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and exact solutions are obtained based on the optimal system method. Then the exact
analytic solutions are considered by using the power series method.
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1. Introduction

The celebrated KdV types of equations are very important in both nonlinear theory and physical application. Such equa-
tions have been studied extensively. Especially, the soliton solutions, solitary wave solutions and the periodic wave solutions,
etc. to the classical KdV equation ut + αuux + βuxxx = 0 are considered by many authors (see, e.g., [1–9]). Recently, H. Liu
et al. considered the periodic wave solutions of a higher-order KdV equation by using the Hirota’s direct method [10].
Moreover, by using Lie symmetry analysis and the dynamical system method, we get the symmetries, bifurcations and ex-
act explicit solutions to other nonlinear evolution equations (NLEEs) [11–16]. In the present paper, we will consider the
fifth-order KdV types of equations:

ut + αuux + βuxxx + γ uxxxxx = 0, (1)

and

ut + λuux + μuxxxxx = 0, (2)

where u = u(x, t) denotes the unknown function, all the parameters α,β,γ ,λ,μ ∈ R and γμ �= 0. Then we will treat the
following general modified Kawahara equation

ut + αu2ux + βuxxx + γ uxxxxx = 0, (3)
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simultaneously. In particular, if β = 0, then Eq. (3) becomes the following equation:

ut + λu2ux + μuxxxxx = 0. (4)

We know that Eq. (1) is the general Kawahara equation (see [17,18] and references therein), Eq. (2) is the simpli-
fied Kawahara equation, and Eq. (4) is called the simplified modified Kawahara equation. These fifth-order KdV types of
equations have been derived to model many physical phenomena, such as gravity-capillary waves on a shallow layer and
magneto-sound propagation in plasmas, and so on. In [17], the authors proved the existence of traveling wave solutions to
a fifth-order partial differential equation, which is a formal asymptotic approximation for water waves with surface tension.
The paper [18] is mainly concerned with the local well-posedness of the initial-value problems for the Kawahara and the
modified Kawahara equations in Sobolev spaces.

The rest of this paper is organized as follows: in Section 2, the vector fields of Eqs. (1)–(4) are presented by using Lie
symmetry analysis method. In Sections 3 and 4, based on the optimal system method, all the similarity reductions and
exact solutions to the four Kawahara equations are obtained. In Section 5, the exact analytic solutions to the equations are
investigated by means of the power series method. Finally, the conclusions and remarks will be given in Section 6.

2. Lie symmetry analysis for the Kawahara equations

First of all, by using Lie symmetry analysis method, we obtain the vector field of the general Kawahara equation (1) as
follows:

V 1 = αt
∂

∂x
+ ∂

∂u
, V 2 = ∂

∂x
, V 3 = ∂

∂t
.

Similarly, we can get the vector fields of Eqs. (2), (3) and (4), respectively.
For the simplified Kawahara equation (2), we have

V 1 = x
∂

∂x
+ 5t

∂

∂t
− 4u

∂

∂u
, V 2 = λt

∂

∂x
+ ∂

∂u
, V 3 = ∂

∂x
, V 4 = ∂

∂t
.

For the general modified Kawahara equation (3), we have

V 1 = ∂

∂x
, V 2 = ∂

∂t
.

For the simplified modified Kawahara equation (4), we have

V 1 = x
∂

∂x
+ 5t

∂

∂t
− 2u

∂

∂u
, V 2 = ∂

∂x
, V 3 = ∂

∂t
.

It is easy to verify that the vector fields are closed under the Lie bracket, respectively. Take the vector field of Eq. (2) for
an example, we have

[V 1, V 1] = [V 2, V 2] = [V 3, V 3] = [V 4, V 4] = 0, [V 3, V 2] = −[V 2, V 3] = [V 3, V 4] = −[V 4, V 3] = 0,

[V 1, V 2] = −[V 2, V 1] = −4V 1, [V 1, V 3] = −[V 3, V 1] = V 3, [V 1, V 4] = −[V 4, V 1] = 5V 4

and

[V 2, V 4] = −[V 4, V 2] = λV 3.

Furthermore, we can compute the adjoint representations of the vector fields. For the general Kawahara equation (1), we
have

Ad
(
exp(εV i)

)
V i = V i, i = 1,2,3,

and

Ad
(
exp(εV 1)

)
V 2 = V 2, Ad

(
exp(εV 1)

)
V 3 = V 3 − αεV 2, Ad

(
exp(εV 2)

)
V 1 = V 1,

Ad
(
exp(εV 2)

)
V 3 = V 3, Ad

(
exp(εV 3)

)
V 1 = V 1 + αεV 2, Ad

(
exp(εV 3)

)
V 2 = V 2,

for any ε ∈R.
The adjoint representations of the vector fields of Eqs. (2), (3) and (4) can be obtained in the similar way. Based on the

adjoint representations of the vector fields, we obtain the optimal systems of the four Kawahara equations as follows:
For Eq. (1), we have

{V 1, V 2, V 3, V 1 + v V 3},
where v is an arbitrary constant.
Please cite this article in press as: H. Liu et al., Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations, J.
Math. Anal. Appl. (2010), doi:10.1016/j.jmaa.2010.03.026
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For Eq. (2), we have

{V 1, V 2, V 3, V 4, V 2 + v V 4},
where v is an arbitrary constant.

For Eq. (3), we have

{V 1, V 2 + v V 1},
where v is an arbitrary constant.

For Eq. (4), we have

{V 1, V 2, V 3 + v V 2},
where v is an arbitrary constant.

3. Similarity reductions and exact solutions to Eqs. (1) and (2)

In the preceding section, we obtained the vector fields and the optimal systems of the four Kawahara equations. Now,
we deal with the symmetry reductions and exact solutions to the equations. We will consider the following similarity
reductions and group-invariant solutions based on the optimal system method. From an optimal system of group-invariant
solutions to an equation, every other such solution to the equation can be derived.

3.1. Reductions and exact solutions to Eq. (1)

(i) For the generator V 1, we have

u = f (ξ) + 1

α
xt−1, (5)

where ξ = t . Substituting (5) into Eq. (1), we reduce it to the following ODE

ξ f ′ + f = 0, (6)

where f ′ = df
dξ

.

Solving Eq. (6), we have f (ξ) = cξ−1. Thus, we obtain the solution to Eq. (1) is

u(x, t) = 1

α
xt−1 + ct−1, (7)

where c is an arbitrary constant.
(ii) For the generator V 2, we get the trivial solution to Eq. (1) is u(x, t) = c, where c is an arbitrary constant.
(iii) For the generator V 3, we have

u = f (ξ), (8)

where ξ = x. Substituting (8) into Eq. (1), we reduce it to the following ODE

γ f (5) + β f ′′′ + α f f ′ = 0, (9)

where f ′ = df
dξ

.
(iv) For the linear combination V = V 1 + v V 3, we have

u = f (ξ) + 1

v
t, (10)

where ξ = x − α
2v t2. Substituting (10) into Eq. (1), we reduce it to the following ODE

γ f (5) + β f ′′′ + α f f ′ + 1

v
= 0, (11)

where f ′ = df , v �= 0 is an arbitrary constant.
Please cite this article in press as: H. Liu et al., Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations, J.
Math. Anal. Appl. (2010), doi:10.1016/j.jmaa.2010.03.026
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3.2. Reductions and exact solutions to Eq. (2)

(i) For the generator V 1, we have

u = t− 4
5 f (ξ), (12)

where ξ = xt− 1
5 . Substituting (12) into Eq. (2), we reduce this equation to the following ODE

μ f (5) + λ f f ′ − 1

5
ξ f ′ − 4

5
f = 0, (13)

where f ′ = df
dξ

.
(ii) For the generator V 2, we have

u = f (ξ) + 1

λ
xt−1, (14)

where ξ = t . Substituting (14) into Eq. (2), we reduce this equation to the following ODE

ξ f ′ + f = 0, (15)

where f ′ = df
dξ

.

Eq. (15) has the solution f (ξ) = cξ−1. Thus, we obtain the solution of Eq. (2) is

u(x, t) = 1

λ
xt−1 + ct−1, (16)

where c is an arbitrary constant.
(iii) For the generator V 3, we get the trivial solution of Eq. (2) is u(x, t) = c, where c is an arbitrary constant.
(iv) For the generator V 4, we have

u = f (ξ), (17)

where ξ = x. Substituting (17) into Eq. (2), we reduce this equation to the following ODE

μ f (5) + λ f f ′ = 0, (18)

where f ′ = df
dξ

.
(v) For the linear combination V = V 2 + v V 4, we have

u = f (ξ) + 1

v
t, (19)

where ξ = x − λ
2v t2. Substituting (19) into Eq. (2), we reduce this equation to the following ODE

μ f (5) + λ f f ′ + 1

v
= 0, (20)

where f ′ = df
dξ

, v �= 0 is an arbitrary constant.

4. Similarity reductions and exact solutions to Eqs. (3) and (4)

4.1. Reductions and exact solutions to Eq. (3)

(i) For the generator V 1, we get the trivial solution of Eq. (3) is u(x, t) = c, where c is an arbitrary constant.
(ii) For the linear combination V = V 2 + v V 1, we have

u = f (ξ), (21)

where ξ = x − vt . Substituting (21) into Eq. (3), we reduce this equation to the following ODE

γ f (5) + β f ′′′ + α f 2 f ′ − v f ′ = 0, (22)

where f ′ = df , v �= 0 is an arbitrary constant.
Please cite this article in press as: H. Liu et al., Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations, J.
Math. Anal. Appl. (2010), doi:10.1016/j.jmaa.2010.03.026
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4.2. Reductions and exact solutions to Eq. (4)

(i) For the generator V 1, we have

u = t− 2
5 f (ξ), (23)

where ξ = xt− 1
5 . Substituting (23) into Eq. (4), we reduce this equation to the following ODE

5γ f (5) + 5α f 2 f ′ − ξ f ′ − 2 f = 0, (24)

where f ′ = df
dξ

.
(ii) For the generator V 2, we get the trivial solution of Eq. (4) is u(x, t) = c, where c is an arbitrary constant.
(iii) For the linear combination V = V 3 + v V 2, we have

u = f (ξ), (25)

where ξ = x − vt . Substituting (25) into Eq. (4), we reduce this equation to the following ODE

γ f (5) + α f 2 f ′ − v f ′ = 0, (26)

where f ′ = df
dξ

, v �= 0 is an arbitrary constant.

Remark 4.1. Note that the reduced equations such as (9), (13) are all higher-order nonlinear or nonautonomous ODEs, we
will deal with such equations in the next section.

5. The exact power series solutions

By exact solutions, we mean those that can be obtained from some ODEs or, in general, from PDEs of lower order than
the original PDE [19]. In terms of this definition, the exact solutions to the Kawahara equations (1)–(4) are obtained actually
in both of the preceding Sections 3 and 4.

In spite of this, we still want to detect the explicit solutions expressed in terms of elementary or, at least, known
functions of mathematical physics, in terms of quadratures, and so on. But this is not always the case, even for simple
semilinear PDEs. However, we know that the power series can be used to solve differential equations, including many
complicated differential equations with nonconstant coefficients, [20–23]. In this section, we will consider the exact analytic
solutions to the reduced equations by using the power series method. Once we get the exact analytic solutions of the
reduced equations (ODEs), the exact power series solutions to the original PDEs are obtained. As examples, we consider
Eqs. (9), (22) and (24), the other equations can be tackled in the similar way.

5.1. Exact analytic solutions to Eq. (9)

Firstly, in view of (9), we have

2γ f (4) + 2β f ′′ + α f 2 + c = 0, (27)

where c is an integration constant.
Now, we seek a solution of Eq. (27) in a power series of the form

f (ξ) =
∞∑

n=0

cnξ
n. (28)

Substituting (28) into (27), we have

48γ c4 + 2γ

∞∑
n=1

(n + 1)(n + 2)(n + 3)(n + 4)cn+4ξ
n + 4βc2 + 2β

∞∑
n=1

(n + 1)(n + 2)cn+2ξ
n

+ αc2
0 + α

∞∑
n=1

(
n∑

k=0

ckcn−k

)
ξn + c = 0. (29)

From (29), comparing coefficients, for n = 0, we obtain

c4 = −1 (
αc2

0 + 4βc2 + c
)
. (30)
Please cite this article in press as: H. Liu et al., Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations, J.
Math. Anal. Appl. (2010), doi:10.1016/j.jmaa.2010.03.026
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Generally, for n � 1, we have

cn+4 = −1

2γ (n + 1)(n + 2)(n + 3)(n + 4)

[
2β(n + 1)(n + 2)cn+2 + α

n∑
k=0

ckcn−k

]
. (31)

From (30) and (31), we can get all the coefficients cn (n � 4) of the power series (28), e.g.,

c5 = −1

120γ
(αc0c1 + 6βc3), c6 = −1

720γ

[
α

(
2c0c2 + c2

1

) + 24βc4
]
,

and so on.
Thus, for arbitrary chosen constant numbers c0, c1, c2 and c3, the other terms of the sequence {cn}∞n=0 can be determined

successively from (30) and (31) in a unique manner. This implies that for Eq. (27), there exists a power series solution (28)
with the coefficients given by (30) and (31). Furthermore, it is easy to prove the convergence of the power series (28)
with the coefficients given by (30) and (31) [11,12,20–22]. Therefore, this power series solution (28) to Eq. (27) is an exact
analytic solution.

Hence, the power series solution of Eq. (27) can be written as following:

f (ξ) = c0 + c1ξ + c2ξ
2 + c3ξ

3 + c4ξ
4 +

∞∑
n=1

cn+4ξ
n+4

= c0 + c1ξ + c2ξ
2 + c3ξ

3 − 1

48γ

(
αc2

0 + 4βc2 + c
)
ξ4

−
∞∑

n=1

1

2γ (n + 1)(n + 2)(n + 3)(n + 4)

[
2β(n + 1)(n + 2)cn+2 + α

n∑
k=0

ckcn−k

]
ξn+4. (32)

Thus, the exact power series solution of Eq. (1) is

u(x, t) = c0 + c1x + c2x2 + c3x3 + c4x4 +
∞∑

n=1

cn+4xn+4

= c0 + c1x + c2x2 + c3x3 − 1

48γ

(
αc2

0 + 4βc2 + c
)
x4

−
∞∑

n=1

1

2γ (n + 1)(n + 2)(n + 3)(n + 4)

[
2β(n + 1)(n + 2)cn+2 + α

n∑
k=0

ckcn−k

]
xn+4, (33)

where ci (i = 0,1,2,3) and v �= 0 are arbitrary constants, the other coefficients cn (n � 4) can be determined successively
from (30) and (31).

In physical applications, it will be convenient to write the solution of Eq. (1) in the approximate form

u(x, t) = c0 + c1x + c2x2 + c3x3 − 1

48γ

(
αc2

0 + 4βc2 + c
)
x4

− 1

120γ
(αc0c1 + 6βc3)x5 − 1

720γ

[
α

(
2c0c2 + c2

1

) + 24βc4
]
x6 + · · · , (34)

in terms of the above computation.

5.2. Exact analytic solutions to Eq. (22)

In view of (22), we have

3γ f (4) + 3β f ′′ + α f 3 − 3v f + g = 0, (35)

where g is an integration constant.
Now, we seek a solution of Eq. (35) in a power series of the form (28). Substituting (28) into (35), and comparing

coefficients, we obtain

cn+4 = 1

3γ (n + 1)(n + 2)(n + 3)(n + 4)

[
3vcn − 3β(n + 1)(n + 2)cn+2 − α

n∑
k=0

k∑
j=0

c jck− jcn−k − g

]
,

n = 0,1,2, . . . . (36)
Please cite this article in press as: H. Liu et al., Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations, J.
Math. Anal. Appl. (2010), doi:10.1016/j.jmaa.2010.03.026
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In view of (36), we can get all the coefficients cn (n � 1) of the power series (28), e.g.,

c4 = 1

72γ

(
3vc0 − αc3

0 − 6βc2 − g
)
, c5 = 1

360γ

(
3vc1 − 3αc2

0c1 − 18βc3 − g
)
,

and so on. Thus, for arbitrary chosen constant numbers c0, c1, c2 and c3, the other terms of the sequence {cn}∞n=0 can be
determined successively from (36) in a unique manner. This implies that for Eq. (35), there exists a power series solution
(28) with the coefficients given by (36).

Therefore, the power series solution of Eq. (35) can be written as follows:

f (ξ) = c0 + c1ξ + c2ξ
2 + c3ξ

3 +
∞∑

n=0

1

3γ (n + 1)(n + 2)(n + 3)(n + 4)

[
3vcn − 3β(n + 1)(n + 2)cn+2

− α

n∑
k=0

k∑
j=0

c jck− jcn−k − g

]
ξn+4. (37)

Accordingly we have the exact traveling wave solution to Eq. (3) is

u(x, t) = c0 + c1(x − vt) + c2(x − vt)2 + c3(x − vt)3

+
∞∑

n=0

1

3γ (n + 1)(n + 2)(n + 3)(n + 4)

[
3vcn − 3β(n + 1)(n + 2)cn+2

− α

n∑
k=0

k∑
j=0

c jck− jcn−k − g

]
(x − vt)n+4, (38)

where ci (i = 0,1,2,3) are arbitrary constants, the other terms cn+4 (n = 0,1,2, . . .) are given by (36) successively.

5.3. Exact analytic solutions to Eq. (24)

Similarly, we seek a solution of Eq. (24) in a power series of the form (28). Substituting it into (24), and comparing
coefficients, we obtain

cn+5 = 1

5γ (n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

[
(n + 2)cn − 5α

n∑
k=0

k∑
j=0

(n + 1 − k)c jck− jcn+1−k

]
,

n = 0,1,2, . . . . (39)

In view of (39), we can get all the coefficients cn (n � 5) of the power series (28) such as

c5 = 1

600γ

(
2c0 − 5αc2

0c1
)
, c6 = 1

3600γ

[
3c1 − 10α

(
c2

0c2 + c0c2
1

)]
,

c7 = 1

12600γ

[
4c2 − 5α

(
3c2

0c3 + 6c0c1c2 + c3
1

)]
, c8 = 1

6720γ

[
c3 − 4α

(
c2

0c4 + 2c0c1c3 + c0c2
2 + c2

1c2
)]

,

and so on. Thus, for arbitrary chosen constant numbers c0, c1, c2, c3 and c4, the other terms of the sequence {cn}∞n=0 can be
determined successively from (39) in a unique manner. This implies that for Eq. (24), there exists a power series solution
(28) with the coefficients given by (39).

The exact solution of Eq. (4) and the solution in the approximate form can be written in terms of the above computation.
The details are omitted here.

Remark 5.1. By using the integration of ordinary differential equations (ODEs), we know that if we get a one-parameter
symmetry group of an ODE, then we can reduce the order of the equation by one. But we note that such reduced ODEs are
more complicated than the original equation in addition to some special cases. In view of this, we can see that the power
series method is a useful tool of solving such higher-order nonlinear or nonautonomous ODEs.

6. Conclusion and remarks

In this paper, we have obtained the symmetries and similarity reductions of the four fifth-order KdV types of equations
by using Lie symmetry analysis method. All the group-invariant solutions to the equations are considered based on the
optimal system method for the first time. Then the exact analytic solutions are investigated by using the power series
method. Furthermore, how to get the other forms of exact solutions to these Kawahara equations? We hope to investigate
this in the near future.
Please cite this article in press as: H. Liu et al., Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations, J.
Math. Anal. Appl. (2010), doi:10.1016/j.jmaa.2010.03.026
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Remark 6.1. We would like to reiterate that the power series solutions which have been obtained in Section 5 are exact
analytic solutions. Moreover, from the above examples, we can see that these power series solutions converge quickly, so it
is convenient for computations in both numerical analysis and physical applications.
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