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Abstract

Given a classF of differential equations, the symmetry classification
problem is to determine for each memberf ∈ F the structure of its Lie sym-
metry groupGf , or equivalently of its Lie symmetry algebra. The compo-
nents of the symmetry vector fields of the Lie algebra are solutions of an asso-
ciated over-determined ‘defining system’ of differential equations. The usual
computer classification method which applies a sequence of total derivative
operators and eliminations to this associated system often fails on problems
of interest due to the excessive size of expressions generated in intermediate
computations.

We provide an alternative classification method which exploits the knowl-
edge of an equivalence groupG preserving the class. A non-commutative
differential elimination procedure due to Lemaire, Reid and Zhang, where
each step of the procedure is invariant underG , can be applied and an exis-
tence and uniqueness theorem for the output used to classify the structure of
symmetry groups for eachf ∈ F .

The method is applied to a class of nonlinear diffusion convection equa-
tionsvx = u, vt = B(u)ux−K(u) which is invariant under a large but easily
determined equivalence groupG . In this example the complexity of the cal-
culations is much reduced by the use ofG -invariant differential operators.

AMS Classification:35N10, 58J70, 53A55, 13P10, 12H05.

∗School of Information Sciences and Engineering, University of Canberra, ACT Australia. 2600.
Email: Ian.Lisle@canberra.edu.au

†Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7,
Canada. Email:reid@uwo.ca , Web:www.apmaths.uwo.ca/˜reid

‡GJR gratefully acknowledges support from the Natural Sciences and Engineering Research
Council of Canada. He also acknowledges many helpful discussions with Elizabeth Mansfield on
the topic of this paper, and support of an ESPRC grant from the U.K. government for a visit to the
University of Kent in Canterbury. Support from University of Canberra is also acknowledged.

1



1 Introduction

This article falls under the general area of Geometric Integration [14] and specif-
ically in the development of tools that share symmetry properties of the problems
to which they are applied [24, 26]. See [6] for applications to computer vision and
[25, 14] for applications to group invariant numerical integrators. In this paper, we
show how to perform symmetry classification for a class ofPDE in a G -invariant
way, whereG is a known Lie group which leaves the class invariant (i.e.G is
an equivalence group for the class). The advantages of this approach are demon-
strated in the reduction of complexity of computations for problems to which they
are applied.

The Lie symmetry group of a differential equation [23] preserves its family
of solutions and is the basis of several useful techniques in applied mathematics.
Such techniques include finding invariant solutions, solving ordinary differential
equations in formula, finding conservation laws and linearizations [27, 23, 4, 24]
and the development of symmetry invariant numerical integrators [14].

Some symmetries are known a priori on physical grounds – for instance an
isotropic medium will have rotational symmetries – but in general a givenPDEmust
be analysed to find all its symmetries. The analysis proceeds by seeking vector
fieldsX = ∑i ξ i(w) ∂

∂wi on the space of independent and dependent variables, such
that thePDEare invariant under the action ofX. The unknown componentsξ i of the
vector fields satisfy a linear homogeneous and generally over-determined system of
PDE, thesymmetry system(or defining system) for the algebra of symmetry vector
fields ofG.

Several programs are available [34, 28, 35] for reducing the symmetry system
by applying a sequence of eliminations and commutative differentiations to the
symmetry system. An existence and uniqueness theorem is available for the output
form of some of the programs [32, 33] and allows determination of the size of the
group. In addition the formal series solution forξ i can be constructed up a given
order, allowing computation of the structure of the unknown group without explic-
itly determiningξ [29, 30]. Some programs focus on explicit determination of the
ξ i by employing integration [34, 35] in addition to differentiations and elimina-
tions. The above programs can often successfully determine symmetry properties
of a single differential equation.

Often one wishes to find the structure of the symmetry groupGf of each mem-
ber f of a classF of differential equations. For instance, one might be interested
in second orderODE

F = {y′′ = h(x,y,y′) | h : R3 → R}
Specification of the arbitrary elementh picks out a differential equation fromF ,
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with an associated symmetry groupGh.

Example1.1. Consider the classF of scalar nonlinear diffusion equations

ut =
(
B(u)ux

)
x (1)

which is assumed to be nonlinear so thatB 6= 0, Bu(u) 6= 0. Different functional
forms of the diffusivityB(u) will lead to different symmetry groupsGB. The sym-
metry operatorsX = ξ (x, t,u)∂x+τ(x, t,u)∂t +η(x, t,u)∂u which generate the Lie
algebraLB of symmetry vector fields forGB have componentsξ , τ, η which obey
the symmetry system [27, eq.(6.7.3)]

τx = τu = ξu = ηuu = 0 (2a)

B(2ξx− τt)−Buη = 0 (2b)

B(2ηxu−ξxx)+2Buηx +ξt = 0 (2c)

Bηxx−ηt = 0. (2d)

For givenB(u), this is an over-determined linear homogeneous system. We will
consider the overall system to consist of not only the symmetry systemS given
by (2), but also the ‘classifying system’C satisfied byB, in this caseC = {Bx =
Bt = 0, B 6= 0, Bu 6= 0}. The overall system isS ∪C .

In analysing such systems containing arbitrary elements, new problems arise.
As the defining equations are manipulated, derivatives of the arbitrary elements
(e.g.Bu, Buu, . . . ) accumulate in the coefficients, significantly increasing the alge-
braic complexity of the equations. One also uncoverscase splittings, conditional
on the arbitrary elements obeying certainclassification conditions.

Example1.1 (cont.). Assuming thatBu 6= 0, (2b) implies thatB
Bu

(2ξx− τt)−η =
0; differentiation and reduction modulo (2a) then gives(B/Bu)uu (2ξx− τt) = 0.
There are two cases:

(B/Bu)uu = 0 (3)

or (B/Bu)uu 6= 0, 2ξx− τt = 0. In this second case, further differentiations and
eliminations quickly show that the diffusion equation (1) admits only the obvious
symmetries [27,§6.7]

GB = {g : (x, t,u) 7→ (αx+ µ,α2t +ν,u)} (4)

Thus if equation (1) is to have any non-obvious symmetries,B(u) must satisfy
classification condition (3) [27,§6.7].

Such conditions are what investigators aim for in classification problems.
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The computational labor for symmetry classification is greater than for symme-
try analysis of one system, mainly because algebraic complexity of the symmetry
and classification systems can build up explosively as the equations are manipu-
lated. Programs such as [34, 35, 31, 22] can handle classes ofPDE, but can fail due
to exhaustion of memory. Even when answers are returned, the case splitting crite-
ria may be so complex as to defy interpretation. To overcome this, various workers
[1, 2] follow Ovsiannikov [27] in usingequivalence transformations, which map
equations in a class to other equations in the same class.

Example1.1 (cont.). For the diffusion equation (1), the transformations given by

G = {g : (x, t,u) 7→ (βx, t,γu+δ ), βγ 6= 0} (5)

form an equivalence group for the class, since these transformations map the dif-
fusion equation toγu′t ′ = γβ−2

(
B(γu′ + δ )u′x′

)
x′ . Hence the coefficientB(u) is

mapped to a new coefficient, given byB′(u) = β−2B(γu+δ ), and transformations
(5) along with (4) constitute an equivalence groupG for the class. These transfor-
mations are usually not symmetries since in generalB 6= B′.

When classifying symmetries, the equivalence group can be used to eliminate
parameters from cases.

Example1.1 (cont.). The classification equation (3) has solutions

B(u) = aemu, B(u) = (au+b)m, (a,m 6= 0)

Choosing class representatives with respect to the equivalence group (5) gives nor-
mal forms

B(u) = eu, B(u) = um, (m 6= 0).

This use of equivalence transformations to ‘clean up’ at the end of a symme-
try classification does not address the problem of algebraic complexity arising in
intervening calculations. In the current paper, we present a method which takes
advantage of equivalence transformations at the outset rather than at the end of the
analysis. The goal is to provide a method which has the equivalence group built
into it, in the sense that two equations connected by an equivalence transformation
will automatically be identified throughout the calculation. Significant clarification
and simplification of symmetry classifications are thereby achieved.

Our method is based on differential elimination procedures developed by Reid
et al. [28, 29, 30, 31] and which complete the symmetry system by adjoining
compatibility conditions [5]. After a finite number of steps, the system reaches a
reduced form where a local existence-uniqueness theorem can be used to deduce
properties of the defining system, such as the dimension of its solution space. The
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differential elimination methods of [28] gave algorithms for exhibiting symmetry
classifying conditions with the restriction that the classifying conditions remained
linear in their highest derivatives. The restriction of leading linearity is removed in
the symmetry classification problem by Mansfield [20]. Similar methods are now
employed in several programs [34, 35, 22]. However these methods are subject to
severe expression swell, and can fail for this reason. In addition, the programs often
give rise to spurious case splits: the user pursues first one then another branch, only
to find that the branches have no special symmetry properties.

Now suppose one has available an equivalence groupG for the classF . By
writing the defining equations in a form which isG -invariant, we are able to carry
out calculations which lessen these computational difficulties. The virtue of using
such aG -invariant formulation is that equations which are connected by a transfor-
mation fromG are identified, leading to results which are easier to interpret, and
also a reduction in their complexity.

To use such aG -invariant formulation one must compute the differential in-
variants of the equivalence groupG , and rewrite the defining system inG -invariant
form. Fortunately, over the last decade Fels, Olver and others [9, 10, 24, 26] have
significantly developed and generalized Cartan’s theory of moving frames. As a re-
sult there are now systematic methods for finding differential invariants and other
associated objects such as invariant differential operators. These methods are im-
portant prerequisites for the applications described in our paper.

Writing the systems inG -invariant form requires the use ofnon-commuting
invariant bases of differential operators (BDO) and methods for systematically ma-
nipulating and simplifying such systems. There is available a non-commutative
differential elimination procedure due to Lemaire, Reid and Zhang [18, 39] to bring
such systems to a reduced form enjoying properties crucial to our article (also see
the approach of Mansfield [21]). In particular, a local existence and uniqueness
theorem [18, 39] is available for the output non-commutative reduced involutive
form (RIF-form). This theorem enables us to algorithmically find the dimension
(§6) and structure (§7) of symmetry algebrasL f for each memberf of the classF .
The reduction procedure also enables classifying conditions to be determined algo-
rithmically. Thus our approach combines classical methods of symmetry analysis
[4, 23, 27], the theory ofG -invariant objects [9, 10, 26] and differential elimination
methods forPDE [18, 39].

The remainder of this paper is organized as follows. In§2 non-commuting dif-
ferential operators and their structure relations are introduced. In§3 we introduce
notation and discuss the process that puts the non-commutative derivations in a nor-
malized order. Rankings of derivations and reduction ofPDE are discussed in§4.
Using the equivalence group to find suitable frames is discussed in§5 and applied
to the example of the nonlinear diffusion equation (1) in§5.3. The calculation of
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structure constants from a frame defining system is discussed in§7. A substantial
example (nonlinear diffusion convection equations) of symmetry classification is
presented in§8. Concluding remarks are given in§10.

2 Derivations and Structure Relations

We consider systems of partial differential equations (PDE) with independent vari-
ablesx = (x1,x2, ...,xn) ∈ Fn and dependent variablesu = (u1, ...,um) ∈ Fm where
F = R or C. Differential elimination methods, such as those of [16, 28, 31, 5],
are stated in a coordinate system, with commuting derivations. We now relax this
and permit an arbitrary, possibly non-commutative, basis for first order derivations.
See [18] for details and a careful treatment.

We restrict our attention to (mainly over-determined) systems which areF-
analytic functions of their independent, dependent variables and total differential
operators applied tou where the differential operators are compositions of deriva-
tions of the form

D̃i =
n

∑
j=1

ai j (x,u)Dx j , i = 1, . . . ,n. (6)

Here Dx j is the usual (commutative) total derivative operator, theai j (x,u) are
F-analytic functions and then× n matrix A(x,u) = (ai j (x,u)) is invertible (i.e.
det(A(x,u)) 6= 0) at points(x,u) in Fn×Fm. SinceA(x,u) is invertible it follows
thatDxi = ∑n

j=1bi j (x,u)D̃ j where(bi j (x,u)) = A(x,u)−1. Thus analyticPDE sys-

tems written in termsx, u andDi can be written in terms ofx, u andD̃i .
TheD̃i satisfy commutation relations of the form:

[ D̃i , D̃ j ] = D̃iD̃ j − D̃ jD̃i =
n

∑
k=1

γk
i j D̃k , 1≤ i, j ≤ n. (7)

Here theγk
i j are functions ofx,u and first order derivations ofu, and can be easily

calculated fromA(x,u) using (6) to express the commutator in terms ofD j and
then applying the inverse to express the result in terms ofD̃ j . Thus theD̃i are
generally non-commuting, in contrast to the usual commuting total derivativesDxi

(abbreviated asDi).

Example2.1. The following non-commutative derivations arise from the nonlin-
ear diffusion convection potential system discussed in§8. Let{Dv,Dx,Dt ,Du} be
commuting derivations onR4 with coordinates(v,x, t,u). Let K,q be dependent
variables in the simple system ofPDE Kv = Kx = Kt = 0,Ku = q. We will denote
sets of derivations by upper case Greek letters. For example here we use∆ where
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D̃i = ∆i , i = 1,2,3,4 to denote:

∆1 = Dv, ∆2 = Dx, ∆3 = Dt +qDx +
(
uq−K

)
Dv, ∆4 = Du (8)

The matrixA(v,x, t,u) has determinant1, so∆ satisfies the determinant condition.
The derivations∆ (8) have[∆i ,∆ j ] = 0 apart from the relations involving∆3, for
instance

[∆3,∆4] =−q,4∆2− (uq,4 +q−K,4)∆1

We shall have frequent need to manipulate vector fields. IfX = ∑n
i=1 ξ iDi is a

vector field then its componentsθ j with respect tõD j are

X =
n

∑
j=1

θ jD̃ j , where
n

∑
i=1

ai j (x,u)θ i = ξ j . (9)

Invertibility of A(x,u) guarantees thatθ j can be expressed in terms ofξ i .

Example2.1. (cont.) Let X = χDv + ξDx + τDt + ηDu be a vector field, withχ,
ξ , τ, η functions of(v,x, t,u). Resolving with respect to∆, i.e. X = θ i∆i gives

θ 1 = χ− (
uq−K

)
τ, θ 2 = ξ −qτ , θ 3 = τ , θ 4 = η . (10)

3 Derivations, Normalization and Bijection to the Com-
mutative Case

We briefly discuss the normalization of non-commutative operators and a bijection
to the commutative case. See [18] for a detailed treatment which is a minor vari-
ation on the standard one (in which only the independent variables appear in the
coefficients). The main point is that basic operations, such as chain rules, work in
the expected way.

As is usual in the commutative case we define [32, 5] a set of indeterminates
Ω = {vi

α | α = (α1, · · · ,αn) ∈ Nn, i = 1, · · · ,m} where each indeterminate ofΩ
corresponds to a partial derivative by:

vi
α ↔ (∂n)αn · · ·(∂1)α1ui(x1, · · · ,xn) := ∂ αui(x1, · · · ,xn) .

Commutative total derivative operators act on members ofΩ by a unit increment of
the i-th index of their vector subscript:Divk

α := vk
α+1i

whereα +1i = (α1, ...,αi +
1, ...,αn). The usual (commutative) total derivativeDxi ≡Di action on functions of
{x}∪Ω is then given by:Di = ∂i +∑v∈Ω(Div) ∂

∂v.

In the non-commutative case,n total derivations̃D1, ..., D̃n act on formal power
series in thexi . A general total derivation operator of orderp wherep ∈ N has

7



form D̃i1D̃i2...D̃ip wherei j ∈ {1,2, ...,n} for j = 1, ..., p. In a similar manner to the
commutative case letKn = {(ip, ..., i2, i1) : i j ∈ {1,2, ...,n} andp∈ N} and define
Ω̂ = {v̂k

I | I ∈ Kn,k = 1, · · · ,m} whereD̃i1D̃i2...D̃ipu
k ↔ v̂k

(ip,...,i2,i1)
. Then a formal

total derivation operator̃D j acts on members of̂vk
I ∈ Ω̂ whereI = (ip, ..., i2, i1) by

appendingj to their indexD̃ j v̂k
I := v̂k

I , j ≡ v̂k
ip,...,i2,i1, j . One demonstrates easily (e.g.

see [18]) that the chain rule works as expected on analytic functionsf of {x}∪ Ω̂,
namely

D̃i f =
n

∑
j=1

(D̃ix
j)

∂
∂x j f + ∑

v̂∈Ω̂

(D̃i v̂)
∂
∂ v̂

f (11)

We will use the natural notatioñ∂i := ∑n
j=1(D̃ix j) ∂

∂x j and call∂̃i the partial deriva-

tion. Using this notation we can writẽDi = ∂̃i +∑v̂∈Ω̂(D̃i v̂) ∂
∂ v̂ .

DefineΩ̃ = {ṽi
α | α = (α1, · · · ,αn) ∈ Nn, i = 1, · · · ,m} where each element of

this set corresponds to a derivation by:

ṽi
α ↔ (D̃n)αn · · ·(D̃1)α1ui(x1, · · · ,xn) := D̃αui(x1, · · · ,xn) .

In contrast to the commutative case this correspondence only gives a subset of the
set of all derivations (̂Ω). However the commutation relations (7) enable us to
extend this correspondence to the whole set.

Hypothesis 3.1 (Finiteness and Normalization Assumption for Derivations).
In this article we only consider functions of finitely many indeterminates (i.e. the
differential equations considered are always of finite order). Also, each time a
derivation is applied to such a function of{x}∪Ω̃ we assume that the commutation
rules are applied to get an expression only involving elements of{x}∪ Ω̃.

It follows [18] from our normalization that̃Di = ∂̃i +∑ṽ∈Ω̃(D̃i ṽ) ∂
∂ ṽ. The other

vital property [18, 39] underlying our method is:

Theorem 3.2 (Bijection between derivations and derivatives).Under the ana-
lyticity and invertibility assumption onai j in §2 each orderq derivation operator
(resp. differential operator) can be expressed as a linear combination of differ-
ential operators (resp. derivation operators) of orderq or less with coefficients
being analytic functions ofx and commutative (resp. non-commutative) derivation
variables of orderq−1 or less.

In summary three different sets of derivations are used in this paper: the non-
normalized derivationŝΩ, the normalized derivations̃Ω and the commutative deriva-
tivesΩ. They simply correspond to the following spaces:Ĵq(Fn,Fm), J̃q(Fn,Fm)
andJq(Fn,Fm).
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The relationship between these spaces is shown below:

Ĵq(Fn,Fm) Ψ(q)−→ J̃q(Fn,Fm) Φ(q)←→ Jq(Fn,Fm) (12)

HereJq(Fn,Fm) is the usualq-th order jet space. As usual the zero set of the func-
tions defining the differential equations is a locus of points in that space. In a sim-
ilar way a differential equation expressed in terms of non-normalized derivations
from Ω̂ is represented by a zero set inĴq(Fn,Fm). Finally J̃q(Fn,Fm) represents the
space of non-commutative normalized derivations. The normalization mapΨ(q) at
orderq quotients by the commutation relations, mapping points inĴq(Fn,Fm) to
ones inJ̃q(Fn,Fm). Because normalization is applied, we do not see the space
Ĵq(Fn,Fm) in calculations of the paper. The bijection to orderq denoted byΦ(q)

is obtained through the correspondenceD̃i = ∑n
j=1ai j (x,u)Dx j . The theory, which

is given elsewhere [18, 39], essentially exploits this as a map to the commutative
case.

4 Rankings and Reduction of Classification Systems

The application of the algorithms of [18, 39] to symmetry classification problems
in this paper, require an input ranking of derivations satisfying certain properties.
In §4.1 and§4.2 we show that such rankings exist and are easily constructed. As
discussed in§4.3 reduction with respect to such rankings enables the application
of a formal existence and uniqueness theorem [18, 39] to the output.

4.1 Rankings

We direct the reader to [18] for background on rankings in the non-commutative
case and to [32] for the commutative case.

Suppose≺ is a total order on the set of (normalized) derivationsΩ̃. Consider
a function f on J̃q(Fn,Fm) which is analytic at(x, ṽi

α) ∈ J̃q(Fn,Fm). Let HD f
denote the greatest derivation inf with respect to the ranking≺. The definition of
a positive ranking in the non-commutative case as given in [18] is:

Definition 4.1. A positive ranking≺ of Ω̃ is a total ordering oñΩ satisfying:

HD(D̃β ṽi
α) = ṽi

α+β (13a)

ṽi
α ≺ ṽ j

β ⇒ HD D̃γ ṽi
α ≺ HD D̃γ ṽ j

β (13b)

ṽi
α ≺ HD D̃γ ṽi

α for |γ| 6= 0 (13c)

where as usual all derivations are normalized (soD̃β ṽi
α , D̃γ ṽi

α , etc are normalized
beforeHD is applied).
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Property (13a) is trivially satisfied in the commutative case. It implies that
(13b) and (13c) become

ṽi
α ≺ ṽ j

β ⇒ ṽi
α+γ ≺ ṽ j

β+γ , ṽi
α ≺ ṽi

α+γ (14)

Since these are just the requirements of positive rankings in the commutative case
[32] it implies that every positive ranking in the non-commutative case is also a
positive ranking for the commutative case. All such positive rankings have been
classified [32]. The condition (13a) for a given problem restricts the available
positive rankings to a subclass of the commutative ones. In particular, commutation
relations (7) and the fact that theγk

i j are functions of at most first order derivations
imply that

D̃β ṽi
α = ṽi

α+β +R (15)

whereR represents remainder terms of total derivation order strictly lower than
|α + β |. Thus if we choose a ranking satisfying (14) and compatible with total
derivation order i.e. satisfying:

|α|< |β | =⇒ ṽi
α ≺ ṽ j

β for any1≤ i, j ≤ n (16)

then property (13a) is ensured. Properties (13b) and (13c) follow immediately
yielding a positive ranking.

4.2 Rankings for decoupling Classification Systems

For our class of problems, we need to construct positive rankings slightly more
general than those satisfying (16). Note that symmetry defining systems are linear
in the symmetry componentsξ i and have coefficients which are in general non-
linear functions of the classification functionsf j . To preserve this quasi-linear
structure, and decouple equations in the classification variables alone, we need to
show that there exist positive ‘elimination’ rankings that satisfy:

ξ i Â D̃β f j , for all i, j,β (17)

Proposition 4.2. Suppose≺ is a ranking satisfying (14). Let the dependent vari-
ablesv be partitioned asv = ( f ,ξ ), where f hasµ components andξ hasm− µ
components, and suppose that the structure functionsγk

i j given in(7) are functions
only of (x, f ) and first order derivations off . Suppose that≺ also satisfies the
conditions

(i) |α|< |β | =⇒ f k
α ≺ f `

β

(ii) |α|< |β | =⇒ ξ i
α ≺ ξ i

β
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for 1≤ k, `≤ µ and1≤ i ≤m−µ. Then≺ is a positive ranking, that is, it satisfies
(13).

The proposition asserts that a ranking≺ need only be compatible with total
derivation order on the subsetf and on eachξ i variable individually.

Proof. Suppose that≺ satisfies the conditions of the theorem. From (15) it follows
that

D̃β f `
α = f `

α+β +R (18)

whereR represents normalization terms of strictly lower derivation order than|α +
β |. Now, becauseγk

i j depends only onf , Rcan depend only onf -variables and their
derivatives, and because≺ satisfies (i), this means that all terms inR are lower
ranked thanf `

α+β . Hence

HD D̃β f `
α = f `

α+β (19)

Now supposeξ i is one of the other variables. Again by (15)

D̃β ξ i
α = ξ i

α+β +R′ (20)

where the normalization termsR′ have derivations of strictly lower derivation order
than|α +β |. But theγk

i j do not depend onξ , soR′ only includes terms of the form
bξ i

δ whereb depends on derivatives off . Since≺ satisfies (ii), it follows that all
terms inR′ are lower ranked thanξ i

α+β , so

HD D̃β ξ i
α = ξ i

α+β (21)

The two statements (19,21) amount to property (13a). The other parts of (13)
follow immediately.

Proposition 4.2 ensures the existence of rankings satisfying (17), which is what
we will require for the applications considered in our paper. The proof also shows
that if ξ i satisfy linear homogeneous equations, then normalization preserves this
feature.

4.3 Algorithmic Reduction to non-commutativeRIF -form

In previous work algorithms were developed for transforming systems ofPDE by
applying a sequence of commutative differentiations and eliminations, enabling
existence and uniqueness theorems to be stated for their output. That work had its
roots in the Riquier-Janet Theory [16, 37]. Subsequently [31, 33, 32] the method
was generalized to nonlinear systems. Later the theory was adapted to linear [12]
and nonlinear [18, 39] systems written in terms of non-commuting derivations.
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In particular we can algorithmically apply the results of [18, 39] to systems
with polynomially nonlinear dependence on the classification functions and their
derivations over the rational numbers. The output non-commutative reduced in-
volutive form obtained by this method has an associated existence and uniqueness
theorem [18, Theorem 9.11], which is sufficient for our purposes in this article.

In the application of this algorithmic process, whenever derivation operators
are applied, the normalizationΦ is automatically invoked to place the derivation
operators in normalized order. The bijectionΨ to the commutative case implies
that the algorithms are a direct translation of those for the commutative case. The
algorithms have been implemented, extensively documented and described in detail
in [38, 39, 32] so we do not describe them here.

5 Invariant Form of Classification

5.1 Classification Procedure

In [29] it was shown that symmetry classification can be performedwithoutsolv-
ing the symmetry equations. The method algorithmically finds classification con-
ditions by appending integrability conditions to the symmetry system (also see
[20, 5]). The non-commutativeRIF algorithm can be adapted to effect a classifica-
tion for a systems containing arbitrary elements.

For symmetry classification the overall systemC ∪S consists of:

1. A classifying systemC , consisting of equations to be satisfied by the ar-
bitrary elementsf of the original class of differential equations. Normally
systemC will be nonlinear.

2. The complementS , consisting of equations which are linear and homoge-
neous in the symmetry vector field componentsθ i .

The classifying systemC is decoupled from the rest of the symmetry systemS ,
and this decoupling is maintained by using an elimination ranking. Observe that
the structure functionsγk

i j depend only onf j and their first derivations, so that
Proposition 4.2 applies. Choose a ranking in which any derivation of a vector field
componentθ i is ranked higher than any derivation of thef j . This is valid so long as
the ranking obeys the restrictions of Proposition 4.2. Such an elimination ranking
ensures thatC remains decoupled, and thatS remains linear and homogeneous in
θ i .

Reduction of the overall system to non-commutativeRIF-form requires deter-
mination of the highest ranked derivation indeterminate in each equation. For the

12



symmetry systemS this involves determining whether certain coefficients (called
pivots) are zero or nonzero, leading to a binary case splitting:

Case a.Adjoin pivot= 0 to C

Cbse b.Adjoin pivot 6= 0 to C

Each case is pursued separately (see [5] for an algebraic interpretation). A binary
treeof possibilities is thereby built up. Each leaf of the tree has an associated non-
commutativeRIF-form of the system. From these non-commutativeRIF-forms, one
can apply the existence and uniqueness result [18, Theorem 9.11] to get counts of
both the degree of arbitrariness in the classifying systemC , and the dimension
of the symmetry algebra. Moreover the method of [30] can be adapted to find
structure constants for the symmetry algebra associated with the leaf (see§7).

5.2 Invariant form of group classification

A class of differential equations often has a nontrivial associated equivalence group
G . Methods for finding a suitableG are described in [2, 19]. Each transformation
in G maps each equation in the classF to another equation inF . It is desirable
to perform symmetry classification in a way which is invariant with respect toG ,
that is, in whichG -equivalent equations are identified. To achieve this, one seeks
to express the systemC ∪S in terms of scalar differential invariants ofG and
with respect to derivations which areG -invariant so far as is possible. Subsequent
reduction to noncommutativeRIF form is then guaranteed to give classifying equa-
tions which areG -invariant. The structure constants of the symmetry algebra (§7)
will likewise beG -invariant.

The procedure is as follows:

1. Obtain the equivalence groupG of the differential equationsF .

2. Derive symmetry equationsS for the symmetriesL f of the differential
equations.

3. Construct invariants and invariant derivations of the equivalence group, along
with their structure relations. Case splittings may arise during this process.

4. Rewrite the systemS ∪C in terms of differential invariants andG -invariant
derivations.

5. Invoke the classification procedure. Each leaf of the resulting tree has a
non-commutativeRIF-form of the systemS ∪C : find the dimension and
structure of the associated Lie symmetry algebra (§7).

13



This method for symmetry classification, which first appeared in Lisle’s thesis [19],
is therefore aG -invariant generalization of [29] to a case where an equivalence
group is available.

A G -invariant formulation has a number of computational advantages beyond
its obvious theoretical desirability. First, expression swell that plagues symmetry
classification methods can be lessened, presumably because many symmetries are
simply inherited from the equivalence group. Second, the number of case splittings
can be much reduced. Against this is the expense of computing invariants, and
then performing reduction of the symmetry defining system using non-commuting
derivation operators.

5.3 Application to Nonlinear Diffusion Equation

Before exhibiting a substantial classification in§8, we give a simpler example.
Consider again the nonlinear diffusion equation (1), with symmetry equationsS
given by (2) [27, eq.(6.7.3)].

Setting aside the caseB 6= 0,Bu = 0 (linear heat equation) we initialize the
classifying system

C = {Bx = Bt = 0, B 6= 0, Bu 6= 0}

We seek to rewrite the systemS ∪C in a form invariant under the action of the
3-parameter equivalence groupG given by (5).

Using methods such as those of Fels and Olver [9, 10], or otherwise, one finds
G -invariant derivations:

∆1 = B1/2 ∂x ∆2 = ∂t ∆3 = B/Bu ∂u (22)

But note that some of the coefficientsai j in (6) above depend on derivatives of the
dependent variables. We introduce a new dependent variablep satisfyingp= Bu/B
and include it inC to remove this dependence:

C = {Bx = Bt = 0, Bu = Bp, B 6= 0, p 6= 0} (23)

The derivations and vector field components are

∆1 = B1/2 ∂x ∆2 = ∂t ∆3 = 1/p∂u

θ 1 = B−1/2ξ θ2 = τ θ 3 = pη (24)

The structure relations for∆ are

[∆1,∆2] =−1
2

B,2

B
∆1, [∆1,∆3] =−1

2

B,3

B
∆1− p,1

p
∆3, [∆2,∆3] =− p,2

p
∆3 (25)
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A scalar differential invariant is
J =

pu

p2 (26)

Appending this to classifying systemC given by (23), rewriting in terms of deriva-
tions (24), and completing toRIF-form using a ranking compatible with total deriva-
tion order gives the updated classifying systemC :

B,1 = 0 B,2 = 0 B,3 = B B 6= 0 (27a)

p,1 = 0 p,2 = 0 p,3 = pJ p 6= 0 (27b)

J,1 = 0 J,2 = 0 (27c)

In fact the non-invariant quantitiesB, p disappear from the symmetry system, and
(27a,27b) play little further role. Rewriting symmetry system (2) in terms of∆,θ
using (24) and reducing modulo (27) givesS as

θ 1
,3 =−1

2θ 1 θ 2
,1 = 0 θ 3

,11 = θ 3
,2

θ 2
,2 = 2θ 1

,1−θ 3 θ 3
,31 = 1

2θ 1
,11+(J−1)θ 3

,1− 1
2θ 1

,2

θ 2
,3 = 0 θ 3

,33 = Jθ 3
,3 +J,3θ 3 (28)

We now reduce the overall systemS ∪C (28,27) toRIF-form. We use a rank-
ing as follows:

(a) Any derivation ofθ 1,θ 2,θ 3 is ranked higher than any derivation ofB, p,J.

(b) If tied after (a), a derivation of higher order is ranked higher.

(c) If tied after (b), rankθ 1 ≺ θ 2 ≺ θ 3 andB≺ p≺ J lexicographically.

(d) If tied after (c), rankθ i
α1
≺ θ i

α2
lexicographically by theα ’s.

During the reduction, derivationsθ i
,i1 ...ip

may need to be normalized using
structure relations (25). Any terms arising are then reduced modC , so for this
purpose we can reduce structure relations (25) modC once and for all, as

[∆1,∆2] = 0 [∆1,∆3] =−1
2∆1 [∆2,∆3] = 0 (29)

(Note that although it is valid to use these reduced structure relations while working
onS , the original relations (25) are needed while working onC .)

Integrability conditions for (28) are needed during the reduction of (28) to non-
commutativeRIF-form. For example one finds

(θ 2
,3),2− (θ 2

,2),3 =−(2θ 1
,1−θ 3),3
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Normalizing the left hand side modulo the reduced structure relations (29), this
becomes0 = 2θ 1

,13−θ 3
,3. Reduction modS (28) givesθ 3

,3 = 0, which is adjoined
to S . Further reduction ofS givesJ,3θ 3 = 0, and hence the case splittingJ,3 6= 0,
J,3 = 0.
Case A: J,3 6= 0. In this case, non-commutativeRIF-form of the classifying system
is (27) with the inequationJ,3 6= 0 appended.RIF-form of the symmetry systemS
is:

θ 1
,11 = 0 θ 2

,1 = 0 θ 3 = 0

θ 1
,2 = 0 θ 2

,2 = 2θ 1
,1

θ 1
,3 =−1

2θ 1 θ 2
,3 = 0 (30)

Case B: J,3 = 0. In this case (J constant), further integrability conditions and
reductions lead to(3−4J)θ 3

,1 = 0. The pivot(3−4J) gives two subcases:J 6= 3/4
andJ = 3/4.
Subcase C: J,3 = 0, J 6= 3/4. In this case, the non-commutativeRIF-form of C
consists of (27a,27b) along with

J,1 = J,2 = J,3 = 0 J 6= 3/4 (31)

Splitting from Case B showsθ 3
,1 = 0, andS reachesRIF-form:

θ 1
,11 = 0 θ 2

,1 = 0 θ 3
,1 = 0 (32a)

θ 1
,2 = 0 θ 2

,2 = 2θ 1
,1−θ 3 θ 3

,2 = 0 (32b)

θ 1
,3 =−1

2θ 1 θ 2
,3 = 0 θ 3

,3 = 0 (32c)

Subcase D: J= 3/4. Non-commutativeRIF-form of the classifying systemC is:

B,1 = 0 B,2 = 0 B,3 = B B 6= 0 (33a)

p,1 = 0 p,2 = 0 p,3 = 3
4 p p 6= 0 (33b)

J = 3/4 (33c)

Symmetry systemS reachesRIF-form consisting of

θ 1
,11 = θ 3

,1/2 θ 2
,1 = 0 θ 3

,11 = 0 (34)

along with (32b,32c).
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6 Computation of Dimension and Initial Data

The determination of symmetry structure depends on our ability to give an exis-
tence and uniqueness theorem for local solutions of the output non-commutative
RIF-form. In [18], methods originally due to Riquier are extended to the non-
commutative case. In what follows, as usual all derivations are assumed to be
normalized.

Given a ranking≺ then the output system has two parts: a finite setM of
functions which are linear in their highest derivatives with respect to≺, and its
complementN which is nonlinear in its highest derivations. Then as in [18,§6]
theprincipal derivationsof M are defined as

PrinM := {ṽ∈ Ω̃| there existf ∈M andα ∈ Nn with ṽ = HD D̃α f}
The parametric derivationsof M , denoted byParM , are those derivations that
are not principal. Denoting the set of highest derivations ofM by HDM , then

ParM := {ṽ∈ Ω̃ | ṽ 6= HD D̃β w̃ for anyw̃∈ HDM } (35)

Example6.1 (Initial Data for Case A:J,3 6= 0). In this case, the non-commutative
RIF-form S ∪C is given by (30,27). The systemS ∪C is linear in its highest
derivations soM consists of all equations from (30,27), whileN = /0. The highest
derivations are

HDM ={θ 1
,11,θ 1

,2,θ 1
,3,θ 2

,1,θ 2
,2,θ 2

,3,θ 3}
∪{B,1,B,2,B,3, p,1, p,2, p,3,J,1,J,2}

(36)

Note how we have separated the highest derivations into those from the symmetry
systemS and those from the classifying systemC . Computation of initial data
proceeds exactly as in the commutative case. We have

ParM = {θ 1
,1,θ 1,θ 2}∪{B, p,J,J,3,J,33, . . .} (37)

SinceN = /0, we only need the leading linear form [18, Theorem 7.6] of the
non-commutative existence and uniqueness theorem. According to this theorem, if
initial data are prescribed by assigning values to the parametric derivatives (37) at
w0 = (x0, t0,u0)

ID(S ) θ 1
,1(w0) = a1,θ 1(w0) = a2,θ 2(w0) = a3 (38)

ID(C ) B(w0) = h1, p(w0) = h2,J(w0) = h3,J,3(w0) = h4,J,33(w0) = h5, . . .

then there is a unique formal solution to the systemS ∪C (30,27) with these initial
data. Note that there are infinitely many parameters to assign in the initial data.
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However for the application of this paper we are interested in the the properties
of the symmetry algebrasL f corresponding to some fixed formal solutionf of
the classifying systemC . With f fixed, the dimension ofL f is the number of
parametric derivations for the symmetry systemS f . Thus for the example above,
any diffusivity B solving C has an associated 3-dimensional symmetry algebra
LB, corresponding to the three parametric derivations fromS . The classifying
equationsC have infinite initial data, reflecting the fact that symmetries (4) are
present for arbitrary diffusivity functionsB.

The following examples illustrate that as the symmetry algebra becomes larger
the classifying system has fewer degrees of freedom.

Example6.2 (Initial Data for Subcase C:J 6= 3/4). The non-commutativeRIF-
form (27a,27b,31) of the classifying system has parametric derivationsB, p, J,
so this subcase represents a 3-parameter family of diffusivities. There are four
parametric derivations (θ 1,θ 2,θ 3,θ 1

,1) in symmetry system (32), so the symmetry
algebraLB is of dimension four.

Example6.3(Initial Data for Subcase D:J = 3/4). The parametric derivations for
the RIF-form of C given in (33) areB, p, with associated initial dataB(w0) = h1,
p(w0) = h2. Hence this subcase represents a 2-parameter family of diffusivi-
ties. The parametric derivations for theRIF-form of S given by (32b,32c,34) are
θ 1,θ 2,θ 3,θ 1

,1,θ 3
,1, giving a 5-dimensional symmetry algebra.

7 Computation of Structure Constants

Consider a symmetry systemS for the components of a Lie algebra of vector
fields. A finite-dimensional Lie algebra is characterized up to isomorphism by
structure constantsCk

i j . We show how to findCk
i j directly from the symmetry system

without solving the system. The method is a generalization to the non-commuting
case of the method of Reid et al. [30].

The formal solutions ofS are components of a vector field, and with the usual
commutator bracket on vector fields, the local solutions at a pointw0 are therefore
also a Lie algebra. The commutator bracket on solutions can be used to induce a
bracket on initial data as in [30].

We adopt the notationPar(θ)(w0) = a to represent the initial data correspond-
ing to symmetry components. SimilarlyPar( f )(w0) = h represents the classifica-
tion initial data.

Example7.1. Consider the system from Subcase D (J = 3/4) of §6, for which
S ∪C given by (32b,32c,34,33) is in non-commutativeRIF-form. SoPar(θ) =
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(θ 1,θ 2,θ 3,θ 1
,1,θ 3

,1) andPar(θ)(w0) = a = (a1,a2,a3,a4,a5) represents the sym-
metry component initial data. SimilarlyPar( f ) = (B, p) andPar( f )(w0) = h =
(h1,h2).

Consider two formal solutions ofS f with associated initial data vectorsa, b
and the same classification initial datah. Let Sol be the invertible linear map that
takes initial data values forS f to formal solutions ofS f at w0. ThenSol−1 is the
map that evaluates initial data for a formal solution atw0. We define a commutator
bracket on initial data by

[a,b]ID := Sol−1([Sol(a),Sol(b)]
)

That is, the commutator of two initial data vectors is found by constructing the two
associated formal solutions, taking commutators, then evaluating the initial data.

Let the (unique) formal solutions ofS f associated with initial dataa,b beφ ,ψ,
whereφ = ∑n

i=1 φ i∆i , ψ = ∑n
i=1 ψ i∆i . Thus

Par(φ)(w0) = a Par(ψ)(w0) = b

where both solutions have the same classification initial dataPar( f )(w0) = h. The
commutator of solutions is

ω := [φ ,ψ] =
n

∑
k=1

(φ iψk
,i −ψ iφ k

,i )∆k +
n

∑
i=1

n

∑
j=1

φ iψ j [∆i ,∆ j ] (39)

If the invariantBDO ∆ has structure relations[∆i ,∆ j ] = ∑n
k=1 γk

i j ∆k, thek-th compo-
nent of the commutator is

ωk =
n

∑
i=1

(
φ iψk

,i −ψ iφ k
,i

)
+

n

∑
i=1

n

∑
j=1

γk
i j φ iψ j

Let the initial data forS f associated withω bec, that is,c = Par(ω)(w0). Each
component ofc is therefore(ωk)α(w0) for somek, α. Now, the expression

( n

∑
i=1

(
φ iψk

,i −ψ iφ k
,i

)
+

n

∑
i=1

n

∑
j=1

γk
i j φ iψ j

)
α

can be reduced moduloS ∪C to an expression involving onlyPar(φ), Par(ψ)
andPar( f ). Evaluation atw0 gives an expression involving onlya, b andh. By
doing so, each component of the commutator initial datac is expressed as a skew-
symmetric bilinear function ofa,b:

ck =
n

∑
i=1

n

∑
j=1

Ck
i j (h)aib j
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whereCk
ji =−Ck

i j . By construction, the quantitiesCk
i j are structure constants of the

Lie algebra induced on initial data space, and therefore of the desired Lie algebra
of vector fieldsL f . ThusCk

i j is thek-th piece of initial data for the commutator of
solutioni with solution j of S f .

Example7.1(cont.). The parametric derivations for this case are listed above. The
θ i are components of a vector fieldY = ∑3

i=1 θ i∆i referred to an invariantBDO

∆1,∆2,∆3 with structure relations (25). Let

φ = φ1∆1 +φ2∆2 +φ3∆3 ψ = ψ1∆1 +ψ2∆2 +ψ3∆3

be two solutions ofSB, and letω = [φ ,ψ]. Taking commutators (39) and using
the reduced structure relations (29), gives for instance

ω1 = (φ1ψ1
,1−ψ1φ1

,1)+(φ2ψ1
,2−ψ2φ1

,2)+(φ3ψ1
,3−ψ3φ1

,3)− 1
2(φ1ψ3−ψ1φ3)

After reducing moduloS ∪C (32b,32c,34,33), we obtain expressions for three of
the parametric derivatives ofω:

ω1 = φ1ψ1
,1−ψ1φ1

,1

ω2 = 2(φ2ψ1
,1−ψ2φ1

,1)− (φ2ψ3−ψ2φ3)

ω3 = φ1ψ3
,1−ψ1φ3

,1

Further differentiation and reduction moduloS ∪C gives

ω1
,1 = 1

2(φ1ψ3
,1−ψ1φ3

,1) ω3
,1 = φ1

,1ψ3
,1−ψ1

,1φ3
,1

Evaluation of the initial dataPar(θ)(ω) = c = (c1,c2,c3,c4,c5) gives

c1 = a1b4−b1a4 (C1
14 = 1)

c2 = 2(a2b4−b2a4)− (a2b3−b2a3) (C2
24 = 2, C2

23 =−1)

c3 = a1b5−b1a5 (C3
15 = 2)

c4 = 1
2(a1b5−b1a5) (C4

15 = 1
2)

c5 = a4b5−b4a5 (C5
45 = 1)

The Lie algebraLB therefore has commutation relations

[Y1,Y4] = Y1 [Y1,Y5] = Y3 + 1
2Y4 [Y2,Y3] =−Y2

[Y2,Y4] = 2Y2 [Y4,Y5] = Y5

Note that it was not necessary to construct explicit solutions during this pro-
cess, nor was it necessary to know expressions for∆i in terms of commuting deriva-
tions. An alternative and equivalent method for evaluating structure constants by
selecting numerical values for theai , bi is given in [30].
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8 Potential Diffusion Convection System

We now present a substantial computational example, applying the invariantBDO

method to the diffusion convection system

vx = u, vt = Bux−K. (40)

The arbitrary elementsB(u) (diffusivity) andK(u) (convection) obey the classify-
ing system

Bv = Bx = Bt = 0, Kv = Kx = Kt = 0, B 6= 0 (41)

8.1 Equivalence group

A calculation detailed in [19] shows that the class of equations (40) is preserved by
a 10-parameter equivalence group, generated as the product of subgroups:

(a)





v̄ = v+ ε1

x̄ = x+ ε2

t̄ = t + ε3

(b)





v̄ = v−κ1t
x̄ = x+κ2t
K̄ = K +κ1 +κ2u

(c)





v̄ = αv+βx
x̄ = γv+δx

ū = αu+β
γu+δ

K̄ = K
γu+δ

B̄ = (γu+δ )2B

(d)





v̄ = v/a
x̄ = x/a
t̄ = t/a2

K̄ = aK

(e)





v̄ = bv
x̄ = bx
t̄ = bt
B̄ = bB

(42)

whereab 6= 0andαδ−βγ = 1. We will consider both the variables in the diffusion-
convection equation (40) and the parameters of the equivalence group to be real-
valued.

8.2 Symmetry system

We start with classifying systemC (41). Computation shows that the invariant
BDO has coefficients depending onBu andKu. In order to apply our approach we
introduce new dependent variables:Bu/B = p andKu = q and then the classifying
systemC is:

Bx = 0 Bt = 0 Bv = 0 Bu = Bp B 6= 0 (43a)

Kx = 0 Kt = 0 Kv = 0 Ku = q (43b)
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The componentsχ, ξ , τ, η of the symmetry vector field

Y = χ ∂v +ξ ∂x + τ ∂t +η ∂u

satisfy the symmetry systemS :

τv = τx = τu = ξu = χu = 0

p(∂x +u∂v)(χ−uξ )−2B(∂x +u∂v)ξ +B∂tτ = 0(
∂t +q(∂x +u∂v)−K ∂v

)
(χ−uξ )+K ∂tτ−B(∂x +u∂v)2(χ−uξ ) = 0

η = (∂x +u∂v)(χ−uξ ). (44)

8.3 Construction of invariant BDO

Invariants and invariantBDO for the full equivalence group can be constructed,
by successively enlarging subgroups (42) (a), (a,b), . . . , (a,b,c,d,e) as per theory
described by Kogan [17]. At each step the following elements are constructed:

• Scalar differential invariants.

• InvariantBDO and vector field components, along with structure relations of
theBDO.

• Classifying systemC in invariant form.

• Symmetry system in invariant form.

To avoid trivialities, note that a simple time reflection (42e) ensures thatB> 0, and
hence has a real square root.
Subgroups (a,b,c)Carrying out the above is straightforward for subgroups (a), (b),
(c). We find a scalar invariantL

L =
pu− 1

2 p2

B2 (45)

and an immediate case splitting on the quantityqu(= Kuu). If qu = 0 then no other
invariant exists. Ifqu 6= 0, a simple reflection (42d) ensures that wlogqu > 0, and
we assume this has been done. A second invariant is then

I = quB−3/2. (46)

An invariantBDO Λ is:

Λ1 = B1/2(∂x +u∂v) Λ2 = B−1/2(2∂v + p(∂x +u∂v)
)

Λ3 = ∂t −K∂v +q(∂x +u∂v) Λ4 = 1
B∂u, (47)
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and vector field componentsλ :

λ 1 =−1
2B−1/2(p(χ +Kτ−uξ )−2(ξ −qτ)

)
λ 3 = τ

λ 2 = 1
2B1/2(χ +Kτ−uξ ) λ 4 = Bη . (48)

Case 1.qu > 0.
All derivatives below represent differentiation with respect toBDO Λ (47). The
classifying systemC (43) is enlarged via (45,46) to non-commutativeRIF-form:

f,` = 0 for f = B,K, p,q,L, I ; ` = 1,2,3 (49a)

B,4 = p BK,4 = q p,4 = BL+ 1
2

p2

B
q,4 = B1/2I (49b)

B > 0 I > 0 (49c)

Symmetry systemS (44) becomes

λ 3
,1 = 0 λ 1

,1 = 1
2λ 3

,3 λ 2
,11 = λ 2

,3 λ 4 = 2λ 2
,1

λ 3
,2 = 0

λ 3
,4 = 0 λ 1

,4 =−Lλ 2− Iλ 3 λ 2
,4 =−1

2λ 1 (50)

In this beautiful form only two terms have nonconstant coefficients, and the sim-
plicity of structure of symmetry system (44) is revealed.

Integrability conditions of (50) can be found with the help of structure relations
(reduced moduloC ):

[Λ1,Λ4] =−1
2Λ2, [Λ2,Λ4] =−LΛ1, [Λ3,Λ4] =−IΛ1 (51)

Case 2.qu = 0.
This is the case of equations equivalent to diffusion equationsK = 0. The BDO

Λ (48) still serves here. The classifying systemC amounts to removing the equa-
tions for I from (49a), settingI = 0 in (49b) and droppingI > 0 from (49c). The
symmetry systemS is (50) withI set to 0, similarly for structure relations (51).
(d) Scaling group – convectionSo far, only subgroups (42a,b,c) have been ac-
counted for. The scaling subgroup (42d) acts on the invariantsL (45), I (46) andΛ
(47) by

Λ′1 = aΛ1, Λ′2 = aΛ2, Λ′3 = a2Λ3, Λ′4 = Λ4

L′ = L, I ′ = aI

Case 1 (cont.).I 6= 0. The quantityL (45) is an invariant of the enlarged subgroup
(42a,b,c,d). An additional invariant is

M = Λ4 I (52)
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An invariantBDO denoted byΓ exists, with corresponding vector field components
ζ :

Γ1 = I−1Λ1 Γ2 = I−1Λ2 Γ3 = I−2Λ3 Γ4 = Λ4

ζ 1 = Iλ 1 ζ 2 = Iλ 2 ζ 3 = I2λ 3 ζ 4 = λ 4 (53)

With respect to thisBDO Γ, classifying systemC (49) is updated via (52) to include
the equations

L,` = I,` = M,` = 0 for ` = 1,2,3 (54a)

I,4 = I M I > 0 (54b)

In addition,C contains theB,K, p,q equations from (49a,49b) (but rewritten in
terms ofΓ). These equations are present in all versions of our classifying systems,
and have four associated parametric derivativesB,K, p,q. From now on we decline
to write them explicitly.

Symmetry systemS (50) becomes

ζ 3
,1 = 0 ζ 1

,1 = 1
2ζ 3

,3 ζ 2
,11 = ζ 2

,3 ζ 4 = 2ζ 2
,1

ζ 3
,2 = 0

ζ 3
,4 = 2Mζ 3 ζ 1

,4 = Mζ 1−Lζ 2−ζ 3 ζ 2
,4 =−1

2ζ 1 +Mζ 2 (55)

The structure relations ofΓ (reduced moduloC (54)) are

[Γ1,Γ4] =−1
2Γ2 +MΓ1, [Γ2,Γ4] =−LΓ1 +MΓ2, [Γ3,Γ4] =−Γ1 +2MΓ3

(56)
(e) Scaling group – diffusionThe final subgroup (42e) of the equivalence group
acts onΛ, L, I as follows:

Λ′1 = b−1/2Λ1 Λ′2 = b−3/2Λ2 Λ′3 = b−1Λ3 Λ′4 = b−1Λ4

L′ = b−2L I ′ = b−3/2I (57)

We takeb > 0 here so as to preserve the conditionB > 0. Cases 1. (I 6= 0) and 2.
(I = 0) from above are further split by this subgroup action.
Case 1. (cont.).I 6= 0.

The action of (42e) onΓ, L, M is:

Γ′1 = bΓ1 Γ′2 = Γ2 Γ′3 = b2Γ3 Γ′4 = b−1Γ4

L′ = b−2L M′ = b−1M (58)

The calculation splits into two subcases, depending whetherL vanishes.
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Subcase 3.I 6= 0, L 6= 0. In this subcase of Case 1, invariants of the whole group
(42) exist. The scalar invariants are

P = |L|−3/2Γ4L Q = M|L|−1/2 σ = sgnL (59)

The signσ is genuinely invariant, so long as transformations are real-valued. An
invariantBDO Σ and associated vector field componentsβ exist:

Σ1 = |L|1/2Γ1 Σ2 = Γ2 Σ3 = LΓ3 Σ4 = |L|−1/2Γ4

β 1 = |L|−1/2ζ 1 β 2 = ζ 2 β 3 = L−1ζ 3 β 4 = |L|1/2ζ 4. (60)

Classifying systemC (54) is modified to

L,` = I,` = P,` = Q,` = 0 for ` = 1,2,3 (61a)

I,4 = I Q L,4 = |L|P (61b)

where derivatives are with respect toBDO Σ. The note after eq.(54) still applies.
Symmetry system (55) becomes

β 3
,1 = 0, β 1

,1 = 1
2β 3

,3, β 2
,11 = σβ 2

,3, β 4 = 2β 2
,1

β 3
,2 = 0, β 2

,4 =−1
2β 1 +Qβ 2

β 3
,4 = (2Q−σP)β 3 β 1

,4 = 1
2(2Q−σP)β 1−σβ 2−σβ 3

(62)

The structure relations ofΣ (reduced moduloC (61)) are

[Σ1,Σ4] = 1
2(2Q−σP)Σ1− 1

2Σ2 [Σ2,Σ4] =−σΣ1 +QΣ2

[Σ3,Σ4] =−σΣ1 +(2Q−σP)Σ3 (63)

Subcase 4.I 6= 0, L = 0. Returning to (58), this subcase of Case 1 gives a case
splitting onM.
Subcase 5.I 6= 0, L = 0, M 6= 0. For this subcase of Subcase 4, invariants of the
whole group (42) exist. A scalar invariant is

R= M−2 Γ4M. (64)

An invariantBDO Ξ and associated vector field componentsξ are:

Ξ1 = M Γ1 Ξ2 = Γ2 Ξ3 = M2 Γ3 Ξ4 = M−1 Γ4

ξ 1 = M−1 ζ 1 ξ 2 = ζ 2 ξ 3 = M−2 ζ 3 ξ 4 = M ζ 4. (65)

Classifying systemC (54) is updated to

I,` = M` = R,` = 0 for ` = 1,2,3. (66a)

I,4 = I M,4 = M R I > 0 (66b)
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where derivatives are with respect toBDO Ξ and the note from (54) applies. Sym-
metry system (55) becomes, with respect toΞ,

ξ 3
,1 = 0 ξ 1

,1 = 1
2ξ 3

,3 ξ 2
,11 = ξ 2

,3 ξ 4 = 2ξ 2
,1

ξ 3
,2 = 0 (67)

ξ 3
,4 = 2(1−R)ξ 3 ξ 1

,4 = (1−R)ξ 1−ξ 3 ξ 2
,4 =−1

2ξ 1 +ξ 2

The structure relations ofΞ (reduced moduloC (66)) are

[Ξ1,Ξ4] =−1
2Ξ2 +(1−R)Ξ1 [Ξ2,Ξ4] = Ξ2

[Ξ3,Ξ4] =−Ξ1 +2(1−R)Ξ3 (68)

Subcase 6.I 6= 0, L = 0, M = 0.
For this subcase of Subcase 4., we retain theBDO Γ (53). Note that the conditions
L = 0, M = 0, I > 0 gives the diffusion convection equations which are equivalent
to Burgers’ equationB(u) = 1, K(u) = 1

2u2. These equivalent systems include
an equationB(u) = u−2, K(u) = u−1 analysed by Fokas and Yortsos [11]. It is
interesting that theG -invariant BDO calculations pick this out as a singular case
even though the Cole-Hopf linearizing transformation that takes Burgers’ to the
heat equation is not in the equivalence group (42), and hence not detected.
Case 2. (cont.)I = 0.
The action of scaling group (42e) onΛ is given by (57). WithI = 0, the calculation
splits onL.

Subcase 7.I = 0, L 6= 0.
This subcase of Case 2 picks out those diffusion equations which are genuinely
nonlinear in the sense that they are not equivalent to the linear heat equation via
(42).

Scalar invariants of the group action exist:

P = |L|−3/2Λ4L σ = sgnL. (69)

ThisP is the same as (59), merely rewritten in new notation.
An invariant set of DO denoted byΩ and vector field components denoted by

ω are:

Ω1 = |L|−1/4Λ1 Ω2 = |L|−3/4Λ2 Ω3 = |L|−1/2Λ3 Ω4 = |L|−1/2Λ4

ω1 = |L|1/4λ 1 ω2 = |L|3/4λ 2 ω3 = |L|1/2λ 3 ω4 = |L|1/2λ 4. (70)

With respect to thisBDO Ω, the classifying system (49) becomes after adjoiningP
(69)

L,` = P,` = 0 for ` = 1,2,3; L,4 = σ LP (71)
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where the comment after (54) again applies. Symmetry systemS (50) becomes

ω3
,1 = 0 ω1

,1 = 1
2ω3

,3 ω2
,11 = ω2

,3 ω4 = 2ω2
,1

ω3
,2 = 0

ω3
,4 = 1

2σPω3 ω1
,4 = 1

4σPω1−σω2 ω2
,4 =−1

2ω1 + 3
4σPω2 (72)

The structure relations ofΩ, reduced modulo (71) are

[Ω1,Ω4] = 1
4σPΩ1− 1

2Ω2 [Ω2,Ω4] =−σΩ1 + 3
4σPΩ2

[Ω3,Ω4] = 1
2σPΩ3 (73)

Subcase 8.I = 0, L = 0.
This subcase of Case 2 picks out diffusion convection equations that are equiv-

alent to the linear heat equationB = 1, K = 0. This includes the equationB = u−2

studied by [36, 3] and found to be equivalent to the linear heat system. In this case
the linearizing transformation is in the equivalence groupG (42), so it is expected
that this equation be picked out as singular.

8.4 Completion to non-commutativeRIF -form

So far we have an incomplete classification tree, as shown in Figure 1. For each leaf
of this tree we now complete the defining system to non-commutativeRIF-form,
giving rise to further splittings. Note that three common translation symmetries
(42a) are always present, and we do not present results for any branch with only a
three-dimensional solution space.
Subcase 3.I 6= 0, L 6= 0.
We have symmetry systemS (62) and classifying systemC (61), referred toΣ.
The ranking is as follows:

(a) Rank any derivative ofP or Q lower than any derivative of anyβ i .

(b) If tied after (a), rank any derivative ofβ 1,β 2,β 3 lower thanβ 4

(c) If tied after (b), rank by order of derivative.

(d) If tied after (c), rank lexicographicallyβ 3 ≺ β 2 ≺ β 1 andP≺Q.

(e) If tied after (d), rankθ i
α1
≺ θ i

α2
lexicographically by theα ’s.

According to Proposition 4.2, conditions (a,b,c) ensure this is a positive ranking
(Definition 4.1). Case splittings arising during the completion process show that for
symmetry beyond the minimal translations (42a), it is necessary thatP,4 = Q,4 = 0,
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B > 0, Λ4 := 1
B ∂u

L := BBuu−3/2B2
u

B4

I := KuuB−3/2

M := Λ4I/I

I 6=0 I=0

P := |L|−3/2Λ4L
BDO: Ω

BDO: Λ

L 6=0 L=0

P := |L|−3/2Λ4L

Q := M|L|−1/2

BDO: Σ

L 6=0 L=0

R := M−2Λ4M
BDO: Ξ

BDO: Γ

M 6=0 M=0

Figure 1: Preliminary classification tree for potential diffusion convection system
(40). Branchings are on the basis of whether or not particular invariantBDO exist
whereBDO = Basis of Differential Operators

so that (from (61a))P,Q are constants. In this case, the systemS ∪C reduces to
the non-commutativeRIF-form (61) and

β 3
,1 = 0 β 2

,11 = 0 β 1
,1 =−(2Q−σP)β 2

,1

β 3
,2 = 0 β 2

,2 =−2Qβ 2
,1 β 1

,2 = 2σβ 2
,1 β 4 = 2β 2

,1

β 3
,3 =−2(2Q−σP)β 2

,1 β 2
,3 = 0 β 1

,3 = 2σβ 2
,1

β 3
,4 = (2Q−σP)β 3 β 2

,4 =−1
2β 1 +Qβ 2 β 1

,4 = 1
2(2Q−σP)β 1−σβ 2−σβ 3

(74)
The four parametric derivativesβ 1, β 2, β 3, β 2

,1 give a 4-parameter symmetry group
(§6). Application of the method (§7) for finding structure constants gives a Lie
algebra of symmetry operatorsY1, Y2, Y3, Y4 with commutation relations

[Y1,Y4] =−(2Q−σP)Y1 +Y2 [Y2,Y4] = 2σY1−2QY2

[Y3,Y4] = 2σY1−2(2Q−σP)Y2

Subcase 5.I 6= 0, L = 0, M 6= 0.
Applying the non-commutative differential elimination method to system (67,66)
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with BDO Ξ (65) (and ranking similar to above) shows that additional symmetry
only arises only ifR,4 = 0, in which case a non-commutative rif form is:

ξ 3
,1 = 0

ξ 3
,2 = 0

ξ 3
,3 = 2(1−R)ξ 2

,2

ξ 3
,4 = 2(1−R)ξ 3

ξ 2
,1 =−1

2ξ 2
,2

ξ 2
,22 = 0
ξ 2

,3 = 0
ξ 2

,4 =−1
2ξ 1 +ξ 2

ξ 1
,1 = (1−R)ξ 2

,2

ξ 1
,2 = 0

ξ 1
,3 =−ξ 2

,2

ξ 1
,4 = (1−R)ξ 1−ξ 3

ξ 4 =−ξ 2
,2

(75)

The parametric derivativesξ 1, ξ 2, ξ 3, ξ 2
,2 give a four-dimensional symmetry alge-

bra with commutation relations

[Y1,Y4] = (1−R)Y1− 1
2Y2, [Y2,Y4] = Y2, [Y3,Y4] =−Y1 +2(1−R)Y3

Subcase 6.I 6= 0, L = 0, M = 0.
No further case splittings arise for this case, which includes Burgers’ equation

and Fokas-Yortsos’ equation [11]. The Cole-Hopf transformation connects these
diffusion-convection equations to the linear heat system, and the non-commutative
RIF-form has infinitely many parametric derivatives. It is not reproduced here.
Subcase 7.I = 0, L 6= 0.

These are the genuinely nonlinear diffusion equations. Completion of system
(72,71) (with ranking similar to above) yields a case splitting onP,4. If P,4 6= 0 the
non-commutativeRIF-form is

ω3
,1 = 0

ω3
,2 = 0

ω3
,3 = 2ω2

,2

ω3
,4 = 1

2σPω3

ω2
,1 = 0

ω2
,22 = 0

ω2
,3 = 0

ω2
,4 =−1

2ω1 + 3
4σPω2

ω1
,1 = ω2

,2

ω1
,2 = 0

ω1
,3 = 0

ω1
,4 = 1

4σPω1−σω2

ω4 = 0

(76)

The parametric derivativesω1, ω2, ω3, ω2
,2 give the four-dimensional symmetry

algebra common to all diffusion systems. The commutation relations are

[Y1,Y4] = Y1, [Y2,Y4] = Y2, [Y3,Y4] = Y3.

If P,4 = 0, we obtain the non-commutativeRIF-form

ω3
,1 = 0

ω3
,2 = 0

ω3
,3 = 2σPω2

,1 +2ω2
,2

ω3
,4 = 1

2σPω3

ω2
,11 = 0

ω2
,12 = 0

ω2
,22 = 0

ω2
,3 = 0

ω2
,4 =−1

2ω1 + 3
4σPω2

ω1
,1 = σPω2

,1 +ω2
,2

ω1
,2 = 2σω2

,1

ω1
,3 = 0

ω1
,4 = 1

4σPω1−σω2

ω4 = 2ω2
,1

(77)
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The parametric derivativesω1, ω2, ω3, ω2
,1, ω2

,2 give a five-dimensional symmetry
algebra, with structure relations

[Y1,Y4] = 1
2Y1 [Y1,Y5] = Y2 [Y2,Y4] = 1

2Y2

[Y2,Y5] = 2σY1−σPY2 [Y3,Y4] = Y3

Subcase 8.I = 0, L = 0
There is no further case splitting. The non-commutativeRIF-form for (50) is

λ 3
,1 = 0

λ 3
,2 = 0

λ 3
,4 = 0

λ 3
,33 = 0

λ 2
,4 =−1

2λ 1

λ 2
,11 = λ 2

,3

λ 2
,12 =−1

2λ 1
,3

λ 2
,22 = 1

2λ 1
,3

λ 2
,23 = 0

λ 1
,1 = 1

2λ 3
,3

λ 1
,2 = 0

λ 1
,4 = 0

λ 1
,33 = 0
λ 4 = 2λ 2

,1

(78)

There are infinitely many parametric derivatives:λ 1, λ 3, λ 1
,3, λ 2

,2, λ 3
,3, and the se-

quencesλ 2, λ 2
,3, λ 2

,33,. . . andλ 2
,1, λ 2

,13, λ 2
,133,. . . . The symmetry algebra is therefore

infinite-dimensional: this subcase consists of equations which can be mapped to
the heat equation by an equivalence transformation, so its symmetry properties can
be regarded as known (e.g. [27, p.82]).

8.5 Summary of classification

The calculations of this section yield the classification tree shown in Figure 2. In
this compact diagram is present all the information required to decide the symmetry
properties of a diffusion convection potential system. The elegance of the result
is apparent when compared with the classifying equations produced by the ‘raw’
version of Riquier–Janet [29].

In Figure 2, all the splittings are (by construction) invariant under the action of
the equivalence group. Hence two equations connected by an equivalence trans-
formation always occur on the same branch. This greatly cuts down on spurious
splittings. Note that equations occurring on different branches of the tree could be
equivalent with respect to a transformationnot in the group (42). Indeed Burgers’
and linear heat equations occur on different branches, yet are connected by the
Cole-Hopf transformation.
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9 Transformations and Useful Forms of the Output Sys-
tems

We have shown that the non-commutativeRIF-form of C ∪S is sufficient for find-
ing structure and dimension of Lie symmetry algebras of classes ofPDE. However
for some applications, such as finding explicit group invariant solutions, further
processing and integration of these non-commutativeRIF-forms may be needed.
We briefly consider this topic, using results which are for the most part simple
consequences of the classical Frobenius theory.

Suppose that we have a non-commutativeRIF-form with a finite set of paramet-
ric derivations ParM = {w1, ...,wk}. Then consider the unique formal power series
solution aboutx0 with initial dataw1(x0) = w1

0, ...,w
k(x0) = wk

0 atx0, with the initial
values satisfying the leading non-linearPDEN . For i = 1, ...,n anyD̃iw` ∈PrinM
can be completely reduced byM to an analytic functionf `

i of {x}∪ParM such
thatD̃iw` = f `

i . In addition the leading non-linearPDE have formg= 0, whereg is
a (vector) function of{x}∪N : such that

M = {D̃iw
` = f `

i }, N = {g = 0} (79)

It follows from (6) that (79) is equivalent to

M ′ = {Diw
` = ∑

j

bi j (x,w) f `
j }, N ′ = {g = 0} (80)

whereb(x,w) is the inverse matrix ofA(x,u), andu,g are expressed in terms of
{x}∪ParM .

Any non-trivial compatibility conditions of (80) would contradict the existence
and uniqueness theorem for the non-commutativeRIF-form (79) so (80) is in com-
mutativeRIF-form. By the standard commutative (Frobenius) theory it has a formal
power series solution with the given data, which is analytic atx0.

Directly from the classical Frobenius Theory it follows that the integration of
M ′ ∪N ′ is equivalent to integrating a system of differential algebraic equations
along analytic curvesx(τ) = xi(τ), with x(0) = x0 (e.gxi(τ) = aiτ +xi

0, 0≤ τ ≤ 1).

In particular dẁ
dτ = ∑i

dxi

dτ
∂w`

∂xi which from (80) yields the system of (index0 or 1)
differential algebraic equations on a manifoldN ′:

{dẁ
dτ

= ∑
i

dxi

dτ ∑
j

bi j (x,w) f `
j }, N ′ = {g = 0} . (81)
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10 Concluding Remarks

We have given a method for classifying symmetry groups for a class of differential
equations. OurG -invariant classification is not only more satisfying theoretically,
but also obviates the problem of expression swell. The example presented in§8
demonstrates the usefulness of our approach on nontrivial problems.

The method here resembles in some respects Cartan’s method of equivalence
[8, 13, 24], in that equations are being cast in aG -invariant form and cases with
special symmetry are being picked out. However, the Cartan method will exhibit
only those symmetries which are part ofG . To perform symmetry classification by
the Cartan method for classesF of PDE arising in practice, one has two choices.
One could enlarge the classF to one that has a suitably largeG (e.g. so thatG is the
pseudogroup of all point transformations); the Cartan method would then provide a
complete symmetry classification for the enlargedF . Unfortunately this choice can
lead to overwhelming computational difficulties. Alternatively, one could apply the
Cartan method to thegivenclassF and its equivalence groupG . Further calcula-
tions would then be needed for a full classification of point or contact symmetries
for the classF . This mirrors our two-part process of first writing the symmetry
systemS in G -invariant form, and then completing to find the symmetry algebras
L f .

In §9 we indicated how the output non-commutativeRIF-forms can be easily
converted to commutativeRIF-forms which open these systems to the application
of traditional commutative packages for solvingPDE. The systems can also be
transformed to equivalent systems ofODE on a manifold (differential algebraic
equations), possessing subsystems which areG -invariant. It will be interesting to
explore to what extentG -invariant numerical (geometric) integrators [14, 7], can
be fruitfully applied to such systems.

Our work takes place against a backdrop of revitalized work in invariantization
methods such as Cartan’s method of moving frames and its generalizations. In
particular see [24] and the review paper [26], and especially the recent work [9, 10]
which provides a foundation for flexible and powerful computational approaches
to moving frames theory. Such approaches require the development of automatic
Gröbner-type methods for manipulating non-commutative operators.

The non-commutative reduction ofPDE used here was first applied in Lisle’s
thesis [19] but was deficient in several respects. It lacked an existence-uniqueness
result, and did not give an adequate treatment of the generally non-linear classi-
fication systems. The difficulty of establishing a non-commutative Gröbner basis
theory for the moving frames case has become apparent since the seminal work of
Mansfield [21], which produces interesting results, but like the less ambitious work
of Lisle, lacks an existence and uniqueness theorem. The work of Lemaire et al.
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[18, 39] remedies the deficiencies of [19] and [12].
We note also that the reduction method is not dependent onG -invariance of the

BDO: correct dimension and structure for symmetry algebrasL f result regardless
of how much or how little invariance is built into theBDO.

Hubert has given differential elimination algorithms [15] for systems of dif-
ferential polynomials using non-commutative derivations. In particular in [15]
she establishes necessary and sufficient conditions for a non-commutative differ-
ential algebra to be isomorphic to a commutative one. She obtains methods for
algorithmically representing the radical of a differential ideal, generated by non-
commutative derivations, generalizing those of [5]. The approach of Lemaire, Reid
and Zhang [18, 39] deals with analytic systems, and is algorithmic for the subclass
of differential polynomials. In the example of§8 we chose to compute with real-
analytic differential equations and group actions and were successful in completing
the calculations (although this is not guaranteed to be algorithmically effective in
general). In actual applications one is often interested in classification up to real-
valued transformations – in some cases a much more difficult task. Indeed symme-
try classification problems are often intrinsically non-polynomial (analytic) since
at their inception (e.g. such as forut = (B(u)ux)x) classical differential algebra may
not directly apply.

An alternative approach, is to embed, if possible, the problem into a complex
differential polynomial one at the onset. If that is successful then after the appli-
cation of effective differential elimination algorithms (such as [18, 39] restricted
to differential polynomials, or that of [15]), the information for the real case is ex-
tracted at the end (also often a non-algorithmic and difficult task). The dichotomies
of analytic versus differential polynomial algebra, and complex versus real com-
putation, raise important questions, for which there is no panacea.
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[8] E. CARTAN, La Méthode du Rep̀ere Mobile, la Th́eorie des Groupes Conti-
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