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Non-commutative Invariant Differential Operators
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Abstract

Given a clasg= of differential equations, the symmetry classification
problem is to determine for each memies F the structure of its Lie sym-
metry groupGs, or equivalently of its Lie symmetry algebra. The compo-
nents of the symmetry vector fields of the Lie algebra are solutions of an asso-
ciated over-determined ‘defining system’ of differential equations. The usual
computer classification method which applies a sequence of total derivative
operators and eliminations to this associated system often fails on problems
of interest due to the excessive size of expressions generated in intermediate
computations.

We provide an alternative classification method which exploits the knowl-
edge of an equivalence grodp preserving the class. A non-commutative
differential elimination procedure due to Lemaire, Reid and Zhang, where
each step of the procedure is invariant urieican be applied and an exis-
tence and uniqueness theorem for the output used to classify the structure of
symmetry groups for eache F.

The method is applied to a class of nonlinear diffusion convection equa-
tionsvyx = u, vt = B(u)ux — K(u) which is invariant under a large but easily
determined equivalence grogp In this example the complexity of the cal-
culations is much reduced by the usesinvariant differential operators.
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1 Introduction

This article falls under the general area of Geometric Integration [14] and specif-
ically in the development of tools that share symmetry properties of the problems
to which they are applied [24, 26]. See [6] for applications to computer vision and
[25, 14] for applications to group invariant numerical integrators. In this paper, we
show how to perform symmetry classification for a clas®DE in a ¢-invariant

way, where¥ is a known Lie group which leaves the class invariant eis

an equivalence group for the class). The advantages of this approach are demon-
strated in the reduction of complexity of computations for problems to which they
are applied.

The Lie symmetry group of a differential equation [23] preserves its family
of solutions and is the basis of several useful techniques in applied mathematics.
Such techniques include finding invariant solutions, solving ordinary differential
equations in formula, finding conservation laws and linearizations [27, 23, 4, 24]
and the development of symmetry invariant numerical integrators [14].

Some symmetries are known a priori on physical grounds — for instance an
isotropic medium will have rotational symmetries — but in general a ghosmust
be analysed to find all its symmetries. The analysis proceeds by seeking vector
fieldsX = 3 E‘(w)ﬁ on the space of independent and dependent variables, such
that thepDEare invariant under the action ¥f The unknown componenés of the
vector fields satisfy a linear homogeneous and generally over-determined system of
PDE, thesymmetry systefor defining system) for the algebra of symmetry vector
fields of G.

Several programs are available [34, 28, 35] for reducing the symmetry system
by applying a sequence of eliminations and commutative differentiations to the
symmetry system. An existence and uniqueness theorem is available for the output
form of some of the programs [32, 33] and allows determination of the size of the
group. In addition the formal series solution §rcan be constructed up a given
order, allowing computation of the structure of the unknown group without explic-
itly determiningé [29, 30]. Some programs focus on explicit determination of the
&' by employing integration [34, 35] in addition to differentiations and elimina-
tions. The above programs can often successfully determine symmetry properties
of a single differential equation.

Often one wishes to find the structure of the symmetry g®upf each mem-
ber f of a clasg- of differential equations. For instance, one might be interested
in second ordeoDE

F={y'=h(xyy)h:R°—R}

Specification of the arbitrary elemehtpicks out a differential equation frofa,
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with an associated symmetry groGg.
Examplel.l Consider the class of scalar nonlinear diffusion equations

U = (B(u)uy), @

which is assumed to be nonlinear so tBag 0, B,(u) # 0. Different functional
forms of the diffusivityB(u) will lead to different symmetry groupSg. The sym-
metry operator¥X = & (X,t,u) dy+ T(X,t,u) & + n(x,t,u) d, which generate the Lie
algebra%g of symmetry vector fields fog have components, 1, n which obey
the symmetry system [27, eq.(6.7.3)]

x=Ty=&é=Nw=0 (2a)
B(2éx— 1) —Bun =0 (2b)
B(2nxu — éxx) +2Bunx+ & =0 (2c)
Bixx— Nt =0. (2d)

For givenB(u), this is an over-determined linear homogeneous system. We will
consider the overall system to consist of not only the symmetry systegiven

by (2), but also the ‘classifying syster#” satisfied byB, in this caseg = {Byx =

B =0, B#0, By # 0}. The overall system is” U%'.

In analysing such systems containing arbitrary elements, new problems arise.
As the defining equations are manipulated, derivatives of the arbitrary elements
(e.g.By, Bu, .. .) accumulate in the coefficients, significantly increasing the alge-
braic complexity of the equations. One also uncowase splittingsconditional
on the arbitrary elements obeying certalassification conditions

Examplel.1(cont.). Assuming thaB, # 0, (2b) implies thatB%(ZEX —T)—n
0; differentiation and reduction modulo (2a) then giV@By)uy (26— &) =
There are two cases:

0
(B/BU)uu =0 (3)

or (B/By)uu # 0, 26x — 1t = 0. In this second case, further differentiations and
eliminations quickly show that the diffusion equation (1) admits only the obvious
symmetries [27§6.7]

Gg={g: (x,t,u) — (ax+pu,a’t+v,u)} (4)

Thus if equation (1) is to have any non-obvious symmetiiB{s) must satisfy
classification condition (3) [2%6.7].

Such conditions are what investigators aim for in classification problems.



The computational labor for symmetry classification is greater than for symme-
try analysis of one system, mainly because algebraic complexity of the symmetry
and classification systems can build up explosively as the equations are manipu-
lated. Programs such as [34, 35, 31, 22] can handle classeggbut can fail due
to exhaustion of memory. Even when answers are returned, the case splitting crite-
ria may be so complex as to defy interpretation. To overcome this, various workers
[1, 2] follow Ovsiannikov [27] in usingequivalence transformationgvhich map
equations in a class to other equations in the same class.

Examplel.l(cont.). For the diffusion equation (1), the transformations given by

Y ={g:(xtu)— (Bxt,yu+9d),  By#0} 5)

form an equivalence group for the class, since these transformations map the dif-
fusion equation tony, = yB~2(B(W + d)U,),. Hence the coefficienB(u) is
mapped to a new coefficient, given BY(u) = B~2B(yu+ &), and transformations

(5) along with (4) constitute an equivalence grefifor the class. These transfor-
mations are usually not symmetries since in genge4lB'.

When classifying symmetries, the equivalence group can be used to eliminate
parameters from cases.

Examplel.1(cont.). The classification equation (3) has solutions
B(u)=ae™,  B(u)=(aut+b)™,  (am#0)

Choosing class representatives with respect to the equivalence group (5) gives nor-
mal forms
B(u) = €", B(u) =u™, (m=£0).

This use of equivalence transformations to ‘clean up’ at the end of a symme-
try classification does not address the problem of algebraic complexity arising in
intervening calculations. In the current paper, we present a method which takes
advantage of equivalence transformations at the outset rather than at the end of the
analysis. The goal is to provide a method which has the equivalence group built
into it, in the sense that two equations connected by an equivalence transformation
will automatically be identified throughout the calculation. Significant clarification
and simplification of symmetry classifications are thereby achieved.

Our method is based on differential elimination procedures developed by Reid
et al. [28, 29, 30, 31] and which complete the symmetry system by adjoining
compatibility conditions [5]. After a finite number of steps, the system reaches a
reduced form where a local existence-uniqueness theorem can be used to deduce
properties of the defining system, such as the dimension of its solution space. The



differential elimination methods of [28] gave algorithms for exhibiting symmetry
classifying conditions with the restriction that the classifying conditions remained
linear in their highest derivatives. The restriction of leading linearity is removed in
the symmetry classification problem by Mansfield [20]. Similar methods are now
employed in several programs [34, 35, 22]. However these methods are subject to
severe expression swell, and can fail for this reason. In addition, the programs often
give rise to spurious case splits: the user pursues first one then another branch, only
to find that the branches have no special symmetry properties.

Now suppose one has available an equivalence ggigr the class=. By
writing the defining equations in a form which4&invariant, we are able to carry
out calculations which lessen these computational difficulties. The virtue of using
such &-invariant formulation is that equations which are connected by a transfor-
mation from% are identified, leading to results which are easier to interpret, and
also a reduction in their complexity.

To use such &-invariant formulation one must compute the differential in-
variants of the equivalence gro@f and rewrite the defining system#tinvariant
form. Fortunately, over the last decade Fels, Olver and others [9, 10, 24, 26] have
significantly developed and generalized Cartan’s theory of moving frames. As a re-
sult there are now systematic methods for finding differential invariants and other
associated objects such as invariant differential operators. These methods are im-
portant prerequisites for the applications described in our paper.

Writing the systems ir¢-invariant form requires the use abn-commuting
invariant bases of differential operatoeD(©) and methods for systematically ma-
nipulating and simplifying such systems. There is available a non-commutative
differential elimination procedure due to Lemaire, Reid and Zhang [18, 39] to bring
such systems to a reduced form enjoying properties crucial to our article (also see
the approach of Mansfield [21]). In particular, a local existence and uniqueness
theorem [18, 39] is available for the output non-commutative reduced involutive
form (RIF-form). This theorem enables us to algorithmically find the dimension
(§6) and structureg(y) of symmetry algebrag’s for each membef of the class-.

The reduction procedure also enables classifying conditions to be determined algo-
rithmically. Thus our approach combines classical methods of symmetry analysis
[4, 23, 27], the theory a¥-invariant objects [9, 10, 26] and differential elimination
methods forDE[18, 39].

The remainder of this paper is organized as follows;2mon-commuting dif-
ferential operators and their structure relations are introduce$B e introduce
notation and discuss the process that puts the non-commutative derivations in a nor-
malized order. Rankings of derivations and reductiorDf are discussed if4.

Using the equivalence group to find suitable frames is discussggland applied
to the example of the nonlinear diffusion equation (13%n3. The calculation of
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structure constants from a frame defining system is discussgt! ik substantial
example (nonlinear diffusion convection equations) of symmetry classification is
presented ig8. Concluding remarks are given§a0.

2 Derivations and Structure Relations

We consider systems of partial differential equatiarsg) with independent vari-
ablesx = (x},x?,...,x") € F" and dependent variables= (u!,...,u™) € F™ where
F =R or C. Differential elimination methods, such as those of [16, 28, 31, 5],
are stated in a coordinate system, with commuting derivations. We now relax this
and permit an arbitrary, possibly non-commutative, basis for first order derivations.
See [18] for details and a careful treatment.

We restrict our attention to (mainly over-determined) systems whictrare
analytic functions of their independent, dependent variables and total differential
operators applied ta where the differential operators are compositions of deriva-

tions of the form .

Di:Zaij(x,u)ij, i=1...,n (6)
j=1
Here D,; is the usual (commutative) total derivative operator, &)€x,u) are
[F-analytic functions and the x n matrix A(x,u) = (&;j(x,u)) is invertible (i.e.
detA(x,u)) # 0) at points(x,u) in F" x F™. SinceA(x,u) is invertible it follows
thatDy = y_; bij(x, u)5j where(bij (x,u)) = A(x,u) . Thus analytic°DE sys-
tems written in terms, u andD; can be written in terms of, u and 5i.
TheD; satisfy commutation relations of the form:

n
[Di,Dj] =DiDj—D;Di = § WDk, 1<i,j<n. (7)
k=1

Here theyi‘} are functions ok, u and first order derivations af, and can be easily
calculated fromA(x,u) using (6) to express the commutator in termsDgfand
then applying the inverse to express the result in term§jofThus theD; are
generally non-commuting, in contrast to the usual commuting total derivddiyes
(abbreviated ab;).

Example2.1 The following non-commutative derivations arise from the nonlin-
ear diffusion convection potential system discussegBinLet {D,, Dy, D;,D,} be
commuting derivations oi®* with coordinategv,x,t,u). Let K,q be dependent
variables in the simple system pbe K, = Ky = K; = 0,K, = g. We will denote
sets of derivations by upper case Greek letters. For example here \Wenrsare



Di =4, i=1,2,3 4to denote:
Al == D\/, Az == Dx, A3 - Dt + qu+ (Uq— K) Dv, A4 - Du (8)

The matrixA(v,x,t,u) has determinart, soA satisfies the determinant condition.
The derivations\ (8) have[A;i,A;] = 0 apart from the relations involvings, for
instance

[A3,04) = —Q4l2 — (Uds +q—Ka)Ay

We shall have frequent need to manipulate vector fields. # 5N &€'Djis a
vector field then its componenfd with respect td; are

n n
X=75 6'Dj, where aij(x,u)0 =&, 9)
200 2%

Invertibility of A(x,u) guarantees th@! can be expressed in terms®f

Example2.1 (cont.) Let X = xDy +¢{Dx+ 1Dt + Dy be a vector field, withy,
¢, 1, n functions of(v, x,t,u). Resolving with respect th, i.e. X = 6'A; gives

0'=x—-(ug—K)r, 6°=&-qr, 6°=r1, 6*=n. (10)

3 Derivations, Normalization and Bijection to the Com-
mutative Case

We briefly discuss the normalization of non-commutative operators and a bijection
to the commutative case. See [18] for a detailed treatment which is a minor vari-
ation on the standard one (in which only the independent variables appear in the
coefficients). The main point is that basic operations, such as chain rules, work in
the expected way.

As is usual in the commutative case we define [32, 5] a set of indeterminates
Q={V,|a=(ay,--,0n) € N"i =1,---,m} where each indeterminate &
corresponds to a partial derivative by:

Ve (3n)9n - (87) MUl (XL, - X i= 39U (- X))

Commutative total derivative operators act on membe€3 oy a unit increment of
thei-th index of their vector subscripDiv‘g, = v‘;Hi wherea +1; = (ay, ..., 0 +
1,...,an). The usual (commutative) total derivatildg; = D; action on functions of
{x}UQ s then given byD; = 3 + ¥ cq(DiV) 2.

In the non-commutative casetotal derivation®y, ..., D, act on formal power
series in thed. A general total derivation operator of ordemwherep € N has
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form D;,Dj,...Di, whereij € {1,2,...,n} for j = 1,..., p. In a similar manner to the
commutative case lé" = {(ip, ... |2,|1) iJ € {1 2,...,n} andp € N} and define
Q= {U|I eK"k=1,---,m} whereD;,D;,...Dj uk < . _i,iy- Thenaformal

I ..... 12,1
total derivation operatdi)J acts on members @ € Q wherel = (ips...,i2,i1) by
appendingj to their indexD ;v := Uk =K _i,ij- One demonstrates easily (e.g.

see [18]) that the chain rule works as expected on analytic funcfiafigx} U Q,
namely

liJerZDV (11)

veQ

We will use the natural notatiod) := ZJ 1(D xl) - and calld; the partial deriva-
tion. Using this notation we can wrif@; = 0+ ZVGQ(D v)

DefineQ = {#, | a = (ay,--,0n) e N"i=1,---.m} Where each element of
this set corresponds to a derivation by:

\7ia PN (5n)an...(6l)alui (Xl,“- ’Xn> e Saui (Xl’... 7)(n) .

In contrast to the commutative case this correspondence only gives a subset of the
set of all derivations®@). However the commutation relations (7) enable us to
extend this correspondence to the whole set.

Hypothesis 3.1 (Finiteness and Normalization Assumption for Derivations).

In this article we only consider functions of finitely many indeterminates (i.e. the
differential equations considered are always of finite order). Also, each time a
derivation is applied to such a function o€} U Q we assume that the commutation
rules are applied to get an expression only involving elemen{gjof Q.

It follows [18] from our normalization thaD; = i+ ZVGQ(D V) 5o 9. The other
vital property [18, 39] underlying our method is:

Theorem 3.2 (Bijection between derivations and derivatives)lUnder the ana-
lyticity and invertibility assumption og;j in §2 each orderq derivation operator
(resp. differential operator) can be expressed as a linear combination of differ-
ential operators (resp. derivation operators) of ordgor less with coefficients
being analytic functions of and commutative (resp. non-commutative) derivation
variables of ordeilg— 1 or less.

In summary three different sets of derivations are used in this paper: the non-
normalized derivation®, the normalized derivatior and the commutative deriva-
tives Q. They simply correspond to the following spacd&(F", F™), Jo(F" F™)
andJA(F", ™).



The relationship between these spaces is shown below:

JoEnFm Y5 JuEn Emy 25 g9En By (12)
HereJ9(F",F™) is the usuab-th order jet space. As usual the zero set of the func-
tions defining the differential equations is a locus of points in that space. In a sim-
ilar way a differential equation expressed in terms of non-normalized derivations
from Q is represented by a zero setfif{F", F™). Finally J9(F", F™) represents the
space of non-commutative normalized derivations. The normalizatiori#faat
orderq quotients by the commutation relations, mapping pointd9#", F™) to
ones inJ4(F",FM). Because normalization is applied, we do not see the space
JU(F", F™) in calculations of the paper. The bijection to ordedenoted byd(@
is obtained through the correspondeﬁi;e: XT:]_ajj (x,u)Dy;. The theory, which
is given elsewhere [18, 39], essentially exploits this as a map to the commutative
case.

4 Rankings and Reduction of Classification Systems

The application of the algorithms of [18, 39] to symmetry classification problems
in this paper, require an input ranking of derivations satisfying certain properties.
In §4.1 and§4.2 we show that such rankings exist and are easily constructed. As
discussed irg4.3 reduction with respect to such rankings enables the application
of a formal existence and unigueness theorem [18, 39] to the output.

4.1 Rankings

We direct the reader to [18] for background on rankings in the non-commutative
case and to [32] for the commutative case.

Supposex is a total order on the set of (normalized) derivatiGhsConsider
a function f on J9(F",F™) which is analytic at(x,%,) € J4F",F™). Let HD f
denote the greatest derivationfirwith respect to the ranking. The definition of
a positive ranking in the non-commutative case as given in [18] is:

Definition 4.1. A positive ranking< of Qs a total ordering 01 satisfying:

HD(DPV,) =T, (13a)
0, < \7}3 = HDD"¥, <HD |:~)V\7;'3 (13b)
¥, < HDDV, for |y| # 0 (13c)

where as usual all derivations are normalizedfégm‘?"a, I5V\7‘a, etc are normalized
beforeHD is applied).



Property (13a) is trivially satisfied in the commutative case. It implies that
(13b) and (13c) become

Vo <V = Vouy <Vp, 0 Vo <V (14)
Since these are just the requirements of positive rankings in the commutative case
[32] it implies that every positive ranking in the non-commutative case is also a
positive ranking for the commutative case. All such positive rankings have been
classified [32]. The condition (13a) for a given problem restricts the available
positive rankings to a subclass of the commutative ones. In particular, commutation
relations (7) and the fact that thﬁ are functions of at most first order derivations
imply that

DPY, =7, 5 +R (15)

whereR represents remainder terms of total derivation order strictly lower than
|a + B|. Thus if we choose a ranking satisfying (14) and compatible with total
derivation order i.e. satisfying:

la] < |B| :>\7ia<\7[jgforany1§i,j§n (16)

then property (13a) is ensured. Properties (13b) and (13c) follow immediately
yielding a positive ranking.

4.2 Rankings for decoupling Classification Systems

For our class of problems, we need to construct positive rankings slightly more
general than those satisfying (16). Note that symmetry defining systems are linear
in the symmetry components and have coefficients which are in general non-
linear functions of the classification functiorf$. To preserve this quasi-linear
structure, and decouple equations in the classification variables alone, we need to
show that there exist positive ‘elimination’ rankings that satisfy:

g - DPFfl forall i,j,B (17)

Proposition 4.2. Supposex is a ranking satisfying (14). Let the dependent vari-
ablesv be partitioned aw = (f, &), wheref hasu components an§ hasm—
components, and suppose that the structure funcl#?rgiven in(7) are functions
only of (x, f) and first order derivations of. Suppose thak also satisfies the
conditions

() lo| <[B] = k<15

(i) lo| < |Bl = & <&}
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forl1<k ¢<puandl<i<m-pu. Then<is a positive ranking, that s, it satisfies
(13).

The proposition asserts that a rankirgneed only be compatible with total
derivation order on the subsétaind on eacl§' variable individually.

Proof. Suppose thak satisfies the conditions of the theorem. From (15) it follows
that N
DPfy=fip+R (18)

whereR represents normalization terms of strictly lower derivation order tbian
B|. Now, becausgeﬁ depends only orfi, Rcan depend only ofi-variables and their
derivatives, and because satisfies (i), this means that all termsRare lower
ranked tharfgw. Hence

HDDP L = f! (19)

a+p

Now supposé' is one of the other variables. Again by (15)
BPE = & 5 +R (20)

where the normalization terni® have derivations of strictly lower derivation order
than|a + 3|. But theyi‘} do not depend 08, soR only includes terms of the form
bE(iS whereb depends on derivatives ¢f Since< satisfies (ii), it follows that all
terms inR are lower ranked thaﬁ('HB, o)

HDDPE, = & p (21)
The two statements (19,21) amount to property (13a). The other parts of (13)
follow immediately. O

Proposition 4.2 ensures the existence of rankings satisfying (17), which is what
we will require for the applications considered in our paper. The proof also shows
that if &' satisfy linear homogeneous equations, then normalization preserves this
feature.

4.3 Algorithmic Reduction to non-commutativeRIF-form

In previous work algorithms were developed for transforming systenroaty
applying a sequence of commutative differentiations and eliminations, enabling
existence and uniqueness theorems to be stated for their output. That work had its
roots in the Riquier-Janet Theory [16, 37]. Subsequently [31, 33, 32] the method
was generalized to nonlinear systems. Later the theory was adapted to linear [12]
and nonlinear [18, 39] systems written in terms of non-commuting derivations.
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In particular we can algorithmically apply the results of [18, 39] to systems
with polynomially nonlinear dependence on the classification functions and their
derivations over the rational numbers. The output non-commutative reduced in-
volutive form obtained by this method has an associated existence and uniqueness
theorem [18, Theorem 9.11], which is sufficient for our purposes in this article.

In the application of this algorithmic process, whenever derivation operators
are applied, the normalizatiah is automatically invoked to place the derivation
operators in normalized order. The bijectighto the commutative case implies
that the algorithms are a direct translation of those for the commutative case. The
algorithms have been implemented, extensively documented and described in detail
in [38, 39, 32] so we do not describe them here.

5 Invariant Form of Classification

5.1 Classification Procedure

In [29] it was shown that symmetry classification can be performigiaout solv-
ing the symmetry equations. The method algorithmically finds classification con-
ditions by appending integrability conditions to the symmetry system (also see
[20, 5]). The non-commutativeIF algorithm can be adapted to effect a classifica-
tion for a systems containing arbitrary elements.

For symmetry classification the overall syst&hu . consists of:

1. A classifying systen¥’, consisting of equations to be satisfied by the ar-
bitrary elements of the original class of differential equations. Normally
systents” will be nonlinear.

2. The complement”, consisting of equations which are linear and homoge-
neous in the symmetry vector field componefits

The classifying syster” is decoupled from the rest of the symmetry system
and this decoupling is maintained by using an elimination ranking. Observe that
the structure functionyﬁ depend only onfl and their first derivations, so that
Proposition 4.2 applies. Choose a ranking in which any derivation of a vector field
componen®' is ranked higher than any derivation of the This is valid so long as
the ranking obeys the restrictions of Proposition 4.2. Such an elimination ranking
ensures tha remains decoupled, and that remains linear and homogeneous in
6'.

Reduction of the overall system to hon-commutate-form requires deter-
mination of the highest ranked derivation indeterminate in each equation. For the
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symmetry systend” this involves determining whether certain coefficients (called
pivots) are zero or nonzero, leading to a binary case splitting:

Case a.Adjoin pivot=0t0 ¢
Cbse b. Adjoin pivot#0to ¢

Each case is pursued separately (see [5] for an algebraic interpretation). A binary
tree of possibilities is thereby built up. Each leaf of the tree has an associated non-
commutativerIF-form of the system. From these non-commutafveforms, one

can apply the existence and uniqueness result [18, Theorem 9.11] to get counts of
both the degree of arbitrariness in the classifying systénand the dimension

of the symmetry algebra. Moreover the method of [30] can be adapted to find
structure constants for the symmetry algebra associated with the legf7jsee

5.2 Invariant form of group classification

A class of differential equations often has a nontrivial associated equivalence group
¥¢. Methods for finding a suitablg are described in [2, 19]. Each transformation
in ¢ maps each equation in the clds4o another equation if. It is desirable
to perform symmetry classification in a way which is invariant with respe¢t,to
that is, in which¥-equivalent equations are identified. To achieve this, one seeks
to express the systefif U.¥ in terms of scalar differential invariants &f and
with respect to derivations which agéinvariant so far as is possible. Subsequent
reduction to noncommutativeiF form is then guaranteed to give classifying equa-
tions which are-invariant. The structure constants of the symmetry algefita (
will likewise be¥-invariant.

The procedure is as follows:

1. Obtain the equivalence group of the differential equationk.

2. Derive symmetry equations” for the symmetries?; of the differential
equations.

3. Constructinvariants and invariant derivations of the equivalence group, along
with their structure relations. Case splittings may arise during this process.

4. Rewrite the systen¥’ U ¥’ in terms of differential invariants arid-invariant
derivations.

5. Invoke the classification procedure. Each leaf of the resulting tree has a
non-commutativerIF-form of the systemy” U %: find the dimension and
structure of the associated Lie symmetry algebra. (
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This method for symmetry classification, which first appeared in Lisle’s thesis [19],
is therefore &¢-invariant generalization of [29] to a case where an equivalence
group is available.

A ¢-invariant formulation has a number of computational advantages beyond
its obvious theoretical desirability. First, expression swell that plagues symmetry
classification methods can be lessened, presumably because many symmetries are
simply inherited from the equivalence group. Second, the number of case splittings
can be much reduced. Against this is the expense of computing invariants, and
then performing reduction of the symmetry defining system using non-commuting
derivation operators.

5.3 Application to Nonlinear Diffusion Equation

Before exhibiting a substantial classification§8, we give a simpler example.
Consider again the nonlinear diffusion equation (1), with symmetry equatons
given by (2) [27, eq.(6.7.3)].

Setting aside the cad®# 0,B, = 0 (linear heat equation) we initialize the
classifying system

% = {Be=B =0, B#0, B, #0}

We seek to rewrite the systeif U% in a form invariant under the action of the
3-parameter equivalence gro@épgiven by (5).

Using methods such as those of Fels and Olver [9, 10], or otherwise, one finds
¢-invariant derivations:

M =BY?0, DNy=6  D3=B/Byd, (22)

But note that some of the coefficierats in (6) above depend on derivatives of the
dependent variables. We introduce a new dependent vapalaiésfyingp = B,/B
and include it ing” to remove this dependence:

¢ = {By=B=0,B,=Bp, B#0, p#0} (23)
The derivations and vector field components are
A =BY24, Ny = 6 A3 =1/pd,
6t =BY/%¢ 2=t 6% =pn (24)
The structure relations fdx are

B B
220y, DDAy = —122A pljag, (A2, 03] = —";fAs (25)

[A17A2] = _% B 2 B
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A scalar differential invariant is

g Pu
= 2
Appending this to classifying syste#igiven by (23), rewriting in terms of deriva-
tions (24), and completing ®iF-form using a ranking compatible with total deriva-
tion order gives the updated classifying systéim

(26)

B’]_ =0 Bﬁz =0 B73 =B B;ﬁ 0 (278)
p1=0 p2=0 p3=pJ p#0 (27b)
J71 =0 J,z =0 (27C)

In fact the non-invariant quantitié® p disappear from the symmetry system, and
(27a,27b) play little further role. Rewriting symmetry system (2) in term&, éf
using (24) and reducing modulo (27) give$as

05 =—16" 65 =0 63, =63
6% =201 - 6° 03 = 36011+ (31—1)63— 365
65=0 033 =J03+J36° (28)

We now reduce the overall systesfiu % (28,27) torIF-form. We use a rank-
ing as follows:

(a) Any derivation of8*, 62, 82 is ranked higher than any derivationBfp, J.
(b) If tied after (a), a derivation of higher order is ranked higher.

(c) Iftied after (b), rankd! < 8% < 63 andB < p < J lexicographically.

(d) If tied after (c), rankd},, < 6}, lexicographically by ther’s.

During the reduction, derivation@filmip may need to be normalized using
structure relations (25). Any terms arising are then reduced #oso for this
purpose we can reduce structure relations (25) fiamhce and for all, as

[A1,00] =0  [A,A3]=—3A1  [Dp,A3]=0 (29)

(Note that although it is valid to use these reduced structure relations while working
on.¥, the original relations (25) are needed while workingzn

Integrability conditions for (28) are needed during the reduction of (28) to non-
commutativeriF-form. For example one finds

(63)2—(63) 3= (261 - 6%) 5
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Normalizing the left hand side modulo the reduced structure relations (29), this
become® = 263, — 63. Reduction mod (28) gives83 = 0, which is adjoined
to.#. Further reduction ot giVESJ’393 =0, and hence the case splittidg # 0,
J3=0.

Case A: J3 # 0. In this case, non-commutativer-form of the classifying system

is (27) with the inequatiod 3 # 0 appendedRiF-form of the symmetry systerr’

is:

63, =0 65=0 6°=0
63=0 6% = 263
05 =—16' 65=0 (30)

Case B: J3=0. In this case { constant), further integrability conditions and
reductions lead t¢3 — 4J)9’3i = 0. The pivot(3 —4J) gives two subcased:# 3/4
andJ = 3/4.

Subcase C: 3 =0, J# 3/4. In this case, the non-commutatiwer-form of ¢
consists of (27a,27b) along with

J1=J=03=0 J#3/4 (31)

Splitting from Case B show@3 =0, and.¥ reacheIF-form:

65, =0 63=0 83=0 (32a)
65 =0 65 =207 —6° 63 =0 (32b)
65 =—16" 65=0 63=0 (32c)

Subcase D: J= 3/4. Non-commutativerIF-form of the classifying syster is:

B71 =0 B72 =0 B>3 =B B;ﬁ 0 (338.)

p1=0 p2=0 pa=3p p#0 (33b)

J=3/4 (33c)
Symmetry systen” reacheRIF-form consisting of

01, =63/2 65=0 63,=0 (34)

along with (32b,32c).

16



6 Computation of Dimension and Initial Data

The determination of symmetry structure depends on our ability to give an exis-
tence and uniqueness theorem for local solutions of the output non-commutative
RIF-form. In [18], methods originally due to Riquier are extended to the non-
commutative case. In what follows, as usual all derivations are assumed to be
normalized.

Given a ranking< then the output system has two parts: a finite.gétof
functions which are linear in their highest derivatives with respectt@and its
complement#” which is nonlinear in its highest derivations. Then as in [,
theprincipal derivationsof .# are defined as

Prin./ := {¥ € Q| there existf € .# anda € N" with ¥ = HD D" f}

The parametric derivation®f .#, denoted byPar.#, are those derivations that
are not principal. Denoting the set of highest derivations#by HD.#, then

Pat# = {V e Q|+ HpDPW for anyWw € HD.#} (35)

Example6.1 (Initial Data for Case A:J3 # 0). In this case, the non-commutative
RIF-form . U % is given by (30,27). The systey U % is linear in its highest
derivations so# consists of all equations from (30,27), whil& = 0. The highest

derivations are
HD.# ={61,,6%,60%,67,6%,03,6%} (36)
U {B717 B,27 B,37 p,17 p,27 p,37\]71>\]72}

Note how we have separated the highest derivations into those from the symmetry
system. and those from the classifying systesh Computation of initial data
proceeds exactly as in the commutative case. We have

Par# = {6},6%,6°}U{B,p,J,J3,d33,...} (37)

Since /" = 0, we only need the leading linear form [18, Theorem 7.6] of the
non-commutative existence and uniqueness theorem. According to this theorem, if
initial data are prescribed by assigning values to the parametric derivatives (37) at

Wo = (Xo,to, Uo)

ID(#)  61(Wo) = ay, 6 (Wo) = ap, 6%(Wo) = as (38)
ID(%) B(WO) = hl, p(Wo) = hz,J(Wo) = h3,J’3(W0) = h4,J733(W0) = h57 ...

then there is a unigue formal solution to the syst&ia % (30,27) with these initial
data. Note that there are infinitely many parameters to assign in the initial data.
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However for the application of this paper we are interested in the the properties
of the symmetry algebrag’s corresponding to some fixed formal solutiérof

the classifying systerg. With f fixed, the dimension of/; is the number of
parametric derivations for the symmetry systefn. Thus for the example above,
any diffusivity B solving ¥’ has an associated 3-dimensional symmetry algebra
£, corresponding to the three parametric derivations frgtn The classifying
equationsg’ have infinite initial data, reflecting the fact that symmetries (4) are
present for arbitrary diffusivity functionB.

The following examples illustrate that as the symmetry algebra becomes larger
the classifying system has fewer degrees of freedom.

Example6.2 (Initial Data for Subcase CJ # 3/4). The non-commutativ&IF-

form (27a,27b,31) of the classifying system has parametric derivaBpms J,

so this subcase represents a 3-parameter family of diffusivities. There are four
parametric derivationst¢, 62,63, 67) in symmetry system (32), so the symmetry
algebra%s is of dimension four.

Example6.3(Initial Data for Subcase DJ = 3/4). The parametric derivations for
the RIF-form of ¢ given in (33) areB, p, with associated initial datB(wp) = hy,
p(wo) = hz. Hence this subcase represents a 2-parameter family of diffusivi-
ties. The parametric derivations for ther-form of . given by (32b,32c,34) are
6',62,6° 67,63, giving a 5-dimensional symmetry algebra.

7 Computation of Structure Constants

Consider a symmetry syster#f for the components of a Lie algebra of vector
fields. A finite-dimensional Lie algebra is characterized up to isomorphism by
structure constantskj . We show how to find:i"j directly from the symmetry system
without solving the system. The method is a generalization to the non-commuting
case of the method of Reid et al. [30].

The formal solutions of” are components of a vector field, and with the usual
commutator bracket on vector fields, the local solutions at a paitre therefore
also a Lie algebra. The commutator bracket on solutions can be used to induce a
bracket on initial data as in [30].

We adopt the notatioRar 0)(wp) = a to represent the initial data correspond-
ing to symmetry components. SimilafBar( f)(wg) = h represents the classifica-
tion initial data.

Example7.1 Consider the system from Subcase D= 3/4) of §6, for which
< U% given by (32b,32c,34,33) is in non-commutatives-form. SoPar8) =
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(61,602,6%,63,63) andPar6)(wo) = a = (a1,az,a3,a4,3s) represents the sym-
metry component initial data. Similarlyar f) = (B, p) andParf)(wp) = h =
(hg,hy).

Consider two formal solutions o with associated initial data vectoas b
and the same classification initial d&taLet Sol be the invertible linear map that
takes initial data values fo# to formal solutions of#; atwg. ThenSol 1 is the
map that evaluates initial data for a formal solutiomgt We define a commutator
bracket on initial data by

[a,b]ip := Sol*([Sol(a), Sol(b)])

That is, the commutator of two initial data vectors is found by constructing the two
associated formal solutions, taking commutators, then evaluating the initial data.

Let the (unique) formal solutions of; associated with initial dai@ b be @, ¢,
wherep =5, @A, g =51, YA Thus

Par(g)(wo) =a  Pafy)(wo) =b

where both solutions have the same classification initial Batgf ) (wp) = h. The
commutator of solutions is

w:= o,y = z<<pw. Ak*Zﬁ"’"’ 4,4 (39)

k=1

If the invariantBDO A has structure relatiorAi, Aj] = S, yi‘jAk, thek-th compo-
nent of the commutator is

k:nil_<_il_< LRSI
% i;(cpw,. w.)+i;glvhfpw

Let the initial data for; associated withlw bec, that is,c = Par(w)(wp). Each
component ot is thereforgw*) 4 (Wo) for somek, a. Now, the expression

(i(cp‘ Wi—u'ey) +§1 iv.kj(piw")a

can be reduced module” U % to an expression involving onlRar ¢), Par(y)
andPar(f). Evaluation atvp gives an expression involving ong; b andh. By
doing so, each component of the commutator initial ddsaexpressed as a skew-
symmetric bilinear function od, b:

K= iick(h)aibj
i=1)=

19



whereC¥ = —C¥. By construction, the quantitié® are structure constants of the

Lie algebra induced on initial data space, and therefore of the desired Lie algebra
of vector fields%. Thusolkj is thek-th piece of initial data for the commutator of
solutioni with solutionj of .%5.

Example7.1(cont.). The parametric derivations for this case are listed above. The
' are components of a vector fiel= 52 , 8'A; referred to an invarianpo
Ay, Ay, Az with structure relations (25). Let

0= Q"D+ @PPo+@°Ns Y= WA+ PPDo+ YPAs

be two solutions of#g, and letw = [@, Y]. Taking commutators (39) and using
the reduced structure relations (29), gives for instance

W' = ('Y — Yreh) + (0PPh — WPeh) + (0P Ph — PPe) — 3 (o'¢P — ute?)
After reducing modulo” U % (32b,32c¢,34,33), we obtain expressions for three of
the parametric derivatives of:

W' =gyl - yreg
w* = 2(¢°Yi — Y1) — (¢PY° - Y29°)
@’ = ¢'yi - y'et
Further differentiation and reduction modulé U % gives
wi=3(0'i-¢lel)  wi=eidi-Yiel

Evaluation of the initial dat®ar 6)(w) = ¢ = (¢, Cy, C3,C4,Cs5) gives

ct = a'b* - b'a’ (Cl,=1)
¢? = 2(a?b* — b?at) — (a?b® — b%a®) (C3,=2,Co=-1)
¢ =alb® —bla® C=2)
c* = 3(a'h® - b'a’) (Cls=3)
c® =a'b® —b'a® (Cis=1)

The Lie algebraZg therefore has commutation relations
[Y1,Ya] =Y1 [Y1,Ys] = Y3+ 3V, [Y2,Y3] = —Y>
[Y2,Ya] = 2Y [Ya,Ys] = Ys
Note that it was not necessary to construct explicit solutions during this pro-
cess, nor was it necessary to know expressiond;fiorterms of commuting deriva-

tions. An alternative and equivalent method for evaluating structure constants by
selecting numerical values for tlag b' is given in [30].
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8 Potential Diffusion Convection System

We now present a substantial computational example, applying the invarant
method to the diffusion convection system

Vy = U, Vi = Buy— K. (40)

The arbitrary element8(u) (diffusivity) andK(u) (convection) obey the classify-
ing system

By=Bx=B; =0, Ky =Kx=K{ =0, B#0 (41)

8.1 Equivalence group

A calculation detailed in [19] shows that the class of equations (40) is preserved by
a 10-parameter equivalence group, generated as the product of subgroups:

vV = av—+ Bx
V=v+e V =V—Kit X = W+ 0x
(@) X=x+& (b){ X=x+kst (c)¢ U=t
t=t+é&s K =K+ K1+ Kou K_:ﬁ
B =(y+9)°B
vV =v/a v =hv
X =X/a X = bx
D T ©F fop @)
K =aK B =bB

whereab# 0anda d — By = 1. We will consider both the variables in the diffusion-
convection equation (40) and the parameters of the equivalence group to be real-
valued.

8.2 Symmetry system

We start with classifying systerr (41). Computation shows that the invariant
BDO has coefficients depending &) andKy. In order to apply our approach we
introduce new dependent variabl&;/B = p andK, = g and then the classifying
systents’ is:

By=0 B=0 B,=0 B, =Bp B£0 (43a)
Ky=0 Ki=0 Ky=0 Ky = (43b)
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The componentg, &, 1, n of the symmetry vector field
Y=X0+EK+Td+N0dy
satisfy the symmetry syster’:
LW=h=T=&=Xu=0
P(Ox+udy)(x —ué) —2B(dx+ud,)é +Bat =0

(& +a(+udy) —Ka)(x —ué)+Kat—B(d+ud)?(x —ué) =0
n = (Gx+udy)(x —ué). (44)

8.3 Construction of invariant BDO

Invariants and invariangDpo for the full equivalence group can be constructed,
by successively enlarging subgroups (42) (a), (a,b), ..., (a,b,c,d,e) as per theory
described by Kogan [17]. At each step the following elements are constructed:

e Scalar differential invariants.

¢ InvariantBbo and vector field components, along with structure relations of
theBDO.

e Classifying systen¥ in invariant form.
e Symmetry system in invariant form.

To avoid trivialities, note that a simple time reflection (42e) ensure$tba, and
hence has a real square root.

Subgroups (a,b,c)Carrying out the above is straightforward for subgroups (a), (b),
(c). We find a scalar invariamht

(45)

and an immediate case splitting on the quaniff= Kyy). If gy = 0 then no other
invariant exists. Ifg, # 0, a simple reflection (42d) ensures that wipg> 0, and
we assume this has been done. A second invariant is then

| =quB %2 (46)
An invariantBDO A is:
A1 = BY2(3,+ud,) N2 =B Y2(29,+ p(k+ud,))
N3 = 0 —Kdy+0q(dx+udy) Na= 50., (47)
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and vector field components

A= —1B"Y2(p(x + K1 —u&)—2(¢ —qr)) A=t
A2 =1BY2(x + KT —ué) A*=Bn.  (48)
Case 1.q, > 0.

All derivatives below represent differentiation with respecewo A (47). The
classifying systen¥ (43) is enlarged via (45,46) to non-commutatiie-form:

f,=0 for f=B,K,pq,L,0;, ¢=123 (49a)
2
Ba=p BKe=q pa=BL+}T  aq4=BY2  (4ob)
B>0 I >0 (49c¢)
Symmetry systent” (44) becomes
Ai=0 A1=3A3 Af1=25 At=23%
A3=0

A5=0 Ah=-LA2—1A3 AZ=—3A1 (50)

In this beautiful form only two terms have nonconstant coefficients, and the sim-
plicity of structure of symmetry system (44) is revealed.

Integrability conditions of (50) can be found with the help of structure relations
(reduced modul&):

A Aa]=—3N2, [N Ng]=—LA1,  [As,Ag]=—IA1  (B1)

Case 2.q, =0.

This is the case of equations equivalent to diffusion equatiors0. The BDO

N (48) still serves here. The classifying syst&ramounts to removing the equa-
tions forl from (49a), settind = 0 in (49b) and droppind > O from (49c). The
symmetry systeny” is (50) with| set to 0, similarly for structure relations (51).

(d) Scaling group — convectionSo far, only subgroups (42a,b,c) have been ac-
counted for. The scaling subgroup (42d) acts on the invarlafvs),1 (46) andA

(47) by

| =aAy, L =al\y, Ny = a®As, Ny=1Ny
L' =L, I’ = al

Case 1 (cont.)l # 0. The quantityL (45) is an invariant of the enlarged subgroup
(42a,b,c,d). An additional invariant is

M = A4l (52)
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An invarianteDo denoted by exists, with corresponding vector field components
(:

ri=1"1 Mo=1"1A; M3=1"2A3 Fa=N4

Z]':'Al Z2:|A2 Z3:|2)\3 Z4:)\4 (53)

With respect to thisbo I, classifying syster® (49) is updated via (52) to include
the equations

Ly=1,=M;=0 for (=123 (54a)
la=1M I >0 (54b)

In addition, ¥’ contains theB,K, p,q equations from (49a,49b) (but rewritten in
terms ofl"). These equations are present in all versions of our classifying systems,
and have four associated parametric derivat®ds, p,q. From now on we decline
to write them explicitly.

Symmetry systent” (50) becomes

B=0 -1 =105 =23
3=0
{G=2M  G=MT L3P - G=—30+ME? (55)

The structure relations of (reduced modul&” (54)) are

[F1,Ta] =—3T2+Ml1, [[2,F4]=—LM1+MPp, [[3,T4)=-T1+2Ml3
(56)
(e) Scaling group — diffusionThe final subgroup (42e) of the equivalence group
acts on\, L, | as follows:
N=b"Y2A;  Ay=b%2A,  Ay=bA;  A,=b A
L'=b2L I =b3/2 (57)
We takeb > 0 here so as to preserve the condit®n- 0. Cases 1.1z 0) and 2.
(I =0) from above are further split by this subgroup action.
Case 1. (cont.)l #0.
The action of (42e) of, L, M is:
I =bry r="rs M =b’r3 M=b1ry
L'=b2L M’ =b M (58)

The calculation splits into two subcases, depending whéthanishes.
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Subcase 31 # 0, L # 0. In this subcase of Case 1, invariants of the whole group
(42) exist. The scalar invariants are

P=|LI7%2r,L  Q=M|L| Y2 o=sgnL (59)

The signo is genuinely invariant, so long as transformations are real-valued. An
invariantBDO % and associated vector field componeBitsxist:

S1 =LY%, S,=I> S3=LI; Sa=|L7Y2r,
Br=ILRt pE=2 0 =L =LA (60)
Classifying systern®” (54) is modified to
Ly=l,=P,=Q,=0 for (=123 (61a)
14=1Q La=|L|P (61b)

where derivatives are with respecteoo >. The note after eq.(54) still applies.
Symmetry system (55) becomes

3 = 07 B}L = %B%? il = O-B727 B4 = 2[3%_
3 =0, 4 =—3B"+Qp? (62)
% =(2Q-0P)B® B} =3(2Q—0P)B'—0p?~op®
The structure relations & (reduced modul& (61)) are
(51,54 = 3(2Q—0P)S1— 35, [5,54] = —051+ Q%
[23, 24} =—021+ (ZQ— O'P)Z3 (63)

Subcase 4.1 £ 0, L = 0. Returning to (58), this subcase of Case 1 gives a case
splitting onM.

Subcase 51 £ 0, L =0, M # 0. For this subcase of Subcase 4, invariants of the
whole group (42) exist. A scalar invariant is

R=M"24M. (64)
An invariantBDo = and associated vector field componehisre:
Z1=MIl ==0 =3 =M?T3 =, =M1,
fl_Mm-1zt §2_ 72 £3_M273 F4—MZ%  (65)
Classifying systen¥’ (54) is updated to

|7g =M, = Ryg =0 for (= 1,23 (668.)
|_’4:| M74:MR 1>0 (66b)
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where derivatives are with respectgoo = and the note from (54) applies. Sym-
metry system (55) becomes, with respecEto

£1=0 €1 =363 £,=£3 £4 =22
§2=0 (67)
&=21-R& &=(1-RE-& &H=-1¢

The structure relations & (reduced modul&’ (66)) are

[E1,24] = 332+ (1-R)Z; [Z2,24] =22
[=3,24] = —=1+2(1-R)=3 (68)

Subcase 61 #0,L=0,M =0.

For this subcase of Subcase 4., we retairgthe I (53). Note that the conditions
L=0,M =0, 1 > 0gives the diffusion convection equations which are equivalent
to Burgers’ equatiorB(u) = 1, K(u) = u. These equivalent systems include
an equatiorB(u) = u~2, K(u) = u~! analysed by Fokas and Yortsos [11]. It is
interesting that th&/-invariantBDo calculations pick this out as a singular case
even though the Cole-Hopf linearizing transformation that takes Burgers’ to the
heat equation is not in the equivalence group (42), and hence not detected.
Case 2. (cont.) =0.

The action of scaling group (42€) énis given by (57). WithH = 0, the calculation
splits onL.

Subcase 71 =0,L #0.
This subcase of Case 2 picks out those diffusion equations which are genuinely
nonlinear in the sense that they are not equivalent to the linear heat equation via
(42).

Scalar invariants of the group action exist:

P=|L|"%2AsL o =sgnL. (69)

This P is the same as (59), merely rewritten in new notation.

An invariant set of DO denoted b and vector field components denoted by
w are:

Q= |L|_1/4/\1 Qo = |L|_3/4/\2 Q3= |L|_1/2/\3 Qu= |L|_1/2/\4

0)1:|L|1/4/\1 01)2:|L|3/4/\2 0)3:|L|1/2/\3 0)4:|L|1/2/\4. (70)
With respect to thi®pDo Q, the classifying system (49) becomes after adjoiritng

(69)
Ly=P;=0 for (=123 La=o0LP (71)
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where the comment after (54) again applies. Symmetry syste¢h0) becomes

wi =0 Wi =33 wi; = w3 w' =203
w3 =0
w5 =30Pw® wy=30Pw'—0w’ wj=-3w'+30Pw? (72)

The structure relations @, reduced modulo (71) are

[Ql,Q4] = %O’PQl— %Qz [92,94] =—0Q1+ %UPQZ
[Q3,Q4] = 0PQ; (73)

Subcase 8] =0,L =0.

This subcase of Case 2 picks out diffusion convection equations that are equiv-
alent to the linear heat equati@= 1, K = 0. This includes the equatid®= u—?2
studied by [36, 3] and found to be equivalent to the linear heat system. In this case
the linearizing transformation is in the equivalence greu@?2), so it is expected
that this equation be picked out as singular.

8.4 Completion to non-commutativerIF-form

So far we have an incomplete classification tree, as shown in Figure 1. For each leaf
of this tree we now complete the defining system to non-commutatr«orm,

giving rise to further splittings. Note that three common translation symmetries
(42a) are always present, and we do not present results for any branch with only a
three-dimensional solution space.

Subcase 31 #0,L #0.

We have symmetry systet’ (62) and classifying systerd (61), referred tc.

The ranking is as follows:

(a) Rank any derivative o or Q lower than any derivative of any'.
(b) If tied after (a), rank any derivative @, 32, 32 lower thang*
(c) If tied after (b), rank by order of derivative.

(d) If tied after (c), rank lexicographicallg® < % < B andP < Q.
(e) Iftied after (d), rankd};, < 6}, lexicographically by thex's.

According to Proposition 4.2, conditions (a,b,c) ensure this is a positive ranking
(Definition 4.1). Case splittings arising during the completion process show that for
symmetry beyond the minimal translations (42a), it is necessarPhatQ 4 = 0,
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._ BBy—3/2B?
L= BBu %28

| ==Ky B%/?
1£0 | 1=0
|
M = A4l /I ’L#O L:O‘
P:=|L|%/2A4L BDO: A
BDO: Q
L#£0 L=0
|
P:= |L|=%2A4L M£0 M0
Q:=M|L| /2 | |
BDO: T R:=M"2/\4M BDO: I

BDO: =

Figure 1: Preliminary classification tree for potential diffusion convection system
(40). Branchings are on the basis of whether or not particular invesiantexist
whereBDO = Basis of Differential Operators

so that (from (61a)P, Q are constants. In this case, the systehu ¥ reduces to
the non-commutativeir-form (61) and

3=0 31=0 B} =—-(2Q—-0oP)B3
B3 =0 B3 =—2QB% B3 =20p3 B* =247
B3 =-22Q-0oP)B; B3 =0 B% =20pB3

S =(2Q—0oP)B® B5 =—3B"+QB* B4 =3(2Q—0P)B—0p?—op?

(74)
The four parametric derivativeg®', 82, %, B3 give a 4-parameter symmetry group
(§6). Application of the methods¥) for finding structure constants gives a Lie
algebra of symmetry operatoys, Y, Y3, Y4 with commutation relations

[Yl, Y4] = —<2Q — GP)Yl + Yo [Yz,Y4] =20Y1— 2QY2
[Y3,Y4] = 20'Y1 — 2(2Q — O'P)Yz

Subcase 51 #0,L=0,M #0.
Applying the non-commutative differential elimination method to system (67,66)
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with BDO = (65) (and ranking similar to above) shows that additional symmetry
only arises only ifR4 = 0, in which case a non-commutative rif form is:

§1=0 £3 =33 1=(1-R)&3
% =0 %=0 % =0
&3 =2(1-R)&3 2 -0 1=-¢3 (75)
72:2(1—R)€3 531:_%51+52 {1:(1—R)51—E3
£ =83

The parametric derivatives', £2, £3, £5 give a four-dimensional symmetry alge-
bra with commutation relations

IY1,Ya = (1—R)Y1—1Ys, [Y2,Ya] =Y, [Y3,Ye] = —Y1+2(1—R)Y3

Subcase 6] #0,L=0,M =0.

No further case splittings arise for this case, which includes Burgers’ equation
and Fokas-Yortsos' equation [11]. The Cole-Hopf transformation connects these
diffusion-convection equations to the linear heat system, and the non-commutative
RIF-form has infinitely many parametric derivatives. It is not reproduced here.
Subcase 71 =0,L #0.

These are the genuinely nonlinear diffusion equations. Completion of system
(72,71) (with ranking similar to above) yields a case splittind?an|f P4 # O the
non-commutativeF-form is

w; =0 wy =0 Wi =W
w3 =0 w3, =0 w3 =0
w3 =2w5 w3 =0 w5 =0 (76)
w3 = JoPw? w5 = 3w+ 20Pw? wh = 1oPw! - ow?
| | o =0

The parametric derivative®!, w?, w?, w3 give the four-dimensional symmetry
algebra common to all diffusion systems. The commutation relations are

[Y1,Ya] = Y1, [Y2,Y4] = Yo, [Y3,Ys] = Ya.
If P4 =0, we obtain the non-commutativar-form
wi=0 wj; =0 W] = oPwi + w5
w5 =0 Wi, =0 wh =2003
w3 =20Pwj +20w5 w5, =0 wy=0
W’ = SoPw? w% =0 w} = 30Pw — 00’
W — 0t 30P? o — 20F
' ' (77)
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The parametric derivatives®, w?, w*, w3, w5 give a five-dimensional symmetry
algebra, with structure relations

[Yz, Y5] = ZO'Y]_ — oPY> [Y3, Y4} =Y3

Subcase 81 =0,L=0
There is no further case splitting. The non-commutagiveform for (50) is

=0 A=—in 2 =13
A3=0 A3 =A% A3 =0
A5 =0 A3, =—37% AL =0 (78)
)‘%3 =0 /\,%2 = %A% /\7%3 =0

A%3=0 At =223

There are infinitely many parametric derivatives, A3, A, /\E, /\%, and the se-
quences\?, A3, A%s,...andA %, AZ3 Adss. ... The symmetry algebra is therefore
infinite-dimensional: this subcase consists of equations which can be mapped to
the heat equation by an equivalence transformation, so its symmetry properties can
be regarded as known (e.g. [27, p.82]).

8.5 Summary of classification

The calculations of this section yield the classification tree shown in Figure 2. In

this compact diagram is present all the information required to decide the symmetry
properties of a diffusion convection potential system. The elegance of the result
is apparent when compared with the classifying equations produced by the ‘raw’
version of Riquier—Janet [29].

In Figure 2, all the splittings are (by construction) invariant under the action of
the equivalence group. Hence two equations connected by an equivalence trans-
formation always occur on the same branch. This greatly cuts down on spurious
splittings. Note that equations occurring on different branches of the tree could be
equivalent with respect to a transformatioot in the group (42). Indeed Burgers’
and linear heat equations occur on different branches, yet are connected by the
Cole-Hopf transformation.
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9 Transformations and Useful Forms of the Output Sys-
tems

We have shown that the non-commutatiie-form of ¥ U.¥ is sufficient for find-
ing structure and dimension of Lie symmetry algebras of classesmfHowever
for some applications, such as finding explicit group invariant solutions, further
processing and integration of these non-commutativeforms may be needed.
We briefly consider this topic, using results which are for the most part simple
consequences of the classical Frobenius theory.

Suppose that we have a non-commutaiiveform with a finite set of paramet-
ric derivations PawZ = {w', ...,w}. Then consider the unique formal power series
solution abougkg with initial dataw! (xg) = w3, ..., WK (xo) = Wk atxo, with the initial
values satisfying the leading non-lineese.#". Fori = 1,...,nanyDw’ € Prin#
can be completely reduced by to an analytic functiorf,’ of {x} UPar# such
thatD;w’ = f. In addition the leading non-lineank have formg = 0, whereg is
a (vector) function of x} U.4": such that

M={DwW =f}, ¥ ={g=0} (79)
It follows from (6) that (79) is equivalent to

M ={Dw =Y bixwff}, A ={g=0} (80)
J

whereb(x,w) is the inverse matrix oA(x,u), andu,g are expressed in terms of
{x}uParz.

Any non-trivial compatibility conditions of (80) would contradict the existence
and uniqueness theorem for the non-commutativeform (79) so (80) is in com-
mutativerIF-form. By the standard commutative (Frobenius) theory it has a formal
power series solution with the given data, which is analytigat

Directly from the classical Frobenius Theory it follows that the integration of
AU /" is equivalent to integrating a system of differential algebraic equations
along analytic curves(t) = X (1), with x(0) = xo (e.gX (1) =a'T+x,,0< 1< 1).

In particular% =75 %i""f which from (80) yields the system of (ind€xor 1)

ox
differential algebraic equations on a manifoltd’:

dw dx
FaED X LICAUL A CEL R
J
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10 Concluding Remarks

We have given a method for classifying symmetry groups for a class of differential
equations. Ouf-invariant classification is not only more satisfying theoretically,
but also obviates the problem of expression swell. The example preserijéd in
demonstrates the usefulness of our approach on nontrivial problems.

The method here resembles in some respects Cartan’s method of equivalence
[8, 13, 24], in that equations are being cast i -dnvariant form and cases with
special symmetry are being picked out. However, the Cartan method will exhibit
only those symmetries which are part$f To perform symmetry classification by
the Cartan method for classBsof PDE arising in practice, one has two choices.
One could enlarge the claBgo one that has a suitably largé(e.g. so tha¥ is the
pseudogroup of all point transformations); the Cartan method would then provide a
complete symmetry classification for the enlar§edJnfortunately this choice can
lead to overwhelming computational difficulties. Alternatively, one could apply the
Cartan method to thgivenclassF and its equivalence grou. Further calcula-
tions would then be needed for a full classification of point or contact symmetries
for the class=. This mirrors our two-part process of first writing the symmetry
system¢ in ¢-invariant form, and then completing to find the symmetry algebras
.

In §9 we indicated how the output non-commutatre-forms can be easily
converted to commutativelF-forms which open these systems to the application
of traditional commutative packages for solvirge. The systems can also be
transformed to equivalent systems @be on a manifold (differential algebraic
eqguations), possessing subsystems whicl¥anevariant. It will be interesting to
explore to what exter#-invariant numerical (geometric) integrators [14, 7], can
be fruitfully applied to such systems.

Our work takes place against a backdrop of revitalized work in invariantization
methods such as Cartan’s method of moving frames and its generalizations. In
particular see [24] and the review paper [26], and especially the recent work [9, 10]
which provides a foundation for flexible and powerful computational approaches
to moving frames theory. Such approaches require the development of automatic
Grobner-type methods for manipulating non-commutative operators.

The non-commutative reduction ebe used here was first applied in Lisle’s
thesis [19] but was deficient in several respects. It lacked an existence-uniqueness
result, and did not give an adequate treatment of the generally non-linear classi-
fication systems. The difficulty of establishing a non-commutativéb®er basis
theory for the moving frames case has become apparent since the seminal work of
Mansfield [21], which produces interesting results, but like the less ambitious work
of Lisle, lacks an existence and uniqueness theorem. The work of Lemaire et al.
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[18, 39] remedies the deficiencies of [19] and [12].

We note also that the reduction method is not dependegtmvariance of the
BDO: correct dimension and structure for symmetry algebiragesult regardless
of how much or how little invariance is built into tlepo.

Hubert has given differential elimination algorithms [15] for systems of dif-
ferential polynomials using non-commutative derivations. In particular in [15]
she establishes necessary and sufficient conditions for a non-commutative differ-
ential algebra to be isomorphic to a commutative one. She obtains methods for
algorithmically representing the radical of a differential ideal, generated by non-
commutative derivations, generalizing those of [5]. The approach of Lemaire, Reid
and Zhang [18, 39] deals with analytic systems, and is algorithmic for the subclass
of differential polynomials. In the example §8 we chose to compute with real-
analytic differential equations and group actions and were successful in completing
the calculations (although this is not guaranteed to be algorithmically effective in
general). In actual applications one is often interested in classification up to real-
valued transformations — in some cases a much more difficult task. Indeed symme-
try classification problems are often intrinsically non-polynomial (analytic) since
attheir inception (e.g. such as far= (B(u)uy),) classical differential algebra may
not directly apply.

An alternative approach, is to embed, if possible, the problem into a complex
differential polynomial one at the onset. If that is successful then after the appli-
cation of effective differential elimination algorithms (such as [18, 39] restricted
to differential polynomials, or that of [15]), the information for the real case is ex-
tracted at the end (also often a non-algorithmic and difficult task). The dichotomies
of analytic versus differential polynomial algebra, and complex versus real com-
putation, raise important questions, for which there is no panacea.
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