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MA3249
Chapter 1

THE GEOMETRY OF THE ANCIENT TIMES

§1.1 PYTHAGORAS’ THEOREM

A
In a right-angled triangle ABC with ZC = 90°,
a0 =2,
c b

where a = base, b = height and ¢ = hypotenuse.
There are more than 400 proofs of this simple re-
sult. ]

B a C

The proof appeared in Euclid’s “FElements’ around 300BC is most widely known.

X
% B R
Y
U
A C S
Q P

Let’s use the notations (PQAC) and (ABQ) to denote the area of the square
PQAC and the triangle ABQ etc. In the above diagram, AC? = (PQAC) =
2(ABQ) = 2(ACY) = (AUVY). Similarly, BC? = (BUVX). Hence, AC? +
BC? = AB2.

(©Wong Yan Loi 2



MA3249

In ancient China, mathematicians make use of Pythagoras’ theorem in many im-
portant scientific calculations. On the starting page of Zhou-Bi Suan-Jing around
1100BC, Zhou Kung asks Shang Gao the following question.

“There are no steps by which one may ascend the heavens, and it is impracticable
to take a ruler and measure the extent of the earth. Then how does one obtain the
measurement of the height of the heaven?”

In Shang Gao’s reply, he mentions the “3-4-5" right-angled triangle as the basis in
such calculations. Also Chen Tsu in Zhou-Bi Suan-Jing states the following.

“Square the base and the height. Take the square root of their sum to obtain the
hypotenuse.”

This is precisely Pythagoras’ theorem.

In Zhou-Bi Suan-Jing, there is the following calculation.

A stick measures 8ft long. During the day of the summer solstice, i.e. on the
21st of June, it casts a shadow of length 1ft 6in long. Here the stick represents
the height of a right-angled triangle, while the shadow s the base. When the stick
1s moved 1000mi south, the shadow becomes 1ft 5in long. Whereas if the stick is
moved 1000mi north, the shadow is 1ft 7in long. As the sun moves southward, the
shadow of the stick is longer. When the shadow is exactly 6ft long, a bamboo tube
of length 8ft long and diameter lin wide is used to observe the sun. Its aperture
just covers the sun. This gives the ratio of the distance from the earth to the sun
and the diameter of the sun, which is 80 to 1. Also, the length of the shadow of the
stick decreases by 1in for each additional 1000mi advancement of the stick towards
south. It follows from this that the shadow is gone when the stick is moved 60000m;
south. Consequently, the height of the sun is 80000mi.

Sun

(©Wong Yan Loi 3



MA3249

In the above diagram, h = 8ft,a = 1.5ft,b = 1.6 ft and d ~ 10°ft.

at+z a d+a+zx b

By simil iangl h == —_— =
y similar triangles, we have 7 N and f N
. d a b
By subtracting the first from the second, we have I + =7
dh
Hence, H = 2 =8 x 107 ft.
—a

Consequently, the distance from the earth to the
sun is 10% ft. Then by similar triangles, the diame-
ter of the sun is 1/8 x 107 ft. Though the calculation
is far from accurate, it gives an illustration on how 108 8 x 107
the ancient Chinese estimate these important astro-

nomical values by means of Pythagoras’ theorem.

Note that we take 1m: = 1000 ft and 1ft = 10in in 10

our calculations. ]
6 6 x 107

During the Han dynasty of China (206BC-220BC), Zhao Jun Qing gives a proof
of Pythagoras’ theorem in the form of the following diagram.

A

E

The above diagram illustrates that 3% + 4% = 52. However, it does admit a general
proof of Pythagoras’ theorem. This is illustrated in the next diagram. The same
proof is given by the Indian mathematician Bhaskara-Acharya (1114AD-1185AD).

This is in fact the most easiest proof of Pythagoras’ theorem.
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Leonardo da Vinci (1452-1519) gives an interesting proof of Pythagoras’ theorem.
His proof is explained in the following diagram. Can you figure out how it works?
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The following tiling of the floor contains a proof of Pythagoras’ theorem. See if
you can discover how it works.

§1.2 PYTHAGOREAN TRIPLES

Definition 1.1 A triple (z,y, z) of positive integers is called a Pythagorean triple

if it satisfies the equation x? + y? = 22.

The triples (3,4,5) and (5,12,13) are Pythagorean triples. In fact there are infinitely
many Pythagorean triples. The problem of finding all Pythagorean triples is a
little exercise in elementary arithmetic. It is much less trivial than finding all real
solutions to the equation % + y? = 2z2. The latter problem is equivalent to finding
all the right-angled triangles. Note that the graph of the equation z? + 3% = 22
is a double cone joined at the origin. Each point (z,y,z) on the graph gives a
right-angled triangle. To find all the Pythagorean triples, one needs to find those
integer points (z,y, z) lying on this double cone. A generalization of this problem
is the Fermat Last Theorem.

Fermat Last Theorem Let n be an integer greater than 2. Then 2" 4 ¢y = 2"
has no positive integer solutions in z,y and z.

This is conjectured by Fermat (1608-1677) and is finally solved by A.Wile in 1994.
Therefore, apart from n = 2, there are no positive integer solutions to the equation
" +y" = 2". Now, we proceed to find all the Pythagorean triples.
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Theorem 1.2 The set of all integer solutions to the equation 22 4 y? = 22 is

{(m* —n? 2mn,m* +n?) or 2mn,m*> —n* m*+n?) :m>nmncZ"}

Proof Let z,y, z be positive integers satisfying 2* +y? = 22. We may assume that
x and y have no common factors. If not, all x,y, z have a common factor, then we
can divide the equation 2% + y? = 22 by the square of this common factor, thus
obtaining the equation z? + 3? = 2"? with 2’ and 3’ relatively prime. Then we
can work with this new equation. Next we shall prove that either x or y is even.
If both x and y are odd, then 2z? = 22 + 32 is even. Hence z is even. This means
that 22 = 0 (mod 4). But the square of an integer modulo 4 is either 0 or 1. As
2> =22+ y* =0 (mod 4), we must have both z and y are even, contradicting our
assumption that x and y are relatively prime. Now we may assume without loss of
generality that y is even. Let’s write y = 2k, where k is a positive integer. Hence,
4k* = y? = 22 — 22 = (2 +2)(2 — ). As y is even, the equation x? + y? = 22 shows
that x and z should have the same parity. Hence both (z+2) and (z —x) are even.
Thus, k* = (55%)(%5%). That is, k* factors into 2 positive integers £% and 252, If
these 2 integers have a common factor p > 1, then p divides both z and x because

Ztxr _ z—x

z+x 22— .
5+ 5 and v = 55 3

our assumption that x,y, z have no common factors. Hence, k* = (2£)(%5%) and

2
2+x z—x Ztxr __ 2
5, 55 =% = m* for some

positive integers m and n with m > n. Consequently, z = m? + n? x = m? — n?

z= . Thus p divides all z, y, z which again contradicts

are relatively prime. This implies that =5* = n? and

and y = 2mn.

Some Pythagorean triples (z,vy, z) with x,y, z relatively prime are listed below.

(3, 4, 5
(5, 12, 13)
(15, 8, 17)
(7, 24, 25)
(21, 20, 29)
(9, 40, 41)
(35, 12, 37
(11, 60, 61)
(45, 28, 53)
(33, 56, 65)
(13, 84, 85)
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§1.3 COMMENSURABLE AND INCOMMENSURABLE
QUANTITIES

The Pythagoreans believe that any two quantities can be compared in terms of
ratios of whole numbers. Here the term “quantity” means either a positive number,
the length of a line segment (or sometimes just the segment itself), the area of a
plane figure or the volume of a solid object etc. When we talk about two quantities,
we assume that they are of the same type.

Definition 1.3
(i) Two quantities & and 3 are said to be commensurable if there exist m,n € Z*
and a quantity v of the same type such that &« = m~y and g = n~.

(ii) Two positive numbers a and b are said to be commensurable if a/b € Q.

(iii) Two quantities are said to be incommensurable if they are not commensurable.

For example, if AB and C'D are segments such that AB = 4P(Q and C'D = 5P()
for some segment PQ, then AB are C'D are commensurable.

*——0

A B C D P Q
V2 and 3v/2 are commensurable, whereas 1 and V2 are incommensurable.

If we use the lengths of line segments, or the areas of plane figures etc., to rep-
resent positive numbers, then definitions 1 and 2 are in fact equivalent. Take for
instance two commensurable positive numbers a and b. Hence, a/b = p/q for some
positive integers p and q. Then a = p(b/q) and b = q(b/q) so that a and b are
commensurable in the sense of definition (i).

The Pythagoreans claim that all things are “numbers”. They mean to imply that
all pairs of lengths, areas, volumes are commensurable. In other words, “numbers”
means “rational numbers”. However, they do discover that there are incommensu-
rable quantities. This puts all the theorems which they proved by means of ratios
of whole numbers into shaky grounds.

The Pythagorean Hippasus (470BC) discovers that the side and the diagonal of a
square are incommensurable.

(©Wong Yan Loi 8
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D A
Suppose that AB and AC are com-
mensurable with respect to a segment B, P i
AP. Construct B; on AC such that !
CB; = AB. The perpendicular at B;
meets AB at a point C;. Then AB; = Cy
B,C;, = BC;. Hence AB; and AC,
are commensurable with respect to AP.

But AB; < 1AB. o 5

Repeating the argument, we end up with quantities commensurable with respect
to AP but less than AP! It is this problem which causes the existentialists crisis
in ancient Greek mathematics. This is known as the first crisis in mathematics.
In modern mathematics, we understand that /2 is irrational. The Pythagoreans
are not able to define irrational numbers. However, they know that they exist
and they know how to approximate any ratio of incommensurable quantities by
commensurable quantities. For the formal construction of irrational numbers, one
has to wait until the nineteen century when Peano (1858-1932) formulates his
axioms for the natural numbers and Dedekind (1831-1919) uses his “Dedekind
cuts” to construct the real numbers.

Proposition 1.4 The side and the diagonal of a regular pentagon are incommen-
surable.

Proof

E

Let CD = a and BD = b. Let P be the point of intersection of BD and CFE.
Let PC' = ¢. Then ED = EP = a and ¢ = b — a. Now suppose a and b are
commensurable so that a and b can be measured by some integral multiples of a
segment o. As ¢ =b—a, c and a can also be measured by integral multiples of the
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segment . Hence we have another regular pentagon whose side and diagonal are
commensurable and both can be measured by integral multiples of the segment a.
By repeating this construction, we obtain a sequence of regular pentagons whose
sizes are getting arbitrarily small and their sides and diagonals are commensurable
with respect to . Hence, we will eventually obtain a segment of length less than
«a. But a segment of length less than o cannot be measured by «. This gives a
contradiction. The fact that these regular pentagons are getting arbitrarily small
in size can be seen by observing that all of them are bounded by the lines BC' and
E D which intersect at a point. More precisely, each pentagon decreases in size by
a factor of tan 36° < 1.

Proposition 1.5 v/2 is irrational.

Proof Suppose that v/2 = p/q for some p,q € Z*. After cancelling common
factors, we may assume that p and ¢ are relatively prime. Now p? = 2¢?, so that
p? is even. Hence, p is even. Let p = 2k. Then 4k? = 2¢®. In other word, 2k? = ¢>.
As before, we see that ¢ is even. This contradicts the fact that p and ¢ are relatively
prime.

Let a and b be two quantities of the same type. If a and b are commensurable, then
a/bor a : b has a clear meaning, namely a/b € Q. If a and b are incommensurable,
then the Pythagoreans do not know what a/b means. That is because a/b & Q.
For the equality of ratios of commensurable quantities, the meaning is also clear.

Let a,b be two commensurable quantities and ¢,d another two commensurable
quantities. Then we may express a = ms,b = ns and ¢ = pt,d = gt for some
quantities ¢, s and m,n,p,q € Z*. To the Pythagoreans, a/b = ¢/d simply means
the equality of the two fractions m/n and p/q.

Now how do we define the equality of ratios of incommensurable quantities without
knowing what they are?

§1.4 EUDOXUS’ THEORY OF PROPORTION

Definition 1.6 Let a,b, ¢, d be positive numbers. % = 2 if for any p,q € Z™,
(i) pa > gb <= pc > qd,
(i) pa = gb <= pc = qd,

(iil) pa < gb <= pc < qd.

(©Wong Yan Loi 10
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Proposition 1.7 Suppose that a,b are commensurable, and ¢, d are commensu-
rable. Then the usual meaning of a/b = ¢/d agrees with the meaning of equality
defined by Eudoxus.

Proposition 1.8 Let a,b, ¢, d be positive numbers. Then a/b = ¢/d in the usual
sense of real numbers iff a/b = ¢/d in the sense of Eudoxus.

Proof Assume that a/b = ¢/d in the usual sense of real numbers. Let p,q € Z*.
Then, pa > gb iff pa > q(ad/c) iff pc > dq. This verifies (i) in Eudoxus’ definition.
The other two cases are similarly verified. Now Assume that a/b = ¢/d in the
sense of Eudoxus. Suppose a/b > ¢/d. By the density theorem for real numbers,
insert a rational number ¢/p between a/b and ¢/d. Hence, a/b > q/p > ¢/d. Then,
we have pa > gb, but pc < qd, contradicting (i) in Eudoxus’s definition. Similarly,
if a/b < ¢/d, then we have a contradiction against (iii). Consequently, a/b = c/d.

As an application of Eudoxus’s definition, consider the following result.

Proposition 1.9 In a triangle ABC', D is a point on AB and F is a point on AC

such that DFE is parallel to BC'. Suppose that AD are AB are commensurable.
AD AE

AB ~ AC

Proof Let AD = mAP and AB = nAP. Divide the line segment AB into n
equal parts with subdivision points A = Ay, Ay,..., A, = D,..., A, = B. For
t=1,...,n—1, draw a line through A; parallel to BC. These lines cut AC in
n — 1 equally spaced points. From this we have, AE = mAQ and AC' = nAQ.
Hence, AE and AC are commensurable. Now AD/AB = AE/AC means that
mnAP - AQ) = mnAP - AQ, which is true.

Then AE and AC are commensurable. Furthermore,

Suppose that AE and AC are incommensurable. We cannot subdivide AB into
a finite number of equal parts with D being one of the subdivision point. How
do we prove that AD/AB = AFE/AC? In this situation, Eudouxs makes use
of his definition. Take any two positive integers p and ¢q. The same procedure of
drawing lines parallel to BC shows that pAD < ¢AB iff pAE < qAC. This verifies
(i) in Eudoxus’ definition. Similarly, one can verifies (ii) and (iii). Therefore,

AD/AB = AE/AC.
Proposition 1.10 Let ABC and DEF be two triangles such that the height from
A to BC equals to the height from D to EF. Then

BC  (ABC)

EF  (DEF)’
where (ABC') and (DEF') denote the areas of the AABC and ADEF respectively.
(Note that this result is true when BC and EF are commensurable by the usual

method of subdivision of line segments.)

(©Wong Yan Loi 11
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Proof

X B C E F Y

Take any multiple pBC' of BC' and ¢EF of EF where m,n € Z*. Let XC be a
segment of length pBC' and EY a segment of length ¢ F'. Then

pBC > ¢qFF <= XC > EY <= (AXC) > (EDY) < p(ABC) > q(DEF).

This verifies (i) in Eudoxus’ definition. Similarly, (ii) and (iii) can be verified.
Hence, BC/EF = (ABC)/(DEF).

Exercises
1. Using the definition of proportion given by Fudoxus, show that

e_c . d_»
b d c a

2. Using the definition of proportion given by Eudoxus, show that

a C a+c ¢

b4 b+d 4

3. Let a,b and ¢ be positive numbers with a < b. Prove that there exists a
positive number z such that a < z < b and z is commensurable with c.

§1.5 METHOD OF EXHAUSTION

The method of exhaustion is invented by Eudoxus. It is a way of proving certain
proportionalities for curved figures by first proving that the proportionalities hold
for similar polygons, then approximating the curved line by a polygon. Before
we illustrate this method, let’s first prove the following result due to Antiphon

(425BC).

Proposition 1.11 The area s,, of an inscribed regular 2™-gon in a circle of area ¢

1
is greater than (1 — 2n_1)c.

(©Wong Yan Loi 12
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Proof
B

E E
Es 2 2 Es

Al A2

Consider the inscribed regular 2" !-gon A;Ay--- Agn-1. Let By, ..., Byn1 be the
midpoints of the arcs A; Ay, AsAs, ..., Asn—1A;. Then an inscribed regular 2"-gon
A1B1As -+ Byn-1 can be formed by joining A; to By, By to As, ..., Bon-1 to Aj.
Consider the sector of the circle cut out by the chord A;A;. Let H be the foot
of the perpendicular from B; onto A;A,;. Construct a rectangle of width A; A,
and height ByH. This rectangle is partitioned into 6 regions whose areas are
labelled as F;, F5 and E3 as shown in the diagram. From the diagram, we see that
Ey < Ey + E3 = By and 2E, < (Ey + Es) = %(2E1 + 2E,). It follows from this
1

that we have (c—s,) < 3(c—s,-1). Hence, inductively we have (¢ —s,) < ¢/2"".

Corollary 1.12 If o < ¢, then there exists a positive integer n such that s, > a.
Theorem 1.13 The area of a circle is proportional to its diameter squared.

Proof Let ¢, ¢y and dy, dy be the areas and the diameters of the circles C; and Cs

d c
respectively. Let d—; = ~L for some a. We shall prove a = cs.
Q@

Suppose that o < ¢y. Inscribe regular 2™-gons of area p; and ps respectively in the
circle C and Cs. By 1.12; we can pick n large enough so that py, > a.
d? c
Now —; S < = which is a contradiction.
d;  po «
Here the first equality holds because the result is true for inscribed regular poly-

gons. The second inequality holds because c¢; > p; and ps > a.
Similarly, o > ¢5 is not possible. Consequently, o = cs.

In the above theorem, we have used the following result also proved by Antiphon.

Proposition 1.14 Let the areas of the regular 2™-gons inscribed respectively in
the circles of diameter 1 and d be p; and p,. Then py = p;d>.

Now let’s give a more direct proof of theorem 1.14 due to Eudoxus.

Let k be the area of the circle of diameter 1 and ¢ the area of the circle of diameter
d. (We know that k is just m/4.) We wish to prove that ¢ = kd?. First let’s
suppose that kd?> < c. By 1.12, we can pick an inscribed regular 2"-gon of area
po inside the circle of diameter d so that ¢ > py > kd?. Let p; be the area of the
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regular 2"-gon inscribed in the circle of diameter 1. Then, kd? > p;d® = py > kd?
which is a contradiction. On the other hand, suppose ¢ < kd?. Pick n large enough
so that QIdefl < kd* — c. This implies that [k(1 — 2n1,1)]d2 > ¢. By 1.11, we have
p1 > [k(1 — 35)]. Therefore, ¢ < [k(1 — 5=5)]d? < p1d® = ps < ¢, which again is
a contradiction. Consequently, ¢ = kd?.

Note that in order to have the exact formula for the area of the circle of diameter
d, it is necessary to know the value of k£ which in turn ask us to find the value of
.

§1.6 CONTINUED FRACTIONS

The Pythagoreans know how to write a rational number as a continued fraction.
A procedure found in Proposition 2 of Book VII of the Elements and possibly due
to the Pythagorean Archytas is as follow.

a
I Expand 7 into a continued fraction.

a r
- = - O0<r<b
b ag + b ( r )
b
2= a2 0<rm <r)
T T
T'n—3 — a, + T'n—1 (O < Tt < Tn—?)
T'n—2 T'n—2
Tn—2
Tn—1 ¢ (r )

Note that the r;’s form a decreasing sequence of positive integers. The process
stops when r,, = 0. Then we have

2 +

— = Q@

b 0 1
a; +

az +

Qp—1 +

(©Wong Yan Loi 14
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We use the notation [ag,aq,as,...,a,] to denote the above continued fraction.
Hence,
a
B - [a07 ai,ag, . .. 7a’n]'
For each i = 1,...,n, bi _ lag, a1, as, ..., a;] is called the ith partial quotient of
i
the continued fraction [ag, aj, as, . .., ay].

For example, let’s express 19/7 as a continued fraction.

19 5
2 = 94 2
7 +7
7 2
- = 14 =
5 +5
5 1
- 94 =
2 +2
2
[ 9
1
Thus
1
79:2+ !
1+ 1
24+ —

or we may write 19/7 = (2,1, 2, 2].

For any real number z, let’s use | x| to denote the largest integer less than or equal
to . When we carry out the computation of the continued fraction expansion of

a/b, we notice that ag = L%J’ a, = LiJ’ L a, = LTWZJ-

T'n—1

Therefore, instead of carrying out the division, one can simply take the integral
part of the reciprocal of the corresponding remaining fraction.

(©Wong Yan Loi 15



MA3249

IT For an irrational number «, we can also perform the same expansion.
1

ap = la, a—ay=— (note that a; > 1)
aq
o) 1
a; = | o1 — a1 = —
1 il e —an =
ey :
as = |« g — Qg = —
2 2], 2=z =
endless.
Then
a = Qo + 1
a, + 1 1
as +
1
as +
Qay _|_ ......
In other word, o = [ag, ay,as,...|. The following theorem guarantees that the

sequence of partial quotients converges to a.

Theorem 1.15
(i) {¢n} is an increasing sequence of positive integers.

" 1
g’<

(ii) For each n € Z*, |a — 5
Qn Qn

As an example, let’s find the continued fraction expansion of v/2.

L= L\/ﬁJ’ V2-1 = )

=
+
—

2 = [V2+1], V2+1) -2 = ,

=
_l’_

2 = |[V2+1], (V2+1) -2 = :

=
+
—_

(©Wong Yan Loi 16
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Therefore, v/2 = [1,2,2,2,---]. The first few partial quotients are 3/2,7/5,17/12
ete.

As an exercise, show that v/3 = [1,1,2,1,2,1,2,---] and find the first few partial
quotients of the continued fraction expansion of v/3.

It is known that the continued fraction expansion of a number is periodic if and
only if the number is the surd of a square free integer.

§1.7 THE SURFACE AREA OF A SPHERE

In this section, we shall illustrate how Archimedes uses the Method of Exhaustion
to find the surface area of a sphere. First, let’s recall that the lateral surface area
of a frustum having top diameter a;, base diameter as and slant height s is given
by %7?((11 + as)s.

Consider a circle C' of diameter AA’. Let the length of AA" be 2r. Let A; =
A Ay, ... A, = A be points equally spaced on the arc AA". When the arc AA’
is rotated about the axis AA’, a sphere S of diameter 2r is generated. Similarly,
when the polygonal arc A1 A, --- A, is rotated about AA’, a figure in the form of
a union of n — 3 frustums with two cones attached to its ends is generated. Let’s
denote this object by .S,, and its surface area by s,. S, is inscribed in the sphere
S. Our first goal is to calculate s,.

For each ¢ = 2,...,n —1, let A be the point on C' obtained by reflecting A; along
AA" and let X; be the intersection of A4; A} and AA’. Join AJA; 1, i=2,...,n—1.
Also for each ¢ = 2,...,n — 2, let X/ be the intersection of AlA;.; and AA’

(©Wong Yan Loi 17
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Then all the right-angled triangles AA; X, Xo AL XS, X0 A3 X5, ..., X 0 An_1Xn_1,
Xn_1A,_|A" are similar. Furthermore, each of these triangles is similar to the
triangle AA;A’. Hence, we have the following relations of ratios of their sides.

XQAQ B XQA/2 B X3A3 B . Xn—lAf/n_l . A/Ag
AX,  XoXh o X5Xs X, A AAT
Adding all these ratios together, we have
A Ay + AAs + -+ Ay Ay AAy
AA AAT
Thus, AsA(A A, + AsAS + -+ A1 Al _) = A’Ay - AA". Therefore,

Sp = %WA2A[A2A'2 + (A A + AgAL) + -+ (Ap2 Al o+ A1 Al _ )+ Ay 1AL ]

= WAQA(AQA/Q + A3A/3 +--- 4 An—lA;Lfl)

= wAA,  AA
!

= 4mar?. A AQ.
2r

Note that A’Aj, is less than 2r so that s, is less than 472 but is arbitrarily close
to 4mr?.

Now we use the Method of Exhaustion. Let s be the surface area of the sphere S.
First suppose that s > 47r?. Clearly s, < s. One can show that s, is arbitrarily
close to s. The proof of this fact is similar to 1.11. Pick n large enough so that
s — s, < s —4mr?. Then s, > 4rr?, which is a contradiction.

Next suppose that s < 4wr?. Pick n large enough so that 47r? — s, < 47r? — s.
Then s, > s, which is again a contradiction. Hence, s = 47r?.

The formula s = 4mr? is proved by inscribing polygonal objects in the sphere in
such a way that their areas get not only arbitrarily close to s but also the expression
47r?. This latter property usually leads us to discover the formula.

§1.8 THE METHOD

The Method is the last of the 10 treaties written by Archimedes (287-212BC).
It describes a principle of calculating the volume of a three-dimensional object.
Nowadays, this is known as Cavalieri’s Principle. The radical idea is to think of
a three-dimensional object as a stack of thin layers. For example, a rectangular
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box becomes a deck of cards. Then, if this deck is pushed sideways, a second
solid having the same volume is obtained. Using this principle, we see that two
triangular pyramids with the same base and height have the same volume. This
principle proved by Cavalieri (1598-1647) is stated as follow.

Cavalieri’s Principle If two 3-dimensional solids have equal altitudes and if cross-
sections made by planes parallel to their bases and at equal distances from them
have their areas always equal, then the two solids have equal volumes.

In china, this principle of regarding the volume of a three dimensional solid as the
“sum” of areas of parallel planar cross-sections is known as Zu Geng’s Principle.
(Zu Geng is the son of the famous Chinese mathematician Zu Chong Zhi (430-
501).)

Archimedes’ Method is a further refinement of this principle. Archimedes makes
use of Cavalieri’s Principle and his Law of the Level to calculate the volume of a
sphere.

The Law of the lever Two weights w; and wy balance on a lever arm with
fulecrum F' if wys; = wseSe, where sy is the distance from w; to F' and s, is the
distance from w, to F'.

Archimedes’ idea is to compare the volume of the sphere with that of a cylinder
and a cone by means of parallel sections. The diagram below shows that a solid
sphere of diameter H.J and a solid cone of height HJ and base radius L.J lie inside
a solid cylinder of height H.J and base radius LJ. Produce JH to a point K so
that KH = HJ. Let the radius of the sphere be 2r. From the diagram, we have
HK =HJ=FEF =2r.

p_E L
G
D
K H F J
N M
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Using Pythagoras’ theorem, we have FD*+FG? = HF*+FG? = HG? = HF-HJ.
Multiplying both sides by 7 and H K, we obtain

(nFD? +nFG?*) - HK = (rEF?) - HF.
This equation means the following;:

The cylinder placed at its centre
The cone placed n The sphere placed

= of gravity, which is the midpoint
at K at K

of HJ.

Hence, $7(2r)* + Volume of the sphere = 37(2r)?, where V is the volume of the
3

sphere. Consequently, the volume of the sphere is §7rr )
There is a direct method in computing the volume of the sphere by means of
Cavalieri’s principle. To illustrate this idea, take a circle of diameter 2r inscribing
in a square. The two diagonals of the square meet at the center O. Let the whole
plane figure revolve about the vertical axis passing through O. Then a solid sphere
of diameter 2r and a solid double cone are generated and they both sit inside a
solid cylinder of height 2r and base radius r.

From the diagram, we have OY? = OW? +WY?2 As OY = XW and OW = W Z,
we have XW? = WZ% + WY?2. Now applying Cavalieri’s principle, we have the
following conclusion.

Volume of the cylinder = Volume of the sphere + Volume of the cone

From this, the volume of the sphere is %71’7“3.
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Exercises
2 2
1. Using Cavalieri’s Principle, find the area of the ellipse x— + ‘ZQ =1.
22 Zz
2. Using Cavalieri’s Principle, find the volume of the elhpsmd — + 2 —|— — =1

3. Using the Method of Exhaustion, show that for pyramids of the same trlan—
gular base, the volume is proportional to the height.

Area and volume can both be computed by means of Cavalieri’s principle. However,
there are some differences between the two concepts essentially due to different
properties of two and three dimensions. In the plane the following theorem can be
proved.

Theorem 1.16 Two polygons have the same area if and only if one can be dissected
into a finite number of pieces and then reassembled to form the other.

The famous Hilbert’s third problem asks whether or not the same assertion is
true for 3-dimensional polyhedra. Max Dehn gives a counterexample. He exhibits
two polyhedra of equal volume which are not congruent by dissection. Another
difference between two and three dimensions is suggested by the famous paradox
of Banach-Tarski (1942) in which a sphere of radius 1 ¢cm can be dissected into a
finite number of pieces which are then reassembled to form a sphere having the
size of the earth.

§1.9 REGULAR POLYHEDRA

A polyhedron is a 3-dimensional solid whose surfaces consists of polygonal faces.
A polyhedron is regular or Platonic if its faces are congruent regular polygons.
The Pythagoreans discover that there are only five regular polyhedra. They are
the tetrahedron, the cube, the octahedron, the dodecahedron and the icosahedron.
Almost everyone who encounters the regular polyhedra finds something appealing
about them. That the Greeks make such detailed and sustained studies of them is
probably connected with their unexpected finiteness: there are only five of them,
in contrast to the unlimited number of regular polygons. Fascination with these
polyhedra leads both Kepler (1571-1630) and Plato (427-347BC) to use them in
their theories of the cosmos. In his dialogue, Timaeus, Plato discusses the four
“elements” of which everything is composed: earth, air, fire and water. Earth
particles have the form of cubes which stand solidly on their bases. Air particles
have the form of regular octahedra which are light and rotate freely when held by
opposite vertices. Fire particles have the form of regular tetrahedra which have
sharp corners. Lastly, water particles have the form of regular icosahedra which
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are almost spherical and roll around like liquid. Kepler adds to Plato’s cosmology
by giving the entire universe the shape of the dodecahedron. He incorporates the
regular polyhedra into Copernicus’ system of planets and builds a model of his

universe.

|

|

[

[

[
‘ /_ Ry

7/

Tetrahedron Octahedron Cube

0
¢/
)

D &

Dodecahedron Icosahedron

Theorem 1.17 There are only 5 regular polyhedra.

Proof Consider a regular polyhedron in which m regular n-gons meet at a vertex.
The angle sum around a vertex must be less than 2w. Hence, m(m — 27/n) < 27.
This is equivalent to the inequality 1/m + 1/n > 1/2. As m,n > 3, we have the
following solutions.

Solid
Tetrahedron
Cube
Dodecahedron
Octahedron
Icosahedron

T W W w3
W W Ut WS

Theorem 1.18 Let V, E and F' be the number of vertices, edges and faces of a
convex polyhedron respectively. Then V' — E + F' = 2. This called Euler’s formula.

Proof Each face of the polyhedron contributes an “one” in the expression V —
E + F. If a face A\ is an n-gon, then we may join the vertices of A to a point
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inside AA. Hence, A gives rise to 1 new vertex, n new edges and n triangular
faces. But the contribution of V' — E + F is still 1 (= 1 — n + n). Consequently,
the expression V — E + F' remains unchanged under subdivision of the faces into
triangles. Therefore, we may assume that each face of the polyhedron is triangular.
Now consider the polyhedron being built by adding a triangle one at a time. Ini-
tially, there is only one triangle. The expression V' — FE + F' is clearly 1. Since
there are F' faces, it will take F' steps to build the polyhedron. Let P, be the
resulting object obtained by attaching n faces together. Therefore, P; is just the
first triangle and Pr is the polyhedron. Now examine how each triangle is being
added to P,. A triangle A is attached to P, so that either (i) a vertex of A is
attached to a vertex of P,. (ii) one edge of A is matched with one edge of P,,
(iii) two edges of A are matched with two edges of P, or (iv) it is the final stage
where all the three edges of /A are matched with three edges of P,. Let’s check
the change of the expression V' — F + F' in each case.

In (i),(ii) and (iii), V — E + F' remains to be 1, just as the case for one triangle. In
the last stage, this last triangle contributes an “one” in the term F', thus making
V-E+F=2

(What we have above is only a sketch of the proof. For a rigorous proof, one needs
to be more careful in attaching the faces. There are essentially four different proofs
of Euler’s formula due to Euler, Legendre, Cauchy and Von Staudt independently.)

Let’s list out the number of vertices, edges and faces of the 5 regular polyhedra.

vV E F
Tetrahedron 4 6 4
Cube &8 12 6
Octahedron 6 12 8

Dodecahedron 20 30 12
Tcosahedron 12 30 20

Legendre’s proof of Euler’s formula is by means of spherical geometry. To under-
stand his proof, we need to find out the area of a spherical triangle on a sphere S
of radius 1. Two great circles on S always intersect at two antipodal points and
the intersecting region consists of two lunes. If they intersect at an angle 6 radians,
then the area of one of the lune is (6/27) - (47) = 26.
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Let ABC be a spherical triangle formed by the intersection of three great circles
a,b and c. We shall use the convention that the arc BC of the spherical triangle
lies on the great circle a. Similarly, AC lies on b and AB lies on ¢. The great
circles a,b and c¢ intersect not only at A, B and C' but also at their antipodal
points A, B" and C’. The great circles a and b bound two lunes at an angle
equal to ZC. Similarly for the other two pairs. These six lunes together cover
the sphere S and they cover the triangle ABC and A’B’C’ three times. Thus
2(24A+24B+2/£C) = 4w + 4(ABC), where (ABC) is the area of the spherical
triangle ABC. Hence, (ABC) = (LA + 4B + ZC) — w. This formula is due to
Thomas Harriot (1560-1621).

Consider a small convex polyhedron P placed inside the unit sphere S so that
the centre of S is inside P. As in Euler’s proof, we may assume that P has
only triangular faces. The radial projection from the centre of S maps P onto a
polyhedral network P’ on S in which the edges are great circular arcs and the faces
are spherical triangles on S. Clearly the expression V — E + F' is same for both P
and P'. Let F be the set of all the triangular faces of P’.

The sum of the areas of all the spherical triangles is equal to

> (angle sum of A — )
NEF

which is equal to 27V — wF. As all the faces are triangles, we have 2F = 3F.
Hence, 27V — nF = 27V — 2nE + 27 F. Now the sum of the areas of all the
spherical triangles is just the surface area of the unit sphere S which is equal to
4r. Therefore, 27V — 27 E + 21 F = 4w. Consequently, we have proved the Euler’s
formula V — FE + F = 2.

Euler’s formula may be used to deduce that there are only five regular polyhedra.

In a regular polyhedra, suppose that m regular n-gons meet at a vertex. Then
nF = 2E and mV = 2E. Substituting £ = nF/2 and V = nF/m into Euler’s
formula, we have nF/m —nF/2+ F = 2. That is nm —2n—2m = —4m/F. Hence,
nm — 2n — 2m < 0. This inequality is equivalent to (n — 2)(m — 2) < 4. Since
m,n > 3, this gives all the five pairs of solutions of (m,n), and there are only 5
regular polyhedra.

Note that in any convex polyhedron, we always have 3F < 2F and 3V < 2F.
This is because that each face must be at least a triangle and there are at least 3
faces meeting at a vertex. Substituting these inequalities into Euler’s theorem, we
deduce the following corollary.

(©Wong Yan Loi 24



MA3249

Corollary 1.19 In any convex polyhedron with V' vertices, E edges and F faces,
we have

F
§+2§V§2F—4.

In fact all pairs (F,V) with F,V > 4 inside the region defined by the above
inequalities can be realized by a convex polyhedron.

F

Let F}, be the number of n-gons of a convex polyhedron. Thus Fj is the number
of triangular faces of the polyhedron. Now, the total number of faces is

FP=I3+F+Fs+Fs+---+F,+---
and the total number of edges of all the faces is

The inequality V' < 2F — 4 together with Euler’s formula gives £ < 3F — 6.
Substituting the above relations into this inequality gives the following inequality.

3E+2F + Fs—Fy— - — (n— 6)F, — -+ > 12.

Theorem 1.20 Every convex polyhedron contains a 3-sided, 4-sided or 5-sided
face.

This result is the key to prove the 5-colour theorem.
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§1.10 SYMMETRIES

Definition 1.21 A group is a pair (G, ), where G is a nonempty set and - is a
binary operation on G satisfying the following axioms.
(i)a-(b-c)=(a-b)-c forall a,b,ceqG.

(ii) There exists e € G such that a-e =e-a=a forall a € G.

(iii) For each a € G, there exists an unique element in G, denoted by a~* such that

1 1

a-a - =a " -a=¢€.

We shall simply denote a group by its underlying set G when the binary operation
is understood. Very often, we shall omit the “dot” in writing a - b. The element
e is called the identity of G. a~! is called the inverse of a. A group G is said
to be Abelian if ab = ba for all a,b € G. A group which is not Abelian is called
non-Abelian.

Examples

1. Z equipped with the addition + as the binary operation is a group. Similarly
Q and R are groups under addition. Z is called the infinite cyclic group. The
identity element in Z is 0. Every integer n can be written as sum of n ones.
If we use the multiplicative notation and denote the identity of Z by e and
the integer 1 by a, then an element of the infinite cyclic group is denoted
by a™. The group operation applied to two elements a™ and a™ is simply
aa™ = a™t".

2. Q7 together with multiplication is a group. Similarly R* is a group under
multiplication.

3. For each positive integer m, the set Z,, of all residue classes modulo m is a
group under addition. Z,, is also called the cyclic group of order m. Again we
shall use the multiplicative notation for 7Z,, like the infinite cyclic group. For
instance, a™ = e. Note that Z,, has m elements.

4. Let S, be the set of all permutations of n distinct objects. Then S,, under
the composition of permutations is a group. One may regard an element of

Sy, as a bijection o from the set {1,2,...,n} onto itself. Such a bijection can
be represented by a 2 x n array, where the first row consists of 1,2,...,n, and
the second row consists of the images of o, namely, o(1),0(2),...,0(n).

1 e
For instance, e = 2 ") is the identity of S,,.

1 2 ... n

1 2 3 4 1 2 3 4

o, b o <2314>an 2 <3142)
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1 2 4 3 1 4 3 2
Note that S, is non-Abelian for n > 3. S,, is called the symmetric group of

1 2 4 1 2 4
Then 0109 = < 3 > and 0901 = ( 3 >

degree n. It has n! elements. Let’s describe some of the low degree symmetric
groups. 57 has only 1 element. S, has 2 elements and is essentially Z,. S5 has
6 elements. The elements of S35 are listed as follow.

(123 (123 (123
““l123) "™ {213) 321
(123 (123 (123
B=\132) 7 \l231) 27312

To describe the binary operation of the group Ss, one can compile a group
multiplication table.

T1 T1 € O9 01 T3 T2
T2 T2 oy € 09 T1 73
T3 | T3 09 01 € T2 1
01| 01 T2 73 1 02 €

09 | O T3 T1 T2 e 01

Definition 1.22 A symmetry of a 2- (or 3-) dimensional geometric figure is a
motion in the plane (or the 3-dimensional space) which moves the figure to a
position occupying the same space as before.

The set of all symmetries of the geometric figure forms a group under the com-
position of motions. This group is called the symmetry group of the geometric
figure. Here the motion I which does not move the figure at all is the identity of
the group.

Examples
1. The symmetry group of the regular n-gon in the plane is the cyclic group Z,, of
order n. Let R be the anticlockwise rotation of the regular n-gon about the cen-
tre through an angle 27 /n. Then the symmetry group is {I, R, R?,..., R"1}.

2. If we allow the motion of the regular n-gon to be carried out in 3-dimensional
space, then one can also rotate the regular n-gon through an angle 7= about
an axis joining two opposite vertices of the regular n-gon. This gives a larger
group than just the symmetry group of the regular n-gon in the plane.
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3. Let’s find the symmetry group of the tetrahedron. The tetrahedron has eight
axes of symmetries. For each vertex A; of a tetrahedron A;A;A3Ay, there is
an axis /; joining this vertex A; of the tetrahedron to the centre of its opposite
face. Denote the anticlockwise rotation about this axis through an angle 27/3
by R;. Also there is an axis joining the centres of each pair of opposite edges of
the tetrahedron. Since there are three pairs of opposite edges, there are three
such axes. Denote the rotation through an angle 7w about each of these axes
by 11,75 and T3 respectively. Then the symmetry group of the tetrahedron is
{I, Ry, Ry, R3, Ry, R?, R3, R R, T, T, T3 }.

A

This group is the so called alternating group of degree 4 which is a “subgroup”
of Sy. It has 12 elements. In fact there are 4 x 3 = 12 ways of putting the
tetrahedron on the table.

4. For each regular polyhedron, one can form the so called dual polyhedron by
joining the centres of each pairs of adjacent faces.

The dual of the tetrahedron is the tetrahedron itself. The dual of the cube is
the octahedron and the dual of the dodecahedron is the icosahedron. As such,
the symmetry group of the octahedron is the same as the symmetry group of
the cube. Also, the symmetry group of the dodecahedron is the same as the
symmetry group of the icosahedron.
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Theorem 1.22 The symmetry group of the cube is Sy.

Proof First let’s count the number of elements in the symmetry group of the cube.
Since there are 6 faces of the cube, there are 6 possible ways of putting the cube
on a table so that one of the face is in contact with the table. Next there are 4
ways of putting the 4 vertical faces facing north. Hence, there are 24 elements in
this group. Note that S, also has 4! = 24 elements.

AN
AN

—
/

|

|
¢

|

|

:
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?

|

|

The cube has 3 pairs of opposite faces. Also there is an axis joining the centres of
each pair of opposite faces. Denote these 3 axes by ¢1, /5, (3. For i = 1,2, 3, let R;
be the anticlockwise rotation through an angle /2 about the axis ¢;. This gives
rise to 9 symmetries of the cube, namely, R;, R?, R3, i = 1,2, 3.

Next, the cube has 6 pairs of opposite edges. For each such pair of opposite edges,
there is an axis joining the midpoints of these two edges. Let’s label these 6 axes
by ¢, i = 1,...,6. Now, for i = 1,...,6, let S; be the rotation through an
angle m about the axis ¢;. This gives rise to 6 symmetries of the cube, namely,
Siy i=1,...,6.

Let 01,0y, 05,4 be the four “long” diagonals of the cube. For i = 1,...,4, let T}
be the anticlockwise rotation through an angle 27/3 about the axis ¢;. This gives
rise to another 8 symmetries of the cube, namely, T;, 77, i =1, ..., 4.

Therefore, if we include the identity I, then there are 24 symmetries of the cube.
One can compile a group table of the symmetry group of the cube and check that
it is identical to the group table of Sy up to renaming of the elements.

Since the symmetry group of the cube is Sy, we expect there are 4 objects inside the
cube that are permuted by this group. What are these 4 objects? The symmetry
group of the dodecahedron is a subgroup of S5. Can you find out the number of
elements in this group?
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§1.11 RULER AND COMPASS CONSTRUCTIONS

The ancient Greeks know how to construct a square equal in area to a given
rectangle, thus giving a way of finding the geometric mean of two positive numbers.

This task can be achieved by using a straightedge and a compass only. Hence, one
can construct a square having the same area of any given triangle. Then, using
Pythagoras’ theorem, which makes it possible to construct a square having an
area equal to the sum of areas of two squares, one can easily see how to construct
a square having an area equal to any figure that can be triangulated. Since any
polygon can be triangulated, we see that it is possible to construct a square equal in
area to any polygon. All this theory known as quadrature, meaning squaring, must
have been known to the Pythagoreans. Naturally, there are attempts to extend
these results further. In particular, the following three problems, best known as
the three Greek problems of antiquity arise.

(A) Squaring the circle Construct a square having an area equal to the area
of a given circle.

(B) Doubling the cube Construct a cube having a volume equal to twice the
volume of a given cube.

(C) Trisecting an angle Can one always trisect a given angle?

The solutions if exist, to these problems should be done using a straightedge and
a compass only.

Instead of squaring the circle, Hippocrates of Chios (around 5BC) is successful
in squaring certain regions between overlapping circles. Such regions resemble
crescent moon and are therefore called lunes. The following diagram shows the
quadrature of a lune L, which is the region inside the small circle but outside the
larger circle. The area of the lune can easily be shown to be the area of triangle

OAB.
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Hippocrates is able to work out the quadrature of many simple lunes. It is interest-
ing to note that some mysterious complication in the circle is cancelled out when
part of one circle is subtracted from another, so that the difference of two circles
can be squared, but not a single circle. The problem of squaring the circle has not
been solved until 1882, when C. Lindemann (1852-1939) finally proves that 7 is
transcendental and hence is not constructible.

The problem of doubling the volume of a cube is equivalent to the construction of
the number /2 using a straightedge and a compass. There is an interesting legend
in ancient Greeks which goes as follow.

Ancient Athens, being faced by a serious plague, sent a delegation to the oracle
of Apollo at Delos for advice in their difficulty. The delegation was told to double
the cubical altar to Apollo. Unfortunately, they doubled the length of each edge,
thereby increasing the volume by a factor of 8 rather than 2; and the plague only
got worse!

The problem of doubling the volume of a cube is known to be impossible using
results in Field theory.

Though some angles can be trisected, it is not always possible to trisect an arbitrary
angle. There are devices capable of trisecting an arbitrary angle, but the principle
is beyond just using a straightedge and a compass.

A closely related problem is to find out which regular polygons can be constructed
using a straightedge and a compass. The Greeks struggle to find straightedge and
compass constructions for regular polygons with 7,9,11,13 and 17 sides. In all
this, they fail, but it is not proved until the nineteenth century that the reason
for their failure is that all these problems are impossible - except one. In 1796,
Gauss discovers a straightedge and compass construction for the regular 17-sided
polygon. It is this first advance on Greek construction problems in 2000 years that
motivates Gauss to devote himself to mathematics.
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§1.12 CONSTRUCTIBLE QUANTITIES

Definition 1.23 Fix a line segment of unit length. A real number « is constructible
if one can construct a line segment of length |a| in a finite number of steps from
this given segment of unit length by using a straightedge and a compass.

Theorem 1.24 If o, 3 are constructible real numbers, then so are a+ 3, o — 3, a8
and a/f3, provided (8 # 0.

Proof We are given that a and [ are constructible, so there are line segments
of lengths |a| and || available to us. It is easy to see that a + § and o — f3
are constructible. The construction of a segment of length o/ is indicated in the
following diagram.

P v

o° X ) ¢

Mark off a point A on a line £ such that OA is of length |&|. Draw another line
through O and mark off two points P and B on this line so that OP is of unit
length and OB is of length |3|. Then construct a line ¢’ passing through B parallel
to PA. ¢ intersects ¢ at ) and OQ is of length |ag].

P
gl

@

O Q A

The construction of |a/] is similar to this procedure. To do so, construct a line ¢’
passing through P parallel to AB. Then, ¢ intersects ¢ at ) and OQ is of length

la/B].
Corollary 1.25 All rational numbers are constructible.
However there are irrational numbers such as v/2 which are also constructible.

Theorem 1.26 If « is a constructible real numbers, then so is y/a.
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Proof

P 0 A

Take a segment POA so that PO is of unit length and OA is of length |«|. Draw
a semicircle with diameter PA. The perpendicular at O cuts this semicircle at a

point ). Then the length of OQ is y/«a.

The problem of deciding which real number is constructible can also be analyzed us-
ing coordinate geometry. First, we know that any rational number is constructible.
By regarding the fixed unit segment as the basic unit on the x- and y-axes, we can
locate any point (q1,¢e) in the plane with both coordinates rational. Any further
point in the plane that we can locate by using a straightedge and a compass can
be found in one of the following three ways.

(I) It is a point obtained as an intersection of two lines, each of which passes
through two known points having rational coordinates.

(IT) It is a point obtained as an intersection of a line that passes through two
points having rational coordinates and a circle whose centre has rational
coordinates and the radius is rational.

(III) It is a point obtained as an intersection of two circles whose centers have
rational coordinates and the radii are rational.

In all three cases, the point can be obtained by solving the simultaneous equations
kx*+ky*+dr+ey+ f = 0 and ax+by-+c = 0, where all the coefficients are rational.
After substituting one equation into the other and eliminating the unknown y, it
reduces to solve either a linear equation or a quadratic equation in x with rational
coefficients. For the case of a linear equation, the solution for x and hence y is
rational. For the quadratic case, one can solve for x by means of the quadratic
formula, and it may have solutions involving square roots of numbers that are not
squares in Q. Consequently, we have proved the following theorem.

Theorem 1.27 The set of all constructible numbers consists precisely of all real
numbers that can be obtained from rational numbers by taking square roots, and
by applying the operations of addition, subtraction, multiplication and division a
finite number of times.
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If o is a constructible number, then « can be obtained from rational numbers
by taking square roots, and by applying the operations of addition, subtraction,
multiplication and division a finite number of times. If we successively eliminate the
square roots in this expression of o by a combination of rearranging and squaring
the expression, we see that « is a root of a polynomial with rational coefficients.
By clearing the common denominator, the coefficients can be assumed to be all
integers. The important point is that this polynomial must be of degree a power
of 2. For example, if a = 1 —1/2 4+ /2, then ((1—a)?—2)? = 2. Hence, « is a root
of the polynomial o* — 423 + 222 + 42 — 1. More precisely, the so called irreducible
polynomial satisfied by « is also of degree equal to a power of 2.

Definition 1.28

(i) A polynomial of degree n is called a monic polynomial if the coefficient of x™
is 1.

(ii) A polynomial p(z) with integer coefficients is said to be irreducible over Z
(Q) if it cannot be factored into a product of two polynomials with integer
(rational) coefficients of lower degrees (> 1).

It can be shown that a polynomial p(x) with integer coefficients is irreducible
over Q if and only if it is irreducible over Z. This is the content of the so called
Gauss lemma. Suppose that a real number « is a root of a polynomial with integer
coefficients. By division algorithm, there exists a monic irreducible polynomial p(x)
with rational coefficients satisfied by «. This polynomial is called the irreducible
polynomial for o over Z. This irreducible polynomial for « is unique. For example,
the irreducible polynomial for v/2 is 22 — 2, and the irreducible polynomial for /2
is 3 — 2.

Theorem 1.29 Let o be a constructible number. Then the degree of the irre-
ducible polynomial p(z) for « is a power of 2.

Corollary 1.30 Doubling the cube is impossible.

Proof This is equivalent to show that /2 is not constructible. The irreducible
polynomial for /2 is z* — 2. It’s degree is not a power of 2. Hence, v/2 is not
constructible.

Corollary 1.31 Trisecting 60° is impossible.

Proof We know that 60° is a constructible angle. We wish to show that 20° is
not constructible. Note that cos30 = 4cos®# — 3cosf. Let o = cos20°. Then
the above formula shows that « is a root of the polynomial p(z) = 823 — 6z — 1.
Now, let’s show that this polynomial is irreducible over Z. A factorization of p(x)
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would entail a linear factor of the form (8z £1), (4z +1),(2x £ 1) or (x+£1). One
can easily check that none of the numbers i%, j:%, j:% and £1 is a root of p(z).
Thus p(x) is the irreducible polynomial for a. But it’s degree is not a power of 2.

Therefore, 60° cannot be trisected.

The problem of squaring the circle is equivalent to whether 7 is constructible. As
7 is not even a root of a polynomial with integer coefficients, it is not constructible.
Lastly, let’s close this chapter by quoting the following result on the constructibility
of regular polygons.

Theorem 1.32 Let p be an odd prime. A regular polygon of p sides is constructible
if and only if p = 22" 4 1. (A prime of the form p = 22" + 1 is called a Fermat
prime.)
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Chapter 2 ABSOLUTE GEOMETRY

§2.1 INCIDENCE GEOMETRIES

Definition 2.1 An incidence geometry is a pair (P, L) where P is a nonempty
set and L is a collection of nonempty subsets of P such that

(i) For any two distinct elements A, B € P, there exists a unique ¢ € L containing
A and B.
(ii) Any ¢ € £ has at least two elements.

(iii) There exist 3 elements of P not all in any element of L.

Definition 2.2
(i) An element of P is called a point. An element of L is called a line.

(ii) If P € ¢, then we say that P is on ¢, { passes through P, or P and { are
incident.

(iii) We say that ¢; and /5 intersect if £; N £y # 0.
(iv) A set S of points is said to be collinear if S C ¢ for some line /.

(v) If two or more lines intersect at one point, then the lines are said to be con-
current.

(vi) Two lines ¢1, 5 are said to be parallel if {; N {3 = (). We shall use the symbol
{1 || £3 to denote that ¢; is parallel to (5.

Remarks The condition that there exist 3 elements of P not all in any element
of £ guarantees the nontriviality of the incidence geometry. As without this,
there might be just exactly one line. In an incidence geometry, condition (iii)
is equivalent to the condition that there exist at least two lines. Next we shall
introduce some examples of incidence geometries. An example of an incidence
geometry is often called a model of an incidence geometry.

Examples
1. Let P = {A,B,C} and £ = {{A,B},{A,C},{B,C}}. Then (P,L) is an
incidence geometry. This is the most simplest incidence geometry. Note that
each incidence geometry should have at least three points.

2. The Real Cartesian Plane. Let P = R% ¢ C R? is a line iff £ = {(z,y)
ax + by + ¢ = 0} for some a,b,c € R and not both a and b are zero. We shall
denote the Real Cartesian Plane by E = (R?, Lg).

3. The Rational Cartesian Plane. Let P = Q% ¢ C Q? is a line iff £ = {(z,y) :
ax + by + ¢ = 0} for some a,b, ¢ € Q and not both a and b are zero.
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4. The Complex Cartesian Plane. Let P = C2. £ C C? is a line iff £ = {(z,y) :
ax +by+c = 0} for some a,b, ¢ € C and not both a and b are zero. In fact, for
any field F, an incidence geometry can be defined in this way. Describe such
an incidence geometry when [F is the field of two elements.

5. The Real Cartesian Space. Let P = R3. ¢ C R3 is a line iff ¢ = {(x,y, 2)
s (2,y,2) — (%o, Yo, 20) is a multiple of (a, b, c)} for some x,, Yo, 2o, a,b,c € R
and not all a,b and c are zero.

6. The Quadrant Incidence Plane. Let P = R% be the set of all ordered pairs of
positive real numbers. ¢ C R? is a line iff £ = {(z,y) € R% : ax+by+c =0}
for some a,b,c € R and not both a and b are zero.

7. The Halfplane Incidence Plane. Let P = {(z,y) € R?* : y >0}. fCPisa

line iff £ = {(z,y) € P : ax+ by + ¢ = 0} for some a,b,c € R and not both a
and b are zero.

8. The Missing-Quadrant Incidence Plane. Let P = {(z,y) € R* : z or y > 0}.
(CPisalneiff { ={(x,y) € P : ax+ by + ¢ = 0} for some a,b,c € R and
not both a and b are zero.

9. The Missing-Strip Incidence Plane. Let P = {(z,y) € R* : z <1 or x> 2}.
(CPisalneiff { ={(x,y) € P : ax+ by + ¢ =0} for some a,b,c € R and
not both a and b are zero. In general, if £ is the set of all lines of the Real
Incidence Plane and A is a non-collinear subset of R? having at least three
points, then (A, £ N A) is an incidence geometry.

10. The Cubic Incidence Plane. Let P = R% ¢ C P is a line iff either £ = {(z,y) €
R? : z = c} for some c € Ror £ = {(z,y) € R* : y = (ax + )3} for some
a,b,c € R. Note that two lines in the Cubic Incidence Plane either intersect

at one point or do not intersect at all.

11. The Moulton Plane.
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13.
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Let P = R?. ¢ C P is a line iff it consists of precisely points (z,y) satisfying
one of the following three types of equations:

xr = a,
y=mz+b with m <0,
if v <

%mx—kb ifz>0

In the Moulton Plane, two distinct points lie on a unique line.

The Poincaré Disk. Let P =D = {(z,y) € R? : /
z? +y* < 1}. £ is a line iff it consists of points
(x,y) € P satisfying either the equation (x—a)*+ |
(y —b)? = a®> + v* — 1 with a,b € R such that
a? + b?> > 1 or the equation ax + by = 0 with \ /
a,b € R such that a? + b # 0. _

Thus a line in the Poincaré disk is either a circular arc orthogonal to the
unit circle or a straight line passing through the origin. We shall denote the
Poincaré disk by P = (D, Lp).

The Poincaré Halfplane. Let P = {(z,y) € R?

y > 0}. £is aline iff it consists of points (z,y) € P
satisfying either the equation (z — a)? + y? = r?
with a € R and r € R" or the equation z = a with
a € R. Thus a line in the Poincaré Halfplane is
either a semi-circular arc orthogonal to the z-axis

We shall denote the Poincaré Halfplane by H = (R2, Ly). H is also called the
Hyperbolic Plane.

or a vertical straight line.

The Cayley-Klein Incidence Plane. Let P =
{(z,y) e R* : 22+ y* < 1}. Cis aline iff it
consists of points (z,y) € P satisfying an equa-
tion ax + by = ¢ with a, b, ¢ € R but not both a
and b zero. Therefore, a line in the Cayley-Klein
Incidence Plane is a usual line segment with end-
points on the unit circle. Note that the points
on the unit circle are not included in P.
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16.
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A 7-Point Incidence Geometry. Let P be B
the set {A,B,C,D,E,F,G}. L ={{A,F, B},
{A,G,D}, {AE,C}, {C,G,F}, {B,D,C},
{B,G,E}, {D,E,F}}. In this incidence ge-
ometry, each line contains 3 points and any 3
lines concur at a point. Also any two points in-
tersect at a point. Hence, there are no parallel
lines in this incidence geometry. A i3 C

A 4-Point Incidence Geometry. Let P =
{A,B,C,D}. L = {{A, B}, {A C}, {A D},
{B,C},{B, D}, {C,D}}. In this incidence ge-
ometry, any two distinct points lie on a unique
line. The lines {A, C'} and {B, D} do not inter-
sect. Hence, they are parallel. Are there other

parallel lines? A D

The Sphere Incidence Plane. The set P of points is the unit sphere in R3. ¢
is a line iff it is a great circle. (A great circle is a circle on the sphere whose
centre is the centre of the sphere.) Note that there are infinitely many lines
passing through the north and south poles. Therefore, the north and south
poles on the sphere do not determine a unique line. This means that the
Sphere Incidence Plane is not an incidence geometry.

The Riemann Incidence Plane. The set P of points is the set of pairs of
antipodal points on unit sphere in R3. More precisely, let S® = {(z,y,2) €
R : 2%+ y*+ 22 = 1}. Then {(z,v,2),(—z, —y,—2)} is called a pair of
antipodal points. £ is a line in P iff it consists of all pairs of antipodal points
which lie on a great circle. This model is in fact the Real Projective Plane.
Again the Riemann Incidence Plane is not an incidence geometry.

In the definition of an incidence geometry, condition (i) is called the straightedge

axiom.

The Straightedge Axiom: For any two distinct elements A, B € P, there exists

a unique ¢ € L containing A and B.

It allows us to draw a unique straight line between two distinct points.
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Proposition 2.3 Let ¢; and ¢, be two lines in an incidence geometry. If /1 N ¢y

has more than one point, then ¢; = /5.

Corollary 2.4 In an incidence geometry, two lines are either parallel or they

intersect at exactly one point.

§2.2 METRIC GEOMETRIES

Definition 2.5

A distance function on a set P is a function d : P x P — R such

that for two points P and @ in P,

(i) d(P,Q) =0,

(i) d(P,Q) = 0 if and only if P = @,
(iii) d(P,Q) = d(Q, P).

Examples

1. In the Euclidean Plane (or the Real Cartesian Plane) E, the Euclidean distance
dg is given by

dp((@1,91), (T2, 92)) = /(@1 — 22)2 + (31 — 4o)2.

2. In the Hyperbolic Plane H, the Hyperbolic distance of two points P = (x1, y;)

and P = (x9,ys) is given by

dH(PaQ) =

dH(PvQ) =

Y2
In(==
<y1)

r1—c+r
Y1

ln Tro—c+r
Y2

if T, = T,

if P and @ lie on a semi-circle centred at (c,0) with

radius r > 0 in H.

3. Let P = (x1,y1) and P = (x3,%2) be two points in R?. The Taxicab distance
between P and () is defined by

dr(P, Q) = |xr1 — 2| + |y1 — ol

4. Let P be any nonempty set. Then

0 if P=0Q,

ﬂR@:{1ﬁP¢Q

is a distance function on P.
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5. Let P = (z1,y1) and @ = (z9,y2) be two points in the Moulton Plane. The
Moulton distance between P and () is defined by

dg(P,B) + dg(B,Q) if P,Q lic on a “bent line” intersecting
dy(P,Q) = the y-axis at a point B and z122 < 0
de(P,Q) otherwise.

L |

S
N

Definition 2.6 Let ¢ be a line in an incidence geometry (P, L). Assume that
there is a distance function d on P. A function f : ¢ — R is a ruler for ¢ if f is a
bijection and for any points P and Q on ¢, |f(P) — f(Q)| = d(P, Q).

Let f be a ruler for the line ¢. Fix a point P, on £ such that f(P,) = 0 under the
bijection f. Then the distance from any point P on ¢ to the point P, is simply
given by |f(P)|. The real number f(P) is called the coordinate of P with respect

to f.

Example Let ¢ be the line y = 22+ 3 in the Euclidean Plane E. Then f : ¢/ — R
given by f((x,y)) = v/5x is a ruler for £. The coordinate of Q = (1,5) with respect

to fis f(Q) = V5.

Note that since a point may lie on more than one line, it may have different
coordinates with respect to the various lines or rulers used.

Definition 2.7 An incidence geometry (P, L) together with a distance function
d satisfies the Ruler Axiom if every line ¢ € £ has a ruler. In this case, we say
that (P, L,d) is a metric geometry.

Examples
1. The Euclidean Plane E = (R?, Ly, dg) is a metric geometry.
2. The Hyperbolic Plane H = (R?%, Ly, dy) is a metric geometry.
3. (R% Lg,dr), where dr is the Taxicab distance, is a metric geometry.

4. (R2, Ly, dyr), where dyy is the Moulton distance, is a metric geometry.
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From now on, we use E to denote the Euclidean Plane, equipped with the Eu-
clidean distance dg as a metric geometry. For a slightly more precise notation,
we sometimes write E = (R? dg), but omitting Lg as it is usually understood,
to mean that [E is a metric geometry with distance function dg. Similarly, we
shall use either H or (Ri, dy) to denote the Hyperbolic Plane as a metric geome-
try. Finally, (R?, dr) denotes the Taxicab Plane with the Taxicab distance dr and
(R%,dys) denotes the Moulton Plane with the Moulton distance dj;.

Proposition 2.8 Any line in a metric geometry has infinitely many points.

Theorem 2.9 Let (P, L) be an incidence geometry. Suppose that for each line
¢ € L, there exists a bijection f, : £ — R. Then there is a distance d such that
(P, L,d) is a metric geometry and each f; is a ruler for /.

Proof Let P, () be two points in P. If P = @Q, define d(P,Q) = 0. For any two
distinct points P and @), let ¢ be the unique line through P and @), and f, : { — R
the given bijection. Define d(P,Q) = |f,(P) — f¢(Q)|.- Then d is a distance on P

and each f; is a ruler for the line ¢. Hence, (P, L, d) is a metric geometry.

Theorem 2.10 (Ruler Replacement Theorem) Let A and B be two distinct points
on a line ¢ in a metric geometry. Then there exists a ruler g : £ — R such that
g(A) =0 and g(B) > 0.

Proof Let f : ¢ — R be a ruler for . Then h : { — R given by h(P) = f(P) —
f(A) is also a ruler for ¢. For this ruler h, we have h(A) = 0. If A(B) > 0, then
this ruler satisfies the required conditions. If h(B) < 0, then set g(P) = —h(P). g
is also a ruler for ¢ and it satisfies the required conditions.

Definition 2.11 A distance function d on a set P satisfies the triangle inequality
if d(A,C)<d(A,B)+d(B,C) forall A,B,C €P.

Proposition 2.12 The Fuclidean distance function dg satisfies the triangle in-
equality.

We shall see later that the triangle inequality is a consequence of certain other
axioms that we would like our geometries to satisfy. In particular, it holds for the
Hyperbolic Plane. But a direct proof of this fact is quite clumsy.

Definition 2.13 Let A, B and C be three collinear points in a metric geometry
(P,L,d). B is said to be between A and C' if d(A, B) + d(B,C) = d(A,C).
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Example Let A = (-2, V3 ,B=1(0,1) and C = (4, ¥3) be three points in the
2072 2072

Hyperbolic Plane. Then B is between A and C.

In this example, A, B and C' lie on the line {(z,y) € H: 2*> +y* = 1}. dy(A, B) =
di(B,C) =In+/3 and dy(A,C) = In3.

Proposition 2.14 Let A, B and C' be three distinct points lying on a line £ in a
metric geometry. Then exactly one of these points is between the other two.

Proof Let f : £ — R be a ruler for /. Since f is a bijection and A, B,C are
distinct, the numbers f(A), f(B) and f(C) are all distinct. Therefore exactly
one of these three numbers is between the other two. Let’s suppose that f(A) <
F(B) < F(C). Then d(A,B) + d(B,C) = |f(B) — f(A)| + |f(C) — f(B)| =
(F(B) — f(4)) + (F(C) — F(B)) = F(C) — F(A) = [£(C) — F(A)| = d(4,0).
Therefore, B is between A and C.

Proposition 2.15 Let A and B be two distinct points in a metric geometry.
Then the following statements hold.
(i) There is a point C such that B is between A and C.

(ii) There is a point D such that D is between A and B.

Proof Let ¢ be a line passing through A and B and f : { — R a ruler for ¢ with
f(A) < f(B). To prove (i), take C'= f~'[f(A) +1]. Then B is between A and C'.
To prove (ii), take D = f~[3(f(A) + f(B))]. Then D is between A and B.

Definition 2.16 Let A and B be two distinct points in a metric geometry
(P, L,d).
(i) The line segment from A to B is the set

AB ={P € P : P is between A and B} U {A, B}.

(i) A and B are called the endpoints of the segment AB.
(iii) The length of the segment AB is AB = d(A, B).
(iv) The ray from A towards B is AB=AB U {P € P : B is between A and P}.

(©Wong Yan Loi 43



MA3249

Note that if £ is a line passing through A and B, then AB and AB are subsets of
L.

Definition 2.17 Two segments AB and C'D are said to be congruentif AB = CD.
We shall use the notation AB = CD to denote that AB and CD are congruent.

For example, if A = (—%, @), B=(0,1) and C = (%, @) are three points in the

Hyperbolic Plane, then the AB = BC.

Theorem 2.18 (Segment Construction Theorem) Let AB be a ray and PQ be

a segment in a metric geometry. Then there exists a unique point C' in AB with
PO = AC.

Proof Let f be a ruler for the line ¢ passing through A and B such that f(A) =0
and f(B) > 0. It is easy to show that AB= {Pel: f(P)>0}. Let r = PQ and
set C'= f~!(r). Since r = PQ > 0, we have C' € AB. Then AC = |If(A)—f(O)] =
|0 —r| =r = PQ. Hence, PQ = AC.

Now suppose that C’ is a point in AB with PQ = AC'. As ' GE, we have
f(C") > 0. Then f(C") = |f(C") — f(A)] = AC" = PQ = f(C). Since f is a
bijection, we have C' = C’. This shows that the point C' is unique.

Definition 2.19 Let S C P be a subset in a metric geometry. S is said to be
convez if for any two distinct points A, B € S, AB C S.

Examples
1. A circular region {(z,y) : 22 + y*> < 1} in the Euclidean Plane E is convex.

2. The set {(z,y) : y > 1} in the Hyperbolic Plane H is convex.
3. The set S = {(z,y) : y < 1} in the Hyperbolic Plane H is not convex. The
segment joining (—1,1) and (1,1) is not inside S.

4. In the Moulton Plane (R?, dy;), the set {(z,y) : y > z} is convex. Is the set
{(z,y) : y <z} convex?

Definition 2.20 A metric geometry (P, L, d) satisfies the Scissors Axiom, or
the Plane Separation Axiom, if for any line ¢, there are two subsets H; and H,
of P such that

(i) P is the disjoint union of ¢, H; and Hs,
(ii) H; and H, are convex,

(iii) for any A € Hy, B € Hy, ABN/{ # 0.
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Definition 2.20 Let (P, L,d) be a metric geometry which satisfies the scissors
axiom. Let H; and Hy be the two halfplanes determined by a line £. Two points
A and B are on the same side of £ if A,B € Hy or A,B € Hy. A and B are on
opposite sides of { if A€ Hi,B € Hyor A€ Hy, B € H;.

Proposition 2.21 Let (P, L,d) be a metric geometry which satisfies the scissors
axiom. Let A and B be two distinct points not on a given line ¢. Then

(i) A and B are on opposite sides of ¢ ifft ABN{ # (.
(i) A and B are on the same side of ¢ iff ABN{ = ().

Examples
1. The Euclidean Plane E = (R?, dg) satisfies the scissors axiom.

2. The Hyperbolic Plane H = (R?, dy) satisfies the scissors axiom.
3. The Taxicab Plane (R?, dr) satisfies the scissors axiom.

4. The Moulton Plane (R?,dy,) satisfies the scissors axiom.
S

. The Missing-Strip Plane can be given the structure of a metric geometry. It
does not satisfy the scissor axiom. This is because the condition (iii) in 2.20
is not usually satisfied.

Theorem 2.22 (Pasch’s Theorem) Let ABC' be a triangle in a metric geometry
which satisfies the scissors axiom. Let D be a point between A and B and £ a line
through D. Then either /N AC # () or £ N BC # 0.

Proof If A or B lies in ¢, then we are done. Otherwise, A and B are on opposite
sides of ¢. Suppose that £ N AC = (). Then A and C are on the same side of /.
Hence, Then B and C' are on opposite sides of £. Therefore, ¢ N BC # ().

The converse of Pasch’s Theorem is also true.
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§2.3 ANGLE MEASURE

Definition 2.23 Let A, B and C be three noncollinear points in a metrlc geometry

(P, L,d). The angle ZABC' is the subset of P given by ZABC —BAU BC. The
point B is called the vertex of the angle ZABC.

Note that a straightline is not permitted to be an angle nor is a ray since A, B, C
must be noncollinear.

Definition 2.24 The interior of an angle ZABC, denoted by intZABC, is the in-
tersection of the halfplane of AB containing C' and the halfplane of BC' containing
A.

Definition 2.25 Let (P, £, d) be a metric geometry satisfying the Scissor Axiom.
A protractor (or an angle measure) is a function m from the set A of all angles to
R satisfying the following conditions.

(i) If ZABC € A, then 0 < m(ZABC) < 180.

(i) If BC lies on the edge of the halfplane H;, and 6 a real number with 0 < 0 <
180, then there is a unique ray BA with A € Hy and m(£LABC) = 6.

(iii) If D € intZABC, then m(£LABD) + m(£DBC) = m(£LABC).

Here we are using the usual degree measure. One could replace 180 by 7 to get the
radian measure.

Definition 2.26 A Protractor Geometry (P, L,d, m) is a metric geometry satisfy-
ing the scissor axiom together with an angle measure.

Examples
1. In the Euclidean Plane, the Fuclidean angle measure of ZABC'is

mp(/ABC) = cos™* << A-B,0-B >>

1A= B¢ - B

mpg is an angle measure on E = (R? Lg, dg). Hence, E = (R?, Lg, dg, mg) is
a protractor geometry.

2. Let P—Q be a ray in the Hyperbolic Plane H. It has a unique Euclidean ray

Tpq tangent to PQ at P. Let ZABC be an angle in H. Pick a point A’ in
Tga and a point C’ in Tpe with both A" and C’ not equal to B. Then the
Hyperbolic angle measure of ZABC' is my(£LABC) = mg(LA’BC"). With
this angle measure, H = (Ri, Ly, dy, mpy) is a protractor geometry.
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3. The taxicab plane equipped with the Euclidean angle measure mg is a pro-
tractor geometry.

4. Let ZABC be an angle in the Moulton Plane. If B does not lie on the y-axis,
define mM(éABC) mg(LABC). Suppose B lies on the y-axis. Consider the
case where A B has a positive slope and BC’ has a nonpositive slope. Extend
AB to a point B’. Then extend the “Euclidean segment” B’B to a point A.
Define my (LABC) = mgp(£LA,BC). The other cases are similarly defined.
Then the Moulton Plane equipped with this angle measure m), is a protractor
geometry.

Definition 2.27
(i) Two angles in a protractor geometry are said to be congruent if they have the
same angle measure.

(ii) Two lines, (rays or segments) are said to be perpendicular if they intersect at
an angle with angle measure 90.

§2.4 THE SAS AXIOM

In a triangle AABC, we will denote ZCAB, ZABC and Z/BCA by LA, ZB and
ZC' respectively.

Definition 2.28 Two triangles AABC' and ADFEF in a protractor geometry are
said to be congruent if there exists a bijection f : {A, B,C} — {D, E, F'} such

that the corresponding segments and angles are congruent under f. We use the
notation AABC = ADFEF to denote that AABC' is congruent to ADEF.

Definition 2.29 A protractor geometry satisfies the Side-Angle-Side Aziom (SAS
Axiom) if whenever AABC and ADEF are two triangles with AB = DE, /B =
/FE and BC = EF, then NANABC = ADEF.

Definition 2.30 An absolute geometry is a protractor geometry which satisfies the
SAS Axiom.
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The FEuclidean Plane and the Hyperbolic Plane are absolute geometries, but the
Taxicab Plane and the Moulton Plane do not satisfy the SAS axiom so that they
are not absolute geometries.

Theorem 2.31 In an absolute geometry, there is exactly one line through a given
point P perpendicular to a given line /.

Corollary 2.32 In an absolute geometry, two distinct lines having a common
perpendicular are parallel.

§2.5 PARALLEL LINES

Euclid’s Fifth Axiom Suppose that a line ¢ intersects two lines EZ and 613 at
B and C respectively and that A D belong to the same side of £. If m(£LABC) +

m(£/DCB) < 180, then BA N CD# 0.

1w
Q

~F

L

Euclidean Parallel Axiom (Playfair’'s Axiom) For any line ¢ and any point P
not on /£, there is a unique line ¢’ through P which is parallel to /.

Euclid’s Fifth Axiom has to be formulated in an absolute geometry, but the Eu-
clidean Parallel Axiom makes sense in any incidence geometry.

Theorem 2.33 For any line ¢ and any point P ¢ ¢ in an absolute geometry, there
exists a line ¢/ through P which is parallel to .

Proof Let P be a point not on a line /. By 2.31, there exists a line ¢; through P
perpendicular to ¢. By 2.31 again, there exists a line ¢’ through P perpendicular
to 1. By 2.32, ¢’ is parallel to £.

Theorem 2.34 (Playfair) In an absolute geometry, Euclid’s Fifth Axiom is equiv-
alent to the Euclidean Parallel Axiom.

The Euclidean Plane E satisfies the Euclidean Parallel Axiom, but the Hyperbolic
Plane H does not. Therefore, the Euclidean Parallel Axiom or Euclid’s Fifth Axiom
cannot be proved in an absolute geometry. It is independent of the defining axioms
of an absolute geometry.
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Theorem 2.35 (Saccheri) The angle sum of a triangle in an absolute geometry is
less than or equal to 180.

Theorem 2.36 (Legendre) In an absolute geometry, the angle sum of any triangle
is equal to 180 iff the geometry satisfies the Euclidean Parallel Axiom.
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Appendix A EQUIVALENCE RELATIONS

§A1 RELATIONS

Definition A.1 Let A and B be sets. A relation from A to B is a subset ~ of
Ax B. A and B are called the domain and codomain of the relation ~ respectively.
Let a € A and b € B. We say that a is related to b, written as a ~ b, iff (a,b) € ~.
If A= B =5, then we say that ~ is a relation on S rather than a relation from

S to S.

Examples

1. Let A = {1,2,3} and B = {a,z,t}. Then ~ = {(1,a),(1,2),(3,t)} is a
relation from A to B. In other word, 1 ~a, 1 ~ x and 3 ~ t.

2. Let A be the set of all points in a plane and B the set of all lines in the plane.
Then ~ = {(P,{) : P is a point on the line ¢} is a relation from A to B. In
other word, P ~ ¢ iff P is a point on the line ¢. ~ is called the incidence
relation between the points and the lines of the plane.

3. For any set S, ) and S x S are relations on S.

4. Let R be the set of all real numbers. For a,b € R, define a ~ b iff a > b. Then
~ is a relation on R.

5. Let S be a set. For any A,B C S, define A ~ Biff AN B = (. Then ~ is a
relation on 2.

§A2 EQUIVALENCE RELATIONS

Definition A.2 A relation ~ on a set S is called an equivalence relation if the
following axioms are satisfied.
I (Reflexivity) For any a € S, a ~ a.

IT (Symmetry) For any a,b € S, a~b = b~ a.
IIT (Transitivity) For any a,b,c € S, a~bb~c= a~c.
Examples

1. Let S be a set and ~ = {(z,z) : © € S}. Then ~ is an equivalence relation.
In other word, x ~ y iff x = y. Thus ~ is the equality relation.

2. For any set S, S x S is an equivalence relation on S.

3. Let Z be the set of all integers. For a,b € Z, define a ~ b iff a = b = 0 or
ab > 0. Check that ~ is an equivalence relation on Z.

4. Let n be a fixed positive integer. Define a relation =on Z by z =y iff z — y
is a multiple of n. Show that = is an equivalence relation on Z. = is called
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the congruence relation modulo n. When two integers z and y are congruent
modulo n, we write x =y mod n.

5. Parallelism is an equivalence relation on the set of all lines in the Euclidean
plane. How about in a non-Euclidean plane?

6. Congruence and similarity are equivalence relations on the set of all triangles
in the plane.

§A3 EQUIVALENCE CLASSES

Definition A3 Let ~ be an equivalence relation on a set S. For any a € S, the
equivalence class of a, is the set [a] = {x € S : x ~ a}. The set of all equivalence
classes of ~ on S is denoted by S/ ~.

Theorem A.4 The set of all equivalence classes of an equivalence relation on a
nonempty set S is a partition of S into disjoint nonempty subsets. Every element
of S is in exactly one equivalence class.

Examples
1. The equivalence relation S x S on a set S has only one equivalence class. In
other word, [z] = S for any = € S.

2. Consider the equivalence relation ~ on Z given by a ~ b iff a = b = 0 or
ab > 0. Then ~ has 3 equivalence classes, {0}, Z" and Z~.

3. Let S be the set of all lines in the plane and ~ the equivalence relation of
parallelism. For any line ¢, [¢] consists of all lines parallel to £. [(] is called a
parallel pencil.

4. Given any partition P of a nonempty set S. That is P is a collection of
nonempty disjoint subsets of S and the union of all these subsets is S. Let ~
be the relation on S defined by a ~ b iff a,b € P for some P € P. Then

(i) ~ is an equivalence relation on S,

(ii) P is the set of all equivalence classes of ~.

Theorem A.6 There is a one-to-one correspondence between partitions of S and
equivalence relations on S.
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Exercises

10.

. Let S be the set of all squares on a chess board. Define a relation ~ on S by

x ~ y iff both the squares  and y have the same colour. Is ~ an equivalence
relation on S?7 How many equivalence classes are there?

. Let f: S — S be a function and G = {(z, f(z)) : = € S} be the graph of

f. Prove that G is an equivalence relation on S iff f is the identity function.

. Let A be a subset of a set S. Let ~ = {(z,2): 2 € S}U{(z,y): =,y € A}

Is ~ an equivalence relation on S?

Let ~ be the relation on [0,1] defined by x ~ y iff either (i) z =y, (ii) x =0
and y =1 or (iii) x =1 and y = 0. Write down ~ as a subset of [0,1]x][0,1].
Show that ~ is an equivalence relation on [0,1]. Find a bijection between
[0,1]/ ~ and the circle {(z,y) € R*: 2? +y? = 1}.

. Let R and R’ be equivalence relations on a set S. Is RN R’ an equivalence

relation on S? How about RU R'?

. How many equivalence relations are there on a set of 5 elements?

Let S be the set of all nonzero complex numbers. Define a relation ~ on S by
21 ~ 29 iff 2925 lis real. Prove that ~ is an equivalence relation on S. Describe
the elements of S/ ~.

. Let S be the set of all lines in the Euclidean plane. Define a relation ~ on S

by ¢ ~ 0 iff || ¢ or ¢ L ¢. Is ~ an equivalence relation on S7

. Let A be a subset of a set S. Define a relation ~ on 2% by X ~ Y iff

(X\Y)U (Y \ X) C A. Prove that
(i) ~ is an equivalence relation on 29,
(ii) for any X C A, X ~ 0,
(iii) for any X C S, X ~ X \ A.
Find a bijection between 2%/ ~ and 25\4,

Let S be the set of all triangles in the Euclidean plane. Define an equivalence
relation on S by X ~ Y iff X and Y have the same perimeter, the same
circumradius and the same inradius. Describe the elements of S/ ~.
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