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Abstract

Solving an inverse Sturm-Liouville problem requires a mathematical process to deter-
mine unknown function in the Sturm-Liouville operator from given data in addition the
boundary values. In this paper we identify a Sturm-Liouville potential function by using the
data of one eigenfunction and its corresponding eigenvalue, and identify a spatial-dependent
unknown function of a Sturm-Liouville differential operator. The method we employ is to
transform the inverse Sturm-Liouville problem into a parameter identification problem of a
heat conduction equation. Then a Lie-group estimation method is developed to estimate
the coefficients in a system of ordinary differential equations discretized from that heat con-
duction equation. Numerical tests confirm the accuracy and efficiency of present approach.
Definite and random disturbances are also considered when compare the present method
with that by using a technique of numerical differentiation.

1 Introduction

The problem to describe the interaction between colliding particles is of fundamental one in
the physics of particle, where the identification of Schrödinger operator is utmost important.
It is one sort of the inverse Sturm-Liouville problems, which have various versions. Among
them the best known one is studied by Gelfand and Levitan [7], in which the potential
function is uniquely determined by spectral function. McLaughlin [20] has given an analytical
method to treat this type inverse problem.

There were many works to develop algorithms for solving the inverse Sturm-Liouville
problem of reconstructing potential function from eigenvalues [2, 22], which is known as the
inverse spectral problem or inverse eigenvalue problem [6]. On the other hand, McLaughlin
[21] first noted that it is possible to obtain the potential function and boundary conditions
using only the set of nodal points. This interesting problem is soon knowing as the inverse
nodal problem [4, 5, 8, 24].

Numerical methods often transform the inverse Sturm-Liouville problem into an inverse
eigenvalue problem of a certain matrix [3]. However, many of these discretizations into a
matrix form have higher eigenvalues significantly differening from those of true eigenval-
ues. As a consequence, the inverse algorithms based on these discretizations require careful
implementation [2, 22].

In this study the data of spectral function is chosen in order to identify a spatial-
dependent potential function; hence, the present inverse Sturm-Liouville problem is less
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difficult than those considered in [2, 4, 5, 8, 21, 22, 24].
First, we transform the inverse Sturm-Liouville problem into a parameter identification

problem governed by a parabolic type partial differential equation (PDE). Then, a one-step
group-preserving scheme (GPS) for a semi-discretization of that PDE is established, which
can be used to derive a closed-form solution of the estimated potential function at discretized
spatial points. This type approach is first time appeared in the literature.

Let us consider a second-order ordinary differential equation (ODE) describing the Sturm-
Liouville boundary value problem:

d

dx

[

p(x)
dy

dx

]

+ [q(x) + λr(x)]y = F (x) in x0 ≤ x ≤ xf , (1)

y = A0 at x = x0, (2)

y = B0 at x = xf . (3)

The direct problem is for the given conditions in Eqs. (2) and (3) and the given functions p(x),
q(x), r(x) and F (x) to find the solution y(x) of the second-order boundary value problem
(BVP). Specifically, when F (x) = 0 we have a Sturm-Liouville problem to determine the
eigenvalue λ and eigenfunction y(x).

The present inverse problem of Sturm-Liouville is to estimate q(x) by using the informa-
tion of one eigenfunction y(x) and its corresponding eigenvalue λ, and for the Sturm-Liouville
differential operator is to estimate p(x) by using the data of y(x) when q(x) = r(x) = 0.

For the case when p(xf ) is known and q(x) = r(x) = 0 in Eq. (1), we propose a non-
iterative method to calculate p(x) at discretized spatial points. This problem could also be
solved by the iterative method given by Keung and Zou [11] for the elliptic problem ∇ ·
(p∇u) = F . Some of the numerical examples in Keung and Zou [11] involve Sturm-Liouville
problems, but the method proposed here requires less computation for these problems.

For the case of q(x) = r(x) = 0 from Eq. (1) it follows directly that

p(x)y′(x) = p(x0)y
′(x0) +

∫ x

x0

F (s)ds. (4)

If y′(x), p(x0) and y′(x0) are available, the above equation simply gives the unknown param-
eter p(x) by dividing both the sides by y′(x). However, because y(x) is usually not given in a
closed-form and is given discretizedly under a perturbation by noise, we require a numerical
technique to find y′(x). As mentioned by Li [12] several techniques were developed to con-
struct useful difference formulas for numerical derivatives (ND). In addition to the references
in [12], we also mention the book by Shu [23]. Among the many NDs we only employ the
method by Ahn et al. [1] to compare it with our new method for numerical examples given
in Section 6. Ahn et al. [1] have used a Volterra integral equation of the second kind to
derive the following numerical derivative of a function f(x) under noise denoted by fδ(x):

f ′δ(x) =
−1

α2
exp

(

−x

α

)
∫ x

0

exp
( s

α

)

fδ(s)ds +
fδ(x)

α
, (5)

where α is a regularized parameter, and f ′
δ(x) is a numerical derivative of fδ(x).

Lie-group is a differentiable manifold, endowed a group structure that is compatible with
the underlying topology of manifold. The main purpose of Lie-group solver is for providing
a better algorithm that retains the orbit generated from numerical solution on the manifold
which associated with the Lie-group [9, 17]. The retention of Lie-group structure under
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discretization is vital in the recovery of qualitatively correct behavior in the minimization of
numerical error [10, 13].

Liu [14] has extended the GPS developed in [13] for ODEs to solve the BVPs, and the
numerical results reveal that the GPS is a rather promising method to effectively solve the
two-point BVPs. In that construction of Lie-group method for the calculations of BVPs, Liu
[14] has introduced the idea of one-step GPS by utilizing the closure property of Lie-group,
and hence, the new shooting method has been named the Lie-group shooting method.

It should be stressed that the one-step property of Lie-group is usually not shared by
other numerical methods, because those methods do not belong to the Lie-group type. This
important property has been used by Liu [15] to establish a one-step estimation method to
estimate the temperature-dependent heat conductivity, and then extended to estimate heat
conductivity and heat capacity [16, 18, 19]. Its group structure gives the Lie-group method
a great advantage over other numerical methods. It is a powerful technique to solve the
inverse problem of parameter identification.

This paper is arranged as follows. We introduce a novel approach of an inverse Sturm-
Liouville problem in Section 2 by transforming it into an identification problem of a parabolic
type PDE, and then discretizing the PDE into a system of ODEs at discretized spatial points.
In Section 3 we give a brief sketch of the GPS for ODEs for a self-content reason. Due to its
good property of Lie-group, we will propose a one-step GPS, which can be used to identify
the parameters appeared in the PDE. The resulting algebraic equation is derived in Section
4 when we apply the one-step GPS to identify q(x). We demonstrate that how the Lie-group
theory can help us to solve the parameter estimation equation in a closed-form. In Section 5
we turn our attention to the estimation of p(x), which leads again to a closed-form solution
of the parameter p(x) at discretized spatial points. In Section 6 several numerical examples
are examined to test the Lie-group estimation method (LGEM). Finally, we give conclusions
in Section 7.

2 A novel approach

2.1. Transformation into a PDE

In the solution of linear PDE, a common technique is the seperation of variables, from which
the PDE is transformed into ODEs. We may reverse this process by considering

u(x, t) = (1 + t)y(x), (6)

such that Eqs. (1)-(3) are changed to

∂u(x, t)

∂t
=

∂

∂x

[

p(x)
∂u(x, t)

∂x

]

+ [q(x) + λr(x)]u(x, t) + h(x, t)

in x0 ≤ x ≤ xf , 0 < t ≤ T, (7)

u(x0, t) = A0(1 + t), (8)

u(xf , t) = B0(1 + t), (9)

u(x, 0) = y(x), (10)

where h(x, t) = y(x)−(1+t)F (x), and the last initial condition follows from Eq. (6) directly.
Eq. (7) is a heat conduction equation, where we are attempting to estimate p(x) or q(x)

under a given source h(x, t).
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2.2. Semi-Discretization

The semi-discrete procedure of PDE produces a coupled system of ODEs. For the one-
dimensional heat conduction equation (7), we adopt the numerical method of line to discretize
the spatial coordinate x by

∂u(x, t)

∂x

∣

∣

∣

∣

x=xi=x0+i∆x

=
ui+1(t)− ui(t)

∆x
, (11)

∂2u(x, t)

∂x2

∣

∣

∣

∣

x=xi=x0+i∆x

=
ui+1(t)− 2ui(t) + ui−1(t)

(∆x)2
, (12)

where ∆x = (xf − x0)/(n + 1) is a uniform discretization spacing length, and ui(t) =
u(x0 + i∆x, t) for a simple notation. Such that Eq. (7) can be approximated by

u̇i(t) =
pi

(∆x)2
[ui+1(t)− 2ui(t) + ui−1(t)]

+ p′i
ui+1(t)− ui(t)

∆x
+ (qi + λri)ui(t) + hi(t), i = 1, . . . , n, (13)

where pi = p(xi), p′i = p′(xi), qi = q(xi), ri = r(xi), and hi(t) = yi− (1+ t)Fi with yi = y(xi)
and Fi = F (xi).

When i = 1 the term u0(t) is determined by boundary condition (8) with u0(t) = A0(1+
t). Similarly, when i = n the term un+1(t) is determined by boundary condition (9) with
un+1(t) = B0(1 + t). The next step is to advance the solution from a given initial condition
to a desired time T . Eq. (13) has totally n coupled linear ODEs for the n variables ui(t), i =
1, . . . , n, which can be numerically integrated to obtain ui(T ).

In this section we have transformed the inverse Sturm-Liouville problem in Eq. (1) into
an inverse parameter identified problem for the PDE in Eq. (7), and finally to an estimation
of n coefficients qi or pi in the n-dimensional linear ODEs system. The data required in the
estimation are the discretization of y(x) at discretized spatial points, i.e., yi = y(xi).

3 GPS for differential equations system

3.1. Group-preserving scheme

Upon letting u = (u1, . . . , un)
T and denoting f the right-hand side of Eq. (13) we can write

it as a vector form:
u̇ = f(u, t), u ∈ R

n, t ∈ R. (14)

Liu [13] has embedded Eq. (14) into an augmented dynamical system, which is concerned
with not only the evolution of state variables but also the evolution of the magnitude of the
state variables vector:

d

dt

[

u

‖u‖

]

=

[

0n×n
f(u,t)
‖u‖

fT(u,t)
‖u‖

0

]

[

u

‖u‖

]

. (15)

Eq. (15) gives us a Minkowskian structure of the augmented state variables of X :=
(uT, ‖u‖)T to satisfy the cone condition:

XTgX = 0, (16)

4



where

g =

[

In 0n×1

01×n −1

]

(17)

is a Minkowski metric, In is the identity matrix of order n, and the superscript T stands for
the transpose. In terms of (u, ‖u‖), Eq. (16) becomes

XTgX = u · u− ‖u‖2 = ‖u‖2 − ‖u‖2 = 0, (18)

where the dot between two n-dimensional vectors denotes their Euclidean inner product.
The cone condition is thus the most natural constraint that we can impose on the dynamical
system (15).

Consequently, we have an n + 1-dimensional augmented system:

Ẋ = AX (19)

with a constraint (16), where

A :=

[

0n×n
f(u,t)
‖u‖

fT(u,t)
‖u‖

0

]

, (20)

satisfying
ATg + gA = 0, (21)

is a Lie algebra so(n, 1) of the proper orthochronous Lorentz group SOo(n, 1).
Although the dimension of the new system is raised one more, it has been shown that the

new system has an advantage to permit the group-preserving scheme (GPS) given as follows
[13]:

X`+1 = G(`)X`, (22)

GTgG = g, (23)

det G = 1, (24)

G0
0 > 0, (25)

where G0
0 is the 00th component of G, X` denotes the numerical value of X at the discrete

time t`, and G(`) ∈ SOo(n, 1) is the group value of G at a time t`. If G(`) satisfies the
properties in Eqs. (23)-(25), then X` satisfies the cone condition in Eq. (16).

The Lie-group G can be generated from A ∈ so(n, 1) by an exponential mapping,

G(`) = exp[∆tA(`)] =





In + (a`−1)
‖f`‖2

f`f
T
`

b`f`

‖f`‖

b`f
T
`

‖f`‖
a`



 , (26)

where

a` := cosh

(

∆t‖f`‖

‖u`‖

)

, (27)

b` := sinh

(

∆t‖f`‖

‖u`‖

)

. (28)
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Substituting Eq. (26) for G(`) into Eq. (22), we obtain

u`+1 = u` + η`f`, (29)

‖u`+1‖ = a`‖u`‖+
b`

‖f`‖
f` · u`, (30)

where

η` :=
b`‖u`‖‖f`‖+ (a` − 1)f` · u`

‖f`‖2
(31)

is an adaptive factor. From f` · u` ≥ −‖f`‖‖u`‖ we can prove that

η` ≥

[

1− exp

(

−
∆t‖f`‖

‖u`‖

)]

‖u`‖

‖f`‖
> 0, ∀∆t > 0. (32)

This scheme is group properties preserved for all ∆t > 0.

3.2. One-step GPS

Applying scheme (29) on Eq. (13) we can compute the heat conduction equation by the
GPS. Assume that the total time T is divided by K steps, that is, the time stepsize we use
in the GPS is ∆t = T/K.

Starting from an initial augmented condition X0 = X(0) we may want to calculate the
value X(T ) at a desired time t = T . By Eq. (22) we can obtain

XT = GK(∆t) · · ·G1(∆t)X0, (33)

where XT approximates the real X(T ) within a certain accuracy depending on ∆t. However,
let us recall that each Gi, i = 1, . . . , K, is an element of the Lie-group SOo(n, 1), and by
the closure property of Lie-group, GK(∆t) · · ·G1(∆t) is also a Lie-group denoted by G(T ).
Hence, we have

XT = G(T )X0. (34)

This is a one-step transformation from X0 to XT .
Usually, it is very hard to find an exact solution of G(T ); however, a numerical one may

be obtained approximately without any difficulty. The most simple method to calculate
G(T ) is given by

G(T ) =





In + (a−1)
‖f0‖2

f0f
T
0

bf0
‖f0‖

bfT
0

‖f0‖
a



 , (35)

where

a := cosh

(

T‖f0‖

‖u0‖

)

, (36)

b := sinh

(

T‖f0‖

‖u0‖

)

. (37)

Then from Eqs. (29) and (30) we obtain a one-step GPS:

uT = u0 + ηf0, (38)

‖uT‖ = a‖u0‖+
bf0 · u0

‖f0‖
, (39)
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where

η =
(a− 1)f0 · u0 + b‖u0‖‖f0‖

‖f0‖2
. (40)

4 Identifying q(x) by the LGEM

In this section we will start to estimate the potential function q(x). By using the one-step
GPS we also suppose that the initial value of u(x, 0) = y(x) is given and its corresponding
eigenvalue is known.

Applying the one-step GPS in Eq. (38) on Eq. (13) from time t = 0 to time t = T we
obtain a nonlinear equation for qi:

uT
i = u0

i +
ηpi

(∆x)2
(u0

i+1 − 2u0
i + u0

i−1) + ηp′i
u0

i+1 − u0
i

∆x
+ η(qi + λri)u

0
i + ηhi(0). (41)

It is not difficult to rewrite Eq. (41) as

qi =
1

u0
i

[

uT
i − u0

i

η
−

pi

(∆x)2
(u0

i+1 − 2u0
i + u0

i−1)−
p′i
∆x

(u0
i+1 − u0

i )− λriu
0
i − hi(0)

]

. (42)

η in the above is not a constant but a nonlinear function of qi as shown by Eq. (40). Therefore
in this stage we cannot calculate qi by a simple equation. However, we will prove below that
η is fully determined by u0

i and uT
i .

In order to solve qi, let us return to Eq. (38):

f0 =
1

η
[uT − u0]. (43)

Substituting it for f0 into Eq. (39) we obtain

‖uT‖

‖u0‖
= a +

b[uT − u0] · u0

‖uT − u0‖‖u0‖
, (44)

where

a := cosh

(

T‖uT − u0‖

η‖u0‖

)

, (45)

b := sinh

(

T‖uT − u0‖

η‖u0‖

)

. (46)

Let

cos θ :=
[uT − u0] · u0

‖uT − u0‖‖u0‖
, (47)

S :=
T‖uT − u0‖

‖u0‖
, (48)

and from Eqs. (44)-(46) it follows that

‖uT‖

‖u0‖
= cosh

(

S

η

)

+ cos θ sinh

(

S

η

)

. (49)
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Upon defining

Z := exp

(

S

η

)

, (50)

from Eq. (49) we obtain a quadratic equation for Z:

(1 + cos θ)Z2 −
2‖uT‖

‖u0‖
Z + 1− cos θ = 0. (51)

The solution is found to be

Z =

‖uT ‖
‖u0‖

±

√

(

‖uT ‖
‖u0‖

)2

− (1− cos2 θ)

1 + cos θ
, if ± cos θ > 0, (52)

and from Eq. (50) we obtain a closed-form solution of η:

η =
T‖uT − u0‖

‖u0‖ lnZ
. (53)

Up to here we must point out that for a given T , η is fully determined by u0 and uT , which
are supposed to be known. Therefore, the original nonlinear equation (42) becomes a linear
equation for qi.

By using Eq. (6) we have

uT
i = (1 + T )u0

i = (1 + T )yi, (54)

and thus the vector uT is proportional to u0 with a multiplier 1 + T larger than 1. Under
this condition we have cos θ = 1 and Z is given by

Z =
‖uT‖

‖u0‖
= 1 + T, (55)

and hence from Eq. (53) we have

η =
T 2

ln(1 + T )
. (56)

Inserting Eqs. (54) and (56) into Eq. (42) we obtain a very simple formula to estimate qi

by

qi =
1

yi

[

yi ln(1 + T )

T
−

pi

(∆x)2
(yi+1 − 2yi + yi−1)−

p′i
∆x

(yi+1 − yi)− λriyi − yi + Fi

]

. (57)

This solution is in a closed-form for qi.
In the above we have mentioned that η is a nonlinear function of qi; however, by viewing

Eqs. (47), (52) and (53) it is known that η is fully determined by u0 and uT . Furthermore, by
using Eq. (54) η becomes a constant given by Eq. (56). This point is very important for our
closed-form solution of parameter. The key points rely on the construction of the method
by using the one-step GPS for the estimation of parameter, and the full use of the n + 1
equations (38) and (39). To distinguish the present method by a joint use of the one-step
GPS and the closed-form solution with the aid of Eq. (39), we may call the new method a
Lie-group estimation method (LGEM).
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5 Applying the LGEM to estimate p(x)

In this section we will derive a simple linear equations system to solve the coefficients pi, i =
1, . . . , n. However, for simplicity we assume q(x) = r(x) = 0 in this section.

A similar finite difference as that used in Eq. (11) for u′(x) can be used for p′(x) in
Eq. (13). In doing so, we can obtain a system of ODEs for u with t as an independent
variable:

u̇i(t) =
pi+1 − pi

∆x

ui+1(t)− ui(t)

∆x
+ pi

ui+1(t)− 2ui(t) + ui−1(t)

(∆x)2
+ hi(t). (58)

The known initial condition is given by

u0
i = y(xi), i = 1, . . . , n, (59)

which is obtained from Eq. (6) by a discretization.
Applying the same idea of LGEM on Eq. (58) we can obtain a closed-form formula to

estimate pi:

pi =
(∆x)2

u0
i − u0

i−1

[

u0
i+1 − u0

i

(∆x)2
pi+1 + hi(0)−

1

η
(uT

i − u0
i )

]

, (60)

and moreover, by using the data of uT
i given by Eq. (54) and Eq. (56) for η, we can derive

a much simple equation for pi:

pi =
(∆x)2

yi − yi−1

[

yi+1 − yi

(∆x)2
pi+1 + yi − Fi −

yi ln(1 + T )

T

]

. (61)

This will be called a closed-form estimation method. The above equation can be used
sequentially to find pi, i = n, . . . , 1 if we know pn+1 a priori. Here, pn+1 is the right-end
boundary value of p(x), and is supposed to be known for simplicity.

However, we can develop another estimation method through iterations. The numerical
procedures for estimating pi are described as follows. We assume an initial value of pi, for
example, pi = 1. Substituting it into Eq. (58) we can apply the GPS to integrate it from
t = 0 to t = T through T/∆t steps. Then, we obtain uT

i . Inserting it into Eq. (60) we can
calculate a new pi, which is then compared with the old pi. If the difference of these two sets
of pi is smaller than a given criterion, then we stop the iteration and the final pi is obtained.

The processes are summarized as follows:
(i) Give an initial pi = 1.
(ii) For j = 1, 2 . . . we repeat the following calculations. Calculate uT

i by using the GPS in
Eq. (29) to integrate Eq. (58) from t = 0 to t = T , where f is a vector form of the right-hand
side of Eq. (58).
(iii) Insert the above calculated uT

i denoted by uT
i (j) together with u0

i given by Eq. (59) into

pj
i =

(∆x)2

u0
i − u0

i−1

[

u0
i+1 − u0

i

(∆x)2
pj

i+1 −
1

ηj
[uT

i (j)− u0
i ] + hi(0)

]

, (62)

where ηj is calculated from Eq. (53) by substituting u
j
T for each step. If pj

i converges
according to a given stopping criterion:

n
∑

i=1

(pj+1
i − pj

i )
2 < ε2, (63)
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then stop; otherwise, go to step (ii).
Basically, the present method is repeatedly used the time direction integration of Eq. (58)

to obtain the final time data to adjust pi, which will be called an iterative estimation method.

6 Numerical examples

6.1. Example 1

For a first example we consider an inverse Sturm-Liouville problem to identify the potential
function in the Schrödinger equation

y′′(x) + (β − α2x2)y(x) = 0, (64)

y(−∞) = y(∞) = 0. (65)

Here β = (2k + 1)α is the eigenvalue, and

yk(x) = Hk(x) exp

(

−
αx2

2

)

(66)

is the eigenfunction, where the Hermite polynomials for k = 0, 1, 2, 3, 4 are given by

H0(x) = 1, (67)

H1(x) = 2x, (68)

H2(x) = −2 + 4x2, (69)

H3(x) = −12x + 8x3, (70)

H4(x) = 12− 48x2 + 16x4. (71)

In general, Hk(x) = (−1)kex2

dke−x2

/dxk.
In order to recover the potential function q(x) from the given eigenvalue and eigenfunction

we apply Eq. (57) on this problem by taking p = 1, p′ = 0, r = 1 and F = 0. We also take
x0 = −5 and xf = 5 and let ∆x = 10/300, α = 1 and T = 0.0001.

The estimation errors of q(x) are shown in Figs. 1(a) and 1(b), for k = 1 and y1(x) and
k = 3 and y3(x) as the inputs on Eq. (57). From these two figures it can be seen that the es-
timations of q(x) are quite accurate. However, near the boundaries the errors are increased.
In order to avoid the boundary effect on the estimation of q(x) we can extend the range of
x into a larger one.

6.2 Example 2

For a second test example we consider the Sturm-Liouville problem with

[x−1y′(x)]′ + (λ + 1)x−3y(x) = 0, (72)

y(1) = y(e) = 0. (73)

The eigenvalue is λk = k2π2, k ∈ N, and the eigenfunction is yk = ax sin(kπ ln x), where a
is an arbitrary nonzero constant fixed to be a = 100.

In Fig. 2 we compare the estimation errors by considering the noisy data with yσ =
ax sin(π ln x)+σR(i), where R(i) are random number between -1 and +1. The L2 errors for
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σ = 0 is about 0.327 while that for σ = 0.01 is about 0.373.

6.3. Example 3

In this example we estimate p(x) by setting q(x) = 0 and r(x) = 0. Let us use the following
example to demonstrate the process in Section 5. This example is given by

p(x) = (x− 3)2, (74)

F (x) = 6(x− 3)2, h(x, t) = y(x)− (1 + t)F (x) = −(x− 3)2(5 + 6t). (75)

Under the boundary conditions

u(0, t) = 9(1 + t), u(1, t) = 4(1 + t), (76)

and the initial condition
u(x, 0) = (x− 3)2, (77)

the exact solution is given by

u(x, t) = (x− 3)2(1 + t). (78)

We apply the LGEM on this identification of p(x), where we have fixed ∆x = 1/30,
∆t = 5 × 10−5 and T = 0.01. Under the stopping criterion with ε = 10−3, the process is
convergent within 34 iterations. In Fig. 3(a) we plot the tentative pi for the first iteration,
the fifth iteration, the tenth iteration and the fifteenth iteration, the last of which is already
close to the exact solution. The numerical solutions of pi are close to the exact ones with
the L2-norm error about 0.0156, and the maximum relative error about 4× 10−3 as shown
in Fig. 3(b).

6.4. Example 4

The following example has been calculated by Keung and Zou [11] using the augmented
Lagrange method:

p(x) = 3 + 2x2 − 2 sin(2πx), (79)

F (x) = 2π[4x− 4π cos(2πx)] cos(2πx)− 4π2[3 + 2x2 − 2 sin(2πx)] sin(2πx). (80)

The exact solution is given by

u(x, t) = (1 + t) sin(2πx). (81)

We first apply the iterative LGEM on this identification of p(x), where we have fixed
∆x = 2/60, ∆t = 10−5 and T = 0.003. Under the stopping criterion with ε = 10−3, the
process is convergent within 37 iterations. In Fig. 4 we compare the estimated solution with
exact solution. For this estimation we have a maximum error with 0.377 and an L2 error with
1.62. On the other hand we also apply Eq. (61) on this estimation by using ∆x = 2.2/150
and T = 0.001, of which the result is shown in Fig. 4 by the dashed-dotted line. For the later
estimation we have a maximum error with 0.59 and an L2 error with 1.402. It is slightly ac-
curate than the iterative method; however, there appear four kinks near the extremal points
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of p(x), where p′(x) = 0.

6.5. Example 5

For this example we consider a simple exact y(x) = sin(πx) under a noise given by yδ =
sin(πx) + δ cos(3πx). The following results are used:

p(x) = x, (82)

F (x) = π cos(πx)− π2x sin(πx). (83)

For the integration in Eq. (5), we have employed the trapezoidal rule to calculate y ′δ(x) at
discretized spatial points. Then inserting them into Eq. (4) we can obtain p(x) by the ND
method under δ = 0 and δ = 0.02, whose errors are shown in Fig. 5(a). The best parameter
α is fixed to be 0.95 for δ = 0 and 0.85 for δ = 0.02, not 0.0085 as that used by Ahn et al.
[1].

On the other hand we also apply Eq. (61) on this estimation of p(x) by using ∆x = 0.01
and T = 0.01, of which the errors under δ = 0 and δ = 0.02 are shown in Fig. 5(a). It can
be seen that the maximum errors of LGEM are much smaller than that obtained by the ND
method. Especially, when δ = 0 the LGEM with all its absolute error is smaller than that
by the ND method.

For both methods applied in this example we also consider the random noise disturbance
given by yσ = sin(πxi) + σR(i), where R(i) are random number between -1 and +1. In
Fig. 5(b) we compare the numerical errors by applying the LGEM and ND for this case
under a noise with σ = 0.001. For the ND the best parameter of α is α = 0.5. Obviously,
the absolute error of LGEM is smaller than that given by the ND method. This also shows
that the method of LGEM can be against the random and also definite disturbances.

6.6 Example 6

Let us consider the following linear BVP:

xy′′(x) + y′(x) = F (x), y(1) = 0, y(2) = 2, (84)

where F (x) = x3/2 cos x has no closed-form integral of
∫ x

1
F (s)ds, such that y(x) has also no

closed-form solution. In this case we applied the Lie-group shooting method [14] to calculate
y.

In Eq. (4) we require to know both p(x0) and y′(x0). This is a great drawback of the
ND method. Because the calculated data of y are discretized, we may approximate y ′(x0)
by (y1− y0)/∆x. Then inserting the calculated data of y into Eq. (4) we can obtain p(x) by
the ND method under σ = 0 and σ = 0.001, whose errors as shown in Fig. 6 are very large.
The best parameter α is fixed to be 0.45 for σ = 0 and 0.43 for σ = 0.001.

Then, we apply Eq. (61) on this estimation of p(x) by using ∆x = 0.01 and T = 0.01, of
which the errors under σ = 0 and σ = 0.02 are shown in Fig. 6. The errors of LGEM are
much smaller than that obtained by the ND method with a ratio 10−4 of these two maximum
errors for the un-noised case and 6.7× 10−3 for the noised case.

7 Conclusions
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In order to estimate the potential function under a given spectral function and its corre-
sponding eigenvalue, we have employed the LGEM to derive an algebraic equation and solved
it in a closed-form. We transformed the inverse Sturm-Liouville problem into a parameter
identification problem for a parabolic type PDE, and then, established a one-step GPS for
the semi-discretization of that PDE. We also established an iterative method to estimate the
unknown coefficient in a second-order Sturm-Liouville operator.

Numerical examples were worked out, which show that the new LGEM is applicable for
the estimations of unknown functions. When disturbances are exerted on the input data we
also verified that the present approach can be against them very well. The tested case shows
that the LGEM is superior than the ND method examined here. Through this study, it can
be concluded that the new estimation method is accurate, effective and stable. Its numerical
implementation is very simple and the computational speed is very fast.
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Captions:

Fig. 1. For Example 1 of identifying the Schrödinger equation (a) plotting the estimation error
by using the second spectral function, while (b) by using the third spectral function.

Fig. 2. For Example 2 of identifying q(x) the estimation errors were plotted.

Fig. 3. For Example 3 by using an iterative method: (a) comparing estimated and exact p(x),
and (b) plotting the relative error of estimation.

Fig. 4. For Example 4 we compare exact p(x) with the estimated ones by using an iterative
method and a closed-form method.

Fig. 5. For Example 5 comparing the estimation errors of p(x): (a) definite disturbances with
δ = 0, 0.02, and (b) random disturbance with σ = 0.001.

Fig. 6. For Example 6 comparing the estimation errors of p(x) under random disturbances
with σ = 0 and σ = 0.001.
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Fig. 1. For Example 1 of identifying the Schrodinger equation (a) plotting the 
estimation error by using the second spectral function, while (b) by using the third 
spectral function. 
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Fig. 2. For Example 2 of identifying q(x) the estimation errors were plotted.  
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Fig. 3. Example 3 using an iterative method: (a) comparing estimated and exact p(x), 
and (b) plotting the relative error of estimation. 
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Fig. 4. Example 4 comparing exact p(x) with the estimated ones by using an iterative 
method and a closed-form method. 
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Fig. 5. For Example 5 comparing the estimation errors of p(x): (a) definite 
disturbances with δ=0, 0.02, and (b) random disturbance with σ=0.001. 
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Fig. 6. For Example 6 comparing the estimation errors of p(x) under random 
disturbances with σ=0 andσ=0.001. 
 
 


