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Introduction

The present thesis takes a work of Vessiot [Ves03] as the starting point to de-
velop a new equivalence method which has theoretical advantages over Cartan’s
method [Car08]. The development is focused on both theoretical and compu-
tational aspects. Equivalence means that two geometric objects on a manifold
can locally be mapped to each other by a smooth transformation. The main dif-
ference between Vessiot’s and Cartan’s approach is that Vessiot’s method works
on arbitrary geometric objects, whereas Cartan has to reduce all problems to a
coframe, which is a very special geometric object. A coframe is a basis of the
cotangent space.

The Vessiot equivalence method, developed in this thesis, is successfully ap-
plied to the example of linear partial differential operators (LPDOs) under gauge
transformations. For third and fourth order LPDOs in dimension two, generat-
ing sets of invariants have been calculated. They allow to decide equivalence of
LPDOs under gauge transformations. Furthermore they are of interest for fac-
torisation and the exact integration of the operators. At order three, this leads
to the improvement of several results from Mansfield and Shemyakova [MS08],
who use Cartan’s moving frame method. The fourth order results are completely
new.

In order to treat LPDOs with Cartan’s method, the problem must be for-
mulated in terms of coframes and this requires human interaction. Choosing a
coframe generally involves unnatural choices that have to be ruled out in the
end (see e.g. [Olv95, Ex. 9.2] on Riemannian metrics). In contrast to Cartan’s
method, as mentioned above, Vessiot’s approach works directly with the geo-
metric objects. Their transformation is encoded in natural bundles, which are
either given by the problem or constructed automatically. In case of LPDOs the
coordinates of the natural bundle are simply the coefficients of the operators.

For Cartan’s approach, all problems have to be transformed to first order,
since coframes are first order objects. The LPDOs under consideration are of
order three and four. Higher order geometric objects are directly supported by
Vessiot’s approach.

In standard literature on Cartan’s method (e.g. [Gar89], [Olv95]), only the
transitive case without invariants is thoroughly covered. The intransitive case is
described as too complicated for a general treatment [Gar89, p. 37]. For LP-
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DOs, invariants occur in every step of computation. A generalisation of Vessiot’s
approach presented in this thesis allows to treat invariants without extra effort.
Only minor adaptations for the special case of LPDOs are necessary.

The Vessiot equivalence method can be developed along four central questions.
To answer them, the language of differential geometry is used.

(1) What is a geometric object?

(2) What are the symmetries of a geometric object?

(3) Is it possible to find all invariants for a given class of geometric objects?

(4) Under which conditions are two given geometric objects equivalent?

First of all, Nijenhuis [Nij72] considers geometric objects as sections of a
natural bundle. Here, natural bundles are fibre bundles F → X over a manifold
X with the special property that all local diffeomorphisms ϕ : X → X can be
lifted to morphisms ϕ̃ : F → F . Natural bundles are the main tool for the Vessiot
equivalence method. They are explained in Chapter 3.

In standard differential geometry, there are many very simple examples of
natural bundles and geometric objects. The tangent bundle T → X is a natural
bundle with vector fields as geometric objects. Each diffeomorphism ϕ is lifted
to T by multiplying the tangent vectors with the Jacobian matrix of ϕ. Other
examples are Riemannian metrics and Christoffel symbols. Their behaviour under
coordinate changes defines the corresponding natural bundle.

The main motivation for the introduction of natural bundles are the symme-
tries of geometric objects. In order to answer question (2) it is convenient to
follow the historical development.

Symmetries are those diffeomorphisms ϕ which leave the geometric object
unchanged. They are defined by partial differential equations (PDEs). Since
symmetries of geometric objects can be locally composed, they have the structure
of Lie pseudogroups. Lie himself [Lie91] called them ‘infinite groups’, because
they usually depend on an infinite number of parameters.

In the same article, Lie presented the central idea for the treatment of sym-
metries of geometric objects. He proved that the defining PDEs for pseudogroups
can be written in the so-called Lie form

Φω(y)(y, yq) = ω(x). (0.1)

Here, ω is a geometric object and yq stands for the derivatives of the diffeo-
morphism y(x) up to order q. The Lie form separates the variables, since the
differential invariants Φω are independent from x.

The first major discovery of Vessiot [Ves03] is that the Lie form (0.1) is nothing
but the transformation law of a geometric object, namely ω, being a section of a
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natural bundle. A good illustration are the symmetry equations of a Riemannian
metric. In coordinates, a metric is given by a symmetric matrix ω(x) = (gij(x)).
If (yki ) denotes the Jacobian matrix of a diffeomorphism y = ϕ(x), the symmetry
equations in Lie form are

gkl(y) yki y
l
j = gij(x).

The left hand sides give a coordinate description of the natural bundle S2T ∗ of
metrics. With Lie’s idea, all PDEs for pseudogroups can be transformed into Lie
form and Vessiot constructs a natural bundle from this.

The symmetry pseudogroup of the geometric object consists of the solutions of
the Lie form (0.1) regarded as a differential equation. The jet groupoid is simply
the set of solutions of the Lie form (0.1) regarded as an algebraic equation on the
jet space. In an informal way, Lie used both points of view while Kumpera and
Spencer emphasised the latter in their book ‘Lie Equations I’ [KS72]. Vessiot’s
work was more or less forgotten until taken up by Pommaret [Pom78]. Following
Vessiot, he emphasised the importance of natural bundles for study of symmetries.

To present the connection between jet groupoids and natural bundles, more
details on jet groupoids are needed. In contrast to pseudogroups, jet groupoids
always allow a finite-dimensional description for the symmetries of a geometric
object. The jet bundle Jq(X×X) provides coordinates (x, y, yq) for all derivatives
of a diffeomorphism y = ϕ(x) up to order q. An element of Jq(X × X) can be
identified with the Taylor coefficients of a smooth map ϕ : X → X up to order q.
The jet groupoid Πq ⊂ Jq(X×X) consists of all those elements which correspond
to invertible maps ϕ. Details on jet groupoids are given in Chapter 2.

In the jet groupoid interpretation, the Lie form (0.1) now determines a sub-
groupoid Rq(ω) of Πq. It contains all combinations of Taylor coefficients which
may be continued to a symmetry of ω. Pommaret defines Rq(ω) with the exact
sequence

0 // Rq(ω) // Πq

Φω //
ω
// F ,

where the maps on the double arrows stand for the Lie form (0.1). This is the
sequence which connects jet groupoids and natural bundles. It is the first goal of
Chapter 3 to construct and explain this sequence.

In this thesis, a generalisation of natural bundles is introduced. They are
called natural Θq-bundles, since only a subgroupoid Θq of Πq acts on them. It is
remarkable that most proofs from the Πq-case remain valid if Πq is replaced by
Θq. With natural Θq-bundles, Vessiot’s approach is applicable to far wider class
of equivalence problems, such as the LPDOs above.

The second discovery of Vessiot is that natural bundles are very useful to check
the integrability of the symmetry equations (0.1). Differentiating the equations
and then eliminating the highest order derivatives may produce new equations
of lower order. This process is called prolongation and projection. If all new
equations can be expressed by the old ones, the PDEs are called integrable.
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The prolongation and projection can be performed with natural bundles and
the result is a natural bundle F(1) → F which also encodes the new equations.
The PDEs (0.1) for a geometric object ω are integrable if there exists an equi-
variant section

c : F → F(1).

The section c shows how to express the new equations on F(1) by those on F . If
the system (0.1) is integrable, it is a convenient description for the symmetries
of a geometric object and a complete answer to question (2).

Experience shows that only very few symmetry equations (0.1) are given in
an integrable form and it is often necessary to prolong and project several times
until they become integrable. In this process, the natural bundles F(1), F(2), . . . ,
F(k) are constructed. If this is done in a naive way, the bundles grow quickly
and the PDE systems for symmetries become redundant. This thesis presents a
new way to determine minimal subbundles of the F(i) such that all redundant
equations for geometric objects on F are removed. Minimal bundles are of both
theoretical and computational importance.

When performing the prolongations and projections with minimal bundles,
the Θq-action on F(i) eventually becomes intransitive. In this case invariants
ψ : F(i) → R occur that are valid for the geometric objects on F . The Lie-
Tresse Theorem [Tre94], which was proved by Kumpera [Kum75], states that the
algebra of invariants is finitely generated. Using natural bundles, it is possible to
compute generating sets of invariants, which gives an answer to question (3).

With the help of symmetries, integrability and invariants, it is possible to
decide equivalence of geometric objects. This answers the last question (4). To
compare two geometric objects ω and ω′ on F , the prolongation and projection
is repeated until their symmetry equations become integrable with equivariant
sections c and c′. If they coincide and the invariants are compatible, ω and ω′

are equivalent. Details are found in Chapter 6.

In order to treat nontrivial examples, the Vessiot equivalence method has
been implemented in Maple. The development was started by Barakat with an
extension of the package jets [Bar01]. The author of this thesis joined in with
several efficiency improvements. Furthermore, the add-on package JetGroupoids
was created. It covers the new contributions of this thesis such as natural Θq-
bundles and the restriction to minimal bundles. A third package, called Spencer,
implements the computation of Spencer cohomology groups which are presented
in Appendix A. All examples in this thesis can be computed with the packages
jets, JetGroupoids and Spencer.

In this thesis, the theoretical foundation of Vessiot’s equivalence method are
developed. The concepts of jet groupoids and natural bundles are a flexible basis
for the theory. The limitations of Vessiot’s approach lie in the computational



CONTENTS 11

complexity of examples. On the computational side, there is still much space for
improvements. In many examples, a clever choice of coordinates for the natural
bundles makes the difference.

It would be interesting to compute further examples with both Cartan’s and
Vessiot’s method in order to learn more about advantages and limitations of
each approach. At this point it seems that first order problems which have a
natural formulation in terms of coframes are more efficiently treated with Cartan’s
method. On the other hand, for higher order examples, such as LPDOs, Vessiot’s
approach is more promising.

This thesis starts with three introductory chapters. In Chapter 1, jet bundles
and Spencer’s formal theory of pdes is presented. It is based on the excellent paper
of Goldschmidt [Gol67b]. Although developed by Quillen [Qui64] and recently
presented by Malgrange [Mal05], the treatment of Spencer cohomology via the
Koszul complex in Appendix A may be new to some readers. It is independent
from special, δ-regular coordinates.

They are used both for jet groupoids and natural bundles. The concepts of
Lie and jet groupoids are explained in Chapter 2 with some references to jet
groups in Appendix B.

Natural bundles are treated in Chapter 3. Starting from the Lie form, it
is shown how to construct a natural bundle. Furthermore the prolongation and
projection is translated to the language of natural bundles. To check integrability,
equivariant sections are introduced.

Chapter 4 presents applications of Vessiot’s approach. The results from Chap-
ter 3 are used to complete the symmetry equations (0.1) to formal integrability
and to calculate generating sets of invariants. In this chapter, the computation
of minimal bundles is presented, too.

The complete Vessiot equivalence method will be developed in Chapter 6. It
depends both on symmetries and invariants. For a comparison, Cartan’s equiv-
alence method is introduced. Especially Sternberg’s structure function [Ste64],
which is also called torsion, has an interesting interpretation in Vessiot’s context.

Finally, in Chapter 7 the Vessiot equivalence method is applied to determine
generating sets of invariants for LPDOs of order three and four. The results are
either given explicitly, or in electronic form if they are too large.

There is a quick tour through this thesis. The central questions are answered
in Chapters 4 and 6. In more details, the references are:

• What are the symmetries of a geometric object?

See the beginning of Section 3.3 and Section 4.1.

• Is it possible to find all invariants for a given class of geometric objects?

See Section 4.2.
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• Under which conditions are two given geometric objects equivalent?

See Chapter 6.

• Invariants for linear partial differential operators under gauge transforma-
tions.

See Chapter 7 (possibly skip Section 7.1.2).

Except for the part on linear partial differential operators, natural bundles
are extensively used in the above sections. For an introduction to natural bundles
see the following keywords and references.

• Natural bundles and geometric objects: Sections 3.1 (skip 3.1.1) and 3.3.

• Prolongation and projection with natural bundles: Section 3.4.

• Integrability conditions, Vessiot structure equations: Section 3.5 (skip Sec-
tions 3.5.1 – 3.5.4).

From the introductory chapters, the following objects are needed.

• Jet bundles: Section 1.2.

• Systems of partial differential equations, prolongation and projection: Sec-
tion 1.3.

• (Lie) Groupoids: Section 2.1 and the beginning of Section 2.2.

• Jet groupoids: Section 2.3.
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Chapter 1

Geometric Formulation of
Partial Differential Equations

The principal aim of this chapter is the introduction of a geometric language for
systems of partial differential equations (PDEs). In order to reach this goal we
restrict ourselves to definitions and short statements of properties.

The reader is expected to be well aquainted with basic concepts of commu-
tative algebra, differential geometry and categories. Concerning commutative
algebra we especially need exact sequences of modules and graduations. For an
introductory textbook, see e.g. [Eis95]. The background in differential geometry
includes fibre bundles, distributions, Lie groups and algebras. These topics are
covered in [KMS93, Chaps. I-III], [Sha97, Chaps. 1-3] and [Ste64, Chaps. I -
III,V]. For categories, basic knowledge about sequences, cohomology and functors
is needed.

A geometric language for PDEs must contain concepts for functions and their
derivatives as well as the differential equations themselves. Foundational work
on this topic was done by Spencer [Spe69], Quillen [Qui64] and Goldschmidt
[Gol67b]. Roughly speaking, the following translations are needed:

functions ↔ fibre bundles, sections,
derivatives ↔ jet bundles,
equations ↔ subbundles.

Section 1.1 starts with an overview on fibre bundles and exact sequences. Jet
bundles and their properties are introduced in Section 1.2. In Section 1.2.1 the
exact jet bundle functor is presented.

Systems of PDEs are defined in Section 1.3. The next goal is to manipulate
the equations and to obtain all their differential consequences up to a certain order
of derivatives. Two fundamental operations are available. Firstly, all equations
can be formally differentiated yielding conditions on higher order derivatives.
Geometrically this is called prolongation and involves the jet functor. Secondly,
the highest order derivatives can be cancelled by appropriate combinations of

15
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the equations. This elimination process is called projection and may lead to new
conditions on lower order derivatives. The following corresponcence is explained
in Section 1.3.1:

formal differentiation ↔ prolongation,
elimination ↔ projection.

The prolongation and projection procedure is a main tool throughout the thesis.
If prolongation and projection of a PDE system does not produce new equa-

tions, it is called integrable. Section 1.3.2 deals with a criterion to decide integra-
bility. It depends on the concepts of symbols and Spencer cohomology introduced
in Appendix A. Here, also a Maple implementation to compute the Spencer co-
homology using techniques of commutative algebra is presented.

1.1 Fibre Bundles

In this section, we settle the notation for fibre bundles, which are assumed to be
known to the reader. We mainly follow the conventions used in [Pom78]. Pre-
cise definitions and an introduction can be found in [Pom78], [Sha97] or [Ste64].
Concerning exact sequences we closely follow a paper by Goldschmidt [Gol67b]
which suits the needs perfectly.

Let X be a smooth n-dimensional manifold. If not stated otherwise, we
assume all further structures to be smooth, which means C∞. A fibre bundle E
over the base X with projection π is denoted by π : E → X. Its local sections
are Γ(E) = {ω : U ⊆ X → E |π ◦ ω = idU}. The abstract fibre of E is denoted by
E (E ∼= Ex ∀x ∈ X). Examples of fibre bundles are the tangent bundle T = TX
and its dual bundle, the cotangent bundle T ∗ = T ∗X.

Choose a coordinate system x = (x1, . . . , xn) on an open subset U ⊆ X.
Locally, E can be trivialised as U ×E. Then a coordinate system of E is (x, u) =
(x1, . . . , xn, u1, . . . , um) where u is a coordinate system of the fibre E. We call x
independent variables and u dependent variables. In these coordinates, a section
ω of E → X is specified by m functions uj = ωj(x). With sections of a bundle, we
have found a geometric model for the functions occurring in a system of PDEs,
where the dependent variables are considered as placeholders for the functions.

The transition between two fibred coordinate systems (x, u) and (x̂, û) has
the form

x̂i = ϕi(x),
ûj = ψj(x, u). (1.1)

It can be either seen as a transition between coordinates of the same fibre bundle
or as the coordinate expression of a bundle morphism φ : E → E . We will use
both points of view in Chapter 3 on natural bundles.

Generally, a bundle morphism is a smooth map ψ : E → E ′ between two fibre
bundles E and π′ : E ′ → X ′, such that there is diffeomorphism ϕ : X → X ′ which
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makes the following diagram commute:

E
ψ //

π

��

E ′

π′

��
X

ϕ // X ′

We have the usual notion of mono-, epi- and isomorphisms of fibre bundles.

Bundles with Special Fibres

In this section we will shortly recall bundles whose fibres have additional proper-
ties like being vector spaces. See e.g. [KMS93, Ch. III] or [Sha97, Ch. 1 §3] for
more details.

If the abstract fibre E of E is a vector space and all coordinate transformations
are linear on the fibre, E is called a vector bundle. Vector bundles are denoted
by capital letters E, if it is not possible with the abstract fibres.

Two vector bundles E ,F → X over the same base give rise to the tensor
bundle E ⊗ F with abstract fibre E ⊗ F with transition function constructed by
the Kronecker product. If E = F , the symmetric q-fold tensor bundle is denoted
by SqE , the skew-symmetric one by

∧q E . Frequently used examples are products
of the tangent or cotangent bundle like SqT , SqT ∗ and

∧q T ∗.
The duality between T and T ∗ defines a pairing on the q-fold products:

〈, 〉 :
∧q
T ×X

∧q
T ∗ →

∧0
T

with
∧0 T = X × R. There is also the well-known interior product

i : T ∗ ×X
∧q
T →

∧q−1
T,

which is the adjoint to the exterior product ∧.
The tangent bundle TE of a fibre bundle π : E → X has an important

subbundle, called the vertical bundle V (E). It is defined as V (E) = ker(π∗),
containing all tangent vectors whose projection under π∗ : TE → TX is zero.

Slightly more complicated than vector bundles are affine bundles E , whose
fibre E is an affine space and there is a vector bundle W together with a free and
faithful translation action on the fibres:

E ×X W → E : (e, w) 7→ e+ w.

In this case E is modelled over the vector bundle W . If ω is a local section over
U ⊆ X, it is possible to trivialise E as E|U ∼= U × E. If there is a global section,
E is isomorphic to a vector bundle.

Principal bundles π : P → X are important examples of fibre bundles, where
a Lie group G acts freely on P and the orbits are exactly the fibres.
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Let F be another manifold with a left G-action. The associated bundle P×GF
is the orbit space of the diagonal action of G on P × F . It is a fibre bundle with
abstract fibre F (see [KMS93, 10.7]). The coordinate chances on the fibre of
P ×G F are induced by the G-action, so that the bundle is called a G-bundle.

1.1.1 Exact Sequences of Fibre Bundles

For a morphism ϕ : E → E′ of vector bundles with constant rank, the image,
kernel and cokernel vector bundles are well-defined. So we can talk of exact
sequences

0 // E′
ϕ // E

ψ // E′′ // 0

of vector bundles, where 0 stands for the trivial vector bundle id : X ×{0} → X.
As usual, the exactness condition is im(ϕ) = ker(ψ). Exact sequences can be
generalised to arbitrary fibre bundles, if it is possible to define a kernel. Because
arbitrary fibres have no distinguished point like the origin of a vector space, it
has to be specified separately by a section.

Definition 1.1. [Gol67b, Def. 2.3] A sequence of fibre bundles over X

E ′
ϕ // E

ψ // E ′′

is called exact if there exists a section s′′ : X → E ′′ such that:

(1) The sequence of sets is exact:

E ′
ϕ // E

ψ //

s′′◦π
// E ′′,

namely

(ψ ◦ ϕ)(e′) = (s′′ ◦ π)(e′) ∀ e′ ∈ E ′,
ϕ(E ′|x) = ψ−1(s′′(x)) ∀x ∈ X.

(2) For each e′ ∈ E ′, the sequence of vector spaces is exact:

V (E ′)e′
ϕ∗ // V (E)|ϕ(e′)

ψ∗ // V (E ′′)|(ψ◦ϕ)(e′). �

The section s′′ specifies a kind of origin in the fibre Ex over x ∈ X. Exact
sequences of vector bundles are the special case with s′′ = 0. The definition
allows to drop the assumption that all bundles have the same base X, if in
s′′ ◦ π = s′′ ◦ idX ◦π the identity idX is replaced suitably. With this idea, the
kernel of a bundle morphism can be defined.

Definition 1.2. If ϕ : E → E ′ is a bundle morphism and s′ : X → E is a section,
we define the kernel kers′(ϕ) to be the set kers′(ϕ) = {e ∈ E|ϕ(e) = s(π(x))}. �
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The kernel is not necessarily a fibre bundle, but under two regularity assump-
tions it is a consequence of the implicit function theorem. Again, the zero object
is the trivial bundle 0 = X × {0}.

Proposition 1.3. [Gol67b, Prop. 2.1] Using the notation of Definition 1.2, the
image im(ϕ) is a subbundle of E ′ → X if ϕ is locally of constant rank. If further-
more s′(X) ⊆ ϕ(E), kers′(ϕ) is a subbundle. Then we have the exact sequence:

0 // kers′(ϕ) � � ι // E
ϕ // im(ϕ) // 0. �

If the bundles E ′, E and E ′′ in Definition 1.1 are affine bundles over X, we
denote the fact that E is modelled over the vector bundle E = V (E) by a dashed
arrow (see [Pom78, Def. 1.1.30]):

E //___ E // X.

Using this notation, both sequences of Definition 1.1 fit into a single diagram:

E′

���
�
�

φ // E

���
�
�

// E′′

���
�
�

E ′

��

ϕ // E

��

//// E ′′

��
X X X

This diagram plays the same role as commutative exact diagrams do in homolog-
ical algebra. If e, f ∈ E are in the same fibre Ex for x ∈ X, their difference e−f is
an element of Ex. We will use exact sequences of affine bundles in Section 4.3.1.

For a morphism ϕ : E ′ → E of affine bundles it is possible to define the cokernel
E ′′ = coker(ϕ) by an equivalence relation on the fibres (see [Gol67b, p. 276]).
Let φ : E′ → E be the morphism of vector bundles corresponding to ϕ. Two
elements a, b ∈ Ex are equivalent a ∼ b, if and only if there exists an e′ ∈ E′ such
that a + φ(e′) = b. Define coker(ϕ)x := Ex/ ∼ and coker(ϕ) =

⋃
x∈X coker(ϕ)x.

Since the projection of ϕ(E ′x) to coker(ϕ)x is a distinguished element in each fibre,
coker(ϕ) can be identified with coker(φ).

In this thesis, exact sequences of fibre bundles are used to define partial
differential equations on manifolds. But before doing so, we have to introduce jet
bundles in order to have a proper language.

1.2 Jet Bundles

Jet bundles provide a geometric formulation of functions and their derivatives.
The basic idea is to add coordinates standing for the derivatives of the dependent
variables up to a given order.
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We start with a fibre bundle E → X with independent variables x and de-
pendent variables u. To handle the first order derivatives of sections ∂xjωi(x) we
add the coordinates uij as placeholders. This process can be continued to higher
orders. The result is the jet bundle Jq(E) → E , which will be constructed in the
first part of the section.

The approach of using variables as placeholders for derivatives was informally
used in many calculations during the late 19th century, for example by Lie [Lie91]
and Vessiot [Ves03]. Ehresmann [Ehr53] was the first who gave a formal definition
of jet bundles. Nowadays, jet bundles are quite common in differential geometry
(see e.g. [KMS93, Ch. IV], [Mal05, §4.2], [Olv95, Ch. 4] or [Pom78, Ch. 1.9]).

To complete the model for functions and their derivatives, we need a procedure
called prolongation that continues sections of E → X to sections of the jet bundle
Jq(E) → X. The prolongation is not limited to sections, but can also be applied
to transformations of E or bundle morphisms ϕ : E → E ′. In Section 1.2.1, we
present the jet bundle functor which is a useful tool for systems of PDEs.

Construction of Jet Bundles

For the construction of jet bundles, we need multi-indices µ = (µ1, . . . , µn) ∈ Zn≥0

with |µ| = µ1 + · · ·+ µn and µ! = µ1! · · ·µn!. They allow to write monomials as
xµ = (x1)µ1 · · · (xn)µn and derivatives as ∂|µ|

∂xµ y(x) = ∂xµy(x) = ∂µy(x). There is
a partial ordering defined by ν < µ :⇐⇒ νi < µi for i = 1, . . . , n. We use the
summation convention uµxµ =

∑
µ uµx

µ whenever a multi-index appears twice.
Furthermore, we need an equivalence relation on the sections of E → X.

The jet bundle then consists of all equivalence classes. Consider two sections
f, g ∈ Γ(E) and their coordinate expressions f i(x), gi(x). They have contact of
order q at x ∈ X, if their values and their derivatives up to order q coincide:

f i(x) = gi(x), ∂µf
i(x) = ∂µg

i(x) ∀ i ≤ m, µ ∈ Zn≥0, 1 ≤ |µ| ≤ q.

It is easy to prove, that this definition is independent of the coordinate system.
We define an equivalence relation on the germs of sections at x ∈ X by saying
that f and g are q-eqivalent at x, if they have contact of order q at x. We call
the equivalence class of f at x the q-jet of f and denote it by jq(f)(x).

Remark 1.4. A standard representative for jq(f)(x) can be given by the trun-
cation of the Taylor series to order q:

f i(x) = ai + aijx
j + · · ·+ 1

µ!
aiµx

µ, |µ| ≤ q, aiν ∈ R.

All equivalence classes are parametrised by the finite number of variables aiν . �

Inspired by the Taylor expansion, which can be done in any coordinate system,
we now define jet bundles.
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Definition 1.5. The set of all q-jets of sections at x ∈ X is denoted by Jq(E)x
and the q-th jet bundle is Jq(E) =

⋃
x∈X Jq(E)x. Identify J0(E) with E . �

If f is a local section of E → XX, we can define a local section of the jet
bundle Jq(E) → X by taking the q-jets:

jq : Γ(E) → Γ(Jq(E)) : f 7→ (x 7→ jq(f)(x)).

This important map jq is called prolongation.
It remains to show that Jq(E) is a finite-dimensional fibre bundle. We will do

this by defining fibre coordinates and transition functions based on coordinate
changes of E .

Proposition 1.6. πq0 : Jq(E) → E is a fibre bundle. Furthermore there are
projections

πqq−i : Jq(E) → Jq−i(E), ∀i ≤ q,

π : Jq(E) → X,

turning Jq(E) into a bundle over lower order jet bundles and over X. The dimen-
sion of Jq(E) is n+m

(
q+n
n

)
. �

Proof (Sketch). A coordinate system (x, u) of E is extended to Jq(E) by adding
the jet coordinates uiµ for µ ∈ Zn≥0, |µ| ≤ q as placeholders for the derivatives of
ui. In coordinates, the q-jet of a germ of a section f of E → X has the form:

jq(f)(x) = (x, u = f i(x), uij = ∂jf
i(x), . . . , uiµ = ∂µf

i(x)), |µ| ≤ q.

Let (x̂, û) be another coordinate system of E with transition functions

x̂i = ϕi(xj),
ûi = ψi(xj , uk).

Construct the transition functions for ûiµ by repeated use of the chain rule:

ûij ∂lϕ
j(x) =

∂ψi(x, u)
∂uj

ujl + ∂lψ
i(x, u)

ûijk ∂lϕ
j(x) ∂pϕk(x) + ûij ∂l∂pϕ

j(x) =
∂ψi(x, u)
∂uj

ujlp + lower order (1.2)

...

This continuation of a coordinate transformation from E to Jq(E) is also called
prolongation. Equation (1.2) is given in a form convenient for formal differen-
tiation, but still has to be solved for the new coordinates ûiµ. Since coordinate
expressions of f transform like f̂ i(x̂) = ψi(x, f(x)), it is clear, that the ûiµ trans-
form like the derivatives of f with respect to x̂.
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Abbreviate all jet coordinates uiµ of strict order |µ| = q by uq. The transition
functions for jets of order q depend on jets of order ≤ q only. It follows that the
canonical projections

πqq−i : Jq(E) → Jq−i(E) : (x, u, . . . , uq−i, . . . , uq) 7→ (x, u, . . . , uq−i)

and
π : Jq(E) → X : (x, u, uq) 7→ x

are well defined and coordinate independent, thus completing the fibre bundle
structures over Jq−i and X. The dimension formula is obtained by counting the
number of derivatives up to order q. �

Whenever (x, u) is a coordinate system of E , we now have a coordinate system
(x, u, uiµ, |µ| ≤ q) for its q-th order jet bundle. The coordinates uiµ are also called
jet variables or simply jets. The order of a jet uiµ is |µ|, where the dependent
variables are included as zero order jets ui = uiµ=0. Whenever possible, we
abbreviate a coordinate system of Jq(E) by (x, u, uq), where uq stands for all jets
up to order q.

In the literature on this subject (see e.g. [KMS93, §12]), a different specifica-
tion of jet spaces can be found. It is easy to see, that they are only a special case
of Definition 1.5.

Remark 1.7. Let X, Y be manifolds and U ⊆ X be an open subset. Another
possibility to construct a jet space is to consider smooth maps f : U → Y .
The resulting space Jq(X,Y ) contains all q-jets of maps X → Y . Obviously each
smooth map U → Y can be seen as a local section of the trivial bundle E = X×Y
and thus Jq(X,Y ) ∼= Jq(X × Y ). �

Properties of Jet Bundles

Having established that Jq(E) is a fibre bundle, we recall well-known proper-
ties of Jq(E) that are necessary for the following chapters. At first, we turn to
coordinates and sections of Jq(E) → X.

Remark 1.8. All jet coordinates uiµ, including the dependent variables ui, are
treated in the same way as the independent variables. Especially, they are func-
tionally independent:

∂ui

∂xj
= 0,

∂uiµ
∂xj

= 0,
∂uiµ

∂ujν
= δijδ

ν
µ.

Unlike a section ui = f i(x) and its derivatives, the jet coordinates do not depend
on the independent varibles x. To simulate the x-dependence, we introduce the
total derivative in Definition 1.11. �
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Remark 1.9. The coordinate expression of a section fq of Jq(E) → X is specified
by functions uiµ = f iµ(x), which may all be chosen independently. An important
subset of these sections are the prolongations jq(f) of sections f : X → E . They
satisfy the differential equations

f iµ+1j
(x) = ∂jf

i
µ(x), |µ| < q

because jq(f)(x) has the coordinate expressions uiµ = ∂xµf i(x). Obviously, most
sections of Jq(E) → X are not prolonged from a f ∈ Γ(E). The distance between
a section fq and the prolongation of f = πq0(fq) is measured by means of the
Spencer operator that will be introduced in Proposition C.12. �

We now list general properties of the jet bundles.

Proposition 1.10. Let E → X and E ′ → X be fibre bundles.

(1) Jq(E) is an affine bundle over Jq−1(E), modelled over SqT ∗ ⊗ V (E).

(2) If E → X is a vector bundle, then Jq(E) → X is also a vector bundle.

(3) The prolongation of the trivial bundle 0 = X × {0} → X can be identified
with 0 again: Jq(0) ∼= 0. In exact sequences of fibre bundles, 0 plays the
role of the zero object.

(4) The jet bundle of fibre products E ×X E ′ is naturally isomorphic to:

Jq(E ×X E ′) ∼= Jq(E)×X Jq(E ′).

(5) Jq(V (E)) and V (Jq(E)) are naturally isomorphic. �

The first three properties follow directly from the coordinate expressions in
equation (1.2) and (4) is a consequence of the jet bundle functor which will be
defined in Section 1.2.1. For detailed proofs, we refer to [KMS93, §12.11-17] and
[Pom78, La. 1.9.12].

The Total Derivative

The total derivative is the link between jet variables and their interpretation as
representatives of derivatives. It is defined in coordinates (x, u, uq) of Jq(E) and
treats a jet ujµ like the derivative ∂µuj of an x-dependent function uj . So the
total derivative Dxi must satisfy:

Dxi ujµ = ujµ+1i
.

With the help of the total derivative, coordinate changes and morphisms of bun-
dles can be prolonged to the jet bundles.
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Definition 1.11. Let (x, u) be a coordinate system of E . The i-th total derivative
Di = Dxi is the first order differential operator

Dxi : Γ(Jq(E)× R) → Γ(Jq+1(E)× R)

defined by:

Dxi :=
∂

∂xi
+ ujµ+1i

∂

∂ujµ
, 0 ≤ |µ| ≤ q. (1.3)

�

An element of Γ(Jq(E) × R) is a real-valued function Φ(x, u, uq) depending
on jets up to order q. Plugging the q + 1-jet of a section f ∈ Γ(E) into the total
derivative of Φ,

DiΦ(x, u, uq) =
∂Φ
∂xi

(x, u, uq) + ujµ+1i

∂Φ

∂ujµ
(x, u, uq),

yields the same as the formal differentiation of Φ(x, f(x), ∂νf(x)) by xi:

d

dxi
Φ(x, f(x), ∂νf(x)) =

∂Φ
∂xi

(x, f(x), ∂νf(x)) + ∂µ+1if
j(x)

∂Φ

∂f jµ(x)
(x, f, ∂νf(x)).

The total derivative Di implements the chain rule for sections of E . The next
lemma states that all Di are commuting first order differential operators, which
can be proved by direct calculation (using equation (1.3)).

Lemma 1.12. [Pom78, §2.1] The total derivative transforms like Dxi = ∂x̂i

∂xjDx̂j

under a coordinate change x̂ = x̂(x), û = û(x, u). For Φk ∈ Γ(Jq(E) × R), we
have the following properties:

(1) Di(Φ1 + Φ2) = Di(Φ1) +Di(Φ2),

(2) Di(Φ1 · Φ2) = Di(Φ1) · Φ2 + Φ1 ·Di(Φ2),

(3) Di ◦Dj = Dj ◦Di. �

Using the last property, we define the product Dν := Dν1
1 · · ·Dνn

n for a multi-
index ν ∈ Zn≥0. With the help of the total derivative, the prolongation of transi-
tion functions in equation (1.2) can be rewritten as:

ûij ∂lϕ
j(x) = Dl ψ

i(x, u),

ûijk ∂lϕ
j(x) ∂pϕk(x) + ûij ∂l∂pϕ

j(x) = DpDl ψ
i(x, u), (1.4)

...

This prolongation still suffers from the disadvantage that the equations have to
be solved for the new coordinates ûiµ in order to write the coordinate change in
the form of equation (1.1). Vessiot’s notation avoids this problem.
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Remark 1.13. In many applications it is convenient to modify the transition
functions of equation (1.1). Inverting the transformations on the fibres of E , we
obtain the coordinate changes in Vessiot’s notation [Ves03, eq. (36)]:

x̂i = ϕi(x),
uj = ψj(x̂, û).

In practice, the formulae are often shorter than in the usual notation. The ad-
vantage of Vessiot’s notation is that the prolongation to Jq(E) is very simple:

ujµ = Dxµψj(ϕ(x), û), |µ| ≤ q.

It involves the generalised total derivative:

Dxi =
∂

∂xi
+ ûkν+1l

∂iϕ
l(x)

∂

∂ûkν
=

∂

∂xi
+ ûkν+1l

ϕli(x)
∂

∂ûkν
.

Dxi implements the chain rule for functions û depending on x̂ = ϕ(x). The
prolonged transition functions are automatically written in Vessiot’s notation.
All examples of natural bundles in Chapter 3 will be presented in this way. �

1.2.1 Prolongation and the Jet Bundle Functor

As we have seen, coordinate changes of E → X can be prolonged to Jq(E) →
X. Interpreting them as local diffeomorphisms E → E , it is natural to ask if
morphisms of fibre bundles can be prolonged, too. The current section gives a
positive answer. It also allows to define the jet bundle functor Jq() on the category
of fibre bundles over X with bundle morphisms. We follow the exposition in
[Gol67b, §4] and shortly recapitulate basic properties of Jq including its exactness.
Proofs are omitted.

Proposition 1.14. Let ϕ : Jk(E) → E ′ be a morphism of fibre bundles over X.
There exists a unique morphism pq(ϕ) : Jk+q(E) → Jq(E ′) such that the following
diagram on the sections commutes:

Γ(Jk+q(E))
pq(ϕ) // Γ(Jq(E ′))

Γ(E)
ϕ◦jk //

jk+q

OO

Γ(E ′)

jq

OO

The map pq(ϕ) is called the q-th prolongation of ϕ. In the special case of k = 0,
pq(ϕ) is also denoted by Jq(ϕ). �

Whenever we talk of a unique prolongation and refer to this proposition, the
uniqueness is provided by the above commutative diagram. Alternatively, we call
the prolongation compatible with jq.
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The prolongation is calculated by interpreting equation (1.1) as a morphism
of bundles where (x, u) are coordinates of E and (x̂, û) are coordinates of E ′. The
prolongation is computed by equation (1.4).

The next Proposition recalls basic and very useful properties of the prolon-
gation of morphisms.

Proposition 1.15. (1) The prolongation of the identity map idq : Jq(E) →
Jq(E) is the natural embedding

pr(idq) : Jq+r(E) ↪→ Jr(Jq(E)).

(2) Composition of morphisms commutes with prolongation. Two morphisms
ϕ : Jq(E) → E ′ and ψ : Jr(E ′) → E ′′ fulfill:

ps(ψ ◦ pr(ϕ)) = ps(ψ) ◦ pr+s(ϕ) ∀s ∈ Z≥0.

(3) The following diagram commutes for all r, s ∈ Z≥0:

Jq+r+s(E)
pr+s(ϕ) //

ps(idq)

��

ps(pr(ϕ))

$$J
JJJJJJJJJJJJJJJJJJJJJ
Jr+s(E ′)

ps(idr)

��
Js(Jq+r(E))

Js(pr(ϕ)) // Js(Jr(E ′)) �

The natural embedding (1) is very simple in coordinates. If (uµ)ν with |µ| ≤ q
and |ν| ≤ r is an r-jet in Jr(Jq(E)), the canonical embedding just symmetrises
the indices by setting (uµ)ν = uµ+ν .

Having defined Jq on objects and morphisms, the functorial property Jq(ϕ ◦
ψ) = Jq(ϕ) ◦ Jq(ψ) is a special case of the composition (2). Effectively, it is a
consequence of the chain rule. As a last step, we state the exactness of Jq.

Proposition 1.16. Let ϕ : E → E ′ be a morphism of fibre bundles over X,
which is locally of constant rank. Then pq(ϕ) : Jq(E1) → Jq(E2) is a morphism of
bundles over X of locally constant rank. If ϕ is a mono- or epimorphism, then
pq(ϕ) is also a mono- or epimorphism.

If s′ : X → E ′ is a section with s(X) ⊆ ϕ(E), then jq(ϕ) ⊆ pq(ϕ)(Jq(E)) and
the sequence

0 // Jq(kers′(ϕ))
pq(ι) // Jq(E)

pq(ϕ) // Jq(E ′)

is exact with pq(ϕ) ◦ pq(ι) = jq(s′) ◦ π, where ι : kers′(ϕ) → E is the embedding.�

The main benefit we derive from jet bundles are systems of partial differential
equations, which will be defined in Section 1.3. Whenever possible, a system of
partial differential equations is described by an exact sequence of bundles. In this
case the exactness of Jq implies that the formal differentiation of the system is
again specified by an exact sequence.
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Prolongation of Vector Fields

Before turning to systems of PDEs, we finish the section on jet bundles by in-
troducing the prolongation of vector fields. It is needed in Appendix C.2 and in
Chapter 3. We follow the book of Olver [Olv95, Ch. 4].

Vector fields can be interpreted as infinitesimal local diffeomorphisms E → E
and their prolongation is the infinitesimal analogue to the prolongation of maps
ϕ : E → E . In this thesis, vector fields occur as infinitesimal generators of a
Lie group action on a manifold or, as a generalisation, as infinitesimal generators
of a Lie groupoid action on a bundle (see Section 2.2). The prolongation of
both finite actions becomes too large to compute even in Vessiot’s notation. The
prolongation of the generating vector fields remains small enought for efficient
computations.

Let us first illustrate the prolongation of a vector field with an example.

Example 1.17. Let E = R×R with global coordinates (x, u) be the trivial bun-
dle. On E , the prolongation of bundle morphisms can be generalised to arbitrary
diffeomorphisms:

x̂ = ϕ(x, u), û = ψ(x, u).

It is done by replacing the partial derivatives on the left hand sides of equation
(1.4) by total ones:

ûij Dxlϕj(x, u) = Dxlψi(x, u), . . .

The one-parameter group of transformations (which are no bundle morphism)

x̂ = x cos(ε)− u sin(ε),
û = x sin(ε) + u cos(ε)

is generated by the vector field:

v =
dx̂

dε

∣∣∣∣
ε=0

∂

∂x
+
dû

dε

∣∣∣∣
ε=0

∂

∂u
= −u ∂

∂x
+ x

∂

∂u
.

Its prolongation to Jq(E),

ûx̂ =
Dxŷ

Dxx̂
=

sin(ε) + ux cos(ε)
cos(ε)− ux sin(ε)

,

ûx̂x̂ =
Dxûx̂
Dxx̂

=
uxx

(cos(ε)− ux sin(ε))3

remains a one-parameter group of transformations, but this time on Jq(E). Dif-
ferentiating again, we obtain its infinitesimal generator ρ2(v):

ρ2(v) =
dx̂

dε

∣∣∣∣
ε=0

∂

∂x
+
dû

dε

∣∣∣∣
ε=0

∂

∂u
+
dûx̂
dε

∣∣∣∣
ε=0

∂

∂ux
+
dûx̂x̂
dε

∣∣∣∣
ε=0

∂

∂uxx

= −u ∂
∂x

+ x
∂

∂u
+ (1 + u2

x)
∂

∂ux
+ 3uxuxx

∂

∂uxx
. (1.5)

�
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In the example, the prolongation of a vector field was computed by prolonging
the corresponding finite transformations. It is possible to prolong a vector field
without integrating it, using the following definition.

Definition 1.18. [Olv95, p. 117] The prolongation of a vector field v on E ,
given in local coordinates (x, u) by

v = ξi(x, u)
∂

∂xi
+ ηj(x, u)

∂

∂uj
,

is defined as
ρq(v) = DµQ

j ∂

∂ujµ
+ ξiDi ∈ XJq(E),

where Qj = ηj − uji ξi denotes the characteristic of v and µ ∈ Zn≥0 cycles through
all multi-indices with |µ| ≤ q. �

The additional term ξiDi cancels the jets of order q + 1 occurring in DµQ
j .

According to [Olv95, Thm. 4.16] it is the infinitesimal version of the prolongation
of transition functions.

Example 1.19. The vector field v = −u ∂
∂x + x ∂

∂u from Example 1.17 has the
characteristic Q = x+ uux and the second prolongation:

ρ2(v) = Q
∂

∂u
+DxQ

∂

∂ux
+ (Dx)2Q

∂

∂uxx
− uDx

= (x+ uux)
∂

∂u
+ (1 + u2

x + uuxx)
∂

∂ux
+ (3uxuxx + uuxxx)

∂

∂uxx
− uDx

= −u ∂
∂x

+ x
∂

∂u
+ (1 + u2

x)
∂

∂ux
+ 3uxuxx

∂

∂uxx
. (1.6)

�

We have seen in Proposition 1.15 (2) that the prolongation of diffeomorphisms
respects composition, which is translated in terms of the Lie brackets to vector
fields. It will be used in Section C.2.3 to construct a Lie bracket on Jq(T ).

Lemma 1.20. Two vector fields v, w of E satisfy:

[ρq(v), ρq(w)] = ρq([v, w]). �

1.3 Systems of Partial Differential Equations

In this section, we define a system of partial differential equations in a geometric
language. Jet bundles provide a geometric model for functions and derivatives
and a system of PDEs is simply a subbundle of a jet bundle. This so-called formal
theory of PDEs was introduced by Spencer [Spe69], Quillen [Qui64] in the linear
and Goldschmidt [Gol67b] in the nonlinear case.
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Starting with the definition of a PDE system Rq, we turn to the fundamental
operations of prolongation and projection in Section 1.3.1. The prolongation of
Rq uses the jet bundle functor and the total derivative. It is equivalent to the
formal differentiation of all equations defining Rq. In terms of equations, the
projection involves the elimination of highest order derivatives. Geometrically,
the projection is more simple as it only involves the jet bundle projections πq+rq :
Jq+r(E) → Jq(E) which forgets the highest order jet coordinates.

Section 1.3.2 describes formally integrable systems where the prolongation and
projection will not produce new equations. It depends on Appendix A symbols
and Spencer cohomology are introduced.

Definition 1.21. [Gol67b, Def. 7.1] Let E → X be a fibre bundle. A system
of partial differential equations Rq → X of order q is a subbundle of Jq(E) → X.
A solution of Rq is a local section f : U ⊆ X → E such that jq(f)(x) ∈ Rq for
all x ∈ U . If E and Rq are vector bundles, the system of PDEs is called linear
and otherwise nonlinear. �

Analogous to the notation for vector bundles, a linear system of PDEs is
denoted by Rq ⊆ Jq(E). This notation becomes useful when treating a nonlinear
system Rq and its linearisation Rq.

Let us verify that the above definition is nothing else than a geometric formu-
lation of PDEs on manifolds. Choose a coordinate system (x, y, yq) of Jq(E). The
system Rq is a subbundle of Jq(E) → X, so there is another coordinate system
(x,Φ) of Jq(E) such that Rq is given by Φ1 = . . . = Φk = 0. Expressing Φi in the
old coordinates (x, y, yq), we obtain equations

Φ1(x, y, yq) = . . . = Φk(x, y, yq) = 0,

locally definingRq. So a subbundle introduces relations between the jet variables.
The definition of a solution reveals the differential equations. Each solution f of
Rq has to satisfy jq(f)(x) ∈ Rq. The conditions are PDEs in the usual sense:

Φ1(x, f(x), ∂µf(x)) = . . . = Φk(x, f(x), ∂µf(x)) = 0.

Exact sequences of fibre bundles are a very convenient way of specifying a
system of PDEs, because the prolongation involves little more than the jet bundle
functor. At first we need differential maps and operators (cf. [Pom78, Def. 2.1.1]).

Definition 1.22. A bundle morphism Φ : Jq(E) → F over X of locally constant
rank is called differential map of order q. The map

D : Γ(E) → Γ(F)

defined on the sheaf of sections is called differential operator, if there exists a
q ∈ N and a differential map Φ, such that D = Φ ◦ jq. If Φ is a vector bundle
morphism, D is called linear and otherwise nonlinear. �



30 CHAPTER 1. GEOMETRIC FORMULATION OF PDES

As a direct consequence of Proposition 1.3, a differential map Φ together with
a suitable section ω : X → F (ω(X) ⊆ im(Φ)) defines a system of PDEs Rq(ω):

0 // Rq(ω) // Jq(E)
Φ //
ω◦π

// F . (1.7)

In coordinates (x, y, yq) of Jq(E) and (x, u) of F , the differential map Φ is ex-
pressed as uα = Φα(x, y, yq) and the equations defining Rq(ω) are

Φα(x, y, yq) = ωα(x), 1 ≤ α ≤ k. (1.8)

Essentially, Rq(ω) = kerω(Φ) is the kernel of Φ with respect to ω. Note that
another choice of the section ω specifies a PDE system with a different right
hand side.

Not all PDE systems Rq ⊆ Jq(E) have a kernel representation and Gold-
schmidt [Gol67b, §7] gave a topological restriction. In this thesis, we are only
interested in local questions and on a single coordinate neighbourhood it is pos-
sible to construct a kernel representation.

Example 1.23. On E = X ×X, X = Rn, with coordinates (x, y), the equations
for the second order jets

yijk = 0, 1 ≤ i, j, k ≤ n

define the subbundle R2 ⊂ J2(E) → X which is isomorphic to J1(E). Solutions
of R2 are affine transformations X → X:

yi(x) = aijx
j + bi, aij , b

i ∈ R.

The differential map Φ for a kernel representation of R2 is:

Φ : J2(E) → X × Rd : (x, y, yij , y
i
jk) → (x, yijk),

where d is the number of second order derivatives. As right hand side for Φ, the
zero section ω = 0 has to be used.

In Section 2.3, we restrict ourselves to the invertible jets Π2(X ×X), where
all solutions must have nonzero determinant det(aij). We observe that the com-
position of two affine transformations is affine and thus also a solution of R2. �

1.3.1 Prolongation and Projection

In this section we will define the prolongation and projection of PDE systems
and give examples. If a system Rq ⊆ Jq(E) is given by equation (1.8), we use the
total derivative to compute the additional equations for higher order jets:

DµΦα(x, y, yq+r) = ∂µω
α(x), |µ| ≤ r, 1 ≤ α ≤ k. (1.9)

We expect that the prolongation Rq+r of Rq satisfies these equations. To project
to a lower order, it is necessary to eliminate the highest order jets from the
equations. The step to order q+ r−1 is easy, because all jets of strict order q+ r
occur linearily. Further projections may become more complicated.
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Definition 1.24. [Gol67b, Def. 7.1] The r-prolongation of a PDE system Rq

is the subset
Rq+r = ρr(Rq) := Jr(Rq) ∩ Jq+r(E).

Rq+r is called regular if it is a subbundle of Jq+r(E) → X. The set

R(s)
q+r := πq+r+sq+r (Rq+r+s) ⊆ Rq+r

is called projection. �

Note that due to the intersection with Jq+r(E), both prolongation and pro-
jection are only subsets of jet bundles but not necessarily subbundles.

Locally, it is again possible to work with exact sequences. If the system
Rq = kerω(Φ) is specified by a kernel, then Rq+r is defined by the kernel of
the prolonged map pr(Φ) with respect to jr(ω) and we have the commutative
diagram:

0 // Rq+r //

πq+r
q

��

Jq+r(E)
pr(Φ) //

jr(ω)◦π
//

πq+r
q

��

Jr(F)

��
0 // Rq // Jq(E)

Φ //
ω◦π

// F

(1.10)

Another possibility to obtain this diagram, is applying the jet functor Jq to
the sequence for Rq. The intersection with Jq+r(E) is done with the canonical
embedding Jq+r(E) ↪→ Jr(Jq(E)).

In coordinates, the prolongation pr(Φ) is computed by equation (1.4), which
simplifies to

uαµ = DµΦα(x, y, yq+r),

because the projection of Φ to the base is the identity map ϕ = idX . As expected,
the equations (1.9) are added to the system.

The next example (compare [Sei02, Ex. 1.3.3]) shows a PDE system where
the prolongation is no longer a bundle.

Example 1.25. On the trivial bundle E = X × R over the base X = R2 we use
the global coordinate system (x, y) of X and (x, y, u) of E . Define the nonlinear
second order system R2 by the equations

uyy −
1
2
u2
xx = 0, uxy − uxx = 0.

They induce a differential map Φ : J2(E) → F = X × R2:

(x, y, u, ux, uy, uxx, uxy, uyy) 7→ (x, y, uyy −
1
2
u2
xx, uxy − uxx),
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which is locally of constant rank. The section ω of F → X corresponding to R2

is the zero section. Apply the total derivative for the first prolongation R3:

p1(Φ) : J3(E) → J1(F)
(x, y, u, u3) 7→ (. . . , uxyy − uxxuxxx, uyyy − uxxuxxy,

uxxy − uxxx, uxyy − uxxy).

Again, the zero section of J1(F) → X defines R3. From the last two equations of
R3, one deduces uxyy = uxxx and the first equation becomes (1 − uxx)uxxx. R3

consists of the union of two submanifolds of J3(E).
The rank of p1(Φ) drops by one for uxx = 1 or uxxx = 0, so the the prolon-

gation of Φ to p1(Φ) : J3(E) → J1(F) from Proposition 1.15 does not preserve
exactness. In contrast to that, Proposition 1.16 shows that the functor J1 is
exact. Applying J1 yields a different map p1(Φ) : J1(J2(E)) → J1(F). Here jets
like Dxuxy = uxy,x and Dyuxx = uxx,y have to be distinguished so that the rank
drop is impossible. �

Let us turn to the projection. In theory, it is simply the application of πq+rq to
the prolonged system Rq+r. In terms of equations, there is more work to do, as it
includes the elimination of all jets of order ≥ q. For linear systems the projection
can be done with Gaussian elimination.

Example 1.26. With E , X as in Example 1.25, we consider a second order linear
system:

R2 :
{
uxx − ux = 0,
uxy − u = 0.

Its first prolongation is:

R3 :



uxx − ux = 0,
uxy − u = 0,
uxxx − uxx = 0,
uxxy − uxy = 0,
uxxy − ux = 0,
uxyy − uy = 0.

The projection back to second order contains one new equation:

R(1)
2 :


uxx − ux = 0,
uxy − u = 0,
ux − u = 0.

It is obtained by eliminating first uxxy in the third order equations and then uxy
among the second order equations. Another prolongation and projection restricts
the system further:

R(2)
2 :


uxx − u = 0,
uxy − u = 0,
ux − u = 0,
uy − u = 0.
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Now the question arises if the process of prolongation and projection leads to
more equations and when to stop. In this example, one last step produces the
equation uyy − u = 0 for R(3)

2 . Any new equation of order ≤ 2 must have zero
order. This would imply u = const, but u = ex+y is a solution of R2.

Here, the projection to a first order system R(3)
1 simplifies matters:

R(3)
1 :

{
ux − u = 0,
uy − u = 0,

because all second order equations for R(3)
2 are differential consequences of the

two equations of R(3)
1 . All jets uµ of order ≥ 1 can be expressed as uµ − u = 0,

|µ| ≥ 1. This means prolongation to arbitrary high orders q + r + s and then
projection to order q + r does not yield any new equations. �

In the example we could easily describe all equations that must be satisfyed by
a solution of the original system R2. We call such a system formally integrable.
The next step is a method to decide integrability in more complicated cases.

1.3.2 Formal Integrability

In this section we give a definition of formal integrability and state results by
Goldschmidt [Gol67b] which allow to test formal integrability. In the analytic
context it is possible to prove the existence of solutions.

The test of formal integrability depends on the symbol Mq of a PDE system
Rq introduced in Appendix A. Here we treat the assumption that the symbol
Mq is 2-acyclic as a technical condition.

Definition 1.27. A system Rq ⊆ Jq(E) of PDEs is called formally integrable
if Rq+r is a subbundle of Jq+r(E) → X for all r ∈ N and if the projections
πq+r+sq+r : Rq+r+s → Rq+r are epimorphisms for all r, s ∈ Z≥0. �

Formal integrability means that the prolongation to arbitrary high orders
produces no new equations of lower order that would prevent the projections
πq+r+sq+r from being surjective. To assure integrability for a system Rq, we have to
check infinitely many conditions. So before turning to the existence of solutions,
it is necessary to provide tools that decide formal integrability in a finite number
of steps.

Theorem 1.28. [Gol67b, Thm 8.1] Let Rq ⊆ Jq(E) be a q-th order PDE system.
If the symbol Mq is 2-acyclic, Mq+1 → Rq is a vector bundle and if the map
πq+1
q : Rq+1 → Rq is surjective, then Rq is formally integrable. �

See Definition A.1 for symbols and Definition A.5 for 2-acyclicity. The the-
orem can be read as follows. The conditions on Mq+1 assures the regularity of
Rq+1. If the symbol Mq is 2-acyclic, a single prolongation and projection is suf-
ficient to check formal integrability. If Mq is not 2-acyclic, there exists an r ∈ N
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such that Mq+r is 2-acyclic. If Rq+r is regular, we can apply Theorem 1.28 to
the prolonged system.

A formally integrable system Rq ⊆ Jq(E) allows to construct formal power
series solutions order by order. First choose coordinates (x, u) of E and an element
rq ∈ Rq. By Remark 1.4 there is a taylor series representation for rq:

ui = ri + rij x
j + · · ·+ 1

µ!
riµ x

µ, |µ| ≤ q, riµ ∈ R.

Because πq+1
q : Rq+1 → Rq is surjective, there exists an element rq+1 ∈ Rq+1

that projects down to rq. In other words, the taylor series representatives of rq+1

and rq coincide up to order q. This can be continued since all projections πq+r+1
q+r

are surjective.
However the constructed power series are only formal and may not converge.

In the smooth context, nothing is said about the existence of solutions. Even
more, there exist counterexamples for the existence of smooth solutions [Lew57].
A modification of the counterexample (see [GS67]) also applies to equivalence
problems, which are treated in Chapter 6.

In the analytic context, where X, E and Rq are real-analytic manifolds, there
is an existence theorem for solutions.

Theorem 1.29. [Gol67b, Thm 9.1] Let Rq ⊆ Jq(E) be a q-th order analytic
PDE system on E , which is formally integrable. Then given p ∈ Rq+r with
πq+r0 (p) = x ∈ X, there exists an analytic solution s over a neighbourhood of x
such that jq+r(s)(x) = p. �

We give some examples, where the formal integrability of systems is checked.
The occuring symbols are all involutive which is a stronger condition than 2-
acyclicity.

Example 1.30. (1) In Example 1.26, all symbols of R2, R
(1)
2 , R(2)

2 and the
last system R

(3)
2 are involutive (M(3)

2 is even zero), but the surjectivity
condition of Theorem 1.28 is violated in all but the last system. Solutions
of R2 are u(x, y) = c ex+y for c ∈ R.

(2) The system R2 with yijk = 0 from Example 1.23 has a zero symbol M2 = 0,
which is involutive. The prolongation to third order yields:

R3 : yiµ = 0 |µ| ≤ 3.

The projection π3
2 is surjective and R2 is formally integrable. Because all

higher order jets also vanish, the power series solutions are linear polyno-
mials yi(x) = aijx

j + bi. �



Chapter 2

Lie Groupoids

In this chapter Lie groupoids are introduced which are a generalisation of Lie
groups. The underlying concept of groupoids was first defined by Brandt [Bra27].
A main application for groups are symmetries of mathematical objects. It turns
out that geometric objects on a manifold, such as metrics, often have lower sym-
metries that cannot be described by groups. In this case, the symmetries have the
structure of a Lie groupoid, which takes the underlying manifold into account.

Ehresmann developed Lie groupoids in a series of notes (see e.g. [Ehr55])
on q-jets of diffeomorphisms. This connects the geometric theory of PDEs with
symmetries. The current chapter is based on the introductory textbooks[Mac05]
and [MM03] and repeats basic facts for Lie groupoids. The textbooks also contain
a comprehensive list of references on this topic.

To get an intuition for Lie groupoids and their connection to groups, their
theory is developed analogous to Lie groups:

Groups −→ Lie groups −→ Jet groups
Groupoids −→ Lie groupoids −→ Jet groupoids

In Section 2.1 groupoids are defined and a basic notation is layed down. Adding
smooth manifold structures, Lie groupoids are obtained in Section 2.2. In the
remaining two sections, we turn to the special case of jet groupoids and algebroids
which are connected to jet groups from Appendix B. Jet groupoids are systems
of PDEs over the trivial bundle E = X ×X with additional structure. They are
needed in Chapter 3 as symmetry groupoids of geometric objects.

In analogy to the Lie algebra of a Lie group, Lie algebroids are introduced in
Appendix C as the infinitesimal versions of Lie groupoids.

2.1 Groupoids

We start with the definition of groupoids and their actions. Roughly speaking, a
groupoid behaves like a group, except that the multiplication is only defined for
certain pairs of elements.

35
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Definition 2.1. A groupoid G is a small category with invertible morphisms.
A subgroupoid H of G is a subcategory of G with invertible morphisms. A
subgroupoid is denoted by H ≤ G. �

A small category consists of a set of objects and morphisms between them.
For a groupoid, the set of objects G(0) is called the base and the set of morphisms
is denoted by G(1). Each arrow g : x → y ∈ G(1) is a morphism between two
elements x and y of the base, which are called source and target of g:

s : G(1) → G(0) : g 7→ x source,
t : G(1) → G(0) : g 7→ y target.

The arrows of a groupoid are the analogue to group elements. Whenever we
speak of a groupoid element g ∈ G, we think of an arrow g ∈ G(1). In contrast
to groups, the multiplication is not defined for all groupoid elements g, h ∈ G(1).
The composition of morphisms in a category induces only a partial multiplication
for elements with matching source and target:

µ : G(1) s�t
G(0)

G(1) → G(1) : (g, h) 7→ gh.

It is defined over the pullback

G(2) = G(1) s�t
G(0)

G(1) = {(g, h) ∈ G(1) ×G(1)| s(g) = t(h)}.

The base G(0) can be embedded in G(1) as the identity arrows:

ι : G(0) ↪→ G(1) : x 7→ 1x

A groupoid G contains a unit element 1x for each x ∈ G(0) satisfying 1xg = g for
all g ∈ G(1) with s(g) = x. The multiplication with the inverse g−1 of an arrow
g : x→ y generally leads to two different unit elements:

g−1g = 1x, gg−1 = 1y.

There are a few useful notations for subsets of a groupoid G. Take x, y ∈ G(0).

G(x, y) = {g ∈ G(1)| t(g) = y, s(g) = x},
G(x,−) = {g ∈ G(1)| s(g) = x}, source-fibre

G(−, y) = {g ∈ G(1)| t(g) = y}, target-fibre

G(x, x) = {g ∈ G(1)| s(g) = t(g) = x} isotropy group of x,

Gx = t(G(x,−)) = s(G(−, x)) orbit of x.

In the case of Gx = G(0) the groupoid is called transitive. Otherwise, the base
decomposes into orbits similar to the case of a group action on a set. It is easy
to see that the isotropy groups for x, y in the same orbit are isomorphic.
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A groupoid morphism φ : G → H is a covariant functor, which implies, that
φ commutes with source and target:

φ(s(g)) = s(φ(g)), φ(t(g)) = t(φ(g)) ∀g ∈ G(1)

and preserves multiplication:

φ(g1g2) = φ(g1)φ(g2) ∀ (g1, g2) ∈ G(2).

Furthermore, φ(1x) = 1φ(x) for x ∈ G(0) and φ(g−1) = φ(g)−1.
The following examples show that the concept of groupoids is very general,

as most mathematical objects can be considered as groupoids. The question is
whether the groupoid structure gives new insights. The parameters of groupoids
that are of interest to us are the base, the isotropy groups and the orbits.

Example 2.2. (1) Every group H is a groupoid over a single point {1}, which
is usually the identity ofH. In this case, the restriction of the multiplication
map becomes irrelevant. A group is a groupoid with the smallest possible
base and a large isotropy.

(2) Each set M is a groupoid, which only contains identity morphisms 1m
for m ∈ M . M is the exact opposite to a group H, because the base is
large and the isotropy is trivial. The groupoid structure does not give new
information on the set.

(3) An equivalence relation ∼ on a set M defines an groupoid as

G(0) = M,

G(1) = {(a, b) ∈M ×M |a ∼ b},

with s(a, b) = b and t(a, b) = a. Symmetry ensures that every arrow is
invertible, reflexivity provides the units 1a = (a, a) and the multiplication
(a, b)(b, c) := (a, c) is well defined because of transitivity. In this case, the
orbit structure of G is interesting and the isotropy groups are trivial.

Every groupoid G defines an equivalence relation on the base G(0) by taking
its partition into orbits Gx for x ∈ G(0). If G is transitive, there is only
one equivalence class and the groupoid corresponding to this equivalence
relation is called the pair groupoid with G(1) = G(0) ×G(0). �

These examples illustrate extreme cases of groupoids. The interesting cases
of groupoids have a nontrivial base as well as nontrivial isotropy groups. We give
two more examples.

Example 2.3. (1) Let H be a group and M be a set. Then G(1) = M×H×M
is the trivial groupoid on base G(0) = M with group H. It has the source
and target projections

s : G(1) →M : (m1, g,m2) 7→ m2, t : G(1) →M : (m1, g,m2) 7→ m1.
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The product of (m1, h1,m2) and (m3, h2,m4) is defined if and only if m2 =
m3:

(m1, h1,m2)(m2, h2,m4) = (m1, h1h2,m4).

Obviously, the groupoid is transitive and the two copies of M seem like
an artificial restriction of the multiplication. In fact, each transitive Lie
groupoid is locally isomorphic to a trivial groupoid.

(2) The action groupoid of a group H acting on a set M is a little more com-
plicated. Define G(0) = M with arrows G(1) = H ×M . Source and target
are given as

s((h,m)) = m, t((h,m)) = hm.

The multiplication is induced by the group action:

(h2,m2) (h1,m1) = (h2 h1,m1) for h1m1 = m2.

The inverse of (h,m) is (h−1, hm). An action groupoid treats the group H
on the same level as the set M on which H acts. �

Groupoid Actions

We now turn to the action of a groupoid G on a set F . Similar to the restricted
multiplication on G, not every groupoid element may act on each f ∈ F .

Definition 2.4. Let G be a groupoid and F a set with a map π : F → G(0). A
left groupoid action of G on F is a map G(1) s�π

G(0)
F → F (shortly G � F → F)

with

(ab)f = a(bf) ∀ (a, b, f) ∈ G(2) s�t
G(0)

F ,

1xf = f ∀ f ∈ π−1(x).

The first condition requires π(bf) = t(b). There is an analogous definition for a
right action F π�t

G(0) G
(1) → F (abbreviated as F �G→ F). �

We usually assume that π : F → G(0) is surjective. In the case of |G(0)| = 1
this definition coincides with the action of a group. The definitions of groupoid
orbits Gf and stabilisers StabG(f) for f ∈ F are analogous to the group case.
However there are two restrictions for transitive actions, because groupoids may
be intransitive themselves.

We give two simple examples of groupoid actions and refer to Example 2.12
and Chapters 3-7 for more elaborate actions.

Example 2.5. (1) Every groupoid G over the base M acts on M by:

G s�id

M
M →M : (g,m) 7→ t(g).

The orbits of the action are identical with the orbits of the groupoid itself.
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(2) An important action of G is the multiplicative action on itself:

µ : G(1) s�t
G(0)

G(1) → G(1) : (g, h) 7→ gh,

which is a left action for (F , π) = (G(1), t) and a right action for (F , π) =
(G(1), s). In this context, we define left and right multiplication:

Lg : G(s(g),−) → G(1) : h 7→ gh,

Rh : G(−, t(h)) → G(1) : g 7→ gh. �

2.2 Lie Groupoids

We now turn to Lie groupoids and their properties. Similar to a Lie group, a Lie
groupoid is essentially a groupoid with smooth manifold structures (cf [MM03,
§5.1]). In the last part of this section, we treat actions of transitive Lie groupoids.

Definition 2.6. A groupoid G is called a Lie groupoid if G(0) and G(1) are
smooth Hausdorff manifolds. Additionally, the source map s is a smooth sub-
mersion and all other maps are also smooth.

A morphism of Lie groupoids is a smooth groupoid morphism (both on the
base and the arrows). A Lie subgroupoid is a subgroupoid H ≤ G, which is also
a Lie groupoid (and all manifolds are submanifolds). �

We also require a Lie groupoid action on a fibre bundle π : F → G(0) to be a
smooth map G � F → F .

Both Examples 2.2 and 2.3 can be turned into Lie groupoids if H is a Lie
group, M a manifold and the equivalence relation defines a foliation of M . In
particular, a Lie group is a Lie groupoid over a single point. The next important
example shows the connection between Lie groupoids and principal bundles.

Example 2.7. Let H be a Lie group and π : P → X be a principal H-bundle.
H acts on the cartesian product P × P from the right by (p1, p2)h = (p1h, p2h).
Then the gauge groupoid is the orbit space under the H-action:

Gauge(P ) = P ×H P = P × P/H.

Set pr1 and pr2 as the projections to the first and second copy of P and choose
source and target as s = π ◦ pr2 and t = π ◦ pr1. The product of two residue
classes is:

[(p1, p2)] · [(q1, q2)] = [(p1, q2h)] for π(p2) = π(q1),

where h ∈ H is the unique element with q1h = p2. �
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The following theorem from [MM03] shows that Lie groupoids have far more
structure than groupoids. Particularly, the isotropy groups are all Lie groups and
the source-fibres are principal bundles. This leads to consequences for transitive
Lie groupoids and their actions on bundles.

Theorem 2.8. [MM03, Thm. 5.4] Let G be a Lie groupoid and let x, y ∈ G(0).

(1) G(x, y) is a closed submanifold of G.

(2) G(x, x) is a Lie group.

(3) Gx is an immersed submanifold of G(0).

(4) tx : G(x,−) → Gx is a principal G(x, x)-bundle. �

Proof. Since s is a submersion, G(x,−) is a closed submanifold of G. Put
Eg = ker(s∗)g ∩ker(t∗)g for all g ∈ G. We will show that E|G(−,x) is an involutive
subbundle of the tangent bundle TG(x,−) → X, therefore defining a foliation of
G(x,−).

For a g ∈ G(x,−), the left translation Lg gives a diffeomorphism. We note
that for any h ∈ G(x,−), Eh is a subspace of ThG(x,−) ⊂ ThG. Since s ◦ Lg =
s|G(x,−), it follows that

(Lg∗)1x(E1x) = Eg.

So, any basis v1, . . . , vk of E1x can be extended to a global frame X1, . . . , Xk

of E|G(−,x) via left translation (Xi)g = (Lg∗)1x(vi). This shows, that EG(x,−)

is indeed a subbundle of TG(x,−). Involutivity follows from the fact that it is
exactly the kernel of tx∗. Hence it defines a foliation of G(x,−), parallelisable
by X1, . . . , Xk. The leaves are the connected components of tx and thus closed
manifolds. Particularly, the fibre t−1

x (x) = G(x, x) is a Lie group.
We have a smooth and free action of G(x, x) on G(x,−), that is transitive on

the fibres of tx. As tx fulfills condition (iii) of [MM03, La 5.5], Gx is a smooth
manifold and tx : G(x,−) → Gx is a principal bundle. The fact that G(0) is
Hausdorff implies, that Gx is also Hausdorff. �

The last property (4) essentially shows that transitive groupoids are all iso-
morphic to gauge groupoids. This leads to the following proposition, which is a
shortened version of [MM03, Prop. 5.14].

Proposition 2.9. For a Lie groupoid G, the following conditions are equivalent:

(1) G is transitive.

(2) t : G(x0,−) → G(0) is a surjective submersion for at least one x0 ∈ G(0).

(3) G is isomorphic to Gauge(P ) of a principal G(x0, x0)-bundle P . �
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Proof. (1) ⇒ (2): As (s, t) is a surjective submersion, also the pullback t :
G(x0,−) → G(0) along G(0) → G(0) ×G(0) : y 7→ (x0, y) is a submersion.

(2) ⇒ (3): According to Theorem 2.8, t : G(x0,−) → G(0) is a principal
bundle. The map

Gauge(G(x0,−)) → G : (g, h) 7→ gh−1

is an isomorphismus of Lie groupoids (easy check).
(3) ⇒ (1): If G ∼= Gauge(P ) for π : P → G(0), then the map (s, t) :

Gauge(P ) → G(0)×G(0) is induced by the surjective submersion (π, π) : P ×P →
M ×M . So Gauge(P ) is transitive. �

Lie Groupoid Actions

The last two propositions are now applied to actions of transitive Lie groupoids.
This section is based on [Mac05, §1.6], which provides further details. From the
fact that each transitive Lie groupoid is isomorphic to a gauge groupoid certain
consequences follow for their actions on fibre bundles F . Each groupoid action is
uniquely defined by the action of the isotropy group on the abstract fibre F of F .
The following proposition becomes important in Chapter 3 where it is applied to
the action of jet groupoids on natural bundles. It is the reason why jet groups
are introduced in Appendix B.

Proposition 2.10. Let G be a transitive Lie groupoid over the base X. Each
fibre bundle π : F → X with G-action and fibre F is isomorphic to the associated
bundle:

F ∼= G(x,−)×G(x,x) F

for some x ∈ X. �

Proof. Use the isomorphism F ∼= Fx. For each f ∈ Fy, y ∈ X, there is a
groupoid element g ∈ G(y, x) such that gf ∈ Fx. Two different choices g, g′

differ only by an element h ∈ G(x, x). So the map

F → G(x,−)×G(x,x) F : u 7→ (g−1, gf)

is well-defined. The converse is trivial by the G-action on G(x,−). �

The proposition says that each fibre bundle F with a G-action is uniquely
defined by the isotropy group action on the fibre F of F which will be used in
Chapter 3 (especially Section 3.1.1).

In the next proposition we show that also G-equivariant bundle morphisms
ψ : F → F ′ with ψ(gf) = gψ(f) for g ∈ G are also defined by maps on the
fibres which are equivariant under the isotropy group action. This correponds to
Appendix B.5.3 on equivariant maps under jet groups.
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Proposition 2.11. Let G be a transitive Lie groupoid over the base X. Denote
the principal bundle G(x,−) by P and the isotropy group G(x, x) by H. Let F
and F ′ be two manifolds with an H-action.

(1) If ϕ : F → F ′ is an H-equivariant map then

ϕ̃ : P ×H F → P ×H F ′

is a well-defined G-equivariant morphism of fibre bundles.

(2) Conversely if ψ : F → F ′ is an G-equivariant morphism of bundles over X,
then ψ = ϕ̃ for some H-equivariant map ϕ : F → F ′ on the fibres. �

Proof. (1) follows directly from Proposition 2.10 and (2) follows from:

ψ(g′f) = g′ψ(f) = g′ψ(g−1(gf)) = g′g−1ψ(gf),

where f ∈ Fy, g ∈ G(y, x) such that fg ∈ Fx ∼= F . Then ψ(gf) ∈ F ′
x
∼= F ′. �

The prolongation and projection of the isotropy group action in Section B.5
requires jet groupoids and will be treated in Section 3.4. As a last step we give
an example for the action of a gauge groupoid.

Example 2.12. Let π : P → X be a principal H-bundle. The gauge groupoid
Gauge(P ) acts on F = P :

Gauge(P ) s�π
X
P → P : ([(p1, p2)], q) 7→ p1h,

where h ∈ H is the unique element with p2h = q. The action is transitive.
Gauge(P ) also acts on the quotient bundle P/K where K is a closed subgroup

K ≤ H, because P/K is isomorphic to the associated bundle

P/K ∼= P ×H H/K.

In Section 3.3, the bundle P/K will be used extensively for the construction of a
natural bundle from a groupoid. �

2.3 Jet Groupoids

This section introduces jet groupoids, which are PDE systems (as in Section 1.3)
with a Lie groupoid structure. As a PDE system, a jet groupoid is a subbundle of
Jq(X ×X) → X for a manifold X. Using the results of Section 1.2 we construct
the full jet groupoid Πq and show basic examples of subgroupoids. As a last
step we show that the jet groups from Appendix B are isotropy groups of jet
groupoids.

Jet groupoids were first mentioned by Ehresmann [Ehr54] who already had the
action on bundles and their prolongation in mind. These topics will be covered
in the following Chapters 3, 4 and 6. Most of the material in this section is based
on [Pom78] and [Pom83].
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Definition 2.13. Let X be an n-dimensional manifold. The full jet groupoid of
order q ∈ N is the open subset Πq = Πq(X×X) ⊆ Jq(X×X) of invertible jets. A
jet groupoid Rq is a submanifold of Πq that is closed with respect to all groupoid
operations. �

Similar to Definition 1.5, we set the zero order jet groupoid Π0 = X ×X as
the pair groupoid. For higher orders we can specify all invertible jets in local
coordinates (x, y) of X × X. A jet (x, y, yq) ∈ Jq(X × X) is invertible if and
only if the Jacobian matrix (yij) has a nonzero determinant det(yij) 6= 0. If
(x, y, yq) = jq(ϕ)(x) is the q-jet of a smooth map ϕ : X → X, it is invertible in a
neighbourhood of x ∈ X if and only if (x, y, yq) is invertible.

It remains to show that Πq actually is a groupoid, so we check the construc-
tions from Section 2.1, starting with source and target. On Π0 = X ×X, source
and target are the projections s = pr1, t = pr2 onto the different copies of X.
They extend to Πq by composition with the jet projection πq0 to zero order:

s = pr1 ◦π
q
0, t = pr2 ◦π

q
0.

As it is usually clear from the context, we do not distinguish between source and
target maps for different jet groupoids. In coordinates the maps are:

s : Πq → X : (x, y, yq) 7→ x, t : Πq → X : (x, y, yq) 7→ y.

To construct the multiplication map µ we apply Proposition 1.15 on the compo-
sition of two local diffeomorphisms ϕ,ψ : X → X:

jq(ϕ ◦ ψ)(x) = jq(ϕ)(y) ◦ jq(ψ)(x), y = ψ(x). (2.1)

Basically, we apply the chain rule to calculate jq(ϕ◦ψ)(x) which yields a formula
for the multiplication on Πq:

µ : Πq
s�t
X

Πq → Πq.

The units 1x are the q-jets of the identity map idX : X → X with coordinate
expressions 1x = (x, x, δij , 0, . . . , 0). Inverse elements for fq ∈ Πq exist by inverting
the local diffeomorphism from Remark 1.4 and then taking the q-jet. It can be
computed by solving the equation

fqf
−1
q = 1t(fq)

for increasing orders q. For q = 1 the Jacobian matrix (yij) of f1 must be inverted
(uniquely possible for det(yij) 6= 0). Inverse elements of higher orders require
solving inhomogenous linear equations, depending on the lower order results. We
give an example of the multiplication and the construction of inverse elements.
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Example 2.14. On Π2(R×R) with coordinates (x, y) for R×R, every element
is of the form (x, y, yx, yxx). It represents a 2-jet of a diffeomorphism which maps
x to y.

The product of two elements (y, z, zy, zyy), (x, y, yx, yxx) ∈ Π2(R× R) is:

(y, z, zy, zyy)(x, y, yx, yxx) = (x, z, zyyx, zyyy2
x + zyyxx),

now mapping x to z. For first order jets, the Jacobian matrices are multiplied
(here, they are only 1 × 1-matrices). The expression for the second order jets is
obtained by formal differentiation of zyyx.

The inverse element (y, z, zy, zyy) = (x, y, yx, yxx)−1 is the solution of

(y, z, zy, zyy)(x, y, yx, yxx) = (x, x, 1, 0) = idx,

which implies:
z = x, zyyx = 1, zyyy

2
x + zyyxx = 0.

Once zy is known, the last equation becomes linear and the inverse is:

(x, y, yx, yxx)−1 = (y, x,
1
yx
,− yxx

y3
x

).

It exists if and only if yx 6= 0, which is the condition defining Π2 ⊂ J2(R× R). �

Of more interest than Πq itself are subgroupoids, which are also systems of
PDEs according to Definition 1.21. Writing down differential equations on Πq

does not automatically define a subgroupoid Rq. At least the units 1x must be
elements of Rq and the product of rq, sq ∈ Rq must also be an element of Rq.
The next example shows two equations that actually define jet groupoids.

Example 2.15. (1) For X = R, the equation yxx = 0 defines the subgroupoid
R2 of Π2 of affine transformations. Using Example 2.14 it is easy to verify,
that R2 is closed with respect to all operations.

(2) Example 1.23 with yijk = 0 for all 1 ≤ i, j, k ≤ n generalises (1) to arbitrary
dimensions.

(3) The equation yxxx − 3
2
y2xx
yx

= 0 defines the subgroupoid R3 ⊆ Π3(R× R) of
projective transformations on R (see e.g. [Pom78, Ex. 7.1.6], [Pom83, Ex.
2.A.2.11]).

We now turn to the isotropy groups of jet groupoids. Because X is locally
diffeomorphic to Rn the isotropy groups of the full groupoid Πq are all isomorphic
to GLq. Interpreted as PDE systems, we can prolong subgroupoids Rq ≤ Πq and
consider their isotropy groups. The chains of subgroupsGq ≤ GLq from Appendix
B are constructed to describe the isotropy groups of integrable jet groupoids. This
will be applied in Section 3.4 when describing the projection of jet groupoids.
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Lemma 2.16. Let Rq0 ≤ Πq0 be a formally integrable jet groupoid. Then at
each point x ∈ X, the isotropy groups Rq(x, x) for q ∈ N are isomorphic to
subgroups of Gq ≤ GLq which are compatible with prolongation. �

Proof. Use the isomorphism Πq(x, x) ∼= GLq to define Gq for all q ∈ N. Check
the conditions in Proposition B.7. The projections from condition (1) are epi-
morphisms by formal integrability of Rq.

As Gq+r ∼= Rq+r(x, x) is the isotropy group of the r-th prolongation of Rq,
condition (2) is also satisfied. �

In Section 2.2, we have considered actions of Lie groupoids on bundles. For
jet groupoids, this will be done in Chapter 3. We will show that each jet groupoid
of order q is defined by the Πq-action on a so-called natural bundle.
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Chapter 3

Natural Bundles

The current chapter establishes a link between geometric objects on a manifold
and jet groupoids. Examples of geometric objects are metrics, differential forms or
connections. They appear as sections of natural bundles, which were introduced
by Nijenhuis [Nij72] as fibre bundles where each diffeomorphism on the base lifts
to the bundle. The symmetries of geometric objects have the structure of jet
groupoids.

The connection between natural bundles and jet groupoids goes back to Lie
[Lie91] who realised that each jet groupoid can be defined by differential in-
variants. Vessiot [Ves03] computed what is now called a groupoid action on
the differential invariants, intending to write equations for similar groupoids in
an unified manner. In modern language, he constructed a natural bundle and
the appropriate groupoid action. Vessiot’s approach seems to be forgotten un-
til Pommaret [Pom78] reformulated it using natural bundles and the formal (or
geometric) theory of PDEs initiated by Spencer [Spe69]. It is worth noting that
Ehresmann [Ehr54], [Ehr55] considered jet groupoid actions on fibre bundles and
their prolongation.

In Sections 3.1 and 3.3, following the path from Lie and Vessiot to Pommaret
it is shown how a jet groupoid Rq determines a geometric object ω on a natural
bundle F . By doing so, the theory of PDE systems from Section 1.3 is combined
with the groupoid structure. The result is an exact sequence (1.7) for the groupoid
Rq

0 // Rq // Πq

Φω //
ω◦π
// F .

with the additional properties that F is a natural bundle and the differential
map Φω is determined by the groupoid action on F . As the main result, a test
for formal integrability is presented which works on natural bundles. In many
examples this gives a geometric interpretation of the integrability conditions.

As a new contribution, the definition of natural bundles is generalised to the
relative situation, where only a subset of all diffeomorphisms of the base lift to
the fibre bundle. This implies only minor theoretical changes, but opens a wide

47
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range of applications in the following chapters.
Section 3.2 introduces a completely functorial approach to natural bundles

presented by Kolář, Michor and Slowák [KMS93, Ch. IV]. It will be useful for
the Vessiot equivalence problem in Chapter 6.

The motivation to work with natural bundles is that all operations from the
geometric formulation of PDEs in Section 1.3 can be done with natural bundles.
At first the prolongation and projection is presented in Section 3.4. The main
result is the test of formal integrability in Section 3.5. It generalises the results
of Pommaret and Vessiot to intransitive groupoid actions. We also show how
Spencer cohomology is computed via natural bundles. A special focus lies on
the examples, which illustrate every theoretical step in this chapter. Section
5.1 treats the example of metrics and Christoffel symbols as an introduction to
the Maple packages jets of Barakat and Hartjen [Bar01] and JetGroupoids
developed for this thesis.

3.1 Definitions

We start with a definition of natural bundles that depends on jet groupoids
treated in Section 2.3. It is suited for the computation of symmetry groupoids.
In Section 3.2, we give a more general description via functors and show that
both definitions agree.

Definition 3.1. [Pom83, Def. 2.A.2.35] A fibre bundle F π→ X is called natural
bundle if there exists a q ∈ N and a groupoid action of Πq on F . A section ω ∈
Γ(F) is called geometric object. A morphism of natural bundles is an equivariant
bundle morphism Φ : F → G, i.e. Φ commutes with the Πq-action on the natural
bundles F and G. An invariant on F is a smooth map F → R which is constant
on the Πq-orbits on F . �

Interpreting the elements of Πq as q-jets of local diffeomorphisms on X, each
diffeomorphism of the base lifts to the natural bundle F . The same applies to
coordinate changes. A special case is a zero order natural bundle, which must be
a trivial bundle F = X×F for a manifold F . The action of Π0 = X×X then is:

F π�tΠ0 : ((y, f), (x, y)) 7→ (x, f).

All fibre coordinates of F are invariants on F .

Example 3.2. (1) The tangent bundle T → X is a natural bundle, since each
local diffeomorphism ϕ : X → X induces a bundle morphism ϕ∗ : T → T .
For each x ∈ X, ϕ∗|x : Tx → Tϕ(x) depends on the first order jet j1(ϕ)(x)
and thus defines a Π1-action on T . Analogously, the cotangent bundle T ∗

is a natural bundle.

(2) The bundle S2T ∗ → X is a natural bundle. A geometric object ω defines
a symmetric 2-form on X. If ω is positive definite, it defines a Riemannian
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metric on X (or a Riemannian structure). The bundle of metrics Fg =
S2T ∗>0 is an open subbundle of S2T ∗ and we can choose the entries of the
metric gij (gij = gji) as coordinates for Fg. In Example 3.8, the Π1-action
is explicitly constructed.

(3) A section ω on the natural bundle
∧2 T ∗ → X defines a 2-form on X. If

X has even dimension and if ω is closed (dω = 0), we are dealing with a
symplectic structure on X.

(4) Almost complex structures are modelled on the natural bundle T ⊗ T ∗.

(5) Each tensor bundle on X is a natural bundle with the Π1-action defined by
part (1). �

So far, we have only given linear first order examples resulting in natural
vector bundles. Natural vector bundles were studied and classified by Terng
[Ter78]. The definition of natural bundles includes also nonlinear or higher order
geometric structures and we show some in the next example.

Example 3.3. (1) An affine connection on X can be defined by its Christoffel
symbols. For coordinate systems (x) and (y) of X, a diffeomorphism yi =
yi(x) changes the Christoffel symbols Γijk to Γ̂ijk so that

ytiΓ
i
jk = ysj y

r
k Γ̂tsr + ytjk (3.1)

Plugging in yab = ∂ya

∂xb and inverting yti yields the well-known transition
functions for Christoffel symbols. We define the natural bundle FΓ with
coordinates Γijk and the Π2-action of equation (3.1).

The natural bundle FΓ automatically arises in the study of Riemannian
metrics from Example 3.2 (2). The first prolongation J1(Fg) contains FΓ:

J1(Fg) ∼= Fg ×X FΓ.

With first order jets gij,k as fibre coordinates of J1(Fg), the isomorphism is
given by:

Γijk =
1
2
gir (grj,k + grk,j − gjk,r) , (3.2)

where gij is the inverse of gij (gijgjk = δik). For more details on affine
connections see e.g. [dC92].

(2) Two metrics g, h ∈ Γ(Fg) are conformally equivalent if there exists a dif-
feomorphism ϕ and a positive function c ∈ C∞(X) such that

ϕ∗(g) = c(x)h.

Each equivalence class of metrics defines a first order conformal structure.
The corresponding natural bundle F can be constructed from Fg (see Ex-
ample 3.2 (2)) by taking the coodinates g̃ij = gij/g11 with (i, j) 6= (1, 1).
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This is the first example, where F is not a vector bundle. The groupoid
action is computed in Example 3.8, equation (3.4).

Analogous to the previous example, the first prolongation J1(F) defines a
second order conformal structure on X.

(3) Consider the real projective space RPn and the group of projective trans-
formations

PGL(n+ 1,R) = GL(n+ 1,R)/R∗.

The stabiliser G0 ≤ PGL(n+1,R) of (1 : 0 : . . . : 0) ∈ RPn can be embedded
into the jet group GL2(Rn). We thus define the natural bundle of projective
structures,

F = Π2(−, y0)/G0 = P2/G0 → X,

which is a quotient of the second order frame bundle P2 (see Definition 3.6).
A section of F → X defines a projective structure, namely a subbundle
P ⊆ P2 → X which is a principal G0-bundle (see [Yan92, §VI.3] for more
details). �

The next definition is new and generalises the definition of a natural bundle
F to subgroupoids Θq ≤ Πq acting on F . This is essential if we are dealing with
a geometric object where only a subset of all diffeomorphisms ϕ : X → X lift to
transformations of the object. Examples are given in Chapter 7 on linear partial
differential operators. Another application is the relative equivalence problem in
Section 6.1.2.

Definition 3.4. Let Θq0 be a formally integrable subgroupoid of Πq0 for some
q0 ∈ N. A fibre bundle F π→ X is called natural Θq-bundle if there exists a q ≥ q0
and a groupoid action of Θq on F . �

Geometric objects, invariants and morphisms of Θq-bundles are defined anal-
ogous to the Πq-case. The assumption of formal integrability ensures well-defined
prolongation and projection properties in Section 3.4. However the lower bound
q0 on the jet order is not strictly necessary (see Remark 3.27).

The most interesting geometric objects on a natural bundle are the generic
objects, which are defined as follows.

Definition 3.5. A local section ω of a natural Θq-bundle F → X is called generic
at x ∈ X if the map

Θq(−, x) → F : θ 7→ ω(x)θ

induced by the Θq-action has full rank. If ω is defined on U ⊆ X, then ω is
generic if it is generic at all x ∈ U . �

Nearly all constructions of natural bundles can also be done with natural Θq-
bundles and usually the proofs are identical up to an exchange of Πq and Θq. So
we proceed with natural Θq-bundles, where Πq-bundles are just a special case. If
the groupoid Θq is clear from the context, we will speak of natural bundles.
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3.1.1 Structure of Natural Bundles

In this section we apply the results on actions of transitive Lie groupoids from
Section 2.2 to natural Θq-bundles. Under additional assumptions we also obtain
a local result for intransitive jet groupoids.

By Proposition 2.10, each natural bundle F is associated to a principal bundle
and uniquely defined by the isotropy group action on the fibre F of F . The
isotropy groups of Πq are all isomorphic to GLq, so each natural Πq-bundle has
the structure

F ∼= Πq(x0,−)×GLq F.

The principal GLq-bundle Πq(x0,−) is isomorphic to the q-th order frame bundle.
This is done by identifying an open neighbourhood of x0 ∈ X with Rn. Define
the frame bundle as follows (see e.g. [KMS93, §12.12], [Yan92, §VI.3]).

Definition 3.6. Let Xn be an n-dimensional manifold. The q-th order frame
bundle P q = P q(X) is the set of all q-jets of diffeomorphisms Rn → X with
source 0 ∈ Rn. �

The first order frame bundle P 1 is the usual bundle of linear frames, where
each element p ∈ P 1

x is a basis of the tangent space TxX. The isomorphism
P q ∼= Πq(x0,−) shows that Πq acts on F on the left. To treat right groupoid
actions, we need the coframe bundle Pq = Pq(X). Dual to P q, it is defined as
the set of all q-jets jq(ϕ)(x) of diffeomorphisms ϕ : X → Rn with ϕ(x) = 0.
Pq ∼= Πq(−, y0) is a principal GLq-bundle with a left GLq-action. Starting in
Section 3.3, we construct all examples of natural bundles with a right groupoid
action.

Now turn to natural Θq-bundles for transitive subgroupoids Θq ≤ Πq. Here,
the frame bundle P q ∼= Πq(x0,−) is replaced by the subbundle PΘq = Θq(x0,−).
It is a principal Gq-bundle for the jet group Gq = Θq(x0, x0). For right Θq actions
we use the subbundle PΘq = Θq(−, y0) of the coframe bundle.

For intransitive groupoids Θq, the subbundle PΘq of the coframe bundle has
to be constructed differently. The standard candidate Θq(−, y0) would pick out
a single orbit, which is not satisfactory. However, a local construction is possible,
if the isotropy groups are essentially the same. All examples of Θq-bundles with
intransitive Θq treated in this thesis have isomorphic isotropy groups (see Chapter
7).

Proposition 3.7. Let Θq be a intransitive integrable subgroupoid of Πq with a
local trivialisation

U × U ′ ×Gq, Gq ≤ GLq

for open subsets U ⊆ X, U ′ ⊆ Rn−k. Then all natural Θq-bundles are locally
associated to PΘq = U ×Gq. �

Proof. Construct the trivialisation. On coordinates (x, y) of X × X define Θq

via differential invariants (see Theorem 3.19) Denote the defining equations of
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order zero by Φτ (y) = Φτ (x) for 1 ≤ τ ≤ k. On an open subset U ⊆ X they
define a map

U → Rk : x 7→ Φτ (x).

Modify the coordinates x and y such that (Φτ , xk+1, . . . , xn) is a coordinate sys-
tem of X (and analogous for y). On U it is possible to trivialise Rq as

Rq|U ∼= U ×Rk U ×Gq ∼= U × U ′ ×Gq

with coordinates (yk+1, . . . , yn) of Rn−k and U ′ ⊆ Rn−k. Then choose PΘq |U as
the preimage of yk+1 = . . . = yn = 0. On the trivialisation, each natural bundle
is of the form U × F ∼= (U ×Gq)×Gq F . �

To illustrate the structure of natural bundles, we construct a natural bundle.
Starting with the jet group action on a fibre, we associate it to the frame bundle.
The example also shows that we intuitively interpret sections of natural bundles
as geometric objects.

Example 3.8. Let X be an n-dimensional manifold and V = Rn a vector space
with the standard action of the general linear group GL1

∼= GL(V ). The action
on V induces a GL1-action on the space of symmetric bilinear forms V ×V → R:

S2V ∗ ×GL(V ) → S2V ∗ : (g, h) 7→ h−1 g h−tr.

We restrict to the positive definite forms S2V ∗
>0 that define scalar products on V .

Using the isomorphism GL1 → GL(V ) that identifies h with the Jacobian matrix
yij of a local diffeomorphism, we obtain the associated bundle

F = P 1 ×GL1 S
2V ∗

>0
∼= S2T ∗>0.

Sections on F → X define a scalar product at each tangent space TxX. In other
words, F = S2T ∗>0 is the natural bundle with metrics as geometric objects.

Interpreting a metric gij(x) as a symmetric differential form, we can also take
the pullback of gij(x) along a local diffeomorphism ϕ : X → X. This is equivalent
to the right Π1-action on S2T ∗, which is given in coordinates by:

F π�t
X

Π1 → F : ((y, gij), (x, y, yij)) 7→ (x, yki y
l
j gkl).

The formulae for the right Π1-action on F can be interpreted as the coordinate
changes of F in Vessiot notation:

x̂i = yi(x), gij = yki (x) y
l
j(x) ĝkl. (3.3)

The Π1-action on the natural bundle for first order conformal structures of Ex-
ample 3.3 (2) can now be given explicitly:

g̃ij 7→
gij
g11

=
yki y

l
j gkl

yk1 y
l
1 gkl

=
y1
i y

1
j + yki y

l
j g̃kl

y1
1 y

1
1 + yk1 y

l
1 g̃kl

. (3.4)
�
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3.2 Natural Bundle Functors

In this section we briefly introduce the natural bundle functor F which turns
a manifold X into a natural Πq-bundle F(X). We show how to construct a
natural bundle functor and the connection to natural bundles of Definition 3.1.
As a last step we turn to operators between natural bundle functors which are
related to differential operators. The exposition follows [KMS93, §14], except
for the distinction between a natural bundle and the functor. In contrast to the
remaining sections, we are here working with left actions on the natural bundles.

Natural bundle functors are of interest in Chapter 6 because they allow a
simple definition for equivalence of geometric objects.

Definition 3.9. [KMS93, 14.1] A natural bundle functor F on the category
Mfn of n-dimensional manifolds is a covariant functor F : Mfn → FM into the
category of fibre bundles satisfying the following conditions:

(1) (Prolongation) B ◦ F = idMfn , where B : FM→Mfn is the base functor
which projects a bundle to its base.

(2) (Locality) If ι : U → X is an inclusion of an open submanifold, then
F(U) = π−1

X (U) and F(ι) : π−1
X (U) → F(X) is the inclusion (with the

projection πX : F(X) → X).

(3) (Regularity) Let X,Y ∈ Mfn and P be manifolds. If f : P ×X → Y is a
smooth map such that for all p ∈ P the maps fp = f(p,−) : X → Y are local
diffeomorphisms then F̃(f) : P ×F(X) → F(Y ), defined by F̃(f) = F(fp),
is smooth, i. e. smoothly parametrised systems of local diffeomorphisms
are transformed into smoothly fibred local isomorphisms. �

With extra effort (see [ET79]) it is possible to omit the last condition. A
well-known example of a natural bundle functor is the tangent bundle functor T
which maps each X to TX. In order to construct all natural bundle functors, we
need the frame bundle functor Pq that maps each manifold X to its q-th order
frame bundle P q → X. On the morphisms ϕ : X → Y , the composition of jets
induces a morphism

Pq(ϕ) : Pq(X) → Pq(Y ) : jq(ψ) 7→ jq(ψ) ◦ jq(ϕ), ψ : Rn → X.

The following useful Proposition has been proved by Palais and Terng [PT77].

Proposition 3.10. A natural bundle functor F has a finite order, i. e. there
exists a q ∈ Z≥0 depending on F such that for all local diffeomorphisms f, g :
X → Y and every x ∈ X the equality jq(f)(x) = jq(g)(x) implies F(f)|F(M)x

=
F(g)|F(M)x

. �

Both examples T and Pq of natural bundle functors obviously yield the natural
bundles TX and P q if applied to a manifold X. A special case of the next
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proposition helps to recover the Πq-action on the value F(X) of a natural bundle
functor. It involves the bundle Πq(X,Y ) ⊆ Jq(X × Y ) that consists of all q-jets
of local diffeomorphisms X → Y .

Lemma 3.11. [KMS93, 14.4] Let F be a natural bundle functor of order q and
X, Y be n-dimensional manifolds. There are smooth maps

FX,Y : Πq(X,Y )×X F(X) → F(Y ) : (jq(f)(x), u) 7→ F(f)(u),

called associated maps. �

Proof. Proposition 3.10 implies that FX,Y is well-defined. Because smoothness is
a local local property, it is possible to restrict X and Y to open subsets which are
isomorphic to Rn. The polynomial representation of each q-jet gives a smoothly
parametrised system of local diffeomorphisms such that FRn,Rn coincides with F̃
from the regularity property of F . �

It follows directly that the bundle F(X) is a natural bundle in the sense of
Definition 3.1. We can again apply Proposition 2.10 to F(X) and see that it is
associated to the frame bundle P q. This carries over to natural bundle functors,
which are also completely determined by the GLq-action on the fibre F .

Theorem 3.12. [KMS93, 14.6] Each natural bundle functor F of order q is
naturally equivalent to the functor G = LF ◦Pq. LF is the functor that associates
a manifold F with GLq-action to a principal GLq-bundle:

LF (P ) = P ×GLq F

(On morphisms, we have LF (f) = (f, idF )). In other words, there is a bijection
between q-th order natural bundle functors and GLq-actions on smooth mani-
folds. �

A consequence of this theorem is the bijection between natural bundles and
natural bundle functors, as they are both uniquely defined the fibre.

We now turn to natural operators Φ between natural bundle functors F and G
which turn sections of F(X) → X into sections of G(X) → X. For each manifold
X, a natural operator determines a differential operator according to Definition
1.22 which is induced by a smooth morphism of natural bundles. Compare the
next definition with [KMS93, §14.13-14].

Definition 3.13. A natural operator Φ : F  G between two natural bundle
functors F and G is a system of differential operators ΦX : Γ(F(X)) → Γ(G(X))
satisfying the following conditions for all sections s ofF(X) → X:

(1) For all diffeomorphisms f : X → Y we have:

ΦY (F(f) ◦ s ◦ f−1) = G(f) ◦ ΦX(s) ◦ f−1.
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(2) ΦU (s|U ) = ΦX(s)|U for all open submanifolds U ⊆ X.

A natural operator is of order r ∈ N if all ΦX are of order r. �

In Chapter 6, natural operators help to decide the equivalence of geometric
objects. Similar to natural bundle functors, all natural operators are uniquely
defined by equivariant maps on certain fibres. For zero order operators, this is
connected to Proposition 2.11, and the generalisation to higher order operators
uses the following proposition.

Proposition 3.14. [KMS93, 14.16] For every q-th order natural bundle functor
F on Mfn its composition with the r-th order jet bundle functor Jr is a natural
bundle functor Jr ◦ F of order q + r. �

A proof of this proposition for natural bundles will be given in Proposition
3.26. It reduces the question of r-th order natural operators F  G to zero order
operators Jr ◦ F  G. By Definition B.14, the fibre determining Jr ◦ F is the
algebraic prolongation F (r) of F (called T rnF in [KMS93]). As in Proposition
B.17, natural operators are determined by equivariant maps.

Theorem 3.15. [KMS93, 14.18] There is a canonical bijective correspondence
between the set of r-th order natural operators Φ : F  G and the set of all
smooth GLq+r-equivariant maps between the GLq+r-spaces F (r) and G. �

In this section, we restricted to the full jet groupoid Πq, because subgroupoids
Θq ≤ Πq are only defined for a specific base manifold X. A possible generalisation
requires equivalent geometric objects on all n-dimensional manifolds X. We refer
to Chapter 6 on the equivalence problem and especially to Section 6.1.2 on the
relative equivalence problem.

3.3 Natural Bundles and Jet Groupoids

This section deals with the correspondence between natural Θq-bundles F and
subgroupoids Rq ≤ Θq. The main goal is to show that each jet groupoid can
locally be defined by an exact sequence (1.7):

0 // Rq(ω) // Θq

Φω //
ω◦s
// F , (3.5)

where F is a natural Θq-bundle and ω is a geometric object. The differential map
Φω is constructed by the Θq-action on F . Conversely, each geometric object ω
on F determines a symmetry groupoid Rq(ω).

In this section we generalise results of Pommaret [Pom78, Ch. 7] who con-
structed the above sequence for transitive subgroupoids Rq ≤ Πq. His results
are based on the work of Lie [Lie91] and Vessiot [Ves03]. Lie showed that each
groupoid can be defined by differential invariants and constructed a coordinate
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version of the map Φω. Vessiot realised that Πq acts on the differential invariants,
which leads to the natural bundle F .

All bundles and maps are explicitly computed for a small example in Section
3.3.1. A Maple version of this example follows in Section 5.1.

Throughout the section, Θq ≤ Πq(X ×X) is a jet groupoid which is formally
integrable as a system of PDEs. Denote the algebroid of Θq by gΘq and let
Rq ≤ Θq be an arbitrary jet subgroupoid with algebroid Rq. We start with the
definition of differential invariants.

Definition 3.16. [Pom78, Def. 7.1.44] A smooth map Φ : Θq → R is called
differential invariant on Θq under the action of Rq if

Φ(rqfq) = Φ(fq) ∀ rq ∈ Rq, fq ∈ Θq, t(fq) = s(rq).

A set {Φτ |1 ≤ τ ≤ k} of differential invariants is called complete if it is a maximal
set of invariants such that all Φτ are functionally independent. �

In coordinates (x, y) of X × X, the left Rq-action on Θq does not change
the source coordinates x. They are trivial differential invariants, which are often
omitted. All remaining differential invariants are of the form Φ(y, yq).

Differential invariants are effectively computed by integrating an involutive
distribution as the next proposition shows. For distributions and their integral
manifolds we refer to [MM03], [Sha97, Ch. 1, §2] and [Ste64, III.5]. Due to the
use of Frobenius’ theorem, the results in this section are local.

Lemma 3.17. Let Rq be the algebroid of Rq. Then Φ : Θq → R is a differential
invariant under the left Rq-action if and only if its Lie derivative

LηqΦ = L](ηq)Φ = 0

vanishes for all sections ηq of Rq → X. �

Proof. Rq ≤ gΘq is not only a subbundle of gΘq → X but also a Lie subalgebroid.
So ] induces an involutive distribution on Θq. Integrating the flows of ](ηq) for
ηq ∈ Γ(Rq) is equivalent to the left Rq-action on Θq. �

Example 3.18. On X = R, the groupoid of affine transformations R2 ≤ Π2

is defined by yxx = 0. Constructing the algebroid R2 of R2 via right invariant
vector fields, we obtain the equation

R2 : ηyy = 0

defining a subbundle of J2(T ) → X. The involutive distribution on Π2 is calcu-
lated with equation (C.13):

]((η, ηy, ηyy = 0)) = η
∂

∂y
+ ηy(yx

∂

∂yx
+ yxx

∂

∂yxx
),
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where (η, ηy) is an arbitrary section of R2 → X. So the distribution is generated
by C∞(X)-linear combinations of the vector fields

∂

∂y
, yx

∂

∂yx
+ yxx

∂

∂yxx
.

According to Lemma 3.17, a differential invariant Φ(y, yx, yxx) : Π2 → R under
the left R2-action must be of the form

Φ(y, yx, yxx) = Φ(
yxx
yx

).

R2 can also be defined by the equation yxx

yx
= 0 depending on differential invari-

ants only. �

The main result of two papers by Lie [Lie91] is that the defining equations
for an infinite continuous group of transformations can be written in terms of
differential invariants. A continuous group of transformations is a subgroupoid
Rq ≤ Πq. His proof uses infinitesimal transformations, which are translated into
the algebroid action of Rq on Πq. We generalise Lie’s result to subgroupoids
Θq ≤ Πq in a straightforward way.

Theorem 3.19. Each subgroupoid Rq ≤ Θq may locally be defined by differen-
tial invariants on Θq. �

Proof. Rq is a subbundle of Θq → X with algebroid Rq ≤ gΘq . The restriction
of the involutive distribution ](Rq) to Rq is T s(Rq) so for each x ∈ X, Rq(x,−)
is an integral submanifold of the distribution ](Rq) through 1x.

Let {Φτ |τ = 1, . . . , k} be a complete set of differential invariants, which exists
by Frobenius’ theorem. Then Φτ (y, yq) = Φτ (1x) determines Rq in a neighbour-
hood of 1x. �

Definition 3.20. [Pom78, Def. 1.4.4] The equations Φτ (y, yq) = Φτ (1x) defin-
ing Rq in terms of differential invariants Φτ are called Lie form. �

Writing the equations for a groupoid Rq in Lie form separates the source
coordinates from target and higher order jet variables, because all equations are
of the form Φ(y, yq) = ω(x). This is convenient for a kernel representation of
Rq = kerω0(Φ) as in equation (1.7).

Example 3.21. The Lie form for the groupoid of projective transformations on
X = R (see Example 2.15 (3)) is:

yxxx
yx

− 3
2
y2
xx

y2
x

= 0.
�
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In the exact sequence (3.5), we have constructed the differential map Φω0 for
the section ωτ0 (x) = Φτ (1x) and it remains to construct the natural bundle F .
Define a right Θq-action on smooth maps Φ : Θq → R by right multiplication:

Φ(fq)gq := Φ(fqgq), ∀fq, gq ∈ Θq, t(gq) = s(fq).

If Φ is a differential invariant, the associative law on Θq implies that the map
Φ(fq)gq is also a differential invariant:

Φ(fq)gq = Φ(fqgq) = Φ(rqfqgq), ∀rq ∈ Rq, t(fq) = s(rq). (3.6)

In other words, Θq acts on a complete set of differential invariants under the left
Rq-action. The differential invariants are local coordinates of a natural bundle.
Vessiot [Ves03] proved this for Πq, using the infinitesimal algebroid action of Jq(T )
on Πq. The following theorem takes up his ideas to construct natural Θq-bundles.
It is based on Appendix C.2, where jet algebroids are constructed both for left
and right invariant vector fields.

Theorem 3.22. A complete set {Φτ |τ = 1, . . . , k} of differential invariants under
the left Rq-action on Θq defines a natural Θq-bundle F → X. �

Proof. Construct the natural bundle F by a morphism of natural Θq-bundles

Θq → F : (x, y, yq) 7→ (x, uτ = Φτ (y, yq)), (3.7)

where the differential invariants Φτ are taken as coordinates uτ of F . Specifying
the infinitesimal right gΘq -action is equivalent to the definition of infinitesimal
coordinate changes on F .

The infinitesimal left and right Jq(T )-actions ] and [ on Πq are defined in
equations (C.13) and (C.15). Since Θq is a subgroupoid of Πq and Rq is a subal-
gebroid of gΘq they can be restricted to the actions:

] : Γ(Rq) → Xs(Θq) : ηq 7→ ηj(y)
∂

∂yj
+ ηjν(y)B

ν
j (q),

[ : Γ(gΘq) → Xt(Θq) : ξq 7→ ξi(x)
∂

∂xi
+ ξiµ(x)A

µ
i (q).

This follows directly from the defintion of ] and [ in equations (C.7) and (C.10).
Here ηq = (η(y), ηq(y)) stands for a section of Rq → X and ξq = (ξ(x), ξq(x))
is a section of gΘq → X. The Lie derivatives Lηq and Lξq = L[(ξq) commute by
Proposition C.9 and thus LξqΦ

τ of a differential invariant is an invariant again:

LηqLξqΦ
τ = LξqLηqΦ

τ = Lξq0 = 0.

So there are functions

LξqΦ
τ = Lτ (ξq, x,Φ) = ξiµL

τ,µ
i (x,Φ) (3.8)
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expressing the Lie derivative in terms of all differential invariants (including the
trivial ones). The trivial invariants fulfill Lξqx

i = ξi. It follows that the infinites-
imal gΘq -action on F is given by:

Lξq : Γ(gΘq) → XF : ξq 7→ ξi(x)
∂

∂xi
+ ξiµ(x)L

τ,µ
i (x, u)

∂

∂uτ
. (3.9)

�

Effectively, we have computed orbit space of the left Rq-action on Θq, so
denote the natural bundle by F = Rq\Θq. Due to the Rq-action, the result is only
local. To compute the finite Θq-action on F , take equation (3.6) and express the
groupoid action on the differential invariants Φτ (fqgq) = χτ (gq,Φ(fq)) in terms
of differential invariants. In practise, the infinitesimal action is more efficient and
for large examples it is even impossible to compute the groupoid action.

In the case of transitive subgroupoids Rq ≤ Πq, it is possible to simplify
the calculation of F . This connects Theorem 3.22 with the results of Pommaret
[Pom78, §7.2]. The full Rq-action can be replaced by the action of the isotropy
group Rq(y0, y0).

Proposition 3.23. If Rq and Θq are transitive, the bundle F = Rq\Θq is iso-
morphic to the orbit space Rq(y0, y0)\Θq(−, y0) of the isotropy group action. �

Proof. If Rq is transitive, each orbit of the Rq-action on Θq contains an element
of Θq(−, y0) for an arbitrary y0 ∈ X. So the orbit space is isomorphic to the
orbit space of Rq(y0, y0) on Θq(−, y0). �

By Proposition 2.10, the natural bundle F = Rq(y0, y0)\Θq(−, y0) is isomor-
phic to the associated bundle

F ∼= PΘq ×Gq Gq/Rq(y0, y0),

where Gq ∼= Θq(y0, y0) is the isotropy group of Θq.
For a single groupoid Rq ≤ Θq we have constructed the exact sequence (3.5)

defining Rq as the kernel kerω0(Φω0). The main result of this section shows that
the differential map Φω0 is induced by the Θq-action on the section ω0 of F → X.
Furthermore, every section ω of F → X determines a jet groupoid Rq(ω). We
call Rq(ω) the symmetry groupoid of the geometric object ω. The section ω0

which was used to construct F is called special section.

Theorem 3.24. Each section ω of a natural Θq-bundle F → X locally defines
a jet groupoid Rq(ω) = StabqF (ω) ≤ Θq. Conversely, each jet groupoid Rq ≤ Θq

defines a natural Θq-bundle F → X with section ω0, such that Rq = StabqF (ω0)
is the full symmetry groupoid of ω0 in Θq. �

Proof. Define the symmetry groupoid StabqF (ω) via the Θq-action on F

Φω : Θq → F : fq 7→ ω(y)fq, y = t(fq)
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as the kernel kerω(Φω) of the differential map Φω or equivalently by the exact
sequence

0 // StabqF (ω) // Θq

Φω //
ω◦s
// F (3.10)

as in equations (1.7), (3.5). The symmetry equations are:

ω(y) ◦ fq = ω(x), x = s(fq), y = t(fq). (3.11)

The Θq-action implies that StabqF (ω) is a groupoid since it is closed under µ and
inversion. Furthermore all idx are symmetries such that ι(X) ⊆ StabqF . As ω
is smooth, there is an open submanifold Y ⊆ X where Φω has constant rank.
We restrict X to this open subset. If the fibre F of F is homogeneous, Φω is
automatically of constant rank. By the implicit function theorem, StabqF (ω) is a
Lie groupoid.

The converse follows from Theorem 3.22 or Proposition 3.23 in the transitive
case. The section ω0 is constructed by the map

Rq → F = Rq\Θq : rq 7→ Rqrq.

For each x ∈ X, all rq ∈ Rq(x,−) are in the same Rq-orbit such that the map

ω0 : X → F : x 7→ Rq(x,−)

is a well-defined section of F → X. In the transitive case replaceRq byRq(−, y0).
An element fq ∈ Θq stabilises the section ω0 if and only if rqfq ∈ Rq �

Remark 3.25. The coordinate expressions of the symmetry equations (3.11) for
Rq(ω),

ω(y) ◦ fq = ω(x), x = s(fq), y = t(fq),

are in Lie form. If the section is not specified, they are called general Lie form.
The corresponding equations for the algebroid Rq(ω) are called Medolaghi form
(cf. [Pom83, p. 294]). They are obtained by linearising the general Lie form and
then pulling them back with the unit embedding ι. Alternatively, we can use the
infinitesimal gΘq -action:

Lξqu
τ |u=ω(x) = Lξqω

τ (x).

This is equivalent to setting the characteristic of the vector fields (3.9) to zero

Qτ = ξiµL
τ,µ
i (u)− ξiuτi = 0

and plugging in the section uτ = ωτ (x):

ξiµL
τ,µ
i (ω(x))− ξi∂xiωτ (x) = 0. (3.12)

If ω is not specified, the equations are called general Medolaghi form. For the
characteristic of a vector field see Definition 1.18 and for further reading on
characteristics and evolutionary vector fields see [Olv93, §5.1]. �
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Theorem 3.22 shows that PDE systems for jet groupoids always have an
interpretation as symmetries of geometric objects. The remaining part of this
chapter shows how to reach formal integrable jet groupoids using natural bundles.
On natural bundles it is possible to compute prolongations and projections for a
generic section which is not specified in advance. This leads to a classification of
geometric objects, which will be applied in Chapter 6 to decide the equivalence
of geometric objects.

3.3.1 Example

To illustrate the construction of a natural bundle, we follow all the steps of this
section for the flat metric on a two-dimensional base X. This is a special case of
Example 3.8. We will repeat this calculation in Section 5.1 as an introduction to
the computations in Maple.

Denote the independent variables by (x1, x2) and the dependent ones by
(y1, y2). They are base and fibre coordinates of the bundle X×X. The equations

(y1
1)

2 + (y2
1)

2 = 1, y1
2y

2
1 + y1

1y
2
2 = 0, (y1

2)
2 + (y2

2)
2 = 1 (3.13)

define a subgroupoid R1 ≤ Π1. It is the groupoid of isometries of the flat metric
on X and we construct the bundle F = S2T ∗ of metrics. To define R1 by
differential invariants, we apply Lemma 3.17. First compute the algebroid R1 =
ι∗V (R1) of R1:

(ι∗ ◦ δ) ((y1
1)

2 + (y2
1)

2) = ι∗(2y1
1 η

1
1 + 2y2

1 η
2
1) = 2η1

1,

where (η1, η2) are the fibre coordinates of T and δ ist the vertical derivative. All
defining equations for R1 are:

2η1
1 = 0, η1

2 + η2
1 = 0, 2η2

2 = 0. (3.14)

Involutive Distribution on Π1 and Differential Invariants

The distribution ](R1) involves the map (C.13) which is constructed by prolon-
gation:

ρ1(ηi∂yi) = ηi∂yi + ηijB
j
i (1).

Using the defining equations for R1, the involutive distribution ](η, η1) on V (Π1)
is generated by:

∂y1 , ∂y2 , B1
2(1)−B2

1(1) = −y2
1 ∂y11 − y2

2 ∂y12 + y1
1 ∂y21 + y1

2 ∂y22 . (3.15)

With these vector fields, it is easy to see that the equations for R1 are already in
Lie form and the left hand sides of equation (3.13) are the differential invariants.
The special section ω0 of F → X is given by the right hand sides of equation
(3.13).
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If the differential invariants were unknown, the linear system of PDEs

∂y1 Φ(y, y1) = 0
∂y2 Φ(y, y1) = 0

(B1
2(1)−B2

1(1))Φ(y, y1) = 0

has to be solved. The solution

Φ(y, y1) = Φ( (y1
1)

2 + (y2
1)

2, y1
2y

2
1 + y1

1y
2
2, (y1

2)
2 + (y2

2)
2 )

depends on the differential invariants. Each differential invariant corresponds to
a fibre coordinate of F . We choose them as (uij) = (u11, u12, u22) according to
their interpretation as entries of a metric. The projection Π1 → F computed in
Theorem 3.22 therefore is:

u11 = (y1
1)

2 + (y2
1)

2, u12 = y1
2y

2
1 + y1

1y
2
2, u22 = (y1

2)
2 + (y2

2)
2. (3.16)

The special section ω0 in coordinates determines the flat metric:

ω11
0 (x) = 1, ω12

0 (x) = 0, ω22
0 = 1.

Natural Bundle F – Infinitesimal J1(T )-Action

The infinitesimal J1(T )-action on F is computed according to Theorem 3.22 using
the map [:

[(ξ, ξ1) = ξi ∂xi + ξij A
j
i (q).

By Proposition C.8, the vector fields Aji (1) are:

Aji (1) = −y1
i ∂y1j

− y2
i ∂y2j

, 1 ≤ i, k ≤ 2.

Apply the infinitesimal J1(T )-action to equation (3.16) and express the result in
the coordinates uij again:

ξijA
j
i (1)u11 = −2ξ11u

11 − 2ξ21u
12

ξijA
j
i (1)u12 = −ξ12u11 − (ξ11 + ξ22)u

12 − ξ21u
22 (3.17)

ξijA
j
i (1)u22 = −2ξ22u

22 − 2ξ12u
12

Collecting for ξij , we obtain the vector fields Lji (u) corresponding to Aji (1):

L1
1(u) = −2u11 ∂u11 −u12 ∂u12 ,

L1
2(u) = −u11 ∂u12 −2u12 ∂u22 ,

L2
1(u) = −2u12 ∂u11 −u22 ∂u12 ,

L2
2(u) = −u12 ∂u12 −2u22 ∂u22 .

Finally, we obtain the infinitesimal J1(T )-action on F :

Γ(J1(T )) → XF : ξ1 7→ ξi(x) ∂xi + ξij(x)L
j
i (u).
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Natural Bundle F – Π1-Action

The example is small enough to compute the Π1-action on F . For coordinate sys-
tems x, y and z of X, the composition of first order jets is done by multiplication
of Jacobian matrices:

zixj = ziyky
k
j ,

where both x- and y-jets of z are present. Plug this formula into the differential
invariant

u11 = (z1
x1)2 + (z2

x1)2

and express everything by the differential invariants ûij(zy):

u11 = (z1
x1)2 + (z2

x1)2

= (z1
y1y

1
1 + z1

y2y
2
1)

2 + (z2
y1y

1
1 + z2

y2y
2
2)

2

= (y1
1)

2
[
(z1
y1)

2 + (z2
y1)

2
]

+ 2 y1
1y

2
1

[
z1
y1z

2
y2 + z1

y2z
2
y1

]
(3.18)

+(y2
1)

2
[
(z1
y2)

2 + (z2
y2)

2
]

= (y1
1)

2 û11 + 2 y1
1y

2
1 û

12 + (y2
1)

2 û22.

The remaining two transformations are obtained analogously, such that the action
on the fibre of F is:

u11 = (y1
1)

2 û11 + 2 y1
1y

2
1 û

12 + (y2
1)

2 û22,

u12 = y1
1y

1
2 û

11 +
(
y1
1y

2
2 + y1

2y
2
1

)
û12 + y2

1y
2
2 û

22, (3.19)

u22 = (y1
2)

2 û11 + 2 y1
2y

2
2 û

12 + (y2
2)

2 û22.

The action is linear in the fibre coordinates û and we have explicitly computed the
natural bundle F ∼= S2T ∗ of Example 3.8 in the 2-dimensional case. The above
equations coincide with the coordinate changes of S2T ∗ in Vessiot notation (3.3).

General Lie and Medolaghi Form

The general Lie form for a symmetry groupoid R1(ω) follows from the symmetry
equations (3.11) by plugging an arbitrary section ω of F → Xinto the Π1-action
(3.19) on F :

(y1
1)

2 ω11(y) + 2 y1
1y

2
1 ω

12(y) + (y2
1)

2 ω22(y) = ω11(x),

y1
1y

1
2 ω

11(y) +
(
y1
1y

2
2 + y1

2y
2
1

)
ω12(y) + y2

1y
2
2 ω

22(y) = ω12(x),

(y1
2)

2 ω11(y) + 2 y1
2y

2
2 ω

12(y) + (y2
2)

2 ω22(y) = ω22(x).

For the special section ω0, the Lie form coincides with equation (3.13). We
compute the general Medolaghi form for the symmetry algebroid R1(ω) using
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Remark 3.25:

2 ξ11 ω
11(x) + 2 ξ21 ω

12(x) = −ξi∂xiω11(x),

ξ11ω
12(x) + ξ12ω

22(x) + ξ21ω
11(x) + ξ22ω

12(x) = −ξi∂xiω12(x),

2 ξ21ω
12(x) + 2 ξ22ω

22(x) = −ξi∂xiω22(x).

We continue this example with the prolongation and projection in Section 5.1.

3.4 Prolongation and Projection

Whenever there is a geometric object ω on a natural bundle F , the symmetry
groupoid Rq(ω) = StabqF (ω) is a system of PDEs. For each Rq(ω), the formal
integrability may be checked individually, which may lead to large computations.
With natural bundles, only one calculation is necessary. It yields integrability
conditions which can be applied to each geometric object of interest.

In this section, we prepare the integrability conditions and show how the
prolongation and projection of symmetry groupoids is done in terms of natural
bundles and their sections. In the last part, we present an example and explicitly
show all necessary calculations.

3.4.1 Prolongation

To compute the prolongation, it is very convenient to work with exact sequencees.
As already seen in the proof of Theorem 3.24, each symmetry groupoid Rq(ω) is
defined by the exact sequence (3.10)

0 // Rq(ω) // Θq

Φω //
ω◦s
// F .

Analogous to equation (1.10), we expect that Rq+r(ω) is defined by the following
exact sequence projecting down to order q:

0 // Rq+r(ω) //

πq+r
q

��

Θq+r

pr(Φω) //

jr(ω)◦s
//

πq+r
q

��

Jr(F)

��
0 // Rq(ω) // Θq

Φω //
ω◦s

// F

(3.20)

The next proposition shows that the expectations are correct and that Rq+r(ω)
is again a symmetry groupoid. In the Πq-case, the fact that Jr(F) is a natu-
ral bundle is equivalent to Proposition 3.14 (or [KMS93, §14.16]), otherwise we
generalise [Pom83, Thm. 2.A.2.52] to Θq.

Proposition 3.26. Let F → X be a natural Θq-bundle. Then Jr(F) is a Θq+r-
bundle for all r ∈ N. If ω is a section of F with symmetry groupoid Rq(ω) =
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StabqF (ω) then the symmetry groupoid Stabq+rJr(F)(jr(ω)) is the r-th prolongation
Rq+r(ω) of Rq(ω). �

Proof. Apply the exact functor Jr to the action

F π�t Θq
// F

and use the embedding Θq+r ↪→ Jr(Θq) to obtain the commutative diagram:

Jr(F) π�t Jr(Θq) // Jr(F)

Jr(F) π�t Θq+r

?�

OO

// Jr(F)

By abuse of language, pr(π) and pr(t) are again called π and t, because they map
to Jr(X) = X. The property jr(ω ◦ fq) = jr(ω) ◦ jr(fq) for sections ω of F → X
and fq of Θq → X establishes all properties of Θq+r-action on Jr(F).

According to Definition 1.24, the prolongation of Rq(ω) is:

Rq+r(ω) = Jr(Rq(ω)) ∩Πq+r = Jr(Rq(ω)) ∩Θq+r. (3.21)

The last equality follows from the fact that Rq(ω) is a subbundle of Θq → X and
the exactness of Jr.

Having established the Θq+r-action on Jr(F), we can apply the functor Jr
to equation (3.10). Use canonical embedding Θq+r ↪→ Jr(Θq) to obtain the
commutative and exact diagram:

0 // Jr(Rq(ω)) // Jr(Θq)
jr(Φω) //

jr(ω)◦s
// Jr(F)

0 // Stabq+rJr(F)(jr(ω)) //
?�

OO

Θq+r ////
?�

OO

Jr(F)

The intersection Jr(Rq(ω))∩Θq+r is actually the symmetry groupoid of jr(ω).�

Remark 3.27. In Definition 3.4, we restricted to actions of formally integrable
groupoids above their geometric order q0. Otherwise, the last equality of equation
(3.21) would not hold for q ≤ q0.

However it is possible to omit the assumption q ≥ q0 if the restriction to Θq+r

is done separately, because a Θq-bundle is always a Θ′
q-bundle for any integrable

subgroupoid Θ′
q ≤ Θq. The projection back to order q+ r− 1 in Propositon 3.30

is not affected by the restriction. �

There is also a connection between the prolongation of natural bundles and
the algebraic prolongation of their fibres (see Section B.5.1).
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Corollary 3.28. The fibre Fr of Jr(F) is isomorphic to the algebraic prolonga-
tion F (r) of the fibre F of F as a manifold with Gq+r-action. �

Proof. By Proposition 1.16, the prolongation of a local trivialisation U × F of
F embeds into Jr(F)|U . �

3.4.2 Projection

The projection of symmetry groupoids can be expressed by natural bundles. To
construct the natural bundle for the projection, we work on the fibres and use
the jet groups introduced in Appendix B. The approach applied in this section is
new and the idea based on jet groups is due to Barakat. The results of Pommaret
[Pom83] are only applicable for natural Πq-bundles under the assumption that
integrable symmetry groupoids exist. In this case, both approaches coincide.

If F is the fibre of a natural bundle F , the algebraic prolongation F (r) has
already been identified as the fibre of Jr(F). Following the idea of Barakat,
we compute the projection F (r) → F (r)/Kq+r defined in Section B.5.2. F1 =
F (r)/Kq+r is the fibre of the natural bundle for the projection to order q+ r− 1.
Projections to lower orders are computed analogously. In order to prove this, we
need a preparational Lemma.

Lemma 3.29. Identify the kernel of the projection ker(πq+rq ) ≤ Θq+r(x, x) to
order q with Kq+r

q for each x ∈ X. For each fq+r ∈ Θq+r(x, y) we have the
equality of sets:

Kq+r
q fq+r = fq+rK

q+r
q ⊆ Θq+r(x, y). �

Proof. Each element fq+rkq+r with kq+r ∈ Kq+r
q ≤ Θq+r(x, x) can be written

as k′q+rfq+r for k′q+r = fq+rkq+rf
−1
q+r ∈ Kq+r

q ≤ Θq+r(y, y), because πq+rq is a
groupoid morphism. �

In the following, this will be used like a commutation law without further
notice. We construct the natural bundle for the projection from order q + r to
q + r − 1.

Proposition 3.30. Let F be a natural Θq bundle with fibre F , such that Jr(F)
has the fibre F (r). Define F1 = F (r)/Kq+r

q+r−1. The bundle

F(1) = PΘq+r ×Gq+r F1

is a natural bundle of order q + r − 1 and the projection I : Jr(F) → F(1) is a
morphism of natural Θq-bundles. �

In the following chapters, use the notation

Jr(F)/Kq+r
q+s := PΘq+r ×Gq+r F

(r)/Kq+r
q+s
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for the projection of natural bundles. Note that the bundle F(1) does not always
coincide with the Janet bundle F1 used by Pommaret (see below Remark 2.A.3.8
in [Pom83]), since F(1) is not necessarily a vector bundle. The construction of
F(1) presented here does not depend on an integrable symmetry groupoid. It thus
avoids the problems which are adressed in [Pom83, Ex. 3.11]. In Section 3.5.3,
the Janet bundles are defined and the distinction between F(1) and F1 becomes
apparent.

Proof. The isotropy group Gq+r acts on the fibre F (r) and by Proposition B.16,
Gq+r−1 acts on F1 by taking arbitrary preimages in Gq+r. Since PΘq+r/Kq+r

∼=
PΘq+r−1 , the bundle F(1) is isomorphic to:

F(1) = PΘq+r ×Gq+r F1
∼= PΘq+r−1 ×Gq+r−1 F1.

The projection F (r) → F1 is Gq+r-equivariant by Proposition B.17 (2) and the
projection π : Θq+r → Θq+r−1 is a morphism of groupoids which restricts to PΘq ,
such that

I : PΘq+r ×Gq+r F
(r) → PΘq+r−1 ×Gq+r−1 F1 : (p, f) 7→ (π(p), fKq+r)

is morphism of natural Θq-bundles. �

In the Πq-case, it follows from Theorem 3.15 (cf. [KMS93, 14.18]) that I
is a morphism of natural bundles. Essentially, we have used the same idea to
construct the bundle morphism. Using the same notation as above, we show the
connection between F(1) and the projection Rq+r(ω) → R(1)

q+r−1(ω).

Proposition 3.31. Let Rq(ω) be the symmetry groupoid of the section ω of
F → X. The exact sequence for the prolongation Rq+r(ω) projects down to:

0 // Rq+r(ω) //

πq+r
q+r−1

��

Θq+r
////

πq+r
q+r−1

��

Jr(F)

I

��
0 // R(1)

q+r−1(ω) // Θq+r−1
//// F(1)

(3.22)

The symmetry groupoid

R(1)
q+r−1(ω) = Stabq+r−1

F(1)
((I ◦ jr)(ω))

is the image of Rq+r(ω) under πq+rq+r−1 and thus the projection in the sense of
Definition 1.24. �

Proof. Since I(jr(ω)(x)) = jr(ω)(x)Kq+r, the diagram (3.22) commutes by
Lemma 3.29. We show that fq+r−1 ∈ Θq+r−1(x, y) satisfies the symmetry equa-
tions (3.11),

I(j1(ω))(y) ◦ fq+r−1 = I(j1(ω))(x),
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on F(1) if and only if there exists an element fq+r ∈ Θq+r projecting down to
fq+r−1. Each element v ∈ F(1) is the Kq+r-orbit v = uKq+r for a suitable u ∈
Jr(F). Θq+r−1 acts on F(1) by taking arbitrary preimages fq+r ∈ π−1(fq+r−1):

v ◦ fq+r−1 = uKq+rfq+r = ufq+rKq+r.

Here, we applied Lemma 3.29. Rewrite the symmetry equations

I(j1(ω))(y) ◦ fq+r−1 = jr(ω)(y)Kq+rfq+r

= jr(ω)(y)fq+rKq+r

!= jr(ω)(x)Kq+r.

They are satisfied if and only if there exists a modified element f ′q+r ∈ Θq+r with
jr(ω)(y)f ′q+r = jr(ω)(x) that projects to fq+r−1. �

Remark 3.32. If the projection πq+rq+r−s : Rq+r(ω) → R(s)
q+r−s(ω) is needed, the

fibre F1 has to be replaced by F ′ = F (r)/Kq+r
q+r−s. The proofs of Propositions

3.30 and 3.31 are the same except for different indices. �

The last two propositons provide the theoretical background for the projec-
tion of symmetry groupoids. For practical applications, we have to compute the
projection Jr(F) → F(1) and the Θq+r−1-action on F(1). Locally, the projection
can be calculated with the help of Proposition B.16 on the fibres. The infinites-
imal kq+r-action on F (r) defines an involutive distribution on F (r) which can be
integrated by using Frobenius’ theorem. The resulting coordinates of the orbit
space F1 are the fibre coordinates of F(1).

Integrating a distribution usually involves solving linear PDE systems, which
cannot be avoided for most projections. However the next proposition shows
that a projection Jr(F) → F(1) from order q + r to q + r− 1 only involves linear
algebra. For simplicity, we start with natural Πq-bundles and generalise later (see
also [Pom78, §7.3] for the case of Πq).

Proposition 3.33. The coordinates for the Πq+r−1-bundle F(1) = Jr(F)/Kq+r
q+r−1

over Jr−1(F) can be calculated by solving linear equations over the quotient field
K(u), where (x, u) are the coordinates of F . �

Proof. According to Theorem 3.22, the infinitesimal Jq(T )-action on F is given
by the vector field

Lξ = ξi∂xi + ξiµL
µ,τ
i (u)∂uτ , |µ| ≤ q. (3.23)

The prolongation according to Definition 1.18 provides the Jq+r(T )-action on
Jr(F):

ρr(Lξ) = DνQ
τ∂uτ

ν
+ ξiDi, Qτ = ξiµL

µ,τ
i (u)− uτi ξ

i.
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The generators of the kq+r-action on F (r) are the coefficients of ξiσ in ρr(Lξ) with
|σ| = q + r. They are computed by differentiating the first summand of Qτ :

Lξq+r = ξiµ+νL
µ,τ
i (u)∂uτ

ν
, |µ| = q, |ν| = r. (3.24)

It follows that Kq+r acts on the fibres of F (r) → F (r−1) by u-dependent transla-
tions. The generators of the distribution are:

Lξi
ρ

=
∑

µ+ν=ρ
|µ|=q,|ν|=r

Lµ,τi (u)∂uτ
ν
.

Obviously all jets (u, u1, . . . , ur−1) up to order r− 1 are coordinates of the factor
space and we only have to care about r-th order jets. The linear ansatz

v = A(u)ur = Aντ (u)u
τ
ν ,

turns Lξi
ρ
v = 0 into linear equations for A(u). If d is the fibre dimension of F (r) →

F (r−1), its solution space has the correct dimension d − k. A basis (vβ = Aβ,µα )
for the solution space thus provides the fibre coordinates of F(1) → Jr−1(F). In
coordinates, the map I : Jr(F) → F(1) is therefore given by:

Iβ(u, ur) = (u, ur−1, A
β,µ
α (u)uαµ), |µ| = r.

Usually I is written as Iβ = Aβ,µα (u)uαµ. �

Remark 3.34. If F is a Θq-bundle, the algebroid gΘq can locally be defined
by equations in Medolaghi form (3.12) for a section θ of a natural Πq-bundle
F ′ → X:

ξiµM
α,µ
i (θ(x))− ξi ∂xiθα(x) = 0, 1 ≤ α ≤ k, |µ| ≤ q.

Locally, we can choose a subset of the coordinates ξiµ of Jq(T ) as coordinates for
gΘq . A choice of coordinates ξiµ for the algebroid makes both equations (3.23)
and (3.24) x-dependent. However the equations for coordinates remain linear and
fibre coordinates for F are of the form

vβ = Aβ,µα (u, x)uαµ. �

3.4.3 Example

We give an example which is small enough to follow all steps by hand. It was
also calculated by Vessiot [Ves03, §17].

On a 2-dimensional manifold X with coordinates (x1, x2) the natural bun-
dle F = T ∗ ×X

∧2 T ∗ with fibre coordinates (u1, u2, u) such that they are the
coefficients of the differential forms

ω = u1dx1 + u2dx2, Ω = udx1 ∧ dx2.
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Sections of F → X specify a differential 1-form ω and a 2-form Ω by:

ω = ω1(x)dx1 + ω2(x)dx2,

Ω = Ω(x)dx1 ∧ dx2.

The Π1-action on F is in coordinates given by:

u1 = y1
1 û

1 + y2
1 û

2,

u2 = y1
2 û

1 + y2
2 û

2, (3.25)
u = (y1

1 y
2
2 − y1

2 y
2
1) û.

It is equivalent to the pullback of the forms ω and Ω via the diffeomorphism

y1 = y1(x1, x2), y2 = y2(x1, x2).

Prolongation

The prolongation to J1(F) ∼= J1(T ∗)×X J1(
∧2 T ∗) with coordinates

(u1, u2, u, u1
1, u

1
2, u

2
1, u

2
2, u1, u2)

is done according to Remark 1.13. Effectively it is formal differentiation having
in mind that the u-coordinates depend on x, and the û-coordinates depend on y:

u1
1 = y1

11 û
1 + y2

11 û
2 + y1

1 y
1
1 û

1
1 + y1

1 y
2
1 û

1
2 + y2

1 y
1
1 û

2
1 + y2

1 y
2
1 û

2
2,

u1
2 = y1

12 û
1 + y2

12 û
2 + y1

1 y
1
2 û

1
1 + y1

1 y
2
2 û

1
2 + y2

1 y
1
2 û

2
1 + y2

1 y
2
2 û

2
2, (3.26)

u2
1 = y1

12 û
1 + y2

12 û
2 + y1

1 y
1
2 û

1
1 + y1

2 y
2
1 û

1
2 + y2

2 y
1
1 û

2
1 + y2

1 y
2
2 û

2
2,

...

Even in this small example the prolongation becomes rather large, for bigger
examples it is often impossible to compute the finite transformations. Note that
the second order jets in the expressions of u1

2 and u2
1 coincide. It is recommended

to work with the vector fields of the infinitesimal J1(T )-action on F . It is given
by:

Lξ = ξ1∂x1 +ξ2∂x2− (ξ11 u
1 +ξ21 u

2)∂u1− (ξ11 u
1 +ξ21 u

2)∂u1− (ξ11 +ξ22)u ∂u (3.27)

The first prolongation of v for the J2(T )-action on J1(F) is at least shorther than
the Π2-action:

ρ1(Lξ) = Lξ

−(u1ξ111 + u2ξ211 + 2u1
1ξ

1
1 + u2

1ξ
2
1 + u1

2ξ
2
1)∂u1

1

−(u1ξ112 + u2ξ212 + u1
2ξ

1
1 + u2

2ξ
2
1 + u1

1ξ
1
2 + u1

2ξ
2
2)∂u1

2

−(u1ξ112 + u2ξ212 + u1
1ξ

1
2 + u2

1ξ
2
2 + u2

1ξ
1
1 + u2

2ξ
2
1)∂u2

1
(3.28)

−(u1ξ122 + u2ξ222 + u1
2ξ

1
2 + 2u2

2ξ
2
2 + u2

1ξ
1
2)∂u2

2

−(uξ111 + uξ212 + 2u1ξ
1
1 + u1ξ

2
2 + u2ξ

2
1)∂u1

−(uξ112 + uξ222 + u2ξ
1
1 + 2u2ξ

2
2 + u1ξ

1
2)∂u2
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A Prolonged Section which is not a Lie Groupoid

We give an example of a jet groupoidR1 whose prolongation is not a Lie groupoid
anymore. It is due to the fact that the prolongation is defined as the intersection
of two manifolds. Unlike in Example A.3, the symbol of R2 is a vector bundle
and the problems occur in lower order equations.

Choose the section

ω0 = (1 + (x2)2)dx1,

Ω0 = dx1 ∧ dx2.

It specifies the symmetry groupoid R1(ω0) by the equations

1 + (x2)2 = y1
1 (1 + (y2)2)

0 = y1
2 (1 + (y2)2),

1 = y1
1 y

2
2 − y1

2 y
2
1,

which are obviously of constant rank. The section is constructed such that the
first prolongation

0 = y1
11 (1 + (y2)2) + 2y1

1 y
2
1 y

2,

2x2 = y1
12 (1 + (y2)2) + 2y1

1 y
2
2 y

2,

0 = y1
12 (1 + (y2)2) + 2y1

1 y
2
1 y

2,

...

contains the equation
2x2 = 2(y1

1 y
2
2 − y1

2 y
2
1)y

2

as difference between the second and third equation. The map j1(Φω0) is not of
constant rank around y2 = 0. In contrast to Example A.3, the nonconstant rank
is due to the lower order equations.

Projection

In equation (3.28), the first prolongation ρ1(Lξ) of the infinitesimal J1(T )-action
on F was computed. The infinitesimal k21-action on the fibre F (1) can be read off
ρ1(Lξ) by setting all zero and first order jets of ξ to zero:

ρ1(Lξ)|ξ0=ξ1=0 = −(u1ξ111 + u2ξ211)∂u1
1
− (u1ξ112 + u2ξ212)∂u1

2

−(u1ξ112 + u2ξ212)∂u2
1
− (u1ξ122 + u2ξ222)∂u2

2

−(uξ111 + uξ212)∂u1 − (uξ112 + uξ222)∂u2 .
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Collecting for the ξiµ, the distribution is generated by the vector fields Lξi
ρ
:

u1∂u1
1
+ u∂u1 , u1∂u1

2
+ u1∂u2

1
+ u∂u2 , u1∂u2

2
,

u2∂u1
1
, u2∂u1

2
+ u2∂u2

1
+ u∂u1 , u2∂u2

2
+ u∂u2 .

To integrate the distribution naively, the equations Lξi
ρ
c(ui, u, uij , uj) = 0 must be

solved. Instead, we use Proposition 3.33 and solve the system of linear equations.
Taking the coefficients of the derivatives in Lξi

ρ
in the order

∂u1
1
, ∂u1

2
, ∂u2

1
, ∂u2

2
, ∂u1 , ∂u2 ,

we obtain the matrix for Lξi
ρ
v = 0:



u1 0 0 0 u 0
0 u1 u1 0 0 u
0 0 0 u1 0 0
u2 0 0 0 0 0
0 u2 u2 0 u 0
0 0 0 u2 0 u


It has the kernel generated by (0,−1, 1, 0, 0, 0)tr, which is translated into the
coordinate v = u2

1 − u1
2 completing the coordinates for F(1) to (u1, u2, u, v).

The Natural Bundle F(1)

F(1) is again a natural bundle, so we are interested in the Π1-action. For the
finite version compute

u2
1 − u1

2 = (y1
1 y

2
2 − y1

2 y
2
1)(û

2
1 − û1

2) (3.29)

using equation (3.26) and express the result in terms of v:

v = (y1
1 y

2
2 − y1

2 y
2
1) v̂.

A comparison with equation (3.25) shows that F(1)
∼= F ×X

∧2 T ∗ is the bundle
modelling a single 1-form and two 2-forms. The differential map I of order one
is nothing else than the exterior derivative d : T ∗ →

∧2 T ∗. It is also possible to
compute the infinitesimal action on F(1) by using ρ1(Lξ):

ρ1(Lξ)(u2
1 − u1

2) = (ξ11 + ξ22)(u
2
1 − u1

2).

The infinitesimal J1(T )-action on F(1) is given by the vector field

Lξ,1 = Lξ + (ξ11 + ξ22) v ∂v. (3.30)
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The Π1-action on the fibre F(1) of F(1) is no longer transitive and we find an
invariant on F(1):

ψ : F(1) → R : (x, u1, u2, u, v) 7→ v

u
,

which is only defined on the open subbundle u 6= 0. With equations (3.25) and
(3.29) it is easy to check that v/u is an invariant.

Now the question arises, for which sections (ω,Ω) of F → X the symmetry
groupoid R1(ω,Ω) is integrable. By plugging the derivatives of ω into equation
(3.29), there is a possibly new equation. It might be a multiple of the last line in
equation (3.25). The question will be answered in the next section.

3.5 Integrability Conditions and
Vessiot Structure Equations

In this section, the main result of this chapter is presented. It is a test for formal
integrability of symmetry groupoids of geometric objects ω on F that works
directly on natural bundles. The results are equations, called Vessiot structure
equations, on a bundle F(1) where each section on F → X can be tested for
integrability. In the case of Πq-bundles F = Pq/Gq for a subgroup Gq ≤ GLq,
this result goes back to Vessiot [Ves03] and was taken up by Pommaret [Pom78,
§7.3] [Pom83, §2.A.3]. For a recent proof using groupoids see [Lor08b].

The new contribution in this thesis is a generalisation to natural Θq-bundles
and, most importantly, to the case of intransitive Θq-actions on F . These ex-
tensions are crucial for the applications in Chapter 4 and the Vessiot equivalence
method in Chapter 6.

In Section 3.5.1 we consider the question whether the bundle F(1) has a vector
bundle structure, which simplifies the Θq-action notably. Section 3.5.2, briefly
shows how to compute the symbols of symmetry groupoids efficiently. The inte-
grability conditions give rise to a sequence of differential operators, the nonlinear
Janet sequence. It will be introduced in Section 3.5.3.

The test for formal integrability of symmetry groupoids Rq(ω) is based on
Theorem 1.28. We prolong Rq(ω) to Rq+r(ω) until it has 2-acyclic symbol and
then test a single projection. Translated to the language of natural bundles, it
means computing the section jr(ω) of Jr(F) → X and then projecting to the
bundle F(1) = Jr(F)/Kq+r

q+r−1. The surjectivity of the corresponding projection
of jet groupoids is treated in the next theorem.

Theorem 3.35. Let F → X be a natural Θq-bundle of order q with section ω
and let Gq+s ≤ GLq+s be the isotropy group of Θq+s (where Gq+s ∼= Θq+s(x, x)
∀x ∈ X, s ≥ 0). Define the natural bundle F(1) = Jr(F)/Kq+r

q+r−1 with projection
I : Jr(F) → F(1) for an r ∈ N. Then the projection of symmetry groupoids,

π = πq+rq+r−1 : Rq+r(ω) → R(1)
q+r−1(ω),
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is surjective, if and only if there is an equivariant section c : Jr−1(F) → F(1), i.e.
c(u fq+r−1) = c(u)fq+r−1 for all fq+r−1 ∈ Θq+r−1, satisfying

I(jr(ω)) = c(jr−1(ω)). (3.31)
�

Before proving the theorem, it is helpful to have an idea of its content. The
defining equations for Rq(ω) are given by coordinate expressions of the symmetry
condition ω(y)rq = ω(x). Taking the r-th order jet bundle Jr(F) means differ-
entiating them r times. The projection I, standing for integrability conditions,
eliminates all jets of order q + r from the equations of order q + r. Surjectivity
of π means that all new equations of order ≤ q + r − 1 can be expressed by the
equations from Jr−1(F). The equivariant section c shows how the new equations
are expressed in terms of Jr−1(F).

Proof. If not stated otherwise, we use the convention that a quantity aq+r de-
notes an arbitrary preimage of aq+r−1 under the appropriate projection.

If there exists an equivariant section c : Jr−1(F) → F(1), then for each
rq+r−1 ∈ Rq+r−1(ω)(x, y) we have jr−1(ω)(y)rq+r−1 = jr−1(ω)(x) on Jr−1(F).
By the virtue of the equivariant section c, rq+r−1 is also an element of R(1)

q+r−1:

I(jr(ω)(y))rq+r−1 = c(jr−1(ω)(y))rq+r−1

= c(jr−1(ω)(y)rq+r−1)
= c(jr−1(ω)(x))
= I(jr(ω)(x)).

Reading the first and last part of the equations as

jr(ω)(y)Kq+rrq+r−1 = jr(ω)(x)Kq+r,

it follows that each lift rq+r ∈ π−1(rq+r−1) can be modified by an element of
Kq+r such that rq+r ∈ Rq+r(ω).

The converse direction is more complicated and we distinguish several cases
to give a local definition of c. Let F be the abstract fibre of F .

(1) If Gq+r−1 acts transitively on F (r−1), each u ∈ Jr−1(F)y can be written as
u = jr−1(ω)(y)gq+r−1 with gq+r−1 ∈ GLq+r−1

∼= Πq+r−1(y, y). Then define

c(u) = I(jr(ω)(y))gq+r−1 = jr(ω)(y)gq+rKq+r,

which is well-define due to gq+rKq+r being the whole preimage in Gq+r.
For each fq+r−1 ∈ Θq+r−1, we can find hq+r−1 ∈ Gq+r−1 with

jr−1(ω)(x)hq+r−1 = u fq+r−1

= jr−1(ω)(y)gq+r−1fq+r−1

= jr−1(ω)(y)rq+r−1hq+r−1

and fq+r−1 = g−1
q+r−1rq+r−1hq+r−1.
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Surjectivity of π implies the existence of rq+r over r and we can choose an
arbitrary lift of fq+r. The lifts gq+r and hq+r can be chosen such that

rq+r = gq+rfq+rh
−1
q+r.

This is sufficient to prove that c is equivariant:

c(u fq+r−1) = jr(ω)(x)hq+rKq+r

= jr(ω)(y)gq+r(g−1
q+rrq+rhq+r)Kq+r

= c(u)fq+rKq+r

= c(u)fq+r−1.

(2) Assume that the Gq+r−1-action on F (r−1) is intransitive with invariants

ψ = (ψ1, . . . , ψk) : F (r−1) → Rk

and that Φω has maximal rank. Then ψ(ω(y)) also has full rank. It implies
that we can find an open neighbourhood U of F over the open neighbour-
hood Y ⊆ X such that for each u ∈ U there is a z ∈ Y with:

ψ(u) = ψ(jr−1(ω)(z)).

It is constructed by y ∈ X and the preimage under ψ of an open neighbour-
hood of ψ(ω(y)) in Rk.

In this case, u can be written as u = jr−1(ω)(z)gq+r−1 for some gq+r−1 ∈
Θq+r−1(y, z). The equivariant section c will then be defined by:

c(u) = I(jr(ω)(z))gq+r−1 = jr(ω)(z)gq+rKq+r.

If there exists another w ∈ X with ψ(jr−1(ω)(z)) = ψ(jr−1(ω)(w)), we can
find hq+r−1 ∈ Θq+r−1(x,w) with

u fq+r−1 = jr−1(ω)(w)hq+r−1.

But then
jr−1(ω)(z)gq+r−1fq+r−1 = jr−1(ω)(w)hq+r−1

gives rise to an element r = gfh−1 ∈ Rq+r−1(ω) of the symmetry groupoid.
As in case (1), lifts can be chosen such that

rq+r = gq+rfq+rh
−1
q+r.

This is sufficient to prove that c is equivariant and well-defined:

c(u fq+r−1) = c(jr−1(ω)(w)hq+r−1)
= jr(ω)(w)hq+rKq+r

= jr(ω)(z) rq+r hq+rKq+r

= jr(ω)(z) gq+r fq+rKq+r

= (jr(ω)(z) gq+rKq+r) fq+r−1

= c(u)fq+r−1.



76 CHAPTER 3. NATURAL BUNDLES

(3) To complete the cases, assume that jr−1(ω) restricts to a closed subbundle
F ′ → X of Jr−1(F). This case occurs if the equations for Rq+r−1(ω) on
Jr−1(F) are redundant. Using case (1) or (2) on I ′ : J1(F ′) → F ′

(1), we
obtain an equivariant section c′ : F ′ → F ′

(1), which has to be continued to
a section c : Jr−1(F) → F(1).

Using Proposition B.17, there is an embedding ι : F ′
1 ↪→ F(1), such that

ι◦ c′ has the correct image. Around x ∈ X we can find a coordinate system
ur−1 of Jr−1(F) such that F ′ is given by us+1

r−1 = . . . = udr−1 = 0. As F(1)

is a bundle over Jr−1(F), we can find a coordinate system (ur−1, v) of F(1)

over ur−1. In these coordinates, ι ◦ c′ is given by:

vα = cα(u1
r−1, . . . , u

s
r−1).

Then there exists an open neighbourhood where the cα define a section
c : Jr−1(F) → F(1). The equivariance is proved as in case (2) with
us+1
r−1, . . . , u

d
r−1 playing the role of the invariants. �

To use Theorem 3.35 effectively, we compute all possible equivariant sections
c : Jr−1(F) → F(1).

Remark 3.36. With the notation of Theorem 3.35 and the coordinates v = vα

for the fibre F(1) → Jr−1(F) the infinitesimal version of the equivariance condition
c(urq+r−1) = c(u)rq+r−1 is:

Lξc
α(u) = Lξv

α|v=c(u), (3.32)

where Lξ denotes the vector field (3.9) of the algebroid action on F . To compute
the equivariant sections, a linear inhomogenous system of PDEs must be solved.�

For the next definition we need to assume that the natural bundles F and F(1)

are analytic, i.e. the coordinate changes and the Θq-action can be represented by
analytic functions. Since F(1) → Jr−1(F) is an affine bundle (see Section 3.5.1),
equation (3.32) is an inhomogenous linear PDE system. Its solutions split into a
particular solution and the vector space of homogenous solutions.

Definition 3.37. Let F and F(1) and I from Theorem 3.35 be analytic. The
integrability conditions of equation (3.31),

I(jr(ω)) = c(jr−1(ω)), (3.33)

where c parametrises all analytic equivariant sections, are called Vessiot structure
equations and the natural bundle F(1) is called bundle of integrability conditions.�

In the examples treated by Pommaret [Pom78] and Vessiot [Ves03], the equiv-
ariant sections can be parametrised by a finite set of constants. As we are dealing
with a more general situation, they may depend on arbitrary functions of the in-
variants on Jr−1(F). In some cases there may be no equivariant sections at all.
We will show an example, where first constants and then functions of invariants
occur.
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Example 3.38. Continue the example in Section 3.4.3. The J1(T )-action on
F(1) is computed in Equation 3.30. With only a single coordinate v for the fibre
of F(1) → F , the equivariance condition is according to equation (3.32):

Lξ,1c(u1, u2, u) = (ξ11 + ξ22)c(u
1, u2, u).

Writing c(u) = c in jet notation and collecting for jets in ξ, the equivariance
equations are:

u1 cu1 + u cu = c, u1 cu2 = 0, u2 cu1 = 0, u2 cu2 + u cu = c.

Any equivariant section c : F → mcF(1) must be of the form

c(u1, u2, u) = C1u

for an arbitrary constant C1. This means for a section (ω,Ω) of F → X, the
symmetry groupoid R1(ω,Ω) is integrable if and only if there is a constant C1

such that the Vessiot structure equations are satisfied:

∂x1ω2(x)− ∂x2ω1(x) = C1Ω(x).

The geometric interpretation is that the derivative of the 1-form ω must be a
constant multiple of the 2-form:

dω = C1Ω.

If R1(ω,Ω) is not formally integrable, we can continue with the bundle F(1)

and apply Theorem 3.35 again. Another prolongation and projection yields the
bundle F(2) with new coordinates

v1 =
vu1 + uv1

(u)2
, v2 =

vu2 + uv2
(u)2

,

which are the total derivatives of the invariant v
u on F(1). It follows from Lemma

1.12 (or by direct computation) that F(2) = F(1) ×X T ∗. The Vessiot structure
equations in this case are

v1 = H1(
v

u
)u1, v2 = H1(

v

u
)u2,

with an arbitrary function H1 that depends on the invariant. Geometrically, this
means that the newly found 1-form γ = v1dx1+v2dx2 is a (nonconstant) multiple
of ω.

Note that the bundle F(2) is only a subbundle of J1(F(1))/K2
1 → F(1) and

that we have applied the results of Section 4.3.1. �

More examples will follow in Chapter 5, where all calculations are done with
the Maple packages jets [Bar01] and JetGroupoids.
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3.5.1 Bundle Structure of F(1)

In this section we have a closer look at the structure of the first bundle of inte-
grability conditions

F(1) = Jr(F)/Kq+r
q+r−1

and ask the question whether it can be turned into a vector bundle by a suitable
change of coordinates. This was the case in all examples treated by Pommaret
and Vessiot ([Pom78], [Pom83], [Ves03]), but especially when dealing with natural
Θq-bundles, F(1) is not necessarily a vector bundle anymore.

The advantage of vector bundle coordinates for F(1) is that further prolon-
gations and projections can be done more efficiently. If F(1) is a vector bundle,
some parts of the Vessiot structure equations can be predicted, which will be
used in Section 4.1.

We choose fibre coordinates (u) for F and (u, ur) for Jr(F) such that F(1)

has coordinates (u, ur−1, v). Computing the coordinates vβ with the help of
Proposition 3.33 yields

vβ = Aβ,µα (u, ur−1)uαµ.

The example on metrics and Christoffel symbols in Section 5.1 shows that the co-
ordinates of F(1) do not automatically show that F(1) is a vector bundle,especially
when dealing with second order structures. The coordinates usually have to be
modified with an affine term

vβ = Aβ,µα (u, ur−1)uαµ +Bβ(u, ur−1), |µ| = r, (3.34)

in order that F(1) is a vector bundle. For examples of natural Θq-bundles where
the intermediate bundles do not possess a vector bundle structure, see Section
4.3.3 and Chapter 7. In the following, we determine conditions for the existence
of an affine term B(u, ur−1) and show how to construct it from an equivariant
section.

An immediate consequence of Proposition 1.10 (1) and Proposition 3.33 is the
following Lemma.

Lemma 3.39. F(1) → Jr−1(F) is an affine bundle. �

An equivariant section c of F(1) → Jr−1(F) specifies an origin in each fibre
of F1 → F (r−1). The point is that this specification is Gq+r−1-invariant, which
proves that F(1) is a vector bundle.

Lemma 3.40. F(1) is a natural vector bundle if and only if there exists an equiv-
ariant section c : Jr−1(F) → F(1) with c(ur−1fq+r−1) = c(ur−1)fq+r−1 for all
fq+r−1 ∈ Θq+r−1 �

Proof. If F(1) → Jr−1(F) is a natural vector bundle, then the zero section is
equivariant.
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If c : Jr−1(F) → F(1) is equivariant, we use the fact that F(1) → Jr−1(F) is
an affine bundle with coordinates (u, v), modelled over a natural vector bundle
F1. The map

F(1) → F1 : (u, ur−1, v) 7→ (u, ur−1, v − c(u, ur−1))

is an isomorphism of natural bundles by the equivariance of c:

(u, ur−1, v − c(ur−1))f = (uf, ur−1f, vf − c(ur−1)f) = (uf, vf − c(ur−1f))

for all f ∈ Θq+r−1. �

We can thus choose the additional term B(u, ur−1) in equation (3.34) as

B(u, ur−1) = −c(u, ur−1)

to turn F(1) into a vector bundle. If the natural bundle F was constructed by
a formally integrable groupoid Rq(ω0), one usually takes the equivariant section
c : Jr−1(F) → F(1) corresponding to ω0.

The bundles F(1) constructed by Pommaret [Pom83, §2.A.3] (called F1 there),
are all vector bundles (see [Pom83, p. 296]). Additionally the existence of a
formally integrable symmetry groupoid is explicitly assumed. There is another
special case where all bundles F(1) are automatically vector bundles.

Lemma 3.41. If F is a natural Π1-bundle and F(1) = J1(F)/Kq+1
q is con-

structed by a single prolongation, then F(1) is a vector bundle. �

Proof. Compute the first prolongation of Lξ1 from equation (3.9) for µ = j:

ρ1(Lξ1) = ξi∂xi + ξijL
τ,j
i (u)∂uτ +

(
ξij u

α
k ∂uαLτ,ji (u)− ξiku

τ
j

)
∂uτ

k
+ ξijk∂uτ

k
.

The last summand is the infinitesimal k21-action that vanishes on F(1). As the
projection to F(1),

vβ = Aβ,µα (u, ur−1)uµ, |µ| = r,

is quasilinear in uτk, the coefficient of ∂uτ
k

show that ρ1(Lξ1)v
β can be expressed

by a linear combination of the coordinates vβ of F(1). �

The vector bundle structure of F(1) has very practical consequences if there
are invariants on Jr−1(F), because the equivariant sections depend on them. In
Section 4.1, we will use this fact to predict the Vessiot structure equations in
special situations.

Proposition 3.42. Let F be a natural Θq-bundle and assume that F(1) =
Jr(F)/Kq+r

q+r−1 is a vector bundle. If there exist invariants ψ1, . . . , ψk on Jr−1(F)
and a nonzero equivariant section c : Jr−1(F) → F(1) then also

f(ψ1(u), . . . , ψk(u)) c(u)

is an equivariant section for an arbitrary smooth function f : Rk → R. �
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Proof. Use equation (3.32) and the fact that c is equivariant:

Lξ(f(ψ) cα(u)) = f(ψ)Lξcα(u) = f(ψ)Lξvα|v=c(u) = Lξv
α|v=f(ψ)c(u),

since Lξvα is linear in v (F(1) is a vector bundle). �

3.5.2 Symbols of Jet Groupoids

The Projection Theorem 3.35 provides a test for formal integrability of a sym-
metry groupoid Rq(ω) of a section ω of F → X if its symbol is 2-acyclic. In
this section, we adapt a theorem of Pommaret [Pom78, Thm. 7.2.32] to natural
Θq-bundles which reduces the Spencer cohomology computation to the algebroid
Rq(ω). Furthermore, the Medolaghi form allows to compute the Spencer coho-
mology for an open subset of all sections of F in a single computation.

Throughout the section, let F be a natural Θq-bundle and ω be a section of
F → X. Further let Rq(ω) be the symmetry groupoid of ω with corresponding
algebroid Rq(ω).

As a preparation, the symbols are equipped with a Lie algebra structure which
corresponds to the graduation of the Lie algebra glq introduced in Section B.1.

Lemma 3.43. Let Gq+r ∼= Rq+r(x, x) be the isotropy groups of Rq+r(ω) for
x ∈ X and r ≥ 0 with graded Lie algebras

gq+r = g1 ⊕ · · · ⊕ gq+r

according to Proposition B.12. Then the symbol Mq+r,x is isomorphic to the
higest order component gq+r ∼= k

q+r
q+r−1 where k is defined in Proposition B.4. �

Proof. Since the tangent bundle functor is a natural bundle functor, the fibre
of Jq,0(T ) = ker(an) = ker(πq0) over each point x ∈ X is isomorphic to the Lie
algebra glq of Proposition B.3, which is the fibre of Jq,0(TRn) at the origin. Define
the bundle of subalgebras Rq+r,0(ω) = ker(πq+r0 |Rq+r(ω)). The isotropy algebra
Rq+r,0(ω)|x ∼= gq+r is defined by setting ξi = 0 in the Medolaghi form (3.12):

ξiµ+νL
τ,µ
i (ω(x)) = 0, |ν| ≤ r.

Restricting to |µ| = q and |ν| = r yields Mq+r,x
∼= gq+r. �

We show that the symbol of a groupoid and its corresponding algebroid are es-
sentially the same. In the transitive case, this result is due to Pommaret [Pom78,
Thm. 7.2.32f]. We silently assume that the order q of the groupoid is ≥ 1.

Theorem 3.44. Let Mq,rq be the symbol of Rq(ω) at the point rq ∈ Rq(ω) and
Mq+r,rq for r ∈ N be the higher order symbols defined in equation (A.2). Further
let Mq+r,y be the corresponding symbols of Rq(ω) at y ∈ X. For y = t(rq) the
symbols are isomorphic:

Mq+r,rq
∼= Mq+r,idy = Mq+r,y, ∀r ≥ 0.
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Additionally, the Spencer cohomology groups are isomorphic:

H i
j(Mq,rq) ∼= H i

j(Mq,y), y = t(rq).

If Rq(ω) is transitive, all Mq+r are vector bundles and the Spencer cohomology
groups for all rq ∈ Rq(ω) are isomorphic. �

Proof. Drop the ω-dependence of all groupoids during the proof and set Rq−1 =
πqq−1(Rq). Then Rq acts on V (Rq) = T s(Rq) by right multiplication and the
action is commutes with the projection to jet order q − 1:

T s(Rq) s∗�tRq
//

����
	

T s(Rq)

��
T s(Rq−1) s∗�tRq−1

// T s(Rq−1)

As the symbol Mq,rq is the kernel of the projection T s(Rq) → T s(Rq−1) and the
Rq−1-action is linear on the fibres of T s(Rq−1), the multiplication with r−1

q in-
duces an isomorphism between Mq,rq and Mq,idy . By definition of the algebroid,
we have Mq,idy = Mq,y. Pulling back the higher order symbols Mq+r over Rq,
we also obtain isomorphisms Mq+r,rq

∼= Mq+r,idy for r ∈ N.
To show that the Spencer cohomologies are also isomorphic, we use Lemma

3.43. The symbols Mq+r−1,x
∼= gq+r−1 at x ∈ X and Mq+r,x

∼= gq+r satisfy the
condition gq+r ⊆ g

(1)
q+r−1 of Proposition B.12. The embedding

ι : Sq+rT ∗ ⊗ T ↪→ T ∗ ⊗ Sq+r−1T ∗ ⊗ T

from the construction of the Spencer δ-map in equation A.3 restricts to the map

Mq+r ↪→ T ∗ ⊗Mq+r−1

by Definition B.10 for the case of gq+r ≤ glq+r. Since the Rq-action on Mq+r

is the restriction on the Πq-action on Sq+rT ∗, it commutes with the full Spencer
δ-map.

By right multiplication, Rq acts on T tRq, T tRq ∩ T sRq and on Mq+r, since
Mq+r,rq is a subspace of T tRq ∩ T sRq for each rq ∈ Rq. Analogous to the left
action, the right Rq-action induces an isomorphism

Mq+r,rq
∼= Mq+r,idx .

for x = s(rq). If Rq is transitive, the conjugation of Mq+r,idx with rq ∈ Rq(x, y)
induces an isomorphism between Mq+r,idx and Mq+r,idy = rqMq+r,idxr

−1
q . �

Having established the link between the symbols of groupoids and their corre-
sponding algebroids, we turn to the Medolaghi form for the symmetry algebroids.
It has a simple consequence that connects the points on the natural bundle with
the symbols.
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Proposition 3.45. The higher order symbols Mq+r,x, r ≥ 0, of Rq(ω) at x ∈ X
depend only on the value of the section ω at x. �

Proof. The general Medolaghi form (3.12) determines the algebroid Rq(ω) and
its symbol is the intersection with SqT ∗ ⊗ T . Setting ξi = ξiµ = 0 for |µ| < q in
equation (3.12),

ξiµL
τ,µ
i (ω(x)) = 0 |µ| = 0,

shows thatMq depends on the point ω(x) ∈ F only. Differentiating the equations
and eliminating lower order terms,

ξiµ+νL
τ,µ
i (ω(x)) = 0 |µ| = 0, |ν| = r,

shows that it is also valid for Mq+r. �

Since the calculation of Spencer cohomology using Theorem A.11 can be done
with the coordinates of x and ω(x) as parameters, we have the following corollary.

Corollary 3.46. The computation of Spencer cohomology via Koszul complex
introduced in Appendix A is valid on an open subset of all sections of a natural
bundle F . �

Remark 3.47. In the following sections we abbreviate the notation for Spencer
cohomology. If we say that ‘generic sections of F have 2-acyclic symbols’, this
stands for the fact that ‘on an open subset of the generic sections ω of F → X,
the symbols for symmetry groupoids Rq(ω) have 2-acyclic symbol’. �

For a sample computation of Spencer cohomology for symmetry groupoids
see Section 5.1.2.

3.5.3 Janet Sequence

In this section, the nonlinear Janet sequence is constructed, which was intro-
duced by Pommaret (see [Pom78, §7.4] or [Pom83, §2.A.3]). This section is not
necessary to understand the applications in Chapter 4 or the Vessiot equivalence
method in Chapter 6. However the affine bundle version of the Janet sequence
and the curvature map in Section 3.5.4 are essential tools to prove the Embedding
Theorem 4.22 in Section 4.3.2.

We follow [Pom83, §2.A.3] and adapt the construction to the case of Θq-
bundles. Each jet groupoid can be defined by an exact sequence (3.10)

0 // Rq(ω) // Θq

Φω //
ω◦s
// F ,

involving a natural Θq-bundle F . Assuming that the generic sections ω of F → X
have 2-acyclic symbol and that all symbols are vector bundles, we can continue
the sequence to a sequence of differential operators

{idX} // Γω // ΓΘq

Φω◦jq //
ω◦s

// F
I◦j1 //
c
// F(1)

J◦j1 // F2. (3.35)
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It is called the nonlinear Janet sequence. Here Γω and ΓΘq stand for the local
solutions of Rq(ω) and Θq. The bundles F , F(1) and F2 are abbreviations for the
corresponding sections Γ(F) of F → X etc. The first two differential operators
are defined using the differential maps Φω from the sequence (3.10) and the
projection I from Proposition 3.30. As they are not necessary in the following,
we will only sketch the construction of the Jacobian conditions J and the bundle
F2 in this section and refer to [Pom78, §7.4] or [Pom83, §2.A.3] for details.

If we drop the assumption that there exists a section ω of F → X with
integrable symmetry groupoid Rq(ω), there is no equivariant section c : F → F(1)

and the Jacobian conditions J and F2 do not make sense anymore. Nevertheless,
there is still an exact sequence of affine bundles which becomes useful for the
Embedding Theorem 4.22 in Sections 4.3.1 and 4.3.2.

Preparations

With the assumption that there exists a section ω0 of F → X such that Rq(ω0)
is formally integrable, we construct a differential equation B1(c) ⊆ J1(F) using
equation (3.34) for the case of r = 1:

I = A(u)ux +B(u) = c(u) (3.36)

Here B(u) was chosen such that ω0 is integrable with the zero section c = 0 of
F(1) → F according to Theorem 3.35. We study the formal integrability of the
system B1(c) and at the same time derive the Jacobian conditions.

SinceRq(ω0) is integrable, we know that B1 = B1(0) is also integrable. Denote
the symbol of B1(c) by Nq+1. In [Pom83], it is called N1, but we have chosen the
indices according to sequence (3.39) below. Let F0 = V (F) be the zeroth Janet
bundle. For higher indices, the Janet bundles are defined with the help of the
Spencer δ-map:

Fr =
∧r
T ∗ ⊗F0/δ(

∧r−1
T ∗ ⊗Nq+1) (3.37)

All Janet bundles are vector bundles. Construct the natural bundle F(1) =
J1(F)/Kq+1

q by the exact sequence of affine bundles:

0 // Nq+1 //

���
�
�

T ∗ ⊗F0
//

���
�
� F1

//

���
�
� 0

0 // B1
//

��

J1(F) //

��

F(1) //

��

0

F F F

(3.38)

As F(1) is the cokernel of the inclusion map B1 ↪→ J1(F), it is isomorphic to the
first Janet bundle F(1)

∼= F1. The symbol Nq+1 is a special case of the symbols
Nq+r defined by the exact sequences

0 //Mq+r //MΘq+r
// Nq+r // 0 (3.39)
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of vector bundles over Rq(ω). Setting Mq−s = MΘq−s for s ≤ q as in Lemma
A.4, the symbols Nq−s = 0 are zero. The symbols Nq+r also give rise to restricted
Spencer δ-sequences as in Lemma A.4.

Lemma 3.48. The Spencer δ-sequences restrict to sequences

0 −→ Nq+r
δ−→ T ∗ ⊗Nq+r−1

δ−→ · · · δ−→
∧n

T ∗ ⊗Nq−n −→ 0.

If the module MΘ = ⊕kM∗
Θk

is r-involutive thenH i+1
j−1(Mq) ∼= H i

j(Nq) for j > r.�

Proof. Set M = ⊕M∗
k and N = ⊕N ∗

k . Taking the direct sum over the duals of
equation (3.39) yields the sequence in Proposition A.9 (4) with Ar replaced by
the A-module MΘ. It follows that N is also an A-module. Tensoring the sequence
with the Koszul complexK•(ξ,A) and taking the long exact cohomology sequence
as in Proposition A.9 (5) proves H i+1

j−1(Mq) ∼= H i
j(Nq) for j > r. �

In most applications, we assume Θq = Πq and thus MΘk
= SkT ∗ ⊗ T . Then

the isomorphism of Spencer cohomology groups follows directly from Proposition
A.9 (5) and is valid for (i, j) 6= (0, 0).

As last preparational point, we will verify that the map Nq+1 → T ∗ ⊗ F0

in diagram (3.38) is indeed a Spencer δ-map. The defining equations (A.2) for
Mq+1 imply that Nq+1 is generated by the elements

∂Φω

∂yiµ
ξiµ+1j

, |µ| = q.

Using coordinates δuτ for F0, each generator of Nq+1 is mapped to

δuτdxj =
∂Φω

∂yiµ
ξiµ+1j

dxj ∈ T ∗ ⊗F0.

This coincides with the Spencer δ-map in equation (A.4). Applying Lemma 3.43
to MΘq+1 shows that the definition of F(1) and the Janet bundle F1 coincide if
F(1) is a vector bundle.

Jacobian Condition and the Differential Janet Sequence1

We now sketch the construction of the Jacobi conditions J , which is a first order
differential map between J1(F) and F2 (for details see [Pom83, Thm. 2.A.3.22]).
Assume that Mq is 3-acyclic (which implies that Nq+1 is 2-acyclic) and check the
integrability of B1(c) by differentiating the equations (3.36):

DxI = A(u)uxx + ∂uA(u)uxux +DxB(u).

1The results of this section will not be used later on, but they are included for a complete
treatment of the nonlinear Janet sequence.
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The system B1(0) is formally integrable since Rq(ω0) is. It follows that each
linear combination γ(u)DxI, which is independent from uxx, can be expressed in
terms of I:

γ(u)DxI + α(u)uxI + β(u)I = 0.

In other words, there exist functions α, β, such that the equation is valid. Denote
the coordinates of F2 by (w). Then the morphism of natural bundles J for the
Jacobian conditions is

J : J1(F1) → F2 : (x, u, v, ux, vx) 7→ (x, u, w = γ(u)vx + α(u)uxv + β(u)v).

Since F2 is only a natural bundle of order q, the first order jets ux may only occur
in combinations A(u)ux +B(u). Modifying α and β, we obtain

J : J1(F1) → F2 : (x, u, v, ux, vx) 7→ (x, u, w = γ(u)vx + α(u)vv + β(u)v).

We can now plug in the prolongation of the equivariant section c to check the
integrability of B1(c). It is integrable if and only if the Jacobian conditions are
satisfied:

γ(u)
∂c(u)
∂u

c+ α(u)cc+ β(u)c = 0. (3.40)

The functions α, β and γ were chosen such that all dependence on jets of u
vanishes when plugging in DxI. This implies, that the u-dependence in the Ja-
cobian conditions can be replaced by a dependence on the invariants on F . Only
equivariant sections that satisfy the Jacobian conditions correspond to integrable
symmetry groupoids Rq(ω). Before interpreting the differential Janet sequence,
we given an example.

Example 3.49. Let X be a 3-dimensional manifold with coordinates (x1, x2, x3)
and F = T ∗ ×

∧2 T ∗. This is similar to the example in Section 3.4.3 for a three-
dimensional base. Choose the coordinates (u1, . . . , u6) of F such that they are
the coefficients of the differential forms:

ω = u1 dx1 + u2 dx2 + u3 dx3,

Ω = u4 dx2 ∧ dx3 − u5 dx1 ∧ dx3 + u6 dx1 ∧ dx2.

Note the reversed sign for u5. The symbols for generic sections of F → X are
2-acyclic and we prolong to J1(F) with coordinates (u, uij). The projection to
the first natural bundle of the series

F(1) = J1(F)/K2
1
∼= F ×

∧2
T ∗ ×

∧3
T ∗

that has the fibre coordinates (v1, v2, v3, w). The projection map is given by:

v1 = u3
2 − u2

3,

v2 = u1
3 − u3

1,

v3 = u2
1 − u1

2,

w = u4
1 + u5

2 + u6
3.
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The Vessiot structure equations can be written shortly as:

dω = C1 Ω, dΩ = C2 ω ∧ Ω,

with two arbitrary constants C1, C2 ∈ R. In coordinates, the equations (3.36) for
the system B1(c) are obtained by plugging in the expressions vi and w into:

vi = C1u
i+3, w = C2(u1u4 + u2u5 + u3u6), 1 ≤ i ≤ 3.

Differentiate and eliminate the second order jets of u to calculate the single
nontrivial Jacobian condition

C1C2 = 0.

An integrable system R1(ω,Ω) determined by a 1-form and a 2-form implies
either C1 = 0 or C2 = 0. �

The Jacobian conditions finish the nonlinear Janet sequence

{idX} // Γω // ΓΘq

Φω◦jq //
ω◦s

// F
I◦j1 //
c
// F(1)

J◦j1 // F2.

It can be interpreted as follows. A local diffeomorphism, which satisfies the
equations for Θq is a solution of Rq(ω) if and only if it is in the kernel of the
differential operator Φω ◦ jq with respect to the section ω. Assuming 2-acyclic
symbols, a section ω of F → X is integrable if and only if it is in the kernel of
I ◦ j1 with respect to a suitable equivariant section c : F → F(1). The bundles
F(1)

∼= F1 and F2 are vector bundles such that the Jacobian conditions do not
depend on a double arrow. An equivariant section c corresponds to a section ω
if and only if it fulfills the Jacobian conditions.

Sequence of Affine Bundles

We now drop the assumption that there exists a section ω of F → X with inte-
grable symmetry groupoid Rq(ω). This case frequently occurs when dealing with
Θq-bundles F where Θq ≤ Πq is a subgroupoid. The nonlinear Janet sequence
relies on the existence of equivariant sections, but in the non-integrable case, we
can still construct an exact sequence of natural bundles completely analogous to
[Pom83, p. 301].

To do this, we inspect Definition 1.1 closely. Condition (2) for the vertical
bundles means that on the fibres over e′, e = ϕ(e′) and e′′ = ψ(e) the maps ϕ∗
and ψ∗ define an exact sequence of vector spaces. We turn this into a sequence
of vector bundles by pulling back V (E) and V (E ′′) over E ′′.

Ṽ (E) //

��

V (E)

��
E ′

ϕ // E

Ṽ (E ′′) //

��

V (E ′′)

��
E ′

ψ◦ϕ // E ′′
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For simpicity, we assume that the pullback is implicitly done and omit the tilde.
The pullback induces an exact sequence of vector bundles:

V (E ′) // V (E) // V (E ′′).

We will use a similar construction to obtain the exact sequence affine bundles:

0 // Rq+1(ω) // Θq+1
//// J1(F) // // F(1) // 0. (3.41)

Start with the exact sequence (3.5) for Rq(ω) and define the vector bundles
F0 = V (F) and F1 = V (F(1)) as substitutes for the Janet bundles. The sequence
of vertical bundles in Definition 1.1 (2) gives an exact sequence which may be
restricted to the symbols:

0

��

0

��
0 //Mq

��

//MΘq

��

// F0

0 // V (Rq(ω)) // V (Θq) // F0

(3.42)

Lemma 3.50. If F = Rq(ω)\Θq is the natural bundle constructed in Theorem
3.22, the morphism V (Θq) → F0 in diagram (3.42) is surjective. If furthermore
all equations for Rq(ω) are of order q (i.e. πqq−1(Rq) = Θq−1) then F0

∼= Nq. �

Proof. Since Θq−1 = πqq−1(Rq(ω)), we have F/Kq
q−1 = 0 and the following exact

and commutative diagram of vertical bundles.

0

��

0

��

0

��
0 //Mq

��

//MΘq

��

// F0
// 0

0 // V (Rq(ω)) //

��

V (Θq) //

��

F0
//

��

0

0 // V (Θq−1) // V (Θq−1) // 0

Comparing with the sequence (3.39) yields F0
∼= Nq. �

Prolong the sequence (3.42) to the symbol Mq+1:

0 //Mq+1 //MΘq+1
// T ∗ ⊗F0

// F1
// 0.
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It is the sequence of model vector bundles for the exact sequence of affine bundles

0 //Mq+1 //

���
�
�

MΘq+1
//

���
�
�

T ∗ ⊗F0
//

���
�
� F1

//

���
�
� 0

0 // Rq+1 //

��

Θq+1 //

��

J1(F) //

��

F(1) //

��

0

0 // Rq // Θq // F F

(3.43)

As in [Pom83, p. 301], all double arrows are omitted for brevity. If there exists no
equivariant section c : F → F(1), it makes no sense to speak of an exact sequence
at J1(F). The problem is that we are not dealing with an exact sequence of
bundles over a fixed base. An exact sequence should have the following property.
Two elements of Θq+1 can be mapped to J1(F). If their images are in the same
fibre over F , we expect that both are projected to the same point of F(1). This
is not automatically the case, as the next lemma shows.

Lemma 3.51. If in the diagram (3.43), there are two elements

a = p1(Φω)(f), b = p1(Φω)(g)

for f, g ∈ Θq+1 in the same fibre over F (π1
0(a) = π1

0(b)), their projections I(a)
and I(b) to F(1) coincide if and only if Rq(ω) is integrable with an equivariant
section c : F → F(1), I(j1(ω)) = c(ω). �

Proof. The prolonged map p1(Φω) is the Θq+1-action on the section j1(ω):

a = j1(ω)(yf )f, yf = t(f)
b = j1(ω)(yg)g, yg = t(g)

Define h := fg−1 and the elements fq, gq, hq by projection to order q. Since a
and b are in the same fibre over F , we have hq ∈ Rq(ω). If I(a) = I(b), the fact
that I is a morphism of Θq-bundles implies that

j1(ω)(yf )fg−1gKq+1
q = j1(ω)(yg)gKq+1

q .

Hence h can be modified by Kq+1
q to an element of Rq+1(ω) projecting to hq.

Since f and g are arbitrary, Rq(ω) is integrable and we can find an equivariant
section by Theorem 3.35.

Assume that there exists an equivariant section c. Then

I(a) = I(j1(ω)(yf ))fq = c(ω(yf ))fq = c(ω(yf )fq) = c(ω(yg)gq) = I(b),

since a and b are in the same fibre over F . �
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To turn diagram (3.43) into an exact sequence of affine bundles, we pull back
J1(F) and F(1) over Θq,

J̃1(F) //

��

J1(F)

��
Θq

p1(Φω) // F

F̃(1)
//

��

F(1)

��
Θq

I◦p1(Φω) // F(1)

Again, we will not explicitly write down the pullbacks in the diagram (3.43). The
pullback repairs the problems with the missing equivariant section. If there are
two elements a, b as in Lemma 3.51, which are in the same fibre of the pullback
bundle J1(F) → Θq, they differ only by Kq+1

q . By construction of F(1), a and b
project to the same element I(a) = I(b) in the pullback bundle F(1) → Θq.

3.5.4 The Curvature Map

The exact sequence (3.43) of affine bundles gives rise to a curvature map κ,
which was constructed by Goldschmidt [Gol67b, Prop. 8.3]. We follow the work
of Pommaret [Pom83, §1.A.3, p. 301]. Similar to the Janet sequence, it is only
necessary for the proof of the Embedding Theorem 4.22 and in Section 6.2.3.

Another very instructive reference for the curvature map is the work of Mal-
grange [Mal05, §II.3], where a dual approach is used. Here, the curvature is called
torsion.

Remark 3.52. The vector bundle F1 and diagram (3.43) can be used to define
the curvature map κ : Rq(ω) → F1, where F1 = ω∗(F1) is the pullback of F1

along the section ω : X → F . The restriction of

Rq+1(ω) // Rq(ω)
κ //
0
// F1

to

0 // R(1)
q (ω) // Rq(ω)

κ //
0
// F1 (3.44)

defines R(1)
q (ω) as the kernel of the curvature map. The construction of κ is

quite instructive for the work with diagram (3.43). At the same time we prove
R(1)
q (ω) = ker0(κ). It is done by a diagram chase.

Take rq ∈ Rq(ω) and consider it as an element of Θq. An arbitrary preimage
r̄q+1 ∈ Θq+1 can be mapped by ρ1(Φω) to J1(F), where the difference

ρ1(Φω)(r̄q+1)− j1(ω)(x) = j1(ω)(y)r̄q+1 − j1(ω)(x)

can be lifted to T ∗ ⊗F0, since ω(y)rq = ω(x). Its image in F(1) is equal to

I(j1(ω)(y)r̄q+1)− I(j1(ω)(x)),
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since I : J1(F) → F(1) is a morphism of affine bundles. The definition

κ(rq) = I(j1(ω)(y)r̄q+1)− I(j1(ω)(x)) (3.45)

does not depend on the choice of r̄q+1, because the difference between two choices
is an element of MΘq+1 . There exists an element rq+1 ∈ Rq+1(ω) projecting onto
rq if and only if κ(rq) = 0. Equivalently there exists an element of fq+1 ∈MΘq+1

such that
I(j1(ω)(y)(r̄q+1 + fq+1))− I(j1(ω)(x)) = 0

and rq+1 = r̄q+1 + fq+1 ∈ Rq+1(ω). �

The next theorem shows a connection between the fibre of the natural bundle
F1 and a Spencer cohomology group, which is implicitly present in the work of
Pommaret [Pom83, p. 44]. For the curvature map, this fact is well-known (see
[Mal05, §II.3] and [IL03, §5.5] for the case of exterior differential systems).

Theorem 3.53. If all equations defining Rq(ω) are of order q and MΘ of Lemma
3.48 is q − 1-involutive, the bundle F1 is isomorphic to the Spencer cohomology
group H2

q−1(Mq) and the curvature κ is a map

κ : Rq(ω) → H2
q−1(Mq). �

In the theorem, we have omitted all pullbacks. To construct H2
q−1(Mq) =

F1 → Rq(ω), we have to pull back F1 in diagram (3.43) over Rq(ω). Then κ is
a section of F1 → Rq(ω).

Proof. By Lemma 3.50, we have F0
∼= Nq. The sequence of model vector bundles

in diagram (3.43) splits into

0 // Nq+1
δ // T ∗ ⊗Nq // F1

// 0

using equation (3.39). Since Nq−1 = 0 we have

F1
∼= H1

q (Nq) = T ∗ ⊗Nq/δ(Nq+1)

By Lemma 3.48, this is isomorphic to H2
q−1(Mq). �

Remark 3.54. The condition that all equations are of order q in Theorem 3.53
can be weakened to the condition that for all equations Φτ

ω = ωτ of order < q
for Rq(ω) also their total derivatives DiΦτ

ω = ∂iω
τ are present. In this case,

the Embedding Theorem 4.22 can be used to find the minimal subbundle of
J1(F) → F . This is setting of [Mal05, §II.3,4]. �



Chapter 4

Applications of Natural
Bundles

In the last chapter, the connection between jet groupoids Rq(ω) and geometric
objects on natural bundles has been presented. Furthermore, the prolongation
and projection of the jet groupoids, this time considered as systems of PDEs,
has been translated into the language of natural bundles. This is called Vessiot’s
approach to geometric objects and jet groupoids. In the present chapter, problems
are stated that can be solved with Vessiot’s approach. Examples are shown in
Chapter 5. To solve these tasks, new and crucial optimisations are developed.

The problems are the same as in the introduction of this thesis:

• Complete the equations for a groupoid Rq(ω) to formal integrability.

• Classify the symmetry groupoids Rq(ω) of geometric objects ω on F .

• Find a generating system for the invariants of the Θq+r-action on Jr(F).

• Decide equivalence for geometric objects on F under the action of Θq.

The first and second question are focused on the groupoids and their formal
integrability. In the first case, a single groupoid is chosen and in the second
case all sections of F → X are considered. Then the process of prolongation
and projection is applied until formal integrability is reached. The symmetry
groupoids Rq(ω) are classified by the number of steps that were necessary to
reach integrability and the equivariant sections. Both questions will be treated in
Section 4.1 and the examples in Chapter 5 show several steps of the classification.

To find a generating set of invariants, one proceeds similarly to the classi-
fication of symmetry groupoids. A theorem of Lie and Tresse [LSE93], [Tre94]
states that the set of invariants of a pseudogroup action on a manifold is finitely
generated with respect to invariant differentiation. It was proved by Kumpera
[Kum75]. With a trivial translation into the language of natural bundles and
jet groupoids, a generating set of invariants can be computed with the Vessiot
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approach. The general case is presented in Section 4.2 and an example is found
in Section 5.2.

Natural bundles also give an alternative approach to Cartan’s well-known
equivalence problem [Car08, Car10], which will be presented in detail in Chapter
6 on the Vessiot equivalence problem.

All of the above problems start with a natural Θq-bundle F and one or more
sections ω of F → X. To solve them, natural bundles

F(1), F(2), . . .

are computed by prolongation and projection and formal integrability is being
checked. For an effective treatment, it is necessary to answer three important
questions:

• Which set of geometric objects is relevant?

• Is it possible to shrink Θq or F?

• Which is the minimal natural bundle F(i) to decide formal integrability?

It depends on the careful answer to these questions whether it is possible to
perform the necessary calculations in nontrivial examples. None of the above
questions arise in Pommaret’s [Pom78] or Vessiot’s [Ves03] work, because in their
examples only the first bundle of integrability conditions F(1) is computed.

In most cases, all sections of F → X are interesting and no optimisation for
Θq and F is necessary before starting the prolongation and projection.

But if only a subset of the sections of F → X are relevant and all symmetry
groupoids Rq(ω) restrict to Θ′

q ≤ Θq, it is possible to shrink both Θq and F in
the exact sequence

0 // Rq(ω) // Θq

Φω //
ω◦s
// F

without losing information. Details will be presented in Section 4.3.3.
The first bundle F(1) of integrability conditions is the minimal bundle to check

formal integrability. However, not all sections of F(1) → X are relevant for the
original problem which leads to redundancies for the next step of prolongation
and projection. Based on the Embedding Theorem 4.22 minimal bundles F(i) of
integrability conditions can be computed. The approach using minimal bundles
is new. If nonminimal bundles are chosen, the calculations quickly become too
large to compute. Theorem 4.22 is also necessary to compute generating sets of
invariants with the Vessiot approach.

4.1 Towards Formal Integrability

In this section, a flowchart is presented that summarises the necessary steps to
complete a specific jet groupoid Rq(ω) defined by a section ω on the natural
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Θq-bundle F → X to formal integrability. The flowchart is inspired by Gardner
[Gar89], who used similar diagrams to summarise Cartan’s method of equivalence.
We will take up the flowcharts in Chapter 6 on the Vessiot equivalence method.

The classification of symmetry groupoids is very similar and we modify the
diagram for this case.

Completing Rq(ω) to Formal Integrability

We comment the flowchart in Figure 4.1 and refer to the relevant sections for
detailed information in each step.

Figure 4.1: Completing Rq(ω) to formal integrability

Natural bundle F(i),
geometric object ω(i)

Symbol
Mq+s−1

2-acyclic?

Prolongation to
Js(F(i)), js(ω(i))

Projection I to
F(i+1), I(js(ω(i)))

I(js(ω(i))) =
c(js−1(ω(i)))?

integrable groupoid for ω(i)

F , ω, i = 0

s = 1

yes

?

no

s := s+ 1

no

F(i+1), ω(i+1),
i := i+ 1

yes
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• Enter the flowchart at the top with the natural Θq-bundle F and the section
ω : X → F defining Rq(ω). We set:

F(0) = F , ω(0) = ω i = 0.

The variable i counts the number of times, we have gone through the main
loop, F(i) and ω(i) : X → F(i) are the natural bundle and the section at
step i. At each step q denotes the order of F(i).

• Test if the symbols on F(i) are 2-acyclic using the results of Appendix A.If
not, choose s ∈ N such that the symbol Mq+s−1 for the symmetry groupoid
of ω(i) becomes 2-acyclic.

• Prolong F(i) and ω(i) according to Proposition 3.26. At the position ?, it is
highly recommended to restrict to the minimal subbundle of Js(F(i)) → F(i)

according to the Embedding Theorem 4.22.

• Compute the projection I defining F(i+1) and the section

ω(i+1) = js(ω(i))K
q+r
q+r−1

with Propositions 3.30 and 3.33.

• Compute the Vessiot structure equations and check if the projection is
surjective for ω(i) using the Projection Theorem 3.35.

• If not, replace F(i) by F(i+1), the section ω(i) by ω(i+1), increment i and
start another loop at the beginning.

Classification of Symmetry Groupoids

Figure 4.2 shows the flowchart for the classification of symmetry groupoid on
F . We leave out the construction of the sections ω(i) which is analogous to the
previous case.

• Start with F and compute the Spencer cohomology for generic sections with
Corollary 3.46 and find s such that the symbols become 2-acyclic.

• Prolong to Js(F(i)) with Proposition 3.26 and construct the minimal sub-
bundle of Js(F(i)) → F(i) to which all sections from F → X restrict (using
the Embedding Theorem 4.22).

• Use Propositions 3.30 and 3.33 to project to F(i+1). Check whether F(i+1)

is trivial, namely
F(i+1) = Js−1(F(i)).

Due to this test, the construction of the minimal subbundle in the last step
is mandatory. If it is trivial, all symmetry groupoids on Js−1(F(i)) that are
obtained by prolongation and projection from F are integrable.
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Figure 4.2: Classification of symmetry groupoids

Natural bundle F(i)

Symbols
Mq+s−1

2-acyclic?

Prolongation Js(F(i))

Minimal bundle

Projection F(i+1)

F(i+1) trivial? Done

Vessiot struc-
ture equations

Gq-action free

Generic case

F , i = 0

s = 1

yes

no

no

s := s+ 1

no

F(i+1), i := i+1

yes

yes
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• Compute the Vessiot structure equations to classify the sections of F → X
which are generic on F(i) by their equivariant sections c : Js−1(F(i)) →
F(i+1) (see Theorem 3.35).

• Let Gq be the isotropy group of Θq. If the Gq-action on the fibre F(i+1) of
F(i+1) is locally free, then exit the classification at the generic case.

The classification computes a pair (i, c) for each section ω of F → X that does
not run into the generic case. The integer i is the minimal step in the process of
prolongation and projection where Rq(ω) becomes integrable and

c : Js−1(F(i)) → F(i+1)

is the equivariant section where the symmetry groupoid StabF(i)
(ω(i)) becomes

integrable. We will see in Chapter 6 that we only need to add the invariants on
F(i) to decide equivalence of sections ω of F → X.

Example 4.1. For the example of F = T ∗ ×X
∧2T ∗ with dim(X) = 2, the

classification was effectively done in in Section 3.4.3 and Example 3.38. At each
step of the computation, we display the bundle F(i) and the section ω(i) which
comes from a section ω of F → X. The classification leads to the following tree:

F = T ∗ ×X
∧2T ∗,

ω(0) = (ω,Ω)

F(1) = F × R,
ω(1) = (ω,Ω, ψ = dω/Ω) dω = C1Ω

F(2) = F(1) ×X T ∗,
ω(2) = (ω,Ω, ψ, dψ) dψ = F1(ψ)ω

generic case

If the symmetry groupoid is integrable at F(i), follow the arrow to the right. If not,
prolong and project another time by going down. All the integrable groupoids
are classified by the constant C1 in the first step and by the function F1(ψ) in
the second step. �

Remark 4.2. In nearly all cases, the classification ends in the generic case. As-
sume that this happens for the bundle F(j). Then the symbols for generic sections
of F(j) → X are trivial and thus involutive. We have to prolong only once to check
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formal integrability. There may still be non-integrable symmetry groupoids, but
we can trivially describe all integrability conditions using Proposition 3.42.

Since the Gq-action on the fibre F(j) is already free, the fibre coordinates
(v1, . . . vk) of the bundle F(j+1) → F(j) can all be chosen as invariants. Denote
the invariants on F(j) by ψ. Then the Vessiot structure equations are

v1 = c1(ψ), . . . , vk = ck(ψ)

for arbitrary functions ci of the invariants, because they are obviously equivariant.
For further integrability conditions, it is recommended to work with a generating
set of invariants computed in Section 4.2. �

To illustrate the case where the bundles of integrability conditions become
trivial after several steps of prolongation and projection, we give one of the few
examples.

Example 4.3. Let X be a manifold of dimension n > 2 and F = T ∗ be the
natural bundle of 1-forms. The symbols of generic sections ω : X → T ∗ are
2-acyclic and we compute the first bundle of integrability conditions

F(1) = J1(F)/K2
1 = T ∗ ×X

∧2
T ∗.

The differential operator Γ(F) → Γ(F(1)) is the exterior derivative

d : Γ(T ∗) → Γ(
∧2

T ∗).

Another prolongation and projection yields the bundle

F ′
(2) = F(1) ×X

∧2
T ∗ ×X

∧3
T ∗,

but the Embedding Theorem 4.22 implies that all sections from F → X restrict
to the subbundle

F(2) = F(1) ⊆ F ′
(2).

This can be seen as follows. Let ω be a section of F → X. Then all sections of
F(1) → X that come from F are of the form (ω, dω). The differential operator
F(1) → F ′

(2) is constructed from two copies of the exterior derivative d. It follows
that a section of F ′

(2) → X that comes from F is of the form

(ω, dω, dω, d2ω),

but d2 = 0 and both 2-forms – and the corresponding symmetry equations coin-
cide. Effectively there are no integrability conditions on F(2) and all 1-forms have
nontrivial symmetry groupoids. For generic sections, there are only two cases:

• dω = 0: The symmetry groupoid R1(ω) is integrable.



98 CHAPTER 4. APPLICATIONS OF NATURAL BUNDLES

• dω 6= 0, such that (ω, dω) is generic on F(1). The symmetry groupoid

R(1)
1 (ω) is integrable.

However this classification does not apply to all 1-forms, as the well-known Dar-
boux Theorem [Dar82] shows (see also [IL03, Thm. 1,9,17], [Olv95, p. 30]).
Vessiot’s approach only covers the generic case, which means sections (ω, dω)
that do not restrict to a subbundle of F(1) → F . �

4.2 Invariants on Natural Bundles

In this section it is described how a generating set for the invariants under the
Θq+r-action on the prolonged natural bundle Jr(F) is determined. With certain
regularity assumption, the Lie-Tresse Theorem [LSE93], [Tre94] implies that the
algebra of invariants on the infinite jet bundle J∞(F) is finitely generated with re-
spect to invariant differentiation. It was proved rigorously by Kumpera [Kum75]
and extended to PDE systems on Jr(F) by Kruglikov and Lychagin [KL06].

The section is based on the classical approach to compute the invariants
on J∞(F), as it is presented in [KL06], [Olv95, Ch. 5] and [OP]. There, a
generating set of invariants ψ1, . . . , ψk and an invariant coframe is constructed.
The invariant differential operators Di needed to generate all invariants are dual
to the coframe. We translate the necessary definitions and results to the case of
natural bundles and modify the classification of symmetry groupoids in Figure
4.2 to the computation of invariants. The advantage of Vessiot’s approach is that
the projection of natural bundles avoids large computations on Jr(F) and that
it is possible to work with finitely many prolongations.

Throughout this section, we fix an n-dimensional base manifold X, a jet
groupoid Θq and a natural Θq-bundle π : F → X. All other occurring natural
bundles are interpreted as Θq+r-bundles for a suitable r. The analogue statement
holds for morphisms of natural bundles.

Invariant Coframes and Invariant Differential Operators

An invariant on F is a smooth map ψ : F → R, i.e. ψ ∈ C∞(F), which is
constant on the Θq-orbits. We adopt the following point of view for functions on
F . Each ϕ ∈ C∞(F) defines a morphism of fibre bundles

ϕ : F → X × R.

An invariant ψ is a morphism of natural bundles, where X × R is a natural
bundle of order zero. We extend this point of view to horizontal differential forms
ω ∈ Ωk

h(F) = Γ(F ×X
∧kT ∗), now interpreting them as fibre bundle morphisms

ω : F →
∧k

T ∗.

With this point of view, it is easy to define invariant k-forms and coframes. They
are an adaption of the contact-invariant coframe [OP, §6] to natural bundles.
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Definition 4.4. An invariant (horizontal) coframe on F is a morphism of natu-
ral bundles θ : F → P1(X). An invariant (horizontal) k-form on F is a morphism
of natural bundles F →

∧kT ∗. �

Since P1 ⊂ (T ∗)n is the bundle of coframes, θ(f) is a basis of T ∗π(f) and we
can split θ into n invariant 1-forms θi : F → T ∗. The reason why θ is called
invariant coframe is the equivariance under the Θq-action:

θ(fgq) = θ(f)gq ∀ gq ∈ Θq.

It implies that θ stays invariant under pullback with solutions of Θq. We now
come to an interpretation of the horizontal differential

d̂ : C∞(Jr(F)) → Ω1
h(Jr+1(F)) : ψ 7→ (Diψ)dxi

that turns smooth functions into horizontal 1-forms (see e.g. [KL06, App. A.3]
and [OP, §3]). The next lemma shows how to construct an invariant 1-form from
an invariant, which was used by Tresse [Tre94] to compute an invariant coframe.

Lemma 4.5. If ϕ ∈ C∞(Jr(F)), the first prolongation p1(ϕ) can be restricted
to a morphism of fibre bundles

d̂ϕ : Jr+1(F) → T ∗.

If ψ is an invariant on Jr(F) then d̂(ψ) is an invariant 1-form on Jr+1(F). �

Proof. Interpret ϕ as ϕ : Jr(F) → X × R and apply Proposition 1.14. By the
proof of Proposition 1.6, we have J1(X ×R) = T ∗×R and we can restrict to T ∗.
If ψ is an invariant, all maps are morphisms of natural bundles. �

Each invariant coframe defines a collection of dual vector fields, which can
be interpreted as differential operators. They are also called coframe derivatives
(see [Olv95, Ch. 8]).

Definition 4.6. Let θ be an invariant coframe on F consisting of the invariant
1-forms θ1, . . . , θn. Define the invariant differential operators Di : C∞(F) →
C∞(F) dual to θ as

d̂ψ = (Diψ)θi, ψ ∈ C∞(F). �

Remark 4.7. Analogous to the total derivative (see Definition 1.11), each in-
variant differential operator defines first order differential operators

Di : Γ(Jr(F)× R) → Γ(Jr+1(F)× R).
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In fact, the invariant differential operators can be represented using total deriva-
tives. If the invariant coframe θ on the bundle F with coordinates (x, u) has the
form

θi = Aij(u)dx
j ,

with the matrix A(u), the invariant differential operators Di can be represented
as

Di = (A−1(u))jiDj .

Unlike total derivatives, the Di do not commute in general. �

The value of invariant differential operators is that they produce new, higher
order differential invariants, as the following, classical proposition shows.

Proposition 4.8. Let θ be an invariant coframe on Jr(F) and Di the dual invari-
ant differential operators. If ψ is an invariant on Jr(F) then Diψ is an invariant
on Jr+1(F). �

Proof. Since d̂ψ is an invariant 1-form, we have

(Diψ)(fg)θi(fg) = d̂ψ(fg) = d̂ψ(f)g =
[
(Diψ)(f)θi(f)

]
g

= (Diψ)(f)θi(fg).

for all f ∈ Jr+1(F) and g ∈ Θq+r+1. Thus Diψ is also an invariant. �

Existence of Invariant Coframes on F

Invariant coframes do not exist on every natural bundle F . Usually, we have to
prolong to Jr(F) in order to compute an invariant coframe. Here we will give
conditions for the existence of invariant coframes. The following preparational
lemma shows that an invariant coframe is a first order object and that we can
lift coframes to Jr+s(F).

Lemma 4.9. Let θ be an invariant coframe on Jr(F). Then the map θ factors
over the bundle Jr(F)/Kq+r

1 :

Jr(F) θ //

""E
EE

EE
EE

E
P1

Jr(F)/Kq+r
1

>>}}}}}}}}
	

If π : Jr+s(F) → Jr(F) is the canonical projection, then θ ◦ π is an invariant
coframe on Jr+s(F). �

Proof. Since P1 is a first order bundle, such that θ(fk) = θ(f) for f ∈ Jr(F)
and all k ∈ Kq+r

1 . Both π and θ ◦ π are morphisms of natural bundles. �
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Proposition 4.10. There locally exists an invariant coframe on F if and only if
the G1-action on the fibre of F/Kq

1 is locally free. G1 = πq1(Gq) is the projection
of the isotropy group Gq of Θq. �

Proof. Without loss of generality let F = F/Kq
1 . If the G1-action is locally free,

we can trivialise the fibre F ∼= Fx around f ∈ F as an open subset of Rk × G1,
where k denotes the number of invariants. Assume that Θq is transitive. Then
choose g0 ∈ G1 such that (r, g0) ∈ Rk × G1 and set the image θ(x, r, g0) = θ0 ∈
P1,x. On an open subset around f , define θ by equivariant continuation. For
h ∈ Fy, there exists an element g ∈ Θ1(x, y) such that h = (r, g0)g for some
r ∈ Rk. Then θ(h) = θ0g. If Θq is intransitive, we have to repeat the same
construction with a trivialisation Rn−k0 ×Rk0 × F including k0 invariants on X.

If there exists an invariant coframe θ, the G1-orbit of θ(f) for f ∈ F is
isomorphic to G1, since G1 acts freely on the fibre GL1 of P1. Since θ is an
equivariant map, the G1-action on the fibres of F is also free. �

Remark 4.11. There are several ways to construct an invariant coframe and the
corresponding dual invariant differential operators on Jr(F). One possibility is
given by the proof of Proposition 4.10, which is inspired by moving frames (see
e.g. [OP] or [Man08]).

Another method was used by Tresse [Tre94]. If there are n functionally inde-
pendent invariants ψi on Jr(F), it is possible to construct an invariant coframe
on Jr+1(F) by taking d̂ψi. The condition of functional independence is equivalent
to d̂ψ1 ∧ · · · ∧ d̂ψn 6= 0. �

Lie-Tresse Theorem

The invariant differential operators are necessary for the Lie-Tresse Theorem. It
was proved by Kumpera [Kum75] for a Lie sheaf of vector fields and we state it
in the form presented by Kruglikov and Lychagin [KL06, Thm. 16], modified for
the case of groupoid actions on natural bundles. It depends on the infinite jet
space J∞(F), which is the projective limit

J∞(F) = lim proj(Jr(F), πrr−1).

The formal pseudogroup Θ∞ is also constructed by a projective limit.

Theorem 4.12. Let F be a natural Θq-bundle over an n-dimensional base X.
Then the infinite jet bundle J∞(F) contains a countable collection of open Θ∞-
invariant sets Uα such that the union U =

⋃
α Uα is dense in J∞(F) with the

following properties.
On each Uα, there are n independent differential invariants ψ1, . . . , ψn with

corresponding invariant differential operators D1, . . . ,Dn and another set of in-
variants g1, . . . , gm such that all invariants in Uα can be expressed via gj and
their invariant derivatives DJ(gj), (J ∈ nk, DJ := DJ1 . . .DJk

). �

The Lie-Tresse theorem constructs the invariant differential operators from
invariants, but we are free to choose a different set.
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Construction of a Generating Set of Invariants

The invariants on arbitrary prolongations Jr(F) can be computed with Vessiot’s
approach, if we work with minimal bundles using the results from Section 4.3.1.
For examples see Chapter 5. The computation of a generating set chooses one
of the open subsets Uα on J∞(F) mentioned in the Lie-Tresse Theorem 4.12.
Basically, we proceed as in Figure 4.2 with the following modifications:

• Compute the invariants on each F(i) by projecting to F(i)/Gqi , where qi is
the order of F(i).

• If the Gqi-action on the fibre of F(i) (or the G1-action on F(i)/K
qi
1 ) is locally

free, compute an invariant coframe.

• Prolong and project until all new coordinates of F(i+1) can be chosen as in-
variants. This means one additional run through the loop when the generic
case is reached.

The additional run through the loop ensures that we have found all invariants
for the generating set. Assume that we have completed j cycles until the Gqj -
action on the fibre of F(j) is locally free. We have to prolong only a single time
and since we can choose invariants ψ1, . . . , ψk as fibre coordinates, we have

F(j+1)
∼= F(j) × Rk.

In the proof of Proposition 4.25 we see that each coordinate for the next bundle
F(j+2) must contain a first order jet of the invariants ψl. By using the invariant
differential operators, we see that all nk first order jets of the ψl can be turned
into invariants. It follows that the invariants on F(j+1) are a generating set, which
can be nonminimal.

Denote the number of prolongations necessary for the step from F(i−1) to F(i)

by si and the total number of prolongations by ri = s1+. . . si. By the Embedding
Theorem 4.22, there is the isomorphism

Jri(F)/Kq0+ri
qi

∼= F(i)

such that each invariant on F(i) is an invariant on Jri(F).

Remark 4.13. If for some i ∈ N, the bundle F(i+1) is trivial, the invariants on
F(i) are a complete set of invariants on J∞(F). It follows from the Embedding
Theorem 4.22. There is no need for invariant differential operators.

Example 4.3 shows that there are no invariants on Jr(T ∗), since the second
bundle F(2) of integrability conditions is trivial. This implies that there are no
invariants on J2(T ∗). We can inductively show that there are no invariants on
J2+i(T ∗) by prolonging and projecting further. �

For examples on the construction of generating sets of invariants and invariant
derivatives, we refer to Chapter 5, especially to Section 5.1.7 for Riemannian
geometry and Section 5.2 for an example treated by Olver and Pohjanpelto (see
e.g. [OP]).
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4.3 Extending and Simplifying Vessiot’s Method

Vessiot’s approach as it is presented in Chapter 3 is not directly applicable to
problems that involve multiple prolongations or large examples. In this section we
present two new methods of optimisation, which were developed for this thesis.
Without these methods, nearly all computations in the following chapters become
far too large to compute. If not stated otherwise, the definitions and results
cannot be found in the literature (e.g. [Pom78], [Pom83] or [Ves03]).

The first method of optimisation is concerned with the bundles of integrability
conditions F(i) and shows how to choose them minimally for a given problem. We
have already seen in Sections 4.1 and 4.2 that a minimal choice of F(i) is a neces-
sary condition for the classification of symmetry groupoids and the computation
of invariants.

The second method of optimisation concerns the proper choice of natural
bundle and jet groupoid for a given problem. Though not always applicable, it
is possible to simplify computations considerably.

4.3.1 Optimisation I: Minimal Bundles

Multiple prolongations and projections of a natural bundle tend to bureaucratic
effects, because the description of the symmetry groupoid becomes more and
more redundant. In this section we show how to avoid these redundancies, re-
sulting in smaller natural bundles and faster computations. The main result is
the Embedding Theorem 4.22 that implies an embedding

ϕi,s : Jr(F)/Kq+r
q+r−t ↪→ Js(F(i))

for suitable choices of r and t if all steps of prolongation and projection were done
with 2-acyclic symbols. In the following parts of this thesis we will silently apply
the results of this section. The proof of the Embedding Theorem 4.22 is rather
long and technical and will be given in Section 4.3.2.

We consider the generic sections ω of a natural bundle F → X. Each coordi-
nate of F corresponds to an equation for the symmetry groupoid Rq(ω). Several
subsequent prolongations and projections lead to natural bundles

F , F(1), F(2), F(3), . . .

The goal of this section is to find minimal bundles F(i) to which the sections
from F restrict. This means removing equations that are redundant for sections
of F → X.

Two Basic Optimisation Strategies

The first and rather obvious possibility for optimisation is that two subsequent
prolongations can be replaced by a single one. In this pure form, it only occurs
in Section 5.1 to show how the natural bundles grow, but in practice it does play
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a role. The flowcharts in Figure 4.1 and 4.2 are designed to avoid subsequent
prolongations which might occur if the symbols are not 2-acyclic.

Lemma 4.14. Let F be a natural Θq-bundle. All sections ω of F → X restrict
to the natural Θq-subbundle Jr+s(F) of Jr(Js(F)) → F for all r, s ∈ N. �

Proof. The canonical embedding Jr+s(F) ↪→ Jr(Js(F)) from Proposition 1.15
(1) is a morphism of natural bundles. If (x, u) are coordinates of F then the
fibre coordinates of Jr(Js(F)) are of the form uiµ,ν with |µ| ≤ s and |ν| ≤ r.
The prolongation of a section ω, given by ui = ωi(x) to Js(F), is uiµ = ∂µω

i(x).
Prolonging to Jr(Js(F)) yields uiµ,ν = ∂µ+νω

i(x), which obviously restricts to the
image of the canonical embedding. �

The interpretation in terms of equations for the symmetry groupoidRq(ω) are
as follows. Rq(ω) is defined by the exact sequence (3.10) as the kernel kerω(Φω).
In local coordinates this means

Φα
ω(y, yq) = ωα(x), 1 ≤ α ≤ d.

The prolongation to Jr(Js(F)) defines Rq+r+s(ω) by the equations

Dν Dµ Φα
ω(y, yq+r+s) = ∂µ+νω

α(x), |µ| ≤ s, |ν| ≤ r,

where all combinations µ′ + ν ′ = µ + ν yield identical equations. These redun-
dancies are removed by restricting to Jr+s(F).

Example 4.15. In Section 5.1 dealing with Riemannian metrics it is shown how
redundancies due to multiple prolongations. They are hidden, because the bun-
dles are computed with the help of geometric interpretation.

The redundancies are even worse when working with Example 3.3 (2) on
conformal structures in the special case of a three-dimensional base. Let uij = g̃ij
be the coordinates

(uij) = (u12, u13, u22, u23, u33)

of F containing the first order conformal structure. Like in the case of Riemannian
metrics, the symbols of generic sections are not 2-acyclic.

We thus prolong to the bundle J1(F) of second order conformal structures
with fibre coordinates (uij , uijk | k ≤ 3). Here uijk = uij,k stands for the first
order jets. The fibre dimension of G is 15. To check formal integrability, we
compute F(1) = J1(J1(F))/K3

2 with fibre coordinates (v, w). The indices are
chosen such that the double prolongation is still visible:

vijk = uij,k, wijkl = uijk,l − uijl,k, k, l ≤ n.

In total, the fibre of F(1) is 30-dimensional. The Vessiot structure equations are:

uij,k = uijk, uijk,l − uijl,k = 0, k, l ≤ n.
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Plugging in uijk = uij,k and uijk,l = uij,kl shows that all integrability conditions
are automatically satisfied for every first order conformal structure.

For conformal structure on a three-dimensional base, the bundle J2(F)/K3
2 is

isomorphic to J1(F) since there were only trivial integrability conditions on F(1).
All equations on F(1) are the effect of two succeeding prolongations. In higher
dimensions, there will be nontrivial conditions. �

The second possible optimisation concerns integrability conditions. Prolong-
ing once and then projecting back yields several new equations. The next propo-
sition says that these equations will reappear in the next step of prolongation
and projection. It is safe to omit them by restriction to a subbundle.

Proposition 4.16. For a natural bundle F → X and the projection I : J1(F) →
F(1) according to Proposition 3.30, there is a projection π : J1(F(1)) → F(1) ×F
F(1). For each section ω of F → X the section (j1 ◦ I ◦ j1)(ω) restricts to the
preimage π−1(∆(F(1))) of the diagonal embedding

∆ : F(1) → F(1) ×F F(1) : f1 7→ (f1, f1). �

Proof. Let (x, u, v) be a coordinate system of F(1) such that (x, u) is a coordinate
system of F . Then there is a projection J1(F(1)) → J1(F)×F F(1). It is defined
in coordinates by:

(x, u, v, ux, vx) 7→ (x, u, v, ux).

It is easy to prove that this map is coordinate independent since F(1) is a bundle
over F . The abstract fibre of J1(F) ×F F(1) is F (1) ×F F1 and the Kq+1-action
leaves F1 invariant. So the projection to order q has the fibre F1 ×F F1. By
equation (3.34), the projection I ′ : J1(F(1)) → F(1) ×F F(1) is given by:

v′
β = Aβ(u)ux +Bβ(u)

such that for sections ω of F → X the coordinates v = v′ coincide. �

Example 4.17. Continue Example 3.49 with F = T ∗ ×
∧2 T ∗ on a three-

dimensional base X. The projection map J1(F) → F(1) is given by:

v1 = u3
2 − u2

3,

v2 = u1
3 − u3

1,

v3 = u2
1 − u1

2,

w = u4
1 + u5

2 + u6
3.

Essentially, the first order differential operator from F to F(1) is the exterior
derivative d. As the symbols of generic sections on F(1) → X remain 2-acyclic,
we compute J1(F(1)) with coordinates (u, v, w, uij , v

i
j , wj). The projection

J1(F(1)) → J1(F)×F F(1) : (u, v, w, uij , v
i
j , wj) 7→ (u, v, w, uij)
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eliminates the last two types of coordinates and the action on the remaining jet
coordinates (uij) is the same as on the fibre of J1(F) → F . Projecting back to
order 1, we obtain a copy of the above equations:

v′
1 = u3

2 − u2
3,

v′
2 = u1

3 − u3
1,

v′
3 = u2

1 − u1
2,

w′ = u4
1 + u5

2 + u6
3.

Restricting to the subbundle of J1(F(1)) → F(1) defined by

v1 − u3
2 − u2

3 = v2 − u1
3 − u3

1 = v3 − u2
1 − u1

2 = w − u4
1 + u5

2 + u6
3 = 0,

obviously eliminates four redundant coordinates on F(2). However, it is not yet
the minimal subbundle. �

In the two cases described in Lemma 4.14 and Proposition 4.16, the sections
ω of F → X restrict to the image of a suitable prolongation Jr(F). The general
situation is a mixture of both cases.

Prolongation and Projection with Minimal Bundles

In the applications in Sections 4.1 and 4.2, we computed natural bundles F(i) by
prolonging s times and projecting once in each step. In this section, we describe
the minimal subbundles of F(i) → F(i−1) as the image of a morphism of natural
bundles. At first we like to specify all possibilities to create the bundles F(i) by
prolongation and projection.

Definition 4.18. Let F = F(0), F(1), . . . , F(s), s ∈ N be natural bundles. It is
called a series of prolongations and projections of F if each F(i) is defined as one
of the following:

F(i) =


Jsi(F(i−1)) si ∈ N, ti = ti−1,

F(i−1)/K
q+ri−ti−1

q+ri−ti , si = 0, q + ri > ti > ti−1,

Jsi(F(i−1))/K
q+ri−ti−1

q+ri−ti , si ∈ N, q + ri > ti > ti−1,

with ri = ri−1 + si and r0 = t0 = 0. �

The numbers r, s and t have the following meaning:

si : number of prolongations in step i,
ri : total number of prolongations up to step i,
ti : total number of projections up to step i.



4.3. EXTENDING AND SIMPLIFYING VESSIOT’S METHOD 107

In each step, the number of prolongations si and projections ti − ti−1 and the
bundle F(i) is computed accordingly. In In Figures 4.1 and 4.2, we prolonged until
the symbols became 2-acyclic and projected once, which is the most common,
third case in the definition.

For a series of prolongations and projections, a section ω of F → X gives rise
to sections ω(i) of F(i) → X for i ≤ s. They are recursively defined by:

ω(i)(x) := jsi(ω(i−1))(x)K
q+ri−ti−1

q+ri−ti (4.1)

with Kt
t = {id} and ω(0) = ω. We are mainly interested in sections γ of F(i) → X

which are coming from F , which means that there exists a section ω of F → X
such that γ = ω(i) according to Equation (4.1).

With this preparation, we can describe the minimal subbundles of F(i) →
F(i−1) as the image of a map ϕi. The following Proposition includes both Lemma
4.14 and Proposition 4.16 as special cases.

Proposition 4.19. Let F be a natural Θq-bundle. For each series of prolon-
gations and projections F ,F(1), . . . ,F(s) of F , the canonical embedding from
Proposition 1.15 (1) induces morphism of natural bundles,

ϕi : Jri(F) → F(i), 1 ≤ i ≤ s,

such that the image of ϕi is the minimal subbundle of F(i) → F(i−1) to which all
sections coming from F restrict. �

Here, minimal subbundle means that there is no closed subbundle of im(ϕs) to
which all sections coming from F restrict. There is an immediate but important
corollary.

Corollary 4.20. The prolongation of ϕi from Proposition 4.19,

ps(ϕi) : Jri+s(F) → Js(F(i))

factors over Jri+s(F)/Kq+ri+s
q+ri−ti+s. In other words it induces morphisms of natural

bundles
ϕi,s : Jri+s(F)/Kq+ri+s

q+ri−ti+s → Js(F(i)), (4.2)

such that im(ϕi,s) is the minimal subbundle to which sections from F restrict. �

Proof (of Proposition 4.19). To obtain all maps ϕi, we have to follow the
series of prolongations and projections, starting with ϕ0 = idF .

1) Let F(i) = Jsi(F(i−1)) and ϕi−1 : Jri−1(F) → F(i−1) be the morphism of
the previous step. Then apply Jsi to ϕi−1 and use the canonical embedding:

Jri(F) � � ι //

ϕi=psi (ϕi−1)

22Jsi(Jri−1(F))
Jsi (ϕi−1)

// Jsi(F(i−1)).
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Set ϕi = psi(ϕi−1) = ι ◦ psi(ϕi−1) according to Proposition 1.15 (3). All sections
of F(i) → X coming from F are of the form

(jsi(ϕi−1) ◦ jsi ◦ jri−1)(ω)

and they restrict to the image of ϕi, since partial derivatives commute.
If all sections coming from F restrict to a smaller subbundle F ′

(i) of im(ϕi),
its preimage defines a subbundle of Jri(F) → F . But each ri-jet uri ∈ Jri(F)
defines a germ of a section of F → X. It follows that F ′

(i) = im(ϕi).

2) Let F(i) = F(i−1)/K
q+ri−ti−1

q+ri−ti . The projection to F(i) gives ϕi+1 = π ◦ ϕi:

Jri−1(F)
ϕi−1 // F(i−1)

π // F(i).

As im(ϕi) is already the smallest subbundle for sections from F , it follows for
im(ϕi+1). The case of simultaneous prolongation and projection is a combination
of 1) and 2). �

In the following, we are interested in the images of ϕi and ϕi,s, since they are
minimal bundles. Obviously, each bundle F(i) can be replaced by im(ϕi), elim-
inating redundant equations for sections from F . Continuing the prolongation
and projection will be much more efficient with the minimal bundles.

Definition 4.21. Let F(i), 1 ≤ i ≤ s be a series of prolongations and projections
of F . Then F(i) is called minimal if im(ϕi) = F(i) for ϕi as in Proposition 4.19.
The series is called minimal if all F(i) are minimal. �

We have theoretically constructed a series of prolongations and projections
of F with minimal bundles described as images im(ϕi). As in the diagrams 4.1
and 4.2 it is most efficient to replace Jsi(F(i−1) directly by the image of ϕi−1,si .
Three simple operations can shorten the series itself, without affecting tests of
integrability.

• Replace subsequent prolongations (ti = ti+1 = ti+2 = . . .) by a single one.

• Since we have Kq+r
q

∼= Kq+r+s
q /Kq+r+s

q+r , the same is possible for successive
projections

(F/Kq+r+s
q+r )/Kq+r

q
∼= F/Kq+r+s

q .

• Combine each prolongation with following projection to a single step.

The Embedding Theorem

We come to the main result of this section, which has both theoretical and com-
putational consequences. In Section 4.1 it was applied to classify the symmetry
groupoids and in Section 4.2 it was a necessary from the theoretical point of view
to find a generating set of invariants on Jr(F) by prolongation and projection.

The computational value is that it reduces the computation of the minimal
bundles im(ϕi,s) to linear algebra, which is presented in the next subsection.
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Theorem 4.22 (Embedding Theorem). Let F → X be a natural Θq-bundle
for a groupoid Θq with involutive symbol. Choose r ∈ N such that the sym-
bols of Rq+r−1(ω) for generic sections ω of F are 2-acyclic and define F(1) =
Jr(F)/Kq+r

q+r−1. Then the maps from equation (4.2),

ϕ1,s : Jr+s(F)/Kq+r+s
q+r+s−1 ↪→ Js(F(1)),

are embeddings for all s ∈ Z≥0. �

The proof is rather long, so we first to computational aspects before giving the
proof in Section 4.3.2. Applying the Embedding Theorem several times extends
it to all maps ϕi,s.

Corollary 4.23. Let F(i), 1 ≤ i ≤ s be a series of prolongations of F such that
the si are chosen such that the symbols for generic sections of Jsi−1(F(i−1)) → X
are 2-acyclic, then the maps from equation (4.2),

ϕi,s : Jri+s(F)/Kq+ri+s
q+ri−ti+s ↪→ Js(F(i)),

are embeddings for all s ∈ Z≥0. �

Proposition 4.19 shows that there are minimal subbundles of F(i) for all sec-
tions from F and the Embedding Theorem implies that we obtain the maximal
number of equations that can be computed with ri prolongations if we take care
of the symbols. This combines the efficiency of several smaller steps of prolon-
gation and projection with the knowledge, that all symmetry equations up to a
certain order are present on each F(i).

Computing Minimal Bundles

So far, only the existence and theoretical properties of minimal bundles F(i) have
been assured. We now construct these bundles under the assumption that we
prolong until the symbols of generic sections are 2-acyclic and project only once
in each step. This case is needed for all applications in Sections 4.1, 4.2 and the
following chapters.

We start with an example to illustrate the computation and the effects of
using minimal bundles.

Example 4.24. Continue Examples 3.49 and 4.17. The bundle F(1) and its
prolongation J1(F(1)) with coordinates (u, v, w, uij , v

i
j , wj) are already calculated.

It remains to find the minimal subbundle im(ϕ1,1). To compute the map ϕ1,1 we
use the total derivative:

v1
1 = Dx1v1 = u3

12 + u2
13, v1

2 = u3
22 + u2

23, . . .
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We observe that the map is linear in second order derivatives uij , such that the
image im(ϕ1,1) can be determined by linear algebra. Eliminating second order
derivatives, we obtain only a single equation

0 = v1
1 + v2

2 + v3
3,

which is due to the fact that the exterior derivative d satisfies d2 = 0:

0 = d2ω = (v1
1 + v2

2 + v3
3)dx

1 ∧ dx2 ∧ dx3.

The equations involving only first order jets are obvious. We repeat the results
of Example 4.17:

v1 − u3
2 − u2

3 = v2 − u1
3 − u3

1 = v3 − u2
1 − u1

2 = w − u4
1 + u5

2 + u6
3 = 0,

These are the complete equations defining the subbundle im(ϕ1,1) on J1(F(1)) →
F(1). We go on with prolongation and projection, but only show the fibre di-
mensions of the bundles which are involved. They are collected in the following
table:

i 0 1 2 3
F(i) 6 4 8 15
J1(F(i))/K2

1 4 13 36
J1(F(i)) 18 30 54
im(ϕ1,i) 18 25 33
J1(G(i))/K2

1 4 13 51

For example, the difference

dim(J1(F(1))/K
2
1 )− dim(F(2)) = 13− 8 = 5

is due to the five equations we have found above and we have

J1(F(1))/K
2
1
∼= F(2) ×X

∧2
T ∗ ×X

∧3
T ∗ ×X

∧3
T ∗,

where the 2-form and the first 3-form are repetitions of dω and dΩ and the
last form is d2ω. In the next step, it is possible to eliminate 36 − 15 = 21
redundant coordinates. This also shows that the unnecessary equations even
produce integrability conditions which can be removed.

For comparison the computation without any optimisation is displayed in the
last row. Starting with G(0) = F , we set G(i) = J1(G(i−1))/K2

1 . In the last step,
this approach becomes very inefficient with a 51-dimensional fibre. �

The proof of the next proposition shows how to compute the minimal sub-
bundles in the general case. It depends heavily on the Embedding Theorem 4.22,
as it assumes that all maps ϕi,s are injective.
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Proposition 4.25. Let F = F(0), F(1), . . .F(s) be a minimal series of prolon-
gations and projections with 2-acyclic symbols and assume ti = i in each step.
Then the image of the embedding ϕi,si is a subbundle of Jsi(F(i−1)) → F(i−1),
which can locally be computed by linear algebra. �

Proof. We compute the images of ϕi,si by induction on i and omit indices wher-
ever possible. For i = 1,

ϕ1,s2 : Jr2(F)/Kq+r2
q+r2−1 → Js2(F(1))

is an embedding. If (u) are the coordinates of F , then F(1) has coordinates
(u(1), v(1)) and the map ϕ1 : Jr1(F) → F(1) is given in coordinates by:

u(1) = uµ, 0 ≤ |µ| < r1,

v(1) = A(u)ur1 +B(u, ur1−1)
(4.3)

according to Propositon 3.33 or equation (3.34). The formulae for v(1) are quasi-
linear in ur1 with coefficients in u. Use the total derivative to compute the
prolongation ps2(ϕ1):

u
(1)
ν = uµ+ν , |µ| < r1, |ν| ≤ s2,

v
(1)
ν = Dν(A(u)ur1 +B(u, ur1−1)) |ν| ≤ s2.

(4.4)

All formulae are quasilinear in highest order jets uµ+ν or uri+|ν| with coefficients
in u. Define sets Uj , 0 ≤ j ≤ r2, that contain all of the above equations with
highest occuring jet order j.

Start with Ur2 . We are searching for equations containing the coordinates
v

(1)
s2 occurring in Ur2 that define the subbundle im(ϕ1,s2). A necessary condition

is that the highest order jets ur2 on the right hand side are eliminated. We show
that this condition is already sufficient. Since the equations are quasilinear, we
eliminate ur2 by linear algebra over k(u):∑

C(u) v(1)
s2 =

∑
C(u)A(u)ur2︸ ︷︷ ︸

=0

+lower order.

This is an equation of order q+ r2 − 1 which depends on u-jets of order ≤ r2 − 1
only. Since ϕi,s2−1 is injective, there exists a D(u(1)

ν , v
(1)
ν ) that depends only on

coordinates occurring in Uj with j < r2 such that∑
C(u) v(1)

s2 +D(u(1)
ν , v(1)

ν ) = 0

on the image of ps2(ϕ1). Proceed with Ur2−1, . . . analogously. As each neces-
sary condition was already sufficient, we have produced all defining equations for
im(ϕ1).
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Turn to the projection im(ϕ1) → F(2). It can be computed with the methods
of Proposition 3.33 if the coordinates for im(ϕ1) are chosen carefully. F(1) was
minmal and there are no equations on u(1), v(1) alone and it is possible to find a
subset

U ⊆ {u(1)
µ , v(1)

µ , | |µ| ≥ 1}

such that (u(1), v(1), U) are coordinates of im(ϕ1). The vector field of the algebroid
action on F(1) is given as in equation (3.23) and the action on im(ϕ1) is computed
analogous to equation (3.8) by applying the vector field to the coordinates of
im(ϕ1). As we have left (u(1), v(1)) untouched, the Kq+r2−1

q+r2−2 -distribution on the
fibre of im(ϕ1) is of the same form as in equation (3.24). The projection down
to F(2) is therefore given by

v(2) = A(u, v)v(1)
s2 +A′(u, v)u(1)

s2 +B(u(1)
ν , v(1)

ν ), |ν| < s2, (4.5)

where not all coefficients A(u, v) are zero. Otherwise we would have found a new
equation of order q+ r2− 2 that depends on u-jets of maximal order r2− 1 only.
But since ϕi−1,s2−1 is injective, these equations are already present.

The recursive step from i − 1 to i is analogous to the case of i = 1. For
coordinates (u(i−1), v(i−1)) of F(i−1), we compute the map psi(ϕi−1) according
to equation (4.4). Equation (4.5) with A 6= 0 ensures that the formulae stay
quasilinear in highest order jets of u, this time with coefficients in (u(i−1), v(i−1)).
The remaining proof is completely parallel to the case of i = 1. �

4.3.2 Proof of the Embedding Theorem

In this section, we prove the Embedding Theorem 4.22. It combines the nonlinear
Janet sequence from Section 3.5.3 with a theorem of Pommaret [Pom78, Thm.
2.4.5] for arbitrary PDE systems. Starting with the affine bundle version of
the Janet sequence and the curvature map from Remark 3.52, we construct a
three-dimensional exact diagram (Figure 4.6) which finally proves the Embedding
Theorem. The reader may compare the diagram and the techniques used to
[Pom78, §2.4] and [Pom83, §I.A.3]. See also [Gol68] in the linear case.

Prolongation and Projection with 2-acyclic Symbols

The key idea for the computation of minimal bundles in a series of prolongations
and projections is the following theorem. It shows that we can swap prolongations
and projections of PDE systems as long as the symbol is 2-acyclic. We will present
a pictorial way to use this theorem and then translate it into the language of
natural bundles.

Theorem 4.26. [Pom78, Thm. 2.4.5] Let Rq ⊆ Jq(E) be a system of PDEs of
order q on a bundle E → X such that Rq+1 is a subbundle of Jq+1(E) → X. If
the symbol gq+1 is a vector bundle and gq is 2-acyclic, then R(1)

q+1 = (R(1)
q )+1. �
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Here (R(1)
q )+1 denotes the first prolongation of the system R(1)

q . In Figure 4.3
we visualise the effects of Theorem 4.26 as a path through a grid. A prolongation
from order q to order q+r goes upwards r steps and a projection down to q+r−s
takes s diagonal steps down. The path on the left hand side,

Rq  Rq+1  R(1)
q  (R(1)

q )+1,

is equivalent to the computation of R(1)
q+1 on the right hand side.

Figure 4.3: Visualisation of Theorem 4.26.

Rq

Rq+1

R(1)
q

(R(1)
q )+1

•

•

•

• =

Rq

Rq+2

R(1)
q+1

•

•

•

•

For the translation into the language of natural bundles, it is convenient to
omit the labels like Rq, which is done in Figure 4.4. Each dot stands for a system
of PDEs. If we use the fact that Rq has a 2-acyclic symbol, we indicate it by an
extra circle around the dot for Rq. On the right hand side, Rq still has a 2-acyclic
symbol, but we do not apply this piece of information and thus omit the circle.

Figure 4.4: Abstract visualisation of Theorem 4.26.

=

By equation (A.2), the symbol of Rq+r is also 2-acyclic if the symbol of Rq

is 2-acyclic and we have the following corollary:

Corollary 4.27. Let Rq ⊆ Jq(E) be a system of PDEs over E such that Rq+r

is regular for all r ≤ s ∈ N. If gq is 2-acyclic and gq+1 is a vector bundle, then
R(1)
q+r = (R(1)

q )+r for all r ≤ s. �

It is not necessary to check if all symbols gq+r are vector bundles to satisfy
the conditions of Theorem 4.26. Proposition A.6 implies that all gq+r are vector
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bundles if gq is 2-acyclic and gq+1 is a vector bundle. Theorem 4.26 can be
extended to multiple prolongations and projections and the next corollary gives
an example.

Corollary 4.28. LetRq ⊆ Jq(E) be a system of PDEs over E . If all intermediate
PDE systems satisfy the conditions of Corollary 4.27 up to order q + s, then

πq+sq (Rq+s) = R(s)
q = R(1)...(1)

q

where we prolonged and projected s times on the right hand side. �

The visualisation in Figure 4.4 provides a pictorial way to prove corollaries
from Theorem 4.26.

Proof. We work with a recursion for r ∈ N and apply Theorem 4.26 in each of
the following steps. We begin with:

= = =

In each step, we have used the assumption that the system denoted with the
extra circle has a 2-acyclic symbol. The circle can be seen as anchor points for
Figure 4.4. The recursive step also proves Corollary 4.27:

= = . . . =

where the dashed line stands for an arbitrary number of prolongations. �

Obviously we can extend Theorem 4.26 to various other ways to compute
R(r)
q , like R(r)

q = R(r−s)(s)
q if all necessary symbols are 2-acyclic and the involved

systems are regular. This has very useful consequences for natural bundles.

Translation into the Language of Natural Bundles

We will now give a translation of the previous section into the language of natural
bundles. Throughout this section we silently assume that all occurring PDE
systems of order q+ r a regular and their symbols gq+r+1 are vector bundles. We
start with a direct interpretation of Theorem 4.26.
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Theorem 4.29. Let F → X be a natural Πq-bundle such that symbols for
generic sections ω are 2-acyclic. Let F(1) = J1(F)/Kq+1

q . Then the map

ϕ1,1 : J2(F)/Kq+2
q+1 ↪→ J1(F(1))

from equation (4.2) is an embedding. �

This is already a special case of the Embedding Theorem 4.22. We reinter-
pret the visualisation of Figure 4.4 in terms of natural bundles. The equality
R(1)
q+1(ω) = (R(1)

q (ω))+1 implies that J1(F(1)) contains the equations from J2(F)
which are of order q+1, but there may be redundancies. This means J2(F)/Kq+2

q+1

only embeds into J1(F(1)). In terms of pictures we say:

↪→

Each dot now stands for a natural bundle. An extra circle indicates that we
have used that the symbols for generic sections of the corresponding bundle are
2-acyclic.

Projecting down to F ′
(2) = J1(F(1))/K

q+1
q , we obtain the picture:

↪→

It suggests that the image of the embedding J2(F)/Kq+2
q ↪→ F ′

(2) is the minimal
subbundle F(2) of F ′

(2) → F(1) to which all sections from F restrict. The embed-
ding follows from Proposition B.17 (3) and minimality analogous to the proof of
Proposition 4.19.

For convenience, we repeat Theorem 4.22.

Theorem 4.22 (Embedding Theorem). Let F → X be a natural Θq-bundle
for a groupoid Θq with involutive symbol. Choose r ∈ N such that the sym-
bols of Rq+r−1(ω) for generic sections ω of F are 2-acyclic and define F(1) =
Jr(F)/Kq+r

q+r−1. Then the maps from equation (4.2),

ϕ1,s : Jr+s(F)/Kq+r+s
q+r+s−1 ↪→ Js(F(1)),

are embeddings for all s ∈ Z≥0. �

It is possible to construct the embedding ϕ1,s step by step
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↪→ . . . ↪→ ↪→

analogous to Corollary 4.28, but we will give a proof that provides it in a single
step. The generalisation from F(1) to all bundles F(i) in Corollary 4.23 can be
done in a pictorial way just as Corollaries 4.27 and 4.28. We give an example.

Example 4.30. Let F be a natural Θq-bundle and assume that

F(1) = J1(F)/Kq+1
q ,

F(2) ⊆ J2(F(1))/K
q+2
q+1 ,

since the generic sections of F(1) → X only have 2-acyclic symbols after prolong-
ing once. To construct F(2), we apply Theorem 4.22 on F and obtain F(2) as the
image of the embedding

↪→

We like to compute the first prolongation J1(F(2)) and the embedding

ϕ2,1 : J4(F)/Kq+4
q+2 ↪→ J1(F(2)).

Using Theorem 4.22 on F and F(1) yields the two diagrams:

↪→ ↪→ and ↪→

Combining both diagrams, we obtain the map ϕ2,1.

↪→ ↪→
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If the symbols for generic sections of F(2) → X are 2-acyclic, we only have to
project once to define the next bundle F(3). �

Prolonging the Janet Sequence

We will now adapt the affine bundle version of the Janet sequence (3.43) to
the case of Rq+r+1(ω) and construct a curvature map κr as in Remark 3.52.
Throughout this section we fix the integrable jet groupoid Θq ≤ Πq and assume
that the symbols Mq for generic sections ω of F → X are 2-acyclic and vector
bundles. The generalisation to arbitrary symbols is rather simple. The idea for
the proof of Theorem 4.26 and the Embedding Theorem 4.22 is to embed the
exact sequence for the curvature map κr into the prolongation of sequence (3.44)
for κ:

0 // R(1)
q+r(ω) //

� _

��

Rq+r(ω)
κr //
0
// SrT ∗ ⊗ F1� _

��
0 // (R(1)

q )+r(ω) // Rq+r(ω)
pr(κ) //

0
// Jr(F1)

(4.6)

Constructing κr relies on the affine version of the Janet sequence (3.43) for
Rq+r+1(ω). If Mq is 2-acyclic, the above embedding (4.6) is possible. The
first step is to prolong the sequence of model vector bundles, where we adapt
Proposition A.6 for symbols of jet groupoids.

Proposition 4.31. Let Θq be a groupoid with involutive symbol MΘq such that
all MΘq+r for r ∈ Z≥0 are vector bundles. Let Rq ⊆ Θq be a jet subgroupoid
with symbol Mq. If Mq+1 is a vector bundle over Rq and Mq is 2-acyclic then
for all r ∈ N,

0 //Mq+r+1 //MΘq+r+1
// Sr+1T ∗ ⊗F0

// SrT ∗ ⊗F1 (4.7)

is an exact sequence of vector bundles (pulled back over Rq). Additionally, Mq+r

is a vector bundle over Rq. �

Proof. Begin with the top row of diagram (3.43) and proceed by induction on
r. If the sequence is exact for r, a diagram chase in Figure 4.5 shows that the
sequence is also exact for r+1. The diagram in Figure 4.5 resembles the diagram
below equation (1.6.13) in [Spe69].

To see that Mq+r is a vector bundle, set Qr as the cokernel of the last map
in the first row. As the map J1(F) → F(1) is of constant rank, dim(Qr) is also
constant. Counting dimensions, we see that

dim(Mq+r+1)+dim(Qr) = dim(MΘq+r+1)−dim(Sr+1T ∗⊗F0)+dim(SrT ∗⊗F1)

is constant and thus Mq+r+1 is a vector bundle. �
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The last proposition gives rise to the exact sequence of affine bundles for
Rq+r+1(ω), which starts with the prolongation of equation (3.5):

0 //Mq+r+1 //

���
�
�

MΘq+r+1
//

���
�
� Sr+1T ∗ ⊗F0

//

���
�
� SrT ∗ ⊗F1

0 // Rq+r+1 //

��

Θq+r+1 //

��

Jr+1(F) //

��

Jr+1(F)/Kq+r+1
q+r

//

��

0

0 // Rq+r // Θq+r // Jr(F) Jr(F)

(4.8)

As in Section 3.5.3, we omit the ω-dependence, double arrows and possible
pullbacks over Θq+r (if there is no integrable groupoid Rq+r(ω).

By Lemma 3.43, the fibre of the bundle MΘq+r+1 is isomorphic to k
q+r+1
q+r

and thus the translational MΘq+r+1-action and the Kq+r+1
q+r -action on the fibre of

Jr+1(F) coincide. It follows that Jr+1(F)/Kq+r+1
q+r is the cokernel of

pr+1(Φω) : Θq+r+1 → Jr+1(F).

Restricting SrT ∗ ⊗ F(1) to the cokernel H = coker(MΘq+r+1 → Sr+1T ∗ ⊗ F0)
yields the exact sequence of affine bundles and finishes the preparations for the
proof of the Embedding Theorem.

0 //Mq+r+1 //

���
�
�

MΘq+r+1
//

���
�
� Sr+1T ∗ ⊗F0

//

���
�
� H //

���
�
� 0

0 // Rq+r+1 //

��

Θq+r+1 //

��

Jr+1(F) //

��

Jr+1(F)/Kq+r+1
q+r

//

��

0

0 // Rq+r // Θq+r // Jr(F) Jr(F)

(4.9)

Proof of Theorem 4.22

The case, where the symbols for generic sections ω of F → X are not 2-acyclic
can be reduced to the 2-acyclic case. If the symbols become 2-acyclic after r
prolongations, replace F by Jr(F) and apply Theorem 4.22 to construct the
embedding

Js+1(Jr(F))/Kq+r+s+1
q+r+s ↪→ Js(F(1))

for F(1) = J1(Jr(F))/Kq+r+1
q+r . Apply Propositions B.17 (3) and 2.10 (or 3.7) on

the canonical map Jr+s+1(F) ↪→ Js+1(Jr(F)) to obtain the desired embedding

Jr+s+1(F)/Kq+r+s+1
q+r+s ↪→ Js(F(1)).
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We now assume 2-acyclic symbols. Roughly speaking, we apply the functor Jr
to the sequence (3.43) and then embed the sequence (4.8):

Jr(eq. (3.43))

eq. (4.8)
' �

55jjjjjjjj

The result is the commutative and exact diagram in Figure 4.6, where the leading
zeros are omitted to simplify the diagram. The first three columns of diagram
(4.8) embed into Jr(eq. (3.43)) because of Definition 1.24 for the groupoids and of
Proposition 1.15 (1) for the natural bundles. Since a morphism of affine bundles
is injective if and only if the corresponding morphism on the model vector bundles
is injective, the embedding follows for the top rows, too. By Proposition 1.15 (3),
the diagram commutes.

The embedding SrT ∗⊗F1 ↪→ Jr(F1) is a consequence of Proposition 1.10 (1)
and (2). It remains to show that the map

ϕi,r : Jr+1(F)/Kq+r+1
q+r → Jr(F(1))

from equation (4.2) is also an embedding. For this, we restrict SrT ∗ ⊗F1 to the
cokernel H according to diagram (4.9):

Jr(T ∗ ⊗F0) //

�
�
�

���
�
�

Jr(F1) //

�
�
�

���
�
�

0

Sr+1T ∗ ⊗F0
//

���
�
�
�
�
�
�

+ �

99rrrrrrrrrr
H //

���
�
�
�
�
�
�
+ �

99rrrrrrrrrrr
0

Jr(J1(F)) //

��

Jr(F(1)) //

��

0

Jr+1(F) //

��

+ �

99ssssssssss
Jr+1(F)/Kq+r+1

q+r
//

��

+ �

99sssssssss
0

Jr(F) Jr(F)

Jr(F)

rrrrrrrrrr

rrrrrrrrrr
Jr(F)

rrrrrrrrrr

rrrrrrrrrr

As the morphism of model vector bundles H ↪→ Jr(F1) is injective, it also
follows for ϕi,r.
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4.3.3 Optimisation II: Subgroupoids

In this section, we present a second possibility to optimise Vessiot’s approach. The
Embedding Theorem applies to the bundles F(i) of integrability conditions and
here we will shrink the original groupoid Θq and the bundle F before starting the
process of prolongation and projection. This is possible if we are only interested
in a closed subset of all sections of F → X. In many examples it is even necessary
to shrink F and Θq since the sections of interest will not be generic after a few
prolongations and projections. A strong motivation for this optimisation is the
relative equivalence problem in Section 6.1.2.

At first we show an example, where the restriction to a subset of all sections
is naturally given by the problem itself. With a slight change of notation, it was
taken from the thesis of Neut [Neu03, §2.3.1] (see also the references therein).

Example 4.32. Each second order ordinary differential equation (ODE) defines
a submanifold X of J2(R× R) by setting

y′′ = f(x, y, p = y′).

Choose the coordinates (x, y, p) for X. The pullback of the standard contact
forms on J2(R× R) to X is given by

ω2 = dy − p dx, ω3 = dp− f(x, y, p)dx.

Adding ω1 = dx completes the forms to a coframe ω = (ω1, ω2, ω3)tr on X.
A diffeomorphism ϕ is a contact transformation on X if the pullbacks ϕ∗(ω2),
ϕ∗(ω3) are multiples of the contact forms. This is the case if there are functions
ai(x, y, p) such that

ϕ∗(ω) =

 a4 a5 a6

0 a1 0
0 a2 a3

ω.
We further restrict to transformations with ϕ∗(dx) = dx.

ϕ∗(ω) =

 1 0 0
0 a1 0
0 a2 a3

ω. (4.10)

To obtain a natural bundle, we see that the matrix in equation (4.10) defines a
subgroup G1 ≤ GL1 (with parameters a1, a2, a3). Each coframe ω is a section
of the coframe bundle bundle P1 → X and thus also of the natural Π1-bundle
F = P1/G1. By construction of F , the condition (4.10) is satisfied if and only if
ϕ stabilises the projection of the coframe to F .

In Section 5.3, we compute the projection P1 → F , such that F has fibre
coordinates (u1, . . . u6) and the projected coframe corresponds to the section

u1 = 1, u2 = u3 = u4 = 0, u5 = −p, u6 = f(x, y, p). (4.11)

It is clearly visible that only a small subset of the sections of F → X corresponds
to second order ODEs. It is parametrised by the single function f(x, y, p). �
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The goal is to find a more efficient description of those problems where only
a subset Ω ⊂ Γ(F) of all sections is of interest. The next proposition shows a
correspondence between factor bundles and subgroupoids Θ′

q ≤ Θq.

Proposition 4.33. Let F → X be a natural Θq-bundle and Ω ⊂ Γ(F) be a
subset of the sections of F . The following two statements are equivalent.

(1) There exists a natural Θq-bundle F ′ and a projection

π : F → F ′,

which is also a morphism of natural Θq-bundles such that all sections ω ∈ Ω
project to a single section ω′ of F ′ → X.

(2) There exists a subgroupoid Θ′
q ≤ Θq such that the subgroupoids satisfy

Rq(ω) ≤ Θ′
q, ∀ω ∈ Ω. �

We usually assume F ′ 6= X, since otherwise the statements are trivial.

Proof. If there exists a projection, set Θ′
q = Rq(ω′) as the symmetry groupoid

of ω′. Since π is a projection, each rq ∈ Rq(ω)(x, y) also satisfies

ω′(y)rq = π(ω)(y)rq = π(ω)(x) = ω′(x).

If all Rq(ω) ⊆ Θ′
q for ω ∈ Ω, then the equations for Rq(ω) in Lie form (3.11)

include those for Θ′
q. Then there are coordinates (x, u) of F such that the first

k coordinates (u1, . . . , uk) correspond to the equations for Θ′
q (independent from

the chosen section ω). Locally define the bundle F ′ by the projection

π : F → F ′ : (x, u) 7→ (x, u1, . . . , uk).

Since ω′ = π(ω) is a well-defined section defining the jet groupoid Θ′
q, F ′ ∼=

PΘq/Θ′
q is a natural bundle. �

If we can find a factor bundle F ′ where all sections from Ω are effectively
represented by a single section ω′, then it is possible to shrink Θq. At the same
time the Θq-bundle F can be replaced by a smaller Θ′

q-bundle, since several
equations are automatically satisfied. The following lemma shows how to proceed.

Lemma 4.34. Let π : F → F ′ be a projection of Θq-bundles and let ω′ be
a section of F ′ → X. Assume that the symmetry groupoid Θ′

q = Rq(ω′) is
integrable. Then the bundle F ′′ defined by the pullback diagram

F ′′ //

��

F
π

��
X

ω′ // F ′

is a natural Θ′
q-bundle. �
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Proof. Since each f ∈ Θ′
q(x, y) satisfies the symmetry equations ω′(y)f = ω′(x),

the fibre π−1(ω′(y)) is mapped to the fibre π−1(ω′(x)). �

If the symmetry groupoid Rq(ω′) is not integrable, we prolong and project
until we obtain an integrable groupoid Θ′

q ⊆ Rq(ω′) and continue as before.
Usually Rq(ω′) is not integrable.

To shrink Θq and F for a subset Ω ⊂ Γ(F), the easiest choice is to find a
projection F → F ′. In all cases treated in this thesis, the projection is directly
given by the problem itself.

Remark 4.35. Not all subsets Ω ⊂ Γ(F) are suited to shrink Θq. Consider the
Π1-bundle F = T ∗ ×X T ∗ of two 1-forms on a three-dimensional base. Then all
sections of the form

ω1 = dx1, ω2 = u1(x)dx1 + u2(x)dx2 + u3dx3

induce the projection π : F → T ∗ and the section ω′ = dx1. Here it is possible
to shrink Πq and F to T ∗.

However choosing the forms ω1 and ω2 with the single condition that the
coefficient of dx1 coincides for both forms, does not lead to a subgroupoid of Π1.
The reason is the GL1-action on the fibre F ∼= Fx. In the first case, GL1 acts on
the values U = {ω(x)|ω ∈ Ω} as a block (gU = U or gU ∩U = ∅ for all g ∈ GL1).
In the second case, the sections do not form a block. �

For an example which shows how to restrict the natural bundle F and the
original groupoid Θq, we refer to Section 5.3, where Example 4.32 is continued.
All computations are done with the Maple packages jets and JetGroupoids
(see Chapter 5 and Appendix D).



Chapter 5

Maple Examples

The current chapter is intended to give examples that illustrate the theoretical
parts in Chapters 3 and 4. The second purpose is to give an introduction to the
Maple packages jets, JetGroupoids and Spencer. They provide procedures
for natural bundles, jet groupoids and Spencer cohomology.

In Section 5.1, the example of a Riemannian metric on a two-dimensional base
manifold is treated in order to show basic commands of the Maple packages. The
first part of the example repeats all computations of Section 3.3.1 with Maple.
Furthermore, all mayor steps from Chapters 3 and 4 are explicitly computed.
This includes the prolongation and projection of natural bundles as well as the
Vessiot structure equations.

The example in Section 5.2 is from Olver and Pohjanpelto (see e.g. [OP07a]).
It is the first example of a natural Θq-bundle. Here, a generating set of invariants
and invariant differential operators are constructed to illustrate Section 4.2.

The last example in Section 5.3 deals with second order ODEs under point
transformations. It was calculated by Neut [Neu03] with the Cartan equivalence
method (see Section 6.2). Using Vessiot’s approach, this example shows how the
natural Πq-bundle F can be reduced to a natural Θq-bundle using the optimisa-
tion from Section 4.3.3. It also serves as an example of the Vessiot equivalence
method that will be introduced in Chapter 6.

There are three Maple packages used in this chapter. The jets package
by Barakat and Hartjen [Bar01] contains routines for formal differential geom-
etry calculations and basic commands for jet groupoids and natural bundles.
It was extended by the author of this thesis, which led to the add-on package
JetGroupoids for natural bundle commands and the Spencer package for the
computation of Spencer cohomology.

See Appendix D for a reference of relevant commands of jets, JetGroupoids,
Spencer and a sample worksheet that can be adapted to specific problems.

125
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5.1 Riemannian Geometry

This example deals with a Riemannian metric on a two-dimensional base mani-
fold which were already introduced in Examples 3.8 and 3.3.1. To illustrate the
theoretical results from Chapters 3 and 4, the relevant computations are per-
formed with the Maple packages jets, JetGroupoids and Spencer. The topics
covered are:

• Construction of a natural bundle F via differential invariants (this repeats
Example 3.3.1 from Section 3.3),

• Spencer cohomology (Appendix A),

• Prolongation and projection of natural bundles and integrability conditions
(Sections 3.4 and 3.5),

• Minimal bundles (Section 4.3.1),

• Invariants on natural bundles (Section 4.2).

In each section, references to the theoretical part are given.

Calculations in Maple

The first part is completely analogous to Example 3.3.1, except that all compu-
tations are done with Maple.

Load the packages:

> with(jets): with(JetGroupoids): with(Spencer):

Define the independent and dependent variables, as well as coordinates for
the algebroid J1(T ):
> ivar := [x1,x2]: dvar := [y1,y2]:
> Dvar := [xi1,xi2]: Tvar := [eta1,eta2]:

The equations defining the symmetry groupoid R1 = R1(ω0) of the flat metric:
> GR_g := [y1[x1]^2+y2[x1]^2 = 1, y1[x1]*y1[x2]+y2[x1]*y2[x2] = 0,
> y1[x2]^2+y2[x2]^2 = 1];

GR g := [y1 x1
2 + y2 x1

2 = 1, y1 x1 y1 x2 + y2 x1 y2 x2 = 0, y1 x2
2 + y2 x2

2 = 1]
The command grp2alg converts the equations for the groupoid R1 into those

for the algebroid R1 by linearisation and pullback to J1(T ). The result is identical
to equation (3.14):

> T_g := grp2alg(GR_g,ivar,dvar,Tvar,"");

T g := [2 η1y1 = 0, η1y2 + η2y1 = 0, 2 η2y2 = 0]
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Involutive Distribution on Π1 and Differential Invariants

To compute the involutive distribution ](R1) on Π1, we choose η2
1 as coordinate

for the subbundle R1 of J1(T ). The other coordinates are substituted according
to the algebroid equations:
> T_g := nrsolve(T_g,[eta1[y1],eta1[y2],eta2[y2]])[1];

T g := [η1y1 = 0, η1y2 = −η2y1 , η2y2 = 0]
Compute the involutive distribution ](R1) on V (Π1) using the following com-

mand:
> iso := isoalg(T_g,ivar,dvar,Tvar):
> iso := subs(iso[3],iso[1]):

The output of isoalg contains vector fields generating the distribution ](R1).
The jets notation for a vector field

ξ = a
∂

∂x
+ b

∂

∂y

is as follows. A jets vector field is a list containing the summands of a vector
field. For ξ, the summands are a∂x and b∂y. Each summand a∂x is written as
a list [a, [x]] containing the coefficient a and the variable x for the directional
derivative.

The involutive distribution is generated by the vector fields:
> for a in iso do print(a) od;

[[1, [y1 ]]]

[[1, [y2 ]]]

[[−y2 x1 , [y1 x1 ]], [−y2 x2 , [y1 x2 ]], [y1 x1 , [y2 x1 ]], [y1 x2 , [y2 x2 ]]]
In the usual notation for vector fields, they coincide with equation (3.15):

∂y1 , ∂y2 , −y2
1∂y11 − y2

2∂y12 + y1
1∂y21 + y1

2∂y22 .

It is already known from Section 3.3.1, that R1 is defined by differential
invariants. Otherwise the following command computes them:
> #invtarget(T_g,ivar,dvar,Tvar,"");

We define coordinates for the natural bundle Fg of metrics as well as variables
for sections. The projection Φg : Π1 → Fg is the same as equation (3.16):
> uvar_g := [u11,u12,u22]:
> wvar_g := [omega11, omega12, omega22]:
> Phi_g := ezip(uvar_g,map(lhs,GR_g));

Phi g := [u11 = y1 x1
2 + y2 x1

2, u12 = y1 x1 y1 x2 + y2 x1 y2 x2 , u22 = y1 x2
2 + y2 x2

2]
It is possible to check that inv g contains only differential invariants by ap-

plying the generators of ](R1) to inv g. According to Lemma 3.17, all results
must be zero:
> map(b->map(a->lieapp(a,rhs(b),ivar,dvar),iso),Phi_g);

[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
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The special section ω0 defining the flat metric on X:

> omega0 := ezip(wvar_g,map(rhs,GR_g));

ω0 := [ω11 = 1, ω12 = 0, ω22 = 1]

5.1.1 The Natural Bundle

Having obtained the differential invariants, we now determine the natural bundle
Fg of metrics. This illustrates Section 3.3. It is still covered by Example 3.3.1.

Computing the finite Π1-action on the natural bundle Fg works exactly as in
equation (3.18)) by transforming the invariants and expressing the output by the
coordinates of Fg. The result is the same as equation (3.19):
> nat_g := natfin(Phi_g,ivar,dvar,uvar_g,dvar):
> nat_gi := eqn2ind(nat_g,ivar,dvar);

nat gi := [x1 = y1 , x2 = y2 , u11 = y1 x1
2 u11 + 2 y1 x1 y2 x1 u12 + u22 y2 x1

2,

u12 = (y2 x2 y1 x1 + y2 x1 y1 x2 ) u12 + y2 x1 y2 x2 u22 + y1 x1 y1 x2 u11 ,
u22 = y1 x2

2 u11 + 2 y1 x2 y2 x2 u12 + y2 x2
2 u22 ]

The corresponding infinitesimal J1(T )-action on Fg from equation (3.17):
> vec_g := natinf(Phi_g,ivar,dvar,uvar_g,Dvar,""):
> vec_g := simplify(vec_g,symbolic);

vec g := [[ξ1, [x1 ]], [ξ2, [x2 ]], [−2 u11 ξ1x1 − 2 u12 ξ2x1 , [u11 ]],
[−u12 ξ1x1 − u11 ξ1x2 − ξ2x1 u22 − u12 ξ2x2 , [u12 ]],
[−2 ξ2x2 u22 − 2 u12 ξ1x2 , [u22 ]]]

If the Πq-action on a natural bundle is given, the infinititesimal action may
alternatively be computed by linearisation. The results are the same:

> natfin2inf(nat_g,ivar,dvar,Dvar,"");

[[ξ1, [x1 ]], [ξ2, [x2 ]], [−2 u11 ξ1x1 − 2 u12 ξ2x1 , [u11 ]],
[−u12 ξ1x1 − u11 ξ1x2 − ξ2x1 u22 − u12 ξ2x2 , [u12 ]],
[−2 ξ2x2 u22 − 2 u12 ξ1x2 , [u22 ]]]

General Lie and Medolaghi Form

The procedure to compute the general Lie form for a section ω of Fg basically
plugs in the section into the equations for the Π1-action on Fg:
> GLF := LieFormG(nat_g,ivar,dvar,dvar,wvar_g):
> eqn2ind(GLF,ivar,dvar);

[y1 x1
2 ω11(y1 , y2 ) + 2 y1 x1 y2 x1 ω12(y1 , y2 ) + ω22(y1 , y2 ) y2 x1

2 = ω11(x1 , x2 ),
(y2 x2 y1 x1 + y2 x1 y1 x2 )ω12(y1 , y2 ) + y2 x1 y2 x2 ω22(y1 , y2 ) + y1 x1 y1 x2 ω11(y1 , y2 )
= ω12(x1 , x2 ),
y1 x2

2 ω11(y1 , y2 ) + 2 y1 x2 y2 x2 ω12(y1 , y2 ) + y2 x2
2 ω22(y1 , y2 ) = ω22(x1 , x2 )]



5.1. RIEMANNIAN GEOMETRY 129

Use the infinitesimal action on Fg to compute the general Medolaghi form
according to Remark 3.25:
> GMF := inf2MF(vec_g,ivar,uvar_g,wvar_g,"");

GMF := [2ω11 ξ1x1 + 2ω12 ξ2x1 + ω11x1 ξ1 + ω11x2 ξ2 = 0,
ω12 ξ1x1 + ω11 ξ1x2 + ξ2x1 ω22 + ω12 ξ2x2 + ω12x1 ξ1 + ω12x2 ξ2 = 0,
2 ξ2x2 ω22 + 2ω12 ξ1x2 + ω22x1 ξ1 + ω22x2 ξ2 = 0]

Prolonged Actions

We given an overview over the Πr+1-action on the prolongations Jr(Fg). Since
Πr+1 is transitive, we only need the GLr+1-action on the fibre F and its algebraic
prolongations F (r). For a generic point f ∈ F (r), we determine the dimensions of

orbit space on F (r), F (r), GLr+1 f, GLr+1, StabGLr+1(f)

and display them in a matrix:
> map(i->[codim_of_action(vec_g,i,ivar,uvar_g,Dvar,"")],[$0..3]):
> matrix(%); 

0 3 3 4 1
0 9 9 10 1
1 18 17 18 1
2 30 28 28 0


The first line shows the action on Fg itself. There are no invariants (first

number) and the action on the three-dimensional fibre F is transitive. However
dim(GL1) = 4 such that the stabiliser of a generic point is one-dimensional. We
observe that there is an single invariant on J2(Fg) and the GL3-action on the
third prolongation F (3) becomes free. We will explicitly compute both invariant.

5.1.2 Spencer Cohomology

Before computing prolongations and projections of symmetry groupoids R1(ω),
we first determine the Spencer cohomology groups and see that the symbols of
generic sections of Fg are not 2-acyclic. Symbols and Spencer cohomology are
introduced in Appendix A. See also Section 3.5.2 which treats the computation
of Spencer cohomology using natural bundles.
> IZS :=‘InvolutiveZeroSets‘:
> Scg0 := SpencerCohomology(GMF,ivar,Dvar,Tvar,IZS):
> SCohomDim(Scg0,Tvar,IZS);[

0 0 1
0 0 0

]
The calculation is invalid on the union of zero sets of the following expressions:

> SCZeroSets(Scg0);

[−ω122 + ω11ω22, ω11, ω12, ω22]
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The only interesting case is ω12 = 0, since all other assumptions are valid
for nondegenerate metrics. We repeat the computation for metrics with diagonal
entries and see that they also have a non-2-acyclic symbol.
> SpencerCohomology(subs(omega12=0,GMF),ivar,Dvar,Tvar,IZS):
> SCohomDim(%,Tvar,IZS); [

0 0 1
0 0 0

]

5.1.3 Prolongation and Projection

We now turn to the prolongation and projection of natural bundles which was
introduced in Section 3.4. The package JetGroupoids provides a data structure
for natural bundles which is used to compute prolongations and projections. We
create it with the following command, that basically stores the arguments in a
table:
> Fg := CreateNaturalBundle(vec_g,ivar,dvar,uvar_g,Dvar):

To determine the first prolongation J1(Fg), we only have to give the order for
the prolongation and a name for the fibre coordinates of J1(Fg) → Fg:
> J1Fg := ProlongNaturalBundle(Fg,1,uu):

Projecting back to first order shows that J1(Fg)/K2
1 and Fg are identical,

because there are no new coordinates:
> Fg1 := ProjectNaturalBundle(J1Fg,v1):
> Fg1["inv"];

[ ]
This effect is due to the Spencer cohomology which was not 2-acyclic for any

metric. In order to check integrability, we have to prolong twice.

Adding the Christoffel Symbols

Instead of computing J2(Fg) directly, we first use the isomorphism of Example 3.3
(1) between J1(Fg) and the bundle Fg×XFΓ for metrics and Christoffel symbols.
The advantage of this approach is that the computations are much simpler and
we have an immediate geometric interpretation of the integrability conditions.

Define the coordinates for the Christoffel symbols, where uijk stands for Γijk:
> uvar_Gamma := [u111, u112, u211, u212, u122, u222]:
> uvar := [op(uvar_g),op(uvar_Gamma)]:

The bundle FΓ is constructed by the groupoid R2,Γ of affine transformations
on X. We skip the calculation of FΓ and only give the infinitesimal J2(T )-action
on it:
> GR_Gamma:=map(a->a=0,jetcoor(2,ivar,dvar));

GR Gamma := [y1 x1 , x1 = 0, y1 x1 , x2 = 0, y1 x2 , x2 = 0, y2 x1 , x1 = 0, y2 x1 , x2 = 0, y2 x2 , x2 = 0]

> vec_Gamma;
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[[ξ1, [x1 ]], [ξ2, [x2 ]], [−u111 ξ1x1 + ξ1x2 u211 − 2 ξ2x1 u112 − ξ1x1 , x1 , [u111 ]],
[−ξ1x2 (−u212 + u111 )− ξ2x1 u122 − u112 ξ2x2 − ξ1x1 , x2 , [u112 ]],
[−2 u211 ξ1x1 + ξ2x1 (−2 u212 + u111 ) + u211 ξ2x2 − ξ2x1 , x1 , [u211 ]],
[−u212 ξ1x1 − ξ1x2 u211 + ξ2x1 (u112 − u222 )− ξ2x1 , x2 , [u212 ]],
[u122 ξ1x1 − ξ1x2 (−u222 + 2 u112 )− 2 u122 ξ2x2 − ξ1x2 , x2 , [u122 ]],
[−2 ξ1x2 u212 + ξ2x1 u122 − u222 ξ2x2 − ξ2x2 , x2 , [u222 ]]]
The action on the fibre product F = Fg×XFΓ is computed by concaternation

of vector fields:
> vec := [op(vec_g),op(vec_Gamma[3..-1])]:
> F := CreateNaturalBundle(vec,ivar,dvar,uvar,Dvar):

The Spencer cohomology can be computed directly for the natural bundle F
and the result shows that the symbols for all sections are involutive.
> Sc0 := SpencerCohomology(F,ivar,Dvar,Tvar,IZS):
> SCohomDim(Sc0,Tvar,IZS);
> SCZeroSets(Sc0); [

. . .
0 0 0

]
[ ]

Naive Prolongation and Projection of F

Having determined F = Fg × FΓ, we can start with the prolongation and pro-
jection procedure. However, prolonging to J1(F) means computing J1(J1(Fg)),
which is considerably larger than J2(Fg). We can still check integrability on
J1(F), but there are many conditions which are automatically satisfied for met-
rics. In the next part of this example we show how to avoid these redundancies
with minimal bundles from Section 4.3.1. But at first, we naively prolong and
project the bundle F .
> J1F := ProlongNaturalBundle(F,1,uu):
> F1 := ProjectNaturalBundle(J1F,v,kernelD):

The data structure for F(1) contains the fibre coordinates and the projection
J1(F) → F(1) as vβ = Aβ(u)ux:
> F1["inv"][1..6]; F1["inv"][7..10];

[v1 = u11 x1 , v2 = u11 x2 , v3 = u12 x1 , v4 = u12 x2 , v5 = u22 x1 , v6 = u22 x2 ]

[v7 = −u111 x2 + u112 x1 , v8 = −u211 x2 + u212 x1 , v9 = −u112 x2 + u122 x1 ,

v10 = −u212 x2 + u222 x1 ]

5.1.4 Integrability Conditions

On the natural bundle F , generic sections have a 2-acyclic symbol and it is
possible to determine integrability conditions as in Section 3.5. We compute the
Vessiot structure equations on F(1) according to Theorem 3.35:
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> VSE1 := VessiotStructureEquations(F1):

The first six integrability conditions are the explicit form of equation (3.2)

Γijk =
1
2
gir (grj,k + grk,j − gjk,r)

and they are automatically satisfied if the Christoffel symbols correspond to the
chosen metric.
> SUBS_F1 := nrsolve(VSE1[1..6],uvar_Gamma)[1]:
> for a in SUBS_F1 do print(a) od;

u111 =
1
2
−u22 u11 x1 − u11 x2 u12 + 2 u12 x1 u12

u12 2 − u11 u22

u112 =
1
2
−u22 u11 x2 + u22 x1 u12

u12 2 − u11 u22

u211 =
1
2

u12 u11 x1 − 2 u11 u12 x1 + u11 u11 x2

u12 2 − u11 u22

u212 =
1
2
−u11 u22 x1 + u11 x2 u12

u12 2 − u11 u22

u122 =
1
2

u22 u22 x1 − 2 u22 u12 x2 + u22 x2 u12
u12 2 − u11 u22

u222 = −1
2
−2 u12 u12 x2 + u22 x1 u12 + u11 u22 x2

u12 2 − u11 u22
The last four integrability conditions deal with the derivatives of the Christof-

fel symbols and depend on two arbitrary constants:
> VSE1[7..10];

[−u111 x2 + u112 x1 = u122 u211 − u212 u112 + C1 u12 +
√

u11 u22 − u12 2 C2 ,

−u211 x2 + u212 x1 = −u11 C1 + (−u112 + u222 ) u211 + u212 u111 − u212 2,

−u112 x2 + u122 x1 = C1 u22 + u112 2 − u112 u222 + (u212 − u111 ) u122 ,

−u212 x2 + u222 x1 = u212 u112 − u122 u211 − C1 u12 +
√

u11 u22 − u12 2 C2 ]
Computing the Jacobi conditions from Section 3.5.3 shows that all equivariant

sections corresponding to an integrable groupoid satisfy C2 = 0.
> JacobiCond(VSE1,ivar,F1["uvar"],"");

[2 C2 , 2 C2 , 2 C2 ]
With C2 = 0, the above equations are the constant scalar curvature condition

Rklij = ∂iΓklj − ∂jΓkli + ΓrljΓ
k
ri − ΓrliΓ

k
rj = C1(δkj gli − δki glj),

where Rklij stands for the Riemann curvature tensor.

5.1.5 Vector Bundle Structure of F(1)

We will now change the coordinates of F(1) to demonstrate that F(1) is a vector
bundle. By the results of Section 3.5.1, it is possible since there exist equivariant
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sections on F(1). The vector bundle structure allows to interpret the first four
coordinates of F(1) as the entries of the Riemann curvature tensor.

So far, the coordinates vβ of F(1) are of the form vβ = Aβ(u)ux and we will
add an affine term Bβ(u) according to equation (3.34). The coordinate change

vβ = Aβ(u)ux 7→ Aβ(u)ux +Bβ(u)

transforms F(1) into a vector bundle. We choose B(u) = −c0(u) where c0 is the
equivariant section with C1 = C2 = 0. A closer look at the definition of the first
four coordinates v1, . . . v4 of F(1) shows that they are of the form ∂iΓklj − ∂jΓkli
and the section c0 consists of terms −ΓrljΓ

k
ri + ΓrliΓ

k
rj . Their difference is exactly

the curvature tensor.
At first we show that the J2(T ) action on F(1) is affine, since the second order

terms depend on uijk only:
> F1["vec"][-1];

[−ξ1x2 v8 + ξ2x1 v9 − ξ1x1 v10 − ξ2x2 v10
− u212 ξ1x1 , x2 + ξ2x1 , x1 u122 + ξ1x2 , x2 u211 − ξ2x1 , x2 u112 , [v10 ]]

Compute the affine term B(u) and print the last coordinate v10 = A10(u)ux+
B10(u), which is the component R2

212 of the Riemann tensor:
> B := subs([_C1=0,_C2=0],map(-rhs,VSE1)):
> R2_212 := F1["F"][-1] + B[-1];

R2 212 := −u212 x2 + u222 x1 − u212 u112 + u122 u211
Perform the coordinate change to obtain a vector bundle structure. The

J2(T )-action becomes linear:
> F1v := ChangeFibreCoordinates(F1,F1["vvar"]+B):
> F1v["vec"][-1];

[−ξ1x2 v8 + ξ2x1 v9 − ξ1x1 v10 − ξ2x2 v10 , [v10 ]]
We compute the action of GL2 on the fibre of F(1) to see that there must

be nine invariants. On the bundle J2(Fg), there is a single invariant. It follows
that the canonical embeding J2(Fg) ↪→ J1(F) has at least codimension eight and
that at least eight integrability conditions on F(1) are automatically satisfied for
metrics.
> CodimOfAction(F1v);

9, 19, 10, 10, 0

5.1.6 Optimisation: Minimal Bundles

We have seen that the bundle F(1) was larger than necessary to check integrability
for symmetry groupoids of a metric. For the Vessiot structure equations on F(1)

the section for the metric and the bundle could be chosen independently, but we
are interested in the case where the Christoffel symbols are derived from a given
metric. This is a classical application of minimal bundles from Section 4.3.1. The
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Embedding Theorem 4.22 states, that the integrability conditions can be checked
on a minimal subbundle F ′

(1) ⊆ F(1) which is isomorphic to J2(Fg)/K3
2 .

By adding the Christoffel symbols, we have used geometric insight, but the
bundle J1(F) is isomorphic to J1(J1(Fg)), where the bundle of metrics has been
prolonged twice. This is the case described in Lemma 4.14.

The procedures of the package JetGroupoids can compute the minimal bun-
dle F ′

(1) if we tell them that the Christoffel symbols actually depend on the first
order jets of the metric. Use the internal variable SUBSvec to store how the
coordinates uijk depend on the first order jets of uij:
> SUBS_F := [[SUBS_F1,[],VSE1[1..6],uvar_g]]:
> Fa := copy(F):
> Fa["SUBSvec"] := SUBS_F:

With the extra information, the command ProlongNaturalBundle automat-
ically computes the image of the embedding J2(Fg) ↪→ J1(F) and the following
projection returns the minimal bundle F ′

(1) of integrability conditions for metrics.
In this example only a single coordinate is left:
> J1Fa := ProlongNaturalBundle(Fa,1,uu):
> F1a := ProjectNaturalBundle(J1Fa,v):
> F1a["inv"];

[v = −u111 x2 + u112 x1 ]
The Vessiot structure equations are still equivalent to the constant scalar

curvature conditions. On a two-dimensional manifold, the various symmetries
of the Riemann curvature tensor imply that there is only a single independent
component. For the integrability conditions, it was chosen as R1

112:
> VSE1a := VessiotStructureEquations(F1a);

VSE1a := [−u111 x2 + u112 x1 = u122 u211 − u212 u112 + C1 u12 ]
Compared with the Vessiot structure equations on F(1), the Jacobi conditions

are automatically taken into account and the spurious constant C2 does not occur
any longer.
> member(lhs(VSE1a[1]),map(lhs,VSE1),’pos’):
> VSE1[pos];

−u111 x2 + u112 x1 = u122 u211 − u212 u112 + C1 u12 +
√

u11 u22 − u12 2 C2

5.1.7 Invariants on Natural Bundles

To illustrate the results of Section 4.2, we compute a generating set of invariants
on Jr(F) using Vessiot’s approach. At first, the invariants are computed and
then we use geometric insights to construct the invariant differential operators.
This section is also an example for the classification of symmetry groupoids from
Section 4.1.

The GL2-action on the fibre of F ′
(1) shows that there is a single invariant.

Since F ′
(1) is isomorphic to J2(Fg)/K3

2 , the invariant is identical to the single
invariant on J2(Fg).
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> CodimOfAction(F1a);
> Inv1a := InvariantsOnNaturalBundle(F1a);

1, 10, 9, 10, 1

Inv1a := [
v + u212 u112 − u122 u211

u12
]

We can pull back the invariant to J2(F) and realise that it is the scalar
curvature of the metric. Due to the length of the result, the output is not printed.

> PullbackToF(Inv1a,F1a):

The groupoid action on the natural bundle F ′
(1) is not yet locally free, so

another prolongation and projection is necessary. We first take the invariant on
F ′

(1) as fibre coordinate. On the bundle F(2), there is a second invariant which
was predicted for J3(Fg):
> F1c := ChangeFibreCoordinates(F1a,Inv1a):
> J1F1c := ProlongNaturalBundle(F1c,1,uu):
> F2 := ProjectNaturalBundle(J1F1c,v2):
> F2["inv"];
> Inv2 := InvariantsOnNaturalBundle(F2);

[v21 = vx2 , v22 = vx1 ]

Inv2 := [v,
v21 2 u11 + v22 2 u22 − 2 v22 u12 v21

u11 u22 − u12 2 ]

The second invariant is constructed by contracting the indices of the first
order jets vi of the scalar curvature with the inverse of the metric as vivjgij .

For the classification of symmetry groupoids in Section 4.1, we compute the
Vessiot structure equations on F(2) and show that the GL2-action on the fibre of
F(2) is locally free. So we have reached the generic case.

> VessiotStructureEquations(F2);
> CodimOfAction(F2);

[vx2 = 0, vx1 = 0]
2, 12, 10, 10, 0

To compute a generating set of invariants, we prolong and project a last time
to obtain a three-dimensional bundle:
> J1F2 := ProlongNaturalBundle(F2,1,uu):
> F3 := ProjectNaturalBundle(J1F2,v3,kernelD):
> F3["inv"];

[v31 = v21 x1 , v32 = v21 x2 , v33 = v22 x2 ]
The bundle F(3) is not yet a vector bundle over F(2) and we add an affine

term to obtain a vector bundle atlas. Comparing the infinitesimal action on the
fibre with the action on Fg, we see that the fibre is isomorphic to S2T ∗ with new
coordinates hij .
> [h11 = v31-(v21*u111+v22*u211), h12 = v32-(v21*u112+v22*u212),
> h22 = v33-(v21*u122+v22*u222)]:
> F3a := ChangeFibreCoordinates(F3,%):
> F3a["vec"][-3..-1];
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[[−2 h11 ξ1x1 − 2 ξ2x1 h12 , [h11 ]],
[−h11 ξ1x2 − h12 ξ1x1 − h12 ξ2x2 − h22 ξ2x1 , [h12 ]],
[−2 ξ1x2 h12 − 2 h22 ξ2x2 , [h22 ]]]

Invariant Differential Operators

In this particular example, it is very convenient to determine the invariant dif-
ferential operators by geometry. Denote the invariants on F(2) by (v, w). The
contraction w = vivjg

ij of the indices of first order jets in v with the inverse of the
metric yields an invariant. Analogously, this follows for wiwj gij , since we have
again produced a scalar. From this we build two invariant differential operators
by setting

D1 = vi g
ijDj , D2 = wi g

ijDj .

Applying them to v and w produces only two of the three invariants on F(3),
namely viwj g

ij and wiwj g
ij . However the above choice of coordinates hij of

F(3) makes it easy to compute the last invariant as gijhji:
> gg := matrix([[u11,u12],[u12,u22]]):
> hh := matrix([[h11,h12],[h12,h22]]):
> Inv31 := simplify(trace(inverse(gg)&*hh));

Inv31 := −−u22 h11 + 2 u12 h12 − u11 h22
−u12 2 + u11 u22

We check if gijwij is an invariant.
> simplify(ldjet(F3a["vec"],Inv31,ivar,F3a["uvar"],Dvar));

0
It follows that v and gijhij are a generating set of invariants with respect to

the invariant differential operators D1 and D2.

5.2 Invariants for Lie Pseudogroup Actions on a Man-
ifold

In this section, we treat the first example of a natural bundle F , on which a
subgroupoid Θ1 ≤ Π1 acts. The goal is to find a generating set for the invariants
on Jr(F) for all r ∈ N as presented in Section 4.2. The example is a simple yet
instructive example from a series of papers by Olver and Pohjanpelto [OP07a],
[OP07b], [OP] and [OP08].

Olver and Pohjanpelto primarily deal with a Lie pseudogroup action on a
manifold M . A Lie pseudogroup G can be defined as the local solutions of a suit-
able jet groupoid G(q) ≤ Πq(M ×M) (see [OP07b, Def. 3.1]). The pseudogroup
G under consideration contains the transformations ϕ : R3 → R3 of the following
form:

y1 = f(x1), y2 = e(x1, x2) = f ′(x1)x2 + g(x1), U = u+
∂x1e(x1, x2)
f ′(x1)

.
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It consists of the solutions of the groupoid G(1) ⊆ Π1(M,M) for M = R3 defined
by the equations

y1
x2 = y1

u = 0, y2
x2 − y1

x1 = 0, y2
u = 0, y2

x1 = (U − u)y1
x1 , Uu = 1.

The G-action on M extends to an action on the jet bundle Jr(M,n), which con-
sists of equivalence classes of n-dimensional submanifolds of M under r-th order
contact. In coordinates (x, u) of M , one can introduce a splitting of variables
into (x) and (u) such that G acts on submanifolds which are parametrised by
functions u(x). The goal in [OP07b] is to find a generating set for the differen-
tial invariants Jr(M,n) → R and to characterise the algebra of invariants. They
apply the method of moving frames developed in [OP] for Lie pseudogroups.

We are interested in the computation of invariants using natural bundles.
The extra value of this approach is that we can not only prolong the action to
Jr(M,n), but also project to lower orders again, which leads to smaller bundles.
The Embedding Theorem 4.22 implies that we compute invariants on Jr(M,n)
on the bundles obtained.

The setting of Olver and Pohjanpelto can easily be translated into the lan-
guage of natural bundles. Locally define the manifold X and the bundle

π : F = M → X : (x, u) 7→ (x).

An n-dimensional submanifold of M now corresponds to a section ω of F → X.
The groupoid G(1) projects to the groupoid Θ1 ⊆ Π1(X ×X) defined by:

y1
2 = 0, y2

2 = y1
1. (5.1)

Now Θ1 acts on F by setting

u = û+
y2
1

y1
1

(5.2)

and we regain the groupoid G(1) as the action groupoid for the Θ1-action on F ,
which is constructed analogous to Example 2.3 (2).

Calculations in Maple

Load the packages and declare the variables:
> with(jets): with(JetGroupoids): with(Spencer):
> ivar := [x1,x2]: dvar := [y1,y2]:
> Ivar := vn(phi,2): Dvar := vn(xi,2): Tvar := vn(eta,2):

The Groupoid Θ1

Define the jet groupoid Θ1 over the base X according to equation (5.1):
> Theta1 := [y1[x2]=0,y2[x2]=y1[x1]];

Θ1 := [y1 x2 = 0, y2 x2 = y1 x1 ]
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Calculate the solutions of Θ1 to ensure that we are dealing with the correct
pseudogroup:
> jsolve(ind2eqn(Theta1,ivar,dvar),ivar,dvar,"");

[y1(x1 , x2 ) = F1(x1 ), y2(x1 , x2 ) = ( d
dx1 F1(x1 )) x2 + F2(x1 )]

We determine the equations for the algebroid R1 of Θ1. For later prolonga-
tions and projections, we also compute their first prolongation R2.
> R1 := grp2alg(Theta1,ivar,dvar,Dvar);
> R2 := PrepareAlgebroidRelations(R1,2,ivar,Dvar):

R1 := [ξ1x2 = 0, ξ2x2 = ξ1x1 ]

The Natural Bundle F = M

Define the natural Θ1-bundle F by using equation (5.2):
> uvar := [u]:
> nat := [x1=y1,x2=y2, u = u + y2[x1]/y1[x1]];

nat := [x1 = y1 , x2 = y2 , u = u+
y2 x1

y1 x1

]

Linearise to obtain the infinitesimal R1-action and create the data structure
for the natural Θ1-bundle F :
> vec:=natfin2inf(nat,ivar,dvar,Dvar,"");
> F:=CreateNaturalBundle(vec,ivar,dvar,uvar,Dvar, "algebroid"=R2):

vec := [[ξ1, [x1 ]], [ξ2, [x2 ]], [−ξ2x1 , [u]]]

Prolongation and Projection

To compute the invariants, Olver and Pohjanpelto prolong F to J3(F) and then
apply the method of moving frames. This means dealing with fourth order dif-
ferential equations. We first check the Spencer cohomology to realise that the
symbols of generic sections on F are not 2-acyclic and we have to deal with second
order equations to compute the invariants.
> IZS := ‘InvolutiveZeroSets/homalg‘:
> Sc0 := SpencerCohomology(F,ivar,Dvar,Tvar,IZS):
> SCohomDim(Sc0,Tvar,IZS); [

0 0 1
0 0 0

]
The computation is valid for all sections of F .

> SCZeroSets(Sc0);

[ ]
Due to the non-2-acyclic symbol, we prolong twice before projecting down to

second order equations.
> J2F := ProlongNaturalBundle(F,2,uu):
> J2F["SUBSvec"][2,1];
> F1 := ProjectNaturalBundle(J2F,v1):
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[uu1 = ux1 , uu2 = ux2 ]
Compute the Vessiot structure equations and pull them back to J2(F). They

show that there are only very few submanifolds which have symmetries at all, as
the Θ2-action on an open subset of F(1) is free.
> VSE1 := VessiotStructureEquations(F1);
> PullbackToF(VSE1,F1);

VSE1 := [uu2 x2 = 0]

[ux2 , x2 = 0]
For a generic point f ∈ F(1) of the fibre of F(1), we determine the dimensions

of the following manifolds:

orbit space on F(1), F(1), orbit G1f, G1, StabG1(f)

> CodimOfAction(F1);

0, 4, 4, 4, 0
Since the stabiliser of a generic point is zero-dimensional (last number), the

Θ2-action is free on an open subset of F(1). So the invariant differential operators
may be computed at this step, even if no invariants (first number) are present.
Since an invariant coframe is a first order object, and the Embedding Theorem
4.22 provides the isomorphism of natural bundles

ϕ1 : J2(F)/K3
2 → F(1),

the pullback of an invariant coframe on F(1) is invariant on Jr≥2(F) as well.
The computation is done by projecting F(1) to first order and then applying
the moving frames approach of [OP]. Note that the projection to first order is
two-dimensional with coordinates (u, v1).
> gP := [u=0, v1=1]:
> ID := InvariantDifferentialOperators(F1,gP,nat,Theta1,dvar);

ID := [[[
1√
v1
, [x1 ]], [− u√

v1
, [x2 ]]], [[0, [x1 ]], [

1√
v1
, [x2 ]]]]

The output is a list of two differential operators in jets notation. It is
similar to the notation for vector fields explained in Section 5.1, except that
partial derivatives are replaced by total derivatives. So the entry [a, [b]] stands
for aDb. In the example, the invariant differential operators are:

D1 =
1√
v1

(Dx1 − uDx2), D2 =
1√
v1
Dx2 .

Their pullback to J2(F) yields the same operators as [OP07b, eq. (4.21)]:

> PullbackToF(ID,F1);

[[[
1

√
ux2 , x2

, [x1 ]], [− u
√
ux2 , x2

, [x2 ]]], [[0, [x1 ]], [
1

√
ux2 , x2

, [x2 ]]]]
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Generating set of Invariants

We prolong and project another time to obtain a generating set of invariants on
the original natural bundle F .
> J1F1 := ProlongNaturalBundle(F1,1,uuu):
> F2 := ProjectNaturalBundle(J1F1,v2):
> F2["inv"];

[v21 = v1 x1 , v22 = v1 x2 ]
The action on F(1) was already free, so all new coordinates correspond to

invariants. Since the number of invariants on F(2) is equal to the dimension of
the base manifold, we have obtained a generating set for Jr(F).
> Inv2 := InvariantsOnNaturalBundle(F2);

Inv2 := [
v22

v1 (3/2)
,

v21 − 2 v1 uu2 − v22 u
v1 (3/2)

]

Using the Embedding Theorem 4.22 again, the invariants can be pulled back
to J3(F), where they match exactly [OP07b, eq. (4.20)]:
> PullbackToF(Inv2,F2);

[
ux2 , x2 , x2

ux2 , x2
(3/2)

, −−ux1 , x2 , x2 + 2ux2 , x2 ux2 + ux2 , x2 , x2 u

ux2 , x2
(3/2)

]

Change the fibre coordinates of F(2) to obtain a vector bundle. The Vessiot
structure equations on F(2) state that the symmetry groupoids are integrable if
and only if the invariants are constant.
> F2a := ChangeFibreCoordinates(F2,Inv2):
> VSE2a := VessiotStructureEquations(F2a);

VSE2a := [
v1 x2

v1 (3/2)
= C2 ,

v1 x1 − 2 v1 uu2 − v1 x2 u

v1 (3/2)
= C1 ]

To check the invariant differential operators, the invariants on the bundle F(3)

are computed. We obtain three new invariants, where the last one does not seem
to be an invariant derivative of the generating set above.
> J1F2a := ProlongNaturalBundle(F2a,1,uuu):
> F3 := ProjectNaturalBundle(J1F2a,v3):
> Inv3 := InvariantsOnNaturalBundle(F3):
> subs(F3["inv"],Inv3);

[v21 , v22 ,
v21 x2√

v1
,

v21 x1 − u v21 x2√
v1

,
v22 x1 − u v21 x1 + v21 x2 u

2 + 2u
√

v1√
v1

]

We verify that the last invariant is also obtained by invariant differentiation.
Each of the invariant differential operators Di is a map

Di : C∞(F(2)) → C∞(J1(F(2))).

The procedure ProlongNaturalBundle does not compute the full bundle J1(F(2))
but the image of the embedding

ϕ2,1 : J4(F)/K5
2 ↪→ J1(F(2)),
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since it is the minimal subbundle where all sections coming from F restrict to.
See Section 4.3.1 for more details. The equations defining the subbundle im(ϕ2,1)
include:
> F3["SUBSvec"][1,2,1];

v22 x2 = v21 x1 − u v21 x2 − 2
√

v1
Applying D1 to v22 yields an invariant on J1(F(2)) and with the help ot the

above equation, we restrict it to im(ϕ2,1). The result coincides with the last
invariant on F(3).
> appmt(ID[1],v22,ivar,F3["uvar"]);
> subs(F3["SUBSvec"][1,2,1],%);

v22 x1 − u v22 x2√
v1

v22 x1 − u (v21 x1 − u v21 x2 − 2
√

v1 )√
v1

The approach via natural bundles improves the calculation of invariant dif-
ferential operators and generating sets of invariants. Due to the Embedding The-
orem, the invariant differential operators can be computed on a two-dimensional
factor bundle on F(1) and the generating set of invariants on F(2) which has a
six-dimensional fibre. The method of Olver and Pohjanpelto involves the ten-
dimensional bundle J3(F). The possibilty to project the bundles to lower orders
does not restrict the methods to compute the invariants. The reader is free to
use the package JetGroupoids which integrates an involutive distribution or to
apply the method of moving frames, since the Θ2-action on F(2) is small enough
to be computed explicitly.

5.3 Second Order ODEs under Point Transformations

We continue Example 4.32 with Maple and compare it with Neut’s approach
via Cartan’s equivalence method [Neu03, §2]. We slightly change the notation
of Proposition 4.33 and Lemma 4.34. For brevity, the original Π1-bundle will be
called FΠ1 , whereas we denote the restricted bundle by F . The example is nearly
small enough to proceed with FΠ1 , but there are problems:

• The sections representing second order ODEs become non-generic on the
first bundle of integrability conditions. All further prolongations and pro-
jections must be done with extreme care, since the simple coordinate change
(v1, v2, . . .) 7→ (uiv1 + v2, v2, . . .) on the fibre of F(i) may hide a nontrivial
equation – if i ∈ {2, 3, 4} and v2 = 0 for second order ODEs. Another
possibility is to restrict the bundles F(i) with Proposition 4.33 is presented
in Example 6.14.

• Due to non-2-acyclic symbols, we have to prolong twice to check integra-
bility in the last step. The computation of all equivariant sections involves
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solving an inhomogenous linear PDE system with 350 equations. It was
not possible to solve it with Maple 11. On the restricted bundle, the
equivariant sections are easily computed.

Calculations in Maple

> with(JetGroupoids): with(jets): with(Spencer):
> ivar := [x,y,p]: dvar := [X,Y,P]: divar := [dx, dy, dp]:
> Ivar := vn(phi,3): Dvar := vn(xi,3):

Construct the Natural Bundle

Define the coframe (ω1, ω2, ω3) containing the contact forms:
> w0 := [dx, dy - p*dx, dp - f(x,y,p)*dx];

w0 := [dx , dy − p dx , dp − f(x, y, p) dx ]
To obtain the bundle FΠ1 = P1/G1, we define a groupoid with structure

group G1 and check if it coincides with the matrix in equation (4.10).
> GR := [X[x]=1, X[y]=0, X[p]=0, Y[x]=0, Y[p]=0, P[x]=0];
> Jac := matrix(3,3,jetcoor(1, ivar, dvar)):
> subs(GR,evalm(Jac));

GR := [Xx = 1, Xy = 0, Xp = 0, Yx = 0, Yp = 0, Px = 0] 1 0 0
0 Yy 0
0 Py Pp


We construct the map Φ : P1 → FΠ1 for coordinates (u1, . . . u5, f) of FΠ1 .

> T := grp2alg(GR,ivar,dvar,Dvar,""):
> Phi := invtarget(T,ivar,dvar,Dvar,""):
> uvar := [u1, u2, u3, u4, u5, f]:
> Phi := ezip(uvar,Phi);

Φ := [u1 = Xx, u2 = Xy, u3 = Xp, u4 =
Yp
Yy
, u5 =

Yx
Yy
, f =

Px Yy − Yx Py
Yp Py − Yy Pp

]

The above coframe w is a section of P1, and we determine the sections ω =
Φ(w) of FΠ1 representing second order odes. The bundle FΠ1 was chosen such
that the last coordinate of it represents the differential equation f(x, y, p).
> ww := map(a->map(b->coeff(a,b),divar),w0):
> ww := evalm(Jac) = matrix(ww);
> omega := subs(ww,Phi);

ww :=

 Xx Xy Xp

Yx Yy Yp
Px Py Pp

 =

 1 0 0
−p 1 0

−f(x, y, p) 0 1


ω := [u1 = 1, u2 = 0, u3 = 0, u4 = 0, u5 = −p, f = f(x, y, p)]

Prepare the Π1-action on FΠ1 for the invariant coframes. Due to the size, we
surpress the output.
> nat := natfin(Phi,ivar,dvar,uvar,dvar,""):
> nat := eqn2ind(nat,ivar,dvar):
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Compute the infinitesimal J1(T )-action and set up the data structure for the
natural bundle FΠ1 :
> vec := natinf(Phi,ivar,dvar,uvar,Dvar,"");
> F_Pi1 := CreateNaturalBundle(vec,ivar,dvar,uvar,Dvar):

vec := [[ξ1, [x]], [ξ2, [y]], [ξ3, [p]], [−u1 ξ1x − u2 ξ2x − u3 ξ3x, [u1 ]],
[−u1 ξ1y − u2 ξ2y − u3 ξ3y, [u2 ]], [−u1 ξ1p − u2 ξ2p − u3 ξ3p, [u3 ]],

[u4 u5 ξ1y + u4 ξ2y + u4 2 ξ3y − u5 ξ1p − ξ2p − u4 ξ3p, [u4 ]],

[u5 2 ξ1y + u5 ξ2y + u5 u4 ξ3y − u5 ξ1x − ξ2x − u4 ξ3x, [u5 ]],

[−ξ1x f + f (f u4 + u5 ) ξ1y − f2 ξ1p + ξ3x − ξ3y (f u4 + u5 ) + f ξ3p, [f ]]]

Restrict the Groupoid and the Natural Bundle

The first five components of the section are the same for all second order odes
and the map

π′ : FΠ1 → F ′ : (x, u1, . . . , u5, f) → (x, u1, . . . , u5)

defines a new natural bundle F ′ where all sections ω defining second order odes
are identical. To prove that π′ is well-defined, we observe that the algebroid
action on the first five coordinates does not depend on f :
> getinds(vec[1..-2],uvar,"");

[u1 , u2 , u3 , u4 , u5 ]
All sections for second order odes project to the section ω′ on F ′, such that

Proposition 4.33 is applicable:
> omega[1..-2];

[u1 = 1, u2 = 0, u3 = 0, u4 = 0, u5 = −p]
The equations for the symmetry algebroid R1(ω′) are not yet integrable. The

command PrepareAlgebroidRelations computes a Janet basis for R1(ω′) and
completes it to an integrable algebroid gΘq . Additionally, it chooses coordinates
forR3(ω′) and computes all equations determining the subbundleR3(ω′) ⊆ J3(T ).
> GMF := inf2MF(vec,ivar,uvar,uvar,""):
> R1 := jsubs(omega,GMF[1..-2],ivar,uvar);
> R3 := PrepareAlgebroidRelations(R1,3,ivar,Dvar):

R1 := [ξ1x = 0, ξ1y = 0, ξ1p = 0, −p ξ1p + ξ2p = 0, −p2 ξ1y + p ξ2y − p ξ1x + ξ2x − ξ3 = 0]
For the later calculation of invariant differential operators, also the integrable

symmetry groupoid Θ3 = R3(ω′) is necesssary:
> GLF := LieFormG(nat,ivar,dvar,Ivar,uvar)[1..-2]:
> Theta3 := PrepareGroupoidRelations(GLF,omega,3,ivar,dvar,uvar):

We restrict the infinitesimal J1(T )-action to gΘq according to Proposition 4.33
and then pull back FΠ1 to the one-dimensional bundle F according to Lemma
4.34. The infinitesimal action becomes quite simple:
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> F := RestrictNaturalBundle(F_Pi1,omega[1..-2],uvar[-1..-1],
> "algebroid"=R3):
> F["vec"];

[[ξ1, [x]], [ξ2, [y]], [ξ3, [p]], [ξ3x + p ξ3y + f ξ3p, [f ]]]
The finite Θ1-action on F is also short enough to be displayed:

> nat1 := [op(nat[1..3]),nat[-1]]:
> nat1 := subs(subs(ezip(ivar,dvar),omega[1..-2]),nat1):
> nat1 := subs(Theta3,nat1);

nat1 := [x = X, y = Y, p = P, f =
f Pp − Px Pp − P Py + (P − pPp)Py

Pp
2 ]

Prolongation and Projection

The first step of prolongation and projection yields a one-dimensional bundle
F(1) → F , buth the Vessiot structure equations show that there cannot be inte-
grable symmetry groupoids. Lemma 3.40 implies that F(1) is no vector bundle.
> J1F := ProlongNaturalBundle(F,1,uu):
> F1 := ProjectNaturalBundle(J1F,v1):
> F1["inv"];

[v1 = fp]
> VessiotStructureEquations(F1);

Warning, system is inconsistent

It turns out that the symbols for generic sections on F(1) are not 2-acyclic.
Nevertheless we prolong only once to obtain the same case distinction as in
[Neu03, §2.6.1]. If we would have prolonged twice directly, we would have missed
this case distinction, which sorts out nongeneric sections in the Vessiot equiva-
lence method (see Chapter 6 and especially Figure 6.2).
> J1F1 := ProlongNaturalBundle(F1,1,uu):
> F2 := ProjectNaturalBundle(J1F1,v2):

The only coordinate of F(2) can be chosen as an invariant. If the invariant is
constant for a choice of f(x, y, p), the projection is surjective, but the symmetry
groupoid is not necessarily integrable.
> Inv2 := InvariantsOnNaturalBundle(F2):
> F2a := ChangeFibreCoordinates(F2,Inv2):
> F2a["inv"];
> VSE2a :=VessiotStructureEquations(F2a,"");

[v2 = −2 fy + v1 x + p v1 y + f v1 p −
v1 2

2
]

VSE2a := [v2 = C1 ]
Pulling back the Vessiot structure equations to J2(F) yields exactly the same

invariant as the torsion coefficient T 1
2,3 in [Neu03, eq. (2.59)].

> PullbackToF(VSE2a,F2a);

[−2 fy + fx, p + p fy, p + f fp, p −
1
2
fp

2 = C1 ]
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The Case of Constant v2:

First consider the case where v2 = c is constant. We restrict F2 to a bundle
which is isomorphic to F(1) and prolong twice. Before projecting again, we show
the first order jets occurring as coordinates of the subbundle of J2(F(2),z).
> F2z := RestrictNaturalBundle(F2a,[v2=c]):
> J2F2z := ProlongNaturalBundle(F2z,2,w):
> J2F2z["SUBSvec"][2,1];

[w1 = fx, w2 = fy, w3 = v1 y, w4 = v1 p]
Again, there is only a single coordinate v3 of F(3),z and we compute the

Vessiot structure equations. Using Theorem 6.10, we recover [Neu03, Thm 10],
which states that a second order equation yxx = f(x, y, p = yx) is equivalent to
yxx if and only if v2 = 0 and fppp = 0:
> F3z := ProjectNaturalBundle(J2F2z,v3):
> VSE3z := VessiotStructureEquations(F3z);
> PullbackToF(VSE3z,F3z);

VSE3z := [w4 p = 0]

[fp, p, p = 0]
The G2-action on F(3),z is locally free and the next step of prolongation and

projection yields a generating set of invariants for the system of pdes on J2(F)
defined by v2 = const. In this case, Theorem 4.12 has to be used in the generalised
version [KL06, Thm 16].

> CodimOfAction(F3z);

0, 7, 7, 7, 0
> J1F3z := ProlongNaturalBundle(F3z,1,uu):
> F4z := ProjectNaturalBundle(J1F3z,v4):
> Inv4z := InvariantsOnNaturalBundle(F4z):
> F4za := ChangeFibreCoordinates(F4z,Inv4z):
> F4za["inv"];
> VSE4z := VessiotStructureEquations(F4za,"");

[v41 =
v3 p

v3 (3/2)
, v42 =

1
2

2 v3 y + 2 v3 w4 + v3 p v1
v3 (3/2)

]

VSE4z := [v41 = C1 , v42 = C2 ]
Compute invariant differential operators Di on F(3),z:

> gp := [f=0, v1=0, v3=1, P=0]:
> IDz := InvariantDifferentialOperators(F3z,gp,nat1,Theta3,dvar);

IDz := [[[1, [x]], [p, [y]], [f, [p]]], [[
1√
v3
, [y]], [

v1
2
√

v3
, [p]]], [[

1√
v3
, [p]]]]

Applying D1 = Dx+pDy+fDp to the first invariant v41 on F(3),z, we obtain
−v42. It shows that the algebra of invariants is generated by v41.
> appmt(IDz[1], v41, ivar, F4za["uvar"]);
> PushToNB(%, F4za);

v41 x + p v41 y + f v41 p
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−v42

The Case of Nonconstant v2:

In the case of a nonconstant invariant v2, we prolong F(1) twice. Using the usual
prolongation procedure, the coordinate v2 would be replaced by v1

x. We skip the
computations containing the coordinate change.
> J2F1 := ProlongNaturalBundle(F1,2,w):
> J2F1["SUBSvec"][2,1];

[v2 = −2 fy + v1 x + p v1 y + f v1 p −
v1 2

2
, w1 = fx, w2 = fy, w3 = v1 y, w4 = v1 p]

Project down and compute the Vessiot structure equations:
> F3 := ProjectNaturalBundle(J2F1,v3,kernelD):
> F3["inv"];
> VSE3 := VessiotStructureEquations(F3);

[v31 = v2 x, v32 = v2 y, v33 = v2 p, v34 = w4 p]

VSE3 := [v2 x = F5(v2 ), v2 y = 0, v2 p = 0, w4 p = 0]
The invariants on F(3):

> Inv3 := InvariantsOnNaturalBundle(F3);

Inv3 := [v2 , v31 + v32 p+ f v33 ,
v33 v1 + 2 v32

2
√

v34
,

v33√
v34

]

The invariant differential operators for the case of v2 6= 0 coincides with the
one computed before, up to renaming the variables.
> gP := [f=0, v1=0, v34=1, P=0]:
> ID := InvariantDifferentialOperators(F3,gP,nat1,Theta3,dvar);

ID := [[[1, [x]], [p, [y]], [f, [p]]], [[
1√
v34

, [y]], [
v1

2
√

v34
, [p]]], [[

1√
v34

, [p]]]]

It is easy to check that the invariants on F(3) are v2 and Div2. Another
prolongation and projection yields eight new invariants, of which six are invariant
derivatives from those on F(3). The pullback of the remaining two invariants
coincides with the case v2 = const. Here v2 and

v34p
v34

3
2

=
fpppp
fppp

3
2

generate the algebra of invariants. They are not directly comparable to [Neu03,
§2.10.1] since the invariants there were computed on a prolonged G-structure,
such that the base manifold is no longer X.



Chapter 6

The Vessiot Equivalence
Method

‘The goal of the method of equivalence is to find necessary and suf-
ficient conditions in order that “geometric objects” be “equivalent”.
The word equivalent here usually ends up meaning that the geomet-
ric objects are mapped onto each other by a class of diffeomorphisms
characterized as the set of solutions of a system of differential equa-
tions.’

— R. Gardner [Gar89, Lecture 1]

Intended for Cartan’s successful equivalence method, this introduction exactly
describes the goal of the Vessiot equivalence method to be developed in this
chapter. Both methods are closely connected and for comparison, also Cartan’s
method is introduced. In Vessiot’s context, a geometric object has a well-defined
meaning as a section of a natural Θq-bundle F → X. The jet groupoid Θq

specifies the class of diffeomorphisms to be used. Reading Vessiot’s texts shows
that he also had the question of equivalence in mind.

‘Les systèmes [. . . ] s’offrent d’eux-mêmes quand on cherche à re-
connâitre si deux groupes (G) et (G′) donnés par leurs équations de
définition, sont semblantes, et à déterminer les transformations qui
changent ces deux groupes l’un par l’autre.’

— E. Vessiot [Ves03, §IX]

Here (G) and (G′) stand for the symmetry groupoids Rq(ω) and Rq(ω′) of
two geometric objects. For simplicity, Vessiot restricts to transitive groupoids.
A modernised version of Vessiot’s equivalence problem has been formulated by
Pommaret [Pom78, §7.5], again for the transitive case only. However it is not
solved: “As the study of such a problem is out of our scope [. . . ]” [Pom78, above
Ex. 7.5.3]. In a later book, the introduction to the equivalence problem reads as
follows.

147
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‘The purpose of this part is to give a complete treatment of the
formal aspect of the famous equivalence problem stated by Cartan at
the beginning of this century. The solution we give of this problem
is so simple that it is difficult to understand why it was never given
before. [. . . ] because otherwise the mathematical content can be
found almost completely in [Pom83, Ch. 2] and even in [Pom78].’

— J. F. Pommaret [Pom83, Ch. 4.C]

Based on the work of Pommaret and Vessiot, the Vessiot equivalence method
will be presented in this chapter. As it depends on the Projection Theorem
3.35, the results are new and cover more cases than Pommaret [Pom83]. The
Vessiot equivalence method is presented in detail in Section 6.1. An introduction
of Cartan’s equivalence method and a comparison of both methods follows in
Section 6.2. Finally, examples are presented in Section 6.3.

6.1 The Equivalence Problem

In this section, necessary and sufficient conditions for the equivalence of geomet-
ric objects on natural bundles are given and the Vessiot equivalence method is
developed. The basic idea is to modify Vessiot’s approach for the symmetries of
geometric objects such that equivalence can be decided. This section is based on
Chapters 3 and 4. The criteria for equivalence are new contributions in this thesis
as they do not occur in the work of Pommaret or Vessiot ([Pom78], [Pom83] and
[Ves03]).

At first we consider the equivalence of geometric objects under all diffeomor-
phisms in Section 6.1.1, which corresponds to Πq-bundles. We use natural bundle
functors for an efficient formulation. A typical example is the equivalence of met-
rics, where the calculations in Section 5.1 only have to be interpreted properly.

Based on these results, it is possible to treat the relative equivalence problem
in Section 6.1.2. Here geometric objects are compared under a certain subset of
all diffeomorphisms and it is possible to work with natural Θq-bundles. Typical
applications are ODEs under point or contact transformations as presented in
Sections 5.3 and 6.3.

As the Vessiot equivalence method takes same steps for both the full and the
relative problem, we will summarise the practical work with the Vessiot equiva-
lence method in Section 6.1.3.

6.1.1 The Full Equivalence Problem

We start with an approach to the equivalence problem that uses natural bundle
functors defined in Section 3.2 (see [KMS93]). It allows to compare geometric
objects over different base manifolds X and Y under all diffeomorphisms ϕ : X →
Y . In Section 6.2 we show that this definition coincides with the definition of
equivalence in the context of Cartan’s equivalence method (see e.g. [Gar89]).
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Definition 6.1. Let F be a natural bundle functor and X, Y be two n-dimensio-
nal manifolds. Two geometric objects ω on F(X) and ω′ on F(Y ) are equivalent
if there exists a diffeomorphism ϕ : X → Y such that:

F(ϕ−1)(ϕ∗(ω′)) = ω. (6.1)

Two objects ω and ω′ are locally equivalent, if there are open neighbourhoods
U ⊆ X and V ⊆ Y and a local diffeomorphism ϕ : U → V satisfying equation
(6.1). In both cases ϕ is called a (local) equivalence between ω and ω′. �

The following commutative diagram illustrates the equivalence condition (6.1).

F(X)
F(ϕ) //

��

F(Y )

��
X

ϕ //

ω

JJ

Y

ω′

TT

We follow Vessiot’s suggestion [Ves03, §9.1] for the obvious way to check equiva-
lence between ω and ω′ and modify the symmetry equations (3.11) for ω.

Assume for simplification that X = Y . Instead of asking for the symmetry
groupoid Rq(ω) under the Πq-action on F(X), we reformulate the equivalence
condition (6.1) for fq ∈ Πq(x, y) as

ω′(y)fq = ω(x). (6.2)

Dropping the assumptionX = Y , we need a right multiplication with elements
of the bundle Πq(X,Y ) ⊆ Jq(X×Y ) of q-jets of diffeomorphisms between X and
Y . It is obtained by modifying the associated maps from Lemma 3.11:

F(Y )×Y Πq(X,Y ) → F(X) : (u, fq = jq(ϕ)(x)) 7→ ufq = F(ϕ−1)(u).

Interpreting (6.2) for elements fq ∈ Πq(X,Y ), it determines a system of PDEs
S(ω, ω′) on Πq(X,Y ). Analogous to the sequence (3.5) for Rq(ω), the system
Sq(ω, ω′) is defined by the sequence

0 // Sq(ω, ω′) // Πq(X,Y )
Φω′ //
ω◦s

// F(X). (6.3)

Setting the source and target map as the projections s = prX and t = prY , the
map Φω′ is:

Φω′ : Πq(X,Y ) → F(X) : fq 7→ ω′(y)fq, y = t(fq).

The condition Φω′(fq) = ω(s(fq)) is identical to the equivalence condition (6.1)
by the definition of the right multiplication and the fact that y = t(fq) = ϕ(x) for
fq = jq(ϕ)(x). In the case of ω = ω′ we recover the symmetry equations (3.11).
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Formal Equivalence Criterion

Just as formal integrability implies the existence of a formal power series solution,
we call geometric objects formally equivalent if Sq(ω, ω′) has a formal power
series solution. If it converges, we have established local equivalence between
the objects. The following criterion tests integrability of Sq(ω, ω′) in the first
condition and then checks if there are solutions with the second condition.

Theorem 6.2. Two geometric objects ω on F(X) and ω′ on F(Y ) are formally
equivalent if ω : X → F(X) and ω′ : Y → F(Y ) are generic sections and the
following conditions hold:

(1) Both symmetry groupoids Rq(ω) and Rq(ω′) have 2-acyclic symbols and
are formally integrable with the same equivariant section c : F → F(1).
Here F(1) is constructed according to Proposition 3.30.

(2) There exist points x ∈ X and y ∈ Y such that all invariants on F coincide

ψi(ω(x)) = ψi(ω(y)), i = 1, . . . , k. �

Here, the invariants and the equivariant section are considered as zero order
natural operators according to Definition 3.13. Using Theorem 3.15, we can speak
of invariants on F and the same equivariant section on both F(1)(X) → F(X)
and F(1)(Y ) → F(Y ), because it is completely determined by the GLq-equivariant
map on the fibres

F → F(1) = F (1)/Kq+1
q .

Analogously, the invariants ψ are determined by GLq-equivariant maps F → R.

Proof. Since ω and ω′ are generic, there is a coordinate system of F(X)x around
ω(x) where the first k coordinates are the invariants ψi and the GLq-action on the
remaining coordinates is transitive on a neighbourhood of ω(x). The analogous
statement is valid for F(Y )y around ω(y).

Condition (2) implies that there exists an fq ∈ Πq(X,Y ) with

ω′(y)fq = ω(x). (6.4)

The integrability conditions for Rq(ω) and Rq(ω′) together with the equivariance
of c lead to:

I(j1(ω′)(y))fq = c(ω′(y))fq
= c(ω′(y)fq)
= c(ω(x))
= I(j1(ω)(x)).

Because I(j1(ω′)(y)) = j1(ω′)(y)K
q+1
q , it follows that there exists an element

fq+1 ∈ Πq+1(X,Y ) with πq+1
q (fq+1) = fq that satisfies

j1(ω′)(y)fq+1 = j1(ω)(x). (6.5)
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The groupoid Rq(ω′) has a 2-acyclic symbol, so Sq(ω, ω′) defined by equation
(6.4) also has a 2-acyclic symbol (in coordinates, only the right hand sides of
equation (6.4) change). Then formal integrability follows from Equation (6.5). �

Remark 6.3. The condition that ω and ω′ are generic sections ensures that both
conditions of Theorem 6.2 can decide equivalence properly. We construct a simple
example where this condition is violated. Choose F = T ∗ ×X T ∗ and two sets of
1-forms as sections of F → X:

ω1 = dx1, ω2 = dx1, ω̃1 = dx1, ω̃2 = dx2.

The Vessiot structure equations on F(1) = F ×X
∧2 T ∗ ×X

∧2 T ∗ are

dω1 = C1 ω
1 ∧ ω2, dω2 = C2 ω

1 ∧ ω2.

Both symmetry groupoids are integrable with the equivariant section F → F(1)

corresponding to C1 = C2 = 0. However, the sets of 1-forms cannot be equivalent,
since (ω1, ω2) restricts to the diagonal subbundle T ∗ of F → X, while (ω̃1, ω̃2) is
generic. �

Remark 6.4. In examples with invariants on F , it is sometimes possible to
choose different equivariant sections to decide the integrability of Rq(ω). The
condition for equivalence is satisfied, if we can find an equivariant section c :
F → F(1) that works for both ω and ω′. �

Example 6.5. To demonstrate the use of Theorem 6.2, we take up the exam-
ple of a Riemannian metric on a two-dimensional base from Section 5.1. The
action on the bundle J1(Fg) of metrics and Christoffel symbols is transitive, so
condition (2) of Theorem 6.2 is trivially satisfied. Two metrics (with correspond-
ing Christoffel symbols) are equivalent if they have the same constant scalar
curvature, since this is the only integrability condition on the minimal bundle
F ′

(1)
∼= J2(Fg)/K3

2 .
If the scalar curvature is constant, but different for two metrics, they cannot

be equivalent. If the curvature is nonconstant, Theorem 6.2 does not say anything
about equivalence and we have to prolong and project. �

The Nonintegrable Situation

Theorem 6.2 assumes that both symmetry groupoids are formally integrable. In
general, this is not the case and we have to complete them to integrability before
equivalence can be checked. Since the natural bundle functors are completely
determined by the fibres (see Theorem 3.12), we can translate each bundle of
a series of prolongations and projections (see Section 4.1) into natural bundle
functors F(i). The next proposition states that the equivalence of ω and ω′ can
be tested on F(i). The complete Vessiot equivalence method will follow in Section
6.1.3.
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Proposition 6.6. Two geometric objects ω on F(X) and ω′ on F(Y ) are equiv-
alent if and only if one of the following conditions hold:

(1) jr(ω) on (Jr ◦ F)(X) and jr(ω′) on (Jr ◦ F)(Y ) are equivalent.

(2) jr(ω)Kq+r
q+s on F ′(X) and jr(ω′)K

q+r
q+s on F ′(Y ) for 0 ≤ s < r are equivalent.

Here F ′ is defined by the fibre F (r)/Kq+r
q+s where F is the fibre of the natural

bundle functor F of order q. �

Proof. We Proceed analogous to the prolongation and projection of symmetry
groupoids. Applying Jr to Equation (6.3) and using the canonical embedding,
we obtain:

0 // Sq+r(ω, ω′) //

��

Πq+r(X,Y ) // //

��

(Jr ◦ F)(X)

��
0 // S(r−s)

q+s (ω, ω′) // Πq+s(X,Y ) // // F ′(X)

A diffeomorphism ϕ : X → Y solves Equation (6.3) if and only if it is a solution
of Sq+r(ω, ω′) and of S(r−s)

q+s (ω, ω′) for all 0 ≤ s < r. �

6.1.2 The Relative Equivalence Problem

In many situations it is convenient to restrict the possible diffeomorphisms for
equivalences and to work with a relative situation. Typical examples deal with
the equivalence of

• hypersurfaces on a manifold X under isometries,

• differential equations under contact or point transformations or

• linear partial differential operators under gauge transformations.

The first task is classical and leads to the curvature in the case of surfaces on
R3 (see e.g. [IL03, Ch. 1]). Differential equations were one of the main reasons
for Lie and Cartan to consider equivalence problems. We have already seen an
example in Section 5.3 and more examples follow in Section 6.3. In Chapter 7 we
deal with linear partial differential operators and their factorisation.

The solution to the relative equivalence problem does not differ too much
from the functorial approach, so we keep the proofs as short as possible. We
start with a functorial definition of the relative situation.

Definition 6.7. Let Ω ∈ Γ(G(X)) and Ω′ ∈ Γ(G(Y )) be equivalent geometric
objects for a natural bundle functor G. Let F be another natural bundle functor.
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Two geometric objects ω ∈ Γ(F(X)), ω′ ∈ Γ(F(Y )) are equivalent relative to Ω
and Ω′ if and only if there exists a diffeomorphism ϕ : X → Y such that:

F(ϕ−1)(ϕ∗(ω′)) = ω and G(ϕ−1)(ϕ∗(Ω′)) = Ω. (6.6)

Two objects ω and ω′ are locally equivalent relative to Ω and Ω′, if there are
open neighbourhoods U ⊆ X and V ⊆ Y and a local diffeomorphism ϕ : U → V
satisfying (6.6). �

If F and G are the fibres determining F and G, the relative problem can be
solved by constructing the functor H with fibre F × G. It reduces the relative
problem to the equivalence of (ω,Ω) and (ω′,Ω′).

With the following definition, we can give a more efficient solution for the
relative equivalence problem. Additionally, it allows us to treat geometric objects
on which only a subgroupoid Θq ≤ Πq acts. Examples are found in Section 5.2
and Chapter 7.

Definition 6.8. Let F be a natural Θq-bundle. Then two geometric objects ω,
ω′ on F are (locally) equivalent under (solutions of) Θq if there exists a (local)
solution ϕ of Θq such that

ϕ−1(ϕ∗(ω′)) = ω. (6.7)
�

The equivalence of geometric objects on natural Θq-bundles is an efficient
alternative to relative equivalence problems. The next proposition shows how to
proceed.

Proposition 6.9. Using the notation of Definition 6.7, let ϕ : X → Y be an
equivalence between Ω and Ω′. Assume that the symmetry groupoid Θq = Rq(Ω)
is integrable. Then ω and ω′ are equivalent relative to Ω and Ω′ if and only if the
geometric objects

ω and ω̃′ = ϕ−1(ϕ∗(ω))

on the Θq-bundle F(X) are equivalent under Θq. �

Proof. Let ψ be a solution of Θq and an equivalence between ω and ω̃′. By
construction, ϕ ◦ ψ is an equivalence between Ω and Ω′. Additionally, we have

ψ−1(ψ∗(ω̃′)) = ψ−1
(
ψ∗

[
ϕ−1(ϕ∗(ω′))

])
= ψ−1(ϕ−1

[
ψ∗(ϕ∗(ω′))

]
)

= (ϕ ◦ ψ)−1
[
(ϕ ◦ ψ)∗(ω′)

]
.

The converse direction follows with an analogous computation for an equivalence
χ between (ω,Ω) and (ω′,Ω′). �

In many examples of relative equivalence problems the geometric objects Ω
and Ω′ are identical, which reduces the equivalence ϕ to the identity map. These
examples can be simplified with Proposition 6.9 right away.



154 CHAPTER 6. THE VESSIOT EQUIVALENCE METHOD

Equivalence Criteria

Again, we can construct a system of PDEs Sq(ω, ω′) for the equivalences, which
is defined by the exact sequence

0 // Sq(ω, ω′) // Θq

Φω′ //
ω◦s

// F . (6.8)

The check of formal equivalence is analogous to Theorem 6.2. The proofs are
identical except that we have to trivialise F around (x, ω(x)), since there might
be invariants on the base, if Θq is intransitive.

Theorem 6.10. Two geometric objects ω, ω′ on the natural Θq-bundle F → X
are formally equivalent if ω, ω′ are generic sections and the following conditions
hold:

(1) Both symmetry groupoids Rq(ω) and Rq(ω′) have 2-acyclic symbols and
are formally integrable with the same equivariant section c : F → F(1). The
bundle F(1) is constructed according to Proposition 3.30.

(2) There exist points x, y ∈ X such that all invariants on F coincide

ψi(ω(x)) = ψi(ω(y)), i = 1, . . . , k. �

It is also possible to treat geometric objects with non-integrable symmetry
groupoids and the proof is a direct translation from Proposition 6.6.

Proposition 6.11. Two geometric objects ω, ω′ on the natural Θq-bundle F are
equivalent if and only if one of the following conditions hold:

(1) jr(ω) and jr(ω′) on Jr(F) are equivalent.

(2) jr(ω)Kq+r
q+s and jr(ω′)K

q+r
q+s on F ′ for 0 ≤ s < r are equivalent. Here F ′ is

defined by the fibre F (r)/Kq+r
q+s where F is the fibre of F . �

6.1.3 The Vessiot Equivalence Method in Practice

In this section, the equivalence criteria from the previous two sections are com-
bined to develop the Vessiot equivalence method that decides formal equivalence
for two geometric objects ω and ω′. The method is identical for the full and the
relative equivalence problem and we will formulate it with natural bundles. The
translation into the functorial language is immediate.

The key idea is to use Proposition 6.6 (or 6.11) and prolong and project
until the symmetry groupoids become integrable. Then the Equivalence Theorem
6.2 (or 6.10) decides whether the objects are equivalent or not. We will again
formulate the procedure with flowcharts, as in Chapter 4.

Figure 6.1 shows how to decide equivalence of two geometric objects ω, ω′.
It is the direct analogue to Figure 6.3 for Cartan’s method (see [Gar89, Fig. 6]).
We perform the following steps (for the notation see Section 4.3.1).
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• In the SPMP step compute the Spencer cohomology, Prolongation, M inimal
bundles and Projection (Details are given in Figure 6.2). If the objects re-
strict to different subbundles of F(i+1) → F(i), they cannot be equivalent.

• Compute the Vessiot structure equations on F(i+1) and the invariants on
im(ϕi,si+1−1), where ϕi,si+1 is defined in Equation (4.2).

• Check if the symmetry groupoids of jsi+1−1(ω(i)) and jsi+1−1(ω′(i)) are in-
tegrable. If only one is integrable, they cannot be equivalent. If both are
nonintegrable, proceed with another loop.

• If jsi+1−1(ω(i)) and jsi+1−1(ω′(i)) are integrable and satisfy the conditions of
the Equivalence Theorem 6.2 (or 6.10), they are equivalent, otherwise not.

Figure 6.1: The Vessiot equivalence method

Natural bundle
F(i), ω(i), ω′(i)

SPMP step: F(i+1),
ω(i+1), ω′(i+1)

not equivalent

Vessiot structure
equations, invariants ψ

integrable? not equivalent

same c,
compatible ψ? not equivalent

equivalent

F , ω, ω′, i := 0

both

yes

different
bundles

only one

no

none

F(i+1),
ω(i+1), ω′(i+1),
i := i+ 1
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Remark 6.12. The Vessiot equivalence method combines the completion of sym-
metry groupoids to formal integrability from Section 4.1 with the computation of
a generating set of invariants from Section 4.2. If the groupoid action on the bun-
dle F(i) becomes free, but the equivalence could not yet be tested, we recommend
to use invariant differential operators to compute the prolongation and projection
and Remark 4.2 for the Vessiot structure equations. This is more efficient than
computing further prolongations and projections with natural bundles. �

The SPMP Step

The process of computing the Spencer cohomology, the minimal subbundle of the
prolongation Js(F(i)) and the projection is nearly identical to the classification
of symmetry groupoids in Section 4.1 and Figure 4.2. The only difference is that
we restrict the minimal bundle im(ϕi,s) to the smallest subbundle containing the
geometric objects to compare. Due to the similarity of Figures 4.2 and 6.2, we
only comment the new steps of Figure 6.2.

• To check if the sections jsi+1(ω(i)) and jsi+1(ω
′
(i)) are generic on the minimal

bundle im(ϕi,si+1), we compute the ranks of the algebroid action at a generic
point of im(ϕi,si+1) and for the prolonged sections at a generic point of X.

If all three coicide, we take the left turn an proceed with the projection.
If only one section is generic, the geometric objects cannot be equivalent,
since equivalence implies isomorphic symmetry groupoids. If the ranks for
both sections are different, the symmetry groupoids cannot be isomorphic.

• The ranks calculated above give the dimensions of the subbundles to which
the sections restrict. Compute them (see Example 6.14) and check if they
are identical. If not, the above discussion on symmetry groupoids implies
that the symbols cannot be equivalent.

• Proceed with the subbundle of im(ϕi,si+1) and project to F(i+1).

Remark 6.13. The computation of subbundles for nongeneric sections is a hard
step, because it depends on a suitable choice of coordinates to identify subbundles.

In the example of second order ODE under point transformations in Section
5.3, the prolongation and projection without 2-acyclic symbol reveals possible
nongeneric sections. �

Here is one example where a subbundle for nongeneric sections can be found.

Example 6.14. The first steps in Example 4.32 on second order ODEs can be
computed with Π1-bundles, but all sections for ODEs become nongeneric. Instead
of testing for subbundles on J1(FΠ1), we compute the first bundle of integrability
conditions F(1) = J1(FΠ1)/K

2
1 and check here. The fibre coordinates are:

v1 = u2
x − u1

y, v2 = u3
x − u1

p, v3 = u3
y − u2

p, v4 = u5
p − u4

x + u5u4
y − u4u5

y.
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Figure 6.2: SPMP-step for the Vessiot equivalence method

Symbols
Mq+s−1

2-acyclic?

Prolongation Js(F(i))

Minimal bundle

Sections
generic?

not equivalent

Restriction to
same bundle?

not equivalent
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none
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no
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both
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Plugging in the section from Equation (4.11), we obtain

v1 = v2 = v3 = 0, v4 = −1. (6.9)

On the ten-dimensional fibre F(1), a generic orbit has dimension nine, but all
sections from equation (4.11) restrict to a seven-dimensional subbundle of F(1) →
F . This can be computed with the JetGroupoids command

CodimOfAction(F1,0, i->[1,0,0,0,-p,f, 0,0,0,1][i]);

by using the section (4.11) and the values for vi from equation (6.9) to define the
generic point. The result is independent from the function f(x, y, p).

On F(1), all but the last Vessiot structure equations, vi = 0, are satisfied for
second order ODEs. This gives a hint for the construction of a suitable subbundle.
There exists a projection of natural vector bundles

F(1) → F ′
(1) : (u, v1, v2, v3, v4) 7→ (u, v1, v2, v3)

omitting the last coordinate. All ODEs restrict to the zero section of F ′
(1) → F ,

so that Proposition 4.33 yields a smaller Π1-bundle with fibre coordinate v4. All
sections for second order ODEs restrict to this minimal bundle.

It is possible to continue the calculations from Section 5.3 with the above
subbundle of F(1) → F , but the computations become lengthy and inefficient.
The coordinate expressions are larger by a factor of at least ten and computing
the second prolongation takes longer than the whole worksheet in Section 5.3. �

6.2 Cartan’s Equivalence Method

The Vessiot equivalence method is an alternative to the well-known Cartan equiv-
alence method [Car08, Car10] and this section is intended to compare both ap-
proaches. It turns out that they are dual to each other, just as exterior differential
systems provide a dual description of PDE systems.

Cartan’s method tests the equivalence of G-structures, which are introduced
in Section 6.2.1. The following Section 6.2.2 presents the practical algorithm to
decide equivalence of G-structures. There exists a large number of excellent intro-
ductory texts to the Cartan equivalence method, among them Gardner [Gar89],
Ivey and Landsberg [IL03], Olver [Olv95], Sternberg [Ste64] and Stormark [Sto00].
Therefore most proofs are left out and the point of view is heavily biased towards
the comparison with Vessiot’s approach.

In Section 6.2.3,the comparison between both equivalence methods is com-
pleted by interpreting Sternberg’s intrinsic structure function of a G-structure in
the language of natural bundles and geometric objects. It is worth mentioning
the thesis of Neut [Neu03], who implemented Cartan’s equivalence method in
Maple. Experiments with his packages gave valuable ideas for the comparison.
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6.2.1 G-Structures

The primary theoretical object for the Cartan equivalence method are G-structu-
res. This section deals with the theoretical part of Cartan’s equivalence method
while the practical work is briefly presented in Section 6.2.2. Here, G-structures,
equivalence of G-structures and their canonical forms are introduced. In each
step, the connection to the Vessiot equivalence method is indicated.

G-structures are very useful to prove that Cartan’s and Vessiot’s notion of
equivalence are ‘equivalent’. References for the next definition are [KN63, p. 288]
and [Ste64, Def. VII.2.1].

Definition 6.15. Let π : P → X be a principal H-bundle and G ≤ H a closed
Lie subgroup. A G-reduction is a subbundle of P → X which is a principal
G-bundle.

A G-structure G is a G-reduction of the frame bundle P 1 = P 1(X), which is
a principal GL1-bundle (thus G ≤ GL1). If the group G = {e} is trivial, then G
is called e-structure. �

The definition only covers first order G-structures, which are widely treated
in the literature. Sample references to textbooks are [Kob72], [Ste64]. It is also
possible to define with higher order G-structures, which are then G-reductions of
the higher order frame bundles P q. The only reference found is [Yan92, Ch. VI].

We turn to the correspondence between G-structures and jet groupoids, which
is a consequence of the following classical theorem (see e.g. [KN63, p. 57-58]).

Theorem 6.16. Let π : P → X be a principal H-bundle and G ≤ H a closed
Lie subgroup. There is a pairwise bijective correspondence between:

(1) A G-reduction Q ↪→ P ,

(2) A global section ω : X → P/G,

(3) A H-equivariant map ω̃ : P → H/G with ω̃(pg) = g−1ω̃(p). �

The first two statements of Theorem 6.16 give rise to an exact sequence. In
the case of G-structures, it is

0 // G // P 1
pr //
ω◦π
// P 1/G. (6.10)

The similarity with an exact sequence (3.5) defining jet groupoids Rq(ω) is no
coincidence as we will see in the following corollary which establishes a corre-
spondence between G-structures and groupoids.

Corollary 6.17. Every G-structure G on X defines a natural bundle F of order
1 and a section ω : X → F such that R1(ω) ∼= Gauge(G). We call ω the geometric
object corresponding to G. Conversely, each transitive groupoid R1 ≤ Π1 specifies
a G = R1(x0, x0)-structure. �
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Proof. Given a G-structure, the natural bundle F = P 1/G and the section
ω are constructed from the equivalence of (1) and (2) in Theorem 6.16. Since
P 1 ∼= Π1(x0,−) for x0 ∈ X, it follows that G ∼= R1(ω)(x0,−). As R1(ω) is
transitive, Proposition 2.9 implies R1(ω) ∼= Gauge(G).

The converse direction follows from restricting the sequence (3.5) to Π1(x0,−)
and Theorem 6.16. �

Equivalence of G-structures

We now define the equivalence of G-structures (cf. [Neu03, Def. 24], [Ste64, Def.
VII.2.2/3]) and show that it coincides with the equivalence of the corresponding
geometric objects from Definitions 6.1.

Definition 6.18. Two G-structures G → X and Ḡ → Y are equivalent if there
exists a diffeomorphism ϕ : X → Y whose lift to the natural bundles ϕ̃ : P 1(X) →
P 1(Y ) satisfies ϕ̃(G) = Ḡ. G and Ḡ are called locally equivalent if there are
neighbourhoods U of x ∈ X and V of y ∈ Y such that G|U is equivalent to
Ḡ|V . An invariant on G is a function ψ : G → R with ϕ̃∗ψ = ψ for all ϕ with
ϕ̃(G) = G. �

Note that each frame bundle P 1(X) is a natural bundle with fibre GL1. De-
note the corresponding bundle functor again by P 1. Then the lift ϕ̃ is nothing
else than P 1(ϕ). This is the key idea for the next theorem.

Theorem 6.19. Let G and Ḡ be G-structures on n-dimensional manifolds X and
Y . G and Ḡ are equivalent if and only if their corresponding geometric objects ω
and ω̄ are equivalent. �

Proof. Consider the exact sequences (6.10) for G and Ḡ. By Theorem 3.12, both
bundles P 1(X)/G and P 1(Y )/G are the values of a natural bundle functor F
with fibre F = GL1 /G. Each ϕ : X → Y lifts to the commutative diagram

0 // G // P 1(X)
pr //
ω◦π

//

P 1(ϕ)
��

F(X)

F(ϕ)

��
0 // Ḡ // P 1(Y )

pr //
ω̄◦π

// F(Y )

(6.11)

built from the exact sequences (6.10). ϕ is an equivalence if and only if P 1(ϕ)
restricts to a morphism G → Ḡ. The condition for the equivalence is on the fibres:

Ḡϕ(x) = P 1(ϕ)(Gx) ∀x ∈ X.

Because both G-structures are kernels, G = kerω(pr) and Ḡ = kerω̄(pr), and
because of the commutativity of diagram (6.11), this is equivalent to:

ω̄(ϕ(y)) = pr(Ḡϕ(x)) = (pr ◦P 1(ϕ))(Gx)
= (F(ϕ) ◦ pr)(Gx) ∀x ∈ X
= F(ϕ)(ω(x)).
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Applying F(ϕ−1), we obtain the equivalence condition (6.1) for ω and ω̄. �

At this point, we know theoretically that both equivalence methods can decide
the same problems. In Corollary 6.17 we have seen, that only first order natural
bundles with a transitive GL1-action on the fibres corresponds to G-structures.
The advantage of Vessiot’s method is that both the intransitive case and higher
order structures are automatically included.

The Canonical Form of a G-structure

In practice, Cartan’s equivalence problems are not given as a G-structure but
by a coframe on a manifold X and the structure group G. The link between
G-structures G and the coframe is the canonical form on G. In [Ste64, page 309],
Sternberg gives a global and intrinsic definition of the canonical form. For the
presentation, we follow Neut [Neu03, §2.2.3].

Some preparations are needed to construct the canonincal form. Fix an n-
dimensional manifold X, the frame bundle π : P 1 → X and an n-dimensional
vector space V with distinguished basis. Then each p ∈ P 1 defines a basis of
TxP

1 (for π(p) = x) and induces an isomorphism p : V → Tx.

Definition 6.20. The canonical form or soldering form θ on P 1 is the map

θ : TP 1 → V : (p, vp) 7→ (p−1 ◦ π∗)(vp), vp ∈ TpP 1.

The canonical form on a G-structure G is the restriction of θ to G. �

If the right action with g ∈ GL1 on P 1 is denoted by Rg, then it satisfies
R∗gθ = g−1θ. With the above definition, θ is a horizontal V -valued 1-form on P 1

(or on G). Using the fixed basis of V , θ splits into n horizontal 1-forms θi on P 1.
The canonical form also allows to test the equivalence of G-structures.

Proposition 6.21. [Neu03, Prop. 2] Two G-structures G and Ḡ with canonical
forms θ and θ̄ are equivalent by a diffeomorphism ϕ if and only if ϕ̃∗(θ̄) = θ. �

Proof. The diagram (6.12) commutes if and only if the lower triangle commutes.

TpG
ϕ̃∗(p) //

θ

##F
FF

FF
FF

π∗

��

Tp′ Ḡ
θ̄

{{www
ww

ww

π∗

��

V
p

{{wwwwwww p′

##H
HHHHHH

Tx
ϕ∗(x) // Tx′

(6.12)

The lower triangle commutes if and only if ϕ(G) = Ḡ. �
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The proposition reduces the equivalence of G-structures to their canonical
forms. On an open subset of X, we decompose the canonical form of a G-
structure G into a coframe and a group parameter. This reduces the equivalence
of G-structures to the equivalence of coframes modulo a given group.

On an open subset U ⊆ X, we can trivialise a G-structure G by giving a local
section σ : X → G. For x ∈ U , σ(x) ∈ P 1

x is a frame and each p ∈ Gx differs from
σ(x) by an element of G. The trivialisation is thus:

G|U → U ×G : p 7→ (x = π(p), g), where σ(x) = pg.

To recover the canonical form θ on the trivialisation, we consider the coframe
ω ∈ Γ(P1), which is dual to σ. Then we set

θ : U ×G→ P1 : (x, g) 7→ g · ω(x). (6.13)

In order to get a V -valued 1-form as in Definition 6.20, we have to pull back the
coframe bundle P1 ⊂ (T ∗)n along the projection π : G → X to (T ∗G)n. On the
open subset U , G is completely determined by the group G and the coframe ω.

Example 6.22. To illustrate the construction of the canonical form from a
coframe, we consider the second order ODEs from Example 4.32. They were
originally formulated in the language of G-structures (cf. [Neu03, §2.3.3]). The
structure group G ≤ GL1 is

G = {

 1 0 0
0 a1 0
0 a2 a3

 | ai ∈ R, a1a3 6= 0}

and the coframe defining G is

ω1 = dx, ω2 = dy − p dx, ω3 = dp− f(x, y, p)dx. (6.14)

Setting ω = (ω1, ω2, ω3)tr and θ = g · ω, we obtain the canonical form on G. �

Equation (6.13) is very convenient for the comparison between Cartan’s and
Vessiot’s equivalence method. We consider θ as a bundle morphism θ : G → P1

into the coframe bundle. This allows to work with natural bundles that have a
right groupoid action:

0 // G θ // P1

pr//
ω◦π
// F = P1/G. (6.15)

The projection of θ to F is G-independent by construction and thus θ (or even
the coframe ω) induces the section of F → X defining G.

Remark 6.23. The exact sequence (6.15) provides a transition between Cartan’s
and Vessiot’s equivalence method. The main object is the projection

pr : P1 → F = P1/G.
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Starting with a G-strucure G, we obtain a section of F → X by projecting the
coframe to F . The map pr is the restriction of Equation (3.7) from Π1 to P1.

If R1(ω) defined by the section ω of F = P1/G→ X is transitive, we obtain a
G-structure by finding a coframe that projects to ω. The coframe is not unique,
since the G-dependence has been factored out on F . �

Example 6.24. In Example 6.22, the coframe θ for second order ODEs has
been constructed. To illustrate Remark 6.23, we explicitly construct a section
on a natural bundle from the coframe. Using Maple, this was already done in
Section 5.3. For fibre coordinates yij of P1, the coframe (6.14) is given by:

 y1
1 y1

2 y1
3

y2
1 y2

2 y2
3

y3
1 y3

2 y3
3

 =

 1 0 0
−a1p a1 0

−a2p− a3f a2 a3

 .
Using Equation (3.7) to compute the projection P1 → F , we obtain

u1 = y1
1, u2 = y1

2, u3 = y1
3, u4 =

y2
3

y2
2

, u5 =
y2
1

y2
2

, u6 =
y3
1y

2
2 − y2

1y
3
2

y3
2y

2
3 − y2

2y
3
3

. (6.16)

Plugging in the values for θ, we obtain the section

u1 = 1, u2 = u3 = u4 = 0, u5 = −p, u6 = f(x, y, p)

of F → X. For each choice of the function f , it represents a second order ODE.
As expected the section is independent from the group parameters ai. �

6.2.2 Cartan’s Equivalence Method at Work

To decide the local equivalence between two G-structures with Cartan’s equiv-
alence method, they are considered as exterior differential systems which are
completed to integrability. In the course of this algorithm, the structure group
G is subsequently replaced by smaller groups until we end up with e-structures.

Cartan’s equivalence method is presented using the flowchart in Figure 6.3,
which is adapted from [Gar89]. The most important construction is the structure
function developed by Sternberg [Ste64], which is needed for the comparison with
Vessiot’s equivalence method in Section 6.2.3.

The Cartan equivalence method is formulated with exterior differential forms,
which is an alternative description for PDE systems. Note that there is a third
way to formulated PDE systems using vector fields. This approach via so-called
Vessiot distributions is presented by Fesser [Fes07]. In the work of Vinogradov
[Vin01], the distributions are called Cartan distribution.
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Figure 6.3: The Cartan equivalence method
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Exterior Differential Systems

Cartan’s equivalence method is formulated with exterior differential systems.
They are an alternative language for PDE systems, as defined in Section 1.3.
We follow the treatment of Ivey and Landsberg [IL03] which is very convenient
for readers familiar with PDE systems. Several standard references to exterior
differential systems are [BCG+91], [Car45], [Gri83] and [Yan92].

On a manifold Y , we consider the space Ωk(Y ) = Γ(
∧k T ∗) of differential

k-forms and the algebra Ω∗(Y ) = ⊕kΩk(Y ) of differential forms. A differential
ideal is an ideal I ≤ Ω∗(Y ) with dI ⊆ I.

Definition 6.25. [IL03] An exterior differential system (eds) with indepen-
dence condition on Y is a differential ideal I ⊂ Ω∗(Y ) and a nonzero n-form
Ω.

A linear Pfaffian system (I, J) is an exterior differential system I which is
generated by the set of 1-forms I = {θα | 1 ≤ α ≤ s} and Ω = ω1 ∧ · · · ∧ ωn for
ωi ∈ Ω1(Y ) such that

dθα ≡ 0 mod J = {θα, ωi}. (6.17)

An integral manifold of the eds I is an immersed submanifold f : M → Y such
that f∗(θ) = 0 for all θ ∈ I and f∗(Ω) 6= 0. �
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For the remainder of this section we fix a linear Pfaffian system (I, J) on Y .

Remark 6.26. From each system of PDEs Rq ⊆ Jq(E) it is possible to construct
a linear Pfaffian system. Use the coordiates (x, y) for E and (x, y, yq) for Jq(E)
and define the standard contact forms

θiµ = dyiµ − yiµ+1j
dxj , 0 ≤ |µ| ≤ q − 1.

By abuse of notation denote the pullback of θiµ to Rq again by θiµ. Then I = {θiµ}
defines a linear Pfaffian system on Rq with independence condition Ω = dx1 ∧
· · · ∧ dxn. Integral manifolds are in one-to-one correspondence with solutions of
Rq. �

Example 6.27. On the bundle E = R2 × R with coordinates (x, y;u) consider
the system R1 ⊂ J1(E) defined by

ux = A(x, y, u), uy = B(x, y, u). (6.18)

We have the single contact form du− ux dx− uy dy, whose pullback to R1 is

θ = du−A(x, y, u)dx−B(x, y, u)dy.

The independence condition Ω = dx∧ dy 6= 0 completes the Pfaffian system. We
check condition (6.17) on dθ:

dθ = (Ay −Bx)dx ∧ dy +Audx ∧ du+Budy ∧ du ≡ 0 mod {θ, dx, dy}.

Due to Ω, all integral manifolds are parametrised as

f : R2 → R1 : (x, y) 7→ (x, y, u(x, y)).

The pullback of θ along f substitutes du = uxdx+ uydy

f∗(θ) = (ux −A)dx+ (uy −B)dy != 0.

By the independence condition, the condition for integral manifolds is equivalent
to the original PDE system (6.18). �

Remark 6.28. The construction of an exterior differential system to check the
equivalence of two G-structures G → X and Ḡ → Y differs slightly from Remark
6.26. Assume that G and Ḡ are locally given by the group G and their coframes
ω and ω̄. This is the starting point of Figure 6.3.

Following Remark 6.26, we consider the PDE system S1(ω, ω̄) for the equiv-
alence constructed in equation (6.3) and pull back the standard contact forms
from Π1(X,Y ). This is equivalent to the linear Pfaffian system

ω̄i(y)− gij ω
j(x), ω1 ∧ · · · ∧ ωn 6= 0
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with the matrix (gij) ∈ G. In shorter notation, we write

ω̄(y)− g · ω(x).

However it is more convenient to work on the manifold Ḡ×G with the symmetrised
Pfaffian system

θ̄ − θ = ḡ · ω̄(y)− g · ω(x), θ1 ∧ · · · ∧ θn 6= 0. (6.19)

The symmetrised system allows to perform all computations for the canonical
forms θ and θ̄ separately. Therefore Figure 6.3 treats only one side. �

Structure Equations

So far, we have only considered the algebraic consequences of the linear Pfaffian
system (I, J). We will now recall the steps corresponding to the prolongation
and projection of PDE systems. The basic observation is that if f : M → Y is
an integral submanifold, then f∗(θi) = 0 also implies f∗(dθi) = 0. By condition
(6.17), there are functions Aαεj and Tαij on Y such that dθα has the form

dθα ≡ Aαεjπ
ε ∧ ωj + Tαjkω

j ∧ ωk mod I. (6.20)

The forms πε, 1 ≤ ε ≤ r, are a complement of J such that K = {θα, ωi, πε}
is locally a basis of T ∗Y . The functions Tαjk, T

α
jk = −Tαkj , are called torsion

coefficients and the summand Tαjkω
j ∧ ωk apparent torsion, because it depends

on the arbitrary choice of πε for the complement.

Example 6.29. In Example 6.27, the complement to {θ, dx, dy} is empty and
the structure equation depends on a single nonzero torsion coefficient

dθ ≡ (Ay −Bx +AuB −BuA) dx ∧ dy mod I.

Taking dθ mod I means replacing du = Adx+Bdy. The torsion coefficient is the
compatibility condition obtained by taking cross derivatives in (6.18). �

Remark 6.30. For the Cartan equivalence method, we take up the symmetrised
system (6.19) and compute the exterior derivatives of the coframes θ and θ̄ sep-
arately.

dθ = d(g · ω) = dg g−1 ∧ θ + T θ ∧ θ (6.21)

Here dg g−1 is the right invariant Maurer-Cartan form (see [Gar89, Lecture 2])

TG→ g = TidG : (g, v) 7→ (dg g−1)(v).

Select a basis of forms πε, 1 ≤ ε ≤ r = dim(G), among the entries of dg g−1. Then
we find elements Aiεj ∈ g in the Lie algebra g of G such that (dg g−1)ij = Aiεjπ

ε

and the structure equations have the form

dθi = Aiεj π
ε ∧ θj + T ijk θ

j ∧ θk. (6.22)
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The torsion coefficients depend on the coordinates of G only. Analogous to θ, we
also compute the structure equations for θ̄, where the Lie algebra elements Aiεj
reoccur

dθ̄i = Aiεj π̄
ε ∧ θ̄j + T̄ ijk θ̄

j ∧ θ̄k. (6.23)

Here, the torsion coefficients T̄ depend on Ḡ only. In the picture of linear Pfaffian
systems, the structure equations for θ − θ̄ are

d(θi − θ̄i) ≡ Aiεj(π
ε − π̄ε) ∧ θj + (T ijk − T̄ ijk)θ

j ∧ θk mod I. (6.24)
�

Example 6.31. Continuing Example 6.22, we compute the Maurer-Cartan form
and define the forms πε by the following equation. 0 0 0

0 π1 0
0 π2 π3

 := dg g−1 =

 0 0 0
0 da1 0
0 da2 da3

 1 0 0
0 a1 0
0 a2 a3

−1

With these forms πε, the structure equations are

dθ1 = 0,
dθ2 = π1 ∧ θ2 + T 2

12 θ
1 ∧ θ2 + T 2

13 θ
1 ∧ θ3,

dθ3 = π2 ∧ θ2 + π3 ∧ θ3 + T 3
12 θ

1 ∧ θ2 + T 3
13 θ

1 ∧ θ3.

(6.25)

The values of the torsion coefficients are

T 2
12 = − a2

a3
, T 2

13 =
a1

a3
, T 3

12 =
fya

2
3 − fpa2a3 − a2

2

a1a3
, T 3

23 =
a2 + fpa3

a3
. �

The torsion coefficients in the structure equations still depend on the choice
of the forms πε. The next goal is to eliminate this dependence.

Torsion and the Structure Function

Following Ivey and Landsberg [IL03, §5.5], we construct the torsion map, which
is a map

τ : Y → H2
0 (A) : y 7→ [Tαij(y) ∂θα ⊗ ωi ∧ ωj ] (6.26)

into a suitable Spencer cohomology group, where the dependence on the forms πε

has been factored out. This allows to formulate the well-known Cartan-Kähler
Theorem for the existence of integral manifolds. On a G-structure, τ induces the
structure function c : G → H2

0 (A) developed by Sternberg [Ste64, p. 316f]. It will
be of interest in Section 6.2.3 for the comparison with Vessiot’s approach.

Define families of vector spaces over Y by setting for each y ∈ Y

V ∗ = 〈(J/I)y〉 = 〈ωi|y〉, W ∗ = 〈Iy〉 = 〈θα|y〉.
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Then evaluate the coefficients Aαεj of the structure equations (6.20) at y and define
the tableau

A = Ay = 〈Aαεj ∂θα ⊗ ωj | 1 ≤ ε ≤ r〉 ⊆W ⊗ V ∗. (6.27)

The Spencer δ-map from Appendix A can also be defined for the families of vector
spaces V ∗ and W instead of the bundles T ∗ and E. The restriction of δ to A
yields the skew-symmetrisation map

δ : A⊗ V ∗ →W ⊗
∧2
V ∗. (6.28)

Now the torsion of a linear Pfaffian system is an element of the Spencer coho-
mology group

H2
0 (A) = W ⊗

∧2
V ∗/δ(A⊗ V ∗)

by taking the residue classes

[T ] = [Tαij∂θα ⊗ ωi ∧ ωj ] ∈ H2
0 (A).

It can be seen as follows. The only way to modify the apparent torsion is to
redefine the forms πε as π̃ε = πε + λεiω

i. This takes the apparent torsion to

T̃αij = Tαij + (Aαεjλ
ε
i −Aαεiλ

ε
j). (6.29)

A simple calculation (adding the ∂θα⊗ωi and ωj) shows that the additional terms
for T̃αij are exactly the image of the Spencer δ-map (6.28).

Setting A0 = W , A1 = A and Ai = A(i) as the i-th prolongation of A (see
Definition B.10), we can compute Spencer cohomology groups for the tableau A,
since the analogue of Lemma A.4 holds. This allows to formulate the Cartan-
Kähler-Theorem for linear Pfaffian system (cf. [IL03, Thm. 5.5.6]).

Theorem 6.32 (Cartan-Kähler). Let (I, J) be a linear Pfaffian system on Y ,
let x ∈ Y and let U be a neighbourhood containing x such that for all y ∈ U ,

(1) the torsion vanishes [T ]y = 0, and

(2) the tableau Ay is involutive.

Then there exist integral manifolds of dimension n = dim(J/I)x through x that
depend on sl functions of l variables. �

Here sl is the highest nonvanishing Cartan character (see e.g. [IL03, §4.5],
[Pom78, §3.2]), which was not introduced since δ-regular coordinates could be
avoided for the computation of all Spencer cohomology groups in Appendix A.

Remark 6.33. The condition [T ]y = 0 in the Cartan-Kähler Theorem is the
obstruction to finding an appropriate integral manifold. Let (xi, yα, pε) be coor-
dinates of Y such that ωi = dxi, θα = dyα and πε = dpε. By the independence
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condition, every integral submanifold f can be given by functions yα = fα(x) = 0
and pε = f ε(x). This implies f∗πε = ∂if

ε(x)ωi and

0 != f∗(dθα) = Aαεif
∗(πε) ∧ ωi + Tαij ω

i ∧ ωj

= (Aαεj ∂if
ε −Aαεi ∂jf

ε + Tαij)ω
i ∧ ωj

As there are no other conditions on the first order derivatives of f ε(x), this is
solvable if and only if the torsion vanishes. �

For the Cartan equivalence method we consider the coframes θ and θ̄ sepa-
rately again. In the structure equation 6.22, the torsion coefficients also depend
on the choice of πε and we can construct a structure function (see [Ste64, p. 316f])
analogous to the torsion map.

Definition 6.34. The structure function of a G-structure G is the G-equivariant
map

c : G → H2
0 (A) : (x, g) 7→ [T ijk(x, g) ∂θi ⊗ θj ∧ θk]. (6.30)

with A = g1 and H2
0 (A) = V ⊗

∧2V ∗/δ(g1 ⊗ V ∗). �

Theorem 6.35. [Ste64, Thm. VII.2.1] Let G and Ḡ be G-structures with struc-
ture functions c and c̄. If G and Ḡ are equivalent by ϕ, then ϕ∗(c̄) = c. �

The structure function is used for the reduction of G to a G′-structure G′ ⊂ G
for a suitable subgroup G′ ≤ G in the normalisation step. In Section 6.2.3, we
give an interpretation of the structure function as a section of a natural bundle.

Absorption of Torsion

To compute the Spencer cohomology group H2
0 (A) of a linear Pfaffian system,

we choose a complement C of δ(A⊗ V ∗) such that

W ⊗
∧2
V ∗ = C ⊕ δ(A⊗ V ∗)

and identify C with H2
0 (A). Due to the condition [T ] = 0 in the Cartan-Kähler

Theorem, the complement C is chosen such that a maximal number of torsion
coefficients is zero. This process, called absorption of torsion, is done by redefining
the forms πε such that a maximal number of torsion coefficients vanishes. The
remaining torsion coefficients are called essential (cf. [Gar89, Lecture 3]).

Example 6.36. In Remark 6.30 we have seen that the torsion coefficients T ijk
depend only on G while T̄ ijk depends on Ḡ. We can thus absorb the torsion of dθ
and dθ̄ separately. Equation (6.24) shows that the coefficient T ijk can be absorbed
if and only if T̄ ijk can be absorbed.
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For Example 6.31 it is done by the redefinition of πi as

π̃1 = π1 − T 2
12 θ

1, π̃2 = π2 − T 3
12 θ

1, π̃3 = π3 − T 3
13 θ

1.

Omitting the tilde on the forms π, the structure equations with absorbed torsion
contain only a single essential torsion coefficient T 2

13 = a1/a3.

dθ1 = 0,
dθ2 = π1 ∧ θ2 + T 2

13 θ
1 ∧ θ3,

dθ3 = π2 ∧ θ2 + π3 ∧ θ3.

(6.31)

Here H2
0 (A) is four-dimensional with basis ∂θ1 ⊗ θi ∧ θj and ∂θ2 ⊗ θ1 ∧ θ3 and the

structure function is determined by the torsion coefficients T 1
ij = 0 and T 2

13. �

Normalisation

After having absorbed the torsion in the structure equations, there might still be
essential torsion coefficients Tαij . In this case, an integral manifold f : M → Y
must also satisfy f∗(Tαij) = 0. We can thus turn to the closed submanifold Y ′ ⊆ Y
defined by Tαij = 0 and pull back the Pfaffian system (I, J). By construction,
integral manifolds on Y ′ are in one-to-one correpondence with integral manifolds
of (I, J) on Y . In the picture of PDE systems Y = Rq, the essential torsion
coefficients define Y ′ = R(1)

q obtained by a single prolongation and projection.
For Cartan’s equivalence method, we continue with the symmetrised Pfaffian

system from Remark 6.30. Having absorbed the torsion in (6.24), the condition
(1) of the Cartan-Kähler Theorem reads

T ijk − T̄ ijk = 0.

If the torsion is nonzero, we give a positive answer to the question ‘Normalisation
possible?’ in Figure 6.3 and restrict to a submanifold of G × Ḡ by setting

T ijk = constijk = T̄ ijk,

since T and T̄ depend on disjoint sets of coordinates. This is the normalisation
step (cf. [Neu03, §2.6]). On the submanifold of G × Ḡ, we find integral manifolds
if and only if there are integral manifolds on G × Ḡ.

Equivalently, we can choose an element 0 6= w ∈ H2
0 (A) ∩ im(c) and locally

define the submanifold and the reduction of the group

G′ := {p ∈ G | c(p) = w}, (6.32)
G′ := {g ∈ G | ∀p ∈ G, c(pg) = c(p)}

and proceed analogously with Ḡ. In Figure 6.3, this step corresponds to the arrow
‘change group and coframe’. Unfortunately, G′ is not necessarily a G′-structure.
Gardner [Gar89, Lecture 4] gives a necessary condition for this.
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Definition 6.37. A G-structure G is of first order constant type if the image of
the structure function c is a single G-orbit on V ⊗

∧2 V ∗/δ(g1 ⊗ V ∗). �

Proposition 6.38. Let G be a G-structure with structure function c and G′ as
in Equation (6.32). If G is of first order constant type then G′ is a G′-structure.�

For a proof see [Gar89, p. 38] or [Neu03, Prop 5].
The problem that might occur is that an essential torsion coefficient does not

depend on the group parameters and is thus an invariant of the problem. About
the treatment of these problems, Gardner writes in [Gar89, p. 37]:

If an equivalence problem is not of first order constant type, [...].
Cartan actually indicates how this case might be handled, but the
added complexity in exposition prohibits the consideration of this
difficulty in any generality.

In [Olv95, p. 366f], Olver indicates how to handle equivalence problems of
nonconstant type and gives examples (e.g. by Gardner and Shadwick). The
Vessiot equivalence method treats equivalence problems of constant and noncon-
stant type with exactly the same methods. The only difference is that the Vessiot
structure equations depend on invariants in the nonconstant case.

Example 6.39. Continue Example 6.36 and normalise the torsion coefficient
T 2

13 = a1
a3

= 1 to eliminate a1. The original G-structure is of first order constant
type and we can continue with another loop through Figure 6.3 (normalisation
T 3

13 = 0, eliminating a2). We obtain the structure equations with absorbed torsion

dθ1 = 0,
dθ2 = π3 ∧ θ2 + θ1 ∧ θ3,

dθ3 = π3 ∧ θ3 + T 3
12 θ

1 ∧ θ2.

The essential torsion coefficient is the invariant, we have found in Section 4.3.3.

T 3
12 = −1

4
f2
p +

1
2
fy −

1
2
fxp −

1
2
pfpy −

1
2
ffpp.

The corresponding tableau is not involutive (see [Neu03, §2.7.1]), such that a
prolongation becomes necessary. If T 3

12 is nonconstant, the G-structure is not of
first order constant type. Nevertheless, the results in [Neu03, §2.8.1] are correct.�

Prolongation

If all torsion is zero, but the tableau A for (I, J) on Y is not involutive, we have
to prolong the linear Pfaffian system. Here, we follow [Neu03, §1.6] in a form
that is comparable to the prolongation of PDE systems from Section 1.3. For
simplicity the torsion [T ] is assumed to be zero.
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Use the coordinates (xi, yα, pε) for Y defined in Remark 6.33. The indepen-
dence condition Ω locally induces a projection π : Y → X to a manifold X with
coordinates (x). Define the prolongation Y ′ := J1(Y ) with additional coordinates
(yαi , p

ε
i). The standard contact forms on J1(Y ) are

θ̃α = dyα − yαi dx
i, πε = dpε − pεidx

i.

Set I ′ = (θα, θ̃α, πε) and J ′ = (I ′, ωi). The prolongation of PDE system Rq ⊆
Jq(E) was defined as J1(Rq)∩Jq+1(E), so we have to find a subbundle of Y ′ → Y .
First set yαi = 0, since integral manifolds satisfy f∗(θα) = 0 and thus f∗(dyα −
yαi dx

i) = yαi dx
i != 0. Then eliminate the torsion by solving

dθα ≡ (Aαε,jp
ε
i − Tαij)ω

i ∧ ωj mod I ′ = 0 (6.33)

for a maximal number of pεi . An integral manifold must now satisfy f∗(πε) = 0.
Writing down the equations for the prolongation of the linear Pfaffian system on
the trivial equation Rq = Jq(E) shows that the restriction of Y ′ is equivalent to
the intersection with Jq+1(E) for PDE systems.

For the prolongation of a G-structure G, we compute J1(G), add the forms
πε = dpε−pεidxi and obtain a G(1)-structure G(1) → G by solving equation (6.33).
On G × Ḡ, it is the same as the above prolongation (see [Neu03, §2.5]).

Example 6.40. The prolongation for Example 6.39 is done by adding θ4 = π3.
We obtain an e-structure and structure equations

dθ1 = 0,
dθ2 = θ4 ∧ θ2 + θ1 ∧ θ3,

dθ3 = θ4 ∧ θ3 + T 3
12 θ

1 ∧ θ2,

dθ4 = T 4
12 θ

1 ∧ θ2 + T 4
23 θ

2 ∧ θ3.

with T 3
12 as in Example 6.39 and

T 4
12 =

fyp + fxpp + pfypp + 3fpfpp + ffppp
2a3

, T 4
23 = − fppp

2a2
3

.

Neut shows that a generating set of invariants on the e-structure is given by T 3
12

and T 4
23. This does not coincide with the invariants computed in Section 4.3.3,

since we are working over the base G with coordinates (x, y, p, a3) instead of X
which has the coordinates (x, y, p) as in the case of natural bundles. �

Equivalence Conditions

For the equivalence condition, we choose the presentation of Stormark [Sto00],
which comes closest to Theorem 6.2 from Vessiot’s approach.

Having reduced the structure group of a G-structure G to the identity group
G′ = e by several loops in Figure 6.3, all torsion coefficients T ijk are essential and
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therefore invariants. Additionally, we have obtained invariant coframes θ = ω and
θ̄ = ω̄. Compute the dual invariant differential operators Di and D̄i according to
Definition 4.6. There exists an m ∈ N, such that the derived invariants

T ijk,l1,...,lm(x) = Dl1 . . .DlmT ijk(x), 1 ≤ lo ≤ n

contain a maximal number p ∈ N of independent invariants I1(x), . . . , Ip(x). Use
the same choice Ī1(x̄), . . . , Īp(x̄) for the reduction of Ḡ.

Theorem 6.41. [Sto00, Thm. 15.1.2] Necessary and sufficient conditions for
local equivalence are that all the equations

T ijk,l1,...,la(x) = T̄ ijk,l1,...,la(x̄), a = 0, . . . ,m+ 1

are consequences of the equations Ii(x) = Īi(x̄) for i = 1, . . . , p. Or put somewhat
differently: expressing T ijk,l1,...,la and T̄ ijk,l1,...,la as functions of I and Ī respectively,
these functions have to coincide. �

If there are no invariants (p = 0), we have to compare the constants T ijk to
decide equivalence, since all invariant derivatives are zero.

Example 6.42. In Example 6.40, the invariants T 3
12 and T 4

23 are both zero for
the equation yxx = f(x, y, p) = 0. Any second order ODE is equivalent to yxx = 0
if and only if T 3

12 = T 4
23 = 0 (see [Neu03, Thm. 10]). �

6.2.3 Comparison Between Cartan’s and Vessiot’s Method

In this section, we finish the comparison of the Cartan equivalence method and
Vessiot’s approach. They stand in duality to each other, since Cartan’s method
is formulated by linear Pfaffian systems and Vessiot’s method with PDE systems.
As a result, the following table of translations between both methods is obtained.

Cartan Vessiot
G-structure G natural bundle F ,
coframe θ geometric object ω
structure equations
absorption of torsion prolongation and projection
normalisation
coframe + structure function geometric object on F(1)

prolongation prolongation
Equivalence conditions Vessiot structure equations

The first correspondence is classical and was proved in Corollary 6.17. Al-
though no direct translation was found in the literature, it seems to be known
that the structure equations etc. correspond to prolongation and projection on
the PDE system side.
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In this section we concentrate on the next point and show that the canonical
form and the structure function together define a section of the bundle F(1)

of integrability conditions. This result is a new interpretation of the torsion τ
and the curvature map κ from Section 3.5.4. As a corollary, we obtain that
the normalisation corresponds to the projection of PDE systems. In Vessiot’s
approach, no choice of constants is necessary.

In contrast to Cartan’s method, where a generating set of invariants is com-
puted in order to decide equivalence, the Vessiot structure equations allow to test
equivalence before. For given geometric objects, this may avoid prolongation and
projection steps. In the general situation, we obtain a finer classification.

Interpreting Coframe and Structure Function

Assume that a G-structure G with canonical form θ and the corresponding geo-
metric object ω on the natural bundle F are given. In order to show that coframe
and structure function of G determine the section I(j1(ω)) on the bundle of inte-
grability conditions F(1) → X, we use a well-known correspondence between PDE
systems and linear Pfaffian systems. Analogous to Section 3.5.4, it is possible to
define a curvature map κ for each PDE system Rq ⊆ Jq(E) (see [Gol67b, Prop.
8.3] and [Pom78, §2.4]). Let (I, J) be the linear Pfaffian system corresponding
to Rq. Then under mild assumptions, the curvature κ is identical to the torsion
τ from equation (6.26). See [Mal05, §II.3, App. B.1] for a proof.

Equation 3.45 shows that one half of the curvature map κ consists of the
section I(j1(ω)). In the same sense, the structure function of a G-structure G is
one half of the torsion map on G × Ḡ.

Although it may be hidden, this section was strongly inspired by the book of
Malgrange [Mal05, §II.3/4], especially by the correspondence between curvature
and torsion. Additional sources were the book of Ivey and Landsberg [IL03, §5.7]
and the Maple packages of Neut [Neu03].

We need the following preparational lemma.

Lemma 6.43. The bundle J1(P1)/K2
1 is isomorphic to P1 ×X (

∧2T ∗)n. �

Proof. The GL1-action on the fibre of P1 is free (and transitive), such that the
GL2-action on J1(P1) is also free. We have dim(K2

1 ) = dim(Π2 → Π1) = n
(
n+1
n

)
by Proposition 1.6, such that dim(J1(P1)/K2

1 → P1) = n3 − n
(
n+1
n

)
= n

(
n
2

)
.

The dimension of
∧2T ∗ is

(
n
2

)
and for coordinates uij of P1 (ωi = uijdx

j), the
projection J1(P1) → P1 ×X (

∧2T ∗)n is given by (uij , u
i
j,k) 7→ (uij , u

i
j,k − uik,j). �

The next theorem gives a direct interpretation of Sternberg’s structure func-
tion in the context of the Vessiot equivalence method.

Theorem 6.44. Let G be a G-structure with canonical form θ and let ω be the
geometric object on the natural bundle F = P1/G corresponding to G. Then the
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structure function c and the canonical form θ define a morphism

c̃ : G → F(1) : (x, g) 7→ (x, θ(x, g), c(x, g)). (6.34)

which coincides with the section I(j1(ω)) : X → F(1). Here I is the projection
I : J1(F) → F(1) = J1(F)/K2

1 . �

Proof. With A and V ∗ as in Definition 6.34, Lemma 3.43 implies M1
∼= k10 =

g1 = A and M0 = T ∗ = V ∗. By Lemma 3.41, F(1) is a vector bundle that
coincides with the Janet bundle F1 from Equation (3.37). Theorem 3.53 implies
that F1

∼= H2
0 (M1) =

∧2T ∗ ⊗ T/δ(g1 ⊗ T ∗), which is isomorphic to H2
0 (A) (for

appropriate pullbacks). So c̃ is well-defined. To see that c̃ coincides with the
section I(j1(ω)), we apply the exact functor J1 to the sequence (6.15) and obtain

0 // J1(G)
p1(θ) // J1(P1)

��

//

j1(ω)◦π
// J1(F)

I
��

J1(G)
(θ,dθ)// P1 ×X (

∧2T ∗)n
pr //// F(1)

(6.35)

The bottom row is constructed by factoring out the K2
1 -action on J1(P1) and

J1(F) and using Lemma 6.43. By Proposition B.17 and Theorem 3.15, the dia-
gram commutes. So the map J1(G) → F(1), which is the composition pr ◦(θ, dθ),
coincides with I(j1(ω)).

An explicit construction shows that it is the map c̃. With coordinates (x, pε)
of G choose fibre coordinates pεi of J1(G) such that the total derivative on G is

Dxj = ∂xj + (gω)ij p
ε
i ∂pε , θ = (gω)ij dx

j .

Then dθ is

dθi = πε ∧Dpεθi + dxj ∧Dxjθi

= Aiεj π
ε ∧ θj +Aiεj p

ε
k θ

j ∧ θk + T ijk θ
j ∧ θk

= Aiεj π
ε ∧ θj + (T ijk +Aiεj p

ε
k −Aiεk p

ε
j) θ

j ∧ θk.

The dependence on Aiεj ∈ g1 is obtained by comparing

∂pεθi = (∂pεgil)ω
l = ((∂pεg)g−1)ij θ

j = Aiεj θ
j .

with Equation (6.22). The map (θ, dθ) in diagram (6.35) is

J1(G) → P1 ×X (
∧2
T ∗)n : (x, pε, pεi) 7→ (x, θ, (T ijk +Aiεjp

ε
k −Aiεkp

ε
j)θ

j ∧ θk).

Because the map G → F factors over X, i.e. does not depend on pε, the com-
position of (θ, dθ) with the projection to F(1) is independent from pε and pεi and
thus coincides with c̃. �
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The following corollary connects the prolongation and projection with the
normalisation step for G-structures.

Corollary 6.45. Let G, θ, F and ω be as in Theorem 6.44. Choose w ∈
H2

0 (A)∩ im(c) and define G′ by Equation (6.32). Prolong and project the symme-
try groupoid R1(ω) to obtain R(1)

1 (ω). If R(1)
1 (ω) is transitive there is an x0 ∈ X

such that G′ ∼= R(1)
1 (ω)(x0,−). Otherwise, G is not of first order constant type.�

Proof. Since w ∈ im(c), there exists an x0 ∈ X such that I(j1(ω)(x0)) =
(x0, ω(x0), w) by Theorem 6.44. By the proof of Corollary 6.17, we have G ∼=
R1(ω)(x0,−) and G′ ∼= R(1)

1 (ω)(x0,−) follows. If R(1)
1 (ω) is intransitive, GL1

acts intransitively on the fibre F1 of F(1), but transitively on the fibre of F . �

For smaller examples, Theorem 6.44 can be checked explicitly.

Example 6.46. We will follow the proof of Theorem 6.44 and compute the sec-
tion I(j1(ω)) of F(1) → X using the coframe θ and the structure function c for
the Example 6.36 of second order ODEs. The starting point is the exact sequence
0 → G → P1 → F which was calculated in Example 6.24. We construct the bun-
dles and the maps in diagram (6.35). The bundle coordinates as well as standard
maps are summarised in the following table.

P1 : (x, yij),
J1(P1) : (x, yij , y

i
j,k = Dky

i
j),

P1 ×X (
∧2T ∗)n : (x, yij , w

i
jk = yij,k − yik,j),

F : (x, uα = Φα(y1)), Equation (6.16),
J1(F) : (x, uα, uαi = Diu

α),
F(1) : (x, uα, vβ = Aβ(u)ux), Example 6.14.

The references point to places where the maps have been computed. The projec-
tion P1 ×X (

∧2T ∗)n → F(1) is given by

v1 = w1
12, v2 = w1

13, v3 = w1
23, v4 =

y2
3 w

2
12 − y2

2 w
2
13 + y2

1 w
2
23

(y2
2)2

.

It is obtained by composing the map J1(P1) → J1(F) (uαi = DiΦα(y1)) with the
projection to F(1) and then expressing yij,k by wijk. Instead of the coordinates
wijk, which correspond to the 2-form Ωi = wijkdx

j ∧ dxk, it is more convenient to
choose the fibre coordinates T ijk that correspond directly to the torsion coefficients
(Ωi = T ijkθ

j ∧ θk). In these coordinates the map P1 ×X (
∧2T ∗)n → F(1) reads

v1 = T 1
13 a2 + T 1

23 a1a3f(x, y, p) + T 1
12 a1, v2 = T 1

13 a3 − T 1
23 a1a3p,

v3 = T 1
23 a1a3, v4 = −T 2

13

a3

a1
.
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To obtain the map c̃, we plug in the torsion coefficients from Equation (6.25).

T 1
12 = T 1

13 = T 1
23 = 0, T 2

13 =
a1

a3

Since c̃ does not depend on the fibre coordinates of G → X, we can use the
simplified torsion coefficients from the absorbed structure equations (6.31). As
expected, we recover Equation (6.9):

v1 = v2 = v3 = 0, v4 = −1.

There is a caveat, which might lead to confusions. In the absorbed structure
equations (6.31), we only see a single essential torsion coefficient T 2

13, but the
fibre of F(1) is four-dimensional. Theorem 6.44 implies that the space H2

0 (A) of
torsion coefficients is isomorphic to the fibre of F(1) → F . In fact, the torsion
coefficients T 1

jk are also essential, because they cannot be absorbed. They just
happen to be zero in this example. It corresponds to the fact that we could find
a one-dimensional subbundle of F(1) → F to which all sections for second order
ODEs restrict (see Example 6.14). �

6.3 Examples

In this section, we present two examples of third and fourth order ODEs of the
form

yxxx = f(x, y, yx, yxx),
yxxxx = f(x, y, yx, yxx, yxxx)

under contact transformations for the direct comparison between Cartans’s and
Vessiot’s equivalence method. With Cartan’s equivalence method, the examples
have been calculated by Neut [Neu03]. The examples show the limits of both
approaches, which can be summarised as follows.

The computations with Cartan’s equivalence method cannot be used to decide
equivalence of generic third or fourth order ODEs, since the invariants given in
[Neu03] still depend on the fibre coordinates of the initial G-structure.

Nevertheless it is possible to give necessary and sufficient conditions for the
equivalence to

yxxx = 0 or yxxx = y

in the case of third order ODEs. For fourth order ODEs, the equivalence to
yxxxx = 0 can be tested.

With the Vessiot equivalence method only the equivalence of third order ODEs
to yxxx = 0 can be tested. In all other cases, the computations become too large.
On the other hand, it is possible to compute some of the invariants which are
needed to decide equivalence in the generic case.

For examples where the Vessiot equivalence method gives a complete solution,
we refer to Chapter 7.
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6.3.1 Third Order ODEs

Similar to Example 4.32 dealing with second order ODEs under point transfor-
mations, we now turn to third order ODEs

yxxx = f(x, y, p = yx, q = yxx) (6.36)

under contact transformations. This example has been first considered by Chern
[Che40]. In the course of computation, the so-called Wünschmann semi-invariant
I [Wün05] occurs and leads to a case splitting. Sato and Yoshikawa [SY98]
explicitly give conditions for the equivalence to yxxx = 0, which is a special case
of the branch with I = 0. Neut and Petitot [NP02] (see also [Neu03, Ch. 4])
compute the branch I 6= 0.

We take up this example in the Vessiot context and give an interpretation of
the Wünschmann semi-invariant. Furthermore, the above computations do not
lead to a full classification of third order ODEs. We will discuss this problem
and continue the calculations until they become too large to handle with recent
computers.

For third order ODEs under contact transformations, we have the coframe

ω1 = dx, ω2 = dy − pdx, ω3 = dp− qdx, ω4 = dq − f(x, y, p, q)dx

on X = J3(R× R) and the structure group

G =


Xx Xy Xp 0
0 Yy 0 0
0 Py Pp 0
0 Qy Qp Qq

 .
Here (x, y, p, q) and (X,Y, P,Q) are coordinates of X. In other words, the natural
bundle is F ′ = P1/G, where G is defined by the equations

Yx = Px = Qx = Yp = Xq = Yq = Pq = 0.

The bundle F ′ has a seven-dimensional fibre with coordinates (u1, . . . , u6, f). We
are interested in sections ω of the form

u1 = u2 = u3 = u4 = 0, u5 = −p, u6 = −q, f = f(x, y, p, q).

As in Section 4.3.3, we have a projection to the natural bundle F ′′ with coor-
dinates (u1, . . . , u6) and all sections of interest project to a single section ω′′ of
F ′′ → X. Its symmetry algebroid g ⊂ J1(T ) is defined by

ξ1x = −ξ4q + ξ3p − pξ1y − 2qξ1p , ξ1q = ξ3q = ξ3q = 0, ξ2x = ξ3 − pξ3p − p2ξ1y ,

ξ2y = −ξ4q + 2ξ3p + pξ1y − 2qξ1p , ξ2p = ξ1pp, ξ3x = ξ4 − qξ4q − ξ3yp− q2ξ1p .
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We use Proposition 4.33 to define F with single coordinate (f). The infinitesimal
g-action on F is given by the vector field

L = ξ1∂x + ξ2∂y + ξ3∂p + ξ4∂q + (2fξ4q − fξ3p + fξ1pq + ξ4x + pξ4y + qξ4p)∂f

The first three prolongations and projections produce the following bundles F(i) ⊂
J1(F(i−1))/K2

1 and their corresponding fibre coordinates

F(1) : v1 = fq,

F(2) : v2 = v1
x + pv1

y + qv1
p + fv1

q − 3fp,

F(3) : v3 = v2
x + pv2

y + qv2
p + fv2

q + 6fy − 4v1fp −
4
9
(v1)3 + 2v1v2.

On F(1) → F and F(2) → F(1), there are no equivariant sections, but on F(3) the
Vessiot structure equations are

v3 = v2
x + pv2

y + qv2
p + fv2

q + 6fy − 4v1fp −
4
9
(v1)3 + 2v1v2 = 0.

Plugging in the values of v1 and v2, we realise that v3 = I is exactly the
Wünschmann semi-invariant [Neu03, eq. (4.5)]. If the Vessiot structure equa-
tions are satisfied, the symmetry groupoids are not necessarily integrable, since
the symbols for generic sections of F(2) → X are not 2-acyclic. The advantage
of computing F(3) is that we can identify a natural subbundle of J1(F(2)) → F(2)

for third order ODEs which become nongeneric in the next step. Detecting this
bundle on J2(F(2)) is nearly impossible.

In the following, we distinguish the cases I = v3 = 0 and v3 6= 0 before
continuing the computations as displayed in the following diagram. Each arrow
stands for a prolongation and projection.

F(4) // F(5)

F // F(1) // F(2) //

v3=0

66lllllllllllllllll

v3 6=0 ((RRRRRRRRRRRRRRRR F(3)

F(4),z // F(5),z // F(6),z

The Case v3 = 0

The equation v3 = 0 defines a subbundle of F(3) → F(2) which is isomorphic to
F(2). Computing a single prolongation and then projecting will not yield any new
integrability conditions, so we compute the minimal bundle

F(4),z ⊆ J2(F(2))/K
3
2
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to which all sections from F → X with v3 = 0 restrict. For the first prolongation,
the coordinates are

w1 = fx, w2 = fy, w3 = fp,

w4 = v1
y , w5 = v1

p, w6 = v1
q ,

w7 = v2
y , w8 = v2

p, w9 = v2
q .

The fibre coordinates of F(4),z are

b1 = w6
q , b2 = w9

q , b3 = w8
q + 2w4

q −
4
3
v1w5

q

and there are no equivariant sections on F(4),z → J1(F(2)). From here on, the
symbols are 2-acyclic such that single prolongations are sufficient. The prolon-
gation in [Neu03] is necessary, because the Cartan equivalence method relies on
involutive symbols. The next bundle F(5),z has a five-dimensional fibre

c1 = b1q , c2 = b2q , c4 = b2p + 2b1y −
4
3
v1b1p −

8
3
w6w5

q

c5 = b3p −
1
2
b2y + (

2
9
(v1)2 − 1

3
v2)b1p −

4
3
w6w5

p + (
8
9
v1w6 − 4

3
w5)w5

q −
2
3
w6w8

q

c6 = b3x + pb3y + qb3p − 4w6w3
p + 2w4

p −
4
3
w5
pv

1

+ (
4
9
(v1)2 − 2

3
v2 +

4
3
fw6)w5

q − w7
q + w8

p.

The Vessiot structure equations on F(5),z are

c1 = 0,
c2 = 4w6b1,

c3 =
4
9
(w6)3 − 1

3
w6b2 +

1
3
(4w5 + w9)b1,

c4 = − 2
27
v1(w6)3 +

2
3
w5(w6)2 +

1
18

(v1b2 − 15b3)w6 − 1
3
b2w5

+
1
18

(9w8 − 6w4 − 4w5v1 − w9v1)b1,

c5 = −4
9
f(w6)3 +

1
3
(6w8 + fb2 − 3w4 − 4v1w5)w6 + 4(w5)2

+
1
3
(3w9 − 4fb1)w5 +

1
3
(−6w2 − fw9 + 4v1w3)b1 − w3b2 − 1

3
v1b3.

Plugging in the zero section f = 0, we are dealing with the case v3 = 0 and
the Vessiot equivalence equations are satisfied. Since there are no invariants on
F(4),z, Theorem 6.10 and Proposition 6.11 then imply that all geometric objects
on F with v3 = 0 that satisfy the above Vessiot structure equations are eqivalent.
In [Neu03], the conditions for the equivalence to f = 0 are the following.
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Theorem 6.47. [Neu03, Thm 11] A third order ODE (6.36) is equivalent to
f = 0 under contact transformations if and only if fqqqq = 0 and the semi-
invariant v3 = 0 vanishes for f(x, y, p, q). �

Expressing the first two Vessiot structure equations by jets of f , we obtain

fqqqq = 0, fxqqqq + pfyqqqq + qfpqqqq + 3fqfqqqq + ffqqqqq = 0.

These two equations are in accordance with Theorem 6.47, but the remaining
three equations could not be interpreted this easily. It was not possible to find a
simple counterexample and we suppose that these eqations are differential con-
sequences of fqqqq = 0 and v3 = 0. Checks by Lange-Hegermann with an experi-
mental version of the differential Thomas algorithm did not terminate.

The Generic Case (with v3 = 0)

Due to the prolongation performed in [Neu03], the expression I5 = fqqqq

6a3
1a9

is called
invariant but still depends on the coordinates a1 and a9 of the fibre of the original
G-structure. With this invariant, it is not possible to decide equivalence between
generic third order ODEs with v3 = 0, but the algorithm presented in [Neu03]
terminates here.

Remembering that the Cartan equivalence method was defined by linear Pfaf-
fian systems on the cartesian product G × G′ of two G-structures, we can apply
the Cartan algorithm for linear Pfaffian systems presented in [IL03, Ch. 5]. The
invariant I5 is one of the nonzero essential torsion coefficients which must be
set constant in order to shrink G × G′. Equivalence may be decided on these
subbundles, but the computations become quite large.

Using Vessiot’s approach, we are not finished after the construction of F(5),z

and the generic case with v3 = 0 is obtained by further prolongations and pro-
jections. At first we turn F(5) into a vector bundle by changing the coordinates
ci such that all Vessiot structure equations are of the form ci = 0. The single
invariant on F(5) has the form

I5,z =
(c5 − fc3)(c1)

8
3

(12v1c1c2 − 9(c2)2 − 8(v1c1)2 + 12v2(c1)2 − 36c1c3)
5
3

.

Computing the bundle F(6),z by another prolongation and projection, the Θ2-
action becomes locally free and there are twelve invariants. Since five of them
must be I5,z and its four invariant derivatives, we have seven new invariants. It
was only possible to compute a single one

I6,z
1 =

−9c2qc
1 + 7(c1)2w6 − 6c1c1p + 2c1qv

1c1 + 6c1qc
2

(c1)
11
5 (c5 + fc3)

1
5

.

The invariants have been computed with the JetGroupoids standard proce-
dure InvariantsOnNaturalBundle, which internally uses the Maple command
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pdsolve. Since this command improves from version to version, it is possible
that a newer version (12 or higher) of Maple is capable of finding all invariants
on F(6),z. It is likely that the invariants on F(6),z form a generating set.

The Case v3 6= 0

For the case v3 6= 0, we prolong F(2) twice. The minimal subbundle

F(4) ⊆ J2(F(2))/K
3
2 → F(2)

to which all sections from F → X with v3 = 0 restrict has the coordinates

w1 = fx, w2 = fy, w3 = fp,

w4 = v1
y , w5 = v1

p, w6 = v1
q ,

w7 = v2
x w8 = v2

y , w9 = v2
p, w10 = v2

q .

for the first prolongation. The fibre of F(4) is given by

c1 = w6
q ,

c2 = w10
q ,

c3 = 6w2
y − 4v1w2

p + w7
y + pw8

y + qw8
p + fw8

q ,

c4 = 6w1
y − 4v1w1

p + w7
x + pw7

y + qw7
p + fw7

q ,

c5 = 2w4
q − 4/3 v1w5

q + w9
q ,

c6 = w7
q + pw8

q + qw9
q ,

c7 = 6w2
p − 4v1w3

p + w7
p + pw8

p + qw9
p + fw9

q .

There are neither invariants nor equivariant sections on F(4) and the Θ2-action is
not yet free. Another prolongation and projection yields the bundle F(5) with a
16-dimensional fibre and 15 invariants. The PDE system for equivariant sections
on F(5) → F(4) has solutions, but it contains 300 equations and the computa-
tions did not terminate. Here, Cartan’s equivalence method is more efficient. In
[Neu03, Thm. 12], necessary and sufficient conditions for the equivalence to the
equation yxxx = y are given.

It was only possible to compute seven of the fifteen invariants on F(5). Using
the coordinates

d1 = v3
q , d2 = v3

p −
1
2
v3v1

q , d3 = v3
x + pv3

y + qv3
q ,

the smallest one has the form

I5
1 =

(3d1
q v

3 − 2(d2)2)(v3)
8
3

(f(d1)2 − 3v3d2 − 2v1v3d1 + d1d3)2

and all other invariants can be obtained from [Lor08a]. The coordinates di already
indicate that they were not computed on F(5) but on the bundle obtained by
prolonging and projection F(3) twice (ignoring the fact that the symbols do not
have 2-acyclic symbols). For brevity, we do not express it in coordinates of F(5).
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6.3.2 Fourth Order ODEs

The example of fourth order ODEs under contact transformations is similar to
both Example 4.32 and the third order ODEs in Section 6.3.1. With Cartan’s
equivalence method it has been calculated in [Neu03, Ch. 5]. We keep the
introduction to this example short. The fourth order ODE is defined by

yxxxx = f(x, y, p = yx, q = yxx, r = yxxx)

and leads to the coframe

ω1 = dx, ω2 = dy − pdx, ω3 = dp− qdx, ω4 = dq − rdx

ω5 = dr − f(x, y, p, q, r)dx

on X = J4(R× R). The structure group is determined by the matrix

G =


Xx Xy Xp 0 0
0 Yy 0 0 0
0 Py Pp 0 0
0 Qy Qp Qq 0
0 Ry Rp Rq Rr

 .

Analogous to the previous section, we compute the natural bundle P1/G and re-
strict Π1 to a groupoid Θ1. The corresponding algebroid action on the subbundle
F of P1/G→ X with coordinate (f) is given by the vector field

L = ξ1∂x + ξ2∂y + ξ3∂p + ξ4∂q + ξ5∂r + (2fξ5r − fξ4q + pξ5y + qξ5p + rξ5q + ξ5x)∂f .

The first prolongation and projection yields the natural bundle F(1) = J1(F)/K2
1

with coordinates
v1 = fr, v2 = fq.

There are no equivariant sections on F(1) → F and have to prolong and project
further to check equivalence. Computing the Spencer cohomology for generic
sections on F(1) → X shows that the symbols are not 2-acyclic and we have to
prolong twice. The dimensions of the Spencer cohomology groups are[

0 0 3 7 5 1
0 0 0 0 0 0

]
.

So the bundle F(2) is the minimal subbundle of J2(F(1))/K3
2 → mcF(1) to which

all sections from F → X restrict. It has the coordinates

w1 = fx, w2 = fy, w3 = fp,

w4 = v1
x, w5 = v1

y , w6 = v1
p, w7 = v1

q , w8 = v1
r ,

w9 = v2
x, w10 = v2

y , w11 = v2
p, w12 = v2

q
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for the J1(F(1))-part. We have omitted v2
r = fqr, since it coincides with v1

q = fqr
on the minimal subbundle. The coordinates for the highest order fibre are

b1 = w4
r , b2 = w5

r , b3 = w6
r , b4 = w12

r , b5 = w7
r , b6 = w8

r ,

b7 = −2w11
r + w12

q ,

b8 = w4
y + pw5

y + qw5
p + rw10

r ,

b9 = w4
p + pw5

p + qw6
p +

1
5
rw11

r +
2
5
rw12

q ,

b10 = w9
r + w10

r p+
1
5
w11
r q +

2
5
qw12

q ,

b11 = w4
x + pw4

y + qw4
p + rw9

r ,

b12 = w9
y + pw10

y + qw10
p + rw10

q + fw10
r − 4w2

p,

b13 = w9
x + pw9

y + qw9
p + rw9

q + fw9
r − 4w1

p,

b14 =
2
3
w10
r − 2w6

p +
2
15
v1w11

r + w11
q +

4
15
v1w12

q ,

b15 = −4w3
p +

1
5
w11
r f + w9

p + w10
p p+ w11

p q + w11
q r +

2
5
fw12

q ,

b16 =
2
5
w11
r r + w9

q + w10
q p+ w11

q q +
4
5
w12
q r.

Again, there are no equivariant sections on F(2) → J1(F(1), but the Θ2-action is
free. It was possible to compute all five invariants on F(2). The smallest one has
the form

I2
1 =

n

(b6)2d
2
3

with numerator

n = 15
[
−84v2 − 9(v1)2 + 36w7r + 36qw6 + 36w5p+ 36w4 + 56fw8

]
(b6)2

+ 150
[
6b5v1 + 6b4 − 12b3 + (w8v1 + 2rb5 + 2b1 + 2qb3 + 2pb2)w8

]
b6

+ 60(w8)2b5 + 180(b5)2 + 5(w8)4

and the factor d of the denominator

d = 5(v1)3 − 10(−2v2 + 3pw5 + fw8 + 3rw7 + 3w4 + 3qw6)v1

+ 20b11 + 20w8w1 + 40w3 − 40w9 − 40pw10 − 16rqb7 + 40qfb3

+ 20pw8w2 + 20pb8 + 40rfb5 − 20(−2b1 + w7 − 2pb2)f + 20b4r2

+ 20(w6 − 2w12 + w8v2 + b10)r + 20(w5 − 2w11 + b9 + w8w3)q + 20b6f2.

For obvious reasons, we do not plug in the coordinates vi, wi and bi to pull back
the invariant to J3(F). The remaining four invariants are available at [Lor08a].

To decide the equivalence of fourth order ODEs, the bundle F(3) must be
computed, but even the first prolongation of F(2) did not finish. Also for fourth
order ODEs, Cartan’s equivalence method is more efficient.



Chapter 7

Application to Linear Partial
Differential Operators

When solving a linear partial differential equation

Lu = (aµ(x)∂µ)u(x) = 0,

a factorisation of the linear partial differential operator (LPDO) L = L1L2 will
reduce the search for a solution to its factors L1 and L2. If the operator is
completely factorisable, solutions can be found by quadratures. The factorisation
of LPDOs has been of interest recently. Grigoriev and Schwarz [GS04] give an
algorithm for separable LPDOs similar to Hensel lifting, Tsarev [Tsa00] considers
the problem in connection with Darboux integrability. For bivariate operators,
Beals and Kartashova [BK05],[Kar06] show how to separate a first order factor
from the operator. Shemyakova and Winkler [SW07b] tackle the problem by
introducing the notion of obstacles to a factorisation.

The connection between factorisations of LPDOs and equivalence problems
are gauge transformations of the operator L

L 7→ g−1Lg,

where g is an invertible function. Gauge transformations preserve factorisations
L = L1L2, so the conditions for factorisation can be formulated by invariants.
Shemyakova and Winkler [SW07a] present a generating set of invariants for a
third order operator on the plane to express the factorisation conditions [SW08].
More systematically, Mansfield and Shemyakova [MS08] compute the invariants
for relevant third order LPDOs on the plane via moving frames.

With a straightforward modification, the Vessiot equivalence method can be
applied to compute generating sets of invariants for LPDOs under gauge transfor-
mations. Vessiot’s method allows to compute examples of order three and four,
which are considerably larger than in [MS08]. Instead of using moving frames to
compute invariants, we integrate the vector fields of the algebroid action on the

185
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natural bundles. In this way, we can avoid the prolongation of finite transforma-
tions which become rather large.

The present work was initiated by a talk of Winkler in january 2008 at RWTH
Aachen and a visit to RISC at Hagenberg in may 2008. The examples of LPDOs
under gauge transformations stimulated the development of Vessiot’s methods
already presented in the previous chapters. Actually, they provided the first ex-
amples of natural Θq-bundles and led to the realisation that all proofs in Chapter
3, originally done for full jet groupoids Πq, are valid for subgroupoids Θq.

The chapter is structured as follows. In Section 7.1 we introduce the neces-
sary notation for LPDOs and show how to apply Vessiot’s equivalence method.
In Section 7.2, we compute generating sets of invariants for LPDOs, especially
fourth order ones. For selected LPDOs we give conditions for the existence of a
factorisation in terms of invariants.

7.1 LPDOs and Vessiot’s Equivalence Method

In this section we describe how to apply Vessiot’s equivalence method to LPDOs
under gauge transformations. After introducing LPDOs, we construct groupoids
of gauge transformations and natural bundles for LPDOs. The only difficulty
is that natural bundles are designed to continue diffeomorphisms on the base
manifold to the whole bundle, but gauge transformations are not induced by
base transformations.

7.1.1 Linear Partial Differential Operators

Let K be a field with n commuting derivations ∂1, . . . , ∂n and consider the dif-
ferential algebra D = K〈∂1, . . . , ∂n〉. A standard example is the field of rational
functions K = k(x1, . . . , xn) with ground field k of characteristic zero and the
partial derivatives ∂xi as derivations. Having fibre bundles in mind, we think
of K as smooth functions on a manifold X. Elements of D are linear partial
differential operators (LPDOs) of the form

L = aµ∂
µ, µ ∈ (Z≥0)n, |µ| ≤ q, aµ ∈ K.

The order of L is the maximum ord(L) = max{|µ| |aµ 6= 0}. The symbol of L is
the polynomial sym(L) ∈ K[X1, . . . , Xn] of the form

sym(L) = aµX
µ, |µ| = ord(L).

In this chapter, we consider factorisations L = L1 . . . Lk for Li ∈ D, 1 ≤ i ≤ k ∈ N
where each factor has at least order one (ord(Li) ≥ 1). Then a necessary condition
for the existence of a factorisation is that the symbol also factorises:

sym(L) = sym(L1) · · · sym(Lk).

A factorisation L = L1 · · ·Lk is called of type (S1) . . . (Sk) if sym(Li) = Si.
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Definition 7.1. The automorphism D → D : L 7→ g−1Lg for g ∈ K∗ is called
gauge transformation. K∗ are the units of K. �

Gauge transformations can also be seen as a right K∗-action on D. Obviously,
the symbol of a LPDO stays invariant under gauge transformations. The simple
calculation

(g−1Lg)u = g−1L(gu)

shows that solving the PDE for the gauge transformed operator is equivalent to
solving the equation for the transformed function gu. Concerning the factori-
sation of an operator, the associative law of D implies the following important
property.

Lemma 7.2. A factorisation L = L1 · · ·Lk is gauge invariant:

g−1Lg = (g−1L1g) · (g−1L2g) · · · (g−1Lkg), ∀g ∈ K∗. �

Since a factorisation of an LPDO is gauge invariant, also the conditions for
the existence of a factorisation must be invariant. This is the reason why one is
interested in the invariants for LPDOs under gauge transformations.

Example 7.3. A classical example of LPDOs was considered by Laplace. He
studied the second order operator

L = ∂x∂y + a∂x + b∂y + c

with parameters a, b, c ∈ K depending on x and y. It has the symbol sym(L) =
XY and factorisations are of the form L = L1L2 or L = L2L1 for

L1 = ∂x + d, L2 = ∂y + e, d, e ∈ K.

Both possible factorisations imply d = b and e = a and L has a factorisation of
the first type if and only if the first Laplace invariant h vanishes

h := L− L1L2 = ax − c+ ab.

The second factorisation is possible if and only the second Laplace invariant is
zero

k := L− L2L1 = by − c+ ab.

The Laplace invariants {h, k} are a generating set of invariants with respect to
gauge transformations of L given by

g−1Lg = ∂x∂y +
(
a+

gy
g

)
∂x +

(
b+

gx
g

)
∂y +

(
c+ a

gx
g

+ b
gx
g

+
gxy
g

)
.

Comparing the coefficients of the derivatives of L and g−1Lg, a simple calculation
shows that h and k are invariant. �
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7.1.2 Modifications of Vessiot’s Approach

In order to deal with LPDOs under gauge transformations, Vessiot’s approach
must be slightly adapted. Before going into details, we give an outline for the
necessary modifications. The requirements are as follows.

• Let X ⊆ Rn be a manifold with coordinates (x) = (x1, . . . xn). Then a
LPDO of order q has the form

L = aµ(x)∂µ, |µ| ≤ q, aµ ∈ C∞(X) (7.1)

where ∂xi is the partial derivative with respect to the coordinate xi and
∂µ = ∂µi

xi . All coefficients are smooth functions on X.

• Gauge transformations are defined on the fibre bundle Y = X × R with
coordinates (x, u). Here u plays the role of the solution function. A gauge
transformation is diffeomorphism Y → Y with

x̂ = x, û = gu, g ∈ C∞(X). (7.2)

The first point implies that LPDOs are sections of the bundle F̃ → X with coordi-
nates (x, aµ | |µ| ≤ q) and coordinate changes induced by gauge transformations.
But the second point requires a natural Θq-bundle F → Y over the larger base
manifold Y in order to apply Vessiot’s approach. Here Θq is the groupoid of
gauge transformations.

The key observation to solve this problem is that gauge transformations re-
spect the bundle structure of π : Y → X. We can thus take the pullback

F = π∗(F̃) (7.3)

as natural Θq-bundle over Y . By construction of the coordinate changes on F̃ ,
gauge transformations lift to F . For the prolongation and projection, we will
replace Jr(F) → F by the subbundle π∗(Jr(F̃)) containing only x-jets.

Groupoids of Bundle Morphisms

The situation of LPDOs under gauge transformations can be generalised. Let
π : Y → X be a fibre bundle and F → Y a natural Θq-bundle. We ask for
conditions under which there are well-defined sections ω : Y → F that depend
on X only, namely that ω(y) = ω(y′) for all y, y′ ∈ Y with π(y) = π(y′). If
this is established, we ask for groupoids Θq that act on the subbundle Jr,X(F) of
Jr(F) → F where we have taken only jets with respect to the coordinates of X.
They are described in the following definition.

Definition 7.4. Let π : Y → X be a fibre bundle. A groupoid G ⊂ Πq(Y × Y )
is called groupoid of bundle morphisms if all g ∈ G are q-jets of (local) bundle
morphisms ψ : Y → Y over some morphism ϕ : X → X. �
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Choose two coordinate systems (x, u) and (x̂, û) of Y such that (x) and (x̂)
are coordinates for X. Then Π1,π defined by the equations x̂u = 0 is the largest
groupoid of bundle morphisms, which follows directly from equation (1.1). All
groupoids of bundle morphisms Θq are subgroupoids of the prolongation Πq,π of
Π1,π to order q.

Example 7.5. On Y = X × R, the groupoids of gauge transformations Θq ⊆
Πq,π, defined by the prolongation of

x̂i = xi, u ûu = û, i = 1, . . . , n, (7.4)

are groupoids of bundle morphisms. Solutions of Θq coincide with equation (7.2)

x̂i(x, u) = xi, û(x, u) = g(x)u, g(x) 6= 0.

The groupoid of gauge transformations should not be confused with the gauge
groupoid Gauge(P ) of a principal bundle P . Θq is not transitive.

Alternatively, one may add transformations of the base X. The groupoid Θ′
q

of gauge and base transformations is defined by the equations

x̂u = 0, u ûu = û.

On linear partial differential operators, it corresponds to transformations of the
independent variables combined with gauge transformations.

x̂(x, u) = ϕ(x), û(x, u) = g(x)u, g(x) 6= 0. �

The next lemma deals with X-dependent sections on a natural bundle and
shows that the pullback of equation (7.3) is the only possible idea.

Lemma 7.6. Let π : Y → X be a fibre bundle. A fibre bundle F → Y has
well-defined sections ω that depend only on X if and only if F is isomorphic to
the pullback π∗(F̃) of a bundle F̃ → X. �

Proof. For coordinates (x, u, a) and (x̂, û, â) of F a coordinate change is of the
form

x̂ = ϕ(x), û = ψ(x, u), â = χ(x, u, a).

In coordinates (x̂, û, â), anX-dependent section ω is given by âα = ωα(x̂). Pulling
back ω with the coordinate change we obtain

χα(x, u, a) = ωα(ϕ(x)),

which has to be solved for aβ in order to find ω in coordinates (x, u, a). The
transformed section depends on u if and only if χ does. Assume χ = χ(x, a).
Then the projection

F → F̃ : (x, u, a) 7→ (x, a)

gives a well-defined bundle F̃ → X such that F = π∗(F̃). The converse is trivial,
as the transition functions of F̃ are of the form x̂ = ϕ(x), â = χ(x, a). �
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Example 7.7. For the Laplace example 7.3, the bundle of LPDOs F̃ → X = R2

has the coordinates (x, y, a, b, c) and the coordinate changes in Vessiot notation

a = â+
gy
g
, b = b̂+

gx
g
, c = ĉ+

gxy
g

+
gx
g
â+

gy
g
b̂. (7.5)

Choose two coordinate systems (x, y, u) and (x̂, ŷ, û) for the bundle Y = X × R.
Then the pullback F = π∗(F̃) is performed by adding the coordinate u and the
base transformations

x̂ = x, ŷ = y, û = g(x, y)u. (7.6)

The last step is to recover the action of the groupoid Θ2 of gauge transformations
on F . It is given by

a = â+
ûy
û
, b = b̂+

ûx
û
, c = ĉ+

ûxy
û

+
ûx
û
â+

ûy
û
b̂, (7.7)

since equation (7.6) implies ûx/û = gx/g and so on.
In [MS08], the function g(x, y) is replaced by exp(g(x, y)) to avoid fractions

in equation (7.5). This is impossible for the groupoid action, but for practical
computations we use the infinitesimal algebroid action. Here the replacement
only changes the vector fields by a factor and all computations are identical. �

In the remainder of this section, we fix a groupoid of bundle morphisms
Θq ≤ Πq,π for a bundle π : Y → X and a natural Θq-bundle F = π∗(F̃).
Let (x, u, a) and (x̂, û, â) be coordinate systems of F . If no confusion arises, we
suppress all indices of (x, u, a) = (xi, uj , aα). Under the assumption that Θq acts
on F via admissible coordinate changes of F̃ , we can replace the prolongation
Jr(F) → F by the subbundle π∗(Jr(F̃) where only x-jets appear.

Let ψ : Y → Y be a bundle morphism over ϕ : X → X which is a local
solution of Θq. Then Θq acts via admissible coordinate changes if the lift of ψ to
the bundle F

x̂ = ϕ(x), û = ψ(x, u), a = Φâ(ϕ(x), ψ(x, u), ϕq(x), ψq(x, u)).

depends on the derivatives of ϕ and ψ up to order q, but all u-derivatives cancel

∂u Φâ(ϕ(x), ψ(x, u), ϕq(x), ψq(x, u)) = 0. (7.8)

This has important consequences for the prolongation of the Θq-action on F . The
Θq-action on F is given by

a = Φâ(x, u, x̂, û, x̂q, ûq)

for (x, u, x̂, û, x̂q, ûq) ∈ Θq. We use Remark 1.13 to prolong the action to J1(F).
Equation (7.8) implies

au = DuΦâ(x̂, û, x̂q, ûq) = (âx̂x̂u︸ ︷︷ ︸
=0

+âûûu) ∂âΦâ(x̂, û, x̂q, ûq). (7.9)
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Remark 7.8. If F is a natural Πq,π-bundle, equation (7.8) implies that the de-
pendence on ψ and ψq must vanish completely, as they depend arbitrarily on u.
For subgroupoids Θq ⊂ Πq,π, the situation may be different.

The general form of an LPDO (7.1) implies that the action depends only on
combinations ûµ

û for µ ∈ (Z≥0)n+1 with µn+1 = 0. The calculation

Du

(
ûµ
û

)
=
ûµ+1u

û
− ûuûµ

û2
=
ûµ
u û

− û ûµ
u û2

= 0.

using the defining equations (7.4) for Θq shows that equation (7.8) holds for gauge
transformations of LPDOs. �

So far, we have constructed the groupoid of gauge transformations and suit-
able natural bundles for LPDOs. Equation (7.9) is the key observation to elimi-
nate the additional u-jets in the prolongation of F .

Theorem 7.9. Let F = π∗(F̃) be an affine natural Θq-bundle such that the
groupoid of bundle morphisms Θq acts via admissible coordinate changes. Then
there is an exact sequence of natural Θq+r-bundles

0 // π∗(Jr(F̃)) // Jr(F) // Gr // 0.

The vector bundles Gr have coordinates (x, u, a, aµ |µ = ν + 1u, |ν| < r), where
each jet contains at least one u-‘derivative’. �

Proof. Compute the Θq+r-action on Gr. Each coordinate of Gr transforms as

aν+1u = Dµ+1uΦâ(x̂, û, x̂q, ûq) = Dµ(âû ûu ∂âΦâ). (7.10)

Since F is an affine natural Θq-bundle, ∂âΦâ is independent from â and thus Gr
is a natural vector bundle. By construction, the map Jr(F) → Gr is a morphism
of natural bundles and the preimage of the zero section of Gr → F is π∗(Jr(F̃)).�

For simplicity, we denote the subbundle π∗(Jr(F̃)) of Jr(F) → F by Jr,X(F),
indicating that only the jets with respect to X are coordinates.

Remark 7.10. If in Theorem 7.9 the assumption that F is an affine bundle is
dropped, there is still an embedding of natural Θq+r-bundles Jr,X(F) ↪→ Jr(F).�

Proof. Equation (7.10) shows that setting aν+1u = 0 for 0 ≤ |ν| < r defines
a subbundle, since after applying Dµ, each summand on the right hand side
contains at least one factor âγ+1û

with û-‘derivative’. �

We have completed the theoretical preparations to treat LPDOs under gauge
transformations. For practical computations with jets and JetGroupoids in
Section 7.2, we define the PDE system au = 0 on J1(F) and restrict to the
prolongations of this system.
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Example 7.11. The bundle G1 from Theorem 7.9 can be explicitly determined
for the Laplace example 7.7. The fibre of J1(F) has nine coordinates (ax, . . . , cu)
and the fibre of G1 has the coordinates (au, bu, cu) and the Θ1-action is

au = Du(â+
ûy
û

) = âûûu = âû
û

u
,

bu = b̂û
û

u
,

bu = ĉû
û

u
+ âû

ûx
u

+ b̂û
ûy
u
.

The Θ2-action on J1(F) is given by

ax = âX + âûûx +
ûxy û− ûx

û2
, ay = âY + âûûy +

ûyy û− ûy
û2

, . . .

and for the restriction to Jr,X(F), we have to set âû = 0. Alternatively, we can
compute J1(F̃) and add the base coordinate u. �

To compute a generating set of invariants for LPDOs under gauge transfor-
mations, we have the following simple, but useful lemma.

Lemma 7.12. Let Θq be the groupoid of gauge transformations on the bundle
Y → X with coordinates (x, u). Let F = π∗(F̃) be a natural Θq-bundle and
ψ : Jr,X(F) → R an invariant. Then Dxψ is also an invariant on Jr+1,X(F). �

Proof. Treat ψ as a coordinate. Since it is invariant, the Θq+r-action on ψ is
ψ = ψ̂. Its prolongation to Jr+1,X(F) is computed by setting ψ̂û = 0 in

ψxi = Dxiψ = ψ̂x̂j x̂
j
xi + ψ̂û ûxi .

By equation (7.4), we obtain ψxi = ψ̂x̂i . �

7.2 Examples

The last section shows that Vessiot’s approach to geometric structures also applies
to LPDOs and that it is possible to compute generating sets of invariants. In this
section, we present several examples of LPDOs and their invariants. In Section
7.2.1, the trivial Laplace example is used to present the Maple worksheet. The
relevant examples start in Section 7.2.2 with LPDOs of third order on the plane.
They were already computed by Mansfield and Shemyakova [MS08] (see also
[SW07a]) using moving frames. A comparison shows that moving frames produces
eventually smaller generating sets, while Vessiot’s approach detects the minimal
order for generating sets of invariants.

The remaining examples are new results, including the full third order LPDO
on the plane at the end of Section 7.2.2. To illustrate that Vessiot’s approach
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is not limited to two-dimensional base manifolds we treat an example of a third
order operator on a three-dimensional base. It was proposed by Kartashova
[Kar06, Ex. 6], who concentrated on LPDOs on the plane.

Furthermore, in Section 7.2.4 we continue the work of Mansfield and She-
myakova [MS08] to fourth order LPDOs on the plane. We compute generating
sets of invariants for all operators with completely factorisable symbol. The cal-
culations and invariants are considerably larger than for third order LPDOs.

All results in this chapter are computed as in Section 7.2.1. Due to the size
of most results and to avoid the risk of typos, all relevant worksheets and com-
putational results are available in electronical form [Lor08a]. It is recommended
to use Maple 11 (or newer) to compute the worksheets.

7.2.1 The Laplace Example with Maple

The Laplace example is not only useful for the illustration of the theory, but also
for the calculations with jets and JetGroupoids. All higher order LPDOs in the
next sections were computed by modifications of the following worksheet. Basi-
cally, only the definition of the original LPDO and the number of prolongations
and projections has to be adapted.
> with(jets): with(JetGroupoids):

Define all necessary variables and the groupoid Θ1 of gauge transformations.
> ivar := [x,y,u]: dvar := [X,Y,U]:
> Ivar:=vn(phi,3): Dvar:=vn(xi,3):
> GR := [X[x]=1,X[y]=0,X[u]=0,Y[x]=0,Y[y]=1,Y[u]=0,U[u]=U/u];

GR := [Xx = 1, Xy = 0, Xu = 0, Yx = 0, Yy = 1, Yu = 0, Uu =
U

u
]

Compute the algebroid R1 of Θ1 and its first prolongation R2. To treat
operators of order k, the algebroid Rk is necessary.
> R1 := grp2alg(GR,ivar,dvar,Dvar);
> R2 := PrepareAlgebroidRelations(R1,2,ivar,Dvar):

R1 := [ξ1x = 0, ξ1y = 0, ξ1u = 0, ξ2x = 0, ξ2y = 0, ξ2u = 0, ξ3u =
ξ3
u

]

Gauge Transformation of the Differential Operator

Define the second order hyperbolic operator L = ∂x∂y + a10∂x + a01∂y + a00:
> dop := [[1,[X,Y]],[a,[X]],[b,[Y]],[c,[]]];

dop := [[1, [X, Y ]], [a, [X]], [b, [Y ]], [c, []]]
The jets package contains the command cchdop that performs coordinate

changes of differential operators. The transformation tr shows that the base itself
is not changed, but the operator is conjugated with the function g = φ3(x, y).
> tr := [X=x, Y=y]:
> chdop := cchdop(tr,[1/phi3(x,y),1/phi3(x,y)],dop,ivar[1..2]):
> chdop := eqn2ind(chdop,ivar[1..2],Ivar);
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chdop :=

[[1, [x, y]], [
φ3y + aφ3

φ3
, [x]], [

φ3x + b φ3
φ3

, [y]], [
φ3x, y + aφ3x + b φ3y + c φ3

φ3
, []]]

Creating the Natural Bundle

The gauge transformed operator defines the natural bundle F which is necessary
for further computations. We determine the fibre coordinates, the gauge groupoid
action on F and the vector fields of the infinitesimal action on F .
> uvar := map(a->if type(a[1],symbol) then a[1] fi,dop);

uvar := [a, b, c]
> nat := ezip(uvar,map(a->a[1],chdop[2..-1])):
> nat := [x=x, y=y, u=u*phi3, op(nat)];

nat := [x = x, y = y, u = uφ3, a =
φ3y + aφ3

φ3
, b =

φ3x + b φ3
φ3

,

c =
φ3x, y + aφ3x + b φ3y + c φ3

φ3
]

> vec := natfin2inf(nat,ivar,Ivar,Dvar,"")[3..-1];

vec := [[ξ3, [u]], [−ξ3y
u
, [a]], [−ξ3x

u
, [b]], [−ξ3x, y + a ξ3x + b ξ3y

u
, [c]]]

We set up the data structure for the natural bundle F . In the second step,
we add the information that the coefficients of L do not depend on u.
> F:=CreateNaturalBundle(vec,ivar,dvar,uvar,Dvar,"algebroid"=R2):
> F["SUBSvec"] := [[[],[a[u]=0,b[u]=0,c[u]=0],[],uvar]]:

Prolongation and Projection

To compute a generating set of invariants, we proceed as in Section 4.2 and
perform the usual steps of prolongation and projection. The computation of
invariants for higher order LPDOs is identical to the procedure below, except
that more steps of prolongation and projection are necessary.
> J1F := ProlongNaturalBundle(F,1,uu):
> F1 := ProjectNaturalBundle(J1F,v,kernelD):
> F1["inv"];

[v1 = ax, v2 = ay, v3 = bx, v4 = by]
The Θ2-action on F(1) is free and we compute the first order invariants. They

are easily identified as the Laplace invariants h and k.
> CodimOfAction(F1);
> Inv1 := InvariantsOnNaturalBundle(F1,"nobase");

2, 7, 5, 5, 0
Inv1 := [v1 − c+ a b, v4 − c+ a b]

For higher order LPDOs it is crucial to change the fibre coordinates of F(i)

such that all invariants are among the coordinates. It simplifies the computations
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significantly and helps to identify higher order invariants as derivatives of the
previous ones. For better readability, we denote the coordinates for the Laplace
invariants by h and k in this example.
> cF1a := CompleteFibreCoordinates(Inv1,F1["vvar"]):
> cF1a := ezip([h,k,v2,v3],cF1a);
> F1a := ChangeFibreCoordinates(F1,cF1a):

cF1a := [h = v1 − c+ a b, k = v4 − c+ a b, v2 = v2 , v3 = v3 ]
Since gauge transformations do not change the coordinates x and y, it follows

that the total derivatives Dxψ and Dyψ of an invariant ψ are again invariants.
To find small generating sets of invariants, it is convenient to choose a maximal
number of coordinates of F(i+1) as jets of invariants. To do this, we replace the
usual internal jets routine that picks out the coordinates of im(ϕi,s) ⊂ Js(F(i))
by a version that prefers the jets of invariants.
> ‘jets/get_vars_to_eliminate_method‘ := ‘JetGroupoids/getSolveVarLin‘:
> J1F1 := ProlongNaturalBundle(F1a,1,uu):
> unassign(’‘jets/get_vars_to_eliminate_method‘’);

The projection shows that all new coordinates are jets of h and k and thus
invariants. As the action on F(1) was already free, {h, k} is a generating set.
> F2 := ProjectNaturalBundle(J1F1,w,kernelD):
> F2["inv"];

[w1 = hx, w2 = hy, w3 = kx, w4 = ky]
For larger examples, we may have to compute F(3) and further bundles. If

not explicitly indicated, all examples in this chapter are computed by choosing
invariants as coordinates and then picking jets of invariants as coordinates for
the prolongation. No further modifications are necessary.

7.2.2 Third Order LPDOs on the Plane

In this section, we present generating sets of invariants for third order LPDOs on
the plane computed with Vessiot’s approach. Except for the full operator

Lfull = a30∂
3
x + a21∂

2
x∂y + a12∂x∂

2
y + a03∂

3
y (7.11)

+ a20∂
2
x + a11∂x∂y + a02∂

2
y + a10∂x + a01∂y + a00,

the results are already computed in [MS08] with moving frames. We use their
results for a detailed comparison of both methods, first giving an overview and
then explicit results.

Table 7.1 summarises the number of invariants for each order that are con-
tained in a generating set. In two cases (symbols X Y (pX + qY ) and XXY ),
moving frames produces a smaller generating set. In all but the first example,
Vessiot’s method produces invariants of smaller order, since the invariants are
computed after each step of prolongation and projection. No third order invari-
ants are needed for generating sets. For the operator with symbol X3, there is a
case splitting explained later on.
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Table 7.1: Number of invariants for third order LPDOs on the plane

[MS08] Vessiot
Symbol, order 0 1 2 3 total 0 1 2 total
X Y (pX + qY ) 3 3 1 0 7 3 4 1 8
X3 2 2 1 0 5 2 3 0 5
X3, (a) 2 0 2 0 4 2 1 1 4
X3, (b) 1 1 0 1 3 1 1 1 3
X3, (c) 0 1 1 0 2 0 2 0 2
X2 Y 1 3 1 0 5 1 5 0 6
full - - - - - 5 4 1 10

The computation of invariants in Vessiot’s approach is done by integrating
the involutive distribution that generates the algebroid action on the natural
bundle. This involves solving linear PDE systems and so far, we rely on the
Maple command pdsolve, which may produce larger output than necessary.
Additionally, the invariants depend heavily on the choice of coordinates in the
CompleteFibreCoordinates step in Section 7.2.1.

In future, it would be interesting to combine Vessiot’s approach of prolon-
gation and projection with moving frames to have both small expressions and
invariants of low order. For this, the formulae for the groupoid action on F(i) is
explicitly needed. Since the groupoids of gauge transformations are rather small,
it is possible to obtain the action.

We will now explicitly give the invariants for the third order LPDOs from
Table 7.1 and express the invariants from [MS08] in terms of the invariants found
here. For this, we use the Maple package Janetq by Robertz, which is a modified
version of the Janet [BCG+03] package for quasilinear PDEs. If the expressions
become too large to be displayed, see [Lor08a] for electronic versions.

Invariants for LPDOs with Symbol X Y (pX + qY )

The hyperbolic operator

L = p∂2
x∂y + q∂x∂

2
y + a20∂

2
x + a11∂x∂y + a02∂

2
y + a10∂x + a01∂y + a00,

has the trivial zero order invariants p and q. Other invariants are

I0
1 = 2a02p

2 − pqa11 + 2q2a20,

I1
1 = 2(a11,y − 2a10)q3 + (a2

11 − 2a11,xp+ 4a01p− 2qya11 − 4a02py)q2

+ 2(qxpa11 − 2a11pa02 + 2qypa02 + 2pxa02p)q − 4qxa02p
2 + 4I0

1a02,

I1
2 = (a01 − a11,x)q2 + (a02,xp− a02a11 + qxa11 + 2pxa02)q + a2

02p− 3qxpa02,
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I1
3 = (2a02,y + a11,x − 2a01)q2 + (2a02a11 − qxa11 − 2qya02 − 2pxa02)q

+ 2qxpa02 − 2a2
02p.

The generating set of invariants consists of two additional large invariants I1
4

and I2
1 (see [Lor08a]). Here, the results from [MS08, Thm 5.2] and [SW07a]

consists of less invariants, which are also considerably smaller. It turns out that
the second order invariant I2

1 is not needed to express the second order invariant
from [MS08].

Invariants for LPDOs with Symbol X3

The full operator with symbol X3 is of the form

LX3 = ∂3
x + a20∂

2
x + a11∂x∂y + a02∂

2
y + a10∂x + a01∂y + a00.

Computing a generating set of invariants on the corresponding natural bundle
FX3 yields two zero order invariant coordinates a11 and a02 as well as

I1
1 = 2(a2

20 + 3a20,x − 3a10)a02 + (3a01 − a20a11)a11,

I1
2 = 6(3a02a01,x − 2a2

02a20,y − 3a01a02,x) + (3a01 − a11a20)a2
11 (7.12)

+ 2(a2
20a02 − 3a02a10 + 3a02,xa20)a11 − 6a11,xa02a20,

I1
3 = 2(3a20,ya11 + 27a01,y + 18a10,x − 54a00 + 2[9a10 − 2a2

20 − 6a20,x]a20)a02

+ 27(a01 − 2a02,y)a01 + 3(a11a20 + 2a11,x + 6a02,y − 18a01)a20a11

− 18a11,ya02a20 − 18a11,xa01.

The invariants from [MS08, eq. (13)] (mind the typos) can be expressed as

Ia10 = − I1
1

6a02
, Ia01

x =
I1
2 − I1

1a11

18a02
,

Ia00 = −6I1
1,xa02 + a11I

1
2 − a2

11I
1
1 + 6a02,xI

1
1 − I1

3a02.

Depending on the values of a11 and a02, the operators with symbol X3 split
into several cases. Setting one of the invariants to zero yields a natural subbundle
F ′ ⊂ FX3 → X. The above invariants can be restricted to F ′, but they may
become trivial. In the case of a11 = 0, the invariants {a02, I

1
1 , I

1
2 , I

1
3}a11=0 are still

a generating set of invariants. They can be read off equation (7.12) by omitting
trailing summands that contain a11.

Invariants for LPDOs with Symbol X3, Case (a)

For the subbundle FX3,a ⊂ FX3 → X defined by a02 = 0, the dimension of
the Θ3-orbits drops and the invariants have to be computed separately, since
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we are dealing with a subbundle of FX3 containing only nongeneric orbits. The
coordinate a11 and the following invariants are a generating set.

I0
1 = a01 −

1
3
a20a11

I1
1 = 6a2

11a20,y + (9a10,x + 3a20a20,x + a3
20 − 27a00)a11 (7.13)

+ 3(3a20,x − 3a10 + a2
20)a11,x + 9(3a10 − 3a20,x − a2

20)a01

I2
1 = 9a2

11a20,y + (9a20,xx + a3
20 + 9a20a20,x − 27a00)a11

+ 9(3a10 − 3a20,x − a2
20)a01.

Restricting the first invariant I1
1 from equation (7.12) to FX3,a, the order drops

by one and we obtain I0
1a11. All other invariants only reproduce I0

1 and a11. The
comparison with [MS08, eq. (14)] yields

Ia01 = I0
1 , Ia10

x =
I1
1 − I2

1

9a11
, Ia00 = − I2

1

27a11
.

Invariants for LPDOs with Symbol X3, Case (b)

The subbundle FX3,b ⊂ FX3 with a02 = a11 = 0 corresponds to the operator

LX3,b = ∂3
x + a20∂

2
x + a10∂x + a01∂y + a00.

The restriction of the invariants from equation (7.13) only yields a01 and I1
1 , but

the complete generating set requires an additional second order invariant.

I1
1 = a20,x − a10 +

1
3
a2

20,

I2
1 = 9(a10,xx − 3a00,x + a01a20,y + a10,xa20)a01 (7.14)

+ (6a2
10 − 3a10a20,x − 4a2

20a10 − 6a20a20,xx − 2a2
20a20,x +

2
3
a4

20)a01

− (9a10,x − 27a00 + 9a20a10 − 6a20a20,x − 2a3
20)a01,x.

Compared with [MS08, eq. (15)], the third order part of the invariant Ia00
x is only

due to the summand containing I1
1,xx in

Ia10 = −I1
1 , Ia00

x = 9I1
1,xa01,x − I2

1 + 3(2(I1
1 )2 − 3I1

1,xx)a01.

Invariants for LPDOs with Symbol X3, Case (c)

Finally, for the operator with a02 = a11 = a01 = 0,

LX3,c = ∂3
x + a20∂

2
x + a10∂x + a00,

the invariant algebra is generated in first order by

I1
1 = a20,x − a10 +

1
3
a2

20, I1
2 = a10,x − 3a00 + a20a10 −

2
3
a20a20,x −

2
9
a3

20.
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The comparison with [MS08, eq. (16)] yields Ia10 = −I1
1 and Ia00

x = −1
3(I2

1 +I1
1,x).

In the last line of equation (7.14), we find the invariant 9I1
2 as coefficient of a01,x.

There may be more connections between the invariants for the operators with
symbol X3.

Invariants for LPDOs with Symbol X2 Y

The operator

LX2Y = ∂2
x∂y + a20∂

2
x + a11∂x∂y + a02∂

2
y + a10∂x + a01∂y + a00

has the coordinate a02 and five first order invariants as a generating set.

I1
1 = a20,x −

1

2
a10 +

1

2
a20a11,

I1
2 = a11,x − 2a01 + 4a20a02 +

1

2
a2
11,

I1
3 = a11,y − a10 + a20a11,

I1
4 = a10,x + 2a02a20,y − 2a00 + (a10 − a20,x)a11 + (+2a01 − 2a02a20 − a2

11 − a11,x)a20,

I1
5 = a01,y − a02a20,y − a00 + (a01 − a02a20 − 2a02,y)a20 +

1

2
(a10 − a11,y − a20a11)a11

The comparison with [MS08, eq. (18)] yields

Ia11
y = I1

3 − 2I1
1 , Ia10 = −2I1

1 , Ia01 = −1
2
I1
2 , Ia00 = −4I1

1,x − 2I1
4 .

Since the invariants from [MS08] are a generating set and I1
5 does not occur

in the above expressions, also {a20, I
1
1 , I

1
2 , I

1
3 , I

1
4} represents a generating set of

invariants.

Factorisation of Type (X)(X)(Y )

The invariants of LPDOs under gauge transformations were computed in order
to express conditions for the factorisation in terms of these invariants. For the
hyperbolic operator with symbol XY (pX+qY ), this was done in [SW08]. We will
give a simple example for the factorisation of LX2Y of type (X)(X)(Y ). Basically,
we use the first order operators

L1 = ∂x + b00, L2 = ∂x + c00, L3 = ∂y + d00

with unknown parameters b00, c00 and d00 and compute

L1L2L3 = ∂2
x∂y + d00∂

2
x + (b00 + c00)∂x∂y

+ (d00,x + d00(b00 + c00))∂x + (b00c00 + c00,x)∂y
+ [d00,xx + d00,x(b00 + c00) + d00(b00c00 + c00,x)] .

Comparing the coefficients with LX2Y in decreasing order, we fix the parameters

d00 = a20, b00 = a11 − c00.
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Plugging this into L1L2L3, we obtain the partial Ricatti equation (see [GS04])

(a11 − c00)c00 + c00,x = a01

for the last coefficient and the two conditions for the existence of a factorisation

2I1
1 = 2a20,x + a20a11 − a10 = 0, a02 = 0,

which are both invariants. For all following factorisation conditions, we apply
the strategy of determining parameters from the coefficients of derivatives in
decreasing order. For fourth order operators, there are cases, where this strategy
breaks down.

Invariants for the Full Third Order LPDO

For the full third order LPDO from equation (7.11), the invariants become rather
large, so we display only the zero order ones

a30, a21, a12, a03,

I0
1 = a21a12a11 − 2a02a

2
21 − 2a2

12a20 + 6a03a21a20 + 6a02a30a12 − 9a03a30a11.

For the remaining five invariants see [Lor08a]. Maple was unable to compute
the last, second order invariant I2

1 with pdsolve, but using an ad hoc version of
moving frames, it was possible to calculate it.

It would be interesting to find relations between the algebra of invariants for
the full operator and some more restricted ones. For example, setting a12 = q
and a30 = a03 = 0, a21 = p, one obtains the nontrivial zero order invariant for
the symbol XY (pX + qY ).

The full third order operator served as a test whether generating sets for
fourth order operators are computable in reasonable time, since most fourth order
operators contain the full third order one as special case.

7.2.3 A Third Order LPDO in Dimension Three

The computation of invariants for LPDOs under gauge transformations using
Vessiot’s method is not limited to operators on the plane. In this section, we
compute the invariants for an LPDO on a three-dimensional manifold. The oper-
ator was mentioned in [Kar06, Ex. 6] as an example for problems that may arise
in dimension three. It is of the form

L = ∂3
x + ∂3

y + ∂3
z − 3∂x ∂y ∂z +

∑
0≤i+j+k≤2

aijk ∂
i
x ∂

j
y ∂

k
z

and the symbol has the unique factorisation

X3 + Y 3 + Z3 − 3XY Z = (X + Y + Z) (X2 + Y 2 + Z2 −XY −XZ − Y Z).
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We give both a generating set of invariants as well as the conditions for factori-
sation. The zero order invariants are

I0
1 = a020 + a101, I0

2 = a011 + a200, I0
3 = a002 + a110.

The first order invariants are

I1
1 = a101,x − a110,z − a001 −

1

3
a011a101 +

1

3
a2
110 −

2

3
I0
3a110,

I1
2 = a101,y + a010 − a110,x −

1

3
a2
101 +

2

3
a101I

0
1 +

1

3
a110a011,

I1
3 = a101,z − a110,y,

I1
4 = a011,x + a100 − a110,y +

1

3
a110a101 −

1

3
a2
011 +

2

3
a011I

0
2 ,

I1
5 = a011,y − a110,z − a001 −

1

3
a011a101 +

1

3
a2
110 −

2

3
I0
3a110,

I1
6 = a011,z − a110,x,

I1
7 = a001,x + a100,y + a010,z −

1

3
a101a100 −

1

3
a110a010 +

2

3
I0
3a110,x

+
2

3
I0
1a110,y +

2

3
I0
2a110,z +

2

3
I0
2a001 −

1

3
a011a001 −

2

3
I1
3

+
1

3
(a011,x + a100 − a110,y)a101 +

2

3
a101I

0
1,z +

2

9
I0
2a101a011 +

2

3
a011I

0
2,y

− 2

3
a011(a011,y − a110,z − a001) +

1

3
a011(a101,x − a110,z − a001)−

2

9
I0
2a2

110

+
1

3
a110I

1
6 +

2

3
I0
3,xa110 +

1

3
a110(a101,y + a010 − a110,x) +

4

9
a110I

0
3I0

2 ,

I1
8 = a001,y + a100,z + a010,x −

1

3
a110a100 −

1

3
a011a010 +

2

3
I0
2a110,x +

2

3
I0
3a110,y

+
2

3
I0
1a110,z +

2

3
a001I

0
1 −

1

3
a001a101 −

2

3
a101(a101,x − a110,z − a001)

+
1

3
a101(a011,y − a110,z − a001) +

2

3
a101I

0
1,x +

1

3
a011(a101,y + a010 − a110,x)

+
2

9
a011a101I

0
1 +

2

3
a011I

0
2,z −

2

3
a011I

1
6 −

2

9
a2
110I

0
1

+
1

3
a110I

1
3 +

1

3
a110(a011,x + a100 − a110,y) +

4

9
I0
1I0

3a110 +
2

3
a110I

0
3,y,

I1
9 =

2

9
a101(I

0
1 )2 − 1

3
a110a001 −

1

3
a100a011 +

1

3
a100I

0
2 +

2

9
a011(I

0
2 )2 − 2

3
a101a011a110

+
1

9
a101a110I

0
2 − 3a000 + a100,x + a010,y + a001,z +

1

9
a011I

0
1a110 +

2

9
a3
011 +

2

9
a3
101

+
1

3
a010I

0
1 −

4

9
a2
101I

0
1 −

1

3
I0
3a2

110 −
4

9
a2
011I

0
2 +

1

3
a011I

1
3 +

2

3
a101I

0
1,y −

1

3
I0
1a110,x

+
2

3
a011I

0
2,x −

1

3
I0
2a110,y −

1

3
I0
3a110,z −

2

3
a101(a101,y + a010 − a110,x) +

1

3
a101I

1
6

+
2

3
a110I

0
3,z +

1

3
a110(a011,y − a110,z − a001) +

1

3
a110(a101,x − a110,z − a001)

− 2

3
a011(a011,x + a100 − a110,y)− 1

3
a010a101.
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Factorisation

Since the symbol of L has a unique factorisation, there are two possible factori-
sations of L with operators

L1 = ∂x + ∂y + ∂z + r,

L2 = ∂2
x + ∂2

y + ∂2
z − ∂x ∂y − ∂x ∂z − ∂y ∂z + a ∂x + b ∂y + c ∂z + d

depending on the parameters {a, b, c, d, r}. For both factorisations L = L1L2 and
L = L2L1 they are chosen as

3a = 2a200 − a020 + a110,

3b = −a200 + 2a020 + a110,

3c = −a200 + 2a020 + a101 − 2a110,

3r = a200 + a020 − a110,

3d =
1
3

(
−2a2

200 − a200a020 + a200a110 + a2
020 − 2a020a110 + a2

110

)
− 2a200,y + a020,y − a110,y − 2a200,z + a020,z − a110,z − 2a200,x

+ a020,x − a110,x + 3a100.

The first factorisation L = L1L2 is possible if and only if the following five
invariants vanish.

I0
1 − I0

2 = I0
1 − I0

3 = I1
1 + I1

2 + I1
3 = I1

4 + I1
5 + I1

6 = 0,

0 = I1
7 + I1

8 + I1
9 − I0

1,xx − 2I0
1,xy − 2I0

1,xz − I0
1,yy − 2I0

1,yz − I0
1,zz

− 2I0
1 (I0

1,x + I0
1,y + I0

1,z)−
4
9
(I0

1 )3.

The conditions for the second factorisation L = L2L1 are slightly larger

I0
1 − I0

2 = I0
1 − I0

3 = 0,

I1
1 + I1

4 − I1
2 − I1

5 − 2I0
1,x + 2I0

1,y = I1
1 + I1

4 − I1
3 − I1

6 − 2I0
1,x + 2I0

1,z = 0,

0 = I1
7 + I1

8 − I1
9 + I1

1,x + I1
1,y − I1

2,x − I1
3,x − I1

4,z + I1
4,x − 2I0

1,xx + 2I0
1,xz

+
1
3
(9I1

1 − 4I1
2 + 5I1

4 − 14I0
1,x + 4I0

1,y + 4I0
1,z)I

0
1 +

4
9
(I0

1 )3.

7.2.4 Fourth Order LPDOs on the Plane

Having successfully computed the invariants for the full third order LPDO, we
proceed to fourth order LPDOs, because the complexity of invariants can be
managed. In fact, we could compute generating sets of invariants for operators
with completely factorisable symbol, as shown in Table 7.2. Up to the knowledge
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of the author, these results are new. Since they are considerably larger than for
order three, we refer to [Lor08a] for most results.

For the operator with symbol X2Y 2, the expressions are small enough and we
give both the invariants as well as conditions for the factorisation. They promise
new insights for the search of factorisations, as the procedure used for third
order operators is not directly applicable. As the focus of this thesis lies in the
application of Vessiot’s equivalence method to find generating sets of invariants,
we only sketch this part.

Table 7.2: Number of invariants for fourth order LPDOs on the plane

Symbol, order 0 1 2 3 4
X4 5 5 1
X4 (a) 3 6
X4 (b) 3 4
X4 (c) 2 4
X4 (d) 2 2 1 0 2
X4 (e) 3 4
X4 (f) 3 4
X3 Y 4 7 1
X2 Y 2 3 10
X3 (pX + qY ) 5 7 1
X2 Y (pX + qY ) 4 9 1
X2 (pX + qY ) (rX + sY ) 5 9 1
X Y (pX + qY ) (rX + sY ) 5 9
X Y (pX2 + qY 2) 5 6 1

In Table 7.2, the number of invariants contained in generating sets for various
fourth order LPDOs are displayed. The leading coefficients of the operators have
not been normalised to one. This allows to search for connections between the
invariants for third and fourth order operators. For example, the operator

LX4 = a40∂
4
x +

∑
0≤i+j≤3

aij ∂
i
x ∂

j
y.

contains the coefficient a40. Normalising the first order coefficient only decreases
the number of zero order invariants by one. The only exception to this convention
are the subcases (a)-(f) for the symbol X4. They correspond to the following



204 CHAPTER 7. LINEAR PARTIAL DIFFERENTIAL OPERATORS

subsequent restrictions of LX4 with a40 = 1.

X4
a03=0 //

a12=0

��

a21=0

  A
AA

AA
AA

AA
AA

(a)
a12=0 // (b)

a21=0 // (c)
a02=0 // (d)

(e) (f)

Restricting the generating set for the full operator with symbol X4 to case (f)
reproduces the generating set of invariants obtained from direct computation.
The zero and first order invariants of case X4 also coincide with case (e), but the
second order ones differ.

With one exception, the generating sets contain invariants of maximal order
two, similar to third order operators. Without this fact, the computations would
have been too large to carry out. Again, the invariants were calculated by inte-
grating the vector fields of the infinitesimal action on the natural bundles F(i).
We expect this to be more efficient than moving frames, since the finite groupoid
actions on Jr(F) quickly become too large to compute.

Fourth Order LPDO with Symbol X2Y 2

The smallest example in Table 7.2 is the operator with symbol X2Y 2 and we
will give the explicit form of a generating set of invariants for this operator. The
results of Table 7.2 show that only first order jets of the coefficients of

LX2Y 2 = a22 ∂
2
x ∂

2
y +

∑
0≤i+j≤3

aij ∂
i
x ∂

j
y

are needed. The zero order invariants are simply the coordinates a22, a30 and
a03. For smaller expressions, we normalise LX2,Y 2 by setting a22 = 1 in the first
order invariants that complete the generating set.

I1
1 = 2a21,x − a11 + a12a21,

I1
2 = 2a21,y − 4a20 + 6a30a12 + a2

21,

I1
3 = 2a12,x − 4a02 + a2

12 + 6a03a21,

I1
4 = 2a12,y − a11 + a12a21,

I1
5 = 4a20,x − 2a10 + 2a12a20 − 6a02a30 − 6a12a30,x − I1

1a21 + 9a03a30a21

I1
6 = 2a11,x − a21I

1
3 − 4a01 + 12a03a20 + a12a11 − a12I

1
1 − 18a12a03a30,

I1
7 = 2a11,y − a21I

1
4 + a11a21 − 18a03a30a21 − 4a10 + 12a02a30 − a12I

1
2 ,

I1
8 = 4a02,y − 2a01 − 6a03a20 + 2a02a21 − I1

4a12 − 6a21a03,y + 9a12a03a30,

I1
9 = 4a10,x − 8a00 + 4a21a01 + 4a12a10 + 2a12a21I

1
1 − a11I

1
1 + a2

21I
1
3 − 2a20I

1
3

− 2a21a03I
1
2 − 4a30a02,x + 8a03a20,y + 9a12a03a30a21 − 8a20a03a21

+ 4a30a12a02 − a11a12a21 − 3a11a03a30 + 18a21a03a30,x − 12a12a30,ya03 + 6a21a30a03,x

+ 4a30a12I
1
3 − 4a12a20,x + 6a2

12a30,x − 12a02a30,x − 2a21a11,x − 2a20a
2
12,
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I1
10 = 4a01,y − 8a00 + 4a21a01 + 4a12a10 + 2a12a21I

1
4 + 4a21a03I

1
2 + a2

12I
1
2

− 2a02I
1
2 − a11I

1
4 + 8a30a02,x − 4a03a20,y + 9a12a03a30a21 + 4a20a03a21 − 8a30a12a02

− a11a12a21 − 3a11a03a30 + 18a12a30a03,y + 6a12a30,ya03 − 12a21a30a03,x − 2a30a12I
1
3

+ 6a03,ya2
21 − 12a20a03,y − 2a12a11,y − 4a21a02,y − 2a02a

2
21

Factorisation of LX2Y 2

Now turn to the factorisation of LX2Y 2 under the assumption of a22 = 1. We use
the operators

L1 = ∂x + b, L2 = ∂x + c, L3 = ∂y + d, L4 = ∂y + e.

for the factorisation. Setting the parameters {b, c, d, e} such that they obey the
following equations

b = a12 − c, d = a21 − e, cx = a02 − ca12 + c2, ey = a20 − ea21 + e2

yields the partial factorisation

0 != LX2Y 2 − L1L2L3L4

= a30∂
3
x + a03∂

3
y − I1

1∂x∂y

−1
2
(a21I

1
1 − I1

5 )∂x − (I1
6 + 2a12I

1
1 + 2I1

1,x)∂y

−2a11I
1
1 − 2a21(I1

1,x + I1
6 )− 2a12I

1
5 − 2I1

5,x − (I1
1 )2 − I1

9 .

As in [GS04], the conditions for the parameters include partial Ricatti equations
for c and e. A factorisation of type (X)(X)(Y )(Y ) with L = L1L2L3L4 is possible
if and only if the following invariants are zero

a30 = a03 = I1
1 = I1

5 = I1
6 = I1

9 = 0.

For the factorisation of type (X)(Y )(X)(Y ) with LX2Y 2 = L1L3L2L4, the coef-
ficients are

b =
a00 − a02a20 + a20,xx + a20a12,x − a10,x

a10 − a12a20 − 2a20,x
,

c =
(a20a12 + 2a20,x − a10)a12 + a00 − a02a20 + a20,xx + a20a12,x − a10,x

−a10 + a12a20 + 2a20,x
,

d =
a21a11 − a12a

2
21 − 2a21a21,x − a10 + a12a20 + 2a20,x

a11 − a21a12 − 2a21,x
, (7.15)

e =
−a10 + a12a20 + 2a20,x

−a11 + a21a12 + 2a21,x
.
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Here the the strategy to compare the coefficients of derivatives of L1L3L2L4 in
decreasing order fixes the first two parameters and yields two conditions

b = a12 − c, d = a21 − e, a30 = 0, a03 = 0.

Plugging these equations into LX2Y 2 − L1L3L2L4 yields the operator

0 != (a20 − ey − a21e+ e2)∂2
x

+ (a11 − a21a12 − cy − ex − a21,x)∂x∂y

+ (a02 − cx − a12c+ c2)∂2
y

+ (a10 − ea12a21 + a12e
2 − cye− 2exa21 + 3exe− ea21,x − eya12 − 2exy)∂x

+ (a01 − ca12a21 + a21c
2 + cex − exa12 − cxa21 + cy(c− a21)− ca21,x − exx − cxy)∂y

+ a00 − exxy . . .

Each choice of two coefficients of the second order derivatives is not sufficient
to fix c and e completely. For example choosing the equations

a02 − cx − a12c+ c2 = 0, a20 − ey − a21e+ e2 = 0

and substituting jets of cx and ey in the other coefficients still leaves them c- and
e-dependent. Also eliminating the jets cy and ex yields conditions for c and e
from equations (7.15) and the following invariant conditions for the factorisation.

0 = 2I1
5I

1
1,y − 2I1

1I
1
5,y + 2(I1

5 )2 − (I1
1 )2I1

2 ,

0 = −I1
6I

1
5 + 2I1

1,xI
1
5 − (I1

1 )3 + I1
1I

1
9 − 2I1

5,xI
1
1 ,

0 = 2I1
5,xyI

1
5 (I1

1 )2 + 2I1
1,yI

1
5 (I1

1 )3 + I1
5,yI

1
9 (I1

1 )2 − (I1
1 )4I1

5,y − 2I1
5,xI

1
5,y(I

1
1 )2

−I1
9,yI

1
5 (I1

1 )2 − 2I1
6 (I1

5 )3 + 4(I1
1 )3(I1

5 )2 + 2(I1
5 )2(I1

1 )2I1
4 + 2I1

1I
1
9 (I1

5 )2,

0 = −8I1
3 (I1

5 )2 − 4I1
6I

1
5I

1
1 + 4I1

9,xI
1
5 − 8I1

5,xxI
1
5 − 8I1

5,xI
1
9 + (I1

9 )2 − 3(I1
1 )4

+12(I1
5,x)

2 + 2(I1
1 )2I1

9 .

We expect that the factorisation of other fourth order LPDOs leads to similar
situations where differential algebra is needed. This may lead to further insight
into the factorisation of LPDOs.

The third and last possible factorisation into first order coefficients is LX2Y 2 =
L3L1L2L4 of type (Y )(X)(X)(Y ). All other possible factorisations into first order
operators can be obtained by exchanging x and y.

b = a12 − e,

c = a21 − d,

dy = −a20 + a21,y + da21 − d2,

e =
−a01 + a21a02 + 2a02,y

a21a12 − a11 + 2a12,y
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During the calculation of the conditions for factorisation we have assumed that
both I1

4 and I1
8 are nonzero.

0 = 2I1
4,yI

1
8 − 2I1

8,yI
1
4 − I1

1 (I1
4 )2 − (I1

4 )3,

0 = 2I1
3,yI

1
8 − 2I1

4I
1
8,x + 6(I1

8 )2 − I1
6I

1
8 − (I1

4 )2I1
3

0 = 2I1
1,y − 4I1

5 − I1
7

0 = I1
1 (I1

4 )2 − I1
8I

1
7 + I1

4I
1
10.

Thus was possible to compute all conditions for the factorisation of LX2Y 2 into
first order factors.
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Appendix A

Symbols and Spencer
Cohomology

In this appendix, the symbol Mq of a PDE system Rq is defined, which was
already used to test formal integrability in Theorem 1.28. The symbol Mq con-
tains information about the highest order part of a PDE system Rq. In the linear
case, it actually consists of the highest order subsystem. It is possible to check
the regularity of the prolongations Rq+r with the symbol.

Based on the symbol, Spencer δ-sequences and Spencer cohomology are in-
troduced. They help to decide at which order q + r new lower order equations
may occur because highest order jets cancel.

There are two approaches to the computation of Spencer cohomology. The
more widely known version works directly with the Spencer sequences. Over
each point of Rq the Spencer sequences are sequences of vector spaces so the
calculation is reduced to linear algebra (see e.g. [Gol67b], [Pom78] or [Spe69]). A
second, probably less familiar approach relies on commutative algebra to calculate
Spencer cohomology. It is presented in [Qui64] and more recently in [Mal05].
The advantage of the second approach is that all cohomology groups may be
determined in a finite computation without using special δ-regular coordinates.

Both ways of computing Spencer cohomology are implemented in a Maple
package called Spencer. It was developed for this thesis and we give a short
introduction to the main functions. A sample calculation is shown in the last
part of this appendix.

Before defining the symbol, we construct a power series solution of a linear
system Rq ⊆ Jq(E) and show the connection to the symbol. A series solution is
computed by induction on the order q + r. At each step, inhomogenous linear
equations for the jet coordinates yq+r of strict order q + r must be solved. They
depend on the lower order jets y, . . . , yq+r−1 already computed. The symbol
characterises the solution space for yq+r as it consists of all solutions of the
homogenous system with y = . . . = yq+r−1 = 0. Geometrically, the homogenous
system corresponds to the restriction to the subbundle SqT ∗⊗E of Jq+r(E) → X.

209
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So the symbol is the restriction of Rq to SqT ∗⊗E. For nonlinear systems Rq we
first apply the linearisation Rq = V (Rq).

Definition A.1. [Gol67b, Def. 7.1] The symbol Mq of a nonlinear system of
PDEs Rq ⊆ Jq(E) is defined as the family of subspaces:

Mq = V (Rq) ∩ SqT ∗ ⊗Rq V (E).

If Rq is a linear system over E, the symbol is defined as

Mq = Rq ∩ SqT ∗ ⊗ E. �

To compute the tensor product SqT ∗⊗RqV (E), first take the pullback bundles
SqT ∗ ×X Rq and V (E)×E Rq over Rq and then form the tensor product of their
fibres. If no confusion can arise, pullbacks will be omitted.

If Rq is given by the equations Φα(x, y, yq) = ωα(x), α = 1, . . . , k, then Mq

is defined by restricting the equations for the vertical bundle to the highest order
jets |µ| = q:

∂Φα

∂yiµ
(x, y, yq)ξiµ = 0, |µ| = q. (A.1)

Higher order symbols Mq+r obviously depend only on Rq, as their defining equa-
tions are:

∂Φα

∂yiµ
(x, y, yq)ξiµ+ν = 0, |µ| = q, |ν| = r. (A.2)

If Rq = Rq is a linear system, the vertical derivative simply renames the highest
order jets from yiµ to ξiµ and up to a pullback both definitions of the symbol
coincide.

In Definition 1.24, the prolongation Rq+r was not necessarily regular, i.e. a
subbundle of Jq+r(E) → X. With the help of the symbol, regularity in the highest
order component can be checked. We have the following proposition.

Proposition A.2. [Gol67b, Prop. 7.1] For a system Rq ⊆ Jq(E) of PDEs the
following statements are equivalent:

(1) Mq+1 is a vector bundle over Rq and πq+1
q : Rq+1 → Rq is surjective.

(2) Rq+1 → Rq is a subbundle of Jq+1(E)|Rq → Rq

(3) Rq+1 → Rq is an affine subbundle of Jq+1(E)|Rq → Rq modelled over the
vector bundle Mq+1.

If one of the assertions is fulfilled, the r-th prolongation R(q+1)+r of Rq+1 is the
same as the r + 1-th prolongation Rq+(r+1) of Rq. �
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If all symbols Mq+r+1 for 0 ≤ r ≤ s ∈ N are vector bundles, we can induc-
tively prove that the equivalent conditions hold if q is replaced by q + r. In this
case, the order of prolongations is irrelevant and we have R(q+r)+s = Rq+(r+s).

Of course the prolongations Rq+r may be regular even if the projections
πq+rq+r−1 are not surjective. In this case the new lower order equation must be
checked separately (see the example in Section 3.4.3). We give an example for
the symbol, where its prolongation is not a vector bundle and the prolongation
cannot be regular.

Example A.3. We continue Example 1.25. The symbol M2 satisfies the equa-
tions

ξyy − uxx ξxx = 0,
ξxy − ξxx = 0.

The prolongation M3 is no longer a vector bundle, as the defining equations

ξxyy − uxx ξxxx = 0,
ξyyy − uxx ξxxy = 0,

ξxxy − ξxxx = 0,
ξxyy − ξxxy = 0.

also contain
(1− uxx)ξxxx = 0.

If uxx 6= 1, M3 is zero-dimensional. For uxx = 1 there is a rank drop in the
equations and R3 is one-dimensional:

uxx = 1 ⇒ ξxxx = ξxxy = ξxyy = ξyyy.

So M3 is only a family of vector spaces. On the open submanifold uxx 6= 1 of
J2(E) it is a vector bundle. �

Spencer Cohomology

Having defined the symbols Mq+r for a PDE system Rq, we proceed with the
Spencer δ-sequences. If all symbols have constant rank, we obtain sequences
of vector bundles. The goal of this section is to compute their so-called Spencer
cohomology. Therefore we give explicit coordinate representations of the involved
maps.

We first define Spencer δ-sequences for the trivial system Rq = Jq(E) with
symbols Mq = SqT ∗ ⊗ E. The Spencer δ-map is a morphism of vector bundles
over X:

δ :
∧s

T ∗ ⊗ SqT ∗ →
∧s+1

T ∗ ⊗ Sq−1T ∗, 0 ≤ s ≤ n, q ∈ N,
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defined by the composition∧s
T ∗ ⊗ SqT ∗

ι−→
∧s

T ∗ ⊗ T ∗ ⊗ Sq−1T ∗
∧−→

∧s+1
T ∗ ⊗ Sq−1T ∗ (A.3)

of the canonical embedding ι : SqT ∗ ↪→ T ∗ ⊗ Sq−1T ∗ with the exterior product.
Tensoring each ΛkT ∗ ⊗ SqT ∗ with a vector bundle E, δ gives rise to the Spencer
δ-sequences:

0 −→ SqT ∗ ⊗ E
δ−→ T ∗ ⊗ Sq−1T ∗ ⊗ E

δ−→ . . .

· · · δ−→
∧n−1

T ∗ ⊗ Sq−n+1T ∗ ⊗ E
δ−→

∧n
T ∗ ⊗ Sq−nT ∗ ⊗ E −→ 0

For negative indices q − r < 0 set Sq−rT ∗ = 0. Interpreting the coordinates
of Jq(E) as Taylor coefficients, the δ-map is the formal exterior derivative of
homogeneous polynomials of degree q. It follows that the sequences are exact
(see also [Spe69, p. 188]).

We derive a coordinate representation for the Spencer δ-map, following [Pom78,
p. 86]. At first, we need a local basis (dξ1, . . . , dξn) of T ∗. The s-fold products

dξi1 ∧ · · · ∧ dξis , i1 < . . . < is

are a local basis of
∧s T ∗. Let vkµ be an element of SqT ∗ ⊗ E with 1 ≤ k ≤ m

and |µ| = q. Each element of
∧s T ∗ ⊗ SqT ∗ ⊗ E can be written as

ωkµ = dξi1 ∧ · · · ∧ dξis vkµ,I , I = (i1, . . . , is).

Applying δ to ω ∈
∧s−1 T ∗ ⊗ Sq+1T ∗ ⊗ E yields:

(δω)kµ = dξi ∧ (δiω)kω = dξi ∧ ωkµ+1i
, (A.4)

implicitly defining the maps δi. In this form it is easy to see δ2 = 0:

δ2(ω)kµ = dξi ∧ dξj ∧ ωkµ+1i+1j
= 0.

The δ-sequences can be restricted to the symbols Mq+r of a PDE system Rq.
Due to equation (A.2), the higher order symbols depend on Rq only, such that
we can work with sequences over Rq.

Lemma A.4. [Gol67b, §6] If Mq is the symbol of a system Rq ⊆ Jq(E) of PDEs
then by setting Mk = SkT ∗ ⊗ V (E) for k < q the Spencer δ-sequences can be
restricted to sequences

0 −→Mq+r
δ−→ T ∗ ⊗Mq+r−1

δ−→ · · · δ−→
∧n

T ∗ ⊗Mq−n −→ 0. (A.5)
�

Proof. IfMq is defined by equationsAµkη
k
µ = 0 thenMq+1 is defined byAµkη

k
µ+1i

=
0 for 1 ≤ i ≤ n, being compatible with δ: Aµk(δη)

k
µ = dξi ∧ (Aµkη

k
µ+1i

) = 0. �



213

It is now possible to define Spencer cohomology and the acyclicity of symbols,
which was needed for Theorem 1.28.

Definition A.5. [Gol67b, Def. 6.1] The cohomology of the sequence (A.5)
at position

∧i T ∗ ⊗Mj−i is denoted by H i
j−i = H i

j−i(Mq) and called Spencer
cohomology. Mq is called involutive, if the sequences (A.5) are exact for all r ≥ 0
and k-acyclic, if H i

j(Mq) = 0 for all j ≤ k, i ≥ 0. Mq is of finite type, if
Mq+r = 0 for some r ≥ 0. �

According to Serre’s letter in the appendix of [GS64], involutive symbols
correspond to Cartan’s [Car04] notion of being in involution.

The most important properties of symbols are 2-acyclicity and involutivity.
In addition to the check of formal integrability, we give another consequence
of 2-acyclic symbols which is used in Section 4.3.1. It provides a link between
Proposition A.2 which deals with the prolongation and Theorem 4.26 which treats
the projection of PDE systems. In the linear case, the following proposition is
essentially present in [Gol67a, §4].

Proposition A.6. [Pom83, Prop. 1.A.3.30] Let Rq ⊆ Jq(E) be a system of
PDEs with symbol Mq. If Mq+1 is a vector bundle over Rq and Mq is 2-acyclic
then Mq+r is a vector bundle over Rq for all r ∈ N. �

Theorem 1.28 claims to reduce the test of formal integrability to a finite
calculation, but it relies on 2-acyclic symbols. To check a 2-acyclic symbol, there
are again infinitely many conditions. This problem can be solved in two ways. It
is known that the symbol Mq+r becomes involutive for a sufficiently large r ∈ N
(see [Spe62] or [EGS65]). There are finite tests for involutive symbols that rely on
special δ-regular coordinates (see e.g. [GS64], [Mal05], [Pom78], [Sei02]). We will
follow a second approach mentioned in [Qui64] and [Mal05] that uses methods of
commutative algebra. It allows to compute the infinite number of cohomology
groups in a finite calculation.

Before turning to commutative algebra, we give an example showing the ex-
plicit calculation of a single Spencer δ-sequence and its cohomology.

Example A.7. On E = R3×R with coordinates (x1, x2, x3, y) consider the linear
system:

R2 :


yx1,x2 = 0,
yx1,x3 = 0,
yx2,x2 = 0,
yx2,x3 = 0,
yx3,x3 = 0.

The symbol M2 is defined by:

ξx1,x2 = ξx1,x3 = ξx2,x2 = ξx2,x3 = ξx3,x3 = 0.
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Suitable coordinates for M2 are (ξx1,x1) and for all higher order symbols Mi

(ξx1,...,x1) with i ≥ 2 x1-derivatives. We compute the δ-sequence starting with
M4:

0 //M4
δ(0)// T ∗ ⊗M3

δ(1) // ∧2T ∗ ⊗M2
δ(3) // ∧3T ∗ ⊗ T ∗ // 0. (A.6)

Choosing coordinates for the vector bundles:

M4 (ξx1,x1,x1,x1),
T ∗ ⊗M3 (ξx1,x1,x1 ⊗ dxi) 1 ≤ i ≤ 3,∧2T ∗ ⊗M2 (ξx1,x1 ⊗ dxi ∧ dxj) 1 ≤ i < j ≤ 3,∧3T ∗ (ξxi ⊗ dx1 ∧ dx2 ∧ dx3) 1 ≤ i ≤ 3,

we can compute the map δ(1):

δ(ξx1,x1,x1dxi) =
{

0, i = 1
ξx1,x1dx1 ∧ dxi, i ∈ {2, 3}.

The δ-maps may be written as matrices (in row convention):

δ(0) =
(
1 0 0

)
, δ(1) =

0 0 0
1 0 0
0 1 0

 , δ(2) =

0 0 0
0 0 0
1 0 0

 .

By direct calculation, one verifies that the sequence (A.6) is exact, which means
the Spencer cohomology groups vanish:

H0
4 (M2) = H1

3 (M2) = H2
2 (M2) = 0. �

Spencer Cohomology and the Koszul Complex

In order to compute all Spencer cohomology groups, we follow an approach of
Quillen [Qui64] using a complex of graded modules over a polynomial ring. The
link to Spencer δ-sequences is the observation that the dual Spencer δ-sequences
are homogenous components of a Koszul complex. We follow the recent presen-
tation of Malgrange [Mal05]. For Koszul complexes (as well as an introduction
to commutative algebra) we refer to [Eis95, Ch. 17].

First we shortly introduce the Koszul complex and state properties that are
important for the Spencer cohomology. Then we dualise the Spencer δ-sequence
and show that the Koszul complex is the direct sum of these dualised sequences.
As a corollary, the Spencer cohomology can be computed with the Koszul com-
plex. In the next section, we show a Maple package doing these computations.

The Koszul complex is a sequence of modules over a graded polynomial ring
A = k[ξ1, . . . , ξn]. Let Ai be its homogenous component of degree i and define
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the vector space V = A1 = 〈ξ1, . . . , ξn〉k. Let M be a graded A-module. Then
the Koszul complex with respect to the sequence ξ = (ξ1, . . . , ξn) ∈ An is denoted
by K•(ξ,M). Set the modules as Kp(ξ,M) =

∧p V ⊗M for 0 ≤ p ≤ n and zero
otherwise:

0 // ∧nV ⊗M
d // ∧n−1V ⊗M

d // . . . d // V ⊗M
d //M // 0.

The differentials d are:

d(ξi1 ∧ · · · ∧ ξip ⊗m) =
∑
j

(−1)j+1ξi1 ∧ · · · ∧ ξ̂ij ∧ · · · ∧ ξip ⊗ ξijm,

where the elements carrying a hat are omitted. By direct computation one shows
that K•(ξ,M) is independent from the choice of base ξ of V .

Analogous to the Spencer δ-sequences we define acyclicity of the module M ,
which involves a certain order q. We will see that both definitions coincide.

Definition A.8. Let Hp,r(M) = Hp(ξ,M)r be the homogenous part of degree
r of the Koszul homology groups. M is called q-involutive if all homology
Hp,r(M) = 0 vanish for r ≥ q. Mq is called l-acyclic for l, q ∈ Z≥0 if all ho-
mology groups Hp,r(M) = 0 vanish for r ≥ q and p ≤ l. �

Basic properties of the Koszul complex are:

Proposition A.9. (1) The Koszul complex for M is the tensor product of
K•(ξ,A) with M :

K•(ξ,M) ∼= K•(ξ,A)⊗AM.

(2) The homology groups Hp(ξ,M) of K•(ξ,M) are all annihilated by ξi:
ξiHp(ξ,M) = 0.

(3) If M is finitely generated, then Hp(ξ,M) is also finitely generated.

(4) If M is finitely represented, i. e. there is an exact sequence

0 // N // Ar //M // 0

of finitely generated A-modules and if M , N are generated by elements of
degree ≤ l then H0,q(M) = H1,q(M) = 0 for all q ≥ l.

(5) Since Hp,q(Ar) = 0 for (p, q) 6= (0, 0) we have Hp+1,q−1(M) ∼= Hp,q(N).

(6) The Koszul complex decomposes into direct sums of vector spaces:

0 //
∧nV ⊗Mq

// ∧n−1V ⊗Mq+1
// . . . //Mq+n // 0.

�
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The first property is trivial and all other properties are proved in [Mal05,
Chap. I].

The remaining part of this section establishes the link between Spencer δ-
sequences and the Koszul complex. We closely follow Quillen [Qui64, §5]. First
we dualise the Spencer δ-sequences. Over each point, they are sequences of vector
spaces which are isomorphic to homogenous components of a Koszul complex.

Proposition A.10. The dual sequence of the Spencer δ-sequence (A.5) is:

0 −→
∧n

T ⊗Mq−n
δ∗−→ · · · δ∗−→ T ⊗Mq+r−1

δ∗−→Mq+r −→ 0 (A.7)

with the family of dual vector spaces Mq = M∗
q ⊆ SqT ⊗ E for E = V (E)∗. The

dual map δ∗ :
∧s T ⊗Mq →

∧s−1 T ⊗Mq+1 is given by:

δ∗(t1 ∧ · · · ∧ ts ⊗m) =
q∑
j=1

(−1)j+1t1 ∧ · · · ∧ t̂j ∧ · · · ∧ tq ⊗ tkm,

where elements carrying a hat are omitted. The multiplication tkm = δ∗(tk⊗m)
is the restriction of T ⊗ SqT ⊗ E → Sq+1T ⊗ E to T ⊗Mq → Mq+1. It extends
to the graded vector bundle M = ⊕M∗

k, where each fibre M |rq over rq ∈ Rq is a
module over the graded algebra

S•Tx =
∞⊕
k=0

SkTx, S0Tx = R

with x = πq0(rq). �

Proof. It is sufficient to consider the fibres over a point rq ∈ Rq. For a basis
(ξ1, . . . , ξn) of Tx and the dual basis (dξ1, . . . , dξn) of T ∗x the Spencer δ-map is
(δω)kµ = dξi ∧ (δiω)kµ. The interior product i(dξi) is dual to multiplication with
dξi, which is an antiderivation:

δ∗(t1 ∧ · · · ∧ tq ⊗m) =
∑
k

(−1)k+1t1 ∧ · · · ∧ t̂k ∧ · · · ∧ tq ⊗ dξi(tk)ξim

=
∑
k

(−1)k+1t1 ∧ · · · ∧ t̂k ∧ · · · ∧ tq ⊗ tkm.

We made use of the fact that δ∗i is the multiplication with ξi.
According to equation (A.3) in the case of s = 0, δ∗ is simply the multiplica-

tion
δ∗ : T ⊗ SqT → Sq+1T,

which remains unchanged by tensoring with M∗
k. The extension to M = ⊕M∗

k

is trivial. Since (δ∗)2 = (δ2)∗ = 0, we have

t2(t1m)− t1(t2m) = (δ∗)2(t1 ∧ t2 ⊗m) = 0

and thus the multiplication SkT ⊗M → M is well-defined for all k. The basis
(ξ1, . . . , ξn) of Tx induces an isomorphism S•Tx ∼= k[ξ1, . . . , ξn]. �



217

According to [Mal05], M is called characteristic module. We can now finish
the connection between the Koszul complex and Spencer cohomology. It remains
to show that M is a finitely represented module such that the calculation can be
implemented on a computer algebra system.

Theorem A.11. Over each rq ∈ Rq, the Spencer cohomology can be computed
as the homology of the Koszul complex K•(ξ,M):

Hp
r (Mq|rq) ∼= Hp,r(M |rq). �

Proof. By Proposition A.10, the Spencer δ-sequences over rq are dual to the
sequences (A.5). The Koszul complex K•(ξ,Mrq) consists of the direct sums of
the sequences (A.7), which are then sequences of S•T -modules. We omit the
point rq.

If Mq is defined by the equations

Aτ,µk (rq)ηkµ = 0, 1 ≤ τ ≤ s,

then the homogenous component Mq is defined by∑
µ,k

Aτ,µk (rq)ξµek = 0, 1 ≤ τ ≤ s.

Here (ek) is a basis of the fibre of the vertical bundle V (Jq(E)). The higher order
symbols and components are defined by:

Mq+r : Aτ,µk (rq)ηkµ+ν = 0, ⇒ Mq+r : ξν(
∑
µ,k

Aτ,µk (rq)ξµek) = 0.

It follows that M is finitely represented. �

Because the module M is finitely represented, we are now able to compute all
Spencer cohomology groups with Janet or Gröbner basis techniques. We show a
Maple implementation in the next section. The 2-acyclicity of a symbol, which
was needed in Theorem 1.28, can be read off the dimensions of the cohomology
groups.

Remark A.12. To check if a given symbol is acyclic or even involutive, we are
interested in the dimensions hpr = dim(Hp

r (Mq)) rather than the cohomology
groups themselves. For better readability, it is convenient to display the dimen-
sions hpr = dim(Hp

r (Mq)) in a matrix: h0
1 h1

1 . . . hn1
h0

2 h1
2 . . . hn2

...
...

...

 (A.8)

where the colums begin with the zero cohomology groups H0
r (Mq). A symbol

2-acyclic if the first three columns of the matrix are filled with zeros. If the whole
matrix is zero, the symbol is involutive. �
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Example A.13. In Example A.7, the cohomology groups H0
4 = H1

3 = H2
2 = {0}

have been calculated. The above matrix can be filled with the results:
. . . .

. . 0 .

. 0 . .
0 . . .


A dot stands for cohomology groups not yet calculated. As the order of the
system is q = 2, the groups Hp

1 (above the line) are irrelevant. �

The Maple package Spencer

Both approaches to compute Spencer cohomology groups are implemented in
the Maple package Spencer, which will be presented in this section. It was
developed for the present thesis. A sample calculation follows in the next section.

Independent from this implementation, the Vessiot package for Maple V
contains a subpackage which is also called Spencer (see [ACC+03]). It will be
part of the DifferentialGeometry package of Maple 14 and it supports the
computation of Spencer cohomology groups using sequences of vector bundles and
the results from both packages are, up to notation, identical. The commutative
algebra version is not implemented in the Vessiot subpackage.

Basically, Spencer is an application of the homalg package for abstract ho-
mological algebra by Barakat and Robertz [BR08]. It constructs either Spencer
δ-sequences or the module M together with the Koszul complex K•(ξ,M) and
uses homalg to compute the cohomology groups. While the Spencer δ-sequences
involve only linear algebra, the computations via Koszul complex are possible if
the following tools are provided:

• The Koszul complex K•(ξ,A).

• The tensor product functor −⊗AM to compute K•(ξ,A)⊗AM .

• A procedure to calculate homology groups Hp(ξ,M).

• A procedure to calculate dimHp,r(ξ,M).

To construct the Koszul complex, the package JanetOre was extended to the
exterior algebra. JanetOre was written by Robertz [Rob06], [Rob08]. The tensor
product and the homology groups are provided by homalg. All computations
over k[ξ1, . . . , ξn] are done with Involutive [BCG+03], implemented by Cid and
Robertz. Spencer contains a procedure to calculate dimHp,r(ξ,M) based on
Involutive’s Hilbert series command. If in future, homalg supports graded
modules, the last step may be automatic.

For practical work, only three main commands are of interest:

• SpencerCohomology – compute the Spencer cohomology.
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• SCohomDim – display the dimensions hp,r in a matrix.

• SCZeroSets – show the restrictions where the computation is valid.

A complete list of commands is found in Appendix D.3. The output of
SpencerCohomology is usually large and contains a table with sequences and
their cohomology groups. The output is best viewed with SCohomDim, that prints
a matrix of dimensions according to Remark A.12. Theorem A.11 provides the
Spencer cohomology computation over a specific point rq ∈ Rq. If all coordinates
for rq are left as parameters, SCZeroSets prints the domain of validity for the
calculation. With a special homalg interface, Involutive supports this feature.

A Maple Example for Spencer Cohomology

In this section, we show a sample Maple worksheet where Spencer is used to
compute the Spencer cohomology of a linear system of PDEs. The example is
taken from [PQ00, Ex. 3].

On the bundle E = R3×R with coordinates (x1, x2, x3, y) consider the second
order linear system with parameters a, b ∈ R:

R2 :


yx1,x2 = 0,
yx1,x3 = 0,
yx2,x3 = 0,
yx3,x3 − a yx1,x1 = 0,
yx2,x2 − b yx1,x1 = 0.

Depending on the parameters, we obtain three cases with different Spencer co-
homology.
> with(jets):
> with(JanetOre):
> with(Involutive):
> with(homalg):

The package Spencer to calculate the Spencer cohomology:

> with(Spencer);

[KoszulComplexT , SCZeroSets, SCohomDim, SdeltaCosequence, SpencerCohomology ,
SymbolModule, SymbolOf ]

Declaration of independent and dependent variables:

> ivar := [x1, x2, x3]: dvar := [y]: Dvar := [xi1, xi2, xi3]:

Define the system R2:
> R2 := [y[x1,x2]=0, y[x1,x3]=0, y[x2,x3]=0, y[x3,x3]-a*y[x1,x1]=0,
> y[x2,x2]-b*y[x1,x1]=0];

R2 := [yx1 , x2 = 0, yx1 , x3 = 0, yx2 , x3 = 0, yx3 , x3 − a yx1 , x1 = 0, yx2 , x2 − b yx1 , x1 = 0]
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The Generic Case:

At first, the Spencer cohomology is calculated for the generic case, where no
assumption on the parameters have been made. We compute the Spencer co-
homology Hp,q for q ∈ {2, 3} and p ∈ {0, 1, 2, 3} to see all cohomology groups
involving M2 and M3:
> Sc2_1:=SpencerCohomology(R2,[2,3],[0,1,2,3],ivar,dvar):

Print the dimensions of the cohomology groups (dots mean, that nothing has
been calculated yet):
> SCohomDim(Sc2_1,ivar,dvar);

. . . .
0 0 0 1
0 0 0 0
0 0 0 .
0 0 . .
0 . . .


The symbol M2 is not involutive, since H3,2(M2) is one-dimensional. It is

likely that M2 is 2-acyclic. To prove it, we compute the Spencer cohomology via
Koszul complex and display their dimensions.
> IZS := ‘InvolutiveZeroSets/homalg‘:
> Sc2_1k:=SpencerCohomology(R2,ivar,dvar,Dvar,IZS):
> SCohomDim(Sc2_1k,Dvar,IZS); . . . .

0 0 0 1
0 0 0 0


The second calculation shows that M2 is 2-acyclic and M3 is involutive. If

the input of SCohomDim has been computed via Koszul complex, a trailing row
of zero means that all higher cohomology vanishes. During the calculation, both
a and b are assumed to be nonzero (as well as some combinations).
> SCZeroSets(Sc2_1k);

[b, a]
The previous calculation is not valid for vanishing a or b, so these cases must

be treated separately.

The Case b = 0:

In this step, we choose a single term from the output of SCZeroSets and set it
to zero. Our first choice is b = 0.
> R2_2 := subs(b=0,R2);

R2 2 := [yx1 , x2 = 0, yx1 , x3 = 0, yx2 , x3 = 0, yx3 , x3 − a yx1 , x1 = 0, yx2 , x2 = 0]
Compute several cohomology groups to see that M2 is not 2-acyclic:

> Sc2_2:=SpencerCohomology(R2_2,[2,3],[0,1,2,3],ivar,dvar):
> SCohomDim(Sc2_2,ivar,dvar);
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. . . .
0 0 1 1
0 0 0 0
0 0 0 .
0 0 . .
0 . . .


Compute the Spencer cohomology via Koszul complex and show the dimen-

sions:
> Sc2_2k:=SpencerCohomology(R2_2,ivar,dvar,Dvar,IZS):
> SCohomDim(Sc2_2k,Dvar,IZS); . . . .

0 0 1 1
0 0 0 0


The symbol M3 is involutive and the calculation is valid for a 6= 0:

> SCZeroSets(Sc2_2k);

[a]

The Case a = 0:

This case is equivalent to b = 0 by swapping x1 and x3. We expect that this
calculation is valid for b 6= 0.
> R2_3 := subs(a=0,R2);

R2 3 := [yx1 , x2 = 0, yx1 , x3 = 0, yx2 , x3 = 0, yx3 , x3 = 0, yx2 , x2 − b yx1 , x1 = 0]
The Spencer cohomology:

> Sc2_3k:=SpencerCohomology(R2_3,ivar,dvar,Dvar,IZS):
> SCohomDim(Sc2_3k,Dvar,IZS); . . . .

0 0 1 1
0 0 0 0


The domain of validity is no surprise:

> SCZeroSets(Sc2_3k);

[b]

The Case a = b = 0:

Both computations for one constant being zero have used the assumption that
the second constant is nonzero. So the remaining case where both constants are
zero has to be taken into account. It has partly been treated in Example A.7.
> R2_4 := subs([a=0,b=0],R2);

R2 4 := [yx1 , x2 = 0, yx1 , x3 = 0, yx2 , x3 = 0, yx3 , x3 = 0, yx2 , x2 = 0]
Compute the Spencer cohomology via Spencer δ-sequences:

> Sc2_4:=SpencerCohomology(R2_4,[2,3],[0,1,2,3],ivar,dvar):
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The dimensions:
> SCohomDim(Sc2_4,ivar,dvar);

. . . .
0 0 0 0
0 0 0 0
0 0 0 .
0 0 . .
0 . . .


It is very likely that M2 is involutive. The computation via Koszul complex

proves it.
> Sc2_4k:=SpencerCohomology(R2_4,ivar,dvar,Dvar,IZS):
> SCohomDim(Sc2_4k,Dvar,IZS);[

. . . .
0 0 0 0

]
As all parameters were set to zero, this calculation is valid everywhere:

> SCZeroSets(Sc2_4k);

[ ]

Further Commands of the Spencer Package

In this part, we show less important commands of the Spencer package that
might be of use, too. The first procedure computes the symbol of a linear system
Rq. It returns two lists. The first contains a local basis of Mq and the second
the defining equations (A.1). Compute the symbol M2 for a = b = 0:
> SymbolOf(R2_4,2,ivar,dvar);

[[yx1 , x1 ], [yx1 , x2 , yx1 , x3 , yx2 , x2 , yx2 , x3 , yx3 , x3 ]]
We observe that both symbols M2 and M3 are nonzero:

> SymbolOf(R2_4,2,ivar,dvar)[1];
> SymbolOf(R2_4,3,ivar,dvar)[1];

[yx1 , x1 ]

[yx1 , x1 , x1 ]

It is also possible to compute the characteristic module:
> SymbolModule(R2_4,ivar,dvar,Dvar,IZS);

[[1 = 1], [ξ32, ξ2 ξ3, ξ1 ξ3, ξ22, ξ1 ξ2], “Presentation”, 1 + 3 s+
s2

1− s
, [1, 0, 0]]

The output is a homalg presentation of a module (compare [BR08, Fig. 1,
App. C.1]). It contains a list of generators [1 = 1], relations on the generators
[ξ23 , . . .] and combinatorial data such as the Hilbert series 1 + 3s+ s2

1−s .
The example is small enough to display a single Spencer δ-sequence. It is

actually the sequence (A.6) up to renaming ξ → y. The result is a cosequence in
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homalg notation containing presentations and matrices of the homomorphisms.
> Sp_2_4 := SdeltaCosequence(R2_4,2,ivar,dvar);

Sp 2 4 :=

[
[[1 = 0], [1], “Presentation”, [1], 0],

[
0

]
,

[[1 = yx1 , x1 , x1 , x1 ], [0], “Presentation”, [0], 1],
[

1 0 0
]
, [

[[1, 0, 0] = yx1 , x1 , x1 dx1 , [0, 1, 0] = yx1 , x1 , x1 dx2 , [0, 0, 1] = yx1 , x1 , x1 dx3 ],

[[0, 0, 0]], “Presentation”, [0, 0, 0], 3],

 0 0 0
1 0 0
0 1 0

 , [
[[1, 0, 0] = yx1 , x1 dx1 dx2 , [0, 1, 0] = yx1 , x1 dx1 dx3 , [0, 0, 1] = yx1 , x1 dx2 dx3 ],

[[0, 0, 0]], “Presentation”, [0, 0, 0], 3],

 0 0 0
0 0 0
1 0 0

 , [
[[1, 0, 0] = yx1 dx1 dx2 dx3 , [0, 1, 0] = yx2 dx1 dx2 dx3 , [0, 0, 1] = yx3 dx1 dx2 dx3 ]

, [[0, 0, 0]], “Presentation”, [0, 0, 0], 3]

]
The presentations for M4 and T ∗ ⊗M3 are:

> Sp_2_4[3];
> Sp_2_4[5];

[[1 = yx1 , x1 , x1 , x1 ], [0], “Presentation”, [0], 1]

[[[1, 0, 0] = yx1 , x1 , x1 dx1 , [0, 1, 0] = yx1 , x1 , x1 dx2 , [0, 0, 1] = yx1 , x1 , x1 dx3 ], [[0, 0, 0]],
“Presentation”, [0, 0, 0], 3]

The homomorphism δ(0):
> Sp_2_4[4]; [

1 0 0
]

As computed in Example A.7, the Spencer cohomology vanishes. The last
entry of the vector space representation shows the dimension, which is zero in all
cases:
> CSp_2_4 := CohomologyModules(Sp_2_4,[0],PIR);
> map(a->a[-1],CSp_2_4);

CSp 2 4 := [%1, %1, %1]
%1 := [[1 = 0], [1], “Presentation”, [1], 0]

[0, 0, 0]
The Spencer cohomology completes the geometric treatment of PDE systems

from Section 1.3.
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Appendix B

Jet Groups

Studying the symmetries of geometric objects on a manifold X leads to PDE
systems over E = X × X. Their invertible solutions may be composed, so all
germs of solutions, stabilising a single point x ∈ X, form a group. In this ap-
pendix the restriction of these groups to q-th order jets, called jet groups, are
introduced. Already present in Ehresmann’s work [Ehr53], they were thorougly
studied by Terng [Ter78] (see also [KMS93]). It turns out that both prolongation
and projection of PDE systems can be done with the help of jet groups and their
actions on manifolds. This appendix mainly follows Terng [Ter78] and [KMS93,
§13].

The most general jet group GLq consists of all q-jets of diffeomorphisms Rn →
Rn that keep the origin fixed. In Chapter 2 on groupoids the GLq reappears as an
isotropy group and in Chapter 3 it is shown that each natural bundle is uniquely
defined by a GLq-action on its fibre.

In many cases, one wants to restrict the symmetries of geometric objects to
a subclass of all diffeomorphisms, e.g. to the isometries of a metric. This leads
to subgroups Gq ≤ GLq for all q ∈ N. But not all choices of subgroups Gq are
useful for prolongation and projection, so conditions for suitable groups Gq are
developed. The corresponding conditions for their Lie algebras are very much
inspired by the results in [GS64] on infinitesimal automorphisms.

B.1 Her Majesty GLq

At first, we define the jet group GLq, which is a model for all diffeomorphisms
ϕ : X → X that stabilise a point x ∈ X. As we are dealing with local properties,
we may assume X = Rn and x = 0. All germs of diffeomorphisms ϕ : Rn → Rn

with ϕ(0) = 0 form a group GL∞. Taking the q-jet of ϕ conserves the group
properties and defines the Lie group GLq.

Definition B.1. The jet group of order q, GLq = GLq(Rn), is the Lie group of
q-jets of diffeomorphisms Rn → Rn leaving the origin fixed. The group multipli-
cation is the jet composition. �

225
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The truncated Taylor series representation from Remark 1.4 identifies GLq
with polynomial maps Rn → Rn without constant term and nonzero determi-
nant. Under this identification, GLq is an open subset of R[x1, . . . , xn]n0,≤q, which
consists of n-tuples of polynomials p of degree ≤ q with p(0) = 0. The multi-
plication of f, g ∈ GLq is the truncation of the composition f ◦ g of polynomial
maps to degree q.

Using the polynomial representation and the jet bundle projections πq+rq , we
obtain the following properties of jet groups (see [Ter78, §2]).

Proposition B.2. For the jet groups GLq(Rn) we have:

(1) GL1(Rn) ∼= GL(Rn) is the usual general linear group.

(2) For each q ∈ N and r ∈ Z≥0 there is an exact sequence of groups:

1 // Kq+r
q

// GLq+r
πq+r

q // GLq // 1 (B.1)

defining the normal subgroups Kq+r
q . Set Kq+1 := Kq+1

q .

(3) The exact sequence splits for πq1:

1 // Kq
1

// GLq
πq
1 // GL1

//oo 1.

(4) Kq
1 is nilpotent and GLq ∼= GL1 nKq

1 is a semidirect product. The normal
subgroup Kq+1 = Kq+1

q is abelian. �

Proof. The composition of linear polynomials stays linear, so GL1(Rn) ∼= GL(Rn)
follows. The projection of forgetting higher order jets,

πq+rq : Jq+r(Rn × Rn) → Jq(Rn × Rn),

restricts to the group homomorphism πq+rq : GLq+r → GLq because jq(ψ ◦ ϕ) =
jq(ψ)◦jq(ϕ). The second exact sequence splits, because the composition of linear
maps stays linear. It follows from the split that GLq is a semidirect product. (4)
follows from the Lie algebra properties in Proposition B.6. �

The kernels Kq+r
q consist of elements whose Taylor expansion differs from

the identity map only above order q. Kq+r
q is used in Chapter 3 to describe the

projection of PDE systems for symmetries efficiently. The projection is prepared
in Section B.5.
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B.2 The Lie Algebra glq of GLq

We also introduce the Lie algebra glq of GLq which consists of q-jets of vector
fields on Rn that vanish at the origin. Due to the jet projections, glq is a graded
algebra and we give an explicit basis adapted to the graduation. This basis was
implicitly used by Lie [Lie91] and Vessiot [Ves03] and it provides an efficient tool
to compute the projections of PDE systems for groupoids in Section 3.4.2.

The algebra glq reappears in Appendix C.2 as the isotropy algebra of jet
algebroids. We have adapted the notation of [Ter78] to match Chapter 2 and
Appendix C. Let Jq,0(TRn) = ker(πq0) be the subbundle of Jq(TRn) → X of
q-jets jq(ξ)(x) of vector fields ξ on Rn which vanish at x (ξ(x) = 0). Denote the
fibre at the origin 0 ∈ Rn by Jq,0(TRn)0. It contains q-jets of vector fields at the
origin, which also vanish at the origin.

Proposition B.3. [Ter78, Thm. 2.1] The Lie algebra glq of GLq is isomorphic
to

glq
∼= Jq,0(TRn)0.

The Lie bracket for ξ, η ∈ Γ(TRn) with ξ|0 = η|0 = 0 is

[jq(ξ)(0), jq(η)(0)] = −jq([ξ, η](0)).

If ϕt is the flow generated by ξ, the exponential map is exp(jq(ξ)(0)) = jq(ϕt)(0).�

Proof. The tangent space of GLq at the identity consists of all q-jets jq(ξ)(0) of
vector fields ξ ∈ X(Rn) = Γ(TRn) which vanish at the origin: ξ|0 = 0. This is
the kernel of πq0,∗ : Jq(TRn) → TRn.

Differentiate the flow ϕt generated by ξ to obtain:

d

dt

∣∣∣∣
t=0

jq(ϕt)(0) = jq(
d

dt

∣∣∣∣
t=0

ϕt)(0) = jk(ξ)(0),

since derivatives commute. The Lie bracket is calculated analogously using
jq(ϕt) ◦ jq(ψt) = jq(ϕt ◦ ψt). �

Similar to GLq, elements of glq can be identified with polynomial vector fields
of degree q without constant term. The second property in the next proposition
is the infinitesimal analogue to Proposition B.2 (2).

Proposition B.4. For glq the following properties hold:

(1) The tangent maps πq+rq,∗ |id : glq+r → glq from equation (B.1) are the jet
projections

πq+rq : Jq+r,0(TRn) → Jq,0(TRn),

which are again called πq+rq .
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(2) For each q ∈ N and r ∈ Z≥0 there is an exact sequence of Lie algebras:

0 // kq+rq
// glq+r

πq+r
q // glq // 0 (B.2)

defining ideals k
q+r
q = ker(πq+rq ) being the Lie algebras of Kq+r

q . For q = 1
the sequence splits. �

For Proposition B.2 (4), we show that glq is graded. At first, we choose a
basis of glq. It plays an important role for infinitesimal diffeomorphisms treated
in Appendix C.2 on jet algebroids. The vector fields were introduced by Lie
[Lie91, II, §14] and Vessiot [Ves03, eq. 3].

Lemma B.5. The q-jets of the vector fields

vµi =
1
µ!
xµ

∂

∂xi

form a basis (Aµi (q) = jq(v
µ
i )|1 ≤ i ≤ n, 1 ≤ |µ| ≤ q) of glq with Lie brackets:

[Aµi (q), A
ν
j (q)] =


νi

(µ+ν−1i)!
µ! ν! Aµ+ν−1i

j (q) − µj
(µ+ν−1j)!

µ! ν! A
µ+ν−1j

i (q)

if |µ+ ν| ≤ q + 1

0 otherwise.

(B.3)

If ξiµ are the fibre coordinates of Jq,0(TRn), each Aνj (q) corresponds to a single
nonzero ξiµ = δijδ

ν
µ. �

Proof. All vµi form a basis of polynomial vector fields of order ≤ q. The Lie
bracket

[xµ∂xi , xν∂xj ] = νi x
µ+ν−1i ∂xj − µi x

µ+ν−1j ∂xi

truncated to order q gives the Lie brackets for Aµi (q) by adjusting coefficients. �

This basis is adapted to the graduation of glq which will be treated in the
next proposition, which summarises several results from [KMS93, §13].

Proposition B.6. For glq the following properties hold:

(1) The k
q
i , 1 ≤ i ≤ q are a filtration of glq which induces a graduation of glq

as a vector space:
glq

∼= gl1q ⊕ gl2q ⊕ · · · ⊕ glqq, (B.4)

where the homogenous components gliq := k
q
i /k

q
i+1 are canonically isomor-

phic to SiRn,∗ ⊗ Rn. So for i ≤ q, gliq
∼= gliq+1 and the index q may be

omitted if no confusion arises.
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(2) Setting gliq = 0 for i > q, the Lie bracket on glq satisfies:

[gliq, gljq] ⊆ gli+j−1
q . (B.5)

(3) Shifting the degrees by one, hiq = gli+1
q , glq is a graded Lie algebra:

[hiq, h
j
q] ⊆ hi+jq . (B.6)

(4) All kernels k
q
i are nilpotent and therefore solvable. The highest order ideals

k
q+1
q

∼= gl
q+1
q+1 are abelian. �

Proof. k
q
i ⊂ k

q
j for j ≤ i implies that

{0} ⊆ kqq ⊆ · · · ⊆ k
q
1 ⊆ glq

is a filtration of glq. A basis for gliq are (Aµj (q)| |µ| = i) being q-jets of homogenous
polynomial vector fields of degree i. This also proves gliq

∼= SiRn,∗⊗Rn. Equation
(B.5) and the graduation (3) then follow directly from Lemma B.5. k

q
i is nilpotent,

since the derived algebras [kqi , k
q
i ], . . . restrict to higher degrees by equation (B.5).

The Lie brackets for the highest order terms k
q+1
q are thus always zero. �

The graduation of glq according to equation (B.4) follows the interpretation
of gliq as jets of strict order i. In this thesis, the jet order is more important than
the fact that glq is a graded Lie algebra with shifted degrees as in equation (B.6).

The isomorphism gliq
∼= SiRn,∗ ⊗ Rn is connected with the symbol of a PDE

system in Appendix A. If Rq is a PDE system over E = Rn × Rn of order q, its
symbol is isomorphic to a subspace of glqq (see Lemma 3.43).

B.3 Subgroups Gq of GLq

The full jet groups GLq were introduced as q-jets of all diffeomorphisms ϕ : Rn →
Rn with ϕ(0) = 0. But in order to study a smaller class of diffeomorphisms, e.g.
rotations in Rn, it is necessary to consider closed subgroups Gq ≤ GLq for each
q ∈ N. Not all choices of subgroups are induced by diffeomorphisms, so we state
conditions on Gq. If they are fulfilled, the next section shows how to prolong the
Gq-action on a manifold F to a Gq+r-action on the algebraic prolongation F (r) of
F , which will be introduced in Section B.5.1. The results may be new, but they
are obtained in a straightforward way from [GS64].

An obvious condition to be fulfilled byGq is that all projections πq+rq : Gq+r →
Gq must be well-defined and surjective. Another condition applies to the pro-
longation, namely that the elements of Gq are defined by PDEs and the groups
Gq+r with higher jet order should also satisfy the prolonged equations. For GLq
itself, the prolongation property is trivially satisfied.
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Proposition B.7. Let Gq ≤ GLq be closed Lie subgroups for q ∈ N. The groups
Gq are the projections of a closed Lie subgroup G∞ ≤ GL∞ to q-th order jets if
and only if the following conditions hold for all q ≤ q0, r ∈ N:

(1) The projections πq+rq restrict to group epimorphisms πq+rq : Gq+r → Gq,
such that there are exact sequences:

1 // Kq+r
q

// Gq+r
πq+r

q // Gq // 1

(2) Gq+r is a subgroup of {jq+r(ϕ) |ϕ ∈ GL∞, jq(ϕ)(0) ∈ Gq}.

In this case, Proposition B.2 (3) and (4) remains valid for the restriction to Gq.�

Proof. Let G∞ ≤ GL∞. Then properties (1) and (2) follow, because π∞q : G∞ →
Gq is π∞q = πq+rq ◦ π∞q+r.

If (1) is not valid, there exists a ϕ such that jq+r(ϕ)(0) ∈ Gq+r but jq(ϕ)(0) /∈
Gq. So there cannot be an epimorphism G∞ → Gq.

If (2) is violated, there exists an element gq+r ∈ Gq+r with taylor series
representative ϕ according to Remark 1.4 and jq+r(ϕ)(0) ∈ Gq+r but jq(ϕ)(0) /∈
Gq. So πq+rq : Gq+r → Gq is not well-defined. �

Condition (2) means that for a given Gq, the groups Gq+r may not be chosen
as the full preimage (πq+rq )−1(Gq). Being a closed subgroup of GLq, there is a
system of PDEs defining Gq together with the condition that the origin stays
fixed. Then all elements gq+r ∈ Gq+r must be solutions of the same system. It is
possible to restrict Gq+r further by introducing new equations of order > q.

Definition B.8. Let Gq ≤ GLq be closed Lie subgroups for q ∈ N satisfying the
conditions of Proposition B.7. The Gq are called compatible with prolongation. �

The next example shows that condition (2) of Proposition B.7 is nontrivial
and may even imply that the prolongation is trivial.

Example B.9. The orthogonal group O(Rn) = {g ∈ GL(Rn) | ggtr = 1} is a
subgroup G1 := O(Rn) ≤ GL1 defined by the equations:∑

j

yijy
k
j = δik ∀ 1 ≤ i, k ≤ n.

Any solution yi = ϕi(x) also fulfills the second order equations:∑
j

yijl y
k
j + yij y

k
jl = 0,

which are obtained by prolongation. But these equations are equivalent to yijk = 0
for all i, j, k ≤ n. So G2 and all higher order groups are isomorphic to O(Rn).
The group O(Rn) is of finite type. �
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B.4 Lie Subalgebras gq of glq

The condition that groups Gq ≤ GLq for q ∈ N are compatible with prolongation
can also be stated for their Lie algebras gq. This process is very similar to [GS64],
where infinitesimal automorphisms of a finite-dimensional vector space are stud-
ied. Guillemin and Sternberg derive local conditions on transitive geometries,
which have a Lie algebroid structure (see Appendix C). As we are dealing with
Lie algebras only, their results are turned into conditions.

At first, we have to define the prolongation of a Lie subalgebra of glq, which is
done in [GS64, Def. 2.1]. See also [Kob72] for the case of q = 1. The prolongation
may be defined using only vector spaces.

Definition B.10. Let P andQ be two vector spaces. A subspace h ≤ Hom(P,Q)
is called tableau. The first prolongation of a tableau h is the subspace h(1) ≤
Hom(P, h) such that T ∈ h(1) if and only if

T (u)v = T (v)u ∀u, v ∈ P. (B.7)

Higher prolongations are defined by iteration: h(i) := h(1)i
. �

Based on the prolongation of Lie algebras, also the prolongation G1 of a
group G ≤ GL1 is defined [Ste64, Def. VII.3.3]. It is may be used for the Cartan
equivalence method in Section 6.2. Before we proceed with the prolongation of
Lie algebras, we state a useful lemma.

Lemma B.11. [GS64, La. 2.1] For P , Q as in Definition B.10 let h0 ≤ Hom(P,Q)
and hi (i ≤ 1) be a sequence of spaces satisfying hi+1 ⊆ (hi)(1). Then there is an
integer q, called the geometric order, such that hq+r = (hq)(r) for all r ≥ 1. �

The lemma follows directly from Hilbert’s basis theorem.
To apply Definition B.10 to the homogenous components of a graded Lie

subalgebra gq ≤ glq, we use P = Rn and Q ≤ SkRn,∗ ⊗ Rn for suitable k ∈ N .
Let

gq = g1 ⊕ . . .⊕ gq

be the decomposition of gq into homogenous components. Choose the tableau
gk for some k ∈ N. Both the first prolongation (gk)(1) and gk+1 are subspaces
of glk+1. We call those Lie subalgebras gq, q ∈ N compatible with prolongation
that satisfy gk+1 ⊆ (gk)(1). By Lemma B.11, there is a finite geometric order
q0 such that gk+1 = (gk)(1) for all k ≥ q0. The next proposition shows that we
have constructed the lie algebras corresponding to subgroups Gq ≤ GLq which
are compatible with prolongation.

Proposition B.12. Let Gq ≤ GLq be groups which are compatible with prolon-
gation and let gq ≤ glq be their Lie algebras. Then there are subspaces gk ≤ glk

with gk+1 ⊆ (gk)(1) such that

gq = g1 ⊕ · · · ⊕ gq ∀ q ∈ N
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can be decomposed as a vector space, inducing a graduation on gq.
Conversely, if gq, q ∈ N are subalgebras which are compatible with prolonga-

tion, then formally a subgroups Gq ≤ GLq compatible with prolongation may be
constructed. �

Formally means, that it is possible to construct formal power series elements
of GL∞, but no convergence is tested. This is again the difference between formal
integrability and the existence of smooth solutions (see Section 1.3.2).

Proof. Propositions B.3 and B.7 imply that there are exact sequences of Lie
algebras

0 // kq+rq
// gq+r // gq // 0

defining ideals k
q+r
q ≤ gq+r analogous to equation (B.2). Again, k

q+r
q is the Lie

algebra of Kq+r
q and all k

q
i induce a filtration of gq. Setting gk = k

q
k/g

q
k+1 to be

the homogenous components, there is a decomposition of gq as a vector space:

gq = g1 ⊕ · · · ⊕ gq

As k
q
q−1 ≤ SqRn,∗ ⊗ Rn, each gk is a subspace of glk. The graduation of the Lie

algebra gq follows from glq.
If Gq ≤ GLq is defined by the equations Φτ (yq) = 0, 1 ≤ τ ≤ l, then condition

(2) of Proposition B.7 implies that all total derivatives DjΦτ (yq+1) = 0 of the
equations are valid on Gq+1.

According to Proposition B.3, gq is then defined by the equations id∗ δ(Φτ ) =
0, where δ = ξiµ∂yi

µ
is the vertical derivative and ξi are the coordinates of Jq(TRn).

By the above graduation, one obtains homogenous equations Aτ,µi ξiµ = 0. On
gq+1, the equations Aτ,µi ξiµ+1j

= 0 must be valid, because vertical and total
derivatives commute: δDj = Djδ by Proposition 1.10 (5).

These are exactly the conditions from Definition B.10. Equation (B.7) implies
that (gk)(1) ≤ glk+1. Let gk be defined by equations Aτ,µi ξiµ for |µ| = k. Then an
element

ξiµ+1j
xµ+1j∂xi ∈ (gk)(1)

must be a map Rn → SkRn,∗ ⊗ Rn, so we decompose it to

xj ⊗ ξiµ+1j
xµ∂xi .

But then ξiµ+1j
xµ∂xi must be an element of gk, thus Aτ,µi ξiµ+1j

= 0 must be valid.
Conversely, Proposition B.3 allows to construct a chain of closed Lie subgroups

Gq that are compatible with prolongation. However the power series vector field
constructed for increasing q is only a formal one. Take G∞ as the inverse limit
of all Gq. �
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Example B.13. We continue Example B.9 on the orthogonal group. Its Lie
algebra o = o(Rn) is defined by:

id∗(δ(
∑
j

yijy
k
j )) = id∗(ξijy

k
j + yijξ

k
j ) = ξik + ξki = 0.

The second order equations,
ξikl + ξkil = 0,

can easily be solved for all second order derivatives ξikl by means of linear algebra.
The first prolongation o(1) is zero, which means that all higher prolongations must
also vanish. See [GS64, eq. (2.2)] for a proof for metrics with arbitrary signature.�

If in the following, a group Gq ≤ GLq is mentioned, we silently assume that Gq
stands for subgroups Gq for each q ∈ N which are compatible with prolongation.

B.5 Gq-actions on Manifolds

Having treated the full jet groups GLq and subgroups Gq ≤ GLq compatible with
prolongation, we now turn to their actions on a manifold F . The prolongation
properties of Gq are chosen such that the jet bundle functor Jr from Section 1.2.1
induces a Gq+r-action on the algebraic prolongation F (r) of F . This includes the
special case of Gq = GLq.

As the subgroups Kq+r
q ≤ Gq+r are all normal subgroups, a projection to

order q is locally well-defined by taking the space of Kq+r
q -orbits on F (r). Both

prolongation and projection will be used on the natural bundles in Chapter 3.
Essentially, a natural bundle F is defined by its fibre F and the prolongation
Jr(F) by F (r) respectively. So we treat the fibres separately.

B.5.1 Prolongation

Definition B.14. Let F be a manifold with a Gq-action. The r-th algebraic
prolongation F (r) of F is defined as F (r) := Jr(Rn×F )|0, being all r-jets of maps
from the origin of Rn to F . �

In [KMS93, §12.8], F (r) is called the space of n-velocities of order r on F . In
Section 3.2, F will be the fibre of a natural bundle F . The algebraic prolongation
is the most simple way of obtaining the fibre F (k) of Jr(F).

Lemma B.15. Let F be a manifold with a Gq-action. The jet functor Jr induces
a Gq+r-action on the algebraic prolongation F (r) such that the following diagram
commutes:

Gq+r

πq+r
q

��

× F (r) //

π

��

F (r)

π

��
Gq × F // F �



234 APPENDIX B. JET GROUPS

Proof. Jr(Rn × F ) ∼= Rn × F (r) is a bundle over Rn × F , so π : F (r) → F
is a bundle. Let ϕ : Rn → Rn be a local diffeomorphism with ϕ(0) = 0 and
jq(ϕ)(0) ∈ Gq. Then ϕ acts on F and induces a map

Jq(Rn × Rn)× F → Rn × F,

which is continued by Proposition 1.14 to

Jq+r(Rn × Rn)× F (r) → Rn × F (r).

The induced map pr(ϕ) still leaves the origin invariant and pr(ϕ) restricts to a
map F (r) → F (r). So Gq+r acts on F (r). �

B.5.2 Projection

If F is a manifold with an GLq+r-action, we project down to a manifold with
Gq-action by taking the orbit space F/Kq+r

q . It is irrelevant whether F is the
algebraic prolongation of another manifold F ′ or not.

Proposition B.16. The orbit space of Kq+r
q on a manifold F with Gq+r-action

is locally a manifold F/Kq+r
q with Gq-action. �

Proof. As Kq+r
q E Gq+r is a normal subgroup, Gq ∼= Gq+r/K

q+r
q acts on the

orbits of Kq+r
q on F . Take the Lie algebra k

q+r
q E gq+r and the infinitesimal

action
kq+rq → Γ(TF (r)),

where the local flows correspond to the Kq+r
q -action. Nilpotency of k

q+r
q im-

plies that its image is an involutive distribution. By smoothness, it is locally of
constant rank, so Frobenius’ theorem is applicable. �

Especially for vector spaces and linear Gq-actions, the origin is a single orbit
where the rank of the distribution drops to zero. As we are only interested in
local problems, we can choose an open subset of F (k).

If the Gq+r-action on F is intransitive on an open subset of F , the local
invariants F → R can by obtained by factoring out the whole Gq-action. It is
recommendable to project down order by order.

B.5.3 Equivariant Maps

As a preparation for Chapter 3 on natural bundles, we shortly introduce equiv-
ariant maps. They will be useful for morphisms of natural bundles. A smooth
map ϕ : F → F ′ is called Gq-equivariant if ϕ(gf) = gϕ(f) for all g ∈ Gq and
f ∈ F .

Proposition B.17. Let ϕ : F → F ′ be a Gq-equivariant map.
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(1) If ϕ is injective, surjective or bijective, then the map induced by Jr, pr(ϕ) :
F (r) → F ′(r) is also injective, surjective or bijective.

(2) The map F → F/Kq+r
q from Proposition B.16 is equivariant.

(3) If ϕ is injective, surjective or bijective, then the map on the orbit spaces
ϕ̄ : F/Kq

q−s → F ′/Kq
q−s is also injective, surjective or bijective. �

Proof. (1) is a consequence of Jr being an exact functor. (2) follows from Gq ∼=
Gq+r/K

q+r
q . In (3), ϕ maps Gq-orbits into Gq-orbits. Factoring out Kq

q−s changes
the orbits but not the orbit space. �
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Appendix C

Lie Algebroids

In complete analogy to a Lie group, a Lie groupoid has an infinitesimal structure
called Lie algebroid, which is introduced in this section. Lie algebroids were orig-
inally defined by Pradines [Pra66]. Starting with the definition of Lie algebroids
and their actions, the Lie algebroid of a Lie groupoid is constructed in Section
C.1.1. If not indicated otherwise, the section is based on [MM03, Ch. 6].

In Section C.2, jet algebroids corresponding to jet groupoids are treated in
detail, since they are necessary in Chapter 3.

C.1 Lie Algebroids

We directly start with the definition of a Lie algebroid.

Definition C.1. A Lie algebroid g over the manifoldX is a vector bundle g → X
with a Lie bracket, that is defined on the sections of g → X:

[−,−] : Γ(g)× Γ(g) → Γ(g)

and an anchor map an : g → TX over X, which is a Lie algebra homomorphism
and satisfies the Leibniz identity

[ξ, fη] = f [ξ, η] + an(ξ)(f)η (C.1)

for all ξ, η ∈ Γ(g) and f ∈ C∞(X). �

As there is no need for distinctions, we will usually speak of algebroids. A
morphism of algebroids is a morphism of vector bundles over the same base X
commuting with the anchor map and the Lie bracket. Due to the Lie bracket
being defined on the sections of g → X, general morphisms of algebroids are more
complicated, see [Mac05, §4.3]. An algebroid is called transitive if the anchor map
is fibrewise surjective. A subalgebroid is a subbundle h ⊆ g → X such that anchor
and bracket restrict to h.

The next example takes up previous examples for Lie groupoids and exhibits
the corresponding Lie algebroids (see Examples 2.2, 2.3).

237
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Example C.2. (1) A Lie algebra is a Lie algebroid over a point. It is the Lie
algebroid of a Lie group.

(2) The trivial bundle M × {0} is an algebroid with zero anchor and bracket.

(3) The tangent bundle g = TX of a smooth manifold X together with the
bracket of vector fields and an = idTX is an algebroid corresponding to the
pair groupoid.

(4) Let γ : h → X(M) be the infinitesimal action of a Lie algebra h on a manifold
M . X(M) denotes the vector fields on M . Then γ is a homomorphism of
Lie algebras. The action algebroid is the trivial bundle g = M × h and the
anchor map is an(ξ, x) = γ(ξ)x. Therefore the Lie bracket is:

[ξ, η](x) = [ξ(x), η(x)] + [γ(ξ), γ(η)](x) ∀ξ, η ∈ Γ(g).

The first bracket is the Lie bracket on h and the second one the bracket of
vector fields onM . It is well-defined since γ is a Lie algebra homomorphism.

(5) If the action γ is trivial, then the anchor map is zero and g = M ×h is only
a bundle of Lie algebras with fibrewise bracket [ξ, η](x) = [ξ(x), η(x)]. �

In most applications, a Lie groupoid action on a bundle F has the tendency
to have large coordinate expressions. It is more convenient to work in the in-
finitesimal context, where the algebroid acts on F .

Definition C.3. [Mac05, Def. 4.1.1] Let g → X be a Lie algebroid and π : F →
X a bundle. A Lie algebroid action is a map of vector bundles Γ(g) → XF : ξ 7→
ξ† satisfying the conditions:

(ξ + η)† = ξ† + η†, (C.2)
(fξ)† = (f ◦ π)ξ†, (C.3)
[ξ, η]† = [ξ†, η†], (C.4)
π∗ξ

† = an(ξ). (C.5)
�

For examples of algebroid actions we refer to Section C.2. We now turn to
the algebroid of a given Lie groupoid.

C.1.1 The Lie Algebroid of a Lie Groupoid

The Lie algebroid of a Lie groupoid G consists of all infinitesimal transformations
of a Lie groupoid on itself. We construct the Lie algebroid completely analogous
to the Lie algebra of a Lie group, except that we have to deal with bundles. For
a Lie group H, the following steps are taken:
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• Extend the right multiplication Rh with h ∈ H to aH-action on the tangent
bundle TH.

• Consider right invariant vector fields ξ ∈ XH = Γ(TH) that satisfy

Rh,∗(ξg) = ξgh ∀ g, h ∈ H.

• Each right invariant vector field ξ is uniquely defined by its value ξ1H on
the Lie algebra h = T1H.

Analogously, the Lie algebroid of a Lie groupoid is constructed. We follow
the approach in [MM03, §6.1]. Note that it is possible to construct Lie algebroids
with left invariant vector fields as well. We shall shortly mention the relevant
steps, which are needed in Section 3.3.

Construction via Right Invariant Vector Fields

We first extend the right multiplication action on Lie groupoid G. Due to the
restricted multiplication, it will not lift to the full tangent space TG(1) but only
to the vertical bundle V G(1). Interpreting right invariant vector fields as the
infinitesimal left multiplication, it corresponds to the fact that left multiplication
leaves the source invariant.

The right multiplication with an element h ∈ G(x, y), defined on the source
fibres:

Rh : G(y,−) → G(x,−) : g 7→ gh,

lifts to the tangent map is Rh,∗ : TG(y,−) → TG(x,−). We show that the bundle
TG(x,−) is the restriction of the vertical bundle V G(1) to all elements g ∈ G(1)

with source s(g) = x. G(x,−) is specified by the exact sequence of bundles over
the target copy of G(0):

0 // G(x,−) // G(1)
(s,t) //
cx
// G(0) ×G(0).

In other words, G(x,−) is the kernel kercx(s, t) with respect to the constant map

cx : G(0) → G(0) ×G(0) : y 7→ (x, y).

Apply the exact tangent functor yields:

0 // TG(x,−) // TG(1)
(s∗,t∗)//
cx,∗
// TG(0) × TG(0)

with
cx,∗ : TG(0) → TG(0) × TG(0) : vy 7→ (0x, vy).
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The sequence restricts to the vertical bundle

0 // TG(x,−) // V G(1)
(s,t∗)//
cx
// G(0) × TG(0),

such that TG(x,−) consists of all vertical vectors over groupoid elements with
source x.

Denote the vertical bundle by T sG(1) = V G(1). Then the construction via
left invariant vector fields involves the normal bundle T tG(1) = ker(t∗). The right
multiplication action lifts to a G-action on T sG(1):

T s(G(1)) s∗�t
G(0)

G(1) → T s(G(1)) : (ξ, h) 7→ Rh∗(ξ). (C.6)

By abuse of notation, s∗ is considered as a map to G(0) because its image coincides
with the zero embedding G(0) ↪→ TG(0) : x 7→ 0x.

We now turn to right invariant vector fields. The G-action of equation (C.6)
continues to vertical vector fields, which are denoted by:

Xs = Xs(G(1)) = Γ(T sG(1)).

In the next proposition it is shown that the right invariant vector fields,

Xs
inv = Xs

inv(G) := {ξ ∈ Xs | ξgh = ξgh ∀ (g, h) ∈ G(2)},

form a subalgebra of all vector fields on G(1). Additionally the target map is a
good candidate for the anchor.

Proposition C.4. [MM03, Prop. 6.1] Let G be a Lie groupoid. Then

(1) Xs
inv is a Lie subalgebra of X(G(1)).

(2) any G-invariant vector field on G(1) is projectable along the target map t∗
to TG(0).

(3) the derivative of the target map induces a Lie algebra homomorphism

t∗ : Xs
inv(G) → X(G(0)). �

Proof. (1) Take ξ, η ∈ Xs
inv(G). We have [ξ, η] ∈ Xs(G(1)), while for any

g, h ∈ G(1) with s(g) = t(h) there is:

[ξ, η]gh = Rh∗([ξ, η]g) = [Rh∗(ξ), Rh∗(η)]gh = [ξ, η]gh.

(2) For any arrow g : x→ y ∈ G(1) we have:

t∗(ξg) = t∗(ξ1yg) = t∗(Rg∗(ξ1y)) = (t ◦Rg)∗(ξ1y) = t∗ξ1y .
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(3) This is clear from (1) and (2). �

In the next step we construct the bundle g of the algebroid. By the unit
embedding ι, we identify the set of units {1x|x ∈ G(0)} with G(0). Due to the
right invariance, each vector field η ∈ Xs

inv(G) is uniquely determined by its
restriction to ι(G(0)). Therefore define the algebroid g as the pullback of the
vector bundle T s(G(1)) along ι:

g //

π

��

T s(G(1))

π

��
G(0)

ι // G(1)

So far, we have constructed isomorphic vector spaces Xs
inv(G) and Γ(g), where

the isomorphism is given by the right multiplication:

] : g π�t
G(0)

G(1) → T s(G(1)) : (η1t(g)
, g) 7→ ηg = η1t(g)

g. (C.7)

To show that it is also an isomorphism of Lie algebras, we need a Lie bracket on
g. Extend g, ] to sections of g → X:

] : Γ(g) → Xs
inv(G

(1)) : η 7→ (g 7→ ηg). (C.8)

Then ] is C∞(G(0))-linear by evaluating the function f ∈ C∞(G(0)) at the target:

](fη) = (f ◦ t)](η)

The unique Lie bracket on g, such that Γ(g) and Xs
inv(G) are isomorphic as Lie

algebras, is defined by pulling back the Lie bracket on G:

[ξ, η] = id∗([](ξ), ](η)]) ξ, η ∈ Γ(g). (C.9)

To complete the Lie algebroid, the anchor map is given by an := t∗. Using
Proposition (C.4 (3)), it is possible to verify equation (C.1).

Although the algebroid of a Lie groupoid may be complicated to construct,
it is very helpful to have the following example in mind.

Example C.5. The algebroid T = TX of the pair groupoid G(1) = X ×X from
Example C.2 (3) can be explicitly constructed. Although quite simple, it plays
an important role for jet algebroids in Section C.2.1.

The tangent bundle of G(1) is TX × TX and therefore T sG(1) = X × TX.
The groupoid action on T sG(1) is still the translation action of the pair groupoid:

X × TX pr1�pr2

X
X ×X → X × TX : ((y, vz), (x, y)) 7→ (x, vz).
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A vector field on X × TX is given by a map (x, y) 7→ (x, y, v(x, y)). It is right
invariant if and only if v = v(y) depends on the target only. The algebroid
g = TX is constructed by the pullback diagram:

TX
(π,id) //

π

��

X × TX

id×π
��

X
ι=(id,id)// X ×X

By writing out the definition for ], we see that it is the identity map:

] : TX π�pr2

X
X ×X = X × TX → X × TX

and it follows that the Lie bracket on TX is the usual bracket of vector fields.
The anchor map is t∗ = idTX .

In Section C.2 on jet algebroids, T = TX is the algebroid of the zero order
jet groupoid Π0 = X ×X (the pair groupoid) and the algebroids Jq(T ) of higher
order jet groupoids Πq are constructed from T by using the jet functor Jq. �

Construction via Left Invariant Vector Fields

Analogous to the right invariant case, the left multiplication extends to an action
on the bundle T tG(1) = ker(t∗) as:

G(1) s�t∗
G(0)

T t(G(1)) → T t(G(1)) : (g, ξ) 7→ Lg∗(ξ).

All left invariant vector fields Xt
inv(G) are uniquely defined on the pullback gt of

T tG(1) along ι. The isomorphism

[ : G(1) ×G(0) gt → T tG(1). (C.10)

also extends to [ : gt → Xt
inv. The anchor map in this case is ant = s∗.

C.2 Jet Algebroids

In this section the jet algebroids of Πq for q ∈ N are treated in detail. Just as
elements of Πq are q-jets of local diffeomorphisms X → X, the algebroid consists
of q-jets of infinitesimal transformations. An infinitesimal diffeomorphism is a
vector field on X or equivalently a section of its tangent bundle T = TX. Thus
the algebroid of Πq is Jq(T ).

We follow Section C.1.1 and start with the algebroid T of the zero order
jet groupoid Π0 = X × X, which was already presented in Example C.5. The
following extension to higher order algebroids Jq(T ) involves only prolongation
and the jet bundle functor from Section 1.2.1. This recovers the infinitesimal
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results of Pommaret [Pom78, §7.1], [Pom83, §2.A.1] in the language of algebroids
introduced here.

Since both left and right invariant vector fields are needed in Chapter 3,
the isomorphisms ] and [ between sections of the algebroid and invariant vector
fields are explicitly constructed. They consist of a translational part and an
infinitesimal action of glq on Πq. As a last result of this section, an explicit
formula for the Lie bracket on Jq(T ) is given, which was originally derived by
Pommaret [Pom83, Def. 2.A.1.19].

C.2.1 The Algebroid of Π0

The results for the algebroid T of Π0 from Example C.5 are rather simple. They
serve mainly as a preparation for the higher order algebroids. Using right invari-
ant vector fields on the vertical bundle T sΠ0 = V (Π0), each section η ∈ Γ(T ) of
the algebroid is a vector field on X. A representation in local coordinates (y) of
X is given by:

η = ηj(y)
∂

∂yj
.

Because T is the pullback of V (Π0) along the (diagonal) unit embedding

ι : X → X ×X : x 7→ 1x = (x, x),

we can embed T in V (Π0) as:

T → V (Π0) : (y, vy) 7→ (y, y, 0y, vy).

Via right translation, we construct ]:

] : T π�t
X

Π0 → V (Π0) : ((y, vy), (x, y)) 7→ (x, y, 0x, vy)

For Π0, the bijection between between vector fields on X and right invariant
vector fields on T sΠ0 is trivial:

] : Γ(T ) = XX → Xs
inv(Π0) : ηj(y)

∂

∂yj
7→ ηj(y)

∂

∂yj
. (C.11)

We observe that for an = t∗, the composition an ◦] = idΓ(T ) is the identity map
for vector fields on X. The Lie bracket on T is the ordinary bracket of vector
fields, so the explicit coordinate representation is:

[η, ξ] =
(
ηi(y)

∂ξj

∂yj
(y)− ξi(y)

∂ηj

∂yj
(y)

)
∂

∂yj
.

The analogous left invariant construction using the normal bundle T t(Π0) =
ker(t∗) yields the map

[ : Γ(T ) = XX → Xt
inv(Π0) : ξj(x)

∂

∂xj
7→ ξj(x)

∂

∂xj
. (C.12)

These are the basic formulae which are necessary to construct ] and [ for Πq.
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C.2.2 The Algebroid of Πq

To construct the algebroid Jq(T ) of Πq we prolong the results of the previous
section. The bundle T for the algebroid is defined by the pullback diagram:

T

��

// V (Π0)

��
X

ι // Π0

Applying the jet functor Jq, we obtain:

Jq(T )

��

// Jq(V (Π0))

��
X

ι // Jq(Π0)

Then the canonical isomorphism V (Jq(E)) ∼= Jq(V (E)) from Proposition 1.10 (5)
implies Jq(V (Π0)) = V (Jq(X ×X)). We restrict the diagram to the open subset
Πq ⊂ Jq(X ×X) of invertible jets:

Jq(T )

��

// V (Πq)

��

⊂Jq(V (X ×X))

��
X

ι // Πq ⊂ Jq(X ×X)

From now on, we will restrict our discussion to invertible jets without further
notice. We have constructed the algebroid Jq(T ) = ι∗(V (Πq)) only by applying
the jet functor. This is also possible for left invariant vector fields, since Π0 is a
trivial bundle. In this case, the action of taking the horizontal bundle commutes
with the jet bundle functor Jq: Jq(T tΠ0) = T tJq(Π0).

Both for left and right invariant vector fields, the algebroid of Πq is Jq(T ), but
the Lie brackets are different. The brackets are defined using the isomorphisms ]
and [ between sections of the algebroid and invariant vector fields on the groupoid.

C.2.3 Prolongation Formulae for ] and [

We construct ] and [ by prolonging equations (C.11) and (C.12). To distinguish
between algebroids of different jet orders, ]q denotes the map ]q : Jq(T ) → V (Πq).
In the following sections, the index will be omitted again.

The first step towards ]q is the prolongation of ]0 from equation (C.11):

ρq ◦ ]0 : XX → Xs
invΠq : ηj(y)

∂

∂yj
7→ ρq(ηj(y)

∂

∂yj
) = Dµη

j(y)
∂

∂yjµ
.

Here, Definition 1.18 with the characteristic Qj = ηj(y) has been used. ρq ◦ ]0 is
not yet ]q, since it is defined on Γ(T ) rather than on Γ(Jq(T )). However it is easily
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possible to recover the pointwise version of ]q from ρq ◦ ]0 (see equation (C.7)).
Due to the total derivative in the prolongation formula, derivatives of η up to
order q appear in the vector field (ρq ◦ ]0)(η) on Πq. For each groupoid element
(x, y, yq) ∈ Πq, the vector field depends on the q-jet jq(η)(y) at the target. So
there is a unique pointwise continuation:

]q : Jq(T ) π�t
X

Πq → V (Πq) : ((y, η, ηq), (x, y, yq)) 7→ Dµη
j ∂

∂yjµ
. (C.13)

The continuation ]q uses the generalised total derivative

Di = ∂xi + yjµ+1i

∂

∂yjµ
+ yki η

j
µ+1k

∂

∂ηjµ

which considers η as y-dependent. Similar to equation (C.8), ]q can be considered
as a map ]q : Γ(Jq(T )) → Xs

invΠq.
For further computations, it is very convenient to split ]q into an infinites-

imal translation and the infinitesimal action of the isotropy algebra glq. The
translational part ηj∂yj depends on zero order jets only. In [Ves03, §3], Vessiot
introduced basis vector fields Bµ

i (q) for the isotropy part, which are a represen-
tation of the Lie algebra glq on Πq. Integrating their flow results in the left
GLq ∼= Πq(y, y)-action on Πq(−, y). See Appendix B for the jet groups GLq and
their Lie algebras glq.

To obtain Bµ
i (q), we first apply ]q to a section (η, ηq) of Jq(T ) → X and

collect for the jet coordinates ηiµ:

]q(η, ηq) = ηi
∂

∂yi
+ ηiµB

µ
i (q), 1 ≤ |µ| ≤ q. (C.14)

The vector fields Bµ
i (q) on Πq are both tangent to the source and target fibre.

This means, Bµ
i (q) contains neither x-derivatives nor y-derivatives. By the total

derivative, Bµ
i (q) depends on the jet coordinates (y1, . . . , yq) starting with first

order jets, but not on (x, y). We can now prove the glq-representation:

Proposition C.6. The vector fields Bµ
i (q) on Πq are a representation of the Lie

algebra glq. �

Proof. To show that the Bµ
i (q) are a representation of glq, we have to check the

Lie brackets from Lemma B.5. The vector fields

bµi =
1
µ!
yµ

∂

∂yi
∈ XX

are a basis of glq. Their q-jets jq(b
µ
i )(0) correspond to the point (0, η, ηq) ∈ Jq(T )

with ηiµ = 1 and all other ηjν = 0. As ]q is the unique pointwise continuation of
ρq ◦]0, the Lie brackets for bµi and the section (ηi = 0, ηjν = δi,jδµ,ν) of Jq(T ) → X
must coincide:

]q(0, δi,jδµ,ν) = Bµ
i (q).

So the Lie brackets for Bµ
i (q) are given by equation (B.3). �
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The analogue for left invariant vector fields is the map [q obtained by prolon-
gation from [0:

ρq ◦ [0 : XX → Xt
invΠq : ξi(x)

∂

∂xi
7→ ξi(x)Di −Dµ(y

j
i ξ
i(x))

∂

∂yjµ
.

Again the pointwise continuation can be collected for the jets of ξ:

[q : Πq
s�π
X
Jq(T ) : ((x, y, yq), (x, ξ, ξq)) 7→ ξiDi − D̃µ(y

j
i ξ
i)

∂

∂yjµ

= ξi
∂

∂xi
+ ξiµA

µ
i (q). (C.15)

[q involves both the usual total derivative Di from Definition 1.11 as well as a
generalisation

D̃i = ∂xi + yjµ+1i

∂

∂yjµ
+ ξjµ+1i

∂

∂ξjµ

which considers ξ as x-dependent. The summands containing yq+1 in [q cancel.
Integrating the flows of Aµi (q), results in the right GLq ∼= Πq(x, x)-action on

Πq(x,−), so Aµi (q) differs from Bµ
i (q), but their properties are very similar. All

Aµi (q) are tangent to the source and target fibres and they are also independent
of x and y.

Proposition C.7. The vector fields Aµi (q) on Πq are a representation of the Lie
algebra glq. �

The proof is the same as for Proposition C.6. The Aµi (q) can be given by an
explicit formula (see [Ves03, eq. (5)]).

Proposition C.8. The vector fields Aµi (q) have the coordinate expression

Aµi (q) = −
∑
ν≥µ
|ν|≤q

(
ν

µ

)
yjν−µ+1i

∂

∂yjν
, |µ| ≤ q,

with Aµi (q) = 0 for |µ| > q. �

Proof. In Dν(y
j
i ξ
i(x)), the term yjν−µ+1i

∂|µ|ξi(x)
∂xµ occurs ( νµ) =

∏
k(
νk
µk

) times. �

The next proposition is a consequence of [xµ ∂
∂xi , y

ν ∂
∂yj ] = 0. It is the in-

finitesimal version of the associative law saying that right multiplication on Πq

commutes with left multiplication.

Proposition C.9. The Lie bracket of Aµi (q) and Bν
j (q) vanishes:

[Aµi (q), B
ν
j (q)] = 0 ∀µ, ν ∈ Zn≥0, 1 ≤ i, j ≤ n. �

It will be very useful in Section 3.3 for treating differential invariants. There, it
is used in the following sense: If Rq ≤ Jq(T ) is a subalgebroid and {Φτ : Πq → R}
are a complete set of invariants under the infinitesimal left action of Rq, then
Jq(T ) still acts on the invariants from the right.
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The Lie Bracket on Jq(T )1

In this section, we derive an explicit formula for the Lie bracket on Jq(T ) using
right invariant vector fields. The bracket must satisfy equation (C.9):

[ξ, η] = id∗([](ξ), ](η)]) ξ, η ∈ Γ(Jq(T )).

Instead of using the basis vector fields Bi
µ(q) directly, we follow an approach used

by Pommaret [Pom78, La. 2.29 bis, p. 295]. The Lie bracket is constructed in two
steps. First, Lemma 1.20 defines the Lie bracket for prolongations jq(ξ), jq(η) of
sections ξ, η of T → X. The result is called algebraic bracket. However Remark
1.9 shows that there are more sections on Jq(T ) → X than those prolonged from
T , which are covered by the complete differential bracket.

We begin with the algebraic bracket. The Lie brackets for ξ, η ∈ XX,

[ξi(y)
∂

∂yi
, ηj(y)

∂

∂yj
] = (ξi

∂ηk

∂yi
− ηj

∂ξk

∂yj
)
∂

∂yk
,

already depends on the first order derivatives of ξ and η, so there is a pointwise
version

[ , ] : J1(T )× J1(T ) → T

by substituting jets for derivatives. According to Proposition 1.14, there is a
unique prolongation compatible with jq to a map

Jq+1(T )× Jq+1(T ) → Jq(T ).

It is the first building block for the Lie bracket on Jq(T ). Note that it is C∞-
linear.

Definition C.10. The algebraic bracket { , } is defined as the q-th prolongation

{ , } := pq([ , ]) : Jq+1(T )× Jq+1(T ) → Jq(T )

of the usual Lie bracket [ , ] on T . �

By construction the algebraic bracket works fine for prolonged sections jq(ξ),
where the prolongation to order q+ 1 is done by differentiating the highest order
jet components. We give an example of the algebraic bracket.

Example C.11. For X = R and q = 1 the algebraic bracket for ξ2, η2 is

{j2(ξ), j2(η)} = j1(ξ ∂xη − η ∂xξ)
= (ξ ∂xη − η ∂xξ, ξ ∂

2
xη − η ∂2

xξ).

The formula for the algebraic bracket is therefore

{ξ2, η2} = (ξ ηx − η ξx, ξ ηxx − η ξxx).

By coincidence, all ξxηx-terms cancel. It is a pointwise map, since no derivatives
occur and one could choose explicit values for all jets of ξ and η. �

1The results of this section will not be used in this thesis, but they could be used to check if
a PDE system on Jq(T ) defines a subalgebroid without using vector fields on Πq.
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In order to complete the Lie bracket on Jq(T ), we need a differential operator
of order one which vanishes on prolonged sections jq(η).

Proposition C.12. [Qui64, Prop. 4.1] Let E → X be a vector bundle. There
is a unique map D : Γ(Jq+1(E)) → Γ(T ∗ ⊗ Jq(E)) such that

(1) D(fs) = fDs+ df ⊗ πq+1
q (s) for f ∈ C∞(X), s ∈ Γ(Jq+1(E)),

(2) D ◦ jq+1 = 0.

D is called canonical operator or Spencer operator (cf. [Pom78, Def/ 2.1.20]) and
a coordinate expression of D is:

D : Jq+1(E) → T ∗Jq(E) : (x, ξiµ(x)) 7→ (x, (
∂ξiµ(x)
∂xk

− ξiµ+1k
(x))dxk). �

Proof. Existence is assured by the coordinate expressions, for a direct proof see
[Qui64]. Obviously (2) is fulfilled, since for jq+1(ξ) we have ξiµ+1k

= ∂xµ+1k ξ
i.

Check condition (1) by looking at the components:

D(f(x)ξq(x))iµ = (
∂(f(x)ξiµ(x))

∂xk
− f(x)ξiµ+1k

(x))dxk

= f(x)(
∂ξiµ(x)
∂xk

− ξiµ+1k
(x))dxk +

∂f(x)
∂xk

ξiµ(x)dx
k

= f(x)D(ξq(x))iµ + ξiµ(x)df.

(1) implies that the difference D−D′ between two possible Spencer operators
D and D′ is C∞(X)-linear. Uniqueness then follows from the fact that each local
section s of Jq+1(E) → X is a C∞(X)-linear combinations of sections jq+1(s′).�

On vector bundles, we have seen the Spencer operator being defined by
an uniqueness condition. On arbitrary bundles, condition (1) does not make
sense anymore, but there is nevertheless a nonlinear Spencer operator Jq+1(E) →
V (Jq(E))⊗ T ∗. See [Pom83, Def. I.A.3.32] for details.

The complete Lie bracket on Jq(T ) should depend on the algebraic bracket,
which already gave the correct result for prolonged vector fields and an additional
part containing the Spencer operator. As D maps to T ∗ ⊗ Jq(E), the interior
product i provides a suitable map to Jq(E). The most simple candidate for the
Lie bracket is:

Definition C.13. Let ξq, ηq be two sections of Jq(T ) → X. The differential
bracket is defined by

[ , ] : Γ(Jq(T ))× Γ(Jq(T )) → Γ(Jq(T ))
: (ξq, ηq) 7→ {ξq+1, ηq+1}+ i(ξ)Dηq+1 − i(η)Dξq+1

for arbitrary lifts ξq+1, ηq+1 projecting onto ξq, ηq. �
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With the definition of the algebraic bracket and the Spencer operator, one can
easily prove that the differential bracket does not depend on the lifts ξq+1, ηq+1,
because the highest jets cancel.

Theorem C.14. The differential bracket on Γ(Jq(TX)) coincides with the one
defined in Equation (C.9):

[ξq, ηq] = ι∗[](ξq), ](ηq)] ∀ ξq, ηq ∈ Γ(Jq(TX)). �

Proof. The formula above has to be verified. Let ξq and ηq be two sections of
Jq(T ) → X. The corresponding right invariant vector fields are:

](ξq) = ξi(y)
∂

∂yi
+ ξiµ(y)B

µ
i (q),

](ηq) = ηj(y)
∂

∂yj
+ ηjν(y)B

ν
j (q),

and their commutator is:

[](ξq), ](ηq)] = [ξ, η]i
∂

∂yi
+ (ξi∂kηjµ − ηj∂jξ

k
µ)B

µ
k (q) + ξiµη

j
ν [Bµ

i (q), Bν
j (q)].

By expressing the last summand in terms of Bσ
k (q) the pullback along ι is easily

performed. The last summand is a pointwise expression, so the prolongation
from sections of T → X can be applied. With the help of Lemma 1.20 and the
construction of ] we use

[](jq(ξ)), ](jq(η))] = [ρq(ξ), ρq(η)] = ](jq([ξ, η]))

to obtain:

[](jq(ξ)), ](jq(η))] = [ξ, η]i
∂

∂yi
+ (ξi∂µ+1k

ηj − ηj∂µ+1jξ
k)Bµ

k (q)

+∂µξi∂νηj [Bµ
i (q), Bν

j (q)]

= [ξ, η]i
∂

∂yi
+ ∂µ[ξ, η]iB

µ
i (q).

The unique pointwise continuation to Jq(TX) of this equation (solved for the
[B,B]-term) is:

ξiµη
j
ν [Bµ

i (q), Bν
j (q)] =

(
{ξq+1, ηq+1}kµ − ξiηkµ+1i

+ ηjξkµ+1j

)
Bµ
k (q).

It is now easy to identify the components of the Spencer operator. �

We complete Example C.11 to the differential bracket.
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Example C.15. For X = R and q = 1 the differential bracket for sections ξ1, η1

of J1(T ) → X is defined by

[ξ1, η1] = (ξ ηx − η ξx, ξ ηxx − η ξxx)

+ (∂xη − ηx, ∂xηx − ηxx)dx(ξ
∂

∂x
)− (∂xξ − ξx, ∂xξx − ξxx)dx(η

∂

∂x
)

= (ξ∂xη − η∂xξ, ξ∂xηx − η∂xξx).

Clearly, the second order jets cancel, but the derivatives of the first order jets
remain present. �



Appendix D

Implementation

All examples in this thesis are computed with the Maple packages jets, JetGroupoids
and Spencer and in this appendix, we give an overview over the relevant com-
mands.

The package jets, written by Barakat and Hartjen [Bar01], implements the
jets calculus for Maple. It allows to compute generalised symmetries of differ-
ential equations. Barakat extended this with basic commands for jet groupoids,
algebroids and natural Πq-bundles. This development was joined by the author
of this thesis with further extensions and various efficiency improvements.

Due to the size of jets, which contains approximately 400 procedures, the
package JetGroupoids was created as an addon for jets. It extends the jets
procedures to natural Θq-bundles. The package also contains data structures and
procedures for efficient prolongation and projection of natural bundles.

In the first section, we give a short summary of JetGroupoids commands.
For detailed Maple help pages, see [Lor08a]. The relevant jets commands are
presented in Section D.2. We continue with a short introduction to the Spencer
package in Section D.3 and finish the appendix with a sample Maple session
which was used (in various alterations) for all examples of this thesis.

The following expressions in the arguments of the procedures have a fixed
meaning throughout the appendix.

ivar independent variables,
dvar dependent variables,
Dvar fibre coordinates the tangent bundle T (for algebroids),
uvar fibre coordinates of F ,
F natural bundle F ,
Fi natural bundle F(i) obtained by prolongation and projection,
JrF prolonged natural bundle Jr(F),
vec vector field, usually for an algebroid action.
gP generic point procedure, e.g. i->10+i+i*i.

251
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D.1 The Maple Package JetGroupoids

D.1.1 Natural Bundle Commands

ChangeFibreCoordinates(F,lst)

Change the fibre coordinates of F according to the new coordinates in lst.

CodimOfAction(F,[i,gP])

Computes the following dimensions for the i-th prolongation of natural Θq-bundle
F at a given generic point gP. Let Gq be the isotropy groupoid of Θq and F the
fibre of F.

• dimension of orbit space of Gq+i on F (i) at gP.

• dim(F (i)),

• dimension of the Gq+i-orbits on F (i) through gP.

• dim(Gq+i),

• dimension of the stabiliser of gP.

The default is i=0 and if gP is omitted, then the computation is valid for generic
points. This is a wrapper to the jets procedure codim of action.

CompleteFibreCoordinates(lst,var)

Complete the new coordinates from the list lst with coordinates from var to a
coordinate system of the complete fibre.

CreateNaturalBundle({inv,vec},ivar,dvar,uvar,Dvar,["algebroid"=R])
Sets up a natural bundle data structure, either from defining equations inv of a
jet groupoid in Lie form or directly for the algebroid action vec on the natural
bundle.

EquivariantSections(Fi,[lsti])

Computes the equivariant sections c : Jr−1(F(i−1)) → F(i). The additional ar-
gument lsti may contain lists of lists of integers indicating in which order the
vector fields are integrated.

IsNaturalBundle(F,vec,ivar,dvar)

Checks if the vector fields generating the algebroid action on F have commutation
relations compatible with the distribution vec defining a reference algebroid.

ProjectNaturalBundle(JrF,v)

Project a prolonged natural bundle JrF a single step down and use the symbol v
for coordinates.

ProlongNaturalBundle(Fi,num,u)
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Prolongs the natural bundle Fi num times and uses the symbol u for new coordi-
nates. Internally uses prolnatinf which calculates the minimal bundle to which
all sections from F → X restrict and the jets command natinfG.

PullbackToF(expr,Fi)

Pull back a map Fi→ R, i.e. an expression in the coordinates of Fi to a suitable
prolongation of the original natural bundle F.

PushToNB(expr,Fi)

Tries to express expr on Jr(F) by coordinates of Fi. Uses Janetq internally.

RestrictNaturalBundle(F,SUBS,[inv,SUBSinv])

Restrict the natural bundle F according to the substitutions SUBS. If the optional
inv and SUBSinv are given, they replace the entries F["inv"] and F["SUBSinv"].

VessiotStructureEquations(Fi,[lsti],[""])

Uses EquivariantSections to calculate the Vessiot structure equations on Fi.
If the additional string is given, the coordinates of Fi → Jr−1(F(i−1)) are used as
left hand sides rather than the projection Jr(F(i−1)) → F(i).

D.1.2 Invariants and Related Commands

DualDerivatives(coframe,ivar,dxvar)

Computes the differential operators Di dual to a coframe with differentials dxvar.

InvariantDifferentialOperators(Fi,gP,nat,GR,dvar)

Computes the invariant differential operators dual to an invariant coframe on the
natural bundle F(i). Also given are a generic point gP and the finite groupoid
action nat of GR on the natural bundle F one started the prolongation and
projection.

InvariantsOnNaturalBundle(F,[lsti],["nobase"])

Returns the invariants F → R of with lsti as for EquivariantSections. If
a coordinate of the base manifold is also invariant, it can be excluded from the
output by adding the optional parameter "nobase".

D.1.3 Exterior Differential Forms

ExtDeriv(expr,ivar,dvar,evar)

Computes the exterior derivative of the expression expr, such that
ExtDeriv(ivar[i],ivar,dvar,evar) = evar[i].

Fsubs(SUBS,form,evar,nevar)

Substitutes SUBS into the differential form, taking care of the antisymmetric
wedge product (using the package JanetOre).
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D.1.4 Tool Procedures

CommutatorTable(lvec,ivar,[dvar,""])

Computes the commutator table for an algebroid generated by the list of vector
fields lvec with independent and dependent variables ivar and dvar. If an op-
tional string is given, also the relations between the vector fields are returned.

FF1coor(vec,ivar,uvar,udvar,Dvar,[kernelproc])

For a given algebroid action vec on Jr(F), the coordinates of F(1) = Jr(F)/Kq+1
q

are computed. ndvar denotes the fibre coordinates of Jr(F) → Jr−1(F). Typi-
cally, the optional kernel procedure is kernelD. Internally used in ProjectNaturalBundle.

kernelByDegree(M,deg,var)

Computes the kernel of the polynomial matrix M with an ansatz of polynomials up
to degree deg. It is meant as a replacement of linalg[kernel], which depends
on random numbers and usually returns far too large results.

kernelByDegreeEliminationStep(ker,old,var)

Eliminates all generators from old (the output of kernelByDegree) that are lin-
ear combinations of some given generators ker.

kernelD(M,var)

Uses kernelByDegree to calculate a polynomial basis of the kernel of M by search-
ing for generators of increasing degree.

kernelN(M)

A wrapper to linalg[kernel] that computes the kernel of a polynomial matrix
and then multiplies the generators with the least common multiple of all denom-
inators, such that all entries are polynomial.

PrepareAlgebroidRelations(R,i,ivar,dvar)

From a subalgebroid R of Jq(T ), a substitution list for the i-th prolongation of
R is computed using the Janet package. This avoids problems with the jets
command jsubs.

PrepareGroupoidRelations(GLF,omega0,ord,ivar,dvar,wvar)

Prepares a substitution list for the quasilinear groupoid equations GLF in general
Lie form (omega0 defines the groupoid).

prolnatinf(vec,num,ivar,dvar,Dvar,u,[SUBSvec],[uvar])

Given an infinitesimal action on a natural bundle F , prolnatinf calculates Jr(F)
and its minimal subbundle where all sections from F → X restrict to. It is in-
ternally used in ProlongNaturalBundle.

UseRamdisk(strPath)
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Copies all files found under the paths in libname to the path strPath and sets
libname to it. Very useful if strPath is the mountpoint of a ram disk. Then it
speeds up kernelByDegree substantially by avoiding disk or net traffic.

D.2 The Maple Package jets

In this section, several commands from the Maple package jets [Bar01] are
documented. We restrict to those commands which are relevant for jet groupoids
and natural bundles. Most of the procedures are originally written by Barakat.

D.2.1 Groupoid and Algebroid Commands

grp2alg(GLF,ivar,dvar,Dvar)

Convert the defining equations GLF of a jet groupoid into the corresponding al-
gebroid equations.

invtarget(T,ivar,dvar,Tvar,[""])

For the algebroid T of a groupoid G, compute the defining equations for the dif-
ferential invariants that determine G (for target transformations). If the optional
string as last argument is given, the equations are solved.

inv2LF(Phi,ivar,dvar)

Given differential invariants Phi for a groupoid G compute the defining equations
in Lie Form.

isoalg(T,ivar,dvar,Tvar)

Compute a basis of vector fields for the algebroid action of T on the groupoid Πq

(infinitesimal target transformations). Integrating these vector fields is equiva-
lent to solving the equations from invtarget.

LieForm(T,ivar,dvar,Tvar)

Compute the defining equations of a jet groupoid in Lie form using invtarget.

LieFormG(nat,ivar,dvar,Ivar,wvar)

For a given groupoid action nat and a general section wvar of a natural bundle
compute the equations for the symmetry groupoid in Lie form.

D.2.2 Natural Bundle Commands

In their original form, the following commands deal with natural Πq-bundles only.
In some cases (e.g. F1coor) they are superseded by JetGroupoids commands,
in other cases (e. g. natinf(G)) they are internally used by JetGroupoids, as
they generalise easily to Θq-bundles.

codim of action(vec,num,ivar,uvar,Dvar,[gP],[""])
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Calculates the dimension of orbit space of the Gq+i-action given by vec on the
fibre F (num) at gP. If the optional string as last argument is given, the output is
as described for CodimOfAction which internally uses this procedure.

F1coor(vec,ivar,Dvar,uvar)

Computes the fibre coordinates of the bundle F(1) = J1(F)/Kq+1
q for a natural

Πq-bundle F .

F1dim(vec,ivar,Dvar,uvar,[gP])

Computes the fibre dimension of F(1) = J1(F)/Kq+1
q . If a generic point gP is

given, it computed at this point.

inf2MF(vec,ivar,uvar,wvar)

Convert the algebroid action vec on F into the Medolaghi form of the symmetry
algebroid of a section of F → X given by wvar.

JacobiCond(VSE,ivar,uvar)

Computes the Jacobi conditions for given Vessiot structure equations on F(i).

natfin(inv,ivar,dvar,uvar,Ivar)

Determine the Πq-action on a natural bundle F defined by the Lie form inv of a
groupoid.

natfinG(nat,inv1,ivar,vvar)

For a natural bundle F , given the groupoid action nat, compute the finite action
on a projection of Jr(F) → F(i) given by inv1 with coordinates vvar. Usually,
inv1 is the output of F1coor.

natinf(inv,ivar,dvar,uvar)

Similar to natfin, the vector field vec for the algebroid action is computed from
groupoid equations inv in Lie form.

natinfG(vec,inv1,ivar,uvar,vvar,Dvar)

Similar to natfinG, the vector field for the algebroid action on a projection
Jr(F) → F(i) given by inv1 with coordinates vvar. Usually, inv1 is the output
of F1coor or FF1coor.

natfin2inf(nat,ivar,Ivar,Dvar,"")

Converts the groupoid action nat into a vector field for the algebroid action.

D.3 The Maple Package Spencer

The Maple package Spencer mainly calculates the Spencer cohomology for a
given linear system of PDEs. It depends on jets, homalg [BR08] and suitable
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ring packages (such as Involutive [BCG+03] or JanetOre).
There exists another package called Spencer, which is part of the Vessiot

package for Maple V (see [ACC+03]). In Maple 14, it will be a part of the
DifferentialGeometry package. It contains an independent implementation to
compute Spencer cohomology groups using sequences of vector bundles (see Ap-
pendix A). The commutative algebra approach based on the Koszul complex is
not supported.

SCohomDim(sC)

Displays the dimensions of the Spencer cohomology groups from the output sC
of SpencerCohomology as in Remark A.12. See below for details.

SCZeroSets(sC)

If SpencerCohomology is invoked using the module approach, SCZeroSets dis-
plays all expressions that were assumed to be nonzero during calculation.

SpencerCohomology(R,ivar,dvar,Tvar,RP)

SpencerCohomology(F,ivar,Dvar,Tvar,RP)

SpencerCohomology(R,lstp,lstq,ivar,dvar)

Computes the Spencer cohomology for a given linear system of PDEs R. Here,
Tvar are the variables for the polynomial ring S•Tx. Alternatively, we can directly
give a natural bundle F. With the third calling sequence, the Spencer cohomology
is computed via Spencer δ-sequences of vector bundles for all combinations (p, q)
given in lstp and lstq.

SymbolOf(R,ord,ivar,dvar)

Obtains the symbol Mord of a given linear system of PDEs R.

SymbolModule(R,ivar,dvar,Dvar,RP)

The characteristic module M of a given linear system of PDEs R using the homalg
ring package RP.

D.3.1 JanetOre Extension for the Exterior Algebra

The computation of Koszul complexes relies on the exerior algebra
∧
V of a vector

space V . To compute in the exterior algebra, we extended the package JanetOre
written by Robertz [Rob06], [Rob08]. As the ideas are quite simple, we outline
them briefly.

• The exterior algebra may be seen as the quotient of an iterated skew poly-
nomial ring k[dx1, σ1, δ1] . . . [dxn, σn, δn] with

dxidxj = −dxjdxi i 6= j

modulo the ideal 〈(dx1)2, . . . (dxn)2〉.
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• Like for Ore algebras, we use normal forms dx2 ∧ dx1 = −dx1 ∧ dx2 for
monomials and (dxi)2 = 0 during multiplication.

• (dxi)2 = 0 ⇒ the multiplicative variables for dxi may not contain dxi. With
this trivial change it is possible to compute Janet bases over the exterior
algebra. It is not important how the leading term is eliminated, as long as
it is eliminated.

D.3.2 ZeroSets Extension for Involutive

The main procedure InvolutiveBasis of Involutive which computes a Janet
basis and stores all expressions by which the procedure has divided during calcu-
lations in a global variable. The contents can be displayed using PolZeroSets,
which has to be done right after the call of InvolutiveBasis. Each call of
InvolutiveBasis erases the previous results.

To obtain all the expressions Involutive divided by during the Spencer co-
homology computation, the output of PolZeroSets has to be stored in a new
global variable where all new denominators are added rather than erasing old
results.

The homalg translation table ‘InvolutiveZeroSets/homalg‘ provides the
global variable InvZeroSets together with the procedure ResetInvZeroSets()
that sets InvZeroSets := [].

D.4 Sample Worksheet

In this section we present commands that are typically used to compute a jet
groupoid, the corresponding natural bundle and then start to prolong and project.
Most examples in this thesis are variations of this worksheet and the reader may
take it as a starting point for own computations.

## Loading the package and declaration of variables:
################

with(jets): with(JetGroupoids): with(Spencer):

n := 3;
ivar := vn(x,n); dvar := vn(y,n);
Ivar := vn(phi,n); Dvar := vn(xi,n); Tvar := vn(eta,n);

## A jet groupoid in Lie form
################

## Groupoid and algebroid:
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GR := [...groupoid definition...];
R := grp2alg(GR,ivar,dvar,Dvar);

## target algebroid and involutive distribution:

T := grp2alg(GR, ivar, dvar, Tvar, "");
Tred := nrsolve(T, getSolveVar(T, dvar, Tvar));
iso := isoalg(Tred, ivar, dvar, Tvar);

## Lie form of GR:

Phi := invtarget(Tred,ivar,dvar,Tvar,"");
LF := inv2LF(Phi,ivar,dvar);

## Compute the natural bundle:
################

uvar := [...fibre coordinates of F...];
inv := ezip(uvar,Phi);

## groupoid and algebroid action:

nat := natfin(inv,ivar,dvar,uvar);
vec := natfin(inv,ivar,dvar,uvar,Dvar,"");
## or:
vec := natfin2inf(nat,ivar,dvar,Dvar,"");

## data structure:

F := CreateNaturalBundle(vec,ivar,dvar,uvar,Dvar);
## or
F := CreateNaturalBundle(inv,ivar,dvar,uvar,Dvar);

## Prolongation, Projection and Vessiot structure equations:
################

J1F := ProlongNaturalBundle(F,1,uu):
F1 := ProjectNaturalBundle(J1F,v1):

VSE1 := VessiotStructureEquations(F1);

CodimOfAction(F1);
Inv1 := InvariantsOnNaturalBundle(F1);
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