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Introduction

Let M be a Banach manifold which is not assumed to be Hausdorff, and
let D denote the group of diffeomorphisms of M and V the Lie algebra of
vector fields on M. A Lie group ¥ is called a Lie transformation group of
M if the underlying group G of & is a subgroup of D and the natural map
a: (g, p) — gp) from ¥ X M into M is a morphism (of manifolds). In this
case, « induces a homomorphism a* from the Lie algebra L(¥) of ¢ into V
(cf. § 3). Conversely, we prove that the set of complete vector fields of a finite-
dimensional subalgebra of V is a subalgebra (Proposition 8), and if L is a com-
plete finite-dimensional subalgebra of V then there exists a unique connected
Lie transformation group % such that a* is an isomorphism from L(¥) onto
L (Theorem 9). In case M is finite-dimensional and Hausdorff, this result is
due to Palais [4]. For the numerous applications in differential geometry, the
reader is referred to [1]. Unfortunately, the proof of the just-mentioned special
case given in [1] seems to be incomplete. The proof to be presented here is
quite elementary; it relies heavily on the use of one-parameter families of
diffeomorphisms, instead of one-parameter groups. To be miore precise, we
define a curve in D to be a morphism ¢: I, X M — M such that

(i) I, is an open interval in R containing 0;

(ii) the map ¢,: p — (¢, p) belongs to D, for all el ;

(iii) ¢, = 1dy.

With ¢ we associate a time-dependent vector tficld d¢ by

do(t, p) = (0p).(p) = (d]ds),_ele, ' (P)) .

The map ¢ — 8¢ is injective (Proposition 4). The underlying group G of &
turns out to be the set of diffeomorphisms ¢, where ¢ is any curve in D such
that I, = R and (J¢), e L for all £e R. Using canonical coordinates of the
second kind, G becomes a Lie group with the desired properties. We also
prove the following criterion for a subgroup G of D to be a Lie transforma-
tion group (Theorem 10): assume there is a set S of curves in D such that
{o.: peS and rel} generates G and that {(3p),: ¢S and tel} generates a
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finite-dimensional subalgebra L of V. Then L is complete and G is the under-
lying group of the connected Lie transformation group generated by L,

We work throughout in the category of real Banach manifolds of class C*
where &k = « or £ = w, and a morphism is a map of class C*. For the basic
facts on Banach manifolds we refer to Lang [3].

1. Carves of diffeomorphisms and time-dependent vector fields

Notational convention. 1If f is a map on a product space, then the partial
maps p — f(¢, p) and ¢t — f(¢, p) will be denoted by f, and fP, respectively. If

t is a real variable, then f2() = f.(p) = ;i f(t, p) is the tangent vector of the
[

curve f? at f(¢, p). By I we denote an open interval in R containing 0.
Let D(I) be the set of all curves in D with I, = I. Then with the operations

(o)1, p) = @1 o G (D) e '(t, p) = o7 p) ,

D(I) is a group. Indeed, the only non-obvious fact is that ¢~' is a morphism,
and this follows from the implicit function theorem.

A time-dependent vector field is a morphism &: I X M — T(M), the tangent
bundle of M, such that &, ¢V for every tel. Note that £7 is a curve in the
tangent space T,(M) for every p e M. Identifying as usual the tangent space of

T, (M) at &7(¢) with T (M), we define a time-dependent vector field ';f- by
?;f (t.p) = £7(t). The set V() of time-dependent vector fields becomes a Lie

algebra with
[87 77](’) p) = [E[,a nt](p) *
Also V C V() by setting X(t,p) = X(p) for X eV, and then £V if and

only if % _ 0, i.e., & is time-independent.
t

Let feD and X eV, and denote by Tf the induced map on the tangent
bundle of M. Then

Adf-X =TfoXof"

is a vector field on M, and in this way D acts on V by automorphisms.
Similarly, D(J) acts on V(I) by

(Ad - &)1, p) = (Ad ¢, £)(P} .
We define 6: D) -» V() by

do(t, p) = ¢ ' (P)) .
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Then we have

(1) oeg) = dp + Ad -d¢ ,
(2) dot= —Ad ¢ t-dp .
Indeed,

o)t p) = dit (0PN = ¢dP)) + Todd(p)

= 0¢(t, . o (D)) + T (642, ¢,(D))

and (2) follows by setting ¢ = ¢ '. Note that ¢ is a crossed homomorphism
from D() into V(D).

Lemma 1. For oeD(I) and £e V() let p = Ad ¢-&. Then

M _ 150 AT

(3) Fy = [0p, 7] + Ad ¢ o

Proof. Thisis alocal result. Let U and V be coordinate neighborhoods of
p and ¢;'(p), and choose V' C V, U’ C U and ¢ > 0 such that o((#; — ¢, #; + ¢)
X V) CUand o ((t, —e, t, + &) X U C V’. By continuity, this is possible.
We may identify U and V' with open sets in a Banach space E. Then T(U)
=UXE and TV) =V x E. For yeV, let &(t,y) = (y, g(t, y)) where
g:(ty— ety + ¢ X V--E. For xeU" and |t — t;| <& we have dp(t, x) =
(x,f(t,x)) and %(t, x) = (x, A(t, x)) where f(z, X) = ¢,(o; (%)) and h(t, x) =
Do, (07 (x))- g, ¢;7'(x)), Dy, denoting the derivative of ¢,; see [3, p. 6 ff.].

Let ¢;(x) = y for short. Then from l’)_g\ot = D¢, it follows
h(t,x) = Dg,(3)-8y) + Do, (@:(x), 8.()
+ Dth(y) -é’t(y) + DSDt(y) o Dg,(y) "sz_l(x) s
Df,(x)-h,(x) — Dh(x)-f,(x) + D, (3)-£.(»)
= Dg¢,(y) o Do;(x)-h,(x) — Do(y)(De; ' (x)-¢:(3), 2.»)
— Dg,(y) e Dg(y) o Dp;'(x)-¢,(») + Do, (3)-&.y) .
From ¢,(¢;(x)) = x for all xe U’ we get
0,(y) + Do,(3-¢;'(x) =0, (Dy,(y)) "t = De;H(x) ,

and the assertion of Lemma 1 follows.

(Note that our definition of the bracket of vector fields differs from the usual
one by sign; this is the ‘good’ definition for transformation groups acting on
the left.) :
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Corollary. Let Y ¢ V. Then n = Ad¢-Y is the unique solution of the par-
tial differential equation

(4) =1 = [do, 7]

for the time-dependent vector field y with initial condition 5, = Y.

Proof. From (3) it follows that Ad¢-Y is a solution of (4). To prove
unicity, let » be any solution of (4), and let £ = Ad ¢~'-5. Then, from (2)
and (3),

a - P/

L Ado . %2

= (67,1 + Ad o o |
=[—-Ade - dp,Ad o7t -5] + Ad - [dp,7]1 = 0.

Hence Adg;' 7, =& = = Adg;'-7p =Y and therefore 7, = Ad¢,-Y
forall rel. q.e.d.

A curve e D(R) is called a one-parameter group if ¢, ¢, = ¢,,, for all
s, te R. . .

Lemma 2. a) If ¢ is a one-parameter group, then ¢ is time-independent,

b) Let ¢ e DU) and 3¢ = X be time-independent. Then Ad ¢,-X =X for
all te 1, and ¢ can be extended uniquely to a one-parameter group.

Proof. a) This follows by differentiating the identity ¢,. (07 '(p)) = ¢p)
with respect to s at s = 0. '

b) From (2} and (3) we get

%(Ad 0. X) = [6p~", Adp~'- X1 = [~Ad ¢~ X, Ad o~ X] = O .

Hence Adg,-X = Adg,-X = X for all tel. Now let sel, and set a, =
Qseo; forted =1NT—s. Then

&(D) = ¢u (@' (D)) + Tos. (97 (D))
=X — Adg, Ad g )@ (p) = 0.

Since 7 is connected and OeJ, it follows ¢,,, 00" = a, = a, = ¢, i.c.,
0y © @, = @;,,. Now it is a standard fact that ¢ can be extended uniquely to
a one-parameter group. q.e.d.

The following change of parameter will be useful.

Lemma 3. There exists a C*-diffeomorphism f: R — I such that f(0) = O.
The map f*: DUI) — D(R) defined by (f*o)(t, p) = o(f(2),p) is a group iso-

df

‘—E-&p(f(t), p. .
The proof is left to the reader.

morphism, and §(f*o)(t,p) =
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Proposition 4. §: D(I) — Y({) is injective.
Proof. By Lemma 3, we may assume /=R. For ¢ ¢ D(R), define

&8, p) =t + 5,0, 07 (D) (teR,(s,p)eR X M) .

An immediate verification shows that ¢ is a one-parameter group on R X M.
As usual, T(R) is identified with R X R and T(R x M) with T(R) X T(M).
Then by Lemma 2 the (time-independent) vector field X = d¢ on R X M is
given by

X0 = ]+ 5000970 = (5, D35, p) -

Let ¢, ¢ ¢ D(R). Clearly, dp = 8¢ implies 3¢ = 3¢, and ¢ = ¢ implies ¢ = ¢.
Hence it suffices to prove the proposition for one-parameter groups. Finally, let
v and ¢ be one-parameter groups such that X = 8¢ = 8¢. Then from Lemma
2 and (1) and (2) we have d(p¢~!) = dp + Adgp-d¢p' =X — Adp Ad ¢ 1. X
=X — X = 0. Setting & = ¢!, this implies that &?(#) = 0 for all pe M,
t ¢ R. Therefore the map «®: R — M is constant for all p e M, and it foliows
o, = ldy, L.e., o = ¢.

Note that ¢?: t — ¢(t, p) is a solution of the differential equation _Zf =
t

d¢(t, x) with initial condition x(0) = p. In case M is Hausdorff, this solution
is unique which gives a simpler proof of Proposition 4. q.e.d.

A vector field X such that X = gy for some (uniquely determined) ¢ € D(R)
is called complete. It is well known that on a compact manifold every vector
field is complete. It can be shown that this is still true for time-dependent
vector fields, so that §: D(I) — V(1) is a bijection for compact M.

2. Lie algebras of vector fields

In this section, L will denote an arbitrary finite-dimensional subalgebra of
V. Let

(5) LR) = {£eV(R): §,cLforallte R} .

As a finite-dimensional vector space, L is a manifold in a natural way. Then
we have

Lemma 5. L(R) is naturally isomorphic to the set of morphisms from R
into L.

Proof. Let p ¢ M. Since L is finite-dimensional, the subspace {X(p): X e L}
of the Banach space T (M) is closed and admits a closed complementary sub-
space. Hence, again by finite-dimensionality of L, there exist p; ¢ M and con-
tinuous linear forms 2, on T, (M) (i = 1, - .-, r) such that the map F: X >
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(A(X@®Y),: -, 4,(X(p,))) is alinear isomorphism from L onto R”. Lete,, - - -, e,
be a basis of R” and set X; = F~'(e,). For any £ ¢ L(R), the map £?: R —
T (M) is a morphism. Hence f, = 2, o £%¢ is a morphism from R into R, and
§: = 3, (DX, shows that t — £, is a morphism from R into L. If conversely
»: R+~ L is a morphism, then »() = }; g,()X, with morphisms g;,: R — R,
and this shows that the map (¢, p) — 5(#)(p) belongs to L(R). q.e.d.

In view of Lemma 5, we will identify L(R) with the set of morphisms from
R into L. Then % = -Z %, where f‘% denotes the usual derivative of a curve
in a vector space.

Now we define

(6) G(R) = {pe D(R): 3pc L(R)} .

The fact that we consider only curves of diffeomorphisms defined on R is con-
venient but not essential in view of Lemma 3.

Lemma 6. Let o G(R) and 6p = £: R — L. Then L is invariant under
Ad ¢,(te R), and the map t — Ad ¢,|L is the unique solution of the matrix

differential equation ﬁd{tl— = ad &(t) o A with initial condition A(Q) = 1d,. In

particular, it is a morphism from R into GL(L).
Proof. For YeL let »: R — L be the unique solution of the ordinary

linear differential equation iid}f_ = [£(5), X1 in L with initial condition 7(0) = Y.

Then by the remark above, 5 considered as an element of L(R) is a solution
of (4), and 5(t) = Ad ¢,-Y e L by the corollary of Lemma 1. Hence the lemma
follows from the standard facts on ordinary linear differential equations.

From (1) and (2) we get

Corollary. G(R) is a subgroup of D(R).

We define

(7) G={p: 0GR}, Ly={(0v): pecGR}.

Lemma 7. a) G is a subgroup of D, and ¢, G for all pe G(R),s ¢ R.

b) L, is a subalgebra of L and (6¢), € L, for all p € G(R),s e R. Also, L, is
invariant under Ad g for all ge G.

Proof. By the above corollary, G is a subgroup of D. Let se R, o € G(R),
and set ¢, = ¢,,. Then ¢, = ¢, € G and also (5¢), = s-{8¢),. Thus it follows
from (1) that L, is a subspace of L. For ¢,¢ e G(R) and a fixed se¢ R set
a, =@, 0, 007" Then (5ar), = Ad ¢,-(6¢); €L by Lemma 6. Hence a ¢ G(R),
and it follows %(s) = (6a), = Ad g¢,-(8¢), € L,. This shows that L, is invariant
under Ad G. Furthermore, by differentiating with respect to s at s = 0 we get

5—77—(0) = [(6¢)y, (8¢)e] € L,. Thus L, is a subalgebra of L. Finally, let 8, =
s
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@es:0 07t Then (68), = (3p),., shows fe G(R), and it follows (6¢), = (68),< L.
Proposition 8. L, is the set of complete vector fields in L.
Proof. By a) of Lemma 2, a complete vector field in L belongs to L,. Con-
versely, choose ¢ in G(R) such that (5p”), (i = 1, ---,n) form a basis of
L,, and define @: R* — G by

D) = ¢ o o0

Clearly, (x,p) —~ @(x)(p) is a morphism from R* x M into M. Also define
F: R* - Hom (R*, L, by

(8) Fo@) =3 0, (Ado® o - o Ad g9 £,(x))
=1

where &, = dp'?: R — L,. By Lemma 6, F is a morphism. Also, F, is a vector
space isomorphism, since Fy(v) = Y v,£,(0) and the £,(0) = (5¢'), form a
basis of L,.

Let y: I — R* be a morphism such that y(0) = 0. Then ¢, = @((?)) de-
fines a curve in D, and a computation shows

(9) (599)5 = F;(z)(f’(t)) .

Since F, is an isomorphism, there exists # > 0 such that F, is an isomorphism
for ||zl < r. Let X e, be given, and consider the ordinary differential equation
d ]
L= FPX (a<n .
dt
Let y: I — R* be a solution with y(0) = 0, and define ¢ as above. Then
(69), = F,,,F;3,(X) = X, and X is complete by Lemma 2.
For any X ¢ L, we denote the corresponding one-parameter group by Exp ¢X.
Then we have

(10) AdExpiX.Y = 44 Y for XeL,, YeL.

Indeed, by Lemma 6, Ad Exp X |L is the solution of Ed{tl = ad X o A with

initial condition A(0) = Id,, which is given by e ‘¥,

3. Connected Lie transformation gfoups

We first recali some facts about group actions. Let ¥ be a Lie group. A
morphism «: (g, p) = g-p from ¥ X M into M is called an action of ¥ on M
on the left if

@ gkh-p=0gNrp,

i) ep=p,
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for g,he 4 and pe M (e is the neutral element of G). The Lie algebra L(%)
of & is the tangent space T,(¥) with the bracket [X, Y] = [X, Y](e), where
X is the right-invariant vector field on & such that X(e) = X (this coincides
with the usual definition in terms of left-invariant vector fields since our bracket
of vector fields differs from the usual one by sign). Then « induces a homo-
morphism a*: L(¥%) — V by

a*(X)(p) = Ta?(X) ,

(see [4, p. 35]). The proof is a straightforward computation in local charts by
using (i) and (ii) and is omitted here.

In case the underlying group G of ¢ is a subgroup of D and a(g, p) = g{p)
is the natural map, we say ¥ is a Lie transformation group of M.

Theorem 9. Let L be a finite-dimensional complete subalgebra of V. Then
there exists a unique connected Lie transformation group % of M such that a*
is an isomorphism from L(%) onto L, and for every ¢ ¢ D(I) such that p,e¢ ¢
for all t e I the map t — ¢, is a morphism from I into 4.

_Proof. Let G be the subgroup of D defined by (7), choose a basis
X,, -+, X, of L, and define ¢: R* — G by

O(x) == Expx X, --+ o Expx, X, .

We will show that in the canonical coordinates of the second kind given by @,
G becomes a Lie group with the desired properties.
First we prove

11) . @ is injective in a neighborhood of 0.
Since L is finite-dimensional there exist p,, -.-, p, ¢ M such that the map
X Xp), -, X(@,) from L into E=T,M) X --- X T, (M) is in-

jective. Define f: R* — M7 by f(x) = (@(x)(p)), - - -, @(x)}(p,)). Then T f(v) =

(L v X(p), -+ 2 2. X(p,), and Tf is injective since X, - - -, X, is a basis

of L. Thus the image of T,f in the Banach space E, being finite-dimensional, is

closed and admits a closed complementary subspace. Hence by the implicit

function theorem, f is injective in a neighborhood of 0 in R* which proves (11).
Next we show

(12)  there exists a neighborhood N of Q in R* and a real analytic map
p: N X N — R" such that 1(0,0) = 0 and O(u(x,y)) = D(x) o D(y).

Defining F: R* — Hom (R",L) in analogy with (8), we obtain, from (10),

N .
F_,;(U) —_ Z ,vi_(eadzpl’l O +es 0 eadu—ul’,;—l.X_i) .

i=1



LIE TRANSFORMATION GROUPS 183

Thus F is real analytic. As in the proof of Proposition 8, F, is a vector space
isomorphism, and we choose r >> 0 such that F, is an isomorphism for z ¢ B,
= {xe R": ||x|| < r}. Set

A(t’Z, X, }’) = F;I(sz(x) + ead““Xl O+ 0 eadlann.Fty(‘y)) .

Then A: R X B, X R* X R® — R" is real analytic, and A(¢,z; 0,0) = 0.
Thus there exists an open neighborhood N of 0 in R® such that

NA4G¢, 25 x, V| < 2r/3 for |t < 3/2,z¢B,, and x,yeN .
By standard theorems on differential equations, the equation

daz
== AL, 25
dt ( %)

has a unique solution y(z; x, y) such that y(0; x,y) = 0, defined for [¢t] < 3/2

and depending real analytically on the parameters x,y ¢ N. We define u(x, y)

=7(1; x, y), and show that @(u(x, y)) = ®(x)oD(y). Indeed, let ¢, = O(;(¢; x, ¥))

and ¢, = O(tx) o @(ty). Then, by (1), (6) and (7),

(0¢), = Fox(x) + Ad O(tx)- F, (3) = F,(x) + 43500 ... o g2dtmndn. F (y)
= Fy(t-.r y)(r(t’ x’ y)) = (6¢)L .

Thus by Proposition 4, ¢, = ¢, for [t| < 3/2, and for t = 1 the assertion follows.

In a similar fashion, we can prove, with details omitted:

(13)  there exist a neighborhood N of O in R™ and a real analytic map
¢: N — R" such that :(0) = 0 and O((x)) = «(x)71;

(14)  for every ge G there exist a neighborhood N of 0 in R* and a real
analytic map 8. N — R" such that 6(0) = 0 and ®(4(x)) = g o 6(x) g,

by considering the differential equations

_‘("Z = —F Y e #tonfno ... o emudtndiF (X)),
dz —~1

= = F;(Ad g-F,,(x))

dt

depending on the parameter x.

Now let V < W C N be open neighborhoods of O in R” such that (11), (12)
and (13) hold for N, and furthermore p(V,«V)) C W and u(W,W) C N.
Forevery ae G, let U, = a-@(V) and define f,: U, -V by f.(g) = @ '(a 'g).
Thus ¢, = (U,,f,) is a chart at a. Assume U, N U, #+ @. Then a'b =
O(x,) € (W), and f.f;'(x) = f.(b-O(x)) = CD (a7'b- 0(x)) = O~ P(xpD(x))
=@ 1(@(#(]‘0, X)) = #(-xm x).
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Therefore any two such charts are C*-compatible, and the atlas &« = {c,: ¢eG}.
defines on G the structure of an n-dimensional real analytic manifold. From
the definition of & it is obvious that all left-translations of G are real analytic,
and by (12), (13) and (14), multiplication, inversion and inner automorphisms
are real analytic at e = Id,,. Hence it follows easily that ¢ = (G, o) is a
Lie group.

Since the map (x, p) — @(x)(p) is a morphism, it is clear that « is a rnorphlsm
at (e, p) for all pe M, and hence everywhere. Let X € L(G) be represented by
v ¢ R™ in the chart c,. Then a*(X) = F(v) shows that «* is an isomorphism
of L(%) onto L.

To prove the second statement, let ¥, = (a¢*)"'({(§¢),). This is a curve in
L(%), and the differential equation a, = Y,a, with initial condition g, = e in
% has a unique solution defined for all tel, [2, Lemma, p. 69]. Then
¢(t, p) = a,p) defines a curve in D such that 3¢ = dp. By Proposition 4,
a, = ¢,, and the assertion follows; this also proves that ¢ is connected.

To prove unicity, let 5# be a Lie group with the same properties as ¢, H
be the underlying group of #, and §: 5# X M — M be the map (&, p}+»> h(p).
Then we have exp tX = Exp tf*(X) where exp: L(s#) — 5 is the usual ex-
ponential map. Indeed, ¢(t, p) = f(exp tX, p) defines a one-parameter group
on M, and since 8¢(0, p) = (d/d1),_f(exp tX,p) = TEA(X) = p*(X)(p), the
assertion follows from Proposition 4. Since 5 is connected, it is generated by
exp L(2#) and therefore H = G. Now the commutative diagram

(B*)toar

L(%) L(s#)
expl lexp
& > H
Ide

shows that Id,; is a Lie group isomorphism.

Theorem 10. Let G be a subgroup of D, and assume that there is a set S
of curves in D such that {p,: ¢S and tel,} and {(3¢),: p€ S and ter,}
generates G and a finite-dimensional subalgebra L of V respectively. Then L
is complete and G is the underlymg group of the connected Lie transformation
group generated by L.

Proof. After a change of parameter (Lemma 3) we may assume that I, = R
for all ¢ ¢.S. From Lemma 7 and Proposition 8 it follows that L. is complete.
Let ¢’ be the connected Lie transformation group generated by L, with under-
lying group G’. By Theorem 9, G is a subgroup of G’ such that every element
of G can be joined to e by a differentiable curve contained in G. Thus by
[2, Appendix 4], G is the underlying group of a connected Lie subgroup ¢ of
%’ and t > ¢, is a morphism from R into G for all ¢ e S. It follows that the
vectors (a*)”'((3p),) belong to L(G). Since these vectors generate L(%’), we
must have L(¥) = L{%’) and hence G = G'.
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