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a b s t r a c t

In this paper, the Lie symmetry analysis and the generalized symmetry method are
performed for a short pulse equation (SPE). The symmetries for this equation are given.
For the traveling wave solutions, the exact parametric representations are investigated. To
guarantee the existence of the above solutions, all parameter conditions are determined.
Furthermore, the exact analytic solutions are obtained by using the power series method.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear partial differential equations (PDEs) arising in many physical fields like the condense matter physics, fluid
mechanics, plasma physics and optics, etc, exhibit a rich variety of nonlinear phenomena. Recently, many PDEs generated
from the systems of impulse and neural networks as well. The investigation of the exact solutions plays an important role
in the study of nonlinear physical systems and such neural networks. A wealth of methods have been developed to find
these exact solutions of a PDE though it is rather difficult. Some of the most important methods are the inverse scattering
method [1], Darboux and Bäcklund transformations [2], Hirota’s bilinear method [2–4], Lie symmetry analysis [5–8], CK
method [9,10], etc. It is well-known that the Lie groupmethod is a powerful and direct approach to construct exact solutions
of nonlinear differential equations. Furthermore, based on the Lie group method, many other type of exact solutions of PDE
can be obtained, such as the traveling wave solutions, soliton solutions, fundamental solutions [11,12], and so on.
In this paper, we will consider the short pulse equation (SPE) which has the general form

uxt = αu+
1
3
β(u3)xx, (1)
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where u = u(x, t) is the unknown real function and subscripts denote differentiation, x, t ∈ R, α and β are real parameters,
αβ 6= 0. In practical, Eq. (1) can be written as the more usual form

uxt = αu+ 2βuu2x + βu
2uxx. (2)

This general SPE was derived by T.Schäfer and C.E.Wayne as a model equation describing the propagation of ultra-short
light pulses in silica optical fibres (see [13], p.94), and thenumerical computationswerepresented in that paper. In particular,
if we let α = 1 and β = 1

2 , then Eq. (1) will be changed to the special form uxt = u +
1
6 (u

3)xx. In [14–20], many results
are obtained about the special SPE. In recent works [21–23], we have investigated the dynamical behavior of loop soliton
solutions for several equations.
In the present paper, by using Lie group analysis and the generalized symmetry method, we will investigate the short

pulse equation in detail, and the exact explicit traveling wave solutions and analytic solutions will be given.
For the sake of Lie symmetry analysis, we write Eq. (1) as the following another usual form in mathematical physics:

ut = αD−1u+ βu2ux + p, (3)

where D−1 =
∫
·dx, p = p(t) is an arbitrary integral function. Moreover, we have

utt = α2D−1v +
4
3
αβu3 + 4β2u3u2x + 2αβvuux + β

2u4uxx + 2βpuux + r, (4)

where v = D−1u, r = r(x, t) is an integral function. We note that Eqs. (3) and (4) are necessary for Lie symmetry analysis
in what follows.
The outline of this paper is as follows. In Section 2,we perform Lie group analysis for the short pulse equation. In Section 3,

the generalized symmetrymethodwas employed for investigating the symmetries of Eq. (1). In Section 4,wewill present the
qualitative analysis and provide all the traveling wave solutions for this equation. In Section 5, the exact analytic solutions
are obtained by using the power series method. In Section 6, we conclude and make some remarks.

2. Lie symmetry analysis for SPE

In this section, we will perform Lie group method for Eq. (1).
The Lie group method is sometimes also called symmetry analysis. Roughly speaking, a symmetry group of a system of

differential equations is a group which transforms solutions of the system to other solutions. Once one has determined the
symmetry group of a system of differential equations, a number of applications become available. To start with, one can
directly use the defining property of such a group and construct new solutions to the system from known ones.
Firstly, let us consider a one-parameter Lie group of infinitesimal transformation:

x→ x+ εξ(x, t, u),
t → t + ετ(x, t, u),
u→ u+ εφ(x, t, u),

with a small parameter ε � 1. The vector field associated with the above group of transformations can be written as

V = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u
. (5)

The symmetry group of Eq. (1) will be generated by the vector field of the form (5). Applying the second prolongation pr(2)V
of V to Eq. (2), we find that the coefficient functions ξ , τ and φ must satisfy the symmetry condition

− αφ − 2βu2xφ − 2βuuxxφ − 4βuuxφ
x
− βu2φxx + φxt = 0, (6)

where φ, φx, φxx and φxt are all coefficients of pr(2)V = pr(1)V + φxx ∂
∂uxx
+ φxt ∂

∂uxt
+ φtt ∂

∂utt
, and furthermore, we have

φx = Dxφ − uxDxξ − utDxτ , (7)

φxx = D2xφ − uxD
2
xξ − utD

2
xτ − 2uxxDxξ − 2uxtDxτ , (8)

φxt = DtDxφ − uxDtDxξ − uxtDxξ − uxxDtξ − utDtDxτ − uttDxτ − uxtDtτ , (9)

where Dx and Dt are the total derivatives with respect to x and t , respectively.
Substituting (2)–(4) into (7)–(9), respectively, then plugging (7)–(9) into (6), and equating the coefficients of the various

monomials in the first, second and the other order partial derivatives with respect to x and various powers of u, we can
find the determining equations for the symmetry group of the short pulse equation. Solving these equations, we get the
following forms of the coefficient functions

ξ = c1x+ c3, τ = −c1t + c2, φ = c1u,
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where c1, c2 and c3 are arbitrary constants. Thus the Lie algebra of infinitesimal symmetries of Eq. (1) is spanned by the three
vectors

V1 =
∂

∂x
, V2 =

∂

∂t
, V3 = x

∂

∂x
− t

∂

∂t
+ u

∂

∂u
.

It is easy to verify that {V1, V2, V3} is closed under the Lie bracket. So we can see that the generator of invariant group
V = ξ(x, t, u) ∂

∂x + τ(x, t, u)
∂
∂t + φ(x, t, u)

∂
∂u of Eq. (1) construct three-dimensional Lie algebra, which is spanned by the

basis {V1, V2, V3}.
Thus, we have the corresponding one-parameter group of symmetries of the short pulse equation:
G1 : (x, t, u)→ (x+ ε, t, u),
G2 : (x, t, u)→ (x, t + ε, u),
G3 : (x, t, u)→ (eεx, e−εt, eεu).

We can see that G1 is a space translation, G2 is a time translation, and G3 is a scaling transformation.

3. Generalized symmetries for SPE

In Section 2, we have obtained the symmetry group of Eq. (1). Now we consider the symmetries of Eq. (1) by using the
generalized symmetry method. This method is also called the method of undetermined coefficient [24].
Let
σ(x, t, u) = a(x, t)ut + b(x, t)ux + c(x, t)u+ d(x, t) (10)

be a symmetry of Eq. (1), where a(x, t), b(x, t), c(x, t) and d(x, t) are coefficient functions to be determined. On the other
hand, by the definition of generalized symmetry [2,5,24], it is easy to show that σ = σ(x, t, u) is a symmetry of Eq. (1) if
and only if

σxt − ασ − 2βu2xσ − 4βuuxσx − 2βuuxxσ − βu
2σxx = 0. (11)

Substituting (2)–(4) and (10) into (11). We note that the coefficient of D−1v in the left-hand side of (11) requires that ax = 0,
so the coefficient a is a function of t only. The coefficient of uxx implies that bt = 0, so we can suppose b = b(x). The
coefficient of u2x requires that d = 0. So it is not difficult to show that the coefficient functions a(x, t), b(x, t), c(x, t) and
d(x, t) are as follows:

a(x, t) = −c1t + c2, b(x, t) = c1x+ c3, c(x, t) = −c1, d(x, t) = 0, (12)
where ci (i = 1, 2, 3) are arbitrary constants. Substituting (12) into (10), we have

σ = c2ut + c3ux + c1(xux − tut − u).
Hence, we obtain that the symmetries for Eq. (1) are of the forms as follows:

σ1 = ux, σ2 = ut , σ3 = xux − tut − u,
which coincide precisely with the vector field V1, V2 and V3 are obtained in Section 2.
Since each Gi (i = 1, 2, 3) is a symmetry group, it implies that if u = f (x, t) is a solution of the short pulse equation, then

u(1), u(2) and u(3) as follows are solutions of Eq. (1) as well:

u(1) = f (x− ε, t), (13)

u(2) = f (x, t − ε), (14)

u(3) = eε f (e−εx, eεt), (15)
where ε is an arbitrary real number.
Next, we reduce Eq. (1) to ordinary differential equations (ODEs) by using the above vector field.
(i) In general, the linear combination of the two generators V1 and V2 will generate the traveling wave solutions for a PDE

(see Section 4).
(ii) For the generator of the scaling transformation V3, we have the following similarity variables
ξ = xt, ω = tu,

and the group-invariant solution is ω = f (ξ), that is

u =
1
t
f (xt). (16)

Substituting (16) into (1), we reduce the SPE to the following ODE:

ξ f ′′ − βf 2f ′′ − 2βf f ′2 − αf = 0, (17)

where f ′ = df
dξ . It implies that if ω = f (ξ) is a solution of Eq. (17), then (16) is a solution of Eq. (1). Note that Eq. (17) is a

nonautonomous and nonlinear ODE, we cannot obtain the exact solution by using the elementary functions.
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4. Exact traveling wave solutions of SPE

In this section, we consider the traveling wave solutions of the SPE equation.
In general, the traveling wave solutions to a PDE arise as special group-invariant solutions in which the group under

consideration is a translational group on the space of independent variables. In the present case, we consider the translation
group (x, t, u) 7→ (x + cε, t ± ε, u) (ε ∈ R), generated by the generator c ∂

∂x ±
∂
∂t , where c is a fixed constant, which will

determine the speed of the waves. So we can obtain that the global invariants of this group are as follows:

ξ = x∓ ct, φ = u. (18)

In view of (18), let ξ = x± ct , we have u(x, t) = φ(x± ct) = φ(ξ), where c is the propagating wave velocity. Substituting
it into the original PDE, we obtain a traveling wave equation. Then, solving this equation by the bifurcation theory method
of dynamical systems, we will obtain the traveling wave solutions.
Now, we consider the traveling wave solutions of the general short pulse equation (1). Let ξ = x + ct . We have

u(x, t) = φ(x + ct) = φ(ξ), where c > 0 is the propagating wave velocity. Substituting it into Eq. (1), we obtain the
following ordinary differential equation (ODE):

cφ′′ − βφ2φ′′ − 2βφ(φ′)2 − αφ = 0, (19)

where φ′ = dφ
dξ . Furthermore, Eq. (19) is equivalent to the planar system

dφ
dξ
= y,

dy
dξ
=
φ(α + 2βy2)
c − βφ2

. (20)

This system has the first integral

H(φ, y) = (c − βφ2)2y2 − αφ2
(
c −

1
2
βφ2

)
= h, (21)

where h is the integral constant.
When β > 0, the right hand of the second equation of system (20) is discontinuous. We call such systems singular

traveling wave systems. The straight lines φ = ±
√
c
β
in the (φ, y)-phase plane are called singular straight lines. It derives

the existence of some non-smooth behavior and breaking properties of traveling wave solutions of system (20). Making the
transformation dξ = (c − βφ2)dζ , system (20) becomes its associated regular system

dφ
dζ
= (c − βφ2)y,

dy
dζ
= φ(α + 2βy2). (22)

Clearly, system (22) has the same invariant curve solutions as (20). But when β > 0, the variables ξ and ζ of Eqs. (20) and
(22) have different scales near the straight lines φ = ±

√
c
β
. The variable ξ is a slow variable, while the variable ζ is a fast

variable (see [21]).
Whenαβ > 0 orα > 0, β < 0, system (22) has only one equilibriumpointO(0, 0).Whenα < 0, β > 0, system (22) has

five equilibrium points O(0, 0) and Aj
(
±

√
c
β
,±
√
−

α
2β

)
, j = 1, 2, 3, 4. Let h0 = H(0, 0) = 0, hs = H

(
±

√
c
β
,±
√
−

α
2β

)
=

−
αc2
2β defined by (21).
Let M(φe, ye) be the coefficient matrix of the linearized system of (22) at an equilibrium point (φe, ye) and J(φe, ye) be

its Jacobian determinant. Then,we have J(0, 0) = detM(0, 0) = −αc and TrM(0, 0) = 0, J(Aj) = 4αc < 0 (j = 1, 2, 3, 4).
By the theory of planar dynamical system, we know that if α > 0, then the equilibrium point O(0, 0) is a saddle point; if
α < 0, then the equilibrium point O(0, 0) is a center point of system (22), while the equilibrium points Aj (i = 1, . . . , 4) are
saddle points.
By qualitative analysis, we obtain the following phase portraits of system (22).
Fig. 1 gives rise to all possible traveling wave solutions of (1) for c > 0 in (α, β)-parametric plane.
We next consider the exact parametric representations of the bounded solutions of (20). The case α > 0, β > 0 has been

discussed by Ref. [21].

4.1. α < 0, β > 0 (see Fig. 1(1-2))

Corresponding to the closed orbits defined by H(φ, y) = h, h ∈ (0, hs), we have

y =

√
|α|β

2

(
2h
|α|β
−
2c
β
φ2 + φ4

)
c − βφ2

=

√
αβ

2 (r
2
1 − φ

2)(r22 − φ2)

c − βφ2
.
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Fig. 1. The different phase portraits of (20) when α and β are changed.

By using the first equation of (20), we obtain√
|α|β

2
ξ =

∫ φ

0

cdφ√
(r21 − φ2)(r

2
2 − φ

2)

− β

∫ φ

0

φ2dφ√
(r21 − φ2)(r

2
2 − φ

2)

.

Introducing a new variable χ , the above integral implies the parametric representation of the family of periodic traveling
wave solutions of (1):

φ(χ) = r2sn(χ, k),

ξ(χ) = x+ ct =

√
2
|α|β

[(
c
r1
− βr2

)
χ + βr2E(arcsin(sn(χ, k)), k)

]
,

(23)

where k2 = r2
r1
.

Corresponding to two heteroclinic orbits of (22) given by y = ±
√
|α|

2β , we have two breaking wave solutions of (1):

φ(ξ) = ±

√
|α|

2β
ξ, −

√
2c
|α|
≤ ξ ≤

√
2c
|α|
. (24)

4.2. α < 0, β < 0 (see Fig. 1(1-3))

Corresponding to the closed orbits defined by H(φ, y) = h, h ∈ (0,∞), we have

y =

√
αβ

2

(
2h
αβ
+
2c
β
φ2 − φ4

)
c + |β|φ2

=

√
αβ

2 (r
2
1 + φ

2)(r22 − φ2)

c + |β|φ2
.

By using the first equation of (20), we obtain√
αβ

2
ξ =

∫ r2

φ

cdφ√
(r22 − φ2)(r

2
1 + φ

2)

− β

∫ φ

0

φ2dφ√
(r21 + φ2)(r

2
2 − φ

2)

.

Introducing a new variable χ , the above integral implies the parametric representation of the family of periodic traveling
wave solutions of (1):

φ(χ) = r2cn(χ, k),

ξ(χ) = x+ ct =

√
2
αβ

 c + |β|r2√
r21 + r

2
2

− |β|r2

χ + |β|E(arccos(cn(χ, k1)), k1)
 , (25)

where k21 =
r2√
r21+r

2
2
.
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5. Exact analytic solutions for SPE

In general, we cannot obtain the exact and explicit solutions for the nonlinear ordinary differential equations (ODEs)
such as Eq. (17) by using the elementary functions. But we know that the power series can be used to solve ODEs, including
many complicated nonlinear differential equationswith nonconstant coefficients, [25–28]. Next, wewill consider the power
series solution for this reduced equation.
Now, we seek a solution of Eq. (17) in a power series of the form

f (ξ) =
∞∑
n=0

cnξ n, (26)

where c0 = f (0) 6= 0 (see Remark 3). Substituting (26) into (17), we have

2βc20c2 + β(6c
2
0c3 + 4c0c1c2)ξ + βc

2
0

∞∑
n=2

(n+ 1)(n+ 2)cn+2ξ n

+β

∞∑
n=2

[
n∑
k=1

k∑
i=0

(n+ 1− k)(n+ 2− k)cick−icn+2−k

]
ξ n + 2βc0c21

+ 2α(c31 + 4c0c1c2)ξ + 2β
∞∑
n=2

[
n∑
k=0

k+1∑
i=1

i(k+ 2− i)cick+2−icn−k

]
ξ n

+αc0 + αc1ξ + α
∞∑
n=2

cnξ n − 2c2ξ −
∞∑
n=2

n(n+ 1)cn+1ξ n = 0. (27)

From (27), comparing coefficients, we obtain (for n = 0)

c0(2βc0c2 + 2βc21 + α) = 0, (28)

and (for n = 1)

6βc20c3 + 12βc0c1c2 + 2βc
3
1 + αc1 − 2c2 = 0. (29)

Generally, for n ≥ 2, in view of (27), we have

cn+2 =
1

βc20 (n+ 1)(n+ 2)

[
n(n+ 1)cn+1 − αcn − 2β

n∑
k=0

k+1∑
i=1

i(k+ 2− i)cick+2−icn−k

− β

n∑
k=1

k∑
i=0

(n+ 1− k)(n+ 2− k)cick−icn+2−k

]
, n = 2, 3, . . . . (30)

Thus, from (28), for arbitrary chosen c0 = η 6= 0 and c1 = λ, we have c2 = −1
2βη (2βλ

2
+α). Furthermore, in view of (29) and

(30), we have c3 = −1
6βη2

(12βηλc2 + 2βλ3 + αλ− 2c2), c4 = −1
12βη2

(24βηλc3 + 12βηc22 + 8βλ
2c2 + αc2 − 6c3), and so on.

Therefore, the other terms of the sequence {cn}∞n=4 can be determined successively from (30) in a unique manner. This
implies that for Eq. (17), there exists a power series solution (26) with the coefficients given by (28)–(30).
Now we show that the convergence of the power series solution (26) of Eq. (17). In fact, from (30), we have

|cn+2| ≤ M

[
|cn| + |cn+1| +

n∑
k=0

k+1∑
i=1

|ci‖ck+2−i‖cn−k| +
n∑
k=1

k∑
i=0

|ci‖ck−i‖cn+2−k|

]
, n = 2, 3, . . . ,

whereM = max{ 2
c20
, 1
|β|c20

,
|α|

|β|c20
}. If we define a power series µ = P(ξ) =

∑
∞

n=0 pnξ
n by

p0 = |c0| = |η|, p1 = |c1| = |λ|, p2 = |c2|, p3 = |c3|

and

pn+2 = M

(
pn + pn+1 +

n∑
k=0

k+1∑
i=1

pipk+2−ipn−k +
n∑
k=1

k∑
i=0

pipk−ipn+2−k

)
, n = 2, 3, . . . ,

then it is easily seen that

|cn| ≤ pn, n = 1, 2, . . . .
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In other words, the series µ = P(ξ) =
∑
∞

n=0 pnξ
n is a majorant series of (26). Next, we show that this series µ = P(ξ) has

a positive radius of convergence. Indeed, note that by formal calculation, we have

P(ξ) = p0 + p1ξ + p2ξ 2 + p3ξ 3 +
∞∑
n=2

pn+2ξ n+2

= p0 + p1ξ + p2ξ 2 + p3ξ 3 +M

[
∞∑
n=2

pnξ n+2 +
∞∑
n=2

pn+1ξ n+2

+

∞∑
n=2

n∑
k=0

k+1∑
i=1

pipk+2−ipn−kξ n+2 +
∞∑
n=2

n∑
k=1

k∑
i=0

pipk−ipn+2−kξ n+2
]

= p0 + p1ξ + p2ξ 2 + p3ξ 3 +M[2P3(ξ)− (3p0 + p1ξ)P2(ξ)+ (ξ 2 + ξ − 2p0p1ξ − 2p20)P(ξ)+ 3p
3
0

+ (11p20p1 − p0)ξ + (6p
2
0p2 + 6p0p

2
1 − p1)ξ

2
+ (10p0p1p2 + 6p20p3 + 2p

3
1 − p2)ξ

3
].

Consider now the implicit functional equation
F(ξ , µ) = µ− p0 − p1ξ − p2ξ 2 − p3ξ 3 −M[2µ3 − (3p0 + p1ξ)µ2 + (ξ 2 + ξ − 2p0p1ξ − 2p20)µ+ 3p

3
0

+ (11p20p1 − p0)ξ + (6p
2
0p2 + 6p0p

2
1 − p1)ξ

2
+ (10p0p1p2 + 6p20p3 + 2p

3
1 − p2)ξ

3
] = 0.

Since F is analytic in the (ξ, µ)-plane and F(0, p0) = 0, F ′µ(0, p0) = 1+2Mp
2
0 6= 0, by the implicit function theorem [29,30],

we see that µ = P(ξ) is analytic in a neighborhood of the point (0, p0) of the plane and with a positive radius. This implies
that the power series (26) converges in a neighborhood of the point (0, p0) of the plane. This completes the proof.
Hence, the power series solution of Eq. (17) can be written as follows:

f (ξ) = c0 + c1ξ + c2ξ 2 + c3ξ 3 +
∞∑
n=2

cn+2ξ n+2. (31)

Note that in terms of the above computation, we can write the approximate form of (31) as follows:

f (ξ) = η + λξ −
1
2βη

(2βλ2 + α)ξ 2 −
1
6βη2

(12βηλc2 + 2βλ3 + αλ− 2c2)ξ 3

−
1

12βη2
(24βηλc3 + 12βηc22 + 8βλ

2c2 + αc2 − 6c3)ξ 4 + · · · .

Thus, we can obtain that the power series solution of Eq. (1) is as follows

u(x, t) = c0t−1 + c1x+ c2x2t + c3x3t2 +
∞∑
n=2

cn+2xn+2tn+1, (32)

where cn+2 (n = 2, 3, . . .) can be determined successively by (30) in a unique manner.
Corresponding to the approximate form of (31), we have the approximate form of (32) as follows:

u(x, t) = ηt−1 + λx−
1
2βη

(2βλ2 + α)x2t −
1
6βη2

(12βηλc2 + 2βλ3 + αλ− 2c2)x3t2

−
1

12βη2
(24βηλc3 + 12βηc22 + 8βλ

2c2 + αc2 − 6c3)x4t3 + · · · .

6. Summary and remarks

We have performed Lie symmetry analysis for the short pulse equation and investigated the algebraic structure of the
symmetry groups for this equation. Furthermore, by the generalized symmetry method, we also get the symmetries for the
SPE, it is precisely the same as the former. In addition, by using the bifurcation theorymethod of dynamical system, we have
obtained the traveling wave solutions of the equation. It is a geometric consideration actually. Moreover, the power series
solution of the reduced equation are given simultaneously. These are new solutions for the SPE.

Remark 1. σ1 and σ2 are obvious symmetries for Eq. (1). Substituting σ3 = xux − tut − u into (11), it is easy to show that
σ3 is also a symmetry of Eq. (1).

Remark 2. We reiterate that the power series solution (26) for the short pulse equation is an exact analytic solution.
Moreover, the solution of the power series converges quickly, so it is convenient for computations in both application and
physical systems.

Remark 3. Note that we assumed c0 = f (0) 6= 0 in the power series solution (26). It is necessary for our arguments.
Otherwise, we cannot get the exact analytic solution for this equation.
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