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Abstract

We describe a method which uses a finite number of dif-
ferentiations and linear operations to determine the Cartan
structure coefficients of a structurally transitive Lie pseudo-
group from its infinitesimal defining equations. If the defin-
ing system is of first order and the pseudogroup has no scalar
invariants, the structure coefficients can be simply extracted
from the coefficients of the infinitesimal system. We give an
algorithm which reduces the higher order case to the first or-
der case. The reduction process uses only differentiation and
linear eliminations, for which several well-known algorithms
are available. Our method makes feasible the calculation of
the Cartan structure of infinite Lie pseudogroups of symme-
tries of differential equations. Examples including the KP
equation and Liouville’s equation are given.

1 INTRODUCTION

This paper is one of a series in which we investigate the de-
termination of structure of infinite Lie pseudogroups. The
main results from the preprint [16] are presented in the
present paper. Detailed proofs given in [16] will be published
elsewhere. The objects we study are infinite Lie pseudo-
groups, which are an infinite-dimensional generalization of
the concept of a Lie group. Techniques and applications of
Lie symmetry methods for PDEs can be found in [1, 19]].
Consider a system of PDEs in the m variables = (z', z?,
.,&™), each 2’ being either an independent or a dependent
variable. For example, for the heat equation uy, = u:, we
have z = (y,t,u). A Lie (point) symmetry operator for such
a system is a differential operator of the form

L=€) s (1)

whose associated flow maps every solution of the PDEs to
another solution. (We suppress the summation sign over
repeated indices.) The infinitesimals &' of a symmetry op-
erator are found by solving an associated system of (lin-
ear homogeneous partial differential) defining equations for

&(x). Defining equations are derived by an explicit algo-
rithm [1, 19], for which many computer implementations
are available [11]. Although heuristic programs for solving
infinitesimal defining equations exist [11], there is no algo-
rithm which always succeeds in this solution process.
Symmetry operators (1) span a Lie algebra [1, 19], that
is, a vector space closed under the skew-symmetric commu-
tator bracket
[P,Q] :=PQ—QP. (2)
If P =P (x)%, and Q = @Q’(z)-2, their commutator

C a8z’
R=[P, Q=R (T)% is thus

aQ’ -apf) d )

R= (P ox? @ ox' ) dxi’
If a finite-dimensional Lie algebra is resolved with respect
to basis L1, L2, ..., Ly, the commutation relations become

[Li,L;]=CHLr,  1<i,j<N, (4)
with CJ; being the structure constants of the algebra [1, 19].
Symmetry methods for PDEs frequently require structural
information provided by CZ'“,

The conventional method for calculating structure con-
stants is to (a) integrate the infinitesimal defining equations
and (b) substitute the resulting basis of operators into (2)
to find Czk] This process is not strictly algorithmic since
no method is guaranteed to successfully perform step (a).
However, in [25] we showed how C}; can be calculated from
the infinitesimal defining system without solving it, by a
process involving only differentiation and linear substitu-
tions. This method has been implemented in the symbolic
language MAPLE [28].

However not all Lie symmetry algebras are of finite di-
mension [1, 19, 20]. The generalization of Lie theory to
‘infinite Lie groups’ was proposed by Lie [15], and brought
to fruition by Vessiot [31] and especially by Cartan [2, 3, 5].
It is based on working directly with the defining system.
Although Lie advocated infinitesimal methods, he did not
succeed in producing a structure theory similar to that pro-
vided by the structure constants Cik]- (4) for finite Lie groups.

Cartan [2] succeeded in generalizing the C};, but his meth-
ods are not suited to symbolic calculation of symmetries,
because he does not work with the infinitesimal defining
equations. In the present paper we describe methods similar
to those in [25] which permit calculation of Cartan’s struc-
ture coefficients from the infinitesimal defining equations,

using only differentiation and linear algebra. Our methods



are thus suitable for symbolic computatation, and we have
preliminary working MAPLE code for most of the steps. One
part of the process is described in detail here, other results
being just stated. For the full suite of methods we refer to
the preprint [16].

2 INFINITE-DIMENSIONAL STRUCTURE THEORY

We define a Lie algebra system as a set of local vector fields
¢'0,: such that (a) the (' are local solutions of a system
of linear homogeneous PDEs with analytic coefficients, and
(b) the commutator of two such local solutions is also (if it is
defined) a solution. The locality of the solutions means that
the bracket operation is not defined for all pairs of vector
fields, so a Lie algebra system is not (quite) a Lie algebra.
A linear homogeneous system of defining equations can be
brought to involutive form [21, 18] by a finite process involv-
ing only differentiations and linear substitutions. (Involutive
implies that all integrability conditions are included in the
system; see [21] for the precise definition.) Hence we take
as our starting point the infinitesimal defining equations in
involutive form. A Lie algebra system is transitive if under
the flows generated by its local vector fields, a point zg can
be mapped to every point in a neighbourhood of zg. Transi-
tivity is detected from the involutive defining system by the
absence of 0-th order (algebraic) equations.

Each local vector field in a Lie algebra system is asso-
ciated with a 1-parameter local Lie group of local transfor-
mations of z. The set of local transformations formed by
finite composition of these 1-parameter local groups consti-
tutes a Lie pseudogroup [30]. The transformations in a Lie
pseudogroup satisfy a (generally nonlinear) system of defin-
ing equations. Cartan [2, 5] took these pseudogroup defining
equations in involutive form as his starting point, and ex-
hibited an algorithmic procedure for calculating a number
of 1-forms w’ invariant under the action of the pseudogroup.
Exterior differentiation of w’ then yields

dw® = afpw’] Aw' — %cfiwl Aw?, (5)
where 7” are certain additional 1-forms, invariant modulo
w'. The Cartan structure coefficients are cfi, af’p.

If the pseudogroup is of finite type then afp are absent, cfj
are constant, and the Cartan structure equations reduce to
the Maurer-Cartan equations, which are dual to Lie’s com-
mutation relations (4). In the infinite case, nontrivial af,
terms appear and the relationship to (4) is less clear. Cartan
recognized a fundamental distinction between structurally
transitive infinite Lie pseudogroups, which are isomorphic
to a transitive Lie pseudogroup, and the structurally intran-
sitive case, where no such isomorphism exists. Structurally
intransitive pseudogroups possess essential invariants which
are present in every realization of the pseudogroup. For in-
stance, the pseudogroup X = z, Y = y + f(z) has the
essential invariant z. The structurally intransitive case is
much more difficult, and we confine ourselves to the transi-
tive case, where ai—“p, cfj are constants.

Cartan obtained many important results using his struc-
ture theory. However, the method is difficult to apply to
symmetry analysis of differential equations. The difficulty is
that Cartan works at the pseudogroup level where the defin-
ing system is nonlinear. Although it is possible to generate
such a defining system for symmetries of a PDE(see e.g. [26]),
there is currently no effective algorithm for reducing the non-
linear defining system to involutive form (although see [27]).

This is in strong contrast to the availability of many algo-
rithms for reducing linear infinitesimal defining systems to
involutive form [22, 29].

The Cartan method of equivalence [3, 4, 7] can also yield
symmetry pseudogroup structure, but is not suited to sym-
metry analysis of particular PDEs.

Although Cartan [5, p.1335] was sceptical of the possibil-
ity of a structure theory based on infinitesimal methods, Ku-
ranishi [13, 14] and Singer and Sternberg [30] eventually de-
veloped an infinitesimal interpretation of Cartan’s structure
theory for structurally transitive infinite Lie pseudogroups
(see also [8, 9, 10, 17]). It is by combining this theory with
algorithms for reduction of linear defining systems to invo-
lutive form that we are able [16] to achieve a constructive
algorithm for calculating Cartan structure coefficients af’ﬂ,
ci—“j from the infinitesimal defining system in the transitive
case. The methods generalize those of [25] for calculating

Cfi in the finite dimensional case.

3 REDUCTION OF INFINITESIMAL DEFINING SYS-
TEMS TO A FIRST ORDER INVOLUTIVE FORM

Our calculation of Cartan structure utilizes a correspon-
dence between the the structure equations (5) and commu-
tator brackets described by Singer and Sternberg [30]. Ex-
ploiting this correspondence requires that the infinitesimal
defining system be of first order, so our first task is to give
a method for converting an infinitesimal defining system of
g-th order to one of first order.

Consider an infinitesimal defining system for the infinites-
imals ¢(z) with corresponding vector field ¢'9,1 4 -+(¢"0.»
which we suppose to be involutive at order g. For the re-
mainder of this section, 4, j, k, [ will be indices ranging
between 1 and p. If J = (jij2---jk) Is a symmetric multi-
index, we use the notation ¢’ to represent the partial deriva-
tive 9¥¢?/8271 --- 027%; the order of J will be denoted by
k=#(J).

Theorem 1 An analytic infinitesimal defining system can
be constructively transformed to an equivalent first order sys-
tem which is in involutive form.

This result follows from a method of Pommaret [21, p.109,
p.161], which constructively reduces a g-th order system in
involution to an equivalent first order system with equiva-
lent symbol. An outline of the process is as follows. First
the derivatives ¢}, 1 < #(L) < q — 1 are relabelled as new
dependent variables, and the given system is expressed as a
first order system with respect to these variables. Certain
first order differential relations between the ¢} are then ap-
pended to this first order system, and the composite system
is shown to be involutive.

We next need to show that we can convert the involutive
first order system to a first order defining system, i.e. we
must arrange that the dependent variables are components
of a vector field. Our construction is guided by Cartan’s
method for determination of the structure of Lie pseudo-
groups, which proceeds from the pseudogroup defining sys-
tem in first order involutive form (i.e. as an involutive sys-
tem of 1-forms). Cartan works with the pseudogroup defin-
ing system whose solutions Z = 7(z) are the pseudogroup
transformations. In his process he prolongs the pseudogroup
action on z to a pseudogroup action on (z,Z) with trivial
action on Z. That is, a transformation z — 7(2) prolongs
to (2,Z) v~ (7(2),Z). At the infinitesimal level we prolong



the vector field ¢?0,; to a vector field on (z,Z) with triv-
ial action on Z, that is to ¢‘0,; + ¥'0,:, with ¢° = 0.
Cartan then prolongs the pseudogroup transformations to
the derivatives of Z* up to order g — 1; correspondingly we
prolong the vector field to

zla—1) _ Ciazi + wiazi + '(/)l]azz’ (6)

where 1" = 0, the v} are given by the standard extension
formula [19, p.113], and there is summation on the repeated
index i and the repeated multi-index J, 1 < #(J) < q — 1.
Then Z@ Y is a vector field on the (¢ — 1)-th order jet

bundle with coordinates z, Z, Zf,. Here the derivatives of

the Z’s are denoted by Z; = 02" /02719272 - - - 827" where
J = (j1,..., jn)- We wish to show that:

Theorem 2 Let L be a Lie algebra system of vector fields
Z = ('0,: whose infinitesimal defining system is involutive
at order q. Then the prolongation Z9~V of Z to (2, Z', Z%)-
space is a Lie algebra system with an infinitesimal defining
system for C', ¥', Y% which is involutive at order 1, and
which 1s constructively determined.

The remainder of this section will be devoted to proving this
result. Note that the independent variables in the infinites-
imal defining system of the original Lie algebra are z*. For
the prolonged Lie algebra the independent variables in the
first order defining system are (2°,Z°, Z%), and the corre-
sponding dependent variables ¢¢, ¥, o5, 1 < #(J) < q— 1.

The ¢, are determined in terms of the ¢ and ¢ by
the standard extension formula [19, p.113] which recursively
defines

W= 0

o = Dy —¢FZhy,  0<#(I)<q-1,

where D; is the total derivative operator with respect to z':

D; =0, + Z d;,acs (7)

#(J)>0

For the vector field (6) the required extensions are

¥ =0
¥ =D -dz
1r/)j,i = Did)j - Ci Zj,ka

1/)51 = Did’f} - CikZ.lI,k:v

where J is a symmetric multi-index with #(J) = ¢ — 2.
Evaluating the total derivative using (7) the above system
becomes
v =7
1/)le = *C]kzzll« + R;',iv
| ®)
1/)l]z = *C.’f,izllc + R.l],ia
where each of the remainders R%,i depends on sz only for

#(L) < #(K).

Lemma 3 In a neighbourhood of Z. = 8., Z% =0, 2 <
#(L) < q — 1 the relations (8) define an invertible linear

map from Cb to ¢ .

Proof:
mainder terms, is indeed linear in ¢}. Secondly the highest
order terms ¢} (i.e. those with maximum # (L)) occur in the
explicitly displayed terms in (8), so that the equations have
a block triangular structure. When Z., = §; the diagonal
blocks are identity matrices, and relations (8) reduce to

1 1
AR A
Vi == + R,

First note that the system (8), including the re-

o 1 1
vy, = —Cri + Ry,

which are clearly invertible. Since the coefficients of ¢! in
(8) are analytic, invertibility holds in some neighbourhood
of ZL =46 m
The main Theorem 2 now follows easily:

Proof: Let S denote the first order involutive system with
independent variables 2z’ obtained by the transformation of
Pommaret from the ¢g-th order involutive infinitesimal defin-
ing system. Let T" denote S augmented with the equations

aZf]C}/ = 01
0<#()<q-1, (9)

8Zf]cz = 01

(Thus the system T has independent variables z°, Z%, and
dependent variables ¢, with 0 < #(J) < ¢ — 1.) Since the
system S has no Z%, the integrability conditions between
the new equations and S are trivial, and the system T is
also first order involutive.

The map

(2,2, 25,¢.¢h) — (2,2, 25,¢0)),
1<#(J)<q—1

induced by (8) is an analytic invertible change of coordi-
nates on the space of independent and dependent variables
of the system T, by virtue of Lemma 3. Both involutivity
and the order of a system are geometric properties which
are preserved under invertible changes of coordinates. Con-
sequently the system obtained by making the change of co-
ordinates above and adjoining the conditions ¢! = 0 is first
order and involutive, and Theorem 2 is proved. m

Note that the variables Z’ play a trivial role in the defining
system for the prolonged vector field 7@~V Their infinites-
imals ¢" vanish, and it is readily confirmed that all ¢ are
independent of Z'. We retain them only for formal conve-
nience.

We illustrate the steps in this reduction to first order
defining system for a simple example.

Example 4 Consider the infinitesimal defining system

which is in involutive form. To reduce to Pommaret’s first
order involutive form we introduce the new dependent vari-
able (; := (.. The Pommaret form of the defining system is
therefore

CZ:CU (C1)2:07
(system S above). The augmented system 7' is S together
with
¢z =0,
CZ1 =0

(C1)z =0
(41)21 =0



The extension formulae (8) become

1= —(1Z:
which can be inverted in a neighbourhood of Z; = 1 to yield
G =—1/Z1.

Hence we have explicitly constructed the map (z, Z, Z1,(, (1)
— (2,Z,Z1,(,¢1). Applying this map to system 7 and
after a little simplification we obtain the required first order
involutive system

% =0
C: = —Un/Z (z=0 €z, =0
(¥1): =0 (W1)z =0 1)z, =1 /7

which is equivalent to the original defining system (10).

4 DETERMINATION OF CARTAN STRUCTURE FOR
FIRST ORDER INVOLUTIVE DEFINING SYSTEMS
WITH NO INVARIANTS

With the form of a first order infinitesimal defining system
now achieved, we describe the the method for extracting
Cartan structure from it. If the system contains 0-th or-
der (i.e. algebraic) equations, then the Lie pseudogroup has
scalar invariants. In [16] an infinitesimal method is pre-
sented for diagnosing whether these invariants are essential.
In the case where they are not essential, the invariants may
be assigned constant values, thereby restricting the pseudo-
group action to an orbit. An infinitesimal method for doing
this is also described in [16]. Here we consider only the
simplest case, where there are no invariants, so that the
pseudogroup is transitive, and there are no 0-th order defin-
ing equations.

Suppose the partial derivatives of a system are ranked
by total order of derivative. Gauss reduction of such sys-
tems with respect to this ranking yields a solved-form: the
LHS derivatives (called principal derivatives) are expressed
as functions of non-principal (or parametric) derivatives. Of
particular interest to us will be the set of parametric and
principal derivatives of k-th order, which we denote by Py
and P}, respectively.

To make the connection with Cartan structure we intro-
duce new variables ¢* defined by

ak
aii:qS“’ /L:L

,#(P1), (11)

where gii € P (ie. the g'i’: are first order parametric
derivatives). We then eliminate the first order parametrics
from the involutive form of the infinitesimal defining sys-
tem by using (11), and append equations (11) to the Gauss
reduced involutive form to obtain the infinitesimal defining

system as

65" n ‘ #(P1)
o = D Wi@E + Y Al )¢,
j=1 p=1

fori,k=1,...,n. (12)

Note that cases ot € Py, and o¢ €P (=all nonparamet-
e that cases 2 , 5o ot

ric first order derivatives), are covered. In particular when
k
gi' € Pi1, then bfj =0, for j =1,...,n and Afu = 6 so

i

that (12) yields (11). The main result of this section is

Proposition 5 Let xo be a nonsingular point for the in-
finitesimal defining system (12) in involutive form. Let afp =

Afp(xg), and
cij = bij(wo) — bji (o). (13)
Then a®,, c*

ips Cij can be identified with those in the Cartan struc-
ture equations (5).

The proof is presented in [16]. It relies on a correspondence
between Cartan structure coefficients and Taylor series ex-
pansions of vector fields described in [30].

Example 6 Consider the Lie algebra system of vector fields
X = €0, + nd, on R* \ {y = 0} with first order involutive
infinitesimal defining system

L=un m=9¢
& =0 My = 37

(14)

(where = = z', y = 22, € = €, = £?). The parametric
derivatives of order 0 are &, 1. The only parametric first
order derivative is 7, so we have introduced the new variable
¢ as described by (11). We construct ci—“j and afp according
to Proposition 5.

For system (14) we have n = 2, p = 1, and comparing
(12) with (14) we see that

i 5 for (i,5,k) = (1,2,1) or (2,2,2)
b, = v .

4 0 otherwise

o 0 otherwise.

Choosing the initial point zo = (z0,y0) = (0,—3) for con-
venience, Proposition 5 yields

012 = 512(-7"/0) - b%l (TO) = 1/y0 =-2
2y, = b$2(m0) — b3, (o) =0

k _ k _ 1 for (Z,p,k) = (1,1,2)
ai, = Aip(zo) = { 0 otherwise.

Hence from (5) the Cartan structure equations are

1 1 2
dwv = w Aw

dw® = 7' AW (15)

Although we have only presented the simplest case here,
the additional results described in [16] permit us to state
the following

Theorem 7 Given an analytic infinitesimal defining sys-
tem of the Lie pseudogroup of symmetries of a system of
PDEs then it is possible to constructively determine

(a) whether the Lie pseudogroup is structurally transitive,

(b) the Cartan structure of the Lie pseudogroup, if it is
structurally transitive.

5 EXAMPLES OF LIE SYMMETRY PSEUDOGROUP
STRUCTURE

For symmetry analysis of PDEs, the implication of the above
results is that we can pass from a given PDE to its infinites-
imal defining system, thence to involutive form, thence to



first order involutive form, and finally to the Cartan struc-
ture coefficients, using only differentiation and linear alge-
bra at each step. Our procedure is therefore suitable for
computer algebra implementation, and we have preliminary
MAPLE code for the algorithms in this paper.

We now give the result of applying our algorithms to
some PDEs of physical interest known to possess infinite sym-
metry pseudogroups. First the infinitesimal defining system
for the point symmetry vector fields is derived by the usual
method [1, 19, 20]; for this we used the Maple program [12].
Next the defining system is brought to involutive form. We
used the program [28] for this; an involutivity check showed
each system to be involutive at second order. Next a test
for structural transitivity is applied. For the examples be-
low, the defining systems contained no 0-th order equations
so transitivity is automatic. A program implementing the
process of §3 is then applied to transform the systems to
first order involutive defining systems. Finally code for the
methods of §4 automatically yielded their Cartan structure.

Example 8 (Liouville’s equation) Liouville’s equation
u
Ugy = €
admits an infinite Lie pseudogroup of symmetries with 2
arbitrary functions of 1 variable.
If we seek symmetry vector fields of the form

&0y + 7Oy + 10y

then we obtain the infinitesimal defining system

Ny =0 Tyy = —My
Co=—Ty— 1 =0
& =0 Ty =0
§u=0 N =0

The above system is in involution once all the first deriva-
tives of the first order equations are adjoined. After reduc-
ing to first order as described in §3 the method of §4 yields
Cartan structure equations

do' = —w'AW°

dw® = —W AP +w’ AWt

dw® = —w'AwW'—WPAW’

dw' = m'Aw' +0’ AWS

dw® = AW =P AW — WP AWE
dw® = —w'AW!

In [24] we also derive the above structure equations using a
different method.

Example 9 (KP equation) The Kadomtsev-Petviashvili
equation

T
has an infinite Lie pseudogroup of symmetries depending on
3 arbitrary functions of 1 variable. Using our methods we
find structure equations

dw' = W' AW +203 AW
2 8
. N
dw® = fwl/\wg+%+2w3/\w4
d? 3w? Awd
W' = —
2

4 1 5 2 6 3 7 4 8
dw®™ = —w AW — W Aw —w Aw' —w Aw

dw’ = 7AW+ AW — 20 A WS+ WO ALY
2 3wiAwWd

dw® = —x'A
w T Aw 5
dw’ = mAW T AW+ ALY — 20t AW
72w5/\w9775w7/\w8
2

dw® = —4W*AL°

8 9
dw’® = 72w1/\w6+2w3/\w5+%

In [6] the explicit form of the infinitesimal generators of sym-
metries of the KP equation is given. The generators depend
on arbitrary functions and these are used to parametrize the
commutation relations of the algebra. Laurent expansion of
the generators is used to show that the symmetry algebra
has a Kac-Moody-Virasoro structure. It would be interest-
ing to see whether this structure could be determined from
the Cartan structure given above.

Example 10 (Steady boundary layer equations) The
steady state boundary layer equations [20)]

Uy + VUy + P = Uyy
py = 0
Uz +0y = 0

have an infinite Lie pseudogroup of symmetries depending
on one arbitrary function of one variable. Its Cartan struc-
ture equations are

dw' = w'Aw® 2w AW

dw?® = Ww'AW' W AW

dw® = 0

dw® = —w'AW' —W AL WAL Fwt ALY

dw® = —20°AW°

dw® = 7AW+t AW F20 AWE F 200 AW
+3wi AW’

dw™ = 0

It is instructive to compare this result with a much more
complicated result in [25] where the commutation relations
of the infinite Lie symmetry algebra are parametrized using
arbitrary functions.

6 DISCUSSION

There is a well-developed methodology [1, 19, 20] for using
finite-parameter Lie symmetry groups of differential equa-
tions. Many of these methods exploit the structure of the
symmetry Lie algebra to simplify calculations. Methods for
using infinite Lie symmetry pseudogroups also exist [20].
However the Cartan structure (5) of such pseudogroups has
scarcely been utilized, partly because it has been virtually
impossible to calculate the coefficients ai—“p, ci—“j. We antici-
pate that the heuristic-free methods described here should
make possible the systematic use of Cartan structure of in-
finite symmetry pseudogroups.

H. Goldschmidt (private communication) has suggested
the possibility of bypassing the reduction to first order stage
of our process.
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