to adjust
and control convergence region and rate of solution series. Therefore, the
homotopy analysis method is more general than Adomian’s decomposition
method.
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4.2 Relation to artificial small parameter method

In 1892 Lyapunov [21] proposed the so-called artificial small parameter method.
In Chapter 2 we illustrate that the solution expression (2.15) given by Lya-
punov’s artificial small parameter method is just a special one of the solution
expressions (2.57) given by the homotopy analysis method. In this section we
prove that Lyapunov’s artificial small parameter method is in essence equiva-
lent to Adomian’s decomposition method and therefore is also a special case
of the homotopy analysis method.

To simply describe the basic ideas of Lyapunov’s artificial small parameter
method, let us consider a nonlinear equation

N [u(r, t)] = f(r, t), (4.26)

where N is a nonlinear operator, u is a dependent variable, f(r, t) is a known
function, and r and t denote the spatial and temporal variables, respectively.
Assume that the nonlinear operator N can be divided into

N = L0 + N0, (4.27)

where L0 and N0 are linear and nonlinear operators, respectively. Using the
above expression and introducing the artificial small parameter ε, the original
equation (4.26) becomes

L0 [φ(r, t; ε)] + ε N0 [φ(r, t; ε)] = f(r, t), (4.28)

where φ(r, t; ε) is an unknown function. When ε = 1, the above equation is
clearly the same as Equation (4.26) so that

φ(r, t; 1) = u(r, t). (4.29)

Expanding φ(r, t; ε) in a power series of the artificial small parameter ε, we
have

φ(r, t; ε) = u0(r, t) +
+∞∑
n=1

un(r, t) εn. (4.30)

Setting ε = 1 in the above expression we have, using (4.29),

u(r, t) = u0(r, t) +
+∞∑
n=1

un(r, t), (4.31)

which in form is exactly the same as the solution expression (4.4) given by
Adomian’s decomposition method.
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Substituting (4.30) into Equation (4.28), we have

L0[u0(r, t)] − f(r, t) +
+∞∑
n=1

εn L0 [un(r, t)]

+ ε N0

[
u0(r, t) +

+∞∑
n=1

un(r, t) εn

]
= 0. (4.32)

Write

N0

[
u0(r, t) +

+∞∑
n=1

un(r, t) εn

]
=

+∞∑
n=0

wn(r, t) εn.

Differentiating both sides of the above expression m times with respect to the
artificial small parameter ε and then setting ε = 0, we have

{
∂m

∂εm
N0

[
u0(r, t) +

+∞∑
n=1

un(r, t) εn

]}∣∣∣∣∣
ε=0

= m! wm(r, t),

which gives, using the definition (4.7), that

wm(r, t) =
1
m!

{
∂m

∂εm
N0

[
u0(r, t) +

+∞∑
n=1

un(r, t) εn

]}∣∣∣∣∣
ε=0

= Am(r, t),

where Am(r, t) is the so-called Adomian polynomial. So, substituting

N0

[
u0(r, t) +

+∞∑
n=1

un(r, t) εn

]
=

+∞∑
n=0

An(r, t) εn

into Equation (4.32), we have

{L0[u0(r, t)] − f(r, t)} +
+∞∑
n=1

εn {L0 [un(r, t)] + An−1(r, t)} = 0,

which gives
L0[u0(r, t)] − f(r, t) = 0

and
L0 [un(r, t)] + An−1(r, t) = 0, n ≥ 1.

Solving the above equations successively, we have

u0(r, t) = L−1
0 [f(r, t)]

and
un(r, t) = −L−1

0 [An−1(r, t)], n ≥ 1,
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which are exactly the same as the solutions (4.5) and (4.6) given by Adomian’s
decomposition method, respectively. So, Adomian’s decomposition method is
in essence equivalent to the artificial small parameter method.

In §4.1 we prove that Adomian’s decomposition method is just a special
case of the homotopy analysis method. Therefore, Lyapunov’s artificial small
parameter method is also a special case of the homotopy analysis method
under the assumption

N = L0 + N0

when
� = −1, H(r, t) = 1, L = L0, u0(r, t) = L−1

0 [f(r, t)].

This is easy to understand if we regard the so-called artificial small param-
eter ε as the embedding parameter and Equation (4.28) as a special zero-order
deformation equation.

4.3 Relation to δ-expansion method

In Chapter 2 only the solution expression (2.21) given by the δ-expansion
method is not among the four families of solution expressions given by means
of the homotopy analysis method. However, using the generalized zero-order
deformation equation (3.34) in §3.6, we can show that the δ-expansion method
is also a special case of the homotopy analysis method. To illustrate this point,
let us consider the same example in Chapter 2, i.e.,

V̇ (t) + V 2(t) = 1, V (0) = 0. (4.33)

To solve this problem by means of the homotopy analysis method, we choose
an auxiliary linear operator

LΦ =
∂Φ
∂t

+ Φ − 1 (4.34)

and an initial approximation V0(t) satisfying

L[V0(t)] = 0, V0(0) = 0,

which gives
V0(t) = 1 − exp(−t). (4.35)

From Equation (4.33), we define the nonlinear operator

N [Φ(t; q), q] =
∂Φ(t; q)

∂t
+ [Φ(t; q)]q+1 − 1. (4.36)
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Define the auxiliary operator

Π [Φ(t; q), q] = (1 − q)
{
[Φ(t; q)]q+1 − Φ(t; q)

}
(4.37)

which equals zero when q = 0 and q = 1. Let �, �2 denote the auxiliary
parameters, and H(t),H2(t) the auxiliary functions, respectively. According
to (3.34), we construct the zero-order deformation equation

(1 − q)L[Φ(t; q) − V0(t)] = q � H(t) N [Φ(t; q), q]
+ �2 H2(t) Π [Φ(t; q), q], (4.38)

subject to the initial condition

Φ(0; q) = 0. (4.39)

When q = 0, it is straightforward that

Φ(t; 0) = V0(t) = 1 − exp(−t). (4.40)

When q = 1, Equation (4.38) is equivalent to the original equation (4.33),
provided

Φ(t; 1) = V (t). (4.41)

Expand Φ(t; q) in a power series

Φ(t; q) = Φ(t; 0) +
+∞∑
n=1

Vn(t) qn, (4.42)

where

Vn(t) =
1
n!

∂nΦ(t; q)
∂qn

∣∣∣∣
q=0

. (4.43)

Assuming that the series (4.42) is convergent at q = 1, we have using Equa-
tions (4.40) and (4.41)

V (t) = V0(t) +
+∞∑
m=1

Vm(t). (4.44)

The governing equation of Vm(t) is deduced by means of the definition
(4.43). Differentiating the zero-order deformation equation (4.38) m times
with respect to the embedding parameter q and then dividing by m! and
finally setting q = 0, we have the high-order deformation equation

L0[Vm(t) − χm Vm−1(t)] = � H(t) Rm(t) + �2 H2(t) ∆m(t), (4.45)

subject to the initial condition

Vm(0) = 0, (4.46)
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where χm is defined by (2.42) and

Rm(t) =
1

(m − 1)!
∂m−1N [Φ(t; q), q]

∂qm−1

∣∣∣∣
q=0

, (4.47)

∆m(t) =
1
m!

∂mΠ [Φ(t; q), q]
∂qm

∣∣∣∣
q=0

(4.48)

under the definition
L0Φ =

∂Φ
∂t

+ Φ. (4.49)

Substituting Equations (4.36) and (4.37) into Equations (4.47) and (4.48),
respectively, we have

R1(t) = V̇0(t) + V0(t) − 1,

R2(t) = V̇1(t) + V1(t) + V0(t) ln V0(t),
...

and

∆1(t) = V0(t) ln V0(t),

∆2(t) = −V0(t) ln V0(t) + V1(t) [1 + lnV0(t)] +
1
2
V0(t) ln2 V0(t),

...

In the special case

� = �2 = −1, H(t) = H2(t) = 1, (4.50)

we have the high-order deformation equations

V̇1 + V1 = −V0 ln V0 − R1(t), V1(0) = 0,

V̇2 + V2 = −V1(1 + lnV0) − 1
2
V0 ln2 V0 − R2(t), V2(0) = 0,

...

Solving the above high-order deformation equations successively, we obtain

V1(t) = exp(−t)
[
t − π2

6
+ PL

2 (e−t)
]
− (1 − e−t) ln(1 − e−t),

...

where

PL
n (z) =

+∞∑
k=1

zk

kn
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is the nth polylogarithm function of z. So, the first-order approximation is

V (t) ≈ 1 + exp(−t)
[
t − π2

6
− 1 + PL

2 (e−t)
]
− (1 − e−t) ln(1 − e−t), (4.51)

which is exactly the same as the approximation (2.21) given by the δ-expansion
method in Chapter 2. It should be emphasized that the solution expression
given by Equations (4.45) and (4.46) contains the two auxiliary parameters �

and �2 and thus is more general than the solution expression (2.21) given by
the δ-expansion method. In fact, from (4.35) it holds R1(t) = 0. Furthermore,
using the first-order deformation equation, we have R2(t) = 0. Thus, the
high-order deformation equations are exactly the same as those given by the
δ-expansion method in Chapter 2. Substituting

� = �2 = −1, H(t) = H2(t) = 1

into the zero-order deformation equation (4.38) we have

∂Φ(t; q)
∂t

+ [Φ(t; q)]1+q = 1, (4.52)

which is the same as the equation

V̇ (t) + V 1+δ(t) = 1

in Chapter 2 used by the δ-expansion method, if δ and V (t) are replaced
by q and Φ(t; q), respectively. In general, we can regard δ as an embedding
parameter and the corresponding equation as a special zero-order deformation
equation. Therefore, the δ-expansion method is only a special case of the
homotopy analysis method.

4.4 Unification of nonperturbation methods

As shown above, Adomian’s decomposition method, Lyapunov’s artificial small
parameter method, and the δ-expansion method are only special cases of the
homotopy analysis method. Therefore, these three nonperturbation methods
can be unified in the frame of the homotopy analysis method. A unified theory
is often believed to be closer to the truth. This, from another side, further
indicates the validity of the homotopy analysis method.
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5

Advantages, limitations, and open questions

As all things have their good and bad sides, so too does the homotopy analysis
method. Here, we make some discussions about the advantages and limita-
tions of this method and point out some open questions.

5.1 Advantages

Compared with perturbation techniques and nonperturbation methods such
as Lyapunov’s artificial small parameter method, the δ-expansion method,
and Adomian’s decomposition method, the homotopy analysis method has
some or all of the following advantages.

Firstly, unlike all previous analytic techniques, the homotopy analysis
method provides us with great freedom to express solutions of a given non-
linear problem by means of different base functions. Therefore, we can ap-
proximate a nonlinear problem more efficiently by choosing a proper set of
base functions. This is because the convergence region and rate of a series are
chiefly determined by the base functions used to express the solution.

Secondly, unlike all previous analytic techniques, the homotopy analysis
method always provides us with a family of solution expressions in the aux-
iliary parameter �, even if a nonlinear problem has a unique solution. The
convergence region and rate of each solution expression among the family
might be determined by the auxiliary parameter �. So, the auxiliary param-
eter � provides us with an additional way to conveniently adjust and control
the convergence region and rate of solution series. By means of the so-called
�-curves it is easy to find out the so-called valid regions of � to gain a con-
vergent solution series. In addition, the so-called homotopy-Padé technique is
often more efficient than the traditional Padé technique and is in some cases
even independent of the auxiliary parameter �.

Thirdly, unlike perturbation techniques, the homotopy analysis method
is independent of any small or large quantities. So, the homotopy analysis
method can be applied no matter if governing equations and boundary/initial
conditions of a given nonlinear problem contain small or large quantities or
not.

Finally, the homotopy analysis method logically contains Lyapunov’s ar-
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tificial small parameter method, the δ-expansion method, and Adomian’s de-
composition method, and therefore unifies these nonperturbation methods
and is more general than them.

It should be pointed out that the homotopy analysis method is based on
the following assumptions:

(A) There exists the solution of the zero-order deformation equation in the
whole region of the embedding parameter q ∈ [0, 1].

(B) All of the high-order deformation equations have solutions.

(C) All Taylor series expanded in the embedding parameter q converge at
q = 1.

Fortunately, the homotopy analysis method provides us with great freedom
to choose initial approximation, the auxiliary linear operator, the auxiliary
function, and the auxiliary parameter �. This kind of freedom provides us
with the great possibility to ensure that all of these assumptions may be
satisfied. So, the above assumptions do little damage to the homotopy analysis
method. In fact, nearly all of the above-listed advantages of the homotopy
analysis method come from such kinds of freedom. According to Theorem 3.1
and Theorem 3.3, as long as a solution series given by the homotopy analysis
method converges, it must be one of the solutions of a given nonlinear problem.
Thus, we need only focus on choosing proper initial approximations, auxiliary
linear operators, auxiliary functions, and proper values of � to ensure that
solution series converge. Therefore, it is this kind of freedom that establishes a
cornerstone of the validity and the flexibility of the homotopy analysis method.

5.2 Limitations

However, such kinds of freedom seem too great for us. Up to now, there are no
rigorous theories to direct us to choose the initial approximations, auxiliary
linear operators, auxiliary functions, and auxiliary parameter �. From the
practical viewpoints, we propose some fundamental rules such as the rule of
solution expression, the rule of coefficient ergodicity, and the rule of solution
existence, which play important roles within the homotopy analysis method.
The rule of solution expression provides us with a starting point. It is under
the rule of solution expression that initial approximations, auxiliary linear
operators, and the auxiliary functions are determined. The rule of coefficient
ergodicity and the rule of solution existence play important roles in deter-
mining the auxiliary function and ensuring that the high-order deformation
equations are closed and have solutions.
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The rule of coefficient ergodicity is based on the completeness, and the rule
of solution existence is straightforward. So, the rule of coefficient ergodicity
and the rule of solution existence are reasonable. Unfortunately, the rule of
solution expression implies such an assumption that we should have, more
or less, some knowledge about a given nonlinear problem a prior. How can
we get such kind of prior knowledge before we solve a problem that is com-
pletely new for us? How can we know that a set of base functions is better
than others and is more efficient to approximate a nonlinear problem which
we know nothing? So, theoretically, this assumption impairs the homotopy
analysis method, although we can always attempt some base functions even
if a given nonlinear problem is completely new for us. Fortunately, it seems
that solutions of a nonlinear problem could be expressed by many different
kinds of base functions, as illustrated in Chapter 2.

As mentioned in Chapter 2, the idea of avoiding the so-called secular
term was proposed by a lot of researchers such as Lindstedt [52], Bohlin [53],
Poincaré [54], Gyldén [55], and so on, and the rule of solution expression can
be regarded as its generalization. However, for a completely new problem,
how can we know that a term belongs to the so-called secular term or not?
So, in fact, many previous analytic techniques also imply the assumption that
some prior knowledge should be known. And this assumption also impairs
these methods, although such kinds of damage seem tiny compared to other
serious restrictions of these previous methods and thus are often neglected.

5.3 Open questions

To overcome the above-mentioned limitation of the homotopy analysis method,
it is necessary to propose some pure mathematical theorems to direct us to
choose the initial approximation, the auxiliary linear operator, and the auxil-
iary function. These mathematical theorems should be valid in rather general
cases without any prior knowledge so that we can apply them without any
physical backgrounds. Up to now, it is even an open question if such kinds of
pure mathematical theorems exist or not.

Although the homotopy analysis method has been successfully applied to
many nonlinear problems such as those illustrated in this book and published
in some journals, it is unclear if this method is valid for nonlinear problems
with discontinue or chaotic solutions. To the best of the author’s knowledge,
chaos is generally investigated by numerical techniques and hardly expressed
analytically. Up to now, it seems not very clear what kind of base functions is
efficient to analytically express a chaotic solution. Recently, Norden E. Huang
et al. [80] developed the empirical mode decomposition method and showed
that nonlinear and nonstationary time series can be expressed by the so-called
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“instrinic mode functions”. However, up to now, we do not know how to use
the “instrinic mode functions” to gain analytic expressions of chaotic solutions
of a given nonlinear problem without numerically solving it.
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PART II

APPLICATIONS

Great straightness seems bent;
Great skill seems awkward;
Great eloquence seems tongue-tied.

Lao Tzu, an ancient Chinese philosopher
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6

Simple bifurcation of a nonlinear problem

Consider a nonlinear problem of the so-called Duffing oscillator in space (see
Kahn and Zarmi [11], page 198) governed by

w′′(x) + w(x) − w3(x) = 0, w(0) = w(L) = 0, (6.1)

where x is a spatial variable, w(x) is a real function of x defined in the region
0 ≤ x ≤ L, and the prime denotes the derivation. Obviously,

w(x) = 0

satisfies all of the above equations and thus is one of its solutions. However,
for some values of L, there exist nonzero solutions so that the so-called simple
bifurcation occurs.

Under the transformation

x =
(

L

π

)
ξ, ε =

(
L

π

)2

, v(ξ) = w(x), (6.2)

Equation (6.1) becomes

v′′ + ε(v − v3) = 0, v(0) = v(π) = 0, (6.3)

where the prime denotes the derivation with respect to ξ.
For any ε ≥ 0, the above equation has the solution v(ξ) = 0. The so-called

bifurcation occurs when a nonzero solution of Equation (6.3) exists for some
values of ε. Thus, we focus on the nonzero solution of Equation (6.3) and the
critical condition of its existence. Obviously, if v(ξ) is a nonzero solution of
Equation (6.3), then −v(ξ) must be its solution as well. Without loss of any
generality, define

A = v(π/2), v(ξ) = A u(ξ). (6.4)

Substituting the above expressions into Equation (6.3), we have

u′′ + ε(u − A2u3) = 0, u(0) = u(π) = 0. (6.5)

Note that A is unknown in the above equation and it holds from (6.4) that

u(π/2) = 1. (6.6)
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According to Kahn and Zarmi [11], the exact relation between A and L is
given by

L = 2
∫ A

0

dz√
A2 − z2 − (A4 − z4)/2

,

which gives the exact solution

L

π
=

2
π
√

1 − A2/2
K

(
A2

2 − A2

)
, (6.7)

where K(ζ) is the complete elliptic integral of the first kind. According to
the above exact solution, ε = (L/π)2 tends to infinity as |A| approaches to
1. By means of the method of normal forms, Kahn and Zarmi [11] gave the
perturbation solution

A ≈ ±2

√
ε − 1

3
, ε ≥ 1, (6.8)

which breaks down for large ε. In this chapter we employ the homotopy
analysis method to solve the nonlinear boundary-value problem with simple
bifurcations.

6.1 Homotopy analysis solution

6.1.1 Zero-order deformation equation

Using the boundary conditions u(0) = u(π) = 0 and considering the nonlin-
earity of Equation (6.5), it is straightforward to express the solution u(ξ) by
a set of base functions

{sin[(2m + 1)ξ] | m ≥ 0} (6.9)

such that

u(ξ) =
+∞∑
m=0

cm sin[(2m + 1)ξ], (6.10)

where cm is a coefficient. This provides us with the so-called rule of solution
expression.

Under the rule of solution expression denoted by (6.10) and using (6.6), it
is straightforward to choose

u0(ξ) = sin(ξ) (6.11)
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as the initial guess of u(ξ). Under the rule of solution expression denoted by
(6.10), we choose an auxiliary linear operator

L[Φ(ξ; q)] =
∂2Φ(ξ; q)

∂ξ2
+ Φ(ξ; q) (6.12)

with the property
L[C1 sin ξ + C2 cos ξ] = 0, (6.13)

where C1 and C2 are coefficients. From Equation (6.5), we define a nonlinear
operator

N [Φ(ξ; q), α(q)] =
∂2Φ(ξ; q)

∂ξ2
+ ε

[
Φ(ξ; q) − α2(q)Φ3(ξ; q)

]
, (6.14)

where q ∈ [0, 1] is the embedding parameter and α(q) is an unknown function
dependent upon q. Let � �= 0 denote an auxiliary parameter and H(ξ) an aux-
iliary function. We construct the so-called zero-order deformation equation

(1 − q) L[Φ(ξ; q) − u0(ξ)] = � q H(ξ) N [Φ(ξ; q), α(q)], (6.15)

subject to the boundary conditions

Φ(0; q) = Φ(π; q) = 0. (6.16)

Obviously, when q = 0, the solution of Equations (6.15) and (6.16) is

Φ(ξ; 0) = u0(ξ). (6.17)

When q = 1, Equations (6.15) and (6.16) are exactly the same as the original
equations (6.5), provided

Φ(ξ; 1) = u(ξ), α(1) = A. (6.18)

Thus, Φ(ξ; q) varies (or deforms) from the initial approximation u0(ξ) = sin ξ
to the exact solution u(ξ) of Equations (6.5), as does α(q) from its initial
approximation A0 to the exact value A = u(π/2).

Note that the zero-order deformation equation (6.15) contains the auxiliary
parameter � and the auxiliary function H(ξ). Assume that � and H(ξ) are
properly chosen so that the zero-order deformation equations (6.15) and (6.16)
have solutions for all q ∈ [0, 1], and that there exist the derivatives

um(ξ) =
1
m!

∂mΦ(ξ; q)
∂qm

∣∣∣∣
q=0

, Am =
1
m!

dmα(q)
dqm

∣∣∣∣
q=0

. (6.19)

Then, using Taylor’s theorem and Equation (6.17), we can expand Φ(ξ; q) and
α(q) in power series of q as follows

Φ(ξ; q) = u0(ξ) +
+∞∑
m=1

um(ξ) qm, (6.20)

α(q) = A0 +
+∞∑
m=1

Am qm, (6.21)
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respectively. Furthermore, assuming that � and H(ξ) are so properly chosen
that the power series (6.20) and (6.21) are convergent at q = 1, we have using
(6.18) the solution series

u(ξ) = u0(ξ) +
+∞∑
m=1

um(ξ), (6.22)

A = A0 +
+∞∑
m=1

Am. (6.23)

6.1.2 High-order deformation equation

For simplicity, define the vectors


uk = {u0(ξ), u1(ξ), u2(ξ), · · · , uk(ξ)} , 
Ak = {A0, A1, A2, · · · , Ak} .

Differentiating the zero-order deformation equations (6.15) and (6.16) m times
with respect to the embedding parameter q and then dividing them by m! and
finally setting q = 0, we have the high-order deformation equation

L [um(ξ) − χmum−1(ξ)] = � H(ξ) Rm(
um−1, 
Am−1), (6.24)

subject to the boundary conditions

um(0) = um(π) = 0, (6.25)

where χm is defined by (2.42) and

Rm(
um−1, 
Am−1) =
1

(m − 1)!
∂m−1N [Φ(ξ; q), α(q)]

∂qm−1

∣∣∣∣
q=0

= u′′
m−1(ξ) + ε um−1(ξ)

− ε

m−1∑
n=0

(
n∑

i=0

Ai An−i

)⎡
⎣m−1−n∑

j=0

uj(ξ)
m−1−n−j∑

r=0

ur(ξ)um−1−n−j−r(ξ)

⎤
⎦ .

(6.26)

Note that there are two unknowns um(ξ) and Am−1, but we have only
one differential equation for um(ξ). The problem is therefore not closed and
an additional algebraic equation is needed to determine Am−1. Considering
the rule of solution expression denoted by (6.10) and the property (6.13) of
the auxiliary linear operator L, H(ξ) should be properly chosen so that the
right-hand side term of the high-order deformation equation (6.24) can be
expressed by

� H(ξ) Rm(
um−1, 
Am−1) =
µm∑
n=0

bm,n( 
Am−1) sin[(2n + 1)ξ], (6.27)
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where bm,n( 
Am−1) is a coefficient and the positive integer µm depends upon
m and the auxiliary function H(ξ). Then, according to the property (6.13),
if bm,0( 
Am−1) �= 0, the solution of the mth-order deformation equation (6.24)
contains the term

ξ sin ξ,

which disobeys the rule of solution expression denoted by (6.10). To avoid
this, we had to enforce

bm,0( 
Am−1) = 0, (6.28)

which provides us with an additional algebraic equation for Am−1. In this way,
the problem is closed. Thereafter, it is easy to gain the solution of Equation
(6.24)

um(ξ) = χm um−1(ξ) −
µm∑
n=1

bm,n

4n(n + 1)
sin[(2n + 1)ξ]

+ C1 sin ξ + C2 cos ξ, (6.29)

where C1 and C2 are coefficients. Under the rule of solution expression de-
noted by (6.10), C2 must be zero. However, the coefficient C1 cannot be
determined by the boundary conditions (6.25), which is automatically satis-
fied when C2 = 0. But, from Equation (6.6), it holds that

um(π/2) = 0, (6.30)

which uniquely determines the value of C1. In this way, we gain Am−1 and
um(ξ) successively. At the Nth-order of approximation, we have

u(ξ) ≈ u0(ξ) +
N∑

m=1

um(ξ), (6.31)

A ≈ A0 +
N−1∑
m=1

Am. (6.32)

6.1.3 Convergence theorem

THEOREM 6.1
If the solution series (6.22) and (6.23) are convergent, where uk(ξ) is gov-

erned by Equations (6.24) and (6.25) under the definitions (6.26) and (2.42),
they must be the exact solution of Equations (6.5).

Proof: If the solution series (6.22) is convergent, it is necessary that

lim
m−>+∞um(ξ) = 0, ξ ∈ [0, π].
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Using (6.12) and (2.42) and from (6.24), we have

� H(ξ)
+∞∑
k=1

Rk(
uk−1, 
Ak−1)

= lim
m→+∞

m∑
k=1

L[uk(ξ) − χk uk−1(ξ)]

= L
{

lim
m→+∞

m∑
k=1

[uk(ξ) − χk uk−1(ξ)]

}

= L
[

lim
m→+∞um(ξ)

]

= 0,

which gives, since � �= 0 and H(ξ) �= 0,

+∞∑
k=1

Rk(
uk−1, 
Ak−1) = 0.

Substituting (6.26) into the above expression and simplifying it, we have, due
to the convergence of the series (6.22) and (6.23), that

d2

dξ2

[
+∞∑
k=0

uk(ξ)

]
+ ε

⎧⎨
⎩
[

+∞∑
k=0

uk(ξ)

]
−
(

+∞∑
m=0

Am

)2 [+∞∑
k=0

uk(ξ)

]3
⎫⎬
⎭ = 0.

From (6.11) and (6.25), it holds that

+∞∑
k=0

uk(0) =
+∞∑
k=0

uk(π) = 0.

Thus, as long as the solution series (6.22) and (6.23) are convergent, they
must be the exact solution of Equations (6.5). This ends the proof.

6.2 Result analysis

According to Theorem 6.1, we only need choose a proper auxiliary parameter
� and a auxiliary function H(ξ) to ensure that the solution series (6.22) and
(6.23) are convergent. Note that, under the rule of solution expression denoted
by (6.10) and without disobeying the rule of coefficient ergodicity, different
auxiliary functions such as

H(ξ) = 1, H(ξ) = sin2(ξ), H(ξ) = cos2(ξ), H(ξ) = cos(2ξ)
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and so on can be used. However, for the sake of simplicity, we choose here

H(ξ) = 1. (6.33)

In this case, using (6.11) and (6.26), we have

� H(ξ) R1(
u0, 
A0) = �

(
ε − 1 − 3

4
ε A2

0

)
sin ξ +

1
4

� ε A2
0 sin(3ξ), (6.34)

which gives from Equation (6.27) that

b1,0 = �

(
ε − 1 − 3

4
ε A2

0

)
, b1,1 =

1
4

� ε A2
0.

Thus, when m = 1, we have from Equation (6.28) an additional algebraic
equation

ε − 1 − 3
4
ε A2

0 = 0. (6.35)

Since ε = (L/π)2 ≥ 0, the above equation has no solution when ε < 1. Thus,
there does not exist a nonzero solution when 0 ≤ ε ≤ 1. However, when ε > 1,
Equation (6.35) has the solution

A0 = ± 2√
3

√
1 − 1

ε
, ε > 1. (6.36)

Therefore, the so-called simple bifurcation occurs at ε = 1. The homotopy
analysis method correctly provides us with the critical condition of the simple
bifurcation of the considered nonlinear problem.

It should be emphasized that the homotopy analysis method provides us
with two families of solution expressions in the auxiliary parameter �, and �

influences the convergence of the solution series (6.22) and (6.23). In particu-
lar, the series (6.23) of A is a power series of �. To investigate the influence of
� on the solution series (6.23), we plot the so-called �-curve (see page 26 and
§3.5.1) of A for any a given ε. For example, the �-curves A ∼ � when ε = 10
and ε = 25 are as shown in Figure 6.1, which clearly indicate the correspond-
ing valid regions of �. From Figure 6.1, the solution series (6.23) when ε = 10
converges if −3/4 ≤ � < 0. When ε = 25, it converges if −1/4 ≤ � < 0. So,
by means of Theorem 6.1 and using the �-curves, it is very clear that when
ε = 10 and ε = 25 the solution series (6.23) is convergent to the exact value
if we choose � in the corresponding valid region of �, i.e., −3/4 ≤ � < 0 or
−1/4 ≤ � < 0, respectively. For example, the approximations of A when
ε = 10, � = −1/2 and ε = 25, � = −1/5 are listed in Table 6.1. It is found
that, in general, as long as the solution series (6.23) is convergent, the corre-
sponding solution series (6.22) of u(ξ) given by the same auxiliary parameter
� also converges in the whole region 0 ≤ ξ ≤ π. For example, the 10th-order
approximation of u(ξ) when ε = 10, � = −1/2 and the 30th-order approxima-
tion of u(ξ) when ε = 25, � = −1/5 agree well with the exact solution of u(ξ),
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respectively, as shown in Figure 6.2. So, using the �-curves, it is convenient
to find out the valid region of � to ensure that the solution series (6.22) and
(6.23) converge.

It is found that the mth-order approximation of A can be expressed by

A ≈ ±
√

3(1 − ε−1)
m∑

k=0

βm,k(�) εk, (6.37)

where βm,k is a coefficient dependent upon �. From Figure 6.1, it is clear
that as ε enlarges the corresponding valid region of � becomes smaller. It is
found that the convergence region of the solution series of A is governed by
�, as shown in Figure 6.3. Clearly, the closer the value of � is to zero from
below (� < 0), the larger the convergence region of A becomes. This implies
that � should be a function of ε, whose absolution value should decrease as ε
increases. It is found that, when

� = − 1
1 + ε/3

, (6.38)

the 10th-order of approximation of A, i.e.,

A ≈ ± 1
(1 + ε/3)10

√
1 − 1

ε

(
1.1803 + 3.9075 ε + 5.8128 ε2 + 5.1149 ε3

+ 2.9466 ε4 + 1.1603 ε5 + 0.31602 ε6 + 5.8726 × 10−2 ε7

+ 7.1298 × 10−3 ε8 + 5.1396 × 10−4 ε9 + 1.7001 × 10−5 ε10
)
, (6.39)

agrees well with the exact result in the whole region 1 ≤ ε < +∞, as shown
in Figure 6.3. The 10th-order approximation (6.39) of A gives

lim
ε→+∞ |A| = 1.0039,

corresponding to a relative error of 0.39%. Using (6.38), even the third-order
approximation of A, i.e.

A ≈ ±
(
7015 ε3 + 70251 ε2 + 220917 ε + 226105

)
4096

√
3(ε + 3)3

√
1 − 1

ε
(6.40)

agrees well with the exact result, as shown in Figure 6.4. So, it is the auxiliary
parameter � which provides us with a convenient way to control and adjust the
convergence region and rate of solutions series. Thus, the auxiliary parameter
� indeed plays an important role within the frame of the homotopy analysis
method.

It should be emphasized that the rule of solution expression denoted by
(6.10) also plays an important role within the frame of the homotopy analysis
method. It is under the rule of solution expression that the initial approxima-
tion (6.11) and the auxiliary linear operator (6.12) are chosen. Furthermore,
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it is under the rule of solution expression that Equation (6.28) is given to
avoid the appearance of the term ξ sin ξ and to close the problem. Note that
for the problem considered in this chapter, the term ξ sin ξ is not a traditional
secular term because it is possible that u(ξ) can be expressed by such a set of
base functions

{ξm sin(nξ), ξm cos(nξ) | m ≥ 0, n ≥ 1} .

This is the reason why the auxiliary function H(ξ) is not unique for the
considered problem. However, it seems more efficient to use the set of base
functions denoted by (6.9) to approximate u(ξ).

Note that our approximations are much better than the perturbation result
(6.8), as shown in Figures 6.3 and 6.4. Also note that even the third-order
approximation (6.40) of A agrees well with the exact result in the whole region
1 ≤ ε < +∞ and correctly gives the bifurcation point ε = 1 and two breaches
of nonzero solutions.

Using the so-called homotopy-Padé technique (see page 38 and §3.5.2),
the convergence of the solution series of A is greatly accelerated, as shown in
Table 6.2 when ε = 10 and ε = 25. It is found that the [m,m] homotopy-Padé
approximant of A does not depend upon the auxiliary parameter �. The [4, 4]
homotopy-Padé approximant

A ≈ 2
√

3

√
1 − 1

ε

P (ε)
Q(ε)

(6.41)

agrees well with the exact result in the whole region 1 ≤ ε < +∞, where

P (ε) = 8665210296046039923 + 2500964782519057396 ε

+ 604034298653768562 ε2 + 62408285303687028 ε3

+ 3874319809940915 ε4,

Q(ε) = 25430938337575455089 + 7921677254280814588 ε

+ 1930521704826790758 ε2 + 213027971364041596 ε3

+ 13310678950379441 ε4.

This example illustrates that the homotopy analysis method is valid for
nonlinear problems with bifurcations.
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TABLE 6.1

The 30th-order analytic approximations of A when
ε = 10, � = −1/2 and ε = 25, � = −1/5 by means of H(ξ) = 1.

Order of approximation ε = 10, � = −1/2 ε = 25, � = −1/5

5 0.99833 1.01046
10 0.99588 1.00313
15 0.99624 1.00117
20 0.99644 1.00049
25 0.99644 1.00017
30 0.99644 1.00000

TABLE 6.2

The [m,m] homotopy-Padé approximations of A
when ε = 10 and ε = 25 by means of H(ξ) = 1.

[m,m] ε = 10 ε = 25

[2, 2] 0.99914 1.01167
[4, 4] 0.99651 1.00113
[6, 6] 0.99644 1.00012
[8, 8] 0.99644 0.99996

[10, 10] 0.99644 0.99994
[12, 12] 0.99644 0.99994
[15, 15] 0.99644 0.99994
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FIGURE 6.1
The �-curves of A when ε = 10, 25 by means of H(ξ) = 1. Dash-dotted
line: 10th-order approximation of A when ε = 10; solid line: 10th-order
approximation of A when ε = 25.
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FIGURE 6.2
The analytic approximations of u(ξ) by means of H(ξ) = 1. Dash-dotted line:
10th-order approximation when ε = 10 and � = −1/2; filled cycles: 20th-order
approximation when ε = 10 and � = −1/2; solid line: 20th-order approxima-
tion of when ε = 25 and � = −1/5; open cycles: 30th-order approximation
when ε = 25 and � = −1/5.
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FIGURE 6.3
Comparison of the exact result (6.7) with the 10th-order approximation (6.37)
of A when H(ξ) = 1. Symbols: exact result given by (6.7); long-dashed line:
perturbation result (6.8); dashed line: approximation (6.37) when � = −1;
dash-dotted line: approximation (6.37) when � = −1/2; dash-dot-dotted line:
approximation (6.37) when � = −1/4; solid line: approximation (6.39) when
� = −1/(1 + ε/3).
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FIGURE 6.4
Comparison of the exact result (6.7) with the third-order analytic approxima-
tion (6.40) of A when � = −1/(1 + ε/3) and H(ξ) = 1. Symbols: exact result
given by (6.7); dash-dotted line: perturbation result (6.8); solid line: analytic
approximation (6.40).
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7

Multiple solutions of a nonlinear problem

It is well known that many nonlinear problems have multiple solutions. For
example, let us consider again the so-called Duffing oscillator in space, gov-
erned by

v′′ + ε(v − v3) = 0, (7.1)

subject to the boundary conditions

v(0) = v(π) = 0, (7.2)

where the prime denotes the derivation with respect to ξ. In Chapter 6, we
use the homotopy analysis method to solve the same problem and correctly
discover its critical condition ε = 1 for the simple bifurcation and express its
solution by such a set of base functions

{sin[(2m + 1)ξ] | m ≥ 0} . (7.3)

Notice that there exist an infinite number of sets of base functions denoted
by

{sin[(2m + 1)κ ξ] | m ≥ 0, κ ≥ 1} , (7.4)

where κ ≥ 1 is a positive integer, which can be used to express a real function
satisfying the boundary conditions (7.2). This implies that Equations (7.1)
and (7.2) might have multiple solutions. This is indeed true. We show in this
chapter that, using base functions denoted by (7.4), we can gain all multiple
solutions of Equations (7.1) and (7.2) by means of the homotopy analysis
method.

Without loss of any generality, define

A = v(π/2κ), v(ξ) = A u(ξ). (7.5)

Then, Equation (7.1) becomes

u′′ + ε(u − A2u3) = 0, u(0) = u(π) = 0. (7.6)

Note that A is unknown in the above equation. From (7.5), it holds

u(π/2κ) = 1. (7.7)
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7.1 Homotopy analysis solution

7.1.1 Zero-order deformation equation

Using the base functions (7.4) and the boundary conditions u(0) = u(π) = 0
and considering the nonlinearity of Equation (7.6), we express the solution
u(ξ) in the form

u(ξ) =
+∞∑
m=0

cm sin[(2m + 1)κξ], (7.8)

where cm is a coefficient. This provides us with the so-called rule of solution
expression.

Under the rule of solution expression denoted by (7.8) and using (7.7), it
is straightforward to choose

u0(ξ) = sin(κ ξ) (7.9)

as an initial guess of u(ξ), where κ ≥ 1 is an integer. To obey the rule of
solution expression denoted by (7.8), we choose an auxiliary linear operator

L[Φ(ξ; q)] =
∂2Φ(ξ; q)

∂ξ2
+ κ2 Φ(ξ; q) (7.10)

such that
L[C1 sin(κ ξ) + C2 cos(κ ξ)] = 0, (7.11)

where C1 and C2 are coefficients. Furthermore, from Equation (7.6), we define
the nonlinear operator

N [Φ(ξ; q), α(q)] =
∂2Φ(ξ; q)

∂ξ2
+ ε

[
Φ(ξ; q) − α2(q)Φ3(ξ; q)

]
, (7.12)

where q ∈ [0, 1] is the embedding parameter, Φ(ξ; q) is an unknown function
of ξ and q, α(q) is an unknown function dependent upon q. Let � �= 0 denote
an auxiliary parameter and H(ξ) �= 0 an auxiliary function. We construct the
so-called zero-order deformation equation

(1 − q)L[Φ(ξ; q) − u0(ξ)] = � q H(ξ) N [Φ(ξ; q), α(q)], (7.13)

subject to the boundary conditions

Φ(0; q) = Φ(π; q) = 0. (7.14)

When q = 0, the solution of Equations (7.13) and (7.14) is

Φ(ξ; 0) = u0(ξ), ξ ∈ [0, π]. (7.15)
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When q = 1, Equations (7.13) and (7.14) are equivalent to Equations (7.6),
provided

Φ(ξ; 1) = u(ξ), α(1) = A. (7.16)

Thus, Φ(ξ; q) varies (or deforms) from the initial approximation u0(ξ) =
sin(κξ) to the exact solution u(ξ) of Equations (7.6), as does α(q) from its
initial approximation A0 to the exact value A = u(π/2κ). Note that the zero-
order deformation equation (7.13) contains the auxiliary parameter � and the
auxiliary function H(ξ). Assume that � and H(ξ) are properly chosen so that
the zero-order deformation equations (7.13) and (7.14) have solutions for all
q ∈ [0, 1] and that the terms

um(ξ) =
1
m!

∂mΦ(ξ; q)
∂qm

∣∣∣∣
q=0

, Am =
1
m!

dmα(q)
dqm

∣∣∣∣
q=0

(7.17)

exist for m ≥ 1. Then, by Taylor’s theorem and using (7.15), we can expand
Φ(ξ; q) and α(q) in power series of q as follows

Φ(ξ; q) = u0(ξ) +
+∞∑
m=1

um(ξ) qm, (7.18)

α(q) = A0 +
+∞∑
m=1

Am qm. (7.19)

Furthermore, assuming that � and H(ξ) are so properly chosen that the power
series (7.18) and (7.19) are convergent at q = 1, we have from (7.16) the
solution series

u(ξ) = u0(ξ) +
+∞∑
m=1

um(ξ), (7.20)

A = A0 +
+∞∑
m=1

Am. (7.21)

7.1.2 High-order deformation equation

For brevity, write


uk = {u0(ξ), u1(ξ), u2(ξ), · · · , uk(ξ)} , 
Ak = {A0, A1, A2, · · · , Ak} .

Differentiating the zero-order deformation equations (7.13) and (7.14) m times
with respect to q and then dividing them by m! and finally setting q = 0, we
have the high-order deformation equation

L [um(ξ) − χmum−1(ξ)] = � H(ξ) Rm(
um−1, 
Am−1), (7.22)
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subject to the boundary conditions

um(0) = um(π) = 0, (7.23)

where χm is defined by (2.42) and

Rm(
um−1, 
Am−1) =
1

(m − 1)!
∂m−1N [Φ(ξ; q), α(q)]

∂qm−1

∣∣∣∣
q=0

= u′′
m−1(ξ) + ε um−1(ξ)

− ε

m−1∑
n=0

(
n∑

i=0

Ai An−i

)⎡
⎣m−1−n∑

j=0

uj(ξ)
m−1−n−j∑

r=0

ur(ξ)um−1−n−j−r(ξ)

⎤
⎦ .

(7.24)

Note that both um(ξ) and Am−1 are unknown, but we have only one dif-
ferential equation for um(ξ). So, the problem is not closed and an additional
algebraic equation is needed to determine Am−1. Assume that H(ξ) is prop-
erly chosen so that the right-hand side term of the high-order deformation
equation (7.22) can be expressed by

� H(ξ) Rm(
um−1, 
Am−1) =
µm∑
n=0

bm,n( 
Am−1) sin[(2n + 1)κ ξ], (7.25)

where bm,n( 
Am−1) is a coefficient and the positive integer µm depends upon
H(ξ) and m. According to the property (7.11) of L, when bm,0( 
Am−1) �= 0,
the solution of the mth-order deformation equation (7.22) contains the term

ξ sin(κ ξ),

which disobeys the rule of solution expression denoted by (7.8). To avoid this,
we had to enforce

bm,0( 
Am−1) = 0, (7.26)

which provides us with an additional algebraic equation for Am−1. In this way,
the problem is closed. Thereafter, it is easy to gain the solution of Equation
(7.22), say,

um(ξ) = χm um−1(ξ) +
µm∑
n=1

bm,n

[1 − (2n + 1)2κ2]
sin[(2n + 1)κ ξ]

+ C1 sin(κξ) + C2 cos(κξ), (7.27)

where C1 and C2 are coefficients. Under the rule of solution expression de-
noted by (7.8), C2 must be zero. Note that the coefficient C1 cannot be
determined by the boundary conditions (7.23), which is automatically satis-
fied when C2 = 0. However, from (7.7), it should hold

um(π/2κ) = 0, (7.28)
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which uniquely determines C1. In this way, we gain Am−1 and um(ξ) succes-
sively.

At the Nth-order of approximation, we have

u(ξ) ≈ u0(ξ) +
N∑

m=1

um(ξ), (7.29)

A ≈ A0 +
N−1∑
m=1

Am. (7.30)

7.1.3 Convergence theorem

THEOREM 7.1
If the solution series (7.20) and (7.21) are convergent, where uk(ξ) is gov-

erned by Equations (7.22) and (7.23) under the definitions (7.24) and (2.42),
they must be the exact solution of Equations (7.6).

Proof: If the solution series (7.20) is convergent, it is necessary that

lim
m−>+∞um(ξ) = 0, ξ ∈ [0, π].

From (7.10), (2.42), and (7.22) and using the above expression, we have

� H(ξ)
+∞∑
k=1

Rk(
uk−1, 
Ak−1)

= lim
m→+∞

m∑
k=1

L[uk(ξ) − χk uk−1(ξ)]

= L
{

lim
m→+∞

m∑
k=1

[uk(ξ) − χk uk−1(ξ)]

}

= L
[

lim
m→+∞um(ξ)

]

= 0.

Since � �= 0 and H(ξ) �= 0, the above expression gives
+∞∑
k=1

Rk(
uk−1, 
Ak−1) = 0.

Substituting (7.24) into the above expression and simplifying it, we have, due
to the convergence of the series (7.20) and (7.21), that

d2

dξ2

[
+∞∑
k=0

uk(ξ)

]
+ ε

⎧⎨
⎩
[

+∞∑
k=0

uk(ξ)

]
−
(

+∞∑
m=0

Am

)2 [+∞∑
k=0

uk(ξ)

]3
⎫⎬
⎭ = 0.
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Using (7.9) and (7.23), it holds

+∞∑
k=0

uk(0) =
+∞∑
k=0

uk(π) = 0.

Thus, as long as the solution series (7.20) and (7.21) are convergent, they
must be the exact solution of Equations (7.6). This ends the proof.

7.2 Result analysis

According to Theorem 7.1, we need only to properly choose an auxiliary func-
tion H(ξ) and an auxiliary parameter � to ensure that the solution series
(7.20) and (7.21) converge. As pointed out in Chapter 6, the auxiliary func-
tion H(ξ) can be chosen in many different forms without disobeying the rule
of coefficient ergodicity. For the sake of simplicity, we choose here

H(ξ) = 1. (7.31)

Then, using (7.9) and (7.24), we have

� H(ξ) R1(
u0, 
A0)

= �

(
ε − κ2 − 3

4
ε A2

0

)
sin(κ ξ) +

1
4

� ε A2
0 sin(3κ ξ), (7.32)

which gives according to (7.25) that

b1,0 = �

(
ε − κ2 − 3

4
ε A2

0

)
, b1,1 =

1
4

� ε A2
0.

Thus, from Equation (7.26), we have an algebraic equation

ε − κ2 − 3
4
ε A2

0 = 0, (7.33)

which has the nonzero solution

A0 = ± 2√
3

√
1 − κ2

ε
(7.34)

when ε > κ2. Thus, for any a positive integer κ ≥ 1, the so-called bifurcation
occurs when

ε = κ2. (7.35)

This critical condition of bifurcations indicates that there exist multiple bi-
furcation points for large ε. Note that κ determines the set of base functions
denoted by (7.4). So, for large ε, there exist multiple solutions.
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Without the loss of generality, we consider here the two cases of κ = 2 and
κ = 3. Note that the convergence region and rate of the solution series (7.20)
and (7.21) are determined by the auxiliary parameter �. For a given ε and a
positive integer κ, where ε > κ2 ≥ 1, we can always find, by means of plotting
the so-called �-curves (see page 26 and §3.5.1) of A, a valid region of � to
ensure that the solution series (7.21) converges. For example, the �-curves of
A ∼ � when κ = 2, ε = 10, 25, 100, and κ = 3, ε = 40, 90, 225 are as shown
in Figures 7.1 and 7.2, respectively. From these �-curves, it is clear that the
series (7.21) converges when ε = 10 and κ = 2, 3 by means of � = −1, or
ε = 40, κ = 2 and ε = 90, κ = 3 by means of � = −1/2, or ε = 100, κ = 2 and
ε = 225, κ = 3 by means of � = −1/5. This is indeed true, as shown in Tables
7.1 and 7.2.

From Figures 7.1 and 7.2, the so-called valid region of � for A decreases
as ε increases for a given κ. So, the absolute value of � should decrease
as ε increases. It is found that, for any a given ε and a given κ satisfying
ε > κ2 ≥ 1, the series (7.21) is always convergent in the region

κ2 ≤ ε < +∞,

when
� = −

(
1 +

ε

3κ2

)−1

. (7.36)

Besides, the corresponding 10th-order approximation

A ≈ ±
(
1 +

ε

3κ2

)−10
√

1 − κ2

ε

(
1.1803 + 3.9075

ε

κ2
+ 5.8128

ε2

κ4

+ 5.1149
ε3

κ6
+ 2.9466

ε4

κ8
+ 1.1603

ε5

κ10
+ 0.31602

ε6

κ12

+ 5.8726 × 10−2 ε7

κ14
+ 7.1298 × 10−3 ε8

κ16
+ 5.1396 × 10−4 ε9

κ18

+ 1.7001 × 10−5 ε10

κ20

)
(7.37)

agrees well in the whole region κ2 ≤ ε < +∞ with the exact analytic result
given by the implicit formula

ε =
8κ2

π2(2 − A2)
K

(
A2

2 − A2

)
, (7.38)

where K denotes the complete elliptic integral of the first kind, as shown in
Figure 7.3. In fact, Figure 7.3 provides us with a complete bifurcation diagram
of the so-called Duffing oscillator in space problem.

Using the so-called homotopy-Padé technique (see page 38 and §3.5.2),
we can greatly accelerate the convergence of the series (7.21), as shown in
Tables 7.3 and 7.4. It is found that the [m,m] homotopy-Padé approximant
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does not depend upon the auxiliary parameter �. The [4, 4] homotopy-Padé
approximant

A ≈ 2
√

3

√
1 − κ2

ε

P (ε)
Q(ε)

(7.39)

gives an accurate approximation of A in the whole region 1 ≤ ε/κ2 < +∞,
where

P (ε) = 8665210296046039923 + 2500964782519057396
( ε

κ2

)

+ 604034298653768562
( ε

κ2

)2

+ 62408285303687028
( ε

κ2

)3

+ 3874319809940915
( ε

κ2

)4

,

Q(ε) = 25430938337575455089 + 7921677254280814588
( ε

κ2

)

+ 1930521704826790758
( ε

κ2

)2

+ 213027971364041596
( ε

κ2

)3

+ 13310678950379441
( ε

κ2

)4

.

It is found that, as long as the series (7.21) of A is convergent, the corre-
sponding series (7.20) of u(ξ) given by the same value of � converges in the
whole region ξ ∈ [0, π], as shown in Figures 7.4 and 7.5. Due to the odd
nonlinearity of Equation (7.6), if u(ξ) is a solution, −u(ξ) must be also a
solution. However, for brevity, we do not give this kind of solution in Fig-
ures 7.4 and 7.5. The nonlinear problem of the so-called Duffing oscillator
in space has multiple solutions for large ε. For example, when ε = 10, there
exist two nonzero solutions corresponding to κ = 1, two nonzero solutions to
κ = 2, and two nonzero solutions to κ = 3, respectively, so that there are
six nonzero solutions. In general, for any given ε ≥ 1, the problem of the
so-called Duffing oscillator in space has 2[

√
ε] nonzero solutions, where [x] de-

notes the integer part of x. Therefore, the larger the value of ε, the more the
multiple solutions, as shown in Figure 7.3. As ε tends to infinity, there exists
an infinite number of solutions. Therefore, the nonlinear equation (7.1) with
boundary conditions (7.2) contains rather rich mathematical structure and a
complicated bifurcation diagram.

The rule of solution expression plays an important role in finding these
multiple solutions. This example clearly indicates that, by means of different
base functions, we can employ the homotopy analysis method to gain all
multiple solutions of some nonlinear problems. Indeed, the so-called rule of
solution expression of the homotopy analysis method provides us with a new
viewpoint and a different starting point to investigate nonlinear problems.
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TABLE 7.1

The analytic approximations of A when ε = 10 and κ = 2, 3 by means
of � = −1 and H(ξ) = 1.

Order of approximation κ = 2 κ = 3

2 0.8694142054 0.3643175731
4 0.8696932532 0.3643100899
6 0.8696857656 0.3643100194
8 0.8696860265 0.3643100187
10 0.8696860164 0.3643100187
12 0.8696860168 0.3643100187
14 0.8696860168 0.3643100187
16 0.8696860168 0.3643100187
18 0.8696860168 0.3643100187
20 0.8696860168 0.3643100187

TABLE 7.2

The analytic approximations of A when ε = 40, κ = 2 and ε = 90, κ = 3
by means of � = −1/2 and H(ξ) = 1.

Order of approximation ε = 40, κ = 2 ε = 90, κ = 3

2 0.98070 0.98171
4 0.99912 0.99854
6 0.99613 0.99639
8 0.99634 0.99625
10 0.99656 0.99658
12 0.99635 0.99635
14 0.99649 0.99648
16 0.99641 0.99642
18 0.99645 0.99644
20 0.99643 0.99644
22 0.99644 0.99644
24 0.99644 0.99644
26 0.99644 0.99644
28 0.99644 0.99644
30 0.99644 0.99644
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TABLE 7.3

The [m,m] homotopy-Padé approximant of A when ε = 10 and
κ = 2, 3 by means of H(ξ) = 1.

[m,m] κ = 2 κ = 3

[1, 1] 0.8694029457 0.3643104636
[2, 2] 0.8696902377 0.3643100178
[3, 3] 0.8696859569 0.3643100187
[4, 4] 0.8696860176 0.3643100187
[5, 5] 0.8696860168 0.3643100187
[6, 6] 0.8696860168 0.3643100187
[7, 7] 0.8696860168 0.3643100187
[8, 8] 0.8696860168 0.3643100187
[9, 9] 0.8696860168 0.3643100187

[10, 10] 0.8696860168 0.3643100187

TABLE 7.4

The [m,m] homotopy-Padé approximant of A when ε = 40, κ = 2
and ε = 90, κ = 3 by means of H(ξ) = 1.

[m,m] ε = 40, κ = 2 ε = 90, κ = 3

[1, 1] 0.9747449855 0.9753179745
[2, 2] 0.9988803766 0.9988250895
[3, 3] 0.9960551840 0.9960761350
[4, 4] 0.9964957766 0.9964921829
[5, 5] 0.9964304420 0.9964305571
[6, 6] 0.9964370766 0.9964368336
[7, 7] 0.9964352860 0.9964352709
[8, 8] 0.9964353707 0.9964353614
[9, 9] 0.9964353314 0.9964353314

[10, 10] 0.9964353352 0.9964353355
[11, 11] 0.9964353351 0.9964353363
[12, 12] 0.9964353362 0.9964353363
[13, 13] 0.9964353363 0.9964353363
[14, 14] 0.9964353363 0.9964353363
[15, 15] 0.9964353363 0.9964353363
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FIGURE 7.1
The �-curves of A when κ = 2 and ε = 10, 40, 100 by means of H(ξ) = 1.
Dash-dot-dotted line: 20th-order approximation of A when ε = 10; dash-
dotted line: 20th-order approximation of A when ε = 40; solid line: 20th-order
approximation of A when ε = 100.
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FIGURE 7.2
The �-curves of A when κ = 3 and ε = 10, 90, 225 by means of H(ξ) = 1.
Dash-dot-dotted line: 20th-order approximation of A when ε = 10; dash-
dotted line: 20th-order approximation of A when ε = 90; solid line: 20th-order
approximation of A when ε = 225.
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FIGURE 7.3
The comparison of the 10th-order approximation (7.37) of A with the exact
implicit solution (7.38). Symbols: exact result; curve 1: κ = 1; curve 2: κ = 2;
curve 3: κ = 3; curve 4: κ = 4; curve 5: κ = 5; curve 6: κ = 6.
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FIGURE 7.4
The convergent analytic result of v(ξ) = Au(ξ) when κ = 2 and ε = 10, 40, 100
by means of H(ξ) = 1. Dashed line: fifth-order approximation of v(ξ) when
ε = 10 by means of � = −1; dash-dotted line: 10th-order approximation of
v(ξ) when ε = 40 by means of � = −1/2; solid line: 20th-order approximation
of v(ξ) when ε = 100 by means of � = −1/5.
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FIGURE 7.5
The convergent analytic result of v(ξ) = Au(ξ) when κ = 3 and ε = 10, 90, 225
by means of H(ξ) = 1. Dashed line: fifth-order approximation of v(ξ) when
ε = 10 by means of � = −1; dash-dotted line: 10th-order approximation of
v(ξ) when ε = 90 by means of � = −1/2; solid line: 20th-order approximation
of v(ξ) when ε = 225 by means of � = −1/5.
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8

Nonlinear eigenvalue problem

It is often necessary to know eigenvalues and eigenfunctions of a nonlinear
problem. In this chapter we illustrate how to obtain eigenvalues and eigen-
functions of a given nonlinear problem by means of the homotopy analysis
method.

For example, let us consider an eigenvalue problem governed by

u′′(x) + λ u(x) + ε u3(x) = 0, (8.1)

subject to the boundary conditions

u(0) = u(1) = 0, (8.2)

where the prime denotes differentiation with respect to x, ε is a parameter.
Our object is to find such an eigenvalue λn and a normalized eigenfunction
un(x) such that

u′′
n(x) + λn un(x) + ε u3

n(x) = 0, (8.3)

subject to the boundary conditions

un(0) = un(1) = 0 (8.4)

and the normalization condition

∫ 1

0

u2
n(x)dx = 1, (8.5)

where the subscript n ≥ 1 is an integer. Nayfeh [12] described a pertur-
bation approach to the same problem and gave the first-order perturbation
approximation

un(x) =
√

2 sin(nπx) − ε
√

2
16n2π2

sin(3nπx) + O(ε2), (8.6)

λn = n2π2 − 3
2
ε + O(ε2), (8.7)

valid for small ε.
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8.1 Homotopy analysis solution

8.1.1 Zero-order deformation equation

From the boundary conditions (8.4) and considering the nonlinearity of Equa-
tion (8.3), it is straightforward that the eigenfunction un(x) can be expressed
by the set of base functions

{sin[(2k + 1)nπx] | n ≥ 1, k = 0, 1, 2, 3, · · ·} (8.8)

in the form

un(x) =
+∞∑
k=0

an,k sin[(2k + 1)nπx], (8.9)

where an,k is a coefficient. This provides us with the so-called rule of solution
expression.

Under the rule of solution expression denoted by (8.9) and from (8.4) and
(8.5), it is straightforward to choose

un,0(x) =
√

2 sin(nπx) (8.10)

as an initial guess of un(x). Furthermore, under the rule of solution expres-
sion denoted by (8.9) and from Equation (8.3), we choose an auxiliary linear
operator

LΦ =
∂2Φ
∂x2

+ (nπ)2Φ (8.11)

with the property

L [C1 sin(nπx) + C2 cos(nπx)] = 0, (8.12)

where C1 and C2 are constant coefficients. From Equation (8.3), we define
the nonlinear operator

N [Φ(x; q),Λ(q)] =
∂2Φ(x; q)

∂x2
+ Λ(q) Φ(x; q) + ε Φ3(x; q), (8.13)

where q ∈ [0, 1] is an embedding parameter, Φ(x; q) is a function of x and q,
and Λ(q) is a function of q, corresponding to un(x) and λn, respectively. Let
� �= 0 denote a nonzero auxiliary parameter and H(x) �= 0 a nonzero auxiliary
function. Then, we construct the so-called zero-order deformation equation

(1 − q) L [Φ(x; q) − un,0(x)] = q � H(x) N [Φ(x; q),Λ(q)], (8.14)

subject to the boundary conditions

Φ(0; q) = Φ(1; q) = 0. (8.15)
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When q = 0, it is straightforward to show that the zero-order deformation
equations (8.14) and (8.15) have the solution

Φ(x; 0) = un,0(x). (8.16)

When q = 1, they are equivalent to the original equations (8.3) and (8.4),
respectively, provided

Φ(x; 1) = un(x), Λ(1) = λn. (8.17)

Thus, as the embedding parameter q increases from 0 to 1, Φ(x; q) varies from
the initial guess un,0(x) to the exact eigenfunction un(x), so does Λ(q) from
the initial guess λn,0 to the exact eigenvalue λn, respectively. Note that the
zero-order deformation equations contain the auxiliary parameter � and the
auxiliary function H(x), therefore Φ(x; q) and Λ(q) are dependent of � and
H(x). Assume that � and H(x) are properly chosen so that the zero-order
deformation equations (8.14) and (8.15) have solutions for all q ∈ [0, 1], that
the terms

un,k(x) =
1
k!

∂kΦ(x; q)
∂qk

∣∣∣∣
q=0

, λn,k =
1
k!

∂kΛ(q)
∂qk

∣∣∣∣
q=0

(8.18)

exist for k ≥ 1, and that the Taylor series

Φ(x; q) =
+∞∑
k=0

un,k(x) qk, (8.19)

Λ(q) =
+∞∑
k=0

λn,k qk (8.20)

are convergent at q = 1. Then, using (8.16) and (8.17), we have

un(x) = un,0(x) +
+∞∑
k=1

un,k(x), (8.21)

λn = λn,0 +
+∞∑
k=1

λn,k, (8.22)

which provide us with the relationships between the exact eigenfunction,
eigenvalue, and their initial guesses by un,k(x) and λn,k, respectively.

8.1.2 High-order deformation equation

For brevity, define the vector


un,m = {un,0(x), un,1(x), un,2(x), · · · , un,m(x)}
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and

λn,m = {λn,0, λn,1, λn,2, · · · , λn,m} .

Differentiating the zero-order deformation equations (8.14) and (8.15) k times
with respect to q and then dividing by k! and finally setting q = 0, we have
the high-order deformation equation

L [un,k(x) − χk un,k−1(x)] = � H(x) Rn,k(
un,k−1, 
λn,k−1), (8.23)

subject to the boundary conditions

un,k(0) = un,k(1) = 0, (8.24)

where χk is defined by (2.42) and

Rn,k(
un,k−1, 
λn,k−1)

= u′′
n,k−1(x) +

k−1∑
m=0

λmun,k−1−m(x)

+ ε
k−1∑
m=0

un,k−1−m(x)
m∑

j=0

un,j(x)un,m−j(x). (8.25)

Note that, for any a given integer n ≥ 1, both un,k(x) and λn,k−1 are
unknown for k ≥ 1, but we have only one differential equation (8.23) for
un,k(x). Thus, the problem is not closed and an additional algebraic equation
is needed to determine λn,k−1. Note that we have great freedom to choose
the auxiliary function H(x). Under the rule of solution expression denoted
by (8.9), Rn,k(
un,k−1, 
λn,k−1) can be expressed in the form

Rn,k(
un,k−1, 
λn,k−1) =
Mn,k∑
m=0

dn,m sin[(2m + 1)nπx],

where dn,m is a coefficient, and Mn,k is an integer dependent on both n and
k. Under the rule of solution expression denoted by (8.9) and from (8.11) and
(8.23), H(x) can be in the form

H(x) = sin2[(2m − 1) nπx], (m ≥ 1) (8.26)

or
H(x) = sin[(2m)nπx], (m ≥ 1) (8.27)

or
H(x) = cos2[(2m − 1) nπx], (m ≥ 1) (8.28)

or
H(x) = cos[(2m)nπx], (m ≥ 1) (8.29)
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or even simply
H(x) = 1, (8.30)

where m ≥ 1 is an integer. So, it holds

H(x) Rn,k(
un,k−1, 
λn,k−1) =
µn,k∑
m=0

bn,k
m (
λk−1) sin[(2m + 1)nπx], (8.31)

where bn,k
m (
λk−1) is a coefficient, and µn,k is an integer determined by H(x)

and the values of n and k. Thus, there exists the term

� bn,k
0 (
λk−1) sin(nπx)

on the right-hand side of the high-order deformation equation (8.23). If

bn,k
0 (
λk−1) �= 0,

due to the property (8.12), the solution un,k(x) contains the term

x sin(nπx),

which disobeys the rule of solution expression denoted by (8.9). To avoid this,
we had to enforce

bn,k
0 (
λk−1) = 0, (8.32)

which provides us with an additional equation to determine λn,k−1. In this
way, the problem is closed.

After solving the above algebraic equation to gain λn,k−1, it is easy to get
the solution

un,k(x) = χk un,k−1(x) +
µn,k∑
m=1

� bn,k
m (
λk−1)

n2π2 [1 − (2m + 1)2]
sin[(2m + 1)nπx]

+ C1 sin(nπx) + C2 cos(nπx), (8.33)

where C1 and C2 are coefficients. Using the rule of solution expression denoted
by (8.9), we have

C2 = 0.

Note that the above solution automatically satisfies the boundary conditions
(8.24) so that the coefficient C1 cannot be determined. However, from the
normalization condition (8.5), we have

∫ 1

0

(
k∑

m=0

un,m(x)

)2

dx = 1, (8.34)

which gives an algebraic equation

C2
1 + 4αC1 + 2β = 1, (8.35)
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where

α =
∫ 1

0

wn,k(x) sin(nπx)dx, β =
∫ 1

0

w2
n,k(x)dx (8.36)

and

wn,k(x) =
k−1∑
j=0

un,j(x) + χk un,k−1(x)

+
µn,k∑
m=1

� bn,k
m (
λk−1)

n2π2 [1 − (2m + 1)2]
sin[(2m + 1)nπx]. (8.37)

Solving Equation (8.35), we have two solutions

C1 = −2α +
√

4α2 − 2β (8.38)

and
C1 = −2α −

√
4α2 − 2β, (8.39)

which correspond to two different eigenfunctions, respectively. In this way,
we can gain λn,0, un,1(x), λn,1, un,2(x), and so on, successively.

For any given n, the mth-order approximation of the eigenfunction and
eigenvalue are given by

un(x) ≈ un,0 +
m∑

k=1

un,k(x), (8.40)

λn ≈ λn,0 +
m∑

k=1

λn,k, (8.41)

respectively.

8.1.3 Convergence theorem

THEOREM 8.1
If the series

un,0(x) +
+∞∑
k=1

un,k(x)

and

λn,0 +
+∞∑
k=1

λn,k

are convergent, where un,k(x) is governed by Equations (8.23), (8.24), and
(8.34) under the definitions (8.11), (8.25), and (2.42), they must be the eigen-
function and eigenvalue of Equations (8.1) and (8.2), respectively.
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Proof: If the series of the eigenfunction is convergent, it is necessary that

lim
m→+∞un,m(x) = 0.

Then, using (8.11), (8.23), and (2.42), we have

� H(x)
+∞∑
k=1

Rk(
un,k−1, 
λn,k−1)

= lim
m→+∞

m∑
k=1

L[un,k(x) − χkun,k−1(x)]

= L
{

lim
m→+∞

m∑
k=1

[un,k(x) − χkun,k−1(x)]

}

= L
[

lim
m→+∞un,m(x)

]

= 0,

which gives, since � �= 0 and H(x) �= 0,

+∞∑
k=1

Rk(
un,k−1, 
λn,k−1) = 0.

Substituting (8.25) into the above expression and simplifying it, we obtain,
due to the convergence of the series of the eigenfunction and eigenvalue, that

d2

dx2

[
+∞∑
k=0

un,k(x)

]
+

(
+∞∑
m=0

λn,m

)[
+∞∑
k=0

un,k(x)

]
+ ε

[
+∞∑
k=0

un,k(x)

]3

= 0.

From (8.10) and (8.24) it holds that

+∞∑
k=0

un,k(0) =
+∞∑
k=0

un,k(1) = 0.

Furthermore, from (8.34), the normalization condition (8.5) is satisfied. Thus,
as long as the two series are convergent, they must be the eigenfunction un(x)
and the eigenvalue λn of the nonlinear problem governed by Equations (8.3),
(8.4), and (8.5). This ends the proof.

8.2 Result analysis

Note that the series (8.21) and (8.22) contain the auxiliary parameter � and
the auxiliary function H(x). In particular, for any given values of n and ε, the
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series (8.22) for the eigenvalue is a power series of � so that its convergence
region and rate are dependent on �. According to Theorem 8.1, we need only
focus on the choice of the auxiliary parameter � and the auxiliary function
H(x) to ensure that the two series converge. Note that, under the rule of
solution expression denoted by (8.9) and the rule of coefficient ergodicity, the
auxiliary functions H(x) can be chosen in many different forms such as those
expressed by (8.26) to (8.30). For the sake of simplicity, we first consider the
case of H(x) = 1. For any given values of n and ε, we can investigate the
influence of � on the convergence region of the series (8.22) for the eigenvalue
by plotting the so-called �-curves (see page 26 and §3.5.1) of λn versus �.
For example, the �-curves of the eigenvalue λ1 when ε = 5, 25,−50 are as
shown in Figure 8.1. Using the �-curves, we can easily find out the valid
regions of � which ensure that the corresponding series (8.22) converge. From
Figure 8.1, it is clear that the series (8.22) of λ1 when ε = −50 converges
by means of � = −1/2 or � = −2/5. This is indeed true, as shown in Table
8.1, and the convergence rate can be accelerated by means of the homotopy-
Padé technique (see page 38 and §3.5.2), as shown in Table 8.2. It is found
that, as long as the series (8.22) for the eigenvalue is convergent, the series
(8.21) for the corresponding eigenfunction also converges in the whole region
0 ≤ x ≤ 1. For example, the approximations of the eigenfunction u1(x) when
ε = −50 are as shown in Figure 8.2. In this way, we can gain the convergent
eigenvalue and eigenfunction for any given values of n and ε. For instance,
some convergent analytic results of the eigenvalues are listed in Table 8.3 and
some eigenfunctions are as shown in Figures 8.3 and 8.4.

It is found that the valid region of � becomes shorter as the nonlinearity
of the problem is stronger, as shown in Figure 8.1. So, as the absolute value
of ε increases, the value of � had to be chosen closer to zero from the below.
It is found that, for ε < 0, we can always gain convergent results by means of

� = − 1√
1 + |ε| . (8.42)

Using this expression, we can investigate the eigenvalues and eigenfunctions
when the nonlinearity becomes very strong. Some eigenvalues for negative
ε far away from zero are listed in Table 8.4 and some eigenfunctions are as
shown in Figures 8.5 to 8.7, respectively. According to these analytic results,
it seems that

lim
ε→−∞

λn

ε
= −1 (8.43)

and

lim
ε→−∞un(x) =

{
1, 2k/n < x < (2k + 1)/n,
−1, (2k + 1)/n < x < (2k + 2)/n,

(8.44)

where n ≥ 2, k = 0, 1, 2, · · · , [(n − 1)/2] and [x] denotes the integer part of x.
Note that, when ε = −10000, we had to choose a negative value of � with a
small enough absolute value so as to ensure that the series (8.21) and (8.22)
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converge. This indicates once again that the auxiliary parameter � plays an
important role in the homotopy analysis method.

It is found that, if (8.38) is used to calculate the coefficient C1, the corre-
sponding eigenfunction is positive in the region

0 < x < 1/n.

Let u+
n (x) denote such kind of eigenfunction. If (8.39) is used, the correspond-

ing eigenfunction is negative in the same region, denoted by u−
n (x). It also

is found that these two kinds of eigenfunctions are symmetrical about the x
axis. Thus, for given ε and n, there exists a unique eigenvalue λn but two
eigenfunctions u+

n (x) and u−
n (x) satisfying

u−
n (x) = −u+

n (x).

However, the series of the eigenfunction u−
n (x) converges more slowly than

that of the eigenfunction u+
n (x). This is mainly because u+

n (x) is closer to the
initial guess (8.10). It is found that, if we use the initial guess

un,0(x) = −
√

2 sin(nπx)

and employ the formula (8.39), it is easier to get convergent eigenfunctions
u−

n (x). So, by means of the homotopy analysis method we can gain the
multiple eigenfunctions of the considered nonlinear problem.

All of the above results are given by means of the auxiliary function
H(x) = 1. It is found that the other four types of the auxiliary functions
denoted by (8.26) to (8.29) can also give convergent results. Using different
auxiliary functions, we gain the same eigenvalue and eigenfunction, however,
the solution series given by the other four types of the auxiliary functions
converge more slowly than those by H(x) = 1. It seems that H(x) = 1 might
be the best auxiliary function for the considered problem, although we cannot
prove it.

This example illustrates that the homotopy analysis method can be em-
ployed to gain all eigenvalues and eigenfunctions of nonlinear boundary-value
problems with very strong nonlinearity.
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TABLE 8.1

The analytic approximations of λ1/π2 when ε = −50 by means of
H(x) = 1.

order of approximation � = −1/2 � = −2/5

5 7.5375343842 7.5399457051
10 7.5384488341 7.5384600578
15 7.5384471198 7.5384473078
20 7.5384471141 7.5384471261
25 7.5384471141 7.5384471146
30 7.5384471141 7.5384471141
35 7.5384471141 7.5384471141
40 7.5384471141 7.5384471141

TABLE 8.2

The [m,m] homotopy-Padé approximant of λ1/π2 when
ε = −50 by means of H(x) = 1.

[m,m] � = −1/2 � = −2/5

[2, 2] 7.5407539111 7.5410810211
[4, 4] 7.5384474321 7.5384485282
[6, 6] 7.5384473644 7.5384480394
[8, 8] 7.5384471141 7.5384471141

[10, 10] 7.5384471141 7.5384471141
[12, 12] 7.5384471141 7.5384471141
[14, 14] 7.5384471141 7.5384471141
[16, 16] 7.5384471141 7.5384471141
[18, 18] 7.5384471141 7.5384471141
[20, 20] 7.5384471141 7.5384471141
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TABLE 8.3

The analytic value of λn/(nπ)2 by means of � = −1 and
H(x) = 1.

ε n = 1 n = 2 n = 3

-25 4.43277 1.91746 1.41524
-20 3.78508 1.73857 1.33324
-15 3.12328 1.55758 1.25074
-10 2.44317 1.37430 1.16771
-5 1.73857 1.18852 1.08414
0 1 1 1
5 0.212582 0.808470 0.915264
10 -0.647567 0.613626 0.829909
15 -1.61838 0.415125 0.743906
20 -2.75608 0.212582 0.657228
25 -4.13061 0.005561 0.569843

TABLE 8.4

The analytic value of λn/ε by means of H(x) = 1.
ε λ1/ε λ2/ε λ3/ε

-200 -1.221 -1.488 -1.810
-400 -1.152 -1.325 -1.524
-600 -1.122 -1.272 -1.412
-1000 -1.093 -1.196 -1.310
-2000 -1.065 -1.135 -1.215
-5000 -1.041 -1.083 -1.133
-10000 -1.029 -1.059 -1.090
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FIGURE 8.1
The �-curves of λ1/π2 by means of H(x) = 1. Dash-dotted line: 20th-order
approximation when ε = 5; dash-dot-dotted line: 20th-order approximation
when ε = 25; solid line: 30th-order approximation when ε = −50.
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FIGURE 8.2
The analytic approximations of the eigenfunction u1(x) when ε = −50 by
means of � = −1/2 and H(x) = 1. Dashed line: zero-order approximation;
solid line: fifth-order approximation; symbols: 10th-order approximation.
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FIGURE 8.3
The convergent analytic results of the eigenfunction u1(x) by means of H(x) =
1. Solid line: 30th-order approximation when ε = 50 and � = −1/2; dash-dot-
dotted line: 10th-order approximation when ε = 25 and � = −1/2; dashed
line: fifth-order approximation when ε = 5 and � = −1; dash-dotted line:
20th-order approximation when ε = −25 and � = −1/2; long-dashed line:
20th-order approximation when ε = −50 and � = −1/2.
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FIGURE 8.4
The convergent analytic results of the eigenfunction u2(x) by means of � = −1
and H(x) = 1. Solid line: 10th-order approximation when ε = 100; dash-dot-
dotted line: fifth-order approximation when ε = 50; dash-dotted line: 10th-
order approximation when ε = −50; dashed line: 20th-order approximation
when ε = −100.
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FIGURE 8.5
The convergent analytic result of the eigenfunction u2(x) by means of H(x) =
1. Solid line: 100th-order approximation when ε = −5000 and � = −1/50;
dash-dot-dotted line: 20th-order approximation when ε = −1000 and � =
−1/10; dash-dotted line: 20th-order approximation when ε = −400 and � =
−1/4; dashed line: 20th-order approximation when ε = −100 and � = −1.
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FIGURE 8.6
The analytic result of the eigenfunction u3(x) when ε = −10000 by means of
H(x) = 1 and � = −1/50. Solid line: 70th-order approximation; symbols:
90th-order approximation
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FIGURE 8.7
The analytic result of the eigenfunction u4(x) when ε = −10000 by means of
H(x) = 1 and � = −1/20. Solid line: 40th-order approximation; symbols:
60th-order approximation
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9

Thomas-Fermi atom model

In the Thomas-Fermi atom model [81, 82] there exists the so-called Thomas-
Fermi equation

u′′(x) =

√
u3(x)

x
, (9.1)

subject to the boundary conditions

u(0) = 1, u(+∞) = 0 (9.2)

in the common case. The Thomas-Fermi atom model views the electrons in an
atom as a gas and derives atomic structure in terms of the electrostatic poten-
tial and the electron density in the ground state. Equation (9.1) describes the
spherically symmetric charge distribution concerning a multi-electron atom.

From (9.1) and (9.2) it holds that u′′(0) → +∞. So, there exists a sin-
gularity at x = 0. The analytic approximations of the Thomas-Fermi equa-
tion were given by the variational approach [83, 84], the δ-expansion method
[85, 86, 87], Adomian’s decomposition method [88, 89, 90, 91], and so on
[92, 93, 94, 95, 96, 97]. However, all of these results are analytic-numerical
because numerical techniques had to be employed to gain the value of u′(0).
Recently, Liao [51] applied the homotopy analysis method to give, for the first
time, an explicit, purely analytic solution of the Thomas-Fermi equation by
means of the base functions{

(1 + x)−n | n ≥ 1
}

. (9.3)

Although Liao’s [51] solution is valid in the whole region, its convergence rate
is slow for large x. In this chapter, using a set of base functions better than the
above ones, we apply the homotopy analysis method to give a more efficient
analytic expansion of Thomas-Fermi equations.

9.1 Homotopy analysis solution

9.1.1 Asymptotic property

Equation (9.1) can be rewritten by

x [u′′(x)]2 − u3(x) = 0. (9.4)
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Under the transformation
τ = 1 + λ x, (9.5)

where λ is a constant parameter to be determined later, Equation (9.4) be-
comes

λ3 (τ − 1)
(

d2u

dτ2

)2

− u3(τ) = 0, (9.6)

subject to the boundary conditions

u(1) = 1, u(+∞) = 0. (9.7)

Note that Equation (9.6) contains neither linear terms nor small/large pa-
rameters. So, its nonlinearity is very strong. According to (9.7), as τ → +∞,
u(τ) → 0 either algebraically or exponentially. However, from Equations (9.6)
and (9.7), it is hard to determine the asymptotic property of u(x) at infinity.
So, let us first assume that u(τ) → 0 algebraically and that u(τ) has the
asymptotic expression

u(τ) ∼ τκ as τ → +∞,

where κ is an unknown constant. Substituting it into Equation (9.6) and then
balancing the main terms, we have

κ = −3. (9.8)

Therefore, u(τ) can be expressed by the set of base functions
{
τ−m | m ≥ 3

}
(9.9)

in the form

u(τ) =
+∞∑
m=3

cm τ−m, (9.10)

where cm is a coefficient. This provides us with the so-called rule of solution
expression.

9.1.2 Zero-order deformation equation

Under the rule of solution expression denoted by (9.10) and using the bound-
ary conditions (9.7), it is straightforward to choose

u0(τ) = τ−3 (9.11)

as the initial guess of u(τ). From (9.6) and using the rule of solution expression
denoted by (9.10), we choose the auxiliary linear operator

L[Φ(τ ; q)] =
(τ

4

) ∂2Φ(τ ; q)
∂τ2

+
∂Φ(τ ; q)

∂τ
(9.12)
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with the property

L
(

C1

τ3
+ C2

)
= 0, (9.13)

where C1 and C2 are coefficients. From Equation (9.6), we define the nonlinear
operator

N [Φ(τ ; q)] = λ3 (τ − 1)
[
∂2Φ(τ ; q)

∂τ2

]2
− Φ3(τ ; q), (9.14)

where Φ(τ ; q) is an unknown function of τ and q. Let � denote a nonzero aux-
iliary parameter and H(τ) a nonzero auxiliary function, respectively. Then,
we construct the zero-order deformation equation

(1 − q) L [Φ(τ ; q) − u0(τ)] = � H(τ) q N [Φ(τ ; q)], (9.15)

subject to the boundary conditions

Φ(1; q) = 1,Φ(+∞; q) = 0, (9.16)

where q ∈ [0, 1] is an embedding parameter.
From (9.11), it is straightforward to show that when q = 0 the solution of

Equations (9.15) and (9.16) is

Φ(τ ; 0) = u0(τ). (9.17)

Since � �= 0 and H(τ) �= 0, when q = 1, Equations (9.15) and (9.16) are
equivalent to Equations (9.6) and (9.7), respectively, provided

Φ(τ ; 1) = u(τ). (9.18)

Thus, as q increases from 0 to 1, Φ(τ ; q) varies from the initial guess u0(τ) to
the exact solution u(τ) of Equations (9.6) and (9.7).

By Taylor’s theorem and using (9.17), we can expand Φ(τ ; q) in the series
of q in the form

Φ(τ ; q) = u0(τ) +
+∞∑
k=1

uk(τ) qk, (9.19)

where

uk(τ) =
1
k!

∂kΦ(τ ; q)
∂qk

∣∣∣∣
q=0

. (9.20)

Φ(τ ; q) is also dependent upon the auxiliary parameter � and the auxiliary
function H(x). Assuming that � and H(x) are properly chosen so that the
series (9.19) converges at q = 1, we have, using (9.18),

u(τ) = u0(τ) +
+∞∑
k=1

uk(τ). (9.21)

It provides us with a relationship between the initial guess u0(x) and the exact
solution u(x) by the terms uk(x) (k ≥ 1).
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9.1.3 High-order deformation equations

For brevity, define


un = {u0(τ), u1(τ), u2(τ), · · · , un(τ)} .

Differentiating the zero-order deformation equations (9.15) and (9.16) k times
with respect to q and then setting q = 0 and finally dividing them by k!, we
have the so-called high-order deformation equation

L [uk(τ) − χkuk−1(τ)] = � H(τ) Rk(
uk−1, τ), (9.22)

subject to the boundary conditions

uk(1) = 0, uk(+∞) = 0, (9.23)

where χk is defined by (2.42) and

Rk(
uk−1, τ)

=
k−1∑
j=0

[
λ3 (τ − 1) u′′

j (τ) u′′
k−1−j(τ) − uk−1−j(τ)

j∑
i=0

ui(τ) uj−i(τ)

]
. (9.24)

Note that uk(τ) (k ≥ 1) is governed by the linear equation (9.22) and the
linear boundary conditions (9.23). Thus, according to (9.21), the homotopy
analysis method in essence transfers the original nonlinear problem, governed
by Equations (9.6) and (9.7), to an infinite number of linear sub-problems,
governed by Equations (9.22) and (9.23). Note that such a kind of transfor-
mation does not need any small or large parameters at all.

Let u∗
k(τ) denote a special solution of the equation

L[u∗
k(τ)] = � H(τ) Rk(
uk−1, τ).

Then, using (9.13), the general solution of Equation (9.22) is

uk(τ) = χk uk−1(τ) + u∗
k(τ) + C1 τ−3 + C2, (9.25)

where the coefficients C1 and C2 are determined by the boundary conditions
(9.23). In this way we can successively solve the high-order deformation equa-
tions (9.22) and (9.23), provided H(τ) is known. Under the rule of solution
expression denoted by (9.10), H(τ) should be in the form

H(τ) = τσ, (9.26)

where σ is an integer to be determined. It is found that when

σ > 4,

the solution contains the term
τ ln τ
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that disobeys the rule of solution expression denoted by (9.10). When

σ < 4,

the coefficient of the term τ−4 is always zero and cannot be improved even
if the order of approximation tends to infinity. This disobeys the rule of
coefficient ergodicity. Thus, to obey the rule of solution expression denoted
by (9.10) and the rule of coefficient ergodicity, we had to choose σ = 4 which
uniquely determines the auxiliary function

H(τ) = τ4. (9.27)

Thereafter, it is straightforward to solve the high-order deformation equations
(9.22) and (9.23), successively.

9.1.4 Recursive expressions

Considering the importance of Thomas-Fermi atom model, it is worthwhile
to give an explicit analytic expression of its solution. It is found that uk(τ)
can be expressed by

uk(τ) =
2k∑

n=0

αk,n

τn+3
, (9.28)

where αk,n is a coefficient. Substituting this expression into the high-order
deformation equations (9.22) and (9.23), we gain the recurrence formulae

αk,j = χkχ2k−j αk−1,j

+
4�
[
χ2k+1−j

(
λ3βk,j+1 − γk,j+1

)− χj λ3βk,j

]
j(j + 3)

, (9.29)

βk,i =
k−1∑
j=0

min{2j,i−2}∑
n=max{0,i+2j−2k}

(n + 3)(n + 4)(i + 1 − n)

×(i + 2 − n) αj,n αk−1−j,i−n−2, (9.30)

γk,i =
k−1∑
j=0

min{2j,i−2}∑
n=max{0,i+2j−2k}

δj,n αk−1−j,i−n−2, (9.31)

and

δj,n =
j∑

i=0

min{2i,n}∑
r=max{0,n+2i−2j}

αi,r αj−i,n−r, (9.32)
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respectively. From (9.23), we have

αk,0 = −
2k∑

n=1

αk,n. (9.33)

From (9.11) we gain the first coefficient

α0,0 = 1. (9.34)

Thus, using the above recurrence formulae and from the first coefficient α0,0 =
1, we can calculate successively all other coefficients αk,n. Therefore, we
obtain an explicit analytic solution of the Thomas-Fermi atom model in the
form:

u(x) =
+∞∑
k=0

2k∑
n=0

αk,n

(1 + λ x)n+3
. (9.35)

The corresponding mth-order approximation is expressed by

u(x) ≈
m∑

k=0

2k∑
n=0

αk,n

(1 + λ x)n+3
, (9.36)

which gives

u′(0) ≈ −λ
m∑

k=0

2k∑
n=0

(n + 3)αk,n (9.37)

and

u′′(0) ≈ λ2
m∑

k=0

2k∑
n=0

(n + 3)(n + 4)αk,n. (9.38)

9.1.5 Convergence theorem

THEOREM 9.1
If the series

u0(τ) +
+∞∑
k=1

uk(τ)

is convergent, where uk(τ) is governed by Equations (9.22) and (9.23) under
the definitions (9.12), (9.24), and (2.42), it must be an exact solution of the
Thomas-Fermi equation.

Proof: If the series is convergent, it holds

lim
m→+∞um(τ) = 0

© 2004 CRC Press LLC 



and we can express it by

s(τ) = u0(τ) +
+∞∑
k=1

uk(τ).

Then, using (9.12), (9.22), and (2.42), we have

� H(τ)
+∞∑
k=1

Rk(
uk−1, τ) = lim
m→+∞

m∑
k=1

L[uk(τ) − χkuk−1(τ)]

= L
{

lim
m→+∞

m∑
k=1

[uk(τ) − χkuk−1(τ)]

}

= L
[

lim
m→+∞um(τ)

]

= 0,

which gives, since � �= 0 and H(τ) = τ4,

+∞∑
k=1

Rk(
uk−1, τ) = 0

for any τ ≥ 1. Substituting (9.24) into the above expression and simplifying
it, we obtain

+∞∑
k=1

Rk(
uk−1, τ)

=
+∞∑
k=1

k−1∑
j=0

[
λ3(τ − 1) u′′

j (τ) u′′
k−1−j(τ) − uk−1−j(τ)

j∑
i=0

ui(τ) uj−i(τ)

]

= λ3 (τ − 1)

[
+∞∑
k=0

u′′
k(τ)

]2

−
[

+∞∑
k=0

uk(τ)

]3

= λ3 (τ − 1)
[
d2s(τ)
dτ2

]2
− s3(τ)

= 0.

From (9.23) and (9.11), it holds

s(1) = 1, s(+∞) = 0.

So, s(τ) satisfies Equations (9.6) and (9.7), and therefore is an exact solution
of the original Thomas-Fermi equations (9.1) and (9.2). This ends the proof.
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9.2 Result analysis

According to Theorem 9.1, we should ensure that the solution series (9.35)
converges. Note that this series contains the auxiliary parameter � and the
parameter λ, which influence its convergence region and rate. We should
therefore focus on the choice of � and λ.

The energy of a neutral atom in the Thomas-Fermi model is determined
by

E =
6
7

(
4π

3

)2/3

Z7/3 u′(0),

where Z is the unclear charge. So, the initial slope u′(0) has an important
physical meaning. Instead of investigating the influence of � and λ on the
convergence of u(x) in the whole region 0 ≤ x < +∞, first we consider
the series of u′(0). Clearly, u′(0) is dependent of both � and λ. For any
a given �, we can investigate the influence of λ on the convergence of the
series u′(0) by regarding it as a function of λ and plotting the corresponding
curves of u′(0) versus λ, as shown in Figure 9.1 for � = −1, � = −3/4,
and � = −1/2. According to Theorem 9.1, u′(0) should converge to the
same value, corresponding to a nearly horizontal line segment in Figure 9.1.
From this figure, it is clear that u′(0) is convergent when 0.2 < λ < 0.3 and
−1 ≤ � ≤ −1/2. Then, it is natural to choose

λ = 1/4.

To investigate the influence of � on the convergence region and rate of series
u′(0) in the case of λ = 1/4, we plot the corresponding �-curves (see page
26 and §3.5.1) of u′(0), as shown in Figure 9.2. u′(0) is convergent in the
region −2 < � < 0 when λ = 1/4. Furthermore, it is found that, as long as
the series of u′(0) converges, the corresponding series of u(x) is convergent
in the whole region 0 ≤ x < +∞. So, the series (9.35) is convergent in the
whole region 0 ≤ x < +∞ when λ = 1/4 and −2 < � < 0. For example,
when � = −1 and λ = 1/4, the 10th-order approximation of (9.36) agrees well
with the 100th-order approximation, as shown in Figure 9.3, clearly indicating
the convergence of the corresponding solution series. The convergent analytic
results of u(x) by means of � = −1 and λ = 1/4 are listed in Table 9.1.
According to Theorem 9.1, it must be the exact solution of the Thomas-
Fermi equation. The explicit analytic expression (9.35) when � = −1 and
λ = 1/4 may be regarded as a definition of the solution of the Thomas-Fermi
equation.

Kobayashi [98] gave the numerical result

u′(0) = −1.588071. (9.39)
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The approximations of the initial slope u′(0) given by (9.36) when � = −1
and λ = 1/4 are listed in Table 9.2. Clearly, the error decreases as the
order of approximation increases. However, the convergence rate of u′(0) is
much slower than that of u(x), possibly due to the singularity at x = 0. We
employ the homotopy-Padé method (see page 38 and §3.5.2) to gain more
accurate approximations of the initial slope u′(0), as shown in Table 9.3.
The approximations of u′′(0) when � = −1 and λ = 1/4 are listed in Table
9.4. The homotopy-Padé approximations of u′′(0) are listed in Table 9.5.
Obviously, u′′(0) given by (9.35) tends to infinity; this indicates that the
homotopy analysis method may handle nonlinear problems with singularity
and strong nonlinearity.

At the beginning of this chapter we assume that u(x) tends to zero alge-
braically as x → +∞. Under this assumption we obtain the convergent re-
sults of the original Thomas-Fermi equation in the whole region 0 ≤ x < +∞.
Thus, this assumption seems to be reasonable. So, we have many reasons to
believe that the solution of the Thomas-Fermi equation behaves algebraically
at infinity. Note that it is hard to get this kind of conclusion by numerical
techniques. This example also illustrates that we may employ the homotopy
analysis method to get an accurate approximation of a nonlinear problem by
means of assuming a set of base functions even if we know a little about its
properties, and such a kind of assumption damages the method a little in
practice.

Having not realized the importance of the asymptotic property at infinity
and expressing u(x) in the form

u(x) =
+∞∑
n=1

an

(1 + x)n
,

Liao [51] employed the homotopy analysis method to give an explicit analytic
solution of the Thomas-Fermi equation, which converges slowly for large x.
So, for nonlinear problems in an infinite domain, it seems better to investigate
asymptotic properties of solutions at infinity. This can considerably increase
the convergence rate of approximate series. Note that the solution of the
Thomas-Fermi equation can be expressed, respectively, by the base functions
(9.3) and (9.10), and the approximation series given by the latter converges
faster than that by the former. This indicates that, although the solution of
the Thomas-Fermi equation seems unique, it can be expressed by different
base functions, and there might even exist the best one among them.
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TABLE 9.1

The convergent analytic results of u(x) given by (9.36) when
� = −1 and λ = 1/4.

x u(x) x u(x)

0.25 0.755202 4.25 0.0996979
0.50 0.606987 4.50 0.0919482
0.75 0.502347 4.75 0.0850218
1.00 0.424008 5.00 0.0788078
1.25 0.363202 6.00 0.0594230
1.50 0.314778 7.00 0.0460978
1.75 0.275451 8.00 0.0365873
2.00 0.243009 9.00 0.0295909
2.25 0.215895 10.0 0.0243143
2.50 0.192984 15.0 0.0108054
2.75 0.173441 20.0 0.00578494
3.00 0.156633 25.0 0.00347375
3.25 0.142070 50.0 0.000632255
3.50 0.129370 75.0 0.000218210
3.75 0.118229 100 0.000100243
4.00 0.108404 1000 1.3513×10−7

TABLE 9.2

The initial slope u′(0) given by (9.37) when � = −1 and
λ = 1/4 compared with Kobayashi’s numerical result.

Order of approximation u′(0) Error (%)

10 -1.28590 19.03
20 -1.40932 11.26
30 -1.46306 7.87
40 -1.49236 6.03
50 -1.51063 4.88
60 -1.52309 4.09
70 -1.53211 3.52
80 -1.53895 3.09
90 -1.54430 2.76
100 -1.54860 2.49
110 -1.55214 2.26
120 -1.55509 2.07
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TABLE 9.3

The [m,m] Homotopy-Padé approximation of the initial slope u′(0)
given by (9.37) when � = −1 and λ = 1/4 compared with Kobayashi’s
numerical result.

[m,m] u′(0) Error (%)
[5, 5] -1.50419 5.28

[10, 10] -1.54600 2.65
[15, 15] -1.56437 1.49
[20, 20] -1.56474 1.47
[25, 25] -1.57666 0.72
[30, 30] -1.558032 0.49
[35, 35] -1.58187 0.39
[40, 40] -1.58301 0.32
[45, 45] -1.58388 0.26
[50, 50] -1.58469 0.21
[55, 55] -1.58538 0.17
[60, 60] -1.58605 0.13

TABLE 9.4

The analytic approximations of u′′(0) given by
(9.38) when � = −1 and λ = 1/4.

Order of approximation u′′(0)

10 3.79
20 6.41
30 8.96
40 11. 49
50 14.01
60 16.52
70 19.03
80 21.54
90 24.04
100 26.55
110 29.05
120 31.56
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TABLE 9.5

The [m,m] Homotopy-Padé approximations
of u′′(0) given by (9.38) when � = −1 and
λ = 1/4.

[m,m] u′′(0)

[5, 5] 122.7
[15, 15] 6087.7
[30, 30] 168917
[40, 40] 643063
[50, 50] 2.15707 ×106

[60, 60] 8.78329 ×106
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FIGURE 9.1
The 30th-order approximation of u′(0) versus λ. Solid line: � = −1; dash-
dotted line: � = −3/4; dash-dot-dotted line: � = −1/2.
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FIGURE 9.2
The �-curve of u′(0) at the 30th order of approximation when λ = 1/4.
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FIGURE 9.3
The analytic approximations of the Thomas-Fermi equation given by (9.36)
when � = −1 and λ = 1/4. Symbols: 10th-order approximation; solid line:
100th-order approximation.

© 2004 CRC Press LLC 



10

Volterra’s population model

Consider the Volterra model for the population growth [99] of a species within
a closed system governed by a nonlinear integro-differential equation

β
du(t)

dt
= u(t) − u2(t) − u(t)

∫ t

0

u(x)dx, (10.1)

subject to the initial condition

u(0) = α, (10.2)

where u(t) is the scaled population of identical individuals, t denotes the time,
and β = c/(ab) is a nondimensional parameter in which a > 0 is the birth
rate coefficient, b > 0 is the crowding coefficient, and c > 0 is the toxicity
coefficient, respectively. For details the reader is referred to Scudo [99], Small
[100], TeBeest [101], and Wazwaz [102].

10.1 Homotopy analysis solution

10.1.1 Zero-order deformation equation

Let λ > 0 denote a so-called time-scale parameter. Under the transformation

τ = λ t, w(τ) = u(t) (10.3)

Equation (10.1) becomes

(
β λ2

) dw(τ)
dτ

= λ
[
w(τ) − w2(τ)

]− w(τ)
∫ τ

0

w(x)dx, (10.4)

subject to the initial condition

w(0) = α. (10.5)

It was shown by Small [100] that a rise occurs along the solution curve
that will reach a peak and then followed by an exponential decay. So, it is
reasonable to express w(τ) by a set of base functions

{exp(−nτ) | n ≥ 1} (10.6)
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in the form

w(τ) =
+∞∑
n=1

an exp(−nτ), (10.7)

where an is a coefficient. This provides us with the so-called rule of solution
expression of w(τ). Under the rule of solution expression and using (10.5), it
is straightforward to choose the initial guess

w0(τ) = α exp(−τ) + γ [exp(−τ) − exp(−2τ)] , (10.8)

where γ is an auxiliary parameter to be determined later. Under the rule of
solution expression denoted by (10.7) and from Equation (10.4), it is straight-
forward to choose

Lf =
d f

dτ
+ f (10.9)

as the auxiliary linear operator, which has the property

L[e−τ ] = 0. (10.10)

From Equation (10.4), we define the nonlinear integro-differential operator

N [Φ(τ ; q),Λ(q)] = βΛ2(q)
∂Φ(τ ; q)

∂τ
− Λ(q)

[
Φ(τ ; q) − Φ2(τ ; q)

]

+ Φ(τ ; q)
∫ τ

0

Φ(x; q)dx, (10.11)

where q ∈ [0, 1] is an embedding parameter, Φ(τ ; q) is a function of τ and q,
and λ(q) is a function dependent of q. Let � �= 0 denote a nonzero auxiliary
parameter and H(τ) a nonzero auxiliary function, respectively. We construct
the zero-order deformation equation

(1 − q) L [Φ(τ ; q) − w0(τ)] = q � H(τ) N [Φ(τ ; q),Λ(q)] , (10.12)

subject to the initial condition

Φ(0; q) = α, (10.13)

where q ∈ [0, 1] is an embedding parameter.
When q = 0, it is straightforward that

Φ(τ ; 0) = w0(τ). (10.14)

When q = 1, since � �= 0 and H(τ) �= 0, the zero-order deformation equations
(10.12) and (10.13) are equivalent to Equations (10.4) and (10.5), respectively,
provided

Φ(τ ; 1) = w(τ), Λ(1) = λ. (10.15)
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Thus, as q increases from 0 to 1, Φ(τ ; q) varies from the initial guess w0(τ) to
the solution w(τ) of Equations (10.4) and (10.5), so does Λ(q) from the initial
guess

Λ(0) = λ0 (10.16)

to the exact time-scale parameter λ. Note that the zero-order deformation
equation (10.12) contains the auxiliary parameter � and the auxiliary function
H(τ). The initial guess w0(τ) contains the auxiliary parameter γ. Assume
that all of them are properly chosen so that in the whole region q ∈ [0, 1]
there exist the solutions Φ(τ ; q),Λ(q) of the zero-order deformation equations
(10.12) and (10.13), and also the terms

wn(τ) =
1
n!

∂nΦ(τ ; q)
∂qn

∣∣∣∣
q=0

, (10.17)

λn =
1
n!

∂nΛ(q)
∂qn

∣∣∣∣
q=0

. (10.18)

Then, by Taylor’s theorem and using (10.14) and (10.16), we expand Φ(τ ; q)
and Λ(q) in the series

Φ(τ ; q) = w0(τ) +
+∞∑
n=1

wn(τ) qn, (10.19)

Λ(q) = λ0 +
+∞∑
n=1

λn qn. (10.20)

Assuming that the auxiliary parameters �, γ, and the auxiliary function H(τ)
are properly chosen so that the above series converge at q = 1, we have, using
(10.15), the solution series

w(τ) = w0(τ) +
+∞∑
n=1

wn(τ), (10.21)

λ = λ0 +
+∞∑
n=1

λn. (10.22)

At the Mth order of approximation, we gain

w(τ) ≈ w0(τ) +
M∑

n=1

wn(τ), (10.23)

λ ≈ λ0 +
M∑

n=1

λn. (10.24)
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10.1.2 High-order deformation equation

For brevity, define the vector


wn = {w0(τ), w1(τ), · · · , wn(τ)} , 
λn = {λ0, λ1, · · · , λn} .

Differentiating the zero-order deformation equations (10.12) and (10.13) n
times with respect to the embedding parameter q and then dividing by n! and
finally setting q = 0, we have the high-order deformation equation

L [wn(τ) − χn wn−1(τ)] = � H(τ) Rn(
wn−1, 
λn−1), (10.25)

subject to the initial condition

wn(0) = 0, (10.26)

where χn is defined by (2.42) and

Rn(
wn−1, 
λn−1)

=
1

(n − 1)!
∂n−1N [Φ(τ ; q),Λ(q)]

∂qn−1

∣∣∣∣
q=0

= β

n−1∑
j=0

w′
n−1−j(τ)

j∑
i=0

λiλj−i −
n−1∑
j=0

λj wn−1−j(τ)

+
n−1∑
j=0

λn−1−j

j∑
i=0

wi(τ)wj−i(τ)

+
n−1∑
j=0

wn−1−j(τ)
∫ τ

0

wj(x)dx. (10.27)

There are two unknowns: λn−1 and wn(τ). However, we have only one
differential equation (10.25) for wn(τ). Thus, the problem is not closed and
an additional algebraic equation is needed to determine λn−1. Using (10.8)
and (10.27), it is straightforward to get

R1(
w0, 
λ0) =
4∑

m=1

a1,m exp(−m τ) (10.28)

where
a1,1 = (α + γ)

(
α +

γ

2
− λ0 − β λ2

0

)

and a1,j (j = 2, 3, 4) are coefficients. Note that the auxiliary function H(τ)
is unknown right now. According to the rule of solution expression denoted
by (10.7) and from Equation (10.25), the auxiliary function should be in the
form

H(τ) = exp(κ τ),
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where κ is an integer. It is found that, when κ ≥ 1, the solution wn(τ) of
Equation (10.25) contains a constant term that does not vanish at infinity.
This disobeys the rule of solution expression denoted by (10.7). When k ≤ −2,
the solution wn(τ) of Equation (10.25) does not contain the term exp(−2τ),
and this disobeys the so-called rule of coefficient ergodicity. So, κ should be
either 0 or 1. When κ = 1, we cannot give an additional algebraic equation
for λ0 so that the problem is still not closed, and this disobeys the rule of
solution existence. So, only κ = 0 is possible, which uniquely determines the
auxiliary function

H(τ) = 1. (10.29)

In this case, the right-hand side of the first-order deformation equation (10.25)
contains the term exp(−τ). Then, according to (10.10), w1(τ) contains the
term τ exp(−τ), which disobeys the rule of solution expression denoted by
(10.7). To obey the rule of solution expression, we had to enforce a1,1 = 0,
i.e.,

(α + γ)
(
α +

γ

2
− λ0 − β λ2

0

)
= 0, (10.30)

which provides us with the additional equation for λ0 with the positive solu-
tion

λ0 =

√
1 + 2β(γ + 2α) − 1

2β
. (10.31)

Thereafter, it is straightforward to get the solution

w1(τ) = �

4∑
m=2

(
a1,m

m − 1

) (
exp−τ − exp−mτ

)
. (10.32)

In general, the term Rn(
wn−1, 
λn−1) can be generally expressed by

Rn(
wn−1, 
λn−1) =
2(n+1)∑
m=1

an,m exp(−m τ), (10.33)

where an,m is a coefficient, and we can get λn−1 by enforcing

an,1 = 0. (10.34)

In this way, we successively gain the solution

wn(τ) = χn−1 wn−1(τ) + �

2(n+1)∑
m=2

(
an,m

m − 1

)(
e−τ − e−mτ

)
(10.35)

of high-order deformation equations (10.25) and (10.26).
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10.1.3 Recursive expression

Considering the importance of Volterra’s population model, it is helpful to
give an explicit analytic expression of the solution. It is found that wn(τ) can
be expressed by

wn(τ) =
2(n+1)∑
m=1

bn,m exp(−m τ), (10.36)

where bn,m is a coefficient. Substituting it into Equations (10.25) and (10.26),
we have the recursive formulae (n ≥ 2, i ≥ 2)

λn−1 =
∆n,1 −

n−2∑
j=0

(λj + βδj) bn−1−j,1 − βb0,1

n−2∑
i=1

λiλn−1−i

(1 + 2βλ0)b0,1
, (10.37)

bn,i = χnχ2n+2−ibn−1,i +
� (Πn,i + ∆n,i − χ2n+2−iΓn,i)

(1 − i)
, (10.38)

bn,1 = −
2(n+1)∑

i=2

bn,i, (10.39)

where

Πn,i =
n−1∑

j=max{0,[(i+1)/2]−2}
λn−1−j dj,i, 2 ≤ i ≤ 2(n + 1),

∆n,i =
n−1∑
j=0

min{2(n−j),i}∑
s=max{1,i−2(j+1)}

bn−1−j,s cj,i−s, 1 ≤ i ≤ 2(n + 1),

Γn,i =
min{n−1,n−[(i+1)/2]}∑

j=0

(iβδj + λj) bn−1−j,i, 1 ≤ i ≤ 2n,

under the definitions

dn,m =
n∑

i=0

min{2(i+1),m−1}∑
j=max{1,m−2(n−i+1)}

bi,j bn−i,m−j , 2 ≤ m ≤ 2(n + 1)

and

cn,m = −bn,m

m
, 1 ≤ m ≤ 2(n + 1),

cn,0 =
2(n+1)∑
m=1

bn,m

m
,

δn =
n∑

i=0

λi λn−i
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in which the term [x] denotes the integer part of x. From (10.8) we have the
first two coefficients

b0,1 = α + γ, b0,2 = −γ. (10.40)

From these two coefficients and using the above recursive formulae, we can
successively calculate all coefficients bn,j . The Mth-order approximation of
u(t) is given by

u(t) ≈
M∑

n=0

2(n+1)∑
m=1

bn,m exp(−m λ t), (10.41)

where

λ ≈
M−1∑
n=0

λn. (10.42)

When M → +∞ we gain the explicit analytic solution

u(t) =
+∞∑
n=0

2(n+1)∑
m=1

bn,m exp(−m λ t), (10.43)

where

λ =
+∞∑
n=0

λn. (10.44)

10.1.4 Convergence theorem

THEOREM 10.1
If the solution series (10.21) and (10.22) converge, where wn(τ) is governed
by Equations (10.25) and (10.26) under the definitions (10.27) and (2.42),
they must be the solution of Equations (10.4) and (10.5).

Proof: If the solution series (10.21) and (10.22) converge, it is necessary
that

lim
m→+∞wm(τ) = 0. (10.45)

Then, using (10.9), (10.25), and (2.42), it holds

� H(τ)
+∞∑
n=1

Rn(
wn−1, 
λn−1)

= lim
m→+∞L [wm(τ)] = L

[
lim

m→+∞wm(τ)
]

= 0, (10.46)

which gives, since � �= 0 and H(τ) = 1,
+∞∑
n=1

Rn(
wn−1, 
λn−1) = 0. (10.47)
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Substituting (10.27) into the above expression and simplifying it, we have

β

(
+∞∑
n=0

λn

)2
d

dτ

[
+∞∑
n=0

wn(τ)

]

=

(
+∞∑
n=0

λn

)⎧⎨
⎩
[

+∞∑
n=0

wn(τ)

]
−
[

+∞∑
n=0

wn(τ)

]2
⎫⎬
⎭

−
[

+∞∑
n=0

wn(τ)

]∫ τ

0

[
+∞∑
n=0

wn(x)

]
dx. (10.48)

From (10.8) and (10.26), we have

+∞∑
n=0

wn(0) = α. (10.49)

Comparing these two expressions with Equations (10.4) and (10.5), the solu-
tion series (10.21) and (10.22) must be the solution of the Volterra’s population
model, as long as they are convergent. This ends the proof.

10.2 Result analysis

According to Theorem 10.1 we should only focus on ensuring that the solution
series (10.21) and (10.22) converge. Note that there exists the integral term

∫ t

0

u(x)dx

in Equation (10.1) and the value

µ =
∫ +∞

0

u(x)dx (10.50)

denotes the total scaled population and thus has an important meaning. Un-
der the transformation (10.3), the above expression becomes

λ µ =
∫ +∞

0

w(ξ)dξ. (10.51)

10.2.1 Choosing a plain initial approximation

For the given α and β, we have freedom to choose the auxiliary parameters �

and γ, which influence the convergence region and rate of the solution series
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(10.21) and (10.22). Generally speaking, for any chosen value of γ, we can
investigate the influence of � by plotting the so-called �-curves (see page 26
and §3.5.1) of

∫ +∞
0

u(x)dx. For example, consider the case α = 1/10 and
β = 1/5. The corresponding �-curves of

∫ +∞
0

u(x)dx at the 10th order of
approximation when γ = 1, 2, 3, 4 are as shown in Figure 10.1. Note that the
corresponding valid region of � increases when γ decreases from 4 to 2, but
there is no such valid region when γ = 1. From these �-curves, it is clear
that when α = 1/10 and β = 1/5, the approximation series of

∫ +∞
0

u(x)dx
converges if 2 ≤ γ ≤ 4 and � is chosen in the corresponding valid region. For
instance, when γ = 3 corresponding to

λ0 = 1.27492

given by (10.31), the approximation series of
∫ +∞
0

u(x)dx is convergent by
means of � = −1/2, as shown in Table 10.1. It is found that, in general, as
long as the series of

∫ +∞
0

u(x)dx converges, the corresponding series (10.22) of
λ also converges, as shown in Table 10.1 for the special case. The homotopy-
Padé technique (see page 38 and §3.5.2) greatly enhances the convergence rate
of the series of λ and

∫ +∞
0

u(x)dx, as shown in Table 10.2. It is found that the
[m,m] homotopy-Padé approximants are independent of �. Also, as long as
the series of

∫ +∞
0

u(x)dx converges, the corresponding series (10.21) converges
in the whole region 0 ≤ t < +∞ to the numerical results [100, 101, 102], as
shown in Figure 10.2 for the special case of α = 1/10 and β = 1/5. In this
way we can gain the analytic solutions for any given values of α and β.

10.2.2 Choosing the best initial approximation

Note that the initial approximation w0(τ) is determined by the auxiliary pa-
rameter γ. Clearly, a better choice of γ should give a better series which
approximates the solution more efficiently. At the zero order of approxima-
tion we have

λ µ ≈
∫ +∞

0

w0(x)dx. (10.52)

At the first order of approximation it holds

λ µ ≈
∫ +∞

0

w0(x)dx +
∫ +∞

0

w1(x)dx. (10.53)

Obviously, we can choose γ in such a way that the zero-order approximation
(10.52) is so accurate that its first-order approximation (10.53) cannot give a
better result of λ µ, i.e., ∫ +∞

0

w1(x)dx = 0. (10.54)

This gives an algebraic equation

24β γ λ2
0 + 2(6α2 + 6γ + 4α γ + γ2)λ0 − 3(4α2 + 8αγ + 3γ2) = 0. (10.55)
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Solving the set of two algebraic equations (10.30) and (10.55), we can obtain
the “best” positive values of λ0 and γ for any given values of α and β. For
example, when α = 1/10 and β = 1/5, the best values of λ0 and γ are

λ0 = 1.02682, γ = 2.27538. (10.56)

The above “best” value of γ explains why the valid region of � corresponding
to γ = 2 is longer than that of γ = 3 and γ = 4, as shown in Figure 10.1. The
corresponding solution series are indeed convergent more quickly, as shown
in Table 10.3. Also, the homotopy-Padé technique can greatly accelerate the
convergence of the solution series, as shown in Table 10.4. It is interesting
that, when α = 1/10 and β = 1/5, the series of the time-scale parameter λ
converge to the same value 0.986, although two different values of λ0 are used,
as shown in Tables 10.1 to 10.4. Like

∫ +∞
0

u(x)dx, the time-scale parameter λ

depends upon α and β. It decreases as the term
∫ +∞
0

u(x)dx increases, thus,
the time-scale parameter λ might have some physical meanings.

Using the “best” values of γ and λ0 given by (10.30) and (10.55), we can
analytically solve Volterra’s population model more efficiently. The conver-
gent analytic results of u(t) when α = 1/10 and β = 1/10, 1/5, 1/2, 1 and 10
are as shown in Figure 10.3. The total scaled population

∫ +∞
0

u(x)dx, the
time-scale parameter λ, and the corresponding best values of γ and λ0 for
some α and β are listed in Table 10.5 .

This example illustrates that the homotopy analysis method is valid for
nonlinear integro-differential equations.
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TABLE 10.1

The analytic approximations of
∫∞
0

u(x)dx and λ given by
(10.23) and (10.24) when α = 1/10, β = 1/5 by means of
γ = 3, λ0 = 1.27492, and � = −1/2.

Order of approximation
∫ +∞
0

u(x)dx λ

10 1.194 1.014
20 1.196 0.988
30 1.196 0.983
40 1.197 0.983
50 1.197 0.983
60 1.197 0.984
70 1.197 0.985
80 1.197 0.985

TABLE 10.2

The [m,m] homotopy-Padé approximations of∫∞
0

u(x)dx and λ when α = 1/10, β = 1/5 by
means of γ = 3 and λ0 = 1.27492.

[m,m]
∫ +∞
0

u(x)dx λ

[5, 5] 1.196 0.982
[10, 10] 1.197 0.987
[15, 15] 1.197 0.986
[20, 20] 1.197 0.986
[25, 25] 1.197 0.986
[30, 30] 1.197 0.986
[35, 35] 1.197 0.986
[40, 40] 1.197 0.986
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TABLE 10.3

The analytic approximations of
∫∞
0

u(x)dx and λ when
α = 1/10, β = 1/5 by means of γ = 2.27538, λ0 = 1.02682,
and � = −1.

Order of approximation
∫ +∞
0

u(x)dx λ

10 1.195 0.997
20 1.197 0.985
30 1.197 0.985
40 1.197 0.986
50 1.197 0.986
60 1.197 0.986
70 1.197 0.986
80 1.197 0.986

TABLE 10.4

The [m,m] homotopy-Padé approximations of∫∞
0

u(x)dx and λ when α = 1/10, β = 1/5 by
means of γ = 2.27538 and λ0 = 1.02682.

[m,m]
∫ +∞
0

u(x)dx λ

[5, 5] 1.197 0.986
[10, 10] 1.197 0.986
[15, 15] 1.197 0.986
[20, 20] 1.197 0.986
[25, 25] 1.197 0.986
[30, 30] 1.197 0.986
[35, 35] 1.197 0.986
[40, 40] 1.197 0.986

TABLE 10.5

The convergent analytic results and the corresponding “best”
values of γ and λ0 for α = 1/10 and different values of β.

β λ0 γ
∫ +∞
0

u(x)dx λ

1/10 1.19933 2.48633 1.100 1.000
1/5 1.02682 2.27538 1.197 0.986
1/2 0.75414 1.87701 1.418 0.836
1 0.55274 1.51653 1.627 0.626
10 0.15621 0.57101 2.572 0.157
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FIGURE 10.1
The �-curves of

∫ +∞
0

u(x)dx at the 10th order of approximation when α =
1/10 and β = 1/5 with different values of γ. Dashed line: γ = 1; dash-dotted
line: γ = 2; solid line: γ = 3; dash-dot-dotted line: γ = 4.
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FIGURE 10.2
Comparison of the numerical result [100, 101, 102] with the analytic approxi-
mations of u(t) when α = 1/10 and β = 1/5 by means of γ = 3 and � = −1/2.
Symbol: numerical result; dashed line: 10th-order analytic approximation;
dash-dotted line: 20th-order analytic approximation; solid line: 50th-order
analytic approximation.
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FIGURE 10.3
Comparison of the numerical results [100, 101, 102] with the analytic ap-
proximations of u(t) when α = 1/10 and β = 1/10, 1/5, 1/2, 1, 10 by means
of � = −1 and the “best” values of λ0 and γ given by (10.30) and (10.55).
Symbol: numerical result; solid line: analytic results at the 20th (β = 1/10),
30th (β = 1/5), 40th (β = 1/2), 50th (β = 1), and 50th order (β = 10) of
approximation, respectively.
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11

Free oscillation systems with odd nonlinearity

Consider free oscillations of a conservative system with odd nonlinearity gov-
erned by

Ü(t) = f [U(t), U̇(t), Ü(t)], (11.1)

where t denotes the time, the dot denotes derivative with respect to t, and
f [U(t), U̇(t), Ü(t)] is a known function of U(t), U̇(t), and Ü(t), respectively.
Unlike perturbation techniques, it is unnecessary to assume the existence of
any small/large parameters in Equation (11.1). This equation is very general
and describes many problems in science and engineering.

Physically speaking, free oscillation of a conservative system is a periodic
motion. Let ω and a denote the frequency and amplitude of the oscillation,
respectively. Physically, the frequency ω can be regarded as a time scale.
For a linear system, the frequency is independent of the amplitude. However,
for a nonlinear system, it is important to know the relationship between the
frequency and amplitude. In a nonlinear conservative system, the amplitude a
is physically determined by initial conditions and is related to the total kinetic
energy. Without the loss of any generality, we may consider free oscillations
with amplitude a under the initial conditions

U̇(0) = 0, U(0) = a. (11.2)

11.1 Homotopy analysis solution

11.1.1 Zero-order deformation equation

Obviously, free oscillations of a conservative system with odd nonlinearity can
be expressed by the base functions

{cos(mωt) | m = 1, 2, 3, · · ·} . (11.3)

Under the transformation τ = ωt and U(t) = u(τ), Equation (11.1) becomes

ω2u′′(τ) = f [u(τ), ωu′(τ), ω2u′′(τ)], (11.4)

subject to the initial conditions

u(τ) = a, u′(τ) = 0, when τ = 0, (11.5)
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where the prime denotes derivative with respect to τ . From (11.3), u(τ) can
be expressed by the base functions

{cos(mτ) | m = 1, 2, 3, · · ·} (11.6)

in the form

u(τ) =
+∞∑
k=1

ck cos(kτ), (11.7)

where ck is a coefficient. This provides us with the so-called rule of solution
expression.

Let ω0 denote the initial guess of the frequency ω. Obviously, under the
rule of solution expression denoted by (11.7) and using the initial condition
(11.5), it is easy to choose

u0(τ) = a cos τ (11.8)

as the initial guess of u(τ), where a is the amplitude of oscillation. Under the
rule of solution expression denoted by (11.7), we choose the auxiliary linear
operator

L[Φ(τ ; q)] = ω2
0

[
∂2Φ(τ ; q)

∂τ2
+ Φ(τ ; q)

]
, (11.9)

with the property
L (C1 sin τ + C2 cos τ) = 0. (11.10)

From Equation (11.4), we define the nonlinear operator

N [Φ(τ ; q),Ω(q)] = Ω2(q)
∂2Φ(τ ; q)

∂τ2

− f

[
Φ(τ ; q),Ω(q)

∂Φ(τ ; q)
∂τ

,Ω2(q)
∂2Φ(τ ; q)

∂τ2

]
, (11.11)

where Φ(τ ; q) is a function of τ and q, Ω(q) is a function of q. Let � de-
note a nonzero auxiliary parameter and H(τ) a nonzero auxiliary function,
respectively. We then construct the zero-order deformation equation

(1 − q) L [Φ(τ ; q) − u0(τ)] = q � H(τ) N [Φ(τ ; q),Ω(q)], (11.12)

subject to the initial conditions

Φ(0; q) = a,
∂Φ(τ ; q)

∂τ

∣∣∣∣
τ=0

= 0. (11.13)

When q = 0, it is clear that Equations (11.12) and (11.13) have the solution

Φ(τ ; 0) = u0(τ), Ω(0) = ω0. (11.14)

When q = 1, since � �= 0 and H(τ) �= 0, Equations (11.12) and (11.13) are
equivalent to Equations (11.4) and (11.5), respectively, provided

Φ(τ ; 1) = u(τ), Ω(1) = ω. (11.15)
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Therefore, as q increases from 0 to 1, Φ(τ ; q) deforms from the initial guess
u0(τ) = a cos τ to the exact solution u(τ), and Ω(q) varies from the initial
guess ω0 to the exact frequency ω, respectively.

Using (11.14) and Taylor’s theorem, Φ(τ ; q) and Ω(q) can be expanded in
the power series of q as follows:

Φ(τ ; q) = u0(τ) +
+∞∑
m=1

um(τ) qm, (11.16)

Ω(q) = ω0 +
+∞∑
m=1

ωm qm, (11.17)

where

um(τ) =
1
m!

∂mΦ(τ ; q)
∂qm

∣∣∣∣
q=0

, ωm =
1
m!

∂mΩ(q)
∂qm

∣∣∣∣
q=0

. (11.18)

Note that the zero-order deformation equation (11.12) contains the auxiliary
parameter � and the auxiliary function H(τ). Thus, Φ(τ ; q) and Ω(q) are also
dependent upon them. Assuming that � and H(τ) are properly chosen so that
the above series converge at q = 1, we have, using (11.15), the solution series

u(τ) = u0(τ) +
+∞∑
m=1

um(τ), (11.19)

ω = ω0 +
+∞∑
m=1

ωm. (11.20)

11.1.2 High-order deformation equation

For brevity, define the vectors


un = {u0(τ), u1(τ), · · · , un(τ)} , 
ωn = {ω0, ω1, · · · , ωn} .

Differentiating the zero-order deformation equations (11.12) and (11.13) m
times with respect to q, then setting q = 0, and finally dividing it by m!, we
gain the so-called high-order deformation equation

L [um(τ) − χmum−1(τ)] = � H(τ) Rm(
um−1, 
ωm−1), (11.21)

subject to the initial conditions

um(0) = u′
m(0) = 0, (11.22)

where χm is defined by (2.42) and

Rm(
um−1, 
ωm−1) =
1

(m − 1)!
dm−1N [Φ(τ ; q),Ω(q)]

dqm−1

∣∣∣∣
q=0

. (11.23)
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Note that there are two unknowns: um(τ) and ωm−1. However, we have
only Equations (11.21) and (11.22) for um(τ). Thus, the problem is not closed
and an additional algebraic equation is needed to determine ωm−1. Under the
rule of solution expression denoted by (11.7) and due to the odd nonlinearity
of the conservative system, Rm(
um−1, 
ωm−1) can be expressed by

Rm(
um−1, 
ωm−1) =
ϕ(m)∑
n=0

bm,n(
ωm−1) cos[(2n + 1)τ ], (11.24)

where bm,n(
ωm−1) is a coefficient dependent of 
ωm−1, and the integer ϕ(m)
depends upon m and the form of Equation (11.1). In order to comply with
the rule of solution expression denoted by (11.7), H(τ) should be in the form

H(τ) = cos(2κτ), κ = 0, 1, 2, 3, · · · .
For simplicity, we choose κ = 0, corresponding to

H(τ) = 1. (11.25)

According to the property (11.10) of L, the solution of Equation (11.21) in-
volves the so-called secular term τ cos τ if

Rm(
um−1, 
ωm−1)

contains the term cos τ . This disobeys the rule of solution expression denoted
by (11.7). Thus, the coefficient bm,0 in (11.24) must be enforced to be zero.
This provides us with the additional algebraic equation

bm,0(
ωm−1) = 0, (11.26)

which yields ωm−1. This equation is often nonlinear when m = 1 for ω0 but is
always linear otherwise. Thereafter, it is easy to gain the solution of Equation
(11.21):

um(τ) = χmum−1(τ) +
�

ω2
0

ϕ(m)∑
n=2

bm,n(
ωm−1)
(1 − n2)

cos(nτ)

+ C1 sin τ + C2 cos τ, (11.27)

where C1 and C2 are two coefficients. Using (11.22), we obtain C1 = 0. To
ensure that the oscillation amplitude equals to a, we use

um(0) − um(π) = 0, m = 1, 2, 3, · · · , (11.28)

which determines C2, thus producing ωm−1 and um(τ) successively. At the
Mth-order of approximation,

u(τ) ≈
M∑

m=0

um(τ), (11.29)

ω ≈
M∑

m=0

ωm. (11.30)
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The above approach is very general and valid even for free oscillations of
conservative systems with odd nonlinearity in more general cases, governed
by

F
[
U(t), U̇(t), Ü(t), signU(t), signU̇(t), signÜ(t)

]
= 0, (11.31)

where

sign(x) =
{

1, when x > 0,
−1, when x < 0.

(11.32)

With transformation τ = ω t and U(t) = u(τ),

F
[
u(τ), ωu′(τ), ω2u′′(τ), sign(u), sign(u′), sign(u′′)

]
= 0. (11.33)

Let a (a > 0) denote the amplitude and u0(τ) = a cos τ the initial approxi-
mation of oscillation. For free oscillations of conservative systems with odd
nonlinearity,

sign(u) = sign(u0) = sign(cos τ), (11.34)

and similarly,

sign(u′) = −sign(sin τ), sign(u′′) = −sign(cos τ). (11.35)

Thus, Equation (11.33) is equivalent to

F
[
u(τ), ωu′(τ), ω2u′′(τ), sign(cos τ),−sign(sin τ),−sign(cos τ)

]
= 0.

Using

sign(cos τ) =
4
π

+∞∑
k=0

(−1)k

2k + 1
cos[(2k + 1)τ ], (11.36)

sign(sin τ) =
4
π

+∞∑
k=0

1
2k + 1

sin[(2k + 1)τ ], (11.37)

we write

f [u(τ), ωu′(τ), ω2u′′(τ)]
= F

[
u(τ), ωu′(τ), ω2u′′(τ), sign(cos τ),−sign(sin τ),−sign(cos τ)

]
.

Similarly, we are able to solve free oscillations of conservative systems with
odd nonlinearity, governed by Equation (11.31).

Note that
|x| = x sign(x).

Equation (11.31) is therefore equivalent to the equation

G
[
U(t), U̇(t), Ü(t), |U(t)|, |U̇(t)|, |Ü(t)|

]
= 0, (11.38)

where G is a function of U(t), U̇(t), Ü(t), |U(t)|, |U̇(t)|, and |Ü(t)|.
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11.2 Illustrative examples

11.2.1 Example 11.2.1

Consider free oscillations of a conservation system with odd nonlinearity gov-
erned by

Ü(t) + U(t) = ε U(t) U̇2(t). (11.39)

Under the transformation τ = ωt and U(t) = u(τ),

ω2u′′(τ) + u(τ) = ε ω2 u(τ)u′2(τ). (11.40)

All other related formulae are the same as those given in §11.1. From (11.23)
and (11.39),

Rm(
um−1, 
ωm−1)

=
m−1∑
n=0

⎛
⎝ n∑

j=0

ωjωn−j

⎞
⎠u′′

m−1−n + um−1

− ε
m−1∑
n=0

(
n∑

i=0

un−i

i∑
r=0

ωrωi−r

)⎛
⎝m−1−n∑

j=0

u′
ju

′
m−1−n−j

⎞
⎠ . (11.41)

When m = 1 we obtain from (11.26) the algebraic equation

a − aω2
0 − 1

4
a3εω2

0 = 0, (11.42)

which gives

ω0 =
1√

1 + 1
4εa2

. (11.43)

The frequency ω at the first and second order of approximation is given
by

ω ≈ ω0 +
� (εa2) [2 + (εa2 − 2)ω2

0 ]
32(4 + εa2)ω0

and

ω ≈ ω0 +
� (εa2) [2 + (εa2 − 2)ω2

0 ]
16(4 + εa2)ω0

+
�

2(εa2)
6144(4 + εa2)2ω3

0

[
39ω4

0(εa2)3 + 4ω2
0(43ω2

0 + 17)(εa2)2

+4(97ω4
0 + 98ω2

0 − 3)(εa2) − 192 (9ω4
0 − 10ω2

0 + 1)
]
,

respectively. These approximations contain the auxiliary parameter �. When
� = −1, the series of frequency is convergent only in the region 0 ≤ εa2 < 5,
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as shown in Figure 11.1. Note that the convergence region becomes larger
when � is chosen closer to 0, as shown in Figure 11.1. Therefore, � should
be defined as a function of εa2, whose absolute value should decrease as εa2

increases. When � = −ω2
0 = −(1 + εa2/4)−1 the series for the frequency

converges quickly in the whole region 0 ≤ εa2 < +∞, as shown in Figure
11.1. Selecting

� = −(1 + εa2/4)−1,

we gain the first-order approximation

ω ≈ 256 + 128εa2 + 13(εa2)2

8(4 + εa2)5/2
, (11.44)

and the second-order approximation

ω ≈ 393216 + 393216εa2 + 142848(εa2)2 + 21248(εa2)3 + 1181(εa2)4

768(4 + εa2)9/2
.

(11.45)
These two approximations agree with the numerical results in the whole re-
gion:

0 ≤ εa2 < +∞,

as shown in Figure 11.1. This example illustrates that the auxiliary parameter
� provides a convenient way to adjust the convergence region and rate of
solution series.

11.2.2 Example 11.2.2

Consider free oscillations governed by

Ü(t) + U(t) + ε U3(t) = 0. (11.46)

The exact frequency is

ω =
π
√

1 + εa2/2
2K(µ)

, (11.47)

where

µ = − εa2

2 + εa2

and K(µ) is the complete elliptic integral of the first kind.
Under the transformation τ = ωt and U(t) = u(τ), Equation (11.46)

becomes
ω2u′′(τ) + u(τ) + ε u3(τ) = 0. (11.48)

All related formulae are the same as those given in §11.1. From (11.23) and
(11.46),

Rm =
m−1∑
n=0

⎛
⎝ n∑

j=0

ωjωn−j

⎞
⎠u′′

m−1−n + um−1
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+ ε
m−1∑
n=0

⎛
⎝ n∑

j=0

ujun−j

⎞
⎠um−1−n. (11.49)

When m = 1 we obtain from (11.26) the algebraic equation

a +
3
4
εa3 − aω2

0 = 0, (11.50)

which yields

ω0 =

√
1 +

3
4
εa2. (11.51)

The frequency ω at the first and second order of approximation is given
by

ω ≈ ω0 +
�(εa2)
128ω3

0

[
2(1 − ω2

0) + 3 εa2
]
, (11.52)

and

ω ≈ ω0 +
�(εa2)

32768ω7
0

{
1024(ω4

0 − ω6
0) + 1536ω4

0(εa2)

− �
[
(576ω6

0 − 640ω4
0 + 64ω2

0) − (940ω4
0 − 168ω2

0 − 4)(εa2)

+ (84ω2
0 + 12)(εa2)2 + 9(εa2)3

]}
, (11.53)

respectively. Note that the series of frequency contains the auxiliary parame-
ter �. When −1 ≤ � < 0 the series of frequency converges in the whole region
0 ≤ εa2 < +∞. Choosing � = −1, we gain the first-order approximation

ω ≈ 256 + 384εa2 + 141ε2a4

32(4 + 3εa2)3/2
(11.54)

and the second-order approximation

ω ≈ 131072 + 393216εa2 + 440832ε2a4 + 218880ε3a6 + 40599ε4a8

1024(4 + 3εa2)7/2
. (11.55)

The maximum error of the first- and second-order approximation is only 0.09%
and 0.07% in the whole region 0 ≤ εa2 < +∞, respectively! The first-order
approximation given by the proposed approach agrees with the exact result,
as shown in Figure 11.2.

11.2.3 Example 11.2.3

Consider free oscillations of conservative system with odd nonlinearity, gov-
erned by

Ü(t) + U(t) + εU(t)|U(t)| = 0. (11.56)
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With transformation τ = ωt and U(t) = u(τ),

ω2u′′(τ) + u(τ) + εu2(τ) sign[u(τ)] = 0, (11.57)

which is equivalent to the equation

ω2u′′(τ) + u(τ) + εu2(τ) sign[cos τ ] = 0. (11.58)

All related formulae are the same as those given in §11.1. From (11.23) and
(11.46),

Rm =
m−1∑
n=0

⎛
⎝ n∑

j=0

ωjωn−j

⎞
⎠u′′

m−1−n(τ) + um−1(τ)

+ ε sign(cos τ)
m−1∑
n=0

un(τ)um−1−n(τ). (11.59)

When m = 1 we obtain from (11.26) the algebraic equation

a +
8εa2

3π
− aω2

0 = 0, (11.60)

which gives

ω0 =

√
1 +

8εa

3π
. (11.61)

Note that the solution series for frequency contains the auxiliary parameter
�. We gain the frequency at the first several orders of approximation and find
that the series of frequency is convergent when −2 ≤ � < 0. When � = −1,
the first order of approximation

ω ≈
√

1 +
8εa

3π
− 20, 1789, 3901, 1695

406, 4428, 1993, 5152

(εa

π

)2
(

1 +
8εa

3π

)−3/2

(11.62)

agrees with the numerical results in the whole region 0 ≤ ε a < +∞, as shown
in Figure 11.3.

11.3 The control of convergence region

As mentioned before, � = −1 corresponds to the traditional method of con-
structing a homotopy. In Example 11.2.2 and Example 11.2.3, using � = −1
we obtain accurate approximations valid in the whole regions 0 < εa2 < +∞
and 0 ≤ εa < +∞, respectively. In Example 11.2.2 and Example 11.2.3, using
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(11.9) as the auxiliary linear operator L, we gain accurate approximations by
setting � = −1, as shown in Figures 11.2 and 11.3. However, in Example
11.2.1, the series of frequency converges in a fairly small region 0 ≤ εa2 < 5
when � = −1. Thus, we had to choose � = −(1 + εa2/4)−1 to adjust its con-
vergence region to ensure that it is valid in the whole region 0 ≤ εa2 < +∞,
as shown in Figure 11.1.

Note that the auxiliary linear operator L defined by (11.9) contains the
term ω2

0 . If we replace (11.9) with

L[Φ(τ ; q)] =
∂2Φ(τ ; q)

∂τ2
+ Φ(τ ; q), (11.63)

we gain the frequency of Example 11.2.2 at the first order of approximation:

ω ≈ ω0 +
�(εa2)
128ω0

[
2(1 − ω2

0) + 3 εa2
]

(11.64)

and at the second order of approximation:

ω ≈ ω0 +
�(εa2)

32768ω5
0

{
1024(ω4

0 − ω6
0) + 1536ω4

0(εa2)

−� ω2
0

[
(576ω6

0 − 640ω4
0 + 64ω2

0) − (940ω4
0 − 168ω2

0 − 4)(εa2)

+ (84ω2
0 + 12)(εa2)2 + 9(εa2)3

]}
, (11.65)

respectively, where ω0 is defined by (11.51). Unfortunately, when � = −1, the
above approximations are valid in restricted regions much smaller than those
of (11.54) and (11.55) given by the auxiliary linear operator (11.9) and the
same value of �, as shown in Figure 11.2. In this case we must choose

� = −ω−2
0 = −

(
1 +

3
4
εa2

)−1

to adjust the convergence region so that the series of frequency is convergent
in the whole region 0 ≤ εa2 < +∞. Using the above expression of �, we gain
the same results as in (11.54) and (11.55), respectively.

Similarly, when � = −1 and using the auxiliary linear operator defined by
(11.63), the corresponding series of frequency of Example 11.2.3 also converges
in a restricted region much smaller than that of (11.62) given by the auxiliary
linear operator (11.9) and the same value of �, as shown in Figure 11.3. In
this case we must select

� = −
(

1 +
8εa

3π

)−1

to gain the accurate approximations valid in the whole region 0 ≤ εa < +∞.
Using the above expression of �, we gain exactly the same result as (11.62).
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However, using the auxiliary linear operator L defined by (11.63), we gain
the frequency ω of Example 11.2.1 at the first order of approximation:

ω ≈ ω0 +
� ω0 (εa2) [2 + (εa2 − 2)ω2

0 ]
32(4 + εa2)

and at the second order of approximation:

ω ≈ ω0 +
� ω0 (εa2) [2 + (εa2 − 2)ω2

0 ]
16(4 + εa2)

+
�

2ω0(εa2)
6144(4 + εa2)2

[
39ω4

0(εa2)3 + 4ω2
0(43ω2

0 + 17)(εa2)2

+4(97ω4
0 + 98ω2

0 − 3)(εa2) − 192 (9ω4
0 − 10ω2

0 + 1)
]
,

respectively. They are exactly the same as (11.44) and (11.45) when � = −1.
These examples illustrate that, for given auxiliary linear operator and aux-

iliary function, the auxiliary parameter � provides a convenient way to control
the convergence region and rate of solution series. The auxiliary parameter �

plays an important role in the homotopy analysis method.
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FIGURE 11.1
Comparison of the exact ω with the approximate results of Example 11.2.1
given by the auxiliary linear operator defined by (11.9). Symbols: exact result;
dashed line: first-order approximation (11.44) when � = −(1+εa2/4)−1; solid
line: second-order approximation (11.45) when � = −(1 + εa2/4)−1; dash-
dotted line: sixth-order approximation when � = −1/2; long-dashed line:
sixth-order approximation when � = −1/5; dash-dot-dotted line: sixth-order
approximation when � = −1/10.
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FIGURE 11.2
Comparison of the exact ω with the approximate results of Example 11.2.2
when � = −1 by different auxiliary linear operators. Symbols: exact result;
solid line: first-order approximation (11.54) given by the auxiliary operator
defined by (11.9); dashed line: first-order approximation (11.64) given by
the auxiliary linear operator defined by (11.63); dash-dotted line: second-
order approximation (11.65) given by the auxiliary linear operator defined by
(11.63).
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FIGURE 11.3
Comparison of the exact ω with the approximate results of Example 11.2.3
when � = −1 by different auxiliary linear operators. Symbols: exact result;
solid line: first-order approximation (11.62) given by the auxiliary linear op-
erator defined by (11.9); dashed line: first-order approximation given by the
auxiliary linear operator defined by (11.63) of L; dash-dotted line: second-
order approximation given by the auxiliary linear operator defined by (11.63).
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12

Free oscillation systems with quadratic
nonlinearity

Consider free oscillations of a conservative system with quadratic nonlinearity,
governed by

Ü(t) = f [U(t), U̇(t), Ü(t)], (12.1)

where t denotes the time, the dot denotes derivative with respect to t, and
f [U(t), U̇(t), Ü(t)] is a known function of U(t), U̇(t), and Ü(t). Physically, free
oscillation of conservative systems is a periodic motion. Let ω and a denote
the frequency and amplitude of oscillation, respectively. Define the mean of
motion

δ =
1
T

∫ T

0

U(t)dt, (12.2)

where T = 2π/ω is the period of oscillation. For conservative systems with
quadratic nonlinearity, the mean of motion δ is generally nonzero. This is
the main difference between free oscillations of conservative system with odd
nonlinearity and those with quadratic one. Obviously, both δ and ω have
clear physical meanings. For conservative systems, the oscillation amplitude
a is determined by initial conditions and is related to the total kinetic energy.
Both ω and δ are dependent of a. Without the loss of generality, we consider
oscillations with amplitude a under the initial conditions

U̇(0) = 0 U(0) = a + δ. (12.3)

Unlike perturbation techniques, we need not assume that Equation (12.1)
contains any small/large parameters.

12.1 Homotopy analysis solution

12.1.1 Zero-order deformation equation

Obviously, the free oscillation can be described by the base functions

{cos(mωt) | m = 0, 1, 2, 3, · · ·} (12.4)
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in the form:

U(t) = δ +
+∞∑
m=1

cm cos(mωt), (12.5)

where cm is a coefficient. Under the transformation

τ = ωt, U(t) = δ + u(τ), (12.6)

Equations (12.2) and (12.3) become

ω2u′′(τ) = f [δ + u(τ), ωu′(τ), ω2u′′(τ)], (12.7)

and
u(0) = a, u′(0) = 0, (12.8)

respectively, where the prime denotes derivative with respect to τ . Obviously,
u(τ) can be expressed by the base functions

{cos(mτ) | m = 1, 2, 3, · · ·} (12.9)

in the form:

u(τ) =
+∞∑
m=1

cm cos(mτ). (12.10)

This provides us with the rule of solution expression for free oscillations of
conservative systems with quadratic nonlinearity.

Note that the frequency ω and the mean of motion δ are unknown. Let
ω0, δ0 denote the initial guesses of ω and δ, respectively. Under the rule of
solution expression denoted by (12.10) and from (12.8), it is easy to choose

u0(τ) = a cos τ (12.11)

as the initial guess of u(τ), where a is the amplitude of oscillation. Moreover,
under the rule of solution expression denoted by (12.10) and from Equation
(12.7), we choose the auxiliary linear operator

L[Φ(τ ; q)] = ω2
0

[
∂2Φ(τ ; q)

∂τ2
+ Φ(τ ; q)

]
, (12.12)

with the property
L (C1 sin τ + C2 cos τ) = 0. (12.13)

where q is an embedding parameter, Φ(τ ; q) is a function of τ and q, C1 and
C2 are coefficients. From Equation (12.7), we define the nonlinear operator

N [Φ(τ ; q),Ω(q),∆(q)]

= Ω2(q)
∂2Φ(τ ; q)

∂τ2

− f

[
∆(q) + Φ(τ ; q),Ω(q)

∂Φ(τ ; q)
∂τ

,Ω2(q)
∂2Φ(τ ; q)

∂τ2

]
, (12.14)
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where Ω(q) and ∆(q) are functions of the embedding parameter q ∈ [0, 1],
corresponding to the frequency ω and the mean of motion δ, respectively.

The homotopy analysis method is based on such continuous variations
Φ(τ ; q), Ω(q), and ∆(q) that, as the embedding parameter q increases from 0
to 1 , Φ(τ ; q) varies from the initial guess u0(τ) to the exact solution u(τ), so
does Ω(q) from the initial guess ω0 to the exact frequency ω, and ∆(q) from
the initial guess δ0 to the exact mean of motion δ, respectively. To ensure
this, we construct such a homotopy in a more general form (see §3.6):

H[Φ(τ ; q),Ω(q),∆(q),H(τ),H2(τ), �, �2, q]
= (1 − q) L [Φ(τ ; q) − u0(τ)] − q � H(τ) N [Φ(τ ; q),Ω(q),∆(q)]
− �2 H2(τ) (1 − q)

{
(f [∆(q), 0, 0] − f [δ0, 0, 0]) +

[
Ω2(q) − ω2

0

]
u′′

0(τ)
}

where q ∈ [0, 1] is the embedding parameter, � and �2 are nonzero auxiliary
parameters, H(τ) and H2(τ) are nonzero auxiliary functions, respectively.

Writing

H[Φ(τ ; q),Ω(q),∆(q),H(τ),H2(τ), �, �2, q] = 0,

we have the zero-order deformation equation

(1 − q) L [Φ(τ ; q) − u0(τ)]
= q � H(τ) N [Φ(τ ; q),Ω(q),∆(q)]
+ �2 H2(τ) (1 − q) (f [∆(q), 0, 0] − f [δ0, 0, 0])
+ �2 H2(τ) (1 − q)

[
Ω2(q) − ω2

0

]
u′′

0(τ), (12.15)

subject to the initial conditions

Φ(0; q) = a,
∂Φ(τ ; q)

∂τ

∣∣∣∣
τ=0

= 0. (12.16)

When q = 0 it is easy using (12.11) and (12.15) to show that

Φ(τ ; 0) = u0(τ), Ω(0) = ω0, ∆(0) = δ0. (12.17)

When q = 1, since � �= 0 and H(τ) �= 0, Equations (12.15) and (12.16) are
equivalent to the original ones (12.7) and (12.8), respectively, provided

Φ(τ ; 1) = u(τ), Ω(1) = ω, ∆(1) = δ. (12.18)

Therefore, as q increases from 0 to 1, Φ(τ ; q) varies from the initial guess
u0(τ) = a cos τ to the exact solution u(τ), so does Ω(q) from the initial guess
ω0 to the exact frequency ω, and ∆(q) from the initial guess δ0 to the exact
mean of motion δ, respectively.

Note that the zero-order deformation equation (12.15) contains the aux-
iliary parameters �, �2 and the auxiliary functions H(τ) and H2(τ). Assume
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that all of them are properly chosen so that Equations (12.15) and (12.16)
have solutions Φ(τ ; q), Ω(q), and ∆(q) for all q ∈ [0, 1] and, in addition, the
so-called high-order deformation derivatives

u
[m]
0 (τ) =

∂mΦ(τ ; q)
∂qm

∣∣∣∣
q=0

, ω
[m]
0 =

∂mΩ(q)
∂qm

∣∣∣∣
q=0

, δ
[m]
0 =

∂m∆(q)
∂qm

∣∣∣∣
q=0

exist for m ≥ 1. Then, by Taylor’s theorem and using (12.17), we expand
Φ(τ ; q), Ω(q), and ∆(q) in the power series of q as follows:

Φ(τ ; q) = u0(τ) +
+∞∑
m=1

um(τ) qm, (12.19)

Ω(q) = ω0 +
+∞∑
m=1

ωm qm, (12.20)

∆(q) = δ0 +
+∞∑
m=1

δm qm, (12.21)

where

um(τ) =
u

[m]
0 (τ)
m!

, ωm =
ω

[m]
0

m!
, δm =

δ
[m]
0

m!
. (12.22)

Assuming that the auxiliary parameters �, �2 and the auxiliary functions H(τ)
and H2(τ) are properly chosen so that the above series converge at q = 1, we
have using (12.18) the solution series

u(τ) = u0(τ) +
+∞∑
m=1

um(τ), (12.23)

ω = ω0 +
+∞∑
m=1

ωm, (12.24)

δ = δ0 +
+∞∑
m=1

δm. (12.25)

12.1.2 High-order deformation equation

For brevity, define the vectors


un = {u0(τ), u1(τ), · · · , un(τ)} , 
ωn = {ω0, ω1, · · · , ωn}
and


δn = {δ0, δ1, · · · , δn} .

Differentiating Equations (12.15) and (12.16) m times with respect to q, then
setting q = 0, and finally dividing it by m!, we have the so-called high-order
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deformation equation

L [um(τ) − χmum−1(τ)] = � H(τ) Rm(
um−1, 
ωm−1, 
δm−1)

+ �2 H2(τ) Sm(τ, 
ωm, 
δm), (12.26)

subject to the initial conditions

um(0) = u′
m(0) = 0, (12.27)

where χm is defined by (2.42),

Rm(
um−1, 
ωm−1, 
δm−1)

=
1

(m − 1)!
dm−1N [Φ(τ ; q),Ω(q),∆(q)]

dqm−1

∣∣∣∣
q=0

, (12.28)

Sm(τ, 
ωm, 
δm)

= −
(

m∑
i=0

ωiωm−i − χm

m−1∑
i=0

ωiωm−1−i

)
a cos τ

+
[
Qm(
δm) − χmQm−1(
δm−1)

]
, (12.29)

and

Qm(
δm) =
1
m!

dmf [∆(q), 0, 0]
dqm

∣∣∣∣
q=0

. (12.30)

Note that there exist three unknowns: um(τ), ωm−1 and δm−1 (when �2 =
0), or um(τ), ωm and δm (when �2 �= 0). However, we have only Equations
(12.26) and (12.27) for um(τ). So, the problem is not closed and two additional
algebraic equations are needed to determined ωm−1 and δm−1 (when �2 = 0),
or ωm and δm (when �2 �= 0).

Under the rule of solution expression denoted by (12.10) and from Equa-
tion (12.26), the auxiliary functions H(τ) and H2(τ) might appear as

H(τ) = cos(2κ1τ), H2(τ) = cos(2κ2τ),

where κ1 and κ2 are integers. For simplicity, we choose κ1 = κ2 = 0, corre-
sponding to

H(τ) = 1, H2(τ) = 1. (12.31)

Then, under the rule of solution expression denoted by (12.10) and due to
the quadratic nonlinearity of conservative systems, the term on the right-hand
side of Equation (12.26) may be expressed by

bm,0 +
ϕ(m)∑
n=1

bm,n cos(nτ), (12.32)
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where the integer ϕ(m) is dependent of m and the form of the original equation
(12.1), and the coefficient bm,n becomes zero when n > ϕ(m). From the
property (12.13) of L, the solution of the mth-order deformation equation
(12.26) contains the so-called secular term τ cos τ if bm,1 �= 0. Besides, when
bm,0 �= 0, its solution um(τ) contains a constant term bm,0/ω2

0 . However,
these two terms do not conform to the rule of solution expression denoted by
(12.10). Therefore, we enforce the coefficients bm,0 and bm,1 to be zero:

bm,0 = 0, bm,1 = 0, (m = 1, 2, 3, · · ·). (12.33)

This provides a set of two algebraic equations for ωm−1 and δm−1 (when
�2 = 0), or for ωm and δm (when �2 �= 0). In this way, the problem is closed
and the rule of solution existence is obeyed. Notice that Equations (12.33)
are often nonlinear when �2 = 0 and m = 1, but are always linear otherwise.
When �2 = 0 and m = 1, we must solve a set of nonlinear algebraic equations
(12.33) to gain ω0 and δ0. However, when �2 �= 0, we have the freedom
to choose the initial guesses ω0 and δ0. It is advisable to first consider the
case of �2 = 0, because this often gives accurate results even at low order of
approximations, as shown by the illustrative examples.

Thereafter, it is easy to gain the solution of the mth-order deformation
equation (12.26)

um(τ) = χmum−1(τ)+
ϕ(m)∑
n=2

bm,n

ω2
0(1 − n2)

cos(nτ)+C1 sin τ +C2 cos τ, (12.34)

where C1 and C2 are two integral constants. From (12.27), we have C1 = 0.
To ensure that the amplitude of oscillation equals to a, we use

um(0) − um(π) = 0, m = 1, 2, 3, · · · , (12.35)

which determines the coefficient C2. We gain um(τ) (m = 1, 2, 3, · · ·) and
ωm−1, δm−1 (when �2 = 0) or ωm, δm (when �2 �= 0), successively. At the
Mth-order approximation we have

u(τ) ≈
M∑

m=0

um(τ), (12.36)

ω ≈
M∑

m=0

ωm, (12.37)

δ ≈
M∑

m=0

δm. (12.38)
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12.2 Illustrative examples

12.2.1 Example 12.2.1

Consider
Ü(t) + U(t) + γ U2(t) = 0, (12.39)

where γ is a constant. Under the transformation τ = ωt and U(t) = δ + u(τ),

ω2u′′(τ) + δ + u(τ) + γ [δ + u(τ)]2 = 0. (12.40)

All related formulae are the same as those given in §12.1. From (12.28) and
(12.30),

Rm =
m−1∑
n=0

⎛
⎝ n∑

j=0

ωj ωn−j

⎞
⎠u′′

m−1−n(τ) + vm−1(τ)

+ γ

m−1∑
n=0

vn(τ) vm−1−n(τ) (12.41)

and

Qm = δm + γ
m∑

n=0

δn δm−n, (12.42)

where
vk(τ) = δk + uk(τ). (12.43)

Note that there exist two auxiliary parameters � and �2. First, let us
consider the case of �2 = 0. In this case we gain from (12.33) the set of
algebraic equations for ω0 and δ0,

a + 2aγδ0 − aω2
0 = 0, (12.44)

and
γa2

2
+ δ0 + γδ2

0 = 0, (12.45)

which yield

ω0 =
(
1 − 2a2γ2

)1/4
, δ0 =

ω2
0 − 1
2γ

. (12.46)

When �2 = 0, we have the first-order approximation

ω ≈ ω0 − �(aγ)2

12ω3
0

, δ ≈ δ0, (12.47)

the second-order approximation

ω ≈ ω0 − �(aγ)2

6ω3
0

(
1 +

�

2

)
+

�
2(aγ)4

288ω7
0

, δ ≈ δ0 +
�

2a4γ3

144ω6
0

, (12.48)
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the third-order approximation

ω ≈ ω0 − �(aγ)2

4ω3
0

(
1 + � +

�
2

3

)

+
�

2(aγ)2

1728ω7
0

(18 + 41�) +
�

3(aγ)6

3456ω11
0

, (12.49)

δ ≈ δ0 +
�

2a4γ3

48ω6
0

(
1 +

2�

3

)
, (12.50)

and so on. These results are dependent upon the auxiliary parameter �. For
any given a and γ we can investigate the influence of � on the convergence by
plotting the so-called �-curves (see page 26 or §3.5.1). The series for ω and δ
are convergent when −2 ≤ � < 0. However, the convergence region depends
upon the value of �. We can adjust the convergence regions by choosing a
proper value of �. For example, when � = −4/5 or � = −ω2

0 , the third-order
approximation of ω agrees with the exact results in the region |aγ| ≤ 1/

√
2

and is much better than the perturbation approximation, as shown in Figure
12.1. When � = −1/5 or � = −ω2

0 , the third-order approximation of γ δ
yields good agreement with the numerical results in the region |aγ| ≤ 1/

√
2,

as shown in Figure 12.2.
When |aγ| > 1/

√
2, the initial approximations ω0 and δ0 given by (12.46)

have no physical meanings. By some simple calculations, we deduce from
Equation (12.39) that solutions exist in the region |aγ| ≤ 3/4. Using (12.46)
as initial approximations, we certainly cannot gain results valid in the region
1/
√

2 ≤ |aγ| ≤ 3/4. To gain approximations valid in the region 0 ≤ |aγ| ≤
3/4, we must choose initial approximations that have physical meanings in
the whole region. Fortunately, when �2 �= 0, the proposed approach provides
the freedom to choose such an initial approximation. Now, let us consider the
case of �2 �= 0. Notice that ω0 defined by (12.46) gives good approximation
for |aγ| < 1/

√
2. More importantly, it provides valuable information about

the mathematical structure of the frequency. Therefore, it is reasonable to
select the initial approximation

ω̃0 =
(

1 − 16
9

a2γ2

)1/4

, (12.51)

which is valid in the whole region 0 ≤ |aγ| ≤ 3/4. From (12.46), we choose
the initial approximation

δ̃0 =
ω̃2

0 − 1
2γ

, (12.52)

which is also valid in the whole region 0 ≤ |aγ| ≤ 3/4. Note that ω and δ now
contain two auxiliary parameters: � and �2. For simplicity, let us consider the
special case of �2 = −1. We successively gain the first-order approximation

ω ≈ ω̃0, δ ≈ δ̃0 +
�

4γω̃2
0

(
ω̃4

0 − 1 + 2a2γ2
)
, (12.53)
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the second-order approximation

ω ≈ ω̃0 − �
2

12ω̃3
0

(
3 ω̃4

0 − 3 + 5 a2γ2
)
,

δ ≈ δ̃0 +
�

16γω̃6
0

(
ω̃4

0 − 1 + 2a2γ2
) [

8ω̃4
0 + �

(
3 ω̃4

0 + 1 − 2 a2γ2
)]

,

the third-order approximation

ω ≈ ω̃0 − �
2

48ω̃7
0

{
12ω̃4

0

(
3ω̃4

0 − 3 + 5a2γ2
)

+ �
[
(21ω̃8

0 − 18ω̃4
0 − 3) + 4

(
7ω̃4

0 + 3
)
a2γ2 − 12a4γ4

]}
, (12.54)

δ ≈ δ̃0 +
�

288γω̃10
0

{
216 ω̃8

0 (ω̃4
0 − 1 + 2a2γ2)

+54 ω̃4
0�
[
(3 ω̃8

0 − 2 ω̃4
0 − 1) + 4(ω̃4

0 + 1)a2γ2 − 4a4γ4
]

+�
2
[
9(5 ω̃12

0 − 3 ω̃8
0 − ω̃4

0 − 1) + 18(3 ω̃8
0 + 2 ω̃4

0 + 3)a2γ2

−2(19 ω̃4
0 + 54)a4γ4 + 72 a6γ6

]}
, (12.55)

and so on. These results depend upon the auxiliary parameter �. Its in-
fluence on the convergence regions can be investigated by plotting the so-
called �-curves (see page 26 and §3.5.1). We see that, at the third order
of approximation, the frequency ω when � = −ω̃0 and the mean of motion
δ when � = −ω̃0/2 agree with the numerical results in the whole region
0 ≤ |aγ| ≤ 3/4, as shown in Figures 12.3 and 12.4, respectively. Using the
better initial approximations (12.51) and (12.52) and properly choosing the
two auxiliary parameters � and �2, we gain analytic results valid in the whole
region 0 ≤ |aγ| ≤ 3/4.

12.2.2 Example 12.2.2

Consider
Ü(t) − U(t) + U4(t) = 0. (12.56)

Under the transformation U(t) = δ + u(τ) and τ = ωt, we see that

ω2u′′(τ) − [u(τ) + δ] + [δ + u(τ)]4 = 0. (12.57)

All related formulae are the same as those given in §12.1. From (12.28) and
(12.30),

Rm =
m−1∑
n=0

⎛
⎝ n∑

j=0

ωjωn−j

⎞
⎠u′′

m−1−n(τ) − vm−1(τ)

+
m−1∑
n=0

[
n∑

i=0

vi(τ)vn−i(τ)

]⎡
⎣m−1−n∑

j=0

vj(τ)vm−1−n−j(τ)

⎤
⎦ , (12.58)
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and

Qm = −δm +
m∑

n=0

(
n∑

i=0

δiδn−i

)⎛
⎝m−n∑

j=0

δjδm−n−j

⎞
⎠ , (12.59)

where vk(τ) is defined by (12.43).
When �2 = 0, we have from (12.33) the algebraic equations for ω0 and δ0,

a − 3a3δ0 − 4aδ3
0 + aω2

0 = 0, (12.60)
3
8
a4 − δ0 + 3a2δ2

0 + δ4
0 = 0, (12.61)

which give

ω0 =
√

4δ3
0 + 3a2δ0 − 1, (12.62)

and

δ0 =
1
2

(
√

µ1 +

√
2√
µ1

− µ1 − 6a2

)
, (12.63)

where

µ1 = −2a2 +
3a4

µ0
+

µ0

2
, (12.64)

µ0 =
(

4 − 4a6 + 2
√

4 − 8a6 − 50a12
)1/3

. (12.65)

We have therefore the first-order approximation

ω ≈ ω0 +
�a2

(4δ3
0 + 6a2δ0 − 1)ω3

0

[
27
160

a4 +
(

1
16

− 9
20

a6

)
δ0

+
3
4
a2δ2

0 − 9
5
a4δ3

0 +
5
2
δ4
0 − 15

2
a2δ5

0 − 11δ7
0

+
(

1
16

δ0 − 3
8
a2δ2

0 − 1
4
δ4
0

)
ω2

0

]
, (12.66)

δ ≈ δ0 +
�a4δ0

(4δ3
0 + 6a2δ0 − 1)ω2

0

(
3
8
a2 +

9
4
δ2
0

)
, (12.67)

and so on, where ω0, δ0 are given by (12.62) and (12.63), respectively. Sim-
ilarly, the influence of � on the convergence region can be investigated by
plotting the corresponding �-curves (see page 26 and §3.5.1). It is found that
the series of ω is convergent when −2 < � < 0, so does the series of δ. Even
at the first order of approximation, the frequency ω when � = −1 and the
mean of motion δ when � = −3/4 agree with the numerical results, as shown
in Figures 12.5 and 12.6. It is unnecessary to consider the case �2 �= 0 for the
second illustrative problem.
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In this chapter we illustrate how to get better approximations by means
of zero-order deformation equations in a more general form as mentioned in
§3.6. The illustrative examples demonstrate the flexibility and potential of
the homotopy analysis method.
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FIGURE 12.1
Comparison of the exact frequency ω of Example 12.2.1 with the approximate
results when �2 = 0. Symbols: exact result; solid line: first-order perturba-
tion approximation ω = 1 − 5a2γ2/12; dashed line: first-order approxima-
tion (12.47) when � = −4/5; long-dashed line: third-order approximation
(12.49) when � = −4/5; dash-dotted line: first-order approximation (12.47)
when � = −ω2

0 ; dash-dot-dotted line: third-order approximation (12.49) when
� = −ω2

0 .
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FIGURE 12.2
Comparison of the exact mean of motion δ of Example 12.2.1 with the ap-
proximate results when �2 = 0. Symbols: exact result; dashed line: first-order
approximation (12.47); dash-dotted line: third-order approximation (12.50)
when � = −1/5; solid line: third-order approximation (12.50) when � = −ω2

0 .
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FIGURE 12.3
Comparison of the exact frequency ω of Example 12.2.1 with the approximate
results when �2 = −1, ω̃0 = (1 − 16a2γ2/9)1/4 and � = −ω̃0. Symbols: exact
result; dashed line: perturbation solution ω = 1 − 5a2γ2/12; dash-dotted
line: first-order approximation (12.53); solid line: third-order approximation
(12.54).
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FIGURE 12.4
Comparison of the exact mean of motion δ of Example 12.2.1 with the ap-
proximate results when �2 = −1, ω̃0 = (1 − 16a2γ2/9)1/4, and � = −ω̃0/2.
Symbols: exact result; dash-dotted line: first-order approximation (12.53);
solid line: third-order approximation (12.55) .
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FIGURE 12.5
Comparison of the exact frequency of Example 12.2.2 with the first-order
approximation when �2 = 0 and � = −1. Symbols: exact result; dashed line:
first-order perturbation approximation ω =

√
3(1 − 7a2/6); dash-dotted line:

initial approximation ω0 given by (12.62); solid line: first-order approximation
(12.66).
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FIGURE 12.6
Comparison of the exact mean of motion δ of Example 12.2.2 with the first-
order approximation when �2 = 0 and � = −3/4. Symbols: exact result;
dash-dotted line: initial approximation δ0 given by (12.63); solid line: first-
order approximation (12.67).
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13

Limit cycle in a multidimensional system

The homotopy analysis method is successfully applied by Liao [39] to solve
limit cycles of one-dimensional nonlinear dynamical systems, governed by

ü(t) = f(u, u̇, ü), (13.1)

where t denotes the time, the dot denotes derivative with respect to t, and
f(u, u̇, ü) is a known function of u, u̇, and ü. Unlike perturbation techniques,
it is unnecessary to assume the existence of any small/large quantities in the
above equation. Here, we show that the homotopy analysis method can also
be applied to gain limit cycles of multidimensional dynamical systems.

As an example, let us consider a two-dimensional nonlinear dynamical
system governed by (see Kahn [103])

ẍ + x = ε ẋ(1 − x2 w), (13.2)
ẇ = −ε (w2 − µ x4), (13.3)

where the dot denotes differentiation with respect to t, µ and ε are physical
parameters, x and w are two unknown functions. Physically, a limit cycle is
independent of initial conditions. Let T and α = max[x(t)] denote the period
and the maximum value of x(t) of the limit cycle, respectively. Without loss
of generality, we can define t = 0 so that

x(0) = α, ẋ(0) = 0. (13.4)

Define

δ =
1
T

∫ T

0

w(t)dt (13.5)

and let
ω = T/2π

denote the frequency of x(t) of the limit cycle. Under the transformations

τ = ω t, x(t) = α u(τ), w(t) = δ + v(τ), (13.6)

Equations (13.2) and (13.3) become

ω2 u′′ + u = ε ω u′ (1 − α2δ u2 − α2 u2 v), (13.7)
ω v′ = −ε (δ2 + 2δ v + v2 − µ α4 u4), (13.8)
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subject to the initial conditions

u(0) = 1, u′(0) = 0, (13.9)

where the prime represents differentiation with respect to τ . Furthermore,
from (13.5) and (13.6), it holds that

∫ 2π

0

v(τ)dτ = 0, (13.10)

which provides us with the condition for v(τ). Note that α, δ, and ω are
unknown.

13.1 Homotopy analysis solution

13.1.1 Zero-order deformation equation

From a physical point of view, a limit cycle can be expressed by periodic
functions. Clearly, u(τ) and v(τ) may be expressed in the forms:

u(τ) =
+∞∑
n=1

[an cos(nτ) + bn sin(nτ)] (13.11)

and

v(τ) =
+∞∑
n=1

[cn cos(nτ) + dn sin(nτ)] , (13.12)

where an, bn, cn, and dn are coefficients. The above expressions provide the
so-called rules of solution expression for u(τ) and v(τ), respectively.

Under the above rules of solution expressions and from the initial condi-
tions (13.9) and (13.10), it is convenient to choose

u0(τ) = cos τ, v0(τ) = 0 (13.13)

as the initial guesses of u(τ) and v(τ). Here, v0(τ) = 0 is chosen because of the
lack of information about v(τ), especially the relationship between u(τ) and
v(τ). Let α0, δ0, and ω0 denote the initial guesses of α, δ, and ω, respectively.
Under the rules of solution expression denoted by (13.11) and (13.12) and
from Equations (13.7) and (13.8), we choose the auxiliary linear operators

Luf =
∂2f

∂τ2
+ f (13.14)

and
Lvf =

∂f

∂τ
(13.15)
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with the properties

Lu (C1 cos τ + C2 sin τ) = 0, Lv(C3) = 0, (13.16)

respectively, where C1, C2, and C3 are coefficients and f is a real function. For
simplicity, we define from Equations (13.7) and (13.8) the nonlinear operators

Nu [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)]

= Ω2(q)
∂2U(τ ; q)

∂τ2
+ U(τ ; q)

− ε Ω(q)
∂U(τ ; q)

∂τ

[
1 − A2(q)∆(q)U2(τ ; q) − A2(q)U2(τ ; q)V (τ ; q)

]
(13.17)

and

Nv [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)]

= Ω(q)
∂V (τ ; q)

∂τ

+ ε
[
∆2(q) + 2∆(q) V (τ ; q) + V 2(τ ; q) − µ A4(q) U4(τ ; q)

]
, (13.18)

where q ∈ [0, 1] is the imbedding parameter, U(τ ; q) and V (τ ; q) are real
functions of τ and q, A(q),∆(q), and Ω(q) are real functions of q.

Let �u and �v denote the nonzero auxiliary parameters, Hu(τ) and Hv(τ)
the nonzero auxiliary functions, respectively. We construct the zero-order
deformation equations

(1 − q)Lu [U(τ ; q) − u0(τ)]
= q �u Hu(τ) Nu [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)] , (13.19)

(1 − q)Lv [V (τ ; q) − v0(τ)]
= q �v Hv(τ) Nv [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)] , (13.20)

subject to the conditions

U(0; q) = 1,
∂U(τ ; q)

∂τ

∣∣∣∣
τ=0

= 0,

∫ 2π

0

V (τ ; q)dτ = 0, (13.21)

where τ ≥ 0 and q ∈ [0, 1].
When q = 0, it is clear from (13.13) and the above zero-order deformation

equations that
U(τ ; 0) = u0(τ), V (τ ; 0) = v0(τ). (13.22)

When q = 1, Equations (13.19) to (13.21) are equivalent to Equations (13.7)
to (13.10), respectively, provided

U(τ ; 1) = u(τ), V (τ ; 1) = v(τ) (13.23)
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and
A(1) = α, ∆(1) = δ, Ω(1) = ω. (13.24)

So, as the embedding parameter q increases from 0 to 1, U(τ ; q), and V (τ ; q)
vary from the initial guesses u0(τ) and v0(τ) to the exact solutions u(τ) and
v(τ), respectively, so do A(q),∆(q), and Ω(q) from the initial guesses α0, δ0,
and ω0 to the corresponding exact values α, δ, and ω.

The zero-order deformation equations (13.19) and (13.20) contain the two
auxiliary parameters �u, �v and the two auxiliary functions Hu(τ),Hv(τ).
Assume that all of them are properly chosen so that the terms

un(τ) =
(

1
n!

)
dnU(τ ; q)

∂qn

∣∣∣∣
q=0

, (13.25)

vn(τ) =
(

1
n!

)
∂nV (τ ; q)

∂qn

∣∣∣∣
q=0

, (13.26)

and

αn =
(

1
n!

)
dnA(q)
d qn

∣∣∣∣
q=0

, (13.27)

δn =
(

1
n!

)
dn∆(q)

d qn

∣∣∣∣
q=0

, (13.28)

ωn =
(

1
n!

)
dnΩ(q)
d qn

∣∣∣∣
q=0

(13.29)

exist for n ≥ 1. Then, using Taylor’s theorem and (13.22), we have the power
series of q in the forms:

U(τ ; q) = u0(τ) +
+∞∑
n=1

un(τ) qn, (13.30)

V (τ ; q) = v0(τ) +
+∞∑
n=1

vn(τ) qn, (13.31)

A(q) = α0 +
+∞∑
n=1

αn qn, (13.32)

∆(q) = δ0 +
+∞∑
n=1

δn qn, (13.33)

Ω(q) = ω0 +
+∞∑
n=1

ωn qn. (13.34)

Assuming that �u, �v, Hu(τ), and Hv(τ) are properly chosen so that the
above series are convergent at q = 1, we obtain, using (13.23) and (13.24),
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the solution series

u(τ) = u0(τ) +
+∞∑
n=1

un(τ), (13.35)

v(τ) = v0(τ) +
+∞∑
n=1

vn(τ), (13.36)

α = α0 +
+∞∑
n=1

αn, (13.37)

δ = δ0 +
+∞∑
n=1

δn, (13.38)

and

ω = ω0 +
+∞∑
n=1

ωn. (13.39)

13.1.2 High-order deformation equation

For conciseness, define the vectors


uk = {u0(τ), u1(τ), · · · , uk(τ)} , 
vk = {v0(τ), v1(τ), · · · , vk(τ)} , (13.40)


αk = {α0, α1, · · · , αk} , 
δk = {δ0, δ1, · · · , δk} , (13.41)

and

ωk = {ω0, ω1, · · · , ωk} . (13.42)

Differentiating the zero-order deformation equations (13.19) to (13.21) n times
with respect to q, then dividing by n!, and finally setting q = 0, we have the
high-order deformation equations

Lu [un(τ) − χn un−1(τ)]

= �u Hu(τ) Ru
n(
un−1, 
vn−1, 
αn−1, 
δn−1, 
ωn−1), (13.43)

Lv [vn(τ) − χn vn−1(τ)]

= �v Hv(τ) Rv
n(
un−1, 
vn−1, 
αn−1, 
δn−1, 
ωn−1), (13.44)

subject to the conditions

un(0) = 0, u′
n(0) = 0,

∫ 2π

0

vn(τ)dτ = 0, (13.45)

where χn is defined by (2.42),

Ru
n(
un−1, 
vn−1, 
αn−1, 
δn−1, 
ωn−1)
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=
1

(n − 1)!
dn−1Nu [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)]

d qn−1

=
n−1∑
j=0

u′′
n−1−j(τ)

(
j∑

i=0

ωiωj−i

)
+ un−1(τ) − ε Fn−1(τ)

+ ε

n−1∑
j=0

Fn−1−j(τ)
j∑

i=0

[δi + vi(τ)] Wj−i(τ) (13.46)

and

Rv
n(
un−1, 
vn−1, 
αn−1, 
δn−1, 
ωn−1)

=
1

(n − 1)!
dn−1Nv [U(τ ; q), V (τ ; q), A(q),∆(q),Ω(q)]

d qn−1

=
n−1∑
j=0

ωj v′
n−1−j(τ) + ε

n−1∑
j=0

[δj δn−1−j + 2δj vn−1−j(τ)]

+ ε
n−1∑
j=0

[vj(τ) vn−1−j(τ) − µ Wj(τ) Wn−1−j(τ)] , (13.47)

under the definitions

Fk(τ) =
k∑

j=0

ωk−j u′
j(τ), (13.48)

Wk(τ) =
k∑

j=0

(
k−j∑
m=0

αm αk−j−m

)[
j∑

n=0

un(τ) uj−n(τ)

]
. (13.49)

It should be emphasized that the linear high-order deformation equations
(13.43) and (13.44) are uncoupled and can be easily solved.

There are five unknowns: un(τ), vn(τ), αn−1, δn−1, and ωn−1, and we have
only Equations (13.43), (13.44), and (13.45) for un(τ) and vn(τ). Therefore,
the problem is not closed and three additional algebraic equations are needed
to determine αn−1, δn−1, and ωn−1. Under the rules of solution expression
denoted by (13.11) and (13.12) and from Equations (13.43) and (13.44), Hu(τ)
and Hv(τ) may be sine and cosine functions. For simplicity, we select

Hu(τ) = Hv(τ) = 1. (13.50)

When n = 1, by substituting (13.13) into (13.46) and (13.47), we gain

Ru
1 = a1,0 cos τ + b1,0 sin τ + b1,1 sin(3τ) (13.51)

and
Rv

1 = c1,0 + c1,1 cos(2τ) + c1,2 cos(4τ), (13.52)
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where a1,0, b1,0, b1,1, c1,0, c1,1, and c1,2 are coefficients independent of τ . If
a1,0 �= 0 and b1,0 �= 0, from the property (13.16) of Lu, the solution u1(τ)
of Equation (13.43) contains the so-called secular terms τ sin τ and τ cos τ ,
which do not conform to the rule of solution expression denoted by (13.11).
Moreover, if c1,0 �= 0, from the property (13.16) of Lv, the solution v1(τ) of
Equation (13.44) contains the secular term c1,0 τ , which disregards the rule
of solution expression denoted by (13.12). In order to conform to the rules of
solution expression denoted by (13.43) and (13.44), we must enforce

a1,0 = 0, b1,0 = 0, c1,0 = 0,

which provides us with three additional algebraic equations

ω0 − α2
0 δ0

4
= 0, ω2

0 − 1 = 0, δ2
0 − 3α4

0µ

8
= 0, (13.53)

whose solutions are

α0 =
2

8
√

6µ
, δ0 = 4

√
6µ, ω0 = 1. (13.54)

Now the problem is solved in accordance with the rules of solution expression
denoted by (13.11) and (13.12). We now have

Ru
1 = b1,1 sin(3τ)

and
Rv

1 = c1,1 cos(2τ) + c1,2 cos(4τ).

Solving the first-order deformation equations (13.43) and (13.44) under the
conditions noted in (13.45), we have

u1(τ) = −
( ε

8

)
�u (3 sin τ − sin 3τ) (13.55)

and

v1(τ) = −
(

4ε

√
µ

6

)
�v

(
sin 2τ +

1
8

sin 4τ

)
. (13.56)

Similarly, first solving a set of linear algebraic equations

ε2
(
3�u + 4

√
176µ �v

)
− 48 ω1 = 0, (13.57)

(246µ3)1/8 α1 + (46)3/4 δ1 = 0, (13.58)
(126µ)3/8α1 − δ1 = 0 (13.59)

to gain α1, δ1, and ω1, and then the remaining second-order deformation equa-
tions (13.43) to (13.45), we obtain u2(τ) and v2(τ). In this way we successively
obtain αn−1, δn−1, ωn−1, un(τ), and vn(τ).
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At the nth-order of approximation, u(τ) and v(τ) can be expressed by

u(τ) =
Mu

n∑
k=0

[an,k cos(2k + 1)τ + bn,k sin(2k + 1)τ ]

and

v(τ) =
Mv

n∑
k=1

[cn,k cos(2kτ) + dn,k sin(2kτ)] ,

where Mu
n and Mv

n are integers dependent upon the order n of approximation.
Thus, the frequency of the motion w(t) is twice that of x(t).

13.1.3 Convergence theorem

THEOREM 13.1
If the solution series (13.35) to (13.39) are convergent, where un(τ) and vn(τ)
are governed by Equations (13.43) to (13.45) under the definitions (13.46) to
(13.49), and (2.42), they must be the solution of Equations (13.7) to (13.10).

Proof: If the solution series (13.35) and (13.36) are convergent, then

lim
m→+∞um(τ) = 0, lim

m→+∞ vm(τ) = 0.

From Equation (13.43) and using the definitions (2.42) and (13.14), we then
have

�u Hu(τ)
+∞∑
n=1

Ru
n(
un−1, 
vn−1, 
αn−1, 
δn−1, 
ωn−1)

=
+∞∑
n=1

Lu [un(τ) − χnun−1(τ)]

= lim
m→+∞

m∑
n=1

Lu [un(τ) − χnun−1(τ)]

= lim
m→+∞Lu [um(τ)]

= Lu

[
lim

m→+∞um(τ)
]

= 0,

which yields, since �u �= 0 and Hu(τ) �= 0,

+∞∑
n=1

Ru
n(
un−1, 
vn−1, 
αn−1, 
δn−1, 
ωn−1) = 0.
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Similarly,
+∞∑
n=1

Rv
n(
un−1, 
vn−1, 
αn−1, 
δn−1, 
ωn−1) = 0.

Substituting (13.46) and (13.47) into the above expressions and simplifying
them, we have, due to the convergence of the series (13.37) to (13.39), that

(
+∞∑
i=0

ωi

)2
d2

dτ2

⎡
⎣+∞∑

j=0

uj(τ)

⎤
⎦ +

+∞∑
j=0

uj(τ)

= ε

(
+∞∑
i=0

ωi

)
d

dτ

⎡
⎣+∞∑

j=0

uj(τ)

⎤
⎦

×

⎧⎪⎨
⎪⎩1 −

(
+∞∑
i=0

αi

)2
⎛
⎝+∞∑

j=0

uj

⎞
⎠

2
+∞∑
k=0

[δk + vk(τ)]

⎫⎪⎬
⎪⎭

and
(

+∞∑
i=0

ωi

)
d

dτ

⎡
⎣+∞∑

j=0

vj(τ)

⎤
⎦

= −ε

⎧⎪⎨
⎪⎩
[

+∞∑
k=0

δk +
+∞∑
k=0

vk(τ)

]2

− µ

(
+∞∑
i=0

αi

)4
⎛
⎝+∞∑

j=0

uj

⎞
⎠

4
⎫⎪⎬
⎪⎭ .

From (13.13) and (13.45), we have

+∞∑
i=0

ui(0) = 1,
+∞∑
i=0

u′
i(0) = 0,

∫ 2π

0

[
+∞∑
i=0

vi(τ)

]
dτ = 0.

Comparing the above equations with Equations (13.7) to (13.10), it is obvious
that the series (13.35) to (13.39) are the solutions. This ends the proof.

13.2 Result analysis

According to Theorem 13.1 we should ensure that the solution series (13.35)
to (13.39) converge. Note that these solution series contain two auxiliary
parameters �u and �v. For simplicity, let

�u = �v = �
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so that the approximations of u(τ), v(τ), ω, α, and δ are dependent only on
�. Generally, for any given physical parameters ε and µ, we first investigate
the influence of the auxiliary parameter � on the convergence of the series by
plotting the so-called �-curves (see page 26 and §3.5.1) of α, δ, and ω. For
example, when ε = 1/5 and µ = 3 the �-curves are as shown in Figure 13.1,
clearly indicating the valid regions of � for the corresponding series of α, δ, and
ω. Obviously, when ε = 1/5 and µ = 3, the solution series (13.37) to (13.39)
converge if −3/2 < � < 0. For instance, when �u = �v = −3/4, the solution
series of ω, α, and δ converge to 0.96968, 1.41399, and 2.07015, respectively, as
shown in Table 13.1. We can employ the so-called homotopy-Padé technique
(see page 38 and §3.5.2) to accelerate the convergence, as shown in Table 13.2.
As long as the solution series of α, δ, and ω are convergent, the corresponding
series of u(τ) and v(τ) given by the same value of � also converge, as shown
in Figures 13.2 to 13.4 when ε = 1/5 and µ = 3.

In this way, for any given physical parameters ε and µ, we can gain con-
vergent analytic results of the limit cycle of the two-dimensional dynamical
system. As ε increases, the nonlinearity becomes stronger so that a higher or-
der of approximation is necessary. For example, when ε = 3/4 and µ = 1, the
�-curves of α, δ, and ω clearly indicate that the solution series converge when
� = −3/4, as shown in Figure 13.5. However, higher-order approximations
are needed to get accurate enough results, as shown in Figures 13.6 to 13.8.

The homotopy analysis method was applied to solve limit cycles of one-
dimensional systems [39]. This example shows that the homotopy analysis
method may be employed to gain limit-cycles of multidimensional systems.
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TABLE 13.1

The mth-order approximations of ω, α, and δ when ε = 1/5, µ = 3 by
means of �u = �v = −3/4 and Hu(τ) = Hv(τ) = 1.

m ω α δ

1 1.00000 1.39354 2.05977
2 0.97063 1.40476 2.06318
3 0.96966 1.41020 2.06458
4 0.96963 1.41251 2.06668
5 0.96968 1.41346 2.06843
6 0.96969 1.41382 2.06944
7 0.96969 1.41395 2.06989
8 0.96968 1.41398 2.07006
9 0.96968 1.41399 2.07011
10 0.96968 1.41399 2.07013
11 0.96968 1.41399 2.07014
12 0.96968 1.41399 2.07015
13 0.96968 1.41399 2.07015
14 0.96968 1.41399 2.07015

TABLE 13.2

The [m,m] homotopy-Padé approximations of ω, α, and δ
when ε = 1/5, µ = 3 by means of �u = �v = −3/4 and
Hu(τ) = Hv(τ) = 1.

[m,m] ω α δ

[1, 1] 0.96889 1.39354 2.05977
[2, 2] 0.96977 1.41413 2.08345
[3, 3] 0.96968 1.41414 2.08735
[4, 4] 0.96968 1.41399 2.07015
[5, 5] 0.96968 1.41398 2.07016
[6, 6] 0.96968 1.41399 2.07015
[7, 7] 0.96968 1.41399 2.07015
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FIGURE 13.1
The �-curves of ω, α, and δ at the 10th order of approximation when ε = 1/5
and µ = 3 by means of Hu(τ) = Hv(τ) = 1. Dashed line: δ; dash-dotted line:
α; solid line: ω.
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FIGURE 13.2
x − ẋ plane projection of the limit cycle when ε = 1/5 and µ = 3. Solid line:
fifth-order approximation by means of �u = �v = −3/4 and Hu(τ) = Hv(τ) =
1; symbols: numerical result.
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FIGURE 13.3
x − w plane projection of the limit cycle when ε = 1/5 and µ = 3. Solid line:
fifth-order approximation by means of �u = �v = −3/4 and Hu(τ) = Hv(τ) =
1; symbols: numerical result.
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FIGURE 13.4
ẋ − w plane projection of the limit cycle when ε = 1/5 and µ = 3. Solid line:
fifth-order approximation by means of �u = �v = −3/4 and Hu(τ) = Hv(τ) =
1; symbols: numerical result.
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FIGURE 13.5
The �-curves of ω, α, and δ at the 10th order of approximation when ε = 3/4
and µ = 1/6 by means of Hu(τ) = Hv(τ) = 1. Dashed line: δ; dash-dotted
line: α; solid line: ω.
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FIGURE 13.6
x − ẋ plane projection of the limit cycle when ε = 3/4 and µ = 1/6. Solid
line: 20th-order approximation by means of �u = �v = −3/4 and Hu(τ) =
Hv(τ) = 1; Symbols: numerical result.
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FIGURE 13.7
x − w plane projection of the limit cycle when ε = 3/4 and µ = 1/6. Solid
line: 20th-order approximation by means of �u = �v = −3/4 and Hu(τ) =
Hv(τ) = 1; symbols: numerical result.
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FIGURE 13.8
ẋ − w plane projection of the limit cycle when ε = 3/4 and µ = 1/6. Solid
line: 20th-order approximation by means of �u = �v = −3/4 and Hu(τ) =
Hv(τ) = 1; symbols: numerical result.
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14

Blasius’ viscous flow

Consider the two-dimensional laminar viscous flow past a semi-infinite flat
plate, governed by

f ′′′(η) +
1
2
f(η)f ′′(η) = 0, (14.1)

subject to the boundary conditions

f(0) = f ′(0) = 0, f ′(+∞) = 1, (14.2)

where the prime denotes the derivative with respect to the similarity variable
η = y

√
U∞/(νx), the dimensionless function f(η) is related to the stream

function ψ(x, y) by f(η) = ψ/
√

νxU∞, U∞ is the constant velocity of the
mainstream at infinity, ν is the kinematic viscosity coefficient, and x and y
are two independent variables. For details, the reader is referred to White
[20].

In 1908, Blasius [104] provided a solution in power series

f(η) =
+∞∑
k=0

(
−1

2

)k
Akσk+1

(3k + 2)!
η3k+2, (14.3)

where σ = f ′′(0) and

A0 = A1 = 1, Ak =
k−1∑
r=0

(
3k − 1

3r

)
Ar Ak−r−1 (k ≥ 2). (14.4)

To get the unknown value of σ, Blasius [104] demonstrated another approxi-
mation of f(η) for large η. Then, by means of matching two different approx-
imations at a proper point, he obtained the numerical result σ = 0.332. In
1938, Howarth [105] gained a more accurate value σ = 0.33206 by means of a
numerical technique. However, by means of σ = 0.33206, f ′(η) given by (14.3)
is valid in a restricted region 0 ≤ η < ρ0, where ρ ≈ 5.690, as shown in Fig-
ure 14.1. Blasius’ power series (14.3) is fundamentally an analytic-numerical
solution, because the value of σ = f ′′(0) is gained by numerical techniques.

In this chapter the homotopy analysis method is applied to yield the purely
analytic solution expressions of Blasius’ viscous flows by means of two different
base functions.
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14.1 Solution expressed by power functions

14.1.1 Zero-order deformation equation

Like Blasius [104], we express the solution of Equations (14.1) and (14.2) by
the set of base functions

{
ηαm+β | m ≥ 0

}
(14.5)

in the form:

f(η) =
+∞∑
k=0

ak ηαk+β , (14.6)

where ak is a coefficient, α > 0 and β ≥ 0 are constants. This provides us
with the first rule of solution expression of Blasius’ viscous flows.

Under the first rule of solution expression and using (14.2), it is easy to
choose

f0(η) =
1
2
ση2 (14.7)

as the initial guess of f(η), where σ = f ′′(0). Then, under the first rule of
solution expression denoted by (14.6) and from Equations (14.1) and (14.2),
we choose the auxiliary linear operator

L0[Φ(η; q)] =
∂3Φ(η; q)

∂η3
(14.8)

with the property
L0

(
C0 + C1η + C2η

2
)

= 0, (14.9)

where C0, C1, and C2 are coefficients, Φ(η; q) is a real function of η and q,
q ∈ [0, 1] is an embedding parameter. For brevity, we define from Equation
(14.1) the nonlinear operator

N [Φ(η; q)] =
∂3Φ(η; q)

∂η3
+

1
2
Φ(η; q)

∂2Φ(η; q)
∂η2

. (14.10)

Let � denote a nonzero auxiliary parameter and H(η) a nonzero auxiliary
function. We construct the so-called zero-order deformation equation

(1 − q) L0 [Φ(η; q) − f0(η)] = q � H(η) N [Φ(η; q)], (14.11)

subject to the boundary conditions

Φ(0; q) = 0,
∂Φ(η; q)

∂η

∣∣∣∣
η=0

= 0,
∂2Φ(η; q)

∂η2

∣∣∣∣
η=0

= σ, (14.12)

where q ∈ [0, 1] is an embedding parameter.
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When q = 0, it is easy to demonstrate from (14.7), (14.11), and (14.12)
that

Φ(η; 0) = f0(η). (14.13)

When q = 1, since � �= 0 and H(η) �= 0, the zero-order deformation equations
(14.11) and (14.12) are equivalent to Equations (14.1) and (14.2), respectively,
provided

Φ(η; 1) = f(η). (14.14)

As the embedding parameter q increases from 0 to 1, Φ(η; q) varies from the
initial guess f0(η) to the exact solution f(η).

Using Taylor’s theorem and Equation (14.13), we expand Φ(η; q) in the
power series

Φ(η; q) = f0(η) +
+∞∑
k=1

fk(η) qk, (14.15)

where

fk(η) =
1
k!

∂kΦ(η; q)
∂qk

∣∣∣∣
q=0

. (14.16)

Note that the zero-order deformation equation (14.11) contains the auxiliary
parameter � and the auxiliary function H(η). Assuming that both � and H(η)
are properly chosen so that the series (14.15) is convergent at q = 1, we have,
using (14.14), that

f(η) = f0(η) +
+∞∑
k=1

fk(η). (14.17)

The mth-order approximation is given by

f(η) ≈ f0(η) +
m∑

k=1

fk(η). (14.18)

14.1.2 High-order deformation equation

For conciseness, define the vector


fn = {f0(η), f1(η), f2(η), · · · , fn(η)} . (14.19)

Differentiating the zeroth-order deformation equations (14.11) and (14.12) k
times with respect to q, then setting q = 0, and finally dividing them by k!,
we gain the high-order deformation equation

L0 [fk(η) − χk fk−1(η)] = � H(η) Rk(
fk−1), (14.20)

subject to the boundary conditions

fk(0) = f ′
k(0) = f ′′

k (0) = 0, (14.21)
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where χk is defined by (2.42) and

Rk(
fk−1) = f ′′′
k−1(η) +

1
2

k−1∑
n=0

fn(η)f ′′
k−1−n(η). (14.22)

Using (14.8), the solution of (14.20) is

fk(η) = χkfk−1(η) + �

∫ ∫ ∫
H(η) Rk(
fk−1) dη

+ C0 + C1η + C2η
2, (14.23)

where the coefficients C0, C1, and C2 are determined by the boundary condi-
tions (14.21), which then yields fk(η).

14.1.3 Convergence theorem

THEOREM 14.1
If the solution series (14.17) converges, where fk(η) is governed by Equations
(14.20) and (14.21) under the definitions (14.22) and (2.42), it must be the
solution of Equations (14.1) and (14.2).

Proof: From (2.42) and (14.20), we have

� H(η)
m∑

k=1

Rk(
fk−1) = L[fm(η)].

If the series (14.17) converges, then

lim
m→+∞ fm(η) = 0.

Using (14.8), we have

� H(η)
+∞∑
k=1

Rk(
fk−1) = lim
m→+∞L[fm(η)] = L

[
lim

m→+∞ fm(η)
]

= 0,

which yields, since � �= 0 and H(η) �= 0,

+∞∑
k=1

Rk(
fk−1) = 0.

Substituting (14.22) into the above expression and simplifying it, we obtain

d3

dη3

[
+∞∑
k=0

fk(η)

]
+

1
2

[
+∞∑
k=0

fk(η)

]
d2

dη2

[
+∞∑
k=0

fk(η)

]
= 0.
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From (14.7) and (14.21), we have

+∞∑
k=0

fk(0) =
+∞∑
k=0

f ′
k(0) = 0,

+∞∑
k=0

f ′′
k (0) = σ.

Therefore, the solution series

f0(η) +
+∞∑
k=1

fk(η)

must be the exact solution of Equations (14.1) and (14.2), as long as it is
convergent. This ends the proof.

14.1.4 Result analysis

According to Theorem 14.1, we need only to focus on the convergence of the
solution series (14.17) by properly choosing � and H(η). Under the first rule
of solution expression denoted by (14.6), the auxiliary function H(η) takes
the form

H(η) = ηκ,

where κ is a constant. When κ < 0, the solution of Equations (14.20) and
(14.21) contains the term

η ln η,

which, however, disobeys the first rule of solution expression denoted by
(14.6). We have therefore

κ ≥ 0. (14.24)

Note that there exist two auxiliary parameters: � and κ. We gain therefore a
two-parameter family of solution expressions.

14.1.4.1 Solution expression when H(η) = 1

Consider the case of κ = 0, corresponding to H(η) = 1. In this case, Liao [28]
found that the mth-order approximation (14.18) may be expressed by

f(η) ≈
m∑

k=0

[(
−1

2

)k
Akσk+1

(3k + 2)!
η3k+2

]
µm,k

0 (�), (14.25)

where µm,k
0 (�) is exactly the same as the expression (2.58) defined in Chapter

2 on page 22. We have the exact solution

f(η) = lim
m→+∞

m∑
k=0

[(
−1

2

)k
Akσk+1

(3k + 2)!
η3k+2

]
µm,k

0 (�). (14.26)
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The above expression provides us with a one-parameter family of solution
expressions, although the solution of Equations (14.1) and (14.2) is unique.
Note that µm,k

0 (�) appears once again. As proved in Chapter 2 on page 22,

µm,k
0 (−1) = 1.

Thus, when � = −1, the solution series (14.26) is exactly the same as that
of Blasius’ one (14.3). Therefore, Blasius’ solution (14.3) is a special case of
(14.26). As pointed out by Liao [28], the solution (14.26) is valid in the region

ρ0 ≤ η ≤ ρ0

[
2
|�| − 1

]1/3

(−2 < � < 0), (14.27)

where ρ0 ≈ 5.690 is the convergence radius of Blasius’ power series (14.3).
Thus, as � varies from -1 to 0, the convergence region of the solution series
(14.26) enlarges from η ∈ [−ρ0, ρ0] to η ∈ [−ρ0,+∞), as shown in Figure 14.1.
We are able to adjust and control the convergence region of the solution series
(14.26) through use of the auxiliary parameter �.

The power series (14.26) can be theoretically valid in the whole region
η ∈ [0,+∞). Unlike Blasius [104], we do not need an additional solution for
large η any more. Using the condition f ′(+∞) = 1, we can gain the value of
f ′′(0) by numerically solving the algebraic equation

m∑
k=0

[(
−1

2

)k
Akσk+1

(3k + 1)!
η3k+1
0

]
µm,k

0 (�) = 1 (14.28)

for a proper value of � at a point η = η0 far enough from η = 0. For a
large enough order m of approximation and a small enough � (−1 ≤ � < 0),
the above equation at two points η = 8 and η = 9 gives the same value
σ = f ′′(0) = 0.33206 that agrees with Howarth’s numerical result [105], as
shown in Table 14.1.

14.1.4.2 Solution expression when H(η) = η

Consider the case of κ = 1, corresponding to H(η) = η. Here, the mth-order
approximation can be expressed by

f(η) ≈ σ

2
η2 +

4m+2∑
k=6

bm,k(�) ηk, (14.29)

where bm,k(�) is a coefficient dependent of �. Note that this solution does
not contain the term η5 and thus is different from the solution series (14.25).
It also provides a new one-parameter family of solution expressions in �. As
� increases from -1 to 0, the convergence region of the solution series (14.29)
enlarges, as shown in Figure 14.2. As � tends to 0 from below, the solution
series (14.29) converges to the exact solution in the whole region 0 ≤ η < +∞
as in the solution series (14.25).
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14.1.4.3 Solution expression when H(η) =
√

η

Consider the case of κ = 1/2, corresponding to H(η) =
√

η. Here, the mth-
order approximation can be expressed by

f(η) ≈ σ

2
η2 +

7m+4∑
k=11

cm,k(�) (
√

η )k, (14.30)

where cm,k(�) is a coefficient dependent of �. Note that this solution ex-
pression contains the term η11/2 and thus is different from the solution series
(14.25) and (14.29). It provides another one-parameter family of solution ex-
pressions in �. As � increases from -1 to 0, the convergence region of the
solution series (14.30) also enlarges, as shown in Figure 14.3. As � tends to 0
from below, the solution series (14.30) converges to the exact solution in the
whole region 0 ≤ η < +∞, as in the series (14.25) and (14.29)

In general, for any given κ ≥ 0, the corresponding solution series converges
to the exact solution in the whole region 0 ≤ η < +∞ as � tends to zero from
below. And, for given value of �, the convergence region of the solution series
given by H(η) = 1 appears to be the largest.

It should be emphasized that the solution series (14.29) and (14.30) are
quite different from Blasius solution (14.3), which is a Taylor series. Note
that, both (14.29) and (14.30) can converge in the whole region 0 ≤ η < +∞
and therefore are better than the Taylor series (14.3).

14.2 Solution expressed by exponentials and polynomi-
als

14.2.1 Asymptotic property

Although the solution series (14.26), (14.29), and (14.30) given by power
functions may be valid in the whole region η ∈ [0,+∞), as in Blasius’ solution
(14.3), it is still an analytic-numerical solution, because σ = f ′′(0) had to
be given by numerical techniques. Their convergence regions are dependent
on �, and when |�| is small, a large number of terms are needed to gain
an accurate approximation for a large η. Therefore, they are not efficient
solution expressions of Equations (14.1) and (14.2). This is mainly because
the base functions defined by (14.5) do not automatically satisfy the boundary
condition f ′(+∞) = 1 at infinity.

For very large η, Blasius [104] established from (14.1) and the boundary
condition f ′(+∞) = 1 that

f ′(η) ≈ 1 + A

∫
exp(−η2/4)dη,
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where A is an integral constant. Thus, f(η) → η exponentially as η →
+∞. This is an important asymptotic property of f(η). The velocity of the
boundary layer physically tends to the mainstream velocity, exponentially.

To ensure that f(η) → η exponentially as η → +∞, we express f(η) by
the set of base functions

{η, ηn exp(−m λ η) | n ≥ 0,m ≥ 1, λ > 0} (14.31)

in the form:

f(η) = η +
+∞∑
m=1

+∞∑
n=0

am,n ηn exp(−m λ η), (14.32)

where λ > 0 is the so-called spatial-scale parameter and am,n is a coefficient.
This provides us with the second rule of solution expression of Blasius viscous
flow.

14.2.2 Zero-order deformation equation

According to the second rule of solution expression and using (14.2), it is easy
to choose

f̂0(η) = η +
1 − exp(−λ η)

λ
(14.33)

as the initial guess of f(η). Under the second rule of solution expression de-
noted by (14.32) and from Equations (14.1) and (14.2), we select the auxiliary
linear operator

L̂[Φ(η; q)] =
∂3Φ(η; q)

∂η3
+ λ

∂2Φ(η; q)
∂η2

(14.34)

with the property

L̂ [C0 + C1η + C2 exp(−λ η)] = 0, (14.35)

where C0, C1, and C2 are coefficients. Let � and Ĥ(η) denote a nonzero
auxiliary parameter and a nonzero auxiliary function, respectively. Using
the same definition N as (14.10), we construct the zero-order deformation
equation

(1 − q) L̂
[
Φ̂(η; q) − f̂0(η)

]
= q � Ĥ(τ) N [Φ̂(η; q)], (14.36)

subject to the boundary conditions

Φ̂(0; q) = 0,
∂Φ̂(η; q)

∂η

∣∣∣∣∣
η=0

= 0,
∂Φ̂(η; q)

∂η

∣∣∣∣∣
η=+∞

= 1, (14.37)

where q ∈ [0, 1] is an embedding parameter, Φ̂(η; q) is a real function of η and
q.
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As shown in §14.1.1, we have the relationship

f(η) = f̂0(η) +
+∞∑
k=1

f̂k(η), (14.38)

where

f̂k(η) =
1
k!

∂kΦ̂(η; q)
∂qk

∣∣∣∣∣
q=0

. (14.39)

14.2.3 High-order deformation equation

Define the vector

fn =
{

f̂0(η), f̂1(η), f̂2(η), · · · , f̂n(η)
}

.

Similarly, differentiating the zero-order deformation equations (14.36) and
(14.37) k times with respect q, then setting q = 0, and finally dividing by k!,
we have the high-order deformation equation

L̂
[
f̂k(η) − χkf̂k−1(η)

]
= � Ĥ(η) R̂k(fk−1), (14.40)

subject to the boundary conditions

f̂k(0) = f̂ ′
k(0) = f̂ ′

k(+∞) = 0, (14.41)

where χk is defined by (2.42) and

R̂k(fk−1) = f̂ ′′′
k−1(η) +

1
2

k−1∑
n=0

f̂n(η) f̂ ′′
k−1−n(η). (14.42)

14.2.4 Recursive expressions

Considering the wide applications of Blasius’ viscous flows, it is helpful to
express its solution explicitly. Under the second rule of solution expression
denoted by (14.32), the auxiliary function Ĥ(η) may be in the form

Ĥ(η) = ηm exp(−λ n η), m ≥ 0, n ≥ 0.

For simplicity, we select
Ĥ(η) = 1. (14.43)

Thereafter, by solving the first several high-order deformation equations (14.40)
and (14.41), f̂m(η) can be expressed by

f̂m(η) = bm,0
0 +

m+1∑
n=1

exp(−nλ η)
2(m+1−n)∑

k=0

bm,n
k ηk, (14.44)
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where bm,n
k is a coefficient. Substituting this expression into Equations (14.40)

and (14.41), we obtain the following recurrence formulae

bm,0
0 = χmbm−1,0

0 − λ−1
2m−1∑
r=0

Γm,1
r Π1,1

r −
m+1∑
n=2

(n − 1)Γm,n
0 Πn,0

0

+
m+1∑
n=2

2(m−n+1)∑
r=1

Γm,n
r

(
nΠn,0

r − Πn,0
r − λ−1Πn,1

r

)
,

bm,1
0 = χmbm−1,1

0 + λ−1
2m−1∑
r=0

Γm,1
r Π1,1

r

+
m+1∑
n=2

⎡
⎣nΓm,n

0 Πn,0
0 +

2(m−n+1)∑
r=1

Γm,n
r

(
nΠn,0

r − λ−1Πn,1
r

)⎤⎦ ,

bm,1
k = χm(1 − χk+3−2m)bm−1,1

k +
2m−1∑
r=k−1

Γm,1
r Π1,k

r (1 ≤ k ≤ 2m),

bm,n
k = χm(1 − χk+1−2m+2n)bm−1,n

k −
2(m−n+1)∑

r=k

Γm,n
r Πn,k

r

(2 ≤ n ≤ m, 0 ≤ k ≤ 2m − 2n + 2)

and
bm,m+1
0 = −Γm,m+1

0 Πm+1,0
0 ,

where

Π1,k
r =

r! (r − k + 2)
k! λr−k+3

(0 ≤ k ≤ r + 1),

Πn,k
r =

r!
k!(n − 1)r−k+1λr−k+3

[
1 −
(

1 − 1
n

)r−k+1(
1 +

r − k + 1
n

)]

(n ≥ 2, 0 ≤ k ≤ r),

Γm,n
r = �

[
(1 − χr+1−2m+2n) dm−1,n

r + δm,n
r

]
(1 ≤ n ≤ m, 0 ≤ r ≤ 2m − 2n + 2),

in which

δm,n
r =

1
2

m−1∑
k=0

min{n,k+1}∑
j=max{1,n+k−m}

min{r,2(k−j+1)}∑
i=max{0,r−2(m−k−n+j)}

×ck,j
i bm−1−k,n−j

r−i Λm−1−k,n−j
r−i
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under the definitions

cm,k
n = (n + 1)(n + 2)(1 − χn+1−2m+2k) bm,k

n+2

−2(kλ)(n + 1)(1 − χn−2m+2k) bm,k
n+1 + (kλ)2 bm,k

n ,

dm,k
n = (n + 1)(1 − χn−2m+2k) cm,k

n+1 − kλcm,k
n

and

Λi,j
k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, when i = j = 0, k ≥ 2,
0, when i > 0, j = 0, k ≥ 1,
0, when j > i + 1,
0, when k > 2(i + 1 − j),
1, otherwise.

(14.45)

Using (14.33), we gain the first three coefficients

b0,0
0 = −λ−1, b0,0

1 = 1, b0,1
0 = λ−1. (14.46)

From these three coefficients and using the above recurrence formulae, we can
calculate all coefficients bm,n

k . For details, the reader is referred to Liao [29].
Substituting (14.44) into (14.38), we obtain the solution

f(η) = η

+ lim
M→+∞

⎡
⎣ M∑

m=0

bm,0
0 +

M+1∑
n=1

exp(−nλ η)

⎛
⎝ M∑

m=n−1

2(m−n+1)∑
k=0

bm,n
k ηk

⎞
⎠
⎤
⎦ .

(14.47)

Note that the coefficient bm,n
k contains the auxiliary parameter � and the so-

called spatial-scale parameter λ. It provides us with a two-parameter family
of solution expressions. Note that the solution series (14.47) is explicit and
has the asymptotic property f ′(η) → 1 exponentially as η → +∞.

14.2.5 Convergence theorem

THEOREM 14.2
If the solution series (14.38) converges, where f̂k(η) is governed by Equations
(14.40) and (14.41) under the definitions (14.42) and (2.42), it must be the
solution of Equations (14.1) and (14.2).

Proof: From (2.42) and (14.40), it holds that

� Ĥ(η)
m∑

k=1

R̂k(fk−1) = L̂ [f̂m(η)].
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If the series (14.38) converges, it is necessary that

lim
m→+∞ f̂m(η) = 0.

Then, using (14.34), we have

� Ĥ(η)
+∞∑
k=1

R̂k(fk−1) = lim
m→+∞ L̂[f̂m(η)] = L̂

[
lim

m→+∞ f̂m(η)
]

= 0,

which gives, since � �= 0 and Ĥ(η) �= 0,

+∞∑
k=1

R̂k(fk−1) = 0.

Substituting (14.42) into the above expression and simplifying it, we obtain

d3

dη3

[
+∞∑
k=0

f̂k(η)

]
+

1
2

[
+∞∑
k=0

f̂k(η)

]
d2

dη2

[
+∞∑
k=0

f̂k(η)

]
= 0.

From (14.33) and (14.41),

+∞∑
k=0

f̂k(0) =
+∞∑
k=0

f̂ ′
k(0) = 0,

+∞∑
k=0

f̂k(+∞) = 1.

Therefore, the series

f̂0(η) +
+∞∑
k=1

f̂k(η)

must be the exact solution of Equations (14.1) and (14.2) as long as it is
convergent. This ends the proof.

14.2.6 Result analysis

According to Theorem 14.2, we need only to focus on correctly choosing the
auxiliary parameter � and the spatial-scale parameter λ so that the solution
series (14.47) is convergent. For simplicity, we consider first the convergence
of f ′′(0) that is dependent on � and λ. We first set � = −1 and regard λ as
an unknown variable. For large enough λ such as λ ≥ 4, the approximation
of f ′′(0) converges to the same value, as shown in Figure 14.4. In general,
for given λ ≥ 4, we investigate the influence of � on the convergence of the
solution series (14.47) using the so-called �-curves (see page 26 and §3.5.1) of
f ′′(0). For example, the �-curves of f ′′(0) when λ = 4 clearly indicate that the
valid region of � is −3/2 ≤ � ≤ −1/2, as shown in Figure 14.5. For instance,
when λ = 4 and � = −1, the approximation sequence of f ′′(0) given by

© 2004 CRC Press LLC 



(14.47) converges to 0.332057, which agrees with Howarth’s [105] numerical
result f ′′(0) = 0.33206, as shown in Table 14.2. The larger the absolute
value of �, the faster the sequence of f ′′(0) converges. When � = −3/2 and
λ = 4, we obtain the accurate result f ′′(0) = 0.332057 at the 25th-order of
approximation.

The homotopy-Padé technique (see page 38 and §3.5.2) can be applied to
accelerate the convergence of f ′′(0), as shown in Table 14.3. It is found that
the [m,m] homotopy-Padé approximants of f ′′(0) do not depend upon the
auxiliary parameter �. Besides, the convergence rate of the [m,m] homotopy-
Padé approximants of f ′′(0) is not sensitive to λ, as shown in Table 14.4.
From Figure 14.4, it is clear that f ′′(0) is divergent when � = −1 and λ ≤ 2.
When λ = 2 and � = −1, the 30th-order approximation of f ′′(0) is equal to
−3.7×109. However, even when λ ≤ 2 such as λ = 1 and λ = 2, the sequence
of the homotopy-Padé approximants of f ′′(0) still converges to 0.332057, as
shown in Table 14.4. We see that, the [m,m] homotopy-Padé approximant of
f ′′(0) is not only independent of the auxiliary parameter � but also insensitive
to the auxiliary parameter λ.

As long as the sequence of f ′′(0) is convergent, the corresponding solution
series of f(η) and f ′(η) also converges to Howarth’s [105] numerical result in
the whole region 0 ≤ η < +∞. For example, when λ = 4 and � = −1, f ′(η)
converges to Howarth’s [105] numerical result in the whole region 0 ≤ η < +∞,
as shown in Table 14.5. Similarly, we can apply the homotopy-Padé technique
to accelerate the convergence rate of the series (14.47); the [m,m] homotopy-
Padé approximants of f(η) and f ′(η) are independent of �. As mentioned
before, the approximation sequence of f ′′(0) diverges when λ = 2 and � = −1.
However, by means of the Homotopy-Padé technique, we obtain convergent
results of f(η) in the whole region 0 ≤ η < +∞ even when λ = 2 and � = −1,
as shown in Table 14.6. When λ = 2 and � = −1, even the [5,5] homotopy-
Padé approximant of f ′(η) is accurate enough, as shown in Figure 14.6.

Note that the solution (14.47) is explicit, purely analytic, and uniformly
valid in the whole region η ∈ [0,+∞). Thus, it can be regarded as a definition
of the solution of Blasius’ viscous flow problems governed by Equations (14.1)
and (14.2).

This example demonstrates once again that, using the homotopy analysis
method, we can obtain many different solution expressions of a nonlinear
problem, even if the solution is unique.
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TABLE 14.1

Numerical values of f ′′(0) given by (14.28) for different �, η0, and the
order m of approximation.

m � = − 1
10 and η0 = 8 � = − 1

12 and η0 = 9

20 0.32881 0.32743
40 0.33185 0.33149
60 0.33205 0.33201
80 0.33206 0.33205
90 0.33206 0.33206
100 0.33206 0.33206

Source: reprinted from International Journal of Non-Linear Mechanics, 32,
Shi-Jun Liao, “A kind of approximate solution technique which does not de-
pend upon small parameters (II): An application in fluid mechanics”, 815-822,
Copyright (1997), with permission from Elsevier.

© 2004 CRC Press LLC 



TABLE 14.2

Analytic approximations of f ′′(0) given by (14.47)
when � = −1 and λ = 4.

Order of approximation f ′′(0)

10th 0.327756
20th 0.331851
30th 0.332040
40th 0.332055
45th 0.332057
50th 0.332057
55th 0.332057

Source: Shi-Jun Liao, “A uniformly valid analytic solution of two-dimensional
viscous flow past a semi-infinite flat plate”, Journal of Fluid Mechanics (1999),
385:101-128 Cambridge University Press Copyright c©1999 Cambridge Uni-
versity Press, reprinted with permission.

TABLE 14.3

The [m,m] homotopy-Padé approximation of f ′′(0) when
� = −1 and λ = 4.

[m,m] homotopy-Padé approximant of f ′′(0)

[4, 4] 0.344675
[8, 8] 0.332055

[12, 12] 0.332056
[16, 16] 0.332057
[20, 20] 0.332057
[25, 25] 0.332057

TABLE 14.4

The [m,m] homotopy-Padé approximation of f ′′(0) for different
values of λ.

[m,m] λ = 1 λ = 2 λ = 4 λ = 5 λ = 10

[4, 4] 0.326857 0.331867 0.344675 0.362964 0.519751
[8, 8] 0.331808 0.331753 0.332055 0.332269 0.347726

[12, 12] 0.332008 0.332056 0.332056 0.332053 0.332908
[16, 16] 0.332043 0.332057 0.332057 0.332057 0.332084
[20, 20] 0.332054 0.332057 0.332057 0.332057 0.332057
[25, 25] 0.332057 0.332057 0.332057 0.332057 0.332057
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TABLE 14.5

Comparison of Howarth’s [105] numerical results of f ′(η) with the
analytic approximations given by (14.47) when � = −1 and λ = 4.

η 20th 30th 40th 50th 55th numerical
order order order order order result

0.4 0.132650 0.132756 0.132763 0.132764 0.132764 0.1328
0.8 0.264412 0.264488 0.264707 0.264709 0.264709 0.2647
1.2 0.393075 0.393755 0.393772 0.393776 0.393776 0.3938
1.6 0.514758 0.516680 0.516750 0.516756 0.516756 0.5168
2.0 0.626372 0.629553 0.629754 0.629764 0.629764 0.6298
2.4 0.727156 0.728494 0.728950 0.728980 0.728980 0.7290
2.8 0.814839 0.810980 0.811429 0.811503 0.811503 0.8115
3.2 0.885026 0.876124 0.875982 0.876066 0.876066 0.8761
3.6 0.935172 0.924321 0.923315 0.923312 0.923312 0.9233
4.0 0.966854 0.957245 0.955665 0.955518 0.955518 0.9555
4.4 0.984622 0.977780 0.976154 0.975900 0.975900 0.9759
5.0 0.995914 0.992920 0.991856 0.991599 0.991599 0.9916
6.0 0.999708 0.999317 0.999092 0.999006 0.999006 0.9990
7.0 0.999987 0.999961 0.999939 0.999926 0.999926 1.0000
8.0 1.000000 0.999999 0.999998 0.999997 0.999997 1.0000

Source: Shi-Jun Liao, “A uniformly valid analytic solution of two-dimensional
viscous flow past a semi-infinite flat plate”, Journal of Fluid Mechanics (1999),
385:101-128 Cambridge University Press Copyright c©1999 Cambridge Uni-
versity Press, reprinted with permission.

TABLE 14.6

Comparison of Howarth’s [105] numerical results with the [m,m]
homotopy-Padé approximation of f ′(η) when λ = 2 and � = −1.

η [5, 5] [10, 10] [15, 15] [20, 20] [25, 25] numerical
result

0.4 0.133023 0.132814 0.132764 0.132764 0.132764 0.1328
0.8 0.264655 0.264688 0.264709 0.264709 0.264709 0.2647
1.2 0.393380 0.393774 0.393775 0.393776 0.393776 0.3938
1.6 0.516251 0.516751 0.516755 0.516757 0.516757 0.5168
2.0 0.629577 0.629759 0.629765 0.629766 0.629766 0.6298
2.4 0.729388 0.728968 0.728981 0.728982 0.728982 0.7290
2.8 0.812514 0.811489 0.811508 0.811509 0.811510 0.8115
3.2 0.877471 0.876059 0.876079 0.876081 0.876081 0.8761
3.6 0.924790 0.923298 0.923325 0.923329 0.923330 0.9233
4.0 0.956803 0.955468 0.955523 0.955518 0.955518 0.9555
4.4 0.976987 0.975798 0.975872 0.975871 0.975870 0.9759
5.0 0.992848 0.991460 0.991542 0.991542 0.991542 0.9916
6.0 1.000400 0.998920 0.998972 0.998974 0.998973 0.9990
7.0 0.999989 0.999920 0.999920 0.999922 0.999921 1.0000
8.0 0.999998 0.999995 0.999996 0.999997 0.999996 1.0000
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FIGURE 14.1
Comparison of Howarth’s [105] numerical result of f ′′(0) with the solution
series (14.26) when H(η) = 1 by means of different values of �. Symbols:
numerical result; dashed line: � = −1 (Blasius’ power series); dash-dotted
line: � = −1/2; dash-dot-dotted line: � = −1/4; solid line: � = −1/8.
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FIGURE 14.2
Comparison of Howarth’s [105] numerical result of f ′′(0) with the solution
series (14.29) when H(η) = η by means of different values of �. Symbols:
numerical result; dashed line: � = −1 (Blasius’ power series); dash-dotted
line: � = −1/2; dash-dot-dotted line: � = −1/4; solid line: � = −1/8.
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FIGURE 14.3
Comparison of Howarth’s [105] numerical result of f ′′(0) with the solution
series (14.30) when H(η) =

√
η by means of different values of �. Symbols:

numerical result; dashed line: � = −1 (Blasius’ power series); dash-dotted
line: � = −1/2; dash-dot-dotted line: � = −1/4; solid line: � = −1/8.
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FIGURE 14.4
f ′′(0) given by (14.47) for different λ when � = −1. Dashed line: 10th-order
approximation; dash-dotted line: 20th-order approximation; solid line: 30th-
order approximation.
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FIGURE 14.5
The �-curves of f ′′(0) given by (14.47) when λ = 4. Dashed line: 10th-order
approximation; dash-dotted line: 20th-order approximation; solid line: 30th-
order approximation.
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FIGURE 14.6
Comparison of Howarth’s [105] numerical result of f ′(η) with the [5,5]
homotopy-Padé approximation when λ = 2 and � = −1. Symbols: numerical
result; solid line: [5,5] homotopy-Padé approximation.
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15

Boundary-layer flows with exponential
property

Consider the two-dimensional laminar viscous flow over a semi-infinite flat
plate. The family of similar solutions of the incompressible boundary layers
was first obtained by Falkner and Skan [106] in 1931. Let x denote distance
from the leading edge of a semi-infinite flat plate and y distance normal to the
plate, U the velocity of the fluid in the mainstream, ν the kinematic viscosity,
and u and v the components of the velocity of the fluid in the directions of
x, y respectively. Falkner and Skan [106] demonstrated that, if U ∝ xκ, where
κ is a constant, there exist solutions of the boundary layer equation

f ′′′(η) + f(η)f ′′(η) + β[1 − f ′2(η)] = 0, (15.1)

subject to the boundary conditions

f(0) = f ′(0) = 0, f ′(+∞) = 1, (15.2)

where

β =
2κ

κ + 1
, η = y

√
(1 + κ)U

2νx
(15.3)

and the prime denotes differentiation with respect to the similarity variable
η. The components u, v of the fluid velocity are given by

u = Uf ′(η), v = [f(η) − (κ − 1)ηf ′(η)]

√
νU

2(κ + 1)x
. (15.4)

Note that f(η) depends on the physical parameter β only. When κ ≥ 0,
from (15.3), it is easy to see that

0 ≤ β ≤ 2.

When κ < 0, the mainstream velocity U ∝ xκ is singular at x = 0 so that
Falkner-Skan’s solution f(η) cannot be taken right back to x = 0. This is a
general difference between the solutions with a positive and negative β. In
1937 Hartree [107] numerically solved the Falkner-Skan’s equations. For large
η, Hartree [107] provided the asymptotic expression

1 − f ′(η) ≈ A exp(−f2/2) f−(2β+1) + B f2β , (15.5)
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where A and B are coefficients. From the boundary condition f ′(+∞) = 1,
it is clear that f ∼ η as η → +∞ so that f → +∞ as η → +∞.

Hartree [107] showed that, when β is positive, only one of the solutions,
namely that with B = 0 in (15.5), would satisfy the conditions at infinity. For
positive β, there exists a unique solution f(η) so that f ′(η) → 1 exponentially
as η → +∞. Hartree [107] numerically obtained the family of the unique
solutions for 0 ≤ β ≤ 2. However, when β is negative, any expression of the
form (15.5) tends to 0 as η (and so f) tends to ∞, so that any value of f ′′(0)
yields a solution satisfying the condition at infinity. Thus, when β is negative,
the boundary conditions (15.2) do not specify a unique solution. To make the
solution for β < 0 unique, Hartree [107] replaced the condition at infinity by

f ′(η) → 1 from below as η → +∞, and f ′′(0) as large as possible

and produced a family of numerical results for β0 ≤ β ≤ 2, where β0 = −0.198
corresponds to f ′′(0) = 0. The family of Hartree’s solutions for β0 ≤ β ≤ 2
has such properties that f ′′(0) ≥ 0 and f ′(η) → 1 exponentially as η → +∞,
and indicates neither reversed flow nor velocity overshoot.

Stewartson [108] proved that the Falkner-Skan equation (15.1) with the
boundary conditions (15.2) has a unique solution when β ≥ 0. To make
the solution for β < 0 unique, Stewartson [108] replaced f(η) by Fα(η) that
satisfies the equation

F ′′′
α (η) + Fα(η)F ′′

α (η) + β[1 − F ′2
α (η)] = 0 (15.6)

and the boundary conditions

Fα(0) = F ′
α(0) = 0, F ′

α(α) = 1. (15.7)

Obviously,
f(η) = lim

α→+∞Fα(η).

In this explanation Stewartson [108] found in the region β0 ≤ β < 0 an-
other new family of numerical solutions exhibiting the property f ′′(0) < 0,
demonstrating reversed flow.

Stewartson [108] proved a theorem that, if β < β0 = −0.1988, then in all
the solutions of the Falkner-Skan equation with f(0) = f ′(0) = 0, there is
a range of values of η for which f ′(η) > 1, expressing velocity overshoot in
some regions. Unlike Hartree [107] and Stewartson [108], Libby and Liu [109]
believed that the overshoot velocity profile might have physical definitions;
therefore, they defined other breaches of numerical solutions for β < β0.
Their numerical calculations showed that when β < β0 multiple (probably
an infinite) number of solutions to (15.1) and (15.2) exist for any given values
of f ′′(0).

Note that all of above-mentioned solutions are either numerical or analytic-
numerical. In this chapter the homotopy analysis method is applied to present
an explicit, purely analytic solution of the Falkner-Skan boundary layer flow.
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15.1 Homotopy analysis solution

15.1.1 Zero-order deformation equation

From (15.5), f ′(η) → 1 exponentially as η → +∞ if β ≥ 0 or B = 0 in the
case of β < 0. Thus, it is natural to express f(η) by the set of base functions

{ηm exp(−n λ η) | m ≥ 0, n ≥ 0, λ > 0} (15.8)

in the form:

f(η) =
+∞∑
m=0

+∞∑
n=0

am,n ηm exp(−n λ η), (15.9)

where am,n is a coefficient and λ is the so-called spatial-scale parameter. This
provides us with the rule of solution expression for the Falkner-Skan boundary
layer flows.

Under the rule of solution expression and using (15.2), it is obvious to
select

f0(η) = η − 1 − exp(−λ η)
λ

+
γ[1 − (1 + λ η) exp(−λ η)]

λ2
(15.10)

as the initial guess of f(η), where γ is an auxiliary parameter. Note that

f ′′
0 (0) = λ + γ. (15.11)

Under the rule of solution expression denoted by (15.9) and from Equations
(15.1) and (15.2), we choose the auxiliary linear operator

L[Φ(η; q)] =
∂3Φ(η; q)

∂η3
+ λ

∂2Φ(η; q)
∂η2

(15.12)

with the property

L [C0 + C1η + C2 exp(−λ η)] = 0, (15.13)

where C0, C1, and C2 are coefficients, Φ(η; q) is a real function of η and q.
From Equation (15.1), we define the nonlinear operator

N [Φ(η; q)] =
∂3Φ(η; q)

∂η3
+Φ(η; q)

∂2Φ(η; q)
∂η2

+β

{
1 −
[
∂Φ(η; q)

∂η

]2}
. (15.14)

Let � denote a nonzero auxiliary parameter and H(η) a nonzero auxiliary
function. We construct the so-called zero-order deformation equation

(1 − q) L [Φ(η; q) − f0(η)] = q � H(η) N [Φ(η; q)], (15.15)
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subject to the boundary conditions

Φ(0; q) = 0,
∂Φ(η; q)

∂η

∣∣∣∣
η=0

= 0,
∂Φ(η; q)

∂η

∣∣∣∣
η=+∞

= 1, (15.16)

where q ∈ [0, 1] is an embedding parameter.
When q = 0, it is easy to demonstrate that

Φ(η; 0) = f0(η). (15.17)

When q = 1, since q �= 0 and H(η) �= 0, Equations (15.15) and (15.16) are
equivalent to Equations (15.1) and (15.2), respectively, provided

Φ(η; 1) = f(η). (15.18)

Thus, as the embedding parameter q increases from 0 to 1, Φ(η; q) varies
from the initial guess f0(η) to the exact solution f(η) of Equations (15.1) and
(15.2). Then, by Taylor’s theorem and using (15.17), we expand Φ(η; q) in
the power series

Φ(η; q) = f0(η) +
+∞∑
k=1

fk(η) qk, (15.19)

where

fk(η) =
1
k!

∂kΦ(η; q)
∂qk

∣∣∣∣
q=0

. (15.20)

Note that the zero-order deformation equation (15.15) contains the auxiliary
parameter � and the auxiliary functions H(η). The initial guess f0(η) contains
the auxiliary parameter γ. Assuming that all of them are correctly chosen so
that the series (15.19) converges when q = 1, we have, using (15.18),

f(η) = f0(η) +
+∞∑
k=1

fk(η). (15.21)

This provides us with a relationship between the initial approximation f0(η)
and the exact solution f(η).

15.1.2 High-order deformation equation

For conciseness, define the vector


fn = {f0(η), f1(η), f2(η), · · · , fn(η)} .

Differentiating the zero-order deformation equations (15.15) and (15.16) k
times with respect to q, then setting q = 0, and finally dividing them by k!,
we obtain the high-order deformation equation

L [fk(η) − χkfk−1(η)] = � H(η) Rk(
fk−1), (15.22)
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subject to the boundary conditions

fk(0) = f ′
k(0) = f ′

k(+∞) = 0, (15.23)

where χk is defined by (2.42) and

Rk(
fk−1) = f ′′′
k−1(η) +

k−1∑
n=0

[
fn(η)f ′′

k−1−n(η) − βf ′
n(η)f ′

k−1−n(η)
]

+ β (1 − χk). (15.24)

It is easy to solve the linear differential equations (15.22) and (15.23), using
symbolic calculation software.

Under the rule of solution expression denoted by (15.9) and from Equation
(15.22), the auxiliary function H(η) may be in the form

H(η) = ηκ1 exp(−λ κ2 η),

where κ1 ≥ 0 and κ2 ≥ 0 are integers. For simplicity, we choose κ1 = κ2 = 0,
corresponding to

H(η) = 1. (15.25)

Then, let f∗
k (η) denote a special solution of the equation

L[f∗
k (η)] = � Rk(
fk−1).

Then, from (15.13), we gain the solution

fk(η) = χk fk−1(η) + f∗
k (η) + C0 + C1η + C2 exp(−λ η), (15.26)

where C0, C1, and C2 are determined by the boundary conditions (15.23).

15.1.3 Recursive formulae

By solving the first several high-order deformation equations (15.22) and
(15.23), fm(η) can be expressed by

fm(η) =
m+1∑
k=0

Ψm,k(η) exp(−kλ η), m ≥ 0, (15.27)

where

Ψ0,0(η) = b0,0
0 + b0,0

1 η, (15.28)

Ψ0,1(η) = b0,1
0 + b0,1

1 η, (15.29)

Ψm,0(η) = bm,0
0 , m ≥ 1 (15.30)
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and

Ψm,k(η) =
2(m+1)−k∑

n=0

bm,k
n ηn, m ≥ 1, 1 ≤ k ≤ m + 1. (15.31)

Substituting the above expressions into Equations (15.22) and (15.23), Liao
[40] gained the recursive expressions of each coefficient bm,n

k , where m ≥ 1,
0 ≤ n ≤ m + 1 and 0 ≤ k ≤ 2(m + 1) − n, as follows:

bm,0
0 = χmbm−1,0

0 − λ−1
2m∑
r=0

Γm,1
r Π1,1

r −
m+1∑
n=2

(n − 1)Γm,n
0 Πn,0

0

+
m+1∑
n=2

2(m+1)−n∑
r=1

Γm,n
r

(
nΠn,0

r − Πn,0
r − λ−1Πn,1

r

)
, (15.32)

bm,0
1 = 0, (15.33)

bm,1
0 = χmbm−1,1

0 + λ−1
2m∑
r=0

Γm,1
r Π1,1

r +
m+1∑
n=2

nΓm,n
0 Πn,0

0

+
m+1∑
n=2

2(m+1)−n∑
r=1

Γm,n
r

(
nΠn,0

r − λ−1Πn,1
r

)
, (15.34)

bm,1
k = χm(1 − χk+2−2m) bm−1,1

k +
2m∑

r=k−1

Γm,1
r Π1,k

r ,

1 ≤ k ≤ 2m + 1, (15.35)

bm,n
k = χm(1 − χk+1−2m+n) bm−1,n

k −
2(m+1)−n∑

r=k

Γm,n
r Πn,k

r ,

2 ≤ n ≤ m, 0 ≤ k ≤ 2(m + 1) − n (15.36)

and

bm,m+1
k = −

m+1∑
r=k

Γm,m+1
r Πm+1,k

r , 1 ≤ k ≤ m + 1, (15.37)

where

Π1,k
r =

r! (r − k + 2)
k! λr−k+3

, 0 ≤ k ≤ r + 1,

Πn,k
r =

r!
k!(n − 1)r−k+1λr−k+3

[
1 −
(

1 − 1
n

)r−k+1(
1 +

r − k + 1
n

)]
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n ≥ 2, 0 ≤ k ≤ r,

Γm,n
r = �

[
(1 − χr+1−2m+n) dm−1,n

r + δm,n
r + ∆m,n

r

]
1 ≤ n ≤ m, 0 ≤ r ≤ 2(m + 1) − n,

Γm,m+1
r = �(δm,m+1

r + ∆m,m+1
r ),

in which

∆m,n
r = −β

m−1∑
k=0

min{n,k+1}∑
j=max{0,n+k−m}

min{r,2(k+1)−j}∑
i=max{0,r−2(m−k)+n−j)}

ak,j
i am−1−k,n−j

r−i ,

δm,n
r =

m−1∑
k=0

min{n,k+1}∑
j=max{1,n+k−m}

min{r,2(k+1)−j}∑
i=max{0,r−2(m−k)+n−j)}

ck,j
i

× bm−1−k,n−j
r−i Λm−1−k,n−j

r−i ,

m ≥ 1, 0 ≤ n ≤ m + 1, 0 ≤ r ≤ 2(m + 1) − n

under the definitions

am,k
n = (n + 1)bm,k

n+1Λ
m,k
n+1 − (kλ)bm,k

n Λm,k
n , (15.38)

cm,k
n = (n + 1)(n + 2) bm,k

n+2Λ
m,k
n+2 − 2(kλ)(n + 1)bm,k

n+1Λ
m,k
n+1

+ (kλ)2 bm,k
n Λm,k

n , (15.39)

dm,k
n = (n + 1) cm,k

n+1Λ
m,k
n+1 − (kλ)cm,k

n Λm,k
n (15.40)

and

Λi,j
k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, when i = j = 0, k ≥ 2,
0, when i > 0, j = 0, k ≥ 1,
0, when j > i + 1,
0, when k > 2(i + 1) − j,
1, otherwise.

(15.41)

From (15.10), we obtain the first four coefficients

b0,0
0 =

γ − λ

λ2
, b0,0

1 = 1, b0,1
0 =

λ − γ

λ2
, b0,1

1 = −γ

λ
(15.42)

from which, we can calculate all other coefficients bm,n
k using the above recur-

sive expressions.
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The Mth-order approximation of Equations (15.1) and (15.2) is given by

f(η) ≈ η +

(
M∑

m=0

bm,0
0

)

+
M+1∑
n=1

exp(−nλ η)

⎛
⎝ M∑

m=n−1

2(m+1)−n∑
k=0

bm,n
k ηk

⎞
⎠ . (15.43)

Therefore, we have the explicit, purely analytic solution of Falkner-Skan lam-
inar viscous flow over a semi-infinite flat plate

f(η) = η +

(
+∞∑
m=0

bm,0
0

)

+ lim
M→+∞

M+1∑
n=1

exp(−nλ η)

⎛
⎝ M∑

m=n−1

2(m+1)−n∑
k=0

bm,n
k ηk

⎞
⎠ . (15.44)

This exact solution obviously has the asymptotic property f ′ → 1 exponen-
tially as η → +∞.

15.1.4 Convergence theorem

THEOREM 15.1
The series

f0(η) +
+∞∑
k=1

fk(η)

must be the exact solution of Equations (15.1) and (15.2) as long as it is
convergent, where fk(η) is governed by Equations (15.22) and (15.23) under
the definitions (15.10), (15.12), (15.24), and (2.42).

Proof: If the series is convergent, we have

lim
m→+∞ fm(η) = 0.

From (15.22) and (2.42),

� H(η)
m∑

k=1

Rk(
fk−1) = L[fm(η)].

Using (15.12), we gain

� H(η)
+∞∑
k=1

Rk(
fk−1) = lim
m→+∞L[fm(η)] = L

[
lim

m→+∞ fm(η)
]

= 0,
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which gives, since � �= 0 and H(η) �= 0,
+∞∑
k=1

Rk(
fk−1) = 0.

Substituting (15.24) into the above expression and simplifying it, we obtain

d3

dη3

[
+∞∑
k=0

fk(η)

]
+

[
+∞∑
k=0

fk(η)

]
d2

dη2

[
+∞∑
k=0

fk(η)

]

+β

⎧⎨
⎩1 −

[
d

dη

+∞∑
k=0

fk(η)

]2
⎫⎬
⎭ = 0.

Furthermore, from (15.10) and (15.23),
+∞∑
k=0

fk(0) =
+∞∑
k=0

f ′
k(0) = 0,

+∞∑
k=0

f ′
k(+∞) = 1.

Therefore, if the series

f0(η) +
+∞∑
k=1

fk(η)

is convergent, it must be an exact solution of Equations (15.1) and (15.2).
This ends the proof.

15.2 Result analysis

According to Theorem 15.1, we need only ensure that the solution series
(15.21) converges. Note that the solution (15.44) contains three auxiliary
parameters �, λ, and γ. We have therefore a three-parameter family of solution
expressions. The spatial-scale parameter λ affects the rate of f ′(η) → 0 as
η → +∞. From (15.11), the auxiliary parameter γ affects f ′′

0 (0), and we can
investigate the relationship between the exact solution and different initial
guesses f0(η), which becomes interesting when there exist multiple solutions
in the case of β < 0. It should be emphasized that, for any given values of
λ and γ, we still have the freedom to choose a proper value of the auxiliary
parameter � to control and adjust the convergence region and rate of the
solution (15.44), when necessary.

Physically, f ′′(0) is related to the friction of the fluid on the plate and
therefore has important physical meanings. From (15.21), we have

f ′′(0) = f ′′
0 (0) +

+∞∑
k=1

f ′′
k (0), (15.45)
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which is dependent of the physical parameter β and the three auxiliary pa-
rameters �, λ, and γ. First, consider the case of � = −1, γ = 0 and regard λ as
an unknown variable. For given values of β, f ′′(0) converges to the same cor-
responding value, provided λ is large enough, as shown in Figure 15.1. Note
that, when λ ≥ 5, we can obtain convergent results of f ′′(0) for 0 ≤ β ≤ 2,
corresponding to 0 ≤ κ < +∞. It is therefore reasonable to choose λ ≥ 5.
Then, we consider the case of λ = 5 and γ = 0. The influence of � on the
convergence of f ′′(0) can be investigated by plotting the so-called �-curves
(see page 26 and §3.5.1) of f ′′(0), as shown in Figure 15.2. Obviously, when
−5/4 ≤ � ≤ −3/4, we can obtain convergent results of f ′′(0) for 0 ≤ β ≤ 2.
Furthermore, when λ = 5, γ = 0, and � = −1, f ′′(0) converges for β0 ≤ β ≤ 2,
where β0 = −0.1988. The related 10th-, 20th- and 30th-order approximations
of f ′′(0) are given by

f ′′(0)
≈ 0.466892061269575 + 1.270377798259161 β

−0.9366061372519299 β2 + 0.6565444804810052 β3

−0.2989667156611743 β4 + 8.714746301295173 × 10−2 β5

−1.646263530984164 × 10−2 β6 + 2.009360736004046 × 10−3 β7

−1.532383017041316 × 10−4 β8 + 6.654735449025599 × 10−6 β9

−1.259647041638817 × 10−7 β10, (15.46)

f ′′(0)
≈ 0.469470560483573 + 1.295165031248947 β

−1.37974417506381 β2 + 2.191127183953301 β3

−3.010696768394167 β4 + 3.217599178710972 β5

−2.637727245237923 β6 + 1.672089788089693 β7

−0.8288927042391463 β8 + 0.3244321617350418 β9

−0.1009610729534239 β10 + 2.508145750314333 × 10−2 β11

−4.979128795292073 × 10−3 β12 + 7.879252632693684 × 10−4 β13

−9.872764016512919 × 10−5 β14 + 9.675273712687701 × 10−6 β15

−7.265429168115138 × 10−7 β16 + 4.042349583833827 × 10−8 β17

−1.573031139104484 × 10−9 β18 + 3.831177670499221 × 10−11 β19

−4.409794935993077 × 10−13 β20, (15.47)

and

f ′′(0)
≈ 0.4695903615312177 + 1.298441994559965 β

−1.491321283547855 β2 + 3.075663557218445 β3
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−6.529797437132239 β4 + 12.02830971699564 β5

−18.1643591437081 β6 + 22.24132274854839 β7

−22.20184453035751 β8 + 18.25679986443915 β9

−12.5044109522257 β10 + 7.205799232502405 β11

−3.523684854407225 β12 + 1.472301275851469 β13

−0.5283860769496572 β14 + 0.1634753390904293 β15

−4.369783644567797 × 10−2 β16 + 1.010062677099088 × 10−2 β17

−2.018052269391153 × 10−3 β18 + 3.479126853101193 × 10−4 β19

−5.159762018077551 × 10−5 β20 + 6.552517694061283 × 10−6 β21

−7.079292502238022 × 10−7 β22 + 6.449249702165323 × 10−8 β23

−4.894052058789618 × 10−9 β24 + 3.041591067712079 × 10−10 β25

−1.510937645005482 × 10−11 β26 + 5.783596085142942 × 10−13 β27

−1.606885758239585 × 10−14 β28 + 2.896755640650334 × 10−16 β29

−2.560020533395366 × 10−18 β30, (15.48)

respectively. When 0 ≤ β ≤ 2, the series of f ′′(0) converges quickly and even
the 10th-order approximation agrees with numerical results given by Hartree
[107] and White [20], as shown in Table 15.1 and Figure 15.3, respectively.
However, when β0 ≤ β < 0, the series of f ′′(0) converges slowly. We fail to
accelerate the convergence of f ′′(0) by means of the Padé technique in the
traditional way. But, using the homotopy-Padé technique (see page 38 and
§3.5.2), the convergence of the series (15.45) is greatly accelerated, especially
when β0 ≤ β < 0, as shown in Table 15.2 and Figure 15.3. Also, it is found
that the [m,m] homotopy-Padé approximant of f ′′(0) does not depend upon
the auxiliary parameter �.

It is found that, as long as the series (15.45) of f ′′(0) is convergent, the
corresponding series of f(η) and f ′(η) also converge in the whole region 0 ≤
η < +∞. When 0 ≤ β ≤ 2, the series of f ′(η) converges quickly and the 20th-
order approximations agree with Hartree’s numerical results [107], as shown in
Figure 15.4. However, when β0 ≤ β < 0, the closer the value of β is to β0, the
more slowly the series of f ′(η) converges; thus higher-order approximations
are necessary to get accurate enough results, as shown in Figure 15.4.

These verify Hartree’s [107] conclusions that there exists a unique solution
when 0 ≤ β ≤ 2 and a solution when β0 ≤ β < 0, with the properties f ′′(0) ≥
0 and f ′(η) → 1 exponentially as η → +∞. When β0 ≤ β < 0, Stewartson
[108] numerically found a kind of solution with the property f ′′(0) < 0 but
still f ′(η) → 1 exponentially as η → +∞, showing reversed flow. To check
Stewartson’s [108] numerical results, we choose a negative value of γ so that

f ′′
0 (0) = γ + λ < 0.

For given λ and γ, by means of plotting the corresponding �-curves of f ′′(0),
a negative � with a small enough value of |�| may be chosen to ensure that
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the corresponding solution series converge. Several dozen cases are inves-
tigated. However, it is found that, as long as a solution series is conver-
gent, it always converges to Hartree’s family of solution. For example, when
γ = −5.5, β = −15/100, λ = 2, and � = −1/10, the approximate series con-
verges to Hartree’s family of solution. Thus, it seems that the solution (15.44)
might not give Stewartson’s [108] family of solutions with reversed flows. Sim-
ilarly, it seems that the solution (15.44) might not give Libby and Liu’s [109]
family of solution with velocity overshoot. Note that Stewartson [108], and
Libby and Liu [109] found their solutions by numerical techniques, and it is
difficult to rigorously check if f ′(η) → 1 exponentially as η → +∞ by means
of numerical methods, because all numerical methods are restricted in a fi-
nite domain and thus cannot correctly treat the quantity of infinity. It may
therefore be doubtful that solutions given by Stewartson [108] and Libby and
Liu [109] have the property f ′(η) → 1 exponentially as η → +∞ in rigorous
mathematical meaning. More evidence is necessary to support this point of
view. It is still an open question whether there exist multiple solutions of
the Falkner-Skan viscous flow with the exponential property at infinity when
β < 0. If the multiple solutions exist, it would be a challenge to apply the
homotopy analysis method to discover all these solutions.
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TABLE 15.1

Comparison of the analytic approximations of f ′′(0) given by (15.45)
when λ = 5, γ = 0, and � = −1 with White’s [20] and Hartree’s [107]
numerical results.

β 10th-order 20th-order 25th-order 30th-order numerical
approx. approx. approx. approx. result

2.0 1.68647 1.68719 1.68721 1.68722 1.6872
1.6 1.51709 1.52148 1.52152 1.52152 1.5215
1.2 1.33147 1.33578 1.33572 1.33572 1.3357
1.0 1.23079 1.23266 1.23258 1.23259 1.2326
0.8 1.12210 1.12027 1.12028 1.12027 1.1203
0.6 1.00107 0.99572 0.99585 0.99584 0.9958
0.5 0.93379 0.92755 0.92767 0.92768 0.9277
0.4 0.86038 0.85435 0.85440 0.85442 0.8544
0.3 0.77922 0.77483 0.77474 0.77475 0.7748
0.2 0.68830 0.68691 0.68674 0.68671 0.6867
0.1 0.59519 0.58711 0.58707 0.58705 0.5870
0.0 0.46689 0.46947 0.46956 0.46959 0.4696

-0.1 0.32980 0.32363 0.32197 0.32096 0.319
-0.14 0.26876 0.25374 0.24960 0.24682 0.239
-0.16 0.23676 0.21559 0.20947 0.20515 0.190
-0.18 0.20372 0.17499 0.16622 0.15971 0.128
-0.19 0.18679 0.15369 0.14329 0.13537 0.086
-0.198 0.17306 0.13614 0.12426 0.11504 0

Source: Shi-Jun Liao, “A uniformly valid analytic solution of two-dimensional
viscous flow past a semi-infinite flat plate”, Journal of Fluid Mechanics (1999),
385:101-128 Cambridge University Press Copyright c©1999 Cambridge Uni-
versity Press, reprinted with permission.
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TABLE 15.2

Comparison of the [m,m] homotopy-Padé approximations of f ′′(0)
when λ = 5, γ = 0, and � = −1 with White’s [20] and Hartree’s [107]
numerical results.

β [5,5] [10,10] [15,15] Numerical
result

2.0 1.68636 1.68722 1.68722 1.6872
1.6 1.52026 1.52151 1.52151 1.5215
1.2 1.33399 1.33571 1.33572 1.3357
1.0 1.23063 1.23260 1.23259 1.2326
0.8 1.11816 1.12027 1.12027 1.1203
0.6 0.99372 0.99584 0.99584 0.9958
0.5 0.92563 0.92769 0.92768 0.9277
0.4 0.85246 0.85443 0.85442 0.8544
0.3 0.77287 0.77474 0.77476 0.7748
0.2 0.68478 0.68670 0.68671 0.6867
0.1 0.58484 0.58697 0.58704 0.5870
0.0 0.46736 0.46960 0.46960 0.4696

-0.1 0.32291 0.31935 0.31927 0.319
-0.14 0.25476 0.24074 0.23984 0.239
-0.16 0.21813 0.19380 0.19128 0.190
-0.18 0.17980 0.13870 0.13160 0.128
-0.19 0.16004 0.10677 0.09455 0.086
-0.198 0.14398 0.07833 0.05912 0
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FIGURE 15.1
The 20th-order approximation of f ′′(0) versus λ when � = −1, γ = 0, and
β = 0, 1, 2.
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FIGURE 15.2
The �-curves of f ′′(0) at the 20th order of approximation when λ = 5, γ = 0,
and β = 0, 1, 2.
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FIGURE 15.3
Comparison of the analytic approximations f ′′(0) when λ = 5, γ = 0, and
� = −1 with the numerical results. Dashed line: 10th-order analytic ap-
proximations (15.46); dash-dotted line: 20th-order analytic approximations
(15.47); dash-dot-dotted line: 30th-order analytic approximations (15.48);
solid line: [15,15] homotopy-Padé approximation; filled circle: numerical re-
sults given by Hartree [107]; open circle: numerical results given by Stewartson
[108].

© 2004 CRC Press LLC 



h

f’
(h

)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

FIGURE 15.4
Comparison of the analytic approximation of f ′(η) given by (15.43) when
λ = 5, γ = 0, and � = −1 with Hartree’s [107] numerical results. Solid line:
numerical result when β = 2; dash-dot-dotted line: numerical result when
β = 1; dash-dotted line: numerical result when β = 0; dashed line: numerical
result when β = −0.16; filled circle: 20th-order analytic approximations when
β = 2; filled square: 20th-order analytic approximations when β = 1; open
circle: 20th-order analytic approximation when β = 0; open square: 50th-
order analytic approximations when β = −0.16.
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16

Boundary-layer flows with algebraic property

In most cases the velocity profiles and temperature of boundary layer flows
decay exponentially. However, as reported by Kuiken [110, 111], solutions of
some boundary layer flows behave algebraically at infinity.

For instance Kuiken [111] analyzed a glass-fiber production process and
obtained, by means of various similarity transformations, a set of two coupled
nonlinear differential equations

f ′′′(η) + θ(η) − f ′2(η) = 0, (16.1)
θ′′(η) = 3 σ f ′(η) θ(η), (16.2)

subject to the boundary conditions

f(0) = f ′(0) = 0, θ(0) = 1, (16.3)
f ′(+∞) = θ(+∞) = 0, (16.4)

where the prime denotes differentiation with respect to the similarity variable
η, σ is the Prandtl number, f(η) and θ(η) relate to the velocity profile and
temperature distribution of the boundary layer, respectively. For details, the
reader is referred to Kuiken [111].

Kuiken [111] presented a solution that contains a parameter that had to be
determined by numerical methods. Kuiken’s solution [111] is fundamentally
analytic-numerical. To the best of the author’s knowledge, no one has reported
an explicit, fully analytic solution of the coupled nonlinear equations (16.1)
and (16.2). In this chapter the homotopy analysis method is employed to
yield this type of solution.

16.1 Homotopy analysis solution

16.1.1 Asymptotic property

From (16.4), both f ′(η) and θ(η) tend to zero as η → +∞. So, it is important
to know the behavior of the solution at infinity. As pointed out by Kuiken
[111], both f(η) and θ(η) decay algebraically as η → +∞.
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Under the transformation

ξ = 1 + λ η, F (ξ) = f ′(η), S(ξ) = θ(η), (16.5)

where λ > 0 is the so-called spatial-scale parameter, Equations (16.1) and
(16.2) become

λ2 F ′′(ξ) + S(ξ) − F 2(ξ) = 0, (16.6)
λ2 S′′(ξ) = 3 σ F (ξ) S(ξ), (16.7)

subject to the boundary conditions

F (1) = 0, S(1) = 1, (16.8)
F (+∞) = S(+∞) = 0. (16.9)

Define
F ∼ ξα1 , S ∼ ξα2 (16.10)

as the asymptotic expressions of F (ξ) and S(ξ) as ξ → +∞. Substituting
them into Equations (16.6) and (16.7) and balancing the main terms of each
equation, we have

α1 = −2, α2 = −4. (16.11)

Thus, considering their algebraic property at infinity, F (ξ) and S(ξ) can be
expressed by the base functions

{
ξ−n | n ≥ 2

}
(16.12)

in the forms:

F (ξ) =
+∞∑
n=2

an

ξn
, (16.13)

S(ξ) =
+∞∑
n=4

bn

ξn
, (16.14)

respectively, where an, bn are coefficients. The above expressions provide the
so-called rules of solution expression of F (ξ) and S(ξ), respectively.

16.1.2 Zero-order deformation equation

Under the rules of solution expression denoted by (16.13) and (16.14) and
from Equations (16.8) and (16.9), it is easy to choose

F0(ξ) = γ
(
ξ−2 − ξ−3

)
, S0(ξ) = ξ−4 (16.15)

as the initial guesses of F (ξ) and S(ξ), respectively, where γ is an auxiliary
parameter. Furthermore, under the rules of solution expression denoted by
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(16.13) and (16.14) and from Equations (16.6) and (16.7), we select the aux-
iliary linear operators

LF Φ =
(

ξ

3

)
∂2Φ
∂ξ2

+
∂Φ
∂ξ

, (16.16)

LSΦ =
(

ξ

5

)
∂2Φ
∂ξ2

+
∂Φ
∂ξ

(16.17)

with the properties

LF

(
C1 + C2 ξ−2

)
= 0, (16.18)

LS

(
C3 + C4 ξ−4

)
= 0, (16.19)

where C1, C2, C3, and C4 are coefficients. For simplicity, from Equations
(16.6) and (16.7), we define the nonlinear operators

NF [Φ(ξ; q),Θ(ξ; q)] = λ2 ∂Φ(ξ; q)
∂ξ2

+ Θ(ξ; q) − Φ2(ξ; q), (16.20)

NS [Φ(ξ; q),Θ(ξ; q)] = λ2 ∂2Θ(ξ; q)
∂ξ2

− 3 σ Φ(ξ; q) Θ(ξ; q), (16.21)

where q ∈ [0, 1] is an embedding parameter, Φ(ξ; q) and Θ(ξ; q) are real func-
tions of ξ and q. Let �F and �S denote the nonzero auxiliary parameters,
HF (ξ) and HS(ξ) the nonzero auxiliary functions, respectively. We construct
the zero-order deformation equations

(1 − q) LF [Φ(ξ; q) − F0(ξ)]
= q �F HF (ξ) NF [Φ(ξ; q),Θ(ξ; q)] , (16.22)

(1 − q) LS [Θ(ξ; q) − S0(ξ)]
= q �S HS(ξ) NS [Φ(ξ; q),Θ(ξ; q)] , (16.23)

subject to the boundary conditions

Φ(1; q) = Φ(+∞; q) = Θ(+∞; q) = 0, Θ(1; q) = 1, (16.24)

where q ∈ [0, 1] is the embedding parameter.
When q = 0, it is easy to demonstrate that

Φ(ξ; 0) = F0(ξ), Θ(ξ; 0) = S0(ξ), (16.25)

where F0(ξ) and S0(ξ) are the initial guesses defined by (16.15). When q = 1,
since

�F �= 0, �S �= 0, HF (ξ) �= 0, HS(ξ) �= 0,
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the zero-order deformation equations (16.22) to (16.24) are equivalent to the
original equations (16.6) to (16.9), provided

Φ(ξ; 1) = F (ξ), Θ(ξ; 1) = S(ξ). (16.26)

Thus, as q increases from 0 to 1, Φ(ξ; q) and Θ(ξ; q) vary (or deform) from
the initial guesses F0(ξ), S0(ξ) to the solutions F (ξ), S(ξ) of Equations (16.6)
to (16.9), respectively.

By Taylor’s theorem and using (16.25), we obtain the power series

Φ(ξ; q) = F0(ξ) +
+∞∑
n=1

Fn(ξ) qn, (16.27)

Θ(ξ; q) = S0(ξ) +
+∞∑
n=1

Sn(ξ) qn, (16.28)

where

Fn(ξ) =
1
n!

∂nΦ(ξ; q)
∂qn

∣∣∣∣
q=0

, Sn(ξ) =
1
n!

∂nΘ(ξ; q)
∂qn

∣∣∣∣
q=0

. (16.29)

Assuming that the spatial-scale parameter λ, the auxiliary parameter γ in
(16.15), the auxiliary parameters �F , �S and the auxiliary functions HF (ξ),
HS(ξ) are properly chosen so that the above series converge at q = 1, we have,
using (16.26),

F (ξ) = F0(ξ) +
+∞∑
n=1

Fn(ξ), (16.30)

S(ξ) = S0(ξ) +
+∞∑
n=1

Sn(ξ). (16.31)

The corresponding mth-order approximations are given by

F (ξ) ≈ F0(ξ) +
m∑

n=1

Fn(ξ), (16.32)

S(ξ) ≈ S0(ξ) +
m∑

n=1

Sn(ξ). (16.33)

16.1.3 High-order deformation equation

For conciseness, define the vectors


Fm = {F0(ξ), F1(ξ), F2(ξ), · · · , Fm(ξ)}
and


Sm = {S0(ξ), S1(ξ), S2(ξ), · · · , Sm(ξ)} .
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Differentiating the zero-order deformation equations (16.22) to (16.24) n times
with respective to q, then dividing by n!, and finally setting q = 0, we have
the high-order deformation equations

LF [Fn(ξ) − χnFn−1(ξ)] = �F HF (ξ) RF
n (
Fn−1, 
Sn−1), (16.34)

LS [Sn(ξ) − χnSn−1(ξ)] = �S HS(ξ) RS
n(
Fn−1, 
Sn−1), (16.35)

subject to the boundary conditions

Fn(1) = Sn(1) = Fn(+∞) = Sn(+∞) = 0, (16.36)

where χn is defined by (2.42) and

RF
n (
Fn−1, 
Sn−1) = λ2 F ′′

n−1(ξ) + Sn−1(ξ)

−
n−1∑
j=0

Fj(ξ) Fn−1−j(ξ), (16.37)

RS
n(
Fn−1, 
Sn−1) = λ2 S′′

n−1(ξ) − 3 σ

n−1∑
j=0

Fj(ξ) Sn−1−j(ξ). (16.38)

Note that the high-order deformation equations (16.34) to (16.36) are uncou-
pled and linear. It is therefore easy to solve them, using symbolic computation
software.

Under the rules of the solution expression denoted by (16.13) and (16.14)
and from Equations (16.34) and (16.35), the auxiliary functions HF (ξ) and
HS(ξ) may be written as

HF (ξ) = ξκ1 , HS(ξ) = ξκ2 , (16.39)

where κ1 and κ2 are integers. It is found that, when κ1 ≥ 1 and/or κ2 ≥ 1,
the term ln ξ appears in the solution expressions, which does not conform
to the rules of solution expression denoted by (16.13) and (16.14). When
κ1 ≤ −1 and/or κ2 ≤ −1, F (ξ) and S(ξ) do not contain the terms ξ−2

and ξ−4, respectively. This is not in accordance with the rule of coefficient
ergodicity. To adhere to both the rules of solution expression and the rule of
coefficient ergodicity, we must choose

κ1 = κ2 = 0,

corresponding to
HF (ξ) = HS(ξ) = 1. (16.40)

Now, the inhomogeneous terms of Equations (16.34) and (16.35) are com-
pletely known.
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16.1.4 Recursive formulations

By solving the first several high-order deformation equations (16.34) to (16.36),
Fn(ξ) and Sn(ξ) can be expressed by

Fn(ξ) = ξ−2
2n+1∑
j=0

an,j ξ−j , Sn(ξ) = ξ−4
2n∑

j=0

bn,j ξ−j , (16.41)

where an,j and bn,j are coefficients. Substituting them into Equations (16.34)
to (16.36), we have the recursive formulae (j ≥ 1)

an,j = χn χ2n+1−j an−1,j

+
3 �F

[
χ2n+2−j λ2 (j + 1)(j + 2)an−1,j−1 + χ2n+1−jbn−1,j−1 − An,j−1

]
j(j + 2)

,

(16.42)

bn,j = χn χ2n−j bn−1,j

+
5 �S

[
χ2n+1−j λ2 (j + 3)(j + 4)bn−1,j−1 − 3σ Bn,j−1

]
j(j + 4)

, (16.43)

and

an,0 = −
2n+1∑
j=1

an,j , bn,0 = −
2n∑

j=1

bn,j , (16.44)

where

An,i =
n−1∑
j=0

min{2j+1,i}∑
r=max{0,i+2j−2n+1}

aj,r an−j−1,i−r, (16.45)

Bn,i =
n−1∑
j=0

min{2j+1,i}∑
r=max{0,i+2j−2n+2}

aj,r bn−j−1,i−r. (16.46)

Using (16.15), we have the first three coefficients

a0,0 = γ, a0,1 = −γ, b0,0 = 1. (16.47)

From these and using the above recursive formulae, we can calculate all other
coefficients an,j and bn,j , successively. Thus, we have the explicit analytic
solutions

F (ξ) =
+∞∑
n=0

2n+1∑
j=0

an,j

ξj+2
, S(ξ) =

+∞∑
n=0

2n∑
j=0

bn,j

ξj+4
. (16.48)
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Using the transformation (16.5) we obtain

f ′(η) =
+∞∑
n=0

2n+1∑
j=0

an,j

(1 + λ η)j+2
, θ(η) =

+∞∑
n=0

2n∑
j=0

bn,j

(1 + λ η)j+4
. (16.49)

The mth-order approximations are

f ′(η) ≈
m∑

n=0

2n+1∑
j=0

an,j

(1 + λ η)j+2
, θ(η) ≈

m∑
n=0

2n∑
j=0

bn,j

(1 + λ η)j+4
, (16.50)

which give

f(η) ≈
m∑

n=0

2n+1∑
j=0

an,j

λ (j + 1)

[
1 − 1

(1 + λ η)j+1

]
(16.51)

and

f ′′(0) ≈ −λ

m∑
n=0

2n+1∑
j=0

(j + 2)an,j , (16.52)

f(+∞) ≈
m∑

n=0

2n+1∑
j=0

an,j

λ (j + 1)
, (16.53)

θ′(0) ≈ −λ

m∑
n=0

2n∑
j=0

(j + 4)bn,j . (16.54)

16.1.5 Convergence theorem

THEOREM 16.1
If the solution series (16.30) and (16.31) are convergent, where Fn(ξ) and

Sn(ξ) are governed by Equations (16.34) to (16.36) under the definitions
(16.37) to (16.38), and (2.42), they must be the solution of Equations (16.6)
to (16.9)

Proof: If the solution series (16.30) and (16.31) are convergent, it is nec-
essary that

lim
m→+∞Fm(ξ) = 0, lim

m→+∞Sm(ξ) = 0.

Then, from (16.16) and (16.17),

LF

[
lim

m→+∞Fm(ξ)
]

= 0, LS

[
lim

m→+∞Sm(ξ)
]

= 0.

From Equations (16.34) and (16.35), we have, using (2.42),

�F HF (ξ)
m∑

n=1

RF
n (
Fn−1, 
Sn−1) = LF [Fm(ξ)]
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and

�S HS(ξ)
m∑

n=1

RS
n(
Fn−1, 
Sn−1) = LS [Sm(ξ)] .

Therefore,

�F HF (ξ)
+∞∑
n=1

RF
n (
Fn−1, 
Sn−1) = LF

[
lim

m→+∞Fm(ξ)
]

= 0

and

�S HS(ξ)
+∞∑
n=1

RS
n(
Fn−1, 
Sn−1) = LS

[
lim

m→+∞Sm(ξ)
]

= 0,

which give, since �F �= 0, �S �= 0,HF (ξ) �= 0 and HS(ξ) �= 0,

+∞∑
n=1

RF
n (
Fn−1, 
Sn−1) = 0

and
+∞∑
n=1

RS
n(
Fn−1, 
Sn−1) = 0.

Substituting (16.37) and (16.38) into above two expressions and simplifying
them, we obtain

λ2 ∂2

∂ξ2

[
+∞∑
n=0

Fn(ξ)

]
+

+∞∑
n=0

Sn(ξ) −
[

+∞∑
n=0

Fn(ξ)

]2

= 0 (16.55)

and

λ2 ∂2

∂ξ2

[
+∞∑
n=0

Sn(ξ)

]
− 3 σ

[
+∞∑
n=0

Fn(ξ)

][
+∞∑
n=0

Sn(ξ)

]
= 0. (16.56)

From (16.15) and (16.36), we obviously have

+∞∑
n=0

Fn(1) =
+∞∑
n=0

Fn(+∞) =
+∞∑
n=0

Sn(+∞) = 0,
+∞∑
n=0

Sn(1) = 1. (16.57)

Comparing Equations (16.55) to (16.57) with Equations (16.6) to (16.9), it is
clear that the convergent series (16.30) and (16.31) are the solutions of the
two coupled nonlinear differential equations. This ends the proof.
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16.2 Result analysis

There exist four auxiliary parameters: �F , �S , λ, and γ. We have therefore
a four-parameter family of solution expressions. According to Theorem 16.1,
we need only to focus on the choice of the four auxiliary parameters to ensure
that the solution series (16.30) and (16.31) converge.

Note that the initial guess F0(ξ) defined by (16.15) contains the auxiliary
parameter γ. Substituting the initial approximations (16.15) into Equations
(16.6) and (16.7) and balancing the main terms, we obtain a set of two alge-
braic equations of λ and γ, which give

λ =

√
3σ

20

(
1 − 9σ

10

)−1/4

, γ =
(

1 − 9σ

10

)−1/2

. (16.58)

Although the above expressions are valid only when σ < 10/9, it provides
valuable information for the choice of λ and γ. From (16.58), it is obvious
that

γ ∼ 1, λ ∼ √
σ

for σ � 1.
In general, for any given Prandtl number σ, we can investigate the influence

of the four auxiliary parameters λ, γ, �F , and �S on the convergence of solution
series and then choose a set of proper values. For example, let us consider the
case σ = 1. Note that

f ′′(0) = λ F ′(0), θ′(0) = λ S′(0)

are related with the skin friction and thermal flux and therefore have im-
portant physical meaning. For simplicity, we first study the influence of
the four auxiliary parameters on the convergence of f ′′(0) and θ′(0). When
�F = �S = −1/2 and γ = 1, 2, 3, both θ′(0) and f ′′(0) are convergent in a
region of λ that becomes the largest when γ = 3, as shown in Figures 16.1
and 16.2. From these two figures, it is clear that the series of f ′′(0) and θ′(0)
converge if λ = 1/3, γ = 3, and �F = �S = −1/2. To ensure this, we can
further investigate the influence of the auxiliary parameters �F and �S on the
convergence of solution series when λ = 1/3, γ = 3, and �F = �S = � by
plotting the so-called �-curves (see page 26 and §3.5.1) of f ′′(0) and θ′(0), as
shown in Figure 16.3. When σ = 1, the series of f ′′(0) and θ′(0) converge by
means of λ = 1/3, γ = 3, and �F = �S = −1/2, as shown in Table 16.1. Gen-
erally, for given Prandtl number σ, we can choose the auxiliary parameters
λ, γ, �F , and �S in the similar way to ensure that the series of f ′′(0) and θ′(0)
converge. For example, the series of f ′′(0) and θ′(0) converge when σ = 1/10
by means of λ = 1/5, γ = 1, and �F = �S = −1/2, and when σ = 10 by
λ = 1/3, γ = 1, �F = −1/4, and �S = −1/10, respectively. The solution series
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converge when σ > 10 by means of λ = 1, γ = 1, �F = −1/4, and �S = −1/σ,
and when σ < 1/10 by means of γ = 1, �F = �S = −1/2, and λ = 1/5 or even
smaller. Furthermore, as long as the series of f ′′(0) and θ′(0) are convergent,
the corresponding solution series of f(ξ) and θ(ξ) also converge in the whole
region 0 ≤ ξ < +∞, as shown in Figures 16.4 and 16.5.

The convergence of the series of f ′′(0) and θ′(0) can be accelerated using
the homotopy-Padé technique (see page 38 and §3.5.2), as shown in Tables
16.2 and 16.3. When �F = �S = �, the [m,m] homotopy-Padé approximants
do not depend upon �.

Note that we obtain an explicit, purely analytic solution of the two cou-
pled nonlinear equations (16.1) and (16.2) by means of the recursive formulae
(16.42) to (16.47). The analytic solutions behave algebraically at infinity. In
Chapter 15 the homotopy analysis method is successfully applied to solve the
Falkner-Skan boundary layer flows that behave exponentially at infinity. The
homotopy analysis method is therefore valid for these two different types of
boundary layer flows.
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TABLE 16.1

The mth-order approximations of f ′′(0) and θ′(0) when σ = 1
by means of λ = 1/3, γ = 3, and �F = �S = −1/2 compared
with Kuiken’s result [111].

m f ′′(0) θ′(0)

5 0.713814 -0.831716
10 0.706453 -0.765271
15 0.702547 -0.769478
20 0.697170 -0.771491
25 0.694380 -0.770640
30 0.693538 -0.770001
35 0.693342 -0.769872
40 0.693268 -0.769879
45 0.693227 -0.769876
50 0.693213 -0.769866

Kuiken’s result 0.693212 -0.769861
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TABLE 16.2

The [m,m] homotopy-Padé approximations of f ′′(0) compared with
Kuiken’s result [111].

σ = 1/10 σ = 1 σ = 10
[m,m] λ = 1/5, γ = 1 λ = 1/3, γ = 3 λ = 1/3, γ = 1

[5, 5] 0.952170 0.705940 0.433555
[10, 10] 0.921936 0.693438 0.452229
[15, 15] 0.924108 0.693214 0.447038
[20, 20] 0.924087 0.693212 0.447107
[25, 25] 0.924088 0.693212 0.447117
[30, 30] 0.924086 0.693212 0.447117
[35, 35] 0.924084 0.693212 0.447117
[40, 40] 0.924083 0.693212 0.447117
[45, 45] 0.924083 0.693212 0.447117
[50, 50] 0.924083 0.693212 0.447117

Kuiken’s result 0.924083 0.693212 0.447117

TABLE 16.3

The [m,m] homotopy-Padé approximations of θ′(0) compared with
Kuiken’s result [111].

σ = 1/10 σ = 1 σ = 10
[m,m] λ = 1/5, γ = 1 λ = 1/3, γ = 3 λ = 1/3, γ = 1

[5, 5] -0.347058 -0.774151 -1.61583
[10, 10] -0.350119 -0.770018 -1.49263
[15, 15] -0.350027 -0.769866 -1.49733
[20, 20] -0.350058 -0.769861 -1.49708
[25, 25] -0.350058 -0.769861 -1.49710
[30, 30] -0.350059 -0.769861 -1.49710
[35, 35] -0.350059 -0.769861 -1.49710
[40, 40] -0.350059 -0.769861 -1.49710
[45, 45] -0.350059 -0.769861 -1.49710
[50, 50] -0.350059 -0.769861 -1.49710

Kuiken’s result -0.350059 -0.769861 -1.49710
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FIGURE 16.1
θ′(0) versus λ at the 24th order of approximation when σ = 1 and �F = �S =
−1/2. Solid line: γ = 1; dashed line: γ = 2; dash-dotted line: γ = 3.
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FIGURE 16.2
f ′′(0) versus λ at the 24th order of approximation when σ = 1 and �F = �S =
−1/2. Solid line: γ = 1; dashed line: γ = 2; dash-dotted line: γ = 3.
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FIGURE 16.3
The �-curves of f ′′(0) and θ′(0) at the 24th order of approximations when
σ = 1 by means of γ = 3, λ = 1/3, and �F = �S = −1/2. Solid line: θ′(0);
dashed line: f ′′(0).
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FIGURE 16.4
Comparison of f ′(η) with numerical results. Open circle: 30th-order ap-
proximation when σ = 1/10 by means of �F = �S = −1/2, λ = 1/5, and
γ = 1; filled-circle: 20th-order approximation when σ = 1 by means of
�F = �S = −1/2, λ = 1/3, and γ = 3; square: 40th-order approximation
when σ = 10 by means of �F = −1/4, �S = −1/10, λ = 1/3, and γ = 1; solid
lines: numerical results.

© 2004 CRC Press LLC 



h

q
(h

)

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 16.5
Comparison of θ(η) with numerical results. Open circle: 20th-order ap-
proximation when σ = 1/10 by means of �F = �S = −1/2, λ = 1/5, and
γ = 1; filled-circle: 20th-order approximation when σ = 1 by means of
�F = �S = −1/2, λ = 1/3, and γ = 3; square: 20th-order approximation
when σ = 10 by means of �F = −1/4, �S = −1/10, λ = 1/3, and γ = 1; solid
lines: numerical results.
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17

Von Kármán swirling viscous flow

Consider the steady, laminar, axially symmetric viscous flow of an incompress-
ible fluid induced by an infinite disk rotating steadily with angular velocity
Ω about the z-axis in a cylindrical coordinate system (r, θ, z). The motion of
the fluid is governed by the continuity equation

1
r

∂(rVr)
∂r

+
1
r

∂Vθ

∂θ
+

∂Vz

∂z
= 0 (17.1)

and the Navier-Stokes equations

Vr
∂Vr

∂r
+ Vz

∂Vr

∂z
− V 2

θ

r
= ν

[
∂2Vr

∂r2
+

1
r

∂Vr

∂r
+

∂2Vr

∂z2
− Vr

r2

]
− 1

ρ

∂p

∂r
, (17.2)

Vr
∂Vθ

∂r
+ Vz

∂Vθ

∂z
+

VrVθ

r
= ν

[
∂2Vθ

∂r2
+

1
r

∂Vθ

∂r
+

∂2Vθ

∂z2
− Vθ

r2

]
, (17.3)

Vr
∂Vz

∂r
+ Vz

∂Vz

∂z
= ν

[
∂2Vz

∂r2
+

1
r

∂Vz

∂r
+

∂2Vz

∂z2

]
− 1

ρ

∂p

∂z
, (17.4)

subject to the nonslip boundary conditions

Vθ = rΩ, Vr = Vz = 0, when z = 0, (17.5)

and the conditions at infinity

Vr = Vθ = 0, when z = +∞, (17.6)

where ρ denotes the fluid density, ν the kinematic viscosity coefficient, p the
pressure, and Vr, Vθ, Vz the velocity components in the radial, azimuthal, and
axial directions, respectively. Defining the similarity variable

η = z

√
Ω
ν

(17.7)

and using the similarity transformation

Vr = (rΩ) f(η), (17.8)
Vθ = (rΩ) g(η), (17.9)

Vz =
√

νΩ w(η), (17.10)
p = −ρνΩ P (η), (17.11)
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Von Kármán [112] devised the governing partial differential equations (17.1)
to (17.6) to a set of ordinary differential equations

f ′′ = f2 − g2 + f ′ w, (17.12)
g′′ = g′ w + 2f g, (17.13)
w w′ = P ′ + w′′, (17.14)

2f + w′ = 0, (17.15)

subject to the boundary conditions

f(0) = f(+∞) = 0, g(0) = 1, g(+∞) = 0, w(0) = 0, (17.16)

where the prime denotes the derivative with respect to η. From (17.15),

f = −w′

2
. (17.17)

Substituting it into Equations (17.12) and (17.13), we have

w′′′ − w′′ w +
1
2
w′ w′ − 2g2 = 0, (17.18)

g′′ − w g′ + w′ g = 0, (17.19)

subject to the boundary conditions

w(0) = w′(0) = w′(+∞) = 0, g(0) = 1, g(+∞) = 0. (17.20)

For details the reader is referred to Von Kármán [112] and Zandbergen and
Dijkstra [113].

The above equations are coupled and strongly nonlinear. They were in-
vestigated by many researchers including Von Kármán [112], Cochran [114],
Fettis [115], Rogers and Lance [116], Benton [117], McLeod [118], Zandbergen
and Dijkstra [119], Ackroyd [120], and Hulzen [121]. These solutions are ei-
ther numerical or numerical-analytic. In this chapter the homotopy analysis
method is employed to give a purely analytic solution.

17.1 Homotopy analysis solution

Note that the velocity component at infinity in the axial direction is unknown,
which has significant physical meaning. So, as Benton [117] did, we define

γ = −w(+∞) (17.21)

and use the transformation

w(η) = −γ [1 − s(η)] . (17.22)
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However, unlike Benton [117], we introduce another transformation

ξ = λ η, (17.23)

where λ is the so-called spatial-scale parameter. Using (17.22) and (17.23),
Equations (17.18) and (17.19) become

γλ3s′′′ + γ2λ2(1 − s)s′′ +
1
2
γ2λ2s′s′ − 2g2 = 0, (17.24)

λg′′ + γ(1 − s)g′ + γs′g = 0, (17.25)

subject to the boundary conditions

s(0) = g(0) = 1, s(+∞) = g(+∞) = 0, s′(0) = s′(+∞) = 0, (17.26)

where the prime denotes differentiation with respect to ξ. Note that we have
the freedom to choose the value of the spatial-scale parameter λ, but γ defined
by (17.21) is unknown.

17.1.1 Zero-order deformation equation

According to Rogers and Lance’s investigation [116], Von Kármán’s swirling
flow has exponential property at infinity. In 1978, Dijkstra gave a full asymp-
totic expansion that contains only exponentials. Hulzen [121] computed the
series that consists of exponentials multiplied by polynomials. Recently, Yang
and Liao [43] applied the homotopy analysis method to give, for the first time,
an explicit, purely analytic solution expressed by exponentials multiplied by
polynomials. Here, we give the solutions s(ξ) and g(ξ) expressed by the set
of base functions

{exp(−n ξ) | n ≥ 1} (17.27)

in the forms:

s(ξ) =
+∞∑
n=1

an exp(−nξ), g(ξ) =
+∞∑
n=1

bn exp(−nξ), (17.28)

where an and bn are coefficients. The above expressions provide the so-called
rules of solution expression for s(ξ) and g(ξ), respectively.

Let ε denote an auxiliary parameter. Under the rules of solution expression
denoted by (17.28) and using (17.26), it is easy to choose the initial guesses

s0(ξ) = 2 exp(−ξ) − exp(−2ξ), (17.29)
g0(ξ) = exp(−ξ) + ε [exp(−2ξ) − exp(−ξ)] (17.30)

of s(ξ) and g(ξ), respectively. Under the rules of solution expression denoted
by (17.28) and from Equations (17.24) and (17.25), we choose the auxiliary
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linear operators

Lsf =
∂3f

∂ξ3
+ 2

∂2f

∂ξ2
− ∂f

∂ξ
− 2f, (17.31)

Lgf =
∂2f

∂ξ2
− f (17.32)

with the properties

Ls [C1 exp(ξ) + C2 exp(−ξ) + C3 exp(−2ξ)] = 0 (17.33)

and
Lg [C1 exp(ξ) + C2 exp(−ξ)] = 0, (17.34)

where C1, C2, and C3 are coefficients. For conciseness, from Equations (17.24)
and (17.25) we define the two nonlinear operators

Ns [S(ξ; q), G(ξ; q),Λ(q),Γ(q)]

= Γ(q)Λ3(q)
∂3S(ξ; q)

∂ξ3
+ Γ2(q)Λ2(q) [1 − S(ξ; q)]

∂2S(ξ; q)
∂ξ2

+
(

1
2

)
Γ2(q)Λ2(q)

[
∂S(ξ; q)

∂ξ

]2
− 2G(ξ; q)2 (17.35)

and

Ng [S(ξ; q), G(ξ; q),Λ(q),Γ(q)]

= Λ(q)
∂2G(ξ; q)

∂ξ2
+ Γ(q) [1 − S(ξ; q)]

∂G(ξ; q)
∂ξ

+ Γ(q)G(ξ; q)
∂S(ξ; q)

∂ξ
, (17.36)

where q ∈ [0, 1] is an embedding parameter, S(ξ; q) and G(ξ; q) are real func-
tions of ξ and q, Λ(q) and Γ(q) are real functions of q, respectively. Let
�g and �s denote two nonzero auxiliary parameters, Hs(ξ) and Hg(ξ) two
nonzero auxiliary functions, q ∈ [0, 1] the embedding parameter, respectively.
We construct the zero-order deformation equations

(1 − q) Ls [S(ξ; q) − s0(ξ)]
= q �s Hs(ξ) Ns[S(ξ; q), G(ξ; q),Λ(q),Γ(q)], (17.37)

(1 − q) Lg [G(ξ; q) − g0(ξ)]
= q �g Hg(ξ) Ng[S(ξ; q), G(ξ; q),Λ(q),Γ(q)], (17.38)

subject to the boundary conditions

S(0; q) = 1, S(+∞; q) = 0,
∂S(ξ; q)

∂ξ

∣∣∣∣
ξ=0

=
∂S(ξ; q)

∂ξ

∣∣∣∣
ξ=+∞

= 0 (17.39)
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and
G(0; q) = 1, G(+∞; q) = 0. (17.40)

When q = 0, it is clear from (17.29), (17.30), and Equations (17.37) to
(17.40) that

S(ξ; 0) = s0(ξ), G(ξ; 0) = g0(ξ). (17.41)

When q = 1, since �s �= 0, �g �= 0,Hs(ξ) �= 0 and Hg(ξ) �= 0, Equations
(17.37) to (17.40) are equivalent to the original equations (17.24) to (17.26),
provided

S(ξ; 1) = s(ξ), G(ξ; 1) = g(ξ), Λ(1) = λ, Γ(1) = γ. (17.42)

By Taylor’s theorem and using (17.41), we have the power series in the ex-
pansion of q as follows:

S(ξ; q) = s0(ξ) +
+∞∑
n=1

sn(ξ) qn, (17.43)

G(ξ; q) = g0(ξ) +
+∞∑
n=1

gn(ξ) qn, (17.44)

Λ(q) = λ0 +
+∞∑
n=1

λn qn, (17.45)

Γ(q) = γ0 +
+∞∑
n=1

γn qn, (17.46)

where λ0 and γ0 are initial guesses of λ and γ, and

sn(ξ) =
1
n!

∂nS(ξ; q)
∂qn

∣∣∣∣
q=0

, (17.47)

gn(ξ) =
1
n!

∂nG(ξ; q)
∂qn

∣∣∣∣
q=0

, (17.48)

λn =
1
n!

∂nΛ(q)
∂qn

∣∣∣∣
q=0

, (17.49)

γn =
1
n!

∂nΓ(q)
∂qn

∣∣∣∣
q=0

. (17.50)

Note that Equations (17.37) and (17.38) contain two auxiliary parameters �s

and �g, and two auxiliary functions Hs(ξ) and Hg(ξ). Assuming that all of
them are correctly chosen so that the above series are convergent at q = 1,
we have, using (17.42), the solution series

s(ξ) = s0(ξ) +
+∞∑
n=1

sn(ξ), (17.51)
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g(ξ) = g0(ξ) +
+∞∑
n=1

gn(ξ), (17.52)

λ = λ0 +
+∞∑
n=1

λn, (17.53)

γ = γ0 +
+∞∑
n=1

γn. (17.54)

17.1.2 High-order deformation equation

For conciseness, define the vectors


sk = {s0(ξ), s1(ξ), s2(ξ), · · · , sk(ξ)} ,


gk = {g0(ξ), g1(ξ), g2(ξ), · · · , gk(ξ)} ,

and

λk = {λ0, λ1, λ2, · · · , λk} , 
γk = {γ0, γ1, γ2, · · · , γk} .

Differentiating the zero-order deformation equations (17.37) to (17.40) n times
with respect to q, then dividing by n!, and finally setting q = 0, we have the
high-order deformation equations

Ls [sn(ξ) − χn sn−1(ξ)] = �s Hs(ξ) Rs
n(
sn−1, 
gn−1, 
λn−1, 
γn−1), (17.55)

Lg [gn(ξ) − χn gn−1(ξ)] = �g Hg(ξ) Rg
n(
sn−1, 
gn−1, 
λn−1, 
γn−1), (17.56)

subject to the boundary conditions

sn(0) = gn(0) = sn(+∞) = gn(+∞) = 0, s′n(0) = s′n(+∞) = 0,(17.57)

where χn is defined by (2.42),

Rs
n(
sn−1, 
gn−1, 
λn−1, 
γn−1)

=
1

(n − 1)!
∂n−1Ns [S(ξ; q), G(ξ; q),Λ(q),Γ(q)]

∂qn−1

∣∣∣∣
q=0

=
n−1∑
k=0

[αn−1−k s′′′k (ξ) + βn−1−k s′′k(ξ)]

−
n−1∑
k=0

βn−1−k

⎡
⎣ k∑

j=0

sj(ξ) s′′k−j(ξ)

⎤
⎦

+
1
2

n−1∑
k=0

βn−1−k

⎡
⎣ k∑

j=0

s′j(ξ) s′k−j(ξ)

⎤
⎦

−2
n−1∑
k=0

gn−1−k(ξ) gk(ξ), (17.58)
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and

Rg
n(
sn−1, 
gn−1, 
λn−1, 
γn−1)

=
1

(n − 1)!
∂n−1Ng [S(ξ; q), G(ξ; q),Λ(q),Γ(q)]

∂qn−1

∣∣∣∣
q=0

=
n−1∑
k=0

[λn−1−k g′′k (ξ) + γn−1−k g′k(ξ)]

+
n−1∑
k=0

γn−1−k

k∑
j=0

[
s′j(ξ) gk−j(ξ) − sj(ξ) g′k−j(ξ)

]
(17.59)

under the definitions

αn =
n∑

k=0

λn−k δk, (17.60)

βn =
n∑

k=0

γn−k δk, (17.61)

δn =
n∑

k=0

γn−k

k∑
j=0

λj λk−j . (17.62)

Note that the high-order deformation equations (17.55) and (17.56) are linear
and uncoupled, subject to the linear boundary conditions (17.57). It is easy
to successively solve them, using symbolic computation software.

Note that there exist four unknowns: sn(ξ), gn(ξ), λn−1, and γn−1. How-
ever, we have only two differential equations (17.55) and (17.56) for sn(ξ) and
gn(ξ). Thus, the problem is not closed and two additional algebraic equations
are needed to determine λn−1 and γn−1. Under the rules of solution expres-
sion denoted by (17.28) and from Equations (17.55) and (17.56), the auxiliary
functions should be

Hs(ξ) = exp(κs ξ), Hg(ξ) = exp(κg ξ), (17.63)

where κs and κg are integers. Using (17.29) and (17.30), we have

Rs
1(
s0, 
g0, 
λ0, 
γ0) =

4∑
k=1

c1,k(λ0, γ0) exp(−kξ), (17.64)

Rg
1(
s0, 
g0, 
λ0, 
γ0) =

3∑
k=1

d1,k(λ0, γ0) exp(−kξ), (17.65)

where c1,k(λ0, γ0) and d1,k(λ0, γ0) are coefficients independent of ξ. There are
two ways to solve the problem. One is to enforce the coefficients c1,1(λ0, γ0)
and d1,1(λ0, γ0) to be zero, which gives

2γ0(γ0 − λ0)λ2
0 = 0, γ0 − λ0 = 0. (17.66)
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The above set of algebraic equations has an infinite number of solutions

γ0 = λ0. (17.67)

It implies that d1,1(λ0, γ0) = 0 is true as long as c1,1(λ0, γ0) = 0. Thus, it does
not work. The other is to make the coefficients c1,1(λ0, γ0) and c1,2(λ0, γ0)
zero, which gives

2γ0(γ0 − λ0)λ2
0 = 0, (1 − ε)2 + 3γ2

0λ2
0 − 4γ0λ

3
0 = 0. (17.68)

This set of algebraic equations has the unique nonzero solution

γ0 =
√

|1 − ε|, λ0 =
√

|1 − ε|. (17.69)

In this way, the problem is closed and the rule of solution existence is satisfied.
In this case, if κs > 0, the right-hand side of Equation (17.55) contains the
term exp(−2ξ) and/or exp(−ξ). Thus, according to the property (17.33),
s1(ξ) contains the term ξ exp(−2ξ) and/or ξ exp(−ξ), which however does
not conform to the rules of solution expression denoted by (17.28). So, we
have

κs ≤ 0.

On the other hand, when κs ≤ −1, the coefficient of the term exp(−3ξ)
of s(ξ) cannot be modified; and this however is not in accordance with the
rule of coefficient ergodicity. So, to ensure that both of the rules of solution
expression denoted by (17.28) and the rule of coefficient ergodicity hold, we
must choose

κs = 0, (17.70)

corresponding to Hs(ξ) = 1. Similarly, we have

κg = 0, (17.71)

which gives Hg(ξ) = 1.
In summary, under the rules of solution expression denoted by (17.28)

and the rule of coefficient ergodicity, and in order to work out the high-order
deformation equations, we choose the auxiliary functions

Hs(ξ) = Hg(ξ) = 1 (17.72)

and solve the set of two algebraic equations

cn,1(
λn−1, 
γn−1) = 0, cn,2(
λn−1, 
γn−1) = 0 (17.73)

to obtain λn−1 and γn−1, where cn,1(
λn−1, 
γn−1) and cn,2(
λn−1, 
γn−1) are
coefficients of the terms

Rs
n(
sn−1, 
gn−1, 
λn−1, 
γn−1) =

2n+2∑
k=1

cn,k(
λn−1, 
γn−1) exp(−kξ), (17.74)
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Rg
n(
sn−1, 
gn−1, 
λn−1, 
γn−1) =

2n+2∑
k=1

dn,k(
λn−1, 
γn−1) exp(−kξ). (17.75)

Thus, we can successively solve the linear differential equations (17.55) and
(17.56) under the linear boundary conditions (17.57), together with the set of
two algebraic equations (17.73) that are linear when n ≥ 2. Then,

sn(ξ) =
2n+2∑
k=1

an,k exp(−kξ), (17.76)

gn(ξ) =
2n+2∑
k=1

bn,k exp(−kξ), (17.77)

where an,k and bn,k are coefficients. The recursive formulae for the coefficients
an,k and bn,k may be obtained if the above expressions are substituted into
Equations (17.55) to (17.57).

17.1.3 Convergence theorem

THEOREM 17.1
If the solution series (17.51), (17.52), (17.53), and (17.54) are convergent,

where sn(ξ) and gn(ξ) are governed by (17.55), (17.56), and (17.57) under
the definitions (17.31), (17.32), (17.58), (17.59), and (2.42), they must be
the solution of Equations (17.24) and (17.25) under the boundary conditions
(17.26) .

Proof: If the series (17.51) and (17.52) are convergent, it is necessary that

lim
m→+∞ sm(ξ) = 0, lim

m→+∞ gm(ξ) = 0. (17.78)

Then, using (17.31), (17.32), (2.42) and from Equations (17.55) and (17.56),
we have

�s Hs(ξ)
+∞∑
n=1

Rs
n(
sn−1, 
gn−1, 
λn−1, 
γn−1)

= lim
m→+∞Ls [sm(ξ)] = Ls

[
lim

m→+∞ sm(ξ)
]

= 0 (17.79)

and

�g Hg(ξ)
+∞∑
n=1

Rg
n(
sn−1, 
gn−1, 
λn−1, 
γn−1)

= lim
m→+∞Lg [gm(ξ)] = Lg

[
lim

m→+∞ gm(ξ)
]

= 0. (17.80)
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Since �s �= 0, �g �= 0,Hs(ξ) �= 0 and Hg(ξ) �= 0, the above equations yield
+∞∑
n=1

Rs
n(
sn−1, 
gn−1, 
λn−1, 
γn−1) = 0 (17.81)

and
+∞∑
n=1

Rg
n(
sn−1, 
gn−1, 
λn−1, 
γn−1) = 0. (17.82)

Substituting the definitions (17.58) and (17.59) into the above expressions and
then simplifying them, due to the convergence of the series (17.51) to (17.54),
we have

(
+∞∑
i=0

γi

)⎛
⎝+∞∑

j=0

λj

⎞
⎠

3

d3

dξ3

[
+∞∑
k=0

sk(ξ)

]

+

(
+∞∑
i=0

γi

)2
⎛
⎝+∞∑

j=0

λj

⎞
⎠

2 [
1 −

+∞∑
k=0

sk(ξ)

]
d2

dξ2

[
+∞∑
k=0

sk(ξ)

]

+
1
2

(
+∞∑
i=0

γi

)2
⎛
⎝+∞∑

j=0

λj

⎞
⎠

2

d

dξ

[
+∞∑
k=0

sk(ξ)

]
d

dξ

[
+∞∑
k=0

sk(ξ)

]

− 2

[
+∞∑
k=0

gk(ξ)

]2

= 0 (17.83)

and ⎛
⎝+∞∑

j=0

λj

⎞
⎠ d2

dξ2

[
+∞∑
k=0

gk(ξ)

]
+

(
+∞∑
i=0

γi

)⎛
⎝1 −

+∞∑
j=0

sj(ξ)

⎞
⎠ d

dξ

[
+∞∑
k=0

gk(ξ)

]

+

(
+∞∑
i=0

γi

)⎡
⎣+∞∑

j=0

gj(ξ)

⎤
⎦ d

dξ

[
+∞∑
k=0

sk(ξ)

]
= 0. (17.84)

Furthermore, using (17.29), (17.30), and (17.57), we have
+∞∑
n=0

sn(0) =
+∞∑
n=0

gn(0) = 1,
+∞∑
n=0

sn(+∞) =
+∞∑
n=0

gn(+∞) = 0, (17.85)

and
+∞∑
n=0

s′n(0) =
+∞∑
n=0

s′n(+∞) = 0. (17.86)

Comparing the above four expressions with Equations (17.24), (17.25), and
(17.26), the convergent series (17.51), (17.52), (17.53), and (17.54) must be
the solution of Von Kármán’s swirling flow. This ends the proof.
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17.2 Result analysis

According to Theorem 17.1, we need only to focus on ensuring that the so-
lution series (17.51) to (17.54) are convergent. There exist three auxiliary
parameters: ε, �s, and �g. We have therefore a three-parameter family of
solution expressions. For simplicity, consider the case of

�s = �g = �

and investigate first the influence of ε and � on the convergence of γ =
−w(+∞) that has a clear physical meaning.

Obviously, for any chosen value of ε, γ is a power series of �; thus we can
investigate the influence of � on the convergence of γ by plotting the so-called
�-curves (see page 26 and §3.5.1 ) of γ, as shown in Figure 17.1. From these �-
curves, it is clear that the series of γ converges when ε = 0 and −1/5 ≤ � < 0,
or ε = 1/4 and −3/5 ≤ � < 0. For example, when ε = 0 and �s = �g = −1/5
or ε = 1/4 and �s = �g = −1/2, the corresponding series of γ converges to
Benton’s [117] numerical result, as shown in Table 17.1. When ε = 1/4 and
−3/5 ≤ � < 0 the series converges faster than when ε = 0 and −1/5 ≤ � < 0,
indicating that the auxiliary parameters ε and � = �s = �g may control the
convergence rate of the solution series. The homotopy-Padé technique (see
page 38 and §3.5.2) can be employed to accelerate the convergence, as shown
in Table 17.2.

From Figure 17.1, as ε increases from 0 to 0.5, the valid region of � en-
larges but then reduces, indicating that there should exist a value of ε that
corresponds to the largest valid region of �. To obtain this value, we choose
ε so that γ1 = λ1 = 0, corresponding to

√
1 − ε

(
119 − 328ε + 193ε2

)− 5(3 + 19ε) = 0,

whose solution is
ε ≈ 0.26167. (17.87)

The valid region of � corresponding to ε = 0.26167 seems to be longest, as
shown in Figure 17.1. Moreover, when ε = 0.26167 and �s = �g = −1/2, the
series of γ converges even faster, as shown in Tables 17.1 and 17.2.

It is found that
λn = γn

for any integers n ≥ 0. Thus, we have the relationship

λ = γ,

which agrees with the asymptotic expansion for large ξ given by Cochran
[114]. Indeed, Von Kármán’s swirling flow contains an elegant mathematical
structure.
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As long as the series of γ is convergent, the corresponding series of s(ξ)
and g(ξ) also converge in the whole region 0 ≤ ξ < +∞. For example, when
ε = 0 and �s = �g = −1/5, the analytic approximations of w(η) and g(η)
converge to Benton’s [117] numerical result, as shown in Figures 17.2 and
17.3. Moreover, when ε = 1/4 and �g = �s = −1/2, even the [1,1] homotopy-
Páde approximants of g(η) and w(η), i.e.

g(η) ≈ ∆1(η)
Π1(η)

, w(η) ≈ −γ

[
∆2(η)
Π2(η)

]
, (17.88)

agree with Benton’s numerical result [117], as shown in Figures 17.4 and 17.5,
where

∆1(η) =
(

935649 + 3881640
√

3
)

exp(−γη)

+
(

456252 + 2097200
√

3
)

exp(−2γη)

+
(

785007 − 311640
√

3
)

exp(−3γη)

+
(

220464 − 317520
√

3
)

exp(−4γη)

−
(

22212 + 25200
√

3
)

exp(−5γη) − 4608 exp(−6γη),

Π1(η) =
(

1247532 + 3022880
√

3
)

+
(

192492 + 1858080
√

3
)

exp(−γη)

+
(

982512 + 544320
√

3
)

exp(−2γη)

−
(

33552 + 100800
√

3
)

exp(−3γη) − 18432 exp(−4γη),

∆2(η) =
(

1364904 − 477008
√

3
)

−
(

2855992 − 962752
√

3
)

exp(−γη)

+
(

1612135 − 497280
√

3
)

exp(−2γη)

−
(

115206 − 14336
√

3
)

exp(−3γη)

−
(

6545 + 2800
√

3
)

exp(−4γη) + 704 exp(−5γη),

Π2(η) =
(

1364904 − 477008
√

3
)

+
(

28446 + 8736
√

3
)

exp(−γη)

−
(

57777 + 2800
√

3
)

exp(−2γη) + 5184 exp(−3γη),

in which γ = 0.884474. This provides us with a simple but accurate analytic
expression of Von Kármán’s swirling flow.
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In this chapter we illustrate that the homotopy analysis method is valid
for some three-dimensional viscous flows governed by the exact Navier-Stokes
equations. The reader is referred to Liao [41] for viscous flows past a sphere
in a uniform stream, a well known classical problem in fluid mechanics.
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TABLE 17.1

The mth-order homotopy analysis approximations of γ = −w(+∞).
ε = 0 ε = 1/4 ε = 0.26167

m �s = �g = −1/5 �s = �g = −1/2 �s = �g = −1/2

10 0.879446 0.882352 0.882977
20 0.881898 0.884437 0.884454
30 0.883607 0.884477 0.884477
40 0.884173 0.884474 0.884474
50 0.884337 0.884474 0.884474

TABLE 17.2

The [m,m] homotopy-Páde approximations of γ = −w(+∞).
ε = 0 ε = 1/4 ε = 0.26167

[m,m] �s = �g = −1/5 �s = �g = −1/2 �s = �g = −1/2

[5, 5] 0.879337 0.883856 0.885038
[10, 10] 0.884502 0.884482 0.884475
[15, 15] 0.884436 0.884474 0.884474
[20, 20] 0.884474 0.884474 0.884474
[25, 25] 0.884474 0.884474 0.884474
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FIGURE 17.1
�-curves of γ = −w(+∞) at the 19th order of approximation. Dash-dot-
dotted line: ε = 0; dashed line: ε = 1/4; dash-dotted line: ε = 0.26167; solid
line: ε = 1/2.
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FIGURE 17.2
Comparison of the analytic approximation of w(η) with the numerical re-
sult given by Benton [117]. Symbol: numerical result; solid line: 20th-order
approximation by means of ε = 0 and �s = �g = −1/5.
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FIGURE 17.3
Comparison of the analytical approximation of g(η) with the numerical re-
sult given by Benton [117]. Symbol: numerical result; solid line: 20th-order
approximation by means of ε = 0 and �s = �g = −1/5.
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FIGURE 17.4
Comparison of the [1,1] homotopy-Páde approximation of w(η) with the nu-
merical result given by Benton [117]. Symbol: numerical result; solid line:
[1,1] homotopy-Páde approximation (17.88).
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FIGURE 17.5
Comparison of the [1,1] homotopy-Páde approximation of g(η) with the nu-
merical result given by Benton [117]. Symbol: numerical result; solid line:
[1,1] homotopy-Páde approximation (17.88).
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18

Nonlinear progressive waves in deep water

Consider two-dimensional progressive gravity waves moving at a phase speed
C on the surface of infinitely deep water. The problem is defined in a coordi-
nate system (x, y) fixed to the waves, with the x-axis positive in the direction
of wave propagation and the y-axis pointing vertically upward from the still-
water level. Assume that the fluid is inviscid, incompressible, and without
surface tension. Let φ(x, y) denote the velocity potential and ζ(x) the wave
elevation, respectively. The fluid motion can be described by the Laplace
equation

∇2φ(x, y) = 0 for (x, y) ∈ Ω, (18.1)

where
Ω = {(x, y) | −∞ < x < +∞,−∞ < y < ζ(x)} .

The velocity potential φ(x, y) is subject to the free surface boundary condi-
tions

C2φxx + gφy +
1
2
∇φ∇(∇φ∇φ) − 2C∇φ∇φx = 0 at y = ζ(x), (18.2)

ζ(x) =
1
g

(
Cφx − 1

2
∇φ∇φ

)
at y = ζ(x), (18.3)

and the bottom condition

lim
y→−∞

∂φ

∂y
= 0, (18.4)

where g is the acceleration of gravity and the subscripts x and y denote partial
derivatives in the respective directions.

Although the governing equation (18.1) is linear, the free surface boundary
conditions (18.2) and (18.3) are nonlinear and are defined on a surface that
is unknown a priori. This classic water-wave problem does not have a simple
solution and has attracted attention from many researchers since the mid-19th
century. Stokes [122] first proposed a perturbation technique for this classical
problem and later obtained an analytic solution to the fifth order in wave am-
plitude [123, 124]. Thereafter, researchers have applied Stokes’ perturbation
approach and derived higher-order solutions [125, 126, 127]. Using computer,
Schwartz [128] extended Stokes’ perturbation expansion to obtain a solution
to the 58th order. The solution is obtained in the complex plane through a
mapping function. His perturbation expansion has limited convergence and
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the Padé technique is employed to derive the solution at the limiting wave
condition (H/L)max = 0.14118, where H is the wave height and L denotes
the wavelength.

Following Schwartz [128], Longuet-Higgins [129] took the Stokes-type ex-
pansion in wave amplitude to high orders and obtained stable solutions up
to the wave steepness H/L = 0.1411. The results show that for a given
wavelength the energy and phase speed are not monotonic functions of wave
steepness. Besides, Longuet-Higgins [130, 131] investigated the stability of
steady gravity waves to infinitesimal disturbances and found that subhar-
monic modes that become unstable when the wave height reaches a certain
value, may become stable and then unstable again as the wave height con-
tinues to increase. Chen and Saffman [132] found by numerical techniques
that symmetrical steady gravity waves of large amplitudes have bifurcations
at H/L ≈ 0.13. Additional high-order solutions based on Stokes’ perturba-
tion approach further illustrate the nonlinear characteristics of steep gravity
waves [133, 134, 135, 136].

In this chapter we apply the homotopy analysis method to solve this
boundary-value problem with nonlinear conditions on an unknown surface.

18.1 Homotopy analysis solution

18.1.1 Zero-order deformation equation

The velocity potential φ satisfies the Laplace equation (18.1) and the bottom
boundary condition (18.4). So, it is easily understood that φ can be expressed
by the set of base functions

{exp(mky) sin(nkx) | m ≥ 1, n ≥ 1} (18.5)

in the form:

φ(x, y) =
+∞∑
m=1

+∞∑
n=1

αm,n exp(mky) sin(nkx), (18.6)

where k = 2π/L is the wave number, αm,n is a coefficient. This provides us
with the rule of solution expression for the velocity potential φ(x, y). Accord-
ingly, the wave elevation ζ(x) can be expressed by the set of base functions

{cos(m k x) | m ≥ 0} (18.7)

in the form:

ζ(x) =
+∞∑
m=0

βm cos(mkx), (18.8)
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which provides us with the rule of solution expression for the wave elevation
ζ(x).

Under the rule of solution expression denoted by (18.6), it is expedient to
select the solution of the linear Airy wave theory

φ0(x, y) = A C0 exp(ky) sin(kx), (18.9)

C0 =
√

g

k
, (18.10)

as the initial guesses of the velocity potential φ(x, y) and the phase speed C,
where A is a constant to be determined later. In spite of the more obvious
choice from the linear solution, we choose

ζ0(x) = 0 (18.11)

as the initial guess of the surface elevation ζ(x) to simplify the subsequent
formulation and the solution procedure. Based on the two linear terms of the
free surface boundary condition (18.2), we choose an auxiliary linear operator

L [Φ(x, y; q),Λ(q)] = Λ2(q)
∂2Φ(x, y; q)

∂x2
+ g

∂Φ(x, y; q)
∂y

, (18.12)

where q ∈ [0, 1] is an embedding parameter, Λ(q) is a real function of q,
Φ(x, y; q) is a real function of x, y, and q. From the two free surface boundary
conditions (18.2) and (18.3), we define two nonlinear operators

N [Φ(x, y; q),Λ(q)]
= Λ2(q)Φxx(x, y; q) + gΦy(x, y; q)

+
1
2
∇Φ(x, y; q)∇ [∇Φ(x, y; q)∇Φ(x, y; q)]

− 2Λ(q)∇Φ(x, y; q)∇Φx(x, y; q) (18.13)

and

Z [Φ(x, y; q),Λ(q)]

=
1
g

[
Λ(q) Φx(x, y; q) − 1

2
∇Φ(x, y; q)∇Φ(x, y; q)

]
. (18.14)

The homotopy analysis method is based on a continuous variation from an
initial trial to the exact solution. In the water-wave problem, we construct
the mappings φ(x, y) → Φ(x, y; q), ζ(x) → η(x; q), and C → Λ(q) so that,
as the embedding parameter q increases from 0 to 1, Φ(x, y; q), η(x; q), and
Λ(q) vary from the initial guesses to the exact solution φ(x, y), ζ(x), and C
respectively. To ensure this, based on Equations (18.1) to (18.4), we construct
the zero-order deformation equation

∇2Φ(x, y; q) = 0 for (x, y) ∈ Ω(q), (18.15)

© 2004 CRC Press LLC 



subject to the boundary conditions on the unknown free surface y = η(x; q),

(1 − q) L [Φ(x, y; q) − φ0(x, y),Λ(q)]
= q �1 H1(x) N [Φ(x, y; q),Λ(q)], (18.16)

(1 − q) [η(x; q) − ζ0(x)]
= q �2 H2(x) {η(x; q) −Z[Φ(x, y; q),Λ(q)]} , (18.17)

and the boundary condition on the bottom

lim
y→−∞

∂Φ(x, y; q)
∂y

= 0, (18.18)

where q ∈ [0, 1] is the embedding parameter, �1, �2 are two nonzero auxiliary
parameters, H1(x),H2(x) are two nonzero auxiliary functions, the domain

Ω(q) = {(x, y) | −∞ < x < +∞,−∞ < y < η(x; q)}
should preserve the connectedness as q spans the interval [0, 1].

When q = 0, the governing equation (18.15) and the boundary conditions
(18.16) to (18.18) yield the initial approximation

Φ(x, y; 0) = φ0(x, y), η(x, 0) = ζ0(x), Λ(0) = C0, (18.19)

where C0 is the initial guess of the phase speed. When q = 1, since

�1 �= 0, �2 �= 0,H1(x) �= 0,H2(x) �= 0,

Equations (18.15) to (18.18) are equivalent to Equations (18.1) to (18.4),
provided

Φ(x, y; 1) = φ(x, y), η(x, 1) = ζ(x), Λ(1) = C. (18.20)

As q increases from 0 to 1, the boundary-value problem defined by Equations
(18.15) to (18.18) thus provides a continuous variation to transform the initial
trial into the exact solution.

Using Taylor’s theorem and Equation (18.19), we expand Φ(x, y; q), η(x; q),
and Λ(q) in the power series of q as follows:

Φ(x, y; q) = φ0(x, y) +
+∞∑
m=1

φ
[m]
0 (x, y)

m!
qm, (18.21)

η(x; q) = ζ0(x) +
+∞∑
m=1

ζ
[m]
0 (x)
m!

qm, (18.22)

Λ(q) = C0 +
+∞∑
m=1

C
[m]
0

m!
qm, (18.23)
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where

φ
[m]
0 (x, y) =

∂mΦ(x, y; q)
∂qm

∣∣∣∣
q=0

, (18.24)

ζ
[m]
0 (x) =

∂mη(x; q)
∂qm

∣∣∣∣
q=0

, (18.25)

C
[m]
0 =

dmΛ(q)
dqm

∣∣∣∣
q=0

. (18.26)

Note that Equations (18.16) and (18.17) contain two auxiliary parameters
�1, �2, and two auxiliary functions H1(x),H2(x). Assuming that all of them
are correctly chosen so that the above series are convergent at q = 1, from
(18.20) we have

φ(x, y) = φ0(x, y) +
+∞∑
m=1

φ
[m]
0 (x, y)

m!
, (18.27)

ζ(x) = ζ0(x) +
+∞∑
m=1

ζ
[m]
0 (x)
m!

, (18.28)

C = C0 +
+∞∑
m=1

C
[m]
0

m!
. (18.29)

18.1.2 High-order deformation equation

For brevity, define the vectors


φn =
{

φ0(x, y), φ[1]
0 (x, y), φ[2]

0 (x, y), · · · , φ[n]
0 (x, y)

}
,


ζn =
{

ζ0(x), ζ [1]
0 (x), ζ [2]

0 (x), · · · , ζ [n]
0 (x)

}
,

and

Cn =

{
C0, C

[1]
0 , C

[2]
0 , · · · , C [n]

0

}
.

Besides, define the so-called deformation derivatives

Φ[m](x, y; q) =
∂mΦ(x, y; q)

∂qm
, (18.30)

η[m](x; q) =
∂mη(x; q)

∂qm
, (18.31)

Λ[m] =
dmΛ(q)

dqm
. (18.32)

Differentiating Equations (18.15) and (18.18) m times with respect to q and
setting q = 0, we have the high-order deformation equation

∇2φ
[m]
0 (x, y) = 0 in (x, y) ∈ Ω0 (18.33)
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and the condition on the bottom

lim
y→−∞

∂φ
[m]
0 (x, y)
∂y

= 0, (18.34)

where
Ω0 = {(x, y) | −∞ < x < +∞,−∞ < y ≤ ζ0(x)} .

It should be emphasized that the free surface boundary conditions (18.16)
and (18.17) are satisfied at y = η(x; q), which is dependent on q. Thus, it
holds for Φ(x, y; q) at y = η(x; q) that

DmΦ(x, y; q)
Dqm

=
[

∂

∂p
+ η[1](x; q)

∂

∂y

]m

Φ(x, y; q), (18.35)

where η[1](x; q) is defined by (18.31). The differential operator Dm/Dqm,
which contains the linear term ∂m/∂qm, is determined from a simple proce-
dure described later in this chapter. We simply write

DmΦ(x, y; q)
Dqm

= Φ[m](x, y; q) + Rm[Φ(x, y; q),Λ(q)], (18.36)

where Rm is a nonlinear operator and Φ[m](x, y; q) is defined by (18.30). Note
that for functions independent of y = η(x; q), such as Λ(q) and η(x; q), we
have

Dmη(x; q)
Dqm

=
∂mη(x; q)

∂qm
= η[m](x; q), (18.37)

DmΛ(q)
Dqm

=
dmΛ(q)

dqm
= Λ[m](q), (18.38)

which are consistent with (18.31) and (18.32), respectively.
Thereafter, differentiating Equations (18.16) and (18.17) m times with

respect to q and setting q = 0, we have the respective free surface boundary
conditions defined at y = ζ0(x) as

m∑
i=0

(
m
i

)
Di
[
Λ2(q)

]
Dqi

∣∣∣∣∣
q=0

Dm−iΦxx(x, y; q)
Dqm−i

∣∣∣∣
q=0

+g
DmΦy(x, y; q)

Dqm

∣∣∣∣
q=0

= m χm
Dm−1L [Φ(x, y; q),Λ(q)]

Dqm−1

∣∣∣∣
q=0

+ m �1 H1(x)
Dm−1N [Φ(x, y; q),Λ(q)]

Dqm−1

∣∣∣∣
q=0

(18.39)

© 2004 CRC Press LLC 



and
ζ
[m]
0 (x) = m Wm(x, 
ζm−1, 
Cm−1), (18.40)

where χm is defined by (2.42) and

Wm(x, 
ζm−1, 
Cm−1) = χm ζ
[m−1]
0 (x)

+ �2 H2(x)

[
ζ
[m−1]
0 (x) − Dm−1Z [Φ(x, y; q),Λ(q)]

Dqm−1

∣∣∣∣
q=0

]
. (18.41)

Substituting Equation (18.36) into (18.39), at y = ζ0(x) we have

C2
0

∂2φ
[m]
0 (x, y)
∂x2

+ g
∂φ

[m]
0 (x, y)
∂y

= Sm(x, 
φm−1, 
ζm, 
Cm), (18.42)

where

Sm(x, 
φm−1, 
ζm, 
Cm)

=
{

m χm
Dm−1L [Φ(x, y; q),Λ(q)]

Dqm−1

+ m �1 H1(x)
Dm−1N [Φ(x, y; q),Λ(q)]

Dqm−1

− C2
0 Rm [Φxx(x, y; q),Λ(q)] − g Rm [Φy(x, y; q),Λ(q)]

−
m∑

i=1

(
m
i

)
Di
[
Λ2(q)

]
Dqi

Dm−i [Φxx(x, y; q)]
Dqm−i

}∣∣∣∣∣
q=0

. (18.43)

Note that the resulting boundary conditions (18.40) and (18.42) are satisfied
on the initial approximation of the surface elevation ζ0(x) and the reason for
choosing ζ0(x) = 0 is now evident.

The boundary-value problem at the mth-order approximation is defined by
the governing equation (18.33) and the boundary conditions (18.34), (18.40),
and (18.42). It is clear that the term

Wm(x, 
ζm−1, 
Cm−1)

is only dependent upon results up to the (m-1)th approximation. Thus,
ζ
[m]
0 (x) can be directly calculated from Equation (18.40). Thereafter, there

exist two unknowns: φ
[m]
0 (x, y) and C

[m]
0 . However, we have only one gov-

erning equation (18.33) with the boundary conditions (18.34) and (18.42) for
φ

[m]
0 (x, y). So, the problem is not closed and an additional algebraic equation

is needed to determine C
[m]
0 .
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Under the rules of solution expression denoted by (18.6) and (18.8) and
from Equations (18.40) and (18.42), the auxiliary functions H1(x) and H2(x)
may appear as

H1(x) = cos(n1kx), H2(x) = cos(n2kx),

where n1, n2 are integers. For simplicity, we choose

n1 = n2 = 0,

corresponding to
H1(x) = H2(x) = 1. (18.44)

Then, under the rules of solution expression denoted by (18.6) and (18.8), the
term Sm(x, 
φm−1, 
ζm, 
Cm) can be expressed by

Sm(x, 
φm−1, 
ζm, 
Cm) =
m∑

n=1

bm,n(
Cm) sin(nkx) for m ≥ 1, (18.45)

where bm,n(
Cm) is a coefficient dependent of the vector 
Cm. Obviously, when
bm,1(
Cm) �= 0, due to Equation (18.42), the solution φ

[m]
0 (x, y) of the high-

order deformation equations contains the secular terms, which do not conform
to the rule of solution expression denoted by (18.6). To avoid this, we must
enforce

bm,1(
Cm) = 0 for m ≥ 1, (18.46)

which provides us with one additional algebraic equation in the form

αm(
Cm−1) C
[m]
0 + βm(
Cm−1) = 0,

where αm(
Cm−1) and βm(
Cm−1) are coefficients. Using this equation, C
[m]
0 is

obtained. In this way, the problem is closed and the rule of solution existence
is satisfied.

Thereafter, it is easy to obtain the solution

φ
[m]
0 (x, y) =

m∑
n=1

am,n exp(nky) sin(nkx), (18.47)

where

am,n =
bm,n(
Cm)

(kn)g − C2
0 (kn)2

for 2 ≤ n ≤ m. (18.48)

Note that the coefficient am,1 is still unknown. To relate the solution and the
wave height H, we use

ζ
[m]
0 (0) − ζ

[m]
0 (L/2) =

{
H for m = 1
0 for m ≥ 2. (18.49)
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This relationship provides a linear algebraic equation in the form

γm am,1 + δm = 0,

where γm and δm are coefficients, from which the solution of am,1 can be
evaluated. The value of A in the initial approximation φ0(x, y) given by
(18.9) is determined from (18.40) and (18.49) as

A = −
(

g H

2 �2 k C2
0

)
. (18.50)

The nonlinear water-wave problem is now reduced to the two linear algebraic
equations for C

[m]
0 and am,1. The solutions of the two equations complete the

expression for φ
[m]
0 (x, y) as well as the mth-order approximation of the solu-

tion. The formulation can be easily adapted for symbolic computation. In this
way we obtain the high-order approximations ζ

[m]
0 (x), C [m]

0 , and φ
[m]
0 (x, y),

successively, in the order m = 1, 2, 3, · · ·.
The operator Dm/Dqm for m ≥ 1 can be determined by following the

procedure outlined here. The potential Φ(x, y; q) on the free surface at y =
η(x; q) can be expanded about q = 0 by a Taylor series to give

Φ(x, y; q) =
+∞∑
m=0

DmΦ(x, y; q)
Dqm

∣∣∣∣
q=0

(
qm

m!

)
. (18.51)

Similarly, this can be expanded by a Taylor series about the free surface at
y = η(x; 0) as

Φ(x, y; q) =
+∞∑
n=0

+∞∑
r=0

∂nΦ[r](x, y; q)
∂yn

∣∣∣∣
q=0

(
qr

n! r!

)
[η(x; q) − η(x, 0)]n . (18.52)

Equating the two expressions for Φ(x, y; q) and invoking (18.19) and (18.22),
we obtain

+∞∑
m=0

DmΦ(x, y; q)
Dqm

∣∣∣∣
q=0

(
qm

m!

)

=
+∞∑
n=0

+∞∑
r=0

∂nΦ[r](x, y; q)
∂yn

∣∣∣∣
q=0

(
qr

n! r!

)[+∞∑
s=1

(
qs

s!

)
ζ
[s]
0 (x)

]n

. (18.53)

Expanding the right-hand side of the above equation and comparing the co-
efficients of the same power of q give the definition of the operator Dm/Dqm

for m ≥ 1. This can be accomplished by symbolic computation. For details,
the reader is referred to Liao and Cheung [50].
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18.2 Result analysis

There exist two auxiliary parameters: �1 and �2. We have therefore a two-
parameter family of solution expressions. For simplicity, we set

�1 = �2 = �.

Physically, the phase speed C, velocity potential φ(x, y), and surface elevation
ζ(x) are dependent upon the wave steepness. All of them are mathematically
dependent on �, which influences the convergence rate and region of the solu-
tion series (18.27), (18.28), and (18.29). In practice, a finite number of terms
are used in the solution series. The Mth-order approximation of (18.27),
(18.28), and (18.29) becomes

φ(x, y) ≈ φ0(x, y) +
M∑

m=1

φ
[m]
0 (x, y)

m!
, (18.54)

ζ(x) ≈ ζ0(x) +
M∑

m=1

ζ
[m]
0 (x)
m!

, (18.55)

C ≈ C0 +
M∑

m=1

C
[m]
0

m!
. (18.56)

Most researchers focus their attention on the dispersion relationship be-
tween the phase speed C and the wave height H. Schwartz [128] formulated
the Mth-order approximation of the phase speed as

(
C

C0

)2

≈
M∑

j=0

aj (kH)2j , (18.57)

where aj is a coefficient. Schwartz applied the Padé technique to improve
the convergence and obtained the solution with the maximum wave steepness
(H/L)max = 0.14118. In our approach, the Mth-order approximation of the
phase speed is

C

C0
≈

M∑
j=0

bj (kH)2j , (18.58)

where bj is a coefficient. In general, for a given value of kH, the influence of �

on the convergence of the above series can be investigated by plotting the so-
called �-curves (see page 26 and §3.5.1) of C/C0. As long as the series of the
phase speed is convergent, the corresponding series of the velocity potential
φ(x, y) and wave elevation ζ(x) also converge.
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The accuracy and convergency of the phase speed can be enhanced by the
homotopy-Padé technique (see page 38 and §3.5.2). It is found that the [κ, κ]
homotopy-Padé approximant of the phase speed is expressed by

C

C0
≈

1 +
κ(κ+1)/2∑

n=1
Γ2κ,n (kH)2n

1 +
κ(κ+1)/2∑

n=1
∆2κ,n (kH)2n

, (18.59)

where Γ2κ,j and ∆2κ,j are coefficients independent of �. Note that the [κ, κ]
homotopy-Padé expression (18.59) is to O(H2κ2+2κ), which is considerably
higher than O(H2κ) achieved by the [κ, κ] Padé expansion used by Schwartz
[128].

Table 1 lists the dimensionless phase speed, C2/C2
0 , computed at vari-

ous levels of the homotopy-Padé approximation (18.59) and from Schwartz’s
perturbation solution to O(H116) [128]. For wave steepness up to H/L =
0.10, the homotopy-Padé approximation converges at [6,6] and yields results
identical to Schwartz’s for the number of decimals considered. The computed
dimensionless phase speed at this level of approximation is to O(H82), which
is lower than that considered by Schwartz. At the 20th-order approximation
of the solution series, C2 given by the [10,10] homotopy-Padé approxima-
tion is to O(H220) and converges to slightly different results in comparison to
Schwartz’s for wave steepness H/L > 0.12. The homotopy-Padé approxima-
tion converges rapidly with the number of terms and the 20th- and 22nd-order
approximations of the solution give identical or similar results over the range
of wave steepness considered, indicating reasonable convergence at the 20th
order and the validity of the proposed homotopy-Padé technique.

The [10,10] and [11,11] homotopy-Padé approximations of C/C0 are com-
pared with Longuet-Higgins’ perturbation solution [129] in Table 2. The two
homotopy-Padé approximations and Longuet-Higgins’ results are identical for
wave steepness up to H/L = 0.121921, whereas the [10,10] Homotopy-Padé ap-
proximation remains convergent up to H/L = 0.137249 for the number of dec-
imals considered. The phase speeds computed by the various methods as the
wave steepness approaches the limiting condition are compared in Figure 18.1.
Both the present and Longuet-Higgins’ approaches gives the maximum phase
speed at the same wave steepness H/L = 0.138712 and demonstrate that
phase speed is not a monotonic function of wave steepness. The homotopy-
Padé approximations agree with Longuet-Higgins’ results up to H/L = 0.14,
but show more rapid decrease of the phase speed toward the limiting wave
condition beyond that. The phase speed given by Schwartz [128] at H/L =
0.14 is slightly lower in comparison to the other predictions.

As observed in the previous and present studies, the physics of steep grav-
ity waves is complicated and different approaches produce different solutions
toward the limiting wave condition. The limiting wave is physically unstable
and might be mathematically as well. It would be interesting to employ our
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approach to investigate the bifurcations of gravity waves for H/L ≈ 0.13,
found numerically by Chen and Saffman [132].
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TABLE 18.1

Comparison of the [κ, κ] homotopy-Padé approximation of C2/C2
0 with

results given by Schwartz [128].
H/L Schwartz’s κ = 6 κ = 8 κ = 10 κ = 11

result

0.040 1.01592 1.01592 1.01592 1.01592 1.01592
0.070 1.04955 1.04955 1.04955 1.04955 1.04955
0.100 1.10367 1.10367 1.10367 1.10367 1.10367
0.120 1.15182 1.15190 1.15184 1.15182 1.15181
0.130 1.17820 1.17865 1.17834 1.17821 1.17821
0.135 1.18996 1.19148 1.19061 1.19003 1.19003
0.140 1.1930 1.20150 1.19833 1.19369 1.19385

Source: Kluwer Academic Publishers, Journal of Engineering Mathematics,
vol. 45, No. 2, 2003, pp. 105-116, “Homotopy analysis of nonlinear pro-
gressive waves in deep water”, Liao and Cheung, Table 1, Kluwer Academic
Publishers Copyright c©2003 Kluwer Academic Publishers, with kind permis-
sion of Kluwer Academic Publishers.
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TABLE 18.2

Comparison of the [κ, κ] homotopy-Padé approximation of C/C0

with result given by Longuet-Higgins [129].
H/L Longuet-Higgins’ κ = 10 κ = 11

result

0 1.00000 1.00000 1.00000
0.045266 1.01016 1.01016 1.01016
0.064351 1.02065 1.02065 1.02065
0.079187 1.03143 1.03143 1.03143
0.091809 1.04247 1.04247 1.04247
0.102959 1.05366 1.05366 1.05366
0.108093 1.05926 1.05926 1.05926
0.112962 1.06482 1.06482 1.06482
0.117572 1.07029 1.07029 1.07029
0.121921 1.07558 1.07558 1.07558
0.125993 1.08059 1.08060 1.08060
0.129760 1.08516 1.08517 1.08517
0.133178 1.08904 1.08906 1.08906
0.136178 1.09184 1.09188 1.09188
0.136723 1.09222 1.09228 1.09228
0.137249 1.09255 1.09260 1.09260
0.137755 1.09275 1.09284 1.09285
0.138242 1.09290 1.09300 1.09301
0.138712 1.09295 1.09306 1.09308
0.139170 1.09291 1.09302 1.09305
0.139610 1.09279 1.09285 1.09290
0.140060 1.09258 1.09250 1.09258
0.140530 1.09240 1.09189 1.09202
0.141100 1.09230 1.09066 1.09089

Source: Kluwer Academic Publishers, Journal of Engineering Mathematics,
vol. 45, No. 2, 2003, pp. 105-116, “Homotopy analysis of nonlinear pro-
gressive waves in deep water”, Liao and Cheung, Table 2, Kluwer Academic
Publishers Copyright c©2003 Kluwer Academic Publishers, with kind permis-
sion of Kluwer Academic Publishers.
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FIGURE 18.1
Phase speed C/C0 versus wave steepness H/L for nonlinear progressive waves
in deep water. Dashed line: [10,10] homotopy-Padé approximation; solid line:
[11,11] homotopy-Padé approximation; open circle: Schwartz’ results [128];
filled circle: Longuet-Higgins’ results [129]. (From Kluwer Academic Publish-
ers, Journal of Engineering Mathematics, vol. 45, No. 2, 2003, pp. 105-116,
“Homotopy analysis of nonlinear progressive waves in deep water”, Liao and
Cheung, Figure 1, Kluwer Academic Publishers Copyright c©2003 Kluwer
Academic Publishers, with kind permission of Kluwer Academic Publishers.)
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[58] Malkin, T.G. Methods of Poincaré and Lyapunov in theory of non-linear
oscillations. Moscow, 1949. (in Russian).

[59] Kuo, Y.H. On the flow of an incompressible viscous fluid past a flat
plate at moderate Reynolds numbers. J. Math and Phys., 32:83–101,
1953.

[60] Kuo, Y.H. Viscous flow along a flat plate moving at high supersonic
speeds. J. Aeron. Sci., 23:125–136, 1956.

© 2004 CRC Press LLC 
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proximants for solving Thomas-Fermi equation. Mathematics and Com-
putation, 105:11–19, 1999.

[92] Luning, C.D. and Perry, W.L. An iterative technique for solution of
the Thomas-Fermi equation utilizing a non-linear eigenvalue problem.
Quarterly of Applied Mathematics, 35:257–268, 1977.

[93] Wu, M.S. Modified variational solution of the Thomas-Fermi equation
for atoms. Phys. Rev. A, 26(1):57–61, 1982.

[94] Civan, F. and Sliepcevich, C.M. On the solution of the Thomas-Fermi
equation by differential quadrature. J. Comput. Phys., 56:343–348,
1984.

[95] Chan, C.Y. and Du, S.W. A constructive method for the Thomas-Fermi
equation. Quarterly of Applied Mathematics, 44:303–307, 1986.

[96] Allan, M. Chebyshev series solution of the Thomas-Fermi equation.
Comp. Phys. Comm., 67:389–391, 1992.

[97] Pert, G.J. Approximations for the rapid evalution of the Thomas-Fermi
equation. J. Phys. B, 32(6):5067–5082, 1999.

[98] Kobayashi et al. Some coefficients of the TFD function. J. Phys. Soc.
Japan, 10:759–765, 1955.

[99] Scudo, F.M. Vito Volerra and theoretical ecology. Theoret. Population
Biol., 2:1–23, 1971.

[100] Small, R.D. Mathematical Modelling: Classroom Notes in Applied
Mathematics. SIAM, Philadelphia, PA, 1989.

[101] TeBeest, K.G. Numerical and analytical solutions of Volterra’s popula-
tion model. SIAM Rev., 39(3):484–493, 1997.

[102] Wazwaz, A.M. Analytical approximations and Padé approximations for
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