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AbstractWe describe a method which uses a �nite number of dif-ferentiations and linear operations to determine the Cartanstructure coe�cients of a structurally transitive Lie pseudo-group from its in�nitesimal de�ning equations. If the de�n-ing system is of �rst order and the pseudogroup has no scalarinvariants, the structure coe�cients can be simply extractedfrom the coe�cients of the in�nitesimal system. We give analgorithm which reduces the higher order case to the �rst or-der case. The reduction process uses only di�erentiation andlinear eliminations, for which several well-known algorithmsare available. Our method makes feasible the calculation ofthe Cartan structure of in�nite Lie pseudogroups of symme-tries of di�erential equations. Examples including the KPequation and Liouville's equation are given.1 INTRODUCTIONThis paper is one of a series in which we investigate the de-termination of structure of in�nite Lie pseudogroups. Themain results from the preprint [16] are presented in thepresent paper. Detailed proofs given in [16] will be publishedelsewhere. The objects we study are in�nite Lie pseudo-groups, which are an in�nite-dimensional generalization ofthe concept of a Lie group. Techniques and applications ofLie symmetry methods for pdes can be found in [1, 19].Consider a system of pdes in them variables x = (x1; x2;: : : ; xm), each xi being either an independent or a dependentvariable. For example, for the heat equation uyy = ut, wehave x = (y; t; u). A Lie (point) symmetry operator for sucha system is a di�erential operator of the formL = �i(x) @@xi (1)whose associated 
ow maps every solution of the pdes toanother solution. (We suppress the summation sign overrepeated indices.) The in�nitesimals �i of a symmetry op-erator are found by solving an associated system of (lin-ear homogeneous partial di�erential) de�ning equations for

�(x). De�ning equations are derived by an explicit algo-rithm [1, 19], for which many computer implementationsare available [11]. Although heuristic programs for solvingin�nitesimal de�ning equations exist [11], there is no algo-rithm which always succeeds in this solution process.Symmetry operators (1) span a Lie algebra [1, 19], thatis, a vector space closed under the skew-symmetric commu-tator bracket [P;Q] := PQ�QP: (2)If P = P j(x) @@xj , and Q = Qj(x) @@xj , their commutatorR = [P;Q] = Rj(x) @@xj is thusR = �P i @Qj@xi �Qi @P j@xi � @@xj : (3)If a �nite-dimensional Lie algebra is resolved with respectto basis L1;L2; : : : ;LN , the commutation relations become[Li;Lj ] = CkijLk; 1 � i; j � N ; (4)with Ckij being the structure constants of the algebra [1, 19].Symmetry methods for pdes frequently require structuralinformation provided by Ckij .The conventional method for calculating structure con-stants is to (a) integrate the in�nitesimal de�ning equationsand (b) substitute the resulting basis of operators into (2)to �nd Ckij . This process is not strictly algorithmic sinceno method is guaranteed to successfully perform step (a).However, in [25] we showed how Ckij can be calculated fromthe in�nitesimal de�ning system without solving it, by aprocess involving only di�erentiation and linear substitu-tions. This method has been implemented in the symboliclanguage Maple [28].However not all Lie symmetry algebras are of �nite di-mension [1, 19, 20]. The generalization of Lie theory to`in�nite Lie groups' was proposed by Lie [15], and broughtto fruition by Vessiot [31] and especially by Cartan [2, 3, 5].It is based on working directly with the de�ning system.Although Lie advocated in�nitesimal methods, he did notsucceed in producing a structure theory similar to that pro-vided by the structure constants Ckij (4) for �nite Lie groups.Cartan [2] succeeded in generalizing the Ckij , but his meth-ods are not suited to symbolic calculation of symmetries,because he does not work with the in�nitesimal de�ningequations. In the present paper we describe methods similarto those in [25] which permit calculation of Cartan's struc-ture coe�cients from the in�nitesimal de�ning equations,using only di�erentiation and linear algebra. Our methods



are thus suitable for symbolic computatation, and we havepreliminary workingMaple code for most of the steps. Onepart of the process is described in detail here, other resultsbeing just stated. For the full suite of methods we refer tothe preprint [16].2 INFINITE-DIMENSIONAL STRUCTURE THEORYWe de�ne a Lie algebra system as a set of local vector �elds�i@zi such that (a) the �i are local solutions of a systemof linear homogeneous pdes with analytic coe�cients, and(b) the commutator of two such local solutions is also (if it isde�ned) a solution. The locality of the solutions means thatthe bracket operation is not de�ned for all pairs of vector�elds, so a Lie algebra system is not (quite) a Lie algebra.A linear homogeneous system of de�ning equations can bebrought to involutive form [21, 18] by a �nite process involv-ing only di�erentiations and linear substitutions. (Involutiveimplies that all integrability conditions are included in thesystem; see [21] for the precise de�nition.) Hence we takeas our starting point the in�nitesimal de�ning equations ininvolutive form. A Lie algebra system is transitive if underthe 
ows generated by its local vector �elds, a point z0 canbe mapped to every point in a neighbourhood of z0. Transi-tivity is detected from the involutive de�ning system by theabsence of 0-th order (algebraic) equations.Each local vector �eld in a Lie algebra system is asso-ciated with a 1-parameter local Lie group of local transfor-mations of z. The set of local transformations formed by�nite composition of these 1-parameter local groups consti-tutes a Lie pseudogroup [30]. The transformations in a Liepseudogroup satisfy a (generally nonlinear) system of de�n-ing equations. Cartan [2, 5] took these pseudogroup de�ningequations in involutive form as his starting point, and ex-hibited an algorithmic procedure for calculating a numberof 1-forms !i invariant under the action of the pseudogroup.Exterior di�erentiation of !i then yieldsd!k = aki��� ^ !i � 12 ckij!i ^ !j ; (5)where �� are certain additional 1-forms, invariant modulo!i. The Cartan structure coe�cients are ckij , aki�.If the pseudogroup is of �nite type then aki� are absent, ckijare constant, and the Cartan structure equations reduce tothe Maurer-Cartan equations, which are dual to Lie's com-mutation relations (4). In the in�nite case, nontrivial aki�terms appear and the relationship to (4) is less clear. Cartanrecognized a fundamental distinction between structurallytransitive in�nite Lie pseudogroups, which are isomorphicto a transitive Lie pseudogroup, and the structurally intran-sitive case, where no such isomorphism exists. Structurallyintransitive pseudogroups possess essential invariants whichare present in every realization of the pseudogroup. For in-stance, the pseudogroup X = x, Y = y + f(x) has theessential invariant x. The structurally intransitive case ismuch more di�cult, and we con�ne ourselves to the transi-tive case, where aki�, ckij are constants.Cartan obtained many important results using his struc-ture theory. However, the method is di�cult to apply tosymmetry analysis of di�erential equations. The di�culty isthat Cartan works at the pseudogroup level where the de�n-ing system is nonlinear. Although it is possible to generatesuch a de�ning system for symmetries of a pde(see e.g. [26]),there is currently no e�ective algorithm for reducing the non-linear de�ning system to involutive form (although see [27]).

This is in strong contrast to the availability of many algo-rithms for reducing linear in�nitesimal de�ning systems toinvolutive form [22, 29].The Cartan method of equivalence [3, 4, 7] can also yieldsymmetry pseudogroup structure, but is not suited to sym-metry analysis of particular pdes.Although Cartan [5, p.1335] was sceptical of the possibil-ity of a structure theory based on in�nitesimal methods, Ku-ranishi [13, 14] and Singer and Sternberg [30] eventually de-veloped an in�nitesimal interpretation of Cartan's structuretheory for structurally transitive in�nite Lie pseudogroups(see also [8, 9, 10, 17]). It is by combining this theory withalgorithms for reduction of linear de�ning systems to invo-lutive form that we are able [16] to achieve a constructivealgorithm for calculating Cartan structure coe�cients aki�,ckij from the in�nitesimal de�ning system in the transitivecase. The methods generalize those of [25] for calculatingCkij in the �nite dimensional case.3 REDUCTION OF INFINITESIMAL DEFINING SYS-TEMS TO A FIRST ORDER INVOLUTIVE FORMOur calculation of Cartan structure utilizes a correspon-dence between the the structure equations (5) and commu-tator brackets described by Singer and Sternberg [30]. Ex-ploiting this correspondence requires that the in�nitesimalde�ning system be of �rst order, so our �rst task is to givea method for converting an in�nitesimal de�ning system ofq-th order to one of �rst order.Consider an in�nitesimal de�ning system for the in�nites-imals �(z) with corresponding vector �eld �1@z1+� � �+�p@zpwhich we suppose to be involutive at order q. For the re-mainder of this section, i, j, k, l will be indices rangingbetween 1 and p. If J = (j1j2 � � � jk) is a symmetric multi-index, we use the notation �iJ to represent the partial deriva-tive @k�i=@zj1 � � � @zjk ; the order of J will be denoted byk = #(J).Theorem 1 An analytic in�nitesimal de�ning system canbe constructively transformed to an equivalent �rst order sys-tem which is in involutive form.This result follows from a method of Pommaret [21, p.109,p.161], which constructively reduces a q-th order system ininvolution to an equivalent �rst order system with equiva-lent symbol. An outline of the process is as follows. Firstthe derivatives �lL; 1 � #(L) � q � 1 are relabelled as newdependent variables, and the given system is expressed as a�rst order system with respect to these variables. Certain�rst order di�erential relations between the �lL are then ap-pended to this �rst order system, and the composite systemis shown to be involutive.We next need to show that we can convert the involutive�rst order system to a �rst order de�ning system, i.e. wemust arrange that the dependent variables are componentsof a vector �eld. Our construction is guided by Cartan'smethod for determination of the structure of Lie pseudo-groups, which proceeds from the pseudogroup de�ning sys-tem in �rst order involutive form (i.e. as an involutive sys-tem of 1-forms). Cartan works with the pseudogroup de�n-ing system whose solutions Z = �(z) are the pseudogrouptransformations. In his process he prolongs the pseudogroupaction on z to a pseudogroup action on (z; Z) with trivialaction on Z. That is, a transformation z 7! �(z) prolongsto (z; Z) 7! (�(z); Z). At the in�nitesimal level we prolong



the vector �eld �i@zi to a vector �eld on (z; Z) with triv-ial action on Z, that is to �i@zi +  i@Zi , with  i = 0.Cartan then prolongs the pseudogroup transformations tothe derivatives of Zi up to order q � 1; correspondingly weprolong the vector �eld toZ(q�1) = �i@zi +  i@Zi +  iJ@ZiJ (6)where  i = 0, the  iJ are given by the standard extensionformula [19, p.113], and there is summation on the repeatedindex i and the repeated multi-index J , 1 � #(J) � q � 1.Then Z(q�1) is a vector �eld on the (q � 1)-th order jetbundle with coordinates z; Z; ZlJ . Here the derivatives ofthe Z's are denoted by ZlJ = @nZl=@zj1@zj2 � � � @zjn whereJ = (j1; :::; jn). We wish to show that:Theorem 2 Let L be a Lie algebra system of vector �eldsZ = �i@zi whose in�nitesimal de�ning system is involutiveat order q. Then the prolongation Z(q�1) of Z to (zi; Zi; ZiJ )-space is a Lie algebra system with an in�nitesimal de�ningsystem for �i,  i,  iJ which is involutive at order 1, andwhich is constructively determined.The remainder of this section will be devoted to proving thisresult. Note that the independent variables in the in�nites-imal de�ning system of the original Lie algebra are zi. Forthe prolonged Lie algebra the independent variables in the�rst order de�ning system are (zi; Zi; ZiJ), and the corre-sponding dependent variables �i,  i,  iJ , 1 � #(J) � q� 1.The  lJ are determined in terms of the �i and �lL bythe standard extension formula [19, p.113] which recursivelyde�nes l = 0 lJ;i = Di lJ � �ki ZlJ;k; 0 � #(J) � q � 1;where Di is the total derivative operator with respect to zi:Di = @zi + X#(J)�0 �lJ;i@�lJ : (7)For the vector �eld (6) the required extensions are l = 0 li = Di l � �ki Zlk; lj;i = Di lj � �ki Zlj;k;... lJ;i = Di lJ � �ki ZlJ;k;where J is a symmetric multi-index with #(J) = q � 2.Evaluating the total derivative using (7) the above systembecomes  li = ��ki Zlk; lj;i = ��kj;iZlk + Rlj;i;... lJ;i = ��kJ;iZlk + RlJ;i; (8)where each of the remainders RlK;i depends on �kL;i only for#(L) < #(K).Lemma 3 In a neighbourhood of Zlk = �lk, ZlL = 0, 2 �#(L) � q � 1 the relations (8) de�ne an invertible linearmap from �lL to  lL.

Proof: First note that the system (8), including the re-mainder terms, is indeed linear in �lL. Secondly the highestorder terms �lL (i.e. those with maximum#(L)) occur in theexplicitly displayed terms in (8), so that the equations havea block triangular structure. When Zlk = �lk the diagonalblocks are identity matrices, and relations (8) reduce to li = ��li ; lj;i = ��lj;i + Rlj;i;... lJ;i = ��lJ;i + RlJ;i;which are clearly invertible. Since the coe�cients of �lL in(8) are analytic, invertibility holds in some neighbourhoodof Zlk = �lk.The main Theorem 2 now follows easily:Proof: Let S denote the �rst order involutive system withindependent variables zi obtained by the transformation ofPommaret from the q-th order involutive in�nitesimal de�n-ing system. Let T denote S augmented with the equations@ZlJ �i = 0; @ZlJ �iL = 0;1 � #(L) � q � 1; 0 � #(J) � q � 1; (9)(Thus the system T has independent variables zi, ZiJ , anddependent variables �iJ , with 0 � #(J) � q � 1.) Since thesystem S has no ZiJ , the integrability conditions betweenthe new equations and S are trivial, and the system T isalso �rst order involutive.The map(zi; Zi; ZiJ ; �i; �iJ) 7! (zi; Zi; ZiJ ; �i;  iJ);1 � #(J) � q � 1induced by (8) is an analytic invertible change of coordi-nates on the space of independent and dependent variablesof the system T , by virtue of Lemma 3. Both involutivityand the order of a system are geometric properties whichare preserved under invertible changes of coordinates. Con-sequently the system obtained by making the change of co-ordinates above and adjoining the conditions  l = 0 is �rstorder and involutive, and Theorem 2 is proved.Note that the variables Zi play a trivial role in the de�ningsystem for the prolonged vector �eld Z(q�1). Their in�nites-imals  i vanish, and it is readily con�rmed that all  iJ areindependent of Zi. We retain them only for formal conve-nience.We illustrate the steps in this reduction to �rst orderde�ning system for a simple example.Example 4 Consider the in�nitesimal de�ning system�zz = 0; (10)which is in involutive form. To reduce to Pommaret's �rstorder involutive form we introduce the new dependent vari-able �1 := �z. The Pommaret form of the de�ning system istherefore �z = �1; (�1)z = 0;(system S above). The augmented system T is S togetherwith �Z = 0; (�1)Z = 0�Z1 = 0 (�1)Z1 = 0:



The extension formulae (8) become 1 = ��1Z1which can be inverted in a neighbourhood of Z1 = 1 to yield�1 = � 1=Z1:Hence we have explicitly constructed the map (z; Z; Z1; �; �1)7! (z; Z; Z1; �;  1). Applying this map to system T andafter a little simpli�cation we obtain the required �rst orderinvolutive system = 0�z = � 1=Z1 �Z = 0 �Z1 = 0( 1)z = 0 ( 1)Z = 0 ( 1)Z1 =  1=Z1which is equivalent to the original de�ning system (10).4 DETERMINATION OF CARTAN STRUCTURE FORFIRST ORDER INVOLUTIVE DEFINING SYSTEMSWITH NO INVARIANTSWith the form of a �rst order in�nitesimal de�ning systemnow achieved, we describe the the method for extractingCartan structure from it. If the system contains 0-th or-der (i.e. algebraic) equations, then the Lie pseudogroup hasscalar invariants. In [16] an in�nitesimal method is pre-sented for diagnosing whether these invariants are essential.In the case where they are not essential, the invariants maybe assigned constant values, thereby restricting the pseudo-group action to an orbit. An in�nitesimal method for doingthis is also described in [16]. Here we consider only thesimplest case, where there are no invariants, so that thepseudogroup is transitive, and there are no 0-th order de�n-ing equations.Suppose the partial derivatives of a system are rankedby total order of derivative. Gauss reduction of such sys-tems with respect to this ranking yields a solved-form: thelhs derivatives (called principal derivatives) are expressedas functions of non-principal (or parametric) derivatives. Ofparticular interest to us will be the set of parametric andprincipal derivatives of k-th order, which we denote by Pkand Pk respectively.To make the connection with Cartan structure we intro-duce new variables �� de�ned by@�k@xi = ��; � = 1; : : : ;#(P1); (11)where @�k@xi 2 P1 (i.e. the @�k@xi are �rst order parametricderivatives). We then eliminate the �rst order parametricsfrom the involutive form of the in�nitesimal de�ning sys-tem by using (11), and append equations (11) to the Gaussreduced involutive form to obtain the in�nitesimal de�ningsystem as@�k@xi = nXj=1 bkij(x)�j + #(P1)X�=1 Aki�(x)��;for i; k = 1; : : : ; n: (12)Note that cases @�k@xi 2 P1, and @�k@xi 2 P1 (=all nonparamet-ric �rst order derivatives), are covered. In particular when@�k@xi 2 P1, then bkij = 0, for j = 1; : : : ; n and Aki� = ��� sothat (12) yields (11). The main result of this section is

Proposition 5 Let x0 be a nonsingular point for the in-�nitesimal de�ning system (12) in involutive form. Let aki� =Aki�(x0), and ckij = bkij(x0)� bkji(x0): (13)Then aki�, ckij can be identi�ed with those in the Cartan struc-ture equations (5).The proof is presented in [16]. It relies on a correspondencebetween Cartan structure coe�cients and Taylor series ex-pansions of vector �elds described in [30].Example 6 Consider the Lie algebra system of vector �eldsX = �@x + �@y on R2 n fy = 0g with �rst order involutivein�nitesimal de�ning system�x = 1y � �x = ��y = 0 �y = 1y�: (14)(where x � x1, y � x2, � � �1, � � �2). The parametricderivatives of order 0 are �, �. The only parametric �rstorder derivative is �x so we have introduced the new variable� as described by (11). We construct ckij and aki� accordingto Proposition 5.For system (14) we have n = 2, � = 1, and comparing(12) with (14) we see thatbkij = � 1y for (i; j; k) = (1; 2; 1) or (2; 2; 2)0 otherwiseAki� = � 1 for (i; �; k) = (1; 1; 2)0 otherwise:Choosing the initial point x0 = (x0; y0) = (0;� 12 ) for con-venience, Proposition 5 yieldsc112 = b112(x0)� b121(x0) = 1=y0 = �2c212 = b212(x0)� b221(x0) = 0aki� = Aki�(x0) = � 1 for (i; �; k) = (1; 1; 2)0 otherwise:Hence from (5) the Cartan structure equations ared!1 = !1 ^ !2d!2 = �1 ^ !1: (15)Although we have only presented the simplest case here,the additional results described in [16] permit us to statethe followingTheorem 7 Given an analytic in�nitesimal de�ning sys-tem of the Lie pseudogroup of symmetries of a system ofPDEs then it is possible to constructively determine(a) whether the Lie pseudogroup is structurally transitive,(b) the Cartan structure of the Lie pseudogroup, if it isstructurally transitive.5 EXAMPLES OF LIE SYMMETRY PSEUDOGROUPSTRUCTUREFor symmetry analysis of pdes, the implication of the aboveresults is that we can pass from a given pde to its in�nites-imal de�ning system, thence to involutive form, thence to



�rst order involutive form, and �nally to the Cartan struc-ture coe�cients, using only di�erentiation and linear alge-bra at each step. Our procedure is therefore suitable forcomputer algebra implementation, and we have preliminaryMaple code for the algorithms in this paper.We now give the result of applying our algorithms tosome pdes of physical interest known to possess in�nite sym-metry pseudogroups. First the in�nitesimal de�ning systemfor the point symmetry vector �elds is derived by the usualmethod [1, 19, 20]; for this we used the Maple program [12].Next the de�ning system is brought to involutive form. Weused the program [28] for this; an involutivity check showedeach system to be involutive at second order. Next a testfor structural transitivity is applied. For the examples be-low, the de�ning systems contained no 0-th order equationsso transitivity is automatic. A program implementing theprocess of x3 is then applied to transform the systems to�rst order involutive de�ning systems. Finally code for themethods of x4 automatically yielded their Cartan structure.Example 8 (Liouville's equation) Liouville's equationuxy = euadmits an in�nite Lie pseudogroup of symmetries with 2arbitrary functions of 1 variable.If we seek symmetry vector �elds of the form�@x + �@y + �@uthen we obtain the in�nitesimal de�ning system�xy = 0 �yy = ��y�x = ��y � � �x = 0�y = 0 �u = 0�u = 0 �u = 0The above system is in involution once all the �rst deriva-tives of the �rst order equations are adjoined. After reduc-ing to �rst order as described in x3 the method of x4 yieldsCartan structure equationsd!1 = �!1 ^ !6d!2 = �!2 ^ !3 + !2 ^ !6d!3 = �!1 ^ !4 � !2 ^ !5d!4 = �1 ^ !1 + !4 ^ !6d!5 = �2 ^ !2 � !3 ^ !5 � !5 ^ !6d!6 = �!1 ^ !4In [24] we also derive the above structure equations using adi�erent method.Example 9 (KP equation) The Kadomtsev-Petviashviliequation uyy + �ut + uxxx + 2uux�x = 0has an in�nite Lie pseudogroup of symmetries depending on3 arbitrary functions of 1 variable. Using our methods we�nd structure equationsd!1 = !1 ^ !8 + 2!3 ^ !9d!2 = �!1 ^ !9 + !2 ^ !82 + 2!3 ^ !4d!3 = 3!3 ^ !82d!4 = �!1 ^ !5 � !2 ^ !6 � !3 ^ !7 � !4 ^ !8

d!5 = �1 ^ !1 + �2 ^ !3 � 2!5 ^ !8 + !6 ^ !9d!6 = ��1 ^ !3 � 3!6 ^ !82d!7 = �2 ^ !1 � �1 ^ !2 + �3 ^ !3 � 2!4 ^ !6� 2!5 ^ !9 � 5!7 ^ !82d!8 = �4!3 ^ !6d!9 = �2!1 ^ !6 + 2!3 ^ !5 + !8 ^ !92In [6] the explicit form of the in�nitesimal generators of sym-metries of the KP equation is given. The generators dependon arbitrary functions and these are used to parametrize thecommutation relations of the algebra. Laurent expansion ofthe generators is used to show that the symmetry algebrahas a Kac-Moody-Virasoro structure. It would be interest-ing to see whether this structure could be determined fromthe Cartan structure given above.Example 10 (Steady boundary layer equations) Thesteady state boundary layer equations [20]uux + vuy + px = uyypy = 0ux + vy = 0have an in�nite Lie pseudogroup of symmetries dependingon one arbitrary function of one variable. Its Cartan struc-ture equations ared!1 = !1 ^ !3 � 2!1 ^ !7d!2 = !1 ^ !4 � !2 ^ !7d!3 = 0d!4 = �!1 ^ !4 � !1 ^ !6 + !3 ^ !4 + !4 ^ !7d!5 = �2!3 ^ !5d!6 = �1 ^ !1 + !3 ^ !4 + 2!3 ^ !6 + 2!4 ^ !7+ 3!6 ^ !7d!7 = 0It is instructive to compare this result with a much morecomplicated result in [25] where the commutation relationsof the in�nite Lie symmetry algebra are parametrized usingarbitrary functions.6 DISCUSSIONThere is a well-developed methodology [1, 19, 20] for using�nite-parameter Lie symmetry groups of di�erential equa-tions. Many of these methods exploit the structure of thesymmetry Lie algebra to simplify calculations. Methods forusing in�nite Lie symmetry pseudogroups also exist [20].However the Cartan structure (5) of such pseudogroups hasscarcely been utilized, partly because it has been virtuallyimpossible to calculate the coe�cients aki�, ckij . We antici-pate that the heuristic-free methods described here shouldmake possible the systematic use of Cartan structure of in-�nite symmetry pseudogroups.H. Goldschmidt (private communication) has suggestedthe possibility of bypassing the reduction to �rst order stageof our process.
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