LIE TRANSFORMATION GROUPS OF BANACH MANIFOLDS

OTTMAR LOOS

Introduction

Let M be a Banach manifold which is not assumed to be Hausdorff, and let D denote the group of diffeomorphisms of M and V the Lie algebra of vector fields on M. A Lie group G is called a Lie transformation group of M if the underlying group G of \mathscr{G} is a subgroup of D and the natural map $\alpha: (g, p) \mapsto g(p)$ from $\mathscr{G} \times M$ into M is a morphism (of manifolds). In this case, α induces a homomorphism α^+ from the Lie algebra $L(\mathcal{G})$ of \mathcal{G} into \mathbf{V} (cf. § 3). Conversely, we prove that the set of complete vector fields of a finitedimensional subalgebra of V is a subalgebra (Proposition 8), and if L is a complete finite-dimensional subalgebra of V then there exists a unique connected Lie transformation group \mathscr{G} such that α^+ is an isomorphism from $L(\mathscr{G})$ onto L (Theorem 9). In case M is finite-dimensional and Hausdorff, this result is due to Palais [4]. For the numerous applications in differential geometry, the reader is referred to [1]. Unfortunately, the proof of the just-mentioned special case given in [1] seems to be incomplete. The proof to be presented here is quite elementary; it relies heavily on the use of one-parameter families of diffeomorphisms, instead of one-parameter groups. To be more precise, we define a curve in D to be a morphism $\varphi \colon I_{\scriptscriptstyle \varphi} \times M \to M$ such that

- (i) I_v is an open interval in R containing 0;
- (ii) the map $\varphi_t : p \mapsto \varphi(t, p)$ belongs to D, for all $t \in I_c$;
- (iii) $\varphi_0 = \mathrm{Id}_M$.

With φ we associate a time-dependent vector field $\delta \varphi$ by

$$\delta\varphi(t,p) = (\delta\varphi)_t(p) = (d/ds)_{s=t}\varphi_s(\varphi_t^{-1}(p))$$
.

The map $\varphi \mapsto \delta \varphi$ is injective (Proposition 4). The underlying group G of $\mathscr G$ turns out to be the set of diffeomorphisms φ_i where φ is any curve in D such that $I_{\varphi} = R$ and $(\delta \varphi)_t \in \mathbf{L}$ for all $t \in R$. Using canonical coordinates of the second kind, G becomes a Lie group with the desired properties. We also prove the following criterion for a subgroup G of D to be a Lie transformation group (Theorem 10): assume there is a set S of curves in D such that $\{\varphi_t \colon \varphi \in S \text{ and } t \in I_{\varphi}\}$ generates G and that $\{(\delta \varphi)_t \colon \varphi \in S \text{ and } t \in I_{\varphi}\}$ generates a

Communicated by R. S. Palais, March 28, 1970.

finite-dimensional subalgebra L of V. Then L is complete and G is the underlying group of the connected Lie transformation group generated by L.

We work throughout in the category of real Banach manifolds of class C^k where $k = \infty$ or $k = \omega$, and a morphism is a map of class C^k . For the basic facts on Banach manifolds we refer to Lang [3].

1. Curves of diffeomorphisms and time-dependent vector fields

Notational convention. If f is a map on a product space, then the partial maps $p \mapsto f(t, p)$ and $t \mapsto f(t, p)$ will be denoted by f_t and f^p , respectively. If t is a real variable, then $\dot{f}^p(t) = \dot{f}_t(p) = \frac{d}{dt}f(t, p)$ is the tangent vector of the curve f^p at f(t, p). By I we denote an open interval in I containing I.

Let D(I) be the set of all curves in D with $I_{\varphi} = I$. Then with the operations

$$(\varphi \psi)(t,p) = \varphi_t \circ \psi_t(p); \qquad \varphi^{-1}(t,p) = \varphi_t^{-1}(p) ,$$

D(I) is a group. Indeed, the only non-obvious fact is that φ^{-1} is a morphism, and this follows from the implicit function theorem.

A time-dependent vector field is a morphism $\xi \colon I \times M \to T(M)$, the tangent bundle of M, such that $\xi_t \in V$ for every $t \in I$. Note that ξ^p is a curve in the tangent space $T_p(M)$ for every $p \in M$. Identifying as usual the tangent space of $T_p(M)$ at $\xi^p(t)$ with $T_p(M)$, we define a time-dependent vector field $\frac{\partial \xi}{\partial t}$ by $\frac{\partial \xi}{\partial t}(t,p) = \dot{\xi}^p(t)$. The set V(I) of time-dependent vector fields becomes a Lie algebra with

$$[\xi, \eta](t, p) = [\xi_t, \eta_t](p)$$
.

Also $\mathbf{V} \subset \mathbf{V}(I)$ by setting X(t, p) = X(p) for $X \in \mathbf{V}$, and then $\xi \in \mathbf{V}$ if and only if $\frac{\partial \xi}{\partial t} = 0$, i.e., ξ is time-independent.

Let $f \in D$ and $X \in V$, and denote by Tf the induced map on the tangent bundle of M. Then

$$\operatorname{Ad} f \cdot X = Tf \circ X \circ f^{-1}$$

is a vector field on M, and in this way D acts on V by automorphisms. Similarly, D(I) acts on V(I) by

$$(\operatorname{Ad}\varphi\cdot\xi)(t,p)=(\operatorname{Ad}\varphi_t\cdot\xi_t)(p)\ .$$

We define $\delta \colon D(I) \to \mathbf{V}(I)$ by

$$\delta \varphi(t,p) = \dot{\varphi}_t(\varphi_t^{-1}(p))$$
.

Then we have

$$\delta(\varphi\psi) = \delta\varphi + \operatorname{Ad}\varphi \cdot \delta\psi ,$$

$$\delta \varphi^{-1} = -\mathrm{Ad} \, \varphi^{-1} \cdot \delta \varphi \, .$$

Indeed,

$$\delta(\varphi\psi)(t,p) = \frac{d}{dt}(\varphi_t(\varphi_t(p)) = \dot{\varphi}_t(\psi_t(p)) + T\varphi_t(\dot{\varphi}_t(p))$$

$$= \delta\varphi(t,\varphi_t \circ \psi_t(p)) + T\varphi_t(\delta\psi(t,\psi_t(p))$$

$$= (\delta\varphi + \operatorname{Ad} \varphi \cdot \delta\psi)(t,p),$$

and (2) follows by setting $\phi = \varphi^{-1}$. Note that δ is a crossed homomorphism from D(I) into V(I).

Lemma 1. For $\varphi \in D(I)$ and $\xi \in V(I)$ let $\eta = \operatorname{Ad} \varphi \cdot \xi$. Then

(3)
$$\frac{\partial \eta}{\partial t} = [\delta \varphi, \eta] + \operatorname{Ad} \varphi \cdot \frac{\partial \xi}{\partial t}.$$

Proof. This is a local result. Let U and V be coordinate neighborhoods of p and $\varphi_{t_0}^{-1}(p)$, and choose $V' \subset V$, $U' \subset U$ and $\varepsilon > 0$ such that $\varphi((t_0 - \varepsilon, t_0 + \varepsilon) \times V') \subset U$ and $\varphi^{-1}((t_0 - \varepsilon, t_0 + \varepsilon) \times U') \subset V'$. By continuity, this is possible. We may identify U and V with open sets in a Banach space E. Then $T(U) = U \times E$ and $T(V) = V \times E$. For $y \in V$, let $\xi(t, y) = (y, g(t, y))$ where $g: (t_0 - \varepsilon, t_0 + \varepsilon) \times V \to E$. For $x \in U'$ and $|t - t_0| < \varepsilon$ we have $\delta \varphi(t, x) = (x, f(t, x))$ and $\eta(t, x) = (x, h(t, x))$ where $f(t, x) = \dot{\varphi}_t(\varphi_t^{-1}(x))$ and $h(t, x) = D\varphi_t(\varphi_t^{-1}(x)) \cdot g(t, \varphi_t^{-1}(x))$, $D\varphi_t$ denoting the derivative of φ_t ; see [3, p. 6 ff.].

Let $\varphi_t^{-1}(x) = y$ for short. Then from $\widehat{D\varphi}_t = D\dot{\varphi}_t$ it follows

$$\begin{split} \dot{h}(t,x) &= \mathrm{D}\dot{\varphi}_t(y) \cdot g_t(y) + \mathrm{D}^2\varphi_t(y)(\dot{\varphi}_t^{-1}(x),g_t(y)) \\ &+ \mathrm{D}\varphi_t(y) \cdot \dot{g}_t(y) + \mathrm{D}\varphi_t(y) \circ \mathrm{D}g_t(y) \cdot \dot{\varphi}_t^{-1}(x) , \\ \mathrm{D}f_t(x) \cdot h_t(x) &- \mathrm{D}h_t(x) \cdot f_t(x) + \mathrm{D}\varphi_t(y) \cdot \dot{g}_t(y) \\ &= \mathrm{D}\dot{\varphi}_t(y) \circ \mathrm{D}\varphi_t^{-1}(x) \cdot h_t(x) - \mathrm{D}^2\varphi_t(y)(\mathrm{D}\varphi_t^{-1}(x) \cdot \dot{\varphi}_t(y),g_t(y)) \\ &- \mathrm{D}\varphi_t(y) \circ \mathrm{D}g_t(y) \circ \mathrm{D}\varphi_t^{-1}(x) \cdot \dot{\varphi}_t(y) + \mathrm{D}\varphi_t(y) \cdot \dot{g}_t(y) . \end{split}$$

From $\varphi_t(\varphi_t^{-1}(x)) = x$ for all $x \in U'$ we get

$$\dot{\varphi}_t(y) + D\varphi_t(y) \cdot \dot{\varphi}_t^{-1}(x) = 0$$
, $(D\varphi_t(y))^{-1} = D\varphi_t^{-1}(x)$,

and the assertion of Lemma 1 follows.

(Note that our definition of the bracket of vector fields differs from the usual one by sign; this is the 'good' definition for transformation groups acting on the left.)

Corollary. Let $Y \in V$. Then $\eta = \operatorname{Ad} \varphi \cdot Y$ is the unique solution of the partial differential equation

$$\frac{\partial \eta}{\partial t} = [\delta \varphi, \eta]$$

for the time-dependent vector field η with initial condition $\eta_0 = Y$.

Proof. From (3) it follows that $\operatorname{Ad} \psi \cdot Y$ is a solution of (4). To prove unicity, let η be any solution of (4), and let $\zeta = \operatorname{Ad} \varphi^{-1} \cdot \eta$. Then, from (2) and (3),

$$\begin{split} \frac{\partial \zeta}{\partial t} &= [\delta \varphi^{-1}, \zeta] + \operatorname{Ad} \varphi^{-1} \cdot \frac{\partial \eta}{\partial t} \\ &= [-\operatorname{Ad} \varphi^{-1} \cdot \delta \varphi, \operatorname{Ad} \varphi^{-1} \cdot \eta] + \operatorname{Ad} \varphi^{-1} \cdot [\delta \varphi, \eta] = 0 \ . \end{split}$$

Hence Ad $\varphi_t^{-1} \cdot \eta_t = \zeta_t = \zeta_0 = \operatorname{Ad} \varphi_0^{-1} \cdot \eta_0 = Y$ and therefore $\eta_t = \operatorname{Ad} \varphi_t \cdot Y$ for all $t \in I$. q.e.d.

A curve $\varphi \in D(R)$ is called a one-parameter group if $\varphi_s \circ \varphi_t = \varphi_{s+t}$ for all $s, t \in R$.

Lemma 2. a) If φ is a one-parameter group, then $\delta \varphi$ is time-independent.

b) Let $\varphi \in D(I)$ and $\delta \varphi = X$ be time-independent. Then Ad $\varphi_t \cdot X = X$ for all $t \in I$, and φ can be extended uniquely to a one-parameter group.

Proof. a) This follows by differentiating the identity $\varphi_{s+t}(\varphi_t^{-1}(p)) = \varphi_s(p)$ with respect to s at s = 0.

b) From (2) and (3) we get

$$\frac{\partial}{\partial t}(\operatorname{Ad}\varphi^{-1}\cdot X)=[\partial\varphi^{-1},\operatorname{Ad}\varphi^{-1}\cdot X]=[-\operatorname{Ad}\varphi^{-1}\cdot X,\operatorname{Ad}\varphi^{-1}\cdot X]=0.$$

Hence Ad $\varphi_t \cdot X = \operatorname{Ad} \varphi_0 \cdot X = X$ for all $t \in I$. Now let $s \in I$, and set $\alpha_t = \varphi_{s+t} \circ \varphi_t^{-1}$ for $t \in I = I \cap I - s$. Then

$$\dot{\alpha}_t(p) = \dot{\varphi}_{s+t}(\varphi_t^{-1}(p)) + T\varphi_{s+t}(\dot{\varphi}_t^{-1}(p))
= (X - \operatorname{Ad} \varphi_{s+t}\operatorname{Ad} \varphi_t^{-1} \cdot X)(\alpha_t(p)) = 0.$$

Since J is connected and $0 \in J$, it follows $\varphi_{s+t} \circ \varphi_t^{-1} = \alpha_t = \alpha_0 = \varphi_s$, i.e., $\varphi_s \circ \varphi_t = \varphi_{s+t}$. Now it is a standard fact that φ can be extended uniquely to a one-parameter group. q.e.d.

The following change of parameter will be useful.

Lemma 3. There exists a C^{ω} -diffeomorphism $f: \mathbb{R} \to I$ such that f(0) = 0. The map $f^*: D(I) \to D(\mathbb{R})$ defined by $(f^*\varphi)(t,p) = \varphi(f(t),p)$ is a group isomorphism, and $\delta(f^*\varphi)(t,p) = \frac{df}{dt} \cdot \delta\varphi(f(t),p)$.

The proof is left to the reader.

Proposition 4. $\delta: D(I) \to V(I)$ is injective.

Proof. By Lemma 3, we may assume I = R. For $\varphi \in D(R)$, define

$$\tilde{\varphi}_t(s,p) = (t+s, \varphi_{t+s} \circ \varphi_s^{-1}(p)) \qquad (t \in \mathbf{R}, (s,p) \in \mathbf{R} \times \mathbf{M}) .$$

An immediate verification shows that $\tilde{\varphi}$ is a one-parameter group on $R \times M$. As usual, T(R) is identified with $R \times R$ and $T(R \times M)$ with $T(R) \times T(M)$. Then by Lemma 2 the (time-independent) vector field $X = \delta \tilde{\varphi}$ on $R \times M$ is given by

$$X(s,p) = \frac{d}{dt}\Big|_{t=0} (t+s, \varphi_{t+s} \circ \varphi_s^{-1}(p)) = ((s,1), \delta \varphi(s,p)).$$

Let $\varphi, \psi \in D(R)$. Clearly, $\delta \varphi = \delta \psi$ implies $\delta \tilde{\varphi} = \delta \tilde{\psi}$, and $\tilde{\varphi} = \tilde{\psi}$ implies $\varphi = \psi$. Hence it suffices to prove the proposition for one-parameter groups. Finally, let φ and ψ be one-parameter groups such that $X = \delta \varphi = \delta \psi$. Then from Lemma 2 and (1) and (2) we have $\delta(\varphi \psi^{-1}) = \delta \varphi + \operatorname{Ad} \varphi \cdot \delta \psi^{-1} = X - \operatorname{Ad} \varphi \operatorname{Ad} \psi^{-1} \cdot X = X - X = 0$. Setting $\alpha = \varphi \psi^{-1}$, this implies that $\dot{\alpha}^p(t) = 0$ for all $p \in M$, $t \in R$. Therefore the map $\alpha^p \colon R \to M$ is constant for all $p \in M$, and it follows $\alpha_t = Id_M$, i.e., $\varphi = \psi$.

Note that $\varphi^p: t \mapsto \varphi(t, p)$ is a solution of the differential equation $\frac{dx}{dt} = \delta\varphi(t, x)$ with initial condition x(0) = p. In case M is Hausdorff, this solution is unique which gives a simpler proof of Proposition 4. q.e.d.

A vector field X such that $X = \delta \varphi$ for some (uniquely determined) $\varphi \in D(R)$ is called *complete*. It is well known that on a compact manifold every vector field is complete. It can be shown that this is still true for time-dependent vector fields, so that $\delta \colon D(I) \to V(I)$ is a bijection for compact M.

2. Lie algebras of vector fields

In this section, L will denote an arbitrary finite-dimensional subalgebra of V. Let

(5)
$$\mathbf{L}(\mathbf{R}) = \{ \xi \in \mathbf{V}(\mathbf{R}) : \xi_t \in \mathbf{L} \text{ for all } t \in \mathbf{R} \}.$$

As a finite-dimensional vector space, L is a manifold in a natural way. Then we have

Lemma 5. L(R) is naturally isomorphic to the set of morphisms from R into L.

Proof. Let $p \in M$. Since **L** is finite-dimensional, the subspace $\{X(p): X \in \mathbf{L}\}$ of the Banach space $T_p(M)$ is closed and admits a closed complementary subspace. Hence, again by finite-dimensionality of **L**, there exist $p_i \in M$ and continuous linear forms λ_i on $T_{p_i}(M)$ $(i = 1, \dots, r)$ such that the map $F: X \mapsto$

 $(\lambda_i(X(p_1)), \dots, \lambda_r(X(p_r)))$ is a linear isomorphism from L onto \mathbb{R}^r . Let e_1, \dots, e_r be a basis of \mathbb{R}^r and set $X_i = F^{-1}(e_i)$. For any $\xi \in L(\mathbb{R})$, the map $\xi^p \colon \mathbb{R} \to T_p(M)$ is a morphism. Hence $f_i = \lambda_i \circ \xi^{p_i}$ is a morphism from \mathbb{R} into \mathbb{R} , and $\xi_t = \sum f_i(t)X_i$ shows that $t \mapsto \xi_t$ is a morphism from \mathbb{R} into \mathbb{L} . If conversely $\eta \colon \mathbb{R} \mapsto \mathbb{L}$ is a morphism, then $\eta(t) = \sum g_i(t)X_i$ with morphisms $g_i \colon \mathbb{R} \to \mathbb{R}$, and this shows that the map $(t, p) \mapsto \eta(t)(p)$ belongs to $L(\mathbb{R})$. q.e.d.

In view of Lemma 5, we will identify L(R) with the set of morphisms from R into L. Then $\frac{\partial \xi}{\partial t} = \frac{d\xi}{dt}$, where $\frac{d\xi}{dt}$ denotes the usual derivative of a curve in a vector space.

Now we define

(6)
$$G(\mathbf{R}) = \{ \varphi \in D(\mathbf{R}) \colon \delta \varphi \in \mathbf{L}(\mathbf{R}) \} .$$

The fact that we consider only curves of diffeomorphisms defined on R is convenient but not essential in view of Lemma 3.

Lemma 6. Let $\varphi \in G(R)$ and $\delta \varphi = \xi \colon R \to L$. Then L is invariant under Ad $\varphi_t(t \in R)$, and the map $t \mapsto \operatorname{Ad} \varphi_t | L$ is the unique solution of the matrix differential equation $\frac{dA}{dt} = \operatorname{ad} \xi(t) \circ A$ with initial condition $A(0) = \operatorname{Id}_L$. In particular, it is a morphism from R into $\operatorname{GL}(L)$.

Proof. For $Y \in \mathbf{L}$ let $\eta: \mathbf{R} \to \mathbf{L}$ be the unique solution of the ordinary linear differential equation $\frac{dX}{dt} = [\xi(t), X]$ in \mathbf{L} with initial condition $\eta(0) = Y$.

Then by the remark above, η considered as an element of L(R) is a solution of (4), and $\eta(t) = \operatorname{Ad} \varphi_t \cdot Y \in L$ by the corollary of Lemma 1. Hence the lemma follows from the standard facts on ordinary linear differential equations.

From (1) and (2) we get

Corollary. G(R) is a subgroup of D(R).

We define

(7)
$$G = \{\varphi_1 \colon \varphi \in G(\mathbf{R})\}, \qquad \mathbf{L}_0 = \{(\delta \varphi)_0 \colon \varphi \in G(\mathbf{R})\}.$$

Lemma 7. a) G is a subgroup of D, and $\varphi_s \in G$ for all $\varphi \in G(R)$, $s \in R$.

b) \mathbf{L}_0 is a subalgebra of \mathbf{L} and $(\delta\varphi)_s \in \mathbf{L}_0$ for all $\varphi \in G(\mathbf{R})$, $s \in \mathbf{R}$. Also, \mathbf{L}_0 is invariant under $\mathrm{Ad}\,g$ for all $g \in G$.

Proof. By the above corollary, G is a subgroup of D. Let $s \in R$, $\varphi \in G(R)$, and set $\psi_t = \varphi_{st}$. Then $\varphi_s = \psi_1 \in G$ and also $(\delta \psi)_0 = s \cdot (\delta \varphi)_0$. Thus it follows from (1) that \mathbf{L}_0 is a subspace of \mathbf{L} . For $\varphi, \psi \in G(R)$ and a fixed $s \in R$ set $\alpha_t = \varphi_s \circ \psi_t \circ \varphi_s^{-1}$. Then $(\delta \alpha)_t = \operatorname{Ad} \varphi_s \cdot (\delta \psi)_t \in \mathbf{L}$ by Lemma 6. Hence $\alpha \in G(R)$, and it follows $\eta(s) = (\delta \alpha)_0 = \operatorname{Ad} \varphi_s \cdot (\delta \psi)_0 \in \mathbf{L}_0$. This shows that \mathbf{L}_0 is invariant under $\operatorname{Ad} G$. Furthermore, by differentiating with respect to s at s = 0 we get $\frac{d\eta}{ds}(0) = [(\delta \varphi)_0, (\delta \psi)_0] \in \mathbf{L}_0$. Thus \mathbf{L}_0 is a subalgebra of \mathbf{L} . Finally, let $\beta_t = \frac{d\eta}{ds}(0) = [(\delta \varphi)_0, (\delta \psi)_0] \in \mathbf{L}_0$.

 $\varphi_{s+t} \circ \varphi_s^{-1}$. Then $(\delta \beta)_t = (\delta \varphi)_{s+t}$ shows $\beta \in G(R)$, and it follows $(\delta \varphi)_s = (\delta \beta)_0 \in \mathbf{L}_0$. **Proposition 8.** \mathbf{L}_0 is the set of complete vector fields in \mathbf{L}_* .

Proof. By a) of Lemma 2, a complete vector field in L belongs to L_0 . Conversely, choose $\varphi^{(i)}$ in G(R) such that $(\delta \varphi^{(i)})_0$ $(i = 1, \dots, n)$ form a basis of L_0 , and define $\Phi: R^n \to G$ by

$$\Phi(x) = \varphi_{x_1}^{(1)} \circ \cdots \circ \varphi_{x_n}^{(n)}.$$

Clearly, $(x, p) \mapsto \Phi(x)(p)$ is a morphism from $\mathbb{R}^n \times M$ into M. Also define $F: \mathbb{R}^n \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{L}_0)$ by

(8)
$$F_{x}(v) = \sum_{i=1}^{n} v_{i} \cdot (\operatorname{Ad} \varphi_{x_{1}}^{(1)} \circ \cdots \circ \operatorname{Ad} \varphi_{x_{i-1}}^{(i-1)} \cdot \xi_{i}(x_{i})),$$

where $\xi_i = \delta \varphi^{(i)}$: $R \to \mathbf{L}_0$. By Lemma 6, F is a morphism. Also, F_0 is a vector space isomorphism, since $F_0(v) = \sum v_i \xi_i(0)$ and the $\xi_i(0) = (\delta \varphi^{(i)})_0$ form a basis of \mathbf{L}_0 .

Let $\gamma: I \to \mathbb{R}^n$ be a morphism such that $\gamma(0) = 0$. Then $\varphi_t = \Phi(\gamma(t))$ defines a curve in D, and a computation shows

$$(\delta\varphi)_t = F_{r(t)}(\dot{\gamma}(t)) .$$

Since F_0 is an isomorphism, there exists r > 0 such that F_z is an isomorphism for $||z|| \le r$. Let $X \in \mathbf{L}_0$ be given, and consider the ordinary differential equation

$$\frac{dz}{dt} = F_z^{-1}(X) \quad (\|z\| \le r) \ .$$

Let $\gamma: I \to \mathbb{R}^n$ be a solution with $\gamma(0) = 0$, and define φ as above. Then $(\delta \varphi)_t = F_{\gamma(t)} F_{\gamma(t)}^{-1}(X) = X$, and X is complete by Lemma 2.

For any $X \in \mathbf{L}_0$ we denote the corresponding one-parameter group by $\operatorname{Exp} tX$. Then we have

(10) Ad Exp
$$tX \cdot Y = e^{\operatorname{ad} tX} \cdot Y$$
 for $X \in \mathbf{L}_0, Y \in \mathbf{L}$.

Indeed, by Lemma 6, Ad Exp $tX \mid \mathbf{L}$ is the solution of $\frac{dA}{dt} = \operatorname{ad} X \circ A$ with initial condition $A(0) = \operatorname{Id}_{\mathbf{L}}$ which is given by $e^{\operatorname{ad} tX}$.

3. Connected Lie transformation groups

We first recall some facts about group actions. Let \mathscr{G} be a Lie group. A morphism $\alpha: (g, p) \mapsto g \cdot p$ from $\mathscr{G} \times M$ into M is called an action of \mathscr{G} on M on the left if

(i)
$$g \cdot (h \cdot p) = (gh) \cdot p$$
,

(ii)
$$e \cdot p = p$$
,

for $g,h\in \mathscr{G}$ and $p\in M$ (e is the neutral element of G). The Lie algebra $L(\mathscr{G})$ of \mathscr{G} is the tangent space $T_e(\mathscr{G})$ with the bracket $[X,Y]=[\overline{X},\overline{Y}](e)$, where \overline{X} is the right-invariant vector field on \mathscr{G} such that $\overline{X}(e)=X$ (this coincides with the usual definition in terms of left-invariant vector fields since our bracket of vector fields differs from the usual one by sign). Then α induces a homomorphism $\alpha^+:L(\mathscr{G})\to \mathbf{V}$ by

$$\alpha^+(X)(p) = T\alpha^p(X)$$
,

(see [4, p. 35]). The proof is a straightforward computation in local charts by using (i) and (ii) and is omitted here.

In case the underlying group G of \mathscr{G} is a subgroup of D and $\alpha(g, p) = g(p)$ is the natural map, we say \mathscr{G} is a *Lie transformation group* of M.

Theorem 9. Let **L** be a finite-dimensional complete subalgebra of **V**. Then there exists a unique connected Lie transformation group \mathcal{G} of M such that α^+ is an isomorphism from $L(\mathcal{G})$ onto **L**, and for every $\varphi \in D(I)$ such that $\varphi_t \in \mathcal{G}$ for all $t \in I$ the map $t \mapsto \varphi_t$ is a morphism from I into \mathcal{G} .

Proof. Let G be the subgroup of D defined by (7), choose a basis X_1, \dots, X_n of L, and define $\Phi: \mathbb{R}^n \to G$ by

$$\Phi(x) = \operatorname{Exp} x_1 X_1 \circ \cdots \circ \operatorname{Exp} x_n X_n.$$

We will show that in the canonical coordinates of the second kind given by Φ , G becomes a Lie group with the desired properties.

First we prove

(11)
$$\Phi$$
 is injective in a neighborhood of 0.

Since **L** is finite-dimensional there exist $p_1, \dots, p_r \in M$ such that the map $X \mapsto (X(p_1), \dots, X(p_r))$ from **L** into $E = T_{p_1}(M) \times \dots \times T_{p_r}(M)$ is injective. Define $f \colon \mathbb{R}^n \to M^r$ by $f(x) = (\Phi(x)(p_1), \dots, \Phi(x)(p_r))$. Then $T_0 f(v) = (\sum v_i X_i(p_1), \dots, \sum v_i X_i(p_r))$, and $T_0 f$ is injective since X_1, \dots, X_n is a basis of **L**. Thus the image of $T_0 f$ in the Banach space E, being finite-dimensional, is closed and admits a closed complementary subspace. Hence by the implicit function theorem, f is injective in a neighborhood of 0 in \mathbb{R}^n which proves (11). Next we show

(12) there exists a neighborhood N of 0 in \mathbb{R}^n and a real analytic map $\mu: N \times N \to \mathbb{R}^n$ such that $\mu(0,0) = 0$ and $\Phi(\mu(x,y)) = \Phi(x) \circ \Phi(y)$.

Defining $F: \mathbb{R}^n \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{L})$ in analogy with (8), we obtain, from (10),

$$F_x(v) = \sum_{i=1}^n v_i \cdot (e^{\operatorname{ad} x_1 X_1} \circ \cdots \circ e^{\operatorname{ad} x_{i-1} X_{i-1}} \cdot X_i)$$
.

Thus F is real analytic. As in the proof of Proposition 8, F_0 is a vector space isomorphism, and we choose r > 0 such that F_z is an isomorphism for $z \in B_r$ $= \{x \in \mathbb{R}^n : ||x|| \le r\}$. Set

$$A(t,z; x,y) = F_z^{-1}(F_{tx}(x) + e^{\operatorname{ad} t x_1 X_1} \circ \cdots \circ e^{\operatorname{ad} t x_n X_n} \cdot F_{ty}(y)).$$

Then $A: R \times B_r \times R^n \times R^n \to R^n$ is real analytic, and A(t, z; 0, 0) = 0. Thus there exists an open neighborhood N of 0 in \mathbb{R}^n such that

$$||A(t, z; x, y)|| \le 2r/3$$
 for $|t| \le 3/2, z \in B_r$, and $x, y \in N$.

By standard theorems on differential equations, the equation

$$\frac{dz}{dt} = A(t, z; x, y)$$

has a unique solution $\gamma(t; x, y)$ such that $\gamma(0; x, y) = 0$, defined for $|t| \le 3/2$ and depending real analytically on the parameters $x, y \in N$. We define $\mu(x, y) = \gamma(1; x, y)$, and show that $\Phi(\mu(x, y)) = \Phi(x) \circ \Phi(y)$. Indeed, let $\varphi_t = \Phi(\gamma(t; x, y))$ and $\psi_t = \Phi(tx) \circ \Phi(ty)$. Then, by (1), (6) and (7),

$$\begin{split} (\delta \psi)_t &= F_{tx}(x) + \operatorname{Ad} \Phi(tx) \cdot F_{ty}(y) = F_{tx}(x) + e^{\operatorname{ad} tx_1 X_1} \circ \cdots \circ e^{\operatorname{ad} tx_n X_n} \cdot F_{ty}(y) \\ &= F_{\tau(t;x,y)}(\dot{\tau}(t;x,y)) = (\delta \varphi)_t \; . \end{split}$$

Thus by Proposition 4, $\varphi_t = \psi_t$ for |t| < 3/2, and for t = 1 the assertion follows. In a similar fashion, we can prove, with details omitted:

- (13) there exist a neighborhood N of 0 in \mathbb{R}^n and a real analytic map $\iota: N \to \mathbb{R}^n$ such that $\iota(0) = 0$ and $\Phi(\iota(x)) = \iota(x)^{-1}$;
- (14) for every $g \in G$ there exist a neighborhood N of 0 in \mathbb{R}^n and a real analytic map $\theta: N \to \mathbb{R}^n$ such that $\theta(0) = 0$ and $\Phi(\theta(x)) = g \circ \theta(x) \cdot g^{-1}$,

by considering the differential equations

$$\frac{dz}{dt} = -F_z^{-1}(e^{-\operatorname{ad} tx_n X_n} \circ \cdots \circ e^{-\operatorname{ad} tx_1 X_1} \cdot F_{tx}(x)),$$

$$\frac{dz}{dt} = F_z^{-1}(\operatorname{Ad} g \cdot F_{tx}(x))$$

depending on the parameter x.

Now let $V \subset W \subset N$ be open neighborhoods of 0 in \mathbb{R}^n such that (11), (12) and (13) hold for N, and furthermore $\mu(V, \iota(V)) \subset W$ and $\mu(W, W) \subset N$. For every $a \in G$, let $U_a = a \cdot \Phi(V)$ and define $f_a \colon U_a \to V$ by $f_a(g) = \Phi^{-1}(a^{-1}g)$. Thus $c_a = (U_a, f_a)$ is a chart at a. Assume $U_a \cap U_b \neq \emptyset$. Then $a^{-1}b = \Phi(x_0) \in \Phi(W)$, and $f_a f_b^{-1}(x) = f_a(b \cdot \Phi(x)) = \Phi^{-1}(a^{-1}b \cdot \Phi(x)) = \Phi^{-1}(\Phi(x_0)\Phi(x)) = \Phi^{-1}(\Phi(x_0, x)) = \mu(x_0, x)$.

Therefore any two such charts are C^{ω} -compatible, and the atlas $\mathscr{A} = \{c_a : a \in G\}$ defines on G the structure of an n-dimensional real analytic manifold. From the definition of \mathscr{A} it is obvious that all left-translations of G are real analytic, and by (12), (13) and (14), multiplication, inversion and inner automorphisms are real analytic at $e = \operatorname{Id}_{\mathscr{H}}$. Hence it follows easily that $\mathscr{G} = (G, \mathscr{A})$ is a Lie group.

Since the map $(x, p) \mapsto \Phi(x)(p)$ is a morphism, it is clear that α is a morphism at (e, p) for all $p \in M$, and hence everywhere. Let $X \in L(G)$ be represented by $v \in \mathbb{R}^n$ in the chart c_e . Then $\alpha^+(X) = F_0(v)$ shows that α^+ is an isomorphism of $L(\mathscr{G})$ onto L.

To prove the second statement, let $Y_t = (\alpha^+)^{-1}((\delta\varphi)_t)$. This is a curve in $L(\mathcal{G})$, and the differential equation $\dot{a}_t = Y_t a_t$ with initial condition $a_0 = e$ in \mathcal{G} has a unique solution defined for all $t \in I$, [2, Lemma, p. 69]. Then $\psi(t,p) = a_t(p)$ defines a curve in D such that $\delta\psi = \delta\varphi$. By Proposition 4, $a_t = \varphi_t$, and the assertion follows; this also proves that \mathcal{G} is connected.

To prove unicity, let \mathscr{H} be a Lie group with the same properties as \mathscr{G} , H be the underlying group of \mathscr{H} , and $\beta: \mathscr{H} \times M \to M$ be the map $(h, p) \mapsto h(p)$. Then we have $\exp tX = \operatorname{Exp} t\beta^+(X)$ where $\exp: L(\mathscr{H}) \to \mathscr{H}$ is the usual exponential map. Indeed, $\varphi(t, p) = \beta(\exp tX, p)$ defines a one-parameter group on M, and since $\delta\varphi(0, p) = (d/dt)_{t=0}\beta(\exp tX, p) = T\beta^p(X) = \beta^+(X)(p)$, the assertion follows from Proposition 4. Since \mathscr{H} is connected, it is generated by $\exp L(\mathscr{H})$ and therefore H = G. Now the commutative diagram

shows that Id_G is a Lie group isomorphism.

Theorem 10. Let G be a subgroup of D, and assume that there is a set S of curves in D such that $\{\varphi_t \colon \varphi \in S \text{ and } t \in I_{\varphi}\}$ and $\{(\delta \varphi)_t \colon \varphi \in S \text{ and } t \in I_{\varphi}\}$ generates G and a finite-dimensional subalgebra L of V respectively. Then L is complete and G is the underlying group of the connected Lie transformation group generated by L.

Proof. After a change of parameter (Lemma 3) we may assume that $I_{\varphi} = R$ for all $\varphi \in S$. From Lemma 7 and Proposition 8 it follows that L is complete. Let \mathscr{G}' be the connected Lie transformation group generated by L, with underlying group G'. By Theorem 9, G is a subgroup of G' such that every element of G can be joined to G by a differentiable curve contained in G. Thus by [2, Appendix 4], G is the underlying group of a connected Lie subgroup \mathscr{G} of \mathscr{G}' and $f \mapsto g_f$ is a morphism from f into f for all f is 1 follows that the vectors f is 2 northing to f into f in

Bibliography

- H. Chu & S. Kobayashi, The automorphism group of a geometric structure, Trans. Amer. Math. Soc. 113 (1964) 141-150.
 S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
 S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.
 R. S. Palais, A global formulation of the Lie theory of transformation groups, Memoirs Amer. Math. Soc. No. 22, 1957.

University of Munich