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Preface

The representation theory of finite groups was developed around 1900 by Frobe-
nius, Schur and Burnside. The theory was first concerned with representing
groups by groups of matrices over the complex numbers or a field of character-
istic zero. Representations over fields of prime characteristic, called “modular
representations” (as opposed to “ordinary” ones), were considered somewhat
later, and its theory began with fundamental papers by R. Brauer starting in
1935. Despite its age, the representation theory of finite groups is still develop-
ing vigorously and remains a very attractive area of research. In fact, the theory
is notorious for its large number of longstanding open problems and challenging
conjectures. The availability of computers, the development of algorithms and
computer algebra systems within the last few decades have had some impact on
representation theory, perhaps most noticeable by the appearance of the ATLAS
of Finite Groups in 1985 (see [38]). Note that we refer to this as the ATLAS in
the text.

The present book gives an introduction into representation theory of finite
groups with some emphasis on the computational aspects of the subject. The
book grew out of some sets of courses that the senior of the authors has given
at Aachen University since the early 1990s. It was our experience that many
students appreciated having many concrete examples illustrating the abstract
theory.

The range of examples in the area is rather limited if one restricts oneself
to paper and pencil work, but can be greatly enhanced by using a computer
algebra system such as GAP or MAGMA. For the examples and exercises in this
book we have chosen GAP, which can be freely obtained from http://www.
gap-system.org and for which the source code is publicly available. We did
not want to use these systems as mysterious black boxes, so we have explained
along with the theory the most important algorithms in the field, leaving out
technical details or complexity questions altogether. Instead we have included in
some examples (commented and sometimes edited) GAP-code mainly to give the
unexperienced reader an impression of how easily most of these calculations can
be done. The complete (and unedited) GAP-code and all special GAP-programs
used for the examples and exercises in this book appear on the homepage of this
book: http://www.math.rwth-aachen.de/˜RepresentationsOfGroups. Here
one can also find solutions to some of the exercises in the book. It is also planned
to include additional material and a list of errata.

vii



viii Preface

We have treated ordinary and modular representation theory together, not
only because this seems to be economic, but also since there are so many in-
teractions. For that reason we also did not refrain from occasional forward
references, in particular in the examples given.

The book presupposes some knowledge on basic topics in abstract algebra,
such as the Sylow theorems and occasionally some Galois theory. Although
modules over algebras are defined, some familiarity with these notions will be
assumed. Also the reader should be familiar with linear algebra, including
normal forms of matrices. Tensor products are introduced, but for most of their
basic properties we refer to standard text books in algebra.

The first chapter introduces the basic notions of representation theory and
describes as examples the representations of cyclic groups and algebras. Permu-
tation modules are then discussed in some detail, because of their importance
for practical examples. Simple modules are treated in Section 1.3, including
Norton’s criterion and algorithms for proving or disproving simplicity often re-
ferred to under the key-word “Meataxe.” The chapter also includes the relevant
material on projective modules and blocks.

Ordinary characters of finite groups are treated in the second chapter. We
give several applications of characters in different areas of algebra. We also
include several algorithms for computing character tables of groups, such as the
Dixon–Schneider algorithm, which can be applied if one can compute within
a group sufficiently well to find the conjugacy classes. Other methods apply
when one knows just the centralizer orders and perhaps a few characters. The
chapter finishes with an example in which the character table of a simple group
is computed using only the order of the group.

The third chapter covers the interplay between representations of groups and
subgroups, which is, of course, vital for the representation theory of groups.
We include a section on tables of marks as introduced already by Burnside.
Marks can be interpreted as extensions of permutation characters, and tables of
marks may be extremely useful when dealing with particular groups. Of course,
Clifford theory and projective representations are covered. We also describe
B. Fischer’s method of Clifford matrices to compute character tables of certain
group extensions which often occur as local (or maximal) subgroups of simple
groups. The method is somewhat technical and perhaps best explained by giving
examples, which we do. The chapter closes with Brauer’s characterization of
characters including some applications.

The last and longest chapter is devoted to modular representation theory.
Our use of p-modular systems differs slightly from the one in the literature
and we introduce standard p-modular systems in order to arrive at uniquely
defined Brauer character tables, which we introduce in Section 4.2 using Conway
polynomials. This is important, especially when one is dealing with Brauer
characters of different groups at the same time, which very often is the case in
concrete problems. We give examples for computing Brauer character tables
using basic sets and other methods, in particular condensation. The chapter
includes an exposition on Brauer’s main theorems on blocks and the Green
correspondence. Here the book is not entirely self-contained. There are a few



Preface ix

cases where we omit proofs and give instead proper references to the literature,
for instance Green’s indecomposability theorem in Section 4.8. Trivial source
modules are treated including Conlon’s Induction Theorem, which was already
used in an example in Section 3.5. They also provide easy examples for the
Green correspondence. We don’t give a proof of Brauer’s theorem on blocks of
defect one, but instead include some applications. Modular representations of p-
solvable groups are treated only to an extent to be able to prove the Fong–Swan
theorem and to explain the connection between the k(GV )-problem and Brauer’s
k(B)-problem for solvable groups. Modular representation theory abounds in
longstanding open problems and conjectures. The final section mentions some
of the most famous ones and verifies them in some examples.

Finally we would like to point to the literature we have used and also alterna-
tive treatments which might be useful for the reader. The most comprehensive
monographs on representation theory of groups are found in [41] and [42]. Stu-
dents who might find our first section a bit daunting should perhaps consult
some slower-paced introductory text such as [3], [73] or [97]. A standard text
mainly on ordinary character theory is [92]. Concerning modular representation
theory, [1] is an accessible introduction dealing only with modules, where [68]
deals only with characters. All aspects of modular representation theory are
covered in [57], which also contains a full proof of the Brauer–Dade theorem
on blocks with cyclic defect groups. References [125] and [126], which we have
used frequently, are not as comprehensive but are more easily accessible. For
alternative treatments see [50], [51], [109] and [10]. Of course there are many
topics that we have barely touched, or omitted altogether. We mention just
two, the theory of exceptional characters, for which we refer to [33], and the
representation theory of finite groups of Lie type covered in [25].

This book would not have been written without the existence and availability
of the GAP system. So we wish to thank the whole GAP team for its work and in
particular our colleague Joachim Neubüser, the “father” of GAP. Special thanks
are due to Thomas Breuer, who frequently helped us when we had questions or
problems with the system and who also carefully read an early version of the
manuscript suggesting a large number of improvements. We also would like to
thank the participants of the Representation Theory courses one of the authors
taught at the University of Arizona for pointing out mistakes in preliminary
versions of the manuscript.



Frequently used symbols
Aut(G) group of automorphisms of G
cf(G,K) K-vector space of class functions on G
CG(g) centralizer of g in G
Fq finite field with q elements
g ∈G H g ∈ Hx for some x ∈ G
G = N.H extension of N by H, thus N �G and G/N ∼= H
G′ = [G,G] commutator subgroup of G
GLn(K) group of invertible elements in Kn×n, GLn(q) := GLn(Fq)
H ≤ G H is a subgroup of G
H1 =G H2 H1 = Hg

2 for some g ∈ G
H1 ≤G H2 H1 ≤ Hg

2 for some g ∈ G
Hg, gH Hg := g−1Hg, gH := gHg−1 for H ≤ G and g ∈ G
idV identity map from V to V
In, 0n n× n-identity matrix (In := [δi,j ]1≤i,j≤n),n× n-zero matrix
IrrK(G) irreducible characters of G over K, Irr(G) := IrrC(G)
IBrp(G) irreducible p-Brauer characters of G
Kn×n ring of n× n-matrices over a commutative ring K
KG group algebra of the group G over a commutative ring K
N, N0, Z natural numbers, natural numbers with 0, and integers
N �H (= N : H) split extension (semidirect product) of N by H
N ·H non-split extension of N by H
NG(H) normalizer of H in G
1G trivial character of G
1K or 1 one of the commutative ring K.
Out(G) group of outer automorphisms of a group G
Q, R, C rational, real and complex numbers
R× multiplicative group of units (= invertible elements) of a ring R
Sn, An symmetric and alternating group of degree n
SLn(K) := {g ∈ GLn(K) | det g = 1}, SLn(q) := SLn(Fq)
Z(G), Z(A) the center of a group G or a ring A
δi,j Kronecker delta
ζm, Qm ζm := exp(2πi

m ) ∈ C, Qm := Q(ζm) for m ∈ N
ϕT, AT transposed linear map or matrix
(χ, ψ)G := 1

|G|
∑
g∈G χ(g)ψ(g−1) for χ, ψ ∈ cf(G,K)

x



1

Representations and
modules

1.1 Basic concepts

In this section we introduce the basic concepts of representation theory, fix most
of the notation used in this book and give a large number of concrete examples
for representations.

Definition 1.1.1 A representation of a group G over a field K is a homo-
morphism δ : G → GL(V ) of G into the group of invertible K-endomorphisms
of a finite dimensional vector space V over K. The dimension of this vector
space is called the degree of δ. A matrix representation of G of degree n is
a homomorphism δ : G→ GLn(K) of G into the full linear group GLn(K) over
K of some degree n. If δ or δ is injective, it is called faithful.

If V is a K-vector space of dimension n and B := (v1, . . . , vn) is a K-basis of V ,
then by assigning to each endomorphism the matrix representing it with respect
to the basis B one obtains a group isomorphism

GL(V ) → GLn(K), ϕ �→ [ϕ]B ,

where the matrix [ϕ]B = [aij ] ∈ Kn×n is defined by

ϕ(vj) =
n∑
i=1

aijvi (1 ≤ j ≤ n).

Thus for any representation δ : G → GL(V ) and any choice of a basis B of V
one obtains a matrix representation

δB : G→ GLn(K), g �→ [δ(g)]B .

Observe that the multiplication in GL(V ) and also in the ring EndK V of
all K-endomorphisms of V is defined by ϕ ◦ψ(v) = ϕ(ψ(v)) for v ∈ V . We will
usually omit the symbol “◦.”

1



2 Representations and modules

Definition 1.1.2 Two representations δ : G → GL(V ) and δ′ : G → GL(W )
are called equivalent if there is a K-vector space isomorphism ϕ : V →W such
that

δ′(g) = ϕ δ(g)ϕ−1 for all g ∈ G.
Similarly two matrix representations δ : G → GLn(K) and δ′ : G → GLn(K)
are called equivalent if there is a matrix T ∈ GLn(K) such that

δ′(g) = T δ(g)T−1 for all g ∈ G.

So obviously different matrix representations corresponding to the same repre-
sentation are equivalent.

It is convenient to use the language of modules over rings or better yet of
modules over algebras over a commutative ring K. In this book “ring” means
associative ring having a unit element, which we denote by 1, or 1A if the ring
is called A. For convenience we recall some of the relevant definitions.

Definition 1.1.3 If K is a commutative ring, a K-algebra is a ring A together
with a ring homomorphism λA : K → Z(A) satisfying λA(1K) = 1A. Here Z(A)
is the center of A, defined by

Z(A) := {z ∈ A | a z = z a for all a ∈ A} .

If (A, λA), (A′, λA′) are K-algebras, then a ring homomorphism ϕ : A→ A′ is a
K-algebra homomorphism if λA′ = ϕ ◦ λA.

Observe that any ring can be considered as a Z-algebra in a unique way.

Definition 1.1.4 If A is a ring, an A-module, or, more precisely, a left A-
module, is an abelian group V together with a map A× V → V, (a, v) �→ a · v,
satisfying

(a+b)·v = a·v+b·v, a·(v+w) = a·v+a·w, 1A ·v = v for a, b ∈ A, v, w ∈ V.

A right A-module is defined similarly with a map V ×A→ V, (v, a) �→ v · a. It
is equivalent to an Aop-module, where Aop stands for the opposite ring of A
with multiplication changed to a ∗ a′ := a′ · a.

Remark 1.1.5 A together with the ring multiplication A × A → A is an A-
module, called the left regular A-module, often written as AA. If (A, λA) is
a K-algebra over a commutative ring K, then any A-module V becomes also a
K-module by defining α · v := λA(α) · v for α ∈ K and v ∈ V with

α · (a · v) = a · (α · v) = (λA(α) a) · v for α ∈ K, a ∈ A, v ∈ V .

In particular, for V = AA and a = v = 1A we get λA(α) = α · 1A. This is the
reason why the notation λA will hardly ever be used and we will usually talk
about an algebra A over K instead of (A, λA), regarding A as a K-module with
α · 1A ∈ Z(A) for all α ∈ K. Occasionally we take the liberty to abbreviate
av := a · v and αv := α · v.



1.1 Basic concepts 3

Important examples of algebras are group algebras. For simplicity we restrict
ourselves to finite groups.

Definition 1.1.6 Let K be a commutative ring and (G, ·) be a finite group.
Put KG := KG, the set of all maps from G to K, and define for a, b ∈ KG,
α ∈ K and g ∈ G
(a+b)(g) := a(g)+b(g), (ab)(g) :=

∑∑
h∈G

a(h)b(h−1 ·g), (αa)(g) := αa(g).

For g ∈ G let go ∈ KG be defined by

go(h) :=
{

0 for h ∈ G \ {g},
1K for h = g

Then it is readily verified that KG is a K-algebra with unit 1o, where 1 is the
unit in G. It is called the group algebra of G over K.

Remark 1.1.7 If a ∈ KG then clearly a =
∑
g∈G a(g)go. Thus KG is a free

K-module with basis (go)g∈G, that is, every element a ∈ KG can be uniquely
written in the form a =

∑
g∈G αg g

o with αg ∈ K. Also goho = (gh)o, so that
g �→ go gives an embedding (= injective group homomorphism) from G to the
group of units (KG)× (= multiplicative group of invertible elements) of KG. It
is common practice to identify g ∈ G with go ∈ KG. Then

KG = {
∑
g∈G

αg g | αg ∈ K}.

Of course, KG is commutative if and only if G is abelian.

Example 1.1.8 We consider the symmetric group Sn = (Sn, ◦) of degree n, the
set of all permutations of {1, . . . , n} with multiplication ◦ defined by (σ◦τ)(i) :=
σ(τ(i)) for σ, τ ∈ Sn and i ∈ {1, . . . , n}. We will use the familiar cycle notation
for elements of Sn. So, for instance, σ = (2, 3)(5, 7, 8) ∈ S9 is the permutation
with σ(2) = 3, σ(3) = 2, σ(5) = 7, σ(7) = 8, σ(8) = 5 and σ(i) = i for
i ∈ {1, 4, 6, 9}. If K is a commutative ring then

K S3 = {α1() +α2(1, 2, 3) +α3(1, 3, 2) +α4(1, 2) +α5(2, 3) +α6(1, 3) | αi ∈ K},

and in K S3 we can compute, for instance with a := ( () + (1, 2, 3) + (1, 3, 2) ),

a · (1, 2) = (1, 2) + (1, 3) + (2, 3), a · ( ()− (1, 3, 2) ) = 0, a2 = 3 a.

Assumption: For the rest of this section we will assume that G is a finite
group and K a commutative ring. If we require that K is a field we will say so,
unless it is clear from the context, e.g. if we are talking about K-vector spaces.

Notation: If M is a subset of G we put

M+ :=
∑
g∈M

g ∈ KG. (1.1)

As usual we write gh := h−1gh for g, h ∈ G. Furthermore gG := {gh | h ∈ G}
and cl(G) := {gG | g ∈ G}, the set of conjugacy classes of G.

The center of a group algebra is easily described as follows.



4 Representations and modules

Lemma 1.1.9 (C+)C∈cl(G)is a K-basis of the center Z(KG) of KG.

Proof. If z =
∑
g∈G αgg ∈ KG, then z ∈ Z(KG) if and only if h−1zh = z for

all h ∈ G, so if and only if∑
g∈G

αgh
−1gh =

∑
g∈G

αhgh−1g =
∑
g∈G

αgg;

hence if and only if αg = αhgh−1 for all h, g ∈ G. This condition is equivalent
to saying that αg must be constant on conjugacy classes, or in other words that
z =

∑
C∈cl(G) αCC

+, where αC = αg if g ∈ C.

Any representation δ : G → GL(V ) of a finite group G over a field K (and
likewise any matrix representation δ : G → GLn(K)) extends by K-linearity
naturally to a K-algebra homomorphism δ : KG → EndK V (resp. δ : KG →
Kn×n), which will be denoted by the same symbol and which is called a repre-
sentation (resp. matrix representation) of the group algebra. Also V becomes
a (left) KG-module via a · v := δ(a)(v) for a ∈ KG and v ∈ V . Conversely, if
V is any KG-module, which has finite dimension as a K-vector space, then one
obtains a representation δ : KG→ EndK V by defining δ(a)(v) := a · v and one
obtains a representation of G by restricting δ to G. The KG-module V is often
called the representation module of the representation δ : G→ GL(V ) and δ
is called the representation “afforded by V .” Obviously, equivalent representa-
tions have representation modules that are isomorphic as KG-modules and vice
versa.

Although we are usually considering representations (and algebras) over a
field, there are occasions where representations (and algebras) over a commuta-
tive ring K come up. In this case we will make provisions that the K-modules
considered have a finite K-basis.

Definition 1.1.10 Let K be a commutative ring and A a K-algebra. A matrix
representation of A over K is a K-algebra homomorphism δ : A→ Kn×n for
some n ∈ N. If V is a free K-module with a finite K-basis and EndK V is
the K-algebra of all K-linear maps from V to V , a K-algebra homomorphism
δ : A→ EndK V is called a representation of A.

Remark 1.1.11 If δ : A → Kn×n is a matrix representation of the K-algebra
A then the free K-module Kn := Kn×1 becomes an A-module by

a · v := δ(a) v for a ∈ A , v ∈ Kn .

Conversely, if V is an A-module which is free as a K-module with K-basis
B := (v1, . . . , vn), then we obtain a matrix representation δB : A → Kn×n by
defining

δB(a) := [αij ] ∈ Kn×n if a · vj =
n∑
i=1

αijvi (a ∈ A , 1 ≤ j ≤ n) .

However, if V is an A-module which does not have a finite K-basis, V does not
give rise to a matrix representation.
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Notation: Let V and W be A-modules for a K-algebra A. Furthermore let
A′ ⊆ A , a ∈ A and U ⊆ V .

(1) U ≤A V means “U is an A-submodule of V ,” that is, U is a subgroup of
the additive group of V and A · U := {a · u | a ∈ A, u ∈ U} ⊆ U .

(2) kerV A′ := {v ∈ V | A′ · v = 0} ⊆ V and kerV (a) := kerV {a}.

(3) annA U := {a ∈ A | a · U = 0} ≤A AA, a left ideal in A.

(4)

HomA(V,W ) := {ϕ : V →W | ϕ(a · v1 + v2) = a · ϕ(v1) + ϕ(v2),
for all a ∈ A and v1, v2 ∈ V }

is the K-module of all A-homomorphisms of V to W .

(5) EndA V := HomA(V, V ) is the A-endomorphism ring of V with identity
idV , the identity map of V , and multiplication ϕψ := ϕ ◦ ψ for ϕ,ψ ∈
EndA V , the composition of ϕ and ψ.

(6) δV : A→ EndK V is defined by δV (a)(v) := a · v for a ∈ A , v ∈ V . This
is obviously a K-algebra homomorphism with kernel annA V . If V has a
finite K-basis, δV is called the representation of A afforded by V .

Observe that by Remark 1.1.5 A-modules V,W are also K-modules and
it is clear that HomA(V,W ) ⊆ HomK(V,W ). Remark 1.1.5 also shows that
E := EndA V is a K-algebra with λE(α) : v �→ αv. The following is an obvious
consequence from the definitions.

Lemma 1.1.12 Let A be a K-algebra and V an A-module with E := EndA V .
Then V can be considered as an E-module via ϕ · v := ϕ(v) for ϕ ∈ E, v ∈ V ,
and

(a) kerV A′ ≤E V for A′ ⊆ A,

(b) if U ≤A V , then annA U is a two-sided ideal in A, in symbols: annA U �A.

Definition 1.1.13 Let A be a K-algebra and V an A-module with submodules
V1, . . . , Vn. Then V is called the direct sum of V1, . . . , Vn, written

V =
n⊕
i=1

Vi = V1 ⊕ · · · ⊕ Vn (1.2)

if every v ∈ V can be written uniquely in the form v = v1 + · · ·+vn with vi ∈ Vi.
For 1 ≤ i ≤ n define πi : V → Vi , v �→ vi and ιi : Vi → V , vi �→ vi. Then
πi ∈ HomA(V, Vi), ιi ∈ HomA(Vi, V ) are called the projections and injections
corresponding to the decomposition (1.2). They satisfy

idV =
n∑
i=1

ιi ◦ πi and πi ◦ ιj =
{

0 for i 
= j,
idVi for i = j.

(1.3)
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Remark 1.1.14 V in (1.2) is sometimes called the “internal direct sum” of the
submodules V1, . . . , Vn in contrast to the “external direct sum,” which can be
defined for arbitrary (not necessarily distinct) A-modules V1, . . . , Vn as follows.
Put V̂ := V1⊕̂ · · · ⊕̂Vn := {(v1, . . . , vn) | vi ∈ Vi} = {(vi)ni=1 | vi ∈ Vi} and

(vi)ni=1 + (v′
i)
n
i=1 := (vi + v′

i)
n
i=1 and a · (vi)ni=1 := (a · vi)ni=1.

Then V̂ is an A-module and we have the obvious embeddings ι̂i ∈ HomA(Vi, V̂ )
so that V1⊕̂ · · · ⊕̂Vn = ι̂1(V1) ⊕ · · · ⊕ ι̂n(Vn). We will identify Vi with ι̂i(Vi)
and use only ⊕, leaving it to the reader to decide from the context whether the
internal or external direct sum is meant.

Theorem 1.1.15 Let A be a K-algebra and let V :=
⊕m

i=1 Vi, W :=
⊕n

j=1Wj

be A-modules. Then

HomA(V,W ) ∼=K

m⊕
i=1

n⊕
j=1

HomA(Vi,Wj),

where “ ∼=K” means being isomorphic as K-modules.

Proof. Let (πi, ιi)mi=1 and (π′
j , ι

′
j)
n
j=1 be the families of projections and injec-

tions corresponding to V :=
⊕m

j=1 Vi and W :=
⊕n

i=1Wj , respectively. Using
(1.3) it is easily checked that

HomA(V,W ) →
m⊕
i=1

n⊕
j=1

HomA(Vi,Wj) , ϕ �→ (π′
j ◦ ϕ ◦ ιi)1≤i≤m,1≤j≤n

gives the desired K-isomorphism.

Definition 1.1.16 Let V be a K-module with a finite K-basis. A representa-
tion δ : G→ GL(V ) of a group G over K or a representation δV : A→ EndK V
of a K-algebra A is called irreducible if the corresponding KG-module or A-
module V is simple, i.e. has exactly two submodules, namely {0} and V , and
reducible otherwise. (So the zero module {0} is by definition not simple.)
Often simple modules are also called irreducible.

Likewise δ or δV as above is called indecomposable if the corresponding
module is indecomposable (i.e. cannot be written as a direct sum of two non-
trivial submodules) and is called decomposable otherwise.

If K is a field, we see that δ is reducible if and only if a basis B = (v1, . . . , vn)
of V can be found such that

[δ(g)]B =
[

δ1(g) C(g)
0 δ2(g)

]
for all g ∈ G (1.4)

with square matrices δ1(g) ∈ Km×m, δ2(g) ∈ K(n−m)×(n−m) and C(g) ∈
Km×(n−m) for some 0 < m < n = dimK V . Here

δ1 : g �→ δ1(g) and δ2 : g �→ δ2(g)
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are matrix representations of G afforded by the submodule W = 〈v1, . . . , vm〉K ,
the K-span of v1, . . . , vn, with respect to the basis (v1, . . . , vm) and the factor
module V/W with respect to the basis (vm+1+W, . . . , vn+W ). A representation
δ : G → GL(V ) over a field K is decomposable if and only if a basis B =
(v1, . . . , vn) can be found such that

[δ(g)]B =
[

δ1(g) 0
0 δ2(g)

]
for all g ∈ G.

In this case W , as defined above, has a complement W ′ = 〈vm+1, . . . , vn〉K
which is also a KG-module and δ2 is also a matrix representation of G afforded
by W ′ (with respect to the basis (vm+1, . . . , vn)).

Example 1.1.17 If V is any K-vector space we get for any group G a “trivial”
representation δ : G → GL(V ) , g �→ idV . This representation is irreducible if
and only if dimK V = 1. �

Definition 1.1.18 If V is a KG-module then

InvG(V ) := {v ∈ V | g · v = v for all g ∈ G}

is called the submodule of G-invariants of V . We also define

InvG(V ) := 〈(g − 1)v | g ∈ G , v ∈ V 〉K .

The notations CV (G) := InvG(V ) and [G,V ] := InvG(V ) are also in use.

Obviously InvG(V ) and InvG(V ) are KG-modules, the largest submodule
with trivial action of G and the smallest submodule W of V such that G acts
trivially on V/W .

Example 1.1.19 The (left) regular KG-module KGKG for a finite group G
leads to the so-called (left) regular representation ρG : G → GL(KG) of G.
It is easily seen that

InvG(KG) = K ·
∑
g∈G

g and InvG(KG) = {
∑
g∈G

αgg |
∑
g∈G

αg = 0}.

In particular, the regular representation ρG is always reducible if G is not the
trivial group. �

Definition 1.1.20 If A is a ring and ϕ : A′ → A is a ring homomorphism, then
any A-module V can be turned into an A′-module by defining

a′ · v := ϕ(a′) v for a′ ∈ A′ , v ∈ V.

This A′-module will be denoted by Infϕ V and is called the inflated module. If
ϕ : A′ → A is a homomorphism of K-algebras and V affords the representation δ
of A then Infϕ V affords the representation δ ◦ϕ of A′, called the inflated rep-
resentation. The same concept applies to group representations: if ϕ : G1 → G
is a group homomorphism and δ : G→ GL(V ) is a representation then δ ◦ ϕ is
the inflated group representation.
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If A,A′ are K-algebras, one should note that the K-module structures of V
and Infϕ V may be different, unless ϕ is a homomorphism of K-algebras; see
Exercise 1.1.12 for an example.

Remark 1.1.21 Obviously, if Infϕ V is simple (indecomposable) then V itself
must be simple (resp. indecomposable); the converse holds too, provided that ϕ
is surjective. Also, if V1, V2 are A-modules, then

HomA(V1, V2) ⊆ HomA′(Infϕ V1 , Infϕ V2)

with equality, if ϕ is surjective.
The special and simple case that ϕ is an embedding needs special attention,

since it is used so frequently. If A′ is a subalgebra of A with embedding ϕ : A′ →
A and V is an A-module as before, then we write VA′ := Infϕ V . It is just the
module obtained by restricting the action. In particular, if H is a subgroup
of a group G and V is a KG-module we have an embedding of K-algebras
ϕ : KH → KG, and we denote the KH-module Infϕ V by VH .

Remark 1.1.22 If A is a K-algebra and V is an A-module which affords a
matrix representation δ : A→ Kn×n with respect to some K-basis of V , then

V ∼=A Infδ K
n,

where Kn is considered as a Kn×n-module in the natural way.

In the following two examples we show that the representation theory of
cyclic groups and, more generally, cyclic algebras over a field K is quite sim-
ple. In some important cases we will write down explicitly all irreducible and
indecomposable representations up to equivalence.

Example 1.1.23 (Cyclic groups) If Cm = 〈g〉 is a cyclic group of order m
(with generator g), giving a matrix representation δ of Cm of degree n over a
field K amounts to giving a matrix a := δ(g) ∈ Kn×n with am = In, where
In denotes the identity matrix in degree n, or, to put it otherwise, to giving a
matrix a ∈ Kn×n with minimal polynomial µa dividingXm−1 in the polynomial
ring K[X]. Similar matrices define equivalent representations and vice versa.
It is well known that a matrix a is diagonalizable in Kn×n (that is, similar to
a diagonal matrix) if and only if the minimal polynomial µa decomposes into
linear factors in K[X] without multiple roots (see [153], theorem 8.11, p. 166).
The polynomial Xm−1 has no multiple roots if and only if charK � m. Thus it
follows that if K is a field of characteristic not dividing m containing a primitive
mth root ζm of unity, then any matrix representation of Cm is equivalent to one
that maps the generator g to a diagonal matrix with mth roots of unity on the
diagonal. In particular every irreducible matrix representation of Cm over such
a field K (as for instance C) is of degree one and of the form

g �→ ζim for i ∈ {0, . . . ,m− 1}.
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Also, every indecomposable representation is irreducible in this case.
On the other hand, if charK = p, a prime, m = ps and δ : Cm → GLn(K) is

a matrix representation, then δ(g) has a minimal polynomial dividing (X−1)m,
and hence δ is equivalent to the representation given by the Jordan normal form
of δ(g) (see [153], theorem 8.6, p. 159):

δ : g �→



1 0 . . . . . . 0

ε1 1
. . .

. . . 0

0 ε2
. . .

. . . 0
...

. . .
. . .

. . . 0
0 . . . 0 εn−1 1


with εi ∈ {0, 1}, which is indecomposable if and only if all εi equal unity.
Hence Cm has for j = 1, . . . ,m up to equivalence exactly one indecomposable
representation of degree j and the trivial representation is the only irreducible
one.

The structure of the group algebra of a cyclic group Cm of orderm can also be
easily described: keeping the notation as above we have an algebra epimorphism
K[X] → K Cm , X �→ g, with kernel the principal ideal (Xm−1)�K[X]. Thus

K Cm ∼= K[X]/(Xm − 1).

By the isomorphism theorem for rings the ideals of K Cm correspond bijectively
to those ideals of K[X] which contain (Xm − 1), thus to the monic divisors of
Xm − 1 ∈ K[X]. Hence the poset of ideals of K Cm (with inclusions) is anti-
isomorphic to the poset of monic divisors of Xm − 1 (with divisibility as order
relation). If charK � m then Xm − 1 =

∏r
i=1 fi with pairwise distinct monic

irreducible polynomials fi ∈ K[X], and

K Cm ∼= K[X]/(f1)⊕ · · · ⊕K[X]/(fr)

is a direct sum of fields with the ith projection being given by g �→ X + (fi). In
particular, if in addition K contains a primitive mth root of unity ζm then we
may choose fi := X − ζim (1 ≤ i ≤ r = m), and it follows that

K Cm ∼= K ⊕ · · · ⊕K︸ ︷︷ ︸
m

.

Them distinct projections are exactly them irreducible representations ofK Cm
over K, the ith one yielding the representation defined by g �→ ζim.

On the other hand, if charK = p > 0 and m = ps, the poset of ideals of
K Cm is isomorphic to the poset of monic divisors of Xm − 1 = (X − 1)m and
K Cm has exactly m+1 ideals Ii, all appearing in the unique composition series

K Cm = Im � Im−1 � . . .� I0 = {0}

with dimK Ii = i. �
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Example 1.1.24 (Cyclic algebras) We generalize Example 1.1.23 and let A
be a cyclic K-algebra over a field K, i.e. an algebra having one algebra generator,
say a. So A = K[a] is a homomorphic image of the polynomial ring K[X] over
K in one indeterminate X. Hence A ∼= K[X]/(f) for some f ∈ K[X]. If V is
an A-module (affording the representation δV ) then V can also be considered
as a K[X]-module (see Remark 1.1.21) with f · v = 0 for all v ∈ V and, if
dimK V < ∞, we can invoke the theorem on finitely generated modules over
principal ideal domains (see [110], theorem III.7.5, p. 149) to conclude that

V ∼=K[X] K[X]/(q1)⊕ · · · ⊕K[X]/(qm),

where q1, . . . , qm are powers of monic irreducible polynomials. The qi are
uniquely determined up to the ordering and are divisors of f . They are usu-
ally called the elementary divisors of δV (a) (see [153], p. 135). The modules
Vqi := K[X]/(qi) are annihilated by f and can thus be considered as A-modules,
and the generating element a acts on Vqi as X does; this means that we can
find a K-basis B of V such that

[δV (a)]B =

 Mq1 0
. . .

0 Mqm

 ,
where Mq is the companion matrix (see [153], p. 146) of the monic polynomial
q; i.e. if q =

∑d
i=0 αiX

i with αd = 1 then

Mq =


0 0 · · · 0 −α0
1 0 −α1

0
. . .

. . .
...

. · · ·
. . . 0 .

0 0 1 −αd−1

 ∈ Kd×d.

Observe that the characteristic polynomial of δV (a) is exactly
∏m
i=1 qi. The

poset of submodules of Vqi is isomorphic to the poset of divisors of qi in K[X].
In particular Vqi is always an indecomposable A-module and it is simple if and
only if qi is irreducible in K[X]. If p ∈ K[X] irreducible of degree s and q = pe

then by Exercise 1.1.11 Mq is similar to

M ′
q :=


Mp 0 . . . 0

E Mp

. . .
...

...
. . .

. . . 0
0 . . . E Mp

, with E =


0 . . . 0 1

0
. . . 0

...
...

0 . . . 0

 ∈ Ks×s. (1.5)

For later use (in Lemma 1.3.9) we note that

dimK kerV (pi(a)) ≥ deg p (1.6)

because Mp has minimal polynomial p. If equality holds in (1.6) then there is
exactly one elementary divisor qi which is a power of p. �
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Remark 1.1.25 Let a1, . . . , ar be algebra generators of a K-algebra A. Then
any matrix representation δ : A → Kn×n of A is completely determined by
the r matrices δ(a1), . . . , δ(ar). If a K-algebra presentation of A is given with
generators a1, . . . , ar, then for any r matrices a1, . . . ,ar ∈ Kn×n there is a
representation δ : A → Kn×n with δ(ai) = ai for i = 1, . . . , r if and only if the
matrices ai satisfy the defining relations of the presentation. Note that for group
algebras a presentation of the underlying group very conveniently also yields a
presentation of the group algebra – one just has to add relations assuring that
the group generators are invertible if need be.

Example 1.1.26 The alternating group G := A4 of degree four has the follow-
ing presentation: 〈a , b | a2 = b3 = (a · b)3 = 1〉 (see also Remark 2.5.11). We
want to find all non-trivial representations δ : G → GL2(Q) up to equivalence.
If δ is non-trivial, then δ(a) 
= I2, because δ(a) = I2 implies δ(b)2 = δ(b)3 = I2.
So we may choose δ(b) in rational canonical form. So we may assume that

δ(a) =
[

x y
z t

]
, δ(b) =

[
0 −1
1 −1

]
(so that δ(ab) =

[
y −x − y
t −z − t

]
)

with unknowns x, y, z, t. The equations

δ(a)2 = I2, (δ(a) · δ(b))3 = I2 (1.7)

yield polynomial equations for x, y, z, t. The first one gives δ(a) = I2 or t = −x
and x2 + yz = 1. Since δ(ab) has order three, its trace must be −1 = y − z − t,
so that we can eliminate z. If δ(a) 
= I2 we obtain from (1.7)

det δ(a) = −x2−xy−y2−y = −1 and det(δ(a)δ(b)) = −x2−xy−y2−y = 1,

which shows that up to equivalence the only non-trivial rational representation
of G of degree two is given by a �→ I2, b �→

[
0 −1
1 −1

]
.

On the other hand, it is easy to verify that the matrices

A :=

[
0 1 −1
1 0 −1
0 0 −1

]
, B :=

[
0 0 1
1 0 0
0 1 0

]

satisfy A2 = B3 = (A · B)3 = I3, so that a �→ A, b �→ B defines a (faithful)
representation of G (over any field).

In [148] the method is used to construct representations of the (infinite)
group 〈a , b | a2 = b3 = (a · b)7 = 1〉 of degree up to seven over fields of
characteristic zero. �

If δ : G→ GLn(K) is a representation of G over the field K and L ⊇ K is a
field extension, it is clear that δ can also be considered as a representation over
L using the embedding GLn(K) ⊆ GLn(L). To extend this simple idea (and for
later purposes as well) we have to recall the concept of tensor products.
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Definition 1.1.27 Let K be a commutative ring and let V, W be K-modules.
We denote the free K-module with basis V ×W by F (V,W ) and consider the
following subsets of F (V,W ):

M1 := {(v + v′, w)− (v, w)− (v′, w) | v, v′ ∈ V, w ∈W},
M2 := {(v, w + w′)− (v, w)− (v, w′) | v ∈ V, w,w′ ∈W},
M3 := {(αv,w)− α(v, w), (v, αw)− α(v, w) | α ∈ K, v ∈ V, w ∈W}

and UV,W := 〈M1∪M2∪M3〉K ≤K F (V,W ). Then V ⊗KW := F (V,W )/UV,W
is called the tensor product of V and W . For v ∈ V and w ∈ W one defines
v ⊗ w := (v, w) + UV,W .

Remark 1.1.28 The definition implies V ⊗K W = 〈v ⊗ w | v ∈ V, w ∈ W 〉K
and the following basic relations:

• (v + v′)⊗ w = v ⊗ w + v′ ⊗ w,

• v ⊗ (w + w′) = v ⊗ w + v ⊗ w′,

• α(v ⊗ w) = (αv)⊗ w = v ⊗ (αw),

for α ∈ K, v, v′ ∈ V, w,w′ ∈W .
Observe that in general V ⊗K W 
= {v ⊗ w | v ∈ V, w ∈ W}. If V and

W are free K-modules with K-bases B = (v1, . . . , vn) and B′ = (w1, . . . , wm),
respectively, then one can check that V ⊗KW is a free K-module with K-basis

B ⊗B′ := (v1 ⊗ w1, . . . , v1 ⊗ wm, . . . , vn ⊗ w1, . . . , vn ⊗ wm).

Assume that Φ: V ×W → K is a K-bilinear map. Then Φ extends uniquely
to a K-linear map F (V,W ) → K and this obviously has UV,W in its kernel, so
factors over a K-linear map

ϕ : V ⊗K W → K with ϕ(v ⊗ w) = Φ(v, w) for v ∈ V, w ∈W.

This is usually called the universal property of the tensor product.
If L is a commutative ring with L ⊇ K then L may also be considered as a K-

module and L⊗KW may be turned into an L-module in the following way. For
γ ∈ L let λγ : F (L,W ) → L⊗KW be the K-linear map with λγ(β,w) = γβ⊗w.
Then UL,W ≤ kerλγ and we obtain a K-linear map

λ̄γ : L⊗K W → L⊗K W with β ⊗ w �→ γβ ⊗ w.

For x ∈ L ⊗K W we define γ · x := λ̄γ(x). If W is free with K-basis B :=
(w1, . . . , wm), then it is easily checked that L⊗KW is free with L-basis 1⊗B :=
1⊗ w1, . . . , 1⊗ wm.

If A,A′ are K-algebras then the K-module A ⊗K A′ may be turned into a
K-algebra satisfying

(a1 ⊗ a′
1) · (a2 ⊗ a′

2) = a1 a2 ⊗ a′
1 a

′
2 for a1, a2 ∈ A, a′

1, a
′
2 ∈ A′.



1.1 Basic concepts 13

This is particularly easily seen provided thatA, A′ are free and finitely generated
as K-modules, the case we are usually dealing with, but holds in general as well.
If A is a K-algebra and L is as above, then LA := L ⊗K A is an L-algebra. If
(a1, . . . , an) is a K-basis of A, then (1 ⊗ a1, . . . , 1 ⊗ an) is an L-basis of LA.
Furthermore, for an A-module V we can turn the L-module LV := L⊗K V into
an LA-module LV with

(β ⊗ a) · (γ ⊗ v) = βγ ⊗ a v for β, γ ∈ L, a ∈ A, v ∈ V.

Definition 1.1.29 Let A be a K-algebra for some field K and let L ⊇ K
be an extension field. If V is an A-module (with dimK V < ∞) affording
the representation δ : A → EndK V then the representation of LA afforded by
LV will be denoted by Lδ. The A-module V is called absolutely simple or
absolutely irreducible if LV is simple for any field extension L ⊇ K. A group
representation δ : G→ GL(V ) over the field K is called absolutely irreducible
if the corresponding representation module V is absolutely simple.

Observe that if δ : G → GL(V ) is a representation of a group G over a
field K and B is a K-basis of V then for an extension field L ⊇ K we have
[δ(g)]B = [Lδ(g)]1⊗B for all g ∈ G, where 1⊗B is as in Remark 1.1.28.

Example 1.1.30 Obviously every representation of a group of degree one is
absolutely irreducible. �

Example 1.1.31 Let G = 〈g〉 be a cyclic group of prime order p > 2. It follows
from Example 1.1.24 that we have an irreducible rational matrix representation

δ : G→ GLp−1(Q) , g �→


0 0 · · · −1
1 0 0 −1
0 1 0 −1
...

. . .
...

0 0 1 −1

 ,

because Xp−1 + · · · + X + 1 ∈ Q[X] is irreducible. But δ is not absolutely
irreducible because over the complex numbers Cδ is equivalent to

δ′ : G→ GLp−1(C) , g �→ diag(ζ, ζ2, . . . , ζp−1)

for a primitive pth root ζ in C, where diag(α1, . . . , αn) denotes a diagonal matrix
with α1, . . . , αn on the diagonal. �

Definition 1.1.32 If A is a K-algebra and V is a (left) A-module, then V � :=
HomK(V,K) becomes a right A-module with

(x � a)(v) := x (a v) for a ∈ A, x ∈ V � and v ∈ V,

which is called the dual module to V .
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If V is an A-module which is free as a K-module this means, in terms
of representations, the following. If δ : A → EndK V is the K-representation
corresponding to V (i.e. δ(a)(v) = a · v) then corresponding to V � we have an
“anti-representation”

δ� : A→ EndK V � defined by δ�(a) = δ(a)T (the transposed map),

that is δ�(a)(x) := x ◦ δ(a) for x ∈ V �. This is an anti-representation because,
since V � is a right A-module, we have δ�(a · a′) = δ�(a′) ◦ δ�(a) for a, a′ ∈ A.

For practical purposes, it is convenient to consider instead of the action
of a K-algebra A on an A-module V of K-rank n the corresponding matrix
representation of A with respect to a chosen K-basis B := (v1, . . . , vn) of V .
Moreover, it suffices to give the matrix representation evaluated on a given
generating set of A only. These matrices act from the left by multiplication
on the column-vectors in Kn×1, which we interpret as the coordinate-vectors
with respect to the basis B of V . The multiplication of these matrices with
the row-vectors in K1×n describes the action of A (from the right) on V � with
respect to the dual basis B�. Recall that B� = (x1, . . . , xn) is defined by
xi(
∑n
j=1 αjvj) = αi, where α1, . . . , αn ∈ K.

It is clear that one can likewise define the dual of a right A-module, which
is, of course, a left A-module. Moreover the dual of an (A,A)-bimodule is an
(A,A)-bimodule as defined below.

Definition 1.1.33 If A and A′ are K-algebras an (A,A′)-bimodule V is a left
A-module which is at the same time a right A′-module satisfying

a · (v · a′) = (a · v) · a′ for all a ∈ A, a′ ∈ A′, v ∈ V

and
(α 1A) · v = v · (α 1A′) for all α ∈ K, v ∈ V.

A homomorphism of (A,A′)-bimodules is a K-linear map which is a homomor-
phism of left and right modules.

A K-algebra A can be viewed as an (A,A)-bimodule in a natural way, and
the observation preceding Definition 1.1.33 shows that A� is also an (A,A)-
bimodule.

If K is a field and dimK V <∞ one obtains the following as a slight gener-
alization of the duality theorem of linear algebra.

Theorem 1.1.34 (Duality theorem) Let A be a K-algebra for a field K and
V be a left A-module with dimK V = n <∞; then (V �)� ∼=A V and the map

W �→W ◦ := {x ∈ V � | x(w) = 0 for all w ∈W}

defines an inclusion reversing bijection, in fact an anti-isomorphism of posets,
of the poset of A-submodules of V onto the poset of right A-submodules of V �.
For A-submodules U ≤ W of V one has U◦/W ◦ ∼=A (W/U)�. In particular
dimKW

◦ = n− dimKW .
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Proof. For v ∈ V define v• : V � → K, λ �→ λ(v). Then v• ∈ (V �)� and
Ψ: V → (V �)�, v �→ v• is an injective A-linear map, which is an isomorphism,
because dimK V = dimK(V �)� = n. If W ≤A V then the restriction map
Φ: V � → W �, λ �→ λ|W is an A-linear map with kernel W ◦, so W ◦ ≤A V �.
It is surjective, since any µ ∈ W � can be extended to an element of V �. If
Λ ≤A V � then W := {v ∈ V | λ(v) = 0 for all λ ∈ Λ} ≤A V and Λ = W ◦.
Hence W �→W ◦ indeed defines a bijection between the A-submodules of V and
V �. The remaining assertions now follow readily.

In the case of a group algebra A = KG of a finite group G one may turn the
dual V � of a KG-module V again into a (left) KG-module as follows.

Definition 1.1.35 If V is a KG-module we define

(
∑
g∈G

αgg) · x := x � (
∑
g∈G

αgg
−1) for x ∈ V �, αg ∈ K .

Then (V �, ·) is a (left) KG-module, called the contragredient module to V .

In essence this means that we define for x ∈ V �

(g · x)(v) := x(g−1v) for v ∈ V, g ∈ G

and extend the action K-linearly. We will often write gx instead of g · x. In
terms of representations, this means that if V affords the representation δ : G→
GL(V ) then the contragredient module V � affords δ� : G → GL(V �) , g �→
(δ(g−1))T. If B is a K-basis of V and B� is the dual basis of V � then [δ�(g)]B� =
[δ(g−1)]TB , the transposed matrix of [δ(g−1)]B . Thus, if δ : G → GLn(K) is a
matrix representation, the contragredient matrix representation is defined to be

δ� : G→ GLn(K) , g �→ δ(g−1)T.

Corollary 1.1.36 If V is a KG-module then (InvG(V ))◦ = InvG(V �).

Making V � into a (left) KG-module is a special case of the following.

Definition 1.1.37 If V and W are KG-modules the K-module HomK(V,W )
of all K-linear maps from V and W becomes a KG-module by defining

(g · ϕ)(v) := g(ϕ(g−1v)) for g ∈ G, ϕ ∈ HomK(V,W ), v ∈ V,

and by K-linear extension to KG.

Obviously, HomKG(V,W ) = InvG(HomK(V,W )).
Another important construction is the following lemma.

Lemma 1.1.38 Let V,W be KG-modules. Then V ⊗K W may be turned into
a KG-module with g · (v⊗w) = gv⊗ gw. If V,W are free and finitely generated
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as K-modules and δ := δV , δ
′ := δW are the corresponding representations we

get a new representation

δ ⊗ δ′ : G→ GL(V ⊗K W ) , g �→ δ(g)⊗ δ′(g).

If B = (v1, . . . , vn) , B′ = (w1, . . . , wm) are K-bases of V and W respectively,
and if

[δ(g)]B = D(g) = [dij(g)] , [δ′(g)]B′ = D′(g) for g ∈ G,

then

[(δ ⊗ δ′)(g)]B⊗B′ =

 d11(g)D′(g) . . . d1n(g)D′(g)
...

...
dn1(g)D′(g) . . . dnn(g)D′(g)

 ,
where B ⊗B′ := (v1 ⊗ w1, . . . , v1 ⊗ wm, . . . , vn ⊗ w1, . . . , vn ⊗ wm).

Proof. This is a simple exercise in multilinear algebra. One shows that the
map V ×W → V ⊗K W , (v, w) �→ gv ⊗ gw, is K-bilinear for any g ∈ G, and
hence that it factors over V ⊗KW , and that this, in fact, defines a proper action
of G on V ⊗K W .

This action of KG on V ⊗K W is usually called the diagonal action. The
matrix [(δ⊗δ′)(g)]B⊗B′ defined above is usually called the Kronecker product
of D(g) and D′(g) and is often denoted by D(g)⊗D′(g).

A basic and simple property of the tensor product is given by

Lemma 1.1.39 If V1, V2,W are KG-modules then

(V1 ⊕ V2)⊗K W ∼=KG (V1 ⊗K W )⊕ (V2 ⊗K W ).

Proof. See [110], corollary XVI.2.2, p. 608.

The tensor product modules and the Hom-modules are related by

Lemma 1.1.40 If V and W are KG-modules with finite K-bases, then

HomK(V,W ) ∼=KG V � ⊗K W.

Proof. We get a KG-linear map Ψ: V � ⊗K W → HomK(V,W ) with
Ψ(λ⊗ w) : v �→ λ(v)w. Let (v1, . . . , vm) and (w1, . . . , wn) be K-bases of V and
W , respectively, with dual bases (v�1 , . . . , v

�
m) and (w�1 , . . . , w

�
n). Then

Ψ(v�i ⊗ wj)(vk) = δi,k wj (1 ≤ i, k ≤ m, 1 ≤ j ≤ n),

where δi,k is the usual Kronecker delta, which is unity for i = k and zero if
i 
= k. From this it readily follows that (Ψ(v�i ⊗ wj))1≤i≤m, 1≤j≤n is a K-basis
of HomK(V,W ). Hence Ψ is bijective.
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It is not hard to see that the assertion of Lemma 1.1.40 also holds if only V or
W has a finite K-basis, but we will not need this.

Definition 1.1.41 If V is a KG-module then the K-module of bilinear forms
on V

BifoK V := {Φ: V × V → K | Φ is K-bilinear }

is a KG-module with (gΦ)(v, w) := Φ(g−1v, g−1w) for all g ∈ G and v, w ∈ V .

If B := (v1, . . . , vn) is a K-basis of V, and Φ ∈ BifoK V , then

[Φ]B := [Φ(vi, vj)]i,j=1,...,n

is called the “Gram-matrix” of Φ with respect to B. If δ : G→ GLn(K) is the
matrix representation afforded by V with respect to the basis B, then clearly

[g · Φ]B = δ(g−1)T [Φ]B δ(g−1) for g ∈ G.

The next simple lemma will be useful when studying “selfdual” modules, i.e.
KG-modules V with V ∼=KG V �.

Lemma 1.1.42 Let V be a KG-module with a finite K-basis. Then

(V ⊗K V )� ∼=KG BifoK V ∼=KG HomK(V, V �).

Proof. The universal property of the tensor product (see Remark 1.1.28) gives
a K-isomorphism BifoK V ∼= HomK(V ⊗K V,K) = (V ⊗K V )�, and it is readily
checked that this is, in fact, a KG-isomorphism. As for the second isomorphism,
observe that we have a K-linear isomorphism

Ψ: HomK(V, V �) → BifoK V with Ψ(ϕ) : (v, v′) �→ ϕ(v)(v′) ∈ K

for v, v′ ∈ V and ϕ ∈ HomK(V, V �). Since

Ψ(gϕ)(v, v′) = (gϕ)(v)(v′) = (gϕ(g−1v))(v′) = ϕ(g−1v)(g−1v′) = (gΨ(ϕ))(v, v′)

this is actually a KG-isomorphism

There is an important class of algebras A, including group algebras, for
which A� is strongly related to A.

Definition 1.1.43 Let A be a K-algebra which is finitely generated and free
over K. A trace function on A is a K-linear map τ : A → K satisfying
τ(aa′) = τ(a′a) for all a, a′ ∈ A. The algebra A is called a symmetric algebra
if a trace function τ on A exists such that the map λ : A→ A� with λ(a)(x) :=
τ(ax) for a, x ∈ A is bijective. In this case τ is called a symmetrizing trace
for the symmetric algebra A.
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Remark 1.1.44 Let A be a symmetric K-algebra with symmetrizing trace τ .
(a) The map λ : A → A� in Definition 1.1.43 is an isomorphism of right A-
modules, in fact even of (A,A)-bimodules.
(b) For any K-basis B = (b1, . . . , bn) of A there is a uniquely defined “contra-
gredient basis” Bτ = (bτ1 , . . . , b

τ
n) of A such that τ(bi bτj ) = δi,j .

Example 1.1.45 For A = Kn×n the usual trace function

τ = trace : A→ K , [aij ] �→
n∑
i=1

aii,

qualifies as a symmetrizing trace in the sense of Definition 1.1.43. In fact, let
ei,j be the matrix in A with (i, j)-entry 1 and all other entries 0; then for
a = [aij ] ∈ A we have trace(ei,j · a) = aji. In particular

trace(ei,jek,l) = δi,lδj,k =
{

1 for (i, j) = (l, k),
0 for (i, j) 
= (l, k).

Thus in the notation of the remark, eτi,j = ej,i. �

Example 1.1.46 For a group algebra KG of a finite group G the map

τ : KG→ K ,
∑
g∈G

αg g �→ α1,

is also easily seen to be a trace function. For g, h ∈ G we have

τ(g h) =
{

1 for h = g−1,
0 for h 
= g−1.

Thus τ is a symmetrizing trace and KG is a symmetric algebra. �

Up to now we have considered tensor products only over commutative rings.
In later sections we will need a somewhat more general construction.

Definition 1.1.47 Assume that A, A′ areK-algebras, V is an (A′, A)-bimodule
and W is an A-module. We use the notation of Definition 1.1.27 and define in
addition

M4 := {(va, w)− (v, aw) | v ∈ V, w ∈W, a ∈ A}

and UV,W,A := 〈M1 ∪ M2 ∪ M3 ∪ M4〉K ≤K F (V,W ). Then V ⊗A W :=
F (V,W )/UV,W,A. For (v, w) ∈ V ×W we put v⊗w := (v, w)+UV,W,A ∈ V ⊗AW .

Remark 1.1.48 The definition yields V ⊗A W = 〈v ⊗ w | v ∈ V, w ∈ W 〉K
and an additional basic relation

v a⊗ w = v ⊗ aw for a ∈ A, v ∈ V, w ∈W.
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Also V ⊗AW can be turned into an A′-module in the following way. For a′ ∈ A′

let λa′ : F (V,W ) → V ⊗A W be the K-linear map with λa′(v, w) = a′v ⊗ w.
Then UV,W,A ≤ kerλa′ and hence factors over a K-linear map

λ̄a′ : V ⊗AW → V ⊗AW with v ⊗ w �→ a′v ⊗ w.

For x ∈ V ⊗AW we define a′ ·x := λ̄a′(x), and V ⊗AW becomes an A′-module.

Example 1.1.49 GAP provides the possibility to perform some computations
in group algebras of (small) groups. We give an example computing some rep-
resentations of G := S4 over K := Q:

gap> G := Group( (1,2), (1,2,3,4) );; K := Rationals;;
gap> KG := GroupRing( K, G );; o := Embedding( G, KG );;

This defines the group algebra of the permutation group generated by the cycles
(1, 2) and (1, 2, 3, 4) (which is obviously the symmetric group of degree four) over
the field Q of rational numbers. In GAP groups act from the right, iσ := σ(i)
for σ ∈ Sn and i ∈ {1, . . . , n}, and the product for σ, τ ∈ Sn is defined as
σ ∗ τ := τ ◦ σ. The isomorphism (Sn, ◦) → (Sn, ∗), σ �→ σ−1 provides a way to
translate results.

GAP does not identify the group elements with the corresponding elements
in the group algebra, although the way elements of a group algebra are dis-
played seems to indicate this. See Exercise 1.1.1 for an example where such an
identification could lead to contradictions. So we use o to embed G into KG.
Note that in GAP one may suppress the output of a command (which might be
lengthy or uninteresting) by using double semicolons.

We first check the little computation done in Example 1.1.8:

gap> a := ()ˆo + (1,2,3)ˆo + (1,3,2)ˆo;;
gap> Print( a*(1,2)ˆo ,", ", a*(()ˆo - (1,2,3)ˆo) ,", ", a*a = 3*a );
(1)*(2,3)+(1)*(1,2)+(1)*(1,3), <zero> of ..., true

Next we want to compute non-trivial submodules of the regular module
KGKG, that is non-trivial left ideals of KG. Of course, KG · g = KG for all
g ∈ G. In order to obtain proper left ideals we try KG · (1− g) for all g ∈ G:

gap> Set( List( G, g -> Dimension( LeftIdeal (KG, [()ˆo - gˆo]) ) ) );
[ 0, 12, 16, 18 ]
gap> Filtered(G, g -> Dimension( LeftIdeal (KG, [()ˆo - gˆo] ) ) = 12 );
[ (1,4)(2,3), (1,2)(3,4), (1,3)(2,4), (3,4), (1,2), (2,4), (1,3),
(2,3), (1,4) ]
gap> a := ()ˆo - (1,2)ˆo;;

We see that dimK KG · (1 − g) ∈ {0, 12, 16, 18} for all g ∈ G. We have chosen
a := () − (1, 2) so that dimK KG · a = 12. We may look for submodules of
smaller dimension and observe that KG · b a ≤KG KG · a:

gap> Set(List(G, g -> Dimension( LeftIdeal (KG, [(() - gˆo) * a] ) ) ) );
[ 0, 6, 8, 9, 11, 12 ]
gap> Filtered(G, g -> Dimension( LeftIdeal (KG, [(() - gˆo) * a] ) )= 6);
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[ (1,2)(3,4), (3,4) ]
gap> b := (()ˆo - (3,4)ˆo) * a;;
gap> V := LeftIdeal (KG, [b]);; B := Basis (V);;

V is a six-dimensional KG-module. We have chosen a K-basis B of V and we
can obtain the matrix [δV (g)]B for any g ∈ G with the GAP-commands

gap> g := (1,2,3);; # for example
gap> dg := TransposedMat(List( B, v -> Coefficients( B, ((gˆ-1)ˆo*v) )));;

We have to transpose the matrices because GAP uses the “row convention,”
that is, the coefficients of a vector with respect to a fixed basis are given as
a row-vector. But we want to analyze further the KG-module V . Exactly as
above we find KG-submodules V1, V2 of V of dimensions 5 and 3 with

V ≥KG V1 := KG · c ≥KG V2 := KG · d ≥KG {0}, (1.8)

where c := (()− (2, 4, 3)) · b and d := (()− (1, 4)) · c:
gap> c:= (()ˆo - (2,4,3)ˆo) * b;; d:= (()ˆo - (1,4)ˆo) * c;;
gap> B1 := Basis ( LeftIdeal (KG, [c]) );;
gap> B2 := Basis ( LeftIdeal (KG, [d] ));;

We now construct a K-basis of V adapted to (1.8). That is, we start with the
basis vectors of B2, add suitable vectors of B1 to obtain a K-basis of V1 and
finally add a vector of B to get basis vectors for V :

gap> adbas := [];; Append( adbas, BasisVectors(B2) );
gap> for x in BasisVectors(B1) do
> if not x in Subspace( KG, adbas ) then Add(adbas ,x); fi;
> od;
gap> for x in BasisVectors(B) do
> if not x in Subspace( KG, adbas ) then Add(adbas ,x); fi;
> od;
gap> BB := Basis ( V , adbas );;

Finally we compute the matrices [δV (g)]BB for g ∈ {(1, 2), (1, 2, 3, 4)}:
gap> m1 := List( BB, x -> Coefficients( BB, (1,2)ˆo*x) );;
gap> m2 := List( BB, x -> Coefficients( BB, ((1,2,3,4)ˆ-1)ˆo*x) );;
gap> m1 := TransposedMat(m1);; m2 := TransposedMat(m2);;

The result is the following:

m1 =


−1 0 0 0 0 0

1 1 −1 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 1 1 0
0 0 0 0 0 −1

 , m2 =


0 1 −1 0 1 0
1 0 1 1 0 0
2 0 1 1 0 0
0 0 0 0 −1 1
0 0 0 −1 0 −1
0 0 0 0 0 −1

 .

We thus have produced matrix representations δi (i = 1, 2, 3) of G of degrees
three, two and one with representation spaces V2, V1/V2 and V/V1. Only δ1 is
faithful, as can be seen by
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gap> Size( Group( m1{[1..3]}{[1..3]}, m2{[1..3]}{[1..3]} ) );
24
gap> Size( Group( m1{[4,5]}{[4,5]}, m2{[4,5]}{[4,5]} ) );
6

Thus δ2 is the inflation of a representation of S4 /V4 ∼= S3. That δi is irreducible
(for i = 1, 2, 3) can be shown by verifying that δi((1, 2)) and δi((1, 2, 3, 4)) do
not have a common eigenvector.

Instead of taking Q as underlying field one can also take cyclotomic fields
(e.g. K := CyclotomicField(60)) or finite fields (K := GF(16)). One should
keep in mind that computing in the group algebra as above is feasible only
for groups of relatively small order, maybe up to a few hundreds. There are far
better methods to compute and analyze representations of groups, as we will see
shortly. The group algebra is mainly of theoretical importance and the above
example is given just for illustration. �

Exercises
Exercise 1.1.1 Let g :=

[
0 1
1 1

]
∈ GL2(2) := GL2(F2). Show that G :=

〈g〉 ∼= C3 and that the group algebra F2G is not isomorphic to

{
3∑
i=1

aig
i | ai ∈ F2 } ⊆ F2×2

2 .

Exercise 1.1.2 Show that any group homomorphism ϕ : G→ H can be uniquely
extended to an algebra homomorphism ϕ̂ : KG → KH of the corresponding
group algebras and that ϕ̂ is injective or surjective if and only if ϕ has the
corresponding property. Show that

ker(ϕ̂) = {
t∑
i=1

∑
u∈kerϕ\{1}

αi,u gi (u− 1) | αi,u ∈ K}

provided that G = ∪̇ti=1gi · kerϕ.

Exercise 1.1.3 Let K be a field with charK 
= 2 containing a primitive fourth
root of unity i and let 〈g〉 = C4 a cyclic group of order four. Put

a =
1 + i

2
g +

1− i
2

g3 ∈ K C4, b =
1− i

2
g +

1 + i

2
g3 ∈ K C4 .

(a) Show that {1, g2, a, b} ⊆ K C4 is a subgroup of the unit group of K C4
isomorphic to the Klein 4-group V4 ∼= C2×C2.
(b) Show that K C4 ∼= KV4 as algebras over K.

Note: It follows from the above exercises that the group algebras of isomorphic
groups are isomorphic, but also that the converse does not hold in general, at
least if the ring of coefficients K is a field. In 1971, Dade [44] constructed exam-
ples of non-isomorphic groups having isomorphic group algebras over any field.
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It had been an open problem for about 50 years whether or not non-isomorphic
groups G,H would exist such that even ZG ∼= ZH. In 1997, Hertweck [79] found
such examples, the smallest having order 221 9728.

Exercise 1.1.4 Let S3 be the symmetric group on three letters and let K be a
commutative ring. Verify that there is a representation δ : S3 → GL2(K) with

δ : (1, 2) �→
[ −1 1

0 1

]
, (2, 3) �→

[
1 0
1 −1

]
.

Show that δ is equivalent to the representation δ′ : S3 → GL2(K) with

δ′ : (1, 2) �→
[ −2 −1

3 2

]
, (2, 3) �→

[
1 0

−3 −1

]
.

Suppose that K is a field. Prove that δ is irreducible if and only if charK 
= 3.

Exercise 1.1.5 Let Q8 := 〈a, b | a2 = b2 = [a, b], a4 = 1〉 be the quaternion
group of order eight and let K be any field.

(i) If δ : Q8 → GL2(K) is a faithful representation, show that δ is equivalent
to a representation δα,β with

a �→
[

0 −1
1 0

]
, b �→

[
α β
β −α

]
, (1.9)

where α, β ∈ K satisfy α2 + β2 = −1.

(ii) If K is a field and α, β ∈ K satisfy α2 + β2 = −1, then (1.9) defines an
irreducible representation δα,β of Q8. If charK > 2 then Q8 has an absolutely
irreducible representation of degree two over K.

(iii) Let α be transcendental over Q and let β be a root of X2+α2+1 ∈ Q(α)[X].
Putting K := Q(α, β), show that the representation δα,β : Q8 → GL2(K) is not
equivalent to a matrix representation having algebraic entries. On the other
hand, show that on replacing K by K := Q(α, β, i), where i2 = −1, it is
equivalent to δi,0.

Exercise 1.1.6 Let n ≥ 1 and let D2n := 〈a, b | an = b2 = 1, bab = a−1〉 be
the dihedral group of order 2n. Let ζ ∈ C be an nth root of unity in C. Show
that the map

a �→
[
ζ 0
0 ζ−1

]
, b �→

[
0 1
1 0

]
,

defines a representation δζ : D2n → GL2(C), which is irreducible if and only if
ζ 
= ζ−1.

Exercise 1.1.7 Let G′ be the commutator subgroup of G and let δ : G →
GLn(K) be a representation of degree n over a field K. Show the following.

(i) If n = 1, then G′ ≤ ker δ.
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(ii) δ(G′) ⊆ SLn(K) := {a ∈ GLn(K) | det a = 1}.

Exercise 1.1.8 Let p be a prime, let G := SL2(p) := SL2(Fp) and let V :=
Fp[X,Y ] be the ring of polynomials over Fp in the indeterminates X,Y .

(i) For g =
[

a b
c d

]
∈ G we define g.X := aX + cY and g.Y := bX + dY .

Show that this extends uniquely to an automorphism of the algebra Fp[X,Y ].
Prove that V becomes thereby an FpG-module.

(ii) For m ∈ N let Vm ≤ V be the subspace of homogeneous polynomials of
degree m − 1. Show that Vm is a submodule of the FpG-module V defined in
part (i). What is dimFp Vm?

Exercise 1.1.9 Let G be a cyclic group and let V be a KG-module for a field
K. Show that dimK InvG(V ) = dimK InvG(V ∗).

Exercise 1.1.10 Let K be a field. Show that the regular module V := KGKG
is selfdual, i.e. that V is isomorphic to the contragredient module V �.

Exercise 1.1.11 Let K be a field, let p ∈ K[X] be a monic irreducible poly-
nomial of degree s and let q = pe as in Example 1.1.24. Let V := K[X]/(q) and
ϕ ∈ EndK V be defined by ϕ(f +(q)) := X ·f +(q). Starting with v1 := 1+(q),
define recursively vi := X · vi−1 if s � i and vjs := pj + (q) for j ∈ N. Show that
B := (v1, . . . , ves) is a K-basis of V and that [ϕ]B = M ′

q, as defined in (1.5).
Deduce that the companion matrix Mq is similar to M ′

q.

Exercise 1.1.12 (a) Consider A := {[αij ] ∈ C2×2 | α12 = 0} ≤C C2×2 and
the ring homomorphism γ : A → A with [αij ] �→ [αij ] induced by complex
conjugation. Let V := C2×1 be the A-module affording (with respect to the
standard basis B of V ) the matrix representation δ with δ(a) = a for a ∈ A.
Check that γ is not a C-algebra homomorphism. Show that the C-module
structures of V and Infγ V are different and that Infγ V affords the same matrix
representation δ with respect to the basis B.

(b) Let G := 〈g〉 be a cyclic group of order four and let γ : CG→ CG be the
ring homomorphism mapping

∑4
j=1 αjg

j to
∑4
j=1 αjg

j . Let V be a CG-module
affording the representation δ : G → C with δ(g) = i ∈ C. Again γ is not
a C-algebra homomorphism and the C-module structures of V and Infγ V are
different. Show that Infγ V affords the representation δ̄ with δ̄(g) = −i.
Note: See Definition 1.8.2 for a generalization.

1.2 Permutation representations and G-sets

Permutation representations to be introduced in this section form an important
class of representations of groups. In practice a permutation representation of
small degree often forms the starting point for analyzing the structure of a par-
ticular group or its representations in arbitrary characteristic. A big advantage
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of these representations is that they are defined and available uniformly over
arbitrary fields or even commutative rings K.

Before defining permutation representations we recall a few basic facts about
actions of groups on sets and introduce the corresponding notions.
Assumption: Throughout this section G is supposed to be a finite group and
K a commutative ring.

Definition 1.2.1 Let Ω be a finite non-empty set. Note that Ω or more
precisely (Ω, ·) is called a (left) G-set, and G is said to act on Ω (from the
left) if

· : G× Ω → Ω (g, ω) �→ g · ω
is a map satisfying

g1 · (g2 · ω) = (g1g2) · ω for all g1, g2 ∈ G, ω ∈ Ω, (1.10)
1G · ω = ω for all ω ∈ Ω. (1.11)

If Ω1,Ω2 are G-sets then a map ϕ : Ω1 → Ω2 is called G-equivariant or a
G-map if

ϕ(g · ω) = g · ϕ(ω) for all g ∈ G , ω ∈ Ω1.

The set of G-maps from Ω1 to Ω2 is usually denoted by HomG(Ω1,Ω2). If, in
addition, ϕ is bijective then ϕ is called a G-isomorphism, and if such a ϕ exists
Ω1,Ω2 are called isomorphic G-sets; in symbols, Ω1 ∼=G Ω2. If Ω is a G-set
then for any ω ∈ Ω the set ωG := G · ω := {g · ω | g ∈ G} is called a G-orbit in
Ω, and Ω is called transitive if Ω is itself a G-orbit. Also for any ω ∈ Ω

StabG(ω) := {g ∈ G | g · ω = ω} ≤ G

is called the stabilizer of ω in G. Furthermore for g ∈ G and H ⊆ G we put

FixΩ(g) := {ω ∈ Ω | g · ω = ω} and FixΩ(H) :=
⋂
h∈H

FixΩ(h).

Remark 1.2.2 Every G-set is a disjoint union of G-orbits (see [110], p. 29).
Any group G acts transitively (by left multiplication) on the set G/H = {gH |
g ∈ G} of left cosets of any subgroup H ≤ G. Furthermore if Ω is any transitive
G-set then Ω ∼=G G/H for H = StabG(ω) for any ω ∈ Ω and

G/H1 ∼=G G/H2 if and only if H2 = g−1H1g = Hg
1 for some g ∈ G.

Definition 1.2.3 If Ω is a finite G-set and K a commutative ring we define
KΩ to be the free K-module with basis Ω and consider it as a KG-module by
extending the action of G on Ω to a K-linear action of KG on KΩ. Thus∑

g∈G
agg ·

∑
ω∈Ω

bωω =
∑
g∈G

∑
ω∈Ω

agbω(g · ω) for ag, bω ∈ K;

KΩ is called the permutation module corresponding to Ω (and K). The
corresponding representation δΩ : KG → EndK KΩ or its restriction to G is
called a permutation representation of KG or G.
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Observe that for any finite G-set Ω and any group element g ∈ G the matrix
[δΩ(g)]Ω is a permutation matrix, that is, it has exactly one non-zero entry
in each row and column, which is, in fact unity. In this context it is often
convenient to use the elements of Ω also as labels for the rows and columns of
the corresponding permutation matrices. It follows that

[δΩ(g)]Ω = [dω,ω′ ]ω,ω′∈Ω with dω,ω′ = δω,g·ω′ =
{

1 if ω = g · ω′,
0 else,

the last δ being the usual Kronecker delta. Conversely, if δ : G → GL(V ) is a
representation for some finitely generated free K-module V , such that for some
K-basis B of V the matrices [δ(g)]B are permutation matrices for all g ∈ G,
then δ is a permutation representation (for the G-set B).

A permutation representation is never irreducible except in the case of the
trivial representation which corresponds to a one-element G-set.

Lemma 1.2.4 Let Ω be a transitive G-set and V = KΩ. Then

InvG(V ) = 〈
∑
ω∈Ω

ω〉K and

InvG(V ) = {
∑
ω∈Ω

αωω |
∑
ω∈Ω

αω = 0 , αω ∈ K}

are KG-submodules of V (recall Definition 1.1.18). If K is an integral domain
then V = InvG(V )⊕ InvG(V ) if and only if |Ω| is invertible in K.

Proof. The first assertion follows immediately, since

g ·
∑
ω∈Ω

αωω =
∑
ω∈Ω

αωω if and only if αg−1ω = αω for all ω ∈ Ω.

Since G acts transitively on Ω it follows that InvG(V ) = {α
∑
ω∈Ω ω | α ∈ K}.

Obviously InvG(V ) ≤KG V , and if W ≤KG V is any submodule such that G
acts trivially on V/W , then ω−gω ∈W for all ω ∈ Ω and g ∈ G. Since Ω = Gω0
for some ω0 ∈ Ω,

〈{ω − ω0 | ω ∈ Ω}〉K = InvG(V ) ≤W.

Clearly InvG(V ) ∩ InvG(V ) 
= {0} if and only if |Ω| · 1K = 0. If γ|Ω| = 1K then
any element in V can be written in the form

v =
∑
ω∈Ω

αωω = γα
∑
ω∈Ω

ω +
∑
ω∈Ω

(αω − γα)ω ∈ InvG(V ) + InvG(V )

with α =
∑
ω∈Ω αω.

It is clear how to extend this result to non-transitive G-sets as follows.
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Corollary 1.2.5 Let Ω = O1∪̇ . . . ∪̇Or be a G-set with orbits Oi, i = 1, . . . , r.
Then

InvG(KΩ) = 〈O+
1 , . . . ,O+

r 〉K ,

InvG(KΩ) = {
∑
ω∈Ω

αωω |
∑
ω∈Oi

αω = 0 for 1 ≤ i ≤ r}.

Example 1.2.6 The symmetric group Sn acts on an n-element set Ωn =
{ω1, . . . , ωn} by σ · ωi = ωσ(i) and hence has a natural permutation representa-
tion of degree n. For n = 3 the matrices of this representation with respect to
the basis Ω3 are given by

(1, 2) �→
[

0 1 0
1 0 0
0 0 1

]
, (2, 3) �→

[
1 0 0
0 0 1
0 1 0

]
.

Observe that S3 is generated by (1, 2) and (2, 3), so that the representation
is completely determined by these two matrices. A K-basis of InvS3(KΩ3) is
B := (ω1 − ω2, ω2 − ω3), and the matrix representation with respect to B is
given by

(1, 2) �→
[ −1 1

0 1

]
, (2, 3) �→

[
1 0
1 −1

]
;

compare with Exercise 1.1.4. �

Remark 1.2.7 If Ω1,Ω2 are G-sets and ϕ : Ω1 → Ω2 is a G-map then it is
obvious that ϕ can be extended uniquely to a K-linear map ϕK : KΩ1 → KΩ2
and the map ϕK is a KG-homomorphism. If ϕ is bijective then ϕK is a KG-
isomorphism. Thus isomorphic G-sets lead to isomorphic KG-modules and
equivalent permutation representations. But the converse does not hold, not
even for K = Z (see Remark 3.4.5).

Definition 1.2.8 Let A be a ring and let e be an element in A. We call e an
idempotent if e2 = e 
= 0.

Observe that the regular module KGKG is itself a permutation module cor-
responding to the “regular” action of G on itself by left multiplication. In fact
every permutation module corresponding to a transitive G-set is isomorphic to
a submodule of the regular module KGKG, that is to a left ideal of the group
algebra KG:

Lemma 1.2.9 Let Ω be a transitive G-set, Ω = G · ω with StabG(ω) = H and

H+ =
∑
h∈H

h ∈ KH ⊆ KG.

Then g ·ω �→ g ·H+ extended K-linearly defines an isomorphism KΩ ∼= KG ·H+

of KG-modules. If |H| is invertible in K then

eH :=
1
|H|H

+ ∈ KH satisfies e2H = eH
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that is, eH is an idempotent, and KG = KGeH ⊕ KG(1 − eH); thus KΩ ∼=
KG · H+ = KGeH is isomorphic to a direct summand of the regular module
KG in this case.

Proof. Obviously the mapping ϕ : Ω → {gH+ ∈ KG | g ∈ G}, gω �→ gH+ is
well-defined and an isomorphism of G-sets. With the notation of Remark 1.2.7,
ϕK : KΩ → KGH+ is a KG-isomorphism. Since h ·H+ = H+ for all h ∈ H we
have (H+)2 = |H| ·H+ and eH is idempotent if |H|1K ∈ K is invertible. From
this it follows easily that KGeH ∩KG(1− eH) = {0}.

Definition 1.2.10 If X,Y are G-sets then the Cartesian product X×Y is also
a G-set in a natural way: define g · (x, y) := (g ·x, g · y) for g ∈ G, x ∈ X, y ∈ Y .
If O is a G-orbit on X ×Y then O′ = {(y, x) ∈ Y ×X | (x, y) ∈ O} is a G-orbit
on Y ×X. Also, if a ∈ X, b ∈ Y , then we define

O(a) = {y ∈ Y | (a, y) ∈ O} , O′(b) = {x ∈ X | (x, b) ∈ O}.

Obviously O(a) is empty or a StabG(a)-orbit on Y and O′(b) is empty or a
StabG(b)-orbit on X. If X = Y then we have a pairing O �→ O′ of G-orbits on
X ×X. If O = O′ then O is called self-paired.

Lemma 1.2.11 If X,Y are transitive G-sets, H = StabG(x1), U = StabG(y1)
for x1 ∈ X, y1 ∈ Y , then the orbits of G on X × Y are in one-to-one corre-
spondence with the orbits of H on Y and also with the double cosets HgU of H
and U in G.

Proof. If O is a G-orbit on X×Y then O(x1) is obviously an orbit of H on Y .
Observe that O(x1) 
= ∅ because G is transitive on X. Since G is also transitive
on Y , any y ∈ Y can be written in the form y = g · y1 for some g ∈ G which is
in a uniquely determined coset gU . The map G · (x1, g · y1) �→ HgU defines the
second one-to-one correspondence.

Remark 1.2.12 If O is a G-orbit on X × Y and (x, y) ∈ O then O(x) =
StabG(x) · y and O′(y) = StabG(y) · x. Hence

|O| = [G : StabG((x, y))] = [G : StabG(x)]|O(x)|
= [G : StabG(y)]|O′(y)|.

Hence, if Ω = X = Y is a transitive G-set, then

|O(x)| = |O′(y)| =
|O|
|Ω| for arbitrary (x, y) ∈ O.

Definition 1.2.13 If Ω is a transitive G-set then the number of orbits of G
on Ω × Ω (which by Lemma 1.2.11 is the same as the number of orbits of
H = StabG(ω) on Ω for any ω ∈ Ω) is called the rank of Ω and also of KΩ. If the
rank is 2 then one also says thatG acts doubly transitively on Ω. IfO1, . . . ,Or
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are the orbits of G on Ω×Ω then the cardinalities |O1(ω)|, . . . , |Or(ω)| are called
the subdegrees of Ω. As seen before these are independent of the choice of
ω ∈ Ω.

Example 1.2.14 Let G = 〈(1, 3, 4)(2, 5, 6), (3, 5)(4, 6)〉 acting on the set Ω =
{1, 2, 3, 4, 5, 6}. It is easily checked that G is isomorphic to the alternating group
A4; G has four orbits on Ω× Ω:

1 2 3 4 5 6
1 O1 O2 O3 O4 O3 O4

2 O2 O1 O3 O4 O3 O4

3 O4 O4 O1 O3 O2 O3

4 O3 O3 O4 O1 O4 O2

5 O4 O4 O2 O3 O1 O3

6 O3 O3 O4 O2 O4 O1

Ω × Ω

O1 = G · (1, 1) = {(i, i) | 1 ≤ i ≤ 6},
O2 = G · (1, 2) = {(1, 2), (2, 1), (3, 5), . . .},
O3 = G · (1, 3) = {(1, 3), (1, 5), (2, 3), . . .},
O4 = G · (1, 4) = {(1, 4), (1, 6), (2, 4), . . .}.

These can be visualized as in the table, in
which at position (i, j) the orbit of (i, j)
can be found.

�

We will now study KG-homomorphisms between permutation modules. Let
X = {x1, . . . , xn}, Y = {y1, . . . , ym} be G-sets. It is convenient to use the
elements of X and Y also for labeling rows and columns of matrices. A KG-
homomorphism ϕ : KX → KY is a K-linear map commuting with the action
of the elements of G on KX and KY . Thus its matrix Y [ϕ]X = [ayx]x∈X,y∈Y ∈
Km×n with respect to the K-bases X and Y must satisfy

[δY (g)]Y · [ayx] = [ayx] · [δX(g)]X for all g ∈ G,

which is equivalent to

ag−1y,x = ay,gx for all g ∈ G , x ∈ X , y ∈ Y.

This just means that the matrix entries of Y [ϕ]X must be constant on the
orbits of G on Y × X. Hence we get the following complete description of
HomKG(KX,KY ).

Lemma 1.2.15 If X,Y are G-sets and K a commutative ring then

HomKG(KX,KY ) = {ϕ ∈ HomK(KX,KY ) | Y [ϕ]X = [ayx]

with ay,x = agy,gx for all g ∈ G, x ∈ X, y ∈ Y }.
For any G-orbit O on Y ×X let θO ∈ HomKG(KX,KY ) be defined by θO(x) =
O′(x)+ :=

∑
y∈O′(x) y. Thus the matrix of θO with respect to the bases Xand Y

is Y [θO]X = [ayx] with

ayx =
{

1 for (y, x) ∈ O,
0 else.

Then {θO | O a G-orbit on Y ×X } is a K-basis for HomKG(KX,KY ) often
referred to as the standard basis of HomKG(KX,KY ).
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Corollary 1.2.16 If Ω is a transitive G-set of rank r then EndKGKΩ is a free
K-module of rank r.

In the case thatX = Y = G/H the above standard basis for EndKGK(G/H)
is often referred to as the Schur basis. EndKG K(G/H) is also sometimes
called the Hecke algebra corresponding to H. If

G =
⋃̇r

i=1
HgiH

is a double coset decomposition then the G-orbits on G/H ×G/H are

Oi = G · (giH, 1H) = {(ggiH, gH) | g ∈ G}

and O′
i(1H) = {hgiH | h ∈ H}. Observe that hgiH = h′giH for h, h′ ∈ H if

and only if h′−1
h ∈ H ∩ giH. Here we use the standard notation for conjugate

subgroups gH = Hg−1
= gHg−1 for g ∈ G. Thus if Ti is a left transversal of

H ∩ giH in H, that is H =
⋃̇
h∈Ti

h(H ∩ giH), then the standard basis elements
θi = θOi are given by

θi(1H) =
∑
h∈Ti

hgiH ∈ K(G/H).

Example 1.2.17 Continuing with Example 1.2.14 we see that for the alternat-
ing group A4 with its action on Ω = {1, 2, 3, 4, 5, 6} we have

EndKGKΩ ∼=K 〈I,a2,a3,aT
3 〉K

with

a2 =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0

, a3 =


0 0 1 0 1 0
0 0 1 0 1 0
0 0 0 1 0 1
1 1 0 0 0 0
0 0 0 1 0 1
1 1 0 0 0 0

.
�

Example 1.2.18 The orbits of Sn on Ω×Ω with Ω = {1, . . . , n} resulting from
the natural action are ∆Ω := {(ω, ω) | ω ∈ Ω} and (Ω× Ω) \∆Ω. Thus

EndK Sn KΩ ∼=K K · In ⊕K · (Jn − In)

as K-algebras, where In is the n × n identity matrix and Jn is the n × n all-
1-matrix. Of course, we get the same result if we replace Sn by any group G
acting doubly transitively on Ω. �

Sometimes the following version of Lemma 1.2.15 is useful.
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Corollary 1.2.19 Let H1, H2 be subgroups of G. Thus G/H1, G/H2 are tran-
sitive G-sets (see Remark 1.2.2). Assume that ϕ : K(G/H1) → K(G/H2) is a
KG-homomorphism. Let O1, . . . ,Or be the orbits of H1 on G/H2. Then

ϕ(1H1) =
r∑
i=1

aiO+
i with ai ∈ K,

where O+
i =

∑
ω∈Oi

ω ∈ K(G/H2) and ϕ is completely determined by the coef-
ficients ai. The map

ϕ �→ (a1, . . . , ar), HomKG(K(G/H1),K(G/H2)) → Kr,

is an isomorphism of K-modules.

Observe that with the notation of Corollary 1.2.19 the orbits Oi of H1 on G/H2
correspond bijectively to the double cosets

H1giH2 =
⋃
y∈Oi

y with giH2 ∈ Oi.

The product of the Schur basis elements of EndKGKX can easily be de-
scribed as follows,

Theorem 1.2.20 For a finite G-set Ω let Oi (1 ≤ i ≤ r) be the orbits of G on
Ω × Ω and the θi = θOi be the Schur basis elements of E := EndKGKΩ (see
Lemma 1.2.15). Then

(a)

θiθj =
r∑

k=1

aijkθk with aijk = |Oi(x) ∩ O′
j(y)| for (x, y) ∈ Ok.

In particular the right hand side is independent of the choice of (x, y) ∈ Ok.
The aijk are often called the intersection numbers of the G-set Ω.

(b) If Ω is transitive and θi′ := θO′
i

(see Definition 1.2.10) then

aij′1 = |Oi(ω)| · δi,j

for any ω ∈ Ω, where O1 = {(ω, ω) | ω ∈ Ω}, so that θ1 = 1E.

(c) Assume again for simplicity that Ω is transitive. Then the K-linear map

ζ1 : E → K with ζ1 : θO �→ |O(ω)| · 1K for any ω ∈ Ω

is a representation of E, usually called the principal representation or prin-
cipal character of E.
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Proof. (a) For 1 ≤ k ≤ r let [akxy]x,y∈Ω ∈ Kn×n with n = |Ω| the matrix of θk
with respect to the basis Ω of KΩ. Thus by Lemma 1.2.15

aix,u =
{

0 if (x, u) /∈ Oi,
1 if (x, u) ∈ Oi.

Then the entry at position (x, y) of the matrix of θiθj with respect to the basis
Ω is ∑

u∈Ω

aixua
j
uy =

∑
u∈Oi(x)

ajuy =
∑

u∈Oi(x)∩O′
j(y)

1 = |Oi(x) ∩ O′
j(y)|

and this is constant for (x, y) ∈ Ok. On the other hand the entry at position
(x, y) of the matrix of

∑r
k=1 aijkθk is aijk if (x, y) ∈ Ok.

(b) This follows immediately from the above since O′
j′(y) = Oj(y).

(c) Obviously InvG(KΩ) is an E-submodule (usually called the principal
submodule). Since Ω is supposed to be a transitive G-set, Ω+ =

∑
ω∈Ω ω is a

K-basis of InvG(KΩ) by Lemma 1.2.4. Using Remark 1.2.12 we get

θO(Ω+) =
∑
ω∈Ω

O′(ω)+ =
∑
ω∈Ω

∑
(ω′,ω)∈O

ω′ = |O(ω)|Ω+ for ω ∈ Ω

since Ω is transitive.

Remark 1.2.21 Observe that using the notation of Theorem 1.2.20

EndKGKΩ → Kr×r , θi �→ Ai = [aijk]j,k=1,...,r (1 ≤ i ≤ r),

gives the regular matrix representation of EndKGKΩ with respect to the Schur
basis. The matrices Ai are usually called the intersection matrices of Ω. If
Ω is transitive then we may take O1 = ∆Ω and θ1 is the identity element of
EndKGKΩ. Furthermore it follows from Theorem 1.2.20 that

aijk = aj′i′k′ and ai1k = δi,k if O1 = ∆Ω.

Corollary 1.2.22 Let Ω be a transitive G-set and assume that |Ω|1K is invert-
ible in K. Then E := EndKGKΩ is a symmetric algebra with symmetrizing
trace τ : E → K , ϕ �→ trace(ϕ). If O1 := ∆Ω,O2, . . . ,Or are the orbits of G
on Ω×Ω and θi = θOi as above, then the contragredient basis to the Schur basis
(θ1, . . . , θr) is given by

(θτ1 , . . . , θ
τ
r ) with θτi =

1
|Oi|

θi′ where θi′ := θO′
i
.

Proof. It is obvious that trace(ϕψ) = trace(ψϕ) for ϕ,ψ ∈ E. Observe that
trace(θi) = δi,1|Ω|. Hence

trace(θiθj′) = aij′1|Ω| = |Ω||Oi(ω)|δi,j = |Oi|δi,j

by Theorem 1.2.20 and Remark 1.2.12.
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Example 1.2.23 We continue with Example 1.2.17 considering the alternating
group G = A4 acting on six points. The intersection numbers can be read off
from Table 1.1.

Table 1.1. [Oi(j)]i,j=1,2,3,4

j
1 2 3 4

O1(j) {1} {2} {3} {4} (1, 1) ∈ O1 = O′
1

O2(j) {2} {1} {5} {6} (1, 2) ∈ O2 = O′
2

O3(j) {3,5} {3,5} {4,6} {1,2} (1, 3) ∈ O3 = O′
4

O4(j) {4,6} {4,6} {1,2} {3,5} (1, 4) ∈ O4 = O′
3

Let ai = [ai,j,k]j,k=1,...,4, so that the regular representation of E (with respect
to the standard basis) is given by θi �→ ai (1 ≤ i ≤ 4). Then we have a1 = I4
and

a2 =

 0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

, a3 =

 0 0 1 0
0 0 1 0
0 0 0 2
2 2 0 0

, a4 =

 0 1 0 0
0 0 0 1
2 2 0 0
0 0 2 0

.
If K is a field with charK 
= 2 containing a primitive third root of unity ε, we
find that the the K-linearly independent vectors

[1, 1, 2, 2]T, [1,−1, 0, 0]T, [1, 1, 2ε, 2ε2]T, [1, 1, 2ε2, 2ε]T

are common eigenvectors of the matrices ai, which can therefore simultaneously
be diagonalized. Thus in this case E has four irreducible representations ζi, all
of degree one, which are displayed in the following matrix [ζi(θj)]. This table is
also called the “character table” of E.

θ1 θ2 θ3 θ4
ζ1 1 1 2 2
ζ2 1 −1 0 0
ζ3 1 0 2ε 2ε2

ζ4 1 1 2ε2 2ε

Observe that the rows of this table coincide with the common eigenvectors of
the ai. �

Example 1.2.24 If G acts regularly on Ω, i.e. Ω ∼=G G/{1}, then the orbits of
G on Ω× Ω are

Og = {(x, gx) | x ∈ Ω} for g ∈ G
and we get as intersection numbers for g1, g2, g3 ∈ G

ag1,g2,g3 =
{

1 if g2g1 = g3,
0 else.

Furthermore

KG→ EndKGKΩ
∑
g∈G

agg �→
∑
g∈G

agθOg (ag ∈ K)

is an anti-isomorphism of K-algebras. �
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Example 1.2.25 The symmetric group Sn acts for k ≤ n in a natural way tran-
sitively on the set

(Ω
k

)
of k-element subsets of the power set of Ω = {1, . . . , n}.

Thus one obtains a permutation representation of Sn of degree
(
n
k

)
. It is easily

seen that the action on
(Ω
k

)
is equivalent to the action on

( Ω
n−k

)
, so it is enough

to consider the case k ≤ n
2 . Since Sn is n-fold transitive on Ω it is clear that for

1 ≤ k ≤ l ≤ n
2 we obtain the following orbits of Sn on Y =

(Ω
k

)
×
(Ω
l

)
:

Ot = {(A,B) | A ∈
(

Ω
k

)
, B ∈

(
Ω
l

)
, |A∩B| = k−t+1} for 1 ≤ t ≤ k+1.

Hence

HomK Sn(K
(

Ω
l

)
,K

(
Ω
k

)
) ∼= Kk+1 (1 ≤ k ≤ l ≤ n

2
).

In particular the rank of the Sn-set
(Ω
k

)
is k + 1. Also all orbits on

(Ω
k

)
×
(Ω
k

)
are self-paired.

We now consider the case k = l = 2 and n ≥ 4. Thus we have three orbits,
O1 = ∆, the diagonal, O2 = Sn ·({1, 2}, {1, 3}) and O3 = Sn ·({1, 2}, {3, 4}), and
an easy computation shows that the intersection matrices ai = [aijk]j,k=0,1,2 are
as follows: a1 = I3 and

a2 =

 0 1 0
2n− 4 n− 2 4

0 n− 3 2n− 8

 , a3 =

 0 0 1
0 n− 3 2n− 8(
n−2

2

) (
n−3

2

) (
n−4

2

)
 .

If K is a field with charK � (n−2)
(
n
2

)
we find that the ai have the following com-

mon eigenvectors: [1, 2n−4,
(
n−2

2

)
]T, [1, n−4 ,−n+3]T, [1,−2, 1]T. So the ma-

trices ai can be simultaneously diagonalized in this case and E := EndKSn
K
(Ω

2

)
has three irreducible representations ζ1, ζ2, ζ3 , all of degree one with values

θ1 θ2 θ3

ζ1 1 2n− 4
(
n−2

2

)
ζ2 1 n− 4 −n+ 3
ζ3 1 −2 1

where θi = θOi . Is is easily seen that we would get the same result in the case
k = l = 2 if we replace Sn by another group acting four-fold transitively on Ω.

�

Example 1.2.26 In GAP it is very easy to calculate the intersection matrices
of a given permutation group. We demonstrate this with the sporadic simple
Higman–Sims group G, usually denoted by HS (see [38]) in its well known action
on Ω := {1, . . . , 100}. We take this permutation representation from the library
of primitive groups in GAP and compute the orbits of G on Ω× Ω:

gap> G := PrimitiveGroup( 100, 3 );;
gap> orb := Orbits( G , Tuples([1..100],2) , OnPairs);;
gap> List( orb , Length );
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The last command returns the lengths of the orbits Oi := orb[i] of G on Ω×Ω;
they are 100, 7700 and 2200. Since O1 = ∆ we obtain the subdegrees by

gap> List([1,2,3], i -> Length( Filtered( orb[i], p -> p[1] = 1) ) );
[ 1, 77, 22 ]

The following loop calculates all the intersection matrices a[i] for i = 1, 2, 3:

gap> a := [];; x := 1;; y := 1;;
gap> for i in [1..Length(orb)] do
> a[i] := []; # a[i] will be the i-th intersection matrix
> for j in [1..Length(orb)] do
> a[i][j]:= []; # a[i][j] will be the j-th row of a[i]
> for k in [1..Length(orb)] do
> x:=orb[k][1][1]; y:=orb[k][1][2]; # [x,y] in orb[k]
> a[i][j][k] := Size( Intersection (
> Filtered([1..100] , z -> [x,z] in orb[i]),
> Filtered([1..100] , z -> [y,z] in orb[j]) ) );
> od;
> od;
> od;

The result is:

a[1] = I3, a[2] =

 0 1 0
77 60 56
0 16 21

 , a[3] =

 0 0 1
0 16 21
22 6 0

 .
Finally we calculate the common eigenspaces of the intersection matrices. Since
GAP calculates eigenrowspaces we transpose the matrices and use the GAP-
commands

gap> Display( Eigenspaces( Rationals, TransposedMat(a[2]) ));;
gap> Display( Eigenspaces( Rationals, TransposedMat(a[3]) ));;

We find that the “character table” [ζi(θj)]1≤i,j≤3 over Q is

[ζi(θj)] =

 1 77 22
1 7 −8
1 −3 2

 .
�

With the notation of Theorem 1.2.20, (Ω, {O1, . . . ,Or}) is an example of
a coherent configuration as introduced by D. Higman ([81]) or an association
scheme (see [6] and [173]). Some of the results in this section have been gener-
alized to this more general setting.

Exercises
Exercise 1.2.1 Let Ω be a transitive G-set with H = Stab(ω) for some ω ∈ Ω
and let δ : G→ GL(KΩ) be the corresponding representation. Show that

ker δ =
⋂
g∈G

Hg,

the largest normal subgroup of G contained in H.
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Exercise 1.2.2 Let Ω be a transitive G-set. Show that there is exactly one
KG-module epimorphism

λΩ : KΩ → K

where K is considered as a KG-module with trivial G-action. Show also that
for a KG-module isomorphism ϕ : KΩ1 → KΩ2 with transitive G-sets Ω1,Ω2
one has

λΩ1 = λΩ2 ◦ ϕ.

Exercise 1.2.3 Using the assumptions and the notation of Corollary 1.2.19
show that

1K =
m∑
i=1

ai|Oi|

is a necessary condition for ϕ to be an isomorphism of KG-modules.

Exercise 1.2.4 (a) Let V be the natural permutation module of G := Sn over
a field K for n ≥ 3. Show that V, InvG(V ), InvG(V ) and {0} are the only
submodules of V .
Hint: For v =

∑
ω∈{1,...,n} αωω ∈ V let l(v) = |{ω ∈ {1, . . . , n} | αω 
= 0}|. For

a submodule U ≤K Sn V consider an element 0 
= v ∈ U with l(v) minimal.
(b) Let V be the natural permutation module of the alternating group

G := An over a field K for n ≥ 4. Prove that

(i) if n ≥ 5 or
(ii) if charK 
= 2 or
(iii) if charK = 2 and α2 + α+ 1 
= 0 for all α ∈ K,

then V, InvG(V ), InvG(V ) and {0} are the only submodules of V .

Exercise 1.2.5 Let V be the natural permutation module of Sn over K for
n > 1. Show that as K-algebras EndK Sn V

∼= K[X]/(X · (X − n + 1)), where
X denotes an indeterminate.

The following exercise gives an interpretation of the center of a group algebra
as a Hecke algebra.

Exercise 1.2.6 Let G be a finite group, G×G be the direct product, K be a
field and ∆G := {(g, g)|g ∈ G} be the (diagonal) subgroup of G×G. Show that
the Hecke algebra EndK(G×G)K(G×G)/∆G of the G×G-set (G×G)/∆G is
isomorphic to Z(KG).

Exercise 1.2.7 The sporadic simple Janko group G := J1 (see [38]) has a
maximal subgroup of index 266 and thus acts primitively on Ω := {1, . . . , 266}.
Show that G has five orbits on Ω×Ω of lengths 1, 11, 12, 110, 132. Compute
the intersection matrices and show that

E := EndQG QΩ ∼= Q⊕Q⊕Q⊕Q(
√

5).

Compute all irreducible representations of E over C.
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1.3 Simple modules, the “Meataxe”

In this section A is assumed to be a K-algebra for some commutative ring K
(which is often a field). Standard examples we have in mind are the group
algebra A = KG of a finite group G or A = EndKG V for a KG-module V .

We recall the Theorem of Jordan and Hölder (see [94], pp. 108, 109), which
says that if an A-module V has a composition series

{0} = V0 <A V1 <A · · · <A Vn = V,

then any two composition series of V have the same length n = l(V ), which is
called the length of V , and the composition factors which are, by definition,
the simple A-modules Vi/Vi−1 are uniquely determined up to isomorphism and
ordering.

Definition 1.3.1 An A-module which has a composition series is said to have
finite length, and A has finite length if the regular module AA has finite
length. The length of a composition series of AA is also called the length l(A)
of A.

Of course, if A is a K-algebra of finite dimension over a field K then A and any
finitely generated A-module V have finite length. For matrix representations
of a finite group G over a field K the Jordan–Hölder theorem means that any
representation δ : G→ GLn(K) is equivalent to one of the form

g �→


δ1(g) ∗ ∗

0 δ2(g)
. . . ∗

0 δm(g)


with irreducible matrix representations δi : G → GLmi

(K) which are uniquely
determined up to equivalence and ordering and which are called the irreducible
constituents of δ.

Thus the simple modules or irreducible representations can be viewed as the
building blocks of all others. It is an important property, that any algebra A
of finite length has only a finite number of simple modules up to isomorphism
because any such module is a composition factor of A. This follows from the
first part of the following lemma.

Lemma 1.3.2 Let V be an A-module. Then the following hold.

(a) If V is simple then V ∼= A/M , where M is a maximal left ideal of A.

(b) V is simple if and only if V = A · v for all v ∈ V with v 
= 0.

(c) (Schur’s lemma) If V is simple then EndA V is a division ring. If K is a
field, dimK V <∞ and V is absolutely simple then EndA V = K · idV .
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Proof. (a) and (b) If we choose v ∈ V the map A→ V, a �→ a · v defines an
A-module homomorphism. Since V is simple, the image is {0} or V . The second
alternative must hold for any v 
= 0, because v = 1 · v; recall our convention
that any ring contains a one and any module is “unital.” So (b) holds and (a)
follows from the homomorphism theorem.

(c) Since the kernel and the image of any A-module homomorphism is a
submodule, any non-zero A-endomorphism of a simple module V must be an
isomorphism hence invertible in EndA V .

If V is any A-module then K embeds into EndA V via α �→ α idV . If K is
algebraically closed then the characteristic polynomial of any ϕ ∈ EndA V has a
root α ∈ K. For such an α the endomorphism ϕ−α idV ∈ EndA V is not a unit,
hence it must be zero if V is simple. Thus we have in this case EndA V = K idV .
For an arbitrary field K one may use Exercise 1.3.2. Alternatively one may
argue as follows: the K-dimension of EndA V is the K-dimension of the space
of solutions of the following system of homogeneous linear equations over K:

ak[xi,j ]ni,j=1 − [xi,j ]ni,j=1ak = 0 (k = 1, . . . , r),

where n = dimK V , A = 〈a1, . . . , ar〉alg and ak = [δV (ak)]B ∈ Kn×n for some
K-basis B of V . This dimension does not change if we extend the field K to an
algebraic closure, so it must be one if V is absolutely simple.

Part (b) of the preceding lemma can be used in principle to test whether or
not a finite module is simple, assuming that A is a K-algebra for which one has
a finite set of algebra generators and their action on V . The cyclic modules A ·v
can be computed using the following.

Spinning algorithm
Assume that K is a field and A is a finite dimensional K-algebra A with algebra
generators (a1, . . . , ar) and that V is an A-module (given by the action of these
generators on V ).

Input: 0 
= v ∈ V and algebra generators (a1, . . . , ar) of A
Output: a K-basis B for A · v
Initialize: B = (v)
for b in B do

for i from 1 to r do
w := ai · b
if w is not contained in 〈B〉K then

append w to the list B
end if

end for
end for
return B

The algorithm terminates, since V was assumed to be finite dimensional.
By construction B is linearly independent over K and B ⊆ A · v. Furthermore
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〈B〉K is invariant under the action of the generators of A and hence under A.
Thus A · v = 〈B〉K .

The process of calculating A · v using this algorithm is usually referred to
as “spinning up the vector v.” A simple-minded test for simplicity for a finite
A-module V would be to spin up every non-zero vector v of V and to check
whether or not A · v = V . Of course it would be sufficient to spin up just one
vector v in each one-dimensional subspace. But one can do much better.

Theorem 1.3.3 (Norton’s irreducibility criterion) Let A be a K-algebra,
K a field, and V an A-module which is finite dimensional over K. If kerV (c) 
= 0
for some c ∈ A then V is simple if and only if

(a) V = A · v for all v ∈ kerV (c) \ {0} and

(b) V � = x ·A for some x ∈ kerV �(c).

The result is a simple consequence of the following observation from linear
algebra.

Lemma 1.3.4 Let V be a finite dimensional K-vector space and let W ≤ V be
a ϕ-invariant subspace for some ϕ ∈ EndK V . Then

W ∩ ker(ϕ) = {0} implies ker(ϕT) ≤W ◦ = {x ∈ V � | x|W = 0}.

Proof of Lemma 1.3.4. By definition of ϕT we have

ker(ϕT) = {x ∈ V � | 0 = ϕT(x) = x ◦ ϕ} = (im(ϕ))◦. (1.12)

If W ∩ker(ϕ) = {0}, then the restriction of ϕ to W is injective, hence surjective,
since dimK V <∞. So W ≤ Im(ϕ) and by duality (Im(ϕ))◦ ≤W ◦, so by (1.12)
one has ker(ϕT) ≤W ◦. �

Proof of Theorem 1.3.3. The necessity of the conditions (a) and (b) fol-
lows from Lemma 1.3.2 and the fact that V � is simple if and only if V is (see
Theorem 1.1.34).

We now assume that (a) and (b) hold. Let W <A V . We have to show that
W = {0}. Because of (a) we have kerV (c) ∩W = {0}, hence by Lemma 1.3.4
kerV ∗(c) ≤ W ◦ ≤A V �. From (b) we conclude that W ◦ = V �, hence W = {0}
by duality. �

We include a rather trivial example:

Example 1.3.5 As in Exercise 1.1.4 we consider the matrix representation δ
of S3 = 〈a, b〉 with a = (1, 2) and b = (2, 3) over an arbitrary field K given by

δ : a �→
[
−1 1

0 1

]
, b �→

[
1 0
1 −1

]
.
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So V = K2×1 and V � may be identified with K1×2 on which A = δ(K S3) acts
from the right. It is obvious that

kerV (1 + a) = 〈
[

1
0

]
〉K and A ·

[
1
0

]
= 〈

[
−1
0

]
,

[
1
1

]
〉K = V,

kerV �(1 + a) = 〈[ 2,−1 ]〉K and [ 2,−1 ] ·A = V1 := 〈[ −2, 1 ], [ 1, 1 ]〉K ,

and V1 = V ∗ if and only if charK 
= 3. Thus, δ is (absolutely) irreducible if
charK 
= 3, whereas for charK = 3 we have found a proper right submodule
U◦ := 〈[ 1, 1 ]〉K ≤ V �. Obviously the corresponding submodule U ≤ V is
〈[ 1,−1 ]T〉K , on which a and b and hence all of S3 act trivially. It is easily
checked that EndK S3 V

∼= K in all cases. This shows that the converse of
Schur’s lemma is not true, namely that one cannot conclude from EndA V ∼= K
for a K-algebra A that V is simple. �

Of course, Theorem 1.3.3 is only useful in the case that kerV (c) is a proper
subspace and it works better the smaller the dimension of this non-zero subspace
is, because we have to spin up one vector v of each of the one-dimensional
subspaces of kerV (c). In the ideal case that dimK(kerV (c)) = 1 we have to spin
up just one vector of kerV (c), and in this case the criterion can even be used for
infinite fields. Of course the problem remains of how to find an element c ∈ V
with dimK(kerV (c)) = 1. In fact, we will now investigate in which cases such
an element does exist in A provided that V is a simple A-module.

Lemma 1.3.6 Let V be a simple A-module, D := EndA V and W ≤D V .
Assume that W is finitely generated as a D-module. Then

(a) W = kerV (annAW );

(b) for any ψ ∈ HomD(W,V ) there is an a ∈ A with ψ(w) = a·w for all w ∈W ;

(c) δV (A) = EndD V if dimD V <∞.

Observe that by Schur’s lemma D is a division ring, so that V is a D-vector
space. Assertion (b) is often cited as “Jacobson’s density lemma” and (c) is usu-
ally called the “double centralizer property.” It is clear that the hypothesis onW
is always fulfilled, if K is a field and V is finite dimensional as a K-vector space,
because K is embedded in D via α �→ α idV and dimK V = dimD V · [D : K].

Proof. (a) Obviously W ⊆ kerV (annAW ) holds in general. To prove the
converse we use induction on dimDW . If W = {0} then annAW = A and
kerV (annAW ) = kerV A = {0}. Let W 
= {0} and write W = W ′ +Dw1, with
dimDW

′ < dimDW . Assume that v ∈ kerV (annAW ); we have to show that
v ∈W . The assumption means that for any a ∈ A with a·W = 0 we have a·v =
0. Hence

a ·W ′ = {0} and a · w1 = 0 implies a · v = 0.
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This means that the map

ϕ : annAW ′ · w1 → V, a · w1 �→ a · v

is a well-defined A-linear map between A-modules. Since V is simple the sub-
module annAW ′ · w1 can only be {0} or V . In the first case we also have
annAW ′ · v = {0} , so v ∈ kerV (annAW ′) = W ′ by the induction hypothesis,
hence v ∈ W as asserted. In the second case annAW ′ · w1 = V and so ϕ ∈ D
and consequently a · (ϕ(w1)−v) = ϕ(aw1)−a ·v = 0 for all a ∈ annAW ′, hence
ϕ(w1)− v ∈ kerV (annAW ′) = W ′ and v ∈W ′ +Dw1 = W .

(b) Again we use induction on dimDW . For W = {0} the result is trivial.
Let {0} 
= W = W ′ + Dw1 be as above with dimDW

′ < dimDW . Let ψ ∈
HomD(W,V ). By induction there is a′ ∈ A with ψ(w′) = a′ ·w′ for all w′ ∈W ′.
Since w1 /∈W ′ = kerV annAW ′ by (a) we have {0} 
= annAW ′ · w1 ≤A V , so

annAW ′ · w1 = V

because V is simple. Hence there is an a′′ ∈ annAW ′ with ψ(w1) − a′ · w1 =
a′′ ·w1. We now can write an arbitrary w ∈W in the form w = w′ + ϕw1 with
w′ ∈W ′ and ϕ ∈ D to get

ψ(w) = ψ(w′) + ϕ(ψ(w1))
= (a′ + a′′) · w′ + ϕ((a′ + a′′) · w1) = (a′ + a′′) · w.

Thus a′ + a′′ is the required element a in the assertion.
(c) This follows immediately from (b), taking W := V and recalling the

definition of δV .

Corollary 1.3.7 Let A be a K-algebra of finite length and δ : A→ EndK V be
an irreducible representation. Then

(a) δ(A) ∼= (Dop)n×n with D := EndA V , a division ring, and n ≤ l(A);

(b) Assume that K is a field. Then δ is absolutely irreducible if and only if δ
is surjective and this holds if and only if EndA V = K · idV .

Proof. (a) Because of Lemma 1.3.6 we have to show that dimD V < ∞.
Assume that v1, . . . , vn in V are linearly independent over D. Then

{0} < D v1 < · · · < D v1 + · · ·+Dvn ≤ V.

From Lemma 1.3.6 (a) we get

A >A annADv1 >A · · · >A annA(Dv1 + · · ·+Dvn) ≥A {0}.

Hence the Jordan–Hölder theorem implies n ≤ l(A). Now let n = dimD V and
B = (v1, . . . , vn) be a D-basis of V . For any ϕ ∈ EndD V there are di,j(ϕ) ∈
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D , 1 ≤ i, j ≤ n uniquely determined with ϕ(vj) =
∑n
i=1 di,j(ϕ)vi. If also

ψ ∈ EndD V we find

ψ ◦ ϕ(vj) =
n∑
k=1

(
n∑
i=1

di,j(ϕ)dk,i(ψ))vk,

from which it is apparent that

ϕ �→ [di,j(ϕ)] gives an isomorphism EndD V → (Dop)n×n.

(b) If δ is absolutely irreducible, then EndA V = K idV by Schur’s lemma
(Lemma 1.3.2). Conversely, if EndA V = K idV and δ is irreducible, then by
Lemma 1.3.6 δ is surjective. But then Lδ : LA → EndL LV ∼= L ⊗K EndK V
is also surjective for any field L ⊇ K. But GL(LV ) acts transitively on the
non-zero vectors of LV , so there is no non-trivial LA-submodule in LV and
hence V is absolutely simple.

Theorem 1.3.8 Let A be a K-algebra for a field K, and let V be a simple A-
module, with dimK V < ∞ and D = EndA V . Then dimK kerV (a) is divisible
by [D : K] for all elements a ∈ A. Moreover, there are elements a ∈ A for which
dimK kerV (a) = [D : K].

Proof. We have that kerV (a) is a D-subspace of V and

dimK kerV (a) = dimD kerV (a) · [D : K].

For the second assertion, consider an endomorphism ψ ∈ EndD V with D-rank
dimD V − 1 , i.e. with dimD(kerV ψ) = 1; then dimK(kerV ψ) = [D : K]. By
Lemma 1.3.6(c) there is an element a ∈ A with δ(a) = ψ.

The above results yield an algorithm for testing whether or not a given A-
module V is simple if A is an algebra over a finite field K and dimK V < ∞.
This algorithm was originally developed by R. A. Parker and J. Thackray at the
end of the 1970s. One of its first major applications was the existence proof of
the Janko group J4 by constructing a representation of J4 of degree 112 over the
field of two elements. Nowadays it is a standard tool in representation theory.
The algorithm was named “Meataxe” by Parker ([142]) and in its basic form it
runs as follows.

The Meataxe algorithm
We assume that K is a field and δ : A→ Kn×n is a matrix representation with
representation module V := Kn.

Input: An n-dimensional matrix representation δ of A in terms of matrices
(a1 := δ(a1), . . . ,ak := δ(ak)) for a generating system (a1, . . . , ak) of A.

Output: Either the information that δ is irreducible, or matrix represen-
tations of A on an A-submodule W and on the factor module V/W given by
matrices for the generating system (a1, . . . , ak) of A.
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(1) Choose an element a in A (uniformly at random).
(2) Determine a K-basis of the (column) null space ker(δ(a)).
(3) If ker(δ(a)) is zero go back to step (1). Otherwise, for all non-zero vectors
v ∈ ker(δ(a)), up to K-scalar multiples,

(a) run the spinning algorithm with input v and (a1, . . . ,ak) and let B :=
(b1, . . . , bm) be the output of the spinning algorithm.

(b) If m < n, extend B to a K-basis (b1, . . . , bm, bm+1, . . . , bn) of Kn. For i =
1, . . . , k compute the matrices a′

i and a′′
i of the actions of ai on 〈B〉K and

Kn/〈B〉K with respect to the bases B and (bm+1 + 〈B〉K , . . . , bn+ 〈B〉K),
respectively. Return ( (a′

i)
k
i=1, (a′′

i )ki=1 ).

(4) If m = n for all non-zero v ∈ ker(δ(a)) up to K-scalar multiples, then
transpose δ(a) and compute one non-zero vector v such that δ(a)Tv = 0.

(a) Run the spinning algorithm with transposed input, namely v and
(aT

1 , . . . ,a
T
k ) and let B = (b1, . . . , bm) be the output of the spinning

algorithm.

(b) If m < n, then extend B to a K-basis (b1, . . . , bm, bm+1, . . . , bn) of Kn.
For i = 1, . . . , k compute the matrices a′

i and a′′
i of the actions of aT

i on
Kn/〈B〉K and 〈B〉K with respect to the bases (bm+1 + 〈B〉K , . . . , bn +
〈B〉K) and B, respectively. Return ( (a′

i
T)ki=1, (a′′

i
T)ki=1 ).

(5) If m = n return the answer “δ is irreducible.”

Proof. If (b1, . . . , bm, bm+1, . . . , bn) is as in step (3)(b) of the algorithm and
X is the matrix with column vectors b1, . . . , bn, then X ∈ GLn(K) and

X−1aiX =
[

a′
i �

0 a′′
i

]
with a′

i ∈ Km×m, a′′
i ∈ K(n−m)×(n−m)

for i = 1, . . . , k. Similarly, if (b1, . . . , bm, bm+1, . . . , bn) is as in step (4)(b) and
X is the matrix with column vectors b1, . . . , bn, then X ∈ GLn(K) and

X−1aT
i X =

[
a′′
i �
0 a′

i

]
with a′′

i ∈ Km×m, a′
i ∈ K(n−m)×(n−m),

so that

XTai(XT)−1 =
[

(a′′
i )T 0
� (a′

i)
T

]
for i = 1, . . . , k.

If in step (3)(a) we always get m = n and also in step (4)(a) we obtain m = n
then by Theorem 1.3.3 δ is irreducible, so the answer in step (5) is justified.
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Of course, step (3) can be very time-consuming if dimK ker(δ(a)) is large
and the matrix representation δ of A is irreducible, so the performance of the
algorithm in this case depends very much on the likelihood of finding an element
δ(a) ∈ δ(A) in step one with a small kernel, ideally of dimension one. Using
Lemma 1.3.6 one can compute the ratio of singular matrices in the algebra δ(A)
when δ is irreducible and K is finite; one observes that this ratio is proportional
to 1

|K| if δ is absolutely irreducible, so the Meataxe seems to work best for K a
small sized field. In [143] Parker extends the idea of the Meataxe to character-
istic zero. He uses a modified approach to find elements of small corank, and it
turns out that this modified approach produces an amazing number of elements
with a kernel of dimension one (see also Exercise 1.3.6).

There is a variant of the Meataxe algorithm due to Holt and Rees [86], which
has a performance quite independent of the size of the finite field K that we are
going to present. It is based on the following lemma.

Lemma 1.3.9 Let A be an algebra over a field K and V be an A-module of
finite dimension over K. Let f be an irreducible factor of the characteristic
polynomial ca of δV (a) for some a ∈ A. Assume that deg f = dimK kerV (f(a)).
Then V is a simple A-module if (and only if)

(a) A · v = V for some 0 
= v ∈ kerV (f(a)) and

(b) x ·A = V � for some 0 
= x ∈ kerV �(f(a)).

Proof. Recall from Example 1.1.24 that the irreducible factors of the charac-
teristic polynomial ca of δV (a) are in one-to-one correspondence with the com-
position factors of the K[a]-module VK[a]. It follows from the same example that
the assumption deg f = dimK kerV (f(a)) implies that there is just one elemen-
tary divisor q which is a power of f or, equivalently, that there is exactly one sim-
ple K[a]-submodule of VK[a] which is isomorphic to the module Vf = K[X]/(f),
and this submodule is just kerV (f(a)). Recall that Vq ∼= K[X]/(q) has ex-
actly one composition series and kerV (f(a)) as its unique minimal submod-
ule. It also follows that VK[a] has exactly one maximal submodule M with
V/M ∼=K[a] kerV (f(a).

Now assume that V has a proper submodule 0 < W <A V and that for some
0 
= v ∈ kerV (f(a)) we have A · v = V . Then certainly v /∈ W and moreover
WK[a] cannot have any composition factor isomorphic to Vf , for otherwise W
would have to intersect Vq non-trivially and hence would have to contain its
unique minimal submodule kerV (f(a)) and hence v. In particular we must have
W ⊆ M and hence M◦ ⊆ W ◦ ≤A V �. Observe that f(a)V = M , so that
kerV �(f(a)) = M◦. Hence x ·A ≤W ◦ < V � for all 0 
= x ∈ kerV �(f(a)).

Before formulating the algorithm we pause to include a very simple applica-
tion.

Corollary 1.3.10 Let G be a finite group acting on Ω with |Ω| = p, a prime.
Assume that K is a field with charK 
= p and let V := KΩ/(K

∑
ω∈Ω ω).
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If G contains an element g of order p acting non-trivially on Ω and which is
conjugate in G to all its powers 
= 1, then V is simple.

Proof. We may, assume without loss of generality, that K contains a primitive
pth root of unity ζ, extending K to K(ζ), if need be. We apply Lemma 1.3.9
with a := g. By assumption, 〈g〉 permutes the ω ∈ Ω transitively. Then
the characteristic polynomial of δV (g) is cg = Xp−1

X−1 =
∏p−1
i=1 (X − ζi). Let

〈vi〉K = kerV (g − ζi idV ). Then B := (v1, . . . , vp−1) is a K-basis of V . Our
assumption says that for any i ∈ {1, . . . , p− 1} there is an element hi ∈ G with
h−1
i ghi = gi. Then h−1

i ghiv1 = giv1 = ζiv1, thus hiv1 ∈ 〈vi〉 for 1 ≤ i ≤ p− 1,
hence KG · v1 = V . Similarly, if (x1, . . . , xp−1) is the dual basis to B then
x1hi ∈ 〈xi〉 for 1 ≤ i ≤ p− 1, and x1 ·KG = V �.

We now formulate the above mentioned variant of the Meataxe algorithm.

Holt–Rees algorithm
Input: An n-dimensional matrix representation δ of A in terms of matrices
(a1 := δ(a1), . . . ,ak := δ(ak)) for a generating system (a1, . . . , ak) of A.

Output: Either the information that δ is irreducible, or matrix represen-
tations of A on an A-submodule W and on the factor module V/W given by
matrices for the generating system (a1, . . . , ak) of A.

(1) Choose an element a in A (uniformly at random).

(2) Calculate the characteristic polynomial c of δ(a).

(3) Factor c into irreducible factors over K. Order the factors by increasing
multiplicity and degree. Then for each irreducible factor p, do the following.

• Compute a′ := p(δ(a)).

• Choose a non-zero vector v in ker(a′) (uniformly at random) and run the
spinning algorithm with input v and (a1, . . . ,ak). Let B := (b1, . . . , bm) be
the output of the spinning algorithm. If m < n, then extend B to a basis
(b1, . . . , bm, bm+1, . . . , bn) of Kn. For i = 1, . . . , k compute the matrices
a′
i and a′′

i of the actions of ai on 〈B〉K and Kn/〈B〉K with respect to
the bases B and (bm+1 + 〈B〉K , . . . , bn + 〈B〉K), respectively. Return
( (a′

i)
k
i=1, (a′′

i )ki=1 ).

• Choose a non-zero vector v in ker((a′)T) and run the spinning algorithm
with input v and (aT

1 , . . . ,a
T
k ). Let B := (b1, . . . , bm) be the output of the

spinning algorithm. Ifm < n, extendB to a basis (b1, . . . , bm, bm+1 . . . , bn)
of Kn. For i = 1, . . . , k compute the matrices a′

i and a′′
i of the actions of aT

i

on Kn/〈B〉K and 〈B〉K with respect to the bases (bm+1 + 〈B〉K , . . . , bn +
〈B〉K) and B, respectively. Return ( (a′

i
T)ki=1, (a′′

i
T)ki=1 ).
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• Ifm = n and dimK(ker(a′)) = deg(p), return the answer ”δ is irreducible.”

(4) Go back to step (1).

Both algorithms, the Meataxe and the one by Holt and Rees are exam-
ples of what is usually called a Las Vegas algorithm, which means that there
is no certainty that it will terminate, but if it does then it will always re-
turn the correct answer. Holt and Rees [86] show that if δ is irreducible,
then a constant proportion of elements a in A will have the property that
dimK ker(p(δ(a))) = deg(p), for some irreducible factor of the characteristic
polynomial of δ(a), and can therefore be used successfully to prove the ir-
reducibility of δ. For a justification in the case of an absolutely irreducible
representation, see Exercise 1.3.3. By Theorem 1.3.8 an element a ∈ A with
the property that dimK ker(p(δ(a))) = deg(p) for some irreducible factor p of
degree one can be used to show that δ is absolutely irreducible.

The case of a reducible representation δ is also analyzed in [86], and, together
with a result by Ivanyos and Lux, see [93], one obtains the result that a constant
proportion of elements a inA can be used successfully to show that δ is reducible.

Before closing this section with a larger example we describe the simple
KG-modules for a finite p-group G over a field K of characteristic p.

Theorem 1.3.11 An irreducible representation of a finite p-group over a field
of characteristic p is trivial of degree one.

Proof. Let G be a finite p-group, K a field with charK = p and V a simple
KG-module. For 0 
= v ∈ V define Mv := {

∑
g∈G αg g · v | αg ∈ Fp}, where Fp

is the prime field of K. Then Mv is a finite additive p-group on which G acts
by left multiplication. Since the orbit lengths are powers of p, and {0} is one
orbit, there must be a further orbit {w} of length one. Then 〈w〉K is a proper
submodule on which G acts trivially. Since V is simple 〈w〉K = V .

Example 1.3.12 We want to analyze the 100-dimensional permutation rep-
resentation of the sporadic simple Higman–Sims group HS considered in Sec-
tion 1.2. We construct the corresponding permutation module of HS over F2
and then ask for bases of all submodules:

gap> G := PrimitiveGroup( 100, 3 );;
gap> module := PermutationGModule( G , GF(2) );;
gap> bsm := MTX.BasesSubmodules( module );;

In GAP, modules are always right modules and are usually realized as subspaces
of row spaces, in this example of GF(2)100 := F1×100

2 in our notation. To deal
with left modules and column spaces we simply use

a · v = (vTaT)T for a ∈ Fn×n
2 , v ∈ Fn×1

2 .

The list bsm is a list of bases for all submodules of module ordered w.r.t.
increasing dimensions. We construct the list sm of submodules, print their
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dimensions and ask for mutual inclusions, that is we compute the incidence
matrix mat of the poset of submodules:

gap> sm := List( bsm , bas -> Submodule( GF(2)ˆ100 , bas ) );;
gap> mat := [];;
gap> for i in [1..Length(bsm)] do
> mat[i] := [];
> for j in [1..Length(bsm)] do
> if IsSubspace( sm[i], sm[j]) then mat[i][j] := 1 ;
> else mat[i][j] := 0;
> fi;
> od;
> od;

We display the lower triangular part of the incidence matrix mat, giving as row
headings the dimensions of the submodules in Figure 1.1. We can see from the

0 1
1 1 1
21 1 1 1
22 1 1 1 1
22 1 1 1 . 1
22 1 1 1 . . 1
77 1 1 1 . . . 1
23 1 1 1 1 1 1 . 1
78 1 1 1 1 . . 1 . 1
78 1 1 1 . 1 . 1 . . 1
78 1 1 1 . . 1 1 . . . 1
79 1 1 1 1 1 1 1 1 1 1 1 1
99 1 1 1 1 1 1 1 1 1 1 1 1 1
100 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1.1. Lower triangular part of the incidence matrix of the poset of sub-
modules.

incidence matrix that the permutation module has a composition series with
composition factors of dimension 1, 20, 1, 56, 1, 20, 1. But if one is just inter-
ested in these factors, there is a much easier way. GAP conveniently provides a
command computing composition factors of a module and giving for each factor
the multiplicity with which it occurs in a composition series up to isomorphism:

gap> cf := MTX.CollectedFactors( module );;
gap> List( cf, x->x[1].dimension );
[ 1, 20, 56 ]
gap> List( cf, x->x[2] ); # the multiplicities:
[ 4, 2, 1 ]
gap> List( cf, x -> MTX.IsAbsolutelyIrreducible(x[1]) );
[ true, true, true ]

Thus the permutation module has just three composition factors up to isomor-
phism with multiplicities 4, 2, 1. The last command verifies that these modules
are all absolutely simple.
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If F = Fq is a finite field and V = Fm then the weight wt(v) of a vector v ∈
V is defined to be the number of non-zero components of v and the (Hamming-)
distance of two vectors v, w ∈ V is wt(v − w). This is of relevance in coding
theory, where one is often interested in finding a subspace W ≤ V (which is
there called a linear code) where the minimal distance of two different vectors
in W (“code words”) is not too small. If this minimal distance is 2d+ 1 then it
is easily seen that W is able to correct d errors in the following sense: if v ∈ V
is obtained from a “code word” w ∈ W by changing at most d components,
then there is a unique element wc ∈ W such that wt(wc − v) ≤ d and thus
w = wc. It is obvious that the minimal distance of two different vectors in W
is just the minimal weight of a non-zero element of W . We want to analyze the
21-dimensional F2G-subspace W of V = F100

2 constructed above:

gap> W := sm[3];;
gap> wd := DistancesDistributionMatFFEVecFFE( bsm[3], GF(2), Zero(W) );
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 3850, 0, 0, 0, 4125, 0, 0, 0, 92400, 0, 0, 0,
347600, 0, 0, 0, 600600, 0, 0, 0, 600600, 0, 0, 0, 347600, 0, 0, 0,
92400, 0, 0, 0, 4125, 0, 0, 0, 3850, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]

gap> Position( wd, 3850 );
33

Here for i from 0 to 100 the (i + 1)st entry wd[i + 1] of wd is the number of
vectors in W of weight i. Thus the coefficients of wd should add up to 221. We
see that there are 3850 vectors in W with minimal non-zero weight 32. Thus W
can correct 15 errors in the above sense. It is clear that G acts on

Wi = {w ∈W | wt(w) = i} for i = 0, . . . , 100.

We thus obtain new permutation representations of G of degree 3850, 4125,
92400 etc. which we might want to look at:

gap> repeat w := Random( W ); until WeightVecFFE( w ) = 32 ;

Here we have randomly chosen elements w ∈ W until we have found one with
weight 32. Observe that the proportion of vectors of this weight is approxi-
mately 1

544 , so one has a good chance of finding such a vector quickly. We now
compute the orbit of this vector w under the right action of the matrix group
corresponding to G:

gap> Gmat := Group ( MTX.Generators(module) );;
gap> orbit := Orbit( Gmat , w , OnRight );;
gap> Length( orbit );
3850

Thus G acts transitively on the vectors of W32 and thus has a subgroup U
of index 3850. Constructing the corresponding permutation representation we
check that it is primitive and hence U is a maximal subgroup of G. In order
to identify this group, we first compute a permutation representation of smaller
degree for this group and then calculate the poset of normal subgroups, because
it is obviously much faster to compute with a permutation group of degree 32
than with one of degree 3850:
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gap> Gper := Image( ActionHomomorphism( Gmat, orbit) );;
gap> IsPrimitive( Gper );
true
gap> U := Stabilizer( Gper, 1 );
<permutation group of size 11520 with 3 generators>
gap> U := Image ( SmallerDegreePermutationRepresentation( U ) ) ;;
gap> DegreeOperation( U );
32
gap> nsU := NormalSubgroups( U );
[ Group(()), <permutation group of size 16 with 4 generators>,
<permutation group of size 5760 with 6 generators>,
<permutation group of size 11520 with 3 generators> ]

gap> StructureDescription( nsU[2] );
"C2 x C2 x C2 x C2"
gap> StructureDescription( FactorGroup( U , nsU[2] ) );
"S6"

Thus U ∼= C4
2 .S6, an elementary abelian 2-group of order 24 extended by S6,

which is in accordance with the information we get from the ATLAS ([38],
p. 80). One can use the permutation representation of degree 3850 of G just
constructed to obtain further absolutely irreducible matrix representations of
G over F2; see Exercise 1.3.7. But observe that it would not be wise to try to
calculate the complete submodule poset of this module in one go as above, since
the number of submodules is rather large.

Similarly one finds that the vectors of W36 form one orbit under G and we get
a primitive permutation representation and hence a maximal subgroup of index
4125 which we could identify using GAP or the ATLAS as being isomorphic to
C3

4 � L3(2). Also, W40 breaks up into orbits of lengths 77000 and 15400 with
G acting primitively on the latter one, so that we find a maximal subgroup of
index 15400, which turns out to be isomorphic to C2×(A6 ·V4). �

Exercises

Exercise 1.3.1 Let q be a prime power and

G := { [αi,j ] ∈ SLn(Fq) | αij = δi,j for i ≥ j }.

G acts on V := Fnq by left multiplication. Show that EndFqG V
∼= Fq, but V is

not simple if n > 1.

Exercise 1.3.2 Let A be a finite dimensional K-algebra over a field K and let
L ⊇ K be an extension field. If W1,W2 are A-modules show that

HomLA(L⊗K W1, L⊗K W2) ∼=L L⊗K HomA(W1,W2).

If W1,W2 are simple, conclude that HomLA(L⊗K W1, L⊗K W2) 
= {0} implies
W1 ∼=A W2.

Exercise 1.3.3 Let K = Fq be a finite field with q elements and V a K-
vector space of dimension d. For λ ∈ K and ϕ ∈ EndK V let cϕ denote the
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characteristic polynomial of ϕ and mλ(ϕ) the multiplicity of λ as a root of cϕ.
(a) Show that dimK ker p(ϕ) = deg p if p = X − λ with mλ(ϕ) = 1.
(b) In this part we will give a lower bound for md,q/|EndK V |, where

md,q := |{ϕ ∈ EndK V | mλ(ϕ) = 1 for some λ ∈ K}|.

For λ1, λ2 ∈ K put n(λ1, λ2) := |{ϕ ∈ EndK V | mλ1(ϕ) = mλ2(ϕ) = 1}| and
nd,q := n(0, 0). Show that for λ, λ1, λ2 ∈ K

n(λ, λ) = nd,q =
qd − 1
q − 1

qd−1 |GLd−1(q)| =
|GLd(q)|
q − 1

,

n(λ1, λ2) ≤ qd − 1
q − 1

qd−1 nd−1,q for λ1 
= λ2,

md,q ≥ q nd,q −
∑

|{(λ1,λ2}|=2

n(λ1, λ2) ≥ 1
2
q nd,q.

Conclude (using elementary calculus) that

md,q

|EndK V |
≥ 1

2
(1− q−2)(1− q−3) · · · (1− q−d) ≥ 0.288.

Hint: To compute nd,q observe that ϕ ∈ EndK V with kerϕ = 〈v1〉K 
= {0}
and m0(ϕ) induces a ϕ̄ ∈ GLK(V/〈v1〉K).

Exercise 1.3.4 Let K = Fp and G = SL2(p). As in Exercise 1.1.8 let Vm
be the KG-module of homogeneous polynomials in X,Y of degree m − 1. Let
δm : G→ GLm(K) be the corresponding matrix representation of G on Vm with
respect to the K-basis

(Xm−1, Xm−2Y,Xm−3Y 2, . . . , XY m−2, Y m−1).

The aim of this exercise is to show that δ1, . . . , δp are irreducible representations
of G using Norton’s irreducibility criterion.
(i) G is generated as a group by the elements a =

[
1 1
0 1

]
and b =

[
1 0
1 1

]
.

(ii) δm(a) is an upper triangular matrix with 1’s on the diagonal and the (i, i+
1)st entry equal to i, for i = 1, . . . ,m − 1. Prove an analogous assertion for
δm(b).
(iii) Consider the element a − 1 ∈ KG, and compute ker δm(a − 1) and also
ker δm(a− 1)T and apply the “spinning algorithm.”
(iv) Try to prove that Vm is reducible for m > p.
Note: It follows from (iii) and Theorem 1.3.8 that δ1, . . . , δp are absolutely
irreducible.

Exercise 1.3.5 Let Ω := {1, . . . , 5} and G := A5 act on
(Ω

2

)
in a natural way.

For K ∈ {F2,F4} compute the composition factors and the poset of submod-
ules of the corresponding permutation module K

(Ω
2

)
. Show that F2

(Ω
2

)
has a

composition factor of dimension four which is not absolutely simple.
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Exercise 1.3.6 Similarly as in Example 1.1.49 compute a Q A5-module W of
dimension five as a factor module of Q A5(1− h)(1− g) ≤Q A5 Q A5 for suitable
g, h ∈ A5. Compute the matrices δ(g1), δ(g2) of the representation δ = δW with
respect to some basis of W , where A5 = 〈g1, g2〉. Find a matrix of rank four in
〈I5, δ(g1), δ(g2)〉Z and use it to prove that δ is absolutely irreducible.

Exercise 1.3.7 We use the notation of the Example 1.3.12.

(a) Explain why |Wi| = |Wn−i| for i = 1, . . . , n. Is it always true that F2Wi
∼=F2G

F2Wn−i?

(b) Find the orbits of G = HS on W44 and W48 and find the structure of the
point stabilizers. Show thatG has a maximal subgroup isomorphic to L3(4)�C2,
a split extension of L3(4) with a cyclic group of order two.

(c) Compute a composition series for the permutation module F2W32 and verify
that HS has absolutely irreducible representations of degrees 132, 518 and 1000
over F2 (in addition to those of degrees 20 and 56 we have seen before).

(d) Show that the permutation module of HS of dimension 100 over F3 is the
direct sum of three absolutely irreducible modules of dimensions 1, 22 and 77.
Although it does not appear to be feasible to compute the weight distribution
of all vectors of the 22-dimensional submodule, one may do some statistics by
computing the weight of a few million randomly chosen vectors. Compute the
stabilizers of some vectors of small weight (say of weight < 43). What happens
if one tries to compute the stabilizer of an arbitrary vector?

Exercise 1.3.8 Compute a composition series for the primitive permutation
representation of the sporadic simple Janko group J2 of degree 100 over F2 and
show that J2 has an irreducible representation of degree 12 over F2, which is
not absolutely irreducible. Show that J2 has three orbits on the vectors of this
12-dimensional F2J2 module. (The permutation representation may be found
in GAP using the command “AllPrimitiveGroups( DegreeOperation, 100 )”.)

1.4 Structure of algebras

In this section we study the structure of a K-algebra A, where K is assumed to
be a commutative ring K. Often, but not always, we will assume that A is of
finite length. We first introduce some useful general notions.

Definition 1.4.1 Let V be an A-module and S a simple A-module. We put

RadV :=
⋂
{U ≤A V | V/U is simple },

SocV :=
∑
{U ≤A V | U is simple },

HS(V ) :=
∑
{U ≤A V | U ∼=A S}, HS(V ) :=

⋂
{U ≤A V | A/U ∼=A S}.

RadV is called the radical, SocV the socle and HS(V ) the S-homogeneous
component of V . The Jacobson radical of A is J(A) := RadAA.
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Lemma 1.4.2 If S is a simple A-module then HS(A) �A and

Soc(AA) =
∑
{HS(A) | S simple A-module}�A, (1.13)

J(A) =
⋂
{HS(A) | S simple A-module}�A. (1.14)

Proof. If S is not isomorphic to a submodule of AA then HS(A) = {0}. So
let S ≤A A. For any a ∈ A the map S → Sa, s �→ sa is an epimorphism of
A-modules. Since S is simple we have Sa = {0} or Sa ∼=A S. Thus HS(AA) is
invariant under right multiplication and hence an ideal in A and (1.13) follows.

If S ∼=A A/M is simple and a ∈ annA S, then aA ⊆ M . Hence annA S ⊆
HS(A). Also J(A)S ≤A S, thus J(A)S = {0} or J(A)S = S. But the latter is
impossible by Exercise 1.4.1. Hence

J(A) ⊆
⋂
{annA S | S simple A-module}

⊆
⋂
{HS(A) | S simple A-module} = J(A)

and (1.14) follows, since annA S �A by Lemma 1.1.12.

Whereas we have seen (see Lemma 1.3.2) that every simple A-module is an
epimorphic image of the regular module AA, in general it is not true that every
simple A-module is isomorphic to a submodule of AA (see for instance Exer-
cise 1.4.3). But for group algebras the latter also holds.

Lemma 1.4.3 If G is a finite group and K is a field then

SocKG ∼=KG KG/ J(KG).

Proof. The result follows, since KGKG is selfdual (see Exercise 1.1.10).

We recall from Corollary 1.3.7 that the image δ(A) of any irreducible repre-
sentation δ : A→ EndK V for a K-algebra A of finite length is isomorphic to a
full matrix ring over a division ring D:

A/ ker δ ∼= δ(A) ∼= Dm×m for D = (EndA V )op. (1.15)

The structure of a full matrix ring over a division ring is well known and easily
described as follows.

Remark 1.4.4 If D is a division ring and m ∈ N then Dm×m is a simple ring.
Let Lk := {[dij ] ∈ Dm×m | dij = 0 for j 
= k} for k = 1, . . . ,m. Then the Lk
are minimal left ideals of Dm×m and

Dm×m = L1 ⊕ · · · ⊕ Lm with Li ∼=Dm×m Dm×1.

Corollary 1.4.5 (a) The image of an algebra of finite length under an irre-
ducible representation is a simple algebra.
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(b) Any simple K-algebra A of finite length is isomorphic to a full matrix ring
Dm×m over a division ring D containing K in its center. J(A) = HV (A) = {0}
and A = HV (A) for a simple A-module V . Furthermore D = (EndA V )op and
m = l(AA). If K is a field then dimK V = m[D : K].

Theorem 1.4.6 Let A be of finite length and let V1, . . . , Vr be a complete set
of simple A-modules up to isomorphism. Moreover, let δi : A→ EndK Vi be the
corresponding irreducible representations and Di = (EndA Vi)op for i = 1, . . . , r.
Then

J(A) =
r⋂
i=1

ker δi and A/ J(A) ∼=
r⊕
i=1

Dmi×mi
i .

Furthermore, if K is a field we have dimK Vi = [Di : K]mi.

Proof. By Lemma 1.3.2(a) and Lemma 1.4.2 J(A) =
⋂r
i=1 HVi(A). As we

have already seen in the proof of Lemma 1.4.2 ker δi = annA Vi ⊆ HVi(A). By
Lemma 1.4.5 HVi(A/ annA Vi) = {0}, thus HVi(A) = ker δi. We thus obtain a
K-algebra homomorphism

δ : A→ A′ :=
r⊕
i=1

δi(A) a �→ (δi(a))ri=1

with ker δ = J(A), inducing an injection δ̄ : A/ J(A) → A′. By Lemma 1.4.5
δi(A) ∼= Dmi×mi

i , with mi = l(A/ ker δi) ≤ li, the multiplicity of Vi in a com-
position series of A/ J(A). Hence l(A/ J(A)) =

∑r
i=1 li ≥

∑r
i=1mi = l(A′)

and δ̄ is surjective, hence an isomorphism. Finally, dimDi
Vi = mi and hence

dimK Vi = [Di : K]mi in the case that K is a field.

Studying irreducible representations of A is equivalent to studying those
of the algebra A/ J(A). The Jacobson radical is mapped to zero under any
irreducible representation. From this, some properties of J(A) can be concluded
indirectly as shows the proof of Corollary 1.4.7.

We recall that an element a in a ring A is called nilpotent if an = 0 for some
n ∈ N. Similarly I � A is called nilpotent if there is an n ∈ N with Ln = {0}
and a nil ideal if all a ∈ I are nilpotent.

Corollary 1.4.7 (a) If I �A is a nil ideal, then I ≤ J(A).

(b) If K is a field and n = dimK A then J(A)n = 0. Thus J(A) is the largest
nilpotent ideal of A.

Proof. (a) For any irreducible representation δ : A → EndK V the image
δ(I)�δ(A) is an ideal, and, since δ(A) is a simple ring, δ(I) = {0} or δ(I) = δ(A).
The latter cannot hold if I consists of nilpotent elements. Thus a nil ideal is in
the kernel of every irreducible representation, hence by Theorem 1.4.6 in J(A).

(b) Consider the regular representation ρ : A → EndK AA and choose a K-
basis B of A which is adapted to a composition series. Then for any a ∈ J(A)
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the matrix [ρ(a)]B is an upper triangular matrix with zeros on the diagonal,
since δi(a) = 0 for all irreducible representations δi. Since ρ is faithful, and the
product of n upper triangular n× n-matrices with zeros on the diagonal is the
zero matrix, the assertion follows.

Example 1.4.8 Let G = S3 and let K be a field. Let δ1 be the trivial represen-
tation and δ2 the sign representation. Thus δ1(g) = 1 and δ2(g) = sgn(g) = ±1
for all g ∈ S3. Of course δ1 = δ2 if charK = 2. Finally let δ3 : K S3 → K2×2 be
the representation defined in Example 1.3.5. As was shown there, δ3 is absolutely
irreducible if and only if charK 
= 3. We denote the corresponding K S3-modules
by V1 = KS3 , V2, V3, and let ker δi = Ii � K S3 for i = 1, 2, 3. If charK 
= 2, 3
we have K S3 / J(K S3) ∼= K ⊕K ⊕K2×2, thus J(K S3) = {0}.

{0}

J(K S3)

HV3(K S3)I3

I1 = Soc(K S3)

K S3

K2×2

K

K

K2×2

�� �
�

����

��

�
�

���
�

�� ��

K S3 for charK = 2.

If charK = 2 the representations
δ1 and δ3 are irreducible and V1 ∼=
InvS3(K S3) = K(S3)+ is a nilpotent
ideal, because ((S3)+)2 = |S3 |(S3)+ =
6 (S3)+. By Corollary 1.4.7 K(S3)+ ≤
J(K S3). It follows that

K S3 / J(K S3) ∼= K ⊕K2×2 and

J(K S3) = K(S3)+ ∼= K.

By Lemma 1.4.3 dimK SocK S3 = 5 and
so SocK S3 = I1 = InvS3(K S3) because
this is, in our case, the only (left) ideal of codimension 1 in K S3. Note that
K S3 = HV3(K S3)⊕ I3.

{0}

Soc(K S3)

J(K S3)

I2 I1

K S3

V1 V2

����

�� ��

�� ��

�� ��

K S3 for charK = 3.

Finally, if charK = 3 we get two max-
imal submodules

I1 := {
∑
g∈S3

αgg |
∑
g∈S3

αg = 0},
I2 := {

∑
g∈S3

αgg |
∑
g∈S3

sgn(g)αg = 0},

and two simple submodules

V1 := 〈
∑
g∈S3

g 〉K ,
V2 := 〈

∑
g∈S3

sgn(g)g 〉K .

Obviously V1, V2 ≤ I1 ∩ I2. By Theo-
rem 1.4.6 we cannot have an irreducible
representation of G of degree two. Hence
we have found all irreducible representations (use Exercise 1.1.7). In partic-
ular, J(K S3) = I1 ∩ I2 and SocK S3 = V1 ⊕ V2. It is also easily seen that
J(K S3)/ Soc(K S3) ∼=K S3 V1 ⊕ V2. Of course, there are more K S3-submodules
(left ideals). In fact, K S3 is the direct sum of two indecomposable submodules,
as we will see later when dealing with idempotents. �
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Exercises

Exercise 1.4.1 Let A be a ring. Prove

(a) If a ∈ J(A) then 1− a has a left inverse in A.

(b) (Nakayama’s lemma) If V is a finitely generated A-module and J(A)V = V
then V = {0}.
(c) If V is a finitely generated A-module and L ≤A V with L + J(A)V = V
then L = V .

Hint: (a) Show that A = J(A)+A(1−a) for a ∈ J(A). If A(1−a) 
= A conclude
using Zorn’s lemma that A(1− a) is contained in a maximal left ideal.
(b) Let V = 〈v1, . . . , vn〉A with n minimal. Assume that J(A)V = V and use
part (a) to show that vn ∈ 〈v1, . . . , vn−1〉A.

Exercise 1.4.2 Let q be a power of two and let V4 be the Klein 4-group.
Describe the poset of all ideals of FqV4. Show that FqV4 has exactly q + 1
ideals of dimension two.

Exercise 1.4.3 Let K be a field and A := {[aij ] ∈ Kn×n | aij = 0 for i > j},
n ∈ N, be the ring of upper triangular matrices over K. Find all the irreducible
representations of A and the Jacobson radical J(A). Which simple A-modules
are isomorphic to submodules of AA? What is SocA? Show that

A ∼=A L1 ⊕ · · · ⊕ Ln

with Lk = {[aij ] ∈ A | aij = 0 for j 
= k}.

Exercise 1.4.4 (a) Find an isomorphism

ϕ : Z C2 → {(a, b) ∈ Z× Z | a ≡ b mod 2} ≤ Z× Z.

(b) Find an isomorphism from Z S3 to the subring

{(a,
[

b c
d e

]
, f) ∈ Z× Z2×2 × Z | a ≡ f mod 2, d ≡ 0, a ≡ b, e ≡ f mod 3}

of Z× Z2×2 × Z.
Hint: Use Exercise 1.1.4.

Exercise 1.4.5 (a) Show that

F2 A5 /J(F2 A5) ∼= F2⊕F2×2
4 ⊕F4×4

2 , F4 A5 /J(F4 A5) ∼= F4⊕F2×2
4 ⊕F2×2

4 ⊕F4×4
4

as algebras over F2 and F4, respectively.
(b) For K ∈ {F2,F4} and n ∈ N compute dimK(J(KA5))n.
Hint: Use the GAP-command RadicalOfAlgebra to compute dimK J(K A5)
and Exercise 1.3.5. The GAP-command ProductSpace might also be helpful.
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1.5 Semisimple rings and modules

Throughout this section A is assumed to be a K-algebra for some commutative
ring K unless otherwise stated.

Definition 1.5.1 An A-module is called semisimple if it is a sum of sim-
ple modules. The corresponding representation is usually called completely
reducible; A is called semisimple if the regular A-module AA is semisimple.

Lemma 1.5.2 The following conditions for an A-module V are equivalent:

(a) V is semisimple;

(b) V is a direct sum of simple modules;

(c) every submodule of V has a complement, and hence is also a direct sum-
mand.

Proof. Assuming (a), let V =
∑
i∈I Vi with simple submodules Vi ≤A V and

U <A V . By Zorn’s lemma there is J ⊆ I maximal with the property that∑
j∈J Vj =

⊕
j∈J Vj and U ∩

∑
j∈J Vj = {0}. If Vi 
⊆ U ⊕

⊕
j∈J Vj for some

i ∈ I then Vi ∩ (U ⊕
⊕

j∈J Vj) = {0}, which contradicts the maximality of J .
Hence V = U ⊕

⊕
j∈J Vj , and we have proved (c). For U = {0} we obtain (b).

Conversely, assuming (c) let 0 
= v ∈ V . By Zorn’s lemma Av ∼=A A/ annA v
contains a maximal submodule U . By assumption there is U ′ ≤A V with
V = U ⊕ U ′. Then Av = U ⊕ (Av ∩ U ′) and Av ∩ U ′ is simple. Let V ′ =∑
{S ≤A V | S simple}. If V 
= V ′ then V = V ′⊕V ′′ with V ′′ 
= {0}. Then V ′′

contains a simple submodule, which is a contradiction. Thus (a) follows.

Corollary 1.5.3 (a) Sums, submodules and factor modules of semisimple mod-
ules are semisimple.

(b) A is semisimple if and only if every A-module is semisimple.

(c) A is semisimple if and only if A has finite length and J(A) = {0}.

Proof. (a) is obvious and (b) follows from (a) since every A-module is isomor-
phic to a factor module of a free A-module.

(c) If A =
⊕

i∈I Li with minimal left ideals Li then 1 =
∑m
j=1 ej with

ej ∈ Lij and hence A =
∑m
j=1Aej . Hence I is finite and thus A is of finite

length. Also it is clear that J(A) = {0}. Conversely, if J(A) = {0} and l(A) =
m <∞, then by Exercise 1.5.1 A has m maximal left ideals Mi ≤A A such that
AA ∼=A A/M1 ⊕ · · · ⊕ V/Mm.

Theorem 1.5.4 Assume that V is a semisimple A-module, V =
⊕m

i=1 HLi(V ),
with simple A-modules Li, where Li 
∼=A Lj for i 
= j. Let

HLi
(V ) ∼=A Li ⊕ · · · ⊕ Li︸ ︷︷ ︸

ni

and Di := EndA Li. (1.16)
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Then E := EndA V is semisimple, E ∼=
⊕m

i=1D
ni×ni
i as K-algebras. Also

V ∼=E

m⊕
i=1

Xi ⊕ · · · ⊕Xi︸ ︷︷ ︸
zi

with zi := dimDi Li,

where Xi is a simple E-module with Xi 
∼=E Xj for i 
= j.

Proof. We put Hi := HLi(V ). By Theorem 1.1.15 HomA(Hi, Hj) = {0} for
i 
= j and

EndA V ∼=K

m⊕
i=1

EndAHi; in fact ϕ �→ (ϕ|Hi
)mi=1

is a K-algebra isomorphism. In particular, Hi ≤E V . For j = 1, . . . , ni let
πj : Hi → Li and ιj : Li → Hi be the projections and injections corresponding
to (1.16). Then we obtain an isomorphism of K-algebras (cf. Theorem 1.1.15)

Ei := EndAHi → Dni×ni
i , ϕ �→ [(πj ◦ ϕ ◦ ιk]1≤j,k≤ni .

Ei has a unique simple module Xi up to isomorphism (see Remark 1.4.4) with
dimDi Xi = ni. Since dimDi Hi = nizi it follows (consideringXi as an E-module
by inflation) that Hi

∼=E Xi ⊕ · · · ⊕Xi︸ ︷︷ ︸
zi

.

Theorem 1.5.5 (Wedderburn) Every semisimple algebra A is isomorphic to
a direct sum of full matrix rings over division rings. If {L1, . . . , Lr} is a set
of representatives of the isomorphism classes of simple A-modules and Di =
(EndA Li)op then

A =
r⊕
i=1

Ai and Ai ∼=A Li ⊕ · · · ⊕ Li︸ ︷︷ ︸
ni

with ni = dimDi
Li,

and the two-sided ideal Ai = HLi(AA) is isomorphic to Dni×ni
i as an algebra.

If A is a K-algebra over a field K then dimK Li = [Di : K]ni.

Proof. Since A ∼= (EndA AA)op (see Exercise 1.5.3) this follows from the pre-
ceding theorem using an obvious algebra isomorphism (Dn×n)op ∼= (Dop)n×n.
Alternatively it is a consequence of Corollary 1.5.3(c) and Theorem 1.4.6.

For the remainder of this section we stick to the case of K-algebras over a
field K.

Theorem 1.5.6 (Maschke) If K is a field and G a finite group, then the group
algebra KG is semisimple if and only if the characteristic of K is not a divisor
of the group order |G|.
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Proof. (a) Assume charK � |G| and let U ≤KG KG. We show that U has
a complement as KG-module. We start with a K-vector space complement
U ′ of U in KG and let π ∈ EndK KG be the corresponding projection with
im(π) = U and ker(π) = U ′. We define π̃ : KG→ KG by

π̃ : KG→ KG , a �→ 1
|G|

∑
g∈G

gπ(g−1a).

Observe that our assumption says that 1
|G| ∈ K. A straightforward computation

shows that π̃ is a KG-module homomorphism. Also π̃2 = π̃, because U is G-
invariant and so, clearly, im(π̃) = im(π). It follows that ker(π̃) ≤KG KG is a
complement of U in KG.

(b) Conversely assume charK | |G|. Then by Example 1.1.19

InvG(KG) = K ·
∑
g∈G

g ⊆ {
∑
g∈G

αgg |
∑
g∈G

αg = 0} = InvG(KG).

So InvG(KG) cannot have a KG-module as complement, since G would have
to act trivially on it.

Example 1.5.7 Let 3 < n ∈ N and let K be a field of characteristic zero
or p > n. We consider the permutation modules for the symmetric group Sn
corresponding to the natural actions on Ω = {1, . . . , n} and

(Ω
k

)
= {M ⊆ Ω |

|M | = k} for some k ≤ n. By Maschke’s theorem K Sn is semisimple, and by
Example 1.2.18 EndK Sn KΩ ∼= K ⊕K. Thus

KΩ ∼=K Sn K ⊕ L, L simple with dimK(L) = n− 1,

with K denoting also the trivial K Sn-module. Likewise by Example 1.2.25
EndK Sn K

(Ω
2

) ∼= K ⊕K ⊕K, thus

K

(
Ω
2

)
∼=K Sn K ⊕ L1 ⊕ L2, with simple K Sn -modules L1, L2.

Furthermore by Example 1.2.25 HomK Sn(KΩ,K
(Ω
k

)
) ∼=K K ⊕K, so that KΩ

must be isomorphic to a submodule of any K
(Ω
k

)
. In particular we can choose

our notation so that L ∼=K Sn L1, and we conclude that

dimK L2 =
(
n

2

)
− n =

1
2
n(n− 3).

Thus Sn has irreducible representations of degrees n− 1 and 1
2n(n− 3). In fact,

it is easy to see that these are absolutely irreducible representations. �

Definition 1.5.8 If A is an algebra over a field K, then an extension field
L ⊇ K is called a splitting field for A if every simple LA-module is absolutely
simple. If G is a finite group and K is a splitting field for KG, then K is also
called a splitting field for G.
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Observe that an algebraically closed field is always a splitting field by
Lemma 1.3.2. But for finite dimensional algebras we usually have smaller split-
ting fields.

Lemma 1.5.9 If A is a K-algebra for a field K and dimK A < ∞ then there
is a splitting field L ⊇ K for A with [L : K] <∞.

Proof. Let K̄ be the algebraic closure of K and let (a1, . . . , am) be a K-basis
of A. Assume that V1, . . . , Vr are representatives of the isomorphism classes
of simple K̄A-modules and let Bi := (vi1, . . . , v

i
ni

) be a K̄-basis of Vi for i =
1, . . . , r. If Vi affords the matrix representation δi with respect to the basis
Bi, let L be the field obtained from K by adjoining all the entries of δi(aj) for
1 ≤ i ≤ r and 1 ≤ j ≤ m. Then V ′

i = 〈 vi1 , . . . , vini
〉L is a simple LA-module

with K̄V ′
i = Vi, hence absolutely simple. If V is any simple LA-module, then

for some i ∈ {1, . . . , r}

{0} 
= HomK̄A(K̄V, K̄V ′
i ) ∼= K̄ ⊗L HomLA(V, V ′

i )

(by Exercise 1.3.2), and hence V ∼=LA V
′
i . So L is indeed a splitting field for A.

Theorem 1.5.10 Let A be a semisimple K-algebra and let {L1, . . . , Lr} be a
complete set of representatives of the isomorphism classes of simple A-modules.
Then the following are equivalent :

(a) K is a splitting field for A;

(b) A ∼=
⊕r

i=1K
ni×ni as a K-algebra;

(c) dimK A =
∑r
i=1(dimK Li)2;

(d) EndA Li = K idLi for all i ∈ {1, . . . , r}.

Proof. The result follows immediately from Theorem 1.5.5, because Wedder-
burn’s theorem gives in our case

dimK A =
r∑
i=1

ni dimK Li =
r∑
i=1

[Di : K](dimDi Li)
2.

Theorem 1.5.11 Assume that K is a field.

(a) If A is semisimple and n is the number of simple A-modules (up to isomor-
phism), then n ≤ dimK Z(A) with equality if K is a splitting field for A.

(b) If charK � |G| then the number of irreducible K-representations of G (up
to equivalence) is less than or equal to the number of conjugacy classes of G,
and equality holds if K is a splitting field for G.
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Proof. We assume the notation of Theorem 1.5.10. Observe that Z(Dn×n) ∼=
Z(D) for any division ring D, so

Z(A) ∼=
r⊕
i=1

Z(Di) and r ≤ dimK Z(A).

By Theorem 1.5.10 K is a splitting field for A if and only if Di = Z(Di) ∼= K
for all i, hence (a) follows.

(b) This follows from (a) and Lemma 1.1.9.

Corollary 1.5.12 If G is a finite group and K is a splitting field for G of
characteristic not dividing |G| then KG ∼=

⊕r
i=1K

ni×ni with

r = | cl(G)| and |{i ∈ {1, . . . , r} | ni = 1}| = [G : G′].

If G is abelian then KG ∼= K ⊕ · · · ⊕K with |G| summands. In particular any
two abelian groups of the same order have isomorphic group algebras over C.

Proof. The corollary follows immediately for abelian groups G from Theo-
rem 1.5.10, since KG must then be commutative. In general the number l of
i’s with ni = 1 equals the number of irreducible representations of G over K of
degree one. Since such a representation is a group homomorphism of G into the
abelian group K× the commutator subgroup G′ is in the kernel of any such rep-
resentation, hence the representations of G over K of degree one are inflations
of irreducible representations of G/G′. So l ≤ [G : G′]. Conversely, K(G/G′)
is a homomorphic image of KG and is commutative of dimension [G : G′], so
l = [G : G′].

Example 1.5.13 Let G be a non-abelian group of order eight and let K be a
splitting field for G of characteristic 
= 2, e.g. K = C. Then

KG ∼= K ⊕K ⊕K ⊕K ⊕K2×2

because 8 = 1+1+1+1+22 is the only non-trivial way to write |G| as a sum of
squares with at least one summand being unity. Note that for any group we have
the trivial representation, so that we may always assume in Theorem 1.5.10(b)
that n1 = 1 if A is a group algebra. As a consequence we may conclude in our
example that any non-abelian group of order eight has exactly five conjugacy
classes. It is well known that there are two such groups, namely the dihedral
group D8 and the quaternion group Q8 of order eight. �

Remark 1.5.14 Let K be an algebraically closed field and A ∼=
⊕r

i=1K
ni×ni .

It is a natural but open problem to ask whether or not there is a finite group
G such that A ∼= KG as a K-algebra. If so, we have of course |G| =

∑r
i=1 n

2
i ,

and r is the number of conjugacy classes of G and |G| is not divisible by the
characteristic of K by Maschke’s theorem. There are a few necessary conditions,
the second of which we will derive in chapter 2:
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(a) |{i ∈ {1, . . . , r} | ni = 1}| must be a divisor of |G|, because it is equal to
[G : G′] by Corollary 1.5.12;

(b) all ni must be divisors of |G| (cf. Theorem 2.3.4).

But these conditions are far from being sufficient. For small n it is easy to list
all integral solutions of

n =
∑

xi · n2
i with n1 = 1 , ni|n , x1|n , 1 ≤ x1 < n

(which describe the isomorphism types of non-commutative semisimple alge-
bras, which might be group algebras). We do this for n < 30, where we have
added the condition that x1 > 1, since groups with order in this range are not
perfect:

6 = 2 · 12 + 1 · 22

8 = 4 · 12 + 1 · 22

10 = 2 · 12 + 2 · 22

12 = 3 · 12 + 1 · 32 = 4 · 12 + 2 · 22

14 = 2 · 12 + 3 · 22

16 = 4 · 12 + 3 · 22 = 8 · 12 + 2 · 22

18 = 2 · 12 + 4 · 22 = 6 · 12 + 3 · 22 = 9 · 12 + 1 · 32

20 = 4 · 12 + 1 · 42 = 4 · 12 + 4 · 22

21 = 3 · 12 + 2 · 32

22 = 2 · 12 + 5 · 22

24 = 2 · 12 + 1 · 22 + 2 · 32 = 3 · 12 + 3 · 22 + 1 · 32 = (4 · 12 + 1 · 22 + 1 · 42)
= 4·12+5·22 = 6·12+2·32 = (8·12+1·42) = 8·12+4·22 = 12·12+3·22

26 = 2 · 12 + 6 · 22

27 = 9 · 12 + 2 · 32

28 = (4 · 12 + 2 · 22 + 1 · 42) = 4 · 12 + 6 · 22

The values in parentheses are not realized by any group, as can be seen for
instance from the library of “small groups” in GAP from which the structure of
all group algebras CG of groups G of order up to 1000 can be obtained via the
character tables (see Chapter 2). The above cases can also easily be excluded
using elementary group theoretical arguments (see Exercise 1.5.9).

We conclude with a practical application of the structure theorem for semisim-
ple group algebras over a splitting field.

If for a finite group G and a field K an isomorphism

ϕ : KG→
r⊕
i=1

Kni×ni

is explicitly given together with its inverse ϕ−1, then this might be used for
carrying out multiplications in the group algebra KG via

a · b = ϕ−1(ϕ(a)ϕ(b)) for a, b ∈ KG.



1.5 Semisimple rings and modules 61

This can be efficient in particular if the degrees ni are small or ideally one, as
is the case for abelian groups. This is because a multiplication of elements of a
group algebra KG of a group of order n costs approximately n2 multiplications
and additions of coefficients in addition to carrying out the multiplication of the
group elements. On the other hand, for an abelian group G multiplication of
elements in ϕ(KG) = Kn requires just n multiplications.

The classical and most important case is that of a cyclic group Cn of order
n. As shown in Example 1.1.23 the group algebra C Cn is naturally isomorphic
to R = C[X]/(Xn − 1). Any multiplication of complex polynomials f, g ∈
C[X] can be reduced to the multiplication of the elements f + (Xn − 1) and
g+(Xn−1) in R, if one chooses n > deg f+deg g. The isomorphism mentioned
in Corollary 1.5.12 can be given explicitly and is usually called the discrete
Fourier transform. For this it is convenient to identify Cn with the set of
polynomials over C of degree less than n – after all a polynomial is by its very
definition simply the sequence of its coefficients – and write

a(z) =
n−1∑
i=0

aiz
i for a = (a0, . . . , an−1) ∈ Cn and z ∈ C.

We then define for a primitive nth root of unity ζ ∈ C

DFζ : Cn → Cn, a �→ (a(ζ0), a(ζ), . . . , a(ζn−1)),

to obtain the following lemma.

Lemma 1.5.15 With the above notation the map

DFT : C[X]/(Xn − 1) → C⊕ · · · ⊕ C , a+ (Xn − 1) �→ DFζ(a),

is an algebra isomorphism with inverse

IDFT : Cn → C[X]/(Xn − 1) , a �→ 1
n

DFζ−1(a) + (Xn − 1).

Proof. If a = (a0, . . . , an−1) we find

DFζ−1(DFζ(a)) = (b0, . . . , bn−1)

with

bi =
n−1∑
j=0

(
n−1∑
k=0

akζ
jk)ζ−ij =

n−1∑
k=0

ak(
n−1∑
j=0

ζj(k−i))

=
n−1∑
k=0

ak · nδi,k = n · ai,

where we used the well known identity
n−1∑
i=0

ζij =
{
n if j = 0,
0 if j 
= 0.

(See also Exercise 2.1.8.)



62 Representations and modules

The discrete Fourier transform has many practical applications and can for in-
stance be used to perform efficient multiplications of polynomials whose degrees
add up to less than n requiring only n multiplications in addition to the oper-
ations DFT and IDFT, which can be carried out fast and recursively if n is a
power of two. In fact, it can be shown that the multiplication of polynomials
of degree m < n

2 can thus be carried out at cost O(m log m). For details and
extensions of the method to other than cyclic groups we refer to [27]. We would
also like to mention that there is an intriguing new application of group algebras
to the complexity theory of matrix multiplication; see [30] and [31].

Exercises

Exercise 1.5.1 Let V 
= {0} be an A-module of finite length m with RadV =
{0}. Show (by induction on m) that V has m maximal submodules Mi such
that V ∼=A V/M1 ⊕ · · · ⊕ V/Mm.

Exercise 1.5.2 (a) Let V be a semisimple A-module. Show that EndA V
is commutative if and only if all composition factors of V have multiplicity
one. Such a module (or the corresponding representation) is usually called
multiplicity-free.
(b) Let G be a finite group and let Ω be a G-set of rank r ≤ 3. Show that KΩ
is multiplicity-free provided that charK � |G|.

Exercise 1.5.3 Show that (EndA AA)op → A, ϕ �→ ϕ(1) is an algebra
isomorphism.
Hint: For a ∈ A consider ϕa : A → A, x �→ xa. In Theorem 1.6.8 we will
generalize this result.

Exercise 1.5.4 For any n ∈ N we always use ζn := exp(2πi/n) ∈ C.

(a) For n = 2k , k ∈ N, let

f = (Xk − 1)q1 + r1 = (Xk + 1)q2 + r2 ∈ C[X] with deg r1,deg r2 < k

and q1, q2, r1, r2 ∈ C[X]. Show that for 0 ≤ i < k one has

f(ζ2i
n ) = r1(ζ2i

n ) and f(ζ2i+1
n ) = r2(ζ2i+1

n ).

(b) Let f := X3 + 3X2 + X + 1 ∈ C[X] and g := X4 + 3X2 + X + 1 ∈ C[X].
Compute the product f · g ∈ C[X] via the discrete Fourier transform.

Exercise 1.5.5 For n = 2k, k ∈ N, let DFζ for ζ := ζn be the matrix of
the discrete Fourier transform DFζ : Cn → Cn. Moreover, define µ := ζ2 and
denote by D the diagonal matrix with entries ζi, i = 0, . . . , k − 1. Finally let P
be the permutation matrix corresponding to the permutation π on {1, . . . , n}
with π(i) = k + i/2 if i is even and π(i) = (i+ 1)/2 if i is odd. Show that DFζ
can be factorized as follows:

DFζ =
[

Ik D
Ik −D

]
·
[

DFµ 0
0 DFµ

]
· P.

Show that if n is of the form 2m, the Fourier transform can be computed in
O(n ln(n)) steps.
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Exercise 1.5.6 Show that Q Cn ∼=
⊕

d|n Q(ζd).

Exercise 1.5.7 Let V and W be A-modules and E := EndA V . Show that
HomA(W,V ) is an E-module in a natural way. If A is semisimple, show that E
is a semisimple K-algebra. Let V1, . . . , Vr be a system of representatives for the
isomorphism classes of simple A-submodules of V . Show that {HomA(Vi, V ) |
1 ≤ i ≤ r} is the set of all simple E-modules up to isomorphism.

Exercise 1.5.8 Let A be a finite dimensional K-algebra for a field K and let
L ⊇ K be an extension field.

(a) If K is a splitting field for A, show that L is also a splitting field for A
and that for every simple LA-module W there is a simple A-module V with
W ∼= LV .

(b) Conversely, assume that L is a splitting field for A and that for every simple
LA-module W there is a simple A-module V with W ∼= LV . Show that K is a
splitting field for A.

Exercise 1.5.9 Show that

(a) a group G of order 24 with [G : G′] = 4 cannot have exactly six conjugacy
classes;

(b) a group G of order 24 with [G : G′] = 8 cannot have exactly nine conjugacy
classes;

(c) a group G of order 28 cannot have exactly seven conjugacy classes.

1.6 Direct sums and idempotents

In this section A is assumed to be a K-algebra for some commutative ring K
and V is a finitely generated A-module.

We recall that a submodule U ≤A V is called a direct summand if there
is a submodule U ′ ≤A V such that V = U ⊕U ′ (see Definition 1.1.13). We will
use the notation

U |A V or just U | V

to mean that U is isomorphic as A-module to a direct summand of V . Recall
that e ∈ A is an idempotent if e2 = e 
= 0 (see Definition 1.2.8).

Definition 1.6.1 Two idempotents e′, e′′ ∈ A are called orthogonal if e′e′′ =
e′′e′ = 0. An idempotent e ∈ A is called primitive if e cannot be written as a
sum of two orthogonal idempotents in A.

Lemma 1.6.2 (a) U | V if and only if U = imϕ for some ϕ ∈ EndA V with
ϕ2 = ϕ. Then V = imϕ ⊕ kerϕ and U is indecomposable if and only if idU is
the only idempotent in EndA U .

(b) {0} 
= U | AA if and only if U = Ae for some idempotent e ∈ A. Then
AA = Ae⊕A(1− e) and Ae is indecomposable if and only if e is primitive.
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Proof. (a) If U = U1, U2 ≤A V and V = U1 ⊕ U2 with projections π1, π2
and injections ι1, ι2 as in Definition 1.6.2 then ϕ := ι1 ◦ π1 satisfies ϕ2 = ϕ and
U = imϕ, U2 = kerϕ. Conversely, let ϕ2 = ϕ ∈ EndA V any v ∈ V . Then

v = ϕ(v) + (v − ϕ(v)) ∈ imϕ+ kerϕ.

If v ∈ imϕ ∩ kerϕ then v = ϕ(w) for some w ∈ V and 0 = ϕ(v) = ϕ2(w) =
ϕ(w) = v. Thus V = imϕ⊕kerϕ. Applying the argument to U , we see that any
idempotent in EndA U produces a direct summand 
= {o} of U , and conversely.

(b) If AA = U ⊕ U ′ there are uniquely determined elements e ∈ U, e′ ∈ U ′

with 1A = e+e′. Then for any a ∈ U we have a+0 = a = a1A = ae+ae′ implies
ae = a, ae′ = 0. Thus U = Ae and for a := e we get e+ 0 = e = e1A = e2 + ee′

implies e2 = e, ee′ = 0. Similarly U ′ = Ae′ and e′2 = e′, e′e = 0.
Conversely, if e2 = e ∈ A then AA = Ae⊕A(1− e) is readily verified.

Remark 1.6.3 ϕ2 = ϕ ∈ EndA V is equivalent to ϕ(ϕ − idV ) = 0. Thus, if
EndA V is a division ring, then V is indecomposable. Consequently, if V is
semisimple and EndA V is a division ring then V is simple. This is a kind of
converse to Schur’s lemma.

We recall that an A-module V is called artinian (resp. noetherian) if
every sequence of submodules of the form V = V1 >A V2 >A · · · >A Vn >A · · ·
(resp. {0} = V1 <A V2 <A · · · <A Vn <A · · · ) is finite. It is not hard to see (see
[4], Proposition 11.1), that a module has finite length if and only if it is artinian
and noetherian. A ring A is called artinian (resp. noetherian) if the regular
module AA has this property. There is a well known theorem due to Hopkins
(see [4], Theorem 15.20) saying that an artinian ring (with unit) is necessarily
also noetherian. We will not prove this fact.

Lemma 1.6.4 (Fitting’s lemma) For ϕ ∈ EndA V the following hold.

(a) kerϕi ⊆ kerϕi+1 and imϕi ⊇ imϕi+1.

(b) If V is artinian, then there is an r ∈ N with imϕr = imϕr+i for all i ∈ N
and

V = imϕr + kerϕr;

ϕ is an automorphism if and only if it is injective.

(c) If V is noetherian, then there is an s ∈ N with kerϕs = kerϕs+i for all
i ∈ N and

imϕs ∩ kerϕs = {0};

ϕ is an automorphism if and only if it is surjective.

(d) If V is artinian and noetherian then

V = imϕm ⊕ kerϕm

for sufficiently large m.
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Proof. (a) is obvious.
(b) If imϕr = imϕr+1 then for any v ∈ V there is a w ∈ V with ϕr(v) =

ϕ2r(w). Then
v = ϕr(w) + (v − ϕr(w)) ∈ imϕr + kerϕr

because ϕr(v − ϕr(w)) = 0.
(c) If kerϕs = kerϕs+1 then for any v = ϕs(w) ∈ imϕs ∩ kerϕs one finds

ϕ2s(w) = ϕs(v) = 0, so w ∈ kerϕ2s = kerϕs, hence v = ϕs(w) = 0.
(d) is an immediate consequence of (b) and (c).

We recall that a ring is called local if its non-units form an ideal (which is
then, of course, the only maximal ideal). Since a local ring obviously cannot
contain any idempotent 
= 1, it follows that if EndA V is local then V must be
indecomposable.

Corollary 1.6.5 Assume that V has finite length. Then V is indecomposable
if and only if EndA V is local.

Proof. If ϕ ∈ EndA V is not a unit, then by Fitting’s lemma part (c) it
cannot be surjective and by (d) it must be nilpotent. For any ψ ∈ EndA V it
follows that ψϕ is not injective and ϕψ is not surjective, hence these products
are non-units. If ψ is also a non-unit in EndA V then ϕ+ψ cannot be invertible,
because otherwise ϕ′ = ϕ(ϕ + ψ)−1 would be a non-unit, and hence nilpotent,
and 1−ϕ′ would be invertible (with inverse

∑
i≥0 ϕ

′i). But 1−ϕ′ = ψ(ϕ+ψ)−1

is not surjective.

Theorem 1.6.6 (Krull–Schmidt) If V 
= {0} is an A-module and

V = V1 ⊕ · · · ⊕ Vr = W1 ⊕ · · · ⊕Ws

with indecomposable submodules Vi,Wj, such that EndA Vi is local for i =
1, . . . , r, then r = s and there is a permutation σ ∈ Sr with Vi ∼=A Wσ(i).
If V 
= {0} is an A-module of finite length, then V is a finite direct sum of in-
decomposable A-modules which are uniquely determined up to isomorphism and
ordering.

Proof. We use induction with respect to n := min(r, s), the result being
evidently true for n = 1.

Let ϕi = ϕ2
i ∈ EndA V and ψj = ψ2

j ∈ EndA V be the natural projections
with

imϕi = Vi, kerϕi =
⊕
k 	=i

Vk, imψj = Wj , kerψj =
⊕
k 	=j

Wk,

for i = 1, . . . , r and j = 1, . . . , s. We have idV =
∑r
i=1 ϕi =

∑s
j=1 ψj and hence

idV1 = ϕ1|V1 =
s∑
j=1

ϕ1ψj |V1 ∈ EndA V1.
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The discrete Fourier transform has many practical applications and can for in-
stance be used to perform efficient multiplications of polynomials whose degrees
add up to less than n requiring only n multiplications in addition to the oper-
ations DFT and IDFT, which can be carried out fast and recursively if n is a
power of two. In fact, it can be shown that the multiplication of polynomials
of degree m < n

2 can thus be carried out at cost O(m log m). For details and
extensions of the method to other than cyclic groups we refer to [27]. We would
also like to mention that there is an intriguing new application of group algebras
to the complexity theory of matrix multiplication; see [30] and [31].

Exercises

Exercise 1.5.1 Let V 
= {0} be an A-module of finite length m with RadV =
{0}. Show (by induction on m) that V has m maximal submodules Mi such
that V ∼=A V/M1 ⊕ · · · ⊕ V/Mm.

Exercise 1.5.2 (a) Let V be a semisimple A-module. Show that EndA V
is commutative if and only if all composition factors of V have multiplicity
one. Such a module (or the corresponding representation) is usually called
multiplicity-free.
(b) Let G be a finite group and let Ω be a G-set of rank r ≤ 3. Show that KΩ
is multiplicity-free provided that charK � |G|.

Exercise 1.5.3 Show that (EndA AA)op → A, ϕ �→ ϕ(1) is an algebra
isomorphism.
Hint: For a ∈ A consider ϕa : A → A, x �→ xa. In Theorem 1.6.8 we will
generalize this result.

Exercise 1.5.4 For any n ∈ N we always use ζn := exp(2πi/n) ∈ C.

(a) For n = 2k , k ∈ N, let

f = (Xk − 1)q1 + r1 = (Xk + 1)q2 + r2 ∈ C[X] with deg r1,deg r2 < k

and q1, q2, r1, r2 ∈ C[X]. Show that for 0 ≤ i < k one has

f(ζ2i
n ) = r1(ζ2i

n ) and f(ζ2i+1
n ) = r2(ζ2i+1

n ).

(b) Let f := X3 + 3X2 + X + 1 ∈ C[X] and g := X4 + 3X2 + X + 1 ∈ C[X].
Compute the product f · g ∈ C[X] via the discrete Fourier transform.

Exercise 1.5.5 For n = 2k, k ∈ N, let DFζ for ζ := ζn be the matrix of
the discrete Fourier transform DFζ : Cn → Cn. Moreover, define µ := ζ2 and
denote by D the diagonal matrix with entries ζi, i = 0, . . . , k − 1. Finally let P
be the permutation matrix corresponding to the permutation π on {1, . . . , n}
with π(i) = k + i/2 if i is even and π(i) = (i+ 1)/2 if i is odd. Show that DFζ
can be factorized as follows:

DFζ =
[

Ik D
Ik −D

]
·
[

DFµ 0
0 DFµ

]
· P.

Show that if n is of the form 2m, the Fourier transform can be computed in
O(n ln(n)) steps.
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Remark 1.6.9 By Remark 1.6.7, HomA(Ae, V ) is a right EndAAe-module,
and hence by Theorem 1.6.8(b) it is a left eAe-module with action given by

(a · ϕ)(x) := ϕ(xa) for a ∈ eAe , ϕ ∈ HomA(Ae, V ) , x ∈ Ae.

The isomorphism given in Theorem 1.6.8(a) is an eAe-module isomorphism.

The results of the rest of this section will only be used in Chapter 4.

Lemma 1.6.10 (Rosenberg’s lemma) Let e = e2 ∈ A with EndAe local. If
e ∈ I1 + · · ·+ Im with Ii �A (1 ≤ i ≤ m) then e ∈ Ij for some j ∈ {1, . . . ,m}.

Proof. By Theorem 1.6.8 eAe is local. Obviously eI1e, . . . , eIme are ideals in
eAe and e ∈ eI1e + · · · + eIme. Since e 
∈ J(eAe) there must be some j with
eIje � J(eAe). Hence e ∈ eAe = eIje ⊆ Ij .

Theorem 1.6.11 Let e ∈ A be an idempotent. Then eAe ⊆ A is a K-algebra
with identity e, and for any A-module V we get an eAe-module eV . Also,
ϕ �→ ϕ|eV defines a map HomA(V,W ) → HomeAe(eV, eW ). Let V be an A-
module.

(a) If W ≤A V then eW ≤eAe eV and e(V/W ) ∼=eAe eV/eW .

(b) Every eAe-submodule of eV is of the form eW for some A-submodule W of
V . In particular, if V is a simple A-module then eV = {0} or eV is a simple
eAe-module.

(c) Let {Li | i ∈ I} be a complete set of representatives of simple A-modules
and I ′ := {i ∈ I | eLi 
= {0}}. Then {eLi | i ∈ I ′} is a complete set of
representatives of simple eAe-modules.

(d) If A is artinian and eL 
= {0} for all composition factors L of V then
W �→ eW defines a poset isomorphism from the poset of A-submodules of V to
the poset of eAe-submodules of eV .

Proof. (a) The first assertion is obvious and

e(V/W ) → eV/eW , e(v +W ) �→ ev + eW

is clearly an isomorphism of eAe-modules.
(b) Let W̃ ≤eAe eV . Then eW̃ = W̃ and we obtain an A-submodule of V

by defining W := AW̃ . This satisfies eW = eAW̃ = e(AeW̃ ) = (eAe)W̃ = W̃ .
(c) Let Ṽ be an eAe-module. Then V := Ae⊗eAe Ṽ is an A-module because

Ae is an (A, eAe)-bimodule and eV = e⊗eAe Ṽ ∼=eAe Ṽ . Let

V(e) :=
∑
{W ≤A V | eW = {0}},

the largest A-submodule of V contained in (1− e)V . Thus eV(e) = {0}, and by
(a) we have e(V/V(e)) ∼=eAe eV ∼=eAe Ṽ . Now assume that Ṽ is simple. Then
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V/V(e) 
= {0} and we want to show that this is a simple A-module, or, in other
words, that V(e) is a maximal submodule of V . Let W be a proper submodule of
V . By (a) eW is an eAe-submodule of eV ∼=eAe Ṽ . If eW 
= {0} then eW = eV
because this module is simple by assumption. Then W ≥ AeW = AeV = V ,
which is a contradiction. Thus V(e) is a maximal submodule of V and L :=
V/V(e) is a simple A-module with eL ∼=eAe Ṽ .

(d) This obviously follows from (a) and (b).

Corollary 1.6.12 Let n ∈ N. Then A is semisimple if and only if the K-algebra
An×n is semisimple.

Proof. Let A′ := An×n and let εij ∈ A′ be the matrix with 1A at position
(i, j) and zeros elsewhere. Then ei := εii is an idempotent and

A′ = A′e1 ⊕ · · · ⊕A′en.

Also ηi : A→ eiA
′ei, a �→ aei defines a ring isomorphism and A′ei ∼=A′ A′ej for

1 ≤ i, j ≤ n. For i 
= j put πij := εij + εji +
∑
k 	=i,j ek, a permutation matrix

with π2
ij = 1A′ . Then πijej = eiπij . If W ≤A′ A′ei then

ejW = πijπijejW ⊆ πijeiW ⊆ ejW.

Hence W =
∑n
j=1 ejW =

∑n
j=1 πijeiW , and W �→ eiW defines (by parts (a)

and (b) of the theorem) an isomorphism of the poset of submodules of A′ei to
the poset of left ideals of eiA′ei ∼= A. From this the assertion follows.

The eAe-module eV is often called the condensed module for V and eAe
the Hecke algebra. Observe that eV will usually have a dimension which is
much smaller than that of V (assuming that A is K-algebra over a field), so
that sometimes the structure of eV can be investigated on a computer in cases
when V would be intractable. Then part (d) of Theorem 1.6.11 may be used
to obtain information on V itself. There is one practical problem though. If
a1, . . . , am are algebra generators for A (in most applications m = 2) there is in
general no reason why ea1e, . . . , eame should be algebra generators for eAe (see
Example 1.6.13 below).

In the case of a group algebra over a field K, subgroups H of order prime
to the characteristic of K can be used to get idempotents eH := 1

|H|H
+; see

Lemma 1.2.9. In this context the idempotent eH is called the fix idempotent
of H, and the process described above is called fix point condensation. The
reason for this is that for a KG-module V and H as above we obviously have

eHV = {v ∈ V | hv = v for all h ∈ H} = InvH(V ).

Recall that by Lemma 1.2.9 we have isomorphisms

Ψ: K[G/H] → KGeH , gH �→ g ·H+
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and

Φ: (EndKGK[G/H])op → eHKGeH , ϕ �→ Ψ◦ϕ◦Ψ−1(eH) =
1
|H|Ψ(ϕ(1H)).

Let G =
⋃̇r

i=1HgiH. Then the basis corresponding to the Schur basis (see p. 29)
of EndKGK[G/H] is given by

{Φ(θ1), . . . ,Φ(θr)} =
{ ∑
H=

⋃̇
h(H∩giH)

hgieH | 1 ≤ i ≤ r
}
.

Note that Φ(θi) = |H|
|H∩giH|eHgieH .

Example 1.6.13 Let G := S4 and H := 〈(2, 3, 4)〉. It is obvious that G =
〈a1, a2〉 with a1 := (1, 2, 3, 4) and a2 := (1, 2). If K is a field with charK 
= 3
and e := eH as above, it is easily checked that ea1e = ea2e. Moreover, if
charK = 2 then (ea1e)2 = e and hence dimK〈ea1e , ea2e〉alg = 2. On the
other hand it is easy to see that the number of (H,H)-double cosets in G is
four and so by Lemma 1.2.11 and Corollary 1.2.16 dimK(eKGe) = 4 for any
field K with charK 
= 3. Thus, although a1, a2 are algebra generators for KG
the elements ea1e, ea2e may generate a proper subalgebra of eKGe. However,
if we take a3 := (3, 4), then G = 〈a1, a3〉 and eF2Ge = 〈ea1e, ea3e〉alg ∼= F2V4
(see Exercise 1.6.1). �

Example 1.6.14 We use GAP to compute matrices for condensed elements us-
ing the formula given in Exercise 1.6.3: we take the sporadic simple Mathieu
group G := M11 acting on Ω = {1, . . . , 11}. Let M be the natural permutation
F2M11-module M := F2

(Ω
2

)
on the subsets of size two of Ω. We choose the

condensation subgroup H to be a Sylow 3-subgroup (of order nine). The follow-
ing GAP-code computes the action on eHM for the elements eHg1eH , eHg2eH ,
where g1 := (1, 4)(2, 10, 3)(5, 11, 8, 6, 7, 9), g2 := (2, 3, 7, 4, 10, 8, 5, 11)(6, 9). Fi-
nally we determine the composition factors for the condensed module eHM as
a module for 〈eHg1eH , eHg2eH〉alg..

We take M11 from the GAP-library, verify that the chosen elements g1, g2
generate G, compute a Sylow 3-subgroup and proceed by determining the action
of M11 on the subsets of size two. Applying the resulting homomorphism we
construct permutations for the generators g1, g2 and the Sylow 3-subgroup H:

gap> G := MathieuGroup(11);
Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ])
gap> g1 := (1,4)(2,10,3)(5,11,8,6,7,9);; g2 := (2,3,7,4,10,8,5,11)(6,9);;
gap> G = Group( g1, g2 );
true
gap> H := SylowSubgroup( G, 3 );;
gap> orb := Orbit( G , [1,2], OnSets );;
gap> hom := ActionHomomorphism( G, orb, OnSets );;
gap> g1 := Image( hom, g1 );; g2 := Image( hom, g2 );;
gap> H := Image( hom, H );;
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The following GAP-code constructs the condensations of g1, g2 using the pro-
gram cond given in Exercise 1.6.4. Finally, we determine the composition
factors of the condensed module and their dimensions.

gap> mats := List( [g1, g2] , g -> cond( H, 55, g, 2) );;
gap> Display(mats[1]);
. . 1 . . . .
. 1 1 . . . 1
1 1 . . . . 1
. . . 1 1 1 .
. . . 1 1 1 .
. . . 1 1 1 .
. 1 1 . . . 1
gap> Display(mats[2]);
. . . . . . 1
. 1 . . . . .
. . . . 1 . .
. . . . . 1 .
. . . 1 . . .
. . 1 . . . .
1 . . . . . .
gap> M := GModuleByMats( List( mats, TransposedMat ), GF(2) );;
gap> compfactors := MTX.CompositionFactors( M );;
gap> List( compfactors, x -> x.dimension );
[ 2, 4, 1 ]

This shows that the condensed module has exactly three composition factors of
dimensions four, two, and one. If we had chosen g′

2 := (1, 2, 3, 8, 7, 5, 4, 6)(10, 11)
instead of g2 then still G = 〈g1, g′

2〉, but we would have obtained composition
factors of dimensions two, two, one, one, and one, which clearly shows that
〈eHg1eH , eHg′

2eH〉alg < eHFGeH . �

If A is a semisimple algebra then every A-module is a direct summand of a
free A-module. In general, modules with this property play an important role
and deserve a proper name.

Definition 1.6.15 An A-module V is projective if V is a direct summand of
a free A-module. A module V is called projective indecomposable, often
abbreviated as PIM, if V is projective and indecomposable.

Occasionally we will also use other well known characterizations of projective
modules.

Lemma 1.6.16 V is projective if and only if one of the following holds.

(a) For each submodule U of an A-module W any ϕ̄ ∈ HomA(V,W/U) can be
“lifted” to ϕ ∈ HomA(V,W ), that is ϕ(v) + U = ϕ̄(v) for all v ∈ V .

(b) Any short exact sequence of A-homomorphisms

{0} −→ V1
α−→ V2

β−→ V −→ {0}
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splits. That is, if α and β are injective and surjective, respectively, and if
kerβ = imα then there is a γ ∈ HomA(V, V2) with β◦γ = idV (and consequently
V2 = imα⊕ im γ).

Proof. This is a simple exercise.

Lemma 1.6.17 If G is a finite group, H ≤ G and V is a projective KG-module,
then the restriction VH is a projective KH-module.

Proof. Let G =
⋃̇t

i=1Hgi. Then (KG)H =
⊕t

i=1KH gi and KH gi ∼=KH

KH. So (KG)H is a free KH-module. If V | KG ⊕ · · · ⊕ KG then VH |
(KG)H ⊕ · · · ⊕ (KG)H , and hence is projective.

The following result should be compared with Theorem 1.1.15.

Theorem 1.6.18 (Fitting) Let E = (EndA V )op and assume that

V = V1 ⊕ · · · ⊕ Vn, Vi ≤A V,

with projections πi : V → Vi and embeddings ιi : Vi → V (see Definition 1.1.13).
Put E′

i = HomA(V, Vi) and Ei := {ιi ◦ ϕ | ϕ ∈ E′
i}. Then

(a) Ei ≤E E for 1 ≤ i ≤ n and E = E1 ⊕ · · · ⊕ En,
(b) Ei ∼=E Ej if and only if Vi ∼=A Vj,

(c) Ei is indecomposable (as an E-module) if and only if Vi is indecomposable
as an A-module.

Proof. (a) Observe that E acts on E′
i by ψ · ϕ := ϕ ◦ ψ for ψ ∈ E and ϕ ∈ E′

i

and similarly on Ei. Thus Ei ≤E E.
Put εi := ιi ◦ πi for i = 1, . . . n. Then idV =

∑n
i=1 εi and εi · εj = δi,jεi.

Thus the εi are orthogonal idempotents in E and E =
∑n
i=1E · εi. Also, since

idVi
= πi ◦ ιi it is clear that Ei = E · εi.

(b) If ϕij : Vi → Vj is an isomorphism of A-modules then

f(ϕij) : Ei → Ej , ϕ �→ ιj ◦ ϕij ◦ πi ◦ ϕ

is an isomorphism of E-modules (with inverse f(ϕ−1
ij )).

Conversely, if fij : Ei → Ej is an isomorphism of E-modules, then we get an
isomorphism of A-modules by

g(fij) : Vi → Vj , vi �→ fij(εi)(vi)

with inverse g(f−1
ij ). In fact, since f−1

ij is E-linear, we get

g(f−1
ij )(fij(εi)(vi)) = (f−1

ij (εj) ◦ (fij(εi)))(vi) = (fij(εi) · f−1
ij (εj))(vi)

= (f−1
ij (fij(εi) · εj))(vi) = f−1

ij (fij(εi))(vi) = vi
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(c) Ei is indecomposable if and only if ιi ◦πi is a primitive idempotent in E.
Likewise, Vi is indecomposable if and only if idVi = πi ◦ ιi cannot be written as
a sum of two idempotents (projections) in EndA Vi, which is equivalent to ιi ◦πi
being primitive in E.

Definition 1.6.19 A projective A-module P is called a projective cover of
V if P/Rad(P ) ∼=A V/Rad(V ).

Lemma 1.6.20 (a) Let P be a projective cover of V . Then there is an epimor-
phism πP : P → V lifting the epimorphism P → P/Rad(P ) → V/Rad(V ). If
ψ : P ′ → V is an epimorphism with P ′ projective then there is an epimorphism
θ : P ′ → P with ψ = πP ◦ θ and P ′ ∼=A P ⊕ ker θ.

(b) If P , P ′ are projective covers of V then P ∼=A P
′ and kerπP ∼=A kerπP ′ with

the notation of (a). Thus a projective cover (if it exists) is uniquely determined
up to isomorphism; it is usually denoted by P (V ). Also Ω(V ) := kerπP (V ) is
uniquely determined up to isomorphism and called the Heller module of V .

(c) If V is projective then P (V ) ∼=A V and Ω(V ) = {0}.

Proof. (a) By Lemma 1.6.16(a) there is a homomorphism πP : P → V lifting
the epimorphism P → V/Rad(V ). Then imπP +Rad(V ) = V , so imπP cannot
be contained in a maximal submodule of V and hence imπP = V . If ψ is as
indicated, then by Lemma 1.6.16(a) there is θ ∈ HomA(P ′, P ) with ψ = πP ◦ θ.
Since ψ is surjective and πP maps maximal submodules to maximal submodules,
θ must be surjective; P ′ ∼=A P ⊕ ker θ follows from Lemma 1.6.16(b).

(b) By part (a) there is an epimorphism θ : P ′ → P with πP ′ = πP ◦ θ. By
Lemma 1.6.16(b) there is a monomorphism µ : P → P ′ with θ ◦ µ = idP . Then
πP ′ = πP ′ ◦ µ ◦ θ, so µ ◦ θ and, consequently µ, is surjective. Thus θ is an
isomorphism and the result follows.

(c) is obvious from the definition.

Definition 1.6.21 A ring A is called semi-perfect if 1A is a sum of local
orthogonal idempotents that means

1A = e1 + e2 + · · ·+ en,

where the e1, e2, . . . , en are mutually orthogonal and eiAei is a local ring for i =
1, . . . , n. For a detailed study of semi-perfect rings, see, for example, chapter 23
of [108].

Remark 1.6.22 (a) By Corollary 1.6.5, if A is of finite length (for instance,
if K is a field) then A is semi-perfect. But in Section 4.1 we will show that
R-algebras over so-called complete discrete valuation rings R also share this
property; see Theorem 4.1.21.
(b) If A is semi-perfect, then

A = Ae1 ⊕Ae2 ⊕ · · ·Aen
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and since EndAAei ∼= (eiAei)op is local, the indecomposable direct summands
Aei are uniquely determined up to isomorphism and ordering by Theorem 1.6.6.
Moreover, if e ∈ A is a primitive idempotent, then Ae is isomorphic to Aei for
some i = 1, . . . , n and the same holds for any projective indecomposable A-
module.

Theorem 1.6.23 Let A be a semi-perfect ring and let e ∈ A be a primitive
idempotent.

(a) Ae has a unique maximal submodule Rad(Ae) = J(A)e. The module Ae is
a projective cover of the simple module Ae/ J(A)e.

(b) Every A-module V of finite length has a projective cover P (V ). If V =
V1 ⊕ · · · ⊕ Vm then

P (V ) ∼= P (V1)⊕ · · · ⊕ P (Vm), Ω(V ) ∼= Ω(V1)⊕ · · · ⊕ Ω(Vm). (1.17)

Proof. (a) Observe that by Zorn’s lemma Ae contains a maximal submodule.
Assume that M1,M2 are different maximal submodules of Ae. Then Ae =
M1 + M2 and hence there are v1 ∈ M1 and v2 ∈ M2 with e = v1 + v2. Define
ϕi ∈ EndAAe by ϕi : ae �→ aevi for i = 1, 2. Then ϕ1 + ϕ2 = idAe. Since
EndAAe is local by assumption, ϕ1 or ϕ2 must be invertible, which is absurd
because imϕi ⊆ Mi. Thus Rad(Ae) is the unique maximal submodule of Ae.
By Exercise 1.6.2 J(A) = Rad(Ae)⊕ Rad(A(1− e)), hence J(A)e = Rad(Ae).

(b) If V is a simple A-module there is a primitive idempotent e with eV 
= {0}
by Remark 1.6.22. Because of Theorem 1.6.8(a) HomA(Ae, V ) 
= {0}. Thus Ae
is a projective cover of V . Since P is a projective cover of an A-module V if
and only if it is a projective cover of V/Rad(V ) it suffices (by Exercise 1.5.1) to
consider semisimple modules. Equation (1.17) follows, since by Exercise 1.6.2

m⊕
i=1

P (Vi)/Rad(
m⊕
i=1

P (Vi)) ∼=A

m⊕
i=1

P (Vi)/Rad(P (Vi)) ∼=A

m⊕
i=1

Vi = V.

Theorem 1.6.24 Let A be a semi-perfect ring and let V1, . . . , Vr be the simple
A-modules up to isomorphism and Di := EndA Vi. Then there are r projective
indecomposable modules P1, . . . , Pr with Pi/RadPi ∼=A Vi and

AA =
r⊕
i=1

(Pi,1 ⊕ · · · ⊕ Pi,fi) with Pi,j ∼=A Pi,

where fi = dimDi Vi. If K is a splitting field for A then the fi are just the
degrees of the irreducible representations of A.

Proof. Let 1A = e1 + · · ·+en be a decomposition of 1A into a sum of mutually
orthogonal primitive idempotents. Then for i ∈ {1, . . . , r}

Vi = 1A · Vi = (e1 + · · ·+ en) · Vi = e1Vi ⊕ · · · ⊕ enVi
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as vector spaces over Di. By Theorem 1.6.8 we have ejVi ∼= HomA(Aej , Vi) and
by Theorem 1.6.23 we get

HomA(Aej , Vi) ∼=
{
{0} if Aej/Rad(Aej) � Vi,
Di if Aej/Rad(Aej) ∼= Vi.

(1.18)

Observe that any A-module homomorphism Aej → Vi has Rad(Aej) in its kernel
and thus induces an A-homomorphism Aej/Rad(Aej) → Vi, which by Schur’s
lemma is either zero or an isomorphism. Thus dimDi

Vi < ∞ and counting
dimensions we find that dimDi Vi = |{j | 1 ≤ j ≤ n , ejVi 
= {0}}|.

Corollary 1.6.25 Let K be a field of prime characteristic p.

(a) If G is a finite p-group the regular module KG is indecomposable. Every
projective KG-module is free.

(b) If G is a finite group with order |G| = pka with p � a then the dimension of
any projective KG-module is divisible by pk.

Proof. (a) follows, since by Theorem 1.3.11 the trivial one-dimensional module
is the only simple KG-module in this case.

(b) follows, because by Lemma 1.6.17 the restriction of any projective KG-
module to KP is projective for any subgroup P and hence (by (a)) free if we
choose P to be a Sylow p-subgroup of G.

Example 1.6.26 Let G := S3 and let K be a field with charK = 3. We saw in
Exercise 1.4.8 that there are exactly two simpleK S3-modules V1 = KG, V2, both
of dimension one, with V2 being the module affording the sign representation
g �→ sign(g). By Theorem 1.6.24 and Corollary 1.6.25(b) there must be primitive
idempotents e1, e2 ∈ K S3 with

K S3 = K S3 e1 ⊕K S3 e2 and dimK(K S3 ei) = 3 for i = 1, 2.

It is not difficult to find such idempotents, which are, of course, not unique, and
to investigate the precise structure of the projective indecomposable modules
K S3 e1,K S3 e2. In fact, it follows from our analysis that any idempotent e 
= 1
must generate a three-dimensional projective indecomposable module KGe. So
we choose e1 = 1

2 (1 + (1, 2)) and find

P1 = KGe1 = 〈e1 , (1, 2, 3)e1 , (1, 3, 2)e1〉K ,
Rad(P1) = 〈e1 − (1, 3, 2)e1 , sG〉K ,
Soc(P1) = 〈sG〉K ,

with sG =
∑
g∈G g = 2(e1 +(1, 2, 3)e1 +(1, 3, 2)e1). Similarly with e2 = 1−e1 =

1
2 (1− (1, 2)) we find

P2 = KGe2 = 〈e2 , (1, 2, 3)e2 , (1, 3, 2)e2〉K ,
Rad(P2) = 〈1 + (1, 2, 3) + (1, 3, 2) , aG〉K ,
Soc(P2) = 〈aG〉K ,
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with aG =
∑
g∈G sgn(g)g. It is easy to see that the composition factors of P1

and P2 are V1, V2, V1 and V2, V1, V2, respectively.
If charK = 2 then as we have seen in Example 1.4.8 KG has simple modules

V1 = KG, V2 with dimK V2 = 2. Thus

KG ∼= P (V1)⊕ P (V2)⊕ P (V2) with dimK P (Vi) = 2 (i = 1, 2).

�

For simplicity we restrict ourselves to algebras over fields for the following
result.

Theorem 1.6.27 Let A be a symmetric algebra over a field K and let P be a
projective and V an arbitrary A-module.

(a) P/Rad(P ) ∼=A Soc(P ).

(b) P � is a projective right A-module.

(c) If V is semisimple then P (V )� ∼=A P (V �) as right A-modules where P (V �)
is the projective cover of the right A-module V �.

(d) If ϕ : V → W is injective and ψ : V → P then there is ψ̂ : W → P with
ψ = ϕ ◦ ψ̂. If P ≤A V then P | V (“projective modules are injective”).

(e) There is a monomorphism ψ : V → P (Soc(V )). We define Ω−1(V ) :=
P (Soc(V ))/ψ(V ). Then Ω−1(V ) ∼=A Ω(V �)�; in particular it is independent of
the choice of ψ, up to isomorphism.

(f) The projective-free part Ω0(V ) of V is an A-module having no projective
direct summand 
= {0} such that V = Ω0(V )⊕ P for some projective A-module
P . Then

Ω0(V ) ∼=A Ω(Ω−1(V )) ∼=A Ω−1(Ω(V )).

Proof. (a), (b), (c) Because of (1.17) on p. 73 and

Rad(
n⊕
i=1

Vi) ∼=
n⊕
i=1

Rad(Vi), Soc(
n⊕
i=1

Vi) ∼=
n⊕
i=1

Soc(Vi), (
n⊕
i=1

Vi)� ∼=
n⊕
i=1

V �i

for A-modules Vi, it is sufficient to consider the case of a projective indecom-
posable module P = Ae with e2 = e ∈ A. Let L := P/Rad(P ) and let

A = P ⊕ U, hence A� = U◦ ⊕ P ◦,

using Theorem 1.1.34. This theorem also yields U◦ ∼= (A/U)� ∼= P �. By Re-
mark 1.1.44(a) we have A� ∼= A as right A-modules. Thus U◦ is a projective
indecomposable right A-module since indecomposability is preserved under du-
ality. By Theorem 1.6.23 (applied to right modules) U◦ has a unique maximal
submodule W ◦ with U <A W . Thus W/U is the unique minimal submodule
of A/U ∼=A P and S := W ∩ P is the unique minimal submodule of P . It
remains to prove that L ∼=A S. By Theorem 1.6.23 it is sufficient to show that
eS ∼= HomA(Ae, S) 
= 0. For this we use a symmetrizing trace τ : A → K and
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choose an arbitrary non-zero element y = ye ∈ S = Se ⊆ Ae. Then there exists
an a ∈ A with

0 
= τ(aye) = τ(eay) and thus 0 
= eay ∈ eS.

(d) If ϕ is injective then ϕT : W � → V � is surjective. Since P � is projective,
ψT : P � → V � can be lifted to ψ′ : P � → W � with ψT = ψT ◦ ψ′. Putting
ψ̂ := ψ′T the first assertion follows. The second one follows from this by choosing
W := P, ψ := idP and ϕ : V → P the embedding.

(e) Let S := Soc(V ) with embedding ι : S → V . Then ιT : V � → S� is an
epimorphism. By Lemma 1.6.20(a) there is an epimorphism ϕ : P (S�) → V �.
Then ψ := ϕT : V ∼= V �� → P (S�)� ∼= P (S) is a monomorphism.

Now, let ψ : V → P (S) be any monomorphism. Then ψT : P (S)� → V � is
an epimorphism. Observe that V �/Rad(V �) ∼= S�, so P (V �) ∼= P (S�) ∼= P (S)�

and kerψT ∼= Ω(V �) by Lemma 1.6.20. On the other hand, kerψT = (ψ(V ))◦,
so P (S)/ψ(V ) ∼= (Ω(V �))� by duality.

(f) Since Ω(P ) ∼= Ω−1(P ) = {0} by Lemma 1.6.20 and part (e), we may
assume V = Ω0(V ). We have an embedding ψ : V → P (Soc(V )) and, by defini-
tion, P (Soc(V ))/ψ(V ) ∼= Ω−1(V ). By Lemma 1.6.20

P (Ω−1(V )) | P (Soc(V ))/ψ(V ).

Since V has no projective direct summand we have equality and we get ψ(V ) =
Ω(Ω−1(V )).

Since Ω(V ) ⊆ Rad(P (V )) it is easily seen that Soc(P (V )) = Soc(Ω(V )),
hence

V ∼= P (V )/Ω(V ) ∼= P (Soc(Ω(V ))) ∼= Ω−1(Ω(V )).

Corollary 1.6.28 Under the assumption of Theorem 1.6.27 V is a non-
projective indecomposable A-module if and only if Ω(V ) and Ω−1(V ) are
non-projective indecomposable A-modules.

Proof. This follows immediately from Theorems 1.6.27 and 1.6.23.

Definition 1.6.29 Let V,W be A-modules. Then ϕ ∈ HomA(V,W ) is called
projective if it factors through a projective A-module P , that is, if there are
ψ′ ∈ HomA(V, P ), ψ ∈ HomA(P,W ) such that ϕ = ψ ◦ψ′. If ϕ factors through
P , then also any scalar multiple αϕ for α ∈ K. If in addition ϕ′ ∈ HomA(V,W )
factors through a projective A-module P ′, then ϕ+ ϕ′ factors through P ⊕ P ′.
Thus pHomA(V,W ) := {ϕ ∈ HomA(V,W ) | ϕ projective} ≤K HomA(V,W )
and we define

HomA(V,W ) := HomA(V,W )/pHomA(V,W ).

Lemma 1.6.30 Let A be a symmetric algebra over a field K and let ϕ : V →W
be a projective A-homomorphism. If ϕ is surjective (injective) then V (W,
respectively) has a projective non-trivial direct summand.
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Proof. Let P be a projective A-module and ϕ = σ ◦ τ with σ ∈ HomA(P,W )
and τ ∈ Hom(V, P ). If ϕ is surjective then σ is also surjective and by
Lemma 1.6.20 factors through P (W ), so we may as well assume that P = P (W ).
Then P = im τ + Rad(P ) and so τ is surjective and V has a direct summand
isomorphic to P . The other assertion follows by dualizing.

Theorem 1.6.31 Let A be a symmetric algebra over a field K and let V,W be
A-modules. Then

HomA(V,W ) ∼=K HomA(Ω(V ),Ω(W )).

Proof. Let χ ∈ HomA(V,W ). Since P (V ) is projective there is a ψ ∈
HomA(P (V ), P (W )) making the following diagram commutative, where π, π′

are the natural projections and ι, ι′ inclusions:

Ω(V ) ι−−−−→ P (V ) π−−−−→ V"ψ|Ω(V )

"ψ "ϕ
Ω(W ) ι′−−−−→ P (W ) π′

−−−−→ W

If ψ′ : P (V ) → P (W ) is another lift of ϕ ◦ π then π′ ◦ (ψ − ψ′) = 0, that
is im(ψ − ψ′) ⊆ Ω(W ). Thus ψ|Ω(V ) − ψ′|Ω(V ) factors through P (V ) and we
obtain a well-defined K-linear map Ω: HomA(V,W ) → HomA(Ω(V ),Ω(W ))

ϕ �→ Ω(ϕ) := ψ|Ω(V ) + pHomA(Ω(V ),Ω(W )) ∈ HomA(Ω(V ),Ω(W )).

If ϕ ∈ ker Ω then ψ|Ω(V ) factors through a projective module, hence through
P (V ) by Theorem 1.6.27(d). That is, there is a σ : Ω(V ) → P (V ) with ψ|Ω(V ) =
σ◦ι. Then (ψ−ι′◦σ)◦ι = 0 and there is a unique τ : V →W with ψ−ι′◦σ = τ◦π.
It follows that π′◦τ ◦π = π′◦ψ−π′ι′σ = ϕ◦π. Thus ϕ = π′◦τ ∈ pHomA(V,W ).
Hence ker(Ω) = pHomA(V,W ).

Exercises
Exercise 1.6.1 Prove Lemma 1.6.16.

Exercise 1.6.2 Let V1, V2 be A-modules. Prove that

Rad(V1 ⊕ V2) ∼=A RadV1 ⊕ RadV2.

Exercise 1.6.3 Let Ω be a finite G-set, and let H ≤ G and K be a com-
mutative ring. Let O1, . . . ,Or be the H-orbits on Ω. Show that a K-basis
for InvH(KΩ) = {x ∈ KΩ | hx = x for all h ∈ H} is {O+

1 , . . . ,O+
r } with

O+
i =

∑
x∈Oi

x. Also H+KΩ ⊆ InvH(KΩ) (see (1.1), p. 3) with equality if |H|
is invertible in K. In this case let eH := 1

|H|H
+ and show that for g ∈ G

eHgeH O+
j =

r∑
i=1

cij
1
|Oi|

O+
i

with cij = |{y ∈ Oj | g · y ∈ Oi}|.
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Exercise 1.6.4 Keep the notation of Exercise 1.6.3 and assume that Ω =
{1, . . . , n}, so that G ≤ Sn. Assume that p is a prime not dividing |H| and
q is a power of p. Show that the following GAP-program returns the matrix of
the action of eHgeH on eHFqΩ with respect to the basis (O+

1 , . . . ,O+
r ):

cond := function( H, n , g, q )
local condmat, orbs;
orbs := Orbits( H , [1..n] );
condmat := List( orbs, Oi -> List( orbs, Oj -> 1/(Size(Oi)*Z(q)ˆ0) *

Size( Intersection( List(Oi, x -> xˆg), Oj) ) ) );
return condmat;
end;

Hint: Recall that GAP uses right action (see Example 1.1.49) and use the fact
that |{xg | x ∈ Oi} ∩ Oj | = |Oi ∩ {yg

−1 | y ∈ Oj}|.

Exercise 1.6.5 Let G := S4 act naturally on Ω := {1, 2, 3, 4} and let K be a
field with charK 
= 3. Let V := KΩ be the corresponding permutation module.
Assume that H := 〈(2, 3, 4)〉 and e := eH as in Example 1.6.13. Compare
the poset of eKGe-submodules of eV with the poset of KG-submodules of V
and determine the composition factors. Distinguish the cases charK 
= 2 and
charK = 2. In the latter case show that eKGe is isomorphic to KV4, the group
algebra of the Klein 4-group, and thus has only one simple module.

Exercise 1.6.6 Let A be a ring and let e and f be idempotents in A. Show
that the following statements are equivalent:
(a) Ae ∼=A Af ;
(b) eA ∼=A fA;
(c) there are two elements a ∈ eAf and b ∈ fAe such that ab = e and ba = f .

Exercise 1.6.7 Let A be a ring and let

1 = e1 + · · ·+ en = f1 + · · ·+ fn

be two decompositions of unity as a sum of orthogonal idempotents of A with
Aei ∼=A Afi. Show that there is a unit u ∈ A such that ei = u−1fiu for
i = 1, . . . , n.

Exercise 1.6.8 Let K be a field with charK = p > 0 and let G be a finite
group of order |G| = paq with q coprime to p. Assume that G has a subgroup
H of order q. Show that KGeH is a projective cover of the trivial KG-module
KG.

Exercise 1.6.9 Find the number of simple K S4-modules (up to isomorphism)
for a field K of characteristic two or three and also the dimensions of the pro-
jective indecomposable modules.
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1.7 Blocks

In this section we assume that A is an algebra over a commutative ring K. We
consider decompositions of A as a direct sum of (two-sided) ideals.

Lemma 1.7.1 Let I1, I2 be non-zero ideals of A. Then A = I1⊕ I2 if and only
if Ii = Aεi with ε2i = εi ∈ Z(A) for i = 1, 2 and ε1 + ε2 = 1A (so ε1 ε2 = 0).

Proof. If ε1, ε2 are as indicated, then A = Aε1 ⊕ Aε2 by Lemma 1.6.2(b).
Conversely, let A = I1⊕ I2 and write 1A = ε1 + ε2 with εi ∈ Ii. Then ε2i = εi as
in the proof of Lemma 1.6.2(b) and εi ∈ Z(A) because for any a ∈ A we have
ε1a+ ε2a = 1 · a = a · 1 = aε1 + aε2 and εia, aεi ∈ Ii.

Observe that in the above lemma Ii is a K-algebra with identity εi. If Ii is
a direct sum of ideals then εi can also be written as a sum of orthogonal central
idempotents.

Definition 1.7.2 A block idempotent (also called a centrally primitive
idempotent) of A is an idempotent ε = ε2 ∈ Z(A) which cannot be written as a
sum of two orthogonal central idempotents.

Corollary 1.7.3 (a) If A can be written as

A = B1 ⊕ · · · ⊕Bm with Bi �A (i = 1, . . . ,m),

where the Bi cannot be written as a direct sum of non-zero ideals of A, and if

1 = ε1 + · · ·+ εm with εi ∈ Bi (i = 1, . . . ,m),

then the εi are block idempotents and the Bi are called block ideals.
(b) Conversely, if ε1, . . . , εm are pairwise orthogonal block idempotents with 1 =
ε1 + · · ·+ εm then Aεi is a block ideal for i = 1, . . . ,m and

A = Aε1 ⊕ · · · ⊕Aεm.

This is usually called the block decomposition of A.

Proof. (a) follows immediately from Lemma 1.7.1.
(b) Conversely, since the εi are central, it is clear that the Aεi are two-sided

ideals. If Aεi = I ⊕ I ′ could be written as the sum of two non-zero ideals
I, I ′ � A then εi = ε + ε′ with ε ∈ I and ε′ ∈ I ′ and ε, ε′ would be non-zero
central orthogonal idempotents, which is a contradiction.

Theorem 1.7.4 If (ε1, . . . , εm) and (ε′1, . . . , ε
′
n) are tuples of block idempotents

of A with

1 =
m∑
i=1

εi =
n∑
j=1

ε′j (1.19)
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then m = n and {ε1, . . . , εm} = {ε′1, . . . , ε′n}. If V is any A-module then

V = ε1V ⊕ · · · ⊕ εmV with submodules εiV ;

in particular, if V is indecomposable, then there is exactly one εi with εiV = V
(and εjV = {0} for all other εj) and V is then said to “belong to the block Aεi.”
If A is semisimple then εjV is a homogeneous component of V .

Proof. In fact, it follows from (1.19) that εi = εi1 =
∑n
j=1 εiε

′
j , and this is

a sum of orthogonal central idempotents, so there is exactly one j = j(i) with
εi = εiε

′
j 
= 0. Interchanging the roles of εi and ε′j one gets εi = εiε

′
j = ε′j . The

other assertions are obvious, since the εi are central and orthogonal.

Remark 1.7.5 If ε is a central idempotent of A then so is 1A − ε and A =
Aε ⊕ A(1A − ε). It follows that block idempotents exist, if A is noetherian or
artinian or if 1A is a sum of primitive idempotents in A. Also the number of
block idempotents of A in Theorem 1.7.4 is clearly 2m.

Corollary 1.7.6 Let K be a splitting field for the K-algebra A and let ε1, . . . , εm
be the block idempotents of A. Then there are exactly m K-algebra homomor-
phisms ωi : Z(A) → K and ωi(εj) = δi,j.

Proof. We have
Z(A) = Z(A)ε1 ⊕ · · · ⊕ Z(A)εm

and each Z(A)εi is indecomposable as a Z(A)-module and has a unique max-
imal submodule by Theorem 1.6.23. Thus there is at most one K-algebra ho-
momorphism ω : Z(A) → K with ω(εj) = 1. On the other hand, if V is a
simple A-module with εjV = V then left multiplication with z ∈ Z(A) is an
A-endomorphism of V , and by our assumption zv = ω(z)v for v ∈ V for some
ω(z) ∈ K. Obviously ω : z �→ ω(z) is a K-algebra homomorphism Z(A) → K
with ω(εj) = 1.

The rest of this section will only be used in Chapter 4.

If A is of finite length then By Lemma 1.7.4 any projective indecomposable
A-module Ae belongs to exactly one block Aεi. In fact, if

Aεi = Aei,1 ⊕ · · · ⊕Aei,ni
with primitive idempotents ei,j

then Ae belongs to Aεi if and only if Ae ∼=A Aei,j for some j ∈ {1, . . . , ni}.
But it is also possible to decide whether or not two projective indecomposable
A-modules belong to the same block, without knowing the block idempotents
(or blocks). Since a block idempotent either annihilates an indecomposable
module or acts as the identity on it, it is clear that two indecomposable mod-
ules must belong to the same block if they have a common composition factor.
What we are going to see now is that the equivalence relation “belonging to the
same block” for projective indecomposable modules is the transitive hull of the
relation “having a common composition factor.”
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Theorem 1.7.7 Let A be of finite length. Then two projective indecomposable
modules Ae,Ae′ belong to the same block if and only if the idempotents e, e′

are “ linked,” that is if and only if there is a series of primitive idempotents
e = e(0), e(1), . . . , e(k) = e′ such that Ae(i−1) and Ae(i) have a composition
factor in common for i = 1, . . . , k.

Proof. The “only if” part was already shown in the discussion above. So
assume that Ae and Ae′ belong to the same block Aε. Thus eε = e and
e′ε = e′. If ee′ 
= 0 or e′e 
= 0 then HomA(Ae,Ae′) ∼= eAe′ 
= {0} or
HomA(Ae′, Ae) 
= {0} and hence Ae and Ae′ have a composition factor in
common (namely Ae/Rad(Ae) or Ae′/Rad(Ae′)). Otherwise ε − e − e′ is also
idempotent and hence can be written as a sum of pairwise orthogonal primitive
idempotents. We may choose our notation so that e0 = e, en = e′ and

ε = e0 + · · ·+ er + er+1 + · · ·+ en,

where the ej are pairwise orthogonal primitive idempotents ordered in such a
way that e is linked to ej if and only if j ≤ r. In particular eiAej = {0} = ejAei
for i ≤ r and j > r. We put

ε = e0 + · · ·+ er , ε′ = er+1 + · · ·+ en.

Then εAε′ = {0} = ε′Aε and

Aε ·A = AεεiA = AεAεi = AεA(ε+ ε′) = AεAε ⊆ Aε,

and similarly Aε′ ·A ⊆ Aε′ and thus both Aε,Aε′ are ideals with Aεi = Aε⊕Aε′,
which contradicts the indecomposability of Aεi unless Aε′i = 0, hence r = n.

Definition 1.7.8 Let A be of finite length, let V1, . . . , Vr be a complete set of
representatives of simple A-modules and let Pi = P (Vi) be the projective cover
of Vi for i = 1, . . . , r. Let cij be the number of composition factors in a fixed
composition series of Pi which are isomorphic to Vj . Then the r× r-matrix [cij ]
is called the Cartan matrix of A.

Corollary 1.7.9 If A is of finite length and the simple A-modules are sorted
according to the blocks then the Cartan matrix is a block diagonal matrix

C = diag(C(1), . . . , C(m)),

where C(i) is the Cartan matrix of the ith block Aεi for i = 1, . . .m. Furthermore
it is impossible to arrange the simple modules in a block Aεi in such a way that

C(i) =

[
C

(i)
1 0
0 C

(i)
2

]

with square matrices C(i)
1 , C

(i)
2 .
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If A is semisimple then the Cartan matrix is the identity matrix. Also it
follows from the definition that the diagonal entries in a Cartan matrix are
always positive.

Example 1.7.10 The Cartan matrix of K S3 for a field K of characteristic two
and three can be read off from Example 1.6.26. We get

C =
[

2 0
0 1

]
(charK = 2) , C =

[
2 1
1 2

]
(charK = 3).

So K S3 has two, one (or three) blocks depending on the characteristic. �

Exercises

Exercise 1.7.1 Let K be a field and let A be the subring of K4×4 defined by

A = {

 a b 0 0
0 c 0 0
0 0 c d
0 0 0 a

 | a, b, c, d ∈ K} ⊆ K4×4.

Find all simple A-modules up to isomorphism and their projective covers, and
show that the Cartan matrix of A is

C =
[

1 1
1 1

]
.

Exercise 1.7.2 (a) Verify that the following GAP-program computes the block
idempotents of FqG for “small” q and G:

gap> blockidemps := function( G, q )
> local FG, ZFG, T, A, cs, o, ids;
> FG := GroupRing( GF(q), G ); o := Embedding( G, FG );
> cs := List( ConjugacyClasses(G),c -> Sum(List(Elements(c),x-> xˆo)) );
> ZFG := Subalgebra( FG, cs, "basis" );
> T := StructureConstantsTable( Basis(ZFG) );
> A := AlgebraByStructureConstants( GF(q), T );
> ids := Filtered( Elements(A), x -> x*x = x );
> return( Filtered( ids, e -> Length( Set( List(ids, x->e*x) ) ) = 2 ) );
> end;;

(b) Apply the program to find the block idempotents e of FqG for q ≤ 5 and
all symmetric and alternating groups G of degree at most six. Show that in all
cases e ∈ 〈 { (gG)+ | p � |〈g〉| } 〉Fq , where p = char Fq.
Note: This observation will be proved in general in Theorem 4.4.7.

Exercise 1.7.3 Modify the GAP-program of Exercise 1.7.2 to compute for each
block idempotent e ∈ Z(FqG) also the dimensions of Z(FqG)e and FqGe. Apply
it to the symmetric and alternating groups of degree at most five for q ≤ 5.

Exercise 1.7.4 Let e =
∑
C∈cl(G) aC C

+ ∈ KG with aC ∈ K be a block idem-
potent. Show that

∑
C∈cl(G) |C|aC ∈ {0, 1} and that there is exactly one block

idempotent for which this sum is unity.
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1.8 Changing coefficients

If R is a commutative ring and K ≥ R is a commutative ring extension then any
representation δ : G→ GLn(R) of a finite group G over R can be considered as
a K-representation Kδ using the embedding GLn(R) ⊆ GLn(K). Conversely,
given a K-representation of G one might ask whether or not it is equivalent to
such a representation Kδ for a suitable R-representation δ of G. We have two
special situations in mind.

• K is the quotient field of R, e.g. K an algebraic number field, and R is the
ring of algebraic integers in K (or a local ring containing this ring). In this
case the question is whether we can write a K-representation “integrally,”
i.e. to find a suitable K-basis for the underlying representation module
such that all group elements are represented by matrices over R with
respect to the basis.

• R ⊂ K is a field extension, for instance K = C and R = Q or some alge-
braic number field, and the question is whether we can realize a complex
(or K-) representation over a smaller field.

If V is an R-free RG-module affording the representation δ : G → GLn(R)
then a module affording Kδ is the free K-module KV := K ⊗R V , which may
be turned into a KG-module satisfying

g · α⊗ v = α⊗ gv for g ∈ G , α ∈ K , v ∈ V.

It follows from the standard properties of tensor products (see e.g. [40], Section
12) that this is indeed a KG-module which has K-basis (1 ⊗ v1, . . . , 1 ⊗ vn),
provided that (v1, . . . , vn) is an R-basis of V .

Definition 1.8.1 Let K ⊇ R be commutative rings and let A be an R-order,
that is an R-algebra, which is free and finitely generated as an R-module (i.e. it
has a finite R-basis). Then KA := K ⊗R A is a K-algebra with multiplication
satisfying

(α⊗ a) · (β ⊗ b) = αβ ⊗ ab for α, β ∈ K and a, b ∈ A.

We have an embedding of rings given by ε : A→ KA , a �→ 1⊗a. Furthermore,
if V is an A-module, then KV := K ⊗R V is a KA-module satisfying

(α⊗ a) · (β ⊗ v) = αβ ⊗ av for α, β ∈ K , v ∈ V.

Conversely, for a KA-module W we write WA := InfεW for the restricted
A-module. We often identify A with ε(A) and embed V in KV .

Of course, to define the multiplication in KA and the action of KA on
KV one may use K-bases (see [40], p. 72). For the case A = RG we have a
K-algebra isomorphism KRG ∼= KG with 1⊗ g �→ g for g ∈ G.

In this section we only look at the case of a field extension. The other case
will be addressed in Section 4.1.
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Definition 1.8.2 Let K ⊆ L be a field extension and let A be a finitely gener-
ated K-algebra. If γ ∈ Gal(L/K) then γ extends to a ring automorphism

γ ⊗ idA : LA→ LA , α⊗ a �→ γ(α)⊗ a (α ∈ L , a ∈ A).

If W is an LA-module we define γW := Inf(γ−1⊗idA)W (see Remark 1.1.21).
Thus γW = W as abelian group, but the action of LA on γW is changed to
satisfy

(α⊗ a) �γ w = (γ−1(α)⊗ a) · w for w ∈W.
The module γW is called algebraically conjugate to W .

Remark 1.8.3 Keeping the notation of the definition it is clear that dimL LA =
dimK A and dimL LV = dimK V for an A-module V . If W affords the repre-
sentation

δ : LA→ Ln×n, x �→ δ(x) = [αij(x) ] for x ∈ LA

then γW affords the representation (with respect to the same basis)

γδ : LA→ Ln×n, x �→ γδ(x) := [ γ(αij ((γ−1⊗ idA)(x)) ) ] for x ∈ LA.

In particular,

γδ(a) = [ γ(αij(a)) ] for a ∈ A ⊆ LA.

Furthermore, it follows that γ1γ2W = γ1(γ2W ) for γ1, γ2 ∈ Gal(L/K) and that
W is simple if and only if γW is simple.

Theorem 1.8.4 Let A be a K-algebra for some field K and let L ⊇ K be a
finite Galois extension. If V is a simple A-module (with dimK(V ) < ∞) then
there is a simple LA-module W such that

LV ∼=LA m · (γ1W ⊕ · · · ⊕ γkW ) with γi ∈ Gal(L/K),

with γiW �LA
γjW for i 
= j, Here m · W is short for W ⊕ · · · ⊕W︸ ︷︷ ︸

m

. Further-

more mk ≤ [L : K]. If K is a finite field, then m = 1.

Proof. Let δ : A→ Kn×n be a matrix representation afforded by V . Then by
Corollary 1.3.7 δ(A) ∼= Dr×r with a division ring D := (EndA V )op and some
r ∈ N. The LA-module LV affords a matrix representation Lδ : LA → Ln×n

with Lδ(α⊗ a) = α δ(a) for α ∈ L , a ∈ A, and we have

Lδ(LA) ∼= L⊗K Dr×r ∼= (L⊗K D)r×r.

We first show that the K-algebra L⊗KDr×r is semisimple. By Corollary 1.6.12
it suffices to show that L ⊗K D is semisimple. If (α1 , . . . , αs) is a K-basis of
L we have

L⊗K D =
s⊕
i=1

αi ⊗D
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as a D-space. Any two-sided ideal I � L⊗K D is also a D-subspace, invariant
under inner automorphisms γ of D (with γ :

∑s
i=1 αi ⊗ di �→

∑s
i=1 αi ⊗ γ(di)).

By Exercise 1.8.2 I has a D-basis consisting of elements of the form
∑s
i=1 αi⊗di

with αi ∈ L and di ∈ Z(D). Hence I is generated by an ideal I ′ �L⊗K Z(D) ⊆
L⊗KD. If I is nilpotent, then I ′ must be nilpotent as well. But since L ⊇ K is
a finite separable field extension, we infer from Exercise 1.8.1 that L⊗K Z(D)
is semisimple. From Corollaries 1.4.7 and 1.5.3 we conclude that L ⊗K D is
semisimple, too.

In the following we will identify (see Remark 1.1.22)

V = Infδ K
n and LV = InfLδ L

n.

Then Gal(L/K) acts naturally on LV . Since Lδ(LA) is semisimple LV is a
direct sum of simple LA-modules. If W is a simple submodule of LV with
L-basis (w1, . . . , wd) and γ ∈ Gal(L/K), then γW := {γw | w ∈ W} is also a
simple submodule of LV , isomorphic to γW . Let W ′ :=

∑
γ∈Gal(L/K) γW and

w̃i := TrL/K(wi) for 1 ≤ i ≤ d, where TrL/K(x) :=
∑
γ∈Gal(L/K) γx for x ∈ L

or x ∈ Ln, the usual field trace. Then w̃i ∈ Kn ∩W ′ ([110], Theorem VI.5.1,
p. 285). Since TrL/K 
= 0 (see [110], Theorem VI.5.2, p. 286) we can, if need
be, multiply wi by some constant in L, so that w̃i 
= 0. Then

{0} 
= 〈 w̃1 , . . . , w̃d 〉A ≤A V,

and, since V is simple, we have equality. Hence W ′ = LV and thus LV is a direct
sum of simple LA-modules algebraically conjugate to W . Since Gal(L/K) acts
transitively on {γW | γ ∈ Gal(L/K) }, and hence on the set of isomorphism
classes of these submodules, it is clear that each γW occurs (up to isomorphism)
with the same multiplicity m in a direct sum decomposition of LV . Since
LV = W ′ we have mk ≤ [L : K].

If K is a finite field, then D is a finite division ring, so by a well-known
theorem of Wedderburn ([32], p. 101) D is a field. Hence by Exercise 1.8.1
there are finite fields L1 , . . . , Lt with L⊗K D ∼= L1 ⊕ · · · ⊕ Lt. Consequently

Lδ(LA) ∼= (L⊗K D)r×r ∼= Lr×r1 ⊕ · · · ⊕ Lr×rt
∼=LA r · (Lr1 ⊕ · · · ⊕ Lrt ).

Here Wi := Lri , the simple Lr×ri -modules, are simple LA-modules via inflation
(see Definition 1.1.21) and Wi 
∼=LA Wj for i 
= j, since they belong to different
block ideals of Lδ(LA). On the other hand,

L⊗K Dr×r ∼=LA r · (L⊗K V ) = r · LV

and consequently LV ∼=LA W1 ⊕ · · · ⊕Wt.

Exercises

Exercise 1.8.1 Let L1, L2 be field extensions of K and L1 ∼= K[X]/(f) for
some irreducible polynomial f ∈ K[X]. Show that

L1 ⊗K L2 ∼= L2[X]/(f) as K-algebras.
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Deduce that L1 ⊗K L2 is a semisimple K-algebra, provided that L1 ⊇ K is a
finite separable extension.

Exercise 1.8.2 Let D be a division ring, let G be a set of automorphisms of
D and n ∈ N. Any automorphism σ of D acts on V := Dn by σ [d1, . . . , dn]T :=
[σ(d1), . . . , σ(dn)]T for d1, . . . , dn ∈ D. Show that any D-subspace W of V with
σW = W for all σ ∈ G has a D-basis consisting of vectors wi with σ wi = wi
for all σ ∈ G. (See [166], p. 221.)

Exercise 1.8.3 Let Q8 := 〈a, b | a2 = b2 = [a, b], a4 = 1〉 be the quaternion
group, let K ⊆ R be a field and let L := K(i), where i2 = −1. Using Ex-
ercise 1.1.5 show that there is an irreducible representation δ : Q8 → GL4(K)
with

δ : a �→

 0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

, b �→

 0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

.
Let V := K4 be the corresponding representation module. Show that W :=
〈w1, w2〉L with w1 := [1,−i, 0, 0]T and w2 := [0, 0, 1, i]T is a simple LQ8-
submodule of LV . Using the notation of the proof of Theorem 1.8.4 compute
γW , where Gal(L/K) = 〈γ〉 and w̃1, w̃2. Prove that W ∼=LQ8

γW . Deduce
that δ(K Q8) is a division ring. For K = R it is called the division ring of real
quaternions.
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Characters

2.1 Characters and block idempotents

Throughout this section we assume that G is a finite group and A is a finite-
dimensional algebra over a field K. All A-modules considered are supposed to
be finitely generated over K.

Definition 2.1.1 Let V be an A-module and let δ : A → EndK V be the cor-
responding representation. Then the function

χV = χδ : A→ K, a �→ trace δ(a)

is called the character of V or of δ. A character of an irreducible representation
(or equivalently of a simple module) is called irreducible. Let IrrK(A) be the
set of irreducible characters of A over K. If A = KG then χ = χV is often
identified with its restriction

χ|G : G→ K, g �→ trace δ(g).

A character of a group G (over a field K) is a character of a representation of G
(over K) and the set of all these characters will be denoted by CharK(G). We
put IrrK(G) := IrrK(KG) and Irr(G) := IrrC(G).

Obviously a character χV of an A-module V as above is always completely
determined by its values on a fixed K-basis of V (in fact often an even smaller set
suffices, as we will see shortly). So the above identification of group characters
is harmless. If dimK V = 1 then χV is the same as the matrix representation
corresponding to V ; in this case χV is an algebra homomorphism and χ|G : G→
K× (in the case A = KG) is a group homomorphism called a linear character.
In particular we will denote the character of the trivial representation of G of
degree one by 1G, thus 1G(g) = 1 for all g ∈ G.

87
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Example 2.1.2 The character of the regular representation δKG : G→ GL(KG)
is the regular character and will be denoted by ρG. Obviously

ρG(g) =
{

0 for 1 
= g ∈ G,
|G| · 1K for g = 1.

If charK | |G| then ρG is the zero function. �

Example 2.1.3 If the group G acts on the set Ω and δ is the corresponding
permutation representation, then we have χδ(g) = |FixΩ(g)| · 1K . Such a char-
acter will be called a permutation character. Actually, Example 2.1.2 is a
special case of this construction and so is the trivial character 1G. �

Lemma 2.1.4 (a) If V ∼=A V
′ are isomorphic A-modules, then χV = χV ′ .

(b) If V is an A-module and W ≤KG V then

χV = χW + χV/W .

In particular, every character is a sum of irreducible characters.
(c) Group characters are class functions, i.e. if χ ∈ CharK(G) then

χ(g−1hg) = χ(h) for all g, h ∈ G.

(d) If ϕ : A → A1 is an epimorphism of K-algebras (or ϕ : G → G1 is a group
epimorphism) and χ ∈ IrrK(A1) (or χ ∈ IrrK(G1), respectively) then χ ◦ϕ is in
IrrK(A) (or IrrK(G), respectively), called the inflation of χ.

Proof. Recall that similar matrices have the same trace. For (b) observe
that addition of characters is to be taken point-wise (in the K-vector space of
K-valued functions). (d) follows from Definition 1.1.20 and Remark 1.1.21.

Lemma 2.1.5 The irreducible characters of A are linearly independent over K,
if K is a splitting field for A.

Proof. By Theorem 1.4.6 the irreducible characters of A are the inflations
of the irreducible characters of A/ J(A). Hence we may assume that A is
semisimple. In this case the result follows from Wedderburn’s Theorem 1.5.5: if
A =

⊕r
i=1Ai with simple two-sided ideals Ai corresponding to the irreducible

representations δi with characters χi, choose ei ∈ Ai such that δi(ei) is the
matrix with unity in position (1, 1) and zeros elsewhere. Recall that by our
assumption the image of δi is a full matrix ring over K. Then χj(ei) = δi,j .
So from 0 =

∑r
i=1 aiχi with a1, . . . , ar in K we conclude, by inserting ei, that

ai = 0.

The assertion of Lemma 2.1.5 holds also for non-splitting fields, provided
that J(LA) = L ⊗K J(A) for any extension field L ⊇ K, which is the case if
A = KG for a finite group G, for instance (see [41], theorem (7.9), p. 146). See
Exercise 2.1.1 for an example where IrrK(A) is linearly dependent.

The following theorem gives an explicit formula for the central primitive
idempotents in terms of the irreducible characters of a group.
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Theorem 2.1.6 Let K be a field with charK � |G| and IrrK(G) = {χ1, . . . , χr}.
Let χi = χLi for a simple KG-module Li with Di = EndKG Li and correspond-
ing block idempotent εi. Then

(a)

εi =
χi(1)

[Di : K]
1
|G|

∑
g∈G

χi(g−1)g and charK �
χi(1)

[Di : K]
∈ N;

(b) for h ∈ G we have

1
|G|

∑
g∈G

χi(gh)χj(g−1) =
[Di : K]
χi(1)

χi(h) δi,j .

Proof. (a) We use Maschke’s and Wedderburn’s Theorem 1.5.5 and write

KG =
r⊕
i=1

KGεi with KGεi = Li ⊕ · · · ⊕ Li with ni summands Li.

Let εi =
∑
g∈G αgg. We apply the regular character ρG =

∑r
j=1 njχj and get

|G|αg = ρG(εig−1) =
r∑
j=1

njχj(εig−1) = niχi(εig−1) = niχi(g−1).

From Theorem 1.5.5 we have ni = dimDi
Li = dimK Li

[Di:K] = χi(1)
[Di:K] . Observe that

εi 
= 0 , so ni = χi(1)
[Di:K] cannot be divisible by charK, so it is invertible in K.

(b) We use part (a) and get

δi,jεi = εiεj =
χi(1)

[Di : K]
χj(1)

[Dj : K]
1
|G|2

∑
x∈G

∑
y∈G

χi(x−1)χj(y−1)xy.

=
χi(1)

[Di : K]
χj(1)

[Dj : K]

∑
h∈G

 1
|G|2

∑
g∈G

χi(gh−1)χj(g−1)

h.

For i 
= j the result follows using the fact that the factors in front of the sum
are non-zero in K by part (a). For i = j we apply the formula for εi from (a)
in the left hand side and compare coefficients.

The special case in which K is a splitting field for G and of characteristic
not dividing |G| deserves particular attention.

Corollary 2.1.7 If K is a splitting field for G of characteristic not dividing
|G| then the block idempotent εχi corresponding to χi ∈ IrrK(G) is given by

εχi :=
χi(1)
|G|

∑
g∈G

χi(g−1)g.



90 Characters

If V is any KG-module then εiV gives the Li-homogeneous component of V ,
where Li is a KG-module with character χi.

The above result can be generalized (as can others in this section) to semisim-
ple symmetric algebras (see [63], Chap. 7). In view of Lemma 1.2.22 the follow-
ing theorem could be subsumed under this more general setting. Observe that
(g−1)g∈G is the basis contragredient to the natural basis G of the symmetric
K-algebra KG. Similarly, if Ω is a transitive G-set, by Lemma 1.2.22 the basis
contragredient to the Schur basis (θj)mj=1 in the symmetric algebra EndKGKΩ
is ( θj′/|Oj | )mj=1, where Oj′ := O′

j , the paired orbit; see Definition 1.2.10.

Theorem 2.1.8 Let charK � |G| and let Ω be a transitive G-set. Assume that

KΩ ∼=KG

m⊕
i=1

Li ⊕ · · · ⊕ Li︸ ︷︷ ︸
ni

, Li 
∼=KG Lj for i 
= j,

with simple KG-modules Li. Put Di := EndKG Li and zi := dimDi
Li. Then

E := EndKGKΩ =
m⊕
i=1

Eεi , Eεi ∼= Dni×ni
i

with centrally primitive idempotents εi. Let (θ1 = 1, . . . , θm) be the Schur ba-
sis of E (with θi = θOi corresponding to the orbits Oi of G on Ω × Ω; see
Lemma 1.2.15) and let ζ be the character of the E-module KΩ. Assume that ζi
is the character of the simple E-module in Eεi. Then ζ =

∑m
i=1 ziζi and

εi = zi

m∑
j=1

ζi(θj′)
|Oj |

θj , (2.1)

m∑
k=1

1
|Ok|

ζi(θk)ζj(θk′) =
ζi(1)
zi

δi,j . (2.2)

Proof. By Theorem 1.5.4 Eεi ∼= EndKG HLi(KΩ) ∼= Dni×ni
i and ζ =∑m

k=1 zkζk.
Observe that ζ is a symmetrizing trace for the symmetric algebra E, denoted

by τ in Lemma 1.2.22, where we had shown that ζ(θiθj′) = δi,j |Oi|. Thus writing
εi =

∑m
k=1 αiθi we get

αj |Oj | = ζ(εiθj′) =
m∑
k=1

zk ζk(εiθj′) = zi ζi(θj′).

Observe that |Oj | divides |G| and hence is invertible in K. Thus (2.1) follows.
Since the εi are orthogonal idempotents we get δi,jεi = εiεj , hence

δi,jεi = zi zj

m∑
k=1

m∑
l=1

ζi(θk′)ζj(θl′)
|Ok||Ol|

θkθl = zi zj

m∑
k=1

m∑
l=1

m∑
u=1

ζi(θk′)ζj(θl′)
|Ok||Ol|

akluθu.
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We compare the coefficients of θ1 = 1E and get, by Theorem 1.2.20(b),

zi
ζi(1)
|O1|

δi,j = zi zj

m∑
k=1

ζi(θk′)ζj(θk)
|Ok|2

|Ok|
|O1|

.

From this the result follows, since zi = χi(1)
[Di:K] (with χi = χLi ∈ IrrK(G)) is

invertible in K by Theorem 2.1.6(a).

Corollary 2.1.9 It is standard to choose L1 := KG the trivial KG-module in
Theorem 2.1.8, so that ζ1 is the principal character (see Theorem 1.2.20). Then

m∑
k=1

ζi(θk) = δi,1|Ω|.

Observe that by choosing the regular G-set Ω = G/{1} in Theorem 2.1.8 we get
essentially Theorem 2.1.6 (with h = 1 in part (b)).

As an easy consequence we obtain an interesting relation between the dimen-
sions of the irreducible constituents of a multiplicity-free permutation module
CΩ and the subdegrees.

Corollary 2.1.10 Let Ω be a transitive G-set of rank r with suborbits of lengths
1 = d1, . . . , dr. Assume that CΩ is multiplicity-free and let 1 = z1, . . . , zr be the
dimensions of the irreducible constituents. Then

fΩ := |Ω|r−2
r∏
i=1

di
zi
,

called the Frame quotient, is an integer.

Proof. Since CΩ is multiplicity-free, EndCG CΩ is commutative (see Exer-
cise 1.5.2) and hence ζi(1) = 1 for all i. We write (2.2) in Theorem 2.1.8 as a
matrix equation, take determinants and use Remark 1.2.12:

det[ζi(θk)]ik det[ζi(θk′)]ik =
r∏
i=1

|Oi|
zi

= |Ω|r
r∏
i=1

di
zi
.

Observe that the ζi(θk) are eingenvalues of the intersection matrices, hence
algebraic integers. Corollary 2.1.9 shows that if we add the second, third, . . . ,
rth column of [ζi(θk)]ik to the first one we obtain [|Ω|, 0 . . . , 0]T as the first
column. Hence 1

|Ω| det [ζi(θk)]ik is an algebraic integer.

From the proof we see that if all ζi(θk) are rational, then fΩ is a square. It is
not hard to see that this is the case if the irreducible constituents of CΩ have
rational characters. It had been conjectured that the Frame quotient is always
a square. But this is not true; see for instance Exercise 2.1.11.
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Table 2.1. Irreducible characters (representations) of E

|Oi| :
(
n
2

)
n(n− 1)(n− 2) 6

(
n
4

)
θ1 θ2 θ3

ζ1 1 2n− 4
(
n−2

2

)
ζ2 1 n− 4 −n+ 3
ζ3 1 −2 1

Example 2.1.11 In Example 1.2.25 we computed the irreducible characters
(representations) ζ1, ζ2, ζ3 of E = EndK Sn

K
(Ω

2

)
, where Ω = {1, . . . , n} for the

case that charK � (n− 2)
(
n
2

)
and n ≥ 4 (see Table 2.1).

If charK � n! we can use the above “orthogonality relations,” i.e. (2.2) in
Theorem 2.1.8, to compute the zi. Since E ∼= K ⊕K ⊕K we have K

(Ω
2

) ∼=K Sn

K ⊕L2⊕L3 with EndK Sn L2 ∼= EndK Sn L3 ∼= K, so that L2, L3 are absolutely
simple K Sn-modules with K-dimensions z2, z3. We conclude that z1 = 1 (of
course), z2 = n−1 and z3 = 1

2n(n−3). So this method has given us the degrees
of two non-trivial irreducible characters of the symmetric group. Compare this
result with Example 1.5.7. We also see that fΩ = (n− 1)2. �
Example 2.1.12 As in Example 1.2.26, let G = HS be the Higman–Sims group
acting on Ω = {1, . . . , 100}. From the “character table” of E := EndKGKΩ
for a field K with charK 
= 2, 5, computed at the end of Example 1.2.26, we
immediately find the degrees zi of the irreducible constituents of the permutation
representation of G on Ω. These are z1 = 1, z2 = 22, z3 = 77, which in this case
coincide with the subdegrees. Here fΩ = |Ω| = 102. �
Definition 2.1.13 Let G be a finite group and K a field, then cf(G,K) :=
{ψ : G → K | ψ(h−1gh) = ψ(g) for all g, h ∈ G} is called the space of class
functions on G. Obviously cf(G,K) is a K-vector space of dimension equal to
the number of conjugacy classes of G. If charK � |G| one defines a symmetric
bilinear form on cf(G,K) in the following way: For ψ,ϕ ∈ cf(G,K) we put

(ϕ,ψ)G :=
1
|G|

∑
g∈G

ϕ(g)ψ(g−1).

Note that N(ϕ) := (ϕ,ϕ)G is often called the norm of ϕ.

Corollary 2.1.14 Let K be a field with charK � |G|. Then, using the notation
of Theorem 2.1.6,

(a) (χi, χj)G = [Di : K]δi,j ;

(b) if V,W are KG-modules with characters ϕ,ψ, respectively, then

(ϕ,ψ)G = dim HomKG(V,W ) · 1K ;

(c) if Ω is a G-set with permutation character π then

(π,1G)G = m · 1K , where m is the number of orbits of G on Ω;
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(d) if Ω is transitive of rank r then (π, π)G = r ·1K . If r = 2, that is G is doubly
transitive on Ω, then

π = 1G + χ with χ ∈ IrrK(G).

Proof. (a) This is just Theorem 2.1.6(b) with h = 1.
(b) Since KG is semisimple we have

V ∼=KG

r⊕
i=1

aiLi, W ∼=KG

r⊕
i=1

biLi,

where L1, . . . , Lr are as in Theorem 2.1.6 and ai, bi ∈ N0 are the multiplicities
of Li in V,W , respectively, e.g.

aiLi = Li ⊕ · · · ⊕ Li︸ ︷︷ ︸
ai

.

Then

HomKG(V,W ) ∼=
r⊕
i=1

aibi HomKG(Li, Li) ∼=
r⊕
i=1

aibiDi.

From this the result follows using part (a) since, by Lemma 2.1.4, ϕ =
∑r
i=1 aiχi

and ψ =
∑r
i=1 biχi.

(c) From Lemma 1.2.15 it follows immediately that dimK HomKG(KΩ,K{1}) =
m, the number of orbits of G on Ω, where, of course {1} is the trivial G-set, so
that the character of K{1} is 1G. So the assertion follows from part (b).

(d) Corollary 1.2.16 just says that dimK EndKGKΩ = r, if Ω is a transitive
G-set of rank r, hence (π, π)G = r in this case. Finally, if r = 2 then π−1G = χ
must have norm one.

Of course, Corollary 2.1.14 part (a) gives another proof of Lemma 2.1.5 for
the case that charK � |G|. Part (c) of the corollary can also be written as

1
|G|

∑
g∈G

|FixΩ(g)| = m, the number of orbits of G on Ω, (2.3)

which is a well-known theorem of Cauchy and Frobenius that is often cited as
a lemma of Burnside.

Theorem 2.1.15 (Orthogonality relations) Let K be a splitting field for G
with charK � |G| and {g1, . . . , gr} representatives of the conjugacy classes of G.
Then IrrK(G) is an orthonormal basis of cf(G,K), and for χ, χ′ ∈ Irr(G)

(χ, χ′)G =
r∑

k=1

1
|CG(gk)|χ(gk)χ′(g−1

k ) = δχ,χ′ , (2.4)

∑
χ∈Irr(G)

χ(gi)χ(g−1
j ) = |CG(gi)| δi,j . (2.5)
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Proof. The first formula follows from Corollary 2.1.14 and Lemma 2.1.4.
Recall that the number of elements in G conjugate to gk is [G : CG(gk)].

Written in matrix form (2.4) says

[
χ(gk)

|CG(gk)| ]χ,k · [χ(g−1
k )]k,χ = Ir.

It follows that

[χ(g−1
k )]k,χ · [

χ(gk)
|CG(gk)| ]χ,k = Ir,

which gives formula (2.5).

Observe that we obtain from (2.5) of Theorem 2.1.15 – usually called the
“orthogonality relations for the columns” – for gi = gj = 1 the equation∑

χ∈Irr(G)

χ(1)2 = |G|,

which we have already seen in Theorem 1.5.10, since obviously the χ(1) are just
the dimensions of the simple modules.

Corollary 2.1.16 We assume the notation of Theorem 2.1.15 and in addition
that charK = 0.

(a) A KG-module V with character χ is simple if and only if (χ, χ)G = 1.

(b) If V is an arbitrary KG-module with character χV , then

χV =
r∑
i=1

(χV , χi)Gχi.

So the character of V provides convenient information about the composition
factors of V and their multiplicities.

(c) Two KG-modules are isomorphic if and only if their characters coincide.

It follows from Theorem 1.5.11 and Lemma 2.1.4 that the irreducible charac-
ters of a group G can be given by a square matrix [χi(gj)]i,j,=1,...,r, where the
gj are representatives of the conjugacy classes of G. This matrix is called the
character table of G in the case that K = C – actually we would get the same
matrix for any splitting field K of characteristic zero up to some identification,
as we will see in Section 2.2. It is customary to include in the character table
of a group more information than just the character values. For example, as
column headings we usually state the names of the conjugacy classes. These
consist of a number giving the element order of a representative of the class
and a letter in order to distinguish between classes containing elements of the
same order. The centralizer orders of representatives of the conjugacy classes
are also usually given in the column headings. Whereas this is just for conve-
nience – by Theorem 2.1.15 formula (2.5) it can be computed from the matrix
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[χi(gj)] – the element orders in general cannot be computed from this matrix
alone (see Example 2.1.19 below); so the class names provide genuinely addi-
tional information in general. Other genuinely additional information usually
included in the “table head” of a character table includes the so-called power
maps. These give for each prime divisor p of the group order |G| and each
class name mX the name of the conjugacy class, which contains the pth power
of a representative gj of the class mX. We will see that this information (in
conjunction with the values of the irreducible characters) is in fact sufficient to
find the class name of the conjugacy class of any power gmj of gj for m ∈ Z
(see Corollary 2.2.10).

The famous ATLAS of finite groups [38] contains the character tables of all
sporadic simple groups and many other simple groups with a large amount of
further information, to which we will return at a later stage. These character
tables, and many others, are also contained in the library of character tables of
GAP.

Example 2.1.17 We show what a character table of the alternating group A5
on five letters looks like when it is displayed from the library of GAP:

gap> t := CharacterTable("A5");; Display(t);
A5

2 2 2 . . .
3 1 . 1 . .
5 1 . . 1 1

1a 2a 3a 5a 5b
2P 1a 1a 3a 5b 5a
3P 1a 2a 1a 5b 5a
5P 1a 2a 3a 1a 1a

X.1 1 1 1 1 1
X.2 3 -1 . A *A
X.3 3 -1 . *A A
X.4 4 . 1 -1 -1
X.5 5 1 -1 . .

A = -E(5)-E(5)ˆ4
= (1-ER(5))/2 = -b5

The first three lines contain the centralizer orders in a factorized form. Thus
the orders of the centralizers of the representatives of the conjugacy classes are
22·3 ·5, 22, 3, 5, 5 in that order. The three lines following the class names
contain the second, third and fifth power map, telling us, for example, that the
squares of the elements of class 5a are contained in class 5b. The matrix of
character values follows. We see that it contains irrational values denoted by
“A” and “∗A,” where “A” is defined in the footnote as (translating into our
notation) A = −ζ5−ζ4

5 = 1−√
5

2 = −b5 (the latter, −b5, is the ATLAS notation
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for this irrationality) and ∗A is obtained from A by applying the non-trivial
Galois automorphism of Q(A), thus ∗A = 1+

√
5

2 in our case. In Example 2.1.24
we will show how to compute the character table of A5. �

Example 2.1.18 The character table of a cyclic group G = 〈g〉 of order, say,
n can easily be written down in a “generic form.” With ζn = e

2πi
n as before, we

get n pair-wise different linear characters χi defined by χi(gj) = ζijn . �

Example 2.1.19 Let G = V4 be the Klein 4-group. Obviously there are four
linear characters and we obtain the following character table:

V4 1a 2a 2b 2c
λ1 1 1 1 1
λ2 1 −1 1 1
λ3 1 1 −1 1
λ4 1 1 1 −1

Now suppose that G is either the dihedral group D8 or the quaternion group
Q8 of order eight. We know that there is a homomorphism ϕ : G → V4 with
kernel of order two. By Lemma 2.1.4(d) the inflations λi ◦ ϕ are in Irr(G) for
i = 1, . . . , 4. Example 1.5.13 shows that there is just one irreducible character
missing. This can be easily computed using the orthogonality relations for
the columns (Theorem 2.1.15, (2.5)). So we see that the matrix of irreducible
character values is the same for D8 and for Q8, although there are differences
in the element orders. We present both character tables in one matrix with two
different column headings:

D8 1a 2a 2b 2c 4a
Q8 1a 2a 4a 4b 4c
χ1 1 1 1 1 1
χ2 1 1 −1 1 1
χ3 1 1 1 −1 1
χ4 1 1 1 1 −1
χ5 2 −2 0 0 0

�

Example 2.1.20 It is well known that two elements in a symmetric group are
conjugate if and only if they have the same “cycle type,” that is the lengths of the
cycles (in a decomposition into disjoint cycles) coincide. Also, if charK 
= 2 any
symmetric group Sn for n ≥ 2 has exactly two “linear characters,” i.e. characters
of degree one, namely the inflation of the characters of Sn /An, or, to put it
differently, the trivial character and the sign character. Furthermore, since Sn is
doubly transitive in its natural permutation representation on Ω = {1, . . . , n},
it follows from Corollary 2.1.14 that π − 1G = χ is an absolutely irreducible
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character of degree n−1 if π is the permutation character of KΩ, provided that
charK � n!. This is sufficient to write down the character table of S3:

G = S3 {1} (1, 2)G (1, 2, 3)G

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

�

The following simple observation is often useful for the computation of character
tables.

Lemma 2.1.21 If χ ∈ IrrK(G) and λ ∈ IrrK(G) is a linear character then
λ · χ : G→ K , g �→ λ(g)χ(g), is in IrrK(G).

Proof. If χ is afforded by the representation δ : G→ GL(V ) then it is obvious
that λ · δ : G → GL(V ) , g �→ λ(g)δ(g), is an irreducible representation with
character λ · χ.

Example 2.1.22 The symmetric group G = S4 of degree four has five con-
jugacy classes, which we write as follows: 1a = {1}, 2a = ((1, 2)(3, 4))G, 3a =
(1, 2, 3)G, 2b = (1, 2)G , 4a = (1, 2, 3, 4)G. As in Example 2.1.20 we obtain two
linear characters and χ4 = π − 1G as an irreducible character, where π is the
natural permutation character:

G = S4 1a 2a 3a 2b 4a
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ4 3 −1 0 1 −1

We get from Lemma 2.1.21 a further irreducible character χ5 = χ2 · χ4. At
this point just one irreducible character is missing. This can be computed
easily from the orthogonality relations. Alternatively one may use the fact that
S3 is a factor group of S4, and one can therefore inflate the two-dimensional
irreducible character of S3 to S4. The result is as follows, where we follow the
custom of ordering the irreducible characters according to their degrees, if there
is no good reason for a different ordering:

G = S4 1a 2a 3a 2b 4a
χ1 1 1 1 1 1
χ2 1 1 1 −1 −1
χ3 2 2 −1 0 0
χ4 3 −1 0 1 −1
χ5 3 −1 0 −1 1

�
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Example 2.1.23 Let G = S5 be the symmetric group of degree five. The
conjugacy classes of G are 1a = {1}, 2a = ((1, 2)(3, 4))G, 3a = (1, 2, 3)G,
5a = (1, 2, 3, 4, 5)G, 2b = (1, 2)G, 4a = (1, 2, 3, 4)G and 6a = ((1, 2)(3, 4, 5))G.
As in Example 2.1.22 we immediately obtain four irreducible characters from the
sign character and the natural permutation representation on Ω = {1, 2, 3, 4, 5}.
We also easily compute the character θ of the action of G on

(Ω
2

)
:

1a 2a 3a 5a 2b 4a 6a
χ1 1 1 1 1 1 1 1
χ2 1 1 1 1 −1 −1 −1
χ3 4 0 1 −1 2 0 −1
χ4 4 0 1 −1 −2 0 1
θ 10 2 1 0 4 0 1

We verify that (θ, θ)G = 3 and (θ, χ1)G = (θ, χ3)G = 1. Actually, this could
also be derived from Example 1.2.25. It follows from Corollary 2.1.16 that
χ5 = θ − χ1 − χ3 ∈ Irr(G). Also by Lemma 2.1.21 the product χ2 · χ5 is
irreducible. Now only one irreducible character is missing, and this character can
easily be computed using the orthogonality relations. The result is as follows:

|CG(g)| : 120 8 6 5 12 4 6
G = S5 1a 2a 3a 5a 2b 4a 6a
χ1 1 1 1 1 1 1 1
χ2 1 1 1 1 −1 −1 −1
χ3 4 0 1 −1 2 0 −1
χ4 4 0 1 −1 −2 0 1
χ5 5 1 −1 0 1 −1 1
χ6 5 1 −1 0 −1 1 −1
χ7 6 −2 0 1 0 0 0

�

Example 2.1.24 We proceed with the alternating group G = A5. The conju-
gacy class 5a of S5 splits into two classes in A5 because, for an element h ∈ 5a
in S5, the centralizer CS5(h) is contained in A5. Thus G has five conjugacy
classes: 1a = {1}, 2a = ((1, 2)(3, 4))G, 3a = (1, 2, 3)G, 5a = (1, 2, 3, 4, 5)G and
5b = (1, 3, 5, 2, 4)G. Obviously, the restriction of a character of a group to a sub-
group is a character of the subgroup. If we restrict the irreducible characters of
S5 just calculated (which we are denoting by χi(S5)) to A5 we get

|CG(g)| : 60 4 3 5 5
G = A5 1a 2a 3a 5a 5b
χ1 1 1 1 1 1

χ4 = χ4(S5)|A5 4 0 1 −1 −1
χ5 = χ5(S5)|A5 5 1 −1 0 0
ψ = χ7(S5)|A5 6 −2 0 1 1
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We calculate (χi, χi)G = 1 for i = 1, 4, 5 and (ψ,ψ)G = 2; also (ψ, χi)G = 0 for
i = 1, 4, 5. Thus ψ is the sum of two irreducible characters, say ψ = χ2 +χ3. It
is clear from the orthogonality relations for the columns that χi for i = 2, 3 takes
the values 3, −1, 0 on the classes 1a, 2a, 3a, respectively. Let g ∈ 5a, then
g−1 ∈ 5a and χ2(g) and χ3(g) are solutions of the equation 5 = 2+x2 +(1−x)2.
Thus we get

|CG(g)| : 60 4 3 5 5
G = A5 1a 2a 3a 5a 5b
χ1 1 1 1 1 1
χ2 3 −1 0 α β α = 1

2 (1−
√

5)
χ3 3 −1 0 β α β = 1

2 (1 +
√

5)
χ4 4 0 1 −1 −1
χ5 5 1 −1 0 0

�
Exercises
Exercise 2.1.1 Let L ⊇ K be a finite field extension. Considering L as a K-
algebra show that IrrK(L) = {TrL/K }, where TrL/K is the usual field trace; see,
for example, [72], p. 115. Prove that IrrK(L) is linearly independent if and only
if L ⊇ K is separable.

Exercise 2.1.2 Let A be a finite abelian group andK be an algebraically closed
field with charK � |A|. Show that IrrK(A) = Hom(A,K×) becomes a group
(Â, ·) with

λ · λ′ : A→ K×, a �→ λ(a)λ′(a), for λ, λ′ ∈ Â,

and that A ∼= Â.
Hint: Let A = 〈a1〉 × · · · × 〈ar〉 and |〈ai〉| = ni, and let ζni

∈ K be a primitive
nith root of unity (i = 1, . . . , r). For a = am1

1 · · · amr
r ∈ A define

λa : A→ K×, aj11 · · · ajrr �→ ζj1m1
n1

· · · ζjrmr
nr

.

Verify that λa ∈ Â and that a→ λa defines an isomorphism A→ Â.

Exercise 2.1.3 Let δ : G→ Km×m, δ′ : G→ Kn×n be matrix representations.
(a) For any a ∈ Km×n put aG :=

∑
g∈G δ(g−1) a δ′(g). Show that aG · δ′(g) =

δ(g) · aG.
(b) If charK � |G| and δ is absolutely irreducible show that∑

g∈G
δ(g−1)ijδ(g)kl = δj,kδi,l

|G|
n
.

(c) Give a new proof of Theorem 2.1.15.

Exercise 2.1.4 Let K be a field with charK � |G| and let V be a KG-module.
Show that (χV ,1G)G = dimK InvG(V ) · 1K .
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Exercise 2.1.5 Let K be a finite field and let V be a KG-module. Consider
V as a G-set. Using (2.3) show that the number of orbits of G on V equals
the number of orbits of G on V �. Show that the Klein 4-group G has a three-
dimensional F2G-module V , such that the lengths of the orbits of G on V and
V � are different.

Exercise 2.1.6 Let T = [χi(gj)] be the character table of a finite group G with
conjugacy classes C1, . . . , Cr. Use the orthogonality relations to show that

det(T ) = c

(
|G|r

|C1| · · · |Cr|

)1/2

with c ∈ 〈ζ4〉.

Exercise 2.1.7 Let T = [χi(gj)] be the character table of a finite group G.
Show that the sum of the entries in each row is a non-negative integer.
Hint: Use the permutation action of G on itself by conjugation.

Exercise 2.1.8 Let n > 1 be a natural number and let ζ be a primitive nth root
of unity in some field K of characteristic not dividing n. Use the orthogonality
relations to show that that for j ∈ Z

n−1∑
i=0

ζij =
{
n · 1K if j ≡ 0 mod n,

0 if j 
≡ 0 mod n.

Exercise 2.1.9 LetH ≤ G and χ ∈ CharC(G) with χ(h) = 0 for all h ∈ H\{1}.
Show that |H| | χ(1).

Exercise 2.1.10 Denote the number of conjugacy classes of a group G by k(G)
and let N �G. Write G =

⋃̇n

i=1giN and Ḡ = G/N . Prove the following.

(a) |CG(g)| ≤ |CḠ(gN)| · |CN (g)| with equality if (N CG(g))/N = CḠ(gN).

(b)
∑
g∈G |CG(g)| ≤

∑n
i=1 |CḠ(giN)|

∑
h∈N |CN (gih)|.

(c)
∑
h∈N |CN (gih)| =

∑
u∈N |CgiN (u)| ≤

∑
u∈N |CN (u)|.

(d) k(G) ≤ k(G/N) · k(N). Hint: Use (2.3) on p. 93.

Exercise 2.1.11 (See ref. [80].) Let G := J1 be the sporadic simple Janko
group and Ω the G-set considered in Exercise 1.2.7. Use the irreducible repre-
sentations of EndCG CΩ computed in Exercise 1.2.7 to verify that CΩ is a direct
sum of five simple submodules with dimensions 1, 56, 56, 76, 77. Compute the
Frame quotient (see Corollary 2.1.10) and show that it is not a square.
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2.2 Character values

In this section we always assume that G is a finite group and K is a field.
Notation: For m ∈ N coprime to charK we define Km to be a splitting

field of Xm − 1 ∈ K[X] over K.

Lemma 2.2.1 Let χ be a character of G of degree n over K and let g ∈ G be
an element of order m. Then

χ(g) = ξ1 + · · ·+ ξn

with m roots of unity ξi ∈ Km. In particular, if charK = 0 then the character
value χ(g) is always an algebraic integer. Also, for any j ∈ Z we have

χ(gj) = ξj1 + · · ·+ ξjn.

Proof. Let δ : G → GLn(K) be a representation affording χ. Then the
minimal polynomial of δ(g) is a divisor of Xm − 1 ∈ K[X], which splits into
linear factors in Km[X]. Hence δ(g) is trigonalizable over Km. This means that
there is a non-singular matrix T ∈ GLn(Km) such that

T−1δ(g)T =

 ξ1 0
. . .

∗ ξn

 ,
where the ξi’s are the eigenvalues of δ(g), hence mth roots of unity. Since
χ(g) = ξ1 + · · ·+ ξn the first assertion follows. Also for any j ∈ Z we have

T−1δ(gj)T = (T−1δ(g)T )j =

 ξj1 0
. . .

∗ ξjn

 ,
so χ(gj) = ξj1 + · · ·+ ξjn.

The following is essentially a corollary to Lemma 2.2.1.

Lemma 2.2.2 Let charK = 0 and χ ∈ charK(G). Then χ(g) is an algebraic
integer for any g ∈ G. If m ∈ N and ζm ∈ K is a primitive mth root of unity
then

Gal(Q(ζm)/Q) = {ηi | 1 ≤ i ≤ m, g.c.d.(i,m) = 1},

where ηi is defined by ηi(ζm) = ζim and g.c.d.(i,m) stands for the greatest com-
mon divisor of i and m as usual. Also, since Q(ζm) is normal over Q, any ηi
can be extended to an automorphism of Km = K(ζm). If g ∈ G has order m
then

(a) χ(gj) = ηj(χ(g)) for any j ∈ N with g.c.d.(j,m) = 1;
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(b) for any prime p ∈ N we have χ(gp) ≡ χ(g)p mod p in the ring of integers
of K;

(c) if χ(g) ∈ Z and p is a prime, then χ(gp) ≡ χ(g) mod p in Z.

Proof. The first assertions are well known from algebra (see e.g. [110], theo-
rem VI.3.1, p. 278). Assertion (a) follows immediately from Lemma 2.2.1 since
ηj(ξ1 + · · · + ξn) = ξj1 + · · · + ξjn in the notation of this lemma. The second
assertion follows on putting j = p in Lemma 2.2.1 and observing that

χ(g)p = (ξ1 + · · ·+ ξn)p ≡ ξp1 + · · ·+ ξpn mod p

by the binomial theorem. We use the fact that the binomial coefficients
(
p
i

)
are

divisible by p for i = 1, . . . , p − 1. Finally we get (c) since by Fermat’s little
theorem xp ≡ x mod p holds for all x ∈ Z.

Remark 2.2.3 The congruence relations of Lemma 2.2.2 and their refinements
in Exercise 2.2.5 are extremely useful for computing χ ∈ Irr(G), provided that
the power maps and centralizer orders of G are known. Often it is possible to
compute χ with minimal effort just from χ(1) (or some other known value χ(g0))
by simply forming the class functions η ∈ cf(G), with η(1) = χ(1) and η(g) for
g ∈ G \ {1} being of minimal absolute value compatible with the congruence
relations. If η is of norm one and η is unique, then χ = η. If there are several
solutions of norm one, often all but one can be excluded by considering the
scalar product with the trivial or other known character.

Example 2.2.4 As a simple, albeit typical, example we consider again G = S5:

|CG(g)| : 120 8 6 5 12 4 6
G = S5 1a 2a 3a 5a 2b 4a 6a
χ5/6 5 1 −1 0 ±1 ±1 ±1
χ7 6 ±2 0 1 0 0 0

From Exercise 2.2.5 we infer that χ(h) ≡ χ(1) mod 4 for any χ ∈ CharC(G)
and h ∈ 2a, because g is a square (of an element in 4a). In the table we have
given the values η(g) of minimal absolute value compatible with η(1) = 5 and
η(1) = 6, respectively (with the notation of Remark 2.2.3). All these η have
norm one. Thus if χ ∈ Irr(G) has degree six then χ is uniquely determined and
χ(h) = −2, since otherwise (χ,1G)G 
= 0. For χ(1) = 5 there seem to be more
possibilities, but observe that the values on the elements of 2b and 6a must be
congruent modulo three and hence equal. So orthogonality with 1G shows that
there are, in fact, only two solutions, which are the characters χ5, χ6 listed on
p. 98. �

Remark 2.2.5 If charK = 0 and m is the least common multiple of the orders
of the elements of G – usually called the exponent of G – then

χ(g) ∈ K ∩Q(ζm) for all χ ∈ IrrK(G), g ∈ G,
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where ζm is a primitivemth root of unity, which we will identify with ζm := e
2πi
m .

This means that we will always use a fixed embedding of K ∩Q(ζm) in C. Then
all character values are complex numbers. In particular we may look at absolute
values and complex conjugates of character values.

Lemma 2.2.6 If χ is the character of a representation δ of G over a field K
of characteristic zero then we have the following.

(a) |χ(g)| ≤ χ(1) and, if equality holds, δ(g) ∈ Z(δ(G)), the center of δ(G). If
δ is absolutely irreducible the converse also holds.

(b) χ(g) = χ(1) if and only if δ(g) = id. Thus ker δ = {g ∈ G | χ(g) = χ(1)},
and this is also denoted by kerχ.

(c) χ(g−1) = χ(g) , the complex conjugate of χ(g) for any g ∈ G.

Proof. (a) If the eigenvalues of δ(g) are ξ1, . . . , ξn then

|χ(g)| = |ξ1 + · · ·+ ξn| ≤ |ξ1|+ · · ·+ |ξn| = n

by the triangle inequality. Equality holds if and only if ξ1 = ξ2 = · · · = ξn,
and this is equivalent to δ(g) = ξ1 · id. Then certainly δ(g) ∈ Z(δ(G)). If δ
is absolutely irreducible then by Schur’s lemma any δ(g) ∈ Z(δ(G)) must be a
scalar multiple of id, so the converse holds also.

(b) follows from the proof of (a).
(c) If the eigenvalues of δ(g) are ξ1, . . . , ξn then those of δ(g−1) are ξ1, . . . , ξn

because ξ−1 = ξ for ξ, a root of unity.

Definition 2.2.7 A character χ of a group G is called faithful if it is the
character of a faithful representation.

If charK = 0 then χ ∈ charK(G) is faithful if and only if kerχ = {1}.

Corollary 2.2.8 Let V be a KG-module with character χV and let V � be the
contragredient module (see Definition 1.1.35). If charK = 0 then

χV �(g) = χV (g) for g ∈ G.

So the complex conjugate of a character is again a character. In fact, one
can apply other field automorphisms as well.

Remark 2.2.9 If m is the exponent of G as in Remark 2.2.5 then

H = Gal(Q(ζm)/Q) = {ηj | 1 ≤ j < m , (m, j) = 1}

(with ηj being the field automorphism mapping ζm to ζjm as before) acts on
the conjugacy classes of G by putting

ηj (gG) = (gj)G for g ∈ G.
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If charK = 0 then H acts also on the characters of G over K, and in particular
on IrrK(G), in a natural way:

ηχ(g) = η(χ(g)) for η ∈ H, χ ∈ IrrK(G), g ∈ G.
Of course we have to show that ηχ is a character ofG overK, which is irreducible
if χ is irreducible. To this end assume that χ is a character afforded by a matrix
representation

δ : G→ GLn(K) , g �→ [dij(g)] for g ∈ G

and let η ∈ H. We observe that K̃ = K ∩Q(ζm) is a normal extension of Q, so
we can choose an extension η′ ∈ Gal(K/Q) of η|K̃ . We define η′δ : G→ GLn(K)
by η′δ(g) = [η′(dij(g))]. Obviously this is a representation of G over K, which
is irreducible if and only if δ is irreducible. The character of η′δ is

g �→
n∑
i=1

η′(dii(g)) = η(
n∑
i=1

dii(g)) = η(χ(g)) = ηχ(g).

Corollary 2.2.10 If j ∈ Z is coprime to |G| then g ∈ G is conjugate in G to gj

if and only if ηj(χ(g)) = χ(g) for all χ ∈ Irr(G), where ηj is as in Remark 2.2.9.
For any irreducible representation δ : G→ GLn(C) the eigenvalues of δ(g) can
be computed from the character table (provided it contains the power maps).

Proof. Since χ(gj) = ηj(χ(g)) the first claim holds because two elements
g, h ∈ G are conjugate in G if and only if χ(g) = χ(h) for all χ ∈ Irr(G). From
the power maps of a character table one knows in which conjugacy class gp is
contained for any prime divisor (and thus for any divisor) of G. Thus χ(gj)
can be found for any χ ∈ Irr(G) and any j ∈ Z. If χ is the character of the
representation δ and g ∈ G has order m then the eigenvalues of δ(g) are powers
of a primitive mth root ζ of unity. From the orthogonality relations applied to
the cyclic group 〈g〉 it follows that the multiplicity of ζi as an eigenvalue of δ(g) is

(χ|〈g〉, λi)〈g〉 =
1
|〈g〉|

m−1∑
j=0

χ(gj)ζij ,

where λi ∈ Irr(〈g〉) is given by gj �→ ζij for 0 ≤ j ≤ m− 1.

Lemma 2.2.11 (Gallagher) Let g ∈ G be such that χ(g) 
= 0 for all χ ∈
Irr(G) and N := [〈g〉, G], the smallest N �G such that gN ∈ Z(G/N). Then

| Irr(G)| ≤ |CG(g)| − (|G/N | − | Irr(G/N)|).

Proof. By Lemma 2.2.6, |χ(g)| = χ(1) if and only if kerχ ≥ N . Since
algebraically conjugate characters have the same kernel, we get

|CG(g)| = |G/N |+
∑

χ∈Irr(G) kerχ	≥N
|χ(g)|2 ≥ |G/N |+ (| Irr(G)| − | Irr(G/N)|)

using the orthogonality relations (2.5) and Exercise 2.2.2.
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Definition 2.2.12 Keeping the notation of Remark 2.2.9, characters ofG which
are in one orbit under H are called algebraic or Galois conjugate. Similarly
conjugacy classes of G in one orbit under H are called algebraic or Galois
conjugate. A conjugacy class C of G is called rational if it is fixed by H
(which means that any element of C is conjugate in G to all its powers, that
have the same order) and it is called real if each element of C is conjugate in
G to its inverse.

If p is a prime, m = pr n with p � n and Hp := Gal(Qm/Qn), then characters
of G which are in one orbit under Hp are called p-conjugate and those which
are fixed under Hp are called p-rational.

Observe that evidently a conjugacy class gG = C is rational (resp. real) if and
only if χ(g) is rational (resp. real) for all χ ∈ Irr(G).

We note that according to Remark 2.2.9 H = Gal(Q(ζm)/Q) acts on the
columns and also on the rows of the character table of G, and the actions are
compatible in the sense that

ηχi(Cj) = χi(ηCj) for η ∈ H, χi ∈ Irr(G), Cj a conjugacy class of G.

In addition, we recall from Exercise 2.1.6 that the matrix [χi(Cj)]ri,j=1 is invert-
ible, so that the hypotheses of the following general and very useful lemma are
satisfied.

Lemma 2.2.13 (Brauer’s permutation lemma) Let G be a finite group
and let A = [aij ] ∈ Kn×n be an invertible matrix. Suppose that G acts as a
permutation group on the set I of row indices of A via � and also on the set J
of column indices of A via � such that

ag�i,gj = ai,j for all i ∈ I, j ∈ J, g ∈ G.

Then the number of fixed points of any g ∈ G on I equals the number of fixed
points of any g on J . Also the number of orbits of G on I equals the number of
orbits of G on J .

Proof. Let P (g) and Q(g) be the permutation matrices corresponding to
g ∈ G in the action on I and J , respectively. Our assumption yields

P (g) ·A = [ag−1�i,j ] = [ai,gj ] = A ·Q(g).

Hence P (g) = A ·Q(g) ·A−1 and traceP (g) = traceQ(g), i.e. both permutation
actions have the same permutation character. The second assertion follows from
this using Corollary 2.1.14(c).

Corollary 2.2.14 The number of algebraic conjugate classes of irreducible char-
acters of G over C is the same as the number of algebraic conjugate classes of
conjugacy classes of elements. Also the number of irreducible real-valued char-
acters is equal to the number of real conjugacy classes.
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Example 2.2.15 Let G be a simple group of order |G| = 168. From the Sylow
theorems it follows that the number of Sylow 7-subgroups must be eight and
the order of the normalizer of a Sylow 7-subgroup P7 must hence be 21. A
well-known theorem of Burnside (see [88] Hauptsatz IV.2.6, p. 419) says that a
finite group with a Sylow subgroup which is the center of its normalizer has a
proper normal subgroup. Since we assume that G is simple we conclude that

P7 = CG(P7) < NG(P7) and [NG(P7) : CG(P7)] = 3.

NG(P7) acts by conjugation on P7\{1} with two orbits {g, g2, g4} and {g3, g6, g5}
if P7 = 〈g〉. Thus G has two non-real conjugacy classes of elements of order
seven. Hence there must be a pair of non-real (complex) characters ψ,ψ′ = ψ.
Since g is conjugate to g2 and g4, ψ(g) must be invariant under the auto-
morphism η2 ∈ Gal(Q(ζ7)/Q) with η2(ζ7) = ζ2

7 . Hence ψ(g) = r + sα with
integers r, s and α = ζ7 + ζ2

7 + ζ4
7 , where s 
= 0 and r ≥ 0. Observe that

α = ζ6
7 + ζ5

7 + ζ3
7 = 1− α and αα = 2 (and hence α, α = 1

2 (−1±
√
−7)). So

|ψ(g)|2 = ψ(g)ψ(g−1) = r2 + rs(α+ α) + s2αα = r2 − rs+ 2s2,

and, of course, we get the same value for ψ′(g)ψ′(g−1). Using |CG(g)| = 7 we
conclude from the orthogonality relations for the columns of the character table
that 1 + 2(r2 − rs+ 2s2) ≤ 7. This implies s = ±1 and r ∈ {0, 1} and thus

{ψ(g) , ψ′(g)} = {α , α} and ψ(1) = 3 or
{ψ(g) , ψ′(g)} = {1 + α , 1 + α} and ψ(1) = 4 .

In both cases 1 + |ψ(g)|2 + |ψ′(g)|2 = 5 = |CG(g)| − 2 so χ(g) ∈ Z for all other
χ ∈ Irr(G) \ {ψ,ψ′} and there must be two irreducible characters, say χ4, χ6,
with χi(g) = ±1 for i ∈ {4, 5}, whereas χ(g) = 0 for all χ ∈ Irr(G) \ X for
X = {1G, ψ, ψ′, χ4, χ6}. The congruence relations (Lemma 2.2.2) imply that

χ(g) = 1 ⇐⇒ χ(1) ∈ {1, 8},
χ(g) = −1 ⇐⇒ χ(1) = 6,
χ(g) = 0 ⇐⇒ χ(1) = 7,

because the degree of an irreducible character is always bounded by
√
|G|,

which is <13 in our case. The orthogonality relations for the columns {1} and
gG require

1 + ψ(1)(ψ(g) + ψ′(g)) + χ4(1)χ4(g) + χ6(1)χ6(g) = 0.

The unique solution is given by

ψ(1) = 3, {χ4(1), χ6(1)} = {6, 8}.

Since |G| −
∑
χ∈X χ(1)2 = 72 it is clear that there is exactly one irreducible

character, say χ5 ∈ Irr(G) with χ5(1) = 7. We know that G must have elements
of orders two and three. So we have found the following fragment of the character
table, where we may assume that 2a is a class of involutions (= elements of order
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two) which are in the center of a Sylow 2-subgroup:

1a 2a 3a ?? 7a 7b
χ1 1 1 1 1 1 1
χ2 3 e α α
χ3 3 e α α
χ4 6 x −1 −1
χ5 7 y 0 0
χ6 8 z 1 1

with e, x, y, z ∈ Z, since character values on involutions are always rational
integers.

The elements of 3a must be self-centralizing; otherwise there would be ele-
ments of order six and thus 2a would be the only class containing 2-elements

= 1 and the centralizer of an element of 2a would have order 23 · 3. This would
imply that G has a normal (elementary abelian) Sylow 2-subgroup, which is
absurd. Since χ4, χ5, χ6 are rational, the congruence relations in conjunction
with the orthogonality relations imply

χ5(h) = 1, χ6(h) = −1 so χ2(h) = χ3(h) = χ4(h) = 0 (h ∈ 3a).

The orthogonality relations yield e = −1, x = 2, y = −1, z = 0, and after
that the missing column is determined by these relations as well. In general,
the element orders are not determined by the character values, but in our case
we can conclude from the centralizer order, which is four, that the order of the
elements of the last class is either two or four. But two is impossible, since
then a Sylow 2-subgroup would be elementary abelian, which contradicts the
centralizer order. So the last class should be denoted by 4a. We display the
completed character table as follows:

|CG(g)| : 168 8 3 4 7 7
1a 2a 3a 4a 7a 7b

χ1 1 1 1 1 1 1
χ2 3 −1 0 1 α α
χ3 3 −1 0 1 α α
χ4 6 2 0 0 −1 −1
χ5 7 −1 1 −1 0 0
χ6 8 0 −1 0 1 1

Of course, we have not shown that a group with this character table actually
exists, but it is well known that the group GL3(2) ∼= L2(7) is, in fact, a simple
group of order 168. So the table given above is the character table of this group.

�
Exercises
Exercise 2.2.1 Let χ ∈ Irr(G) and Z = {g ∈ G | |χ(g)| = χ(1)}. Show that
Z/ kerχ = Z(G/ kerχ).

Exercise 2.2.2 Assume that I ⊆ Irr(G) is invariant under Galois conjugation
and g ∈ G is such that χ(g) 
= 0 for all χ ∈ I. Show that

∑
χ∈I |χ(g)|2 ≥ |I|.
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Hint: One may use the fact that the arithmetic mean of positive real numbers
is not less than the geometric mean.

Exercise 2.2.3 Let G be a finite cyclic group and let Ω1 and Ω2 be two finite
G-sets. Show that if the CG-permutation modules CΩ1 and CΩ2 are isomorphic,
then Ω1 and Ω2 are isomorphic G-sets. Use this statement to give an alternative
proof of Brauer’s permutation lemma, Lemma 2.2.13.

Exercise 2.2.4 Let χ = χδ ∈ Irr(G) with χ(1) = 2.

(a) Show that |G| must be even.
(b) Let g ∈ G have order two. Show that δ(g) ∈ Z(δ(G)) or g /∈ G′.
(c) Conclude that a simple group cannot have an irreducible representation of
degree two over C.

Hint: Let χ(g) = ξ1(g) + ξ2(g), where ξi(g) are the eigenvalues of δ(g). Write
(χ, χ)G in terms of ξi(g) and use the fact that if |G| = 2m + 1 then G can be
written as G = {1, g1, . . . , gm, g−1

1 , . . . , g−1
m }. We will show in Theorem 2.3.4

that χ(1) divides |G| for all χ ∈ Irr(G), but this should, of course, not be used
in this exercise.

Exercise 2.2.5 (See ref. [60].) Let χ ∈ CharC G and χ(g) ∈ Q. Show that

χ(gp
r

) ≡ χ(gp
r−1

) mod pr for all primes p.

Exercise 2.2.6 Assume that (χ(1) | χ ∈ Irr(G) ) = (1, 1, 1, 1, 2, 8). Compute
the values χ(g) for all χ ∈ Irr(G) and g ∈ G. Deduce that G ∼= C2

3 � Q8 or
G ∼= C2

3 � D8. (We will exclude the second possibility in Exercise 2.9.1.)
Note: In this example all non-linear irreducible characters have degrees di-
visible by a prime p (= 2) and G has a normal p-complement. This is not a
coincidence; see Exercise 4.3.6.

Exercise 2.2.7 Let G := GL2(3).

(a) Using rational canonical forms find representatives for cl(G).
(b) Consider the action of G on the set of one-dimensional subspaces of F2

3 and
show that G maps homomorphically onto S4. Inflate the irreducible characters
of S4 to G.
(c) Use the orthogonality relations and Lemma 2.2.2 to complete the character
table of G. Verify that it can be written as follows:

|CG(g)| 48 48 8 6 6 4 8 8
gG 1a 2a 4a 3a 6a 2b 8a 8b
χ1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 −1 −1 −1
χ3 2 2 2 −1 −1 . . .
χ4 3 3 −1 . . −1 1 1
χ5 3 3 −1 . . 1 −1 −1
χ6 2 −2 . −1 1 . α −α α :=

√−2
χ7 2 −2 . −1 1 . −α α
χ8 4 −4 . 1 −1 . . .
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2.3 Character degrees

We assume in this section that G is a finite group and that K is a field of char-
acteristic not dividing |G|.

Let C1, . . . , Cr be the conjugacy classes of G. We recall from Chapter 1
(Lemma 1.1.9) that the “class sums” C+

i =
∑
y∈Ci

y (i = 1, . . . , r) form a K-
basis of the center Z(KG) of the group algebra KG. In particular there must
be elements βijk ∈ K with

C+
i · C+

j =
r∑

k=1

βkijC
+
k for 1 ≤ i, j ≤ r.

The βkij are called the structure constants for Z(KG) with respect to the
class sums basis. In fact, they are integers modulo the characteristic of K and
can be computed from the “class multiplication coefficients” within the group
G, which are introduced in the following.

Remark 2.3.1 Choose gk ∈ Ck and let

αkij := |{(g, h) | g ∈ Ci , h ∈ Cj , gh = gk}| ∈ N0.

Then αkij is independent of the choice of gk ∈ Ck. The numbers αkij are usually
called the class multiplication coefficients of G. With the above notation
βkij = αkij · 1K .

This follows from a simple computation by simplifying the product
∑
g∈Ci

g ·∑
h∈Cj

h.

Theorem 2.3.2 Let δ : G→ GL(V ) be an absolutely irreducible representation
over K with character χ. Then we have for z ∈ Z(KG)

δ(z) = ω(z) idV with ω(z) ∈ K,
and

ω : Z(KG) → K, z �→ ω(z)

is an algebra homomorphism called the central character ω = ωχ correspond-
ing to δ or χ. Furthermore

(a) χ(1) 
= 0 in K and

ω(C+) =
|C|χ(g)
χ(1)

for any conjugacy class C = gG in G;

(b) with the αkij as defined in Remark 2.3.1 and MK
i = [αkij · 1K ] ∈ Kr×r with

row index j and column index k we obtain

ω(C+
i )

 ω(C+
1 )

...
ω(C+

r )

 = MK
i

 ω(C+
1 )

...
ω(C+

r )

 for i = 1, . . . r.
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Proof. Since z ∈ Z(KG) it follows that δ(z) ∈ EndKG V = K · idV , because
V is absolutely irreducible. So δ(z) = ω(z) idV and

ω(z1z2) idV = δ(z1z2) = δ(z1)δ(z2) = ω(z1)ω(z2) idV ,

and hence ω is an algebra homomorphism.
(a) Computing the trace of δ(C+) in two different ways we get

χ(C+) = χ(1)ω(C+) =
∑
y∈C

χ(y) = |C|χ(g)

for any conjugacy class C. If χ(1) were zero in K then since charK � |C| we
would deduce χ(g) = 0 for all g ∈ G, which contradicts Corollary 2.1.14. So we
can divide by χ(1) and get (a).

(b) Since ω is a K-algebra homomorphism we get, from the definition of the
class multiplication coefficients αkij ,

ω(C+
i ) · ω(C+

j ) =
r∑

k=1

αkij ω(C+
k ). (2.6)

This is the same as asserted in matrix form.

Corollary 2.3.3 If charK = 0 and δ is an absolutely irreducible representation
of G over K with central character ω then ω(C+) is an algebraic integer for every
conjugacy class C of G. Moreover ω(C+) ∈ Z[ζm], where m is the order of an
element in C and ζm is an mth root of unity in K.

Proof. Equation (2.6) says that ω(C+
i ) is an eigenvalue of the integral matrix

Mi = [αkij ] and thus a root of the monic characteristic polynomial of Mi, and
hence it is an algebraic integer. By part (a) of Theorem 2.3.2 and Lemma 2.2.1
ω(C+) ∈ Q(ζm). By Theorem 2.6 in [168] the ring of algebraic integers in Q(ζm)
is Z[ζm].

Theorem 2.3.4 If K is a splitting field for G of characteristic zero then the
degrees of the irreducible representations of G over K are divisors of |G|.

Proof. Let χ be in IrrK(G) with corresponding central character ωχ. We use
the orthogonality relations, see Theorem 2.1.15, and obtain

|G| =
r∑
i=1

|Ci|χ(gi)χ(g−1
i ) =

r∑
i=1

ωχ(C+
i )χ(1)χ(g−1

i ),

hence
|G|
χ(1)

=
r∑
i=1

ωχ(C+
i )χ(g−1

i ).

All terms on the right hand side are algebraic integers by Lemma 2.2.2 and
Corollary 2.3.3. Since the algebraic integers form a ring, the left hand side is
an algebraic integer and (being in Q) is even a rational integer.
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Lemma 2.3.5 Assume that K is a splitting field for G with charK = 0 and
χ ∈ IrrK(G). If g ∈ G is conjugate in G to zg for some z ∈ Z(G) then

χ(g) = 0 or χ(z) = χ(1).

Proof. If χ is the character of the representation δ with central character ω,
then ω(z) = χ(z)

χ(1) and

δ(zg) = ω(z)δ(g) for g ∈ G.

Hence by assumption
χ(g) = χ(zg) = ω(z)χ(g),

from which the result follows.

Theorem 2.3.6 If K is a splitting field for G with charK = 0 and χ ∈ IrrK(G)
then χ(1) | [G : Z(G)].

Proof. We use induction with respect to the order of G. First, assume that χ
is faithful. Note that the center Z(G) acts on the set of conjugacy classes by left
multiplication. If the conjugacy class C = gG is in an orbit of length < |Z(G)|,
then there is 1 
= z ∈ Z(G) such that g is conjugate to zg in G, so χ(g) = 0 by
Lemma 2.3.5. If C1, . . . , Cs are representatives of the orbits of length |Z(G)|
with gi ∈ Ci then

|G| =
∑
g∈G

χ(g)χ(g) =
s∑
i=1

∑
z∈Z(G)

|gGi |χ(giz)χ(giz)

= |Z(G)|
s∑
i=1

|gGi ||χ(gi)|2 = |Z(G)|χ(1)
s∑
i=1

ω(C+
i )χ(gi).

So [G:Z(G)]
χ(1) is an algebraic integer.

In the case that χ is not faithful, then χ can be considered as the inflation of
a faithful irreducible character χ′ ∈ IrrK(G/N) with N = kerχ, and the result
follows by induction from

χ(1) = χ′(1) | [G/N : Z(G/N)] | [G : N Z(G)] | [G : Z(G)].

In Section 3.6 we will prove a much stronger result; see Theorem 3.6.5.

Theorem 2.3.7 (Burnside) Let δ : G → GL(V ) be an irreducible represen-
tation of G over C with character χ. If C is a conjugacy class of G with
g.c.d.(χ(1), |C|) = 1 then for g ∈ C we have δ(g) ∈ Z(δ(G)) or χ(g) = 0.
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Proof. By assumption there are a, b ∈ Z with aχ(1) + b|C| = 1. Multiplying
this equation by χ(g)

χ(1) and using Theorem 2.3.2(a) we get

aχ(g) + bωχ(C+) =
χ(g)
χ(1)

,

where ωχ is the central character corresponding to χ. The left hand side of this
equation is an algebraic integer by Lemma 2.2.2 and Corollary 2.3.3. So χ(g)

χ(1) is
an algebraic integer. By Lemma 2.2.6 part (a) we have δ(g) 
∈ Z(δ(G)) if and
only if |χ(g)

χ(1) | < 1. If C is rational, we can conclude immediately that χ(g) = 0.
In general, let m = |〈g〉|, so that χ(g) ∈ Q(ζm). We note that

c =
∏

γ∈Gal(Q(ζm)/Q)

γ(
χ(g)
χ(1)

)

is an algebraic integer and invariant under Gal(Q(ζm)/Q), hence an integer. By
Lemma 2.2.6 part (a) the absolute value of each factor is at most one (observe
that γ(χ(g)) = χ(gj) for some j ∈ N). So, if δ(g) 
∈ Z(δ(G)) the integer c must
be zero and hence also χ(g) = 0.

Theorem 2.3.8 If G is a non-abelian finite simple group then {1} is the only
conjugacy class of G that has prime power length.

Proof. Suppose C is a conjugacy class of G with |C| = pa for some prime
p and suppose 1 
= g ∈ C. Any non-trivial irreducible representation δ of G is
faithful, since G is simple and satisfies Z(δ(G)) = 1 since G is non-abelian. By
Theorem 2.3.7 we have for any 1G 
= χ ∈ Irr(G) either p | χ(1) or χ(g) = 0.
From the orthogonality relations we obtain

0 =
∑

χ∈Irr(G)

χ(g)χ(1) = 1 +
∑

χ∈Irr(G),p|χ(1)

χ(g)χ(1).

We conclude that

−1
p

=
∑

χ∈Irr(G),p|χ(1)

χ(g)
χ(1)
p

is an algebraic integer, which is absurd.

As a corollary we get a famous purely group theoretical theorem as follows.

Theorem 2.3.9 (Burnside’s paqb-theorem) If p, q are primes and G is a
group of order paqb then G is solvable.

Proof. Since p-groups are solvable we may assume that p 
= q and a, b > 0.
The hypothesis is inherited by normal subgroups and factor groups, so, using
induction, it is enough to show that G is not simple. Let P ∈ Sylp(G) and
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1 
= g ∈ Z(P ) (this can be done since a non-trivial p-group has a non-trivial
center). Then P ≤ CG(g), hence |gG| = [G : CG(g)] | qb. By Theorem 2.3.8 G
is not simple.

Since the assertion of this theorem has nothing to do with representations of
groups, it seems natural to look for a proof which avoids representation theory.
Such a proof has indeed been found by Goldschmidt and Matsuyama ([68], [118];
see also [107]). But it should be noted that these proofs are far more involved.

Exercises

Exercise 2.3.1 Show that the sum of the entries in any column of the character
table of a finite groups is an integer. Find an example where this integer is
negative.
Remark: The smallest examples are two groups of order 96, but there are
many examples to be found in the ATLAS ([38]).

Exercise 2.3.2 Using the assumption and notation of Theorem 2.3.2 show that

r∑
i=1

1
|Ci|

ω(C+
i )ω(C+

i′ ) =
|G|
χ(1)2

.

Exercise 2.3.3 Let G be a group with Z(G) = {1} and let χ ∈ Irr(G) be
faithful with χ(1) = p, a prime. If P ∈ Sylp(G) show that P = CG(P ) has order
p. Conclude that a group with trivial center cannot have a faithful irreducible
character of degree two (compare with Exercise 2.2.4).
Hint: Choose g ∈ Z(P ) of order p and let δ be a representation affording χ.

(a) Use Theorem 2.3.7 to show that χ(g) = 0.

(b) Consider χ(g) = 0 as a polynomial equation in ζp and conclude that the
eigenvalues of δ(g) are 1, ζp, . . . , ζ

p−1
p .

(c) Conclude that CG(g) and so P is abelian.

(d) Show that χ(x) = 0 for all x ∈ CG(P ) \ {1} and use Exercise 2.1.9.

2.4 The Dixon–Schneider algorithm

In this section we assume that G is a finite group with conjugacy classes C1 =
gG1 , . . . , Cr = gGr , where g1 = 1. Let K be a splitting field for G with charK � |G|
and IrrK(G) = {χ1, . . . , χr}. We put ωi := ωχi

(see Theorem 2.3.2).
Theorem 2.3.2 shows that the central characters ωi (more precisely, the vec-

tors [ωi(C+
1 ), . . . , ωi(C+

r )]T) are common (column-)eigenvectors of the matrices

MK
i := [αkij · 1K ]rj,k=1 ∈ Kr×r,
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where the αkij ∈ N∪{0} are the class multiplication coefficients (see Remark 2.3.1)
defined by

αkij = |{(g, h) | g ∈ Ci , h ∈ Cj , gh = gk}| ∈ N ∪ {0},
with gk ∈ Ck. If one is able to compute within the group sufficiently well in
order to find the conjugacy classes and to decide in which class a product of
elements lies, one may compute these matrices MK

i , and it is tempting to deter-
mine the ωi’s by solving the corresponding eigenvalue problems and observing
that ωi(1) = 1. It is straightforward to compute the degrees of the irreducible
characters χi from these (see Exercise 2.3.2) so the irreducible characters can
be obtained from the ωi’s using the known class lengths |Ci|. In fact, the pro-
cedure to compute the character table of a group, which Burnside suggested in
[24], sect. 223, and illustrated for the dihedral group D10, is equivalent to this
approach (see also [40], p. 238).

An alternative way to find the irreducible characters directly as row-eigen-
vectors of the MK

i was proposed by Schneider ([156]). We first need a simple
lemma.

Lemma 2.4.1 For a conjugacy class Ci let Ci′ := {g−1 | g ∈ Ci}. Then

αkij |Ck| = αji′k |Cj |.

Proof. Let

X = {(x, y) | x ∈ Ci , y ∈ Cj , xy ∈ Ck} and
Y = {(x′, z) | x′ ∈ Ci′ , z ∈ Ck , x′z ∈ Cj}.

Then

X → Y (x, y) �→ (x−1, xy) and Y → X (x′, z) �→ (x′−1
, x′z)

are inverse bijections. Obviously the left hand side in the assertion is just |X|,
whereas the right hand side is |Y |.

Let ω = ωχ for ϕ ∈ IrrK(G). Applying the above equation to ω(C+
i′ )ω(C+

j ) =∑
k α

k
i′jω(C+

k ) we obtain

|Ci′ |χ(g−1
i )

χ(1)
|Cj |χ(gj)
χ(1)

=
r∑

k=1

αki′j
|Ck|χ(gk)
χ(1)

=
r∑

k=1

αjik
|Cj |χ(gk)
χ(1)

.

Hence |Ci′ |χ(g−1
i )

χ(1) χ(gj) =
∑
k χ(gk)αjik , an equation, that can also be found in

[24], sect. 229. Using |Ci′ | = |Ci| we get

|Ci|χ(g−1
i )

χ(1)
[χ(g1), . . . , χ(gr)] = [χ(g1), . . . , χ(gr)]MK

i . (2.7)

Notation: We will identify a class function χ of G with the row-vector
[χ(g1), . . . , χ(gr)], and if χ(1) 
= 0 we define

χ(n) := [1,
χ(g2)
χ(g1)

, . . . ,
χ(gr)
χ(g1)

].

In the following we will call row-vectors with first entry 1 “normalized.”
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Theorem 2.4.2 The χj ∈ IrrK(G) are row-eigenvectors of the matrices MK
i .

In fact, {χ(n)
1 , . . . , χ

(n)
r } is the set of normalized common row-eigenvectors of all

the MK
i for i = 1, . . . , r.

Proof. Because of (2.7) only the second statement still needs to be proved.
Let v :=

∑r
j=1 ajχj be a common eigenvector of all MK

i . Then there exist
λi ∈ K with vMK

i = λiv. Hence

λi
∑
j

ajχj =
∑
j

ajχjM
K
i =

∑
j

aj
|Ci|χj(g−1

i )
χj(1)

χj .

Comparing coefficients we get

λiaj = aj
|Ci|χj(g−1

i )
χj(1)

for all i.

Hence for any j with aj 
= 0 we obtain

λi
|Ci|

=
χj(g−1

i )
χj(1)

for all i.

So, if aj 
= 0 and ak 
= 0 then χj(gi) = χj(1)
χk(1)χk(gi) for all i. Thus χj , χk are

linearly dependent and hence j = k. So v is a multiple of some χj , and if v is
normalized it must be equal to χ(n)

j .

Corollary 2.4.3 From the class multiplication matricesMi the irreducible char-
acters χj ∈ IrrK(G) can be computed up to signs. If charK = 0 or charK >

2 ·
√
|G| then the characters themselves can be determined.

Proof. By Theorem 2.4.2 the χ(n)
j are uniquely determined by the matrices

Mi. The scalar product (χ(n)
j , χ

(n)
j )G = 1

χj(1)2
· 1K can be computed to yield

±χj(1) and thus we obtain ±χj . If charK = 0 then χj can be identified since
we know that χj(1) > 0. If charK = p > 0 then χj(1) = dj · 1K , where dj is
the degree of a representation with character χj . Since K is supposed to be a
splitting field for G we know that dj ≤

√
|G|. If p > 2 ·

√
|G| then p−dj >

√
|G|

and we can identify the correct value of χj(1).

Obviously, in the corollary
√
|G| may be replaced by any other upper bound for

the degrees of the irreducible representations of G over K.
Of course, the main interest is in computing the complex irreducible char-

acters, and these are determined uniquely from the Mi by Corollary 2.4.3. On
the other hand, solving eigenvalue problems in C is not easy. Mostly this is
done numerically rather than symbolically. But representing character values
as floating point numbers with rounding errors is usually of no use. So we intend
to solve the eigenvalue problem over a suitable finite field F and transform the
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answer back to C using a discrete Fourier transform. This method was first
proposed by Dixon ([48]).

We will assume now that F is a splitting field for G of characteristic p >
2 ·
√
|G| not dividing |G|. We also assume that F contains a primitive eth root

of unity ε, where e is the exponent of G, i.e. the l.c.m. of the orders of the
elements of G. Let

Irr(G) = {χ1, . . . , χr} and IrrF (G) = {ϕ1, . . . , ϕr}.

We define a ring homomorphism

θ : Z[ζe] → F with ζe �→ ε; (2.8)

θ extends the canonical epimorphism Z → Z/(p) = Fp ⊆ F . It follows that
θ(Mi) = MF

i , and, since θ is a ring homomorphism, we get from equation (2.7)
for all i, j ∈ {1, . . . , r}

θ(|Ci|χj(g−1
i )) · θ(χj) = θ(χj(1))θ(χj) ·MF

i ,

and hence
θ(|Ci|χj(g−1

i ))
θ(χj(1))

· θ(χj) = θ(χj) ·MF
i .

So θ(χj) is a common eigenvector for all MF
i , and by Theorem 2.4.2 and its

corollary we may choose our notation so that

θ(χj) = ϕj for 1 ≤ j ≤ r.

By Theorem 2.4.2 and its corollary we may compute ϕj by solving the eigenvalue
problems for the matrices MF

i over the finite field Fp. We will show now how
to obtain χj from this. For simplicity of notation we will omit the index j.

Let g ∈ G have order q. From Lemma 2.2.1 we get for j ∈ Z

χ(g) =
q−1∑
k=0

mkζ
k
q and χ(gj) =

q−1∑
k=0

mkζ
kj
q . (2.9)

Multiplying the latter equation by 1
qζ

−ij
q for i = 1, . . . q − 1 and summing over

j we get

1
q

q−1∑
j=0

χ(gj)ζ−ij
q =

1
q

q−1∑
j=0

q−1∑
k=0

mkζ
kj
q ζ−ij

q =
q−1∑
k=0

mk
1
q

q−1∑
j=0

ζ(k−i)j
q = mi,

where we have used Exercise 2.1.8. We put εq := εe/q. Then θ(ζq) = θ(ζe/qe ) = εq
and we obtain

1
θ(q)

q−1∑
j=0

ϕ(gj)ε−ijq = θ(mi) (0 ≤ i ≤ q − 1). (2.10)
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Since mi ≤ χ(1) < p is a non-negative integer and θ|{0,...,p−1} is injective we
may use (2.10) to compute the mi and thus χ, once we know ϕ.

Dixon–Schneider algorithm
In order to compute the complex characters χ1, . . . , χr of the group G with
exponent e we do the following.

(a) Compute the integral matrices Mi = [αkij ].

(b) Choose a prime p with p > 2 ·max{χ(1) | χ ∈ Irr(G)} – if one does not have
a better estimate of the character degrees one might take p > 2 ·

√
|G| –

and, in addition p ≡ 1 mod e. Choose a primitive eth root ε ∈ Fp.

(c) Find the common normed row-eigenvectors ϕ(n) of the MFp

i in Fp. Find
a square root d ∈ {θ(1), . . . , θ(p−1

2 )} of (ϕ(n), ϕ(n))−1
G and compute ϕ =

d · ϕ(n) ∈ IrrF (G). Here θ is as in (2.8).

(d) For each ϕ ∈ IrrF (G) compute the corresponding χ ∈ Irr(G) using (2.10)
and (2.9).

Remark 2.4.4 A famous theorem of Dirichlet (see e.g. [128], p. 469) asserts
that there are in fact infinitely many primes p with p ≡ 1 mod e (for any e),
and so we certainly can find one which is large enough as requested in (b). Since
p ≡ 1 mod e the field Fp contains a primitive eth root ε of unity.

In step (a) of the algorithm it is usually not necessary to compute all the
matrices Mi. In fact, it follows from Theorem 2.4.2 that an eigenspace of any
MF
i is spanned by irreducible F -characters; in particular, if an eigenspace of

Mi is one-dimensional, then one irreducible character is already obtained. Oth-
erwise these eigenspaces can possibly be split up by taking their intersections
with eigenspaces of a different MF

j . Methods that avoid computing too many
class multiplication matrices can be found in [48]. We illustrate the procedure
by means of an example.

Example 2.4.5 We take G = A6 and take as representatives for the conjugacy
classes g1 = 1, g2 = (1, 2)(3, 4), g3 = (1, 2, 3), g4 = (1, 2, 3)(4, 5, 6), g5 =
(1, 2, 3, 4)(5, 6), g6 = (1, 2, 3, 4, 5), g7 = (1, 3, 5, 2, 4), and write Ci = gGi . We
compute M2 and get, for example using the following straightforward GAP-code:

gap> G := AlternatingGroup(6);;
gap> g := [ (), (1,2)(3,4), (1,2,3), (1,2,3)(4,5,6), (1,2,3,4)(5,6),
> (1,2,3,4,5), (1,3,5,2,4) ];;
gap> cl := List( g, x -> ConjugacyClass(G,x) );; M2:=[];;
gap> for j in [1..Length(cl)] do M2[j]:=[];
> w := List( Cartesian(cl[2],cl[j]), x->x[1]*x[2] );
> for k in [1..Length(cl)] do M2[j][k]:=Length(Positions(w,g[k]));od;
> od;
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M2 := M2 =



0 1 0 0 0 0 0
45 4 9 9 4 5 5
0 8 9 0 4 5 5
0 8 0 9 4 5 5
0 8 9 9 17 10 10
0 8 9 9 8 10 10
0 8 9 9 8 10 10


.

The exponent of G is 60, so we choose p = 61 >
√
|G| and put F := Fp. We

compute the eigenvalues and (bases of) the eigenspaces of MF
2 = θ(M2) = M2*e,

where e is the identity of F :

gap> p := 61;; F := GF(p);; e := Identity(F);; ev := Eigenvalues(F,M2*e);;
gap> evecs := List( Eigenspaces(F,M2*e), GeneratorsOfVectorSpace );;

The elements of F are represented as powers of a primitive element Z(61). To
write them as integers (mod p) we use the function dom := (θ|{− p−1

2 ,..., p−1
2 })−1:

gap> dom := function( p, x )
> return( Position(List([-(p-1)/2..(p-1)/2], i->i*e), x) - (p+1)/2 );end;;

The following GAP-code:

gap> for sp in evecs do
> for c in ev do
> if sp[1] * M2*e = sp[1]*c then Print("\n",dom(p,c),": "); fi;
> od;
> for v in sp do Print( List(v , x -> dom(p,x)), " ," ); od;
> od;

shows that MF
2 has five eigenspaces U2

λ, where λ denotes the corresponding
eigenvalue and the entries have to be interpreted as numbers in F :

U2
0 = 〈 [1, 0,−23,−23, 0, 0, 23] , [0, 0, 0, 0, 0, 1,−1] 〉F ,

U2
−16 = 〈ϕ(n)

1 〉F = 〈 [1, 1, 1, 1, 1, 1, 1] 〉F ,
U2

−9 = 〈ϕ(n)
7 〉F = 〈 [1, 12,−6,−6, 0, 0, 0] 〉F ,

U2
9 = 〈 [1,−12, 0,−12, 12, 0, 0] , [0, 0, 1,−1, 0, 0, 0] 〉F ,

U2
5 = 〈ϕ(n)

6 〉F = 〈 [1,−27, 0, 0,−27, 27, 27]〉F .

By Theorem 2.4.2 the normed generators of U2
−16, U2

−9 and U2
5 are of the form

ϕ
(n)
i , with ϕi ∈ IrrF (G) for some i which we have named 1, 7 and 6, respectively.

For each of the eigenvectors of MF
2 we compute its norm a and a square root

d of a−1 in the range 1, . . . , (p − 1)/2 ∈ F , if a is a square. Observe that by
the proof of Corollary 2.4.3, d is the degree of ϕ ∈ IrrF (G) if the eigenvector
is ϕ(n). We first write a function scp which returns the scalar product of two
class functions of G (using, for simplicity, the fact that all classes of G are real):

gap> scp := function (v,w)
> return(Sum( List([1..Length(cl)], i->Size(cl[i])*v[i]*w[i]) )/Size(G));
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> end;;
gap> for v in Concatenation(evecs) do
> d := Filtered( [1..(p-1)/2], x -> (x*e)ˆ2 = scp(v,v)ˆ-1 );
> Print( [dom( p, scp(v,v)ˆ-1 ), d] , "," );
> od;

We obtain the scalar products 5 = 262, −28, 1 = 12, −22 = 102, −16 = 172,
−26, 20 = 92 in F . In particular, we get (the trivial character ϕ1 and)

ϕ6 = 9 · ϕ(n)
6 = [9, 1, 0, 0, 1,−1,−1], ϕ7 = 10 · ϕ(n)

7 = [10,−2, 1, 1, 0, 0, 0].

U2
0 and U2

9 have dimensions larger than one and could be split into one-dimen-
sional spaces generated by characters by computing further matrices Mi and
their eigenspaces (or their action on U2

0 and U2
9 ). But this is not really necessary

here. Calling the generators of U2
0 (or U2

9 ) listed above v, w (with v having first
entry 1) we know (from Theorem 2.4.2) that there must be ϕ,ϕ′ ∈ IrrF (G) with

ϕ(n) = v + a · w, ϕ′(n) = v + b · w for a, b ∈ F.

We may test all pairs a, b ∈ F whether or not they yield orthogonal class
functions with “degrees” d1, d2 dividing |G| and such that d12 + d22 < |G| −
92 − 102:

gap> for i in [1,4] do # we consider the 1. and 4. eigenspace
> for a in [0..p-1] do for b in [a..p-1] do
> v := evecs[i][1] + a* evecs[i][2]; w := evecs[i][1] + b* evecs[i][2];
> if IsSubset( List([1..(p-1)/2], x -> (x*e)ˆ2), [scp(v,v),scp(w,w)] )
> then d1 := Filtered( [1..(p-1)/2], x -> (x*e)ˆ2 = scp(v,v)ˆ-1)[1];
> d2 := Filtered( [1..(p-1)/2], x -> (x*e)ˆ2 = scp(w,w)ˆ-1)[1];
> if IsInt(Size(G)/d1) and IsInt(Size(G)/d2) and scp(v,w) = 0 * Z(p)
> and d1ˆ2 + d2ˆ2 < Size(G) - 9ˆ2 - 10ˆ2 then
> Print([a,b],",",List(d1*v,x-> dom(p,x)),",",
> List(d2*w,x-> dom(p,x)),"\n");
> fi;
> fi;
> od;od;
> od;

In both cases we obtain a single solution ({a, b} = {36, 48} and {a, b} = {12, 37},
respectively) and irreducible characters

ϕ = [ 8, 0,−1,−1, 0,−17, 18 ], ϕ′ = [ 8, 0,−1,−1, 0, 18,−17 ] ∈ IrrF (G)

and

ψ = [ 5, 1,−1, 2,−1, 0, 0 ], ψ′ = [ 5, 1, 2,−1,−1, 0, 0 ] ∈ IrrF (G);

ψ,ψ′ lift trivially to characters in Irr(G), since the first five classes are rational.
Lifting ϕ,ϕ′ to C we obtain, say, χ, χ′ ∈ Irr(G) which agree on the rational
classes of G. Using the orthogonality relations it is easy to obtain the values on
the remaining two classes mapping to −17, 18 ∈ F under θ. But here we will
use the formulas (2.10) and (2.9), which are easily encoded in GAP:
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gap> epsq := Z(p)ˆ((p-1)/5);; phi := [ 8, 0, -1, -1, 0, -17, 18 ]*e;;
gap> for x in g{[6,7]} do
> m := List( [0..4] , i -> dom( p, (5*e)ˆ-1 * Sum( List( [0..4], j ->
> phi[Position(cl,ConjugacyClass(G,xˆj))] * epsqˆ(-i*j))) ) );
> Print("chi(g_",Position(g,x),") = ", m*List([0..4],i->E(5)ˆi)," ");
> od;

We obtain

χ(g6) = α := −ζ2
5 − ζ3

5 =
1 +

√
5

2
, χ(g7) = α′ := −ζ5 − ζ4

5 =
1−

√
5

2
.

We finish by displaying the character table, which we have computed completely:

360 8 9 9 4 5 5
A6 1a 2a 3a 3b 4a 5a 5b
χ1 1 1 1 1 1 1 1
χ2 5 1 2 −1 −1 0 0
χ3 5 1 −1 2 −1 0 0
χ4 8 0 −1 −1 0 α α′

χ5 8 0 −1 −1 0 α′ α
χ6 9 1 0 0 1 −1 −1
χ7 10 −1 1 1 0 0 0

�

The Dixon–Schneider algorithm has been implemented in GAP by Hulpke
(see [87]). It is the standard method in GAP to compute character tables. The
main problem is to compute the class multiplication matrices, where a large
amount of testing elements for conjugacy may be required. In [87] the character
tables of some maximal subgroups of F23 were computed as examples having
orders up to almost 1010 and about 200 conjugacy classes.

Exercises

Exercise 2.4.1 (a) Let ρ : Z(KG) → EndK Z(KG) be the regular representa-
tion of the center of the group algebra KG. Show that

MK
i = [ρ(C+

i )]B with B = (C+
1 , . . . , C

+
r ).

(b) Show that MK
i1
, . . . ,MK

ik
for {i1, . . . , ik} ⊆ {1, . . . , r} have exactly r normal-

ized common row-eigenvectors (the vectors in IrrK(G)) if and only if

Z(KG) = 〈C+
i1
, . . . , C+

ik
〉alg.

Exercise 2.4.2 Show that for the group G := SL2(3) one class multiplica-
tion matrix Mi suffices in order to compute the character table of G using the
Dixon–Schneider algorithm. Give an example of an abelian group where this
not true. Show, however, that there is always a linear combination of the Mi

whose eigenvalues have all multiplicity one.
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The following exercise is part of an important observation by John McKay; see
for example [120].

Exercise 2.4.3 Let M be the Cartan matrix of the affine Weyl group of type
E6 given as follows:

M :=



2 0 0 0 −1 0 0
0 2 0 0 0 −1 0
0 0 2 0 0 0 −1
0 0 0 2 −1 −1 −1

−1 0 0 −1 2 0 0
0 −1 0 −1 0 2 0
0 0 −1 −1 0 0 2


.

Show that the irreducible characters of SL2(3) are a complete set of eigenvec-
tors of M by using the GAP character table of SL2(3). This observation can be
generalized, see [120], and in the generalized form is called the McKay corre-
spondence.

2.5 Application – generation of groups

We have seen in Section 2.4 that the class multiplication coefficients αkij as
defined in Remark 2.3.1 can be used to construct the character table of a group.
However, the converse is also true, that is, the αkij can be computed from the
character table; in fact, this is a very important application of character tables
in practice. At first sight this might look like a vicious circle, but one has to
keep in mind that the Dixon–Schneider algorithm is applicable only to relatively
small groups, whereas character tables of even larger groups can sometimes be
computed from only a very limited amount of information on the group. We give
some modest examples of how this can be done in Section 2.10 and in Chapter 4,
Section 4.12. In fact, for some of the sporadic simple groups the character table
had been computed using some (at that time hypothetical) information about
the order and local structure of the group before even the existence of the group
had been proved, let alone any permutation or matrix representation was known
that could lend itself to any direct computation with the group elements. The
most spectacular example of this approach is the largest sporadic simple group,
the “Monster group” (also called the “friendly giant”) for which the character
table had been computed in 1981 by Fischer, Livingstone and Thorne before the
existence was proved by Griess and long before the first element representation
and multiplication of two elements was carried out by Wilson in 1997.

Definition 2.5.1 Let G be a finite group and let C := (C1, . . . , Cm) with
normal subsets Ci of G, that is, unions of conjugacy classes of elements of G.
For H ≤ G we put

ΣHC(G) := {(g1, . . . , gm) | gi ∈ Ci, g1 · · · gm = 1, 〈g1, . . . , gm〉 =G H}
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and

Σ≤H
C (G) := {(g1, . . . , gm) | gi ∈ Ci, g1 · · · gm = 1, 〈g1, . . . , gm〉 ≤G H},

where U =G H (resp. U ≤G H) means that U is conjugate in G to H (resp. to
a subgroup of H). Furthermore we abbreviate ΣC := Σ≤G

C (G) and put

αC = αGC := |ΣC | and γGC := |ΣGC(G)|.

Remark 2.5.2 If ΣHC(G) 
= ∅ for some H ≤ G then G acts by conjugation on
this set with stabilizers conjugate to CG(H). In particular, if ΣGC(G) 
= ∅ then

[G : Z(G)] | γGC .

An m-tuple C := (C1, . . . Cm) of conjugacy classes of G is called rigid if γGC =
[G : Z(G)]. This is equivalent to saying that G acts transitively on ΣGC(G).

Also, if L(G) is a complete set of representatives of the set of conjugacy
classes of subgroups of G then

ΣC =
⋃̇

H∈L(G)
ΣHC(G). (2.11)

Let C := (C1, . . . , Cm) be as in Definition 2.5.1. We will see shortly that
αC can be computed from the character table of G, whereas γGC is what is of
interest in most cases. Obviously one has

ΣC =
⋃̇

H≤GΣH(C1∩H,...,Cm∩H)(H), (2.12)

so α can be considered as the “summatory function” for γG. If the subgroup
lattice (i.e. the poset of subgroups – it is, in fact, a lattice in the sense of [115],
p. 60) of G is known, one can compute γG from α using a “Möbius inversion.”
To do this we have to introduce the Möbius function of the subgroup lattice or
better yet of a finite or locally finite poset. Recall that a poset (P,≤) is called
locally finite if for every pair x, y ∈ P the set {z ∈ P | x ≤ z ≤ y} is finite.

Definition 2.5.3 The Möbius function of a locally finite poset (P,≤) is the
function µP : P × P → Z satisfying µP (x, y) = 0 unless x ≤ y, in which case it
is defined recursively by µP (x, x) = 1 and∑

x≤z≤y
µP (x, z) = 0 for x < y.

Example 2.5.4 Taking (P,≤) = (N, |), the natural numbers ordered by divis-
ibility, we readily find

µN(1, n) =

 1 if n = 1,
(−1)r if n is the product of r distinct primes,
0 if n is divisible by a square of a prime.

Thus µN(1, n) = µ(n), where µ : N → Z denotes the (arithmetical) Möbius
function of elementary number theory (see [32], p. 55). Also µN(m,n) = µ( nm )
if m divides n. �
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The Möbius function is the inverse of the incidence function in the incidence
algebra. Perhaps the easiest way to look at it is to consider it as a matrix. For
simplicity we will restrict our attention to finite posets. So let P = {x1, . . . , xn},
where we may assume that xi ≤ xj for i ≤ j. Then the incidence matrix

[zij ]1≤i,j≤n with zij =
{

1 if xi ≤ xj ,
0 else

is a lower triangular matrix with ones on the diagonal. Hence it is invertible,
and it is immediate that its inverse is

[µij ]1≤i,j≤n with µij = µP (xi, xj).

Since this is also a right inverse we obtain∑
x≤z≤y

µP (z, y) = δx,y. (2.13)

Lemma 2.5.5 Let µ be the Möbius function of the subgroup lattice of G and
let C := (C1, . . . , Cm) with normal subsets Ci of G. Then

γGC =
∑
H≤G

µ(H,G) · αH(C1∩H,...,Cm∩H).

Proof. From (2.12) we get αH(C1∩H,...,Cm∩H) =
∑
U≤H γG(C1∩U,...,Cm∩U). Mul-

tiplying this equation by µ(H,G) and summing over all H ≤ G we get∑
H≤G

µ(H,G) · αH(C1∩H,...,Cm∩H) =
∑
H≤G

∑
U≤H

µ(H,G) γU(C1∩U,...,Cm∩U)

=
∑
U≤G

(
∑

U≤H≤G
µ(H,G)) γU(C1∩U,...,Cm∩U)

= γG(C1,...,Cm),

using (2.13).

Example 2.5.6 We specialize all Ci to G, that is, we consider C := (G, . . . , G︸ ︷︷ ︸
m

).

Then αC = |G|m−1 and γGC is the number of m − 1-tuples of elements of G
generating G or, in other words, the number of epimorphisms of the free group
Fm−1 on m− 1 generators to G. Since AutG acts on this set of epimorphisms
(from the left) without fixed points and two epimorphisms ϕi : Fm−1 → G are
in the same orbit if and only if they have the same kernel, we see that

dm−1(G) :=
1

|AutG| · γ
G
C =

1
|AutG|

∑
H≤G

µ(H,G) · |H|m−1

is the number of normal subgroups of Fm−1 with factor group isomorphic to G.
�
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Remark 2.5.7 If µ is the Möbius function of the subgroup lattice of the finite
group G then µ(H,G) depends only on the conjugacy class of the subgroup H
in G. Also µ(H,G) = −1 for every maximal subgroup H ≤ G.

For the computation of the relevant values of the Möbius function for larger
groups we refer to Section 3.5. Here we illustrate the above notions with the
alternating group A5 as a concrete example.

C1

C2 C3 C5

V4

A4 S3 D10

A5 1

60

4 2 0

0

−1 −1 −1

6105
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Figure 2.1. Subgroup pattern of A5.

Example 2.5.8 The alternating group A5 has exactly one conjugacy class of
subgroups isomorphic to A4, D10, S3, C5, V4, C3, C2 and C1, respectively. We
sketch the subgroup lattice in Figure 2.1 by drawing what is sometimes called
the “subgroup pattern” (see [23]). Here any box stands for a conjugacy class of
subgroups of A5, and two such boxes are connected by a line if a representative
of one such class contains a conjugate of a representative of the other class as
a maximal subgroup. The numerals next to the lines give the number of con-
jugates of a representative of the lower (resp. upper) conjugacy class contained
in (resp. containing) a representative of the upper (resp. lower) conjugacy class.
Thus, for example, any S3 in A5 contains three subgroups conjugate to C2 and
any such subgroup is contained in two subgroups conjugate to S3. We have
also displayed the values µ(H,G) as (lower right) indices at the box represent-
ing the conjugacy class of H. This value can be computed from the top using
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(2.13) with x = H and y = G and the already computed values µ(U,G) for
H < U ≤ G. Here we find

d2(A5) =
1

120
(−60 + 4 · 15 · 22 + 2 · 10 · 32 − 5 · 122 − 10 · 62 − 6 · 102 + 602)

= 19.

Thus the free group F2 has 19 normal subgroups with factor group isomorphic
to A5. Or, in other words, the direct product of 19 copies of A5 can be generated
by two elements, but not the direct product of 20 copies (see [75]). �

Theorem 2.5.9 Assume that C1, . . . , Cm are conjugacy classes (not necessarily
distinct) of G and let αC1,...,Cm

:= α(C1,...,Cm) (see Definition 2.5.1). Then

αC1,...,Cm =
|C1| · · · |Cm|

|G|
∑

χ∈Irr(G)

χ(g1) · · ·χ(gm)
χ(1)m−2 with gj ∈ Cj .

Proof. For C ∈ cl(G) let gC ∈ C be a representative and C ′ = {g−1 | g ∈ C}.
Also, as usual, C+ =

∑
g∈C g ∈ CG. Obviously

αC1,...,Cm = |Cm| · |{(x1, . . . , xm−1) | xj ∈ Cj , x1 · · ·xm−1 = g−1
m }|.

Hence
C+

1 · · ·C+
m−1 =

∑
C∈cl(G)

αC1,...,Cm−1,C

|C| C ′+.

Applying the central character ωχ with χ ∈ Irr(G) we get, using Theorem 2.3.2,

|C1|
χ(1)

χ(g1) · · · |Cm−1|
χ(1)

χ(gm−1) =
∑

C∈cl(G)

αC1,...,Cm−1,C
1

χ(1)
χ(g−1

C ).

Multiplying both sides of this equation by |Cm|
|G| χ(1)χ(gm) and summing over all

χ in Irr(G) we get

|C1| · · · |Cm|
|G|

∑
χ∈Irr(G)

χ(g1) · · ·χ(gm)
χ(1)m−2

=
∑

C∈cl(G)

αC1,...,Cm−1,C
|Cm|
|G|

∑
χ∈Irr(G)

χ(gm)χ(g−1
C ) = αC1,...,Cm

,

by making use of the orthogonality relations (Theorem 2.1.15).

The most important case of the theorem, and the only one usually treated
in books on representation theory, is the one with m = 3. Observe that we have

αCi,Cj ,Ck
= |Ck|αk

′
ij ,

the latter being the class multiplication coefficients defined in Remark 2.3.1. We
will call the αC1,...,Cm symmetric class multiplication coefficients. The
significance of the theorem can be seen in the following remark.
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Remark 2.5.10 For k1, . . . , km ∈ N \ {1} we define the group ∆(k1, . . . , km)
by generators and relations as follows:

∆(k1, . . . , km) := 〈x1, . . . , xm | xk11 = · · · = xkm
m = x1 · · ·xm = 1 〉.

Suppose that the elements of the conjugacy class Cij of G have orders kj for 1 ≤
j ≤ m. Then αi1,...,im is the number of group homomorphisms of ∆(k1, . . . , km)
to G with the property that xj is mapped onto an element of the class Cij :

αi1,...,im = |{ϕ : ∆(k1, . . . , km) → G | ϕ(xj) ∈ Cij for 1 ≤ j ≤ m}|.

Summing over all m-tuples of conjugacy classes of G such that the orders of
the elements of Cij divide kj we get the total number of homomorphisms from
∆(k1, . . . , km) to G.

Remark 2.5.11 ∆(k1, . . . , km) is finite for 1 < k1, . . . , km and m ≥ 3 if and
only if ∆(k1, . . . , km) is one of the following groups:

(a) ∆(2, 2, k) ∼= D2k, the dihedral group of order 2k,

(b) ∆(2, 3, 3) ∼= A4,

(c) ∆(2, 3, 4) ∼= S4,

(d) ∆(2, 3, 5) ∼= A5.

Proof. See sect. 6.4 in [39].

Example 2.5.12 We consider the character table of the Mathieu group G =
M11 of degree 11 which is computed in Section 2.10 and printed on p. 177.
We see that G has just one conjugacy class of elements of order two, three
and five each, namely classes 2a, 3a, 5a. An easy computation (e.g. with
GAP) shows that the symmetric class multiplication coefficient is α2a,3a,5a =
15 · |C5| = 23760 = 198 ·120, and we deduce that M11 has exactly 198 subgroups
isomorphic to A5, for the number of non-trivial homomorphisms from A5 to
M11 is α2a,3a,5a. Since A5 is simple, a non-trivial homomorphism from A5 to
M11 is an embedding; two embeddings with the same image differ just by an
automorphism of A5. So we have to divide α2a,3a,5a by the order of Aut(A5) ∼=
S5, which is 120. From the ATLAS ([38], p. 18) we get the information that
M11 has a maximal subgroup isomorphic to S5 with index 66; so we get one
conjugacy class of subgroups isomorphic to A5 consisting of 66 subgroups. Also
the ATLAS states the existence of a maximal subgroup in M11 of index 11
isomorphic to A6 .23. This in turn contains an A5 as a maximal subgroup of
index 12 which is self-normalizing in M11. So the 198 subgroups isomorphic to
A5 fall in just two conjugacy classes with lengths 66 and 132 = 11 · 12.

�

In many applications it is important to find out whether or not a given group
G is an epimorphic image of ∆(k1, . . . , km). This is the case if and only if there
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is an m-tuple of conjugacy classes C := (C1, . . . , Cm) in G with kj being a
multiple of the order of the elements of Cj and ΣGC(G) 
= ∅.

In general it is not possible to compute γGC = |ΣGC(G)| from the character
table alone. In addition one needs some information about the subgroup lattice
as we have seen above. Nevertheless it is sometimes possible to conclude that
γGC > 0 just using information about maximal subgroups in cases where it would
not be feasible to compute the full subgroup lattice.

Remark 2.5.2 yields a necessary condition for a given group G being an epi-
morphic image of ∆(k1, . . . , km). Namely, for some m-tuple C := (C1, . . . , Cm)
of conjugacy classes of G, with kj being a multiple of the order of the elements
of Cj , one must have αC ≥ [G : Z(G)]. Of course, this condition is not suffi-
cient. But if the character tables of all the maximal subgroups of G (or just of
those containing elements of orders k1, . . . , km) are known, one can sometimes
use this information to give an upper bound for

|{(g1, . . . , gm) ∈ ΣC | 〈g1, . . . , gm〉 
= G}|.

If this happens to be smaller than αC then one can conclude that there must
indeed be an epimorphism. We will give some examples below, but before we
do this we shall give another necessary condition involving just the information
contained in the character table for a finite group G being an epimorphic image
of ∆(k1, . . . , km). This goes back to R. Brauer and was later refined by L. Scott
and is often called the “Brauer trick.” It is one of the rare cases where one can
say something about the existence of subgroups using the character table alone.
We will see in the next chapter that there are many necessary conditions for the
existence of subgroups involving characters, so that it is not uncommon that
deductions about the non-existence of subgroups of G can be drawn from the
character table of G.

We first need a lemma recalling from Definition 1.1.18 that InvG(V ) is the
smallest submodule W of a KG-module V such that G acts trivially on V/W .

Lemma 2.5.13 If G = 〈g1, . . . , gr〉 (i.e. g1, . . . , gr are generators for the group
G) and V is a KG-module for a field K then

InvG(V ) = (1− g1)V + · · · + (1− gr)V
= (1− g1)V + g1(1− g2)V + · · · + g1 · · · gr−1(1− gr)V.

Proof. We start by proving the first equation. Since

gi(1− gj) v = (1− gi)gj v − (1− gi) v + (1− gj) v for 1 ≤ i, j ≤ r,

we know that Wj := (1−g1)V + · · ·+(1−gj)V is invariant under the generators
gi for 1 ≤ i ≤ j and hence Wr is a KG-submodule of V . (In the case that G is
infinite, observe that (1−g−1

i ) v = −(1−gi)g−1
i v, hence (1−g−1

i )V = (1−gi)V .)
Obviously, all generators gi act trivially on V/Wr and any submodule with trivial
factor module must contain all (1− gi)V . Hence InvG(V ) = Wr.
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We show that Wj = (1− g1)V + g1(1− g2)V + · · · + g1 · · · gj−1(1− gj)V
holds for all j. This follows by induction from

(1− gj) v = (1− g1) v + g1(1− g2) v + g1g2(1− g3) v
+ · · · + g1 · · · gj−1(1− gj) v − (1− g1 · · · gj−1)gj v,

because

(1−g1 · · · gj−1)gj v = (1−gj−1)gj v+(1−gj−2)gj−1gj v+ · · · +(1−g1)g2 · · · gj v

is in Wj−1 and thus

(1− gj) v − g1 · · · gj−1(1− gj) v ∈Wj−1 for all v ∈ V.

Theorem 2.5.14 (L. Scott) Let G = 〈g1, . . . , gr〉 be a group with g1 · · · gr = 1
and let V be a KG-module over an arbitrary field K with dimK V = n < ∞.
Then

r∑
i=1

(n− dimK Inv〈gi〉(V )) ≥ 2n− dimK InvG(V )− dimK InvG(V �).

Proof. Let C be the K-subspace of V r = V ⊕ · · · ⊕ V defined by

C = {(v1, . . . , vr) | vi ∈ (1− gi)V (1 ≤ i ≤ r)}.

We have K-linear maps

β : V → C v �→ ((1− g1)v, . . . , (1− gr)v),
δ : C → V (v1, . . . , vr) �→ v1 + g1v2 + · · · + g1 . . . gr−1vr.

Since

0 = 1− g1 · · · gr = (1− g1) + g1(1− g2) + · · · + g1 · · · gr−1(1− gr)

we have imβ ⊆ ker δ. Furthermore

im δ = (1− g1)V + g1(1− g2)V + · · · + g1 · · · gr−1(1− gr)V
= (1− g1)V + · · ·+ (1− gr)V
= InvG(V )

by Lemma 2.5.13, the smallest submodule W of V such that G acts trivially
on V/W . Hence dimK(im δ) = n − dimK InvG(V �) by duality (see The-
orem 1.1.34). On the other hand it is obvious that kerβ = InvG(V ) and
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(1 − gi)V = Inv〈gi〉(V ). By duality and Exercise 1.1.9 dimK Inv〈gi〉(V ) =
n− dimK Inv〈gi〉(V ). We thus obtain

r∑
i=1

(n− dimK Inv〈gi〉(V )) = dimK C = dimK im δ + dimK ker δ

= dimK im δ + dimK imβ + dimK(ker δ/ imβ)

≥ dimK InvG(V ) + (n− dimK kerβ)
= (n− dimK InvG(V ∗)) + (n− dimK InvG(V )).

Corollary 2.5.15 Let G = 〈g1, . . . , gr〉 be a finite group with g1 · · · gr = 1 and
1G 
= χ ∈ Irr(G). Then

r∑
i=1

(χ〈gi〉,1〈gi〉)〈gi〉 ≤ (r − 2)χ(1).

Proof. If V is a CG-module affording χ, then InvG(V ) = {0} and InvG(V ∗) =
{0} because χ is irreducible and not the trivial character. Also

dim Inv〈gi〉(V ) = (χ〈gi〉,1〈gi〉)〈gi〉.

Corollary 2.5.16 For g ∈ G let d(g) denote the minimal number of conjugates
of g in G which generate G. Then

d(g) ≥ dimV

dimV − dim Inv〈g〉(V )

for any KG-module on which G acts faithfully.

Proof. Let d = d(g) and G = 〈g1, . . . , gd〉, where gi are all conjugates of g in G
and gd+1 = (g1 . . . gd)−1. Then dim Inv〈gi〉(V ) = dim Inv〈g〉(V ) for i = 1, . . . , d
and applying Theorem 2.5.14 we get

d · (dimV − dim Inv〈g〉(V )) + dimV − dim Inv〈gd+1〉(V ) ≥ 2 dimV

since G acts faithfully. From this the result follows immediately.

Example 2.5.17 Again let G = M11. Searching for candidates of rigid triples
we list all triples of conjugacy classes Ci, Cj , Ck with αCi,Cj ,Ck

≤ 1. Also, for
each such triple we list in parentheses the value

nχ(Ci, Cj , Ck) =
∑

l∈{i,j,k}
(χ〈gl〉,1〈gl〉)〈gl〉,
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with χ = χ5 being the irreducible character of M11 of degree 11 (see the char-
acter table on p. 177):

α2a,2a,2a = |G|
4 (21), α2a,2a,3a = 2|G|

3 (19),
α2a,2a,4a = |G|

2 (17), α2a,2a,5a = |G| (17),
α2a,2a,6a = |G| (17), α2a,2a,8a/b = 0,
α2a,2a,11a/b = 0, α2a,3a,3a = |G| (17),
α2a,3a,4a = |G| (15), α2a,3a,6a = |G|

2 (15),
α2a,3a,8a/b = |G|

2 (13), α2a,3a,11a/b = |G| (13),
α2a,4a,11a/b = |G| (11), α2a,8a,8b = |G| (9),
α2a,11a/b,11a/b = |G| (9), α3a,3a,11a/b = |G| (11).

We can draw the following conclusions immediately: G has no dihedral sub-
groups of order 16 or 22, because α2a,2a,8a/b = α2a,2a,11a/b = 0 and it is also not
an epimorphic image of ∆(2, 3, 6) or ∆(2, 3, 8) since α2a,3a,6a, α2a,3a,8a/b < |G|.
In the cases where αCi,Cj ,Ck

= |G| we have to consider the following two alter-
natives: either ΣG(Ci,Cj ,Ck)(G) = ∅ or ΣG(Ci,Cj ,Ck)(G) = Σ(Ci,Cj ,Ck) is one orbit
under the conjugation action of G, i.e. we have a rigid triple.

From Corollary 2.5.15 we can conclude that

ΣG(Ci,Cj ,Ck)(G) = ∅ if nχ(Ci, Cj , Ck) > χ(1) = 11.

Hence G can only be an epimorphic image of ∆(2, 4, 11),∆(2, 8, 8),∆(2, 11, 11)
or ∆(3, 3, 11). The character tables of the maximal subgroups of M11 can be
found in the GAP library of character tables together with the fusion maps
into M11, i.e. for each conjugacy class of a maximal subgroup the name of the
conjugacy class of M11 is listed in which it is contained. We list this information:

A6 .23 1a 2a 3a 4a 5a 4a 8a 8b
L2(11) 1a 2a 3a 5a 5a 6a 11a 11b

32 : Q8.2 1a 2a 2a 3a 4a 4a 6a 8a 8b
A5 .2 1a 2a 3a 5a 2a 4a 6a
2.S4 1a 2a 4a 2a 8a 8b 3a 6a

In each line the conjugacy classes of the particular subgroup H are listed, not by
giving the name in H but the name of the conjugacy class of G which contains
it. For example, L2(11) contains two conjugacy classes of elements of order
five, which both are contained in the conjugacy class 5a of G. Only the second
maximal subgroup, L2(11), contains elements of order 11. We compute the
(symmetric) class multiplication coefficients in this maximal subgroup of G and
find α2a,11a,11a = α2a,11b,11b = α3a,3a,11a/b = |L2(11)|, α2a,11a,11b = 0. This shows
that the triples (2a, 11a, 11a), (2a, 11b, 11b) and (3a, 3a, 11a/b) are not rigid,
but that (2a, 11a, 11b) is, in fact, a rigid triple. Furthermore, since no maximal
subgroup of M11 contains elements of order 11 and elements of order four, it is
clear that the triples (2a, 4a, 11a/b) are also rigid.

The triples (2a, 8a, 8a) and (2a, 8b, 8b) can be excluded as rigid triples by
looking at the maximal subgroup A6 .23, in which one can compute the relevant
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class multiplication coefficients α2a,8a,8a 
= 0 and α2a,8b,8b 
= 0. Thus in M11 we
have ΣG(2a,8a,8a)(G) 
= Σ(2a,8a,8a) and ΣG(2a,8b,8b)(G) 
= Σ(2a,8b,8b).

To sum up: we have found exactly three rigid triples for M11, namely
(2a, 11a, 11b) and (2a, 4a, 11a/b). Also computing nχ(2a, 3a, C) for all con-
jugacy classes C of M11 one can deduce readily from Corollary 2.5.15 that M11
cannot be generated by an element or order two and an element of order three.

�

Why is it important to find rigid triples for a group? We give three reasons.

(1) Standard generators
It often happens that one has different sets of generators for the same group
or for isomorphic groups and one wants to find explicitly an isomorphism in
terms of the given generators, in order to compare some results or to make use
of computations performed using one generating set for the isomorphic copy.
Imagine, for example, that one has found inside some large group, such as the
Fischer group Fi22, a subgroup isomorphic to M11. In practice it is often all but
impossible to obtain one set of generators from another one even for the same
group, unless special care has been taken in the choice of the generators. Wilson
[171] has introduced standard generators for sporadic simple groups, which
can, in fact, be constructed given an arbitrary generating set. They can be
found in Wilson’s online ATLAS of finite group representations ([170]), which
can also be accessed via the GAP package atlasrep.

The idea is to characterize generators (in most cases one considers generat-
ing systems consisting of just two generators – all finite simple groups can be
generated by a pair of elements) by certain equations they fulfill. For this, rigid
triples are ideal: if Ci, Cj , Ck is a rigid triple for G and (x, y, z) ∈ ΣG(Ci, Cj , Ck)
then G = 〈x, y〉, and if one somehow finds elements x′ ∈ Ci , y′ ∈ Cj such that
(x′y′)−1 ∈ Ck then there is an isomorphism ϕ such that ϕ(x) = x′, ϕ(y) = y′.
Of course one has to be able to decide whether some element is in Ci etc. This is
easy if Ci is characterized by the orders of its elements; otherwise some further
work has to be done.

Example 2.5.18 We again look at the example G = M11. We choose the rigid
triples (2a,4a,11a), (2a,4a,11b). Let (x, y, z) ∈ ΣG(2a,4a,11a)(G) and (x′, y′, z′) ∈
ΣG(2a,4a,11b)(G). The classes 2a, 4a are the only classes of elements of order two
and four, respectively. So, whenever one finds in some group H isomorphic to
M11 elements a, b of order two and four, respectively, such that ab has order 11
then there is an isomorphism ϕ : H → G such that (ϕ(a), ϕ(b)) is either (x, y)
or (x′, y′). The two cases can be distinguished by computing abab2ab3. This
element has order five in one case – (a, b) are then called standard generators;
see [170] – and three in the other. The probability of obtaining elements with
the required properties using a random search is quite high and can be found
in [170]. Here also representatives of the conjugacy classes of M11 are listed,
written as products of the standard generators a, b:

1a : a2 2a : a 3a : a b2a b2 4a : b 5a : a b a b2a b−1

6a : a b2 8a : a b a b2a b2 8b : a b−1a b2a b2 11a : a b 11b : a b−1
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Assume, for instance, that we are given permutations

a := (1, 11)(2, 7)(3, 5)(4, 6), c := (1, 2, 7, 12, 11, 8, 4, 10, 6, 9, 3) ∈ S12 .

It is easy to verify that they generate a simple group H of the same order as
M11. By [89], p. 314, we have H ∼= M11. To find an isomorphism and the
corresponding permutation character pc we compute standard generators a, b
for H. In GAP this can be done as follows:

gap> a := (1,11)(2,7)(3,5)(4,6);; c:= (1,2,7,12,11,8,4,10,6,9,3);;
gap> H := Group(a,c);; IsSimple(H) and Size(H) = 11*10*9*8;
true
gap> repeat b := Random(H); until Order(b) = 4 and Order(a*b) = 11 and
> Order(a*b*a*bˆ2*a*bˆ3)= 5;
gap> b;
(1,11,5,12)(2,10)(3,9,8,4)(6,7)
gap> cls := [ aˆ2, a, a*bˆ2*a*bˆ2, b, a*b*a*bˆ2*a*bˆ-1, a*bˆ2,
> a*b*a*bˆ2*a*bˆ2,a*bˆ-1*a*bˆ2*a*bˆ2, a*b, a*bˆ-1 ];;
gap> pc := List( cls, x -> 12 - NrMovedPoints(x) );
[ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ]
gap> norm:=List(pc, x-> xˆ2) * List(cls, g -> 1/Size(Centralizer(H,g)));
2
gap> chi := pc - List( pc, x -> 1 );;
gap> Position( Irr( CharacterTable("M11") ), chi );
5

We have calculated that the norm of pc is two, so that chi := pc − 1H is
an irreducible character, which we have identified as the fifth character in the
character table of M11 (see p. 177). �

Standard generators will also be used in Example 4.4.18 below.

(2) Inverse problem of Galois theory
Another important area where the above methods can be applied is the famous
inverse problem of Galois theory, the question of whether every finite group
is isomorphic to a Galois group over the rational numbers or at least over an
abelian extension of Q. This problem is still open, but in the 1980s considerable
progress was made and the problem could in fact be decided for a number of
specific groups using the criterion which we state below in a weak form (see
[119], [160], [167]).

Theorem 2.5.19 (Belyi, Fried, Matzat, Thompson) Suppose G is a finite
group with trivial center Z(G) = {1} and that G has a rigid m-tuple of classes
C = (C1, . . . , Cm). Let K = Q({χ(gj) | χ ∈ Irr(G), 1 ≤ j ≤ m}), where as usual
gj ∈ Cj. Then G is isomorphic to a Galois group of a polynomial f ∈ K[X].
In particular, if the classes Cj are rational then G is a Galois group over Q.

Example 2.5.20 Let G be the sporadic simple Janko group J4. We will use
Theorem 2.5.19 to show that G is a Galois group over Q (see [135] and [116],
p. 172). We consider C := (2a, 4c, 11a) and compute αC = 3

2 |G|:
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gap> ct:=CharacterTable("J4");; C:= [ 2, 7, 19 ];; fus:=[];; ctm := [];;
gap> ClassNames(ct){C};
[ "2a", "4c", "11a" ]
gap> ClassStructureCharTable(ct,C)/Size(ct);
3/2

All maximal subgroups of G are known (see [101]), and their character tables can
be accessed in GAP via the command Maxes. The fusions into G are also stored
on the library tables. So we loop over all conjugacy classes of maximal subgroups
H < G and search for those H which contain elements of the three classes
C ∈ C. For these H we list the conjugacy classes intersecting the C ∈ C non-
trivially and compute the corresponding class multiplication constants, printing
them if they are not zero:

gap> for name in Maxes(ct) do
> ctm := CharacterTable( name );
> fus := Filtered(ComputedClassFusions(ctm),y-> y.name ="J4")[1].map;
> if IsSubset( fus, C ) then
> Print( name ); Cm := List( C , x -> Positions(fus,x) );
> Print("\n",List(Cm, x->ClassNames(ctm){x}), "\n");
> for Ch in Cartesian(Cm[1], Cm[2] ,Cm[3]) do
> cs := ClassStructureCharTable(ctm, Ch);
> if cs <> 0 then
> Print( "alpha_",ClassNames(ctm){Ch}, " = ",cs/Size(ctm),"*|H| \n");
> fi;
> od;
> fi;
> od;
c2aj4
[ [ "2a", "2b", "2d", "2f", "2h" ],
[ "4c", "4g", "4l", "4o", "4r", "4u", "4x" ], [ "11a" ] ]

alpha_[ "2h", "4u", "11a" ] = 1/2*|H|

We see that the only maximal subgroups of G which contain elements of 2a,
4c and 11a are those isomorphic to H := 21+12

+ · 3M22 : 2, the centralizer of
an element of 2a, with the GAP-name c2aj4. Also there is a single triple of
conjugacy classes of H intersecting the C ∈ C non-trivially and having non-zero
class multiplication constant ( 1

2 |H|), namely (2h, 4u, 11a). Thus αHC = 1
2 |G| and

from Remark 2.5.2, (2.11), we conclude that γGC = |G|, so that C is, in fact, a
rigid triple. Since the classes 2a, 4c, 11a are rational, G is a Galois group over
Q by Theorem 2.5.19.

Incidentally, since H is the largest centralizer of a non-trivial element of G
and CG(H) ∼= C2, we conclude from Remark 2.5.2 that

Σ≤G
C (G) = ΣGC(G) ∪̇ ΣHC(G)

and that (2h, 4u, 11a) is a rigid triple of H = 21+12
+ · 3M22 : 2. �

In Example 2.5.17 we saw that M11 has exactly three rigid triples up to
conjugacy, none of which consists only of rational classes. So we can deduce
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only that M11 is a Galois group over Q(
√
−11). This does not mean that M11

is not a Galois group over Q. In fact, the following has been proved in a series
of papers; see [116], sect. II.9.

Theorem 2.5.21 All sporadic simple groups, with at most the exception the
Mathieu group M23, occur as Galois groups over Q.

Despite considerable efforts, the Mathieu group M23 has so far only been real-
ized as a Galois group over Q(

√
−23) and other quadratic extensions of Q.

(3) Automorphism groups of compact Riemann surfaces
Another area where the above ideas have been applied is the study of groups
of automorphisms of compact Riemann surfaces (see e.g. the survey by Jones
[100]). A faithful action of a finite group G on a compact Riemann surface S of
genus g corresponds to an epimorphism of

Γ = 〈a1, b1, . . . , ah, bh, x1, . . . , xm | xki
i =

h∏
i=1

[ai, bi] ·
m∏
i=1

xi = 1〉

to G with torsion-free kernel, where

g = 1 + |G|(h− 1 +
1
2

m∑
i=1

(1− k−1
i )).

In the special and important case that the orbit space S/G is the Riemann
sphere, we have h = 0 and hence Γ = ∆(k1, . . . , km) and the kernel is torsion-
free if and only if the images of the generators have order precisely ki. Our
example above hence shows that M11 acts as a group of automorphisms on a
Riemann surface of genus g = 1 + 7920(−1 + 1

2 (1− 1
2 + 1− 1

4 + 1− 1
11 )) = 631.

There are numerous publications on determining the least genus of a compact
Riemann surface on which a group G acts faithfully. This is called the strong
symmetric genus of G. The strong symmetric genus of M11 is, in fact, 631;
see [18], p. 63.

The order of the automorphism group G of a compact Riemann surface is
bounded by Hurwitz’s upper bound

|G| ≤ 84(g − 1)

(see e.g. [18], theorem 3.17, p. 15). Those groups for which this bound is
attained are called Hurwitz groups. They are precisely the finite non-trivial
epimorphic images of ∆(2, 3, 7). Hurwitz groups are always perfect (see Exer-
cise 2.5.3), and it is an attractive problem to find out which finite simple groups
are Hurwitz groups. For instance, all but 64 of the alternating groups are Hur-
witz groups (see [34]) and exactly 12 of the sporadic simple groups, including
the Monster, are Hurwitz groups (see [100] and [172]). The most important
methods for tackling this problem are those sketched in this section.
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Exercises
Exercise 2.5.1 Let C = (C1, C2, C3) be a triple of conjugacy classes of the
Janko group G := J4 with αC = |G| and let (g1, g2, g3) ∈ ΣHC(G) for some
H ≤ G. Show that H is a dihedral group, or C = (2a, 4a, 11b) in the notation
of the ATLAS, and H is a proper subgroup of the largest maximal subgroup
211 : M24.

Exercise 2.5.2 Show that the Mathieu group M23 has no rigid triple of con-
jugacy classes.

Exercise 2.5.3 Let p, q, r ∈ N be pair-wise relatively prime. Show that ∆(p, q, r)
is perfect.

Exercise 2.5.4 Compute standard generators for the Mathieu group M11 given
in GAP as MathieuGroup(11); see Example 1.6.14.

Exercise 2.5.5 Show that the following sporadic simple Janko groups are Hur-
witz groups: J1, J2, J4.

2.6 Character tables

We will now investigate the question of which group theoretical properties of a
group are reflected in its character table and also its group algebra.

For finite abelian groups Exercise 2.1.2 implies that the character table of
a finite abelian group G determines the group G up to isomorphism. On the
other hand we have seen in Example 2.1.19 that the dihedral group D8 and
the quaternion group Q8 both have the “same” character table. This requires
a definition, since the ordering of the rows and columns in a character table is
somewhat arbitrary.

Definition 2.6.1 (a) If a = [αij ] ∈ Km×n is a matrix over a commutative ring
K and σ ∈ Sn we put σa := [αi σ(j)]1≤i≤m,1≤j≤n. If the sets of rows of a and σa
coincide, we say that σ is an automorphism of a. The group of automorphisms
of a will be denoted by Aut(a).
(b) Let G,H be finite groups with conjugacy classes gG1 , . . . , g

G
n and hH1 , . . . , h

H
n ,

respectively. Furthermore, let Irr(G) = {χ1, . . . , χn} and Irr(H) = {ψ1, . . . , ψn}.
The groups G,H are said to have the same character table, if there is σ ∈ Sn
such that the set of rows of σ[χi(gj)] and [ψi(hj)] coincide.
(c) The groups G,H as in (b) are said to form a Brauer pair if G 
∼= H and σ
as in (b) exists with the additional property that

hki ∈ hHj =⇒ gkσ(i) ∈ gGσ(j) for 1 ≤ i, j ≤ n and k ∈ N.

Thus G,H with G 
∼= H form a Brauer pair if and only if they have the same
character table and in addition the “same” power maps.
(d) If [χi(gj)]1≤i,j≤n is a character table of G, then σ ∈ Aut[χi(gj)] is called a
character table automorphism if

gki ∈ gGj =⇒ gkσ(i) ∈ gGσ(j) for 1 ≤ i, j ≤ n and k ∈ N.
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The groups D8 and Q8 are by no means rare examples for non-isomorphic
groups having the same character table. In fact, there are very many more
examples of this sort, e.g among 2-groups, as Table 2.2 shows.

Table 2.2. Numbers of isomorphism classes and character tables of groups
Order Number of isomorphism classes Number of character tables

16 14 11
32 51 35
64 267 146

128 2328 904
256 56 092 9501

In fact, among these groups there are not just pairs, but also triples, quadru-
ples or even larger families of groups having the same character tables. There
are even families containing 256 pairwise non-isomorphic groups of order 256
(with rank five and elementary abelian commutator factor group and center of
order eight) having the same character table (see [162]).

On the other hand there are many classes of non-solvable groups which are
determined by their character tables. Nagao showed in [123] that the symmetric
groups form such a class, that is, if a group G has the same character table as
Sn then G ∼= Sn. For a generalization of this result and other classes of groups
with this property see e.g. [132] and [134].

Examples of Brauer pairs are not so common. Brauer asked in [13], Prob-
lem 4, whether or not such pairs would exist, and the first examples were given
by Dade in [43]. These were certain p-groups of exponent p and order p7 de-
fined for p ≥ 5. Observe that for such groups of exponent p the power maps
do not give any further information which is not contained in the matrix of the
character values.

A comprehensive search for Brauer pairs among the 2-groups of order up
to 28 was carried out by Skrzipczyk in 1992 ([162]) using the library of 2-
groups established by O’Brien (see [129]), which is available also in GAP. Perhaps
surprisingly (in view of the numbers in the above table) no Brauer pairs were
found among the groups of order up to 27. But for the groups of order 256 the
search was successful, giving the first examples of Brauer pairs among 2-groups
and the first examples of such pairs not consisting of groups of exponent p.

Theorem 2.6.2 Among the 56092 groups of order 28 there are exactly ten
Brauer pairs. These are

(G1734, G1735), (G1736, G1737), (G1739, G1740), (G1741, G1742), (G3378, G3380),

(G3379, G3381), (G3678, G3679), (G4154, G4157), (G4155, G4158), (G4156, G4159),

where Gi denotes the group of order 28 with number i in O’Brien’s data base
mentioned above.

These are the smallest examples for Brauer pairs. For further examples see [53].
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Let χ ∈ Irr(G). Recall that kerχ := {g ∈ G | χ(g) = χ(1)} is the kernel
of a representation with character χ and that |χ(g)| ≤ χ(1) for all g ∈ G.
Since every normal subgroup N of a finite group G is the intersection of kernels
of irreducible representations of G – consider the inflations of all irreducible
representations of G/N – it is clear that the character table of G determines
the poset of normal subgroups of G together with their orders and the character
tables of the factor groups. More precisely, it can be decided which unions of
conjugacy classes of G form normal subgroups.

Lemma 2.6.3 Given the character table of a finite group one can determine

(a) the poset of normal subgroups of G;

(b) the isomorphism type of the factor commutator subgroup G/G′ of G;

(c) the isomorphism type of the center Z(G) of G;

(d) whether or not G is nilpotent or solvable.

Brauer’s Problem 10 in [13] asked if one can decide from the character table
of a finite group G alone, whether or not a normal subgroup N � G (given by
the columns of the character table corresponding to {C ∈ cl(G) | C ⊆ N})
is abelian. Saksonov [154] showed that this is not the case, finding counter
examples among extraspecial groups of odd order. In fact, Exercise 2.6.2 shows
that even the number of abelian normal subgroups cannot be determined from
the character table alone. This also shows that given the character table of G
and a normal subgroup N (identified as above) it is not possible in general to
find the character table of N .

Lemma 2.6.4 An element g ∈ G is a commutator in G if and only if∑
χ∈Irr(G)

χ(g)
χ(1)


= 0.

Proof. A commutator in G is of the form g = x−1y−1xy = x−1xy with
x, y ∈ G. If g is in the conjugacy class Ck of G, then g is of this form with
x ∈ Ci if and only if xg = y−1xy ∈ Ci, i.e. if and only if αiik = αiki 
= 0 with
the notation of Remark 2.3.1. Note that αiki is the (diagonal) (i, i)-entry of the
regular matrix representation ρ(C+

k ) of Z(CG) evaluated at C+
k with respect to

the basis (C+
1 , . . . , C

+
r ). Since all entries in this matrix are non-negative, the

regular character at C+
k is positive if and only if g is a commutator in G. But

trace ρ(C+
k ) = |Ck|

∑
χ∈Irr(G)

χ(g)
χ(1)

by Theorem 2.3.2.

It is well known that not every element of the commutator subgroup of a
finite group G is necessarily a commutator; see [90]. The preceding two lemmas
give a convenient method to search for examples of this phenomenon. In fact,
taking advantage of this method and the library of groups of small order in
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GAP one finds that the smallest examples are two groups of order 96, a non-
split extension 23 · A4 of an elementary abelian group of order eight with A4,
and a split extension Q8 : A4 of a quaternion group with A4. In both cases the
commutator subgroup is a Sylow 2-subgroup and contains a class of involutions
which are non-commutators. Many other examples may be found among the
groups of order 132 and three examples among the groups of order 144.

There are also perfect groups having elements which are not commutators,
the smallest examples being 24 : A5, the extension in which A5 acts transitively
on the non-trivial elements of the elementary abelian group of order 24 and
3.A6, the triple cover of A6 (see [38]). But no example of a finite non-cyclic
simple group having non-commutators is known; in fact, there is a conjecture
often referred to as Ore’s conjecture that no such group exists. Ore showed
in [130] that every element of an alternating group is a commutator. There is a
stronger conjecture as follows.

Conjecture 2.6.5 (J. Thompson) If G is a non-abelian finite simple group
there is a conjugacy class C in G such that G = CC.

Obviously, if G = CC then any element of G is of the form g = [x, y]
with x ∈ C (see Exercise 2.6.3). Thus Thompson’s conjecture implies Ore’s
conjecture. Both conjectures have been verified for a large variety of finite
simple groups (see [12] and [54]), where the authors show that both conjectures
hold for simple groups of Lie-type over finite fields of size greater than eight. For
the Ore conjecture the only cases left to check are the orthogonal and unitary
groups over fields of size at most eight; see [161].

Exercises
Exercise 2.6.1 Let Irr(G) = {χ1, . . . , χ9} and g1, . . . , g9 be representatives of
the conjugacy classes of G. Assume that

[χi(gj)]9i,j=1 =




1 1 1 1 1 1 1 1 1
1 1 −1 −1 1 1 1 1 1
2 2 . . 2 −1 −1 −1 2
2 2 . . −1 2 −1 −1 −1
2 2 . . −1 −1 2 −1 −1
2 2 . . −1 −1 −1 2 −1
3 −1 −1 1 3 . . . −1
3 −1 1 −1 3 . . . −1
6 −2 . . −3 . . . 1




.

Determine the poset of normal subgroups of G. For each proper normal sub-
group N of G describe the structure of N and G/N .

Exercise 2.6.2 (See [134].) Let P4 be the set of all 4×4 permutation matrices,
D4 := {diag(a1, . . . , a4) | ai ∈ {1,−1}} and G := D4 · P4 ≤ GL4(Z). We put
G1 := {A ∈ G | det(A) = 1} and G2 := {A ∈ G | per(A) = 1}, where “per” de-
notes the “permanent” defined by per([aij ]1≤i,j≤n) :=

∑
σ∈Sn

a1σ(1) · · · anσ(n).
(G2 is isomorphic to the Weyl group of type D4.) Show that G1 and G2 have the
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same character table. Show also that G1 has exactly three normal subgroups of
order eight, and these are elementary abelian, whereas G2 has only one abelian
normal subgroup of order eight. Verify that G1, G2 do not form a Brauer pair.

Exercise 2.6.3 Let C be a conjugacy class of a finite group G. Show that
G = CC if and only if C is a real class and∑

χ∈Irr(G)

|χ(x)|2χ(g)
χ(1)


= 0 for every x ∈ C, g ∈ G.

Exercise 2.6.4 For the group GL2(3) use the character table (computed in
Exercise 2.2.7) to determine the poset of normal subgroups.

2.7 Products of characters

In this section K is an arbitrary field and G is a finite group. We continue to
assume that all KG-modules considered are finite dimensional over K.

The K-vector space cf(G,K) of class functions introduced in Section 2.1 is
a K-algebra with multiplication defined by

(ϕ · ψ)(g) = ϕ(g)ψ(g) for ϕ,ψ ∈ cf(G,K) , g ∈ G.

Using tensor products we see that the product of characters is again a character.

Lemma 2.7.1 If V,W are KG-modules affording the characters χV and χW ,
respectively, then the tensor product (with diagonal action) V ⊗K W has char-
acter

χV⊗KW = χV · χW .
Thus the product of characters is a character.

Proof. This follows immediately from Lemma 1.1.38.

Example 2.7.2 Looking at the character table of L2(7) (see Example 2.2.15)

|CG(g)| : 168 8 3 4 7 7
1a 2a 3a 4a 7a 7b

χ1 1 1 1 1 1 1
χ2 3 −1 0 1 α α
χ3 3 −1 0 1 α α
χ4 6 2 0 0 −1 −1
χ5 7 −1 1 −1 0 0
χ6 8 0 −1 0 1 1

with α = ζ7 + ζ2
7 + ζ4

7 = 1
2 (−1 +

√
−7), we can immediately verify that

χ2 · χ2 = χ3 + χ4, χ2 · χ3 = χ1 + χ6, χ2 · χ4 = χ3 + χ5 + χ6. (2.14)
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Suppose we know only the character χ2 and consequently its algebraic conjugate
χ3. We could then obtain the other irreducible characters in the following simple
way. One can compute the scalar product of χ2 ·χ2 and χ2 ·χ3 with the known
irreducible characters χ1, χ2, χ3 and conclude that χ2 ·χ2−χ3 and χ2 ·χ3−χ1
are ordinary characters of norm 1, hence irreducible. Calling these χ4 and χ6,
respectively, one subsequently finds that χ5 = χ2 · χ4 − χ3 − χ6 is again an
irreducible character, the only one which was still missing.

In GAP the above calculations can be performed like this:

gap> t := CharacterTable("L2(7)");;
gap> prod := Tensored( Irr(t){[2]} , Irr(t){[2,3,4]} );;
gap> Display( MatScalarProducts( Irr(t) , prod ) );
[ [ 0, 0, 1, 1, 0, 0 ],
[ 1, 0, 0, 0, 0, 1 ],
[ 0, 0, 1, 0, 1, 1 ] ]

We have first retrieved the character table of G = L2(7) from the library of
character tables and named it t. Then using Tensored we calculated the prod-
ucts of the second irreducible character with the sublist Irr(t){[2,3,4]}),
obtaining three reducible characters. Finally we have given the matrix of scalar
products of all the irreducible characters with these reducible characters. The
matrix contains the same information as (2.14).

Here we have used the complete character table of L2(7). Suppose now, as
above, that only the first three irreducible characters were known, that is, those
of degree ≤3. Then

gap> irr := Irr(t){[1,2,3]};
gap> prod := Tensored( irr{[2]}, irr{[2,3]} );;
gap> red := Reduced( irr, prod );;

yields two further irreducible characters (of degrees six and eight). In fact the
command

Reduced( [χ1, . . . , χm], [ψ1, . . . , ψn] )

for a list of irreducible characters [ χ1, . . . , χm] and a list of arbitrary characters
[ψ1, . . . , ψn] computes the characters

[ ψi −
m∑
j=1

(χj , ψj)Gχj | 1 ≤ i ≤ n ]

(in other words, the projections of the ψi onto the orthogonal complement of
the span of the known irreducibles χ1, . . . , χm in cf(G,C)) and returns those
characters which have norm 1 in the record component irreducibles and
the others in the component remainders. The first ones may be added to the
irreducibles in the list irr and may be used in the following sequel:

gap> Append( irr, red.irreducibles ); # now irr contains 5 characters
gap> Append( prod , Tensored( irr{[2]} , irr{[4,5]} ));;
gap> red := Reduced( irr , prod );;
gap> Append( irr, red.irreducibles );
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gap> Display( t, rec( chars:=irr , powermap:=false) );
L3(2)

2 3 3 . 2 . .
3 1 . 1 . . .
7 1 . . . 1 1

1a 2a 3a 4a 7a 7b

Y.1 1 1 1 1 1 1
Y.2 3 -1 . 1 A /A A = E(7)+E(7)ˆ2+E(7)ˆ4
Y.3 3 -1 . 1 /A A = (-1+ER(-7))/2
Y.4 6 2 . . -1 -1 = b7
Y.5 8 . -1 . 1 1
Y.6 7 -1 1 -1 . .

�

The following classical result is mainly of theoretical importance.

Theorem 2.7.3 (Burnside, Brauer) Suppose that K is a splitting field for
G of characteristic not dividing |G| and that ψ is a faithful (but not necessarily
irreducible) character of G over K that takes on exactly m different values a1 =
ψ(1), a2, . . . , am on the elements of G. Then every irreducible character χ ∈
Irr(G) is a constituent of one of the powers ψ0 = 1G, ψ, ψ2, . . . , ψm−1.

Proof. (G. R. Robinson.) We consider the following class function on G:

θ = (ψ − a21G) · · · (ψ − am1G) =
m−1∑
j=0

bjψ
j

with certain bj ∈ K. Then

θ(g) =
{

0 for g 
= 1,∏m
i=2(a1 − ai) for g = 1,

because ψ is faithful and thus ψ(g) = a1 if and only if g = 1. Thus θ = a · ρG,
with a = 1

|G|
∏m−1
i=2 (a1 − ai) 
= 0. So for any χ ∈ Irr(G) we have

(θ, χ)G = a(ρG, χ)G = aχ(1) 
= 0.

Thus for every χ ∈ Irr(G) there must be j ∈ {0, . . . ,m − 1} with bj 
= 0 and
(ψj , χ)G 
= 0.

The regular character ρG is a good example for Theorem 2.7.3: it takes ex-
actly two values on G and every irreducible character is a constituent of ρG.
This example also shows that the theorem is more of theoretical interest; one
cannot possibly hope, in general, to obtain the irreducible characters just from
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the knowledge of a faithful character of a group. The situation might improve
if one knows a faithful (irreducible) character of small degree compared to the
degrees of the other irreducible characters. It should also be clear that the
bound in Burnside’s theorem is by no means sharp. For example, choosing
ψ =

∑
χ∈Irr(G) χ and G non-abelian, one can show that m > 2. Or, looking at

the character table of the Mathieu group G = M11 (see Section 2.10, p. 177) one
finds that there is a faithful irreducible character χ8 of degree 44 which takes
five values on G, but every irreducible character of G is a constituent of χ2

8.

Of course, the product of irreducible characters will not be in general irre-
ducible. In fact, the square of a character χ will never be irreducible unless χ
is a linear character, as we will see below, and the same holds true for higher
powers of characters.

Theorem 2.7.4 Let K be a field with charK 
= 2 and V a KG-module of
dimension n > 1 and with character χ. Then there are KG-submodules V [2]

and V [12] of V with

V ⊗K V = V [2] ⊕ V [12]

and characters given by

χ[2](g) =
χ(g)2 + χ(g2)

2
, χ[12](g) =

χ(g)2 − χ(g2)
2

for g ∈ G.

In fact, V [2] resp. V [12], are the K-submodules of symmetric (resp. skew-
symmetric) tensors in V ⊗K V .

Proof. Let B = (v1, . . . , vn) be a K-basis of V . We define a K-linear map

τ : KV ⊗K V → V ⊗ V, τ : vi ⊗ vj �→ vj ⊗ vi;

then τ(v ⊗ v′) = v′ ⊗ v for all v, v′ ∈ V . Furthermore τ ∈ EndKG V ⊗K V and
τ2 = idV . Since charK 
= 2 the endomorphism τ is diagonalizable and V ⊗K V
is the direct sum of the eigenspaces

V [2] = {x ∈ V ⊗K V | τ(x) = x} , V [12] = {x ∈ V ⊗K V | τ(x) = −x}.

Since τ ∈ EndKG V ⊗K V these are KG-submodules. To calculate the values
of their characters χ[2] and χ[12] at an element g ∈ G we may assume that K
contains the eigenvalues of δV (g), for otherwise we might extend the field K,
which does not affect χV . We choose a basis B = (v1, . . . , vn) such that

[δV (g)]B =

 ξ1 ∗
. . .

ξn

 .
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So gvi ∈ ξivi+
∑
k<iKvk. A K-basis for V [12] is (wi,j = vi⊗vj−vj⊗vi | i < j).

We use the lexicographical ordering < of the pairs (i, j). It follows that

g · wi,j ∈ (ξiξj)wi,j +
∑

(k,l)>(i,j)

K · wk,l.

So

χ[12](g) =
∑
i<j

ξiξj =
1
2

((
n∑
i=1

ξi)2 −
n∑
i=1

ξ2i ) =
1
2

(χ(g)2 − χ(g2)).

The formula for χ[2] follows from χ(g)2 = χ[2](g) + χ[12](g).

Theorem 2.7.4 just deals with a particularly simple case of a much more
general construction, which is usually called symmetrization of characters or
representations.

Definition 2.7.5 Let K be a commutative ring and let V be a free K-module
of rank n. For any integer m the symmetric group Sm acts on

⊗mV := V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
m

from the right by

v1 ⊗ · · · ⊗ vm · σ := vσ(1) ⊗ · · · ⊗ vσ(m) for σ ∈ Sm , vi ∈ V.

Then SK(V,m) := EndK Sm ⊗mV is called the Schur algebra SK(n,m).

In the following we assume that K is a field of characteristic zero and that V
is an n-dimensional K-vector space. We write E := SK(V,m). The K Sm-right
module ⊗mV can be considered as a (E,K Sm)-bimodule with

ϕ · t := ϕ(t) for ϕ ∈ E , t ∈ ⊗mV.

For a simple K Sm-module X we will denote

VX := HomK Sm
(X, ⊗mV ), (2.15)

which is naturally an E-module. In fact, if X1, . . . , Xr are representatives of the
isomorphism classes of simple K Sm-submodules of ⊗mV then by Exercise 1.5.7
{VXi | 1 ≤ i ≤ r} is a set of representatives of the isomorphism classes of
simple E-modules.

Lemma 2.7.6 For any simple K Sm-module X let HX(⊗mV ) be the X-homo-
geneous component (see Definition 1.4.1) of ⊗mV when we consider ⊗mV as a
K Sm-module. This is E-invariant and

HX(⊗mV ) ∼= VX ⊗K X as (E,K Sm)-bimodules.



144 Characters

Proof. We have a K-bilinear map VX × X → HX(⊗mV ) , (ϕ, x) �→ ϕ(x).
This induces a K-linear map

Ψ: VX ⊗K X → HX(⊗mV ) with ϕ⊗ x �→ ϕ(x),

which is readily seen to be a homomorphism of (E,K Sm)-bimodules. If X is not
isomorphic to a direct summand of ⊗mV , then VX = {0} and HX(⊗mV ) = {0}.
Let HX(⊗mV ) = Y1 ⊕ · · · ⊕ Yk with Yj ∼=K Sm

X and ψj : Yj → X a K Sm-
isomorphism for j = 1, . . . , k. Then every x ∈ HX(⊗mV ) can be written as
x =

∑k
j=1 yj with

yj = ψ−1
j ψj(yj) = Ψ(ψ−1

j ⊗ ψj(yj)) ∈ Yj ,

since we may consider ψ−1
j ∈ VX by abuse of notation. Thus Ψ is surjective.

We use the fact (proven in Theorem 3.3.8) that all simple K Sm-modules are
absolutely simple. Hence

dimK VX = dimK HomK Sm(X,HX(⊗mV )) = dimK HomK Sm(X,⊕kj=1Yj) = k.

Therefore

dimK(VX ⊗K X) = dimK VX dimK X = k dimK X = dimK HX(⊗mV )

and Ψ is bijective.

We have a natural embedding

µ : EndK V → E with µ(ϕ) : v1 ⊗ · · · ⊗ vm �→ ϕ(v1)⊗ · · · ⊗ ϕ(vm).

Thus every E-module becomes a K GL(V )-module. In particular, if V is a KG-
module and X ≤K Sm ⊗mV is simple, then the simple E-submodule VX defined
in (2.15) is a KG-submodule of ⊗mV .

Lemma 2.7.7 Let K be a field of characteristic zero, let V be a KG-module
with character χV and let σ = σ1 · · · · ·σk ∈ Sm be a product of disjoint sj-cycles,
for j = 1, . . . , k (so that m =

∑k
j=1 sj). If X1, . . . , Xr is a set of representatives

of the simple K Sm-modules with characters χ1, . . . , χr, and ηi is the character
of the KG-module VXi for i = 1, . . . , r, then

r∑
i=1

ηi(g)χi(σ) =
k∏
j=1

χV (gsj ) for g ∈ G.

Proof. Consider the K-linear map

f : ⊗m V → ⊗mV , w �→ g · w · σ

using the (G, Sm)-bimodule structure of ⊗mV . Since

⊗mV =
r⊕
i=1

HXi(⊗mV ) =
r⊕
i=1

VXi ⊗K Xi
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we get trace(f) =
∑r
i=1 ηi(g)χi(σ).

We want to show, that trace(f) =
∏k
j=1 χV (gsj ). For this, we may assume

that K contains the eigenvalues of g on V . We choose a K-basis B of V
consisting of eigenvectors, so that for v ∈ B we have gv = α(v)v with α(v) ∈ K.
Also, since permutations with the same cycle type are conjugate, we can assume
that σj is the sj-cycle (

∑j−1
i=1 si + 1, . . . ,

∑j
i=1 si). We write

⊗mV = V ⊗ · · · ⊗ V︸ ︷︷ ︸
:=W1

⊗ · · · ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
:=Wk

with Wj = V ⊗ · · · ⊗ V︸ ︷︷ ︸
sj

.

Then

f = f1 ⊗ · · · ⊗ fk with fj : Wj →Wj , w �→ g · w · σj (1 ≤ j ≤ k).

Since trace(f) =
∏k
j=1 trace(fj), we may assume k = 1, that is σ = (1, . . . ,m).

A basis of ⊗mV is ⊗mB = {v1 ⊗ · · · ⊗ vm | vi ∈ B, (1 ≤ i ≤ m)}. Then

f(v1 ⊗ · · · ⊗ vm) = (
m∏
i=1

α(vi)) v2 ⊗ · · · ⊗ vm ⊗ v1.

Hence trace(f) =
∑
v∈B α(v)m = χV (gm).

Definition 2.7.8 For χ ∈ cf(G,K) and ψ ∈ cf(Sm,K) we define the class
function χ� ψ ∈ cf(G,K) by

(χ� ψ)(g) :=
1
n!

∑
σ∈Sm

ψ(σ)
m∏
j=1

χ(gj)aj(σ) for g ∈ G ,

where aj(σ) is the number of j-cycles of σ.

Theorem 2.7.9 If V is a KG-module for a field K with charK = 0 and X is
a simple K Sm-module and VX is as defined in (2.15), then χVX

= χV � χX .
Thus χV � χX is an ordinary character of G or the 0-function. We have

χmV =
∑

ψ∈Irr(Sm)

ψ(1) χV � ψ.

Proof. We have for g ∈ G

χVX
(g) =

∑
ψ∈Irr(Sm)

χVX
(g) (χX , ψ)Sm

=
∑

ψ∈Irr(Sm)

χVX
(g)

1
m!

∑
σ∈Sm

χX(σ)ψ(σ−1)

=
1
m!

∑
σ∈Sm

χX(σ)
∑

ψ∈Irr(Sm)

χVX
(g)ψ(σ)

=
1
m!

∑
σ∈Sm

χX(σ)
m∏
j=1

χ(gj)aj(σ) = χV � χX(g),
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where we have used Lemma 2.7.7 and the well-known fact that in a symmetric
group every element is conjugate to its inverse. As mentioned before, the fact
that K is a splitting field for Sm will be proved in Theorem 3.3.8.

We will see in Section 3.3 that the irreducible characters of the symmetric
group over a field K with charK = 0 can be labeled by partitions

λ = [λ1, . . . , λj ] with λ1 ≥ λ2 ≥ · · · ≥ λj > 0 and
∑
i

λi = m.

Here ψ[m] = 1Sm
and ψ[1m] is the sign character of Sm, where [1m] := [1, . . . , 1︸ ︷︷ ︸

m

].

If λ is a partition of m and ψλ ∈ Irr(Sm) is the corresponding irreducible
character we will also write

χλ := χ� ψλ for χ ∈ cf(G,K),

which is in accordance with the notation used in Theorem 2.7.4.

Example 2.7.10 From the character table of S3 (Example 2.1.20) we see that
for any ordinary character χ of an arbitrary group G we have

χ[3](g) =
1
6

(χ(g)3 + 3χ(g2)χ(g) + 2χ(g3)),

χ[13](g) =
1
6

(χ(g)3 − 3χ(g2)χ(g) + 2χ(g3)),

χ[2,1](g) =
1
3

(χ(g)3 − χ(g3)).

In particular, we see that χ[13] = 0 if χ(1) ≤ 2. �

Another way to see symmetrizations is the following: if δ : G→ GL(V ) is a
representation of a finite group G and τ : GL(V ) → GL(W ) is a representation
of GL(V ) then the concatenation

τ ◦ δ : G→ GL(W )

is again a representation of G. One obtains the symmetrizations with respect
to the simple K Sm-module X by choosing τ to be the representation afforded
by VX .

If K ⊆ R and the KG-module V carries a G-invariant non-degenerate sym-
metric or symplectic form – we will deal with the question of when this is
possible in Section 2.9 – then the image of δ will be in the orthogonal group
O(V ) or in the symplectic group Sp(V ) and one can compose δ with irreducible
representations of these groups, which in general will yield finer decompositions
of ⊗mV than the one given in Theorem 2.7.9.
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Example 2.7.11 Let G = M12 be the sporadic Mathieu group of degree 12. It
is a simple permutation group acting (sharply) 5-fold transitive on 12 letters (see
[38]). By Corollary 2.1.14(d) G has an irreducible character of degree 11. Let us
assume that we know this character, the lengths of the conjugacy classes (equiv-
alently, the centralizer orders of the representatives of the conjugacy classes) and
the power maps of G. We will show that using symmetrizations and products
of known characters we can compute further irreducible characters of G and
eventually (in Example 2.8.12) the complete character table of G. We start by
retrieving the (complete) character table of G from the GAP library and copying
the first two irreducible characters (the trivial character and one character of
degree 11) to the list irr, which we then display together with the centralizer
orders (in factored form) and the power maps:

gap> t := CharacterTable("M12");;
gap> irr := Irr(t){[1,2]};;
gap> Display( t , rec(chars:=irr) );
M12

2 6 4 6 1 2 5 5 1 2 1 3 3 1 . .
3 3 1 1 3 2 . . . 1 1 . . . . .
5 1 1 . . . . . 1 . . . . 1 . .

11 1 . . . . . . . . . . . . 1 1

1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 11a 11b
2P 1a 1a 1a 3a 3b 2b 2b 5a 3b 3a 4a 4b 5a 11b 11a
3P 1a 2a 2b 1a 1a 4a 4b 5a 2a 2b 8a 8b 10a 11a 11b
5P 1a 2a 2b 3a 3b 4a 4b 1a 6a 6b 8a 8b 2a 11a 11b

11P 1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 1a 1a

Y.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y.2 11 -1 3 2 -1 -1 3 1 -1 . -1 1 -1 . .

We then compute the second symmetrizations of χ2 (denoted by Y.2 in the
table), that is χ[2]

2 , χ
[12]
2 , and reduce these with the list of the two irreducible

characters in irr, thereby obtaining two further irreducible characters of G of
degrees 54 and 55. In fact, it is not hard to see that χ[12]

2 and χ[2]
2 −χ1−χ2 are

irreducible:

gap> r := Symmetrizations( t, irr{[2]}, 2 );;
gap> red := Reduced( t , irr , r );;
gap> Append( irr, red.irreducibles );
gap> Display( t , rec(chars:=irr,powermap:=false,centralizers:=false) );
M12

1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 11a 11b

Y.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Y.2 11 -1 3 2 -1 -1 3 1 -1 . -1 1 -1 . .
Y.3 54 6 6 . . 2 2 -1 . . . . 1 -1 -1
Y.4 55 -5 -1 1 1 -1 3 . 1 -1 1 -1 . . .
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One can obtain reducible characters by forming products of the known irre-
ducibles and also higher symmetrizations, and one might try to obtain further
irreducible characters by reducing these with the four irreducible characters in
irr known so far. But the outcome is the following:

gap> r := Tensored( irr{[2]} , irr{[3,4]} );;
gap> Append( r , Tensored( irr{[3]} , irr{[4]} ) );
gap> Append( r , Symmetrizations( t , irr{[3,4]} , 2 ) );
gap> Append( r , Symmetrizations( t , irr{[2,3,4]} , 3 ) );
gap> red := Reduced( t , irr , r );; r := red.remainders;;
gap> red.irreducibles;
[ ]
gap> SortParallel( List(r , Norm) , r ); List( r , Norm );
[2, 2, 2, 4, 4, 22, 25, 26, 26, 87, 6261, 6741, 7500, 8493, 27041,
30265]
gap> List( r , x -> x[1] );
[154, 165, 320, 474, 485, 1376, 1375, 1257, 1366, 2740,
23425, 24393, 25478, 27358, 49017, 51874]

So no new irreducible characters were found, but instead we have a list of charac-
ters of rather large norm and degree, which does not seem to be very useful. We
will see in Section 2.8, however, on continuing this example in Example 2.8.12,
that we can, in fact, derive all the irreducible characters of G from this list.

�

Exercises

Exercise 2.7.1 Let Irr(G) = {χ1, . . . , χr} and let

χi · χj =
r∑

k=1

dijk χk, dijk ∈ N0 1 ≤ i, j, k ≤ r.

Show that the characters χi ∈ Irr(G) can be calculated given the numbers dijk
for 1 ≤ i, j, k ≤ r.

Exercise 2.7.2 Let m,n ∈ N. The symmetric group Sm acts on nm :=
{f : {1, . . . ,m} → {1, . . . , n}} from the right by f · σ := f ◦ σ. Let K be a
commutative ring and let V be a free K-module of rank n. Show that

SK(V,m) ∼= EndK Sm
Knm.

Exercise 2.7.3 Let J1 be Janko’s first sporadic simple group (see [38]). Show
that every χ ∈ Irr(J1) \ {1J1} has the property that (χ2, χi)J1 > 0 for all
χi ∈ Irr(J1).

Exercise 2.7.4 Let V,W be KG-modules, K a field and W ′ ≤KG W . Show
that

W ′ ⊗K V ≤KG W ⊗K V and (W ⊗K V )/(W ′ ⊗K V ) ∼=KG W/W ′ ⊗K V.

Note: It is important that K is a field or, for instance, that V is free as a
K-module. Consider as an example K = Z , G = {1}, V = Z/2Z, W ′ = Z,
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W = Q. Here we have

W ′ ⊗K V ∼= V, whereas W ⊗K V = 0.

Exercise 2.7.5 This is a continuation of Exercise 2.4.3. Using the GAP char-
acter table of G := SL2(3) tensor the irreducible character χ5 of degree two with
all the irreducible characters χ1, . . . , χ7 of G. Compute the matrix M := [mij ],
where mij is the multiplicity of χj in χ5 · χi for i, j = 1, . . . , 7 and check that
the matrix A given in Exercise 2.4.3 is just 2I7 −M . This observation can be
generalized; see [120].

Exercise 2.7.6 Let Z(G) = {1} and χ = χ ∈ Irr(G) be faithful with χ(1) = 3.
Show that

(a) |CG(P3)| = 3 for P3 ∈ Syl3(G) (use Exercise 2.3.3);

(b) χ[12] = χ and ψ := χ[2] − 1G ∈ Irr(G) is faithful with ψ(1) = 5;

(c) ϕ : G→ C, g �→
{

1 if g has order three
ψ(g)− 1 else ∈ Irr(G) with ϕ(1) = 4;

(d) χ(g) =
{ −1 if g has order two,

1±√
5

2 if g has order five;

(e) G has exactly two irreducible characters χ, χ′ of degree three and no ele-
ments of order p for a prime p > 5;

(f) G has no elements x of order four (show that χχ′ = ϕ+ ψ);

(g) 〈1G, χ, χ′, ϕ, ψ〉Z is closed under multiplication;

(h) G ∼= A5.

Note: If χ 
= χ ∈ Irr(G) and χ(1) = 3 then G ∼= L2(7).

2.8 Generalized characters and lattices

In this section K is always assumed to be a field of characteristic zero.
If one knows the centralizer orders and a few characters of a finite group G

one can find further characters using products (or symmetrizations, if the power
maps are also known). These characters usually have rather large norms even if
one starts with irreducible ones. One might try to obtain characters of smaller
norm by looking at differences of characters, but in general it is hard to decide
whether a difference of characters is a character. The best one can state, if one
just knows the scalar products of the characters in question, is the following
lemma (see [37]).

Lemma 2.8.1 (Guy’s lemma) Assume that ϕ and ψ are characters of a group
G with a := (ϕ,ϕ)G ≤ b := (ψ,ψ)G, c := (ϕ,ψ)G and

d := b− (a · b− c2) ≥ 0.

Then ψ − ϕ is a (proper) character of G or d = 0 and ϕ− c
bψ ∈ Irr(G).
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Proof. Let

ϕ =
r∑
i=1

aiχi, ψ =
r∑
i=1

biχi (ai, bi ∈ N0),

where Irr(G) = {χ1, . . . , χr}. Then

a := (ϕ,ϕ)G =
r∑
i=1

a2
i , b := (ψ,ψ)G =

r∑
i=1

b2i , c := (ϕ,ψ)G =
r∑
i=1

aibi.

If ψ − ϕ is not a character then for some k we must have dk = ak − bk > 0. By
the Schwarz inequality we have

(ϕ− akχk , ψ − bkχk)2G ≤ ((ϕ,ϕ)G − a2
k) · ((ψ,ψ)G − b2k).

Hence
a · b− c2 ≥ a2

kb+ b2ka− 2akbkc ≥ a2
kb+ b2ka− (a+ b)akbk,

since 2c ≤ a+ b. From this it follows from our assumption that

0 ≥ ab− c2 − b ≥ (akb− bka)dk − b = ((b− a)bk + bdk)dk − b ≥ b(d2
k − 1) ≥ 0.

Hence dk = 1 and bk = 0, since a = b is clearly impossible. All inequalities
above must be equalities, including the one in the Schwarz inequality. From
this we see that ϕ− χk and ψ must be proportional. Hence there is a positive
x ∈ Q such that χk = ϕ − xψ. Taking norms we get bx2 − 2cx + a = 1, hence
x = c

b .

Of course, the converse in Guy’s lemma does not hold, that is ψ − ϕ can be a
character even if d < 0; see Example 2.8.2. On the other hand, Guy’s lemma is
best possible in the sense that if d := b− (a · b− c2) < 0 then there is a group
G with characters ϕ,ψ such that a = (ϕ,ϕ)G, b = (ψ,ψ)G and c = (ϕ,ψ)G, and
ψ − ϕ is not a character (see [37]).

Example 2.8.2 We continue with Example 2.7.11 and compute the matrix of
scalar products of the first ten characters of r. (Since this is a symmetric
matrix, only the lower part of it is shown.)

gap> Display( MatScalarProducts( t, r{[1..10]} ) );
[ [ 2 ],
[ 0, 2 ],
[ 0, 0, 2 ],
[ 2, 0, 2, 4 ],
[ 0, 2, 2, 2, 4 ],
[ 2, 3, 5, 7, 8, 22 ],
[ 1, 4, 5, 6, 9, 22, 25 ],
[ 3, 1, 5, 8, 6, 18, 15, 26 ],
[ 3, 2, 5, 8, 7, 20, 18, 25, 26 ],
[ 5, 5, 10, 15, 15, 43, 44, 35, 39, 87 ] ]

gap> y := r[3] - 1/5*r[7];
[ 45, 1, 5, -18/5, -18/5, -3/5, 1/5, 0, 2/5, -2/5, 1/5, -1/5, 0, 1, 1 ]
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It is immediately seen that the norms of r[4] - r[1] - r[3] and r[5] - r[2]
- r[3] are zero, so the characters r[4], r[5] can be discarded. Lemma 2.8.1
shows that r[6] - r[3] and r[10] - r[6] are characters and also that r[7] -
r[3] is a character since r[3] - 5

25 r[7] is not integral and hence not in Irr(G).
Deleting r[4], r[5] and replacing r[6], r[7] and r[10] by the differences r[6]
- r[3], r[7] - r[3] and r[10] - r[6], respectively, we obtain a new list r
of characters with the following matrix of scalar products:

[ [ 2 ],
[ 0, 2 ],
[ 0, 0, 2 ],
[ 2, 3, 3, 14 ],
[ 1, 4, 3, 14, 17 ],
[ 3, 1, 5, 13, 10, 26 ],
[ 3, 2, 5, 15, 13, 25, 26 ],
[ 3, 2, 5, 16, 17, 17, 19, 23 ] ]

Now the norms are sufficiently small such that one can make further conclusions
(although Lemma 2.8.1 applies only to r[3] and r[8]). For instance, we can
see that r[4] - r[2] - r[3] is a proper character because r[4] (of norm 14)
cannot have any irreducible constituent with multiplicity≥3, as can be seen from
the scalar products with the three characters of norm two which are pair-wise
“disjoint,” that is have no constituent in common. Similarly we may conclude
that r[2] and r[3] can be subtracted from r[5], and further reductions can
be made (see also Example 2.9.4). But we will not pursue this further at this
point, because we will see (in Example 2.8.12) that there is an easier way to
finish off the character table of M12. �

We have seen that it is in general not easy to decide whether or not a
difference of two characters is a character. It appears to be useful to consider
quite generally differences of characters, although some of the arguments used
at the end of Example 2.7.11 are no longer valid in this more general context.
But one has more freedom to decrease the norms. If one obtains a Z-linear
combination ψ of characters which has norm one then ψ or −ψ is an irreducible
character, depending on whether ψ(1) is positive or not. We will see that there
are even cases where one can decide that a Z-linear combination θ of a given
list of reducible characters must be a multiple of an irreducible character, which
then can, of course, easily be computed by dividing θ by

√
(θ, θ)G. So it is

certainly of practical importance to consider not only characters, but also Z-
linear combinations of characters.

Definition 2.8.3 If K is a field of characteristic zero and G is a finite group
then an element of

Z IrrK(G) = {
∑

χ∈IrrK(G)

aχχ ∈ cf(G,K) | aχ ∈ Z }

is called a generalized character (or virtual character) of G over K.
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The most important case is K = C, in which case no reference to K will be
given.

Remark 2.8.4 By Lemma 2.7.1 it is clear that Z IrrK(G) is a ring. It can also
be considered as a Z-lattice in the sense of the following definition (cf. [29]).

Definition 2.8.5 A Z-lattice is a free Z-module L of finite rank together with
a positive definite quadratic form N on R⊗ L. We write

(v, w) =
1
2

(N(v + w)−N(v)−N(w)) for v, w ∈ R⊗ L.

We embed L into R⊗ L and write av = a⊗ v for a ∈ R and v ∈ L. In the case
where L is a Z-lattice of generalized characters we define

N(
∑

χ∈IrrK(G)

aχχ ) =
∑

χ∈IrrK(G)

a2
χ · (χ, χ)G for aχ ∈ R.

Any set of (generalized) characters of G generates a sublattice L of

Z Irr(G) := 〈 χ | χ ∈ Irr(G) 〉Z := {
∑

χ∈Irr(G)

aχχ | aχ ∈ Z }

and in view of the above remarks it is useful to find a shortest vector in L \ {0},
that is a ψ ∈ L \ {0} with N(ψ) being minimal. But this is computationally a
very difficult problem, except for lattices of rank two.

Reduction algorithm
Assume that L = 〈v, w〉 is a Z-lattice of rank two and that N(v) ≤ N(w).
Input: (v, w)
Output: (v′, w′) with L = 〈v′, w′〉 and N(v′) = min{N(x) | x ∈ L \ {0}} and

N(w′) = min{N(x) | x ∈ L \ Zv′}
while |(v, w)| > 1

2N(v) do
choose k ∈ Z such that − 1

2N(v) < (v, w − kv) ≤ 1
2N(v)

and put w := w − kv
if N(v) ≤ N(w) then return (v, w)

else interchange v and w
end if

end while

It is not hard to see that this algorithm is indeed correct (see e.g. [28], p. 68).
The output is usually called a reduced basis of L, or a reduced pair. For
lattices L of larger rank it looks tempting to use the same idea in order to obtain
a generating set of L which is pair-wise reduced. The following straightforward
GAP program does exactly this for a list red of generalized characters of a
character table t:
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weakreduce := function ( t, red )
local r, normsum, a, b, i, j, k;
r := ShallowCopy( red );
repeat

normsum := Sum( List( r, Norm ) );
SortParallel( List( r, Norm ), r );
for i in [ 1 .. Length( r ) ] do

a := Norm( r[i] );
if a <> 0 then

for j in [ i + 1 .. Length( r ) ] do
b := ScalarProduct( t, r[i], r[j] );
k := BestQuoInt( b, a );

if b - k * a = - a/2 then k := k - 1; fi;
r[j] := r[j] - k * r[i];

od;
fi;

od;
r := Filtered( r, x -> Norm( x ) <> 0 );

until normsum = Sum( List( r, Norm ) );
return r;

end;

But observe that this algorithm may fail badly in some examples to produce
generalized characters of smallest norm in the lattice spanned by red, as can
be seen in the following example.

Example 2.8.6 Assume that we have four vectors v1, . . . , vr with matrix of
scalar products given by

M =


2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 3

 .
Then (v1, . . . , vr) is pair-wise reduced. But it is easy to see that the vector
v4 − v3 − v2 + v1 has norm one. �

Also it should be noted that the output of the above algorithm is not necessarily
a Z-basis of the Z-span of red.

A much better algorithm to compute a basis of short vectors in a lattice
is the famous LLL-algorithm by Lenstra, Lenstra and Lovász ([111]), which
had been used by these authors to show that polynomial factorization over the
integers can be computed in polynomial time. The algorithm has meanwhile
found numerous other applications. We describe this algorithm in its simplest
form, referring to [29] for more details.

We use the following notation familiar from the Gram–Schmidt orthogonal-
ization process. If v1, . . . , vr are linearly independent vectors in a lattice L define
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recursively

v∗
i = vi −

i−1∑
j=1

µi,jv
∗
j (1 ≤ i ≤ r), (2.16)

where

µi,j =

{
(vi,v

∗
j )

N(v∗
j ) if v∗

j 
= 0
0 if v∗

j = 0
(1 ≤ j < i ≤ r). (2.17)

Thus v∗
1 = v1, and for i > 1 the vector v∗

i is the orthogonal projection of vi
onto the orthogonal complement of 〈v1, . . . , vi−1〉R in 〈v1, . . . , vi〉R and v∗

i = 0 if
vi ∈ 〈v1, . . . , vi−1〉R. The non-zero v∗

i form an orthogonal basis for 〈v1, . . . , vr〉R.
Of course, if one starts with linearly independent vectors vi then no v∗

i will be
zero. We will use the notation

GS(v1, . . . , vr) := ((v∗
1 , . . . , v

∗
r ) , [µi,j ]1≤j<i≤r).

Definition 2.8.7 A Z-basis (v1, . . . , vr) of a lattice L is called LLL-reduced
if

|µi,j | ≤
1
2

for 1 ≤ j < i ≤ r

and
N(v∗

i + µi,i−1v
∗
i−1) ≥ 3

4
N(v∗

i−1) for 1 < i ≤ r.

Theorem 2.8.8 Let (v1, . . . , vr) be an LLL-reduced Z-basis of a lattice L. Then
for every x ∈ L \ {0} one has

N(v1) ≤ 2r−1N(x);

more generally, if x1, . . . , xs ∈ L are linearly independent, then

N(vj) ≤ 2r−1 max(N(x1), . . . ,N(xs)) for 1 ≤ j ≤ s.

Proof. See [29], p. 85.

Thus, although an LLL-reduced basis of L does not necessarily contain a short-
est non-zero vector of L, the norm of its first vector v1 differs from the norm of
a shortest non-zero vector just by a fixed factor in the worst case. Most impor-
tantly, there is an efficient algorithm to compute an LLL-reduced basis. Also,
in many examples this algorithm produces vectors which are much shorter than
those guaranteed in Theorem 2.8.8. We formulate this algorithm in a simple
form, which is computationally far from being optimal.

LLL-algorithm
Input: v1, . . . , vr spanning a lattice L of rank r
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Output: An LLL-reduced basis (w1, . . . , wr) of L
(1) ((v∗

1 , . . . , v
∗
r ) , [µi,j ]1≤j<i≤r) := GS(v1, . . . , vr) (see (2.16) and (2.17))

Put i := 2.
(2) while i ≤ r do
(3) for j = i− 1, . . . , 1 do

a := �µi,j + 1
2� ; vi := vi − a · vj ; µi,j := µi,j − a

for k = 1, . . . , j − 1 do
µi,k := µi,k − a · µj,k

end for
end for

(4) if i > 1 and N(v∗
i + µi,i−1v

∗
i−1) < 3

4N(v∗
i−1) then

interchange vi and vi−1 (and update:)
(4a) ((v∗

1 , . . . , v
∗
r ) , [µi,j ]1≤j<i≤r) := GS(v1, . . . , vr)

i := i− 1
else i := i+ 1
end if

end while
(5) return (v1, . . . , vr)

Proof. Observe that whenever step (3) of the algorithm has been carried out,
one has achieved |µk,j | < 1

2 for 1 ≤ j < k ≤ i. Also none of the v∗
1 , . . . , v

∗
r has

been changed during this step. It follows from this and the condition in step (4)
that the algorithm produces an LLL-reduced basis of L if it terminates. But it
is not obvious at all that it does terminate. To see this, it is essential to analyze
how the value

D =
r∏

k=1

dk with dk =
k∏
i=1

N(v∗
i )

changes in the course of the algorithm. In fact, it does not change at all in step
(3), and it changes in step (4) only if the condition is fulfilled and vi and vi−1
are interchanged. We look more closely at what is happening in step (4a) in this
case and see that (v∗

1 , . . . , v
∗
r ) is replaced by (v∗

1 , . . . , v
∗
i−2, w

∗
i−1, w

∗
i , v

∗
i+1, . . . , v

∗
r ),

with w∗
i−1 = v∗

i + µi,i−1v
∗
i−1 and

w∗
i = v∗

i−1 − µi,i−1
N(v∗

i−1)
N(w∗

i−1)
w∗
i−1.

Hence
N(w∗

i−1) = N(v∗
i + µi,i−1v

∗
i−1) <

3
4

N(v∗
i−1),

and an easy computation shows that

N(w∗
i−1)N(w∗

i ) = N(v∗
i−1)N(v∗

i ).

Thus all dk remain unchanged except for di−1, which decreases by a factor < 3
4 .

Hence the algorithm must terminate.

Of course the algorithm as formulated above can be improved in order to
avoid a lot of unnecessary calculations, for instance in step (1) and step (4a). It
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can be reformulated so that the computation and storage of the v∗
i are avoided.

Also the algorithm can be modified in such a way that instead of the v1, . . . , vr
the matrix [(vi, vj)] is entered and the base-change matrix is given as output.

If one analyzes the algorithm closely one can see that it works as formulated
even if v1, . . . , vr are not a basis of L but just a generating set. If the rank of
L is s < r then the output of the algorithm is (0, . . . , 0, wr−s+1, . . . , wr), with
(wr−s+1, . . . , wr) being an LLL-reduced basis of L. Observe that in the LLL-
algorithm the swap-condition step (4) is fulfilled if v∗

i = 0 and v∗
i−1 
= 0, that is

if vi is a linear combination of v1, . . . , vi−1. Of course, the proof given has to be
modified for this case.

Example 2.8.9 Applying the LLL-algorithm to the vectors of Example 2.8.6
we get a new basis with Gram-matrix

M =


2 −1 −1 0
−1 2 0 0
−1 0 2 0

0 0 0 1

 .
Hence a vector of norm one has been found. �

We return to the case of generalized characters. If the LLL-algorithm is
applied to a list of reducible characters, the output will be a list of generalized
characters, usually of small norm. We have total success if a generalized char-
acter ψ of norm one is produced, because then ±ψ is an irreducible character as
explained earlier. But even if this is not the case, and even if the Z-span of the
given reducible characters does not contain an irreducible character, we might
be able to obtain an irreducible character from the output of the LLL-algorithm
in favorable cases. The following lemma describes such a situation.

Lemma 2.8.10 Assume that ψ1, . . . , ψn ∈ Z Irr(G) have the following (Gram-)
matrices Mn = [(ψi, ψj)G]1≤i,j≤n of scalar products:

M4 =


2 −1 0 0

−1 2 −1 −1
0 −1 2 0
0 −1 0 2

 , or M5 =


2 −1 0 0 0

−1 2 −1 −1 0
0 −1 2 0 0
0 −1 0 2 −1
0 0 0 −1 2

 ,
that is the generalized characters ψi span a Z-lattice of type D4 or D5. Then

(a) if n = 5, then ±1
2 (ψ1 + ψ3) ∈ Irr(G);

(b) if n = 4, then for some (i, j) ∈ {(1, 3), (1, 4), (3, 4)} one has
± 1

2 (ψi + ψj) ∈ Irr(G).

Proof. Since the ψi all have norm two, they are all of the form ±χk ± χl
for some χk 
= χl ∈ Irr(G). Since ψ1, ψ3, ψ4 are pair-wise orthogonal, but
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all have non-zero scalar product with ψ2, it is not possible that they are all
proper characters or negatives of proper characters; instead two of these three
generalized characters, say ψi, ψj , must be of the form χk − χl and ±(χk + χl),
and hence their sum is 2χk or −2χl. If ψ is a generalized character of norm two
with (ψ, χk−χl)G = −1 then (ψ, χk +χl)G = ±1. Thus, if n = 5 we must have
(i, j) = (1, 3).

Corollary 2.8.11 If n = 5 in Lemma 2.8.10 then the irreducible constituents
of ψ1, . . . , ψ5 can be computed and thus five irreducible characters of G are
obtained. If n = 4 and if there is just one pair (i, j) ∈ {(1, 3), (1, 4), (3, 4)} for
which ± 1

2 (ψi + ψj) has algebraic integral values, then likewise the irreducible
constituents of ψ1, . . . , ψ4 can be computed and four irreducible characters of G
are obtained.

Example 2.8.12 We continue with Example 2.7.11, where we constructed two
irreducible characters of G = M12 and a list r of reducible characters of rather
large norm. We apply the LLL-algorithm to this list:

gap> ll := LLL( t , r );;
gap> ll.irreducibles;
[ ]
gap> ll.norms;
[ 2, 2, 2, 3, 2, 2, 2, 2, 2, 3 ]

The LLL-algorithm does not find vectors (generalized characters) of norm
one, but a Z-basis of the lattice generated by r consisting of vectors of small
norm. We filter out those of norm two and form the matrix of scalar products
in order to try to apply Lemma 2.8.10:

gap> r := Filtered( ll.remainders, x-> Norm(x) = 2 );;
gap> gram := MatScalarProducts( t, r, r ) ;; Display (gram) ;
[ [ 2, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 2, 0, 1, 1, 0, 0, 1 ],
[ 0, 0, 2, 0, 0, 1, 1, 0 ],
[ 0, 1, 0, 2, 0, 0, 0, 1 ],
[ 0, 1, 0, 0, 2, 0, 0, 1 ],
[ 1, 0, 1, 0, 0, 2, 1, 0 ],
[ 0, 0, 1, 0, 0, 1, 2, 0 ],
[ 0, 1, 0, 1, 1, 0, 0, 2 ] ]

A few transformations are necessary in order to see that the Z-span of r
contains a D4-lattice spanned by (r[2], r[4], r[5], r[8]):

gap> d := [ r[4]-r[2], r[2], r[5]-r[2], -r[8] ];;
gap> Display( MatScalarProducts( t, d, d ));
[ [ 2, -1, 0, 0 ],
[ -1, 2, -1, -1 ],
[ 0, -1, 2, 0 ],
[ 0, -1, 0, 2 ] ]
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By Lemma 2.8.10 we know that ± 1
2 (ψi + ψj) is an irreducible character for

some (i, j) ∈ {(1, 3), (1, 4), (3, 4)}. In order to find out for which (i, j) this is
true, we compute 1

2 (ψi + ψj)(1):

gap> for x in [ [1,3] , [1,4] , [3,4] ] do
> Print( (d[x[1]][1] + d[x[2]][1]) / 2, " , ");
> od;
-45 , -121/2 , -99/2 ,

Fortunately we can rule out two of the possibilities, and hence we obtain a
new irreducible character of degree 45 (and in addition three further irreducible
characters according to Corollary 2.8.11). In GAP there is a program that
searches for Dn-lattices in a given lattice, spanned by vectors of norm two.
Thus instead of scrutinizing the matrix gram as above we might have used the
following:

gap> dn := DnLattice( t , gram , r );;
gap> dn.irreducibles;
[ [ 120, 0, -8, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, -1 ] ,
[ 11, -1, 3, 2, -1, 3, -1, 1, -1, 0, 1, -1, -1, 0, 0 ] ,
[ 45, 5, -3, 0, 3, 1, 1, 0, -1, 0, -1, -1, 0, 1, 1 ] ,
[ 55, -5, -1, 1, 1, 3, -1, 0, 1, -1, -1, 1, 0, 0, 0 ] ]

These are the four irreducible characters found. We add them to our list
irr of irreducibles and continue by reducing the reducible generalized characters
ll.remainders found by the previous call of LLL and repeat the process:

gap> Append( irr, dn.irreducibles );
gap> red := Reduced( t, irr, ll.remainders );;
gap> ll := LLL( t , red.remainders );; ll.norms;
[ 2, 2, 2, 2, 2, 2 ]
gap> r := ll.remainders;;
gap> dn := DnLattice( t , MatScalarProducts(t,r,r), r);
rec( gram := [ [ 2 ] ], remainders :=

[ [ 32, 8, 0, -4, 2, 0, 0, 2, 2, 0, 0, 0, -2, -1, -1 ] ],
irreducibles :=
[ [ 99, -1, 3, 0, 3, -1, -1, -1, -1, 0, 1, 1, -1, 0, 0 ],

[ 55, -5, 7, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0, 0, 0 ] ),
[ 66, 6, 2, 3, 0, -2, -2, 1, 0, -1, 0, 0, 1, 0, 0 ] ,
[ 144, 4, 0, 0, -3, 0, 0, -1, 1, 0, 0, 0, -1, 1, 1 ] ,
[ 176, -4, 0, -4, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0 ] ]

This time the Z-span of r contains a D5-lattice and we obtain five new
irreducible characters. Now we have found all but two irreducible characters of
G and in addition the sum of the two missing characters (in dn.remainders). It
is clear that the latter is the sum of two algebraically conjugate characters which
differ only on the non-rational classes 11a and 11b. From the orthogonality
relations we see that the missing values on these classes are 1

2 (−1±
√
−11). We

finish this example by displaying the complete character table of G with the
characters sorted according to their degrees:
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M12
2 6 4 6 1 2 5 5 1 2 1 3 3 1 . .
3 3 1 1 3 2 . . . 1 1 . . . . .
5 1 1 . . . . . 1 . . . . 1 . .

11 1 . . . . . . . . . . . . 1 1

1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 11a 11b
2P 1a 1a 1a 3a 3b 2b 2b 5a 3b 3a 4a 4b 5a 11b 11a
3P 1a 2a 2b 1a 1a 4a 4b 5a 2a 2b 8a 8b 10a 11a 11b
5P 1a 2a 2b 3a 3b 4a 4b 1a 6a 6b 8a 8b 2a 11a 11b

11P 1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 1a 1a

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 11 -1 3 2 -1 -1 3 1 -1 . -1 1 -1 . .
X.3 11 -1 3 2 -1 3 -1 1 -1 . 1 -1 -1 . .
X.4 16 4 . -2 1 . . 1 1 . . . -1 A /A
X.5 16 4 . -2 1 . . 1 1 . . . -1 /A A
X.6 45 5 -3 . 3 1 1 . -1 . -1 -1 . 1 1
X.7 54 6 6 . . 2 2 -1 . . . . 1 -1 -1
X.8 55 -5 7 1 1 -1 -1 . 1 1 -1 -1 . . .
X.9 55 -5 -1 1 1 3 -1 . 1 -1 -1 1 . . .
X.10 55 -5 -1 1 1 -1 3 . 1 -1 1 -1 . . .
X.11 66 6 2 3 . -2 -2 1 . -1 . . 1 . .
X.12 99 -1 3 . 3 -1 -1 -1 -1 . 1 1 -1 . .
X.13 120 . -8 3 . . . . . 1 . . . -1 -1
X.14 144 4 . . -3 . . -1 1 . . . -1 1 1
X.15 176 -4 . -4 -1 . . 1 -1 . . . 1 . .

A = E(11)+E(11)ˆ3+E(11)ˆ4+E(11)ˆ5+E(11)ˆ9
= (-1+ER(-11))/2 = b11

Since we started with a rational character, all generalized characters we
produced by tensoring, symmetrizations, reductions and the LLL-algorithm are
rational, and it is quite clear that there is no chance of obtaining the irreducible
characters X.4 and X.5 by this method alone. We were just lucky that there
were only two irrational irreducible characters, so that we could finish off the
character table by using the orthogonality relations. In Section 3.2 we will
study a method to find irrational characters provided that enough information
about the power maps is known. There we will also show that it is possible to
compute the character table of M12 just from the knowledge of the power maps
and centralizer orders. �

Lemma 2.8.10 is very useful in many cases, but its underlying idea can be
generalized. The problem it solves in a special case is the following. Assume
that M ∈ Zn×n is a symmetric positive definite matrix. We want to find all
matrices X ∈ Zn×m with M = XXT with m ∈ N. In the applications we
have in mind that M = [(ψi, ψj)G]1≤i,j≤n is the matrix of scalar products of a
linearly independent list (ψ1, . . . , ψn) of generalized characters and X ′ = [x′

i,j ] =
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[(ψi, χj)G]1≤i≤n,χj∈Irr(G) is the (unknown) “decomposition” matrix, satisfying

ψi =
m∑
j=1

x′
i,jχj , (1 ≤ i ≤ n), {χ1, . . . , χm} ⊆ Irr(G), (2.18)

which shows how the ψi decompose into the yet unknown irreducibles. Of course
we may replace Irr(G) by the set of those irreducible characters which occur as
a constituent in some ψi, then no column of X ′ is the 0-column. Obviously
X ′(X ′)T = M . If we know X ′ we can consider (2.18) as a system of linear
equations for the χj . Even if (2.18) does not have a unique solution it might
have a subsystem with non-singular matrix, in which case some of the χj can
be uniquely determined. It is clear that X ′ is just defined up to the ordering of
the columns, since there is no a priori ordering of Irr(G). Also, we may allow
the χj ∈ Irr(G) to be multiplied by −1, because if we obtain −χj , we get χj as
well, just by looking at χj(1).

Definition 2.8.13 Two solutions X1, X2 ∈ Zn×m of M = XXT are called
equivalent if the columns can be rearranged in such a way that they differ
only by a sign.

We will assume that no column of X is zero. If we denote the columns of X by
x1, . . . , xm we have

M = XXT =
m∑
j=1

xjx
T
j .

By assumption M is positive definite. But also every subsum is at least positive
semidefinite, because if I ⊆ {1, . . . ,m} and y ∈ Rn×1 then

yT(
∑
j∈I

xjx
T
j )y =

∑
j∈I

(yTxj)2 ≥ 0.

Lemma 2.8.14 Suppose M ∈ Zn×n be a symmetric positive definite matrix
and M = XXT with X = [x1, . . . , xm] ∈ Zn×m. Then

xT
jM

−1xj ≤ 1 for all j.

Proof. Put P = XTM−1X. Then P 2 = P ∈ Rm×m and XP = X. Thus
rkP = rkX = n and P has eigenvalues one and zero with multiplicities n
and m − n, respectively. Consequently, In − P has eigenvalues zero and one
with multiplicities n and m−n, respectively, and hence is positive semidefinite.
Therefore its diagonal elements, which are 1−xT

jM
−1xj , must be non-negative.

Lemma 2.8.14 provides us with an opportunity to compute the finitely many
integral vectors xj ∈ Zn×1 which may occur as column vectors in a solution
X ∈ Zn×m of XXT = M . We will not go into the details of how this can be
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done efficiently, but formulate only a straightforward algorithm to find all such
solutions. For a better algorithm and more details we refer to [147].

Additive-decomposition algorithm
Input: A positive definite matrix M ∈ Zn×n with n ∈ N.
Output: A system of representatives of equivalence classes of solutions

X ∈ Zn×m (m ∈ N) without 0-columns of M = XXT.
C1 := (x ∈ Zn×1 | 0 < xTM−1x ≤ 1 , first non-zero entry of x > 0)
Sol := ∅ ; k := 1

while C1 
= () do
if Ck 
= () then xk := Ck[1] ( first element in Ck )

if M =
∑k
i=1 xix

T
i then Sol := Sol ∪ {[x1, . . . , xk]} ;

Ck := Ck \ {xk}
else if M −

∑k
i=1 xix

T
i is positive semidefinite then

Ck+1 := Ck ; k := k + 1
else Ck := Ck \ {xk}
end if

else
Ck−1 := Ck−1 \ {xk−1} ; k := k − 1

end if
end while

return Sol

Example 2.8.15 Let

M =

 2 1 1
1 2 1
1 1 2

 .
We find

M−1 = AT

 3
4 0 0
0 2

3 0
0 0 1

2

A with A =

 1 −1
3 − 1

2
0 1 − 1

2
0 0 1

 .
We easily see that the list of representatives C1 of candidates for the columns
of a matrix X ∈ Zn×m of XXT = M is as follows:

C1 = (

 1
1
0

 ,
 1

0
1

 ,
 0

1
1

 ,
 1

1
1

 ,
 1

0
0

 ,
 0

1
0

 ,
 0

0
1

).

The algorithm produces the following solutions:

X1 =

 1 1 0
1 0 1
0 1 1

 , X2 =

 1 1 0 0
1 0 1 0
1 0 0 1

 .
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If M is the matrix of scalar products of some (generalized) characters ψ1, ψ2, ψ3,
and it is known that they are Z-linear combinations of just three unknown
irreducibles (because perhaps all but three irreducibles are already known),
then one can dismiss solution X2. Since X1 is non-singular we get

χ =
1
2

(ψ1 − ψ2 + ψ3) ∈ ± Irr(G) := Irr(G) ∪ {−χ | χ ∈ Irr(G)},

and likewise ψ1 − χ ∈ ± Irr(G) and ψ3 − χ ∈ ± Irr(G). On the other hand, if
X2 cannot be excluded we are not able to obtain new irreducible characters.
The system of linear equations corresponding to X2 has no subsystem having a
unique solution. �

In practice the number |C1| of candidates and the number of solutions X ∈
Zn×k can be very large and the algorithm can be applied only if the size of the
matrix M and the size of its entries are not too large. There are some restrictions
which can be made in our applications. One may restrict the vectors of C1 to
elements of Nn×1

0 in the case that one is dealing only with ordinary instead of
generalized characters. In Example 2.8.15 this was no restriction at all. Often it
is more important to be able to give a bound for k (as in Example 2.8.15). This
is usually the number of unknown irreducible characters. Even if the number
of solutions to be considered is small, the method may fail because the system
of linear equations for the unknown irreducibles may have no subsystem with a
unique solution. Nevertheless we will give some rather convincing examples of
the application of the method, mainly in Section 3.2. We finish this section by
giving an extremely simple GAP example.

Example 2.8.16 We compute again the characters of S5 using the (constituents
of) the natural permutation character and the sign character (compare with Ex-
ample 2.1.23):
gap> t := CharacterTable("S5");; irr := Irr(t){[1,2,5]};;
gap> Display( t, rec(chars:=irr, centralizers:=false, powermap:=false) );
A5.2

1a 2a 3a 5a 2b 4a 6a

Y.1 1 1 1 1 1 1 1
Y.2 1 1 1 1 -1 -1 -1
Y.3 4 . 1 -1 -2 . 1
gap> r := Tensored( irr, irr );; Append( r, Tensored(irr,r) );
gap> red := Reduced( irr, r );; Length( red.irreducibles );
1
gap> Append(irr,red.irreducibles); r := red.remainders;; l:=LLL(t,r);;
gap> r := l.remainders;;
gap> M := MatScalarProducts( t, r, r );; Display( M );
[ [ 2, 1, 1 ],
[ 1, 2, 1 ],
[ 1, 1, 2 ] ]

So we have arrived at the Gram-matrix of Example 2.8.15. Also we know
that there are exactly three irreducible characters missing, because Y.4 = Y.2 ·
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Y.3 was already found by reducing r. The additive-decomposition algorithm
is implemented in GAP under the name OrthogonalEmbeddings. It returns
for a given positive definite matrix M a record rec with component vectors
= (xT

i | xi ∈ C1), with C1 as in the algorithm and component solutions a list
of length |Sol| indicating which columns one has to choose for the ith solution.
Thus the output Sol in the formulation of the algorithm is:

List( rec.solutions , x -> TransposedMat(rec.vectors{x}) )

gap> oe := OrthogonalEmbeddings( M );
rec( vectors := [ [ 1, 1, 0 ], [ 1, 0, 1 ], [ 0, 1, 1 ], [ 1, 1, 1 ],

[ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
solutions := [ [ 1, 2, 3 ], [ 4, 5, 6, 7 ] ] )

If we had typed OrthogonalEmbeddings( M , 3 );, indicating the maximal k
in our above discussion, only the first solution would have been given:
gap> x_1 := oe.vectors{ oe.solutions[1] } ;; Display(x_1) ;
[ [ 1, 1, 0 ],
[ 1, 0, 1 ],
[ 0, 1, 1 ] ]

gap> ch := TransposedMat( x_1ˆ-1 ) * r;
[ [ 6, -2, 0, 1, 0, 0, 0 ] ,

[ 5, 1, -1, 0, -1, 1, -1 ] ),
[ 5, 1, -1, 0, 1, -1, 1 ] ) ]
These are the three missing irreducible characters. The procedure could

have been abbreviated by using instead of OrthogonalEmbeddings( m ) the
following:
gap> OrthogonalEmbeddingsSpecialDimension ( t, r, M, 3);
rec(
irreducibles := [ [ 5, 1, -1, 0, -1, 1, -1 ], [ 5, 1, -1, 0, 1, -1, 1 ] ,

[ 6, -2, 0, 1, 0, 0, 0 ] ) ], remainders := [ ] )

�

Exercises
Exercise 2.8.1 Compute the character table of the symmetric group S12 start-
ing from the natural permutation character and the trivial and the sign char-
acter. Use only tensor products, symmetrizations up to degree three and the
GAP commands Reduce and LLL. Try to do the same without using the LLL-
algorithm.

Exercise 2.8.2 Let

M :=


4 6 5 2 2
6 13 7 4 4
5 7 11 2 0
2 4 2 8 4
2 4 0 4 8

 .
Show that there are, up to equivalence, just two matrices (without 0-columns)
X ∈ Z5×n with XXT = M for n ≤ 6 but only one in Z5×n

≥0 . Use GAP to find
the number of solutions (up to equivalence) in Z5×n

≥0 for arbitrary n.
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2.9 Invariant bilinear forms and the Schur index

In this section we assume that G is a finite group and that K is a field.
Applying Lemma 1.1.40 to a simple module V and its dual, one obtains

V ∼= V � if and only if InvG(V ⊗K V ) 
= 0.

Lemma 2.9.1 Let V,W be KG-modules with characters χV , χW and let
charK � |G|. Then

(a) dimK HomKG(V,W ) = (χV , χW )G in K;

(b) dimK InvG(V ⊗K V �) = (χV , χV )G in K.

(c) If in addition V is absolutely irreducible then

(χ2
V , 1)G =

{
1 if V ∼=KG V �,
0 if V �KG V �.

Proof. (a) Using Lemma 1.1.40 and Exercise 2.1.4 we get

dimK HomKG(V,W ) = dimK InvG(HomK(V,W ))
= dimK InvG(V � ⊗K W )
= (χV � · χW , 1)G = (χV , χW )G.

(b) follows from (a), setting W = V � by Lemma 1.1.40, since (χV , χV )G =
(χV � , χV �)G.

As for part (c), observe that (χ2
V , 1)G = (χV , χV �)G. Since V and V � are

absolutely simple, this scalar product is one or zero depending on V and V �

being isomorphic or not.

If V ∼= V � is absolutely simple, and in addition charK 
= 2, then by the
above

1 = (χ2
V , 1) = (χ[2]

V , 1)G + (χ[12]
V , 1)G.

So exactly one of the two summands on the right hand side is one. Observe

(χ[2], 1)G =
1
|G|

∑
g∈G

χ(g)2 + χ(g2)
2

=
1
2

[ (χ2, 1)G +
1
|G|

∑
g∈G

χ(g2)].

Definition 2.9.2 Let charK � |G| and let ϕ ∈ cf(G,K) be a class function.
Then

νk(ϕ) =
1
|G|

∑
g∈G

ϕ(gk) for 2 ≤ k ∈ N

is called the kth Frobenius–Schur indicator of ϕ.
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Obviously, νk : cf(G,K) → K is a K-linear map. From the above discussion we
conclude the following.

Theorem 2.9.3 If K is a field with 2 
= charK � |G| and V is an absolutely
simple KG-module with character χ = χV ∈ IrrK(G), then ν2(χ) ∈ {0, 1,−1}
and

(a) ν2(χ) = 0 if and only if V � V �;

(b) ν2(χ) = 1 if and only if 0 
= InvG(V ⊗K V ) ≤ V [2];

(c) ν2(χ) = −1 if and only if 0 
= InvG(V ⊗K V ) ≤ V [12].

Of course, in order to compute the kth Frobenius–Schur indicator one needs to
know the kth power map. The following trivial observation is sometimes useful
for analyzing reducible characters.

Example 2.9.4 Continuing with Example 2.8.2, we replace r[4] by the char-
acter r[4] - r[2] - r[3] and r[5] by r[5] - r[2] - r[3] and get the
following matrix of scalar products:

[ (r[i], r[j])G ]1≤i,j≤5 =


2 . . 2 1
. 2 . 1 2
. . 2 1 1
2 1 1 6 5
1 2 1 5 7

 .
Using the GAP command Indicator(t,r[1..5],2) we find that the second
Frobenius–Schur indicators are 2, 2, 2, 6, 5. Thus ν2(r[4]) = 6 = N(r[4]). By
Theorem 2.9.3 this shows that r[4] is multiplicity-free, that is |(r[4], χ)G| ≤ 1
for all χ ∈ Irr(G). Hence r[4] - r[1] must be a proper character (of norm
four). �

We give another interpretation for the cases (b) and (c) of Theorem 2.9.3.
We recall from Lemma 1.1.42 that the K-vector space BifoK V of bilinear forms
Φ : V × V → K is isomorphic to (V ⊗K V )�. Hence, if charK 
= 2, we obtain
from Theorem 2.7.4

BifoK V ∼=KG (V [12] ⊕ V [2])� ∼=KG (V [2])◦ ⊕ (V [12])◦

(cf. Theorem 1.1.34). It is easily seen that Φ ∈ BifoK V is mapped under
the composed isomorphism onto an element of (V [2])◦ (resp. (V [12])◦) if and
only if Φ is symmetric (resp. anti-symmetric also called symplectic). The space
InvG(V ⊗K V ) of G-invariant bilinear forms is isomorphic to HomKG(V, V �)
(Lemma 1.1.42). From this we get the following corollary.

Corollary 2.9.5 If V is an absolutely simple selfdual KG-module with char-
acter χ, where charK � |G|, then there is up to a scalar multiple exactly one
G-invariant bilinear form Φ 
= 0 on V . If, furthermore, charK 
= 2 then this
bilinear form Φ is
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symmetric if and only if ν2(χ) = 1,

anti-symmetric if and only if ν2(χ) = −1.

In the case of complex characters χ we have another characterization for
ν2(χ) as follows.

Theorem 2.9.6 If χ ∈ Irr(G) then ν2(χ) = 1 if and only if χ is a character of
a real representation.

Proof. (a) Assume that χ is the character of the real matrix representation
D : G → GLn(R). Then 0 
=

∑
g∈GD(g)D(g)T is the matrix of a symmet-

ric G-invariant bilinear form on the corresponding representation space. From
Corollary 2.9.5 we conclude that ν2(χ) = 1.

(b) Conversely, let ν2(χ) = 1 and let D be a unitary matrix representation
of G with character χ. Since χ is a real character there is a P ∈ GLn(C) such
that P−1D(g)P = D(g) = (D(g)T)−1 for all g ∈ G. So D(g)PD(g)T = P for
all g ∈ G, and by Corollary 2.9.5 we conclude that P = PT. Hence

P
−1
P−1D(g)PP = D(g) for all g ∈ G.

By Schur’s lemma PP = αEn for some α > 0. Hence Q = 1√
α
P is a unitary

matrix, that is Q ∈ Un(C). By the spectral theorem there is a U ∈ Un(C) with

U−1QU = A =

 a1 0
. . .

0 an

 =

 t21 0
. . .

0 t2n

 = T 2,

with a diagonal matrix T = diag(t1, . . . , tn), where we can assume that ai = aj
if and only if ti = tj , so that any matrix commuting with A also commutes with
T . We get

A = AT = (U−1QU)T = U
−1
UAU−1U.

Hence U−1U also commutes with T and we get a matrix S which will eventually
transform our representation to a real one by defining

S = UTU−1 = UTU
−1
.

We compute
SS

−1
= UTU−1UT

−1
U−1 = UAU−1 = Q,

so
SS−1D(g)SS

−1
= D(g) for all g ∈ G.

Hence S−1D(g)S = S−1D(g)S is real for all g ∈ G.

Example 2.9.7 Looking at the character table of the quaternion group (see
Example 2.1.19) one finds ν2(χ5) = −1, where χ5 is the irreducible character of
degree two. Thus χ5 is not the character of a real representation. �
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Lemma 2.9.8 For 2 ≤ k ∈ N define

θk(g) = |{ x ∈ G | xk = g}| for g ∈ G.

Then θ is a class function on G and

θk =
∑

χ∈Irr(G)

νk(χ)χ.

Proof. For χ ∈ Irr(G) we find

(χ, θk)G =
1
|G|

∑
g∈G

χ(g)θk(g) =
1
|G|

∑
g∈G

∑
x∈G

xk=g

χ(xk) =
1
|G|

∑
x∈G

χ(xk).

We get as a specialization for k = 2 the following.

Theorem 2.9.9 (Frobenius and Schur) If G has t involutions then

1 + t =
∑

χ∈Irr(G)

ν2(χ)χ(1).

�

This result is extremely useful for computational purposes. It also has a famous
application as follows.

Theorem 2.9.10 (Brauer and Fowler)

(a) If a finite group G has exactly t involutions then there is a real conjugacy
class {1} 
= C ⊂ G with

|C| ≤
(
|G| − 1

t

)2

.

(b) For any n ∈ N there are only finitely many simple groups G with an invo-
lution x with |CG(x)| = n.

Proof. (a) Let R = {χ ∈ Irr(G)|1 
= χ = χ} so r′ = |R| is the number of
real-valued irreducible non-trivial characters and, by Corollary 2.2.14, is also
equal to the number of real conjugacy classes 
= {1} of G. By Theorem 2.9.9
we have t ≤

∑
χ∈R χ(1). Using the well-known Schwarz inequality we conclude

that
t2 ≤ (

∑
χ∈R

1 · χ(1))2 ≤ |R|
∑
χ∈R

χ(1)2 ≤ r′(|G| − 1).

Hence

|G| − 1 ≤ r′(
|G| − 1

t
)2.
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So there must be at least one real conjugacy class C 
= {1} of G with |C| ≤
( |G|−1

t )2.

(b) If x is an involution in G with |CG(x)| = n, then there are at least
|G|/n involutions in G. By (a) there is an element g ∈ G \ {1} such that
|gG| = [G : CG(g)] < n2. If G is simple and non-abelian then G acts faithfully
on the cosets of CG(g), and hence is isomorphic to a subgroup of Sn2−1 (being
simple, even of An2−1) of which there are only finitely many.

Of course the bound given in the proof is very rough. For instance, for
n = 4 it yields that G can be embedded in A15, whereas we will show in the
next example that G ∼= A5.

Example 2.9.11 Let G be a finite simple (or, more generally, perfect) group
containing an involution h ∈ G with |CG(h)| = 4. We will show that G ∼=
A5. The orthogonality relations imply that there are exactly four χ ∈ Irr(G)
with χ(h) 
= 0, and since

∑
χ∈Irr(G) χ(1)χ(h) = 0 we may choose our notation

so that χ1 = 1G, χ2(h) = 1, χ3(h) = ε = ±1 and χ4(h) = −1. We have
1+χ2(1)+εχ3(1) = χ4(1). Also we order the conjugacy classes so that C2 = hG

and compute the class multiplication coefficients:

α2
2,2 = |Hh| with Hh = {(x, y) | x, y ∈ C2 , xy = h}.

If x, y are involutions such that xy has order two then they generate an abelian
group (∼= C2 × C2). Thus, if (x, y) ∈ Hh then x 
= y ∈ CG(h) \ {h}. It follows
under our hypothesis that α2

2,2 ∈ {0, 2}. On the other hand Theorem 2.5.9
yields

α2
2,2 =

|C2|2
|G| · c with c = 1 +

1
χ2(1)

+
ε

χ3(1)
− 1
χ4(1)

.

Since |C2| = 1
4 |G| we get |G| = 16c−1α2

2,2. It follows that α2
2,2 = 2, in particular

CG(h) ∼= C2 ×C2. The congruence relations (Lemma 2.2.2) imply that χi(1) is
odd for i = 2, 3, 4 and 
= 1, because G is perfect. If ε = 1 then χ4(1) ≥ 7 and
c > 6/7, which gives |G| ≤ 37 < 32·7

6 , which is absurd. Thus ε = −1 and we get
c > 1/3 and hence |G| < 96. Thus |G| cannot have three different odd divisors,
and it follows that the only possibility is χ2(1) = 5 , χ3(1) = χ4(1) = 3, which
gives |G| = 60.

�

Actually we have shown in the example that the centralizer of an involution
in a finite simple group cannot be cyclic of order four. More generally, it can
be proved that it cannot be cyclic of any order (see [88], Satz IV.2.8).

We have seen in Example 2.9.7 that the quaternion group Q8 has a character
χ5 ∈ Irr(Q8) which is not the character of a real representation, although χ5
takes only rational values; χ5 is the character of the representation δi,0 : Q8 →
Q(i) 2×2 defined in Exercise 1.1.5. We will see shortly that there does exist a
rational representation with character 2χ5.
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Remark 2.9.12 Let K ⊆ L be a field extension of finite degree [L : K] = m.
If V is an LG-module with dimL V = n then the restricted module VKG is a
KG-module with dimK VKG = nm. In fact, if B = (v1, . . . , vn) is an L-basis of
V and BL/K = (α1, . . . , αm) is a K-basis of L, then

B̃ := (α1v1, . . . , αmv1 , . . . , α1vn , . . . , αmvn)

is a K-basis of VKG.
If V affords the matrix representation δ : G → GLn(L) with respect to the

basis B and has character χ = χV , it is not hard to calculate the matrix
representation δ̃ : G → GLmn(K) afforded by VKG with respect to the basis
B̃ and the corresponding character χ̃. Let ρL/K : L → EndK L be the regular
representation, that is ρL/K(α) : L → L , x �→ αx and let ρL/K : L → Km×m

be the corresponding matrix representation with respect to the basis BL/K .
Thus for α ∈ L

ρL/K(α) = [ai,j ]1≤i,j≤m if ααj =
m∑
i=1

ai,jαi.

We may extend ρL/K to a ring homomorphism

ρL/K : Ln×n → Kmn×mn

by replacing any element α in A ∈ Ln×n by the block matrix ρL/K(α). Then

δ̃ := ρL/K ◦ δ : G→ GLmn(K) and χ̃ = TrL/K ◦ χ,

where TrL/K is the usual field trace; see for example [72], p. 115.

Example 2.9.13 Applying the procedure to the representation

δ : Q8 → GL2(Q(i)), a �→
[
i 0
0 −i

]
, b �→

[
0 1

−1 0

]
(from Example 2.9.7) using the Q-basis (1, i), we obtain

δ̃ : Q8 → GL4(Q), a �→


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , b �→


0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

 .
The character of δ̃ is 2χ5, where χ5 was the character of δ. �

Definition 2.9.14 If K is a field and χ the character of a representation of G
over an extension field of K, then

K(χ) := K({χ(g) | g ∈ G}).
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Observe that if χ is the character of a representation of G over L ⊇ K, then
certainly K(χ) ⊆ L.

Lemma 2.9.15 Let χ be the character of an absolutely simple LG-module W ,
where L ⊇ K is a field extension. Then there is a unique mK(χ) ∈ N such
that mK(χ)χ is a character of a simple K(χ)G-module V . The integer mK(χ)
is called the Schur index of χ relative to K. Also, V is up to isomorphism
the unique simple K(χ)G-module, such that W is isomorphic to a submodule of
LV .

Proof. By Remark 1.5.9 there is a finite field extension L′ ⊇ K such that
L′ is a splitting field for G. Taking a common extension field L′′ ⊇ L , L′ we
conclude from Exercise 1.5.8 that L′′W ∼= L′′W ′ for some simple L′G-module
W ′. Of course, W ′ also affords the character χ.

Let δ : G→ GLn(L′) be a representation with character χ. By Remark 2.9.12
δ̃ := ρL′/K(χ) ◦ δ : G → GLkn(K) is a representation with character χ̃ =
TrL′/K(χ) ◦ χ. If [L : K(χ)] = k we have TrL′/K(χ) (χ(g)) = k χ(g) for all
g ∈ G, hence χ̃ = k χ. Let V be a simple submodule of a K(χ)G-module
affording χ̃. Then the character of V is χV = mχ for some m ≤ k.

Now let V ′ be any simple K(χ)G-module with character m′ χ for some m′ ∈
N. Then by Lemma 2.1.5 the composition factors of L′V and L′V ′ are all
isomorphic to W ′. Hence HomL′G(L′V , L′V ′) 
= {0} and from Exercise 1.3.2
we conclude that V ∼= V ′ and consequently m = m′. The same kind of argument
also shows that if V ′ is a simple KG-module such that W is isomorphic to a
submodule of LV ′ then V ∼= V ′.

Remark 2.9.16 We recall from Definition 1.8.2 that the automorphisms γ ∈
Aut(K) of a field K act on the KG-modules. If V is a KG-module which
(relative to some K-basis) affords the matrix representation δ : G → GLn(K),
then according to Remark 1.8.3 γV affords the matrix representation γδ := γ ◦δ
(with respect to the same basis), where we have extended γ to an automorphism
of Kn×n. If χ is the character of V then the character of γV is γχ = γ ◦ χ.

Theorem 2.9.17 Let V be a simple KG-module with character ψ := χV and
let L ⊇ K be a splitting field for G. Assume that W is a simple LG-submodule
of LV with character χ := χW . If Gal(K(χ)/K) = {γ1, . . . , γr}, then [K(χ) :
K] = r and

ψ = mK(χ) (γ1χ + · · · + γrχ).

Proof. Let e be the exponent of G and let Ke be the splitting field of the
(separable) polynomial Xe − 1 ∈ K[X]. Then for all g ∈ G we have χ(g) ∈ Ke.
Thus K(χ) ⊆ Ke. Since Gal(Ke/K) is abelian, K(χ) ⊇ K is also a Galois
extension and we have indeed [K(χ) : K] = r = |Gal(K(χ)/K)|.

By assumption, W is a simple LG-submodule of LV = L ⊗K K(χ)V and
thus of a simple K(χ)G- submodule W1 of K(χ)V . Recall that K(χ)V is
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semisimple by Theorem 1.8.4. Lemma 2.9.15 shows that the character of W1
is χW1 := mK(χ)χ. Since an irreducible character is not zero, we conclude
charK � mK(χ). Therefore, if γ ∈ Gal(K(χ)/K) fixes χW1 , then it fixes χ and
hence γ = idK(χ). Applying Theorem 1.8.4 with K(χ) ⊇ K and the simple
modules V and W1 we get

K(χ)V ∼=
⊕

γ∈Gal(K(χ)/K)

γW1 and ψ =
∑

γ∈Gal(K(χ)/K)

mK(χ) · γχ

and the result follows.

Theorem 2.9.18 (a) If K is a finite field then mK(χ) = 1 for any character
χ of an absolutely simple LG-module for a field extension L ⊇ K.

(b) If e is the exponent of G and K is a splitting field of Xe − 1 ∈ Fp[X],
then K is a splitting field for G.

Proof. (a) By Lemma 1.5.9 there is a finite splitting field L′ ⊇ K for G. Then
L′ ⊇ K is a Galois extension. Note that χ is afforded by a simple L′G-module,
say W . By Lemma 2.9.15 there is a simple K(χ)G-module V with character
mK(χ)χ and W is a simple submodule of L′V . But by Theorem 1.8.4 L′V ∼= W
because, for all γ ∈ Gal(L′/K(χ)), we have γχ = χ and hence γW ∼=L′G W .
Thus mK(χ) = 1.

(b) Let L ⊇ K be a splitting field for G with [L : K] < ∞ and let W be a
simple LG-module with character χ. Since K = K(χ) it follows as in part (a)
that there is a simple KG-module V with W ∼= LV . By Exercise 1.5.8 K is a
splitting field for G.

The assertion of part (b) of the theorem holds also if one replaces Fp by Q;
see Theorem 3.10.8.

Theorem 2.9.19 Let χ ∈ Irr(G) and let θ be a character of a KG-module for
some K ⊆ C. Then mK(χ) | (θ, χ)G.

Proof. We may assume that (θ, χ)G > 0. Let W be a KG-module affording
θ and let W1 be a simple submodule of W with (χW1 , χ)G > 0. If

W ∼= W1 ⊕ · · · ⊕W1︸ ︷︷ ︸
k

⊕U with W1 � U

then
(θ, χ)G = k (χW1 , χ)G = kmK(χ),

where the final equality follows from Theorem 2.9.17.

Theorem 2.9.19 is extremely useful in practice in computing the Schur index
of a character, or at least in giving an upper bound for it. Good candidates
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for θ are permutation characters, because these are realizable over any field K,
that is they are characters of KG-modules. Thus it follows that

mK(χ) | g.c.d.{(η, χ)G | η a permutation character of G}. (2.19)

Using this, we will compute the Schur indices of the irreducible characters of a
number of simple groups in Example 3.5.23. They are all one or two, which is
in accordance with the following conjecture formulated by several authors.

Conjecture 2.9.20 The Schur index of every irreducible character of every
finite simple group, moreover of every covering group (see Definition 3.7.9) of
a finite simple group, is always one or two.

The same is definitely not true more generally for finite perfect groups. In fact
one has the following theorem.

Theorem 2.9.21 (A. Turull) Given any positive integer n, there exists some
finite perfect group G of chief length two and some irreducible character χ ∈
Irr(G) such that mQ(χ) = n.

For a proof see [164].
Another important application of Theorem 2.9.19 is the proof of Theo-

rem 3.10.8.

Exercises

Exercise 2.9.1 Assume that (χ(1) | χ ∈ Irr(G) ) = (1, 1, 1, 1, 4, 8). In Exer-
cise 2.2.6 we computed χ(g) for all χ ∈ Irr(G) and g ∈ G. Use Theorem 2.9.9 to
compute the character table of G (including the power maps) and deduce that
G ∼= C2

3 � Q8.

Exercise 2.9.2 Assume that Irr(G) is as in Exercise 2.6.1. Compute the second
Frobenius–Schur indicators for all χ ∈ Irr(G) and the power maps for G.

Exercise 2.9.3 Let G := HS be the Higman–Sims group. In Example 1.2.26
we saw that G has a permutation representation of degree 100; see also Exam-
ple 2.1.12. Use this and the character table of G (see e.g. [38], p. 81) to show
that mQ(χ) = 1 for all χ ∈ Irr(G).
Hint: Starting with the irreducible constituents of the permutation character
of degree 100 produce (using tensor products) characters of rational represen-
tations of G and use Theorem 2.9.19.

Exercise 2.9.4 Let G be a perfect group and let χ ∈ Irr(G) be faithful with
χ(1) = 2. Show that

(a) Z(G) = {g ∈ G | g2 = 1} has order two.

(b) G/Z(G) ∼= A5 (consider χ[2] and use Exercise 2.7.6).
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(c) Use Theorem 2.9.9 to find the degrees of the faithful irreducible characters.

(d) Complete the character table of G.

2.10 Computing character tables – an example

The Dixon–Schneider algorithm presented in Section 2.4 can be used to compute
the character table of a finite group G provided that one can compute with the
elements of G in order to find its conjugacy classes and (at least some) class
multiplication coefficients αkij . For very large groups this is not feasible. As
mentioned before, character tables of very large groups (such as the “Monster
group”) have been computed – using completely different methods – from a very
limited portion of information about the group |G|, such as the order of G and
the structure of some centralizers, even before the existence of the group had
been proved. In this section we give a modest example of how the character
table of a group can sometimes be computed in such a way.

The Mathieu group M11 is a sharply 4-fold transitive permutation group
of degree 11 and the smallest sporadic simple group (see [88]). We will show
that its character table can be computed using only the fact that M11 is a
simple permutation group of degree 11 and of size 11 · 10 · 9 · 8. The idea
is to look at elements of prime order and find some information about their
centralizers. If these are small the values of the irreducible characters on the
corresponding classes are rather restricted, being algebraic integers of small
absolute values. The congruence relations (Lemma 2.2.2) allow only certain
degrees for each of these values. The orthogonality relations, in conjunction with
the congruence relations, are sometimes sufficient to exclude so many cases that
the degrees of the irreducible characters, and later the characters themselves,
can be found. In more complicated cases the theory of blocks with cyclic defect
groups can be used, provided the group in question has cyclic Sylow p-subgroups;
see Section 4.12. Observe that congruence relations with respect to a prime give
strong information only if the prime is large. So one usually starts by looking
at the largest prime divisors of the group order.

Since the symmetric group S11 has self-centralizing Sylow 11-subgroups, it
is clear that the same holds true for M11. Being a group of prime degree, M11 is
primitive, and it follows from a theorem of Jordan ([88], p. 171) that a primitive
group of degree 11 cannot contain a 5-cycle unless it is isomorphic to A11 or
S11. So a Sylow 5-subgroup of M11 is generated by a product of two 5-cycles
which has centralizer order 25 in A11 and hence is self-centralizing in M11.

So we assume for the rest of this section that G is a finite group with

|G| = 11 · 10 · 9 · 8, CG(P11) = P11, CG(P5) = P5,

where Pp denotes a Sylow p-subgroup of G. Since

NG(P11)/CG(P11) ≤ Aut(P11) ∼= Z/10Z

it follows from Sylow’s third theorem ([110], theorem I.6.4(iii), p. 35) that
|NG(P11)| = 11 · 5. This implies that the elements g of order 11 in G are
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not rational (not even real) but distribute into two conjugacy classes 11a and
11b with 11b (11a) containing the squares and the inverses of the elements of
11a (and 11b, respectively). Observe that g �→ g2 defines an automorphism of
〈g〉 = P11 of order ten. The same arguments give |NG(P5)| = 5 · 4, so that the
elements of order five form a single conjugacy class 5a of G. We thus have the
following lemma.

Lemma 2.10.1 All characters of G are rational on 5a and have values in
Q(
√
−11) on 11a, and there is at least one pair of characters whose values

on 11a are complex conjugate and non-real.

Because of the orthogonality relations for columns 5a and 1a it follows that
there are exactly five irreducible characters of G which do not vanish on the
class 5a, and the non-zero values on this class are 1 and −1. In particular, by
the congruence relations all but five irreducible characters of G have degrees
divisible by five and all irreducible character degrees of G must be congruent to
±1 or 0 mod 5.

If c and c̄ denote a pair of non-real values of irreducible characters on 11a
then |c|2 ≤ 5 by the orthogonality relations for the classes 11a and 1a. Hence
it follows that c ∈ { 1±√−11

2 , −1±√−11
2 } and |c|2 = 3, so that there is exactly

one pair of irreducible characters of G having non-rational values on 11a and
11− 6 = 5 irreducible characters, with value 1 or −1, or else one character with
value ±2 on 11a and the trivial character. All other irreducible characters must
vanish on 11a and hence have degrees divisible by 11.

The following table gives for each of the above-mentioned possible values of
an irreducible character χ on 11a the degrees χ(1) and values χ(5a) allowed by
the congruence relations. Of course we use the fact that χ(1)2 ≤ |G| and that
χ(1) ≡ ±1, 0 mod 5 as observed above.

χ(11a) χ(1) χ(1) χ(1) χ(1) χ(5a) χ(5a) χ(5a) χ(5a)
1±√−11

2 6 1
−1±√−11

2 5 16 60 0 1 0
1 1 45 1 0
−1 10 0 0

2 24 −1
−2 9 20 −1 0

0 11 44 55 66 1 −1 0 1

The cases χ(11a) = ±2 are easily seen to be impossible by looking at∑
χ∈Irr(G)

χ(1a) · χ(11a) = 0, (2.20)

because there would be just four irreducible characters not vanishing on 11a.
(Block theory would also immediately exclude this case.) The orthogonality
relation

∑
χ∈Irr(G) χ(5a) · χ(11a) = 0 now shows that there must be a pair of
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complex conjugate irreducible characters of degree 16, since only such a pair can
give a negative contribution to the above sum. Since not all characters can be
non-negative on 5a there must be an irreducible character of degree 44, and the
orthogonality relations for the classes 1a and 5a reveal that the last irreducible
character not vanishing on 5a must have degree 11. From (2.20) it follows that
there must be one irreducible character of degree 45 and three of degree ten.
All further irreducible characters must have degree 55. Looking at the sum of
the squares of the degrees found so far, we see that there is exactly one such
character of degree 55. So we see that G has ten irreducible characters and the
following portion of the character table is known at this stage; observe that we
know that for an element g5 of order five we have NG(〈g5〉) ∼= C5 � C4, the full
holomorph of C5, so there must be elements of order four in G.

1a 2a 3a 4a 5a ?? ?? ?? 11a 11b
χ1 1 1 1 1 1 1 1 1 1 1
χ2 10 0 −1 −1
χ3 10 0 −1 −1
χ4 10 0 −1 −1
χ5 11 x 1 0 0
χ6 16 0 0 1 c c̄
χ7 16 0 0 1 c̄ c
χ8 44 y −1 0 0
χ9 45 0 0 1 1
χ10 55 0 0 0

All the zeros in the table are explained by Theorem 3.10.10, which says that
χ(g) = 0 for χ ∈ Irr(G) and g ∈ G if there is a prime p such that p � |G|

χ(1)
but p | |〈g〉|. As one can see this is a very powerful theorem. Furthermore by
orthogonality 1 + x− y = 0. To get the values of x and y we take advantage of
the class multiplication coefficients (see Remark 2.3.1):

akij =
|Ci||Cj |
|G|

∑
χ∈Irr(G)

χ(gi)χ(gj)χ(g−1
k )

χ(1)
with gi ∈ Ci.

We use this for Ci = Cj = 2a and Ck = 5a. Here we may assume that 2a = tG

is a class of “central” involutions, that is t ∈ Z(P2) for some P2 ∈ Syl2(G).
Since the elements of orders 5 and 11 are self-centralizing |CG(t)| = 24 ·3m with
m ∈ {1, 2}. Observe that by Theorem 2.9.9 there are at most (

∑
χ∈Irr(G) χ(1))−

2 · 16− 1 = 186 involutions in G, so that |CG(t)| > 16. We obtain

akij =
|G|

28 · 32m (1 +
x2

11
− y2

44
) =

5 · 32

26 · 32m (48 + 3y2 − 8y).

Since this is an integer, y must be divisible by four and different from zero.
Also m = 1, because otherwise y would have to be divisible also by three
and

∑
χ∈Irr(G) |χ(t)|2 would be too large. So (x, y) ∈ {(3, 4), (−5,−4)} and

|CG(t)| − (x2 + y2) ∈ {23, 7}. To see that the second alternative is impossible
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we observe that there must be a class 6a of elements of order six with cubes in
the class 2a and squares in 3a. Applying Theorem 3.10.10 again with p = 3 we
see that χ9(6a) = 0, and by the congruence relations χ9(t) must be odd and
divisible by three, thus χ9(t)2 ≥ 9. Hence (x, y) = (3, 4) is the only possibility.
The congruence relations in conjunction with the orthogonality relations for the
classes 2a and 1a are now sufficient to find the remaining five values on the class
2a. Since there are at least 165 = |G|

243 involutions Theorem 2.9.9 shows that the
Frobenius–Schur indicators of χ1, χ5, χ8, χ9, χ10 and, say, χ2 are all one, while
those of χ3, χ4 are either both zero, in which case they form a pair of complex
conjugate characters, or 1 and −1. In any case 2a is the only class of involutions.
So at this point the status is as the first part of the following table shows, where
a + in the column ind means that the corresponding character has Frobenius–
Schur indicator 1. We have added the values of χ[12] for χ ∈ {χ2, χ3, χ4}, which
we can compute from the known values of χ:

ind 1a 2a 3a 4a 5a 6a ?? ?? 11a 11b
χ1 + 1 1 1 1 1 1 1 1 1 1
χ2 + 10 2 0 −1 −1
χ3 10 −2 0 −1 −1
χ4 10 −2 0 −1 −1
χ5 + 11 3 1 0 0
χ6 0 16 0 0 1 0 c c̄
χ7 0 16 0 0 1 0 c̄ c
χ8 + 44 4 −1 0 0
χ9 + 45 −3 0 0 0 1 1
χ10 + 55 −1 0 0 0
χ[12] 45 −3 0 1 1

Thus χ[12] = χ9. By Theorem 2.9.3 we have ν2(χ) 
= −1 and χ3, χ4 must be
a pair of complex conjugate characters. Since χ9(3a) = 0 we find χ(3a) ∈
{0, 1, ζ3, ζ

2
3}. The congruence relations eliminate the case 0. Hence χ2(3a) = 1.

The same arguments give χ2(6a) = −1. Furthermore

χ9(4a) =
χ2(4a)2 − 2

2
=
χ3(4a)2 + 2

2
=
χ3(4a)

2
+ 2

2
,

from which we get χ2(4a)2 = χ3(4a)2 +4 = χ3(4a)
2

+4. It follows that 4a must
be a real class. The orthogonality relations for the classes 4a and 11a yield

χ2(4a) = 2, χ3(4a) = χ4(4a) = 0, χ9(4a) = 1.

We find readily that χ[2]
2 = χ1 + χ2 + χ8 and χ

[2]
3 = χ5 + χ8. So we get also

the values χ8(4a) = 0 and χ5(4a) = −1. The last entry χ10(4a) = −1 in the
column of 4a can be found using orthogonality. Since we now know all the
Frobenius–Schur indicators we can count the elements of order four from the
known character values on 2a. We find that any involution has six square roots
in G. Thus there are |G|

243 · 6 = |G|
23 elements of order four so that 4a is the
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only class of elements of this order. Also we see that the elements of order four
have two square roots each, so there are |G|

8 · 2 elements of order eight in G,
which must distribute into two conjugacy classes. So we have found the missing
classes 8a, 8b, which are non-real. We can now find all the character values on
the rational classes 3a and 6a in exactly the same way as we did for those on 4a,
and filling up the table is a very easy task. We finish by showing the complete
table in GAP format:

M11 2 4 4 1 3 . 1 3 3 . .
3 2 1 2 . . 1 . . . .
5 1 . . . 1 . . . . .

11 1 . . . . . . . 1 1

1a 2a 3a 4a 5a 6a 8a 8b 11a 11b
2P 1a 1a 3a 2a 5a 3a 4a 4a 11b 11a
3P 1a 2a 1a 4a 5a 2a 8a 8b 11a 11b
5P 1a 2a 3a 4a 1a 6a 8b 8a 11a 11b

11P 1a 2a 3a 4a 5a 6a 8a 8b 1a 1a

X.1 1 1 1 1 1 1 1 1 1 1
X.2 10 2 1 2 . -1 . . -1 -1
X.3 10 -2 1 . . 1 A -A -1 -1
X.4 10 -2 1 . . 1 -A A -1 -1
X.5 11 3 2 -1 1 . -1 -1 . .
X.6 16 . -2 . 1 . . . B /B
X.7 16 . -2 . 1 . . . /B B
X.8 44 4 -1 . -1 1 . . . .
X.9 45 -3 . 1 . . -1 -1 1 1
X.10 55 -1 1 -1 . -1 1 1 . .

A = E(8)+E(8)ˆ3 = ER(-2) = i2
B = E(11)+E(11)ˆ3+E(11)ˆ4+E(11)ˆ5+E(11)ˆ9
= (-1+ER(-11))/2 = b11

Exercises
Exercise 2.10.1 Let n ∈ N and let p be a prime. Show that the following
GAP function returns a list S such that the number of Sylow p-subgroups of any
simple group of order n is in S:

gap> syl := function( n, p )
> local divs, lpd, S;
> divs := Factors( n ); lpd := divs[Length( divs )];
> divs := Combinations( divs );
> Add( divs[1], 1 ); divs := List( divs, Product );
> S := Filtered( divs, x-> x mod p = 1 and x > lpd );
> S := Filtered( S, x -> Gcd( n/x, p-1 ) <> 1 );
> return( S );
> end;;
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Exercise 2.10.2 Let G be a simple group of order 660. The aim of this exercise
is to construct the character table of G.

(a) Using the Sylow theorems and a well-known theorem of Burnside (see [88],
Hauptsatz IV.2.6, p. 419) show that the Sylow 11-subgroups of G are self-
centralizing and that the elements of order 11 of G are contained in a pair of
mutually inverse conjugacy classes 11a, 11b. Use this to find all non-zero values
of the irreducible characters on these classes.

(b) Using the congruence relations, find the possible degrees of the irreducible
characters of G and then show that G has exactly eight conjugacy classes.

(c) Using Lemma 2.2.2 and the orthogonality relations show that a conjugacy
class of elements of order five cannot be rational. Find the values of the irre-
ducible characters on the elements of order five.

(d) Show that the normalizer of a Sylow 3-subgroup has order 12 and the cen-
tralizer must have order six. Complete the character table.

It is well known that there is, in fact, a simple group of order 660, namely L2(11).
We reproduce the character table of this group in GAP format for convenience:

L2(11) 2 2 2 1 . . 1 . .
3 1 1 1 . . 1 . .
5 1 . . 1 1 . . .

11 1 . . . . . 1 1

1a 2a 3a 5a 5b 6a 11a 11b
2P 1a 1a 3a 5b 5a 3a 11b 11a
3P 1a 2a 1a 5b 5a 2a 11a 11b
5P 1a 2a 3a 1a 1a 6a 11a 11b

11P 1a 2a 3a 5a 5b 6a 1a 1a

X.1 1 1 1 1 1 1 1 1
X.2 5 1 -1 . . 1 B /B
X.3 5 1 -1 . . 1 /B B
X.4 10 -2 1 . . 1 -1 -1
X.5 10 2 1 . . -1 -1 -1
X.6 11 -1 -1 1 1 -1 . .
X.7 12 . . A *A . 1 1
X.8 12 . . *A A . 1 1

A = E(5)+E(5)ˆ4 = (-1+ER(5))/2 = b5
B = E(11)+E(11)ˆ3+E(11)ˆ4+E(11)ˆ5+E(11)ˆ9 = (-1+ER(-11))/2 = b11
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Groups and subgroups

3.1 Restriction and fusion

Throughout this section K is a field and H is a subgroup of a finite group G.
We repeat our convention that all KG- or KH-modules considered are finite
dimensional over K.

Using the embedding KH ⊆ KG any KG-module V can be considered as a
KH-module in a natural way by restriction of the action (see Example 1.1.21).
As such, the module is denoted by VH and is called the restricted module. If χ is
the character of V then the character of VH is simply the restriction χ|H of the
function χ to H and will also be denoted by χH . If the character χ is given as
usual by the list of its values on representatives (gi | 1 ≤ i ≤ r) of the conjugacy
classes C1, . . . , Cr of G, and if (hj | 1 ≤ j ≤ s) is a list of representatives of the
conjugacy classes C ′

1, . . . , C
′
s of H, then

χH(hj) = χ(gfus(j)),

where fus : {1, . . . , s} → {1, . . . , r} is defined by fus(j) = i if hj ∈ Ci. This map
is called the fusion map from H to G; often it is considered as a map

fus : {C ′
1, . . . , C

′
s} → {C1, . . . , Cr}.

Of course, χH must be an N0-linear combination of the irreducible characters
of H. This very simple idea provides a necessary condition for a group H to be
isomorphic to a subgroup of a group G, provided that the character tables of H
and G are known. We illustrate this by an example as follows.

Example 3.1.1 The largest sporadic simple group M, the “Monster,” has just
two conjugacy classes of involutions 2a, 2b. We copy a small part of the ordi-
nary character table (see e.g. [38]), containing just the first three classes and
characters:

179
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M
1a 2a 2b

X.1 1 1 1
X.2 196883 4371 275
X.3 21296876 91884 -2324

Suppose we want to estimate the 2-rank of M . Recall that for a prime p the
p-rank of a finite group G is the largest integer k such that G has an elementary
abelian p-subgroup of order pk.

If H is an elementary abelian subgroup of M of order 2k, any non-trivial
conjugacy class of H must fuse into 2a or 2b in M. Suppose that H contains x
elements of 2a and hence 2k − x− 1 elements of 2b. Then

(χH ,1)H =
1
2k

(χ(1a) + x · χ(2a) + (2k − x− 1) · χ(2b))

for any character χ of M. This leads to a congruence

χ(1a)− χ(2b) + x · (χ(2a)− χ(2b)) ≡ 0 mod 2k.

For χ = X.2 and χ = X.3 these congruences read

216 · 3 + x · 212 ≡ 0 mod 2k,
216 · 325 + x · 212 · 23 ≡ 0 mod 2k.

Solving the first for x we get

x+ 24 · 3 ≡ 0 mod 2l with l = k − 12,

and inserting this in the second congruence we get

24 · (325− 3 · 23) = 24+8 ≡ 0 mod 2l.

Thus l ≤ 12 and hence k ≤ 24. Thus the 2-rank of M is at most 24 (compare
[163], p. 498, where this result is referred to as being well known). �

In the above example the subgroup H of G had a rather trivial structure and
a rather trivial character table. Similar questions might arise for other groups
too. Suppose one knows the character table of the groups G and U , and one
wants to know whether G might have a subgroup isomorphic to U . If this is the
case, then there must be a fusion map

fusGU : {C ′
1, . . . , C

′
s} → {C1, . . . , Cr}

of the set {C ′
1, . . . , C

′
s} of conjugacy classes of U to the corresponding set

{C1, . . . , Cr} of G defined by fus(C ′
i) = Cj if and only if η(C ′

i) ⊆ Cj , where
η : U → H is an isomorphism. One obtains a number of necessary conditions
for such a map, observing that for h ∈ H ≤ G one must have |CH(h)| | |CG(h)|
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and that the fusion map must also be compatible with the power maps of the
corresponding character tables. Furthermore, the composition of the fusion
map with the (irreducible) characters of G must have non-negative integral
scalar products with the irreducible characters of U . Of course these are only
necessary conditions for the existence of a subgroup H ≤ G isomorphic to U .
Also the fusion maps will in general not be unique even when considered up to
character table automorphisms. T. Breuer ([17]) has designed algorithms for
finding possible fusions of conjugacy classes as above and implemented these
in GAP. Figure 3.1 gives the result if one applies the algorithms to the list
(Gi)1≤i≤24 of sporadic simple groups Gi excluding the Monster and Baby Mon-
ster. For each pair (Gi, Gj) of these simple groups (up to isomorphism) with
|Gj | ≤ |Gi| the number f(Gi, Gj) of possible class fusions (up to character table
automorphisms) of Gj into Gi is listed (printing “.” instead of “0” for better
readability). If f(Gi, Gj) = 0 this shows that Gi has no subgroup isomorphic
to Gj ; of course the converse does not necessarily hold.

M11 1
M12 1 1

J1 . . 1
M22 1 . . 1

J2 . . . . 1
M23 1 . . 1 . 1
HS 2 . . 1 . . 1
J3 . . . . . . . 1

M24 1 1 . 1 . 1 . . 1
McL 1 . . 1 . . . . . 1

He . . . . . . . . . . 1
Ru . . . . . . . . . . . 1
Suz 1 1 . . 1 . . . . . . . 1
ON 1 . 1 . . . . . . . . . . 1
Co3 2 1 . 1 . 1 1 . . 1 . . . . 1
Co2 2 . . 2 . 1 1 . . 1 . . . . . 1
Fi22 2 1 . 1 . . . . . . . . . . . . 1
HN 3 1 . . . . . . . . . . . . . . . 1
Ly 4 1 . . . . . . . . . . . . . . . . 1
Th . . . . . . . . . . . . . . . . . . . 1

Fi23 15 3 . . . . . . . . . . . . . . . . . . 1
Co1 2 2 . 1 1 1 1 . 1 1 . . . . 1 1 . . . . . 1

J4 5 6 . 2 . 2 . . 2 . . . . . . . . . . . . . 1
Fi′24 13 47 . 1 . . . . . . 1 . . . . . . . . . 1 . . 1

Figure 3.1. [f(Gi, Gj)]1≤i≤j≤24.

Exercises

Exercise 3.1.1 (a) Verify Figure 3.1 [f(Gi, Gj)]1≤i≤j≤24, using the GAPcommands
PossibleClassFusions and RepresentativesFusions.

(b) Compare this with the table on p. 238 in [38].
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Exercise 3.1.2 Show that the 2-rank of M11 is two using only the character
table printed on p. 177.

Exercise 3.1.3 See refs. [26] and [121]. Let χ ∈ Irr(G) and assume that χH ∈
Irr(H). Let δ : G→ Kn×n be a matrix representation affording χ. Show that

χ(g g′) =
χ(1)
|H|

∑
h∈H

χ(g h−1)χ(h g′) for g, g′ ∈ G,

δ(g) =
χ(1)
|H|

∑
h∈H

χ(g h−1)δ(h).

Hint: Use Exercise 2.1.3.

Exercise 3.1.4 Let χ ∈ Irr(G) with χH ∈ Irr(H) and ν2(χH) = 1. Show that
ν2(χ) ∈ {0, 1}. Give examples for both possibilities.

3.2 Induced modules and characters

In this section let K be a commutative ring and let G be a finite group.
LetH be a subgroup ofG andW aKH-module. SinceKG can be considered

as a (KG,KH)-bimodule, the tensor product WG = KG ⊗KH W is a KG-
module (see Remark 1.1.48), called the module induced from W .

Lemma 3.2.1 Let {g1, . . . , gm} be a left transversal of the subgroup H in G,
i.e. G =

⋃̇
giH. Furthermore, let W be a KH-module which is free (and, as

always, finitely generated) as a K-module. Then

(a) KG =
⊕m

i=1 giKH as K-modules and

WG = {
m∑
i=1

gi ⊗ wi | wi ∈W} =
m⊕
i=1

gi ⊗W

as K-modules. If B = (w1, . . . , wn) is a K-basis of W then

BG = (g1 ⊗ w1, . . . , g1 ⊗ wn, . . . , gm ⊗ w1, . . . , gm ⊗ wn)

is a K-basis of WG.
(b) If δ : H → GL(W ) is the representation afforded by W and

δ : H → GLn(K) , h �→ δ(h) = [δ(h)]B

is the corresponding matrix representation with respect to the basis B, then the
matrices of the “induced representation” δG : G → GL(WG) afforded by the
induced module corresponding to the above basis BG are as follows:

[δG(g)]BG =


δ̇11(g) δ̇12(g) δ̇1m(g)
δ̇21(g) δ̇22(g) δ̇2m(g)

. . .
δ̇m1(g) δ̇m2(g) δ̇mm(g)

 for g ∈ G
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with

δ̇ij(g) =
{

δ(g−1
j ggi) ∈ Kn×n if g−1

j ggi ∈ H,
0n ∈ Kn×n else.

Proof. All this follows from a simple computation.

Remark 3.2.2 If W is a KH-module and g ∈ G then the K-submodule
g ⊗W ≤WG can be considered as a K(gHg−1)-module and will also be denoted
by gW . It is convenient to identify 1⊗W with W , so that W = 1W ≤KH WG.
If W is simple and g ∈ G then gW is also simple. If K is a field and W has
character ϕ, the character of gW is

gϕ : gHg−1 → K, x �→ ϕ(g−1xg).

Proof. This just follows from ghg−1 · g ⊗ w = g ⊗ hw for w ∈ W and h ∈ H.
If U is a KH-submodule of W , then obviously g⊗U is a K(gHg−1)-submodule
of gW .

Remark 3.2.3 For the trivial KH-module KH the induced module (KH)G

is isomorphic to the permutation module K[G/H]. Using the notation of
Lemma 3.2.1, gi ⊗ α �→ αgiH for α ∈ K defines a KG-isomorphism (KH)G →
K[G/H].

The image of a group under an induced representation can be embedded into
a wreath product. We recall the definition of a wreath product.

Definition 3.2.4 If H is a group and P ≤ SΩ is a permutation group acting
on a finite set Ω then the wreath product H � P is defined as

H � P = {(f, σ) | σ ∈ P, f : Ω → H}

with multiplication

(f1, σ1) · (f2, σ2) = (f1,2, σ1 ◦ σ2) with f1,2(i) = f1(i)f2(σ−1
1 (i)).

Remark 3.2.5 With the notation of Lemma 3.2.1 let π : G → SG/H ∼= Sm
be the permutation representation of G on the cosets of H. For g ∈ G let
fg : {1, . . . ,m} → δ(H) be defined by fg(i) = δ(g−1

π(g)(i)ggi). Then

δG(g) �→ (fg, π(g)) δG(G) → δ(H) � Sm
is an injective homomorphism into the wreath product.

Definition 3.2.6 If K is a field and ϕ : H → K is a class function on H and
G = ∪̇mi=1giH then the induced class function ϕG : G→ K is given by

ϕG : g �→
m∑
i=1

ϕ̇(g−1
i ggi) with ϕ̇(x) =

{
ϕ(x) if x ∈ H,

0 else.

It is immediate that ϕG is, in fact, a class function on G and does not depend
on the choice of the transversal (g1, . . . , gm).
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Lemma 3.2.7 Let H be a subgroup of G and let K be a field.

(a) For g ∈ G, ϕ, ϕ′ ∈ cf(H,K) and ψ ∈ cf(G,K) we have

(gϕ)G = ϕG, ϕG + ϕ′G = (ϕ+ ϕ′)G, ϕG · ψ = (ϕ · ψH)G.

(b) Let ϕ ∈ cf(H,K). For g ∈ G let gG ∩H = hH1 ∪̇ · · · ∪̇hHr . Then

ϕG(g) =
r∑
i=1

[CG(hi) : CH(hi)]ϕ(hi).

(c) If W is a KH-module with character ϕ then the induced module WG has
character ϕG.

Proof. (a) is obvious from the definition.
(b) Let T be a left transversal of H in G and let gG∩H = hH1 ∪̇ · · · ∪̇hHr . For

r = 0, that is gG ∩H = ∅, the result is true. Since ϕ and ϕG are class functions
we may assume that hi = gti with ti ∈ T . Let Ti := {t ∈ T | gt ∈ hHi }. Then
ϕG(g) =

∑r
j=1 |Ti| · ϕ(hi). But

t ∈ Ti ⇐⇒ h
t−1
i t
i ∈ hHi ⇐⇒ t−1

i t ∈ CG(hi)H.

Hence |Ti| = [CG(hi) : CG(hi) ∩H] = [CG(hi) : CH(hi)].
(c) follows immediately from Lemma 3.2.1.

Theorem 3.2.8 (Janusz) Let H ≤ G and let e ∈ CH be a primitive idem-
potent such that CHe has character ϕ. Assume that χ ∈ Irr(G) satisfies
(χ, ϕG)G = 1. Then CGeεχ is a simple module with character χ, where εχ
is the block idempotent (see Corollary 2.1.7).

Proof. Obviously (see Exercise 3.2.1) CGe ∼=CG (CHe)G has character ϕG

and CGeεχ is the (χ-) homogeneous component of CGe. Since (χ, ϕG)G = 1
the result follows.

Corollary 3.2.9 Let H0 ≤ H1 ≤ . . . ≤ Hr = G be a chain of subgroups and
χi ∈ Irr(Hi) with block idempotent εi := εχi be such that (χi, χHi

i−1)Hi = 1 for
i = 1, . . . , r and χ0(1) = 1. Then ε0ε1 · · · εr is a primitive idempotent of CG
affording ϕr.

Proof. Use Theorem 3.2.8 repeatedly and note that εχ is a primitive idempo-
tent if χ(1) = 1.

The corollary gives (under its assumption) a method to construct primitive
idempotents of the group algebra and hence irreducible representations of G
over C. For an algorithm to compute irreducible matrix representations along
these lines, see [49]. The corollary also shows that a representation affording
χ = χr can be written over the field Q(ζm), where m is the exponent of G
(compare Theorem 3.10.8 below). The following question was raised by Janusz.
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Question 3.2.10 Given χ ∈ Irr(G) is there a maximal subgroup H ≤ G and
ϕ ∈ Irr(H) such that (χ|H , ϕ)H = 1?

It will be an immediate consequence of Corollary 3.6.15 that the answer to
the question is “yes” for all solvable groups G (and all χ ∈ Irr(G)). The same
is true for symmetric and alternating groups, for Ln(q) and some other classes
of groups (see [99], [159]). But in general the answer to the question is “no.”

Example 3.2.11 For a number of tables (including the tables of the sporadic
simple groups with the exception of the “Baby Monster” and the “Monster”)
in the library of character tables in GAP, all the character tables of maximal
subgroups are also stored together with corresponding fusion. For these groups
Question 3.2.10 can be answered immediately. One finds the following coun-
terexamples:

χ50 ∈ Irr(J4), χ37 ∈ Irr(Ly), χ29, χ30 ∈ Irr(O′N), χ31 ∈ Irr(Th).

Here the names refer to the standard names of sporadic simple groups (see [38]),
and the characters χi (also in the notation of [38]) are such that all irreducible
characters ϕ of maximal subgroups H have multiplicities (χi|H , ϕ) 
= 1. �

Induction and restriction are, in a certain sense, “adjoint operations.”

Theorem 3.2.12 (Frobenius–Nakayama reciprocity) If W is a KH-module
and V is a KG-module, then

HomKG(WG, V ) ∼= HomKH(W,VH),

HomKG(V,WG) ∼= HomKH(VH ,W )

as K-modules.

Proof. (a) Using the embedding W ⊆ WG, w �→ 1 ⊗ w, we get a K-
linear map HomKG(WG, V ) → HomKH(W,VH), ϕ �→ ϕ|W . Conversely, if
ψ ∈ HomKH(W,VH) and G =

⋃̇
igiH with g1 = 1 we define ψ̃ : WG → V by

ψ̃(
∑
i

gi ⊗ wi) =
∑
i

giψ(wi) (wi ∈W ).

One easily checks that ψ̃ is a KG-homomorphism and that ϕ �→ ϕ|W and ψ �→ ψ̃
are inverse K-linear maps.

(b) Keeping the notation of part (a) we define a KH-homomorphism

τ : WG →W,
∑
i

gi ⊗ wi �→ w1

and get a K-linear map

HomKG(V,WG) → HomKH(VH ,W ), ϕ �→ ϕ′ := τ ◦ ϕ.
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For ψ ∈ HomKH(VH ,W ) we define ψ̂ : V →WG by

ψ̂(v) =
m∑
i=1

gi ⊗ ψ(g−1
i v).

It is readily checked that ψ̂ is a KG-homomorphism and that ϕ �→ ϕ′ and ψ �→ ψ̂
are inverse K-linear maps.

There is a corresponding reciprocity theorem for class functions as follows.

Theorem 3.2.13 (Frobenius reciprocity) If K is a field with charK � |G|
and χ ∈ cf(G,K), ϕ ∈ cf(H,K), then

(χ, ϕG)G = (χH , ϕ)H .

Proof. Let G =
⋃̇m

i=1giH as before. Then

(χ, ϕG)G =
1
|G|

∑
g∈G

χ(g)ϕG(g−1) =
1
|G|

∑
g∈G

m∑
i=1

χ(g)ϕ̇(g−1
i g−1gi)

=
1
|G|

m∑
i=1

∑
g∈G

χ(g−1
i ggi)ϕ̇(g−1

i g−1gi) =
1
|G|

m∑
i=1

∑
h∈H

χ(h)ϕ(h−1)

= (χH , ϕ)H .

We collect some basic facts about induced modules.

Lemma 3.2.14 Let H ≤ G with G =
⋃̇m

i=1giH and let W be a KH-module.

(a) If V is a KG-module such that V =
⊕m

i=1 giW then V ∼= WG. In particular,

(KH)G ∼=KG KG as KG-modules.

(b) (Transitivity of induction) Let H ≤ U ≤ G. Then

(WU )G ∼=KG WG as KG-modules.

(c) If W ′ is another KH-module then

(W ⊕W ′)G ∼=KG WG ⊕W ′G.

(d) If V is a KG-module then

(W ⊗K VH)G ∼=KG WG ⊗K V as KG-modules.
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Proof. (a) We have WG =
⊕m

i=1 gi ⊗W , and it is easily checked that

ϕ : WG → V,

m∑
i=1

gi ⊗ wi �→
m∑
i=1

giwi with wi ∈W

defines an isomorphism of KG-modules.
(b) and (c) follow immediately from the basic properties of the tensor prod-

uct and are easily verified.
(d) If (w1, . . . , wm) is a K-basis of W then

(W ⊗K VH)G = {
∑
i,j

gi ⊗KH (wj ⊗K vi,j) | vi,j ∈ V },

WG ⊗K V = {
∑
i,j

(gi ⊗KH wj)⊗K vi,j | vi,j ∈ V }.

We leave it to the reader to check that∑
i,j

gi ⊗ (wj ⊗ vi,j) �→
∑
i,j

(gi ⊗ wj)⊗ givi,j

defines a KG-isomorphism.

Observe that for H = {1} and a KH-module W , which is free as a K-module
(that is, W ∼= K ⊕ · · · ⊕K), the induced module WG is just a free KG-module
(see Lemma 3.2.14(a) and (c)). Thus a KG-module V is projective if and only if
it is isomorphic to a direct summand of WG for some free K{1}-module W . This
observation leads naturally to a generalization of the concept of projectivity for
modules over group algebras. Of course, by Maschke’s theorem (Theorem 1.5.6)
this is only interesting if charK | |G|.

Definition 3.2.15 If H ≤ G is a subgroup of G, a KG-module V is called
H-projective if

V | WG for some KH-module W ,

which is free (and finitely generated) as a K-module.

As mentioned above {1}-projective is the same as projective, if we stick to our
convention that all KG-modules considered are free as K-modules.

Corollary 3.2.16 Assume U ≤ H ≤ G.

(a) If W is a U -projective KH-module then WG is a U -projective KG-module.

(b) If Vp is an H-projective KG-module and V is an arbitrary KG-module then
Vp ⊗K V is an H-projective KG-module.
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Proof. (a) Assume thatW | WH
1 for someKU -moduleW1. By Lemma 3.2.14(c)

and (b) we get
WG | (WH

1 )G ∼=KG WG
1 .

(b) If Vp | WG for some KH-module W then we obtain from Lemma 1.1.39
and Lemma 3.2.14(e)

Vp ⊗K V | WG ⊗K V ∼=KG (W ⊗K VH)G.

We will come back to the concept of relative projectivity in Chapter 4, where
it will play an essential role (see Section 4.8).

Theorem 3.2.17 (Mackey) Let H and U be subgroups of a finite group G.
Let T be a complete set of (U,H)-double coset representatives in G, thus G =⋃̇
g∈TUgH. If W is a KH-module then

(WG)U =
⊕
g∈T

Wg with Wg
∼=KU ((g ⊗W )gHg−1∩U )U ,

and the KU -module Wg depends (up to KU -isomorphism) only on the double
coset UgH and not on the representative g.

Proof. Let G =
⋃̇
i∈IgiH. The subgroup U permutes the cosets of H, and

the orbits are {giH | i ∈ Jg} for g ∈ T , where Jg = {i ∈ I | gi ∈ UgH}. Every
gj for j ∈ Jg can be written in the form gj = ujghj with uj ∈ U and hj ∈ H.
Then

WG =
⊕
i∈I

gi ⊗W =
⊕
g∈T

⊕
j∈Jg

gj ⊗W =
⊕
g∈T

⊕
j∈Jg

uj(g ⊗W )

and the Wg =
⊕

j∈Jg
gj ⊗W are KU -modules, which clearly depend only on

the double cosets UgH. Since

StabU (gH) = gHg−1 ∩ U we have U =
⋃̇

j∈Jg

uj(gHg−1 ∩ U).

From Lemma 3.2.14(a) applied to the K(gHg−1 ∩ U)-submodule g ⊗W of Wg

the assertion follows.

Corollary 3.2.18 Let N � G with G =
⋃̇s

i=1giN . Assume that W is a KN -
module. Then

(WG)N =
s⊕
i=1

gi ⊗W.

In particular, if W is simple, (WG)N is semisimple.

Proof. Take U = H = N and T = {g1, . . . , gs} in Theorem 3.2.17. If W is
simple, then gi ⊗W is also simple by Remark 3.2.2.
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We combine Mackey’s theorem with Theorem 3.2.12 to obtain Theorem
3.2.19.

Theorem 3.2.19 (Intertwining number theorem) Let U,H ≤ G and D
be a set of representatives of (U,H)-double cosets of U and H in G. If V is a
KU -module and W is a KH-module then

HomKG(V G,WG) ∼=K

⊕
g∈D

HomKHg (VHg , (g ⊗W )Hg )

as K-modules, where Hg = gHg−1 ∩ U for g ∈ D.

Proof. Using Theorem 3.2.12 we get

HomKG(V G,WG) ∼=K HomKU (V, (WG)U )

∼=K

⊕
g∈D

HomKU (V, ((g ⊗W )Hg )U

∼=K

⊕
g∈D

HomKHg (VHg , (g ⊗W )Hg ).

(3.1)

Corollary 3.2.20 Let U,H ≤ G and D be a set of representatives of (U,H)-
double cosets in G. If ϕ ∈ CharC(U) and ψ ∈ CharC(H) then

(ϕG, ψG)G =
∑
g∈D

(ϕgHg−1∩U , gψgHg−1∩U )gHg−1∩U .

Lemma 3.2.21 Let H ≤ G with G =
⋃̇
g∈T gH and let V,W be KH-modules.

For ϕ ∈ HomKH(V,W ) define

ϕG(
∑
g∈T

g ⊗ vg) :=
∑
g∈T

g ⊗ ϕ(vg) (vg ∈ V ).

Then
Φ : HomKH(V,W ) → HomKG(V G,WG), ϕ �→ ϕG

is an injective K-homomorphism independent of the choice of the transversal
T . For V = W it is a K-algebra homomorphism. Furthermore we have the
following.

(a) ϕ is injective (surjective) if and only if ϕG is injective (surjective).

(b) A sequence of KH-homomorphisms

{0} −→ V1
ϕ−→ V

ψ−→ V2 −→ {0} (3.2)

is exact if and only if the sequence of KG-modules

{0} −→ V G1
ϕG

−→ V G
ψG

−→ V G2 −→ {0} (3.3)

is exact.



190 Groups and subgroups

(c) Sequence (3.2) is non-split if and only if (3.3) is non-split.

(d) If K is a field and HomKH(V, ((g ⊗ V )gH∩H)H) = {0} for all g ∈ G \ H
then Φ is an isomorphism.

Proof. Obviously ϕG is KG-linear and independent of the choice of the
transversal. We know that Φ is injective because ϕG(1 ⊗ v) = 1 ⊗ ϕ(x) for
v ∈ V .

(a) and (b) follow immediately from the definition of ϕG.
(c) If (3.2) splits then obviously (3.3) also splits. Conversely, assume

that there is a σ ∈ HomKG(V G2 , V G) with ψG ◦ σ = idV G
2

. We define
KH-homomorphisms

π : WG →W ,
∑
g∈T

g ⊗ wg �→ w1, γ : W2 →W , w2 �→ π(σ(1⊗ w2)).

Then it is readily verified that ψ ◦ γ = idV2 , so (3.2) splits also.
(d) follows by applying Theorem 3.2.19, more precisely by applying (3.1),

with U := H.

We recall from Definition 1.6.29 that for A-modules V,W (A a K-algebra)
HomA(V,W ) denotes the factor module of HomA(V,W ) modulo theK-submodule
of projective homomorphisms. The following extension of Frobenius Nakayama
reciprocity will be of importance in Chapter 4.

Corollary 3.2.22 For H ≤ G let V be a KG-module and let W be a KH-
module. Then

HomKG(WG, V ) ∼=K HomKH(W,VH).

Proof. From the proof of Theorem 3.2.12 we know a K-isomorphism
HomKH(W,VH) → HomKG(WG, V ), ψ �→ ψ̃, which is the inverse of the restric-
tion map HomKG(WG, V ) → HomKH(W,VH). It suffices to show that both
isomorphisms map projective homomorphisms to projective homomorphisms.

If ϕ ∈ HomKG(WG, V ) factors through a projective KG-module P , then
ϕ|W factors through PH , which is a projective KH-module by Lemma 1.6.17.
Conversely, if ψ ∈ HomKH(W,VH) factors through the projective KH-module
P1, that is ψ = σ ◦ τ with σ : P1 → VH and τ : W → P1, then ψ̃ = σ̃ ◦ τG with
τG : WG → PG1 , as in Lemma 3.2.21, and

σ̃ : PG1 → VH ,

n∑
i=1

gi ⊗ xi �→
n∑
i=1

giσ(xi) (xi ∈ P1),

as in the proof of Theorem 3.2.12. By Corollary 3.2.16 PG1 is projective and the
proof is complete.

We close this section by giving a number of practical examples showing how
induced characters can be used to compute irreducible characters of a group.
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Example 3.2.23 In this example we show how induction may be used to con-
struct the character table of G = A6 using that of H = A5. We start from the
table of A5 and (as in Example 2.1.23) from the irreducible characters of A6
obtained from the natural permutation characters of A6 of the actions on Ω =
{1, . . . , 6} and

(Ω
2

)
, namely θΩ = χ1 +χ2 and θ(Ω

2) = χ1 +χ2 +χ6. The first line
contains the centralizer orders and the next one the names of the classes. For A6
these are 1a = {1}, 2a = ((1, 2)(3, 4))G, 3a = (1, 2, 3)G, 3b = ((1, 2, 3)(4, 5, 6))G,
4a = ((1, 2)(3, 4, 5, 6))G, 5a = (1, 2, 3, 4, 5)G and 5b = (1, 3, 5, 2, 4)G:

60 4 3 5 5 360 8 9 9 4 5 5
A5 1a 2a 3a 5a 5b A6 1a 2a 3a 3b 4a 5a 5b
ϕ1 1 1 1 1 1 χ1 1 1 1 1 1 1 1
ϕ2 3 −1 0 α α′ χ2 5 1 2 −1 −1 0 0
ϕ3 3 −1 0 α′ α χ6 9 1 0 0 1 −1 −1
ϕ4 4 0 1 −1 −1
ϕ5 5 1 −1 0 0

(χ2)H 5 1 2 0 0 ϕG2 18 −2 0 0 0 α α′

(χ9)H 9 1 0 −1 −1 ϕG4 24 0 3 0 0 −1 −1
ϕG5 30 2 −3 0 0 0 0

with α, α′ = 1
2 (1±

√
5). One can see that (χ2)H = ϕ1+ϕ4 and (χ6)H = ϕ4+ϕ5,

hence, by Theorem 3.2.13,

(ϕG4 , χ2)G = (ϕG4 , χ6)G = 1 and (ϕG5 , χ6)G = 1.

A short calculation gives (ϕG2 , ϕ
G
2 )G = 2, (ϕG4 , ϕ

G
4 )G = 3, (ϕG5 , ϕ

G
5 )G = 4. Hence

ϕG4 − χ2 − χ6 ∈ Irr(G), which we call χ7 with values 10,−2, 1, 1, 0, 0, 0. As
one can see, (χ7)H = ϕ2 + ϕ3 + ϕ4, hence (ϕG2 , χ7)G = 1. Thus we have
ϕG2 − χ7 = χ4 ∈ Irr(G) with values 8, 0,−1,−1, 0, α, α′ and (χ4)H = ϕ2 +
ϕ5. We denote the character which is algebraically conjugate to χ4 by χ5 and
finally get ϕG5 − χ6 − χ4 − χ5 = χ3 ∈ Irr(G). The complete character table of
A6, which we had already computed using the Dixon–Schneider algorithm (see
Example 2.4.5), can be found on p. 120 �

In order to compute the character of a group G induced from a known
character of a subgroup H, it is necessary to know the fusion map. In the
special case that H = 〈g〉 is cyclic, the fusion map of H into G can be obtained
from – and is, in fact, equivalent to – that part of the power maps of G which
give for each prime p with p ≤ |H| the conjugacy class Ci(p) of G which contains
gp. Since the character tables of the cyclic groups are known, we obtain a good
source of characters of G, provided we know its power maps. These induced
characters can be particularly useful for finding character values on algebraically
conjugate conjugacy classes. Of course they will usually have very large norms,
so that in most cases the LLL-algorithm will be applied.

Example 3.2.24 We want to compute the character table of the sporadic sim-
ple Mathieu group M22, which is a 3-fold transitive permutation group on 22
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letters of order 443520 = 27 · 32 · 5 · 7 · 11. We assume that we know the power
maps of G := M22 and the centralizer orders.

Using the command InducedCyclic we induce up to G all linear characters
of all the representatives of the conjugacy classes of cyclic subgroups of G to
get:

gap> t := CharacterTable("M22");; ind := InducedCyclic( t, "all" );;

We obtain 26 characters including the regular one. Observe that the 11 charac-
ters of a cyclic subgroup of order 11 yield only three different characters when
induced to G. We reduce these characters with the trivial character of G and
use the LLL-algorithm in order to obtain one irreducible character (of degree
231) and a list r of ten generalized characters of norm two and three:

gap> irr := Irr(t){[1]};; red := Reduced( t, irr, ind );;
gap> l := LLL( t, red.remainders );;
gap> Append( irr, l.irreducibles ); # irr now contains 2 irreducibles
gap> r := l.remainders;;

Since we know that there are ten irreducible characters missing in our list of
irreducibles, we apply the additive decomposition algorithm of Section 2.8 with
the command OrthogonalEmbeddings; see Example 2.8.16:

gap> m := MatScalarProducts( t, r, r );;
gap> oe := OrthogonalEmbeddingsSpecialDimension( t, r, m, 10 );;
gap> Length( oe.irreducibles );
10

Thus all irreducible characters of G have been obtained. We display the irre-
ducible characters:

M22
1a 2a 3a 4a 4b 5a 6a 7a 7b 8a 11a 11b

X.1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 21 5 3 1 1 1 -1 . . -1 -1 -1
X.3 45 -3 . 1 1 . . A /A -1 1 1
X.4 45 -3 . 1 1 . . /A A -1 1 1
X.5 55 7 1 3 -1 . 1 -1 -1 1 . .
X.6 99 3 . 3 -1 -1 . 1 1 -1 . .
X.7 154 10 1 -2 2 -1 1 . . . . .
X.8 210 2 3 -2 -2 . -1 . . . 1 1
X.9 231 7 -3 -1 -1 1 1 . . -1 . .
X.10 280 -8 1 . . . 1 . . . B /B
X.11 280 -8 1 . . . 1 . . . /B B
X.12 385 1 -2 1 1 . -2 . . 1 . .

with A = 1
2 (−1 +

√−7) and B = 1
2 (−1 +

√−11). �

To give a rough idea of the possible range of applications of the above method
we look at a larger example.
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Example 3.2.25 We want to construct the character table of the sporadic sim-
ple Suzuki group G = Suz (see [38]) using only the power maps and centralizer
orders. Suz is a simple group of order 448345497600 = 213 · 37 · 52 · 7 · 11 · 13
with 43 conjugacy classes.

gap> t := CharacterTable("Suz");;
gap> irr := Irr(t){[1]};; ind := InducedCyclic( t, "all");;
gap> red := Reduced( t, irr, ind );; l := LLL( t, red.remainders );;
gap> r := l.remainders;; List( r , Norm );
[ 2, 2, 2, 11, 10, 15, 14, 12, 12, 11, 11, 8, 6, 14, 14, 10, 14, 18, 13,
14, 19, 10, 27, 29, 25, 21, 21, 24, 18, 22, 15, 19, 21, 19, 27, 25,
24, 23, 30, 23, 23, 20 ]

The characters ind induced by the linear characters of all cyclic subgroups
span a Z-lattice. We have reduced ind with the trivial character; in other words,
we have computed a generating system red.remainders for the orthogonal
complement L ≤ Z Irr(G) of 〈1G〉Z in 〈ind , 1G〉Z and have finally computed
an LLL-reduced basis r for L. No irreducible character of G was found and
r contains only few generalized characters of very small norm. Trying to use
OrthogonalEmbedding at this stage looks hopeless. Instead, we generate more
generalized characters of G by symmetrizing the elements of r, thereby enlarging
the lattice L and fortunately obtaining “vectors” of smaller norm. One might
be tempted to try to enlarge L by forming products, but L is, in fact, closed
under multiplication by Lemma 3.2.7(a):

gap> for i in [2,3,4] do
> Append(r , Symmetrizations(t,r,i) );
> r := Reduced(t,irr,r).remainders;
> r := LLL(t,r).remainders;
> od; List(r , Norm);
[ 2, 2, 3, 2, 4, 3, 3, 5, 5, 4, 8, 6, 7, 6, 14, 12, 12, 11, 11, 7, 10,
5, 10, 11, 10, 12, 13, 8, 5, 12, 13, 9, 6, 15, 11, 12, 16, 9, 12, 14,
12, 13 ]

gap> M := MatScalarProducts( t, r, r );;
gap> oe := OrthogonalEmbeddings( M, 42 );;
gap> Length( oe.solutions ); C := oe.vectors;;
12

This time OrthogonalEmbedding was successful (after an hour of CPU-time
on a Pentium III, 1 GHz workstation) and produced all 12 solutions Xi ∈ Z42×42

of XXT = M (up to equivalence, see Definition 2.8.13). We get these XT
i by

C{oe.solutions[i]} for i = 1, . . . , 12 (see Example 2.8.16). For each solution
Xi the system of equations (2.18) has a unique solution consisting of a list
(ψi,1, . . . , ψi,n) of n = 42 class functions ψi,j of norm one. Observe that we
consider solutions up to sign, so we multiply those class functions ψi,j with
ψi,j(1) < 0 by −1:

gap> Xli := List( oe.solutions , x -> C{x} );;
gap> irrli := List( Xli , x -> ( TransposedMat( x ) )ˆ-1 * r );;
gap> for i in [1..Length( irrli )] do
> for j in [1..Length( irrli[i] )] do



194 Groups and subgroups

> if irrli[i][j][1] < 0 then irrli[i][j] := - irrli[i][j]; fi;
> od;
> od;
gap>

We have arrived at 12 different candidates for the character table of G, all of
which, of course, satisfy the orthogonality relations. Inspecting the values ψi,j [1]
we find four of these candidates contain a “character” of degree zero. Leaving
these aside we next test whether or not (tensor) products reduce properly:

gap> irrli := Filtered(irrli, x -> not 0 in List( x, x_i -> x_i[1] ) );;
gap> Length(irrli);
8
gap> for i in [1..8] do
> red:= Reduced( t, irrli[i], Tensored(irrli[i], irrli[i] ) );
> if red.remainders = [] then Print(i,","); fi;
> od;
5,6,7,8,
gap> irrli := irrli{[5,6,7,8]};;

Thus only four of our candidates pass the test. Next we check whether or
not the nth symmetrizations reduce properly and find that all do for n = 2 but
only one does for n = 3:

gap> for i in [1..4] do
> red:= Reduced( t, irrli[i], Symmetrizations (t, irrli[i], 3) );
> if red.remainders = [] then Print(i,","); fi;
> od;
3,
gap> Append( irr, irrli[3] );

Thus we have computed all irreducibles. If instead of OrthogonalEmbeddings
we had used OrthogonalEmbeddingsSpecialDimension (see Example 2.8.16)
we would have obtained automatically a list of 18 irreducible characters which
could then have been used to produce further reducible characters. But we
intended to find all non-trivial irreducibles in one go. �

In the above examples we were able to compute all irreducible characters of
a group G just by using the power maps of G. We will give further examples
for some sporadic simple groups (cf. [38]) where this approach is successful.

Definition 3.2.26 For a finite group G let

Ind(G,Cyc) = 〈 λG | λ ∈ Irr(〈g〉), g ∈ G 〉Z.

Remark 3.2.27 (a) Ind(G,Cyc) is an ideal in the ring Z Irr(G) of generalized
characters by Lemma 3.2.7 and I1(G) = Ind(G,Cyc) + Z1G is a subring. A
Z-basis of this can be computed from the power maps.

(b) The character tables of the following sporadic simple groups can be com-
puted from the power maps and centralizer orders (see Table 3.1).
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Table 3.1.

G | Irr(G)| Z Irr(G)/I1(G) | Irr(G) ∩ I1(G)|

M11 10 {1} | Irr(G)|
M12 15 C4

2 2
J1 15 {1} | Irr(G)|

M22 12 C3
2 2

J2 21 C5
2×C10 2

M23 17 C2
2 5

HS 24 C5
2×C8×C48 1

J3 21 C2×C6 4
M24 26 C5

2×C8×C16 1
McL 24 C2

6×C18 1
He 33 C7

2×C8×C336 4
Ru 36 C6

2×C3
4×C8×C16×C32 3

Suz 43 C7
2×C4

6×C12×C24×C2
48×C144×C288 1

O′N 30 C2×C6×C24 4
Co3 42 C4

2×C2
6×C12×C24×C2

72×C864 1

Observe that for a set L = {ψ1, . . . , ψs} of generalized characters, the
structure of Z Irr(G)/〈L〉Z can easily be found by computing the elementary
divisors of the matrix of scalar products M = [(χ, ψ)G]χ∈Irr(G),ψ∈L. In GAP
this can be done in the following manner:

gap> t := CharacterTable( "M22" );;
gap> L := InducedCyclic( t, "all" );; Add( L, Irr(t)[1] );
gap> ElementaryDivisorsMat( MatScalarProducts( Irr(t), L ) );
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2 ]

Example 3.2.28 We consider G := SL2(q) for a prime power q. Let B be
the subgroup of lower triangular matrices in G and let T be the subgroup of
diagonal matrices in G. If F×

q = 〈α〉 then T = 〈t〉 with t := diag(α, α−1) ∈ G
and

B = {
[

αk 0
β α−k

]
| 1 ≤ k ≤ q − 1, β ∈ Fq}.

If w :=
[

0 1
−1 0

]
∈ G then it is easily seen that {1, w} is a system of represen-

tatives of (B,B)-double cosets in G (i.e. G = B ∪BwB) and B ∩wBw−1 = T .
Since B/B′ ∼= T ∼= F×

q , it is clear that B has exactly q − 1 linear characters
1B = λ0, . . . , λq−2 over C given by

λi :
[

αk 0
β α−k

]
�→ ζikq−1 ∈ C (0 ≤ i ≤ q − 1).

From Corollary 3.2.20 we get

(λGi , λ
G
j )G = (λi, λj)B + ((λi)T ,w(λj)T )T .
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Since w−1tw = t−1 for t ∈ T we get w(λi)T = (λq−1−i)T .

(a) If q is even we see that χi := λGi = λGq−1−i is an irreducible character
of degree (q + 1) for 1 ≤ i ≤ q−2

2 . Furthermore (λG0 , λ
G
0 )G = 2 and hence

λG0 = 1G + χ0 with χ0 ∈ Irr(G) with χ0(1) = q.

(b) If q is odd then it follows that χi := λGi = λGq−1−i is irreducible of degree
(q + 1) for 1 ≤ i ≤ q−3

2 . Furthermore as in (a) we have λG0 = 1G + χ0 with
χ0 ∈ Irr(G) with χ0(1) = q, and for λ = λ q−1

2
we get (λG, λG)G = 2, hence

λG = χ′ + χ′′ with χ′ + χ′′ ∈ Irr(G).

We proceed to determine the conjugacy classes of G. If X2 +aX+b ∈ Fq[X]

is the minimal polynomial of γ ∈ Fq2 with F×
q2 = 〈γ〉, then s′ :=

[
0 −a
1 −b

]
∈

GL2(q) has eigenvalues γ, γq and hence order q2 − 1 and determinant γq+1.
Consequently s := (s′)q−1 ∈ SL2(q) has order q + 1. We put m := q/2 if q is
even and m := (q−1)/2 otherwise. Then t1, . . . , tm−1 and s1, . . . , sm have pair-
wise different eigenvalues and hence are pair-wise non-conjugate in G. Also it is
easily seen that CG(tk) = 〈t〉 for 1 ≤ k ≤ m−1 and CG(sl) = 〈s〉 for 1 ≤ l ≤ m.

(a) If q is even then the centralizer of u :=
[

1 0
1 1

]
in G is

U := {
[

1 0
β 1

]
| β ∈ Fq} ∼= (Fq,+).

We find |uG|+ (m− 1)|tg|+m|sG| = q3− q− 1 = |G| − 1. Hence we have found
representatives for all conjugacy classes of G:

g 1 u tk sl 1 ≤ k ≤ m− 1
|CG(g)| |G| q q − 1 q + 1 1 ≤ l ≤ m

(b) If q is odd we put z := tm =
[ −1 0

0 −1

]
∈ Z(G) and u′ :=

[
1 0
α 1

]
,

which is conjugate to u in GL2(q) but not in G, and we obtain the following
representatives for cl(G):

g 1 z u zu u′ zu′ tk sl 1 ≤ k ≤ m− 1
|CG(g)| |G| |G| 2q 2q 2q 2q q − 1 q + 1 1 ≤ l ≤ m

To complete the character table we induce up the linear characters µj ∈
Irr(〈s〉) defined by µj(sl) = ζjlq+1. Observe that µjG(sl) = ζjlq+1 + ζ−jl

q+1 for
l = 1, . . . ,m and µj

G(tk) = µj
G(u) = µj

G(u′) = 0 for k = 1, . . . ,m − 1.
We consider the generalized character θj := χ0 · λGj − λGj − µGj and find that
(θj , θj)G = 1, θj(1) > 0 and hence θj ∈ Irr(G) for j = 1, . . . ,m.

(a) If q is even, we see that the number of irreducible characters found equals
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| cl(G)|, so the character table is as follows:

Character table of L2(q) for even q

SL2(q) 1 u tk sl

|CG(g)| |G| q q − 1 q + 1
1G 1 1 1 1
χ0 q 0 1 −1
χi q + 1 1 ζikq−1 + ζ−ik

q−1 0 1 ≤ i ≤ m− 1
θj q − 1 −1 0 −(ζjlq+1 + ζ−jl

q+1) 1 ≤ j ≤ m

1 ≤ k ≤ m− 1 1 ≤ l ≤ m m = q
2

(b) If q is odd then it turns out that (θm+1, θm+1)G = 2. We list the (general-
ized) characters of norm two found so far, writing ε := (−1)m:

g 1 z u zu u′ zu′ tk sl

(χ+ χ′)(g) q + 1 ε(q + 1) 1 ε 1 ε 2(−1)k 0
θm+1(g) q − 1 −ε(q − 1) −1 ε −1 ε 0 2(−1)l+1

To split these up into irreducibles we use the fact that u′ is a power of u, so
that the classes uG and u′G are algebraically conjugate. Also we first consider
the non-faithful characters, that is, the characters of L2(q) = SL2(q)/Z with
Z := Z(SL2(q)). We see that a single pair of algebraically conjugate irreducible
characters is missing, which must be (χ, χ′) if ε = 1 (that is q ≡ 1 mod 4) or
θ, θ′ with θ + θ′ = θm+1 else. Here we denote characters of L2(q) and their
inflations to G by the same symbol. The orthogonality relations are sufficient
to find the values of χ, χ′ or θ, θ′, respectively. Observe that tkZ and tm−kZ
are conjugate, as are slZ and sm−lZ.

Character table of L2(q) for odd q

1Z uZ u′Z tkZ slZ
1G 1 1 1 1 1
χ0 q 0 0 1 −1
χ2i q + 1 1 1 ζ2ik

q−1 + ζ−2ik
q−1 0 1 ≤ i ≤ � q−3

4 �
θ2j q − 1 −1 −1 0 −(ζ2jl

q+1 + ζ−2jl
q+1 ) 1 ≤ j ≤ � q−1

4 �
χ (q + 1)/2 −bq −b′q (−1)k 0 if q ≡ 1 mod 4
χ′ (q + 1)/2 −b′q −bq (−1)k 0 if q ≡ 1 mod 4
θ (q − 1)/2 bq b′q 0 (−1)l+1 if q ≡ −1 mod 4
θ′ (q − 1)/2 b′q bq 0 (−1)l+1 if q ≡ −1 mod 4

1 ≤ k ≤ � q−3
4 � 1 ≤ l ≤ � q−1

4 �

with bq := 1
2 (−1 +

√
εq), b′q := 1

2 (−1 − √εq). The completion of the character
table of G is left to the exercises (Exercise 3.2.10). The character table of L2(q)
was first computed by Schur (see [157], pp. 113–137). �

Exercises

Exercise 3.2.1 Let H ≤ G and let W ⊆ KG be a KH-module. Show that
WG ∼=KG KG ·W .
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Exercise 3.2.2 Let H ≤ G and let W be a KH-module. Show that for any
g ∈ G

(a) WG ∼=KG (g ⊗W )G,

(b) any H-projective KG-module is also Hg-projective.

Exercise 3.2.3 Let P ∈ Sylp(G) and let K be a field of characteristic p. As-
sume that V is a projective KG-module of dimension pk r with p � r. Show
that

V ⊕ · · · ⊕ V︸ ︷︷ ︸
r

| (K[G/P ])G.

Here K[G/P ] is the permutation module on the cosets of P .
Hint: Use Theorem 3.2.12, Lemma 1.6.17 and Corollary 1.6.25.

Exercise 3.2.4 Let H � G with finite index, G =
⋃̇s

i=1giH and let V be a
KG-module. Prove that

Φ:
s∑
i=1

gi ⊗ vi �→
s∑
i=1

giH ⊗ givi for vi ∈ V

defines a KG-isomorphism

Φ: (VH)G → K(G/H)⊗K V,

where the regular module K(G/H) is considered as a KG-module by inflation.

Exercise 3.2.5 Let H ≤ G and let W be a KH-module with W ′ ≤KH W .
Show that W ′G ≤KG WG. Conclude that if WG is simple then W must be
simple.

Exercise 3.2.6 Let N � G with natural projection π : G → Ḡ := G/N and
χ ∈ Irr(G). Prove the following.

(a) If ψ̄ ∈ Irr(Ḡ) then ψ := ψ̄ ◦ π ∈ Irr(G) and (χ|N )G =
∑
ψ̄∈Irr(Ḡ) ψ(1)ψ⊗ χ.

Furthermore ((χ|N )G , (χ|N )G)G = [G : N ] (χ|N , χ|N )N .

(b) If χ|N is irreducible then

{ψ ⊗ χ | ψ̄ ∈ Irr(Ḡ)} = {χ′ ∈ Irr(G) | χ′|N = aχN for some a ∈ N}.

Exercise 3.2.7 Let Z ≤ Z(G) ≤ G and let λ ∈ Hom(Z,C×) be a linear char-
acter of Z. Let

{χ1, . . . , χr} = {χ ∈ Irr(G) | (χZ , λ)Z > 0}.

Show that
∑r
i=1 χi(1)2 = [G : Z] and

∑r
i=1 χi(1)χi(g) = 0 for g 
∈ Z.
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Exercise 3.2.8 Assume that A = [aij ]ni,j=1 ∈ Cn×n is a hermitian matrix of
rank r and assume that the first r column vectors are linearly independent.
Show that there is a matrix P ∈ Cn×n such that

P =
[

Ir C
0 In−r

]
with PTATP̄ =

[
AT

1 0
0 0

]
,

with P̄ denoting the complex conjugate of P and A1 = [aij ]ri,j=1, and conclude
that the submatrix A1 of A is invertible.

Exercise 3.2.9 Compute the character table of the sporadic Hall–Janko group
J2, which is a simple group of order 604800 = 27 · 33 · 52 · 7 with 21 conjugacy
classes (see [38]) using only the power maps and centralizer orders. Observe
that there is not a unique solution (as in Example 3.2.25) but that there are
two such tables which differ by a permutation of the conjugacy classes, which,
however, can be compensated by a permutation of the irreducible characters;
that is, the two tables differ by a character table automorphism.

Exercise 3.2.10 Complete the character table of SL2(q) for odd q.

3.3 Symmetric groups

The representation theory of the symmetric groups is well developed and has a
huge literature, starting with a fundamental paper [61] by Frobenius in 1900.
We will hardly touch this theory, which has a strong combinatorial flavour, and
refer instead to the standard work by James and Kerber [96]. In this section we
just show how the irreducible characters of the symmetric groups over a field of
characteristic zero can be labeled by partitions and how they can be computed
recursively. First we have to introduce some combinatorial notions.

Definition 3.3.1 A partition of an integer n is a sequence λ = (λ1, . . . , λr)
of positive integers λi with

λ1 ≥ λ2 ≥ · · · ≥ λr with
r∑
i=1

λi = n.

We shall write λ � n to indicate that λ is a partition of n. It is standard to ab-
breviate repeated parts of a partition using exponents; for instance (32, 2, 13) :=
(3, 3, 2, 1, 1, 1) � 11.

It is well known that the conjugacy classes of the symmetric group Sn can be
labeled by the partitions of n. Any element σ ∈ Sn can be written as a product of
disjoint λi-cycles σi with n ≥ λ1 ≥ · · · ≥ λr ≥ 1 and thus determines a partition
λ = (λ1, . . . , λr) � n, which we call the type of σ. If aj(σ) ∈ N0 is the number
of j-cycles in this product decomposition of σ, then a(σ) := (a1(σ), . . . , an(σ))
is called the cycle type of σ. Two elements are conjugate in Sn if they have
the same type, and this holds if and only if they have the same cycle type.
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Definition 3.3.2 Let n = {1, . . . , n} = Λ1∪̇ · · · ∪̇Λr with all Λi 
= ∅. If |Λ1| ≥
· · · ≥ |Λr| then Λ = (Λ1, . . .Λr) is called a set partition of n of type λ, where
λ := (|Λ1|, . . . , |Λr|) � n. We define SΛi to be the point-wise stabilizer of n \Λi.
Then

SΛ = SΛ1 × · · · × SΛr

is called a Young subgroup of Sn.

If λ � n then Sn acts transitively on the set partitions of type λ and
SΛ = StabSn

(Λ). We single out one representative of Young subgroups for each
partition λ = (λ1, . . . , λr) � n: we put λi = {λ1+· · ·+λi−1+1, . . . , λ1+· · ·+λi}
for 1 ≤ i ≤ r and

Sλ = Sλ1
× · · · × Sλr

.

This is the Young subgroup for the set partition (λ1, . . . , λr).
Let K be a field with charK 
= 2 and H ≤ Sn. The one-dimensional KH-

module with character εH defined by

εH(σ) =
{

1 for σ ∈ H ∩An,
−1 for σ ∈ H \An,

will be denoted by Kε
H . Furthermore, for λ � n we put

Kλ := KSλ
, the one-dimensional KSλ-module with character 1λ := 1Sλ

,
Kε
λ := Kε

Sλ
, the one-dimensional KSλ-module with character ελ := εSλ

.

From Theorem 3.2.19 we get for λ, µ � n

dimK HomK Sn(Kλ
Sn ,Kε

µ
Sn) =

∑
Sn=∪̇ Sλ g Sµ

dimK HomKHg
(KHg

,Kε
Hg

) (3.4)

with Hg = g Sµ g−1 ∩ Sλ. If σ ∈ Hg and σ(i) = j 
= i, then (i, j) ∈ Hg. Since
charK 
= 2 we obtain

HomKHg (KHg ,K
ε
Hg

) =
{
K if Hg = {1},
0 if Hg 
= {1}. (3.5)

We also conclude that

dimK HomK Sn(Kλ
Sn ,Kε

µ
Sn) = dimK HomK Sn(Kµ

Sn ,Kε
λ
Sn). (3.6)

Lemma 3.3.3 Sλ g Sµ = Sλ h Sµ if and only if |λi ∩ gµj | = |λi ∩ hµj | for all
i, j.

Proof. (a) If h = gλggµ ∈ Sλ g Sµ with gλ ∈ Sλ , gµ ∈ Sµ then

λi ∩ hµj = λi ∩ gλggµµj = gλ(λi ∩ gµj) for all i, j.

(b) Conversely, let λ = (λ1, . . . , λr), µ = (µ1, . . . , µs) and suppose that for
all i, j we have |λi ∩ gµj | = |λi ∩ hµj |. Since

λi =
⋃̇s

j=1
(λi ∩ gµj) =

⋃̇s

j=1
(λi ∩ hµj)
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we can find for each i a permutation gi ∈ Sλi
with

gi(λi ∩ gµj) = λi ∩ hµj for all j.

Putting gλ = g1 · · · gs we see that gλ ∈ Sλ and gλ(gµ
j
) = hµ

j
for all j, so

h−1gλg ∈ Sµ and hence h ∈ Sλ g Sµ.

So, assuming that the numbers of parts of λ and µ are r and s, respectively,
every double coset Sλ g Sµ determines a matrix Aλµ = [aij ] = [|λi∩gµj |] ∈ Nr×s0

with row sums
∑s
j=1 aij = λi and column sums

∑r
i=1 aij = µj .

Let µ = (µ1, . . . , µs) � n and g ∈ Sn. Then g Sµ g−1 = SΛ for the set
partition Λ = (gµ

1
, . . . , gµ

s
), where, of course, gµ

i
= {gx | x ∈ µ

i
}. In order

to evaluate (3.5) we study the intersections g Sµ g−1 ∩ Sλ and for this we need
the notion of associated partitions, which can best be understood by looking at
Young diagrams.

A partition λ can be visualized by a Young diagram, which consists of n
boxes arranged in rows (left-aligned) with the ith row containing λi boxes. For
example, the partition (4,2,1) has the following Young diagram:

Obviously, the lengths of the columns of the Young diagram form another par-
tition λ′ = (λ′

1, λ
′
2, . . .) with λ′

j = |{i | λi ≥ j}|. This is called the partition
associated with λ. Its Young diagram is obtained from that of λ just by
transposing. Thus in our example λ′ = (3, 2, 1, 1) with Young diagram

Definition 3.3.4 For λ = (λ1, . . . , λr), µ = (µ1, . . . , µs) � n we define λ � µ
if and only if for all i ∈ n we have λ1 + · · · + λi ≤ µ1 + · · · + µi. Here we
put λi = µj = 0 for i > r, j > s. This ordering of partitions is called the
dominance order. Furthermore we write λ ≤ µ if there is a k ∈ N such that
λi = µi for i < k and λk ≤ µk. This is the lexicographical order.

Unlike the lexicographical order the dominance order of partitions is not a total
ordering; for example we have neither (2, 2, 2)�(3, 1, 1, 1) nor (3, 1, 1, 1)�(2, 2, 2).
But obviously

λ� µ implies λ ≤ µ. (3.7)
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Lemma 3.3.5 Let n ∈ N and λ = (λ1, . . . , λr), µ = (µ1, . . . , µs) � n.

(a) If g Sµ g−1 ∩ Sλ = {1} for some g ∈ Sn then λ� µ′.

(b) There is exactly one D = Sλ h Sλ′ such that g Sλ′ g−1 ∩Sλ = {1} for g ∈ D.

Proof. Let g ∈ Sn. Since g Sµ g−1 is the stabilizer of (gµ
1
, . . . , gµ

s
) we have

g Sµ g−1 ∩ Sλ = {1} ⇐⇒ |λi ∩ gµj | ≤ 1 for all i, j. (3.8)

We write the elements of gµ
j

in the jth row of the Young diagram, using the
natural ordering of the integers, obtaining an array Yµ,g of numbers, usually
called a Young tableau (so that g Sµ g−1 is the set of h ∈ Sn stabilizing the
rows of Yµ,g set-wise). If (3.8) holds, the numbers 1, . . . , λ1 must occur in
different rows, hence in the first column of Yµ,g, and the numbers 1, . . . , λ1 +λ2
must appear in the first two columns of Yµ,g, and so on. Thus λ1 ≤ µ′

1, then
λ1 + λ2 ≤ µ′

1 + µ′
2, etc. Hence λ� µ′ and (a) is proved.

If µ = λ′, then µ′
i = λi for all i and we can conclude from (3.8) that the ith

column of Yµ,g contains exactly λi, so that

|λi ∩ gµj | =
{

1 for 1 ≤ i ≤ r , 1 ≤ j ≤ λi,
0 for 1 ≤ i ≤ r , λi < j ≤ λ1.

(3.9)

From Lemma 3.3.3 we conclude that there is at most one double coset D =
Sλ h Sλ′ such that (3.8) holds for g ∈ D. Conversely, transposing the Young
tableau Yλ,1 we obtain a Young tableau Yµ,g with g ∈ Sn and (3.9) holds.

Example 3.3.6 Let λ := (4, 2, 1), µ := (3, 3, 1) and g := (1, 2, 5, 4)(3, 6, 7) ∈
S7. Then the Young tableau Yµ,g is given by

Yµ,g =

2 5 6

1 4 7

3

and g Sµ g−1 ∩ Sλ = 〈(1, 4), (5, 6)〉. �

Corollary 3.3.7 Let K be a field with charK 
= 2 and λ, µ � n.

(a) If HomK Sn(Kλ
Sn ,Kε

µ
Sn) 
= {0} then λ� µ′.

(b) dimK HomK Sn(Kλ
Sn ,Kε

λ′
Sn) = 1.

Proof. (a) If λ � µ′ then by Lemma 3.3.5(a) g Sµ g−1 ∩ Sλ 
= 1 for all g ∈ Sn,
so the result follows from (3.5) and (3.4).

(b) follows from Lemma 3.3.5(b) and (3.5) and (3.4).



3.3 Symmetric groups 203

Theorem 3.3.8 Let K be a field of characteristic zero. For any λ � n the K Sn-
modules Kλ

Sn and Kε
λ′

Sn have exactly one irreducible constituent in common.
This constituent is absolutely irreducible and occurs with multiplicity one in both
modules; it will be denoted by [λ] (identifying isomorphic modules). Then {[λ] |
λ � n} is a complete set of representatives of the isomorphism classes of simple
K Sn-modules. Let χλ be the character of [λ]. Then Irr(Sn) = {χλ | λ � n}.

Proof. Since K Sn is semisimple we conclude from Corollary 3.3.7 (and Theo-
rem 1.1.15) thatKλ

Sn and Kε
λ′

Sn indeed have exactly one irreducible constituent
[λ] in common and that dimK EndK Sn([λ]) = 1. Hence [λ] is absolutely irre-
ducible (see Corollary 1.3.7). Let λ, µ � n and assume that [λ] ∼=K Sn [µ]. Since
this is a common constituent of Kλ

Sn and Kε
µ′

Sn we have

HomK Sn(Kλ
Sn ,Kε

µ′
Sn) 
= {0}, and hence λ� µ

by Corollary 3.3.7. Interchanging λ, µ we also get µ� λ, thus λ = µ.

Corollary 3.3.9 Let n ∈ N and λ � n. Then

χλ = 1λSn −
∑
µ>λ

(1λSn , χµ)Sn · χµ, (3.10)

χλ′ = εSn · χλ. (3.11)

Proof. Suppose µ � n and (1λSn , χµ)Sn 
= 0. Then the definition of χµ implies
(1λSn , εµ′Sn)Sn


= 0. From Corollary 3.3.7 we conclude that λ � (µ′)′ = µ. So
(3.10) follows from (3.7), since (1λSn , χλ)Sn = 1.

From Lemma 3.2.14(d) we get εSn · 1λSn = (ελ · 1λ)Sn = ελ
Sn . Hence

(εSn · χλ , 1λ′Sn)Sn = (χλ , εSn · 1λ′Sn)Sn = 1

and
(εSn

· χλ , ελSn)Sn
= (χλ , 1λSn)Sn

= 1.

From this (3.11) follows.

As a special case of (3.10) and (3.11) we obtain

χ(n) = 1Sn
and χ(1n) = εSn

. (3.12)

Of course, (3.10) would also hold with µ > λ replaced by µ � λ. But
the formula is more useful as it stands, because ≤ is a total order and (3.10)
suggests a way to compute the irreducible characters χλ in an inductive manner,
starting with χ(n) = 1Sn and (proceeding in the anti-lexicographic order) from
the corresponding 1λSn . Observe that these permutation characters are easily
obtained; see Exercise 3.3.2. The second formula (3.11) shows that we need to
compute only about half of the χλ in this way.
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Example 3.3.10 We illustrate the procedure for n = 5. Since

(22, 1) = (3, 2)′, (2, 13) = (4, 1)′, (15) = (5)′,

we compute 1λSn only for λ = (5), (4, 1), (3, 2), (3, 12). The conjugacy class of
Sn corresponding to the partition λ will be denoted by Cλ. We order the classes
so that the first four are contained in An:

Cλ C(15) C(22,1) C(3,12) C(5) C(2,13) C(3,2) C(4,1)

|Cλ| 1 15 20 24 10 20 30
1(5)

Sn 1 1 1 1 1 1 1
1(4,1)

Sn 5 1 2 0 3 0 1
1(3,2)

Sn 10 2 1 0 4 1 0
1(3,12)

Sn 20 0 2 0 6 0 0

We know χ(5) = 1Sn
from (3.12) and compute (or infer from Theorem 3.2.13)

that (1λSn , χ(5))Sn
= 1 for all λ. From (3.10) we get χ(4,1) = 1(4,1)

Sn − 1 ·χ(5).
We then compute

(1(3,2)
Sn , χ(4,1))Sn

= 1, (1(3,12)
Sn , χ(4,1))Sn

= 2

and obtain from (3.10) that χ(3,2) = 1(3,2)
Sn − χ(5) − χ(4,1). Finally

(1(3,12)
Sn , χ(3,2))Sn = 1 yields χ(3,12) = 1(3,12)

Sn − χ(5) − 2 · χ(4,1) − χ(3,2).

We thus obtain the character table of S5, the last three lines being obtained
from (3.11):

S5 C(15) C(22,1) C(3,12) C(5) C(2,13) C(3,2) C(4,1)
χ(5) 1 1 1 1 1 1 1
χ(4,1) 4 0 1 −1 2 −1 0
χ(3,2) 5 1 −1 0 1 1 −1
χ(3,12) 6 −2 0 1 0 0 0
χ(22,1) 5 1 −1 0 −1 −1 1
χ(2,13) 4 0 1 −1 −2 1 0
χ(15) 1 1 1 1 −1 −1 −1

�

There is a more efficient recursive way to compute the character values for
the irreducible characters of Sn. To describe it, we need some terminology. For
each node (i, j) of the Young diagram of λ = (λ1, . . . , λr) � n (that is for each
i, j with 1 ≤ i ≤ r, 1 ≤ j ≤ λi) there is a hook Hλ

ij which consists of the node
(i, j), the nodes of λ to the right of (i, j) and the lλij nodes of λ below (i, j). The
node (i, j) is called the corner of Hλ

ij . The number hλij of nodes of Hλ
ij is called

the hook length and lλij is the leg length of Hλ
ij . Removing the nodes of Hλ

ij

from the Young diagram of λ and sorting the rows, so that the lengths of the
rows again have non-increasing lengths, one obtains an empty diagram i.e. [ ]
(if hλij = n) or the Young diagram of a partition of n− hλij , which is denoted by
λ−Rλij . The Young diagram of this partition can also be obtained by removing
the rim of Hλ

ij , as is illustrated in the following example.
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Example 3.3.11 The following diagram shows the Young diagram of the par-
tition λ = (5, 4, 2). We have marked the nodes of the hook Hλ

12 by × and
the nodes of the corresponding rim by ©. We count hλ12 = 6 and lλ12 = 2.
Furthermore λ−Rλ12 = (3, 1, 1).

× × × ×
×
×

©©
© ©

©
© �

We can now state the recursion formula for the computation of the character
χλ of [λ] for λ � n. For this we agree that S0 := {1} and χ[ ] := 1.

Theorem 3.3.12 (Murnaghan–Nakayama formula) Let λ � n and let σ ∈
Sn be of cycle type a(σ) with ak(σ) > 0 for some fixed k ≤ n. Let ρ ∈ Sn−k be
of cycle type a(ρ) with

ai(ρ) =
{
ak(σ)− 1 if i = k,
ai(σ) otherwise.

Then
χλ(σ) =

∑
i,j

hλ
i,j=k

(−1)l
λ
ijχλ−Rλ

ij (ρ),

where the sum extends over all nodes (i, j) of the Young diagram of λ which are
corners of hooks of length k.

Proof. See [96], p. 60.

Thus for σ := (1, 2, 3)(4, 5)(6, 7, 8, 9, 10, 11) ∈ S11 and λ := (5, 4, 2), as in the
above example, we can compute the following (taking k := 6):

χλ(σ) = χ(3,1,1)((1, 2, 3)(4, 5)) = −χ(1,1,1)((1, 2, 3)) + χ(3)((1, 2, 3)) = −1 + 1 = 0

or, using k := 3 and Hλ
14, the only hook of length three,

χλ(σ) = −χ(3,3,2)((1, 2)(3, 4, 5, 6, 7, 8)) = 0,

because the Young diagram of (3, 3, 2) has no hook of length six.

The theorem provides us with an efficient inductive method for comput-
ing character values for Sn. See [145] for a careful description of how this is
implemented in GAP.

Corollary 3.3.13 If λ is a partition of n and σ = (1, . . . , n), then

χλ(σ) =
{

(−1)r if λ = [n− r, 1r] for some 0 ≤ r ≤ n− 1,
0 otherwise.
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Proof. Note that ai(σ) = δi,n, so we have to put k := n in Theorem 3.3.12;
ρ := 1 ∈ S0 and χλ(σ) 
= 0 only if the Young diagram of λ is a hook.

Corollary 3.3.14 Embedding Sn−1 in Sn in the usual way we have

χλ|Sn−1 =
∑

χµ for λ � n,

where we sum over all those µ � n − 1 whose Young diagram is obtained from
the diagram of λ by removing a hook of length one.

Proof. Apply Theorem 3.3.12 with k := 1, observing that a1(σ) > 0 if σ ∈ Sn
is contained in Sn−1.

Thus, for instance,

χ(3,3,2,2,1)|S10 = χ(3,2,2,2,1) + χ(3,3,2,1,1) + χ(3,3,2,2).

Exercises

Exercise 3.3.1 LetK be a commutative ring, let n ∈ N and let Ω := {1, . . . , n}.
Show that for k ∈ N with 1 ≤ k ≤ n/2 the K Sn-module K

(Ω
k

)
introduced in

Example 1.2.25 is isomorphic to K(n−k,k)
Sn .

Exercise 3.3.2 Let λ = (λ1, . . . , λr), µ = (µ1, . . . , µs) � n and σ ∈ Sn have
type σ. Show that 1λSn(σ) is the number of different set partitions (Λ1, . . . ,Λr)
of type λ such that each Λi is a union of sets in {µ

1
, . . . , µ

s
}.

Exercise 3.3.3 Let λ � n. Show that χλ|An is irreducible if and only if λ 
= λ′.
Show also that (χλ|An

, χλ|An
)An

= 2 if λ = λ′.

Exercise 3.3.4 Let λ � n and let rλ be the number of parts of λ. Show that

rλ = (χHλ
,1Hλ

)Hλ
,

where χ := χ(n−1,1) is the natural permutation character of Sn.

3.4 Permutation characters

In this section K is an arbitrary field and G is a finite group.
If G acts transitively on the finite set Ω and H is the stabilizer of some

point ω ∈ Ω, then choosing coset representatives gi with G =
⋃̇n

i=1giH we have
Ω = {gi · ω | 1 ≤ i ≤ n}, and it is clear that we have a KG-isomorphism

KΩ → KH
G

n∑
i=1

αi(gi · ω) �→
n∑
i=1

gi ⊗ αi (αi ∈ K),

where KH denotes the trivial KG-module K. From this we conclude the fol-
lowing.
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Remark 3.4.1 If G acts transitively on the finite set Ω and H is the stabi-
lizer of some point ω ∈ Ω then θ := 1GH is the permutation character of the
corresponding permutation module KΩ. In other words,

θ(g) = |FixΩ(g)|1K for g ∈ G.

From Lemma 3.2.7 we derive the useful formula

θ(g) = |CG(g)| · |g
G ∩H|
|H| · 1K .

It shows for instance how to compute n(θ,m) := |{h ∈ H | |〈h〉| = m}| for
m ∈ N given θ and the character table of G.

Lemma 3.4.2 If H,U ≤ G then (1GH ,1
G
U )G is the number of orbits of U on

G/H and also equals the number of (U,H)-double cosets of U and H in G.

Proof. θ = 1GH is the permutation character of the action of G on G/H. By
Frobenius reciprocity we have (θ,1GU )G = (θU ,1U )U , which by Corollary 2.1.14
is equal to the number of orbits of U on G/H. The orbits of U on G/H are
of the form {ugH | u ∈ u} for some g ∈ G and correspond bijectively with the
double cosets UgH of U and H in G.

Corollary 3.4.3 G acts doubly transitively on the finite set Ω if and only if the
corresponding permutation character θ over C is of the form θΩ = 1G + χ for
some χ ∈ Irr(G).

Theorem 3.4.4 The following are necessary conditions for a character θ of a
finite group G to be a transitive permutation character of G, i.e. the character
of a transitive G-set:

(a) θ(1) divides |G|;
(b) (θ, χ) ≤ χ(1) for each character χ of G;

(c) (θ,1G) = 1;

(d) θ(g) is a non-negative integer for every g ∈ G;

(e) θ(g) ≤ (|G| − θ(1))/(|gG| · |{gG1 ∈ cl(G) | 〈g〉 = 〈g1〉}|) for 1 
= g ∈ G;

(f) θ(g) ≤ θ(gm) for any m ∈ Z;

(g) θ(g) = 0 if the order of g does not divide |G|
θ(1) ;

(h) θ(1) divides |gG| · θ(g) for all g ∈ G;

(i) If a prime p divides |G|/θ(1) just once then, with the notation of Remark 3.4.1,
n(θ, p)/(p− 1) divides |G|/θ(1) and n(θ, p)/(p− 1) ≡ 1 mod p.
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Proof. If H ≤ G is a stabilizer of a point of the corresponding G-set and
θ = 1GH , then clearly θ(1) = [G : H], hence (a) holds. Also

(θ, χ)G = (1GH , χ)G = (1H , χH)H ≤ χ(1)

by Frobenius reciprocity. (c) follows from Lemma 3.4.2. Conditions (d) and (f)
are obvious from the definition. (e) follows easily from Remark 3.4.1 since for
g 
= 1 one always has gG∩H ⊂ H. In our setting |G|

θ(1) = |H|, so if the order of g
does not divide this number, then certainly no conjugate of g can be in H, hence
gG ∩H = ∅, and (g) follows from Definition 3.2.6. Now, [NG(〈g〉) : CG(g)] = k
is the number of different powers of g which are conjugate in G to g. Obviously
k divides |gG ∩H|. Since

|G| · θ(g) = [G : H] · |CG(g)| · |gG ∩H| = θ(1) · |CG(g)| · |gG ∩H|

condition (h) follows. Note that under the assumption of (i) n(θ, p)/(p − 1) is
the number of Sylow-p-subgroups of H.

In GAP a character satisfying the conditions of Theorem 3.4.4 is called a
possible permutation character (see [62], sect. 70.13 and 70.14), and there are
several algorithms implemented (see also [21]) to find all such characters of a
group G (or all those of a fixed degree) using just the character table of G.
Applying these programs to the Mathieu group M11 one obtains 39 possible
permutation characters, and M11 has exactly 39 conjugacy classes of subgroups
(see Section 3.5). But having a closer look – in Section 3.5 we will see how to find
all transitive permutation characters of a group – one observes that there are
three pairs of non-conjugate subgroups having the same permutation characters
and there are also three possible permutation characters which are not permu-
tation characters. This is not at all a rare phenomenon, as Table 3.2, comparing
the number np(G) of possible and the number nt(G) of transitive permutation
characters with the number cls(G) of conjugacy classes of subgroups of some
groups G, shows.

Table 3.2. Numbers of possible permutation characters
G np(G) nt(G) cls(G) G np(G) nt(G) cls(G)

M12 285 137 147 J1 44 37 40
M22 228 108 156 J2 304 140 146
M23 209 122 204 J3 387 124 137

Thus the conditions given in Theorem 3.4.4 are far from sufficient to guar-
antee genuine permutation characters. This remains true even if one takes into
account additional known necessary conditions for permutation characters; see,
for instance [127], sect. 5.3. Hence given the character table of a finite group
G, using this method it is only possible to exclude the existence of subgroups of
G with certain properties, e.g. having a certain order or containing a specified
number of elements of the conjugacy classes of G. It is more difficult to prove
the existence of proper subgroups using just the character table of a group, apart
from cyclic subgroups, dihedral subgroups or subgroups isomorphic to A4,S4 or
A5; see Section 2.5.
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We note that finding all possible permutation characters is feasible only
for groups of moderate size. The situation is better if one restricts oneself to
multiplicity-free permutation characters. In [15] all such characters have been
found for the sporadic simple groups and their automorphism groups.

Remark 3.4.5 In G = L2(29) there are two subgroups H1, H2 ∼= A5 which are
not conjugate in G and for which not only the permutation characters 1Hi

G

are equal for i = 1, 2, but also the integral permutation modules ZΩi with
Ωi = G/Hi are isomorphic as ZG-modules for i = 1, 2 (see [158]).

Remark 3.4.6 There are infinitely many examples of finite groups G having
subgroups H1, H2 ≤ G with 1H1

G = 1H2
G and such that H1 is a maximal

subgroup of G and H2 is not (see [16] and [74]). Thus one cannot decide from
the permutation character of a transitive action whether or not it is primitive.

Remark 3.4.7 The sporadic simple group J2 has two subgroups H1, H2 of
order 16 with 1H1

G = 1H2
G, but H1 is abelian whereas H2 is non-abelian.

Thus the information on fixed points of elements is not enough to charac-
terize a permutation action. On the other hand, the permutation character in
conjunction with the power maps of a given group G provides complete infor-
mation on the cycle types of the permutations afforded on the G-set.

Lemma 3.4.8 Let Ω be a finite G-set with permutation character θ and cor-
responding homomorphism π : G → SΩ. For any g ∈ G and i ∈ N let cyci(g)
denote the number of i-cycles of π(g). Then

cyci(g) =
1
i

∑
j|i

µ(
i

j
) θ(gj), (3.13)

where µ denotes the arithmetical Möbius function (see Example 2.5.4).

Proof. Obviously cyc1(g) = θ(g) and, more generally, θ(gj) =
∑
i|j i · cyci(g)

for any j ∈ N. From this the result follows using Möbius inversion.

Note that (3.13) yields another necessary condition for a permutation charac-
ter θ: the right hand side must be a non-negative integer for any i ∈ N and g ∈ G.
Observe also that for a prime p and r ∈ N we get θ(gp

r

)−θ(gpr−1
) = pr ·cycpr (g),

a result that should be compared with Exercise 2.2.5.

Exercises
Exercise 3.4.1 Given the character table of a group G and the permutation
character 1HG of a subgroup H ≤ G write a GAP program that computes for
characters χ, ψ of G the scalar product (χH , ψH)H .

Exercise 3.4.2 Let G ∼= Cn and let ϕ be the Eulerian function. Show that

(a) IrrQ(G) = {χd | d divides n} with χd(1) = ϕ(d) and χd 
= χm for d 
= m;
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(b) G has for each d | n exactly one permutation character θd of degree d;

(c) θd =
∑
m|d ψm and ψd =

∑
m|d µ( dm ) θm;

(d) θd(g) = d
nθn(gd) for g ∈ G and θn is the regular character of G.

Hint: For (a) see Exercise 1.5.6.

3.5 Tables of marks

As we have seen in Section 3.4, the permutation character of a transitive per-
mutation representation of a finite group G is not sufficient to characterize the
action of G. The permutation character just gives the number of fixed points
of any cyclic subgroup of G. So it is natural to enhance this information. We
recall from basic algebra that every transitive G-set is isomorphic to a coset
space G/H for some subgroup H ≤ G and that G/H is isomorphic as a G-set
to G/U if and only if H and U are conjugate in G.

Throughout this section G is assumed to be a finite group.

Definition 3.5.1 Let L(G) = {H1, . . . , Hn} be a complete set of represen-
tatives of the set of conjugacy classes of subgroups of a finite group G. For
simplicity we will assume that |Hi| ≤ |Hj | for i ≤ j.

(a) If Ω is any G-set then the function

mΩ : L(G) → N0, H �→ |FixΩ(H)|

is called the mark of Ω; it is often considered as a row-vector.

(b) The table of marks of G is the square matrix

M(G) = [ mG/Hi
(Hj)]1≤i,j≤n .

Remark 3.5.2 It is clear that conjugate subgroups of G have the same number
of fixed points on any G-set. In fact, it is easily seen that, for any finite G-set
Ω and any subgroup H ≤ G, one has |FixΩ(H)| = |HomG(G/H,Ω)|. Thus
the mark of a G-set is independent of the choice of representatives in L(G) and
likewise M(G). Of course, M(G) depends on the ordering of L(G).

Lemma 3.5.3 If M(G) = [mij ] = [ mG/Hi
(Hj)] is the table of marks of G then

(a) mij = [NG(Hi) : Hi] · bij, where bij is the number of subgroups conjugate
to Hi which contain Hj. In particular mii = [NG(Hi) : Hi].

(b) If H1 = {1} then mi1 = [G : Hi].

(c) The number cij of subgroups of Hi which are conjugate in G to Hj is equal
to

cij =
mij ·mj1

mi1 ·mjj
= |Hi| ·mij · |NG(Hj)|−1.
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Proof. By definition

mij = |{gHi | g ∈ G , u · gHi = gHi for all u ∈ Hj }|

= |{gHi | g ∈ G , Hj ≤ Hg−1

i }|
= [NG(Hi) : Hi] · |{Hg

i | g ∈ G ,Hj ≤ Hg
i }|,

thus (a) holds, and (b) follows immediately from (a). For (c) observe that with
the above notation

|{(U, V ) | U ≤ V, U =G Hj , V =G Hi}| = bij · [G : NG(Hj)]
= cij · [G : NG(Hi)],

from which the result follows using (a).

Corollary 3.5.4 Let M(G) be the table of marks of G.

(a) M(G) is invertible in Qn×n.

(b) Two finite G-sets Ω and Ω′ are isomorphic if and only if they have the same
mark, i.e. if and only if mΩ = mΩ′ .

(c) If Ω is a finite G-set with mark mΩ having ai orbits isomorphic to G/Hi

then
[a1, . . . , an] = mΩ ·M(G)−1.

Proof. (a) By Lemma 3.5.3(a) and our assumption on the ordering of L(G),
M(G) is a lower triangular matrix with [NG(Hi) : Hi]1≤i≤n on the diagonal.

Any finite G-set can be decomposed into orbits which are isomorphic to G-
sets of the form G/Hi. If ai orbits of Ω are isomorphic to G/Hi then mΩ =∑
aimG/Hi

. By (a) the mG/Hi
are linearly independent, so the other results

follow.

The table of marks of G contains some information about the Möbius func-
tion of the subgroup lattice of G (see Definition 2.5.3). In particular one can get
the values µG(Hj , G) used in Section 2.5 (see Lemma 2.5.5 and Example 2.5.8).

Lemma 3.5.5 Let µG be the Möbius function of the subgroup lattice of the finite
group G. Then

[M(G)−1]i1 = |NG(Hi)|−1 · µG({1}, Hi), (3.14)

[M(G)−1]nj = [NG(Hj) : Hj ]−1 · µG(Hj , G). (3.15)

Proof. Using the notation of Lemma 3.5.3, let [aij ] = [cij ]−1. Then

δi,k =
n∑
j=1

cijajk =
∑
U≤Hi

aUHk
,
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where aUHk
= ajk if U =G Hj . For k = 1 this implies that ai1 = µG({1}, Hi).

Since

M(G)−1 = diag(|NG(H1)|, . . . , |NG(Hn)|)−1 · [cij ]−1 · diag(|H1|, . . . , |Hn|),

the first result follows. Similarly, let [dij ] = [bij ]−1 with the notation of Lemma
3.5.3. Then

δi,k =
n∑
j=1

dijbjk =
∑
Hk≤U

dHiU ,

where dHiU = dij if U =G Hj . For i = n this implies that dni = µG(Hi, G).
Since

M(G)−1 = [bij ]−1 · diag([NG(H1) : H1], . . . , [NG(Hn) : Hn])−1

the second equation follows.

Observe that in general the value µG(U, V ) for subgroups U, V ≤ G does
depend on U and V and not only on the conjugacy classes to which U and V
belong. On the other hand, there is, of course, a Möbius function, sometimes
denoted by λG for the poset of conjugacy classes of subgroups of G, writing
[Hi] ≤ [Hj ] if and only if Hi ≤G Hj . If G is solvable there is a relation

µ(H,G) = [NG′(H) : H ∩G′] λ([H], [G])

for H ≤ G, but this does not hold in general; see [141].
For small groups G one can compute the table of marks of G by computing

the whole subgroup lattice of G and using Lemma 3.5.3. This is implemented,
for example, in GAP. In addition GAP contains a large library of table of marks
of simple groups, which is almost complete up to order 1010. For the larger
groups their tables of marks have not been computed via the whole subgroup
lattice, but in an inductive procedure; see e.g. [146].

Example 3.5.6 The table of marks of A5 is as follows:

A5 /C1 60
A5 /C2 30 2
A5 /C3 20 . 2
A5 /V4 15 3 . 3
A5 /C5 12 . . . 2
A5 / S3 10 2 1 . . 1
A5 /D10 6 2 . . 1 . 1
A5 /A4 5 1 2 1 . . . 1
A5 /A5 1 1 1 1 1 1 1 1 1
Hj := C1 C2 C3 V4 C5 S3 D10 A4 A5

Here the zeros above the diagonal have been omitted and those below the diag-
onal been replaced by dots. Looking at the columns with numbers 1, 2, 3, 5 we
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get the full set of transitive permutation characters of A5, keeping in mind that
the generators of a C5 in A5 fall into two conjugacy classes of elements. Observe
that the table of marks contains all the information encoded in the subgroup
pattern (compare Example 2.5.8) but also additional information, which can,
in general, not be deduced from the subgroup pattern. A further advantage
of the table of marks is that there are good checks for its consistency, namely
any (point-wise) product of two rows must be a non-negative integral linear
combination of the rows, as will soon become obvious. �

Marks are also useful when one wants to decompose G-sets into orbits. To
this end we introduce the following notions (see [139]).

Definition 3.5.7 We fix a G-set V . For H ≤ G and any W ⊆ V we put
CG(W ) := {g ∈ G | g w = w for all w ∈W} and define

H := CG(FixV (H)), W := FixV (CG(W )),

and call this the V -closure of H and and W , respectively. Note that H is called
V -closed if H = H.

Clearly we have H ≤ H and H = H for H ≤ G. Similarly we see W ⊆ W

and W = W for W ⊆ V . Also any stabilizer H = StabG(v) for v ∈ V is
necessarily V -closed.

Example 3.5.8 Let Ω be a G-set and let V := FΩ be the corresponding per-
mutation module over a finite commutative ring F . Then V is also a G-set,
which we might want to decompose into G-orbits. Here we see that for H ≤ G
we have

FixV (H) = 〈O+
1 , . . . ,O+

r 〉F ,
where O1, . . . ,Or are the H-orbits in Ω (and O+

i =
∑
ω∈Oi

ω ∈ V , as before).
Clearly g ∈ H if and only if gOi = Oi for all i = 1, . . . , r, so H is the largest
subgroup of G having the same orbits on Ω as H has.

Consider, for example, G := Sn with its natural action on Ω = {1, . . . , n}
and V := FΩ. Then the V -closed subgroups of G are just the Young sub-
groups; see Definition 3.3.2. If SΛ is a Young subgroup for the set partition
Λ = (Λ1, . . . ,ΛrΛ) of Ω then |FixV (SΛ)| = qrΛ , where q = |F |. Thus the mark
of the G-set V is completely determined:

mV (H) =
{

0 if H is not a Young subgroup,
qrΛ if H =G SΛ .

Note that rΛ = (χH , 1H)H , where H = SΛ and χ is the character of CΩ (see
Exercise 3.3.4). Let fΛ

V be the number of orbits of G on V isomorphic to G/ SΛ.
Write Λ′ ≥ Λ if Λ′ = (Λ′

1, . . . ,Λ
′
s) and every Λ′

j is contained in some Λi and
thus SΛ′ ≥ SΛ. Then

qrΛ =
∑

Λ′≥Λ

fΛ′
V · [NG(SΛ′) : SΛ′ ].
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Using Möbius inversion we obtain

fΛ
V = [NG(SΛ) : SΛ]−1

∑
Λ′≥Λ

µn(Λ,Λ′) · qrΛ′ ,

where µn is the Möbius function of the poset (P(n),≤) of set partitions of
{1, . . . , n}. But {Λ′ ∈ P(n) | Λ′ ≥ Λ} is isomorphic as a poset to P(r) with
r := rΛ, and

∑
Λ∈P(r) µr({{1}, . . . , {r}}, Λ) · qrΛ is just the number of injective

maps from {1, . . . , r} to F . Hence

fΛ
V = [NG(SΛ) : SΛ]−1

rΛ−1∏
i=0

(q − i).

�

We will now generalize the ideas of Example 3.5.8.

Definition 3.5.9 Let [γij ] := M(G)−1 and H =G Hj ∈ L(G). Then for any
χ ∈ CharC(G) we call

fHχ =
n∑
i=1

γij X
di ∈ Q[X] with di := (χHi

,1Hi
)Hi

(3.16)

the character polynomial of χ and H.

If χ = χCΩ is the permutation character with some transitive G-set Ω and
Fq is any finite field, then FqΩ is a G-set with mark mFqΩ : Hj �→ qdj with dj :=
(χHj

,1Hj
)Hj

. From Corollary 3.5.4(c) we find that the number of orbits of G on
FqΩ with stabilizers conjugate to Hj is precisely f

Hj
χ (q). From Example 3.5.8

we obtain for the natural permutation character χ of G := Sn that fHχ = 0 if H
is not a Young subgroup of G and, for a Young subgroup SΛ,

fSΛ
χ = [NG(SΛ) : SΛ]−1

rΛ−1∏
i=0

(X − i).

Note that Sn can be considered as an example of a real reflection group, that is a
finite subgroup of GL(Rn) generated by reflections (= elements g with FixRn(g)
a hyperplane). The character polynomials for the natural characters of all real
and complex reflection groups have been computed (see [131] and [139]). They
all split into linear factors with non-negative integers as roots.

Now let V be an arbitrary FqG-module with character ϕ and assume that
q = pr with p � |G|. Applying Exercise 2.1.4 to H ≤ G we get |FixV (H)| =
qd, where (ϕ,1H)H ≡ d mod p. Thus if p > dimV the mark mV can be
determined. Using Corollary 3.5.4(c), for each H ≤ G, the number of orbits of
G on V which are isomorphic to G/H can be found.

In fact, in Chapter 4 we will attach (in the above situation) an ordinary
character χ ∈ CharC(G) to V , called the “Brauer character” of V , such that
|FixV (H)| = qd with d = (χH ,1H)H . Then the number of orbits of G on V
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which are isomorphic to G/H is again fHχ (q). Observe that if χ is faithful, there
can only be χ(1) values of q such that χ is the Brauer character of an FqG-module
without a regular G-orbit. We will see in Section 4.14 an example where it is
important to know whether or not an FqG-module contains a regular G-orbit.

Example 3.5.10 As an example we list in Table 3.3 the polynomials fHj
χ for

χ ∈ {χ2, χ4} ⊆ Irr(A5) (see Example 2.1.24) and Hj as in Example 3.5.6.
Observe that χ4 = χ−1A5 , where χ is the natural permutation character of A5,

Table 3.3. List of polynomials fHj
χ2 and f

Hj
χ4

Hj f
Hj
χ2 f

Hj
χ4

C1
1
60 (X − 5)(X − 1)(X + 6) 1

60 (X − 3)(X − 2)(X − 1)(X + 6)
C2

1
2 (X − 1) 1

2 (X − 2)(X − 1)
C3

1
2 (X − 1) 1

2 (X − 2)(X − 1)
V4 0 0
C5

1
2 (X − 1) 0

S3 0 X − 1
D10 0 0
A4 0 X − 1
A5 1 1

and its character polynomials should be compared with that of χ which is given
for all n in Exercise 3.5.6. Note that in Table 3.3 fC1

χ2
(7) is not an integer. This

is an indication that χ2 is not a Brauer character of an F7 A5-module, which
will not be surprising. �

We recall that for two G-sets M,N the disjoint union M ∪̇N and the Carte-
sian product M ×N are also G-sets in a natural way. Since

FixM∪̇N (H) = FixM (H)∪̇FixN (H)

and
FixM×N (H) = FixM (H)× FixN (H)

for G-sets M,N and any subgroup H ≤ G, it follows that

mM∪̇N = mM +mN , mM×N = mM ·mN , (3.17)

with the usual point-wise operations. Thus the Z-linear combinations of marks
of G form a ring which is isomorphic to the Burnside ring of G defined as follows.

Definition 3.5.11 The Burnside ring B(G) is the Grothendieck ring of the
category of finite G-sets; i.e. as an abelian group B(G) = F/F0, where F is the
free abelian group generated by the isomorphism classes (M) of finite G-sets
and

F0 = 〈 (M ∪̇N)− (M)− (N) | M,N finite G-sets 〉Z.
Defining (M) · (N) = (M × N) on F as above, and extending Z-linearly, F
becomes a ring and F0 an ideal, so B(G) also becomes a ring.
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For any G-set M we will denote the image of (M) in B(G) by [M ]. It is
easily seen that [M ] = [N ] if and only if M and N are isomorphic G-sets. Also
it is clear that B(G) is a commutative ring with Z-basis ([G/H1], . . . , [G/Hn]),
keeping our notation from Definition 3.5.1 with identity element [G/G]. It
follows from the above and Corollary 3.5.4 that B(G) is, in fact, isomorphic to
the ring of Z-linear combinations of marks. Also putting

ϕH : [M ] �→ mM (H) (3.18)

for any subgroup H ≤ G, and extending Z-linearly, we get a ring homomorphism

ϕH : B(G) → Z.

Extending ϕH Q-linearly, it is clear that for any H ≤ G

ϕH : Q⊗ B(G) → Q

is an irreducible character of the Q-algebra Q ⊗ B(G), so that the table of
marks M(G) can also be considered as the “character table” of this algebra
with respect to the basis {[G/H1], . . . , [G/Hn]}, with the characters being the
columns.

The product of marksmG/Hi
of transitiveG-sets has a simple group-theoretical

interpretation as follows.

Lemma 3.5.12 For Hi, Hj ∈ L(G) let Dij be a set of double coset representa-
tives of Hi, Hj in G, i.e.

G =
⋃̇

d∈Dij

HidHj .

Then
mG/Hi

·mG/Hj
=

∑
d∈Dij

mG/(Hd
i ∩Hj).

Proof. Since G · (gHi, g
′Hj) = G · (Hi, dHj) if and only if g−1g′ ∈ HidHj , we

have

G/Hi ×G/Hj =
⋃̇

d∈Dij

G · (Hi, dHj).

Using (3.17) the result follows immediately, because

StabG((Hi, dHj)) = Hi ∩Hd−1

j =G Hd
i ∩Hj .

Restricting the marks to the set of cyclic subgroups we immediately obtain
a result that might of course also have been deduced from Mackey’s Theo-
rem 3.2.17 and Lemma 3.2.14(d).
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Corollary 3.5.13 With the notation of Lemma 3.5.12 we have

1Hi

G · 1Hj

G =
∑
d∈Dij

(1Hd
i ∩Hj

)G.

Remark 3.5.14 Lemma 3.5.12 has many practical applications. For instance,
it can be used to compute the conjugacy classes of subgroups which are inter-
sections of two maximal subgroups of a group G, provided the table of marks of
G is known. All the results of [105], which lists the intersections of the maximal
subgroups of the simple groups of order less than 106, can be automatically
computed using the GAP library of tables of marks. A similar application is the
computation of subdegrees (see Definition 1.2.13) of a transitive G-set or, more
generally, the lengths of the orbits of a subgroup of G on another transitive
G-set.

Example 3.5.15 From the table of marks of A5 (Example 3.5.6) we see, for
instance,

[A5 /V4] · [A5 /V4] = 3[A5 /V4] + 3[A5 /{1}],
[A5 /V4] · [A5 /D10] = 3[A5 /C2].

Thus there are six (V4,V4)-double cosets and three (V4,D10)-double cosets in
A5. The subdegrees of A5 /V4 are 1, 1, 1, 4, 4, 4, whereas the lengths of the
D10-orbits on A5 /V4 are 5, 5, 5 (see Remark 1.2.12). Furthermore it follows for
instance that different Klein 4-groups in A5 intersect trivially. �

We recall that

m :
n∑
i=1

ai[G/Hi] �→
n∑
i=1

aimG/Hi
(ai ∈ Z)

gives an embedding
m : B(G) → ZL(G) ∼= Zn.

In this context ZL(G) is often called the ghost ring of G. From Lemma 3.5.3
we get the following.

Remark 3.5.16 ([NG(H) : H]−1m([G/H]))H∈L(G) is a Z-basis of ZL(G). Thus

[ZL(G) : m(B(G))] =
∏

H∈L(G)

[NG(H) : H].

Lemma 3.5.17 With the above notation the image of m is given by

m(Ω(G)) = {f ∈ Z
L(G) |

∑
gH∈NG(H)/H

f(〈gH〉) ≡ 0 mod [NG(H) : H], H ≤ G}.
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Proof. (a) Let us denote the right hand side of the asserted equality by Y
for the moment. If M is any G-set and H ≤ L ≤ NG(H) then L/H acts on
FixM (H) and FixFixM (H)(L/H) = FixM (〈L,H〉). Hence, using the well known
Cauchy–Frobenius–Burnside lemma (see Corollary 2.1.14)∑

gH∈NG(H)/H

mM (〈gH〉) =
∑

g∈NG(H)/H

|FixFixM (H)(g)| = |NG(H)/H| · r,

where r is the number of NG(H)/H-orbits in FixM (H). This proves that
m(Ω(G)) ⊆ Y .

(b) Conversely, it is clear that [ZL(G) : Y ] ≤
∏
H∈L(G)[NG(H) : H], since

for any H ∈ L(G) we have fH ∈ ZL(G) defined by fH(K) = δH,K · [NG(H) : H]
is in Y . From Remark 3.5.16 we conclude that m(Ω(G)) = Y .

What properties of subgroups can be read off from the table of marks?
Obviously, if M(G) is given then for every subgroup H ≤ G for which the mark
mG/H is known the number of subgroups of each possible order can be computed
using Lemma 3.5.3. Since cyclic groups are characterized by the fact that they
have exactly one subgroup for each divisor of its order (see Exercise 3.5.1), it is
clear that it can be decided whether or not H is cyclic. On the other hand, it
is not possible in general to decide whether or not H is abelian.

Definition 3.5.18 For a finite group G and a prime p let Op(G) be the inter-
section of all normal subgroups N of G with G/N being a p-group.

Obviously Op(G) is a characteristic subgroup of G, the smallest normal sub-
group of G with a p-group as factor group.

Theorem 3.5.19 (Dress) Suppose that H and L are subgroups of G. Then
Op(H) =G Op(L) if and only if ϕH ≡ ϕL mod p, with ϕH as in (3.18).

Proof. Of course the last assertion means ϕH(x) ≡ ϕL(x) mod p for all
x ∈ B(G), but obviously it is sufficient to prove this congruence for a Z-basis
of B(G), e.g. of all x = [G/U ], (U ≤ G). So we have to show that Op(H) =G

Op(L) if and only if

mG/U (H) ≡ mG/U (L) mod p for all subgroups U ≤ G. (3.19)

If M is any finite G-set and H�N ≤ G then N and also N/H act on FixM (H).
If, in addition, N/H is a p-group then all N/H-orbits on FixM (H) have p-power
length, hence |FixM (H)| ≡ |FixM (N)| mod p. In particular it follows that

mG/U (H) ≡ mG/U (Op(H)) mod p for all subgroups U ≤ G. (3.20)

This already proves one implication because Op(H) =G Op(L) implies that
mG/U (Op(H)) = mG/U (Op(L)).
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For the converse we assume (3.19) and let

Hp/Op(H) ∈ Sylp(NG(Op(H))/Op(H)).

Observe that Op(Hp) = Op(H) and consequently Op(H) is characteristic in
Hp. Hence NG(Hp) ≤ NG(Op(H)), so that by the choice of Hp the prime p
does not divide [NG(Hp) : Hp] = mG/Hp

(Hp). Since by (3.20)

mG/Hp
(H) ≡ mG/Hp

(Op(H)) = mG/Hp
(Op(Hp)) ≡ mG/Hp

(Hp) 
≡ 0 mod p

we get from our assumption ((3.19) with U = Hp) that mG/Hp
(Lp) 
= 0, where

Lp is defined in the same way as Hp. By Lemma 3.5.3 Lp is contained in a
conjugate of Hp. By reversing the roles of H and L we conclude that Hp =G Lp
and hence also Op(H) = Op(Hp) =G Op(Lp) = Op(L).

Corollary 3.5.20 Given the table of marks M(G) of a finite group G one can
find the columns corresponding to subgroups H ≤ G with H = Op(H) for any
prime p. In particular one can determine those columns corresponding to solv-
able subgroups.

Proof. If L(G) = {H1, . . . , Hn} is as in Definition 3.5.1 it follows from
Theorem 3.5.19 and Lemma 3.5.3 that Op(Hi) =G Hj with

j = min{k | mG/Hi
(Hk) 
= 0 and ϕHi ≡ ϕHk

mod p }.

Furthermore it is well known that solvable groups are characterized by the fact
that every non-trivial subgroup has a normal subgroup of index p for some
prime p.

Theorem 3.5.21 (Dress) A finite group G is solvable if and only if [G/G] is
the only idempotent in the Burnside ring B(G). In general there is a bijection
between the set or primitive idempotents of B(G) and the set of conjugacy classes
of perfect subgroups of G.

This is equivalent to saying that the connected components of the prime spec-
trum of B(G) are in bijection with the conjugacy classes of perfect subgroups
(see [52]).

Proof. An element e ∈ B(G)\{0} is an idempotent if and only if ϕH(e) ∈ {0, 1}
for all H ≤ G. Let sup(e) = {H ≤ G | ϕH(e) 
= 0}. By Theorem 3.5.19 for
any prime p and any subgroup H ≤ G we have H ∈ sup(e) if and only if
Op(H) ∈ sup(e). For any subgroup U ≤ G let U (s) = ∩{V �U | U/V solvable}
be the solvable residuum of U . We define U ∼ V if and only if U (s) = V (s).
Then obviously U (s) is a perfect subgroup of G, and it is easily seen that U ∼ H
whenever H � U with U/H solvable. It follows from the above that for an
idempotent e ∈ B(G) and U ∼ V we have ϕU (e) = ϕV (e). Conversely, if we
define for any perfect subgroup H ∈ L(G) an element eH ∈ ZL(G) by

eH(U) =
{

1 if U (s) =G H,
0 else,
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then eH ∈ m(B(G)) by Lemma 3.5.17, which must be a primitive idempotent
by the above.

Remark 3.5.22 At present the library of table of marks in GAP contains the
table of marks of the following simple groups:

An for n = 5, . . . , 12,
L3(q) for q ∈ {3, 4, 5, 7, 8, 9, 11},
U3(q) for q ∈ {3, 4, 5, 7, 8, 9, 11},

L4(3), L5(2), U4(2), U4(3), U5(2), 2F4(2)′, 3D4(2),

G2(3), G2(4), O+
8 (2),O−

8 (2), S4(4), S4(5), S6(2), Sz(32), Sz(8)

M11, M12, M22, M23, M24, J1, J2, J3, HS, McL, Co3.

Example 3.5.23 For the groups listed in Remark 3.5.22 we may compute all
transitive permutation characters, and using Theorem 2.9.19 or (2.19) we obtain
the following information about the Schur indices of the irreducible characters.

Let G be a group listed in Remark 3.5.22 and let K ⊆ C be a field. Then
mK(χ) ∈ {1, 2} for all χ ∈ Irr(G); in fact, mK(χ) = 1 with the following possible
exceptions:

χ2 ∈ Irr(U3(q)) for q ∈ {3, 4, 5, 7, 8, 9, 11},

χ16 ∈ Irr(U4(3)), χ2, χ12, χ25 ∈ Irr(U5(2)), χ32 ∈ Irr(S4(5)),

χ21 ∈ Irr(J2), χ9 ∈ Irr(J3), χ11, χ13 ∈ Irr(McL).

Here the numbering of the irreducible characters is as in the ATLAS [38].
Computing the Frobenius–Schur indicator one finds that in the above cases
mK(χ) = 2 for K ⊆ R, with the possible exceptions

χ32 ∈ Irr(S4(5)), χ21 ∈ Irr(J2), χ9 ∈ Irr(J3).

Concerning the final two characters it is shown in [57] that mQ(χ21) = 2 and
mQ(χ9) = 2. �

Example 3.5.24 The table of marks of G := M11 is contained in the library of
GAP. We reproduce it in Figure 3.2, as we would get it using the GAP command
Display( TableOfMarks("M11") );. Figure 3.2 shows that G has 39 conjugacy
classes of subgroups. In fact, representatives H1, . . . , H39 of these conjugacy
classes are stored together with the GAP library of table of marks of G and can
be accessed for 1 ≤ i ≤ 39 via RepresentativeTom( TableOfMarks("M11"), i) ).

From Figure 3.2 one can immediately see that G has five conjugacy classes
of maximal subgroups, with representatives H38, H37, H35, H34, H27 and indices
11, 12, 55, 66, 165. Also the cyclic subgroups among the Hi can easily be iden-
tified (namely Hi for i ∈ {1, 2, 3, 5, 6, 9, 11, 15}) and thus the values of the
transitive permutation characters can be found (see Exercise 3.5.1). Looking
at the corresponding columns of the table of marks we find that G has 36
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7920

3960 24

2640 . 12

1980 36 . 6

1980 12 . . 4

1584 . . . . 4

1320 24 6 . . . 6

1320 24 6 . . . . 2

1320 8 6 . . . . . 2

990 6 . . 6 . . . . 6

990 6 . . 2 . . . . . 2

990 30 . 6 2 . . . . . . 2

880 . 16 . . . . . . . . . 16

792 24 . . . 2 . . . . . . . 2

720 . . . . . . . . . . . . . 5

660 12 12 2 . . . . . . . . . . . 2

660 28 3 6 . . 3 1 1 . . . . . . . 1

495 15 . 3 3 . . . . 3 1 1 . . . . . 1

440 24 8 . . . . 8 . . . . 8 . . . . . 8

440 8 8 . . . 2 . 2 . . . 8 . . . . . . 2

396 12 . . 4 1 . . . . . . . 1 . . . . . . 1

330 2 6 . 2 . . . 2 2 . . . . . . . . . . . 2

330 18 6 4 2 . . 2 . . . 2 . . . 1 . . . . . . 1

220 12 4 . 4 . . 4 . . . . 4 . . . . . 4 . . . . 4

220 12 4 . 4 . . 4 . . . . 4 . . . . . 4 . . . . . 2

220 20 4 6 . . 2 4 2 . . . 4 . . . 2 . 4 2 . . . . . 2

165 13 3 3 1 . 3 1 1 1 1 1 . . . . 1 1 . . . 1 . . . . 1

144 . . . . 4 . . . . . . . . 1 . . . . . . . . . . . . 1

132 12 6 2 . 2 6 . . . . . . 2 . 2 . . . . . . . . . . . . 2

132 12 6 2 . 2 . 2 . . . . . 2 . 2 . . . . . . . . . . . . . 1

110 6 2 . 6 . . 2 . 6 . . 2 . . . . . 2 . . . . 2 2 . . . . . 2

110 14 2 6 2 . 2 2 2 . . 2 2 . . . 2 . 2 2 . . . 2 . 2 . . . . . 2

110 6 2 . 2 . . 2 . . 2 . 2 . . . . . 2 . . . . 2 . . . . . . . . 2

66 10 3 4 2 1 3 1 1 . . 2 . 1 . 1 1 . . . 1 . 1 . . . . . 1 . . . . 1

55 7 1 3 3 . 1 1 1 3 1 1 1 . . . 1 1 1 1 . . . 1 1 1 . . . . 1 1 1 . 1

22 6 4 2 2 2 . 4 . . . 2 4 2 . 2 . . 4 . . . 2 . 2 . . . . 2 . . . . . 2

12 4 3 2 . 2 3 1 1 . . . . 2 1 2 1 . . . . . . . . . . 1 2 1 . . . . . . 1

11 3 2 1 3 1 . 2 . 3 1 1 2 1 . 1 . 1 2 . 1 . 1 2 2 . . . . 1 2 . . . . 1 . 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3.2. Table of marks of M11.

transitive permutation characters and that (G/H7, G/H8), (G/H24, G/H25) and
(G/H29, G/H30) are pairs of G-sets yielding the same permutation character.

Abbreviating mi := mHi for the mark of the G-set G/Hi we may compute
for instance:

m35 ·m35 = m4 +m10 +m35, m36 ·m36 = m19 + 2m36,

m37 ·m37 = m29 +m37, m38 ·m38 = m31 +m38.

This shows that the G-sets G/H35 and G/H36 have rank three and G/H37 and
G/H38 have rank two.

Table 3.4 gives for each i = 1, . . . , 39 the index [M11 : Hi] and a description
of the structure of a representative Hi of the ith conjugacy class of subgroups
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of M11. This can be obtained via the GAP command

StructureDescription( RepresentativeTom(TableOfMarks("M11"),i)) );

Table 3.4. Subgroups of M11

1 7920 C1 2 3960 C2 3 2640 C3
4 1980 V4 5 1980 C4 6 1584 C5
7 1320 S3 8 1320 S3 9 1320 C6

10 990 Q8 11 990 C8 12 990 D8

13 880 C2
3 14 792 D10 15 720 C11

16 660 A4 17 660 D12 18 495 QD16
19 440 C2

3 � C2 20 440 C3×S3 21 396 C5 � C4

22 330 SL2(3) 23 330 S4 24 220 C2
3 � C4

25 220 C2
3 � C4 26 220 S3×S3 27 165 GL2(3)

28 144 C11 � C5 29 132 A5 30 132 A5

31 110 C2
3 � Q8 32 110 (S3×S3) � C2 33 110 C2

3 � C8

34 66 S5 35 55 (C2
3 �C8) � C2 36 22 A6

37 12 L2(11) 38 11 M10 39 1 M11

Here QD16 is a quasidihedral group (see[88], p. 91) of order 16 and M10, a point
stabilizer of M11 in its natural representation, is a non-split extension of A6 by
C2 (see [38], p.4). �

Exercises
Exercise 3.5.1 (a) Show that a finite group G is cyclic if and only if for each
divisor d | |G| there is exactly one subgroup H ≤ G with |H| = d. Use this to
write a GAP program which, for a given table of marks M(G) of a finite group G,
finds the columns corresponding to the conjugacy classes of cyclic subgroups of
G. This can be used to find a complete list of transitive permutation characters
of G.

(b) Let [γij ] = M(G)−1 with M(G) as in Definition 3.5.1. Show that

n∑
j=1

γij =

{
ϕ(|Hi|)

| NG(Hi)| if Hi is cyclic,
0 otherwise.

Here ϕ is the Eulerian function.

Exercise 3.5.2 We use the notation of Example 3.5.24. We saw there that the
G-sets G/H24 and G/H25 yield the same permutation character. Find the orbit
structure of G in G/Hi ×G/Hi for i ∈ {24, 25}. Show that

rkK HomKG(K(G/H24),K(G/H25)) = 12

for any commutative ring K. Also show, using only the table of marks of G,
that Hi has a normal Sylow 3-subgroup P and that Hi/P is cyclic for i ∈
{24, 25}. It will follow from Corollary 4.10.14 that K(G/H24) 
∼= K(G/H25) for
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a field K of characteristic three and hence Z(G/H24) 
∼= Z(G/H25), although
the permutation characters of these modules coincide. Similarly, show that the
permutation modules are not integrally equivalent for the other two pairs of
transitive G-sets having the same permutation characters.

Exercise 3.5.3 (a) Assume that M(G) is a table of marks of a group G such
that representativesHi (1 ≤ i ≤ r) of the conjugacy classes of subgroups ofG are
either stored or can be computed. Write a GAP program to compute for H ≤ G,
the fusion of M(H) into M(G), that is, a list f such that Uj =G Hf(j), where
Uj (1 ≤ j ≤ s) are representatives of the conjugacy classes of subgroups of H.

(b) Using the notation of Example 3.5.24 show that

m37 ·m26 = 2m17 +m8 with H17 ∼= D12, H8 ∼= S3 .

Conclude that H := H26 has three orbits on Ω := G/H37 with stabilizers
S1, S2, S3 isomorphic to D12, D12 and S3. Using part (a) compute the mark of
Ω considered as an H-set. Furthermore, show that S1, S2 are not conjugate in
H and are centralizers of involutions in H and that there is an h ∈ S3 with
|CH(h)| = 9.

Exercise 3.5.4 We use the notation of Example 3.5.10. Show that

fHj
χ =

1
[NG(Hj) : Hj ]

∑
Hj≤H≤G

µ(Hj , H)Xd(H) with d(H) = (χH ,1H)H ,

where µ denotes the Möbius function of the lattice of subgroups of G.

Exercise 3.5.5 Let G := L2(7) and let χ ∈ Irr(G) with χ(1) = 3. Show that
f

{1}
χ = 1

168 (X − 1)(X2 +X − 48).

Exercise 3.5.6 (See [136].) Consider the natural An-set Ω := {1, . . . , n} and
the permutation module V := FqΩ. Show that the V -closed subgroups of G are
of the form SΛ ∩An for a Young subgroup SΛ ≤ Sn and that [SΛ : SΛ ∩An] = 2
whenever SΛ 
= {1}. Let χ := χCΩ. Show that fHχ = 0 unless H =G SΛ ∩An, in
which case

fHχ = [NG(H) : H]−1
rΛ−1∏
i=0

(X − i) if H 
= {1}

and

f{1}
χ =

2
n!

(X +
(n− 2)(n− 1)

2
)
n−2∏
i=0

(X − i).

3.6 Clifford theory

Throughout this section K is an arbitrary field and N � G. We continue to
assume that G is a finite group, although some of the results require only that
[G : N ] is finite.
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Remark 3.6.1 If W is a KN -module with representation δ and character ϕ
then g ⊗W ( ⊆ WG ) is also a KN -module for every g ∈ G, which is called a
module conjugate to W . Since h · g ⊗ w = g ⊗ (g−1hg)w for h ∈ N, w ∈ W ,
this leads to a representation

gδ : N → GL(W ) , h �→ δ(g−1hg),

and the character of g ⊗W is gϕ given by gϕ(h) = ϕ(g−1hg). Observe that
gδ(N) = δ(N), and thus δ, is irreducible if and only if gδ is irreducible.

If the KN -module W is contained in a KG-module V then obviously

g ⊗W → gW ⊆ V, g ⊗ w �→ gw is a KN -isomorphism.

If in addition W is stable under G, hence the restriction of a KG-module, then
clearly W = gW ∼=KN g ⊗W , but otherwise W ∼=KN g ⊗W need not hold.

Theorem 3.6.2 (Clifford) Let V be a simple KG-module and let N �G.

(a) VN is a direct sum of simple KN -modules, which are conjugate in G.

(b) Let W1, . . . ,Wm ≤KN VN be representatives of the isomorphism classes
of simple KN -submodules of VN . For i = 1, . . . ,m put Vi := HWi

(VN ) and
Ti := TG(Wi) := {g ∈ G | Wi

∼= g ⊗KN Wi}, which is called the inertia
subgroup of Wi. Then N � Ti ≤ G with [G : Ti] = m and Vi is a simple
KTi-module. There is an e ∈ N independent of i such that

V ∼=KG (Vi)G and VN ∼=KN

m⊕
i=1

(Wi ⊕ · · · ⊕Wi︸ ︷︷ ︸
e

).

There are gi ∈ G, with G =
⋃̇m

i=1giT1, Vi ∼=KTi giV1 and Wi
∼=KN giW1.

Proof. (a) Let G =
⋃̇n

j=1hjN . Then for W ≤KN VN the sum
∑m
j=n hjW ⊆ V

is obviously a KG-submodule and, since V is supposed to be simple, we have
V =

∑m
j=1 gjW provided that W 
= {0}. Choosing W simple, part (a) follows

from Lemma 1.5.2.
(b) Obviously N ≤ Ti ≤ G since h⊗Wi

∼=KN hWi = Wi for h ∈ N . By (a)
G acts transitively on the isomorphism classes [Wi] of simple KN -submodules
Wi of V and StabG([Wi]) = Ti. Thus [G : Ti] = m and Vi = HWi

(VN ) is
stable under the action of Ti, that is Vi ≤KTi

VTi
. If V1 = W 1

1 ⊕ · · · ⊕W e
1 with

W1 ∼=KN W j
1 ≤ VN and Wi = giW1 then giV1 = giW

1
1 ⊕ · · · ⊕ giW e

1 = Vi. Since
V = ⊕mi=1giVi we have V ∼=KG (Vi)G by Lemma 3.2.14(a). Finally, since (Vi)G

is simple, Vi must be a simple KTi-module (see Exercise 3.2.5).

Corollary 3.6.3 If V is a simple KG-module, charK = p > 0 and N is a
normal p-subgroup of G, then VN = K ⊕ · · · ⊕K is a trivial KN -module.
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Proof. Use part (a) of Theorem 3.6.2 and Theorem 1.3.11.

Corollary 3.6.4 If N�G and W is a simple KN -module with inertia subgroup
TG(W ) = N , then WG is simple.

Proof. Let V be a simple factor module of WG. By Theorem 3.2.12

{0} 
= HomKG(WG, V ) ∼= HomKN (W,VN ).

Thus VN contains a simple submodule W ′ isomorphic to W . By Clifford’s
Theorem 3.6.2 and the assumption, VN contains [G : TG(W ′)] = [G : TG(W )] =
[G : N ] submodules conjugate to W ′ as direct summands. But then dimV ≥
[G : N ] dimW = dimWG ≥ dimV and hence V ∼= WG.

As an application of Clifford’s theorem we present the following.

Theorem 3.6.5 (Ito) Let V be a simple CG-module, then dimV | [G : N ] for
every abelian normal subgroup N �G.

Proof. We use induction with respect to the group order |G|. Let N �G be
an abelian normal subgroup and let W be a simple summand of VN .

If T = TG(W ) < G there is a simple CT -module V1 with V ∼= V G1 . By
induction dimV1 | [T : N ], and so dimV = [G : T ] · dimV1 | [G : T ] · [T : N ] =
[G : N ].

If T = G then VN ∼= W ⊕ · · · ⊕ W . Since N is abelian dimC W = 1.
Thus the elements of N are represented by scalar matrices in the representa-
tion δ corresponding to V , so δ(N) ≤ Z(δ(G)). By Theorem 2.3.6 we have
dimV | [G : Z(G)] so the result follows immediately if δ is faithful. Otherwise
we may use the induction hypothesis for G/ ker δ, since (N ker δ)/ ker δ�G/ ker δ
is abelian.

We note the following interesting consequence of Theorem 3.6.5, which will
be used in Section 4.14.

Corollary 3.6.6 Assume that G has an abelian normal Sylow-p-subgroup P
and that CG(g) = P for some g ∈ P . Then

| Irr(G)| ≤ |P |

and | Irr(G)| < |P | unless G/P is abelian.

Proof. Theorem 3.6.5 implies that p � χ(1) for all χ ∈ Irr(G). From the
congruence relations (Lemma 2.2.2(b)) we conclude that χ(g) 
= 0 for any χ ∈
Irr(G) and g ∈ P . Choosing g ∈ P with CG(g) = P and putting N := [〈g〉, G] ≤
P we obtain from Lemma 2.2.11 that

| Irr(G)| ≤ |P | − (|G/N | − | Irr(G/N)|).

Thus | Irr(G)| ≤ |P |, and equality implies that G/N and hence G/P is abelian.
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Theorem 3.6.7 Assume that W1, . . . ,Ws are representatives of the G-conjugacy
classes of simple KN -modules (up to isomorphism) and Ti := TG(Wi)). Fur-
thermore let Vij , 1 ≤ j ≤ ki, be all simple KTi-modules up to KTi-isomorphism
with (Vij)N ∼= Wi ⊕ · · · ⊕Wi︸ ︷︷ ︸

ei,j

(i.e. with HomKN ((Vij)N ,Wi) 
= {0}). Then

{V Gij | 1 ≤ i ≤ s , 1 ≤ j ≤ ki}

is a complete set of representatives of the isomorphism classes of simple KG-
modules. If V is a simple KG-module such that VTi has Vij as a composition
factor, then V ∼= V Gij and the multiplicity of Vij in VTi

is one.

If W1 = KN , then T1 = G and {Vi1 | 1 ≤ j ≤ k1} is just the set of simple
KG/N -modules (up to isomorphism) inflated to KG-modules.

Proof. By Theorem 3.6.2 every simple KG-module is isomorphic to one of
the form V Gij . It suffices to prove that all V Gij are simple and pair-wise non-
isomorphic. Obviously V Gij �KG V Gkl for i 
= k, since (V Gij )N �KN (V Gkl )N .

We fix i and assume G =
⋃̇m

k=1 gkTi with g1 = 1. Since gkTi = NgkTi we
have, by Mackey’s Theorem 3.2.17,

((V Gij )Ti)N = (V Gij )N ∼= (Vij)N ⊕
m⊕
k=2

(gk ⊗ Vij)N .

Note that (gk ⊗ Vij)N is for k ≥ 2 a direct sum of modules isomorphic to
gk⊗Wi � Wi since gk ∈ G \Ti. Thus Vij is isomorphic to the only composition
factor X of (V Gij )Ti with XN

∼= Wi⊕· · ·⊕Wi. In particular, V Gij � V Gil for j 
= l
and the last claim follows too.

Finally we show that every V Gij is simple. Let V be a simple factor module
of V Gij . Then 0 
= HomKG(V Gij , V ) ∼= HomKTi(Vij , VTi). Since Vij is simple VTi

contains a module isomorphic to Vij and VN contains a submodule isomorphic to
(Vij)N . Since VN contains all modules conjugate to Wi with equal multiplicity,
by Theorem 3.6.2, we get dimV ≥ [G : Ti]ei,j dimWi = dim(V Gij ), so V Gij = V .

The mapping Vij → V Gij described in Theorem 3.6.7 is sometimes referred to
as the Clifford correspondence. It is often expressed in terms of characters
as follows.

Corollary 3.6.8 Suppose that G is a finite group and N �G. For ϕ ∈ Irr(N)
let TG(ϕ) := {g ∈ G | gϕ = ϕ} and for N ≤ H ≤ G let

Irr( H | ϕ ) := {ψ ∈ Irr(H) | (ψN , ϕ)N 
= 0}.

Then for TG(ϕ) ≤ T ≤ G we have a bijection Irr(T | ϕ) → Irr(G | ϕ), ψ �→ ψG

called the Clifford correspondence, and

Irr(G) =
⋃̇
{ Irr( G | ϕ ) | ϕ ∈ Irr(N) } =

⋃̇m

i=1
Irr( G | ϕi }
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if ϕ1, . . . , ϕm are representatives of the G-conjugacy classes of irreducible char-
acters of N .

Proof. For T = TG(ϕ) this is an immediate consequence of Theorem 3.6.7. If
TG(ϕ) < T < G use the bijections Irr(TG(ϕ) | ϕ) → Irr(T | ϕ), ψ �→ ψT and
Irr(TG(ϕ) | ϕ) → Irr(G | ϕ), ψ �→ ψG and the transitivity of induction.

Observe, however, that Theorem 3.6.7 is much more general than Corollary
3.6.8, since it applies to representations over arbitrary fields, in particular to
representations over fields of characteristic p > 0, for which the language of
(ordinary) characters is not adequate, as we will see in Section 4.2.

We illustrate the above theorem with a familiar example.

Example 3.6.9 Let G = S4 and N = V4, the Klein 4-group. We assume
that charK 
= 2. Then N has four irreducible representations, which are linear
characters λ1 = 1V , λ2, λ3, λ4 (see Example 2.1.19); G has two orbits on these,
{λ1} with inertia subgroup T1 = G and {λ2, λ3, λ4} with inertia subgroup T2 =
TG(λ2) ∼= D8, a dihedral group. Let π : G→ G/N ∼= S3 be the projection. Then

Irr(G | λ1) = {χ ◦ π | χ ∈ Irr(G/N)},
Irr(G | λ2) = {ψG | ψ ∈ Irr(T2), ψN = λ2}.

So Irr(G | λ2) = {χ4, χ5} in the notation of Example 2.1.22. �

The preceding result suggests the following strategy for finding a system of
representatives of the isomorphism classes of simple KG-modules, provided that
G has a normal subgroup N .

(1) Find representatives Wi of the G-conjugacy classes of simple KN -modules
and their inertia groups Ti.

(2) Construct (up to isomorphism) all simple KTi-modules V that satisfy
HomKN (Wi, VN ) 
= {0}.

(3) For all the KTi-modules V constructed in step (2) compute the induced
modules V G.

Of course, the question arises of how to find the modules V in step (2). It
turns out that the V ’s with the desired property are just the composition factors
of WTi

i . We change the perspective slightly to simplify the notation and put
G = Ti, i.e. we assume that W = Wi is G-invariant.

Lemma 3.6.10 If V is a simple KG-module with VN ∼= W ⊕· · ·⊕W for some
simple KN -module W , then V is a factor module of WG. Conversely, any
composition factor V of WG has the property that VN ∼= W ⊕ · · · ⊕W .
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Proof. The first assertion follows immediately from Theorem 3.2.12, since the
assumption implies that HomKN (W,VN ) 
= 0. Since N�G we have NgN = gN
for any g ∈ G, and Mackey’s theorem yields

(WG)N ∼=
∑

G=
⋃̇
gN

g ⊗W ∼= W ⊕ · · · ⊕W.

Thus any constituent of WG becomes homogeneous upon restriction to N .

So the task is to find the simple factor modules of WG for each G-invariant
simple KN -module W . We first look at important special cases.

Theorem 3.6.11 Let W be KG-module such that WN is absolutely simple.
Then for every simple K(G/N)-module V the KG-module W ⊗K V ′ is simple,
where V ′ := Infϕ V with ϕ : KG→ K(G/N) extending K-linearly the canonical
map G → G/N . Furthermore, for simple K(G/N)-modules V1, V2 we have
W ⊗K V ′

1
∼=KG W ⊗K V ′

2 if and only if V1 ∼=K(G/N) V2.

Proof. Let (w1, . . . , wm) be a K-basis of W . Then W ⊗K V ′ =
⊕m

i=1 wi⊗V ′.
Since WN is absolutely simple, we deduce from Lemma 1.3.6(b) that there are
elements aij ∈ KN such that aij · wk = 0 for k 
= i and aij · wi = wj . Observe
that

a · (w ⊗ v) = (a · w)⊗ v for a ∈ KN, w ∈W, v ∈ V ′

because N acts trivially on V ′. Let 0 
= u =
∑m
i=1 wi⊗vi with vi ∈ V ′ and, say,

v1 
= 0. We show that U := 〈u〉KG = W ⊗K V ′:

(
m∑
j=1

αj a1,j) · u = (
m∑
j=1

αj vj)⊗ v1 ∈ U for all α1, . . . , αm ∈ K.

Thus W ⊗K v1 ⊆ U . Since V ′ is simple we get V ′ = 〈{g · v1 | g ∈ G}〉K . Thus
W ⊗K V ′ ⊆ U and W ⊗K V ′ is simple by Lemma 1.3.2.

Now let ψ : W ⊗K V ′
1 → W ⊗K V ′

2 be a KG-isomorphism and let v ∈ V1.
Since

ai,i · wi ⊗ v = wi ⊗ v = aj,i · wj ⊗ v for 1 ≤ i, j ≤ m

we see that ψ(wi ⊗ v) = wi ⊗ ψ′(v) for a uniquely determined ψ′(v) ∈ V2
independent of i. If g ∈ G and g · wi =

∑
j αji wj with 0 
= αki =: α then

ai,k g · wi = αwk and

αwk ⊗ g ·ψ′(v) = (ai,k g ·wi)⊗ (g ·ψ′(v)) = ai,k g ·ψ(wi⊗ v) = αwk ⊗ψ′(g · v).

Hence ψ′ : V ′
1 → V ′

2 is a KG-isomorphism.

Corollary 3.6.12 (Gallagher) Let π : G→ G/N g �→ gN and χ ∈ Irr(G). If
χN ∈ Irr(N) then χ · (ψ ◦ π) ∈ Irr(G) for every ψ ∈ Irr(G/N) and

(χN )G =
∑

ψ∈Irr(G/N)

ψ(1) χ · (ψ ◦ π). (3.21)
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Proof. The first assertion is an immediate consequence of Theorem 3.6.11.
Since (χ, χ · (ψ ◦ π))N = ψ(1), formula (3.21) follows comparing the degrees.

Theorem 3.6.13 Let G/N be cyclic of order n and let W be a G-invariant
absolutely simple KN -module. Assume that (i) the map x �→ xn , K → K
is surjective and Xn − 1 ∈ K[X] splits into linear factors or (ii) that K is a
splitting field for G. Then the following hold.

(a) There is a KG-module V with VN ∼=KN W .

(b) If X is a simple KG-module with XN
∼= W⊕· · ·⊕W with, say, e summands

isomorphic to W , then e = 1 and X ∼= V ⊗K Z with V as in (a) and a KG/N -
module Z of dimension one inflated to a KG-module. Conversely, for any such
module Z, the KG-module X = V ⊗K Z is simple and satisfies VN ∼= W .

Proof. (a) Assume first that K is a splitting field for G and let K̄ be an
algebraic closure of K. If there is a simple K̄G-module V̄ with V̄N ∼=K̄N K̄W ,
then by Exercise 1.5.8 V̄ ∼= K̄V , for a simple KG-module V and VN ∼=KN W .
So we may assume that K is algebraically closed. In this case, conditions (i)
are satisfied. So we assume (i).

Choose an element g ∈ G with G = 〈N, g〉, then G =
⋃̇n−1
i=0 g

iN with
n = [G : N ]. Let δ : N → GL(W ) be the representation of N on W . Since
TG(W ) = G there is ϕ ∈ GL(W ) with

δ(g−1hg) = ϕ−1δ(h)ϕ for all h ∈ N.

Since gn ∈ N we have

ϕ−nδ(h)ϕn = δ(g−nhgn) = δ(gn)−1δ(h)δ(gn).

Hence
ε = ϕnδ(gn)−1 ∈ EndKN W = K · idW ,

so there is 0 
= α ∈ K with ϕ = α · δ(gn). By our assumption there is a γ ∈ K
with γn = α. We extend δ to a mapping on all of G by defining

δ(gih) = γ−i · ϕiδ(h) for h ∈ N , i ∈ {0, . . . , n− 1}.

An easy computation shows that δ : G → GL(W ) is, in fact, a representation.
Thus W becomes a KG-module, which we might call V , and VN = W .

(b) By Exercise 3.2.4 we have WG ∼=KG K(G/N) ⊗K V . Let n = pam,
where p := charK, and let ζ ∈ K be a primitive mth root of unity. If g = gN ,
so that G/N = 〈g〉, we have by Example 1.1.23

K(G/N) ∼=K(G/N) (
m−1⊕
i=0

Zi)⊗ U with Zi = 〈vi〉K and g · vi = ζivi

and U ∼= K[X]/(X−1)p
a

, a uniserial K(G/N)-module with trivial composition
factors (∼= Z0). By Theorem 3.2.12 HomKG(WG, X) ∼=K HomKN (W,XN ) 
= 0,
so X is a (top) composition factor of WG and thus X ∼= Zi ⊗K V , for some
i ∈ {0, . . . ,m− 1}.
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Corollary 3.6.14 Let G/N be a p-group and let W be a simple FN -module
for some F = Fpr . Assume that EndFN W = F · idW .

(a) If W is G-invariant there is a unique FG-module V with VN = W .

(b) There is up to isomorphism a unique simple FG-module V such that W is
isomorphic to a direct summand of VN and VN ∼=N W g1 ⊕ · · · ⊕W gm , where
{g1, . . . , gm} is a transversal of TG(W ) in G.

Proof. (a) Let N0 := N � N1 � . . . � Nn = G be a subnormal series of G
with [Ni : Ni−1] = p for all i ∈ {1, . . . , n}. If Vi is a unique FNi-module with
(Vi)N = W , then Vi is also invariant in G and EndFNi Vi = F idVi . So, for (a)
we may assume that [G : N ] = p. Now x �→ xp is an automorphism of F and
we may apply Theorem 3.6.13, from which the result follows, since the trivial
module is the only simple F (G/N)-module.

(b) follows from (a) and Corollary 3.6.8.

Corollary 3.6.15 Assume [G : N ] = p, a prime. Let K be a splitting field for
N and G. If W is a simple KN -module then one of the following holds.

(a) TG(W ) = N and WG is simple. There are, up to isomorphism, exactly p
KN -modules W = W1, . . . ,Wp conjugate to W and WG

i = WG for all i.

(b) TG(W ) = G and W has an extension to a KG-module; i.e. there is a KG-
module V with VN = W . Furthermore one has

if charK 
= p there are exactly p such KG-modules V1, . . . , Vp with (Vi)N = W ,

if charK = p then there is a unique KG-module V with VN = W .

Proof. This follows immediately from Theorem 3.6.2 and Theorem 3.6.13,
since in the case considered here G/N has either p irreducible representations
(if charK 
= p) or just the trivial one by Example 1.1.23 if charK = p.

Corollary 3.6.15 has many applications; for example, for a solvable group G,
it can be applied to the terms of a composition series

1 = N0 �N1 � . . .�Nl = G,

since each factor Ni/Ni+1 is cyclic of prime order. So it is possible to construct
the irreducible representations or characters of Ni+1 by extending or inducing
those of Ni. We first illustrate this principle with a simple example.

Example 3.6.16 G = GL2(3) has the following composition series, where we
denote the subgroups by names identifying their isomorphism type:

1 � C2 �V4 � Q8 � SL2(3) � GL2(3).
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We denote the irreducible representations by their degrees and join two of these
by a line, if one is a constituent of the other upon restriction to the relevant
subgroup. Note that the trivial character can always be extended, as well as
any character which can be conjugate only to itself. So, much of Figure 3.3 is
determined without even looking at the groups.
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Figure 3.3. Degrees of irreducible representations.

Observe that we obtain a subgraph of the first graph for the case of charK =
2. There is a similar graph for the case charK = 3, which we leave as an exercise;
see Exercise 3.6.7. �

Remark 3.6.17 Conlon has used the above ideas to develop very efficient algo-
rithms to compute the degrees of the irreducible characters of a finite solvable
group (see [36]) and the character tables of finite p-groups ([35]). The latter
algorithm can be extended to finite super-solvable groups (see [11]) and is often
called Conlon’s algorithm. Observe that for such a group G the polycyclic
structure can be used to compute very efficiently with the elements of G, see for
example [84], so that the algorithm usually works, even for very large groups
which are beyond the scope of the Dixon–Schneider algorithm.

We know from Corollary 3.6.14 that a G-invariant simple FN -module can be
extended to an FG-module provided that G/N is a p-group and F is a splitting
field for N with characteristic p. We will see that the same also holds under
suitable assumptions if F is replaced by C. For this we need a definition.
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Definition 3.6.18 If δ : G→ GL(V ) is a representation over K with character
χ, then

detχ : G→ K× , g �→ det(δ(g))

is a linear character, and the order of detχ is called the determinantal order
of δ or χ and will be denoted by o(χ).

Obviously o(χ) = |G/ ker(detχ)|.

Theorem 3.6.19 Asusme that G/N is solvable and that θ ∈ Irr(N) is G-
invariant with ( [G : N ] , θ(1)o(θ) ) = 1. Then there is a unique χ ∈ Irr(G)
with χN = θ and ([G : N ] , o(χ)) = 1.

Proof. We use induction on [G : N ]. Let M be a maximal normal subgroup
of G containing N . Since G/N is solvable, [G : M ] = p is a prime. By induction
hypothesis there is a unique ψ ∈ Irr(M) with ψN = θ and ([M : N ] , o(ψ)) = 1.
We want to show that ψ is G-invariant.

U

N M ∩H

M

G

H

p

q �� ��

�� ��

��

��

��

By assumption θ is G-invariant, and hence det θ is
also. Hence U := ker(det θ)�G and N/U ≤ Z(G/U).
The assumption ([G : N ] , o(θ)) = 1 implies that
N/U is a normal Hall subgroup, and so by the Schur–
Zassenhaus theorem (see [5], p. 70) has a complement
H/U . Hence G/U = N/U×H/U . Since G/H ∼= N/U
we get an extension µ ∈ Irr(G) of det θ with kerµ = H
and this is the only one with ([G : N ] , o(µ)) = 1.
We put q := |N/U | = o(µ) = o(det θ). Since
M/U ∼= N/U × (M ∩ H)/U we obtain similarly
that µM = detψ is the only extension of det θ with
([M : N ] , o(µM )) = 1.

Let g ∈ G. Since detψg|N = det θ we have detψg = detψ. On the other
hand, by Exercise 3.2.6 ψg = ψλ with λ a linear character of M/N inflated to
M . Then

detψ = detψg = λθ(1) detψ.

Since o(λ) divides [G : N ] and thus (o(λ) , θ(1)) = 1, by our assumption we
conclude that λ = 1M and ψg = ψ is G-invariant.

By Theorem 3.6.13 ψ has p extensions χi ∈ Irr(G) (1 ≤ i ≤ p) to G; in fact,
we may assume that χi = χ1µi if 1G = µ1, . . . , µp are the linear characters of
G with kernel M . It follows that

X := {detχi | 1 ≤ i ≤ p} = {µθ(1)i detχ1 | 1 ≤ i ≤ p} = {µi detχ1 | 1 ≤ i ≤ p},

because (p, θ(1)) = 1. Since q = o(ψ) | o(χ1) | pq and X is the orbit of χ1 under
multiplication with the elements of a cyclic group of order p, there is exactly
one element in X of order q. Hence there is exactly one χ := χi with o(χi) = q,
while o(χj) = pq for j 
= i.

In fact, Theorem 3.6.19 holds without the assumption that G/N is solvable;
see [92], corollary 8.16.
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If N is a normal subgroup of G then G acts on the conjugacy classes and
also on the irreducible characters of N . Here we have another instance, where
Brauer’s permutation lemma (Lemma 2.2.13) can be applied.

Corollary 3.6.20 Let K be a splitting field for N with charK � |N | and N�G.
Then the number of G-conjugacy classes of irreducible characters of N is equal
to the number of G-conjugacy classes of elements lying in N .

Proof. Let A be the character table of N (over K). By Exercise 2.1.6 the
matrix A is non-singular. The rows of A are naturally indexed by IrrK(N), and
the columns are naturally indexed by the conjugacy classes hN of N , putting
ϕ(hN ) := ϕ(h) as usual for ϕ ∈ IrrK(N) and h ∈ N . The group G acts on
IrrK(N) by gϕ(h) = ϕ(g−1hg) for g ∈ G,ϕ ∈ IrrK(N), h ∈ N , and on the
conjugacy classes by g ∗ hN = (ghg−1)N . By definition we have gϕ(g ∗ hN ) =
ϕ(hN ). Thus the result follows immediately from Brauer’s permutation lemma
(Lemma 2.2.13).

Although the number of orbits of G on Irr(N) and on the set C(N) of conju-
gacy classes of N coincide, the orbit lengths may be different; see Exercise 3.6.10.

Example 3.6.21 In Example 3.2.23 we have computed and displayed the char-
acter table of the alternating group A6. We know that A6 � S6 with [S6 : A6] = 2
and also that the classes 5a and 5b fuse to one class in S6 because the centralizer
of a 5-cycle in S6 is contained in A6. The other classes of A6 are also conjugacy
classes in S6, so S6 has six orbits on Irr(A6). Hence there must be one pair
of irreducible characters of A6 conjugate in S6. This can only be the pair of
characters χ2, χ3 of degree five, so χS6

2 = χS6
3 = ϕ ∈ Irr(S6) is an irreducible

character whose values we can write down immediately, since

ϕ(g) =
{
χ2(g) + χ3(g) for g ∈ A6,

0 for g /∈ A6 .

The remaining five irreducible characters of A6 can each be extended in two
ways differing just by the sign character, so | Irr(S6)| = 11, and hence there are
11− 6 = 5 conjugacy classes in S6 \A6. In this example we know the conjugacy
classes; those not contained in A6 are 2b = (1, 2)G , 2c = (1, 2)(3, 4)(5, 6)G,
4a = (1, 2, 3, 4)G , 6a = ((1, 2)(3, 4, 5))G , 6b = (1, 2, 3, 4, 5, 6)G, and we can
immediately write down the values of the extensions of χ4 using the natural
permutation character of S6 as in Example 3.2.23. Finally the values of the
extensions of χ5 on the “outer classes” 2b, 2c, 4a, 6a, 6b can be computed
using the orthogonality relations (Theorem 2.1.15, (2.5)) and the known values
for the centralizer orders.

Observe that all one actually needs to compute the character table of G
from the character table of a normal subgroup N with cyclic factor group G/N
is the following:

(a) the list of “outer classes,” i.e. the G-classes in G \N ;
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(b) information which irreducible characters of N are conjugate in G – from
this one finds which conjugacy classes of N fuse in G – , and

(c) one extension to G for each invariant χ ∈ Irr(N). The others then can be
simply obtained from this by multiplying with the linear characters of G/N .

In the ATLAS ([38]) exactly this information is provided for many simple groups
and their cyclic non-trivial extensions. So the character tables of A6 and S6 are
printed together somehow as follows:

A6,S6 1a 2a 3a 3b 4a 5a 5b : 2b 2c 4b 6a 6b
χ1 1 1 1 1 1 1 1 : 1 1 1 1 1
χ2 5 1 2 −1 −1 0 0 : 3 −1 1 0 −1
χ3 5 1 −1 2 −1 0 0 : −1 3 1 −1 0
χ4 8 0 −1 −1 0 α α′ | 0 0 0 0 0
χ5 8 0 −1 −1 0 α′ α |
χ6 9 1 0 0 1 −1 −1 : 3 3 −1 0 0
χ7 10 −2 1 1 0 0 0 : 2 −2 0 −1 1

with α, α′ as in Example 3.2.23. The colon signifies that the corresponding char-
acter extends with just one extension being printed. To get the other extension
one just has to multiply the values to the right of the colon by −1. The con-
jugate characters are grouped together using the vertical bar |. It is apparent
from this that 5a and 5b must fuse to one conjugacy class of S6. �

Example 3.6.22 It is known that the symmetric group S6 possesses an excep-
tional outer automorphism, so that G = Aut(S6) = S6 ·2. This information is
sufficient to construct the character table of G. In fact, looking at the character
table of S6, reproduced below essentially in GAP-format, it is apparent that the
characters marked by a colon must be extendible to G:

S_6 2 4 4 1 1 3 . 4 4 3 1 1
3 2 . 2 2 . . 1 1 . 1 1
5 1 . . . . 1 . . . . .

1a 2a 3a 3b 4a 5a 2b 2c 4b 6a 6b

X.1 1 1 1 1 1 1 1 1 1 1 1 :
X.2 1 1 1 1 1 1 -1 -1 -1 -1 -1 :
X.3 5 1 2 -1 -1 . 3 -1 1 . -1
X.4 5 1 2 -1 -1 . -3 1 -1 . 1
X.5 5 1 -1 2 -1 . -1 3 1 -1 .
X.6 5 1 -1 2 -1 . 1 -3 -1 1 .
X.7 16 . -2 -2 . 1 . . . . . :
X.8 9 1 . . 1 -1 3 3 -1 . . :
X.9 9 1 . . 1 -1 -3 -3 1 . . :
X.10 10 -2 1 1 . . 2 -2 . -1 1
X.11 10 -2 1 1 . . -2 2 . 1 -1

It is also clear that the only pairs of conjugacy classes of S6 which can fuse in
G are 3a/b, 2b/c and 6a/b (and either none or all three pairs fuse in G,
considering the values of X.3/5, X.4/6 and X.10/11 on these classes). Since
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all elements of order five are conjugate their centralizers must have order ten.
Hence there is a class 10a, and the values of all irreducible characters on this
class are known (they are 0 or ±1 by the congruence relations; see Lemma 2.2.2).
The fifth powers of the elements of 10a form a conjugacy class 2d – so G is
a split extension of S6 – and for z ∈ 2d the values χi(z) are determined
modulo 10 for all χi ∈ Irr(G) (take congruences with the values on 10a and
1a). Furthermore, since z is not central, we conclude from Lemma 2.2.6 that
|χi(z)| < χi(1) for all non-linear χi. Thus the values of all χi ∈ Irr(G) on 2d
are completely determined except for the irreducible characters of degree 16,
where we have two possibilities, ±4 or ±14. But the last possibility is excluded,
for instance, by the orthogonality relations (with the column corresponding to
10a). It follows that the characters of degree five must be pair-wise conjugate
and thus induce up to irreducible characters of degree ten of G, otherwise the
congruence relations would be violated. Since by Lemma 3.6.20 the number of
pairs of conjugate irreducible characters of S6 must be the same as the number
of pairs of conjugacy classes fusing in G, the characters of degree ten must also
be conjugate. At this stage what is known about the character table of G = S6 .2
is collated in Table 3.5.

Table 3.5. Character table of G = S6 .2
S6 .2 2 5 5 1 4 1 4 4 1 3 ? 1 ? ?

3 2 . 2 . . 1 . 1 . . . . .
5 1 . . . 1 . . . 1 . 1 . .

1a 2a 3a 4a 5a 2b 4b 6a 2d ? 10a ? ?
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1
χ3 1 1 1 1 1 −1 −1 −1 1 1
χ4 1 1 1 1 1 −1 −1 −1 −1 −1
χ5 10 2 1 −2 0 2 2 −1 0 0 0 0 0
χ6 10 2 1 −2 0 −2 −2 1 0 0 0 0 0
χ7 16 0 −2 0 1 0 0 0 4 0 −1 0 0
χ8 16 0 −2 0 1 0 0 0 −4 0 1 0 0
χ9 9 1 0 1 −1 3 −1 0 −1 −1
χ10 9 1 0 1 −1 3 −1 0 1 1
χ11 9 1 0 1 −1 −3 1 0 −1 −1
χ12 9 1 0 1 −1 −3 1 0 1 1
χ13 20 −4 2 0 0 0 0 0 0 0 0 0 0

Observe that χ7, χ8 must vanish outside the known classes, since otherwise
their norm would not be one. Counting elements of order ≤ 2 in G known,
so far one observes that this is

∑
χ∈Irr(G) χ(1). This implies that all second

Frobenius–Schur indicators are one (see Theorem 2.9.9). We then find (using
Lemma 2.9.8) that any element of class 4a has four square roots in G and the
involutions in 2a have eight square roots in G, whereas they had only four
square roots in S6. We conclude that there are 4 · |G|

16 elements of order eight in
G which have to distribute into at least two different conjugacy classes (since
the centralizer orders must be at least eight). Also there must be 4 · |G|

32 elements
of order four (with squares in 2a) which are in G \ S6. So we have found the
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missing conjugacy classes, centralizer orders (they are all eight) and incidentally
also the second power map. All the missing character values must be ±1, and
it is an easy exercise to find the correct signs using the orthogonality relations.
We present the complete table essentially in GAP format as follows.

S_6.2 2 5 5 1 4 1 4 4 1 3 3 1 3 3
3 2 . 2 . . 1 . 1 . . . . .
5 1 . . . 1 . . . 1 . 1 . .

1a 2a 3a 4a 5a 2b 4b 6a 2c 8a 10a 4c 8b
2P 1a 1a 3a 2a 5a 1a 2a 3a 1a 4a 5a 2a 4a
3P 1a 2a 1a 4a 5a 2b 4b 2b 2c 8a 10a 4c 8b
5P 1a 2a 3a 4a 1a 2b 4b 6a 2c 8a 2c 4c 8b

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
X.3 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1
X.4 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1
X.5 10 2 1 -2 . 2 2 -1 . . . . .
X.6 10 2 1 -2 . -2 -2 1 . . . . .
X.7 16 . -2 . 1 . . . 4 . -1 . .
X.8 16 . -2 . 1 . . . -4 . 1 . .
X.9 9 1 . 1 -1 3 -1 . -1 1 -1 1 -1
X.10 9 1 . 1 -1 3 -1 . 1 -1 1 -1 1
X.11 9 1 . 1 -1 -3 1 . -1 1 -1 -1 1
X.12 9 1 . 1 -1 -3 1 . 1 -1 1 1 -1
X.13 20 -4 2 . . . . . . . . . .

�

Example 3.6.23 Let G be a group which contains the Mathieu group M11
as a subgroup of index two. We shall conclude from the character table of
M11 (computed in Section 2.10) that G ∼= C2×M11. As in Example 3.6.22 we
immediately see that there is a class 10a in G with squares lying in 5a (with
centralizer order 10). All character values on the class 10a are integers and
can be determined using the congruence relations. In particular, it follows that
χ6, χ7 ∈ Irr(M11) of degree 16 are not conjugate in G but extend to irreducible
characters of G. This implies that the conjugacy classes 11a and 11b do not fuse
in G. Thus their centralizer orders are 22 and there must be an involution z ∈ G
commuting with some element g ∈ 11a. The rational character χ2 ∈ Irr(M11) of
degree ten extends to characters χ′

2, χ
′′
2 ∈ Irr(G). If δ is a matrix representation

with character χ′
2 or χ′′

2 then δ(g) is similar to diag(ζ11, . . . , ζ
10
11) and hence

δ(z) = ±I10. It follows that z ∈ Z(G) and G ∼= 〈z〉 ×M11. We conclude that
M11 has no outer automorphism of order two. �

Remark 3.6.24 Let N � G with [G : N ] = 2 and suppose that there are no
conjugacy classes of N which fuse in G. Unlike in the above example one cannot
conclude from this in general that G ∼= N ×C2. There might be automorphisms
of N which leave invariant all conjugacy classes of N , without being inner
automorphisms. The smallest example can be found in Exercise 3.7.3.
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Exercises
Exercise 3.6.1 Let N �G and χ ∈ Irr(G) such that ϕ := χN ∈ Irr(N). Show
that (χG, ϕG)G = [G : N ] and that

Irr(G | ϕ) = {ψ · χ | ψ ∈ Irr(G), kerψ ⊇ N}.

Hint: Use Lemma 3.2.14(d) to show that ϕG = (1N · ϕ)G = 1GN · χ.

Exercise 3.6.2 Let P be a normal Sylow p-subgroup of G. Show that

P ′ =
⋂
{ kerχ | χ ∈ Irr(G), p � χ(1) }.

Exercise 3.6.3 Let p be a prime. Show that G has an abelian normal subgroup
N such that G/N is a p-group if and only if χ(1) is a power of p for all χ ∈ Irr(G).

Exercise 3.6.4 Let H be a (not necessarily finite) abelian group and let N be
a subgroup of finite index. Assuming that K is an algebraically closed field,
show that any λ ∈ Hom(N,K×) can be extended to a λ̃ ∈ Hom(H,K×).
Hint: Consider first the case that H/N is cyclic and argue similarly as in the
proof of Theorem 3.6.13.

Exercise 3.6.5 Let N �G, with W1 a simple KN -module and TG(W1) ≤ T ≤
G. Assume that W is a simple KT -module with HomKN (WN ,W1) 
= {0} and
that V is a simple KG-module. Prove that if W is isomorphic to a composition
factor of VT then its multiplicity is one and V ∼= WG.

Exercise 3.6.6 Let χ ∈ Irr(G) and ψ ∈ Irr(H), where H � G. Show that
(χH , ψ)H > 0 if and only if ωχ(C+) = ωψ(C+) for all C = hG with h ∈ H.
Hint: (a) Show that ωψ(C+) = ωψg (C+) for all g ∈ G and C = hG with h ∈ H.
(b) Show that

∑
g∈G ε

g
ψ ∈ Z(CG) ∩ Z(CH) = 〈{C+ | C = hG with h ∈ H}〉C.

(c) Conclude that ωψ′(
∑
g∈G ε

g
ψ) 
= 0 for ψ′ ∈ Irr(H) with ωψ(C+) = ωψ′(C+)

for all C = hG with h ∈ H. (Recall that ωψ is the central character and εψ is the
block idempotent corresponding to ψ; see Theorem 2.3.2 and Corollary 2.1.7,
respectively.)

Exercise 3.6.7 Investigate Example 3.6.16 for the case that K is a field of
characteristic three.

Exercise 3.6.8 Using only the character table of S5, show that any group
H that contains S5 as a subgroup of index two is isomorphic to S5×C2. In
particular, show that S5 has no outer automorphisms of order two.
Hint: Consider an element g ∈ H of order five. Show that CH(g) has order ten
and thus contains an involution z. Verify that z ∈ kerχ for some χ ∈ Irr(H)
with χ(1) = 5 and kerχ ∩ S5 = {1}.

Exercise 3.6.9 Let [G : N ] = 2 and N ∼= M12. Assume that G 
∼= N × C2.
Using the character table of M12 (see Example 2.8.12, p. 159) compute the char-
acter table of G.
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Hint: Which conjugacy classes of N can fuse to classes of G and which ir-
reducible characters of N may not be invariant in G? What are the possible
Frobenius–Schur indicators ν2(χ) for χ ∈ Irr(G)? Exercise 3.1.4 is useful here.
For each g ∈ N find the possible number x2(g) of square roots of g in G \ N .
Observe that

∑
g∈N x2(g) must be equal to |N |.

Note: It is known that Out(M12) ∼= C2 (see [89], p. 312), hence G ∼= Aut(M12).

Exercise 3.6.10 Assume N �G. Let G act on Irr(N) and on the set C(N) of
conjugacy classes of N as in the proof of Corollary 3.6.20. Give an example for
a group G where the lengths of the orbits of G on Irr(N) are different from the
lengths of the orbits of G on C(N). One may use Exercise 2.1.5 to construct
such an example with |G| = 32. Why? Show that for |G| < 32 the lengths of
the orbits of G on Irr(N) and C(N) always coincide.

Exercise 3.6.11 Let K be a field and let N � G for a finite group G. Let V
be a KG-module and E = EndKN V . Show that G acts on E by

g · α(v) = gα(g−1v) for g ∈ G,α ∈ E, v ∈ V

as ring automorphisms. Thus one obtains a homomorphism ϕ : G→ Aut(E). In
the case that K is a finite field and VN is simple, use Wedderburn’s theorem on
finite division rings ([32], p. 101) to show that E is a finite field extension of L =
EndKG V and that im(ϕ) ⊆ Gal(E/L). Furthermore, show that N CG(N) ≤
kerϕ, so that im(ϕ) is isomorphic to a subgroup of Out(N).
We know that V can naturally be considered as an absolutely irreducible LG-
module. Let Gal(E/L) = {γ1, . . . γt}, so in particular [E : L] = t and dimL V =
dimK(V )

[L:K] . Extending scalars to E we let EV = E ⊗L V to obtain

(EV )N ∼=EN
γ1V N ⊕ · · · ⊕ γtV N

by Theorem 1.8.4, where the γiVN are the modules algebraically conjugate to
VN considered as an EN -module.

3.7 Projective representations

In this section G is always a finite group and K is a field.
We have already encountered several examples where a G-invariant abso-

lutely irreducible representation δ of a normal subgroup N of G can be extended
to a representation of G. In general this will not be true, but we will show here
that any such δ can in fact be extended to a “projective representation” of G,
which we will define now.

Definition 3.7.1 A map δ : G → GL(V ) for some K-vector space V is called
a projective representation of G if δ(1) = idV and for all g, g′ ∈ G

δ(g)δ(g′) = α(g, g′) · δ(gg′) for some α(g, g′) ∈ K×.

The projective representation δ is called irreducible if V has no proper non-
trivial subspace invariant under all δ(g). The mapping α : G×G→ K× is called
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the factor set corresponding to δ. Two projective representations δ : G →
GL(V ) and δ′ : G→ GL(V ′) are called equivalent if there is a K-isomorphism
ϕ : V ′ → V such that

δ′(g) = γ(g) · ϕ−1δ(g)ϕ for all g ∈ G with γ(g) ∈ K×.

In this chapter representations in the sense of Definition 1.1.1 are often called
“ordinary representations.”

Remark 3.7.2 (a) Let π : GL(V ) → PGL(V ) = GL(V )/K× idV be the canon-
ical projection. Then δ : G → GL(V ) is a projective representation if and only
if δ(1) = 1V and δ̂ = π ◦ δ is a group homomorphism. Hence the name “pro-
jective” representation; it has nothing to do with projective modules (i.e. direct
summands of free modules). The requirement that δ(1) = 1V in the definition
is not really important (and is often omitted in the literature) but it sometimes
simplifies matters. Obviously it is equivalent to require α(1, 1) = 1. As an im-
mediate consequence of this statement we conclude that α(g, 1) = α(1, g) = 1
holds for all g ∈ G.

(b) If δ, δ′ are equivalent projective representations with factor sets α, α′ then
a simple calculation shows that, with the notation of the definition,

α′(g, g′) =
γ(gg′)

γ(g)γ(g′)
α(g, g′) (γ : G→ K×).

(c) If δ is a projective representation with factor set α : G → K× then com-
puting δ(g1g2g3) in two different ways using the associativity in G one finds
that

α(g1g2, g3)α(g1, g2) = α(g1, g2g3)α(g2, g3) for all g1, g2, g3 ∈ G. (3.22)

Any function α : G → K× with this property and α(g, 1) = α(1, g) = 1 for all
g ∈ G is called a (normalized) “2-cocycle,” and the set of these 2-cocycles from
G to K× forms a group Z2(G,K×) with point-wise multiplication. The set

B2(G,K×) = {(g, g′) �→ γ(gg′)
γ(g)γ(g′)

| γ : G→ K× , γ(1) = 1}

is a subgroup – the subgroup of (normalized) “2-coboundaries” – and

H2(G,K×) = Z2(G,K×)/B2(G,K×)

is called the second cohomology group. In the case that K = C it is also called
the Schur multiplier of G and is usually denoted by M(G).

(d) It follows from (b) that equivalent projective representations have factor sets
which are in the same coset of B2(G,K×), so an equivalence class of projective
representations determines a well-defined element of H2(G,K×). Conversely,
if δ is a projective representation of G with factor set α and αB2(G,K×) =
βB2(G,K×) for β ∈ Z2(G,K×) then there is a projective representation of G
with factor set β which is equivalent to δ. In particular a projective represen-
tation is equivalent to an ordinary representation if and only if its factor set in
in B2(G,K×).
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Theorem 3.7.3 Let N� G and let δ : N → GL(W ) be an absolutely irreducible
G-invariant representation. Then δ extends to a projective representation of G.
In fact, there is an ᾱ ∈ H2(G/N,K×) such that for every α ∈ Z2(G/N,K×)
with ᾱ = αB2(G/N,K×) a projective representation δα : G → GL(W ) exists
with factor set α̃ : (g, g′) �→ α(gN, g′N) and δα|N = δ. If H2(G/N,K×) = {1}
then δ may be extended to an ordinary representation of G.

Proof. Let G =
⋃̇n

i=1giN with g1 = 1. Since δ is G-invariant the representa-
tions δ and giδ are equivalent and hence there are δ̃(gi) ∈ GL(W ) with

δ(g−1
i hgi) = giδ(h) = δ̃(gi)−1δ(h)δ̃(gi) for all h ∈ N, 1 ≤ i ≤ n.

Observe that δ̃(gi) is uniquely determined up to a non-zero scalar multiple, since
δ is absolutely irreducible. We may choose δ̃(g1) = idW and define

δ̃ : G→ GL(W ), giu �→ δ̃(gi)δ(u) for u ∈ N.

For 1 ≤ i, j ≤ n let gigj = gkui,j with k ∈ {1, . . . , n} and ui,j ∈ N . Then we
get for arbitrary h ∈ N

δ̃(gj)−1δ̃(gi)−1δ(h)δ̃(gi)δ̃(gj) = δ((gigj)−1 · h · (gigj))
= δ(u−1

i,j g
−1
k hgkui,j)

= δ(ui,j)−1δ̃(gk)−1δ(h)δ̃(gk)δ(ui,j)

= δ̃(gigj)−1δ(h)δ̃(gigj).

Hence δ̃(gigj)δ̃(gj)−1δ̃(gi)−1 ∈ EndKN W = K · idW and

δ̃(gi)δ̃(gj) = α′(giN, gjN)δ̃(gigj) with α′(giN, gjN) ∈ K×,

where α′(1N, giN) = α′(giN, 1N) = 1 for all i. We get

δ̃(giu)δ̃(gju′) = δ̃(gi)δ(u)δ̃(gj)δ(u′) = δ̃(gi)δ̃(gj)δ(ugju′)

= α′(giN, gjN)δ̃(gigj)δ(ugju′) = α′(giN, gjN)δ̃(gk)δ(ui,jugju′)

= α′(giN, gjN)δ̃(giugju′)

for arbitrary u, u′ ∈ N . Thus δ̃ is a projective extension of δ with factor set
α̃′ : (g, g′) �→ α′(gN, g′N). It follows that α′ ∈ Z2(G/N,K×). Assume that
γ : G/N → K× with γ(1N) = 1 and

α(gN, g′N) :=
γ(gN)γ(g′N)
γ(gNg′)

α′(gN, g′N) for g, g′ ∈ G,

thus αB2(G/N,K×) = α′B2(G/N,K×). We then define δα : G→ GL(W ) by

δα(giu) := γ(giN)−1 δ̃(giu) for u ∈ N, 1 ≤ i ≤ n.

Clearly δα is a projective representation with factor set α̃ : (g, g′) �→ α(gN, g′N)
and δα|N = δ.
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We have already seen in Theorem 3.6.13 that every G-invariant irreducible
representation of a normal subgroup N � G can be extended to an ordinary
representation of G, provided that G/N is cyclic and the ground field K is alge-
braically closed. For charK = 0 this can also be deduced from Theorem 3.7.3,
since it is known that for a cyclic group C we have H2(C,K×) = {1} in this
case (see [88], Satz V.25.3). Recall also that Theorem 3.6.19 gave another ex-
ample where every G-invariant absolutely irreducible representation of a normal
subgroup can be extended to an ordinary representation of G.

We add yet another particularly easy case, in which invariant irreducible
representations of normal subgroups can be extended to ordinary representa-
tions.

Lemma 3.7.4 Let N �G be an abelian normal subgroup having a complement
H ≤ G in G. Then any absolutely irreducible representation δ of N which is
invariant under G extends to an ordinary representation of G.

Proof. Since δ is invariant under G it is clear that U = ker(δ) � G. Fur-
thermore δ must have degree one because it is absolutely irreducible, and we
may consider δ as a faithful irreducible G/U -invariant character of N/U , hence
N/U ≤ Z(G/U). So G/U ∼= N/U×HU/U and δ ×1HU/U defines an irreducible
character of G/U . Inflating this to G we get an extension of δ to G.

Theorem 3.7.5 (Clifford) Let N � G and W be an absolutely simple G-
invariant KN -module with representation δW : N → GL(W ). Assume that
αB2(G/N,K×) ∈ H2(G/N,K×) and that δα : G → GL(W ) is a projective
representation with factor set (g, g′) �→ α(gN, g′N) as in Theorem 3.7.3 ex-
tending δW . If V is a simple KG-module with representation δ : G → GL(V )
and

VN ∼= W ⊕ · · · ⊕W with e summands W,

then V ∼=K W ⊗KX with an e-dimensional K-vector space X and we can write

δ(g) = δα−1(gN)⊗ δα(g) for g ∈ G

with an irreducible projective representation δα−1 : G/N → GL(X) with factor
set α−1.

Proof. VN = W1 ⊕ · · · ⊕We with Wi
∼=KN W . We can find an adapted basis

B of V such that for h ∈ N and g ∈ G

[δ(h)]B =

 DW (h) 0
. . .

0 DW (h)

 , [δ(g)]B =

 D11(g) D1e(g)
· · ·

De1(g) Dee(g)

 ,
where DW (h) = [δW (h)]B1 with an arbitrary basis B1 of W and Dij(g) ∈ Km×m

with m = dimW . From δ(h)δ(g) = δ(g)δ(g−1hg) we obtain

DW (h)Dij(g) = Dij(g)DW (g−1hg) for h ∈ N , g ∈ G.
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Put Dα(g) := [δα(g)]B1 , so that Dα(h) = DW (h) for h ∈ N . Then, as in the
proof of Theorem 3.7.3,

DW (g−1hg) = Dα(g)−1DW (h)Dα(g) for h ∈ N, g ∈ G,
DW (h) (Dij(g)Dα(g)−1) = (Dij(g)Dα(g)−1)DW (h) for h ∈ N, g ∈ G.

Since W is absolutely simple we conclude that

Dij(g)Dα(g)−1 = aij(g)Ie for some aij(g) ∈ K

with aij(gh) = aij(g) for g ∈ G, h ∈ N . We define Dα−1(gN) = [aij(g)]ei,j=1.
Then it follows that

[δ(g)]B = Dα−1(gN)⊗Dα(g) for g ∈ G.

Since δ is an ordinary representation and Dα is a projective matrix repre-
sentation of G, the multiplication rules for the Kronecker product yield that
Dα−1 : g �→ Dα−1(gN) is also a projective matrix representation with factor
set inverse to that of Dα. Since δ is irreducible, both Dα and Dα−1 must be
irreducible.

We give a simple, but important, application in the following.

Corollary 3.7.6 Let K be a field and let G = G1 ×G2 be the direct product of
the subgroups G1, G2. Let πi : G→ Gi be the corresponding natural projections.

(a) If Wi is an absolutely simple KGi-module for i = 1, 2, then Infπ1 W1 ⊗K
Infπ2 W2 is an absolutely simple KG-module. If K is a splitting field for G1 and
G2, every simple KG-module is isomorphic to one of this form.

(b) For ϕi ∈ cf(Gi) (i = 1, 2) we write ϕ1×ϕ2 : G→ C, (g1, g2) �→ ϕ1(g1)ϕ2(g2).
Then ϕ1 × ϕ2 ∈ cf(G) and

Irr(G) = { χ1 × χ2 | χ1 ∈ Irr(G1) , χ2 ∈ Irr(G2) }.

Proof. Obviously it suffices to prove (a). δi : KGi → EndKWi is absolutely
irreducible if and only if it is surjective (by Corollary 1.3.7). The first assertion
follows, since EndKW1 ⊗K W2 ∼=K EndKW1 ⊗K EndKW2. Now let K be a
splitting field for G1 and G2 and let V be a simple KG-module. Since G1 and
G2 centralize each other, every KG1-module is G-invariant and every represen-
tation δ1 : KG1 → EndKW1 can be extended to an (ordinary) representation
δ′
1 : KG→ EndKW1 by putting δ′

1(g1g2) := δ1(g1) for g1 ∈ G1, g2 ∈ G2. So the
result follows from Theorem 3.7.5

Remark 3.7.7 (a) For a weakening of the hypothesis in part (a) of Corol-
lary 3.7.6 see Exercise 3.7.7.

(b) If A1, A2 are K-algebras and W1,W2 are A1, respectively, A2-modules then
W1⊗KW2 is an A1⊗K A2-module in a natural way, the “outer tensor product”
of the modules. Observe that K(G1 × G2) ∼= KG1 ⊗K KG2 as K-algebras.
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But one cannot conclude in general that W1⊗KW2 is simple if W1 and W2 are
simple. Consider, for example, A1 = C and A2 = Q C3 with the cyclic group C3
of order three and W1 the trivial module C, whereas W2 = Q[X]/(X2 +X + 1)
(cf. Example 1.1.24 and Example 1.1.31). Then Wi are simple Ai-modules for
i = 1, 2, but W1 ⊗Q W2 = C[X]/(X2 + X + 1) is not a simple C C3-module,
although A1 ⊗Q A2 ∼= C C3.

There are two ways to “linearize” a projective representation of G with factor
set α. One is to consider the “twisted group algebra” KαG and the other is to
use “central extensions” of G. We briefly mention the first alternative.

Definition 3.7.8 If α : G × G → K× is a factor set for the finite group over
the field K, the K-vector space with basis G can be turned into an associative
K-algebra by defining

g � g′ = α(g, g′)gg′ for all g, g′ ∈ G

and extending K-linearly. This K-algebra is called a twisted group algebra
and will be denoted by KαG.

It is obvious that every (finitely generated) KαG-module V defines a projective
representation of G with factor set α and conversely. Isomorphic KαG-modules
lead to equivalent projective representations, but the converse does not neces-
sarily hold (KαG-modules in the same orbit under the action of Hom(G,K�)
also yield equivalent projective representations).

We proceed with the second option to linearize projective representations,
which we will use almost exclusively.

Definition 3.7.9 Let N � G and let π : G → G = G/N, g �→ g = gN be
the canonical projection; then a function τ : G → G with π ◦ τ = idG is called
a section provided that τ(1) = 1 and τ maps conjugate elements of G to
conjugate elements of G. The function ητ : G×G→ N defined by τ(g) τ(g′) =
τ(g g′) ητ (g, g′) is called the factor set corresponding to τ . If N ≤ Z(G) we
call the short exact sequence

{1} −−−−→ N
ι−−−−→ G

π−−−−→ G −−−−→ {1}

a central extension of G, where ι is the embedding, and G is called a covering
group of G provided that G and G are perfect.

The above definition is more special than the usual one. Often any function
τ : G → G mapping each coset g = gN to a representative g = τ(gN) ∈ G is
called a section (or it is just assumed in addition that τ(1) = 1). But it is clear
that it is possible to choose the representatives in such a way that conjugate
elements of G are represented by conjugate elements in G. And in practice this
is quite useful. Obviously, N has a complement H in G (that is H ≤ G with
G = HN and H ∩N = {1}) if and only if there is a section τ : G → G, which
is a group homomorphism.
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Remark 3.7.10 If τ : G = G/N → G is a section with factor set η := ητ as in
Definition 3.7.9 then the associativity implies

η(g1g2, g3)η(g1, g2)τ(g3) = η(g1, g2g3)η(g2, g3) for all g1, g2, g3 ∈ G.

If N ≤ Z(G) this looks like the “2-cocycle” equation (3.22) on p. 239 and so
λ ◦ η ∈ Z2(G,K×) for every λ ∈ Hom(N,K×). If δ : G→ GL(V ) is an ordinary
representation over K, with δ(z) = λ(z) idV for z ∈ N , then δ ◦ τ : G→ GL(V )
is a projective representation with factor set λ◦η. Conversely, if δ : G→ GL(V )
is a projective representation with factor set λ ◦ η then we get an ordinary
representation (assuming again that N ≤ Z(G))

δ : G→ GL(V ), g �→ λ(zg)δ(π(g)) with zg := g (τ ◦ π(g))−1 ∈ N

with δ ◦ τ = δ. We say that “δ is lifted to an ordinary representation δ of G.”

Lemma 3.7.11 Let N �G with natural projection π : G→ G/N and let

{1} −−−−→ Z
ι−−−−→ H

π′
−−−−→ G/N −−−−→ {1}

be a central extension with section τ : G/N → H and corresponding factor set
η := ητ : G/N ×G/N → Z. Then

N × Z � G �H := {(g, h) ∈ G×H | π(g) = π′(h)} ≤ G×H.

With ι̃ : Z → G �H, z �→ (1, ι(z)) and π̃ : G �H → G, (g, h) �→ g we obtain a
central extension

{1} −−−−→ Z
ι̃−−−−→ G �H

π̃−−−−→ G −−−−→ {1}

with section τ̃ : g �→ (g, τ(gN)) and factor set ητ̃ : (g, g′) �→ η(gN, g′N).

Proof. The verification is left to the exercises. Note that G �H is often called
a “direct product with amalgamated factor groups;” see [88], Satz I.9.11, p. 50.

Example 3.7.12 Let N be an abelian normal subgroup of G and ϕ : N → K×

a G–invariant linear character of N . Assume that τ : G = G/N → G is a section
with factor set η. Then

ϕ̃ : G→ K×, g �→ ϕ(τ(g)−1 · g)

is a projective representation of G with ϕ̃|N = ϕ with factor set α = ϕ ◦ η. �

Definition 3.7.13 A finite group H is called a representation group of G
(over K) if there is Z ≤ Z(H) with H/Z ∼= G such that every irreducible
projective representation δ′ of G (over K) is equivalent to one of the form δ ◦ τ
with an ordinary irreducible representation δ of H and a section τ : G→ H.
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If K is a splitting field for H, as we will assume most of the time, then
δ|Z = λ : Z → K is a linear character, and the factor set of δ ◦ τ is α = λ ◦ η
with η : G×G→ Z being the factors set corresponding to τ .

Schur ([157]) has proved the existence of representation groups (over C) for
any finite group. We follow roughly the exposition given in [88].

Theorem 3.7.14 Let H be a (not necessarily finite) group Z ≤ Z(H) with
H/Z ∼= G and let τ : G → H be a section with factor set η := ητ : G×G→ Z.
If λ ∈ Ẑ = Hom(Z,K×) then λ ◦ η ∈ Z2(G,K×). The map

ε : Ẑ → H2(G,K×), λ �→ λε = (λ ◦ η)B2(G,K×)

is a group homomorphism. If K is algebraically closed then

ker ε = (Z ∩H ′)⊥ = {λ ∈ Ẑ | λ(z) = 1 for all z ∈ Z ∩H ′}

and H is a representation group of G if and only if Z ≤ Z(H) ∩ H ′ and ε is
surjective.

Proof. The first assertion was already noted in Remark 3.7.10. Obviously ε
is a homomorphism. By definition, λ ∈ ker ε if and only if λ ◦ η ∈ B2(G,K×),
that is if and only if there is a γ : G → K× with γ(1) = 1 and λ ◦ η(g1, g2) =
γ(g1g2)−1γ(g1)γ(g2) for all g1, g2 ∈ G. For such a γ we define

µ = µγ : H → K×, τ(g)z �→ γ(g)λ(z) for z ∈ Z , g ∈ G.

Then µ|Z = λ. Furthermore for g1, g2 ∈ G, z1, z2 ∈ Z

µ(τ(g1)z1τ(g2)z2) = µ(τ(g1g2)η(g1, g2)z1z2) = γ(g1g2)λ(η(g1, g2))λ(z1)λ(z2)
= µ(τ(g1)z1)µ(τ(g2)z2);

Z ∩H ′

Z H ′

ZH ′

H

�� ��

�� ��

��
i.e. µ is a homomorphism and hence H ′ ≤ kerµ,
hence Z ∩H ′ ≤ kerλ, that is λ ∈ (Z ∩H ′)⊥.

Conversely, let λ ∈ (Z ∩ H ′)⊥. Then λ can be
extended to an H-invariant linear character of ZH ′

having H ′ in its kernel and by Exercise 3.6.4 to a
character λ̃ of H. Then λ ◦ η ∈ B2(G,K�) because

λ̃τ(g1)λ̃τ(g2) = λ̃(τ(g1)τ(g2)) = λ̃τ(g1g2)λη(g1, g2).

If Z ≤ Z(H) ∩ H ′ then ε is injective and by a theorem of Schur (see [88],
Satz IV.2.3, p. 417) H is finite. So the last claim follows from Remark 3.7.10.

Theorem 3.7.15 Assume that K is algebraically closed and charK = 0. Let
F be a free group on {x1, . . . , xn} such that F/R ∼= G for some R� F . Put

F̃ := F/[R,F ] and R̃ := R/[R,F ].

Then the following holds.



246 Groups and subgroups

(a) R̃ ≤ Z(F̃ ) and T̃ := (R ∩ F ′)/[R,F ] is the torsion subgroup of R̃. Further-
more T̃ has a complement S̃ ∼= Zn in R̃.

(b) H2(G,K×) ∼= T̃ is finite and F̃ /S̃ is a representation group of G.

(c) If H is any representation group of G (over K) then there is an epimorphism

σ̃ : F̃ → H with σ̃(R̃) = Z, σ̃(Z(F̃ )) = Z(H), σ̃|F̃ ′ : F̃ ′ ∼= H ′,

where Z is as in Definition 3.7.13. Also Z ∼= H2(G,K×) ∼= M(G).
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Figure 3.4. H as a homomorphic image of F .

Proof. See Figure 3.4. Clearly R̃ ≤ Z(F̃ ). Since [F̃ : R̃] = |G| <∞ it follows
from a theorem of Schur ([88], Satz IV.2.3, p. 417) that F̃ ′ = F ′/[R,F ] and
hence T̃ := (R ∩ F ′)/[R,F ] is finite. Note that F/F ′ is a free abelian group of
rank n and so is (RF ′)/F ′ ∼= R/(R ∩ F ′) ∼= R̃/T̃ , because F/(RF ′) is finite.
Hence R̃ is a finitely generated abelian group with torsion subgroup T̃ , and by
[110], Theorem III.7.3, p. 147, T̃ has a complement S̃ ∼= Zn.

(b) Let π : F → G be an epimorphism with kerπ = R and π̃ : F̃ → G,
x[R,F ] �→ π(x). We apply Theorem 3.7.14 to the central extension (with ι the
inclusion)

{1} −−−−→ R̃
ι−−−−→ F̃

π̃−−−−→ G −−−−→ {1}.

Let τ̃ : G → F̃ be a section and let η̃ : G×G → R̃ be the corresponding factor
set. To show that the map ε defined in Theorem 3.7.14 is surjective we take an
arbitrary α ∈ Z2(G,K×). We turn G×K× into a group G(α) by defining

(g1, s1) · (g2, s2) := (g1g2, α(g1, g2)s1s2) for g1, g2 ∈ G, s1, s2 ∈ K×.

Observe that the associativity follows, since α ∈ Z2(G,K×) and the inverse
of (g, s) ∈ G(α) is (g−1, α(g−1, g)−1s−1). Clearly K× ∼= {(1, s) | s ∈ K×} ≤
Z(G(α)). Since F is free on {x1, . . . , xn} there is a homomorphism ψ : F → G(α)
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mapping xi to (π(xi), 1) ∈ G(α) for i = 1, . . . , n. Then

ψ : F → G(α), x �→ (π(x), β(x)) with β(x) ∈ K× and β|R ∈ R̂.

Now, [R,F ] ≤ kerψ since ψ(R) ≤ Z(G(α)), so ψ induces a group homo-
morphism ψ̃ : F̃ → G(α), x̃ �→ (π̃(x̃), β̃(x̃)) with π̃(x[R,F ]) := π(x) and

β̃(x[R,F ]) := β(x). Then λ := β̃|R̃ ∈
ˆ̃R. Using

ψ̃(τ̃(g1)τ(g2)) = ψ̃(τ̃(g1))ψ̃(τ̃(g2))

we get

λ ◦ η̃(g1, g2) = α(g1, g2) β̃(τ̃(g1)) β̃(τ̃(g2)) β̃(τ̃(g1g2))−1 for g1, g2 ∈ G.

Hence ε(λ) = αB2(G,K×) and ε is surjective. By Theorem 3.7.14 we have

H2(G,K×) ∼= ˆ̃R/T̃⊥. Since any µ ∈ ˆ̃T can be extended to a λ ∈ ˆ̃R with

S̃ ≤ kerλ, the restriction map ˆ̃R → ˆ̃T, λ �→ λ| ˆ̃T is an epimorphism with

kernel T̃⊥. Hence ˆ̃R/T̃⊥ ∼= ˆ̃T ∼= T̃ , where the last isomorphism follows from
Exercise 2.1.2.
Now put H := F̃ /S̃ and Z := R̃/S̃ ∼= T̃ . Then Z ≤ Z(H) ∩ H ′, and from
Theorem 3.7.14 we conclude that H is a representation group of G.

(c) Let H be an arbitrary representation group of G with epimorphism
ρ : H → G with ker ρ = Z, where Z ≤ Z(H) ∩H ′ by Theorem 3.7.14. Choose
hi ∈ H with ρ(hi) = π(xi) for i = 1, . . . , n. Then H = 〈h1, . . . , hn, Z〉. By a
theorem of Gaschütz (see [88], Satz III.3.12, p. 272) Z is contained in the Frat-
tini subgroup Φ(H) and hence H = 〈h1, . . . , hn〉 (see [88], Satz III.3.2, p. 268).
Thus we obtain an epimorphism σ : F → H with σ(xi) = hi for i = 1, . . . , n and
therefore ρ ◦ σ = π. Consequently σ(R) = Z and thus [R,F ] ≤ kerσ, so that
σ induces an epimorphism σ̃ : F̃ → H with ρ ◦ σ̃ = π̃, hence σ̃(R̃) = Z. Since
|Z| = |H2(G,K×)| = [R̃ : ker σ̃] it follows that ker σ̃ is a complement to T̃ in
R̃. So σ̃|F̃ ′ is injective and hence an isomorphism F̃ ′ → H ′. If σ̃(x̃) ∈ Z(H)
then [x̃, ỹ] ∈ ker σ̃ ∩ F̃ ′ = {1} for all ỹ ∈ F̃ , hence x̃ ∈ Z(F̃ ). Finally note
that the definition of F̃ , T̃ and S̃ is independent of the field K, in particular
H2(G,K×) ∼= M(G).

Corollary 3.7.16 The degree of an irreducible projective representation of G
over an algebraically closed field of characteristic zero divides |G|.

Proof. An irreducible projective representation δ of G lifts to an ordinary irre-
ducible representation δo of a representation group H of G as in Theorem 3.7.15.
By Theorem 2.3.6 the degree of δo divides [H : Z(H)] = |G|/[Z(H) : Z].

The construction of a representation group of G in Theorem 3.7.15 involves
a choice of a complement of the torsion subgroup of a finitely generated abelian
group (in addition to a choice of a finite presentation G ∼= F/R). In general it
is not determined up to isomorphism by G. For example the quaternion group
Q8 and the dihedral group D8 of order eight are both representation groups of
the Klein 4-group V4 (see Exercise 3.7.2). On the other hand, if G is perfect
(i.e. G′ = G) then H ∼= F ′/[R,F ], and a representation group of G is unique
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up to isomorphism. It follows from Theorem 3.7.15 that in general the order of
a representation group of G is determined; moreover it turns out that any two
representation groups of a finite group G are isoclinic. To define this notion,
first introduced by Hall [76], it is convenient to use the following convention.

Remark 3.7.17 The commutator mapH×H → H ′ , (g, h) �→ [g, h] is constant
on cosets of the center Z(H). So we can define [gZ(H), hZ(H)] := [g, h].

Definition 3.7.18 Two not necessarily finite groups H1, H2 are called iso-
clinic if there are isomorphisms ϕ : H1/Z(H1) → H2/Z(H2), ψ : H ′

1 → H ′
2

satisfying

ψ([x, y]) = [ϕ(xZ(H1)), ϕ(yZ(H1))] for all x, y ∈ H1. (3.23)

Since Hi/Z(Hi) ∼= Inn(Hi), the group of inner automorphisms H1 acts on
H ′

1 and via ϕ also on H ′
2. The condition (3.23) says that ψ is an H1-equivariant

isomorphism of groups. Clearly isoclinism is an equivalence relation, and it is
also obvious that any two abelian groups are isoclinic.

Corollary 3.7.19 Any two representation groups of G are isoclinic.

Proof. Let σ̃ : F̃ → H be as in Theorem 3.7.15(c). Clearly it suffices to show
that H1 := F̃ is isoclinic to H. We define

ϕ : F̃ /Z(F̃ ) → H/Z(H), xZ(F̃ ) �→ σ̃(x) Z(H) and ψ := σ̃|F̃ ′ .

By Theorem 3.7.15(c) ϕ and ψ are isomorphisms and (3.23) obviously holds.

Lemma 3.7.20 Two finite groups H1, H2 are isoclinic if and only if there are
embeddings ιi : Hi → G into a finite group G such that G = ιi(Hi) Z(G) for
i = 1, 2.

Proof. (See [78].) (a) If G = H Z(G) then G′ = H ′ and Z(H) = Z(G)∩H. So
ψ := idH′ and ϕ : H/H ′ → G/G′, hZ(H) �→ hZ(G) define an isoclinism from
H to G.

(b) Conversely, let ϕ,ψ be as in Definition 3.7.18. Let H̃ := H1 � H2 be
the semidirect product using the action of H1 on H2 mentioned above, that is
xg := xh = h−1xh for g ∈ H1, x, h ∈ H2 if h ∈ ϕ(gZ(H1))]. Then

H1 ∼= H̃1 := {(h, 1) | h ∈ H1} ≤ H̃ and H2 ∼= H̃2 := {(1, h) | h ∈ H2}� H̃.

It is readily verified that D := {(h, ψ(h)−1) | h ∈ H ′
1}� H̃. We put G := H̃/D.

Since ψ is bijective, H̃i ∩D = {1} for i = 1, 2 and we get embeddings

ι1 : H1 → G, h �→ (h, 1)D and ι2 : H2 → G, h �→ (1, h)D.

Defining Z̃ := {(y, z) ∈ H̃ | z ∈ ϕ(y−1 Z(H1))} we see that D ≤ Z̃ and clearly
H̃ = H̃1Z̃ = H̃2Z̃. So the claim follows, once we have seen that Z̃/D ≤ Z(G),
or, equivalently, [Z̃, H̃] ≤ D. To this end, let (y, z) ∈ Z̃ and for (g, 1) ∈ H̃1
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choose h ∈ ϕ(gZ(H1)). Then zy = z and consequently

[(y, z), (g, 1)] = (y−1, z−1) (g−1, 1) (y, z) (g, 1) = (y−1, z−1) (g−1yg, zg)

= ([y, g], (z−1)g
−1ygzg) = ([y, g], [z−1, h]−1) ∈ D

since ψ([y, g]) = [z−1, h]. Hence Z̃/D ≤ Z(G) because for any h2 ∈ H2 we have

[(y, z), (1, h2)] = (y−1, z−1h−1
2 ) (y, z h2) = (1, (z−1h−1

2 )yz h2) = (1, 1).

In Lemma 3.7.20 we may assume that G = ι1(H1)ι2(H2).

Corollary 3.7.21 Let H1, H2 be representation groups of G. Then there are
bijections β : Irr(H1) → Irr(H2), χ �→ χβ and γ : H1 → H2, h �→ hγ such that

χβ(hγ) = λh · χ(h) with λh ∈ C× and λh = 1 for h ∈ H ′
1.

Proof. Clearly we may assume H1 
∼= H2 and in addition (by Lemma 3.7.20)
that H1, H2 can be embedded into a group H such that H = H1H2 =
H1 Z(H) = H2 Z(H). Then there are zi, yi ∈ Z(H) with

H =
⋃̇n

i=1
ziH1 =

⋃̇n

i=1
yiH2, H1 =

⋃̇n

i=1
yi(H1∩H2), H2 =

⋃̇n

i=1
zi(H1∩H2).

We define γ : H1 → H2, yih �→ zih, (h ∈ H1 ∩ H2). If χ ∈ Irr(H1 | λ1)
for λ1 ∈ Irr(Z(H1)) and λ ∈ Irr(Z(H)) with λZ(H1) = λ1 (which exists by
Exercise 3.6.4) then define

χβ : H2 → C, zih �→ λ(zi)δ(h), for h ∈ H1 ∩H2.

Then χβ ∈ Irr(H2). Clearly χβ((yih)γ) = λ(zi)δ(h) and χ(yih) = λ(yi)δ(h).
Finally observe that the assumptions imply that H ′ = H1

′ = H2
′.

Examples of isoclinic groups can be constructed using the following.

Definition 3.7.22 Let Zi ≤ Z(Gi) for i = 1, 2 and let α : Z1 → Z2 be an
isomorphism. Then D = {(z, α(z)−1) | z ∈ Z1} ≤ Z(G1 ×G2) and

G1 �αG2 = G1 �Z1G2 := (G1 ×G2)/D

is called the direct product of G1 and G2 with amalgamated central
subgroups.

There are obvious embeddings of G1, G2 into G1 �Z1G2 and G1 �Z1G2 = G1G2
with G1 ∩G2 = Z1 = Z2 using these embeddings.

Example 3.7.23 Let H0 be a finite group with Cp ∼= Z(H0) ≤ H ′
0 and [H0 :

H ′
0] = p. Assume in addition that H ′

0/Z(H0) simple. Then we can draw the
complete lattice of normal subgroups of H0 × Cp2 and consequently of H :=
H0 �Cp Cp2 . For simplicity we do this for p = 2 (see Figure 3.5). Here D is
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Figure 3.5. Direct product with amalgamated center.

the diagonal subgroup in Z̃1 := Z(H0) × C2 ∼= V4. Also H̃i, for i = 1, 2, 3,
are the subgroups of index two in H0 × C4 intersecting in K̃ and Hi = H̃i/D.
Furthermore K := K̃/D = H ′. Finally

Z̃ := Z(H0 × C4) = Z(H0)× C4 and Z := Z̃/D = Z(H).

By Lemma 3.7.20H1 andH2 are isoclinic, H ′
1 = H ′

2 = H ′ and Z(H1) = Z(H2) =
Z1. Furthermore H1 ∼= H0 and the character tables of H can be automatically
produced from the character table of H0 (using the known character table of
C4 and Corollary 3.7.6; cf. Exercise 3.7.3). In fact, if Z = 〈z〉 then

H2 = H ′ ∪̇ {h1z | h1 ∈ H1 \H ′}.

For χ1 ∈ Irr(H1) we have χH1 = χ+ χ′ with χ 
= χ′ ∈ Irr(H). Then χ2 := χ|H2

and χ′
2 := χ′|H2 are irreducible and

χ2 + χ′
2 = (χH1 )|H2 = (χ1|H′)H2 .

It is clear that {χ2(h1z), χ′
2(h1z)} = {i χ1(h1), −i χ1(h1)} for h1 ∈ H \H ′.

If H1 is a representation group of G := H1/Z1 ∼= H/Z ∼= H2/Z2, then so is
H2 and clearly H1 
∼= H2.

Conversely, suppose now that G is a finite group with [G : G′] = 2 and G′

is simple with multiplier M(G) ∼= C2. (In the ATLAS ([38]) one can find many
examples; also one may take G = Sn for n = 5 or n > 7.) Let H1 
∼= H2 be
representation groups of G. We use the notation of the proof of Corollary 3.7.21.
In particular H = H1H2 = Hi Z(H), H ′ = Hi

′ and [H : Hi] = n for i =
1, 2. Since 2 = [G : G′] = [Hi : Hi

′] for i = 1, 2 we have n = 2. Since
Hi

′/Z(Hi) ∼= G′ we conclude from Theorem 3.7.14 that Z(Hi) embeds into
M(G′). Thus Z(H1) = Z(H2) ∼= C2 and Z(H) has order four. In fact, since
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H1 ∩ Z(H) = H2 ∩ Z(H) it follows that Z(H) ∼= C4. Now it is easily seen that
H ∼= H1 � C4, and we conclude that G has exactly two representation groups
up to isomorphism. �

A representation group H can be used to lift all projective representations
(up to equivalence) to ordinary representations. When dealing with a single
projective representation a factor group of H is often more appropriate.

Corollary 3.7.24 Assume that K is algebraically closed with charK = 0. For
ᾱ ∈ H2(G,K×) there is a central extension with cyclic kernel Cα

{1} −−−−→ Cα
ι−−−−→ Hα

π−−−−→ G −−−−→ {1},

a section τα : G→ Hα and a faithful λα ∈ Irr(Cα) so that (λα◦ητα
)B2(G,K×) =

ᾱ. Thus every projective representation of G with factor set α ∈ ᾱ is equivalent
to one which can be lifted to an ordinary representation of Hα.

Proof. Assume that H is a representation group of G and that the notation is
as in Theorem 3.7.14. Abbreviate Zα := kerλ and let Hα := H/Zα and Cα :=
Z/Zα. Finally, put τα : G→ Hα, g �→ τ(g)Zα and λα : Cα → K×, zZα �→ λ(z).
Then λ ◦ η = λα ◦ ητα

. Observe that Cα is cyclic, because λα is faithful.

Our motivation to introduce projective representations was to be able to
extend a G-invariant absolutely irreducible representation δ or character ϕ of
a normal subgroup N � G to G. We now combine such an extension with a
lifting to an ordinary representation or character as in Corollary 3.7.24 in order
to obtain a concrete description of Irr(G | ϕ).

Theorem 3.7.25 Let N �G and let ϕ ∈ Irr(N) be G-invariant. Then there is
a central extension

{1} −−−−→ Z
ι−−−−→ H

π−−−−→ G −−−−→ {1}

with section τ : G→ H, a faithful λ ∈ Irr(Z) and a χo ∈ Irr(H) so that

π−1(N) = N × Z, and χo|N×Z = ϕ× λ, (3.24)

Irr(G | ϕ) = { (χo · χ) ◦ τ | χ ∈ Irr(H | 1N × λ−1) }. (3.25)

Observe that in (3.25) (χo · χ)|N×Z = χ(1) · ϕ× 1Z , so that Z ≤ ker(χo · χ)
(for χ ∈ Irr(H | 1N × λ−1)).

Proof. Let ϕ be afforded by δ : N → GL(W ), where W is a simple CN -
module. By Theorem 3.7.3 there is ᾱ ∈ H2(G/N,C×) such that for every
α ∈ Z2(G/N,C×) with ᾱ = αB2(G/N,C×) there is a projective representation
δα : G → GL(W ) with factor set α̃ : (g, g′) �→ α(gN, g′N) and δα|N = δ. By
Corollary 3.7.24 there is a group Hα with Hα/Zα ∼= G/N for Zα ≤ Z(Hα)∩H ′

α,
a faithful linear character λ : Zα → K× and a section τ = τα : G/N → Hα with
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factor set η : G/N×G/N → Zα such that α := λ◦η satisfies αB2(G/N,K×) = ᾱ.
From Lemma 3.7.11 we obtain a central extension

{1} −−−−→ Zα
ι−−−−→ G �Hα

π−−−−→ G −−−−→ {1}

with section τ̃ : g �→ (g, τ(gN)) and factor set ητ̃ : (g, g′) �→ η(gN, g′N). Then

←−

←−

−→π

−→

Hα H = G �Hα G

Zα N × Z N

{1}
Z

N

{1}

{1}

�
�

��

�
�

��

�
��

�
��

δα has factor set α̃ : (g, g′) �→ λ(ητ̃ (g, g′)).
It follows that

δo : G �Hα → GL(W ), (g, z) �→ λ(z)δ(τ(g))

is an ordinary representation with
δo|N×Zα

= δ × λ. We put H := G �Hα,
Z := ι(Zα) and denote the character of
δo by χo. Then χo|N×Z = ϕ× λ.

Let (1N×λ−1)H =
∑
χ∈Irr(H) eχχ. By

Exercise 3.6.1∑
χ∈Irr(H)

e2χ = [H : N × Z] = [G : N ].

Then (ϕ×1Z)H = ((ϕ×λ)·(1N×λ−1))H = χo·(1N×λ−1)H =
∑
χ∈Irr(H) eχχo·χ.

Again by Exercise 3.6.1 ((ϕ×1Z)H , (ϕ×1Z)H)H = [G : N ], and it follows that

(χo · χ , χo · χ′)H = δχ,χ′ for χ, χ′ ∈ Irr(H | 1N × λ−1).

Thus Irr(H | ϕ× 1Z) = {χo · χ | χ ∈ Irr(H | 1N × λ−1)}.

We proceed to discuss characters of projective representations and their or-
thogonality relations. The basic lemma is the following.

Lemma 3.7.26 Let Z ≤ Z(G), G := G/Z and let λ ∈ Irr(Z) be faithful.

(a) If g ∈ G satisfies CG(gZ) > CG(g)/Z then χ(g) = 0 for all χ ∈ Irr(G | λ).

(b) For g, h ∈ G we have

∑
χ∈Irr(G|λ)

χ(g)χ(h−1) =
{
|CG(gZ)| if h ∈ gG and CG(gZ) = CG(g)/Z,

0 else.

Proof. (a) CG(gZ) 
= CG(g)/Z holds if and only if there is an x ∈ G with
1 
= z = [g, x] ∈ Z, that is gx = gz. In this case Lemma 2.3.5 implies χ(g) = 0
for all χ ∈ Irr(G,λ), because λ is faithful.

(b) We use induction on n := |Z|. For n = 1 see the orthogonality relations
(Theorem 2.1.15). By assumption Z is cyclic of order, say, n. For each divisor
d of n there is exactly one subgroup Cd of order n/d, which is the kernel of λd.
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If j ∈ N is coprime to n/d we obtain Irr(G | λdj) from Irr(G | λd) by applying
a cyclotomic field automorphism ηj . Hence we have

ag,h :=
∑

χ∈Irr(G)

χ(g)χ(h−1) =
∑
d|n

∑
(j,n

d )=1

(
∑

χ∈Irr(G|λd)

χ(g)χ(h−1) )ηj .

If g, h are not conjugate in G then ag,h = 0, and by induction we get∑
χ∈Irr(G|λ)

χ(g)χ(h−1) = 0. (3.26)

Clearly (3.26) also holds by part (a) if h ∈ gG and CG(gZ) > CG(g)/Z. So
finally we may assume that h = g and CG(gZ) = CG(g)/Z. Then, by the
orthogonality relations,

|CG(g)| = ag,g =
∑
d|n

ϕ(n/d)
∑

χ∈Irr(G|λd)

|χ(g)|2, (3.27)

with ϕ being the Eulerian function. On the other hand, by our assumption,

|CG(g)| = n |CG(gZ)| =
∑
d|n

ϕ(n/d) |CG(gZ)|. (3.28)

Now, λd may be considered as a faithful character of Zd = Z/Cd, which is a
central subgroup of Gd = G/Cd. Our assumption implies for g̃ = gCd that
CGd

(g̃Zd) = CGd
(g̃)/Zd, where Gd := Gd/Zd ∼= G/Z = Ḡ. Hence by induc-

tion
∑
χ∈Irr(G|λd) |χ(g)|2 = |CG(gZ)| for d > 1. Inserting this in (3.27) and

comparing with (3.28) we obtain
∑
χ∈Irr(G|λ) |χ(g)|2 = |CG(gZ)|.

Definition 3.7.27 g ∈ G is called α-regular for an α ∈ Z2(G,K×) if

α(g, x) = α(x, g) for all x ∈ CG(g).

Lemma 3.7.28 Let G be a finite group, let K be a field and α ∈ Z2(G,K×).

(a) If g ∈ G and Trace(δ(g)) 
= 0 for some projective representation over K,
then g is α-regular.

(b) If α′ ∈ αB2(G,K×) then g ∈ G is α-regular if and only if g is α′-regular
and this holds if and only if any element in gG is α-regular.

(c) If K is algebraically closed of characteristic zero then g ∈ G is α-regular if
and only if Trace(δ(g)) 
= 0 for some projective representation with factor set
α. If Hα, Zα and τα are as in Corollary 3.7.24 then g is α-regular if and only
if τ(g) is not conjugate in Hα to any z τ(g) with 1 
= z ∈ Zα. In particular, if
the order of g is coprime to the order of αB2(G,K×) in H2(G,K×) then g is
α-regular.
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Proof. (a) For x ∈ CG(g) we get α(x, g) · δ(x)δ(g)δ(x)−1 = α(g, x) · δ(g) and
consequently (α(x, g)− α(g, x)) · Trace(δ(g)) = 0.

(b) The first part of (b) is obvious. The second part follows from a lengthy
calculation, which is not worth reproducing. It follows also immediately from
(c) in this more special situation, which, however, is the only one we are inter-
ested in.

(c) Let g ∈ G be α-regular. We may use Corollary 3.7.24 to assume that
α = λ◦η with G ∼= Hα/Zα, (Zα ≤ Z(Hα)) a section τ : G→ Hα, corresponding
factor set η : G × G → Zα and a faithful λ ∈ Irr(Zα). Since λ is faithful, Defi-
nition 3.7.27 says that η(g, x) = η(x, g) for all x ∈ CG(g). This is equivalent to
τ(g)τ(x) = τ(x)τ(g) for all x ∈ CG(g) and therefore to CG(g) ∼= CHα(τ(g))/Zα.
Thus no two elements in the coset τ(g)Zα can be conjugate in Hα, and, at the
same time, Lemma 3.7.26 shows that there is an irreducible projective represen-
tation δ with Trace(δ(g)) 
= 0. Clearly, if the order of g, say m, is coprime to
the order of αB2(G,K×), which is |Zα|, then we may choose τ(g) to have order
m, and τ(g) is not conjugate to any other element in the coset τ(g)Zα.

If α ∈ Z2(G,K×) and U ≤ G then α′ := α|U×U ∈ Z2(U,K×). Obviously, if
g ∈ U is α-regular then g is also α′-regular. We give a typical example, where
this simple idea can be used to find non-α-regular classes.

Example 3.7.29 G := L2(11) has a representation group H := SL2(11) ∼= 2 ·G
and maximal subgroups U isomorphic to A5 with index 11 (see [38], p. 7). Thus
H has maximal subgroups V containing Z := Z(H) with V/Z ∼= U . If Z had a
complement in V then by a theorem of Gaschütz (see [88], Satz I.17.4) Z would
have a complement in H (since (|Z|, [H : U ]) = 1), which is impossible because
Z ≤ H ′. Hence V ∼= 2 ·A5, using the well known fact that the Schur multiplier
of A5 has order two. Let α ∈ Z2(G,C×) be in a cohomology class of order two
and let α′ := α|U×U . In Example 3.7.33 we will show that the involutions in A5
are not α′-regular. So we may conclude that the class of involutions in G is not
α-regular, or in other words that all faithful irreducible characters of H vanish
on the elements of order four (which map onto involutions under the natural
map H → G). �

If δ : G→ GL(V ) and δ : G→ GL(V ′) are projective representations over K
with factor sets α, α′ then

δ ⊗ δ′ : G→ GL(V ⊗ V ′), g �→ δ(g)⊗ δ′(g)

defines a projective representation with factor set αα′. In particular tensoring
α-projective representations with ordinary ones yields α-projective representa-
tions. Naturally the trace function χδ : G → K, h �→ trace(δ(h)) is called
an α-projective character. In general this need not be a class function (see
also Exercise 3.7.1), and certainly equivalent projective representations need not
have the same projective characters. It follows from Corollary 3.7.24 that every
irreducible projective representation of a finite group G over C is equivalent to
one for which the corresponding projective character is a class function.
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Definition 3.7.30 A factor set α : G × G → K× will be called normalized if
there is a central extension H/Z ∼= G with Z ≤ Z(H) and a section τ : G→ H
(with corresponding factor set ητ ) such that α = λ ◦ ητ for some faithful λ ∈
Hom(Z,K×). If α : G × G → C× is a normalized factor set we define Irrα(G)
to be the set of irreducible α-projective characters of G over C. The K-vector
space of class functions vanishing on all conjugacy classes of G which are not
α-regular will be denoted by cfα(G,K).

Theorem 3.7.31 (Orthogonality relations) Let α : G × G → C be a nor-
malized factor set and let g, h ∈ G be in α-regular classes. Then∑

χ∈Irrα(G)

χ(g)χ(h−1) =
{
|CG(g)| if g and h are conjugate in G,

0 else. (3.29)

Irrα(G) is an orthonormal basis for cfα(G,C) with respect to the bilinear form
(ϕ,ψ)G := 1

|G|
∑
g∈G ϕ(g)ψ(g−1). In particular, kα := | Irrα(G)| is equal to the

number rα of α-regular classes of G.

Proof. Let H/Z ∼= G, with Z ≤ Z(H) and τ : G → H, be a section such
that α = λ ◦ ητ with λ ∈ Irr(Z) faithful. Then Irrα(G) = {ψ ◦ τ | ψ ∈
Irr(H | λ} and (3.29) follows immediately from Lemma 3.7.26. Let g1, . . . , grα

be representatives of the α-regular classes of G and X := [χ(gj)]χ∈Irrα(G),j .
Then (3.29) can be written as XTT̄ = diag(|CG(g1)|, . . . , |CG(grα

)|). Thus
rα ≤ kα.

Let ψ1, ψ2 ∈ Irr(H | λ) and χi = ψi ◦ τ for i = 1, 2. Then

(ψ1, ψ2)H =
1
|H|

∑
g∈G

∑
z∈Z

ψ1(τ(g)z)ψ2(τ(g)−1z−1)

=
1
|G|

1
|Z|

∑
g∈G

∑
z∈Z

χ1(g)λ(z)χ2(g−1)λ(z−1) = (χ1, χ2)G.

So the characters in Irrα(G) are indeed orthonormal and a basis of cfα(G,C)
because rα ≤ kα.

As a consequence we obtain the following important result.

Theorem 3.7.32 Let N �G and ϕ ∈ Irr(N).

(a) If χ ∈ Irr(G | ϕ) then χ(1)
ϕ(1) | [G : N ].

(b) | Irr(G | ϕ)| = kα(TG(ϕ)/N) for some normalized factor set α of TG(ϕ)/N .

Proof. (a) If χ ∈ Irr(G | ϕ) and T := TG(ϕ) then χ = ψG for some ψ ∈
Irr(T | ϕ) and χ(1)

ϕ(1) = [G : T ] ψ(1)
ϕ(1) . So we may assume that T = G. In this

case we conclude from Theorem 3.7.5 that χ(1) = ϕ(1) d, where d is the degree
of an irreducible projective representation of G/N . So the result follows from
Corollary 3.7.16.



256 Groups and subgroups

(b) Because of the Clifford correspondence (Corollary 3.6.8) we may assume
that TG(ϕ) = G. Using Theorem 3.7.25 and the notation of its proof we get

| Irr(G | ϕ)| = | Irr(Hα | λ−1)| = | Irrα−1(G/N)|,

where λ ∈ Irr(Zα), Zα ≤ Z(Hα), Hα/Zα ∼= G/N with section τ and α−1 =
λ−1 ◦ ητ . Since a class is α-regular if and only if it is α−1-regular; the claim
follows from Theorem 3.7.31.

Note that on choosing N abelian in part (a) of Theorem 3.7.32 we recover
Theorem 3.6.5.

Example 3.7.33 We have already mentioned that M(A5) ∼= C2. We will com-
pute the character table of a representation group H = 2 ·A5 ∼= SL2(5) (see [38],
p. 2) or, in other words, compute Irrα(A5), where 〈αB2(A5,C×)〉 = H2(A5,C×).
By Lemma 3.7.28(c) all elements of odd order in A5 are α-regular, and using
Theorem 3.7.31 we get | Irrα(A5)| ∈ {4, 5} and

∑
χ∈Irrα(A5) χ(1)2 = 60. By

Exercise 3.7.5 χ(1) is even for all χ ∈ Irrα(A5). Since the only way to write
15 = 60/4 as a sum of four or five squares is 15 = 1 + 1 + 4 + 9 we find
Irrα(A5) = {ψ1, . . . , ψ4} with ψ1,2(1) = 2, ψ3(1) = 4, ψ4(1) = 6 and the in-
volutions in A5 are not α-regular. Note that ψi · ψj is an ordinary character
for 1 ≤ i, j ≤ 4, hence {ψ2

1 , ψ
2
2} = {1A5 + χ2, 1A5 + χ3} in the notation

of Example 2.1.24. Thus the values of ψ1,2 are determined up to the signs,
which are easily found using the congruence relations (see Lemma 2.2.2). Theo-
rem 3.7.31 also implies that χ3 ·ψ1 is irreducible and thus equal to ψ4 and that
ψ3 = χ2 · ψ1 − ψ4. Inflating the χi (1 ≤ i ≤ 5) and lifting the ψj (1 ≤ j ≤ 4) to
characters of H, we get the character table of H:
2.A5

2 3 3 2 1 1 1 1 1 1
3 1 1 . 1 1 . . . .
5 1 1 . . . 1 1 1 1

1a 2a 4a 3a 6a 5a 10a 5b 10b
2P 1a 1a 2a 3a 3a 5b 5b 5a 5a
3P 1a 2a 4a 1a 2a 5b 10b 5a 10a
5P 1a 2a 4a 3a 6a 1a 2a 1a 2a

X.1 1 1 1 1 1 1 1 1 1
X.2 3 3 -1 . . A A *A *A
X.3 3 3 -1 . . *A *A A A
X.4 4 4 . 1 1 -1 -1 -1 -1
X.5 5 5 1 -1 -1 . . . .
X.6 2 -2 . -1 1 -A A -*A *A
X.7 2 -2 . -1 1 -*A *A -A A
X.8 4 -4 . 1 -1 -1 1 -1 1
X.9 6 -6 . . . 1 -1 1 -1

A = -E(5)-E(5)ˆ4 = (1-ER(5))/2 = -b5

That a preimage h ∈ H of an involution of A5 has indeed order four (as
indicated by the class name 4a) follows from ψ[2] = X.2 for ψ := X.6, since this
implies ψ(h2) = 2 · X.2(h)− ψ(h)2 = −2 and thus h2 ∈ 2a.
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In the ATLAS ([38]) this table is abbreviated by just listing Irr(A5) and
Irrα(A5) and (in between) the element orders of the preimages (in H) of the
conjugacy classes of A5. So here the table looks approximately like Table 3.6:

Table 3.6.

ind 1a 2a 3a 5a 5b
χ1 + 1 1 1 1 1
χ2 + 3 −1 0 −b5 ∗
χ3 + 3 −1 0 ∗ −b5
χ4 + 4 0 1 −1 −1
χ5 + 5 1 −1 −2 0

ind 1 4 3 5 5
2 6 10 10

χ6 − 2 0 −1 b5 ∗
χ7 − 2 0 −1 ∗ b5
χ8 − 4 0 1 −1 −1
χ9 − 6 0 0 1 −1

�
Example 3.7.34 We saw in Example 3.7.23 that M(A5) ∼= C2 implies that
M(S5) ∼= C2 and that G = S5 has exactly two representation groups Hi up to
isomorphism. We have now two methods at our disposal to compute the char-
acter table of Hi, namely extending the characters of 2.A5 as in Example 3.6.22
or computing the projective characters of S5 as in Example 3.7.33. One of the
tables in GAP notation is the following:

2.A5.2
2 4 4 3 2 2 1 1 2 3 3 2 2
3 1 1 . 1 1 . . 1 . . 1 1
5 1 1 . . . 1 1 . . . . .

1a 2a 4a 3a 6a 5a 10a 2b 8a 8b 6b 6c
2P 1a 1a 2a 3a 3a 5a 5a 1a 4a 4a 3a 3a
3P 1a 2a 4a 1a 2a 5a 10a 2b 8a 8b 2b 2b
5P 1a 2a 4a 3a 6a 1a 2a 2b 8b 8a 6c 6b

X.1 + 1 1 1 1 1 1 1 1 1 1 1 1
X.2 + 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
X.3 + 6 6 -2 . . 1 1 . . . . .
X.4 + 4 4 . 1 1 -1 -1 2 . . -1 -1
X.5 + 4 4 . 1 1 -1 -1 -2 . . 1 1
X.6 + 5 5 1 -1 -1 . . 1 -1 -1 1 1
X.7 + 5 5 1 -1 -1 . . -1 1 1 -1 -1
X.8 - 4 -4 . -2 2 -1 1 . . . . .
X.9 0 4 -4 . 1 -1 -1 1 . . . B -B
X.10 0 4 -4 . 1 -1 -1 1 . . . -B B
X.11 0 6 -6 . . . 1 -1 . A -A . .
X.12 0 6 -6 . . . 1 -1 . -A A . .

A = E(8)+E(8)ˆ3 = ER(-2) = i2, B = E(3)-E(3)ˆ2 = ER(-3) = i3
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Table 3.7.

60 4 3 5 5 6 2 3
p power A A A A A A AB
p′ part A A A A A A AB

ind 1A 2A 3A 5A 5B fus ind 2B 4A 6A
χ1 + 1 1 1 1 1 : ++ 1 1 1
χ2 + 3 −1 0 −b5 ∗ | + 0 0 0
χ3 + 3 −1 0 ∗ −b5 |
χ4 + 4 0 1 −1 −1 : ++ 2 0 −1
χ5 + 5 1 −1 −2 0 : ++ 1 −1 1

ind 1 4 3 5 5 fus ind 2 8 6
2 6 10 10 8 6

χ6 − 2 0 −1 b5 ∗ | − 0 0 0
χ7 − 2 0 −1 ∗ b5 |
χ8 − 4 0 1 −1 −1 : 00 0 0 i3
χ9 − 6 0 0 1 −1 : 00 0 i2 0

In the ATLAS this is given as shown in Table 3.7. How to obtain the char-
acter table of the other representation group from this was discussed in Ex-
ample 3.7.23. One just has to multiply i2, i3 (or A, B) by i = ζ4 and adjust
the element orders and power maps. In the GAP version the first means that
the classes 2b, 8a, 8b, 6b, 6c should be replaced by 4b, 8a, 8b, 12a, 12b. Also, of
course, the Frobenius–Schur indicators of the last four irreducible characters
change from 0 to −1. �

Exercises
Exercise 3.7.1 Let ρ : G→ GL(V ) be a projective representation with factor
set α. Show that

ρ(h)−1ρ(g)ρ(h) = α(g, h)α(h, h−1gh)ρ(h−1gh) for all g, h ∈ G.

Exercise 3.7.2 Let F be a free group on {x, y} and let R be the normal sub-
group of F generated by {x2, y2, [x, y]}, so that F/R ∼= V4. Using the notation
of Theorem 3.7.15 and writing ã := a[R,F ] for a ∈ F show that

(a) F̃ ′ = 〈[x̃, ỹ]〉 has order two;

(b) S̃1 := 〈x̃2, ỹ2〉 and S̃2 := 〈x̃2ỹ2, [x̃, ỹ]x̃2〉 are both complements of F̃ ′ in R̃;

(c) F̃ /S1 ∼= D8 and F̃ /S2 ∼= Q8.

Conclude that D8 and Q8 are representation groups of V4.

Exercise 3.7.3 Let 〈z〉 = C4 and α : 〈z2〉 → Z(D8) be the unique isomorphism.
Define H := D8 �α C4.

(a) Compute the character table of H.
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(b) Verify that H has three normal subgroups isomorphic to D8 and one iso-
morphic to Q8 and that all irreducible characters of these normal subgroups are
invariant in H.

Hint: For (a) one may use the GAP commands CharacterTable("Cyclic", 4),
CharacterTable("Dihedral", 8), CharacterTableDirectProduct and
CharacterTableFactorGroup .

Exercise 3.7.4 Let H be a finite group with cyclic Sylow p-subgroup P . Use
the transfer homomorphism H → P (see [88], IV.2.2, p. 444) to show that
H ′ ∩Z(H) is a p′-group. Deduce from this that p does not divide |M(G)| if the
Sylow p-subgroups of a finite group G are cyclic.

Exercise 3.7.5 Let H be a finite group with Z ≤ H ′∩Z(H) and let χ ∈ Irr(H)
be faithful. Show that Z(H) is cyclic and |Z(H)| | χ(1).
Hint: Consider detD(z) for z ∈ Z and D a representation with character χ.

Exercise 3.7.6 Use the character table of L2(11) (see Exercise 2.10.2) and Ex-
ample 3.7.29 to compute the character table of H := 2 · L2(11).
Hint: Observe that the square of a faithful character can be considered as a
character of L2(11) and must vanish on the involutions. Use this and Exer-
cise 3.7.5 to find the degrees of the faithful irreducible characters of H and the
square of the faithful irreducible characters of smallest degree.

Exercise 3.7.7 Using the notation of Corollary 3.7.6 show the following.

(a) If G1 ∼= G2 ∼= Q8 then G has an absolutely simple RG module which is not
a tensor product of two absolutely simple R Q8-modules.

(b) If K is a finite field then every absolutely simple KG-module is isomorphic
to Infπ1 W1 ⊗K Infπ2 W2 with absolutely simple KGi-modules Wi, (i = 1, 2).
Hint: Use Theorem 1.8.4 and Theorem 3.6.2.

3.8 Clifford matrices

Let G be a finite group with a normal subgroup N and let G = G/N with
π : G → G , g �→ g being the canonical epimorphism. In this section we will
always write U = π(U) for any subset (or element) U of G. The aim is to
construct the character table of G from the character tables of G and of suitable
subgroups of G (the inertia factors). The method described in this section is due
to Fischer (see [58]). In this section the ground field is always C and character
means character over C.

We summarize Corollary 3.6.8 and Theorem 3.7.5 in the language of char-
acters as follows.
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Theorem 3.8.1 Let ϕ1 = 1N , ϕ2, . . . , ϕt be representatives of the G-conjugacy
classes of irreducible characters of N . Let Tm = TG(ϕm) be the inertia subgroup
of ϕm for m = 1, . . . , t. Then

Irr(G) =
⋃̇t

m=1
{ψG | ψ ∈ Irr( Tm | ϕm )}.

Furthermore, every ψ ∈ Irr( Tm | ϕm ) is of the form ϕ̃m · ψ̂, where ϕ̃m ∈
Irrα(Tm) is fixed with ϕ̃m|N = ϕm and ψ̂ ∈ Irrα−1(Tm) is inflated to Tm. Here
α is a normalized factor set (see Definition 3.7.30) constant on cosets of N , so
that it can also be considered as an element of Z2(Tm,C×).

We will use the notation of Theorem 3.8.1 throughout this section. In addi-
tion we fix the notation for the conjugacy classes.

• Let g1 = g1N, . . . , gr = grN be representatives for the conjugacy classes
of G = G/N , thus gi ∈ G for 1 ≤ i ≤ r and we assume that g1 = 1.

• π−1(giG) =
⋃̇si

j=1g
G
ij and we may assume that π(gij) = gi and gi1 = gi.

Of course, s1 is the number of G-conjugacy classes in N .

• (gij)G ∩ Tm =
⋃̇s(i,j,m)
k=1 (gmijk)Tm with gmijk ∈ Tm. We have gm111 = 1 and

s(1, 1,m) = 1 for all m.

• giG∩Tm =
⋃̇t(i,m)
l=1 ymil

Tm with ymil ∈ Tm, and we may assume that ymi1 = gi
if gi ∈ Tm. Of course, t(1,m) = 1; more generally, t(i,m) ∈ {0, 1} if

gi ∈ Z(G). We always have π((gmijk)Tm) = ymil
Tm for some l = l(j, k).

Remark 3.8.2 If gi ∈ Z(G) we have si = s1 and we may choose gij := gig1j
for j = 1, . . . , s1.

We assume that the character tables of G and the inertia factor groups
Tm = Tm/N are known, as are the corresponding fusion maps of Tm into G,

which means that for every conjugacy class giG we know the classes ymil
Tm or, to

be more precise, the values of the irreducible (ordinary or projective) characters
of Tm on these classes. By our convention (ϕ1 = 1N ) we always have T1 = G,
so t(i, 1) = 1, s(i, j, 1) = 1, and we may assume that g1

ij1 = gij and y1
i1 = gi for

1 ≤ i ≤ r.
Keeping the above notation we get for ψ ∈ Irr( Tm | ϕm ), using Lemma 3.2.7,

ψG(gij) =
s(i,j,m)∑
k=1

|CG(gij)|
|CTm(gmijk)|ψ(gmijk)

=
s(i,j,m)∑
k=1

|CG(gi)|
|CTm(gmijk)| ϕ̃m(gmijk)ψ̂(gmijk)

=
t(i,m)∑
l=1

ci(m,l),jψ̂(ymil ), (3.30)



3.8 Clifford matrices 261

with

ci(m,l),j =
∑

k,l(j,k)=l

|CG(gij)|
|CTm(gmijk)| ϕ̃m(gmijk)).

Let

Ii = {(m, l) | 1 ≤ m ≤ t , 1 ≤ l ≤ t(i,m) , ymil
Tm is αm-regular }.

We order Ii lexicographically.

Definition 3.8.3 The matrix

Fii = FiG,N (giG) = [ci(m,l),j ](m,l)∈Ii,1≤j≤si

is called the Clifford matrix (or Fischer matrix) corresponding to the class
of gi ∈ G.

Observe that the Clifford matrices depend on the choice of the projective
extensions ϕ̃m of the irreducible characters ϕm ofN . We will always assume that
the ϕ̃m are chosen as ordinary characters whenever possible. We also can assume
that the values of ϕ̃m are algebraic integers. Then Fi(giG) is a matrix with
algebraic integers as entries with si columns, where si is the number of conjugacy
classes of G into which the preimage π−1gi

G splits. It will soon turn out to be
a square matrix. The rows are divided into blocks, each block corresponding to
an inertia group Tm and containing as many rows as the number of αm-regular
Tm-conjugacy classes there are in gi

G ∩ Tm. By our convention the first block
corresponds to T1 = G and thus contains just one row, and from ϕ̃1 = 1G we
get ci(1,1),j = 1 for all j.

Also for i = 1 we get, since g1 = g11 = gm111 = 1 and t(1,m) = s(1, 1,m) = 1,
that

c1(m,1),j = ψG(g1j)
ψ(1)ϕm(1) for ψ ∈ Irr( Tm | ϕm ). (3.31)

In particular, c1(m,1)1 = [G : Tm]ϕm(1), and, if N is abelian, the first column of

Fi1 contains just the orbit lengths of G on N̂ .
Since the notation is somewhat complicated, let us first explain it in a very

simple example, although this is somewhat misleading. In fact, in practice one
will never compute the gmijk or try to compute the irreducible characters of the
Tm, simply because the character tables of these inertia subgroups are usually
much larger and more complicated to compute than the character table of G.
Instead, the idea is to use only the character tables of the inertia factor groups
Tm and arithmetical properties of the Clifford matrices.

Example 3.8.4 Let N = V4 �G = S4 so that G = G/N ∼= S3; for simplicity of

notation we identify G with S3. We have three conjugacy classes: C1 = 1G, C2 =

(1, 2)
G
, C3 = (1, 2, 3)

G
in G, and hence there are three Clifford matrices, Fi1 =



262 Groups and subgroups

Fi(C1),Fi2 = Fi(C2),Fi3 = Fi(C3). Also G has two orbits on Irr(N), the trivial
character 1N forms one orbit with inertia group T1 = G and the other three
linear characters form another one, with inertia groups T2 of index three in G,
so T2 ∼= D8 and T2 ∼= C2. We may choose ϕ2 to have kernel 〈(1, 3)(2, 4)〉, hence
T2 = 〈(1, 2)(3, 4), (1, 2, 3, 4)〉 and (omitting the trivial cases g1

ij1 = gij)

g1 = g11 = 1, g12 = (1, 2)(3, 4), y2
11 = 1

g2
111 = 1, g2

121 = (1, 2)(3, 4), g2
122 = (1, 3)(2, 4),

g2 = g21 = (1, 2), g22 = (1, 2, 3, 4), y2
21 = (1, 2)

g2
211 = (1, 3), g2

221 = (1, 2, 3, 4),
g3 = g31 = (1, 2, 3), gG31 ∩ T2 = ∅.

We conclude that

c1(1,1)1 =
|CG(g11)|
|CT2(g2

111)| ϕ̃2(g2
111) =

24
8
· 1 = 3,

c1(1,1)2 =
|CG(g12)|
|CT2(g2

121)| ϕ̃2(g2
121) +

|CG(g12)|
|CT2(g2

122)| ϕ̃2(g2
122) =

8
4

(−1) +
8
8

= −1,

c2(2,1)1 =
|CG(g21)|
|CT2(g2

211)| ϕ̃2(g2
211) =

4
4
· 1 = 1,

c2(2,1)2 =
|CG(g22)|
|CT2(g2

221)| ϕ̃2(g2
221) =

4
4
· (−1) = −1.

Thus

Fi(C1) =
[

1 1
3 −1

]
, Fi(C2) =

[
1 1
1 −1

]
, Fi(C3) = [1].

To construct the character table of G we just have to compose these matrices
with the character tables of the inertia factor groups S3 and S2 in the right way.
The result is as follows:

S4 g11 g12 g21 g22 g31
χ1 1 1 1 1 1
χ2 1 1 −1 −1 1
χ3 2 2 0 0 −1
χ4 3 −1 1 −1 0
χ5 3 −1 −1 1 0

with the two blocks of rows corresponding to the two inertia groups and the
three blocks of columns corresponding to the Clifford matrices. In fact, the
matrix X of characters values of G can be written as a product of two matrices,
the first being the block diagonal matrix with the character tables of the inertia
factor groups on the diagonal and the second factor being formed by the Clifford
matrices and zeros, arranged suitably:

X =


1 1 1
1 1 −1
2 0 −1

1 1
1 −1

 ·


1 1 . . .
. . 1 1 .
. . . . 1
3 −1 . . .
. . 1 −1 .

 .



3.8 Clifford matrices 263

This holds in general and shows that the Clifford matrices are unique, once the
(projective) character tables of the inertia factors have been selected. �

Let us summarize.

Lemma 3.8.5 With the above notation the character table of G can be written
as a product of two matrices, the first one being a block diagonal matrix with
(projective) character tables of the inertia factors Tm on the diagonal and the
second factor being built up by the Clifford matrices and zeros, arranged suitably.
In particular the Clifford matrices are uniquely determined up to the ordering
of the columns and rows, provided the tables for the Tm have been selected.

We leave the proof (which is essentially transforming equation (3.30) into a
matrix equation) to the reader (Exercise 3.8.1). For the uniqueness observe that
(projective) character tables are invertible, so the second factor in the asserted
product decomposition is unique. Of course, a permutation of the columns of the
Clifford matrices will result in a corresponding permutation of the columns of
the character table of G. We will always assume that the (projective) character
tables of the Tm have been chosen in advance, although in practice making the
right choice might be difficult unless the Schur multipliers of the Tm are trivial
or there are other reasons which guarantee that one may work with ordinary
characters. Sometimes it is necessary to test all possible choices, and one is
successful if all but one lead to a contradiction.

As mentioned above, the idea is not to compute Clifford matrices as in the
above example, but to use properties of these matrices in order to determine
them. The Clifford matrices satisfy orthogonality relations, which follow from
the usual orthogonality relations for character tables. Keeping the notation as
above, let

mi
j = [NG(giN) : CG(gij)] = |N | |CG(gi)|

|CG(gij)|
∈ N, (3.32)

cij = |CG(gij)|, (3.33)

bi(m,l) = |CTm
(ymil )|; (3.34)

so, in particular we obtain

bi(1,1)=|CG(gi)| and
mi
j · cij=|N | bi(1,1) independent of j.

We now can state the orthogonality relations that hold for Clifford matrices.

Theorem 3.8.6 (Orthogonality relations) With the notation introduced above,
the following statements hold.

(a) ∑
ρ∈Ii

biρc
i
ρjc

i
ρk = δj,kc

i
j .
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(b) For ρ, σ ∈ Ii the following equation holds:

∑
j

mi
jc
i
ρjc

i
σj = δρσ

bi(1,1)

biρ
|N |.

(c) The Fii are square matrices.

Proof. (a) By Theorem 2.1.15 we have

∑
χ∈Irr(G)

χ(gij)χ(gij′) = cji · δj,j′.

Furthermore

∑
χ∈Irr(G)

χ(gij)χ(gij′) =
t∑

m=1

∑
ψ∈Irr(Tm|ϕm)

ψG(gij)ψG(gij′)

=
t∑

m=1

∑
ψ∈Irr(Tm|ϕm)

(
∑
l

ci(m,l),jψ̃(ymil N))(
∑
l′
ci(m,l′),jψ̃(ymil′N))

=
t∑

m=1

∑
l,l′

ci(m,l),jc
i
(m,l),j′

∑
ψ∈Irr(Tm|ϕm)

ψ̃(ymil N)ψ̃(ymil′N)

=
t∑

m=1

∑
l,l′

ci(m,l),jc
i
(m,l),j′b

i
(m,l)δ(i,l),(i,l′) =

t∑
m=1

∑
l

ci(m,l),jc
i
(m,l),j′b

i
(m,l)

using the orthogonality relations for projective characters.
(c) Writing Bi = diag(biρ | ρ ∈ Ii) and Ci = diag(ci1, . . . , c

i
si

) we can write
the orthogonality relations proved in part (a) as a matrix equation:

FiTi BiFii = Ci,

or

(FiTi Bi) · (Fii C−1
i ) = Isi . (3.35)

Hence it follows that the number |Ii| of rows of Fii is greater than or equal to
the number si of columns. On the other hand,

r∑
i=1

si = | Irr(G)|,
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whereas

r∑
i=1

|Ii| =
r∑
i=1

t∑
m=1

|{αm-regular classes of Tm in gi
G}|

=
t∑

m=1

|{αm-regular classes of Tm}|

=
t∑

m=1

|{α−1
m projective irreducible characters of Tm}|

=
t∑

m=1

| Irr( Tm | ϕm )| = | Irr(G)|.

Hence si = |Ii|.
(b) Since Fii is a square matrix it follows with the notation introduced above

from (3.35) that
(Fii C−1

i ) · (FiTi Bi) = Isi
.

Corollary 3.8.7
∑
jm

i
j =| N | .

Proof. This follows from Theorem 3.8.6(b) using ρ = σ = (1, 1), since
ci(1,1),j = 1.

Theorem 3.8.8 Let Mi = π−1 CG(gi) = NG(giN). Then, using a suitable
choice of the projective extensions of the irreducible representations of N to
the respective inertia subgroups and an appropriate ordering of the rows and
columns, one has

FiG,N (giG) = FiMi,N (giMi).

The choice of the projective extensions and the orderings of the rows and
columns are specified in the proof.

Proof. Since gij ∈ giN , by our general assumption it is clear that gGij∩giN is a
conjugacy class of Mi, since any element conjugating giu into giu′ for u, u′ ∈ N
must be in Mi. This means that gGij �→ gGij ∩ giN gives a bijection of the set of

G-conjugacy classes of π−1gi
G to the set of Mi-conjugacy classes of π−1gi

Mi and
we have a natural bijection between the columns of the two Clifford matrices in
question. In particular these Clifford matrices have the same size.

Concerning the rows, we observe that any G-orbit ϕGm for ϕm ∈ Irr(N) splits
into Mi-orbits ϕMi

(m,µ) with ϕ(m,µ) = xµϕm for some representatives xµ ∈ G.
Then the inertia subgroups in Mi are

T(m,µ) = TMi(ϕ(m,µ)) = {g ∈Mi | gϕ(m,µ) = ϕ(m,µ)} = xµTm ∩Mi.
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We choose xµ ϕ̃m|T(m,µ) as a projective extension of ϕ(m,µ). The corresponding
factor set is α(m,µ) with

α(m,µ)(g, h) = αm(gxµ , hxµ) for g, h ∈ T(m,µ).

Since giN ∈ Z(Mi) we have t(i, (m,µ)) ≤ 1, and we may label the rows of
FiMi,N (giMi) by (m,µ) instead of ((m,µ), 1), if gi ∈ T(m,µ) is α(m,µ)-regular.

If gi ∈ T(m,µ) then g
xµ

i ∈ Tm, hence gxµ

i ∈ giG ∩ Tm, so there is exactly one

l such that gxµ

i ∈ ymil
Tm . If t ∈ Tm and (g

xµ′
i )t = g

xµ

i then xµ′tx−1
µ ∈ Mi and

xµ′ tx−1
µ ϕ(m,µ) = xµ′ tϕm = ϕ(m,µ′) and hence µ = µ′. Also if g ∈ G satisfies

ggi = ymil for some l ∈ {1, . . . , t(i,m)}, then gϕm = hxµϕm for some h ∈ Mi,

hence g−1hxµ = t ∈ Tm. Thus ggi = g
hxµt
i ∈ gxµ

i

Tm

. Thus the map

ηm : (m,µ) �→ (m, l) if g
xµ

i ∈ ymil
Tm

is bijective. Obviously, if gxµ ∈ Tm is α-regular then g ∈ T(m,µ) is α(m,µ)-
regular, and on restricting ηm to those (m,µ) which are α(m,µ)-regular we get
a bijection of the labels for the rows of FiMi,N (giMi) to those of FiG,N (giG).
We may assume that the notation has been chosen so that ηm = id, i.e. we will
identify (m,µ) = (m, l) henceforth.

We now have to compare the corresponding entries in the Clifford matrices.
Let g(m,l)

ijκ be representatives of the T(m,l)-classes in gMi
ij . Then

(g(m,l)
ijκ )xl ∈ gGij ∩ Tm =

⋃̇s(i,j,m

k=1
(gmijk)Tm

and we get a bijective map

η : {κ | g(m,l)
ijκ ∈ giN} → {k | gmijk ∈ ymil N}

g
(m,l)
ijκ �→ gmijk with (g(m,l)

ijκ )xl ∈ (gmijk)Tm ,

as is easily verified. Then

ϕ̃(m,l)(g
(m,l)
ijκ ) = xl ϕ̃m(g(m,l)

ijκ ) = ϕ̃m((g(m,l)
ijκ )xl) = ϕ̃m(gmijk).

Observe that CG(gij) ≤ Mi and also CG(g(m,l)
ijκ ) ≤ Mi because gijN = giN =

g
(m,l)
ijκ N . Hence |CG(gij)| = |CMi(gij)|. Furthermore if (g(m,l)

ijκ )xl ∈ (gmijk)Tm

then

|CT(m,l)(g
(m,l)
ijκ )| = |CxlTm

(g(m,l)
ijκ ) ∩Mi| = |CTm

((g(m,l)
ijκ )xi)| = |CTm

(gmijm)|.

Thus the corresponding entries in the Clifford matrices agree. It also follows
that the column weights mj

i coincide and obviously also bi(1,1) = |CG(gi)| =
|CMi/N (gi)|. From Theorem 3.8.6(b) it follows that the weights biρ agree as
well.
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In the following we will assume that the normal subgroup N is abelian.

Lemma 3.8.9 Let N be abelian, let gi ∈ Z(G) and let gij be as in Remark 3.8.2.
Then we may choose projective extensions ϕ̃m : Tm → C of the ϕm ∈ Irr(N) such
that

(a) Fii = Fi1 and ciρ,j =
∑
g∈G/Tm

gϕm(g1,j);

(b) ciρ,1 = bi(1,1)(b
i
ρ)

−1 (ρ ∈ Ii);
(c)

∑
ρ∈Ii

ciρ,j = 0 for 2 ≤ j ≤ si.

Proof. We choose a section τ : Ḡ → G with τ(gi) = gi and extend each
ϕm ∈ Irr(N) to a projective character ϕ̃m : Tm → C as in Example 3.7.12.
By assumption, gi ∈ Tm for all m and we have

ϕ̃m(gij) = ϕm(g−1
i gij) = ϕm(g1j).

Since t(i,m) = 1 and ymi1 = gi we get from (3.30) that ψG(gij) = ci(m,1),jψ̂(gi).
On the other hand,

ψG(gij) =
1
|Tm|

∑
g∈G

gψ(gij) = (
1
|Tm|

∑
g∈G

gϕ̃m(gij)) ψ̂(gi) =
|N |
|Tm|

ϕGm(g1j) ψ̂(gi).

Now (a) follows from Corollary 3.2.18. For j = 1 we obtain ciρ,1 = |G||Tm|−1 =
bi(1,1)(b

i
ρ)

−1. Finally, (c) follows from (b) and Theorem 3.8.6(a) applied to k = 1.

As in Theorem 3.8.8 we put Mi = NG(giN), thus Mi/N = CG(gi). Fur-
thermore we define

Ni = Ngi = [gi, N ] = 〈[gi, u] | u ∈ N〉.

Lemma 3.8.10 With the above notations we have for abelian N � G the fol-
lowing.

(a) For any g ∈ G we have a homomorphism κg : N → [g,N ] u �→ [g, u].
(b) For any g ∈ giN one has Ni = [g,N ] = {[g, u] | u ∈ N}.
(c) Ni �Mi and Ni ≤ N .
(d) If ϕ ∈ Irr(N) then Ni ≤ ker(ϕ) or TG(ϕ) ∩ giN = ∅.

Proof. (a) [g, u][g, u′] = (u−1)gu(u′−1)gu′ = (u−1u′−1)guu′ = [g, uu′].
(b) If u ∈ N and g = giu ∈ giN , then for v ∈ N

[g, v] = [giu, v] = [gi, v]u[u, v] = [gi, v]

because N is abelian and [gi, v] ∈ N since N �G.
(b) Obviously Ni ≤ N . Furthermore, for y ∈ Mi and u ∈ N we have

(because N is abelian) [gi, u]y = [gyi , u
y] = [gi, uy] ∈ Ni.

(c) gi is in TG(ϕ) if and only if ϕ((u−1)gi) = ϕ(u−1) for all u ∈ N hence if
and only if Ni ≤ ker(ϕ). Since N ≤ TG(ϕ) the result follows.
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Corollary 3.8.11 With the above notation one has

FiG,N (giG) = Fi
M̃i/Ni

(g̃iNi
M̃i/Ni

),

with M̃i/Ni = (Mi/Ni)/(N/Ni) and Mi/Ni → M̃i/Ni, x �→ x̃ denoting the
canonical epimorphism.

Proof. By Theorem 3.8.8 we may assume that G = Mi, so that Ni�G. The re-
sult then follows by applying the natural isomorphism G/N → (G/Ni)/(N/Ni).
Observe that by Lemma 3.8.10(c) kerϕm ≤ Ni unless t(i,m) = 0 (in which case
Fii contains no row corresponding to the inertia group Tm).

Definition 3.8.12 giN ∈ G is called a split coset if there is a g′
i ∈ giN such

that Mi = N ·CG(g′
i).

Remark 3.8.13 (a) If giN is a split coset we will always assume that gi = gi,1
has been chosen such that Mi = N ·CG(gi).

(b) If G is a split extension of N , i.e. if there is a complement H ≤ G of N in
G, then every coset of N in G is a split coset.

Proof. (b) Obviously Mi = N · (Mi ∩ H). If we choose gi = g′
i ∈ H then

CG(gi) ⊆Mi ∩H, because gMi
i ∩H = {gi}.

Corollary 3.8.14 If N is abelian and giN is a split coset in G, then the rows
of FiG,N (giG) are Mi-orbit sums of characters of N/Ni, where Mi = NG(giN).
We have, using the convention of Remark 3.8.13(a),

(a) FiG,N (giG) = FiMi/Ni,N/Ni
({1});

(b) ciρ,1 = bi(1,1)(b
i
ρ)

−1 (ρ ∈ Ii);
(c) |ciρ,j | ≤ ciρ,1 (1 ≤ j ≤ si, ρ ∈ Ii);
(d) if ciρ1,1 = 1 for some ρ1 ∈ Ii then for every ρ ∈ Ii there is a ρ′ ∈ Ii with

ciρ′,j = ciρ,j · ciρ1,j for 1 ≤ j ≤ si;

(e)
∑
ρ∈Ii

ciρ,j = 0 for 2 ≤ j ≤ si;

(f) if N is an elementary abelian p-group ciρ,j ∈ Z[ζp] for all j.

Proof. By Theorem 3.8.8 and Corollary 3.8.11 we may assume that G = Mi

and Ni = {1}. This means that gi ∈ Z(G) and gi acts trivially on N . Since giN
is a split coset, we have gi ∈ Z(G). Then the result follows from Lemma 3.8.9.
For (d) observe that the assumption means that [ciρ1,j ]1≤j≤si

is a linear character
of N invariant under Mi.

The method of Clifford matrices works particularly smoothly for abelian N
and split extensions (i.e. if N has a complement in G). Then by Lemma 3.7.4
one has to deal only with ordinary characters instead of projective ones. Also
by Corollary 3.8.14 the first column of all Fii is known.
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Example 3.8.15 Let us consider a split extension G := C4
2 � A5 of N = C4

2 by
H = A5 with non-trivial action of H on N . In fact, it can be shown that any
such extension will be split (see e.g. [85]), so our assumption is not restrictive.
Since A5 has no non-trivial representation of degree less than four over F2, the
action of H on N is irreducible and it follows immediately that

H has one orbit (of length 15) on N\{1} or

H has two orbits (of lengths five and ten) on N\{1}.

Let us consider the second case, the first one being almost trivial. It follows
that H has three orbits on Irr(N) with stabilizers T1 = H = A5, T2 = A4,
T3 = S3. The first point is, to write down the character tables of these groups
and determine the fusion maps of Ti in H (see Table 3.8).

Table 3.8. Character table of T1, T2 and T3

g1 g2 g3 g4 g5 representative
1a 2a 3a 5a 5b

T1 60 4 3 5 5 centralizer order
ψ̂

(1)
1 1 1 1 1 1

ψ̂
(1)
2 3 −1 0 A A∗ A = 1

2 (1 +
√

5)
ψ̂

(1)
3 3 −1 0 A∗ A A∗ = 1

2 (1−
√

5)
ψ̂

(1)
4 4 0 1 −1 −1
ψ̂

(1)
5 5 1 −1 0 0

y2
11 y2

21 y2
31 y2

32 representative y3
11 y3

21 y3
31

T2 1a 2a 3a 3b T3 1a 2a 3a
12 4 3 3 centralizer order 6 2 3

ψ̂
(2)
1 1 1 1 1 ψ̂

(3)
1 1 1 1

ψ̂
(2)
2 1 1 B B B = ζ3 ψ̂

(3)
2 1 −1 1

ψ̂
(2)
3 1 1 B B ψ̂

(3)
3 2 0 −1

ψ̂
(2)
4 3 −1 0 0

In the tables given in Table 3.8, giN = y1
i1N and ymil N have been replaced

by gi and ymil , respectively. The fusion maps are given by the names of the
representatives: remember ymil N of Tm always fuses to giN of H. Thus one has
five Clifford matrices of sizes 3, 3, 4, 1 and 1. The biρ can be copied from the
character tables of the Tm and the first columns are given by Corollary 3.8.14(b).
By (e), (c) and (f) of the same corollary the second or third column of Fi1 is
of the form [1, x,−1 − x]T with x ∈ Z and −5 ≤ x ≤ 5. The corresponding
centralizer order is cij = 60+12x2+6(−1−x)2 and must be a divisor of |G| = 960.
Hence x ∈ {−3, 1}. The values for Fi2 and Fi3 are obtained even more easily.
The result is listed below, with the first column always giving the weights biρ
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and the first row the centralizer orders cij :

c1j 960 192 96
g11 g12 g13

60 1 1 1
12 5 −3 1
6 10 2 −2

c2j 16 16 8
g21 g22 g23

4 1 1 1
4 1 1 −1
2 2 −2 0

c3j 12 12 12 12
g31 g32 g33 g34

3 1 1 1 1
3 1 1 −1 −1
3 1 −1 1 −1
3 1 −1 −1 1

The character table (Table 3.9) of G = C4
2 � A5 is now obtained by (3.30),

where C =
√
−3 and A = 1

2 (1 +
√

5) as before.

Table 3.9. Character table of C4
2 � A5

cij 960 192 96 16 16 8 12 12 12 12 5 5
g11 g12 g13 g21 g22 g23 g31 g32 g33 g34 g41 g51
1a 2a 2b 2c 4a 4b 3a 6a 6b 6c 5a 5b

χ1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 3 3 3 −1 −1 −1 0 0 0 0 A A∗

χ3 3 3 3 −1 −1 −1 0 0 0 0 A∗ A
χ4 4 4 4 0 0 0 1 1 1 1 −1 −1
χ5 5 5 5 1 1 1 −1 −1 −1 −1 0 0
χ6 5 −3 1 1 1 −1 2 0 0 −2 0 0
χ7 5 −3 1 1 1 −1 −1 C −C 1 0 0
χ8 5 −3 1 1 1 −1 −1 −C C 1 0 0
χ9 15 3 3 −1 −1 1 0 0 0 0 0 0
χ10 10 2 −2 2 −2 0 1 −1 −1 1 0 0
χ11 10 2 −2 −2 2 0 1 −1 −1 1 0 0
χ12 20 4 −4 0 0 0 −1 1 1 −1 0 0

We have already included class names and thus given the orders of the rep-
resentatives of the conjugacy classes. Since N is elementary abelian we know
that o(g1j) = 2 for j = 2, 3. Hence χ[12]

6 ∈ {χ10, χ11} and we see that one of g21
or g22 has order two. We may arrange the classes so that o(g21) = 2 (and hence
χ

[12]
6 = χ10). This determines the second power map and the element orders.

�

In the above example it was very easy to see that a character (χ[12]
6 ) was

induced from a character of one of the inertia subgroups, namely (T̃3). In
general it is very useful that one can decompose a (reducible) character into
a sum of characters which are induced up from inertia subgroups, by forming
scalar products of a character χ of G with the rows ci(m,l) of the Clifford matrices
Fii. These are defined by

(χ, ci(m,l)) :=
bi(m,l)

bi(1,1)|N |
∑
j

mi
jχ(gij)ci(m,l),j . (3.36)
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Lemma 3.8.16 Let χ =
∑t
m=1(χ(m))G be a generalized character of G with

χ(m) =
∑
k

a
(m)
χ,k ψ

(m)
k , ψ

(m)
k ∈ Irr( Tm | ϕm ) , a

(m)
χ,k ∈ Z

then
(χ, ci(m,l)) =

∑
k

a
(m)
χ,k ψ̂

(m)
k (ymil ),

where ψ(m)
k = ϕ̃m · ψ̂(m)

k with the notation of Theorem 3.8.1.

Proof. By (3.30) and the orthogonality relations (Theorem 3.8.6) one gets

(χ, ci(m,l)) =
bi(m,l)

bi(1,1)|N |
∑
j

mi
j(

t∑
m′=1

∑
k

(a(m′)
χ,k ψ

(m′)
k )G(gij))ci(m,l),j

=
bi(m,l)

bi(1,1)|N |
∑
j

mi
j

t∑
m′=1

∑
k

a
(m′)
χ,k (

∑
l′
ci(m′,l′),jψ̂

(m′)
k (ym′

il′ ))ci(m,l),j

=
∑
k

a
(m)
χ,k ψ̂

(m)
k (ymil ).

Observe that the ψ̂
(m)
k (ymil ) are known. Thus, if all the Clifford matrices

ci(m,l) are given then by computing the scalar products (3.36) one can decompose
a (generalized) character χ of G into its constituents belonging to the various
inertia groups. What is more, Lemma 3.8.16 can also be used if only some of
the ci(m,l) are known in order to obtain linear equations for the integers a(m)

χ,k . In
some cases (for instance, if one knows that χ is of small norm) these equations
can be sufficient to determine the a(m)

χ,k . On the other hand, if all a(m)
χ,k are known

then the equation

χ(gij) =
∑
m

∑
l

ci(m,l),j
∑
k

a
(m)
χ,k ψ̂

(m)
k (ymil ) (3.37)

obtained from (3.30) gives a linear equation for the ci(m,l),j .

Example 3.8.17 We end this section with a somewhat larger and more real-
istic, although very simple, example. For many applications it is useful to have
not only the character table of a group, but also the character tables of the max-
imal subgroups. This is particularly important for the sporadic simple groups.
In fact, at the time of writing, the character tables of the maximal subgroups of
all sporadic simple groups are known except for some of the maximals of the two
largest sporadic simple groups, the “Baby Monster” B and the “Monster” M .
In the example given here, we consider the case of the sporadic simple Conway
group Co2, which has a maximal subgroup G = 21+8

+ : S6(2) (see the ATLAS
[38]). Note that G is the centralizer of an involution (in class 2a) in Co2. We put
N = 21+8

+ , the extraspecial group of order 29 with automorphism group isomor-
phic to O+

8 (2) (see [88], p. 357), and Ñ = N/Z(N), which can be considered as
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an eight-dimensional F2 S6(2)-module. Also, Ñ affords the unique irreducible
representation of S6(2) of degree eight over F2 (up to isomorphism [98]).

The table of marks of Ḡ := S6(2) is known and available in the GAP library
of table of marks. Using the table of marks one observes that there are ex-
actly nine conjugacy classes of subgroups of Ḡ of index less than 28. Below,
we display the corresponding permutation characters on the first 14 conjugacy
classes of Ḡ. Actually one would get the same permutation characters quickly
from the character table of S6(2) by searching for possible non-trivial transitive
permutation characters of degree less than 28 as in Section 3.4.

S6(2) 1a 2a 2b 2c 2d 3a 3b 3c 4a 4b 4c 4d 4e 5a
θ1 28 16 4 8 4 10 1 1 4 2 6 . 2 3
θ2 36 16 12 8 4 6 . 3 . 6 2 4 2 1
θ3 56 . 8 16 . 20 2 2 8 . . . 4 6
θ4 63 31 15 15 7 15 . 3 3 7 7 3 3 3
θ5 72 . 24 16 . 12 . 6 . . . 8 4 2
θ6 120 . 24 . 8 . 3 6 12 . . 4 . .
θ7 126 2 6 26 6 30 . 6 6 12 . 2 4 6
θ8 135 15 39 15 7 . . 9 3 3 3 11 3 .
θ9 240 . 48 . . . 6 12 8 . . 8 . .

The permutation character θ of the action of Ḡ on the non-trivial elements
of Ñ (and also on the non-trivial linear characters of N) must be a sum of some
of these permutation characters, and for any ḡ ∈ Ḡ we must have

θ(ḡ) = 2k − 1 for some 0 ≤ k ≤ 7,

since we have a linear action. There are just two such characters, namely

θ1 + θ2 + θ3 + θ4 + θ5 and θ6 + θ8.

But as shown in Section 4.2 (Exercise 4.2.4), we can see from [98] that θ(5a) = 0
and hence θ = θ6 + θ8. Thus Ḡ has three orbits on Ñ and the same number
of orbits on the linear characters of N with stabilizers T̄1, T̄2, T̄3 with indices
1, 135 and 120. Looking at the ATLAS ([38]) we see that T̄2 ∼= 26.L3(2) and
T̄3 ∼= U3(3).2. For an alternative way of finding these stabilizers, see Exer-
cise 3.8.2. Since N has a unique faithful irreducible character ϕ4 (of degree 16)
there are in total four orbits {1N}, ϕG2 , ϕG3 , {ϕ4} of irreducible characters of N
under the action of Ḡ, with stabilizers

T̄1 = S6(2), [S6(2) : T̄1] = 1,
T̄2 ∼= 26.L3(2), [S6(2) : T̄2] = 135,
T̄3 ∼= U3(3).2, [S6(2) : T̄3] = 120,
T̄4 = S6(2), [S6(2) : T̄4] = 1.

Thus in our notation s1 = 4 and the elements 1 = g1,1, z = g1,2, g1,3, g1,4,
with z being the central involution of N , are representatives of the conjugacy
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classes of G contained in N . These have lengths

1, 1, 2 · 135, 2 · 120.

We know that N contains 28 − 24 = 240 elements of order four; these must
be in gG1,4 and so g1,3 is an involution. Since |CG(g1,3)| = 217 · 3 · 7 and
|CG(g1,4)| = 214 ·33 ·7 we see that g1,3 is in class 2a or 2b of Co2 and g1,4 ∈ 4a,
because this is the only class of elements of order four in Co2 with centralizer or-
der divisible by seven. So we have two possibilities for the fusion of N into Co2.
Using both possibilities and computing the scalar product of the restriction of
the second irreducible character of Co2 with 1N , we get −1/2 and 7, respectively.
It follows that g1,3 ∈ 2b and the fusion of N into Co2 is determined.

It is known that Co2 has a unique (candidate for a) transitive permutation
character of degree [Co2 : G] = 56925, which in GAP can be found by

gap> PermChars( CharacterTable("Co2"), 56925 );;

Using this permutation character we can compute the scalar products of the re-
strictions of characters of Co2 to G; see Exercise 3.4.1. We will write Irr(Co2) =
{χ1, . . . , χ60} using the ordering of the ATLAS to get

[ (χi|G , χj |G)G ]1≤i,j≤4 =


1 . . 1
. 2 . .
. . 3 1
1 . 1 4

 . (3.38)

We will write

χn|G =
4∑

m=1

(χ(m)
n )G for χn ∈ Irr(Co2) (3.39)

with χ(m)
n being a character of Tm or zero. Since we know the fusion of N = 21+8

+

and Z(N) into Co2 we can easily derive χ(1)
n (1) and χ

(4)
n (1):

an := χ(1)
n (1) = (χn|N ,1N )N ,

bn := χ(7)
n (1) = (χn|Z(N),−1Z(N))Z(N) =

1
2

(χn(1)− χn(2a)).

Here −1Z(N) is the non-trivial linear character of Z(N). We list the relevant
values for n = 2, 3, 4 in Table 3.10.

From the first line of Table 3.10 we see that η := χ
(4)
2 ∈ Irr(G) is an ordinary

character which extends ϕ4, the unique faithful irreducible character of N . Fur-
thermore η2|N = ϕ2

4 is the inflation of the regular character of N/Z(N) ∼= 28

and hence the sum of the orbits of ϕ1, . . . , ϕ3 under G. From Clifford correspon-
dence (Corollary 3.6.8) we conclude that there are uniquely determined linear
characters ϕ̃m ∈ Irr(Tm) with

η2 =
3∑

m=1

ϕ̃Gm and ϕ̃m|N = ϕm, (1 ≤ m ≤ 3). (3.40)
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Table 3.10.

n χn(1) (χn|G, χn|G)G an bn χn(1)− an − bn
2 23 2 7 24 0
3 253 3 21 7 · 24 120
4 275 4 28 7 · 24 135

Thus all the ϕm extend to ordinary characters of their respective inertia sub-
groups Tm and we do not have to consider projective characters of T̄m. We
will use the extensions ϕ̃m defined by (3.40) for the definition of the Clifford
matrices. Thus

Irr(Tm | ϕm) = {ψ(m)
j := ϕ̃m · ψ̂(m)

j | ψ̂(m)
j ∈ Irr(T̄m)} for m = 1, . . . , 4.

In particular, ψj := ψ
(1)
j is the inflation of the jth irreducible character of S6(2)

to G and ψ
(4)
j = η · ψj .

The above table also gives us the decomposition of χn|G for n = 2, 3, 4:

χ2|G = ψ2 + η,

χ3|G = ψi + (ψ(3)
j )G + ψ

(4)
2 ,

χ4|G = 1G + ψ6 + (ψ(2)
1 )G + ψ

(4)
2 ,

with i ∈ {4, 5} and j ∈ {1, 2}, because ψ4, ψ5 are the irreducible characters
of degree 21 of T̄1 and ψ

(3)
1 , ψ

(3)
2 are the linear characters of T̄3. Also ψ2 is

the unique character in Irr(T̄1) of degree seven. Observe that we have used the
information from (3.38). From equation (3.31) we the first rows rk of Fi1, namely

r4 = χ′
2 − 7 · r1, r3 = χ′

3 − 21 · r1 − 7 · r4, r2 = χ′
4 − 21 · r1 − 7 · r4,

where χ′
n := [χn(1), χn(2a), χn(2b), χn(4a) ]. Hence we have the first Clifford

matrix
g g1,1 g1,2 g1,3 g1,4
|gG| 1 1 270 240

in Co2 1a 2a 2b 4a
(1, 1) 1 1 1 1
(2, 1) 135 135 7 −9
(3, 1) 120 120 −8 8
(4, 1) 16 −16 0 0

Instead of the c1j = |CG(g1,j)| (which we need for the orthogonality relations)
we have listed the class lengths |gG1,j |, because they are smaller. The third line
contains the names of the conjugacy classes of B which contain g1,j . Also we
have omitted the b1m,1 = |T̄m|, which can be obtained by dividing |S6(2)| by the
first entry in row m, except for m = 4, where it is, of course, equal to |S6(2)|.

The character tables of the inertia factor groups T̄i are all contained in the
GAP library of character tables together with their fusions into Ḡ = S6(2). They
can be accessed by
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gap> Maxes( CharacterTable( "S6(2)" ) );
[ "U4(2).2", "A8.2", "2ˆ5:S6", "U3(3).2", "2ˆ6:L3(2)", "2.[2ˆ6]:(S3xS3)",
"S3xS6", "L2(8).3" ]

We find [ | Irr(T̄m)| ]1≤m≤4 = [ 30, 24, 16, 30 ], hence | Irr(G)| = 100.
From the character tables of the inertia factor groups T̄i and the correspond-

ing fusions we immediately obtain all the biρ (see (3.34)) and in particular the
sizes of all the Clifford matrices Fii for the 30 conjugacy classes giḠ. The result
is the following list, which gives for each conjugacy class giS6(2) the number si
of conjugacy classes gGij of G = 21+8 S6(2) into which π−1(giS6(2)) splits:

1a 4 2a 3 2b 5 2c 4 2d 5 3a 2 3b 3 3c 4
4a 5 4b 3 4c 3 4d 6 4e 4 5a 2 6a 2 6b 2
6c 3 6d 2 6e 3 6f 3 6g 4 7a 5 8a 4 8b 4
9a 2 10a 2 12a 2 12b 2 12c 5 15a 2

Thus G has 100 conjugacy classes and one can see that the task to compute the
character table, a 100×100-matrix, has been reduced to the task to compute 30
square matrices of sizes ranging from two to six, most of which can be written
down immediately.

Omitting the last row and the first column of the Clifford matrices Fii of
G, we obtain the corresponding Clifford matrices Fii for 28:S6(2). Since this is
a split extension, we know from Remark 3.8.13 that every coset giN is a split
coset in G. From Corollary 3.8.14 we get

ci(m,l),1 = ci(m,l),2 =
bi(1,1)

bi(m,l)
1 ≤ m ≤ 3, 1 ≤ l ≤ t(i,m),

where we have chosen gi,2 = z gi,1. From the orthogonality relations we see that
the last row of Fii has the form [ qi,−qi, 0, . . . , 0 ], where

qi = |CG(gi)||CḠ(ḡi)|−1,

a power of two. We thus know the first two columns and the first and last row of
all Clifford matrices. Also we conclude from Corollary 3.8.14(f) that the entries
in all Clifford matrices are rational integers. Thus

Fii =
[

1 1
1 −1

]
for i ∈ {6, 14, 15, 16, 18, 25, 26, 27, 28, 30}

and

Fi2 =

 1 1 1
15 15 −1
4 −4 0

 , Fii =

 1 1 1
3 3 −1
2 −2 0

 for i ∈ {7, 10, 11, 17, 19, 20}

From Corollary 3.8.14(c) and (e) we see that Clifford matrices with first col-
umn [1, 1, 2, 2]T or [1, 1, 1, 1, 2]T are uniquely determined by the orthogonality
relations, and we obtain

Fii =


1 1 1 1
1 1 1 −1
2 2 −2 0
2 −2 0 0

 , Fij =


1 1 1 1 1
1 1 1 −1 −1
1 1 −1 1 −1
1 1 −1 −1 1
2 −2 0 0 0
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for i ∈ {13, 21, 23, 24} and j ∈ {22, 29}.
At this point we have computed all Clifford matrices Fii except those for

i ∈ {3, 4, 5, 8, 9, 12}, for which we know only the first two columns. This means
that all but 17 columns of the character table of G are known. Since we know the
decomposition of χ2|G and χ4|G we can evaluate these characters on all but 17
conjugacy classes and can determine the fusion of 74 conjugacy classes into Co2.

To compute the remaining Clifford matrices, we investigate the decomposi-
tion of the restrictions χn|G. Since we know Fi1 and the fusion of the conju-
gacy classes gG1,j into Co2, we can use Lemma 3.8.16 to find dmn := χ

(m)
n (1) for

n = 2, . . . , 6 and m = 1, . . . , 4:

n d1
n d2

n d3
n d4

n ||χn|G||
2 7 0 0 1 2
3 21 0 1 7 3
4 28 1 0 7 4
5 35 0 7 56 4
6 63 7 1 56 7

We use equations (3.37) for χn and for the 74 indices i, j for which we know the
fusion of gi,j into Co2 and the jth column of Fii restricting the (m, k) to those
for which ψ̂

(m)
k (1) ≤ dmn . For each of the above n we obtain a system of linear

equations in the unknowns a(m)
χn,k

which has a unique solution.

Having determined the a
(m)
χn,k

for n = 2, . . . , 6 (and all m, k) we consider
equations (3.37) for χn with n = 2, . . . , 6 as a system of linear equations for the
unknown elements ci[m,l),j in the jth column of Fii, i ∈ {3, 4, 5, 8, 9, 12}. There
is a problem though. Since we do not know the fusion of the gij into Co2 yet we
cannot evaluate the left hand side of (3.37). But there are restrictions for the
fusion. If gi has order o, then the order of gij must be in {o, 2 o, 4 o}. Also we
can eliminate all classes of Co2 for which the corresponding system of equations
does not have a solution with first component 1 and last component 0. We
demonstrate this for i = 3.

Here the jth column of Fii is a solution of
−1 0 0 0 1
−3 0 0 1 −1

4 1 1 0 −1
3 0 0 −1 0

15 7 3 1 −8

 ·

x1
x2
x3
x4
x5

 =


χ2(gij)
χ3(gij)
χ4(gij)
χ5(gij)
χ6(gij)

 .
We have 16 possible conjugacy classes of Co2 (with elements of order two,
four or eight) which can contain gij , but for only six of these (for the classes
2c, 4d, 4f, 4g, 8a, 4g) do we get a solution x with x1 = 1 and x5 = 0. From
these the last three conjugacy classes can be excluded, since the corresponding
solutions would lead to |CG(gij)| � |CCo2(gij)|, a contradiction. In exactly the
same way the remaining Clifford matrices can be obtained, except for i = 12,
for which one should use also the decomposition of χn|G for n = 7, 8, 9. In
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this case Corollary 3.8.14(d) may also be applied, which immediately gives the
second row and last column of Fi12:

Fi3 =


1 1 1 1 1
3 3 3 3 −1

36 36 4 −12 0
24 24 −8 8 0
8 −8 0 0 0

 , Fi12 =


1 1 1 1 1 1
1 1 1 1 1 −1
2 2 2 2 −2 0
8 8 −8 0 0 0
4 4 4 −4 0 0
4 −4 0 0 0 0

 .

�

Using similar techniques the character table of 21+22
+ .Co2, one of the largest

maximal subgroups of BM, has been computed in [137] using GAP. All GAP pro-
grams used can be found in [138]. The group 21+22

+ .Co2 has 448 conjugacy
classes, and the largest Clifford matrix is a 20× 20-matrix.

Exercises

Exercise 3.8.1 Prove Lemma 3.8.5.

Exercise 3.8.2 Listed in [170] is an eight-dimensional irreducible representa-
tion δ : S6(2) → GL8(2), given by δ(a) and δ(b) for standard generators of
S6(2). Find stabilizers Ti for representatives of the orbits of S6(2) acting on F8

2
and compute the character tables of the Ti.

Exercise 3.8.3 Compute the Clifford matrices Fii in Example 3.8.17 for i ∈
{4, 5, 8, 9}.

3.9 M-groups

Whereas permutation characters of a group can only be irreducible in the triv-
ial case, it may very well happen that some non-trivial linear characters of a
subgroup induce up to irreducible characters. There is even an important class
of groups, called M-groups, where all irreducible characters may be obtained in
this simple way.

We keep the assumption that all groups considered in this section are finite.

Definition 3.9.1 (a) A representation δ : G→ GL(V ) over a field K is called
monomial if it is induced from a degree one representation of a subgroup of G.

(b) A group G is called an M-group if all irreducible representations of G over
C are monomial.

Let δ : G → GL(V ) be induced from a representation λ of degree one of
H ≤ G. Choosing coset representatives G =

⋃̇n

i=1giH, any g ∈ G permutes
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the cosets, so g · gi = gπg(i)hi(g) with hi(g) ∈ H, where π : G → Sn, g �→ πg
is the corresponding permutation representation with stabilizer H. Then V =
KG⊗KH K, B = (g1 ⊗ 1, . . . , gn ⊗ 1) is a K-basis of V and

[δ(g)]B = [δπg(i),j · λ(hi(g))]i,j = Pπg
· diag(λ(h1(g)), . . . , λ(hn(g))) (3.41)

is a monomial matrix, i.e. one with exactly one non-zero entry in each row and
column. Here Pπg is the permutation matrix corresponding to the permutation
πg. Obviously

kerπ = {g ∈ G | [δ(g)]B = diagonal matrix}
and kerπ/ ker δ is abelian.

Conversely, it is not hard to see (Exercise 3.9.1) that for every irreducible
matrix representation δ : G→ GLn(K) mapping all g ∈ G to monomial matrices
there is a monomial representation δ : G→ GL(V ) and a basis B of V such that
δ(g) = [δ(g)]B for every g ∈ G.

Observe that in (3.41) the field elements λ(hi(g)) are mth roots of unity for
some m ∈ N dividing the exponent of G. Choosing a suitable fixed root of unity
ζ ∈ K we have λ(hi(g)) = ζmi with integers mi and the matrix [δ(g)]B may
be stored just by giving πg ∈ Sn and [m1, . . . ,mn] ∈ Nn0 . Since for the multi-
plication of monomial matrices no field addition is needed, the multiplication
(and inversion) of the representing matrices can carried out with just n modular
additions of integers.

The following theorem shows that any M-group is solvable.

Theorem 3.9.2 (Taketa) If G is an M-group and 1 = n1 ≤ n2 ≤ · · · ≤ nk are
the degrees of the irreducible C-representations of G, then for every irreducible
representation δ of G of degree ni one has

G(i) ≤ ker δ,

where G(i) is the ith commutator subgroup of G. In particular, every M-group
is solvable.

Proof. We use induction on deg δ. If deg δ = 1 it is clear that G′ = G(1) ≤
ker δ. So let δ be a monomial representation of degree n = ni and let, as above,
π : G→ Sn be the corresponding permutation representation. So as in the fore-
going discussion kerπ/ ker δ is abelian. Since π considered as a representation
is reducible (cf. Lemma 1.2.4) all irreducible constituents have degree < ni.
Hence, by induction, G(i−1) ≤ kerπ. Since kerπ/ ker δ is abelian, G(i) ≤ ker δ.

On the other hand, we will convince ourselves that the class of M-groups contains
the following class of groups.

Definition 3.9.3 A group is super-solvable if it has a normal series

G = N0 > N1 > · · · > Nm = {1}
with Ni−1/Ni cyclic for i = 1, . . . ,m.
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Actually we will not only give a constructive proof that super-solvable groups
are M-groups, but also we will show that there is an effective algorithm to
compute in the semisimple case the irreducible representations up to equivalence
for a class of groups, slightly larger than the class of super-solvable groups. This
is due to Baum and Clausen (see [7], [9] and [11]). To describe the idea of this
algorithm we need the following definition.

Definition 3.9.4 Let C = ( {1} = G0 < G1 < · · · < Gn = G ) be a series of
subgroups. A matrix representation D : G → GLm(K) over a field K is called
C-adapted if the following conditions are satisfied:

(a) D|Gi = D(i)
1 ⊕ · · · ⊕D(i)

ri with irreducible matrix representations D(i)
j of Gi

for 1 ≤ j ≤ ri;

(b) if D(i)
j and D(i)

k are equivalent (1 ≤ j, k ≤ ri), then D(i)
j = D(i)

k .

It is easy to see that any representation D : G → GLm(K) is equivalent to
a C-adapted representation if charK � |G|.

The algorithm is based on the following lemma.

Lemma 3.9.5 Let

C := ( {1} = G0 �G1 � · · ·�Gn = G ) (3.42)

be a normal series of G with G1 abelian and Gi+1/Gi of prime order for i =
1, . . . , n−1. Assume that K is a field of characteristic not dividing |G|, which is
a splitting field for all the Gi. If D,D′ : G→ GLm(K) are irreducible equivalent
C-adapted representations, then the intertwining space

Int(D,D′) := {X ∈ Km×m | XD(g) = D′(g)X for all g ∈ G} = 〈Y 〉K

is generated by a monomial matrix Y .

Proof. We give a proof which is constructive and uses induction (recursion)
on n. For n = 1 we may put Y = [1]. Now assume n > 1. Let D,D′ be as
indicated and 0 
= X ∈ Int(D,D′). If D|Gn−1 is irreducible then so is D′|Gn−1 ,
and by induction we have a monomial Y ∈ Km×m with

X ∈ Int(D|Gn−1 ,D
′|Gn−1) = 〈Y 〉K .

Otherwise D|Gn−1 = D1⊕· · ·⊕Dp and D′|Gn−1 = D′
1⊕· · ·⊕D′

p with irreducible
representations Di and D′

i of Gn−1 for 1 ≤ i ≤ p := [G : Gn−1]. Replacing D′ by
D′′ : g �→ P−1D′(g)P with a suitable permutation matrix P (and observing that
Int(D,D′′) = P · Int(D,D′)) if need be, we may assume that Di is equivalent
to D′

i for i = 1, . . . , p. By induction, Int(Di,D′
i) = 〈Yi〉K with monomial

Yi ∈ Km/p×m/p. Then X = s1Y1 ⊕ · · · ⊕ spYp with s1, . . . , sp ∈ K \ {0}. Thus
X is monomial and may be obtained by solving the equation XD(h) = D′(h)X
for some h ∈ G \Gn−1, considered as a system of linear equations in s1, . . . , sp.
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We remark that Lemma 3.9.5 holds true in greater generality (see [8]). But
the constructive proof we have given depends on the special structure of C.

Theorem 3.9.6 Let C and K be as in Lemma 3.9.5. Then there is a complete
system of representatives (D1, . . . ,Dr) of the equivalence classes of irreducible
representations of G over K such that all Di are monomial and D1 ⊕ · · · ⊕Dr

is C-adapted.

Proof. We use induction on n, the case n = 1 being trivial. We put N := Gn−1
and C′ := ( {1} = G0 �G1 � . . .�Gn−1 = N ). By induction we have a set of
monomial representatives (D′

1, . . . ,D
′
r′) of the equivalence classes of irreducible

representations of N such that D′
1 ⊕ · · · ⊕ D′

r′ is C′-adapted. We will show
how to obtain the desired matrix representations (D1, . . . ,Dr) from these in a
constructive manner initializing our list by D := ().

We choose a fixed g ∈ G \N and use the coset representatives 1, g, . . . , gp−1

of N in G for the definition of the induced matrix representations D′
i
G; see

Lemma 3.2.1. For all D′ := D′
i with i ∈ {1, . . . , r′} we have to distinguish two

cases (according to Corollary 3.6.15) as follows.
(a) D′G is irreducible. Then we have a family {gj

D′ | 0 ≤ j ≤ p − 1} of p
conjugate pair-wise non-equivalent representations of N . It is easy to see that
they all are C′-adapted, and by Lemma 3.9.5 there are monomial matrices Xj

such that

X−1
j

gj

D′(x)Xj = D′
ij (x) for all x ∈ N

for some ij ∈ {1, . . . , r′}. We put X := diag(X0, . . . , Xp−1) and obtain a mono-
mial C-adapted representation D of G by putting D(y) := X−1D′G(y)X for
y ∈ G. We add D to our list D.
(b) D′ and gD′ are equivalent and D′ can be extended to a representation of G.
Using Lemma 3.9.5 we obtain a monomial matrix Y such that Y −1D′(x)Y =
gD′(x) = D′(g−1xg) for all x ∈ N . Then D′(gp)Y −p ∈ Int(D,D). By our
assumptions the equation cpY p = D′(gp) has exactly p solutions c1, . . . , cp ∈ K.
So we obtain p monomial matrix representations Di (i = 1, . . . p) by

Di(g) := ciY and Di|N = D′,

which we add to our list D.
Having thus processed all D′

i it follows from Theorem 3.6.7 and Corollary 3.6.15
that (D1, . . . ,Dr) := D is a complete set of representatives of the irreducible rep-
resentations of G. Since all irreducible constituents of all Di|N are in
{D′

1, . . . ,D
′
r′}, D1 ⊕ · · · ⊕Dr is C-adapted.

Remark 3.9.7 Theorem 3.9.6 in conjunction with Lemma 3.9.5 leads to a very
efficient algorithm often called the Baum–Clausen algorithm for computing
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the irreducible representations (and characters) of a finite group which is an ex-
tension of an abelian group by a super-solvable one. In such a group, computa-
tions can be carried out very efficiently using a power-commutator presentation
(see e.g. [84]).

Corollary 3.9.8 (a) An extension of an abelian group by a super-solvable group
is an M-group.
(b) Every nilpotent group, so in particular any p-group, is an M-group.

Proof. (a) follows directly from Theorem 3.9.6 because of Exercise 3.9.1.
(b) Since a non-trivial nilpotent group has a non-trivial central (cyclic) sub-

group it follows by induction that a nilpotent group is super-solvable. Hence
(a) implies (b).

The converse of Corollary 3.9.8(a) does not hold; see Exercise 3.9.2. It is
clear that factor groups of M-groups are M-groups. But normal subgroups of
M-groups are not necessarily M-groups; see [45]. A group-theoretical character-
ization of M-groups has been given by Parks [144].

Exercises

Exercise 3.9.1 (a) Let δ : G→ GLn(K) be an irreducible matrix representa-
tion of G such that δ(g) is a monomial matrix for every g ∈ G. Show that
there is a monomial representation δ : G→ GL(V ) and a basis B of V such that
δ(g) = [δ(g)]B for every g ∈ G.
(b) Show that (a) does not hold if one omits the hypothesis that δ is irreducible.

Exercise 3.9.2 (a) Find a solvable group that is not an M-group and an M-
group that is not super-solvable.
Hint: It suffices to look at groups of order 24.
(b) Find an M-group which is not an extension of an abelian group by a super-
solvable group.
Hint: Consider an extension of an extraspecial group of order 32 by a cyclic
group of order three.

3.10 Brauer’s induction theorem

In this section we will present a crucial result, Brauer’s induction theorem,
which has many important applications. It shows that any ordinary character
of a group G can be written as a Z-linear combination of characters induced
from certain subgroups of G. In the following, let G be a finite group and let
K be a field of characteristic zero.

Definition 3.10.1 Let Z IrrK(G) be the ring of generalized characters of G
over K (see Definition 2.8.3). If H is a family of subgroups of G then let

I(G,H) :=
∑
H∈H

∑
ψ∈IrrK(H)

ZψG.
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We are looking for a “small” family H such that I(G,H) = Z IrrK(G). We
need the following obvious fact, which should be compared with Lemma 3.2.14.

Lemma 3.10.2 For H ≤ G, χ ∈ cf(G,K), and ψ ∈ cf(H,K) we have

χ · ψG = (χH · ψ)G.

In particular I(G,H) is an ideal in Z IrrK(G).

We now define two families of subgroups as follows.

Definition 3.10.3 (a) A group H is called (p-)elementary if H = 〈h〉 × P
with a p-group P (for some h ∈ H and a prime p). Let

E := E(G) := {H ≤ G | H p-elementary for some prime p}.

(b) H is called (p-)quasi-elementary if H contains a cyclic normal subgroup
〈h〉 with factor group H/〈h〉 a p-group. Let

Q := Q(G) := {H ≤ G | H p-quasi-elementary for some prime p}.

Obviously E ⊆ Q. Observe that one may assume, without loss of generality
in (a), that P ∈ Sylp(H) and in (b) that H = 〈h〉� P with P ∈ Sylp(H). It is
also clear that elementary groups are nilpotent.

We will first show that I(G,Q) = Z IrrK(G) and later improve this to
I(G, E) = Z IrrK(G). But first we need the following two lemmas.

Lemma 3.10.4 If H is a family of subgroups of G which is closed under con-
jugation (in G) and intersections then

AH := {
∑
H∈H

aH1HG | aH ∈ Z}

is multiplicatively closed, and is hence a subring of cf(G,K), possibly without
identity.

Proof. This follows immediately from the formula

1Hi

G · 1Hj

G =
∑
d∈Dij

(1Hd
i ∩Hj

)G

established in Corollary 3.5.13.

Lemma 3.10.5 Let A be a ring (possibly without identity) of Z-valued functions
on a finite set X (with point-wise addition and multiplication). If the constant
function 1X : X → Z, x �→ 1 is not in A then there is an x ∈ X and a prime p
with p | f(x) for all f ∈ A.
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Proof. For x ∈ X consider the additive subgroup Ix := {f(x) | f ∈ A} of Z.
If Ix 
= Z then Ix is contained in some maximal subgroup pZ, so p | f(x) for all
f ∈ A. If, on the other hand, Ix = Z for all x ∈ X, choose for every x ∈ X an
element fx ∈ A with fx(x) = 1. Then∏

x∈X
(1x − fx) = 0.

Expanding the left hand side we get 1X as a Z-linear combination of products
of some fx, hence 1X ∈ A, contrary to the hypothesis.

We first show that for the family Q the following statements hold.

Theorem 3.10.6 Let K be a field of characteristic zero. Then

(a) I(G,Q) = Z IrrK(G);

(b) 1G =
∑
H∈Q aH1GH with integers aH ∈ Z.

Proof. (a) follows from (b) since I(G,Q) is an ideal in Z IrrK(G). Since
Q is a family of subgroups of G which is closed under conjugation and taking
intersections, Lemmas 3.10.4 and 3.10.5 show that it is sufficient to prove the
following: for each prime p and every element g ∈ G there is a subgroup H ∈ Q
such that p � 1HG(g).

{1}

P1 〈y〉

P2 〈g〉

H

N = NG(〈y〉)

�� ��

�� ����

�� ��

��
So we choose a prime p and an ar-

bitrary element g ∈ G and write 〈g〉 =
P1 × 〈y〉 with P1 ∈ Sylp(〈g〉). Let N =
NG(〈y〉) and P1 ≤ P2 ∈ Sylp(N). Then
H = P2〈y〉 ∈ Q and

1HG(g) = |{xH | x ∈ G , gxH = xH}|
= 1HN (g),

because gxH = xH implies x−1gx ∈ H,
hence x−1yx ∈ H and x ∈ N . Observe
that 〈y〉 = {h ∈ H | g.c.d.(p, |〈h〉|) = 1}.

Since 〈y〉�N the action of 〈y〉 on N/H is trivial, so the p-group 〈g〉/〈y〉 ∼= P1
is acting on N/H. Hence all orbits of 〈g〉 on N/H have lengths which are powers
of p. It follows that the number of fixed points is given by

|FixN/H(g)| = 1HN (g) ≡ [N : H] mod p.

As p � [N : H] the assertion follows.

Finally, we can state Brauer’s induction theorem.

Theorem 3.10.7 (Brauer’s induction theorem)

(a) I(G, E) = Z Irr(G).



284 Groups and subgroups

(b) Every generalized character of G over C is a Z-linear combination of char-
acters induced from linear characters of elementary subgroups of G.

Proof. (a) We use induction on |G|. It suffices to show that 1G ∈ I(G, E).
By Theorem 3.10.7 we already know that 1G ∈ I(G,Q). If G /∈ Q then 1G is
a Z-linear combination of characters ψi which are induced from characters of
proper subgroups of G, namely of those in Q. By induction the ψi are Z-linear
combination of characters which are induced from characters of elementary sub-
groups of G. Transitivity of induction (Lemma 3.2.14) yields the result in this
case.

So we may assume that G ∈ Q, that is G = C · P , with C a cyclic p′-
subgroup which is normal in G and P a p-group. Let Z = CC(P ). If Z = C
then G = C ×P is elementary and the claim holds trivially. So we assume that
Z 
= C. Let H = Z × P , so H ∈ E . Let

I = {χ ∈ Irr(G) | 1G 
= χ , (1HG, χ)G > 0} thus 1HG = 1G +
∑
χ∈I

aχχ

with aχ ∈ N. The trivial character 1H is a constituent of every χ ∈ I by
Frobenius reciprocity. Thus if χ(1) = 1 for some χ ∈ I then χH = 1H and
G = kerχ · NG(P ) = kerχ · H = kerχ by the Frattini argument (see [88],
Satz I.7.8) and χ = 1G, which contradicts the definition of I. Hence χ(1) > 1
for all χ ∈ I. Since quasi-elementary groups are super-solvable, and hence are
M-groups by Corollary 3.9.8, we see that all χ ∈ I are induced from (linear)
characters of proper subgroups, and the claim follows by induction.

(b) follows from (a) and the fact that elementary groups are M-groups.

The preceding result has many important consequences. The first one we list,
often called “Brauer’s splitting field theorem” was an open problem for almost
50 years, the result being conjectured by Maschke around 1900.

Theorem 3.10.8 (R. Brauer) If G is a finite group of exponent m and ζ is
a primitive mth root of unity in C then Q(ζ) is a splitting field for G.

Proof. Let K := Q(ζ) and χ ∈ Irr(G). By Theorem 3.10.7

χ =
∑
i∈I

aiλ
G
i ai ∈ Z,

where the λi are linear characters of certain subgroups Ei for some index set I.
Since λi(g) ∈ K for all g ∈ Ei, all the λi and hence all the λGi are characters of
KG-modules. By Theorem 2.9.19 we have mK(χ) | (λGi , χ)G. Consequently

mK(χ) |
∑
i∈I

ai(λGi , χ)G = (χ, χ)G = 1.
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Hence mK(χ) = 1, and by Lemma 2.9.15 χ is the character of a simple KG-
module. By Exercise 1.5.8 K is a splitting field for G.

Theorem 3.10.9 (Brauer’s characterization of characters) A class func-
tion η ∈ cf(G,C) is a generalized character if and only if ηE is a generalized
character for all elementary subgroups E ≤ G. It is an irreducible character if
and only if moreover (η, η)G = 1 and η(1) > 0.

Proof. Of course, a restriction of a generalized character is always a generalized
character. On the other hand, assume that η ∈ cf(G,C) restricts to a generalized
character on every elementary subgroup ofG. By Theorem 3.10.7 1G =

∑
i aiλ

G
i

with integers ai and linear characters λi ∈ Irr(Ei) of some elementary subgroups
Ei ≤ G. We conclude (using Lemma 3.2.7(a)) that

η = η · 1G =
∑
i

aiη · λGi =
∑
i

ai(ηEi · λi)G ∈ Z Irr(G).

Theorem 3.10.9 can be used to verify that certain class functions are indeed
characters. As an application we give a simple proof of the following important
result, which has already been utilized in Section 2.10. Actually the result is a
special case of much more general results, which will be derived in Chapter 4,
also using Theorem 3.10.9.

Theorem 3.10.10 Let χ ∈ Irr(G) and let p be a prime with p � |G|
χ(1) . Then

χ(g) = 0 for every g ∈ G with p | |〈g〉|.

Proof. We define a class function η : G→ C by

η(g) =
{
χ(g) for p � |〈g〉|,

0 else.

We first show that η is a generalized character. To this end let H ≤ G be an
elementary subgroup. Since H is nilpotent we may write H = P ×Q with P a
Sylow p-subgroup of H. Let ψ ∈ Irr(H) be arbitrary. Since ηH vanishes outside
of Q we have

(ηH , ψ)H =
1
|H|

∑
h∈Q

η(h)ψ(h−1) =
1
|P | (χQ, ψQ)Q.

Hence |P |(ηH , ψ)H ∈ Z. On the other hand, using Theorem 2.3.2 we get

(ηH , ψ)H =
1
|H|

∑
h∈Q

ωχ((hG)+)
χ(1)
|G| |CG(h)|ψ(h−1)

=
χ(1)
|G||Q|

∑
h∈Q

ωχ((hG)+)[CG(h) : P ]ψ(h−1)
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since P ⊆ CG(h) for h ∈ H. Since ωχ((hG)+) is an algebraic integer (see
Corollary 2.3.3) we get that |Q| |G|

χ(1) (ηH , ψ)H ∈ Z. Our assumption implies

that |P | and |Q| |G|
χ(1) are coprime, hence (ηH , ψ)H ∈ Z and η ∈ Z Irr(G) by

Theorem 3.10.9. Now it is obvious that

0 < (η, η)G = (η, χ)G ≤ (χ, χ)G = 1.

Hence η = χ and χ vanishes on all elements of order divisible by p.

Theorem 3.10.9 has often been used for the construction of character tables.
If some information about subgroups of a finite group G is available, including
their character tables, it is sometimes possible to guess some candidate for an
irreducible character of G and then use Theorem 3.10.9 to prove that it is indeed
an irreducible character.

Example 3.10.11 Let G := Fi22 be the smallest of the sporadic simple Fischer
groups; G has maximal subgroups M2 ∼= O7(3) and M5 ∼= 210 : M22, a split
extension of an elementary abelian group of order 210 by M22 (see [38], p. 163).
For both groups the smallest degree of a faithful character is 78, and both groups
have a unique faithful character ψ2 and ψ5, respectively, of this degree. In fact,
ψ2 ∈ Irr(M2), while ψ5 = 1M5 + χ′

5 with χ′
5 ∈ Irr(M5).

So all irreducible characters of G must have degree ≥78 and one might
guess that there is an irreducible character of G of this degree. Computing the
class fusions of M2 and M5 into G, this guess is supported by the fact that
ψ2(g2) = ψ5(g5) whenever g2 ∈M2 is conjugate in G to g5 ∈M5, so that there
are indeed class functions χ of G such that χ|Mi

= ψi for i ∈ {2, 5}. Any such
class function is, of course, uniquely determined on all conjugacy classes of G
which intersect non-trivially with M2 or M3, that is on all conjugacy classes of
G except for

12a, 12b, 12c, 12h, 21a, 22a, 22b, 24a, 24b, 30a.

Assuming that χ is a character, the congruence relations (see Lemma 2.2.2)
determine the values of χ on 21a modulo 21, on 22a, 22b modulo 22 on 30a
modulo 30 and on the remaining classes modulo 6. Testing the norm of χ and
χ[12] for integrality, and whether or not (χ,1G)G = 0, we find that there is a
unique solution, that is, there is exactly one class function χ ∈ cf(G,C) with
χ|Mi = ψi for i ∈ {2, 5}, which possibly is a character.

To prove that this χ is a character we have to show that χ|E is a generalized
character for every elementary subgroup E ≤ G. Of course, it suffices to consider
only maximal elementary subgroups E, that is, those which are not contained
in a larger elementary subgroup. Knowing the power maps of G, it is a simple
matter to check whether or not χ|E is a (generalized) character in the case that
E is cyclic. The non-cyclic maximal elementary subgroups of G are in Sylp(G)
for p ∈ {2, 3, 5} or of the form CG(g)p := 〈g〉 ×P with P ∈ Sylp(CG(g)), where
g ∈ G has order coprime to p. From the orders and centralizer orders of the
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elements of G, we see that G has 15 conjugacy classes of non-cyclic maximal
elementary subgroups. These are the Sylow p-subgroups for p ∈ {2, 3, 5}, and
in addition

CG(g)3 for g ∈ 2a ∪ 2b ∪ 2c ∪ 4a ∪ 4b ∪ 4d

and
CG(g)2 for g ∈ 3a ∪ 3b ∪ 3c ∪ 3d ∪ 5a ∪ 9a.

Since χ|U is a character for U ≤ M2 or U ≤ M5 we only have to consider non-
cyclic maximal elementary subgroups which are not contained in M2 or M5.
These are

P ∈ Syl5(G), CG(g)2 for g ∈ 3a ∪ 3b and CG(g)3 for g ∈ 4a;

P ∼= C5×C5 is trivial to check. For the other subgroups (of order 3 · 28, 3 · 27

and 4 · 33) one may compute the character tables and fusions into G using a
permutation representation of G as in Example 3.10.12 below. Alternatively
one may use the fact that these subgroups are contained in maximal subgroups
2.U6(2) or 26 : S6(2) of G.

Having checked that χ is indeed a character, it is a routine matter to calculate
the complete character table of G using symmetrizations of χ, the characters
induced from cyclic subgroups of G and the methods described in Section 2.8.

�

Theorem 3.10.7 can also be used to compute the character table of a group
G, provided that one can find the conjugacy classes and also sufficiently many
elementary subgroups of G. In [165] an algorithm using this idea is described,
which has been implemented in MAGMA and which for many interesting groups
seems to perform better than the Dixon–Schneider algorithm presented in Sec-
tion 2.4.

Example 3.10.12 Again we take G := Fi22. Using a permutation representa-
tion of G of degree 3510 (obtained from [170]) it is quite fast to compute the
conjugacy classes and also the power maps for G. Hence one can immediately
find the characters induced from linear characters of cyclic subgroups. Com-
puting representatives of the 15 conjugacy classes of the non-cyclic maximal
elementary subgroups of G as described in Example 3.10.11 is immediate. The
computation of the character tables of these subgroups (with the Baum–Clausen
algorithm, see Remark 3.9.7) and the determination of the fusions of their con-
jugacy classes into G, in order to induce their irreducible characters up to G,
takes only a few minutes. Using the LLL-algorithm all the irreducible charac-
ters of G are found. A direct application of the Dixon–Schneider algorithm to
G does not seem to be feasible. �

Exercises

Exercise 3.10.1 Let G := McL be the sporadic simple McLaughlin group. Use
the table of marks of G (in the GAP library) to find all elementary subgroups of
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G up to conjugacy in G. Show that all but three elementary subgroups (up to
conjugacy) are cyclic or p-groups for some prime p. Verify that every elementary
subgroup of G, which is not cyclic of order 11, 14, 15 or 30, is conjugate to a
subgroup of a maximal subgroup of G isomorphic to U4(3) or U3(5).

Exercise 3.10.2 Let H be a family of subgroups of G such that I(G,H) =
Z IrrK(G). Show that every elementary subgroup E ≤ G is conjugate in G to a
subgroup of H for some H ∈ H.
Hint: Assume that E = 〈h〉 × P with P ∈ Sylp(E) is an elementary subgroup
of G which is not conjugate in G to a subgroup of H ≤ G. Let χ ∈ Irr(H).
Show that χG(h) ∈ pZ[ζm], where m = |〈h〉|.

Exercise 3.10.3 Show that a finite group G is quasi-elementary if and only if
1G 
∈ 〈{1GH | H < G}〉Z.
Hint: Let G = C�P with P ∈ Sylp(G) and C cyclic. Assume 1G =

∑n
i=1 ai1

G
Hi

with ai ∈ Z \ {0} and G 
= Hi 
=G Hj for 1 ≤ i 
= j ≤ n. Choose the notation
such that p � ai [G : Hi] for 1 ≤ i ≤ m and |H1| ≤ |Hi| for i = 1, . . . ,m. Show
that G = HiC and |Hi| 
= |Hj | for 1 ≤ i 
= j ≤ m. Verify that there is a
χ ∈ Irr(G) with (1GH1

, χ)G > 0 and kerχ ∩ C = H1 ∩ C and that (1GHi
, χ)G = 0

for 2 ≤ i ≤ m and any such χ.
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Modular representations

4.1 p-modular systems

In the preceding chapters we studied representations of a group G over a fixed
field K, where most of the time the characteristic of K was assumed not to be a
divisor of |G|, so that the group algebra KG was semisimple. Often the study of
representations of a finite group G over a field of characteristic p dividing |G| is
called “modular representation theory.” But this captures only a narrow aspect
of the theory as it was developed by Richard Brauer. In fact, an important part
of this theory is the interplay between representations of G in characteristic zero
and in characteristic p.

The simplest example of this kind is to relate rational representations of G
to representations over Fp. If δ : G→ GLn(Q) is a representation, it is not hard
to see (see Theorem 4.1.4 below) that δ is equivalent to a representation δ′ with
δ′(G) ⊆ GLn(Z). Extending the natural projection prp : Z → Fp = Z/pZ to the
matrix ring Zn×n we may then form

δ′ := prp ◦ δ′ : G→ GLn(Fp),

which is a representation of G over Fp and we may associate it to δ. As one
can see here, representations over Z (or, equivalently, ZG-lattices, that is ZG-
modules which are free and finitely generated as Z-modules) form the connecting
link between “ordinary representations” (over Q) and “modular representations”
(over Fp). In particular we have an embedding and a projection

QG←↩ ZG −→ FpG (4.1)

of the relevant group algebras. We would like to generalize this idea by replacing
Q, for instance by an algebraic number field K, and Z by a suitable ring R with
quotient field K and a maximal ideal P such that F ∼= R/P has characteristic
p > 0. Again it is useful to consider more generally algebras and orders (see
Definition 1.8.1), their modules and “lattices.”

289
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Definition 4.1.1 Let R be an integral domain with quotient field K and let A
be an R-order. An A-lattice M is an A-module which has a finite R-basis. We
will embed M ⊆ KM := K ⊗RM .

For the above construction it is essential that every representation over K :=
Q is equivalent to one with entries in R := Z. This will not hold for an arbitrary
integral domain R and its quotient field K; for instance, it will generally not
hold for the ring R of algebraic integers in an algebraic number field K, which
is not always a principal ideal domain. But there is a good substitute, the
important class of “valuation rings.”

Definition 4.1.2 A valuation ring is an integral domain with quotient field
K such that

K = R ∪ {x−1 | x ∈ R \ {0}} 
= R.

Simple examples are Z(p) := {ab | a, b ∈ Z , p � b} ⊆ Q for a prime p. In fact, it
is an easy exercise to see that these are the only valuation rings in Q (see e.g.
[32], p. 268).

We will need the following basic facts about valuation rings.

Lemma 4.1.3 Let R be a valuation ring with quotient field K. Then we have
the following.

(a) R is a local ring, that is P := R\R× �R and P = J(R) is the only maximal
ideal of R.

(b) R is integrally closed in K, that is any root α ∈ K of a monic polynomial
in R[X] is in R.

(c) W := K×/R× is a (multiplicative) ordered abelian group with αR× ≤ βR×

for α, β ∈ K× if and only if βα−1 ∈ R. The canonical map ν = νR : K× → W
satisfies ν(α+ β) ≥ min(ν(α), ν(β)) for α, β ∈ K×.

(d) Any finitely generated torsion-free R-module is free.

Proof. (a) If a ∈ P and x ∈ R then clearly a x ∈ P . Let a, b ∈ P \ {0}. We
may assume a

b ∈ R, interchanging a, b if need be. Then a+ b = b (ab + 1) ∈ P .
(b) If α ∈ K \ R and

∑n
j=0 aj α

j = 0 with a0, . . . , an ∈ R and an = 1 then,
since α−1 ∈ R, we get α = −

∑n−1
j=0 aj α

j−n ∈ R, a contradiction.
(c) The first assertion is immediate from the definition of a valuation ring.

Let α, β ∈ K× and, say, β
α ∈ R, that is ν(α) ≤ ν(β). Then (α + β)α−1 ∈ R,

hence the second assertion.
(d) As in (a) let P := R \ R× be the maximal ideal of R. Let V =

〈v1, . . . , vn〉R be a torsion-free R-module (that is a v = 0 with a ∈ R, v ∈ V
implies a = 0 or v = 0). Then V/PV is an R/P -vector space generated by
{v̂i := vi + PV | 1 ≤ i ≤ n}. We may choose the notation so that (v̂1, . . . , v̂m)
is a basis for V/PV . By Nakayama’s lemma (Exercise 1.4.1) V = 〈v1, . . . , vm〉R.
Assume that

m∑
j=1

aj vj = 0 with aj ∈ R not all zero. (4.2)
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We choose the notation so that a1 
= 0 and ν(a1) ≤ ν(aj) for all j with aj 
= 0.
Then aj a−1

1 ∈ R for all j. Multiplying equation (4.2) by a−1
1 and taking residues

modulo PV we obtain a contradiction to the linear independence of the v̂j .

Theorem 4.1.4 If R is a principal ideal domain or a valuation ring with quo-
tient field K and A is an R-order then, for any finitely generated KA-module V ,
there is an “R-form,” that is an A-submodule M ≤A VA having an R-basis which
is at the same time a K-basis for V . Thus M is an A-lattice with KM = V .

Proof. Let (v1, . . . , vn) be a K-basis of V and let (a1, . . . , am) be an R-basis
of A. We put

M =
m∑
i=1

n∑
j=1

Rai vj ⊆ V.

It is easily verified that M is a finitely generated A-module with KM = V . It
is R-torsion-free because it is contained in the K-vector space V , and hence is
free; if R is a valuation ring the latter follows from Lemma 4.1.3(d), and for R
a principal ideal domain it follows from the classification of finitely generated
modules over such rings (see [110], Theorem III.7.3, p. 147). Any R-basis of M
is obviously also a K-basis for V .

Corollary 4.1.5 If R and K are as in the last theorem, any matrix representa-
tion δ : G→ GLn(K) of a finite group G over K is equivalent to a representation
δ′ : G→ GLn(K) with δ′(g) ∈ GLn(R) for all g ∈ G.

Proof. We just apply the theorem with the R-order RG.

We note that an R-form M as in Theorem 4.1.4 is not uniquely determined
up to A-isomorphism, as is seen in the following example.

Example 4.1.6 Let A = ZG with G = {1, g} ∼= C2, the cyclic group of order
2, and let K = Q so KA = QG. The regular module V = QG has two Z-forms
M1 = ZG and M2 with Z-bases

B1 = (1 + g , 1) and B2 =
(

1
2

(1 + g) ,
1
2

(1− g)
)
, respectively.

The corresponding matrix representations with respect to the bases B1, B2 are
given by

δ1(g) =
[

1 1
0 −1

]
and δ2(g) =

[
1 0
0 −1

]
.

Under the natural homomorphism Z2×2 → F2×2
2 these matrices map to

[
1 1
0 1

]
and

[
1 0
0 1

]
, so it is clear that δ1(g) and δ2(g) cannot be conjugate in GL2(Z).

Hence M1 
∼=A M2. �
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The advantage of choosing valuation rings for our construction can already
be seen in the following lemma.

Lemma 4.1.7 Let R be a valuation ring with quotient field K and let A be
an R-order. Then F := R/ J(R) is a field (of characteristic p if p ∈ J(R)),
Â := A/ J(R)A is a finite dimensional F -algebra and

J(R)A ≤ J(A), hence A/ J(A) ∼= Â/ J(Â). (4.3)

Thus every simple A-module is the inflation of a simple Â-module.

Proof. Clearly J(R)A � A. We have to show that J(R)A ⊆ M for any
maximal left ideal M ≤A A. Assume on the contrary that J(R)A 
⊆M for such
an M . Then {0} 
= J(R)(A/M), hence J(R)(A/M) = A/M , because A/M is
simple and J(R)(A/M) ≤A A/M . Since A is finitely generated over R, so is
A/M . From Nakayama’s lemma (Exercise 1.4.1) we conclude that A/M = {0},
a contradiction.

Remark 4.1.8 Using the assumptions of Lemma 4.1.7, KA := K ⊗R A is a
finite dimensional K-algebra. Similarly as in (4.1) we have an embedding and
a projection

KA←↩ A −→ Â = A/ J(R)A, a �→ â := a+ J(R)A.

By our embedding pair-wise orthogonal (central) idempotents in A are also
pairwise orthogonal (central) idempotents in KA. Since KA has finite length
it follows that

A = Ae1 ⊕ · · · ⊕Aer with primitive idempotents ei ∈ A,
A = Aε1 ⊕ · · · ⊕Aεm with block idempotents εi ∈ Z(A).

Observe that the ei need not be primitive in KA and the εi need not be block
idempotents of KA. Applying A→ Â we get

Â = Âê1 ⊕ · · · ⊕ Âêr with ê2i = êi ∈ Â,
Â = Âε̂1 ⊕ · · · ⊕ Âε̂m with ε̂2i = ε̂i ∈ Z(Â),

and again in general the êi will not be primitive (and the ε̂i need not be block)
idempotents in Â. But we shall eventually impose further conditions on R in
order to achieve that one can find primitive mutually orthogonal idempotents
ei ∈ A (block idempotents εi ∈ Z(A)) such that the êi (ε̂i) are also primitive
(respectively block) idempotents in Â.

Furthermore, if M is an A-lattice, KM := K ⊗R M is a KA-module and
M̂ := M/(J(R)M) is an Â-module. Conversely, if V is a KA-module with
dimK V <∞ and representation δ : KA→ EndK V then by Theorem 4.1.4 there
is an A-lattice M with R-basis B = (v1, . . . , vn) and V = KM . If δ : KA →
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Kn×n is the matrix representation afforded by δ with respect to the basis B,
then δ(a) = [aij ] ∈ Rn×n for all a ∈ A and M̂ affords the matrix representation

δ̂ : Â→ Fn×n, â �→ [η(aij)]

with respect to the F -basis (v̂1, . . . , v̂n), where η : R → F is the natural map.
We call δ̂ and M̂ a p-modular reduction (with respect to η) of δ and V ,
respectively. Observe that these are not uniquely determined up to equiv-
alence or isomorphism, but depend on the choice of M . In Example 4.1.6
both the trivial two-dimensional representation and the representation given by
g �→

[
1 1
0 1

]
∈ F2×2

2 are 2-modular reductions of the regular representation of

〈g〉 ∼= C2 over Q. However, in Theorem 4.1.23 we will see that under suitable
conditions on R the composition factors of a p-modular reduction do not depend
on the choice of the R-form M up to isomorphism.

We will now show that for any prime p and any field K of characteristic
zero there is a valuation ring R with quotient field K, such that J(R) contains
p (and hence char(R/ J(R)) = p). For this we first need a simple lemma.

Lemma 4.1.9 Let I be a proper ideal in the subring R of a field K. Then for
every x ∈ K one has

I R[x] 
= R[x] or I R[x−1] 
= R[x−1].

Here R[x], R[x−1] denote the subrings of K generated by R and x or x−1, re-
spectively.

Proof. (See [94], p. 561.) Assume that I R[x] = R[x] and I R[x−1] = R[x−1].
Then we have ai, bj ∈ I with

1 =
n∑
i=0

ai x
i and 1 =

m∑
j=0

bj x
−j .

Since I 
= R we have m+n ≥ 2, and by symmetry we may assume that n ≥ m.
Also we may assume that we have chosen the ai, bj so that n is minimal. Multi-
plying the first equation by 1− b0 and the second one by an xn and subtracting
we get the following equation:

1 =
n−1∑
k=0

ck x
k with ck ∈ I,

which contradicts the minimality of n.

Theorem 4.1.10 If S is a subring of a field K and {0} 
= I � S then there is
a valuation ring R ⊇ S with quotient field K and J(R) ⊇ I. In particular, if I
is a maximal ideal in S then J(R) ∩ S = I.
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Proof. Let

M := {R′ | S ⊆ R′ ⊆ K, R′ ring, IR′ 
= R′}.

Clearly S ∈ M. If M′ ⊆ M is a chain (a totally ordered subset w.r.t ⊆) we
put R1 :=

⋃
{R′ | R′ ∈ M′}. It is easy to see that R1 ∈ M, hence by Zorn’s

lemma M has a maximal element, which we call R.
We apply Lemma 4.1.9 to I R�R ⊆ K and see that for any x ∈ K we have

I R[x] 
= R[x] or I R[x−1] 
= R[x−1]. Hence R[x] ∈ M or R[x−1] ∈ M. From
the maximality of R we conclude that R[x] = R or R[x−1] = R, that is x ∈ R or
x−1 ∈ R. Thus R is indeed a valuation ring (with quotient field K) containing
S, and the elements of I being non-units are in J(R).

Corollary 4.1.11 If K is a field of characteristic zero and p is a prime, then
there is a valuation ring R with quotient field K and char(R/ J(R)) = p.

Proof. Apply the theorem with S := Z and I := pZ. Since J(R) ⊇ pZ the
prime field Z/pZ can be embedded into R/ J(R).

Lemma 4.1.12 Let Q̄ be the algebraic closure of Q in C and let p be a prime.

(a) There is a valuation ring R in Q̄ with J(R) ∩ Z = pZ. Let

Up′ := {ζ ∈ C | ζm = 1 for some m with p � m}

be the multiplicative group of roots of unity of order coprime to p. Then Up′ ⊆ R,
and if θ : R → F is a ring homomorphism onto a field F , then F ∼= R/ J(R) is
an algebraic closure of the prime field Fp and

θ|Up′ : Up′ → F×

is an isomorphism of multiplicative groups.

(b) Let m ∈ N and let θ : Z[ζm] → F be a ring homomorphism into a field of
characteristic p. Then θ may be extended to a ring homomorphism θ′ : R→ F̄ ,
where R is a valuation ring in Q̄ and F̄ is an algebraic closure of im(θ). Also
θ induces a group isomorphism

θ|Up′,m
: Up′,m → {α ∈ F | αm = 1},

where Up′,m := {ζ ∈ Up′ | ζm = 1}.

Proof. (a) The first assertion follows from Theorem 4.1.10. By Lemma 4.1.3(b)
we have Up′ ⊂ R. If ζ ∈ Up′ , ζ 
= 1, has multiplicative order m, then

f = 1 +X + · · ·+Xm−1 =
Xm − 1
X − 1

=
m−1∏
i=1

(X − ζi) ∈ R[X].
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Hence 1− ζ divides m = f(1) in R. Therefore, if θ(ζ) = 1 then m ∈ J(R)∩Z =
pZ, which contradicts the definition of Up′ . Thus θ|Up′ is injective. On the other
hand, it is easily seen that every element of F is algebraic over Fp because every
element of R is algebraic over Z. Any element α 
= 0 algebraic over F is also
algebraic over Fp; hence it is in a finite field and is thus an mth root of unity
for some m ∈ N coprime to p. Thus α ∈ θ(Up′).

(b) Put R′ := Z[ζm]. Using Theorem 4.1.10 we choose a valuation ring R
in Q̄ such that R′ ⊂ R and R′ ∩ J(R) = ker(θ), which is certainly a maximal
ideal in R′. The homomorphism θ can be extended to θ′ : R′ + J(R) → F ,
mapping r+x with r ∈ R′ and x ∈ J(R) to θ(r). Let θnat : R→ R/ J(R) be the
natural homomorphism. Then θ′ = τ ◦ θnat|R′+J(R) with a field isomorphism
τ : (R′ + J(R))/ J(R) → θ(R′). Clearly τ can be extended to an isomorphism
τ̄ : R/ J(R) → F̄ (see [110], theorem V.2.8, p. 233). Then θ′ := τ̄ ◦ θnat is the
desired extension of θ. By part (a) we know that θ|Up′,m

= θ′|Up′,m
is injective,

and hence an isomorphism.

We remark in passing that if K ⊆ L is a field extension and R is a valuation
ring with quotient field L, then obviously R∩K is a valuation ring with quotient
field K and maximal ideal J(R) ∩K.

The proofs of Theorem 4.1.10 and Corollary 4.1.11 were non-constructive.
This can be remedied if one restricts oneself to algebraic number fields, as we will
frequently do. In this case valuation rings are always principal ideal domains.

Definition 4.1.13 A valuation ring which is also a principal ideal domain is
called a discrete valuation ring.

Lemma 4.1.14 If R is a discrete valuation ring with quotient field K and max-
imal ideal πR, then any element α ∈ K× has a unique representation in the
form

α = πnu with n ∈ Z , u ∈ R×.

We define ν = νπ : K× → Z, πnu �→ n with n ∈ Z, u ∈ R×, and call it the
valuation corresponding to R.

Proof. Since R is a principal ideal domain it is factorial ([110], theorem II.5.2,
p. 112) and π is the only prime element up to equivalence. This implies the
result using Definition 4.1.2.

We state without proofs a few basic facts about discrete valuation rings and
their completions, which can be found in many textbooks on algebra.

Lemma 4.1.15 Any valuation ring in an algebraic number field is discrete.

Proof. Since the valuation rings Z(p) in Q are obviously discrete, the result
follows from [32], prop. 8.5.3, p. 297.
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Under the assumptions of Lemma 4.1.14 νπ obviously induces an order iso-
morphism from the ordered abelian group W := K×/R× = {πnR× | n ∈ Z}
introduced in Lemma 4.1.3(c) to (Z,≤). The “discrete valuation” νπ can easily
be used to define a norm on K in the topological sense by choosing c ∈ R with
0 < c < 1 and putting

|α|π :=
{

0 for α = 0,
cνπ(α) for α ∈ K×.

This turns K also into a metric space, and it makes sense to talk about conver-
gence and Cauchy sequences in K. But we can define these notions directly and
in somewhat greater generality, without referring to metric spaces as follows.

Definition 4.1.16 Let R be a ring and V be an R-module.

(a) We call F = (Vn)n∈Z a filtration of V if

Vn+1 ≤R Vn for all n ∈ Z,
⋂
n∈Z

Vn = {0} and
⋃
n∈Z

Vn = V.

For v ∈ V we put

νF (v) =
{

n if v ∈ Vn \ Vn+1,
∞ if v = 0.

(b) A sequence (vn)n∈N is called an F-Cauchy sequence or is said to be F-
convergent with limit v ∈ V (in symbols v = limn→∞ vn) if

lim
n→∞ νF (vn−vn−1) = ∞ or lim

n→∞ νF (vn−v) = ∞ in R, respectively.

(c) V is called F-complete if every F-Cauchy sequence in V is F-convergent.

(d) If R is a discrete valuation ring with quotient field K and maximal ideal
πR we have a filtration F := (πnR)n∈Z of K; R is called a complete discrete
valuation ring if K is F-complete.

Obviously in (d) we have νF (α) = νπ(α) for α ∈ K×.

Theorem 4.1.17 If R is a discrete valuation ring with quotient field K and
maximal ideal πR, there is a field extension K̃ ⊇ K and a complete discrete
valuation ring R̃ ⊇ R with quotient field K̃ and maximal ideal πR̃ such that
R̃/πR̃ ∼= R/πR, and every element of K̃ is a ν̃π-limit of a Cauchy sequence in
K (“K is dense in K̃”); R̃ is usually called the completion of R.

Proof. The proof is similar to the usual construction of real numbers as the
“completion” of the rational numbers. See, for instance, [32], p. 272.

Definition 4.1.18 If p is a prime, (K, R, F, η) is called a p-modular system
if R is a complete discrete valuation ring with quotient field K of characteristic
zero and η : R → F is a ring epimorphism onto a field F of characteristic p.
A generator for ker η�R will always be denoted by π. It is called a p-modular
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splitting system for a finite group G if K contains a splitting field of Xm−1 ∈
Q[X], where m is the exponent of G. If F = R/πR and η : R → R/πR is the
canonical projection, we write (K, R, F ) instead of (K, R, F, η).

In the literature it is common practice to consider only p-modular systems
(K, R, F ), but for practical purposes it is useful to have a homomorphism η
mapping R onto a concrete field F , in which it is easier to compute. Observe
that F can be considered as an R-module (Infη F ) and Â ∼= F ⊗R A.

Remark 4.1.19 (a) If (K, R, F, η) is a p-modular splitting system for G then
by Theorem 3.10.8 and Theorem 2.9.18 K and F are splitting fields for G.

(b) If G is a finite group with exponent m, we obtain a p-modular splitting
system for G in the following way. Choose a ring homomorphism θ : Z[ζm] → F
onto a field F of characteristic p (see Lemma 4.1.12 or Exercise 4.1.2). By
Theorem 4.1.10 and Lemma 4.1.15 there is a discrete valuation ring R1 ⊃ Z[ζm]
in Qm := Q(ζm) with maximal ideal πR1 satisfying πR1 ∩ Z[ζm] = ker(θ).
We take the completion R := R̃1 with quotient field K and maximal ideal πR.
Similarly as in the proof of Lemma 4.1.12(b) one can extend θ first to a ring
epimorphism θ′ : R1 → F1 ⊇ F , where F1 ∼= R1/πR1 ∼= R/πR is a finite field
extension of F and then to η : R→ F1.

The completeness of R in a p-modular system (K, R, F, η) was not so im-
portant for the discussion in the preceding remark, but it is essential for the
proof of Theorem 4.1.21. For this we also need the following simple observation.

Lemma 4.1.20 If R is a complete discrete valuation ring with maximal ideal
πR and V is a finitely generated R-module, then putting Vn := πnV for n ≥ 0
and Vn := {0} for n < 0 we get a filtration F := (Vn)n∈Z and V is F-complete.

Proof. This follows directly from the classification of the finitely generated
modules over a principal ideal domain ([110], theorem III.7.3, p. 147, theo-
rem III.7.5, p. 149).

Theorem 4.1.21 Let (K, R, F, η) be a p-modular system and let A be an R-
order and Â := A/πA as above.

(a) If x̂ is an idempotent in the F -algebra Â, then there is an idempotent e ∈ A
with x̂ = ê. “Idempotents in Â can be lifted to A.”

(b) A× = {a ∈ A | â ∈ Â×}. The ring A is local if and only if Â is local.

(c) If e1 and e2 are idempotents in A with ê1 = ê2 then there is a unit u ∈ A×

with e2 = u−1e1u.

(d) ·̂ induces a bijection between the central idempotents of A and those of Â.

(e) If an A-lattice V is indecomposable then EndA V is a local ring.
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Proof. (a) We put x0 := x and define xn ∈ A for n > 0 recursively by
xn+1 := 3x2

n − 2x3
n. We show that yn := x2

n − xn ∈ π2n

A for all n. By
assumption this holds for n = 0, and we assume inductively that it holds also
for some n ≥ 0. Then

x2
n+1 − xn+1 = 9x4

n − 12x5
n + 4x6

n − 3x2
n + 2x3

n = 4 y3
n − 3 y2

n ∈ π2n+1
A.

We also obtain xn+1− xn = yn (1− 2xn) ∈ π2n

A, which means that (xn)n∈N is
a Cauchy sequence in A. Since A is a finitely generated R-module, we deduce
from Lemma 4.1.20 that there is e ∈ A with e = limn→∞ xn. We also get
e2 − e = limn→∞(x2

n − xn) = 0 by the above. Finally, since xn − x0 ∈ πA for
all n we also have e− x0 ∈ πA and thus x̂ = ê.

(b) Let u ∈ A and let û ∈ Â× with inverse û′. Then y := 1 − uu′ ∈ πA.
Hence the series

∑∞
n=0 y

n is convergent in A and

uu′
∞∑
n=0

yn = (1− y)
∞∑
n=0

yn = 1,

therefore u has a right inverse. Similarly u has a left inverse and so u ∈ A×. If
Â is local, then A \ A× is the preimage of the ideal Â \ Â× under the natural
map ·̂, hence an ideal. So A is local. The converse is clear.

(c) Put u := 1 − e1 − e2 + 2e1e2. Then û = 1 and by part (b) we have
u ∈ A×. Also e1u = e1e2 = ue2, hence the result.

(d) If e is a central idempotent in A, then obviously ê is a central idempotent
in Â. If e1 and e2 are central idempotents in A with ê1 = ê2, we see from (c)
that e1 = e2. Now assume that ê is a central idempotent in Â. By (a) we may
assume that e2 = e ∈ A. To show that e ∈ Z(A) we consider

A = eAe⊕ (1− e)Ae⊕ eA(1− e)⊕ (1− e)A(1− e).

Under the natural map ·̂, the second and third summand are mapped to {0}
because ê ∈ Z(Â). Hence (1 − e)Ae = π(1 − e)Ae = J(R)(1 − e)Ae, and
from Nakayama’s lemma (Exercise 1.4.1) we get (1− e)Ae = {0} and similarly
eA(1 − e) = {0}. Hence any element x ∈ A can be written in the form x =
eae+ (1− e)b(1− e), with a, b ∈ A, and thus it commutes with e.

(e) If V is indecomposable, E := EndA V contains only the trivial idempo-
tent; E is an R-order since it is a subalgebra of the R-order EndR V . By (a) the
F -algebra Ê := E/πE has no non-trivial idempotent either. From Exercise 4.1.1
we see that the semisimple F -algebra Ê/J(Ê) has no non-trivial idempotent.
Thus Ê/J(Ê) is a division ring (see Theorem 1.5.5). Then Ê is local and by (b)
E is also.

It follows from the Krull–Schmidt theorem (Theorem 1.6.6) that the inde-
composable direct summands of an A-lattice are uniquely determined up to
isomorphism.
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Corollary 4.1.22 (a) Let (K, R, F, η) be a p-modular system and let A be an
R-order. If ε1, . . . , εm are block idempotents of A, then

Â = Âε̂1 ⊕ · · · ⊕ Âε̂m
is the block decomposition of Â. For any indecomposable Â-module Y there is
exactly one block idempotent ε̂i such that Y = ε̂iY . Likewise, for any simple
KA-module V there is exactly one block idempotent εi such that V = εiV . In
this case Y and V are said to belong to the block Bi := Aεi.

If Bi(KA) is a set of representatives of the isomorphism classes of simple
KA-modules V belonging to Bi, and if ε(V ) is the block idempotent of KA with
ε(V )V = V , then

εi =
∑

V ∈Bi(KA)

ε(V ).

(b) If W is a projective Â-module, then there is a (projective) A-lattice M with
W ∼=Â M/πM . The KA-module KM is sometimes called p-projective.

Proof. (a) This follows from part (d) of Theorem 4.1.21, see also Corol-
lary 1.7.3. Observe that we embed A into KA and that the block idempotents
εi of A are central idempotents of KA but not necessarily centrally primitive in
KA.

(b) Any projective Â-module is of the form (see Remark 1.6.22)

W = Âê1 ⊕ · · · ⊕ Âên
with idempotents êi in Â. By part (a) of Theorem 4.1.21 we may assume that
the ei are idempotents in A for 1 ≤ i ≤ n. Putting M := Ae1 ⊕ · · · ⊕ Aen we
get W ∼=Â M/πM .

Theorem 4.1.23 (R. Brauer) Let A be an R-order and let (K, R, F, η) be
a p-modular splitting system for A. Assume that V1, . . . , Vk are representatives
of the simple KA-modules and that Y1, . . . , Yl are representatives of the simple
Â-modules.

(a) If Y is a simple Â-module, V a KA-module and M any R-form of V then
the number of composition factors of M̂ which are isomorphic to Y does not
depend on the choice of M but only on V and hence may be denoted by dV,Y .
The matrix

D := [dij ] ∈ Nk×l
0 with dij := dVi,Yj (1 ≤ i ≤ k , 1 ≤ j ≤ l)

is called the p-decomposition matrix and its entries are called the
p-decomposition numbers of A.

(b) (Brauer reciprocity) If Âêj is a projective cover of Yj (1 ≤ j ≤ l) with
e2j = ej ∈ A and P (Vi) a projective cover of Vi (1 ≤ i ≤ k) then

KAej ∼=
k⊕
i=1

dijP (Vi). (4.4)



300 Modular representations

(c) If C = [cij ] ∈ Nl×l0 is the Cartan matrix of the F -algebra Â and C ′ = [c′ij ]
is the Cartan matrix of KA then

C = DTC ′D. (4.5)

Of course, if KA is semisimple are given by as it will be in our applications,
then (4.4) and (4.5)

KAej ∼=
k⊕
i=1

dijVi and C = DTD. (4.6)

Proof. (a) Let P (Y ) be a projective cover of Y . By Theorem 4.1.21(a) we
may assume that P (Y ) = êÂ with an idempotent e ∈ A. Let

N0 := M̂ > N1 > . . . > Nr := {0}

be a composition series. Since P (Y ) is projective, the sequence

{0} → HomÂ(P (Y ), Nj) → HomÂ(P (Y ), Nj−1)
→ HomÂ(P (Y ), Nj−1/Nj) → {0}

is exact for j = 1, . . . , r. Since F is a splitting field for Â we get

HomÂ(P (Y ), Nj−1/Nj) ∼=
{

F if Nj−1/Nj ∼= Y,
{0} else (see (1.18) on p. 76).

Hence

dimF HomÂ(P (Y ), M̂) =
r∑
j=1

dimF HomÂ(P (Y ), Nj−1/Nj) = d(M,Y ),

the number of composition factors of M̂ isomorphic to Y . But by Theorem 1.6.8

HomÂ(P (Y ), M̂) ∼=F êM̂ ∼= eM/πeM (i = 1, 2).

Since R is a principal ideal domain, eM is a free R-module, and we see that

d(M,Y ) = dimF (êM̂) = rk(eM) = dimK eV

is independent of the choice of M .
(b) Let KAej ∼=

⊕k
i=1 d

′
ij P (Vi) and let Mi be an R-form of Vi. Then

d′
ij = dimK HomKA(KAej , Vi) = dimK ejVi = rkR ejMi = dimF êjM̂i

= dimF HomÂ(Âêj , M̂i) =
l∑

m=1

di,m dimF HomÂ(Âêj , Ym) = dij .

(c) follows from (a) and (b). Namely, by part (a) of the proof,

cij = dimF HomÂ(Âêj , Âêi) = dimF êjÂêi

= dimK ejKAei = dimK HomKA(KAej ,KAei) =
k∑
l=1

k∑
l′=1

dl,jdl′,ic
′
l′,l.
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Corollary 4.1.24 If in Theorem 4.1.23 A and Â are semisimple, then the sim-
ple modules may be labeled so that the decomposition matrix is the identity ma-
trix.

Proof. By our assumption the simple module Yj coincides with its projective
cover Âêj . Thus

dimF (Yj) = dimK(KAej) =
k∑
i=1

dij dimK(Vi) ≥
k∑
i=1

d2
ij dimF (Yj).

Exercises

Exercise 4.1.1 Let A be a finite dimensional F -algebra and let I�A be nilpo-
tent. Show that for every idempotent ε ∈ A/I there is an e = e2 ∈ A with
ε = e+ I.
Hint: Mimic the proof of Theorem 4.1.21(a) and use induction on dimF I.

Exercise 4.1.2 Construct explicitly a ring homomorphism from Z[ζm] onto a
field of characteristic p > 0.

Exercise 4.1.3 Let (K,R, F, η) be a p-modular system. Show that Z(RG) is
an R-order in Z(KG). Extend η to a ring homomorphism η : Z(RG) → Z(FG)
in the natural way and show that η is an epimorphism with kernel πZ(RG).

Exercise 4.1.4 Let (K,R, F, η) be a p-modular system, let Ω1,Ω2 be G-sets,
and let RΩi, KΩi and FΩi for i = 1, 2 be the corresponding permutation
modules over R,K,F .

(a) Show that HomFG(FΩ1, FΩ2) ∼= HomRG(RΩ1, RΩ2)/πHomRG(RΩ1, RΩ2),
i.e. any FG-homomorphism from FΩ1 to FΩ2 can be lifted to an RG-homo-
morphism from RΩ1 to RΩ2.

(b) For Ω := Ω1 = Ω2 show that HomRG(RΩ) is an R-order in EndKG(KΩ).
Moreover show that EndFG(FΩ) ∼= EndRG(RΩ)/πEndRG(RΩ) as F -algebras.

4.2 Brauer characters

Throughout this section G is a finite group and p is a prime. If K is a field
of characteristic zero, then KG-modules are isomorphic if and only if their
characters are equal (Corollary 2.1.16); also, the character of a KG-module
provides complete information about its composition factors, including multi-
plicities, provided that the irreducible characters are known. All this does not
hold for fields F of characteristic p > 0, regardless of whether or not p divides
the group order |G|. For instance, if W is a vector space over F on which G
acts trivially and if dimF W = kp+ 1 for some k ∈ N, then the character χW of
W is the trivial character 1G over F . Obviously a character can only give infor-
mation about multiplicities of composition factors of a module modulo p. Also,
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if p divides |G| there are non-conjugate elements g, g′ ∈ G with χ(g) = χ(g′) for
all characters χ ∈ IrrK(G). We need a definition.

Definition 4.2.1 An element g ∈ G is called p-regular for a prime p if its order
m is coprime to p and p-singular if it is not p-regular. If m := |〈g〉| = pkq with
p � q and 1 = a pk + b q with a, b ∈ Z we call

gp′ := ga p
k

and gp := gb q (so g = gp′gp = gpgp′)

the p-regular part and the p-part of g, respectively. Let Gp′ be the set of
p-regular elements of G. A conjugacy class is called p-regular or p-singular if its
elements are p-regular or p-singular, respectively. The set of p-regular conjugacy
classes will be denoted by cl(Gp′).

Observe that in the definition a, b are uniquely determined modulo pkq and so
the p-regular part and the p-part are well defined.

Lemma 4.2.2 If F is a field of characteristic p > 0 then

χ(g) = χ(gp′) for all χ ∈ CharF (G).

Proof. We may assume that G = 〈g〉 and that F is algebraically closed.
Let δ be a representation with character χ. Then δ(g) = δ(gp′)δ(gp). By
Example 1.1.23 we may choose a basis such that the matrices of δ(gp′) δ(gp)
are triangular matrices and the one for δ(gp) is unipotent, and thus has only 1’s
on the diagonal. So the diagonal elements of δ(g) and δ(gp′) coincide.

From Lemma 4.1.12 we recall that for a prime p and a number m ∈ N we
define

Up′ = 〈{ ζk | p � k }〉 and Up′,m := {ζ ∈ Up′ | ζm = 1}.

Definition 4.2.3 Let G be a finite group of exponent m = prq with p � q and
let F be a field of characteristic p > 0 with algebraic closure F̄ . Assume that
W is an FG-module with dimF W = n and representation δ : G→ GL(W ). Let
θ : Z[ζm] → F̄ be a ring homomorphism. For g ∈ Gp′ the eigenvalues of δ(g)
are mth roots of unity in F̄ and thus, by Lemma 4.1.12, are of the form

θ(ζ1(g)), . . . , θ(ζn(g)) with uniquely determined ζi(g) ∈ Up′,m.

We then define
ϕW (g) := ζ1(g) + · · ·+ ζn(g)

and call
ϕW : Gp′ → C g �→ ζ1(g) + · · ·+ ζn(g)

the Brauer character of G afforded by W or δ with respect to θ. If W is
simple then ϕW is called irreducible. The set of irreducible Brauer characters
of G with respect to θ over a splitting field of characteristic p will be denoted
by IBrθ(G). If (K, R, F, η) is a p-modular splitting system for G we put θ :=
η|Z[ζm] and write IBrη(G) (or simply IBr(G) if η is known) for IBrθ(G).
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Obviously this definition of a Brauer character depends on θ. In order to
avoid this ambiguity – which is particularly important if one is dealing with
Brauer characters of different groups at the same time – we will often make a
definite choice for an algebraic closure Fp of Fp and a ring homomorphism

θm : Z[ζm] → Fp.

In fact, θm will be the restriction to Z[ζm] of a surjective ring homomorphism
θ : R → Fp, where R is a valuation ring in Q̄.

We first deal with the question of how to define Fp and how to compute in
this field. Of course, a finite field Fpn may be realized as Fp[X]/(fn) for any
irreducible polynomial fn ∈ Fp[X] of degree n. We will make suitable choices
for these fn.

Definition 4.2.4 (a) A polynomial fn ∈ Fp[X] of degree n is called primitive
if it is the minimal polynomial of a primitive element αn of Fpn , that is of a
generator of the multiplicative group F×

pn .
(b) Let n ∈ N or n = ∞. A sequence (fm)nm=1 of primitive polynomials fm ∈
Fp[X] of degree m is called compatible if (X + (fm))(p

m−1)/(pd−1) is a root of
fd whenever d | m.

If fn ∈ Fp[X] is primitive of degree n, then

Fp[X]/(fn) = {Xi + (fn) | i = 1, . . . , pn − 1 } ∪ {0}.

If (fm)∞
m=1 is a compatible sequence of polynomials in Fp[X] and d | m we have

an embedding

ϕd,m : Fp[X]/(fd) → Fp[X]/(fm) with X + (fd) �→ X(pm−1)/(pd−1) + (fm).

Obviously we have

d | m and m | n =⇒ ϕm,n ◦ ϕd,m = ϕd,n. (4.7)

Using these embeddings (thus identifying x with ϕd,m(x) for x ∈ Fp[X]/(fd)
and d | m) we may form

Fp :=
⋃
m∈N

Fp[X]/(fm),

and we see that this is an algebraic closure of Fp[X]/(f1) ∼= Fp.
More formally, Fp is a direct limit:

Fp := lim→ ( Fp[X]/(fm), ϕd,m) := (
⊔
m∈N

Fp[X]/(fm)) / ∼, (4.8)

where
⊔

stands for the disjoint union (coproduct) and the equivalence relation
∼ is defined as follows. If x ∈ Fp[X]/(fm) and y ∈ Fp[X]/(fn) then

x ∼ y if and only if ϕm,r(x) = ϕn,r(y)

for some r ∈ N with m | r and n | r.
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Remark 4.2.5 If (fm)∞
m=1 is a compatible sequence of polynomials in Fp[X]

and Fp is as in (4.8), then we have a group isomorphism

η : F×
p → Up′ , [Xj + (fm)]∼ �→ ζjpm−1 (1 ≤ j ≤ pm − 1).

It readily follows from Lemma 4.1.12 that infinite compatible sequences of poly-
nomials do exist. In fact, if θ is as in that lemma and fm ∈ Fp[X] is the minimal
polynomial of θ(ζpm−1), it is easily seen that (fm)∞

m=1 is a compatible sequence.
In order to define such a unique sequence for each prime p, we introduce a total
ordering on the set of monic polynomials in Fp[X].

Definition 4.2.6 (a) On Fp we use the ordering 0 < 1 < · · · < p− 1. For

f =
n∑
i=0

(−1)n−iaiXi and g =
n∑
i=0

(−1)n−ibiXi, with ai, bi ∈ Fp,

and an = bn = 1, we define f ≺ g if and only if there is a j > 0 such that ai = bi
for j ≤ i ≤ n and aj < bj .

(b) The Conway polynomial fp,n ∈ Fp[X] is defined inductively as the small-
est polynomial (with respect to the above ordering ≺) satisfying the following:

(i) fp,n is primitive of degree n and
(ii) if d divides n then (X + (fp,n))(p

n−1)/(pd−1) is a root of fp,d.

Theorem 4.2.7 For each prime p and each n ∈ N there is a unique Conway
polynomial fp,n ∈ Fp[X] of degree n.

Proof. (a) Let F̄p be an algebraic closure of Fp. We first show the following.

Claim: If (fm)n−1
m=1 is a compatible sequence in Fp[X] and roots αm ∈ F̄p of fm

have been chosen for 1 ≤ m ≤ n− 1 such that

α(pm−1)/(pd−1)
m = αd whenever d | m, (4.9)

then we can find αn ∈ F̄p with minimal polynomial fn ∈ Fp[X] of degree n such

that α(pn−1)/(pd−1)
n = αd whenever d | n and (fm)nm=1 is a compatible sequence.

If n = 1 we may choose any primitive element α1 ∈ Fp and f1 := X − α1.
Now let 1 < n and αm ∈ F̄p with minimal polynomial fm ∈ Fp[X] satisfy (4.9)
for 1 ≤ m ≤ n − 1. Let n1, . . . , ns be maximal among the proper divisors of n
and let

ni,j := g.c.d.(ni, nj) for 1 ≤ i < j ≤ s.

We choose any primitive element β in the unique subfield Fpn of order pn in F̄p.

Then βi := β
pn−1
pni −1 is a primitive element of Fp(βi) = Fpni . Since αni is also a

primitive element in Fpni , there is a ki coprime to pni − 1 with βki
i = αni for
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i = 1, . . . , s. Then g.c.d.(pni − 1, pnj − 1) = pni,j − 1 and βi,j := β
pn−1

p
ni,j −1 is a

primitive element in Fpni,j . Furthermore by our assumption (4.9)

γi,j := α
pni −1

p
ni,j −1
ni = α

p
nj −1

p
ni,j −1
nj for 1 ≤ i < j ≤ s.

Hence

γi,j = (βki
i )

pni −1
p

ni,j −1 = (β
pn−1
pni −1

ki)
pni −1

p
ni,j −1 = β

pn−1
p

ni,j −1
ki = βki

i,j

= (βkj

j )
p

nj −1
p

ni,j −1 = (β
pn−1

p
nj −1

kj )
p

nj −1
p

ni,j −1 = β
pn−1

p
ni,j −1

kj = β
kj

i,j .

Consequently, pni,j − 1 | ki − kj for 1 ≤ i < j ≤ s. Let u be the product of
all prime divisors of pn − 1 which are coprime to

∏s
i=1(pni − 1). Using a slight

extension of the Chinese remainder theorem (see [112], theorem 3.16, p. 62) we
conclude that there is a k ∈ N with

k ≡ 1 mod u and k ≡ ki mod (pni − 1) (1 ≤ i ≤ s).

It follows that k is coprime to all pni−1 and to u. Hence αn := βk is a primitive
element of Fpn and

α
pn−1
pni −1
n = βki = βki

i = αni
for 1 ≤ i ≤ s.

Choosing fn ∈ Fp[X] as the minimal polynomial of αn, and using the isomor-
phism

ψn : Fp(αn) → Fp[X]/(fn) , αn �→ X + (fn),

we see that if d divides ni for some i ∈ {1, . . . , s} we have

0 = ψn(fd(αd)) = ψn(fd(α(pn−1)/(pd−1)
n )) = fd(X(pn−1)/(pd−1) + (fn)).

Hence (fm)nm=1 is compatible.
(b) It follows from part (a) that any compatible sequence (fm)n−1

m=1 of poly-
nomials can be extended to a compatible sequence (fm)nm=1. From this the
assertion of the theorem follows by induction:

If α1 is the smallest primitive element in Fp, then fp,1 := X − α1 is the unique
Conway polynomial of degree one.

Now assume that for m ≤ n − 1 we have a unique Conway polynomial fm =
fp,m ∈ Fp[X] of degree m; then fp,n is the smallest fn such that (fm)nm=1 is
compatible.

For methods that compute Conway polynomials, and for a data base con-
taining Conway polynomials for a large number of finite fields, see [113] (see
also [77], and [98]). At present some of the Conway polynomials of the largest
degrees in this data base are f2,409, f3,263, f5,251 and those which took the most
amount of CPU time (years!) are f53,15, computed by R.A. Parker, and f2,92,
computed by K. Minola and D. Berechung.
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Example 4.2.8 Here is a list of some Conway polynomials over small fields:

f2,1 = X + 1, f2,2 = X2 +X + 1, f2,3 = X3 +X + 1,
f2,4 = X4 +X + 1, f2,5 = X5 +X2 + 1, f2,6 = X6 +X4 +X3 +X + 1,
f2,7 = X7 +X + 1,
f3,1 = X + 1, f3,2 = X2 + 2X + 2, f3,3 = X3 + 2X + 1,
f3,4 = X4 + 2X3 + 2, f3,5 = X5 + 2X + 1, f3,6 = X6 + 2X4 +X2 + 2X + 2,
f5,1 = X + 3, f5,2 = X2 + 4X + 2, f5,3 = X3 + 3X + 3.

�

Remark 4.2.9 In the following we will identify

Fp =
⋃
n∈N

Fp[X]/(fp,n) = lim→ Fp[X]/(fp,n).

Obviously we have a ring homomorphism

Z[ζpn−1] → Fp[X]/(fp,n) with ζpn−1 �→ X + (fp,n).

This can be extended to a ring homomorphism

θ : Z[Up′ ] =
⋃
n∈N

Z[ζpn−1] → Fp.

By Lemma 4.1.3, Z[Up′ ] is contained in any valuation ring in Q̄, and we may
choose one R with maximal ideal P containing ker(θ). Then R = ker(θ) + P,
and we may extend the above θ to a ring epimorphism (again denoted by θ):

θ : R → Fp. (4.10)

In particular we have θ(ζpn−1) = X + (fp,n). We put θm := θ|Z[ζm].

Definition 4.2.10 Let G be a finite group of exponent m. Then (K, R, F, η)
is called a standard p-modular system for G if R with quotient field K is the
completion of a valuation ring R1 in Qm = Q(ζm) and η : R→ F is a surjective
homomorphism with η|Z[ζm] = θm. In particular, F ⊆ Fp. We put

IBrp(G) := IBrθm
(G).

Remark 4.2.11 With this definition, IBrp(G) is uniquely defined by G and
the prime p. All the irreducible Brauer characters of finite simple groups G
(or their covers or automorphism groups) published in [98] or [82] are in the so
defined IBrp(G). The uniqueness of IBrp(G) is particularly useful when one is
considering Brauer characters of a group and a subgroup at the same time, for
instance if one wants to use induction and restriction.

Assumption For the rest of this section let (K, R, F, η) be a p-modular
splitting system for our finite group G and let Brauer characters of G be defined
via η.
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Example 4.2.12 Let G = 〈g〉 be a cyclic group of order eight. It is easily
checked that we have a matrix representation δ : G→ GL5(F3), gi �→ ai with

a :=


1 . 1 2 2
2 1 1 2 2
1 . 2 1 .
1 1 1 1 .
2 1 1 . 2

 ∈ F5×5
3 .

The characteristic polynomial of a is

ga := (X + 1)(X2 +X − 1)(X2 + 1) ∈ F3[X].

Using the Conway polynomial f3,2 = X2 + 2X + 2 ∈ F3[X] and abbreviating
α := X + (f3,2) ∈ F := F3[X]/(f3,2), we see that

ga = (X + 1)(X + α)(X + α3)(X + α2)(X + α6) ∈ F [X].

We abbreviate ζ := ζ8 and see that, with the notation of Remark 4.2.9,

θ8 : Z[ζ] → F3, ζ �→ α.

Thus we obtain for the Brauer character ϕ := ϕδ of δ

ϕ(g) = −1− ζ − ζ3 − ζ2 − ζ6 = −1− ζ − ζ3 = −1−
√

2 i ∈ C.

The GAPcommand BrauerCharacterValue( a ) gives exactly this result.
On the other hand, we also have a ring homomorphism

θ : Z[ζ] → F3, ζ �→ −α,

and for the the Brauer character ϕ′ of δ with respect to θ we have

ϕ′(g) = −1 + ζ + ζ3 − ζ2 − ζ6 = −1 + ζ + ζ3 = −1 +
√

2 i ∈ C.

�

We note the following basic properties of Brauer characters.

Lemma 4.2.13 Let F be a field of characteristic p > 0 and let ϕ be a Brauer
character of G afforded by the FG-module W . Then we have the following.

(a) ϕ is a class function on Gp′ , in short ϕ ∈ cf(Gp′ ,C).

(b) For g ∈ Gp′ one has ϕ(g−1) = ϕ(g), the complex conjugate of ϕ(g).

(c) ϕ : Gp′ → C defined by ϕ(g) = ϕ(g) for g ∈ Gp′ is the Brauer character
afforded by W ∗.

(d) If V ≤FG W then
ϕW = ϕV + ϕW/V .
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(e) If two FG-modules have isomorphic composition factors (counting multi-
plicities) then they have the same Brauer characters.

(f) Let (K, R, F, η) be a p-modular system for G and let V be a KG-module
with character χ = χV . If M is an R-form and M̂ is a p-modular reduction of
V , then the Brauer character of M̂ (with respect to η) is

ϕM̂ = χ|Gp′ .

Proof. Parts (a) to (e) follow easily from the definitions. We consider part
(f). Let δ : G→ GLn(K) be a matrix representation afforded by V . By Corol-
lary 4.1.5 we may assume that δ(g) = [ aij(g) ] ∈ GLn(R) for all g ∈ G. Then
M̂ affords the matrix representation

δ̂(g) : G→ GLn(F ), g �→ [ η(aij(g)) ].

Now let g ∈ Gp′ . Then by assumption the eigenvalues ζ1, . . . , ζn of δ(g) are in
Up′,m. Since η maps the characteristic polynomial of δ(g) to the characteristic
polynomial of δ̂(g), it follows that the eigenvalues of δ̂(g) are η(ζ1), . . . , η(ζn).
Thus by definition ϕM̂ (g) = ζ1 + · · ·+ ζn = χ(g).

Theorem 4.2.14 (a) IBr(G) is linearly independent over C.

(b) Two FG-modules have the same Brauer characters if and only if they have
isomorphic composition factors (including multiplicities).

(c) For χ ∈ Irr(G) and ϕ ∈ IBr(G) let Vχ be a simple KG-module affording
χ and let Yϕ be a simple FG-module affording ϕ. Let dχϕ := dV Y be the
corresponding decomposition number (see Theorem 4.1.23). Then

χ|Gp′ =
∑

ϕ∈IBr(G)

dχϕ ϕ.

Proof. (a) Since the Brauer characters have their values in the cyclotomic
field Qm, with m being the exponent of G, it is sufficient to prove that IBr(G)
is linearly independent over Qm. Suppose that∑

ϕ∈IBr(G)

aϕϕ = 0 for aϕ ∈ Qm (4.11)

with some aϕ 
= 0. Since R′ := R ∩ Q(ζm) is a discrete valuation ring in Qm

with maximal ideal, say π′R′, multiplying (4.11) by a suitable power of π′, if
need be, we may assume that all aϕ are in R′ and not all are divisible by π′.
Applying η we obtain a non-trivial linear relation∑

ϕ∈IBr(G)

η(aϕ)(η ◦ ϕ)(g) = 0 for all g ∈ Gp′
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with not all η(aϕ) ∈ F being zero. If ϕ ∈ IBr(G) is the Brauer character of the
representation δϕ and χϕ : G→ F is the character of δϕ, then χϕ(g) = (η◦ϕ)(g)
for g ∈ Gp′ . By Lemma 4.2.2 we have∑

ϕ∈IBr(G)

η(aϕ)χϕ(g) = 0 for all g ∈ G,

which contradicts Lemma 2.1.5.
(b) follows from (a) and Lemma 4.2.13(d) and (e).
(c) is an immediate consequence of Lemma 4.2.13(f) and (d).

Corollary 4.2.15 (a) If p � |G| then Irr(G) = IBr(G).

(b) If H ≤ G and p � |H| and ϕ is a Brauer character of G then ϕ|H is an
ordinary character of H.

Proof. (a) follows from Corollary 4.1.24, because, by Maschke’s theorem
(Theorem 1.5.6), FG is semisimple. (b) follows from (a).

In practice the irreducible Brauer characters of G will be given by a ma-
trix [ϕi(gj)]1≤i≤l, 1≤j≤s, where IBr(G) = {ϕ1, . . . , ϕl} and g1, . . . , gs are rep-
resentatives of the p-regular conjugacy classes of G. This matrix is called the
(p-)Brauer character table of G. It is easy to see that this is a square matrix.

Theorem 4.2.16 (a) The number l(G) := | IBr(G)| of irreducible Brauer char-
acters of G equals the number of p-regular conjugacy classes of G.

(b) There are rational integers aϕψ such that

ϕ =
∑

χ∈Irr(B)

aϕψ χ|Gp′ for ϕ ∈ IBr(G).

(c) The decomposition matrix D = [dχϕ]χ∈Irr(G),ψ∈IBr(G) has rank l(G). There
are unimodular matrices U1 ∈ Zk×k , U2 ∈ Zl×l such that

U1DU2 =
[

Il
0

]
∈ Nk×l

0 .

Proof. (a) Let g1, . . . , gs be representatives of the p-regular conjugacy classes
of G. Assume Irr(G) = {χ1, . . . , χk}, IBr(G) = {ϕ1, . . . , ϕl} and let

Φ := [ϕi(gj)]1≤i≤l, 1≤j≤s and X := [χi(gj)]1≤i≤k, 1≤j≤s. (4.12)

Then X = DΦ. Since the character table is invertible (see e.g. Exercise 2.1.6)
we have rkX = s ≤ rk Φ = l ≤ s, because by Theorem 4.2.14 the l rows of Φ
are linearly independent. Thus l(G) = l = s.

(b) We extend each ϕ ∈ IBr(G) to a class function ϕ̆ : G→ C by

ϕ̆(g) := ϕ(gp′) for g ∈ G. (4.13)
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We show that ϕ̆ is a generalized character. To this end we take an arbitrary
p-elementary subgroup H = P ×Q with a p-subgroup P and a p′-subgroup Q.
By Corollary 4.2.15 ϕ̆|Q is an ordinary character and by construction ϕ̆|H is
just the unique extension of this character with P in its kernel. By Brauer’s
characterization of characters (Theorem 3.10.9), ϕ̆ is indeed a generalized char-
acter, that is there are aϕχ ∈ Z with ϕ̆ =

∑
χ∈Irr(G) aϕχ χ. Restricting to Gp′

we obtain (b).
(c) Let Φ and X be as in (4.12). If aϕχ are as in (b) and

A := [aϕi χj
]1≤i≤l, 1≤j≤k,

we conclude from (b) and the definition of D that Φ = AX = ADΦ. Hence
AD = Il because Φ is non-singular. From this the result follows by elementary
linear algebra.

The following properties of Brauer characters are generalizations of
analogous statements that hold for ordinary characters. They are very useful
for constructing the irreducible Brauer characters of a group.

Remark 4.2.17 Let H be a subgroup of G and let (K,R, F, η) be a p-modular
system. Furthermore, let V,W be FG-modules with Brauer characters ϕV , ϕW .
Then the following statements hold.

(a) The Brauer character ϕV⊗W of V ⊗W is given by ϕV ϕW , i.e. ϕV⊗W (g) =
ϕV (g) · ϕW (g) for all g ∈ Gp′ .

(b) The Brauer character ϕVH
of the restriction of V to H is given as follows:

ϕVH
(h) = ϕV (h) for all h ∈ Hp′ . If ϕ is a Brauer character of G, then ϕH :=

ϕ|Hp′ is a Brauer character of H.

Proof. We leave the proof to the reader; see Exercise 4.2.3.

In (4.13) we associated to an irreducible Brauer character ϕ a generalized
(ordinary) character ϕ̆. There is a similar construction which is often useful.
Before defining this we introduce some convenient notation.

For x ∈ Q \ {0} we write νp(x) = k if x = pk ab with a, b ∈ Z with p � a, b; see
Lemma 4.1.14. To simplify the notation we will also write

|G|p := pνp(|G|) and |G|p′ :=
|G|
|G|p

, (4.14)

and [G : H]p and [G : H]p′ are used in the same way for H ≤ G.

Definition 4.2.18 For θ ∈ cl(G) ∪ cl(Gp′) we define θ̂, θ̃ ∈ cf(G,C) by

θ̂(g) :=
{
θ(g) for g ∈ Gp′ ,

0 else,

and θ̃ := |G|p θ̂.
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Lemma 4.2.19 (a) θ̃ is a generalized character for any θ ∈ Irr(G) ∪ IBr(G).
(b)

(χ, θ̃)G
χ(1)

∈ R for every χ ∈ Irr(G).

(c) If χ ∈ Irr(G) and a := νp(χ(1)) then 1
pa χ̃ is a generalized character, while

1
pa+1 χ̃ is not.

Proof. (a) As in the proof of Theorem 4.2.16, we consider an arbitrary (p)-
elementary subgroup H = P × Q with a p-subgroup P and a p′-subgroup Q.
Then θ̃|H = |G|p

|P | ρP × θQ, with ρP the regular character of P . Since θQ is a
character (Corollary 4.2.15) the result follows again from Theorem 3.10.9.

(b) Let Gp′ = g1
G∪̇ . . . ∪̇glG. Then

(χ, θ̃)G =
|G|p
|G|

l∑
i=1

|gGi |χ(gi)θ(g−1
i ) (4.15)

=
χ(1)
|G|p′

l∑
i=1

ωχ((giG)+)θ(g−1
i ). (4.16)

By Corollary 2.3.3 the summands are all algebraic integers, hence (χ, θ̃)G ∈ R.
(c) We have

χ̃ =
∑

ξ∈Irr(G)

(χ̃, ξ)G ξ with (χ̃, ξ)G ∈ Z

by (a). Using (b) we see

(χ̃, ξ)G
χ(1)

=
(χ, ξ̃)G
χ(1)

∈ R,

hence νp((χ̃, ξ)G) ≥ νp(χ(1)) = a and 1
pa χ̃ is a generalized character. On the

other hand, if P ∈ Sylp(G) then χ̃|P = χ(1)ρP and (χ̃|P ,1p)P = χ(1). So if 1
n χ̃

is a generalized character, then χ(1)
n ∈ Z.

When one is computing decomposition matrices the following theorems are
sometimes useful. We first state a lemma that we need.

Lemma 4.2.20 Let V be an irreducible, selfdual FG-module, i.e. V ∼=FG V �.
Then there exists up to scalars a unique non-degenerate G-invariant bilinear
form Ψ on V .

Proof. We choose an FG-isomorphism µ : V → V �. By Lemma 1.1.42 we
have an isomorphism

HomF (V, V �) ∼=FG BifoF V, µ �→ ((v, w) �→ µ(v)(w)).
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Because of our general assumption, F is a splitting field for G. Thus V is
absolutely irreducible and we have, by Schur’s lemma, HomFG(V, V �) ∼= F ,
hence BifoFG V := InvFG(BifoF V ) = 〈 Ψ 〉F , for a G-invariant bilinear form Ψ
on V . Obviously Ψ′ : (v, w) �→ Ψ(w, v) is also G-invariant, hence

Ψ′ = αΨ for α ∈ F.

Hence
Ψ(v, w) = αΨ(w, v) = α2Ψ(v, w) for all v, w ∈ V

and α2 = 1. Since F is perfect (in fact finite by our assumption) α is 1 or −1,
which means that Ψ is either a symmetric or a skew symmetric form on V , if F
has odd characteristic, and symmetric otherwise. Obviously Ψ (corresponding
to an isomorphism V → V �) is non-degenerate.

Theorem 4.2.21 (Fong) If p = 2 and ϕ ∈ IBr(G) is real-valued then ϕ(1) is
even or ϕ = 1Gp′ .

Proof. Let ϕ ∈ IBr(G) be real-valued and ϕ 
= 1Gp′ , and let V be an FG-
module with Brauer character ϕ. It follows from Lemma 4.2.13 that V is selfdual
and from Lemma 4.2.20 that there is a G-invariant, non-degenerate symmetric
bilinear form Ψ defined on V .

The subspace U := {v ∈ V | Ψ(v, v) = 0} of isotropic vectors is G-invariant.
Since V is a simple module we have either U = V or U = {0}. If U = V then
Ψ is a non-degenerate symplectic form on V , hence dimF V is even by linear
algebra. If U = {0} then it also follows from linear algebra that dimF V = 1.
Then for 0 
= v ∈ V and g ∈ G we have gv = αv, and from

Ψ(v, v) = Ψ(gv, gv) = α2Ψ(v, v)

we conclude that α2 = 1, hence gv = v and V is the trivial FG-module.

In odd characteristic we use Lemma 4.2.20 to define the notion of a modular
Frobenius–Schur indicator of an irreducible Brauer character.

Definition 4.2.22 Let ϕ ∈ IBr(G). If ϕ is not real-valued we define the
Frobenius–Schur indicator of ϕ to be zero. If ϕ is real-valued then, according to
Lemma 4.2.20, the corresponding simple FG-module V carries a non-degenerate
G-invariant bilinear form Ψ. For p odd and Ψ being symmetric we define the
Frobenius–Schur indicator of ϕ to be 1 and if Ψ is skew symmetric we define
the indicator of ϕ to be −1. For p even, Ψ is always (skew) symmetric, so we
define the Frobenius–Schur indicator of ϕ to be 1 if there is a non-degenerate
G-invariant quadratic form on V and −1 otherwise.

As the following surprising theorem by Thompson, see [163], shows, the
modular indicators for p odd can be derived from the decomposition numbers.
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Theorem 4.2.23 Let G be a finite group and let p be an odd prime, and let ϕ ∈
IBr(G) be real-valued. Then there is a χ ∈ Irr(G), again real-valued, such that
the decomposition number dχ,ϕ is odd, and for all such χ the modular Frobenius–
Schur indicator indp(ϕ) is the same as the (ordinary) Frobenius–Schur indicator
of χ.

Proof. For a proof, see [163].

The situation in even characteristic, however, is much more complicated; see
[169].

Example 4.2.24 We calculate the 2-Brauer character table for G = A5. For
convenience we reproduce the ordinary character table from Example 2.1.24:

|CG(g)| : 60 4 3 5 5
G = A5 1a 2a 3a 5a 5b
χ1 1 1 1 1 1
χ2 3 −1 0 α β α = 1

2 (1−
√

5)
χ3 3 −1 0 β α β = 1

2 (1 +
√

5)
χ4 4 0 1 −1 −1
χ5 5 1 −1 0 0

For simplicity we abbreviate χ′
i := χi|G2′ . Then ϕi := χ′

1 is the trivial Brauer
character. Furthermore χ4 is a “defect zero character” for the prime 2, that
is 2 � |G|

χ4(1)
, and we will see shortly (Theorem 4.4.14) that this implies that

ϕ4 := χ′
4 ∈ IBr(G). We find that

χ′
5 = −χ′

1 + χ′
2 + χ′

3. (4.17)

Thus Z IBr(G) := 〈 IBr(G) 〉Z = 〈χ′
1, χ

′
2, χ

′
3, χ

′
4〉 and χ′

2 + χ′
3 = ϕ1 + χ′

5. This
means that ϕ1 must be a constituent of χ′

2 or χ′
3 (or both). Since no non-trivial

representation of A5 can have only trivial composition factors – the image would
be a 2-group – we see that χ′

2 or χ′
3 has a constituent of degree two. To see

that this actually holds for both of these characters, one may observe that
the characters χ2 and χ3 are conjugate by an automorphism of A5 induced
by an inner automorphism of S5. (For an alternative argument, one may use
Theorem 4.2.21 or Exercise 4.2.1.) Finally, (4.17) shows us how to obtain the
row of the 2-decomposition matrix corresponding to χ5. The result is as follows:

ϕ1 ϕ2 ϕ3 ϕ4

χ1 1 . . .
χ2 1 1 . .
χ3 1 . 1 .
χ5 1 1 1 .
χ4 . . . 1
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(Why we have chosen the last line corresponding to χ4 will become apparent in
Section 4.3.) From this we obtain the 2-Brauer character table of G:

G = A5 1a 3a 5a 5b
ϕ1 1 1 1 1
ϕ2 2 −1 1

2 (−1−
√

5) 1
2 (−1 +

√
5)

ϕ3 2 −1 1
2 (−1 +

√
5) 1

2 (−1−
√

5)
ϕ4 4 1 −1 −1

�

Exercises

Exercise 4.2.1 Let (K,R, F, η) be a p-modular splitting system and let σp : F →
F , σp(α) := αp for α ∈ F be the Frobenius automorphism of F . Let W be an
n-dimensional FG-module with Brauer character ϕW and let σpW be the alge-
braically conjugate FG-module; see Remark 1.8.3.

(a) Show that if γp : ZUp′ → ZUp′ is the extension of the automorphism γp : Up′ →
Up′ to ZUp′ with γp(u) := up for u ∈ Up′ , then ϕσpW = γp ◦ ϕW .
(b) Suppose now that |F | = p2n = qn and let σq := (σp)n. Show that if ϕ = ϕσq

then we can choose a basis of W such that the image of G is a subgroup of the
unitary group Un(q).
Hint: try to imitate the proof of Lemma 4.2.20.

The following exercise demonstrates that a Galois conjugate of an irreducible
Brauer character need not be a Brauer character.

Exercise 4.2.2 Let G be SL2(7) and let p = 7.

(a) Use Exercise 1.3.4 to show that G has exactly seven irreducible representa-
tions in characteristic p with dimensions 1, 2, 3, 4, 5, 6, 7. Determine the corre-
sponding Brauer characters ϕ1, ϕ2, . . . , ϕ7 with respect to a standard p-modular
splitting system (K,R, F, η).
(b) Let σ be a field automorphism of K mapping ζ8 to ζ3

8. Show that ϕσ2 , where
ϕσ2 (g) := σ(ϕ2(g)) for g ∈ Gp′ is not a Brauer character.
(c) Generalize the previous result to SL2(p) for p a prime greater than five.

Exercise 4.2.3 Prove Remark 4.2.17.

Exercise 4.2.4 Let V be an FpkG-module with Brauer character ϕ. Then G
acts on V \ {0} and we obtain an ordinary permutation character θ of G of
degree pk dimV − 1. Show that for a g ∈ Gp′ of order m, one has

θ(g) = pnk − 1 with n =
1
m

m∑
j=1

ϕ(gj).

In particular, using [98] show that an element of 5a of G := S6(2) has no fixed
points on V \ {0}, where V is a simple F2kG-module of dimension eight, as
asserted in Example 3.8.17.
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4.3 p-projective characters

Throughout this section (K, R, F, η) will denote a p-modular splitting system
for our finite group G. By definition the p-decomposition matrix D of G gives
the multiplicities of the composition factors of the p-modular reductions of the
simple KG-modules. By Brauer reciprocity (Theorem 4.1.23(b)) D has another
interpretation which will appear to be most useful for computing D; namely D
also describes how the projective indecomposable FG-modules, when lifted to
KG-modules, decompose as direct sums of irreducible KG-modules.

Definition 4.3.1 For ϕ ∈ IBr(G) the (ordinary) character

Φϕ :=
∑

χ∈Irr(G)

dχ,ϕχ

is called the projective indecomposable character associated to ϕ.

By Theorem 4.1.23, Φϕ|Gp′ is the Brauer character of a projective cover
P (Y ) of a simple FG-module Y with Brauer character ϕ, and Φ itself is the
character of the KG-module eKG, where e2 = e ∈ RG is an idempotent with
FGê = P (Y ). More generally, if W is a projective FG-module then, by Corol-
lary 4.1.22(b), there is a projective RG-lattice M with W ∼=FG M/πM . The
character ψ of KM is called p-projective and ψ|Gp′ is the Brauer character of
W . Thus ψ ∈ CharK(G) is p-projective if and only if

ψ =
∑

ϕ∈IBr(G)

aϕΦϕ with aϕ ∈ N0 for all ϕ ∈ IBr(G).

So, obviously sums of p-projective characters are p-projective. The elements of
〈Φϕ | ϕ ∈ IBr(G)〉Z are sometimes called generalized p-projective characters.

Lemma 4.3.2 If P ∈ Sylp(G) and ψ is a p-projective character then

|P | | ψ(1) and ψ(g) = 0 for all g ∈ P \ {1}.

Proof. By Lemma 1.6.17 the restriction of a p-projective character to P is
p-projective, hence by Corollary 1.6.25 it is a multiple of the regular character
ρP .

Actually, p-projective characters do not only vanish on non-trivial p-elements,
but also on p-singular elements, as Theorem 4.3.3 shows.

For class functions ϕ,ψ defined on G or Gp′ we set

(ϕ,ψ)Gp′ :=
1
|G|

∑
g∈Gp′

ϕ(g)ψ(g−1).

Theorem 4.3.3 The set {Φϕ | ϕ ∈ IBr(G)} is a basis of

cfp′(G,K) := {ψ ∈ cf(G,K) | ψ(g) = 0 for all g ∈ G \Gp′}.
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Furthermore

(ϕ,Φψ)Gp′ = (Φϕ, ψ)Gp′ = δϕ,ψ for ϕ,ψ ∈ IBr(G)

and
[(ϕ,ψ)Gp′ ]ϕ,ψ∈IBr(G) = C−1, (4.18)

where C = [cϕ,ψ]ϕ,ψ∈IBr(G) is the Cartan matrix of FG.

Proof. Let g1, . . . , gr be representatives of the conjugacy classes of G with
g1, . . . , gl being p-regular, gl+1, . . . , gr being p-singular, and let i ≤ l. Inserting

χ(gi) =
∑

ϕ∈IBr(G)

dχϕϕ(gi)

in the orthogonality relations (2.5) we get

|CG(gi)| · δi,j =
∑

χ∈Irr(G)

χ(gi)χ(g−1
j ) =

∑
ϕ∈IBr(G)

Φϕ(g−1
j )ϕ(gi). (4.19)

For j > l we get
∑
ϕ∈IBr(G) Φϕ(gj)ϕ = 0; thus Φϕ(gi) = 0, since IBr(G) is

linearly independent. Now (4.19) says that the matrices

[Φϕ(g−1
i )]Tϕ∈IBr(G),1≤i≤l and [ϕ(gi)

1
|CG(gi)|

]ϕ∈IBr(G),1≤i≤l

are inverses of each other. Hence we get

(ϕ,Φψ)Gp′ =
l∑
i=1

ϕ(gi)Φψ(g−1
i )|CG(gi)| = δϕ,ψ.

Similarly, (Φϕ, ψ)Gp′ = δϕ,ψ. This means in effect that {Φϕ|Gp′ | ϕ ∈ IBr(G)}
and IBr(G) are dual bases of the vector space of class functions on Gp′ with
respect to the bilinear form ( , )Gp′ . Finally (4.18) follows, since (Φϕ)|Gp′ =∑
ψ∈IBr(G) cϕ,ψ ψ.

Corollary 4.3.4 Assume that ψ ∈ CharK(G) vanishes on all p-singular ele-
ments of G. Then ψ is a generalized p-projective character. If in addition

(ϕ,ψ)Gp′ ≥ 0 for all ϕ ∈ IBr(G),

then ψ is a p-projective character.

Proof. By Theorem 4.3.3 we may write

ψ =
∑

ϕ∈IBr(G)

αϕΦϕ with αϕ ∈ K.
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By Theorem 4.2.16(a) there are aϕ,χ ∈ Z with ϕ =
∑
χ∈Irr(G) aϕ,χ χ|Gp′ . Hence

αϕ = (ϕ,ψ)Gp′ =
∑

χ∈Irr(G)

aϕ,χ(χ, ψ)Gp′ =
∑

χ∈Irr(G)

aϕ,χ(χ, ψ)G ∈ Z.

There is a similar statement for class functions on the p-regular classes, which
follows immediately from the fact that the projective indecomposable characters
and the irreducible Brauer characters of G are dual bases with respect to the
bilinear form ( , )Gp′ .

Corollary 4.3.5 Assume that ϕ is a class function on the p-regular classes of
G. Then ϕ is a Brauer character if and only if (ϕ,Φψ)G′

p
is a nonnegative

integer for all ψ ∈ IBr(G).

The following properties of p-projective characters are useful for computing
p-decomposition matrices.

Lemma 4.3.6 Let H be a subgroup of G.

(a) If ψ is a p-projective character of G, then the restricted character ψH is a
p-projective character of H.

(b) If ψ is a p-projective character of H, then the induced character ψG is a
p-projective character of G.

(c) If ψ is a p-projective character of G, and ϕ is a Brauer character or an
ordinary character of G, then ψ · ϕ is a p-projective character of G. Here, if ϕ
is a Brauer character we define

(ψ · ϕ)(g) :=
{

0 for g 
∈ Gp′ ,
ψ(g)ϕ(g) for g ∈ Gp′ .

Proof. This follows from Lemma 1.6.17 in case (a) and Corollary 3.2.16 for
the remaining cases.

Theorem 4.3.7 Let H be a subgroup of G and let G = ∪̇mi=1giH. If W is an
FH-module with Brauer character ψ, then the Brauer character of the induced
module WG is given by

ψWG(g) =
m∑
i=1

ψ̇(g−1
i ggi) with ψ̇(x) :=

{
ψ(x) if x ∈ H ,

0 else,

for g ∈ Gp′ . We will call ψG := ψWG the induced Brauer character.
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Proof. We define the class function ψ0 ∈ cf(H,K) by

ψ0(h) :=
{
ψ(h) if h ∈ Hp′ ,

0 else,

and have to show that the Brauer character of WG is ψG0 |Gp′ , where ψG0 is the
induced class function introduced in Definition 3.2.6.

Assume that WG has Brauer character θ :=
∑
ϕ∈IBr(G) aϕϕ. By Theo-

rem 4.3.3 it suffices to show that aϕ = (θ,Φϕ)Gp′ = (ψG0 ,Φϕ)Gp′ for every
ϕ ∈ IBr(G). Obviously we may assume that W is simple. For ϕ ∈ IBr(G) let
Vϕ be a simple FG-module with Brauer character ϕ and projective cover P (Vϕ).
By the proof of Theorem 4.1.23(a) and by Theorem 3.2.12 we have

aϕ = dimF HomFG(P (Vϕ),WG) = dimF HomFH(P (Vϕ)|H ,W ),

and this is the multiplicity mϕ of a projective cover P (W ) of W as a direct
summand of P (Vϕ)|H . Using Theorem 4.3.3 again and Theorem 3.2.13 we get

mϕ = (ψ,Φϕ|H)Hp′ = (ψ0,Φϕ|H)H = (ψG0 ,Φϕ)G = (ψG0 ,Φϕ)Gp′ .

Using the above notion of induced Brauer characters we obtain from Theo-
rem 3.6.7 a Clifford correspondence for Brauer characters as follows.

Corollary 4.3.8 Suppose N�G. For ϕ ∈ IBr(N) let TG(ϕ) := {g ∈ G | gϕ =
ϕ}, and for N ≤ H ≤ G define

IBr( H | ϕ ) := {ψ ∈ IBr(H) | (ψ|Np′ ,Φϕ)Np′ 
= 0}.

If TG(ϕ) ≤ T ≤ G we have a bijection IBr(T | ϕ) → IBr(G | ϕ), ψ �→ ψG called
the Clifford correspondence, and

IBr(G) =
⋃̇
{ IBr( G | ϕ ) | ϕ ∈ IBr(N) }.

Proof. This is an immediate consequence of Theorem 3.6.7, Theorem 4.2.14
and Theorem 4.3.3.

The Clifford correspondence extends to projective indecomposable charac-
ters as we see in the following.

Theorem 4.3.9 Let N � G and θ ∈ IBr(N). If TG(θ) ≤ T ≤ G and ψ ∈
IBr(T | θ) then

(Φψ)G = ΦψG .
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Proof. By Lemma 4.3.2 and Definition 3.2.6, (Φψ)G ∈ cfp′(G,K), so

(Φψ)G =
∑

ϕ∈IBr(G)

aϕΦϕ with aϕ = ((Φψ)G, ϕ)Gp′ = (Φψ, ϕT )Tp′

because of Theorem 4.3.3 and Exercise 4.3.1. Let W be an FT -module with
Brauer character ψ and let V be a simple FG-module with Brauer character
ϕ. If (Φψ, ϕT )Tp′ > 0, then VT has a composition factor isomorphic to W . By
Exercise 3.6.5, V ∼= WG, and hence ϕ = ψG and aϕ = 1.

Example 4.3.10 We calculate the 3-Brauer character table of G = A5. Sim-
ilarly as in Example 4.2.24, we abbreviate χ′

i := χi|G3′ and we use the same
numbering of the χi ∈ Irr(G) as there. As always, ϕ1 := χ′

1. Now, χ2, χ3 are
defect-zero characters for p = 3, and using Theorem 4.4.14 we infer that ϕ3 := χ′

2
and ϕ4 := χ′

3 are irreducible Brauer characters. Note that A5 has a maximal
subgroup H ∼= D10 isomorphic to a dihedral group. Since 3 � |H|, every charac-
ter of H is 3-projective, and in particular, by Lemma 4.3.6, (1H)G = χ1 + χ5
is projective, and in fact, is a projective indecomposable, and hence is equal to
Φϕ1 . This gives us the first column of the decomposition matrix. Now χ′

4 can
have only the remaining irreducible Brauer character ϕ2 as a constituent, and
χ′

4 = ϕ2, because 1
2χ

′
4 has values which are not integers. Finally we observe

that
χ′

5 = χ′
1 + χ′

4,

which yields the remaining row of the decomposition matrix D. Thus the 3-
decomposition matrix is as follows:

ϕ1 ϕ2 ϕ3 ϕ4

χ1 1 . . .
χ4 . 1 . .
χ5 1 1 . .
χ2 . . 1 .
χ3 . . . 1

The 3-Brauer character table is, of course, as follows:

G = A5 1a 2a 5a 5b
ϕ1 1 1 1 1
ϕ2 4 0 −1 −1
ϕ3 3 −1 1

2 (1−
√

5) 1
2 (1 +

√
5)

ϕ4 3 −1 1
2 (1 +

√
5) 1

2 (1−
√

5)

�

Exercises

Exercise 4.3.1 Let G be a group, H be a subgroup of G, ϕ a Brauer character
of G, Φ a projective character of G, ψ a Brauer character of H and Ψ a projective
character of H. Show that the following statements hold:
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(a) (ϕ,ΨG)Gp′ = (ϕH ,Ψ)Hp′ ,

(b) (Φ, ψG)Gp′ = (ΦH , ψ)Hp′ .

Exercise 4.3.2 Let G := A5 and H := A4. Verify for p = 2 that IBr(H) =
{λ1 := 1H |H2′ , λ2, λ3} with λi(1) = 1 for i = 1, 2, 3. Using the notation of
Example 4.2.24, let aij and bij for i = 1, . . . , 4 and let j = 1, . . . , 3 be defined
by (ϕi)H =

∑3
j=1 aijλj and (λj)G =

∑4
i=1 bijϕi. Show that

[aij ] =

 1 0 0
0 1 1
0 1 1
2 1 1

, [bij ] =

 1 1 1
0 1 1
0 1 1
1 0 0

.
Compare with Theorem 3.2.13.

Exercise 4.3.3 Show that the 5-decomposition matrix for A5 is as follows:

ϕ1 ϕ2 ϕ3

χ1 1 . .
χ2 . 1 .
χ3 . 1 .
χ4 1 1 .
χ5 . . 1

Exercise 4.3.4 Let V be an FG-module with Brauer character ψ on which G
acts faithfully and let m := |{ψ(g) | g ∈ Gp′}|. Show that every irreducible
FG-module is isomorphic to a composition factor of

V ⊗ · · · ⊗ V︸ ︷︷ ︸
j

for some 0 ≤ j ≤ m− 1.

Hint: Adapt the proof of Theorem 2.7.3.

Exercise 4.3.5 Let ϕ ∈ IBr(G) and λ ∈ Irr(G) with λ(1) = 1. Show that
(Φϕ, λ)G = a ≥ 1 implies a = 1 and ϕ = λ|Gp′ . Conclude that any p-projective
indecomposable character Φ has at most one (ordinary) linear constituent λ if
Op(G) = G (see Definition 3.5.18).

Exercise 4.3.6 (a) Let λ ∈ Irr(G) with λ(1) = 1 and Φ := Φλ|G
p′ . Assume

that all non-linear (ordinary) constituents of Φ have degrees divisible by p.
Show that G has a normal p-complement, that is a normal subgroup N such
that G/N ∼= P ∈ Sylp(G) (see [140]).
Hint: Let N := Op(G). Put ϕ := λ|Np′ ∈ IBr(N) and Φ′ := Φϕ. Show
that Φ′ is a G-invariant character of N and that Φ|N = Φ′ + Φ′′ for some
Φ′′ ∈ CharK(N). Use Exercise 4.3.5, Clifford’s theorem and Theorem 3.6.19 to
show that Φ′(1) ≡ 1 mod p.
(b) Conversely, show that if G has a normal p-complement, then p divides the
degree of any non-linear character in Irr(G).
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4.4 Characters in blocks

As in Section 4.3 we fix a p-modular splitting system (K, R, F, η) for our finite
group G.

By Corollary 4.1.22 every simple KG-module V and every simple FG-
module Y belong to a particular block B = RGε of RG, where ε is the block
idempotent of RG with εV = V (or ε̂Y = Y , respectively). Clearly Y belongs
to B if and only if the projective cover P (Y ) belongs to B. So V belongs to B
(and Y belongs to B) if and only if χV (ε) 
= 0 (and ΦϕY

(ε) 
= 0, respectively).
We use the notation

Irr(B) := {χ ∈ Irr(G) | χ(ε) 
= 0}, IBr(B) := {ϕ ∈ IBr(G) | Φϕ(ε) 
= 0}.

Also, we will call B a p-block of G and write

Blp(G) := {B | B is a p-block of G} and εB := ε.

Then ε̂B ∈ Z(FG) is the block idempotent of the block ideal FGε̂B of the
F -algebra FG.

In order to investigate Irr(B) for B ∈ Blp(G) the following notion is useful.

Definition 4.4.1 The p-Brauer graph of G is a graph with vertex set Irr(G),
where χ, χ′ ∈ Irr(G) are linked by an edge if and only if dχϕ 
= 0 
= dχ′ϕ for
some ϕ ∈ IBr(G).

Theorem 4.4.2 Let Blp(G) = {B1, . . . , Bm}, χ ∈ Irr(G) and ϕ ∈ IBr(G).

(a) If dχϕ 
= 0 then χ ∈ Irr(Bi) if and only if ϕ ∈ IBr(Bi). Ordering Irr(G) and
IBr(G) according to the blocks the p-decomposition matrix of G takes the form

D =


DB1 0 0
0 DB2 0

. . .
0 0 DBm

 with DBi
= [dχϕ]χ∈Irr(Bi)ϕ∈IBr(Bi).

The Cartan matrix of the ith block is C(Bi) = DT
Bi
DBi .

(b) Irr(Bi) is a connected component in the p-Brauer graph Γp(G) for 1 ≤ i ≤ m.

Proof. (a) ϕ ∈ IBr(B) if and only if Φϕ(1) = Φϕ(εB). By Definition 4.3.1 this
holds if and only if χ(1) = χ(εB) for all χ ∈ Irr(G) with dχϕ 
= 0.

(b) By (a) each connected component of Γp(G) is contained in Irr(Bi) for
some i. Conversely, let X ⊆ Irr(Bi) be a connected component of Γp(G) and
let Y := {ϕ ∈ IBr(G) | dχϕ 
= 0 for some χ ∈ X}. Put X ′ := Irr(Bi) \X and
Y ′ := IBr(Bi) \ Y . We may order Irr(Bi) and IBr(Bi) so that

DBi =
[
DXY 0

0 DX′Y ′

]
with DXY = [dχϕ]χ∈X ϕ∈Y .
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Then

C(Bi) =
[
DT
XYDXY 0

0 DT
X′Y ′DX′Y ′

]
,

which contradicts Corollary 1.7.9 unless Irr(Bi) = X.

The following orthogonality relation for Brauer characters is a simple con-
sequence of the block decomposition of the Cartan matrix and its inverse.

Lemma 4.4.3 If ϕ,ψ ∈ IBr(G) ∪ Irr(G) belong to different p-blocks, then

(ϕ,ψ)Gp′ = 0.

Proof. If B ∈ Blp(G) and χ ∈ Irr(B) then χ|Gp′ ∈ 〈IBr(B)〉N0 . Thus it suffices
to consider irreducible Brauer characters. For these the claim follows from
Theorem 4.3.3, (4.18), and the fact that C−1 = diag( (C(Bi)−1, . . . , C(Bm)−1)
if B1, . . . , Bm are the p-blocks of G.

Definition 4.4.4 If θ ∈ cf(G,K) and B ∈ Blp(G) we call

θB :=
∑

χ∈Irr(B)

(θ, χ)G χ

the B-part of θ.

Lemma 4.4.5 If ψ is a p-projective character and B is a block then the B-part
ψB is a p-projective character or zero.

Proof. Let M be a projective RG-lattice such that ψ is the character of KM
and let εB be the block idempotent of the block B of RG. Then εBM is a direct
summand of M and hence the zero-module or projective. Since εB annihilates
(1− εB)M , the trace of g ∈ G on εBM equals ψ(g εB), the trace of g εB on M .
The same argument and Corollary 4.1.22 also give for χ ∈ Irr(G)

χ(g εB) =
{

0 for χ 
∈ Irr(B),
χ(g) for χ ∈ Irr(B).

Thus

ψ(g εB) =
∑

χ∈Irr(G)

(ψ, χ)G χ(g εB) =
∑

χ∈Irr(B)

(ψ, χ)G χ(g) = ψB(g)

and ψB is the character of εBKM and hence a p-projective character.

Lemma 4.4.6 Let B be a p-block of G and set

k(B) = | Irr(B)| and l(B) = | IBr(B)|

(which is a standard notation). Then l(B) ≤ k(B) and the decomposition ma-
trix DB has rank l(B). Moreover, there is a matrix AB ∈ Zl(B)×k(B) with
ABDB = Il(B).
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Proof. This follows from Theorem 4.2.16.

Theorem 4.4.7 (Osima) If B is a p-block of G and

εB =
∑
g∈G

agg ∈ RG

is its block idempotent, then ag = 0 for all g ∈ G \Gp′ .

Proof. By Corollary 4.1.22 and Corollary 2.1.7 we have

εB =
∑

χ∈Irr(B)

εχ =
∑

χ∈Irr(B)

χ(1)
|G|

∑
g∈G

χ(g−1)g. (4.20)

Thus
ag =

1
|G|

∑
χ∈Irr(B)

χ(1)χ(g−1).

But
∑
χ∈Irr(B) χ(1)χ is the character of the projective module RGεB , so by

Lemma 4.3.2 ag = 0 if g is not p-regular.

For every χ ∈ Irr(G) there is by Theorem 2.3.2 a central character

ωχ : Z(KG) → K with C+ �→ ωχ(C+) =
|C|χ(g)
χ(1)

for any conjugacy class C = gG. By Corollary 2.3.3 ωχ(C+) is an algebraic inte-
ger, and hence is contained in R, because R is integrally closed (Lemma 4.1.3(b))
in K. Hence we obtain an F -algebra homomorphism

ω̂χ : Z(FG) → F with C+ �→ η(ωχ(C+)) for C ∈ cl(G).

Theorem 4.4.8 Two irreducible characters χ, χ′ ∈ Irr(G) belong to the same
block if and only if the following congruences hold in Z[ζm], where m is the
p′-part of the exponent of G:

|gG|χ(g)
χ(1)

≡ |gG|χ′(g)
χ′(1)

mod p for all g ∈ Gp′ .

Proof. By the orthogonality relations (Theorem 2.1.15) we have for χ, χ′ ∈
Irr(G)

ωχ(εχ′) = δχ,χ′ .

Let εB ∈ Z(RG) be the block idempotent ofB ∈ Blp(G). Since εB =
∑
χ∈Irr(B) εχ

we have χ ∈ Irr(B) if and only if ωχ(εB) = 1 and then ω̂χ(ε̂B) = 1. But F being
a splitting field for G, there is exactly one algebra homomorphism ω̂ : FG→ F
with ω̂(ε̂B) = 1 (see Corollary 1.7.6). Thus χ, χ′ belong to the same p-block if
and only if ω̂χ = ω̂χ′ , and this holds if and only if these central characters agree
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on ε̂B . By Theorem 4.4.7 ω̂χ(ε̂B) = ω̂χ′(ε̂B) if and only if ω̂χ(C+) = ω̂χ′(C+)
for all C ∈ cl(Gp′). This holds if and only if for all g ∈ Gp′

αg :=
|gG|χ(g)
χ(1)

− |g
G|χ′(g)
χ′(1)

∈ ker(η) ∩Qm = pR ∩Qm.

Observe that pR ∩Qm is a maximal ideal in R ∩Qm. This follows since p does
not ramify in Z[ζm], see Proposition 2.3, p. 10, in [168]. From Exercise 4.4.3(c)
we conclude that for all g ∈ Gp′ we have

γ(αg) ∈ pR ∩Qm for all γ ∈ Gal(Qm/Q).

Hence, the coefficients of the minimal polynomial of 1
pαg over Q are in the ring

R ∩Q = Z(p). If fg =
∑r
i=0 aiX

i ∈ Q[X] is the minimal polynomial of αg then∑r
i=0

ai

pr−iX
i is the minimal polynomial of 1

pαg. Since αg is an algebraic integer
and ai

pr−i ∈ Z(p) for all i = 0, . . . , r, we conclude that 1
pαg must be an algebraic

integer too and hence αg ∈ Z[ζm]; see Theorem 2.6 in [168].

For B ∈ Blp(G) we let ω̂B : Z(FG) → F be the unique algebra homomorphism
with ω̂B(ε̂B) = 1. Then ω̂B is also called the central character of B. By the
above,

ω̂B((gG)+) = η(ωχ((gG)+)) = η(
|gG|χ(g)
χ(1)

) for χ ∈ Irr(B). (4.21)

Thus, given the character table of a finite group G it is easy to decide whether
or not two ordinary irreducible characters belong to the same block. Also the
central characters ω̂B : Z(FG) → F and the block idempotent εB ∈ Z(RG)
(or ε̂B ∈ Z(FG)) can readily be computed for any p-block B using (4.21) and
(4.20), respectively. In particular, the number of p-blocks can easily be found.
There seems to be no group theoretical interpretation of the number of p-blocks.

Example 4.4.9 Let G = S5. From the character table computed in Exam-
ple 2.1.23 we find that there are two 2-blocks B1, B2. We have Irr(B1) =
{χ1, χ2, χ5, χ6, χ7} with degrees 1, 1, 5, 5, 6 and Irr(B2) = {χ3, χ4} with degrees
4, 4. We list the corresponding central characters and block idempotents (in
Z(FG)):

|CG(g)| : 233 5 23 2 3 5 223 22 223
G = S5 1a 2a 3a 5a 2b 4a 6a
ω̂B1 1 1 0 0 0 0 0
ω̂B2 1 0 1 0 1 0 1
ε̂·B1

1 0 1 1 0 0 0
ε̂·B2

0 0 1 1 0 0 0

Here the block idempotents are given by their coefficients, that is

ε̂Bi
=

∑
C∈cl(G)

ε̂·Bi
(C) C+.
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Note that ε̂·Bi
(C) = 0 for all classes C with C � Gp′ , as follows from Theo-

rem 4.4.7. As a consequence we see that ε̂Bj ⊆ Z(F A5) for j = 1, 2. Since
we know already from Example 4.2.24 (and Theorem 1.7.7) that A5 has two
2-blocks, say b1, b2, these ε̂Bj are actually block idempotents in F A5. To see
that this does not hold in general, see Exercise 4.4.2. For completeness we list
the central characters and block idempotents of A5:

|CG(g)| : 223 5 22 3 5 5
G = A5 1a 2a 3a 5a 5b
ω̂b1 1 1 0 0 0
ω̂b2 1 0 1 1 1
ε̂·b1 1 0 1 1 1
ε̂·b2 0 0 1 1 1

�

Definition 4.4.10 The p-block B of G containing the trivial character is called
the principal (p-)block and will be denoted by B0(G).

Example 4.4.11 The simple Mathieu groups M22 and M24 have just one 2-
block, the principal 2-block. �

Definition 4.4.12 Let χ ∈ Irr(G) and let B be a p-block of G. Then

dp(χ) := νp(|G|)− νp(χ(1)) and d(B) := max
χ∈Irr(B)

dp(χ)

are called the (p-)defect of χ and B, respectively; χ ∈ Irr(G) is called a defect
zero character if dp(χ) = 0. Furthermore, if χ ∈ Irr(B) then

htp(χ) := d(B)− dp(χ)

is called the (p-)height of χ.

Example 4.4.13 In Example 4.4.9 we see d(B1) = 3 with characters of height
0, 0, 0, 0, 1 and d(B2) = 1 with two characters of height zero. �

The following theorem, which we already have used in a couple of examples,
shows incidentally that all characters in a block of defect one have height zero.

Theorem 4.4.14 Let B be a p-block of G and let χ ∈ Irr(B). Then the follow-
ing assertions are equivalent:

(a) dp(χ) = 0;

(b) εχ = χ(1)
|G|

∑
g∈G χ(g−1)g ∈ RG;

(c) Irr(B) = {χ};
(d) the decomposition matrix of B is DB = [1];
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(e) χ is the character of a projective RG-lattice;

(f) χ(g) = 0 for all p-singular g ∈ G;

(g) d(B) = 0.

Proof. (a) ⇒ (b); dp(χ) = 0 means χ(1)
|G| ∈ R.

(b) ⇒ (c) By assumption εχ is the block idempotent of B.
(c) ⇒ (d) This follows from Lemma 4.4.6.
(d) ⇒ (e) This is Brauer reciprocity (Theorem 4.1.23).
(e) ⇒ (f) By Theorem 4.3.3
(f) ⇒ (a), (g) By Corollary 4.3.4 χ is a generalized p-projective character,

and is hence p-projective since χ ∈ Irr(G) by assumption. From Lemma 4.3.2
we see that dp(χ) = 0 holds, hence (a). Because of (c) we get d(B) = 0 as well.

(g) ⇒ (a) This is by definition.

Lemma 4.4.15 Let B ∈ Blp(G) and θ ∈ 〈Irr(B)〉Z ∪ 〈IBr(B)〉Z.

(a) θ̃ ∈ 〈Irr(B)〉Z, where θ̃ is as in Definition 4.2.18.

(b) For χ, χ′ ∈ Irr(B) one has

(χ, θ̃)G
χ(1)

≡ (χ′, θ̃)G
χ′(1)

mod p.

Proof. (a) By Lemma 4.2.19 θ̃ is a generalized character. Since θ̃ vanishes on
G \Gp′ it is a generalized p-projective character, thus

θ̃ =
∑

ϕ∈IBr(G)

aϕΦϕ with aϕ = (ϕ, θ̃)Gp′ .

But (ϕ, θ̃)Gp′ = (ϕ, θ)Gp′ = 0 for all ϕ ∈ IBr(G) \ IBr(B) by assumption and
Lemma 4.4.3.

(b) Let Gp′ = g1
G ∪̇ · · · ∪̇ gl

G. Then, using (4.16) and Theorem 4.4.8, we
have

(χ, θ̃)G
χ(1)

=
1

|G|p′

l∑
i=1

ωχ((giG)+) θ(g−1
i )

≡ 1
|G|p′

l∑
i=1

ωχ′((giG)+) θ(g−1
i ) ≡ (χ′, θ̃)G

χ′(1)
mod p.

Theorem 4.4.16 Let χ ∈ Irr(B) for B ∈ Blp(G). Then the following are
equivalent:
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(a) htp(χ) = 0;

(b) there is a ξ ∈ Irr(B) such that νp((χ̃, ξ)G) = νp(ξ(1));

(c) νp((χ̃, ξ)G) = νp(ξ(1)) for every ξ ∈ Irr(B).

Proof. By Lemma 4.4.15(a) we may write

χ̃ =
∑

ξ∈Irr(B)

(χ̃, ξ)G ξ.

By Lemma 4.2.19(b) we have for all ξ ∈ Irr(B)

νp((χ̃, ξ)G) = νp((χ, ξ̃)G) ≥ νp(χ(1)) ≥ a− d

with a := νp(|G|) and d := d(B).
Using Lemma 4.2.19(c) we see that htp(χ) = 0 if and only if there is a

ξ ∈ Irr(B) with (χ̃,ξ)G

pa−d+1 
∈ R or, equivalently, νp((χ̃, ξ)G) = a− d. Since we also
have νp((χ̃, ξ)G) ≥ νp(ξ(1)) ≥ a − d, this implies that νp((χ̃, ξ)G) = νp(ξ(1)).
So (b) follows from (a).

Part (b) of Lemma 4.4.15 shows that (b) implies (c).
Finally, if (c) holds then

0 = νp((χ̃, ξ)G)− νp(ξ(1)) ≥ νp(χ(1))− νp(ξ(1)) for all ξ ∈ Irr(B)

and χ must be of height zero.

In the following we see that p-blocks behave well with respect to direct
products of groups.

Lemma 4.4.17 Let G = G1 × G2 and Blp(G1) = {B1, . . . , Br}, Blp(G2) =
{B′

1, . . . , B
′
s}. Then Blp(G) = {Bij | 1 ≤ i ≤ r, 1 ≤ j ≤ s} with

Irr(Bij) = {χ× χ′ | χ ∈ Irr(Bi), χ′ ∈ Irr(B′
j)},

IBr(Bij) = {ϕ× ϕ′ | ϕ ∈ IBr(Bi), ϕ′ ∈ IBr(B′
j)}.

Proof. By Corollary 3.7.6 Irr(G) = {χ × χ′ | χ ∈ Irr(G1), χ′ ∈ Irr(G2)} and
IBr(G) = {ϕ× ϕ′ | ϕ ∈ IBr(G1), ϕ′ ∈ IBr(G2)}. Since

ωχ×χ′(((g g′)G)+) = ωχ((gG1)+) ωχ′((g′G2)+) for g ∈ G1, g
′ ∈ G2,

it follows from Theorem 4.4.8 that χ×χ′ and ψ×ψ′ belong to the same block, say
Bi,j ∈ Blp(G), if and only if χ, ψ belong to the same block, say Bi ∈ Blp(G1),
and χ′, ψ′ belong to the same block, say B′

j ∈ Blp(G2). Let ϕ ∈ IBr(Bi)
and ϕ′ ∈ IBr(B′

j). From Corollary 4.3.4 we may conclude that Φϕ × Φϕ′ is a
projective character, because obviously Gp′ = {g g′ | g ∈ (G1)p′ , g′ ∈ (G2)p′}.
Since

(Φϕ × Φϕ′ , ϕ× ϕ′)Gp′ > 0 and (Φϕ × Φϕ′ , χ× χ′)G = 0

for all χ× χ′ ∈ Irr(G) \ Irr(Bij), we see that IBr(Bij) is as indicated.
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Example 4.4.18 We compute the 3-decomposition matrix for G = M11 by first
determining the irreducible representations of G and their 3-Brauer characters.
First we obtain the permutation representation on Ω := {1, 2, . . . , 11} of M11
from the GAP package atlasrep data base. Note that atlasrep gives us access
to the data collected about many finite simple groups in Wilson’s online AT-
LAS of finite group representations (see [170]). For example, the GAP command
DisplayAtlasInfo supplied with the name of a group in the data base displays
the information that can be retrieved. The command AtlasGenerators sup-
plied with the name of a group in the data base and a number i, returns a record
that contains the permutations (or the matrices) for the standard generators in
the ith representation stored in the data base. So the following code will retrieve
the permutation representation of M11 on Ω:

gap> LoadPackage("atlasrep","1.3.1",false);;
gap> m11 := Group(AtlasGenerators("M11",1).generators);
Group([ (2,10)(4,11)(5,7)(8,9), (1,4,3,8)(2,5,6,9) ])

In the next lines of code we consider the action of M11 on V := F3
(Ω

2

)
, a

permutation module of dimension 55. We also compute the composition factors
of the permutation module and verify that they are all absolutely irreducible.

gap> orb := Orbit( m11 , [1,2], OnSets );;
gap> g := Image( ActionHomomorphism( m11 , orb, OnSets ) );;
gap> V := PermutationGModule( g, GF(3) );;
gap> comps := Set( MTX.CompositionFactors(V) );;
gap> List(comps, W -> W.dimension);
[ 1, 5, 5, 10, 10, 24 ]
gap> List( comps, W -> MTX.IsAbsolutelyIrreducible(W) );
[ true, true, true, true, true, true ]

We use the representations of representatives of the conjugacy classes of G
as words in the standard generators as given in Example 2.5.18 in order to
compute the Brauer characters of the composition factors. The command
BrauerCharacterValue was explained in Example 4.2.12.

gap> 3regclassreps := function( stgens )
> local a,b ; a:=stgens[1]; b:=stgens[2];
> return( [ aˆ2, a, b, a*b*a*bˆ2*a*bˆ-1, a*b*a*bˆ2*a*bˆ2,
> a*bˆ-1*a*bˆ2*a*bˆ2, a*b, a*bˆ-1 ] ); end;;
gap> brauchars := List( comps, W ->
> List( 3regclassreps( W.generators ), BrauerCharacterValue ) );;
gap> brauchars := Set( brauchars );; List( brauchars, y -> y[1] );
[ 1, 5, 5, 10, 24 ]

So we have found five irreducible Brauer characters, and incidentally we see
(using Theorem 4.2.14(b)) that the two composition factors of degree ten are
isomorphic.

This leaves us with the task of constructing three more irreducible Brauer
characters to complete the Brauer character table of G. This can be achieved
by finding the composition factors of tensor products of the representations we
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have already constructed. One way to do this is to look at the tensor product
V26 of one of the irreducible modules of dimension five with the irreducible
module of dimension 24:

gap> V26 := TensorProductGModule( comps[2] , comps[6]);;
gap> comps26 := Set( MTX.CompositionFactors(V26) );;
gap> ForAll( comps26, W -> MTX.IsAbsolutelyIrreducible(W) );
true
gap> brauchars26 := List( comps26, W ->
> List( 3regclassreps( W.generators ), BrauerCharacterValue ) );;
gap> brauchars26 := Set( brauchars26 );; List( brauchars26, y -> y[1] );
[ 1, 5, 5, 10, 10, 10, 24, 45 ]

Thus it turns out that every absolutely irreducible F3G-module occurs up to
isomorphism as a composition factor of V26, and we have found all irreducible
Brauer characters of G.

Of course, for larger examples it would be better to start analyzing tensor
products of non-trivial known modules of smallest possible dimensions. Here one
would start with comps[2]⊗ comps[2]. This would yield a non-real irreducible
Brauer character of degree ten, not occurring in the list brauchars. Adding
its complex conjugate and the restriction of the ordinary irreducible defect-zero
character of degree 45 would also finish the job.

We display the Brauer characters of G computed above as follows:

G = M11 1a 2a 4a 5a 8a 8b 11a 11b
ϕ1 1 1 1 1 1 1 1 1
ϕ2 5 1 −1 . α ᾱ γ γ̄
ϕ3 5 1 −1 . α ᾱ γ γ̄
ϕ4 10 2 2 . . . −1 −1
ϕ5 10 −2 . . β −β −1 −1
ϕ6 10 −2 . . −β β −1 −1
ϕ7 24 . . −1 2 2 2 2
ϕ8 45 −3 1 . −1 −1 1 1

with

α := −1 +
√
−2, β :=

√
−2, γ :=

−1 +
√
−11

2
.
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From this we obtain the 3-decomposition matrix of M11:

ϕi(1) : 1 5 5 10 10 10 24 45
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8

χ1 1 . . . . . . .
χ2 . . . 1 . . . .
χ3 . . . . 1 . . .
χ4 . . . . . 1 . .
χ5 1 1 1 . . . . .
χ6 1 1 . . . 1 . .
χ7 1 . 1 . 1 . . .
χ8 . 1 1 1 . . 1 .
χ10 1 1 1 . 1 1 1 .
χ9 . . . . . . . 1

�

The Brauer characters of M11 and the other Mathieu groups was first com-
puted by James [95], except for one 2-Brauer character of M24. Using the
Meataxe Parker determined this missing Brauer character.

Exercises

Exercise 4.4.1 Let B ∈ Blp(G). Show that

d(B) = νp(|G|)− min
ϕ∈IBr(B)

νp(ϕ(1)).

Hint: Use Theorem 4.2.14(c).

Exercise 4.4.2 Compute the central characters and block idempotents of A6
and S6 in characteristic two and show that the block idempotent of the non-
principal block of F S6 is a sum of two block idempotents of F A6.

Exercise 4.4.3 Let εB =
∑
g∈G agg be a block idempotent in RG and let m

be the p′-part of the exponent of G.

(a) Show that ag ∈ R ∩Qm for all g ∈ G.

(b) Let γ ∈ Gal(Qm/Q). Show that γεB :=
∑
g∈G γ(ag)g is a block idempotent

in RG of a block which we denote by γB.

(c) Show that χ ∈ Irr(B) implies γχ ∈ Irr(γB).

Exercise 4.4.4 Let (K,R, F, η) be a p-modular system for G and let B be a
p-block of G with central character ω̂B : Z(FG) → F and χ ∈ Irr(B). Show
that for z ∈ Z(RG) one has

η(ωχ(z)) = ω̂B(η(z)),

where η is extended to a ring homomorphism η : Z(RG) → Z(FG) in a natural
way; see also Exercise 4.1.3.
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Exercise 4.4.5 Using the assumptions of Lemma 4.4.17, let Vi for i = 1, 2 be
a simple FGi-module with projective cover P (Vi). Show that P (V1 ⊗ V2) ∼=FG

P (V1)⊗P (V2). Deduce that Φϕ×ϕ′ = Φϕ×Φϕ′ for ϕ ∈ IBr(G1), ϕ′ ∈ IBr(G2).

Exercise 4.4.6 Let p be a prime and Z be a central p′-subgroup of G. Show
that if χ, χ′ ∈ Irr(G) belong to the same p-block then χ, χ′ ∈ Irr(G | λ) for some
λ ∈ Irr(Z). That is, one obtains a partition

Blp(G) =
⋃̇

λ∈Irr(Z)
{B ∈ Blp(G) | Irr(B) ⊆ Irr(G | λ) }.

Exercise 4.4.7 For χ, χ′ ∈ Irr(G) define aχ,χ′ := (χ, χ′)Gp′ . Prove the follow-
ing.

(a) If χ, χ′ belong to different p-blocks, then aχ,χ′ = 0.

(b) If B ∈ Blp(G) with decomposition matrix DB and Cartan matrix C(B)
then

[aχ,χ′ ]χ,χ′∈Irr(B) = DB C(B)−1DT
B .

Exercise 4.4.8 LetN�G, b ∈ Blp(N) and θ ∈ Irr(b). Assume that χ ∈ Irr(G | θ)
belongs to the block B ∈ Blp(G). Show that for any θ′ ∈ Irr(b) there is a
χ′ ∈ Irr(B) with χ ∈ Irr(G | θ′).
Hint: Show that if θ, θ′ are connected in the Brauer graph Γp(N) then there
is a χ′ ∈ Irr(G | θ′) which is connected in Γp(G) to χ. Then use Theorem 4.4.2.

4.5 Basic sets

Before introducing defect groups and Brauer’s main theorems on blocks, we
pause and discuss how to find information on the decomposition numbers using
ordinary characters.

Definition 4.5.1 Let B be a p-block of G. A basic set of Brauer characters
(a basic set of p-projective characters) of B is a Z-basis of 〈IBr(B)〉Z (re-
spectively of 〈Φϕ | ϕ ∈ IBr(B)〉Z) consisting of Brauer characters (respectively
p-projective characters).

The definition is not quite standard. In the literature, basic sets are often
allowed to consist of generalized characters. We, however, follow [83].

Lemma 4.5.2 A subset S ⊆ 〈IBr(B)〉N0 is a basic set of Brauer characters of B
if and only if S is linearly independent over Z and {χ|Gp′ | χ ∈ Irr(B)} ⊆ 〈S〉Z.

Proof. By Lemma 4.4.6, {χ|Gp′ | χ ∈ Irr(B)} ⊆ 〈S〉Z if and only if IBr(B) ⊆
〈S〉Z. From this the result follows.
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In order to find a basic set one might start with a set of Brauer characters,
respectively p-projective characters, that spans but is not necessarily Z-linear
independent, which, for the case of Brauer characters, can be chosen to be
{χ|Gp′ | χ ∈ Irr(B)}. For the case of p-projective characters the set of induced
p-projective indecomposable characters from all maximal subgroups restricted
to B satisfies the requirement; see Exercise 4.5.7.

In both cases one might proceed by sorting the characters with respect to
increasing degrees or norms and choose the first l(B) Z-linearly independent
characters. In general, this simple procedure might not find a basic set (see
Exercise 4.5.6), and even a basic set consisting of restricted ordinary characters
is not known to exist in general. However, for all blocks of sporadic simple
groups the existence can be easily verified using GAP. The following criterion
can be used to verify that one indeed has found basic sets.

Lemma 4.5.3 Let Sb ⊆ 〈IBr(B)〉N0 and Sp ⊆ 〈Φϕ | ϕ ∈ IBr(B)〉N0 with |Sb| =
|Sp| = l(B). Then Sb and Sp are basic sets if and only if

U := [ (ϕ,Φ)Gp′ ]ϕ∈Sb,Φ∈Sp (4.22)

is invertible over Z.

Proof. For ψ ∈ Sb and Ψ ∈ Sp we have

ψ =
∑

ϕ∈IBr(B)

u1
ψ,ϕϕ, Ψ =

∑
ϕ∈IBr(B)

u2
Ψ,ϕΦϕ,

with u1
ψ,ϕ, u

2
Ψ,ϕ ∈ N0, and Sb and Sp are basic sets if and only if the matrices

U1 = [u1
ψ,ϕ]ψ∈Sb,ϕ∈IBr(B) and U2 = [u2

Ψ,ϕ]Ψ∈Sp,ϕ∈IBr(B)

are unimodular. But from Theorem 4.3.3 we see that U = U1U
T
2 and the lemma

follows.

Having found basic sets Sb, Sp of Brauer and p-projective characters, one
may compute U as in (4.22). Determining IBr(B) is then equivalent to finding
the unimodular matrix U1 introduced in the proof of Lemma 4.5.3. Thus one
method of attack is to find all solutions

X1, X2 ∈ Nl×l0 of X1X
T
2 = U (4.23)

up to equivalence, where we call two solutions (X1, X2) and (X ′
1, X

′
2) equivalent

if X ′
1 = X1P and X ′

2 = X2P for a permutation matrix P ∈ Nl×l0 . Each solution
leads to a system of generalized Brauer characters which is a candidate for
IBr(B) and may be tested, for instance by checking whether or not the scalar
products with all known projective characters are non-negative.
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Note that the problem is much harder than the one we have dealt with in Sec-
tion 2.8, where the additive decomposition algorithm produced “all” solutions
of XXT = U for a positive definite matrix U .

In general it will not be feasible to solve equation (4.23) because the number
of solutions will be much too large to be of any practical use. Instead the
main idea is to improve gradually the basic sets leading to a matrix U with
smaller entries. How this is done in practice, with the help of methods of integer
linear programming, is described in [83]. This book describes the concepts and
underlying methods of the computer algebra system MOC, which has been used
to compute the Brauer character tables of a large number of simple groups.

We do not pursue the methods further, which are rather technical in nature,
but present a comparatively simple example to illustrate the problems.

Example 4.5.4 We consider G := J1, the smallest Janko group for the prime
p := 2: G has five 2-blocks of defect zero; one, say B1, of defect one; and the
principal block B := B0(G) (of defect three). The block B1 is easily described:
Irr(B1) = {χ4, χ5} and χ4|Gp′ = χ5|Gp′ . Hence

DB1 =
[

1
1

]
.

Turning to B := B0(G), it is straightforward to check that

Irr(B) = {χ1, χ6, χ7, χ8, χ12, χ13, χ14, χ15}.

In GAP we get this by

gap> ct := CharacterTable( "J1" );; bl := PrimeBlocks( ct, 2 );;
gap> irrB := Positions( bl.block, 1 );
[ 1, 6, 7, 8, 12, 13, 14, 15 ]

Looking at the character table we see, abbreviating χ′
i := χi|Gp′ , that

χ′
13 = χ′

6 − χ′
7 + χ′

12 , χ′
14 = χ′

6 − χ′
8 + χ′

12 , χ′
15 = −χ′

1 + χ′
6 + χ′

12.

So Sb = {ψ1, . . . ψ5} := {χ′
1, χ

′
6, χ

′
7, χ

′
8, χ

′
12} is a basic set of Brauer characters.

We now produce projective characters:

gap> basm:=[1,6,7,8,12];;rest := Difference([1..Length(Irr(ct))],basm);;
gap> sb := Irr(ct){basm};;
gap> def0 := List( Positions(bl.defect,0), i -> Position(bl.block,i) );
[ 2, 3, 9, 10, 11 ]
gap> proj := Irr(ct){ def0 };; Add( proj , Sum( Irr(ct){[4,5]} ) );

So far, we have six projective indecomposable characters, five being of defect
zero and χ4 + χ5, the projective indecomposable character of the block B1. To
obtain more 2-projective characters of G we take advantage of the fact that the
2-decomposition matrices of the maximal subgroups of G (see Maxes(ct)) are
easily computed – see Exercise 4.5.4 and Corollary 4.13.6 – and can be found
in the GAP library. We may thus induce up the indecomposable 2-projective
characters of these subgroups and obtain further projectives:
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gap> Maxes(ct);
[ "L2(11)", "2ˆ3.7.3", "2xA5", "19:6", "11:10", "D6xD10", "7:6" ]
gap> for max in Maxes(ct) do
> ctu := CharacterTable( max) ; d := DecompositionMatrix(ctu mod 2);;
> pimsmax := TransposedMat(d)*Irr(ctu);;
> Append( proj, InducedClassFunctions( pimsmax, ct ) );
> od;
gap> proj := Set(proj);; Length(proj);
30

We tensor these 30 characters with all characters in Irr(G) and compute the B-
part (in GAP this means that one reduces the characters with Irr(G) \ Irr(B)).
The result is a list of 198 projective characters in 〈Φϕ | ϕ ∈ IBr(B) 〉N0 :

gap> tens := Tensored( Irr(ct), proj );;
gap> otherblocks := Difference( [1..Length(Irr(ct))] , irrB );
[ 2, 3, 4, 5, 9, 10, 11 ]
gap> projectives := Reduced( ct,Irr(ct){otherblocks}, tens ).remainders;;
gap> Length( projectives );
198

We sort these characters according to their norms and retain only the first nine.
Next, we test all

(9
5

)
= 126 subsets of size five whether or not they form a basic

set using Lemma 4.5.3:

gap> SortParallel( List(projectives, Norm), projectives );
gap> smallpro := projectives{[1..9]};;
gap> 5sets := Filtered( Combinations(smallpro), x -> Length(x) = 5 );;
gap> basicsets := Filtered( 5sets , x ->
> Determinant(MatScalarProducts(ct,sb,x)) in [-1,1] );;
gap> Length( basicsets );
17

Choosing a basic set Sp = {Ψ1, . . . ,Ψ5} := sp with minimal sum of norms we
compute the matrix A := [(Ψ, χ)G]Ψ∈Sp,χ∈Irr(B). It is easy to identify these
projective characters Ψi; see Exercise 4.5.2:

gap> SortParallel( List( basicsets,s -> Sum(List(s,Norm)) ), basicsets );
gap> A := MatScalarProducts( ct, Irr(ct){irrB}, basicsets[1] );;

A =


1 3 1 1 1 3 3 3
1 2 1 2 2 3 2 3
1 2 2 1 2 2 3 3
0 1 2 2 3 2 2 4
0 2 2 2 3 3 3 5

 , so U =


1 1 1 0 0
3 2 2 1 2
1 1 2 2 2
1 2 1 2 2
1 2 2 3 3


in the notation of Lemma 4.5.3. Also the transposed rows of A are sums of
columns of the (yet unknown) decomposition matrix DB . The matrix U1 (in
the notation of the proof of Lemma 4.5.3) is in our case the submatrix of DB

consisting of the first five rows.
Since ψ1 = ϕ1, the trivial Brauer character Φ1 := Φϕ1 is a summand in

any 2-projective character Ψ with (Ψ, χ1)G > 0. Hence we may find candidates



4.5 Basic sets 335

for the first column of DB by searching through the common p-subsums of all
such Ψ. Here a “p-subsum” of a character χ =

∑
χ∈Irr(G) aχχ is any generalized

p-projective character of the form
∑
χ∈Irr(G) bχχ, with 0 ≤ bχ ≤ aχ for all

χ ∈ Irr(G). It is easy to write a GAP program subs (see Exercise 4.5.3) which
computes all p-subsums of a given Ψ. For practical reasons it is convenient to
give Ψ by the vector of multiplicities of the irreducible constituents (thus, for
instance, Ψ1 by A[1], the first row of A).

gap> li := [];;
gap> for sp in basicsets do
> A1 := MatScalarProducts( ct, Irr(ct){irrB}, sp );
> A1 := Filtered( A1 , x -> x[1] > 0);
> ss := Intersection( List(A1 , y -> subs(ct,basm,y,irrB,2)) );;
> ss := Filtered( ss, y -> y[1] = 1 ); Add( li, ss );
> od;
gap> c1 := Intersection(li);
[ [ 1, 0, 0, 0, 1, 1, 1, 0 ], [ 1, 0, 0, 1, 1, 1, 0, 0 ],
[ 1, 0, 1, 0, 1, 0, 1, 0 ], [ 1, 0, 1, 1, 1, 0, 0, 0 ],
[ 1, 1, 0, 0, 0, 1, 1, 0 ], [ 1, 1, 0, 1, 0, 1, 0, 0 ],
[ 1, 1, 1, 0, 0, 0, 1, 0 ], [ 1, 1, 1, 1, 0, 0, 0, 0 ],
[ 1, 1, 1, 1, 1, 1, 1, 1 ] ]

Altogether we get only nine candidates for the first column of DB .
Let x1 ∈ c1. If the first column ofDB is x1T, and so Φ1 = x1 * Irr(ct){irrB},

we see from A that Ψi − Φ1 is a p-projective character for i = 1, . . . , 3 and
Ψ1 − Φ1 contains a projective indecomposable, say Φ2, containing χ6. This
means that we may subtract x1 from the first three rows of A and that then
the first row of A contains a p-subsum x2 with Φ2 = x2* Irr(ct){irrB}. Sim-
ilarly, if y2 is a row of A which is not in 〈x2〉N0 then it contains a p-subsum
x3 yielding another projective indecomposable. In this way we may enumerate
all possibilities for the projective indecomposable characters or, equivalently,
for the decomposition matrix. In each case we test the resulting matrix U1
consisting of the first five rows for unimodularity and then whether the re-
sulting candidates for the irreducible Brauer characters (obtained by multiply-
ing the inverse of U1 with [ψi(gj)]1≤i≤5,1≤j≤l, where g1, . . . , gl are representa-
tives of the 2-regular classes) have non-negative integral scalar products with
the projective characters we have selected. It is easy to write a one-line pro-
gram isinspan := function( v , lv ) which tests whether or not a vector
v ∈ N1×n

0 is in the N0-span of a list lv of vectors in N1×n
0 ; see Exercise 4.5.1:

gap> cand := [];;
gap> for x1 in c1 do
> a := ShallowCopy(A); a{[1,2,3]}:= [ a[1]-x1, a[2]-x1, a[3]-x1 ];
> for x2 in Filtered( subs(ct,basm,a[1],irrB,2), x -> x[2] > 0 ) do
> y2 := First( a, x -> not isinspan( x, [x2]) );
> for x3 in subs( ct,basm,y2,irrB,2 ) do
> y3 := First( a , x -> not isinspan( x, [x2,x3] ) );
> for x4 in subs( ct,basm,y3,irrB,2 ) do
> y4 := First( a , x -> not isinspan(x, [x2,x3,x4]) );
> for x5 in subs( ct,basm,y4,irrB,2 ) do
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> u := [ x1, x2, x3, x4, x5 ]; u1 := TransposedMat(u){[1..5]};
> if Rank(u) = 5 and Determinant(u1) in [1,-1] then
> m := MatScalarProducts( ct, u1ˆ-1 * sb, smallpro );
> if ForAll( m, y -> ForAll(y, x-> x >=0 and IsInt(x) ))
> then Add( cand, u );
> fi;
> fi;
> od;
> od;
> od;
> od;
> od;
gap> for mat in cand do Sort(mat); od;
gap> cand:= Set( cand );; cand := List(cand, Reversed);; Length( cand );
5

There are only five candidates for the decomposition matrix DB . These differ
only in their first column:

χ(1) χ ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

1 χ1 1 1 1 1 1 0 0 0 0
77 χ6 1 0 1 1 1 1 0 0 0
77 χ7 1 1 0 0 1 0 1 1 0
77 χ8 1 1 0 1 0 0 1 0 1
133 χ12 1 1 0 0 0 0 1 1 1
133 χ13 1 0 1 1 0 1 0 0 1
133 χ14 1 0 1 0 1 1 0 1 0
209 χ15 1 0 0 0 0 1 1 1 1

As one can see, one obtains the possibilities for the column corresponding to ϕ1
from the first one (the all-1-solution) by subtracting one of the other columns
(corresponding to ϕ2, . . . , ϕ5). This is quite a common phenomenon: typically
the decomposition matrix is determined up to some ambiguities resulting from
the fact that it is not obvious whether or not some columns of the given matrix
have to be subtracted from others in order to get the decomposition matrix; see
for example Exercise 4.5.5. Often it is hard, or even impossible, to decide when
one is working – as we are in this section – solely on the level of characters.

For the example above, Theorem 4.2.21 comes to our rescue. Since all ordi-
nary characters of G are real-valued the same is true for the Brauer characters
(see Theorem 4.2.16). So by Theorem 4.2.21 the degrees ϕi(1) must be even for
i = 2, . . . , 5. Since χ(1) is odd for all χ ∈ Irr(B), it is clear that all entries in
the first column must be odd, hence the first column of DB is the all-1-column.

The decomposition matrix of J1 was first computed by Fong (see [59]) with-
out the use of a computer. �

In the above example the Brauer characters were determined just by ana-
lyzing basic sets. This is quite exceptional. In general further methods have
to be used in conjunction with basic sets. We will demonstrate some of these,
including the method of condensation, in the following example.



4.5 Basic sets 337

Example 4.5.5 We consider the Mathieu group G := M22 over F := F4. We
start similarly as in Example 4.5.4 – to which we refer for some of the notation
– by producing 2-projective characters. Note that G has only one 2-block and
is a subgroup of M23, which has two complex conjugate defect-zero characters
ψ12, ψ13, which we restrict to G to obtain 2-projective characters. Also we will
use the known decomposition matrices of the maximal subgroups of G in order
to obtain further 2-projective characters of G:

gap> ct := CharacterTable( "M22" );; irrB := [1..Length(Irr(ct))];;
gap> ctm23 := CharacterTable( "M23" );;
gap> proj := RestrictedClassFunctions( Irr(ctm23){[12,13]}, ct );;
gap> for max in Maxes(ct) do
> ctu := CharacterTable( max ); d := DecompositionMatrix( ctu mod 2 );;
> pimsmax := TransposedMat(d) * Irr(ctu);;
> Append( proj, InducedClassFunctions( pimsmax, ct ) );
> od;
gap> projectives := Set( Tensored(Irr(ct), proj) );;
gap> SortParallel( List(projectives, Norm), projectives );
gap> smallpro := projectives{[1..10]};;
gap> basm := [ 1, 2, 3, 5, 6, 9, 10 ];; sb := Irr(ct){basm};;
gap> 7sets := Filtered( Combinations(smallpro), x -> Length(x) = 7 );;
gap> basicsets := Filtered( 7sets , x ->
> Determinant( MatScalarProducts(ct,sb,x) ) in [-1,1] );;
gap> SortParallel( List( basicsets, s -> Sum(List(s,Norm)) ), basicsets );
gap> A := MatScalarProducts( ct, Irr(ct), basicsets[1] );;
gap> Sort(A); A := Reversed(A);; Display(A);
[ [ 1, 1, 1, 1, 1, 1, 2, 4, 5, 5, 5, 7 ],
[ 0, 1, 1, 0, 1, 1, 2, 3, 1, 3, 3, 3 ],
[ 0, 1, 0, 1, 1, 1, 2, 3, 1, 3, 3, 3 ],
[ 0, 0, 1, 1, 1, 2, 3, 4, 4, 5, 5, 7 ],
[ 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1 ] ]

gap> List( A, y -> Length( subs(ct, basm, y, [1..Length(Irr(ct))],2) ) );
[ 391, 19, 19, 121, 1, 1, 1 ]

Note that A = [aij ] is the transpose of our first approximation to the 2-decomposition
matrix D of G. In fact, we see that the last three transposed rows of A are
columns of D because there are no proper 2-subsums. If

Ψi :=
12∑
i=1

aij χj then Ψ5 = (θ0)G, Ψ6 = (ψ12)G, Ψ7 = Ψ6,

where θ0 is a defect-zero character of M21 ∼= L3(4). Note that Ψ2 and Ψ3 must
contain a projective indecomposable character containing χ2, so we search the
subsums of A[2], A[3] for vectors with second entry “1”:

gap> c2 := Filtered( subs(ct,basm,A[2],irrB,2), y -> y[2]=1 );;
gap> c3 := Filtered( subs(ct,basm,A[3],irrB,2), y -> y[2]=1 );;
gap> Set( List( c2, x -> x{[1..5]}) ); Set( List( c3, x -> x{[1..5]}) );
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[ [ 0, 1, 1, 0, 1 ] ]
[ [ 0, 1, 0, 1, 1 ] ]

We see that the first five entries in A[2] and A[3] are uniquely determined.
Since χ4 = χ3 we must have a pair of complex conjugate 2-Brauer characters
ϕ2, ϕ3, and we conclude that

χ2|Gp′ = ϕ1 + ϕ2 + ϕ3, χ3|Gp′ = ϕ1 + ϕ2 + ϕ4, χ4|Gp′ = ϕ1 + ϕ3 + ϕ4.

Observe that ϕ4 must be real and, by Theorem 4.2.21, of even degree. It follows
that ϕ2(1) = ϕ3(1) = 10 and ϕ4(1) = 34, and χ5|Gp′ = ϕ1 + ϕ2 + ϕ3 + ϕ4.

Since ((χ6)M21 , θ0)M21 = 1, we see that χ6 must have a (real) constituent
ϕ5 ∈ IBr(G) with ϕ5(1) ≥ θ0(1) = 64. Hence χ6|Gp′ = ϕ1 + ϕ2 + ϕ3 + ϕ5 or
χ6|Gp′ = ϕ1 + ϕ4 + ϕ5 or χ6|Gp′ = ϕ1 + ϕ5, implying that ϕ5(1) is 78, 64 or
98, respectively. The first possibility is easily excluded considering the possible
2-subsums, but not the second one. Therefore we use the Meataxe to find out
how χ6|Gp′ decomposes into Brauer characters. We easily see that

ϕ2 · ϕ3 = χ6|Gp′ + ϕ1.

Also ϕ2, ϕ3 are composition factors of the natural permutation module V :

gap> V := PermutationGModule( MathieuGroup(22), GF(4) );;
gap> comps := Set( MTX.CompositionFactors(V) );;
gap> ibr := List( comps, W -> W.dimension );
[ 1, 1, 10, 10 ]
gap> V100 := TensorProductGModule( comps[3] , comps[4] );;
gap> compsV100 := Set( MTX.CompositionFactors(V100) );;
gap> List( compsV100, W -> W.dimension );
[ 1, 1, 98 ]

Thus χ6|Gp′ = ϕ1 + ϕ5 and ϕ5(1) = 98. We refine our matrix A:

gap> A{[2,3,4]} := [A[2]-A[5], A[3]-A[5], A[4] - 2*A[5]];; Display(A);
[ [ 1, 1, 1, 1, 1, 1, 2, 4, 5, 5, 5, 7 ],
[ 0, 1, 1, 0, 1, 0, 1, 2, 1, 2, 2, 2 ],
[ 0, 1, 0, 1, 1, 0, 1, 2, 1, 2, 2, 2 ],
[ 0, 0, 1, 1, 1, 0, 1, 2, 4, 3, 3, 5 ],
[ 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1 ] ]

There is a single pair ϕ6, ϕ7 of complex conjugate irreducible Brauer characters
missing. Also at this stage all columns of D are known except for the first and
fourth ones. There still are nine possibilities for D or its transpose A: we might
subtract A[6] + A[7] once or twice from A[1] or from A[4].

In order to decrease the possibilities we induce up ψ ∈ IBr(M21) with ψ(1) =
8 to G and compute the scalar products with Ψi :=

∑12
j=1 aij χj (1 ≤ i ≤ 7):

gap> ct1 := CharacterTable(Maxes(ct)[1]);;
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gap> psi := InducedClassFunction( Irr(ct1 mod 2)[2], ct1 );;
gap> psiG := InducedClassFunction( psi, ct );; Psis := A * Irr(ct);;
gap> MatScalarProducts(ct , Psis, [psiG] );
[ [ 4, 0, 0, 3, 0, 1, 1 ] ]

Table 4.1.

x1 x2 ϕ6(1) = ϕ7(1) Φ1 Φ4

4 3 35 Ψ1 Ψ4
4 1 69 Ψ1 Ψ4 − (Ψ6 + Ψ7)
2 3 36 Ψ1 − (Ψ6 + Ψ7) Ψ4
2 1 70 Ψ1 − (Ψ6 + Ψ7) Ψ4 − (Ψ6 + Ψ7)
0 3 37 Ψ1 − 2 (Ψ6 + Ψ7) Ψ4
0 1 71 Ψ1 − 2 (Ψ6 + Ψ7) Ψ4 − (Ψ6 + Ψ7)

We conclude that ψG = x1 ϕ1 + x2 ϕ4 + ϕ6 + ϕ7 with x1 ∈ {4, 2, 0} and x2 ∈
{3, 1}. Thus there are only six possibilities for D or, equivalently, for the
projective indecomposables Φi. Since ψG(1) = 8 ·22 = 176, we obtain Table 4.1.
So D is known if we know ϕ6(1). This can be easily decided using the Meataxe:

gap> W := TensorProductGModule( comps[3], compsV100[3] );;
gap> compsW := Set( MTX.CompositionFactors(W) );;
gap> ForAll( compsW , U -> MTX.IsAbsolutelyIrreducible(U) );
true
gap> Set( List( compsW , U -> U.dimension) );
[ 1, 10, 34, 70, 98 ]

Thus 70 ∈ {ϕ(1) | ϕ ∈ IBr(G)}, and DT is obtained from the above A by
subtracting the last two rows from the first and fourth ones:

DT =



1 1 1 1 1 1 2 4 1 3 3 3
. 1 1 . 1 . 1 2 1 2 2 2
. 1 . 1 1 . 1 2 1 2 2 2
. . 1 1 1 . 1 2 2 2 2 3
. . . . . 1 1 1 . 1 1 1
. . . . . . . . 1 1 . 1
. . . . . . . . 1 . 1 1


Here we could finish the decomposition matrix, because we were able to

construct a module V having a composition factor with one of the missing
Brauer characters. We now want to describe the condensation method which
would come to our rescue if such a module V and its composition factors could
not be computed directly. So we go back to the point where we still had six
possibilities for DT, which we now collect in a list cand:

gap> cand:= [];;
gap> for x in Cartesian([0,1,2], [0,1]) do
> a := ShallowCopy(A);
> a[1] := a[1] - x[1]*(a[6]+a[7]); a[4] := a[4] - x[2]*(a[6]+a[7]);
> Add(cand, a);
> od;
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We start by finding a permutation FG-module V of smallest possible di-
mension having composition factors with Brauer characters ϕ6, ϕ7. For this
we make use of the table of marks of G which is contained in the GAP library.
Let L(G) = {H1, . . . , Hn} be representatives of conjugacy classes of subgroups
of G, as in Definition 3.5.1. We compute perm := ((1Hi

)G)1≤i≤n and the list
permbrau of their Brauer characters, which we write as linear combinations of
the candidates for the irreducible Brauer characters of G:

gap> t := TableOfMarks( "M22" );;
gap> preg := Filtered( [1..Length(Irr(ct))],
> i -> not IsInt( OrdersClassRepresentatives(ct)[i]/2 ) );;
gap> perm := PermCharsTom(ct,t);; permbrau := List(perm, y -> y{preg});;
gap> for A in cand do
> ibr := TransposedMat( A{[1..7]}{basm} )ˆ-1 * sb;;
> ibr := List( ibr, y -> y{preg} );
> x := List( permbrau, y -> SolutionMat( ibr, y ) );;
> f := Filtered([1..Length(x)], i -> x[i][6] <>0 and x[i][7] <> 0);;
> Print( f[Length(f)]," , ", x[f[Length(f)]], "\n" );
> od;
149 , [ 10, 4, 4, 6, 1, 1, 1 ]
149 , [ 10, 4, 4, 4, 1, 1, 1 ]
149 , [ 8, 4, 4, 6, 1, 1, 1 ]
149 , [ 8, 4, 4, 4, 1, 1, 1 ]
149 , [ 6, 4, 4, 6, 1, 1, 1 ]
149 , [ 6, 4, 4, 4, 1, 1, 1 ]

We conclude that in each case V = (FH149)G is the permutation module we
were looking for. Its dimension is 462. We have also given the multiplicities
of the composition factors. We see that these multiplicities vary only for fac-
tors with Brauer character ϕ1 and ϕ4. Hence we choose an idempotent eH
with eHV4 
= {0}, where Vj is a simple FG-module with Brauer character
ϕj . Of course, H has to have odd order. So we search for a subgroup H
of odd order such that n4 
= 0, with nj := dimF (eHVj). Since |H| is odd,
nj = (ϕjH ,1H)H = (ϕj , θ)Gp′ , (see Exercise 4.3.1), where θ = (1H)G. This
is a p-projective character and is thus of the form θ =

∑7
j=1 xjΦj . By The-

orem 4.3.3, xj = nj , and we can compute nj by solving a system of linear
equations, which we do for each of the six candidates for the (Φ1, . . . ,Φ7):

gap> odds := Filtered([1..Length(perm)], i-> OrdersTom(t)[i] mod 2 <> 0);
[ 1, 3, 10, 13, 26, 28, 57, 94 ]
gap> thetas := perm{odds};;
gap> Filtered( [1..Length(odds)], i -> ForAll(cand ,
> A -> SolutionMat(A *Irr(ct), thetas[i])[4] <> 0) );
[ 1, 2, 3, 4, 5, 6 ]
gap> Display( List( cand, A -> SolutionMat(A *Irr(ct), thetas[6]) ) );
[ [ 1, 0, 0, 4, 8, 0, 0 ],
[ 1, 0, 0, 4, 8, 4, 4 ],
[ 1, 0, 0, 4, 8, 1, 1 ],
[ 1, 0, 0, 4, 8, 5, 5 ],
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[ 1, 0, 0, 4, 8, 2, 2 ],
[ 1, 0, 0, 4, 8, 6, 6 ] ]

There are eight conjugacy classes of subgroups of odd order, and we see that
H := H28 (of order 11) is the group with maximal order we were looking for
and which we choose as the condensation subgroup. Furthermore, eHVj = {0}
for j = 2, 3 in all cases and eHVj 
= {0} for j 
= 2, 3 in all cases except for
A = cand[1]. In view of Theorem 1.6.11, we expect the multiplicities of the
composition factors for the eHAeH -module eHV as shown in Table 4.2.

Table 4.2. Multiplicities of the composition factors

A multiplicities

cand[1] 10,6,1
cand[2] 10,4,1,1,1
cand[3] 8,6,1,1,1
cand[4] 8,4,1,1,1
cand[5] 6,6,1,1,1
cand[6] 6,4,1,1,1

We now construct the action of G on the cosets of H149 in GAP:

gap> s := RepresentativeTom( t, 149 );;
gap> G := UnderlyingGroup( t );;
gap> trans := RightTransversal( G, s );;
gap> g := Action( G, trans, OnRight );;

We finish by computing the matrices of the action of a few randomly selected
elements of the form eHgeH on the condensed module eHV , where we make use
of the GAP code from Exercise 1.6.4 stored in the file cond.gap, which we read
in first. Finally, we use the GAP Meataxe to find the composition factors and
their multiplicities in the condensed module for the algebra CA ⊆ eHFGeH
generated by the selected elements. Since GAP works with right modules, we
have transposed the matrices in order to translate to our situation. Note that
the dimension of the condensed module eHV is 42, the number of orbits of H,
whereas dimV = 462.

gap> Read("cond.gap");
gap> H := RepresentativeTomByGenerators( t, 28, GeneratorsOfGroup(g) );;
gap> mats:= List( [g.1, g.2, g.1*g.2, g.1*g.2ˆ2*g.1*g.2, g.2ˆ2*g.1*g.2ˆ2],
> g -> TransposedMat( cond( H, 462, g, 2 ) ) );;
gap> m := GModuleByMats( mats, GF(4) );;
gap> List( MTX.CollectedFactors( m ), x -> [x[1].dimension, x[2]] );
[ [ 1, 8 ], [ 4, 4 ], [ 5, 1 ], [ 5, 1 ], [ 8, 1 ] ]

We see that the CA-module eHV has no composition factor with multiplicity
greater than eight and only one composition factor with multiplicity greater
than four. This is compatible only with A ∈ {cand[4], cand[6]}, thus ϕ6(1) ∈
{70, 71}. This last ambiguity could be resolved by showing that CA = eHFGeH .

The Brauer character table of M22 was first computed by James in [95] using
only characters. In order to determine ϕ5(1) and ϕ6(1) he first computed some
Brauer characters of 3 ·M22 and M23. �
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A further application of condensation is the determination of the structure of
the projective indecomposable FG-modules; see [114]. Moreover, Exercise 4.5.8
shows that if we look at a condensed module eHV , then the trace of an element
eHgeH in the condensed module eHV is just 1

|H|
∑
h∈H traceV (hg). This has

been applied to determine the irreducible Brauer characters of the sporadic
simple Lyons group for p = 37 and 67; see [122]. Historically one of the first
uses of condensation consisted in finding vectors in a given FG-module that
lie in a proper FG-submodule, thereby avoiding the step of computing the null
space of matrices, as usually done in the Meataxe algorithm; see Section 1.3.

Exercises
Exercise 4.5.1 Let v ∈ N1×n

0 and let lv be a list of vectors in N1×n
0 . Show that

the following GAP program returns true if v ∈ 〈lv〉N0 and false otherwise:

isinspan := function( v , lv )
return( v in List (Cartesian(List(lv, x-> [0..Maximum(v)])),x -> x*lv) );
end;

Try to write a more efficient program, which also works for larger n.

Exercise 4.5.2 Using the notation of Example 4.5.4 and writing Irr(L2(11)) =
{ψ1, . . . , ψ8}, show that the projective characters Ψ1, . . . ,Ψ5 are the B-parts of

ψG1 + ψG6 , χ2
2, χ3

2, χ2 · χ3, χ2 · χ4.

Hint: Consider

gap> List(A, x -> Position( MatScalarProducts(t,Irr(t){irrB},tens), x ));
[ 9, 13, 26, 14, 37 ]

and examine how the characters in tens were formed.

Exercise 4.5.3 Show that the following GAP program computes the p-subsums
needed in Example 4.5.4. Here we assume that ct is the character table of G
and B ∈ Blp(G). Furthermore irrB, basm and vec are lists such that Irr(B) =
Irr(ct){irrB}, Irr(ct){basm} is a basic set of Brauer characters of B, and
vec * Irr(ct){irrB} is a p-projective character of G:

subs := function( ct, basm, vec, irrB, p )
local nullv, x, y, v, cands, psing, preg, rest, relations;
cands := [];
psing := Filtered( [1..Length(Irr(ct))],

i->IsInt( OrdersClassRepresentatives(ct)[i]/p ) );
preg := Difference( [1..Length(Irr(ct))], psing );
nullv := List( [1..Length(psing)], x -> 0 );
rest := Difference( irrB, basm );
relations := List( rest, i -> SolutionMat( Irr(ct){basm}{preg},

Irr(ct)[i]{preg} ) );;
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for x in Cartesian ( List( vec{List(basm, i -> Position(irrB,i) )} ,
c -> [0..c] ) ) do

v:= [] ; v{List( basm, i -> Position(irrB,i) )} := x;
v{List( rest, i -> Position(irrB,i) )} := List([1..Length(rest)],

i-> x*relations[i]);
y := v * Irr(ct){irrB};;
if ForAll( v, c -> c >= 0 ) and y{psing} = nullv

and ForAll( [1..Length(v)] , i -> v[i] <= vec[i] ) and Sum(v) > 0
then Add( cands, v );

fi;
od;
return(cands);
end;;

Exercise 4.5.4 Show that the 2-decomposition matrix for the simple group
L2(11) is given as below (the ordinary irreducible characters are labeled as in
GAP).

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

χ1 1 . . . . .
χ2 . 1 . . . .
χ3 . . 1 . . .
χ4 . . . 1 . .
χ5 . . . 1 . .
χ6 1 1 1 . . .
χ7 . . . . 1 .
χ8 . . . . . 1

Hint: Induce the 2-projective indecomposable characters of the maximal sub-
group 11: 5 to L2(11).

Exercise 4.5.5 (a) Verify that the sporadic simple Mathieu group M11 =
〈x, y〉 with x := (2, 10)(4, 11)(5, 7)(8, 9) and y := (1, 4, 3, 8)(2, 5, 6, 9) has two
2-blocks of defect zero with ordinary characters χ5, respectively χ6, and that
the only 2-block not of defect zero is the principal block B0. Show that the
restrictions of the ordinary irreducible characters ϕ1 := χ1|2′ , ϕ2 := χ2|2′ and
ϕ3 := χ8|2′ to the 2-regular classes form a basic set for B0.

(b) By restricting the basic set to the maximal subgroup L2(11), show that ϕ1
and ϕ2 are irreducible and that ϕ3 is either irreducible or the sum of ϕ2 and an
irreducible Brauer character of degree 34.

(c) Let eH be the fix idempotent of a Sylow 3-subgroup H. Verify that if S is
a simple F2M11-module in the principal block, then eHS is non-zero for both
cases in (b).

(d) Use the results of Example 1.6.14 to prove that ϕ3 is indeed the Brauer
character of an irreducible F2M11-module. Thus the 2-decomposition matrix of
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M11 is as follows:
ϕi(1) : 1 10 44 16 16

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

χ1 1 . . . .
χ2 . 1 . . .
χ3 . 1 . . .
χ4 . 1 . . .
χ5 1 1 . . .
χ8 . . 1 . .
χ9 1 . 1 . .
χ6 . . . 1 .
χ7 . . . . 1

Exercise 4.5.6 (a) Show that the sporadic simple Mathieu group M22 has
exactly seven irreducible Brauer characters in characteristic two all lying in the
principal block.

(b) Using GAP show that the restrictions to the 2-regular classes of the ordinary
irreducible characters χ1, χ2, χ3, χ4, χ6, χ9, χ10 are Z-linearly independent.

(c) Show that the characters do not Z-span Z IBr2(M22).

Exercise 4.5.7 Let G be a finite group and let p be a prime. Show that a
generalized p-projective character Φ can be written as Z-linear combination of
projective characters induced from the p-elementary subgroups of G. Conclude
that the set of all induced projective indecomposable characters from all maxi-
mal subgroups of G spans 〈Φϕ|ϕ ∈ IBr(B)〉Z.
Hint: Use Brauer’s induction Theorem 3.10.7.

Exercise 4.5.8 Let G be a finite group, p a prime and H be a subgroup of G
of order prime to p and eH := 1

H

∑
h∈H h. Show that for a given FG-module V

and g ∈ G the following equation holds:

traceeHV (eHgeH) =
1
|H|

∑
h∈H

traceV (hg).

4.6 Defect groups

In this section we will assign to each block a p-subgroup called a defect group
of the block. We will see how the order of the defect group is closely related to
the defect of the block, and we will study in detail the structure of blocks where
the defect group is in the center. We retain the assumption that (K,R, F, η) is
a p-modular splitting system for the finite group G.

Definition 4.6.1 For g ∈ G any element of

Defp(gG) := {P | P ∈ Sylp(CG(h)), h ∈ gG}

is called a (p-)defect group of C := gG ∈ cl(G).
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Remark 4.6.2 If D is a p-defect group of C ∈ cl(G) then Defp(C) = {Dh |
h ∈ G}. If |D| = pd then d is called the p-defect of C.

We will use the following notation for subgroups Q,P of G:

Q ≤G P means there is g ∈ G with g−1Qg ≤ P.

The following theorem shows that in characteristic p one can construct an ideal
in Z(FG) given a p-subgroup P of G.

Theorem 4.6.3 If P is a p-subgroup of G then

ZP (FG) := 〈 C+ | C ∈ cl(G) with Q ≤G P for Q ∈ Defp(C) 〉F

is an ideal in Z(FG).

Proof. Let Ci, Cj be conjugacy classes of G and Di ∈ Defp(Ci) and Dj ∈
Defp(Cj). By Remark 2.3.1, C+

i C
+
j =

∑
x∈G αxx, with

αx = |Ω|1F with Ω := {(g, h) | g ∈ Ci, h ∈ Cj with gh = x}.

Let αx 
= 0 and Q ∈ Defp(xG). The centralizer CG(x), and hence also Q, acts
on Ω by conjugation. Since αx 
= 0, the p-group Q must fix some (g, h) ∈ Ω,
and hence Q ≤G Di and Q ≤G Dj .

Definition 4.6.4 Let B be a p-block of G with block idempotent εB . A p-
subgroup D of G is called a defect group for B if ε̂B ∈ ZD(FG) but ε̂B 
∈
ZQ(FG) for any proper subgroup Q of D. We will denote the set of defect
groups of B by Def(B).

Theorem 4.6.5 If B is a p-block of G with block idempotent εB and D ∈
Def(B) then

ε̂B ∈ ZQ(FG) if and only if D ≤G Q.

In particular, any two defect groups of B are conjugate.

Proof. Firstly, if D ≤G Q then, by definition, ε̂B ∈ ZD(FG) ≤ ZQ(FG).
Secondly, D ∈ Def(B) implies that ε̂B =

∑
g∈G αgg with αg ∈ F and 0 
= αg

implies that H ≤G D for H ∈ Defp(gG). Also ε̂B 
∈ ZH(FG) for any proper
subgroup H of D, and by Rosenberg’s lemma (Lemma 1.6.10)

ε̂B 
∈
∑
H<D

ZH(FG).

Hence there must be some g with αg 
= 0 and D ∈ Defp(gG). So if ε̂B ∈ ZQ(FG)
then D ≤G Q.
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Theorem 4.6.6 (Min–max) Let B be a p-block with defect group D and let
ε̂B =

∑
C∈cl(G) αC C+ ∈ Z(FG). Assume that C ∈ cl(G) and Q ∈ Defp(C).

Then

(a) if ω̂B(C+) 
= 0 then D ≤G Q;

(b) if αC 
= 0 then Q ≤G D;

(c) there is a conjugacy class C of G with ω̂B(C+) 
= 0 and αC 
= 0, and for
any such class – usually called defect class of B – one has D ∈ Defp(C).

Proof. (a) Since ω̂B(C+) 
= 0 it follows that C+ ∈ ZQ(FG) is not contained
in the maximal ideal ker(ω̂B) � Z(FG). Hence Z(FG) = ker(ω̂B) + ZQ(FG).
By Rosenberg’s lemma (Lemma 1.6.10) ε̂B ∈ ZQ(FG), because ε̂B 
∈ ker(ω̂B).
Now (a) follows from Theorem 4.6.5.

(b) holds because ε̂B ∈ ZD(FG).
(c) We have

1F = ω̂B(ε̂B) = ω̂B(
∑

C∈cl(G)

αC C+) =
∑

C∈cl(G)

αC ω̂B(C+).

Hence there is a class C with the properties claimed. The rest follows from (a)
and (b) because D ≤G Q ≤G D implies that D and Q are conjugate.

Example 4.6.7 In Example 4.4.9 (where G = S5) we immediately see from
the table of central characters and block idempotents that B1 = B0(G) and B2
each have just one defect class, namely 1a and 3a, respectively. From this we
see that P ∈ Sylp(G) is a defect group of B0(G) – obviously, this holds for the
principal p-block B0(G) of any group G – and 〈(1, 2)〉 ∈ Def(B2). On the other
hand, we see in the same example that the non-principal 2-block b2 of A5 of
defect zero has three defect classes, namely 3a, 5a and 5b. �

Theorem 4.6.8 If D is a defect group of the p-block B then |D| = pd(B).

Proof. Let |D| = pd and let Cd = gGd be a defect class of B. Let χ ∈ Irr(B)

with hp(χ) = 0. Since ω̂B(C+
d ) = ̂ωχ(C+

d ) 
= 0, it follows that

ωχ(C+) =
χ(gd)|Cd|
χ(1)

∈ R \ πR.

Assume that νπ(p) = e, so that νp(a) = eνπ(a) for a ∈ Q \ {0}. Then putting
νp(|G|) = a, so that νp(|Cd|) = a− d, we obtain

0 = νπ(ωχ(C+)) = νπ(χ(gd)) + νπ(|Cd|)− νπ(χ(1))
= νπ(χ(gd)) + e(a− d)− e(a− d(B)) = νπ(χ(gd)) + e(d(B)− d)
≥ d(B)− d,

since νπ(χ(gd)) ≥ 0. Hence d(B) ≤ d.
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On the other hand, let εB =
∑
C∈cl(G) aC C+ ∈ Z(RG) be the block idem-

potent of B. Then aCd

∈ πR, that is νπ(aCd

) = 0. We have by Corollary 2.1.7

aCd
=

1
|G|

∑
χ∈Irr(B)

χ(1)χ(g−1
d )

=
1
|G|

∑
χ∈Irr(B)

∑
ϕ∈IBr(B)

dχ,ϕ χ(1)ϕ(g−1
d )

=
1
|G|

∑
ϕ∈IBr(B)

Φϕ(1)ϕ(g−1
d ).

Since by Lemma 4.3.2 Φϕ(1)
|G| ∈ R, there must be a ϕ ∈ IBr(B) with ϕ(g−1

d ) 
∈ πR.
By Lemma 4.4.6, ϕ ∈ 〈χ|G′ | χ ∈ Irr(B)〉Z, so there is a χ′ ∈ Irr(B) with
χ′(g−1

d ) 
∈ πR. Since
χ′(gd)|Cd|
χ′(1)

= ωχ′(C+
d ) ∈ R,

we get νπ( |Cd|
χ′(1) ) ≥ 0 and thus νp(χ′(1)) ≤ νp(|Cd|). Hence

νp(χ′(1)) = a− d(B) + hp(χ′) ≤ νp(|Cd|) = a− d

and d ≤ d(B)− hp(χ′) ≤ d(B), as claimed.

We recall some standard notations from group theory.

Definition 4.6.9 If p is a prime Op(G) denotes the largest normal p-subgroup
of G. Obviously Op(G) is the intersection of all Sylow p-subgroups of G. Simi-
larly, Op′(G) is the largest normal p′-subgroup of G.

Theorem 4.6.10 If B is a p-block of G and C is a conjugacy class of G with
C ∩CG(Op(G)) = ∅ then ω̂B(C+) = 0. In particular,

Op(G) ≤ D for every D ∈ Def(B).

Proof. Put P := Op(G) and let C be a class of G with C ∩CG(P ) = ∅. By
Corollary 1.4.7 it suffices to show that C+ ∈ J(FG). Let δ : FG → EndF V be
an irreducible representation. Then P ⊆ ker δ|G (see Corollary 3.6.3), and

C = hP1 ∪̇ · · · ∪̇ hPm for some hi ∈ C

and δ(hgi ) = δ(hi)δ([hi, g]) = δ(hi), since the commutator [hi, g] ∈ P . Our
assumption implies that each orbit hPi is non-trivial and has length ni divisible
by p. Thus δ(C+) = n1δ(hi) + · · ·+ nmδ(hm) = 0. By Theorem 1.4.6 we have
C+ ∈ J(FG).

For the last assertion, observe that D ∈ Defp(Cd) for a defect class Cd of B
and ω̂B(C+

d ) 
= 0. Hence Cd ≤ CG(Op(G)), because CG(Op(G)) �G.
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We continue by giving a description of the relationship between the blocks
of a group G and those of a factor G/N .

Lemma 4.6.11 Let N �G with canonical homomorphism γ : G → Ḡ := G/N
and B̄ ∈ Blp(Ḡ). Then there is a unique block B ∈ Blp(G) such that

{χ̄ ◦ γ | χ̄ ∈ Irr(B̄)} ⊆ Irr(B) and {ϕ̄ ◦ γ | ϕ̄ ∈ IBr(B̄)} ⊆ IBr(B).

We will write Infγ(B̄) := B. Now assume that N is a p-subgroup and G =
N CG(N). Then Blp(Ḡ) → Blp(G), B̄ �→ Infγ(B̄) is bijective and
IBr(Infγ(B̄)) = {ϕ̄ ◦ γ | ϕ̄ ∈ IBr(B̄)}. The Cartan matrices are related by

C(Infγ(B̄)) = |N | · C(B̄) and d(Infγ(B̄)) = d(B̄) + νp(|N |).

Proof. If χ̄ ∈ Irr(Ḡ), then χ := χ̄ ◦ γ ∈ Irr(G), and for C = gG ∈ cl(G)

ωχ(C+) = [γ−1(CḠ(γ(g))) : CG(g)] ωχ̄(C̄+),

where C̄ = γ(C). By Theorem 4.4.8 (and its proof) it follows that if χ̄ and χ̄′

belong to the same p-block of Ḡ then χ and χ′ belong to the same p-block of
G. Thus there is a unique B ∈ Blp(G) with {χ̄ ◦ γ | χ̄ ∈ Irr(B̄)} ⊆ Irr(B). If
χ̄ ∈ Irr(B̄) and g ∈ Gp′

χ̄ ◦ γ(g) = χ̄(γ(g)) =
∑

ϕ̄∈IBr(B̄)

dχ̄,ϕ̄ ϕ̄(γ(g)) =
∑

ϕ̄∈IBr(B̄)

dχ̄,ϕ̄ ϕ̄ ◦ γ(g).

Hence {ϕ̄ ◦ γ | ϕ̄ ∈ IBr(B̄)} ⊆ IBr(B).
Now assume that N is a normal p-subgroup of G. Then, by Corollary 3.6.3,

every simple FG-module is the inflation of a simple FḠ-module and hence
IBr(G) = {ϕ̄ ◦ γ | ϕ̄ ∈ IBr(Ḡ)}. If in addition G = N CG(N) and H/N is a
p′-subgroup of Ḡ, then, by the Schur–Zassenhaus theorem, H = N × C for a
p′-subgroup C ≤ H. Therefore γ induces a bijection Gp′ → Ḡp′ . Hence, for
ϕ,ϕ′ ∈ IBr(G),

(ϕ,ϕ′)Gp′ =
1
|G|

∑
g∈Gp′

ϕ(g)ϕ′(g−1)=
1
|N |

1
|Ḡ|

∑
ḡ∈Ḡp′

ϕ̄(ḡ)ϕ̄′(ḡ−1)=
1
|N | (ϕ̄, ϕ̄

′)Ḡp′ .

Denoting the Cartan matrices of G and Ḡ by C(G) and C(Ḡ), respectively, we
obtain from Theorem 4.3.3, equation (4.18), that C(G) = |N | · C(Ḡ). Thus G
and Ḡ have the same number of p-blocks, Blp(Ḡ) → Blp(G) , B̄ �→ Infγ(B̄) is
bijective and IBr(Infγ(B̄)) = {ϕ̄ ◦ γ | ϕ̄ ∈ IBr(B̄)}. From Exercise 4.4.1 we
conclude that d(Infγ(B̄))− d(B̄) = νp(|G|)− νp(|Ḡ|) = νp(|N |).

As a consequence we can describe the p-blocks B ∈ Blp(G) with defect
groups D satisfying G = DCG(D).
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Theorem 4.6.12 Let B ∈ Blp(G) with Def(B) = {D} and G = DCG(D).
Then there is a unique character θ ∈ Irr(B) with D ≤ ker θ. This character is
usually called the canonical character of B. Furthermore IBr(B) = {ϕ} with
ϕ = θ|Gp′ and Irr(B) = {θλ | λ ∈ Irr(D)}, where θλ is given by

θλ(g) =
{
λ(gp)θ(gp′) for g ∈ G, gp ∈ D,

0 for g ∈ G, gp 
∈ D.
(4.24)

If in addition D is cyclic, then the projective indecomposable FG-module be-
longing to B is “uniserial,” that is, it has a unique composition series.

Proof. Let γ : G → Ḡ = G/D be the canonical homomorphism. By
Lemma 4.6.11, B = Infγ(B̄) for a unique block B̄ ∈ Blp(Ḡ), and, since d(B) =
νp(|D|), it follows that B̄ has defect zero. Theorem 4.4.14 implies that there is a
unique character θ̄ with Irr(B̄) = {θ̄} and IBr(B̄) = {θ̄|Ḡ′

p
}. Hence θ := θ̄ ◦ γ is

the only ordinary irreducible character of B havingD in its kernel and ϕ := θ|Gp′
is the only irreducible Brauer character belonging to B.

For λ ∈ Irr(D) define θλ(g) by (4.24). Every elementary subgroup of G
(see Definition 3.10.3) is contained in a subgroup of the form P × H with a
p-subgroup P ≥ D of G and H ≤ G a p′-group. Then for µ ∈ Irr(P ) and
ψ ∈ Irr(H)

(θλ|P×H , µ× ψ)P×H =
1
|P |

∑
x∈D

λ(x)µ(x−1) · (θH , ψ)H

=
1

[P : D]
(λ , µD)D · (θH , ψ)H ∈ Z

because [P : D] | (θH , ψ)H by Exercise 4.6.1. Theorem 3.10.9, together with
Corollary 3.7.6, shows that θλ is a generalized character. From

(θλ, θλ)G =
1
|G|

∑
ḡ∈Ḡ

∑
d∈D

|λ(d)|2|θ̄(ḡ)|2 =
1
|Ḡ|

∑
ḡ∈Ḡ

|θ̄(ḡ)|2 = (θ, θ)G = 1,

we conclude that θλ ∈ Irr(G). Since θλ|Gp′ = θGp′ = ϕ, it follows that Irr(B) ⊇
{θλ | λ ∈ Irr(D)}. We have equality because C(B) = [|D|] by Lemma 4.6.11.

Let V be a projective indecomposable FG-module belonging to B. In order
to prove that V is uniserial, it is sufficient to show that the length r(V ) of the
radical series of V is not less than (and hence equal to) l(V ) = |D|, since C(B) =
[|D|]. On the other hand, VD is projective, hence free, and by Example 1.1.23
r(VD) = |D|. Thus r(V ) ≥ |D| = l(V ).

Exercises

Exercise 4.6.1 Let χ ∈ Irr(G) with dp(χ) = d. Show that χ(g) pd

| CG(g)|p ∈ R

for every g ∈ G. Assume thatH ≤ G with p � |H| and let pr = minh∈H |CG(h)|p.
Conclude that pr−d | (χH , ψ)H for every ψ ∈ Irr(H) provided that r ≥ d.
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The following exercise shows that a defect class for a block might depend on the
choice of the p-modular splitting system.

Exercise 4.6.2 Let G be the simple group U3(4) and let (K,R, F, η) be a
standard 3-modular splitting system for G; see Definition 4.2.10.

(a) Let g ∈ G have order 13. Show that there is a B ∈ Bl3(G) such that gG,
(g−1)G are defect classes of B and (g5)G, (g−5)G are not defect classes of B.

(b) Using a compatible sequence containing X3 +X2 −X + 1 ∈ F3[X] instead
of the Conway polynomial f3,3 show that there is a 3-modular splitting system
for G such that (g5)G, (g−5)G are defect classes of B and not gG, (g−1)G.

The following exercise demonstrates that the number of defect classes with a
given defect d may be less than the number of blocks of defect d.

Exercise 4.6.3 Let G be the simple group U3(3) and let p = 2. Show that
there are exactly two 2-blocks B1, B2 of defect zero. Furthermore, show that
there is exactly one G-conjugacy class, which is the unique defect class for B1,
and that this class is also the unique defect class for B2.

Exercise 4.6.4 Let G be the sporadic simple group J2 and let p = 2. Show that
Blp(G) = {B0(G), B1}, and that 3b, 5a, 5b (in the notation of the ATLAS ([38])
or the GAP library of character tables) are defect classes for B1. Conclude that a
defect group D ∈ Def(B1) is isomorphic to V4 and that N := NG(D) ∼= A5×A4
is a maximal subgroup of G (see [38]). Show that Blp(N) = {B0(N), b1} and
k(b1) = k0(b1) = k(B1) = k0(B1) = 4, where ki(B) denotes the number of
ordinary irreducible characters of the block B having height i. Compute the
decomposition matrix D(b1) and show that D(b1) 
= D(B1) (for any ordering
of Irr(B1) and IBr(B1) ) although l(b1) = l(B1) = 3. Furthermore, let P ∈
Defp(B0(G)) and N0 := NG(P ). Show that N0 has only the principal 2-block
b0 and ( ki(b0) | i ∈ N0 ) = ( 8, 2, 6, 3, 0, 0, . . . ), compared with ( ki(B0(G)) | i ∈
N0 ) = ( 8, 6, 2, 0, 4, 0, 0, . . . ). Also verify that l(b0) = 3 and l(B0(G)) = 7.
Hint: N0 may be computed using a permutation representation of G obtained
in GAP by PrimitiveGroup(100,1).

4.7 Brauer correspondence

In this section we assume that (K,R, F, η) is a p-modular splitting system for
G and all its subgroups. Furthermore S ∈ {R,F}. We recall our convention
that all SG-modules considered are free and finitely generated as S-modules.
As before πR is the maximal ideal of R. We will now introduce a concept that
allows us to to relate under favorable circumstances blocks of a subgroup H to
blocks of G. One of the highlights we look at is Brauer’s first main theorem,
which basically says that for a given p-subgroup P the blocks of NG(P ) and G
with defect group P are in one-to-one correspondence.
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Definition 4.7.1 For a ring S and a subgroup H ≤ G we define an S-linear
map

sH : Z(SG) → Z(SH) by C+ �→ (C ∩H)+ for C ∈ cl(G).

Observe that C ∩H is a union of conjugacy classes of H, so that (C ∩H)+ is
indeed in Z(SH) for any conjugacy class C ∈ cl(G). As always, we follow the
custom that an empty sum is zero.

Of course, sH depends on the ring S, but that will be clear from the context.
Note that η : R→ F may be extended to ring homomorphisms Z(RG) → Z(FG)
and Z(RH) → Z(FH) (see Exercise 4.4.4), which will also be denoted by η. It
follows for instance that

sH(η(z)) = η(sH(z)) for z ∈ Z(RG). (4.25)

If b is a p-block of H then ω̂b ◦ sH : Z(FG) → F is an F -linear map. If this
happens to be an F -algebra homomorphism then there is a p-block B of G with

ω̂B = ω̂b ◦ sH .

In this case we will say that “bG is defined” and put bG := B. The block bG

is then also called the block induced by b and we will write ω̂Gb := ω̂bG .
We remark that in the literature one can find several different ways to define

block induction, any two of which are equivalent on their common domain of
definition. For a discussion, see [20].

Before turning to the question under what conditions bG is defined, we show
that the defect groups of b and bG correspond nicely when bG is defined.

Lemma 4.7.2 Let b be a p-block of H ≤ G. If bG is defined then every defect
group Db of b is contained in some defect group of bG.

Proof. Let C be a defect class of bG. Then

ω̂b(sH(C+)) = ω̂bG(C+) 
= 0.

In particular, C ∩H 
= ∅ and there is an h ∈ C ∩H with ω̂b((hH)+) 
= 0. The
min–max theorem (Theorem 4.6.6) implies that Db ≤H Q for Q ∈ Sylp(CH(h)).
Hence Q is contained in CG(h), and therefore in some D ∈ Sylp(CG(h)). Since
h ∈ C and C is a defect class of bG, we have D ∈ Def(bG).

We now come to the somewhat technical problem of how to decide when
bG is defined. In order to compute ω̂b ◦ sH the following lemma is quite useful.
Here it is convenient to extend the definition of ωχ to the case where χ is not
necessarily irreducible.

Definition 4.7.3 If ψ ∈ cf(G,K) and ψ(1) 
= 0 we define a K-linear map

ωψ : Z(KG) → K , C+ �→ |C|ψ(g)
ψ(1)

for C = gG ∈ cl(G).
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Lemma 4.7.4 Let ψ =
∑
χ∈Irr(G) aχχ ∈ cf(G,K), ψ(1) 
= 0 and B ∈ Blp(G).

Then

ψ(1) ωψ =
∑

χ∈Irr(G)

aχ χ(1) ωχ, (4.26)

ωψ(εBC+) =
|C| ψB(g)
ψ(1)

for gG = C ∈ cl(G). (4.27)

Proof. Equation (4.26) follows immediately from the definition. For (4.27)
recall that ψB is the B-part of ψ (see Definition 4.4.4). Then for C = gG

ψ(1) ωψ(εBC+) =
∑

χ∈Irr(G)

aχχ(1) ωχ(εBC+) =
∑

χ∈Irr(B)

aχχ(1) ωχ(C+)

=
∑

χ∈Irr(B)

aχ|C|χ(g) = |C|ψB(g).

Lemma 4.7.5 Let H ≤ G and θ ∈ cf(H,K) with θ(1) 
= 0. Then

ωθ ◦ sH = ωθG ,

where θG ∈ cf(G,K) is the induced class function (see Definition 3.2.7). In
particular, if θ ∈ Irr(b) for b ∈ Blp(H) and θG ∈ Irr(G), then bG is defined and
θG ∈ Irr(bG).

Proof. Let gG ∩H = hH1 ∪̇ · · · ∪̇hHr with hi ∈ H. By Lemma 3.2.7 we have

θG(g) =
r∑
i=1

|CG(g)|
|CH(hi)|

θ(hi).

On the other hand, let C := gG, then

ωθ ◦ sH(C+) = ωθ((C ∩H)+) =
r∑
i=1

|H|
|CH(hi)|

θ(hi)
θ(1)

=
|H|

|CG(g)|
1
θ(1)

r∑
i=1

|CG(g)|
|CH(hi)|

θ(hi)

=
|gG|θG(g)
θG(1)

= ωθG(C+).

If θ ∈ Irr(b) then by (4.21), p. 324,

ω̂b ◦ sH(C+) = η(ωθ(sH(C+))) = η(ωθG(C+)) = ω̂B(C+),

where the final equation holds only if θG is irreducible and belongs to the block
B.
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Clifford correspondence provides an example where Lemma 4.7.5 can be
used, as seen in the following example.

Example 4.7.6 Assume that N � G and ϕ ∈ Irr(N) with T := TG(ϕ). By
Corollary 3.6.8 we have a bijection Irr( T | ϕ ) → Irr( G | ϕ ), ψ �→ ψG. Let
ψ ∈ Irr( T | ϕ ) belong to b ∈ Blp(T ). By Lemma 4.7.5 B := bG is defined and
ψG ∈ Irr(B). �

If H ≤ G and the character tables of H and G are known together with the
fusion map of the conjugacy classes of H to the conjugacy classes of G, then
Lemma 4.7.5 can be used to compute ω̂b ◦ sH for all b ∈ Blp(H) and one can
decide whether or not bG is defined.

Theorem 4.7.7 Let H ≤ G and b ∈ Blp(H). Then bG is defined and bG =
B ∈ Blp(G) if and only if for some χ ∈ Irr(B) and θ ∈ Irr(b) and every g ∈ G
we have

(ωθG((gG)+)− ωχ((gG)+) )ϕ(m) ∈ pR, (4.28)

where m is the order of g and ϕ is the Eulerian function. In particular, this is
independent of the choice of the p-modular splitting system (K,R, F, η).

Proof. By definition bG is defined and bG = B ∈ Blp(G) if and only if

ag := ωθG((gG)+)− ωχ((gG)+) ∈ ker η (4.29)

for all g ∈ G. Obviously (4.28) implies (4.29). Conversely, assume that (4.29)
holds for all g ∈ G. From Corollary 2.3.3 and Exercise 4.7.2 it follows that
ag ∈ R′

m, the ring of algebraic integers in Qm, where m is the order of g. Hence
ag ∈ π(R∩Qm) for some prime element π. If γ ∈ Gal(Qm/Q) and γ(ζm) = ζjm
then γ(ag) = agj ∈ π(R ∩Qm). Let

f =
∏

γ∈Gal(Qm/Q)

(X − γ(ag)) ∈ R′
m[X].

Since f is invariant under Gal(Qm/Q), it is in Z[X]. Also all coefficients except
for the leading coefficient are in πR ∩ Z = pZ. Hence

0 = f(ag) ≡ aϕ(m)
g mod p.

Example 4.7.8 We want to investigate for which 2-blocks b of subgroups of
G = M11 or G = M12 the induced block bG is defined. For this we first write a
short GAP program for testing (4.28):

gap> testmodpi := function( t, y, p )
> # t character table, y classfunction, p a prime; the function tests
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> # whether for all i IsIntegralCyclotomic( y[i]ˆm / p ) where
> # m = Phi( OrdersClassRepresentatives(t)[i] )
> local i, res ;
> res:= true;
> for i in [1..Length(y)] do
> if IsInt( y[i] ) and not IsInt( y[i]/p ) then
> res := false;
> elif not IsInt( y[i] ) and not
> IsIntegralCyclotomic( y[i]ˆPhi( OrdersClassRepresentatives(t)[i] )/ p )
> then res := false;
> fi;
> od;
> return( res );
> end;

Now we take G := M11 and choose p := 2. The table of marks t of G is
available in the GAP library, and for each conjugacy class of subgroups of G the
generators of a representative group H are given, so we can compute (with the
Dixon–Schneider algorithm) the character table cth of H. Also the fusion of
the conjugacy classes of cth to those of the character table ct of the underlying
group G of t is stored, so we can induce characters of cth to ct. Observe that
the character table cth differs from the library table CharacterTable( "M11" )
in the ordering of the conjugacy classes. For each p-block B ∈ Blp(G) we choose
a character χ ∈ Irr(B) and compute the central character ωχ:

gap> t := TableOfMarks( "M11" );;
gap> ct := CharacterTable( UnderlyingGroup(t) );; p := 2;;
gap> omegaBs := List( Irr(ct){[1,6,7]} , CentralCharacter );;

We could replace the last line of code by

gap> pb := PrimeBlocks( ct, p );;
gap> omegaBs := List( Irr(ct){List( [1..Length(pb.defect)],
> j -> Position(pb.block,j) )} ,CentralCharacter);;

Next we do the same for the character tables of the representatives of the con-
jugacy classes of proper subgroups of G and use Theorem 4.7.7, that is the
program testmodpi, to find out whether or not the induced block is defined.
We collect the results in the list inducedblocks:

gap> inducedblocks := [];;
gap> for i in [1..Length(OrdersTom(t))-1] do
> h := RepresentativeTom( t, i );;
> cth := CharacterTable(h); blh := PrimeBlocks( cth, p );
> for k in [1..Length(blh.defect)] do
> y := Irr(cth)[ Position( blh.block, k ) ];
> y := InducedClassFunction( y, ct );
> for z in omegaBs do
> if testmodpi( ct, CentralCharacter(y) - z , p ) then
> Add( inducedblocks , [ i, k, Position( omegaBs , z) ] );
> fi;
> od;
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> od;
> od;
gap>

We observe that for a proper subgroup H ≤ G the 2-block bG is defined
for b ∈ Bl2(H) if and only if H is of even order and b = B0(H), in which
case bG = B0(G) in accordance with Theorem 4.7.15 below. On the other
hand, using the above program for the Mathieu group G := M12 one finds
that B0(H)G is not defined for all subgroups of even order. For example,
G contains two conjugacy classes C1 = 〈 (2, 11)(3, 5, 12)(4, 10, 9, 8, 7, 6) 〉G and
C2 = 〈 (1, 12, 3, 2, 9, 4)(5, 8, 10, 6, 7, 11) 〉G of cyclic subgroups C6 of order six.
It is easily seen that Bl2(C6) = {b0 := B0(C6), b1, b2}. For H ∈ C1 one finds
that only bG0 is defined, while for H ∈ C2 only bG1 and bG2 are defined and
bG1 = bG2 = B1, where B1 is the 2-block of defect two of G. �

The following lemma will be used in Theorem 4.7.10.

Lemma 4.7.9 Let H ≤ G, b ∈ Blp(H) and assume that bG = B is defined.
Then εbsH(εB) is a unit in εb Z(RH) and there is z ∈ εb Z(RH) with

zεbεB = εb + c with c ∈ 〈 (gH)+ | g ∈ G \H 〉R. (4.30)

In particular, εbεB 
= 0.

Proof. Put u := εB − sH(εB) ∈ 〈 C+ − (C ∩H)+ | C ∈ cl(G) 〉R. Then

εb εB = εb sH(εB) + εb u, εb u ∈ 〈 (gH)+ | g ∈ G \H 〉R.

By assumption, ω̂B = ω̂b ◦ sH , so

1 = ω̂B(ε̂B) = ω̂b(η(sH(εB))) = ω̂b(η(εb sH(εB))).

Since εb Z(RH) is a local ring, εb sH(εB) is a unit and there is z ∈ εb Z(RH)
with z εb sH(εB) = εb, and (4.30) follows with c := z εb u.

Theorem 4.7.10 (Conlon) Let H ≤ G, b ∈ Blp(H) and assume that bG = B
is defined. If W is an indecomposable SH-module belonging to b, then

W | (ε̇BWG)H ,

where ε̇B = εB if S = R and ε̇B = ε̂B if S = F . In particular, there is an
indecomposable SG-module V belonging to B such that V |WG and W | VH .

Proof. Let 1 = g1, . . . , gn be a transversal of H in G. We recall from the proof
of Theorem 3.2.12 the SH-linear map τ : WG → W,

∑
i gi ⊗ wi �→ w1. Using

the notation of Lemma 4.7.9 we obtain an SH-linear map

σ : W → ε̇BW
G, w �→ z ε̇b ε̇B ⊗ w.
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Then for w ∈W we get, using (4.30),

τ ◦ σ(w) = τ(z ε̇b ε̇B ⊗ w) = τ(ε̇b ⊗ w + c⊗ w) = ε̇bw = w.

Thus τ ◦ σ = idW and W | (εBWG)H .

The following lemma is used in Corollary 4.7.12.

Lemma 4.7.11 Let H ≤ G and θ ∈ Irr(b) for b ∈ Blp(H). Let B ∈ Blp(G).
Then

|gG| (θG)B(g)
θG(1)

∈ R for g ∈ G.

If bG is defined and χ ∈ Irr(B) then, for gG = C ∈ cl(G),

|C| (θG)B(g)
θG(1)

≡
{
ωχ(C+) mod π if bG = B,

0 mod π if bG 
= B.

Proof. By Lemma 4.7.5 (and Corollary 2.3.3) ωθG(C+) = ωθ((H ∩C)+) ∈ R.
By (4.27) applied to ψ := θG the first assertion follows.

If bG is defined and θ ∈ Irr(b) we obtain, from (4.27) applied to ψ := θG and
Lemma 4.7.5 as well as (4.25) and Exercise 4.4.4,

η

(
|C| (θG)B(g)

θG(1)

)
= η(ωθG(εBC+)) = η(ωθ(sH(εBC+))) = ω̂b(η(sH(εBC+)))

= ω̂b ◦ sH(η(εBC+)) = ω̂bG(ε̂BC+) =
{
ω̂B(C+) if bG = B,

0 if bG 
= B.

Corollary 4.7.12 Let H ≤ G and θ ∈ Irr(b) for b ∈ Blp(H). Assume that bG

is defined and that B ∈ Blp(G). Then

νp((θG)B(1))
> νp(θG(1)) if B 
= bG,
= νp(θG(1)) if B = bG.

In particular, there is some χ ∈ Irr(bG) with (χ, θG)G > 0.

Proof. We apply Lemma 4.7.11 with g = 1.

Lemma 4.7.13 Let H ≤ G and θ ∈ Irr(b) for b ∈ Blp(H). Assume that bG is
defined and let χ ∈ Irr(G). Then

(χ̃|H , θ)H
θ(1)

{
≡ 0 mod π if χ 
∈ Irr(bG),

≡ 0 mod π if χ ∈ Irr(bG) and ht(χ) = 0.
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Proof. From Definition 4.2.18 it follows that

χ̃|H =
1

[G : H]p
χ̃|H .

Let χ ∈ Irr(B) with B ∈ Blp(G). Since χ̃ ∈ 〈Irr(B)〉Z by Lemma 4.4.15(a), we
have (χ̃, η)G = (χ̃, ηB)G for all η ∈ cf(G,K). Then

(χ̃|H , θ)H
θ(1)

=
1

[G : H]p
(χ̃|H , θ)H
θ(1)

=
1

[G : H]p
(χ̃, θG)G
θ(1)

=
[G : H]
[G : H]p

(χ̃, (θG)B)G
θG(1)

= [G : H]p′
|G|p
|G|

∑
gG∈cl(Gp′ )

|gG| (θG)B(g)
θG(1)

χ(g−1)

=
1

|H|p′

∑
gG∈cl(Gp′ )

|gG| (θG)B(g)
θG(1)

χ(g−1).

By Lemma 4.7.11 this is 0 mod π if χ 
∈ Irr(bG). If, on the other hand, χ ∈
Irr(bG) then we obtain from Lemma 4.7.11

(χ̃|H , θ)H
θ(1)

≡ 1
|H|p′

∑
gG∈cl(Gp′ )

|gG| χ(g)
χ(1)

χ(g−1) ≡ [G : H]p′
(χ̃, χ)G
χ(1)

mod π.

Now, by Theorem 4.4.16 (χ̃,χ)G

χ(1) 
≡ 0 mod π if and only if ht(χ) = 0.

The following observation by Okuyama is essential for the proof of Brauer’s
third main theorem.

Theorem 4.7.14 (Okuyama) Let H ≤ G and let B ∈ Blp(G), b ∈ Blp(H).
Assume that χ ∈ Irr(B) is such that χ|H ∈ Irr(b). If χ and χ|H both have height
zero, and if b′ ∈ Blp(H) is such that b′G is defined, we have

b = b′ if and only if bG = B.

Proof. First assume that b = b′ and put ψ := χ|H . By assumption bG is
defined. Since ht(ψ) = 0 we know from Theorem 4.4.16 that

(χ̃|H , ψ)H
ψ(1)

=
(ψ̃, ψ)H
ψ(1)


≡ 0 mod π.

By Lemma 4.7.13 χ ∈ Irr(bG), so B = bG.
Now assume that bG = B and let θ ∈ Irr(b′). Using Lemma 4.7.13 we

conclude that
(χ̃|H , θ)H = (ψ̃, θ)H 
= 0.

By Lemma 4.4.15 we have θ ∈ Irr(b) and hence b = b′.
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Theorem 4.7.15 (Brauer’s third main theorem) Let H ≤ G and let b0 :=
B0(H), B0 := B0(G) be the principal blocks of H, respectively G. If b ∈ Blp(H)
is such that bG is defined then

bG = B0 if and only if b = b0.

Proof. This follows from Theorem 4.7.14, taking χ := 1G.

Up to now we have not seen any criterion which guarantees that bG is de-
fined for a given b ∈ Blp(H) when H ≤ G. In fact, the question seems to be a
bit mysterious, as we have seen in Example 4.7.8. Of course, if sH is a homo-
morphism of algebras, then bG is defined for any p-block b. There does exist an
important case, in which sH is, indeed, a homomorphism of F -algebras.

Theorem 4.7.16 If P is a p-subgroup of G then the F -linear map

BrP := sCG(P ) : Z(FG) → Z(F CG(P )), C+ �→ (C ∩CG(P ))+

is a homomorphism of F -algebras, called the Brauer homomorphism with
respect to P .

Proof. Let C1, C2 ∈ cl(G). We have

C+
1 C

+
2 =

∑
g∈G

αgg with αg = |Ω |1F with Ω := {(x, y) ∈ C1×C2 | xy = g}

and BrP (C+
1 C

+
2 ) =

∑
g∈CG(P ) αgg. On the other hand,

BrP (C+
1 ) BrP (C+

2 ) =
∑

g∈CG(P )

α′
gg with α′

g = |Ω′|1F with

Ω′ := { (x, y) ∈ (C1 ∩CG(P ))× (C2 ∩CG(P )) | xy = g }.
For g ∈ CG(P ) the p-group P acts by conjugation on Ω, and Ω′ is the set of
fixed points of Ω. Since the lengths of the orbits on Ω \Ω′ are divisible by p, we
have |Ω| = |Ω′| mod p and hence αg = α′

g for g ∈ P .

Remark 4.7.17 Observe that any subgroup H with CG(P ) ≤ H ≤ NG(P )
acts on C ∩ CG(P ) by conjugation for any class C ∈ cl(G) and hence (C ∩
CG(P ))+ ∈ Z(FH). This means that im(BrP ) ⊆ Z(FH), and BrP may also be
considered as a homomorphism from Z(FG) to Z(FH).

Corollary 4.7.18 If P is a p-subgroup of G then

ker BrP = 〈C+ | C ∈ cl(G) with P 
≤G Q for Q ∈ Defp(C) 〉F .

If B is a p-block of G and D ∈ Def(B) then

BrP (ε̂B) 
= 0 if and only if P ≤G D.
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Proof. (i) Let Q ∈ Defp(C) for some C ∈ cl(G). Then C ∩CG(P ) 
= ∅ if and
only if P ≤G Q. Thus BrP (C+) = 0 if and only if P 
≤G Q.

(ii) Let ε̂B =
∑
C∈cl(G) αCC

+. Then by Theorem 4.6.6 (b) αC = 0 unless,
for Q ∈ Defp(C), one has Q ≤G D. So BrP (ε̂B) 
= 0 if and only if there is a
class C with defect group Q with P ≤G Q (by (i)) and Q ≤G D.

Theorem 4.7.19 Let P be a p-subgroup of G and let H ≤ G satisfy

P CG(P ) ≤ H ≤ NG(P ).

If b is a p-block of H then B := bG is defined and ω̂Gb = ω̂b ◦BrP . Furthermore,
if B ∈ Blp(G), then B = bG for some block b of H if and only if P is contained
in some defect group of B. In this case

BrP (ε̂B) =
∑

b∈Blp(H),bG=B

ε̂b.

Proof. We will first show that ω̂b ◦sH = ω̂b ◦BrP , considering BrP as a homo-
morphism from Z(FG) to Z(FH), as we may by assumption and Remark 4.7.17.
For this we have to show that for any C ∈ cl(G) we have

α := ω̂b((C ∩H)+)− ω̂b((C ∩CG(P ))+) = 0.

Since CG(P ) � H, we know that U := (C ∩ H) \ (C ∩ CG(P )) is a union of
conjugacy classes of H and α = ω̂b(U+). But P � H, so P ≤ Op(H) and
CH(Op(H)) ≤ CG(P ). Hence U ∩ CH(Op(H)) = ∅ and by Theorem 4.6.10
ω̂b(U+) = 0. Thus we have shown that ω̂b ◦ sH = ω̂b ◦ BrP , and this is an
algebra homomorphism by Theorem 4.7.16, so bG is defined.

If B ∈ Blp(G) and B = bG for some b ∈ Blp(H) then by Lemma 4.7.2 any
defect group Db of b is contained in some D ∈ Def(B). But by Theorem 4.6.10
P ≤ Op(H) ≤ Db.

Conversely, if B ∈ Blp(G) and P ≤ D for some D ∈ Def(B), then by
Corollary 4.7.18 BrP (ε̂B) 
= 0 and hence a non-trivial idempotent in Z(FH).
Thus

BrP (ε̂B) = ε̂b1 + · · ·+ ε̂bm

for some block idempotents ε̂b1 , . . . , ε̂bm of FH. Now, B = bG for b ∈ Blp(H)
if and only if 1 = ω̂Gb (ε̂B) = ω̂b(BrP (ε̂B)) and this holds if and only if b ∈
{b1, . . . , bm}.

Lemma 4.7.20 Let P be a normal p-subgroup of G and B ∈ Blp(G). Then

(a) ε̂B ∈ 〈 C+ | C ∈ cl(G), C ⊆ CG(P ) 〉F ;

(b) if P ∈ Def(B) then ε̂B ∈ 〈 C+ | C ∈ cl(G), Defp(C) = {P} 〉F .
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Proof. (a) We use Theorem 4.7.19 with H := G and b := B. Since BG = B
we have

ε̂B = BrP (ε̂B) ∈ 〈 (C ∩CG(P ))+ | C ∈ cl(G) 〉F ,

and (a) follows, since CG(P ) �G.
(b) gG ⊆ CG(P ) means that P ≤ CG(g), that is P is contained in any defect

group of C := gG. But if P ∈ Def(B) then by definition ε̂B ∈ ZP (FG), so (b)
follows from (a).

We will need the following group theoretical result.

Lemma 4.7.21 If P is a p-subgroup of G, then the map C �→ C ∩ CG(P )
defines a bijection

f : {C ∈ cl(G) | P ∈ Defp(C) } → {C ∈ cl(NG(P )) | P ∈ Defp(C) }.

Proof. Let C ∈ cl(G) with P ∈ Defp(C) and x, y ∈ C ∩CG(P ). Then there
is g ∈ G with y = xg, so P, P g ∈ Sylp(CG(y)). By the Sylow theorems there is
c ∈ CG(y) with P gc = P . Hence gc ∈ NG(P ) and xgc = y. So C ∩CG(P ) is
a conjugacy class of NG(P ) and f is a well-defined (and injective) map. Now
let h ∈ NG(P ) with P ∈ Defp(hNG(P )). If P 
∈ Sylp(CG(h)) then there is a
P1 ≤ CG(h) with P � P1. But this means P1 ≤ NG(P ), which contradicts
P ∈ Defp(hNG(P )). So P ∈ Defp(hG) and hNG(P ) = hG ∩CG(P ) = f(hG) by
the first part of the proof.

Theorem 4.7.22 (Brauer’s first main theorem) If P is a p-subgroup of G,
the map b �→ bG defines a bijection

{b ∈ Blp(NG(P )) | P ∈ Def(b)} → {B ∈ Blp(G) | P ∈ Def(B)}

called the Brauer correspondence. Furthermore, Brp(ε̂bG) = ε̂b.

Proof. Let b ∈ Blp(NG(P )) with P ∈ Def(b). By Theorem 4.7.19 bG is defined
and ω̂Gb = ω̂b ◦ BrP . We have to show that P ∈ Def(bG). Let C ′ ∈ cl(NG(P ))
be a defect class for b. By Lemma 4.7.21 C ′ = C ∩CG(P ) for C ′ ⊆ C ∈ cl(G)
and P ∈ Defp(C). Hence

ω̂bG(C+) = ω̂b(BrP (C+)) = ω̂b((C ′)+) 
= 0.

By the min–max theorem (Theorem 4.6.6) some Q ∈ Def(bG) is contained in
P . Since Def(b) = {P} we must have Q = P by Lemma 4.7.2.

Next we show that the map b �→ bG is surjective. To this end let B ∈ Blp(G)
have defect group P . By Theorem 4.7.19

BrP (ε̂B) = ε̂b1 + · · ·+ ε̂bm , (4.31)
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with {b1, . . . , bm} = {b ∈ Blp(NG(P )) | bG = B} and bi 
= bj for i 
= j. By
Theorem 4.6.10 and Lemma 4.7.2 Def(bj) = {P} for all j = 1, . . . ,m.

Finally, we show that the map b �→ bG is injective and hence m = 1 in (4.31).
So let b1, b2 ∈ Blp(NG(P )) have defect group P and satisfy bG1 = bG2 . From
Theorem 4.7.19 we know that ω̂b1 ◦ BrP = ω̂b2 ◦ BrP , thus

ω̂b1((C ∩CG(P ))+) = ω̂b2((C ∩CG(P ))+) for C ∈ cl(G).

By Lemma 4.7.21 ω̂b1 and ω̂b2 agree on { (C ′)+ | C ′ ∈ cl(NG(P )), P ∈
Defp(C ′) }, and by Lemma 4.7.20 ω̂b1(ε̂bj

) = ω̂b2(ε̂bj ) for j = 1, 2; hence b1 = b2.

Corollary 4.7.23 Let H ≤ G, b ∈ Blp(H) with D ∈ Def(b) and assume that
CG(D) ≤ H. Then bG is defined.

Proof. Let H1 := NH(D). By Theorem 4.7.22 there is a unique b1 ∈ Blp(H1)
with D ∈ Def(b1) and b = bH1 . Our assumption implies that DCG(D) ≤ H1 ≤
NG(D), so by Theorem 4.7.19 bG1 is defined. The assertion now follows from
Exercise 4.7.3.

Corollary 4.7.24 If D is a defect group of a p-block of G, then D = Op(NG(D)).

Proof. This follows from Theorem 4.7.22 because of Theorem 4.6.10.

There does not seem to be a group theoretical characterization of defect
groups of p-blocks. The corollary just says that they are radical p-subgroup in
the sense of the following definition.

Definition 4.7.25 A subgroup D of G is called a radical p-subgroup of G if
D = Op(NG(D)).

Brauer’s first main theorem compares the blocks of G with defect group P
with the blocks of N := NG(P ) with defect group P . It is often useful to go
one step further, namely to P CG(P ). Observe that P CG(P ) � N . Changing
the perspective we put N �G and we will first study the relations of blocks of
FG and FN .

Definition 4.7.26 Let N � G and b ∈ Blp(N). Then B ∈ Blp(G) is said
to cover b if εBεb 
= 0, where εB ∈ Z(RG) and εb ∈ Z(RN) are the block
idempotents of B and b, respectively. The set of p-blocks of G covering b ∈
Blp(N) will be denoted by Bl(G | b).

Remark 4.7.27 If N�G then G acts by conjugation on the block idempotents
(and thereby on the blocks) of RN . If εb ∈ Z(RN) is a block idempotent, then
the orbit sum

σG(εb) :=
∑
{gεb | g ∈ G} =

t∑
i=1

εbi =
s∑
i=1

εBi ∈ Z(RN) ∩ Z(RG),
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with mutually orthogonal block idempotents εbi
and εBi

of RN and RG, re-
spectively. We put TG(b) := {g ∈ G | εgb = εb}, thus t = [G : TG(b)]. Clearly
B ∈ Bl(G | b) if and only if εB = εBi for some i ∈ {1, . . . , s}, and this is the
case if and only if ω̂B(σG(εb)) = 1. Obviously every block B ∈ Blp(G) covers
exactly one conjugacy class of blocks of N .

Lemma 4.7.28 Assume N �G. Let B ∈ Blp(G) and b ∈ Blp(N).

(a) B covers b if and only if for some (or every) χ ∈ Irr(B) there is a ψ ∈ Irr(b)
with (ψ, χN )N > 0.

(b) B covers b if and only if for some (or every) ϕ ∈ IBr(B) there is an irre-
ducible constituent of ϕN in IBr(b).

(c) B ∈ Bl(G | b) if and only if ω̂B((hG)+) = ω̂b((hG)+) for all h ∈ N .

(d) If bG is defined then bG covers b.

(e) If B ∈ Bl(G | b) and CG(D) ≤ N for D ∈ Def(B) then B is the only p-block
of G covering b and B = bG.

(f) If G/N is a p-group then |Bl(G | b)| = 1.

Proof. (a) Let χ ∈ Irr(B) and let ψ be an irreducible constituent of χN
belonging to b ∈ Blp(N). By Exercise 3.6.6 ωχ|Z = ωψ|Z for Z = Z(RN) ∩
Z(RG). In particular ω̂B(σG(εb)) = 1 and by Remark 4.7.27 B covers b and its
conjugates.

(b) Let ϕ ∈ IBr(B) and let θ ∈ IBr(N) be an irreducible constituent of ϕN .
Choose χ ∈ Irr(G) with dχ,ϕ > 0. Then χ ∈ Irr(B) and χN has an irreducible
constituent ψ ∈ Irr(N) with dψ,θ > 0. Since ψ and θ belong to the same p-block
of N , the result follows from (a).

(c) (C+ | C ∈ cl(G), C ⊆ N) is a basis of Z := Z(FN) ∩ Z(FG). Thus (c)
follows from (a) and Exercise 3.6.6.

(d) Since N � G we have ω̂bG((hG)+) = ω̂b(sN ((hG)+)) = ω̂b((hG)+) for
h ∈ N . So the result follows from (c).

(e) Assume B ∈ Bl(G|b) and D ∈ Def(B). Let C ∈ cl(G). If ω̂B(C+) 
=
0 then by Theorem 4.6.6 D ≤G Q for some Q ∈ Defp(C) and consequently
CG(Q) ≤G CG(D) ≤ N by assumption. Hence C ⊆ N . It follows that ω̂B
vanishes outside of N and so ω̂B = ω̂b ◦ sN , thus B = bG.

(f) Let B, B′ ∈ Bl(G | b). By part (c) we have ω̂B |Z = ω̂B′ |Z . But by
Osima’s theorem (Theorem 4.4.7) ε̂B ∈ Z, since Gp′ ⊆ N . So ω̂B′(ε̂B) = 1 and
B′ = B.

Corollary 4.7.29 Assume that CG(Op(G)) ≤ Op(G). Then |Blp(G)| = 1.

Proof. Since N := Op(G) has only one p-block, every B ∈ Blp(G) covers
B0(N) by Remark 4.7.27. If D ∈ Def(B), then N ≤ D by Theorem 4.6.10,
hence CG(D) ≤ CG(N) ≤ N and B = B0(N)G by Lemma 4.7.28(e).
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Theorem 4.7.30 (Extended first main theorem) If B ∈ Blp(G) has defect
group P , then there is a unique NG(P )-orbit of p-blocks b ∈ Blp(P CG(P )) such
that bG = B. All these p-blocks b have defect group P .

Proof. By Theorem 4.7.19 there is a block b ∈ Blp(P CG(P )) with B = bG,
and bNG(P ) is defined also. Theorem 4.6.10 implies that P ⊆ Db ∩D for every
Db ∈ Def(b) and D ∈ Def(bNG(P )). By Exercise 4.7.3 B = (bNG(P ))G and by
Lemma 4.7.2 Db and D are contained in a G-conjugate of P , hence P = Db = D.

If b1, b2 ∈ Blp(P CG(P )) satisfy (b1)G = (b2)G = B then (b1)NG(P ) and
(b2)NG(P ) are blocks inducing B by Exercise 4.7.3, so by Brauer’s first main
theorem B1 := (b1)NG(P ) = (b2)NG(P ). Lemma 4.7.28(d) implies that B1 covers
b1, b2, hence by Remark 4.7.27 these blocks are conjugate in NG(P ). Con-
versely, if b1, b2 ∈ Blp(P CG(P )) are conjugate in NG(P ) then it is obvious that
(b1)NG(P ) = (b2)NG(P ) and the result follows.

Corollary 4.7.31 Let B ∈ Blp(G) and P ∈ Def(B). Then there is up to
NG(P )-conjugacy a unique b ∈ Blp(P CG(P )) and θ ∈ Irr(b) with bG = B and
P ⊆ ker θ. Often θ is also called the canonical character of B. Furthermore
TNG(P )(θ) = TNG(P )(b) := {g ∈ NG(P ) | εgb = εb}.

Proof. Use Theorem 4.6.12.

We close this section by extending the Clifford correspondence to blocks.

Theorem 4.7.32 (Fong, Reynolds) Let N�G and b ∈ Blp(N) with T := TG(b).

(a) If B ∈ Bl(T | b) then BG is defined and

Irr(B) → Irr(BG), χ �→ χG, IBr(B) → IBr(BG), ϕ �→ ϕG

are bijections, and dχϕ = dχG ψG for χ ∈ Irr(B), ϕ ∈ IBr(B).
(b) Bl(T | b) → Bl(G | b), B �→ BG is a bijection.
(c) If B ∈ Bl(T | b) and D ∈ Def(B) then D ∈ Def(BG). Also htp(χ) =
htp(χG) for χ ∈ Irr(B).

Proof. If θ ∈ Irr(b)∪ IBr(b), then TG(θ) ≤ T because θg ∈ Irr(bg)∪ IBr(bg) for
every g ∈ G. Also, if θg belongs to b, then g ∈ T . Let θ1, . . . , θr (respectively
θ′
1, . . . , θ

′
s) be representatives of the T -conjugacy classes in Irr(b) (or IBr(b),

respectively). Then the θi (or θ′
i) are pair-wise not conjugate in G, and by

Clifford’s theorem (Theorem 3.6.2) for U ∈ {T,G} the sets Irr(U | θi) (or
IBr(U | θ′

i)) are mutually disjoint. Therefore the Clifford correspondences

Irr(T | θi) → Irr(G | θi), IBr(T | θ′
i) → IBr(G | θ′

i)

(see 3.6.8 and 4.3.8) can be composed to bijections

XT :=
⋃̇r

i=1
Irr(T | θi) → XG :=

⋃̇r

i=1
Irr(G | θi), χ �→ χG,

YT :=
⋃̇r

i=1
IBr(T | θ′

i) → YG :=
⋃̇s

i=1
IBr(G | θ′

i), ϕ �→ ϕG.
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Let B ∈ Bl(T | b) and χ ∈ Irr(B). By Lemma 4.7.28(a) χ ∈ Irr(T | θ) for some
θ ∈ Irr(b). Thus Irr(B) ⊆ XT and by Lemma 4.7.5 BG is defined. By restricting
XT → XG we obtain an injective map Irr(B) → Irr(BG), χ �→ χG. Similarly
IBr(B) ⊆ YT by Lemma 4.7.28(b), and IBr(B) → YG, ϕ �→ ϕG is injective. If
ϕ ∈ IBr(B) then using Theorem 4.3.9

Φϕ =
∑

χ∈Irr(B)

dχϕ χ hence ΦϕG = ΦϕG =
∑

χ∈Irr(B)

dχϕ χ
G.

Thus ϕG ∈ IBr(BG) and dχ,ϕ = dχGϕG . From Theorem 4.4.2 we conclude that
{χG | χ ∈ Irr(B)} = Irr(BG) and {ϕG | ϕ ∈ IBr(B)} = IBr(BG).

(b) follows, since XT =
⋃̇
B∈Bl(T |b) Irr(B) and XG =

⋃̇
B′∈Bl(G|b) Irr(B′).

(c) If χ ∈ Irr(T ) and χG ∈ Irr(G) then clearly dp(χ) = dp(χG). By Defini-
tion 4.4.12 d(B) = d(BG) for B ∈ Bl(T | b). So (c) follows from Lemma 4.7.2.

Example 4.7.33 Let G := C4
2 � A5 be the group considered in Example 3.8.15.

We put N := C4
2 and have Irr(N) = {θ1 := 1N} ∪̇ {θg2 | g ∈ G} ∪̇ {θ

g
3 | g ∈ G}

with T2 := TG(θ2) ∼= N � A4 and T3 := TG(θ3) ∼= N � S3.
We choose p := 3 and observe that there are three conjugacy classes of p-

blocks in N with representatives bi and Irr(bi) = {θi} for i = 1, 2, 3. Moreover,
ker θi � Ti and

T̃i := Ti/ ker θi ∼=
{

C2×A4 for i = 2,
C2×S3 for i = 3.

Let Irr(C2) = {1C2 , λ} and let πi : Ti → T̃i be the natural projection (i = 1, 2).
Then Irr(T2 | θ2) = {Infπ2(λ× ψ) | ψ ∈ Irr(A4)}. From Lemma 4.4.17 and the
knowledge of the p-blocks of A4 we conclude that

Bl(T2 | b2) = {B20, B21} with d(B20) = 0 and DB21 = [1, 1, 1]T.

Similarly, since S3 has just one p-block we get

Bl(T3 | b3) = {B31} with DB31 =

[
1 0
0 1
1 1

]
.

Using Exercise 4.7.6 for Bl(B | b1) we see that in the notation of Example 3.8.15

{Irr(B) | B ∈ Blp(G)} = {{χ1, χ4, χ5}, {χ2}, {χ3}, {χ6, χ7, χ8},
{χ9}, {χ10, χ11, χ12}}

and

{Φϕ | ϕ ∈ IBr(G)} = {χ2, χ3, χ9, χ1 + χ5, χ4 + χ5, χ6 + χ7 + χ8,

χ10 + χ12, χ11 + χ12}.

�
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Exercises

Exercise 4.7.1 Let G be a group, let H = {1}, the trivial subgroup, and let b
be the only p-block of H. Show that bG is defined if and only if G = {1}.

Exercise 4.7.2 Let H ≤ G and θ ∈ Irr(H). Show that ωθG(C+) is an algebraic
integer for any C ∈ cl(G).

Exercise 4.7.3 Let H ≤ U ≤ G and b ∈ Blp(H).

(a) Suppose that bU is defined. Show that bG is defined if and only if (bU )G is
defined, and that in this case bG = (bU )G.
(b) For H := 〈(1, 2)(3, 4)〉 ≤ U := V4 ≤ G := A4 and b := B0(H) show that bU

is not defined, while bG is defined.

Exercise 4.7.4 Let N �G. Show that B0(G) covers only B0(N).

Exercise 4.7.5 Show that |Bl2(Sn)| ≤ |Bl2(An)| for any n ∈ N.

Exercise 4.7.6 Let N � G with natural projection πN : G → Ḡ = G/N . As-
sume that p � |N |. Show that there is a bijection

Bl(G | B0(N)) → Blp(Ḡ), B �→ B̄ with Irr(B) = {InfπN
(χ̄) | χ̄ ∈ Irr(B̄)}.

Exercise 4.7.7 Let Ni�G and bi ∈ Blp(Ni) for i = 1, 2. Assume that N1 ≤ N2
and that B ∈ Blp(G) covers b1 and b2. Show that b2 covers b1.

Exercise 4.7.8 Assume that P ∈ Syl3(G) and NG(P ) ∼= S3×D10. Show that
G has exactly four 3-blocks of defect one. Find the canonical characters of these
blocks.

4.8 Vertices

In this section G will always be a finite group and S will denote a field of
characteristic p > 0 or a complete discrete valuation ring with char(S/ J(S)) =
p > 0. As usual we assume that all SG-modules considered are free and finitely
generated as S-modules. Later in this section we will assume that (K,R, F, η)
is a p-modular splitting system for G. In analogy to Section 4.6, we will assign
p-subgroups to any indecomposable SG-module called vertices and study their
properties. Given a cyclic p-group P we will see that there are only finitely many
FG-modules with vertex P (up to isomorphism), and we will analyze explicitly
the situation of blocks with a normal defect group D of order p. In Section 4.12
the general case of a block with a defect group of order p will be described.

If V is an SG-module, H ≤ G and G =
⋃̇m

i=1giH, then for any g ∈ G there
exist σ ∈ Sm and h1, . . . , hm ∈ H such that

ggi = gσ(i)hi for all h ∈ H.

Thus, if v ∈ InvH(V ) (that is, hv = v for all h ∈ H, see Definition 1.1.18) then∑m
i=1 giv ∈ InvG(V ). Hence the following definition makes sense.
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Definition 4.8.1 Let H be a subgroup of G and let G =
⋃̇m

i=1giH. For any
SG-module V we define

TrGH : InvH(V ) → InvG(V ), v �→
m∑
i=1

giv (v ∈ V ).

The following remark is easily verified.

Remark 4.8.2 Let V be an SG-module and H ≤ G. Then

(a) TrGH is S-linear and independent of the choice of the transversal {g1, . . . , gm};
(b) if H1 ≤ H2 ≤ G then TrGH2

◦TrH2
H1

= TrGH1
.

Recall that for SG-modules V,W the S-module HomS(V,W ) becomes an
SG-module via (g · ϕ)(v) := gϕ(g−1v) for g ∈ G, ϕ ∈ HomS(V,W ) and v ∈ V .
Obviously InvH(HomS(V,W )) = HomSH(V,W ) for H ≤ G. So

TrGH : HomSH(V,W ) → HomSG(V,W ).

Lemma 4.8.3 Let V,W1,W2 be SG-modules and H ≤ G.

(a) For θ ∈ EndSH V, ψ ∈ HomSG(W1, V ) and ϕ ∈ HomSG(V,W2) one has

TrGH(θ ◦ ψ) = TrGH(θ) ◦ ψ , TrGH(ϕ ◦ θ) = ϕ ◦ TrGH(θ).

Hence
TrGH (EndSH V ) � EndSG V.

(b) If θ ∈ EndSG V , then TrGH(θ) = [G : H] θ.

Proof. The proof is obvious.

Theorem 4.8.4 Let H ≤ G. The following conditions for an SG-module V
are equivalent.

(a) V is H-projective, that is V | WG for some SH-module W (see Defini-
tion 3.2.15).

(b) TrGH (EndSH V ) = EndSG V or, equivalently, there exists θ ∈ EndSH V with
TrGH(θ) = idV .

(c)
V | (VH)G.

Proof. (a) ⇒ (b) Let W be an SH-module with V | WG. This means that
we have SG-homomorphisms

π : WG → V and j : V →WG with π ◦ j = idV .
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We choose gi ∈ G with G =
⋃̇m

i=1 giH and g1 = 1 and define

τ : WG →WG,

m∑
i=1

gi ⊗ wi �→ 1⊗ w1 (wi ∈W ).

It is easily checked that τ ∈ EndSHWG and TrGH(τ) = idWG . In fact,

TrGH(τ)(
m∑
j=1

gj ⊗ wj) =
m∑
i=1

giτ(g−1
i (

m∑
j=1

gj ⊗ wj)) =
m∑
i=1

gi(1⊗ wi).

Putting θ := π ◦ τ ◦ j ∈ EndSH V we get (using Lemma 4.8.3(a))

TrGH(θ) = π ◦ TrGH(τ) ◦ j = π ◦ j = idV .

(b) ⇒ (c) Let θ be in EndSH V with TrGH(θ) = idV . We have an SG-
homomorphism

π : (VH)G → V,

m∑
i=1

gi ⊗ vi �→
m∑
i=1

givi (vi ∈ V ),

where the gi ∈ G are as above. Also, we have an SH-homomorphism

η : V → (VH)G, v �→ 1⊗ v and π ◦ η = idV .

We now define η̃ := TrGH (η ◦ θ). Then η̃ : V → (VH)G is an SG-homomorphism,
and by Lemma 4.8.3

π ◦ η̃ = TrGH (π ◦ η ◦ θ) = TrGH (idV ◦ θ) = idV .

Hence V | (VH)G.
(c) ⇒ (a) This is trivial.

As a consequence we obtain a generalization of Maschke’s theorem (Theo-
rem 1.5.6).

Corollary 4.8.5 If [G : H] is a unit in S, then every SG-module is H-projective.

Proof. Putting θ := [G : H]−1 idV , one obtains TrGH(θ) = idV .

Theorem 4.8.6 Let V be an indecomposable SG-module. Then there is a
unique conjugacy class Vtx(V ) of subgroups of G, such that V is H-projective
for H ≤ G if and only if H contains a subgroup Q ∈ Vtx(V ). Any Q ∈ Vtx(V )
is called a vertex of V . A vertex is always a p-group.
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Proof. Let Q ≤ G be such that V is Q-projective but not U -projective for any
proper subgroup U < Q. Obviously, V is H-projective for any H containing Q
or a conjugate of Q (see Exercise 3.2.2).

Now let H be an arbitrary subgroup of G such that V is H-projective.
Then there is an SH-module W with V | WG. By Mackey’s theorem (Theo-
rem 3.2.17)

VQ | WG
Q =

⊕
g∈T

((g ⊗W )gHg−1∩Q)Q.

Here T is a set of representatives of the (Q,H)-double cosets, i.e. G =
⋃̇
g∈TQgH.

Since V is Q-projective, it follows from Theorem 4.8.4 and the transitivity of
induction (Lemma 3.2.14) that

V | VQG | (WG
Q)G =

⊕
g∈T

((g ⊗W )gHg−1∩Q)G.

Since V is indecomposable by assumption, there is a g ∈ T such that

V | ((g ⊗W )gHg−1∩Q)G,

that is, V is gHg−1 ∩Q-projective. Because of the minimality of Q we con-
clude that gHg−1 ∩ Q = Q, hence Qg ≤ H. This shows at the same time the
uniqueness of Q up to conjugacy. Finally, by Corollary 4.8.5 any SG-module is
P -projective for P ∈ Sylp(G). So by the first part of the theorem, vertices are
p-groups.

Definition 4.8.7 Let V be an indecomposable SG-module. Any indecompos-
able SQ-module W for some Q ∈ Vtx(V ) with V | WG is called a source of
V .

Lemma 4.8.8 Any two sources W1,W2 of an indecomposable SG-module V are
conjugate in G, that is, there is a g ∈ G such that W1 ∼= g⊗W2. If Q ∈ Vtx(V )
and the SQ-module W is a source of V then

V | WG, W | VQ , Vtx(W ) = {Q}.

Proof. We may assume that W1,W2 are SQ-modules for a fixed Q ∈ Vtx(V )
(see Exercise 3.2.2). Since V | VQG by Theorem 4.8.4 and V is indecomposable,
there is an indecomposable SQ-module W with V | WG and W | VQ. Then

W | (WG
i )Q =

⊕
g∈T

((g ⊗Wi)gQg−1∩Q)Q (i = 1, 2),

where G =
⋃̇
g∈TQgQ. Since W is indecomposable there is gi ∈ T with W |

((gi ⊗Wi)gQg−1∩Q)Q for i = 1, 2. By the defining (minimality) property of a
vertex we must have giQg−1

i ∩ Q = Q, that is, gi ∈ NG(Q) and W | gi ⊗Wi

for i = 1, 2. Since the modules Wi, and hence gi ⊗Wi, are indecomposable, the
result follows.
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The following lemma, also called the two-out-of-three lemma, will be used
in the proof of Green correspondence; see Section 4.9.

Lemma 4.8.9 Let V be an indecomposable SG-module with Q ∈ Vtx(V ) and
let Q ≤ H ≤ G. Then for any two of the following conditions there is an
indecomposable SH-module W fulfilling them:

(a) V |WG; (b) W | VH ; (c) Q ∈ Vtx(W ).

Proof. (a) and (b) Since V is H-projective, V | (VH)G, so there is some
indecomposable summand W of VH such that V |WG.

(a) and (c) Assume that the SQ-module M is a source of V . Then V |
MG = (MH)G. Hence there is an indecomposable SH-module W with V |WG

and W | MH . Hence, if Q1 ∈ Vtx(W ), we have Q ≤G Q1 ≤H Q, because
{Q} = Vtx(M).

(b) and (c) Let M be as above. Then by Lemma 4.8.8 M | VQ = (VH)Q, so
there is an indecomposable SH-module W with W | VH and M | WQ. If, as
above, Q1 ∈ Vtx(W ), then we conclude from Theorem 4.8.10(a), applied to W
and M and also to V and W , that Q ≤H Q1 ≤G Q.

It will be an immediate consequence of Theorem 4.9.2 that in the situation
of Lemma 4.8.9 it is actually possible to find an SH-module W fulfilling all
three conditions.

Theorem 4.8.10 Let V be an indecomposable SG-module with Q ∈ Vtx(V ).
Let H ≤ G and VH = U1 ⊕ · · · ⊕ Um with indecomposable SH-modules Ui and
Qi ∈ Vtx(Ui) for i = 1, . . . ,m.

(a) Qi ≤G Q for i = 1, . . . ,m.

(b) If V is H-projective, then V | UjG for some j ∈ {1, . . . ,m} and Qj =G Q.
If Q ≤ H, then Qj =H Q for some j.

(c) If Qj =G Q, then V and Uj have a common source.

Proof. (a) Let W be an indecomposable SQ-module which is a source of V .
We choose T with G =

⋃̇
g∈THgQ and get

U1 ⊕ · · · ⊕ Um = VH | WG
H =

⊕
g∈T

((g ⊗W )gQg−1∩H)H . (4.32)

Hence every Ui is giQg−1
i ∩ H-projective for some gi ∈ T , and consequently

Qi ≤H giQg
−1
i ∩H ≤G Q.

(b) By assumption we have V | VH
G, hence V | UGj for some j, which

implies Q ≤G Qj . Using (a) we get Qj =G Q. If Q ≤ H, then

V | VQG = ((VH)Q)G = (U1 ⊕ · · · ⊕ Um)Q
G
.
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Hence V | WG for some indecomposable summand W of some (Uj)Q. We have
Q ∈ Vtx(W ), and on applying part (a) with Uj instead of V and W instead of
Ui we get Q ≤H Qj ; since Qj =G Q, the result follows.

(c) Let W be as in the proof of (a). From (4.32) we see that there is a g ∈ T
with

Uj | ((g ⊗W )gQg−1∩H)H , gQg−1 ∩H ≥H Qj =G Q.

Hence gQg−1 ⊆ H, and g ⊗W is a common source for V and Uj .

Remark 4.8.11 For any group G let SG denote the trivial SG-module.

(a) If P is a p-group and Q ≤ P then the permutation module (SQ)P is inde-
composable.

(b) Vtx(SG) = Sylp(G).

(c) Every p-subgroup of G is a vertex of some indecomposable SG-module.

Proof. (a) The trivial module SP is the only simple SP -module (Theo-
rem 1.3.11). By Frobenius Nakayama reciprocity (Theorem 3.2.12) we have

HomSP (SQP , SP ) ∼= HomSQ(SQ, SQ) ∼= SQ.

Hence the head of SQP is simple and so SQP is indecomposable.
(b) Let P ∈ Sylp(G). If Q ∈ Vtx(SP ) then SP | SQP . Since SQ

P is
indecomposable by part (a), Q = P . From Theorem 4.8.10(a) applied to V = SG
and H = P it follows that any vertex of SG is conjugate in G to P (and that
SP is a source of SG).

(c) Let Q be a p-subgroup of G. By Mackey’s theorem (Theorem 3.2.17)
SQ | (SQG)Q, so there is an indecomposable SG-module V with V | SQG and
SQ | VQ. From Theorem 4.8.10(a) we see that Q is a vertex of V .

Theorem 4.8.12 If F is a field and V is a non-projective indecomposable FG-
module

Vtx(V ) = Vtx(Ω(V )).

Proof. Since V ∼=FG Ω(Ω−1(V )) by Theorem 1.6.27, it is enough to show that

V H-projective =⇒ Ω(V ), Ω−1(V ) H-projective (4.33)

for any H ≤ G. Let W be an FH-module such that V |WG. By Lemma 1.6.20
and Lemma 3.2.21(b) we have a short exact sequence

{0} −→ Ω(W )G −→ P (W )G −→WG −→ {0}.

Since V |WG and (by Lemma 1.6.20) P (V ) | P (W )G, we conclude that Ω(V ) |
Ω(W )G. Similarly Ω−1(V ) | Ω−1(W )G, and (4.33) follows.
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In Example 1.1.23 we saw that a cyclic p-group P has exactly |P | indecom-
posable FP -modules Wi (1 ≤ i ≤ |P |) over any field F of characteristic p up
to isomorphism. In fact we may choose the notation so that dimF Wi = i. On
the other hand, Exercise 4.8.3 shows that G := Cp×Cp has infinitely many iso-
morphism classes of indecomposable FG-modules. The following result answers
the question of which group algebras are “of finite representation type,” that is,
have only finitely many isomorphism classes of indecomposable modules.

Theorem 4.8.13 (D. Higman) Let P be a p-subgroup of G and let F be a
field of characteristic p.

(a) If P is cyclic then there are up to isomorphism at most |G| indecomposable
FG-modules with a vertex in P .

(b) If P is not cyclic then there are indecomposable FG-modules with arbitrary
large dimension and a vertex in P .

(c) G has only finitely many isomorphism classes of indecomposable FG-modules
if and only if a Sylow p-subgroup of G is cyclic.

Proof. (a) If V is an indecomposable FG-module with vertex in P , then
V is P -projective and V | (VP )G by Theorem 4.8.4. Now let P be cyclic and
VP ∼=

⊕n
i=1 niWi with Wi indecomposable with dimF Wi = i and ni ∈ N0

for i = 1, . . . , n := |P | (see Example 1.1.23). Then V | Wi
G for some i ∈

{1, . . . , n}. Since Wi
G has at most [G : P ] indecomposable direct summands by

Exercise 4.8.2, there are at most |P | · [G : P ] = |G| indecomposable FG-modules
V up to isomorphism with a vertex in P .

(b) If P is not cyclic then P has Cp×Cp as a homomorphic image. By
Exercise 4.8.3 and inflation, FP has an indecomposable FP -module Wn with
dimF Wn ≥ n for all n ∈ N. Since by Mackey’s theorem Wn | (Wn

G)P , there
is an indecomposable FG-module V with Wn | VP . Then dimF V ≥ n, and by
Theorem 4.8.10(a) the module V has a vertex in P .

(c) follows from (a) and (b) applied to P ∈ Sylp(G).

For the rest of this section we will assume that (K,R, F, η) is a p-modular
splitting system for G.

One can describe all the indecomposable FG-modules belonging to a p-block
with cyclic defect group D. We will do this here for the case that D is a normal
subgroup of order p.

Theorem 4.8.14 Let B ∈ Blp(G) be a block of defect one having a normal
defect group D. Then B = bG for some b ∈ Blp(CG(D)) with D ∈ Def(b) and
| IBr(B)| = e := [TG(b) : CG(D)] (see Remark 4.7.27). Moreover, e | p−1. The
projective covers P (Vi) of the simple FG-modules Vi in B are all uniserial of
length p. One may order the Vi in such a way that the composition factors of
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P (Vi) are as follows:

Vi, Vi+1, . . . , Vi+e−1, . . . , Vi, Vi+1, . . .︸ ︷︷ ︸
m

, Vi+e−1, Vi with m :=
p− 1
e

,

where the indices should be read modulo e. Thus the Cartan matrix C(B) is
equal to m · Je,e + Ie, where Jk,l ∈ Nk×l denotes the all-1-matrix for k, l ∈ N.
Also | Irr(B)| = e+m, and one can order Irr(B) and IBr(B) in such a way that
the decomposition matrix of B has the form

D(B) =
[

Ie
Jm,e

]
.

If Uij denotes the factor module of P (Vi) of composition length j, then

{Uij | i = 1, . . . , e, j = 1, . . . , p}

is the set of indecomposable FG-modules in B up to isomorphism.

Proof. Observe that by Theorem 4.7.19 B = bG for some b ∈ Blp(CG(D))
and D ∈ Def(b) because of Lemma 4.7.2 and Theorem 4.6.10. We abbreviate
to C := CG(D) and T := TG(b).

(a) We first consider T . By Theorem 4.6.12, IBr(b) = {ϕ} with ϕ = θ|Cp′ ,
where θ is the canonical character of b. Lemma 4.7.28(e) shows that bT is the
only p-block of T covering b. Thus εb = σT (εb) = εbT , see Remark 4.7.27. Since
G/C is cyclic of order dividing |Aut(D)| = p−1 the canonical character θ has (by
Theorem 3.6.13) e extensions to characters χ′

1, . . . , χ
′
e ∈ Irr(T ). Lemma 4.7.28

shows that {χ′
1, . . . , χ

′
e} ⊆ Irr(bT ) and IBr(bT ) = {χ′

1|Tp′ , . . . , χ
′
e|Tp′}.

For 1 ≤ i ≤ e let Wi be a simple FT -module with Brauer character χ′
i|Tp′

and let Ui := P (Wi). Then (Wi)C ∼= W , the simple FC-module in b. All the
Wi are all C-projective by Corollary 4.8.5. Using Theorem 4.8.4(c) we see that
WT ∼= W1 ⊕ · · · ⊕We. Trivially, Rad(UiC) ⊆ Rad(Ui). On the other hand,
Rad(UiC) = J(FC)Ui ≤FT Ui (since C � T ) and

Ui/Rad(UiC) | (Ui/Rad(UiC))C
T ∼= WT ⊕ · · · ⊕WT

is semisimple, hence Rad(UiC) = Rad(Ui) and UiC is the projective cover of
W , which is uniserial with composition length p by Theorem 4.6.12. Hence Ui
is also uniserial with composition length p.

Assume that the composition factors of U1 are (up to isomorphisms)

W1 = Wi1 ,Wi2 , . . . ,Wip = W1 with Wij ∈ {W1, . . . ,We}.

Then Rad(U1) is a homomorphic image of P (Wi2), and thus the composition
factors of P (Wi2) are Wi2 , . . . ,Wip ,Wi2 . By induction on j the composition
factors of P (Wij ) are Wij ,Wij+1 . . . ,Wij+p , where the subindices should be read
modulo p− 1.
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Let f := min{ j > 1 | Wij
∼= W1 }. Then Ui1 , . . . , Uif−1 are pair-wise non-

isomorphic and Uif
∼= U1. It follows that Wij

∼= Wik if and only if j ≡ k
mod f . Any composition factor of Uj for 1 ≤ j ≤ f is isomorphic to one of
{Wi1 , . . . ,Wif }. Theorem 1.7.7 implies that f = e. We reorder the Wi, and
thereby also the χ′

i, so that Wj = Wij for 1 ≤ j ≤ e− 1.
(b) Now we go up from T to G. By Theorem 4.7.19 B := bG is defined and

by Exercise 4.7.3 B = (bT )G. Lemma 4.7.28(d) and (e) show that B is the only
p-block of G covering b. Let Vi := WG

i for i = 1, . . . , e. By Theorem 3.6.7 and
Lemma 4.7.28(b) the Vi are representatives of the simple FG-modules belonging
to B. Then Vi has Brauer character χi|Gp′ with χi := χ′

i
G ∈ Irr(G) (see

Theorem 3.6.7). Let W,W ′ be FT -modules in bT . Then ε̂bW = W and ε̂bW ′ =
W ′ because of Remark 4.7.27. If g ∈ G \ T then ε̂b 
= g ε̂b. From g ε̂b(g ⊗W ′) =
g ⊗W ′ we conclude that ε̂b(g ⊗W ′) = 0. Consequently

HomFT (W, ((g ⊗W ′)gT∩T )T ) = HomFT (ε̂bW, ε̂b((g ⊗W ′)gT∩T )T ) = {0}.

Lemma 3.2.21 implies

HomFT (W,W ′) ∼=F HomFG(WG,W ′G).

Let
P (Wi) =: Ui0 > Ui1 > · · · > Uip = {0} (i = 1, . . . , e)

be the composition series of P (Wi). Then

HomFG(UGij , Vk) ∼=F HomFT (Uij ,Wk) ∼=F

{
F if i+ j ≡ k mod e,
{0} else.

In particular, for j < p each UGij has a unique maximal submodule. Also UGi0 =
P (Wi)G is projective (see Corollary 3.2.16). Thus UGi0 ∼=FG P (Vi), the projective
cover of Vi, has a unique composition series

P (Vi) ∼=FG UGi0 > UGi1 > · · · > UGip = {0} (i = 1, . . . , e)

with composition factors Vi, Vi+1, . . . , Vi+p−1, where the indices have to be taken
modulo e.

By Lemma 4.7.28 χ ∈ Irr(G) belongs to B if and only if χC has a constituent
in Irr(b) = {θλ | λ ∈ Irr(D)}. If (χC , θ)C 
= 0 then χ ∈ {χ1, . . . , χe}, and
conversely. Let λ, λ′ ∈ Irr(D) \ {1D}. Then

TG(θλ) = C and θλ
G ∈ Irr(B).

Furthermore θλG = θλ′G if and only if θλ and θλ′ are conjugate in G, hence in
one orbit under T . Since the orbits of T on Irr(D) \ {1D} have length e, we
obtain

|{θλG | λ ∈ Irr(D) \ {1D}}| =
p− 1
e

.



374 Modular representations

Both θλ
G and χ1 + · · · + χe = θG vanish outside of C and agree on Cp′ . Thus

θλ
G|Gp′ = χ1|Gp′ + · · · + χe|Gp′ . This shows that the decomposition matrix

D(B) is as indicated.
Finally we show that every indecomposable B-module is uniserial. Let V

be a B-module and let U ≤FG V be a uniserial submodule of largest pos-
sible dimension. Let W ≤FG V be maximal with respect to the property
that W ∩ U = {0}. This implies that V/W has a simple socle L which, of
course, belongs to B. By Theorem 1.6.27(e) V/W is isomorphic to a submod-
ule of P (L), hence uniserial. If (V/W )/Rad(V/W ) ∼= V1, say, then there is
an epimorphism ψ̃ : P (V1) → V/W which can be lifted to a homomorphism
ψ : P (V1) → V . Then ψ(P (V1)) is a uniserial submodule of V of dimension
dimV/W ≥ dim(U ⊕W )/W = dimU . From the choice of U we conclude that
V = U ⊕W . So V = U if V is indecomposable and then V is a homomorphic
image of P (V1). Since isomorphic modules must have isomorphic socles and the
same composition length, the result follows.

We will now show how a defect group of a block is related to the vertices of
the indecomposable modules belonging to the block.

Theorem 4.8.15 Assume that S ∈ {R,F} and let V be an indecomposable
SG-module belonging to a p-block B. Then V is D-projective for D ∈ Def(B).
Thus any vertex of V is contained in a defect group of B.

Proof. If S = F put π := 0, otherwise let π be a generator for the unique
maximal ideal of R, as before. Let D ∈ Def(B), and let C1, . . . , Cm be the
conjugacy classes of G which have defect groups Qi ∈ Defp(Ci) contained in
D (1 ≤ i ≤ m). Let ε ∈ Z(SG) be the block idempotent of B. By the min–
max theorem (Theorem 4.6.6) we have ε =

∑m
i=1 aiC

+
i + πz with ai ∈ S and

some z ∈ Z(SG). Since εV = V , and EndSG V is local, there must be an
i ∈ {1, . . . ,m} with ai ∈ S \ πS such that the left multiplication

λC+
i

: V → V, v �→ C+
i v ∈ EndSG V

is a unit, that is an automorphism. (Observe that πλz : v �→ πzv is not sur-
jective.) For each g ∈ Ci the left multiplication λg : V → V, v �→ gv is in
EndSCG(g) V and λC+

i
= TrGCG(g)(λg). Then

idV = TrGCG(g)(λg) ◦ (λC+
i

)−1 = TrGCG(g)(λg ◦ (λC+
i

)−1).

By Theorem 4.8.4 V is CG(g)-projective, and hence a vertex of V is contained
in a defect group Qi of Ci. Since Qi ≤ D, the result follows.

Corollary 4.8.20 will show that in Theorem 4.8.15 there is an indecomposable
SG-module belonging to B having vertex D.

The following notation will be useful in Theorem 4.8.17 and Section 4.9.
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Definition 4.8.16 Let H be a set of p-subgroups of G and let V be an SG-
module; V is called H-projective if and only if every indecomposable direct
summand of V is H-projective for some H ∈ H.

Theorem 4.8.17 (Nagao) Let V be an indecomposable RG-lattice belonging
to a p-block B of G with block idempotent εB ∈ Z(RG). Assume that P ≤ G is a
p-group and that H ≤ G satisfies P CG(P ) ≤ H ≤ NG(P ) and let ε ∈ Z(RH) be
the uniquely defined central idempotent with ε̂ = BrP (ε̂B) (see Theorem 4.7.19).
Then

VH = εVH ⊕W with W an H-projective RH-module

for H = { Q ≤ H | Q a p-subgroup with P 
≤ Q }.

Proof. By assumption VH = εBVH = εVH ⊕ (1− ε)VH . We have to show that
(1− ε)VH = (εB − ε)VH is H-projective. Since ε̂ = BrP (ε̂B) we have

ε̂B − ε̂ ∈ 〈 C+ | C ∈ cl(H) , C � CG(P ) 〉F .

Let C ∈ cl(H) satisfy C � CG(P ) and Q ∈ Defp(C), say Q ∈ Sylp(CH(h))
with some h ∈ C. If P ≤ Q then h ∈ CG(Q) ≤ CG(P ) �H and, consequently,
C ⊆ CG(P ), a contradiction. Hence P � Q. Let

{C1, . . . , Cm} = {C ∈ cl(H) | P � Q for Q ∈ Defp(C) }.

Then εB − ε =
∑m
i=1 aiC

+
i + πz with ai ∈ R and z ∈ CRG(H). For any

indecomposable direct summand U of (εB − ε)VH we have λεB−ε = idU , where
λx : U → U, u �→ xu is again the left multiplication with x ∈ RH. Since
EndRH U is local, there must be an i ∈ {1, . . . ,m} such that λC+

i
∈ EndRH U

is a unit. As in the proof of Theorem 4.8.15, we see that U is CH(h)-projective
for h ∈ Ci and hence Q-projective for Q ∈ Defp(Ci).

In Section 4.3 we discussed properties of the characters of projective RG-
lattices. In order to generalize some of these to characters of Q-projective RG-
lattices for Q ≤ G, we will use the following important theorem, which can
also be viewed as a far reaching generalization of the observation made in Re-
mark 4.8.11(a).

Theorem 4.8.18 (Green’s indecomposability theorem) Let H � G and
let G/H be a p-group. Assume that F is algebraically closed and that W an
indecomposable RH-module. Then WG is also indecomposable.

Proof. See [41], p. 466.

Theorem 4.8.19 Let Q ≤ P ∈ Sylp(G) and let V be a Q-projective RG-lattice
with character χ. Then

(a) [P : Q] | χ(1);
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(b) if g ∈ G with gp 
∈G Q then χ(g) = 0.

Proof. We may assume without loss of generality that F is algebraically closed
and that V is indecomposable.

(a) By Theorem 4.8.4 and Mackey’s theorem (Theorem 3.2.17) we have

VP | (VQG)P =
⊕
g∈T

((g ⊗ VQ)gQ∩P )P =
⊕
g∈T

⊕
i∈Ig

Yg,i
P ,

where T is defined by G =
⋃̇
g∈TPgQ and

(g ⊗ VQ)gQ∩P =
⊕
i∈Ig

Yg,i with Yg,i indecomposable.

By Theorem 4.8.18 the induced modules Yg,iP are indecomposable, so VP is a
direct sum of some of these modules, which all have R-rank divisible by [P : Q],
hence [P : Q] | χ(1).

(b) Since V is Q-projective, V | VQG, hence using Mackey’s theorem (The-
orem 3.2.17) we get

V〈g〉 | (VQG)〈g〉 =
⊕
t∈T

((t⊗ VQ)tQ∩〈g〉)〈g〉, (4.34)

where G =
⋃̇
t∈T 〈g〉tQ. By assumption gp 
∈G Q, so

tQ ∩ 〈g〉 	 〈gp〉 ∈ Sylp(〈g〉), hence tQ ∩ 〈g〉 ≤ 〈gpp〉 ≤ 〈gp〉.

Consequently

((t⊗ VQ)tQ∩〈g〉)〈g〉 = (((t⊗ VQ)tQ∩〈g〉)〈gp〉)〈g〉.

From (4.34) we see V〈g〉 |
⊕n

i=1 Yi
〈g〉 for some indecomposable R〈gp〉-lattices Yi.

By Theorem 4.8.18 the modules Yi〈g〉 are indecomposable and V〈g〉 is a direct
sum of some of these. Consequently χ|〈g〉 is a sum of some induced characters
θi

〈g〉, where θi is the character of Yi. But θi〈g〉(g) = 0 for all i, since g 
∈ 〈gp〉,
hence χ(g) = 0.

Corollary 4.8.20 Let B be a p-block of G with defect group D. Then there is
an indecomposable RG-lattice belonging to B with vertex D.

Proof. For χ ∈ Irr(B) let Vχ be an RG-lattice such that KVχ affords χ. Then
Vχ is indecomposable and belongs to B. By Theorem 4.8.15 Vχ has a vertex Qχ
contained in D. By Theorem 4.8.19(a)

[P : Qχ] = [P : D][D : Qχ] | χ(1) = [P : D] phtp(χ) q,

with P ∈ Sylp(G) and p � q. So Qχ = D if χ has height zero.
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Exercises

Exercise 4.8.1 Give a Proof of Lemma 4.8.3.

Exercise 4.8.2 Let P = 〈g〉 be a cyclic p-subgroup of G and let W be an
indecomposable FP -module with dimF W = n. Show that WG has at most
[G : P ] indecomposable direct summands.
Hint: Let δ : P → GL(W ) be the representation afforded by W . Show that the
Jordan normal form of δG(g) has exactly [G : P ] Jordan blocks. On the other
hand, show that δG(g) has at least r Jordan blocks if WG ∼= V1 ⊕ · · · ⊕ Vr for
some FG-modules Vi.

Exercise 4.8.3 Let F be an arbitrary field and let Nn ∈ Fn×n be the matrix
with (i, i− 1)-entry 1 (for i = 2, . . . , n) and zeros elsewhere. Put

An :=
[

In 0n
In In

]
and Bn :=

[
In 0n
Nn In

]
.

(a) Let X ∈ F 2n×2n be a matrix which commutes with An and Bn. Show that

X is of the form X =
[
Y 0n
Z Y

]
with Y,Z ∈ Fn×n satisfying Y Nn = NnY .

(b) Show that Y ∈ Fn×n satisfies Y Nn = NnY if and only if

Y =



y1 0 0 . . . 0
y2 y1 0 . . . 0

y3 y2 y1
. . .

...
...

...
. . . . . . 0

yn yn−1 . . . y2 y1

 .

(c) Now let charF = p and G ∼= Cp×Cp be an elementary abelian group
with generators a, b. Show that a �→ An, b �→ Bn defines an indecomposable
representation δn : G→ F 2n×2n.
Hint: Use (a) and (b) to compute the endomorphism ring of the representation
module.

Exercise 4.8.4 LetQ := 〈(1, 2, 3)〉 ≤ G := S4 and letWi be an indecomposable
F3Q-module of dimension i for i = 1, 2, 3.

(a) Use GAP to write each WG
i as a sum of indecomposable F3G-modules.

(b) Show there are exactly eight indecomposable F3G-modules up to isomor-
phism.

Exercise 4.8.5 Let P be a normal p-subgroup of G with canonical projection
πP : G→ Ḡ := G/P .

(a) If W̄ is a projective indecomposable SḠ-module and W := InfπP
(W̄ ) then

Vtx(W ) = {P} and SP is the source of W .
(b) Conversely, if W is an indecomposable SG-module with vertex P and trivial
source SP , then W = InfπP

(W̄ ) for a projective indecomposable SḠ-module W̄ .
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4.9 Green correspondence

As in Section 4.8 let G be a finite group and let S be a field of characteristic p > 0
or a complete discrete valuation ring with char(S/ J(S)) = p > 0; (K,R, F, η) is
assumed to be a p-modular splitting system for G. All SG-modules considered
are assumed to be free and finitely generated as S-modules. In addition we fix
the following notation for this section. Let P be a p-subgroup of G and let H
satisfy

NG(P ) ≤ H ≤ G.

We put

X := X (P,H,G) := {P g ∩ P | g ∈ G \H},
Y := Y(P,H,G) := {P g ∩H | g ∈ G \H},
A := A(P,H,G) := {Q ≤ P | Q 
≤G X}.

Remark 4.9.1 Recall that Q 
≤G X means that Q is not conjugate in G to
any subgroup of a group in X . Obviously P ∈ A, because the groups in X
are all proper subgroups of P . Also, a vertex of an indecomposable direct
summand of an X -projective SG-module cannot be in A. Similarly, a vertex of
an indecomposable direct summand of a Y-projective SH-module, which is also
P -projective, cannot be in A.

We will denote the isomorphism class of an SG-module V by [V ] and denote
the set of isomorphism classes of indecomposable SG-modules by L(SG), and
similarly for SH-modules.

Theorem 4.9.2 (Green) For every indecomposable SG-module V (SH-module
W ) with a vertex in A there is a unique indecomposable SH-module f(V ) (re-
spectively SG-module f−1(W )) with

VH = f(V )⊕W ′ with W ′ Y-projective, (4.35)

WG = f−1(W )⊕ V ′ with V ′ X -projective. (4.36)

The map [V ] �→ [f(V )] gives a bijection

[f ] : {[V ] ∈ L(SG) | Vtx(V ) ∩ A 
= ∅} → {[W ] ∈ L(SH) | Vtx(W ) ∩ A 
= ∅}

with inverse [W ] �→ [f−1(W )]. The modules f(V ) and f−1(W ) are called the
Green correspondents of V and W , respectively. Corresponding modules
have a vertex in common and also a common source; f is called the Green
correspondence w.r.t. (P,H,G).

By the remarks preceding the theorem, f(V ) and f−1(W ) are the only in-
decomposable direct summands of VH and WG, respectively, having a vertex
in A.

Before entering the proof, we need a few lemmas, where we always retain
the above hypotheses.
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Lemma 4.9.3 For Q ≤ P the following conditions are equivalent:

(a) Q ≤G X ; (b) Q ≤H X ; (c) Q ≤H Y.

Proof. (a) ⇒ (b) Q ≤G X means that there are g ∈ G, x ∈ G \H with Qg ≤
P x ∩P . If g happens to be in H, then Q ≤H X . Otherwise Q ≤ P g

−1 ∩P ∈ X ,
because Q ≤ P by assumption.

(b) ⇒ (c) This is obvious, since the groups of X are all subgroups of those
in Y.

(c) ⇒ (a) Assume that Qh ≤ P g ∩ H for h ∈ H, g ∈ G \ H. Then Q ≤
P gh

−1 ∩ P ∈ X , because gh−1 
∈ H.

Lemma 4.9.4 (a) If W is a P -projective SH-module, then

(WG)H ∼= W ⊕ Y with Y a Y-projective SH-module.

(b) If V is a P -projective SG-module, then V is X -projective if and only if VH
is Y-projective.

Proof. (a) Since W is P -projective, there is an SP -module M and an SH-
module W1 with MH ∼= W ⊕W1. By Mackey’s theorem (Theorem 3.2.17) we
have

(WG)H ∼= W ⊕ Y and (WG
1 )H ∼= W1 ⊕ Y1,

with Y, Y1 being certain SH-modules. We then get

(MG)H ∼= ((MH)G)H ∼= (WG)H ⊕ (WG
1 )H ∼= MH ⊕ Y ⊕ Y1

and, on the other hand,

(MG)H ∼= MH ⊕
⊕

g∈T\H
((g ⊗M)gPg−1∩H)H ,

where G =
⋃̇
g∈TPgH. For g ∈ T \H we have gPg−1 ∩H ∈ Y. Thus Y ⊕ Y1

and hence Y is Y-projective.
(b) We may assume without loss of generality that V is indecomposable and

has a vertex Q ≤ P . We first assume that V is X -projective, that is Q ≤G X .
By Lemma 4.8.9 there is an indecomposable SH-module W with

V |WG and Q ∈ Vtx(W ).

By Lemma 4.9.3 Q ≤H Y. Then VH | (WG)H = W⊕Y , where Y is Y-projective
by part (a). Hence VH is Y-projective.

Conversely, assume that VH is Y-projective. Again by Lemma 4.8.9 there is
an indecomposable SH-module W with

W | VH and Q ∈ Vtx(W ).

Therefore Q ≤H Y, and by Lemma 4.9.3 we also have Q ≤G X . Hence V is
X -projective.
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Proof of Theorem 4.9.2. Let V be an indecomposable SG-module with
vertex Q ∈ A. By Lemma 4.8.9 there is an indecomposable SH-module W with

V |WG and Q ∈ Vtx(W ).

We have
VH | (WG)H ∼= W ⊕ Y ′ with Y ′ Y-projective

by Lemma 4.9.4. IfW � VH then VH would be Y-projective, so by Lemma 4.9.4(b)
V would be X -projective, contrary to our assumption. Hence

VH ∼= W ⊕W ′ with W ′ | Y ′ Y-projective.

Observe that W is the only direct summand of VH with vertex Q, in fact, the
only one with vertex in A (by Remark 4.9.1). Thus we may put f(V ) := W .
Then V and f(V ) have the same vertex and the same source, because V | f(V )G

and (4.35) holds.
Let WG ∼= V ⊕ V ′, so

W ⊕ Y ′ ∼= (WG)H = VH ⊕ V ′
H = W ⊕W ′ ⊕ V ′

H .

Since Y ′ is Y-projective, so is V ′
H . By Lemma 4.9.4(b) V ′ is X -projective. Thus

V is the only indecomposable direct summand of f(V )G with a vertex in A,
which shows that [f ] is injective. Writing again W instead of f(V ) and putting
f−1(W ) := V we obtain (4.36).

To show that [f ] is also surjective, let W be an arbitrary indecomposable
SH-module with vertex Q ∈ A. Since W | (WG)H , there is an indecomposable
direct summand V of WG with W | VH . Hence V is Q-projective and, on the
other hand, by Theorem 4.8.10 Q ≤G Q′ ∈ Vtx(V ). Thus Q ∈ Vtx(V ). Since
by the first part of the proof we know that f(V ) is the only indecomposable
direct summand of VH with a vertex in A, we conclude that W ∼= f(V ).

The following theorem shows that Brauer correspondence and Green corre-
spondence fit together nicely.

Theorem 4.9.5 Assume that (K,R, F, η) is a p-modular splitting system for G
and S ∈ {R,F}. Let N = NG(P ) and let f be the Green correspondence w.r.t.
(P,N,G). If V is an indecomposable SG-module belonging to B ∈ Blp(G) with
a vertex in A(P,N,G), then f(V ) belongs to a block b ∈ Blp(N) with bG = B.

Proof. Assume that W := f(V ) belongs to b ∈ Blp(N). If D ∈ Def(b) then by
Theorem 4.6.10 P ≤ D, and hence CG(D) ≤ CG(P ) ≤ N . By Corollary 4.7.23
B′ := bG is defined. By Theorem 4.7.10 there is an indecomposable SG-module
V ′ belonging to B′ with V ′ |WG and W | V ′

H . Hence V ′ and W have a common
vertex, and by Theorem 4.9.2 V ′ ∼= f−1(W ) ∼= V . So B′ = B.

The Green correspondence is particularly simple and useful when P is a
TI-subgroup in G, that is, if

P ∩ P g = {1} for all g ∈ G \NG(P ),

because in this case “X -projective” simply means “projective.”
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Lemma 4.9.6 Let P be a TI-p-subgroup of G and let H = NG(P ). Let f be the
Green correspondence with respect to (P,H,G) and let V1, V2 be non-projective
indecomposable SG-modules with vertices in P . If there is a non-split short
exact sequence of SH-modules

{0} −→ f(V1) −→W −→ f(V2) −→ {0}, (4.37)

then there is a non-split short exact sequence

{0} −→ V1 −→ V −→ V2 −→ {0} (4.38)

of SG-modules.

Proof. Assume that there is a non-split short exact sequence (4.37) and put
Wi := f(Vi) for i = 1, 2. We have WG

i
∼= Vi ⊕Xi with projective SG-modules

Xi for i = 1, 2. By Lemma 3.2.21(b) we may embed WG
1 into WG for notational

convenience, and we have WG/WG
1
∼=SG WG

2 . Let U be a submodule of WG

with WG/U ∼= X2 and U/WG
1
∼= V2. We claim that

{0} −→WG
1 /X1 −→ U/X1 −→ V2 −→ {0} (4.39)

is non-split. Since WG
1 /X1 ∼= V1 naturally, this proves the first assertion. To

prove the claim, assume that WG
1 /X1 has a complement U1/X1 in U/X1. Since

X1 is projective, X1 has a complement U2 in U1 by Theorem 1.6.27(d). The
short exact sequence

{0} −→ U/U2 −→WG/U2 −→ X2 −→ {0}

is split, since X2 is projective. Hence there is a submodule U3 such that U3/U2
is a complement to U/U2 in WG/U2. So U3 is a complement to WG

1 in WG,
and

{0} −→WG
1 −→WG −→WG

2 −→ {0}
is split, contrary to Lemma 3.2.21(c).

Theorem 4.9.7 Let B be a p-block of G with defect group P , a TI-subgroup
in G, and H = NG(P ). Then the Green correspondence f with respect to
(P,H,G) induces a bijection between the isomorphism classes of non-projective
indecomposble SG-modules belonging to B and those of SH belonging to b, the
Brauer correspondent of B. If V is a non-projective indecomposable SG-module
belonging to B and W := f(V ), then

VH = W ⊕ Y and WG = V ⊕X (4.40)

with a projective SG-module X and an SH-module Y which is a direct sum of
projective modules and indecomposable modules not belonging to b. Furthermore,
if V1, V2 are non-projective indecomposable SG-modules in B, then

HomSG(V1, V2) ∼=S HomSH(f(V1), f(V2)).
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Proof. By assumption X := {{1}}, A = {Q ≤ P | Q 
= {1}}. By Theo-
rem 4.8.15 the vertex of any indecomposable SH-module W ′ in b is contained in
P ; since P is a TI-subgroup, W ′ cannot be Y-projective unless it is projective.
Put Wi := f(Vi) (i = 1, 2), WG

1 = V1 ⊕ X1 and (V2)H = W2 ⊕ Y2 with X1
projective and Y2 Y-projective as in (4.40). Then HomSG(X1, V2) = {0} and
HomSH(W1, Y2) = {0}, so

HomSG(V1, V2) ∼=S HomSG(V1 ⊕X1, V2) ∼=S HomSG(WG
1 , V2)

∼=S HomSH(W1, (V2)H) ∼=S HomSH(W1,W2 ⊕ Y2)
∼=S HomSH(W1,W2)

using Corollary 3.2.22.

In Section 4.8 (Theorem 4.8.14) we investigated the simple and indecompos-
able FG-modules of a p-block b of defect one for the case where a defect group
of b is normal in G. The Green correspondence allows us to lift some of the
information to blocks of defect one without the assumption that a defect group
is normal.

Theorem 4.9.8 Let B ∈ Blp(G) be a block of defect one with P ∈ Def(B) and
H := NG(P ). Let b ∈ Blp(H) be the unique block with bG = B and let Y1, . . . , Ye
be the simple FH-modules belonging to b (up to isomorphism). Then there are
exactly e simple FG-modules V1, . . . , Ve in B which may be ordered such that

f(Vi)/Rad(f(Vi)) ∼=FH Yi and Soc(f(Vi)) ∼=FH Yπ(i),

for some π ∈ Se, where f is the Green correspondence w.r.t. (P,H,G). In
particular

l(B) = l(b). (4.41)

Proof. Let Uij be the factor module of P (Yi) of length j for 1 ≤ i ≤ e, 1 ≤ j ≤
p. By Theorem 4.8.14 these are all the indecomposable FH-modules belonging
to b up to isomorphism. The proof of this theorem also shows that Uij is a
homomorphic image of Uik if j ≤ k and by Lemma 1.6.30 HomFH(Uik, Uij) 
=
{0} for j ≤ k < p. On the other hand, let V, V ′ be non-isomorphic simple FG-
modules belonging to B with l(f(V )) ≥ l(f(V ′)). By Theorem 4.9.5, f(V ), f(V ′)
belong to b, and using Theorem 4.9.7 we conclude that

{0} = HomFG(V, V ′) ∼=F HomFH(f(V ), f(V ′)).

Thus f(V )/Rad(f(V )) 
∼=FH f(V ′)/Rad(f(V ′)). Similarly one sees that

Soc(f(V )) 
∼=FH Soc(f(V ′)).

Now let Wi := f−1(Yi). By Theorem 4.9.5 Wi belongs to B. If V is a simple
FG-module with HomFG(V,Wi) 
= {0} then, because of Lemma 1.6.30 and
Theorem 4.9.7,

{0} 
= HomFG(V,Wi) ∼=F HomFH(f(V ), Yi).
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So every Yi is a factor module of f(V ) for some simple FG-module Vi := V in
B, which completes the proof of the theorem.

Remark 4.9.9 Equation (4.41) in Theorem 4.9.8 holds more generally if B
is a block with cyclic defect group and b is its Brauer correspondent; see [1],
Theorem 1, p. 123.

Example 4.9.10 Let G := SL2(p) for a prime p > 2 and

P := {
[

1 0
c 1

]
| c ∈ Fp}, H := NG(P ) = {

[
a 0
c a−1

]
| a ∈ F×

p , c ∈ Fp}.

Observe that P ∈ Sylp(G). For i ∈ {0, . . . , p− 1} let Yi be the one-dimensional
FpH-module affording the representation

H → Fp ,
[
a 0
c a−1

]
�→ ai.

Then Y0 = Fp, the trivial module, and Yi ⊗ Yj ∼= Yi+j if we take the indices
modulo p− 1.

In Exercise 1.3.4 we saw that G has simple FpG-modules Vi of dimension i
for i = 1, . . . , p. In fact,

Vi = 〈Xi−1, Xi−2Y, . . . Y i−1〉Fp ⊆ Fp[X,Y ].

Recall that each g :=
[
a b
c d

]
∈ G acts as an algebra automorphism on

Fp[X,Y ] with
g ·X = aX + cY, g · Y = bX + dY.

Let

gs :=
[
a 0
0 a−1

]
∈ H and gu :=

[
1 0
c 1

]
∈ P with a, c ∈ F×

p .

Let δi : G→ GLi(Fp) be the matrix representation afforded by Vi with respect
to the indicated basis. Then it is easily verified that

δi(gs) =


ai−1 0 · · · 0

0 ai−3 0
...

. . .
0 0 a−i+1

 , δi(gu) =


1 0 · · · 0
d2 1 0
∗ d3 1 0
...

. . . . . .
∗ · · · ∗ di 1

 ,

with dj := (i − j + 1)c 
= 0 for 2 ≤ j ≤ i. By Example 1.1.23 (Vi)P is
indecomposable, and Theorem 4.8.14 shows that ViH := (Vi)H is uniserial.
Moreover, Rad(ViH) = 〈Xi−2Y, . . . , Y i−1〉Fp . Hence

(Vi)H/Rad(ViH) ∼= Yi−1 and Rad(ViH)/Rad2(ViH) ∼=FH Yi−3 ,
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where the indices should be read modulo p − 1. Since ViH is a homomorphic
image of P (Yi−1), Theorem 4.8.14 shows that for any i ∈ {0, . . . , p − 1} the
composition factors of P (Yi) are given by

Yi, Yi−2, . . . , Yi−2(p−2), Yi−2(p−1) = Yi,

taking indices modulo p− 1.
Now Green correspondence comes into play, in order to lift the information

we have about about FpH-modules to information about FpG-modules. For
i < p the simple FpG-module Vi is not projective, so P ∈ Vtx(Vi). Let f be the
Green correspondence w.r.t. (P,H,G). Then f(Vi) = ViH .

Since ViH/Rad(ViH) ∼=FpH Yi−1, we conclude that ViH is a homomorphic
image of the uniserial projective cover P (Yi−1), thus

ViH ∼=FpH P (Yi−1)/Radi(P (Yi−1)).

Radi(P (Yi−1)) has head (top composition factor) Yp−i−2, and hence is a homo-
morphic image of P (Yp−i−2), and

(Vp−i−1)H ∼=FpH P (Yp−i−2)/Radp−i−1(P (Yp−i−2))
∼=FpH Radi(P (Yi−1))/ Soc(P (Yi−1)).

Hence we have a non-split short exact sequence

{0} −→ (Vp−i−1)H −→ P (Yi−1)/ Soc(P (Yi−1)) −→ (Vi)H −→ {0}.

By Theorem 4.9.6 it follows that there is a non-split exact sequence of FpG-
modules

{0} −→ Vp−i−1 −→ V (i) −→ Vi −→ {0}

for 1 ≤ i ≤ p − 1. We obtain another non-split short exact sequence of FpH-
modules by considering W := P (Yi−1)⊕ Yp−i. In fact, Radi−1(P (Yi−1))⊕ Yp−i
contains p− 1 “diagonal” uniserial maximal submodules U such that

W/U ∼=FpH P (Yi−1)/Radi(P (Yi−1)) ∼= ViH .

The module U , having head Yp−i and length p− i+ 1, is isomorphic to

P (Yp−i)/Radp−i+1(P (Yp−i)) ∼=FpH (Vp−i+1)H .
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W
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Figure 4.1. Non-split extension of (Vp−i+1)H by ViH .

We get a non-split exact sequence (see Figure 4.1):

{0} −→ (Vp−i+1)H −→W −→ ViH −→ {0}.

Using Theorem 4.9.6 again we obtain a non-split exact sequence of FpG-modules:

{0} −→ Vp−i+1 −→ V
(i)
• −→ Vi −→ {0} for 1 ≤ i ≤ p− 1.

Both FpG-modules V (i) and V
(i)
• must be homomorphic images of P (Vi). We

conclude that

dimP (Vi) ≥ 2p for i = 2, . . . , p− 2.

By Theorem 1.6.27 it is clear that dimVp−1 ≥ 2p. But by Theorem 1.6.24

p(p2 − 1) = dim FpG

=
p∑
i=1

dimVi dimP (Vi) ≥ p+ (2 + · · ·+ p− 1)2p+ p2 = p(p2 − 1).

Hence dimP (V1) = dimVp = p and dimP (Vi) = 2p for i = 2, . . . , p− 2, and we
have determined the complete submodule structure of all P (Vi) (see Figure 4.2)
and thereby of FpG:

�
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P (V1)
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Vp−2

V1

Vp−1

V2

Vp−1

Vi
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Vp−i−2Vp−i+2

P (Vp−1)
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∗

{0}

P (Vi)
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Figure 4.2. Submodule diagrams for the p-projective indecomposable
modules for SL2(p).

Exercises

Exercise 4.9.1 Show that an SG-module V is H-projective for some H ≤ G
if and only if each short exact sequence of SG-homomorphisms

{0} −→ V1
α−→ V

β−→ V2 −→ {0},

for which the sequence of SH-homomorphisms

{0} −→ V1H
α−→ VH

β−→ V2H −→ {0}

splits, is itself split.

Exercise 4.9.2 Let H ≤ G with p � [G : H]. Assume that V is an SG-module
such that VH is semisimple. Show that V itself must be semisimple.

4.10 Trivial source modules

As in the preceding sections, let S ∈ {R,F}, where (K,R, F, η) is a p-modular
splitting system for the finite group G. We also assume that K and F are
splitting fields for all subgroups of G. All modules considered are assumed to
be free and finitely generated as S-modules.

Definition 4.10.1 An SG-module V is called a trivial source module if it is
a direct sum of indecomposable SG-modules Vi having trivial sources SQi

(with
Qi ∈ Vtx(Vi)).
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The following lemma gives a different characterization of trivial source modules.

Lemma 4.10.2 Let P be a p-subgroup of G and N := NG(P ). Then

(a) An SG-module V is a trivial source module if and only if it is a direct
summand of a permutation module.

(b) If P � G, then every indecomposable summand of the permutation module
(SP )G has vertex P .

(c) For each indecomposable trivial source SN -module W with Vtx(W ) = {P}
there exists an indecomposable SG-module V with P ∈ Vtx(V ) and source SP
such that

eVN = W ⊕W ′,

with P 
∈ Vtx(Wi) for any indecomposable Wi | W ′. If P ≤ H ≤ N with
p � [H : P ], then

VH = WH ⊕W ′
H ,

where the indecomposable summands of WH have vertex P , while those of W ′
H

have vertices strictly contained in P .

Proof. (a) It suffices to consider indecomposable modules. Let V be an
indecomposable direct summand of (SH)G for some H ≤ G and let Q ∈ Vtx(V )
with Q ≤ H. Then

VQ | ((SH)G)Q =
⊕
g∈T

(SgHg−1∩Q)Q if G =
⋃̇

g∈T QgH.

Thus all indecomposable direct summands of VQ are trivial source modules, and
by Theorem 4.8.10 (applied with H := Q) V is a trivial source module.

(b) Let V | (SP )G be indecomposable and let Q ∈ Vtx(V ) with Q ≤ P . By
Theorem 4.8.4 there is a θ ∈ EndSQ V such that

TrGP ◦TrPQ(θ) = TrGQ(θ) = idV .

Since P acts trivially on V (Exercise 1.2.1), we have TrPQ(θ)(v) = [P : Q]θ(v)
for v ∈ V , thus im(TrGQ(θ)) ⊆ [P : Q]V , which is feasible only if P = Q.

(c) Let V = f−1(W ) be the Green correspondent of the given trivial source
module W with respect to (G,N,P ). Then the first assertion follows from The-
orem 4.9.2, since P 
∈ Y in the notation of that theorem. Since Sylp(H) = {P},
a vertex of any direct summand of W ′

H is contained in P (and in P g for some
g 
∈ N), and hence is strictly contained in P . If W0 | WH is indecomposable,
then

W0 | (SP )NH = (SP )H ⊕ · · · ⊕ (SP )H︸ ︷︷ ︸
[N :H]

by Mackey’s theorem. So Vtx(W0) = {P} by part (b).

A simple observation is given by the following corollary.
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Corollary 4.10.3 Let P be a p-subgroup of G. Then the following statements
hold:

(a) The number of indecomposable trivial source FG-modules (up to isomor-
phism) with vertex P is equal to | IBr(NG(P )/P )|.
(b) The total number of indecomposable trivial source FG-modules (up to iso-
morphism) is given by

∑
Q | IBr(NG(Q)/Q)|, where Q runs through the p-

subgroups of G up to G-conjugacy.

Proof. Green correspondence, see Theorem 4.9.2, applied to (G,NG(P ), P )
shows that there is a bijection between the indecomposable trivial source FG-
modules having P as a vertex and the indecomposable trivial source F NG(P )-
modules with vertex P . From Exercise 4.8.5 it follows that the indecomposable
F NG(P )-modules with source FP are the inflations to NG(P ) of the projective
indecomposable F NG(P )/P -modules. Hence (a) and (b) follow immediately.

Definition 4.10.4 (a) Let T S+(SG) be the set of isomorphism classes [V ]
of trivial source SG-modules V . The abelian group with set of generators
T S+(SG) and defining relations

[V ] + [W ]− [V ⊕W ] = 0 for [V ], [W ] ∈ T S+(SG)

will be denoted by T S(SG). It is a free group with Z-basis consisting of the iso-
morphism classes of indecomposable trivial source modules. Since by Mackey’s
theorem the tensor product of trivial source modules is again a trivial source
module, we can turn T S(SG) into a ring by defining a product

[V ] · [W ] := [V ⊗S W ] for [V ], [W ] ∈ T S+(SG)

and Z-linear extension.
(b) Let

Cp(G) := {H ≤ G | H/Op(H) is a cyclic p′-group}.
Observe that any H ∈ Cp(G) is a split extension of Op(H) by a cyclic p′-group
by the Schur–Zassenhaus theorem.
(c) For H ∈ Cp(G) and V ∈ T S+(FG) we write

VH = (VH)=P ⊕ (VH)<P ,

where each indecomposable direct summand of (VH)=P has vertex P := Op(H)
and each indecomposable direct summand of (VH)<P has vertex strictly con-
tained in P . (Of course, it may happen that (VH)=P = {0} or (VH)<P = {0}.)
Since P acts trivially on (VH)=P (see Exercise 1.2.1), (VH)=P may be considered
as an F (H/P )-module whose Brauer character we will denote by ϕ̃V =P

H
. In fact,

this is an ordinary character of H/P , since this is a p′-group. For H ∈ Cp(G)
and c̃ ∈ H/Op(H) we define a C-algebra homomorphism (see Corollary 3.2.16)

sH,c̃ : C⊗ T S(FG) → C by sH,c̃([V ]) := ϕ̃V =P
H

(c̃)

and linear extension; sH,c̃ is called a species.
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Remark 4.10.5 Let H ∈ Cp(G) with P := Op(H) and V := (FU )G, the per-
mutation module afforded by the G-set Ω := G/U , for some U ≤ G. Then

VH =
⊕
g∈T

(FgUg−1∩H)H , where G =
⋃̇

g∈THgU.

A vertex of any indecomposable summand of (FgUg−1∩H)H is contained in
gUg−1 ∩ P . Hence

(VH)=P =
⊕
g∈T1

(FgUg−1∩H)H with T1 := {g ∈ T | P ≤ gUg−1}.

Thus (VH)=P = F FixΩ(P ) is an FH-permutation module. Also, for c ∈ H let
c̃ := cP ∈ H/P and Hc := 〈P, c〉 ≤ H. Then, writing ΩP := FixΩ(P ),

sH,c̃([V ]) = |{ω ∈ ΩP | c ω = ω}| = |{ω ∈ Ω | hω = ω for all h ∈ Hc}|
= mG/U (Hc), (4.42)

where mG/U is the mark of the G-set G/U ; see Definition 3.5.1. In particular,
for U = Hc we obtain from Lemma 3.5.3 sH,c̃([V ]) = [NG(Hc) : Hc], so sH,c̃ is
certainly not the zero map.

Lemma 4.10.6 (a) If V̂ is a trivial source FG-module, then there exists a
unique trivial source RG-lattice V such that V/πV ∼= V .

(b) V is an indecomposable trivial source RG-lattice if and only if V̂ := V/πV is
an indecomposable trivial source FG-module. Moreover, in this case vtx(V ) =
vtx(V̂ ).

Proof. (a) We assume without loss of generality that V̂ is indecomposable.
Let H be a subgroup of G such that V̂ is isomorphic to a direct summand of
the permutation FG-module (FH)G. Hence we can write V̂ ∼= (FH)Gê for an
idempotent ê in E := EndFG (FH)G. Since

E ∼= EndRG (RH)G/πEndRG (RH)G

by Exercise 4.1.4, we can lift ê to an idempotent e ∈ EndRG (RH)G, and (RH)Ge
is an indecomposable RG-lattice with (RH)Ge/π(RH)Ge ∼= V̂ . To show unique-
ness assume that V1 and V2 are trivial source RG-lattices such that V̂1 ∼= V̂2 ∼= V̂ .
Let ϕ̂ be an FG-isomorphism from V̂1 onto V̂2. It follows again from Exer-
cise 4.1.4 that there is an RG-homomorphism ϕ from V1 to V2 with (̂ϕ) = ϕ̂.
This implies that ϕ(V1) + πV2 = V2, and we conclude that ϕ is surjective. As a
homomorphism of RG-lattices of the same R-rank, ϕ has to be bijective.

(b) The first part of (b) follows easily from Exercise 4.1.4. For the second
part, let P be a vertex of V . Since V |(RP )G, and hence V̂ |(FP )G, it follows
that V̂ is P -projective. On the other hand, if Q is a vertex of V̂ then there is
an FG-endomorphism ϕ̂ of V̂ such that idV̂ = TrGQ(ϕ̂). Since ϕ̂ can be lifted to
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an RG-endomorphism ϕ of V , we get that idV ∈ TrGQ(EndRQ V ) + πEndRG V .
This shows that

EndRG V = TrGQ(EndRQ V ),

which means V is Q-projective.

An easy consequence of the lemma is the following.

Corollary 4.10.7 Let T R+(RG), respectively T F+(FG), be the trivial source
ring of trivial source RG-lattices, respectively trivial source FG-modules. Then
the map ̂ : T R+(RG) → T F+(FG) defined by [̂V ] := [V/πV ] for all trivial
source RG-lattices V and extended Z-linearly to T S+(SG) is an isomorphism
of rings.

Example 4.10.8 Let (K,R, F ) be a 3-modular splitting system for G := M11.
In the following we will describe the indecomposable trivial source RG-lattices
and hence also the indecomposable trivial source FG-modules, since these lift
uniquely to trivial source RG-lattices as stated in Lemma 4.10.6.

We refer to the table of marks of G which can be found in Example 3.5.24.
We will denote representatives of the conjugacy classes of subgroups of G by
H1, . . . , H39, so that the i, j-entry in the table of marks is |FixG/Hi

(Hj)|. Up
to conjugacy G has three 3-subgroups: P1 := H1 = {1}, P2 := H3 ∼= C3, P3 :=
H13 ∼= C3×C3. Indecomposable trivial source RG-modules with vertex {1} are
simply the projective indecomposable modules, whose ordinary characters can
be obtained from the 3-decomposition matrix of G (see Example 4.4.18). In
GAP their characters can be obtained as follows:

gap> ct := CharacterTable("M11");; ctmod3 := ct mod 3;;
gap> projectives := Irr(ct) * DecompositionMatrix(ctmod3);;

The 3-projective indecomposable characters of M11 are as follows:

|CG(g)| : 7920 48 18 8 5 6 8 8 11 11
G = M11 1a 2a 3a 4a 5a 6a 8a 8b 11a 11b

Φ1 99 3 . −1 4 . 1 1 . .
Φ2 126 6 . −2 1 . . . β β̄
Φ3 126 6 . −2 1 . . . β̄ β
Φ4 54 6 . 2 −1 . . . −1 −1
Φ5 81 −3 . −1 1 . α ᾱ γ γ̄
Φ6 81 −3 . −1 1 . ᾱ α γ̄ γ
Φ7 99 3 . −1 −1 . 1 1 . .
Φ8 45 −3 . 1 . . −1 −1 1 1

with α := 1 +
√
−2, β := −1+

√−11
2 , γ := −3+

√−11
2 .

We want to investigate the Green correspondents of the other trivial source
modules. We choose P2 := H3, the representative of the conjugacy class of
subgroups of G of order three stored in the GAP table of marks of G (obtained
via “RepresentativeTom(t,3)”). Then N2 := NG(P2) = H26 is isomorphic to
S3×S3. In GAP we obtain its character table as follows:
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gap> t := TableOfMarks("M11");;
gap> ctn2 := CharacterTable( RepresentativeTom(t,26) ) ;;

|CN2(g)| : 36 4 9 18 18 12 12 6 6
N2 1a 2a 3a 3b 3c 2b 2c 6a 6b
ψ1 1 1 1 1 1 1 1 1 1
ψ2 1 −1 1 1 1 −1 1 1 −1
ψ3 1 −1 1 1 1 1 −1 −1 1
ψ4 1 1 1 1 1 −1 −1 −1 −1
ψ5 2 . −1 −1 2 2 . . −1
ψ6 2 . −1 −1 2 −2 . . 1
ψ7 2 . −1 2 −1 . −2 1 .
ψ8 2 . −1 2 −1 . 2 −1 .
ψ9 4 . 1 −2 −2 . . . .

Observe that N2 has three conjugacy classes of subgroups of order three. We
may assume that P2 is generated by an element of 3b. (Working in GAP this
choice is not arbitrary; in fact, by our definite choice of P2, the generators of P2
are in that class.) Then

X (P2, N2, G) = {{1}},
Y := Y(P2, N2, G) = {{1}} ∪ {〈h〉 | h ∈ 3a} ∪ {〈h〉 | h ∈ 3c}.

By Green correspondence the isomorphism classes of indecomposable trivial
source RG-modules with vertex P2 correspond bijectively with the indecompos-
able trivial source RN2-modules with vertex P2. Since P2 acts trivially on the
latter modules, they can be considered as projective R(N2/P2)-modules. It is
easy to see that there are four projective indecomposable R(N2/P2)-modules
and that the inflations to N2 have ordinary characters

η1 := ψ1 + ψ8, η2 := ψ2 + ψ8,

η3 := ψ3 + ψ7, η4 := ψ4 + ψ7.

This can also be obtained automatically by GAP: N2/P2 is solvable, so the
Brauer characters and hence the decomposition matrices of this group can im-
mediately be found from the ordinary character table (see Corollary 4.13.6 be-
low). So we get the ordinary characters of projective indecomposable modules
of R(N2/P2) by

gap> ctf:=CharacterTable(RepresentativeTom(t,26)/RepresentativeTom(t,3));;
gap> ctfprojectives := Irr(ctf)* DecompositionMatrix( ctf mod 3 );

Let S1, . . . , S4 be the irreducible (trivial source) RN2-lattices with characters
ψ1, . . . , ψ4 and let W1, . . . ,W4 be the trivial source RN2-lattices with character
η1, . . . , η4. Then W1 ∼= (RCN2 (h))N2 is actually a permutation module, where h
in the class 2b of N2 and Wi

∼= Si ⊗R W1 for i = 2, 3, 4. (Observe that RN2
has more trivial source modules with vertices, which are conjugate in G to P2,
for example (RCN2 (h))N2 for h ∈ 2c.) We conclude that up to isomorphism
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the indecomposable trivial source modules for G with vertex P2 are {f−1(Wi) |
1 ≤ i ≤ 4}, and we try to determine the (ordinary) characters. The Green
correspondent f−1(W1) is easily determined as follows. Let V1 := RH37

G be the
permutation module on the cosets of the maximal subgroup H37 ∼= L2(11) of G.
From the table of marks of G we easily find (see Exercise 3.5.3)

V1|N2
∼= RU1

N2 ⊕RU2
N2 ⊕RU3

N2 ,

where U1, U2 are centralizers of elements in 2b and 2c, respectively, and U3 ∼= S3
contains elements of 3a. By Corollary 4.8.5, RU2

N2 and RU3
N2 are Y-projective,

since Syl3(U2), Syl3(U3) ⊆ Y. Thus V1 ∼= f−1(W1). We may check that η1G −
1H37

G = Φ2 + Φ3 + 2 Φ4 + 2 Φ7 + 2 Φ8 is indeed the character of a projective
module, as it should be, because X = {{1}}. But this alone, of course, would
not prove that V1 is the Green correspondent of W1. In order to determine the
other three indecomposable trivial source RG-modules with P2 being a vertex,
we proceed as follows.

For the maximal subgroup S5 of G we take the sign RS5-lattice, which is a
trivial source lattice (see Exercise 4.10.2), and for the maximal subgroup L2(11)
there are two trivial source lattices with ordinary character χ′

4 and χ′
5 (see

Exercise 4.10.1). Inducing these lattices to G gives three trivial source lattices
with ordinary characters χ5 + χ10, χ3 + χ4 + χ9 + χ10 and χ2 + χ5 + χ8 + χ10.
The first trivial source lattice is indecomposable, since the degree of a proper
summand would have to be divisible by three, and the second lattice splits as a
direct sum of the projective indecomposable module with ordinary character χ9
and an indecomposable trivial source lattice with ordinary character χ3 + χ4 +
χ10. The vertex for both indecomposable trivial source lattices has to contain
P2, since three only divides once the rank of the lattices. We will show later, see
Example 4.10.12, that the third trivial source lattice is actually indecomposable
and hence P2 is a vertex. We have therefore found the ordinary characters of
all four indecomposable trivial source RG-lattices with P2 as a vertex.

Finally, let P3 := H13 ∈ Syl3(G). Then N3 := NG(P3) = H35, with charac-
ter table given by

|CN3(g) | : 144 4 8 16 18 12 8 8 6
N3 1a 4a 4b 2a 3a 2b 8a 8b 6a
θ1 1 1 1 1 1 1 1 1 1
θ2 1 −1 1 1 1 −1 1 1 −1
θ3 1 −1 1 1 1 1 −1 −1 1
θ4 1 1 1 1 1 −1 −1 −1 −1
θ5 2 . −2 2 2 . . . .
θ6 2 . . −2 2 . −α α .
θ7 2 . . −2 2 . α −α .
θ8 8 . . . −1 −2 . . 1
θ9 8 . . . −1 2 . . −1

and α :=
√
−2. We quickly see that we have up to isomorphism seven trivial

source modules W ′
i with vertex P3, having ordinary characters θi for i = 1, . . . , 7

and moreover X (P3, N3, G) = Y(P3, N3, G) = {{1}}.
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The ordinary characters of the induced trivial RG-lattices are given in
Table 4.3, and the ordinary characters of their Green correspondents V ′

1 , . . . , V
′
7

are given by Table 4.4. This follows readily for all but V ′
5 . The character

Table 4.3. Ordinary characters of the induced trivial RG-lattices

θG
1 θG

2 θG
3 θG

4 θG
5 θG

6 θG
7

χ1 + χ2 + χ8 χ5 + χ8 χ10 χ2 + χ9 χ5 + χ8 + χ10 χ3 + χ9 + χ10 χ4 + χ9 + χ10

Table 4.4. Ordinary characters of the Green correspondents

V ′
1 V ′

2 V ′
3 V ′

4 V ′
5 V ′

6 V ′
7

χ1 χ5 + χ8 χ10 χ2 χ5 χ3 + χ10 χ4 + χ10

of the trivial source RG-lattice V ′
5 can be obtained by inducing up the sign

RA6 .23-lattice from A6 .23 (in ATLAS notation; see [38]). Since the character
of the induced RG-lattice is χ5, it is an indecomposable trivial source lattice
with P3 as a vertex, and it follows that it has to be isomorphic to V ′

5 . �

Lemma 4.10.9 Let H ∈ Cp(G) and P := Op(H). Then sH,c̃ = sH,c̃′ for
c̃, c̃′ ∈ H/P if and only if c̃, c̃′ are conjugate in NG(P )/P .

Proof. We know that c̃, c̃′ are p-regular. By Theorem 4.3.3 they are conjugate
in NG(P )/P if and only if Φ(c̃) = Φ(c̃′) for all projective indecomposable char-
acters Φ of NG(P )/P . Let W be a projective indecomposable F (NG(P )/P )-
module with character Φ, inflated to an F NG(P )-module. Thus Vtx(W ) = {P}
and FP is a source for W (see Exercise 4.8.5). By Lemma 4.10.2(c) there is an
indecomposable FG-module V with P ∈ Vtx(V ) and source FP such that

VN = W ⊕W ′,

with P 
∈ Vtx(Wi) for any indecomposable Wi | W ′. By definition we have
sH,c̃([W ]) = ϕ̃WH

(c̃) = Φ|H(c̃). From this the result follows immediately.

As we have observed, Green correspondence induces a bijection between the
indecomposable trivial source FG-module V with vertex Q and the Green corre-
spondents f(V ) in NG(Q), which can be considered as the projective indecom-
posable F (NG(Q)/Q)-modules. For a given p-subgroup Q, we will now define
a set of species which is in bijection with the p-regular classes of NG(Q)/Q.
This enables us to define the trivial source character table of G as a (square)
matrix with complex entries whose columns are indexed by these species rang-
ing over the conjugacy classes of p-subgroups and whose rows correspond to the
indecomposable trivial source FG-modules. Moreover, this matrix is naturally
partitioned by the conjugacy classes of p-subgroups of G.
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Definition 4.10.10 Let P1, . . . , Pr be representatives for the conjugacy classes
of p-subgroups of G with normalizers Ni := NG(Pi) for i = 1, . . . , r. For each
Ni choose representatives c̃i,j , j = 1, . . . , l(i) for the p-regular conjugacy classes
in Ni/Pi and define Hi,j ≤ Ni by Hi,j/Pi = 〈c̃i,j〉. Let Vk,m, m = 1, . . . , t(k) be
the indecomposable trivial source FG-modules with Pk ∈ Vtx(Vk,m). We define

Ti,k := [sHi,j ,c̃i,j (Vk,m)]1≤j≤l(i), 1≤m≤t(k) ∈ Cl(i)×t(k), (4.43)

where i, k = 1, . . . , r. Finally, we define the trivial source character table T (G)
as the (block) matrix [Ti,k]1≤i,k≤r.

The following observation gives a description of certain entries in T (G).

Lemma 4.10.11 Let G be a finite group and let V be an indecomposable trivial
source FG-module with vertex P . Moreover, let sH,c̃ be a species with Op(H) =
Q and H/Q = 〈c̃〉 and let N := NG(Q). Then the following statements hold.

(a) VN = (VN )⊇Q ⊕ (VN )	⊇Q, where (VN )⊇Q denotes the direct sum of the in-
decomposable FN -summands of VN whose vertices contain Q, and (VN )	⊇Q de-
notes the direct sum of the indecomposable FN -summands whose vertices do not
contain Q. Moreover sH,c̃([V ]) = ϕ̃(VN )⊇Q(c̃).

(b) sH,c̃([V ]) = 0 unless Q ≤G P . In particular, Ti,k = 0 for i < k in (4.43).

(c) If Q ∈ Vtx(V ) we get (VN )⊇Q = f(V ), the Green correspondent w.r.t.
(Q,N,G), which is the inflation of a projective indecomposable F (N/Q)-module
with character Φf(V ). Thus sH,c̃ = Φf(V )(c̃). In particular, Ti,i, i = 1, . . . , r is
invertible and hence the rows of T (G) are C-linear independent.

Proof. (a) Let U be an indecomposable summand of VN with vertex Q1.
Then, Q1 ⊇ Q if and only if Qx1 ⊇ Q for any x ∈ N , since Q�N . This proves
the first part. Moreover, if Q1 
⊇ Q, then the trivial source module UQ does not
have Q has a vertex and if Q1 ⊇ Q then all indecomposable summands of UQ
have vertex Q. Hence (VQ)=Q = (V ⊇Q

N )Q and sH,c̃([V ]) = ϕ̃(VN )⊇Q(c̃).
(b) If Q 
≤G P , then the vertices of any indecomposable summand of VQ are

properly contained in Q. Hence (VQ)=Q = 0.
(c) This follows directly from VN = f(V ) ⊕ Y , where Y is the sum of inde-

composable FN -modules with vertices in Y := {Ng ∩Q|g ∈ G \N} and Q 
∈ Y,
so f(V ) = (VN )⊇Q. The remaining statements follow from Exercise 4.8.5 and
Theorem 4.3.3.

Example 4.10.12 Continuing the previous example, we now determine the full
trivial source table for M11 and p := 3. There are three conjugacy classes of
3-subgroups, P1 := {{1}}, P2 and P3. For N1/P1 we have eight 3-regular conju-
gacy classes denoted by 1a, 2a, 4a, 5a, 8a, 8b, 11a, 11b. We abbreviate the corre-
sponding species by b1, . . . , b8. ForN2/P2 we get four 3-regular conjugacy classes
1a, 2a, 2b, 2c, and we denote the corresponding species denoted by s1, . . . , s4. Fi-
nally N3/P3 has seven 3-regular conjugacy classes 1a, 4a, 4b, 2a, 2b, 8a, 8b with
corresponding species denoted by t1, . . . , t7.

As we have previously noted, X (P3, N3, G) = {{1}} and therefore the re-
striction of the indecomposable trivial source module V ′

i , i = 1, . . . , 7 to N3
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is the direct sum f(V ′
i ) ⊕ Xi, where Xi is a projective FN3-module. Using

Lemma 4.10.11 it is easy to determine the diagonal blocks of trivial source char-
acter table T (G) and also the values of b1, . . . , b8 on all classes of indecomposable
trivial source FG-modules. We are left to determine the values of the species
s1, . . . , s4 on the classes of the indecomposable FG-modules V ′

1 , . . . , V
′
7 . Since

P3 ≤ N2 ≤ N3, this reduces to the task of restricting the characters Φf(V ′
i )

to N2/P3, which is easily done. The complete trivial source character table is
given in Table 4.5.

Table 4.5. Trivial source character table of M11, p = 3
b1 b2 b3 b4 b5 b6 b7 b8 s1 s2 s3 s4 t1 t2 t3 t4 t5 t6 t7
99 3 −1 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

126 6 −2 1 0 0 β β̄ 0 0 0 0 0 0 0 0 0 0 0
126 6 −2 1 0 0 β̄ β 0 0 0 0 0 0 0 0 0 0 0
54 6 2 −1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0
81 −3 −1 1 α ᾱ γ γ̄ 0 0 0 0 0 0 0 0 0 0 0
81 −3 −1 1 ᾱ α γ̄ γ 0 0 0 0 0 0 0 0 0 0 0
99 3 −1 −1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
45 −3 1 0 −1 −1 1 1 0 0 0 0 0 0 0 0 0 0 0
12 4 0 2 0 0 1 1 3 3 1 1 0 0 0 0 0 0 0
66 2 −2 1 0 0 0 0 3 3 −1 −1 0 0 0 0 0 0 0
75 −5 −1 0 1 1 −2 −2 3 −3 1 −1 0 0 0 0 0 0 0

120 8 0 0 0 0 −1 −1 3 −3 −1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 2 2 0 0 0 −1 −1 1 −1 −1 1 1 1 −1 1 1 −1 −1
11 3 −1 1 −1 −1 0 0 2 0 0 2 2 2 0 −2 0 0 0
55 −1 −1 0 1 1 0 0 1 −1 −1 1 1 1 −1 1 −1 1 1
55 7 −1 0 −1 −1 0 0 1 1 1 1 1 1 1 1 −1 −1 −1
65 −3 −1 0 α ᾱ −1 −1 2 0 0 −2 2 −2 0 0 0 −δ δ
65 −3 −1 0 ᾱ α −1 −1 2 0 0 −2 2 −2 0 0 0 δ −δ

α := 1 +
√−2, β := −1+

√−11
2 , γ := −3+

√−11
2 and δ :=

√−2.

We leave it to the reader to determine the trivial source table if the trivial
source module of degree 120 were not indecomposable and to show that such a
table would not be consistent. �

As an immediate consequences from Lemma 4.10.11 we get the following
corollaries.

Corollary 4.10.13 (Conlon) (a) Let

Sp(G) := {sH,c̃ | H ∈ Cp(G), H/Op(H) = 〈c̃〉}.

If ξ, η ∈ C⊗ T S(FG) are such that s(ξ) = s(η) for all s ∈ Sp(G), then ξ = η.
(b) If V,W are trivial source FG-modules, then V ∼= W if and only if VH ∼=FH

WH for all H ∈ Cp(G).

Corollary 4.10.14 Let Ω and Ω′ be transitive G-sets. Then the permutation
modules FΩ and FΩ′ are isomorphic if and only if

mΩ(H) = mΩ′(H) for all H ∈ Cp(G),

where mΩ and mΩ′ are the marks of the corresponding G-sets.
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Proof. This follows from Corollary 4.10.13 in conjunction with Remark 4.10.5,
in particular (4.42).

Exercises

Exercise 4.10.1 For the group G := 
L2(11) and (K,R, F, η) a 3-modular split-
ting system, show that there is a trivial source RG-lattice with ordinary char-
acter χ′

4, respectively χ′
5.

Hint: Note that A5 is a maximal subgroup ofG. For η4 ∈ Irr(A5) with η4(1) = 4
look at the character ηG4 .

Exercise 4.10.2 Let G be a cyclic group of order n = paq with p a prime,
a ∈ N and (p, q) = 1. Describe all indecomposable trivial source RG-lattices
where (K,R, F, η) is a p-modular splitting system for G.

4.11 Generalized decomposition numbers

Throughout this section we assume that (K,R, F, η) is a p-modular splitting
system for the finite group G. From the p-decomposition numbers of a group
G and IBr(G), one may obtain { χ|Gp′ | χ ∈ Irr(G) }. In order to obtain the
values of the ordinary irreducible characters of G on the p-singular elements, we
have to introduce the “generalized decomposition numbers.”
Definition 4.11.1 If x ∈ G is a p-element then

secp(x) := { g ∈ G | gp ∈ xG }

is called the p-section of x. Let Sp(G) be a set of representatives of the G-
conjugacy classes of p-elements of G.

Recall that gp is the p-part of g (see Definition 4.2.1). Then g = gpgp′ with a
p-regular gp′ ∈ CG(gp). Of course each p-section is a union of conjugacy classes,
and secp(1) = Gp′ . We collect some obvious facts:

G =
⋃̇

x∈Sp(G)
secp(x) , Z(KG) =

⊕
x∈Sp(G)

Z(KG)x

with
Z(KG)x := 〈C+ | C ∈ cl(G), C ⊆ secp(x) 〉K .

Lemma 4.11.2 Let x ∈ G be a p-element and let y1, . . . , yr be a set of repre-
sentatives of the p′-classes of CG(x). Then

secp(x) = (xy1)G ∪̇ · · · ∪̇ (xyr)G.

For ϕ ∈ IBr(CG(x)) we define

fx,ϕ :=
r∑
i=1

ϕ(y−1
i ) ((xyi)G)+ ∈ Z(KG)x. (4.44)

Then ( fx,ϕ | x ∈ Sp(G), ϕ ∈ IBr(CG(x)) ) is a K-basis of Z(KG).
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Proof. The first assertion is clear, since (gh)p = (gp)h and (gh)p′ = (gp′)h

holds for g, h ∈ G. The second one follows because the matrix [ϕ(y−1
i )]ϕ,i is

non-singular by Theorem 4.2.14.

Lemma 4.11.3 Let x ∈ G be a p-element and H = CG(x). For χ ∈ Irr(G)
and ϕ ∈ IBr(H) there exist unique algebraic integers dxχϕ such that

χ(xy) =
∑

ϕ∈IBr(H)

dxχϕ ϕ(y) for y ∈ Hp′ .

The dxχϕ are called the generalized decomposition numbers and Dx :=
[dxχϕ]χ∈Irr(G),ϕ∈IBr(H) is called the generalized decomposition matrix for x
or the p-section secp(x). They can be written as

dxχϕ :=
∑

θ∈Irr(H)

(χ|H , θ)H θ(x)
θ(1)

dθϕ. (4.45)

Proof. Since x ∈ Z(H), any irreducible representation δ : H → GLn(K) must
represent x by a scalar matrix δ(x) = ζjmIn for some j ∈ {1, . . . ,m}, where m
is the order of x. Then δ(xy) = ζjmδ(y) for any y ∈ H. Consequently, if δ has
character θ ∈ Irr(H), then

θ(xy) = ζjmθ(y) for y ∈ H and ζjm =
θ(x)
θ(1)

.

So

χ(xy) =
∑

θ∈Irr(H)

(χ|H , θ)H θ(xy) =
∑

θ∈Irr(H)

(χ|H , θ)H θ(x)
θ(1)

θ(y)

=
∑

ϕ∈IBr(H)

(
∑

θ∈Irr(H)

(χ|H , θ)H θ(x)
θ(1)

dθϕ ) ϕ(y) =
∑

ϕ∈IBr(H)

dxχϕϕ(y),

with dxχϕ as defined in (4.45). The uniqueness follows from Theorem 4.2.14.

Observe that the D1 is just the ordinary p-decomposition matrix. Hence
the following lemma gives a generalization of the equation C = DTD in Theo-
rem 4.1.23, equation (4.6).

Lemma 4.11.4 Let x, x′ ∈ Sp(G). Then

DxT
Dx = δx,x′C(x) and DxT

Dx′
= O for x 
= x′,

where C(x) is the Cartan matrix of F CG(x) and O is a zero matrix.

Proof. Let secp(x) =
⋃̇r

i=1(xyi)G and secp(x′) =
⋃̇r′

i=1(x′zi)G. We put

Xx := [χ(xyi)]χ∈Irr(G),1≤i≤r, Xx′
:= [χ(x′zi)]χ∈Irr(G),1≤i≤r′ .
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Then Xx = DxΦx and Xx′
= Dx′

Φx
′
, where Φx, Φx

′
are the Brauer character

tables of CG(x) and CG(x′), respectively. The ordinary orthogonality relations
(Theorem 2.1.15) show that XxT

Xx′
= O ∈ Zr×r

′
for x 
= x′ and

XxT
Xx = diag(|CG(xy1)|, . . . , |CG(xyr)|).

But CG(xyi) = CCG(x)(yi); hence, using Theorem 4.1.23, equation (4.6) for
CG(x),

Φx
T
DxT

DxΦx = XxT
Xx = Φx

T
D(x)TD(x)Φx = Φx

T
C(x)Φx,

where D(x) is the p-decomposition matrix of CG(x). Since Φx is invertible, the
result follows.

Theorem 4.11.5 Let x be a p-element of G. Suppose V is an RG-lattice be-
longing to the p-block B with character χV . Then εbV is an RCG(x)-lattice for
every p-block b of CG(x) and

χV (xy) =
∑

b∈Blp(CG(x)),bG=B

χεbV (xy) for y ∈ CG(x)p′.

Proof. Let Q := 〈x〉 and H := CG(x). By Theorem 4.7.19, BrQ(ε̂B) =∑
b∈Blp(H),bG=B ε̂b. By Theorem 4.8.17, we have

VH = (
∑

b∈Blp(H),bG=B

εb)V ⊕
m⊕
i=1

Wi

with indecomposable RH-lattices with vertices not containing x. By Theo-
rem 4.8.19(b), it follows that χWi

(xy) = 0 for all i.

Corollary 4.11.6 (Brauer’s second main theorem) Let B be a p-block of
G, let χ ∈ Irr(B) and let x be a p-element of G. If ϕ ∈ IBr(b) for b ∈ Blp(CG(x))
and bG 
= B, then dxχϕ = 0. Furthermore,

χ(xy) =
∑

b∈Blp(CG(x))

bG=B

∑
ϕ∈IBr(b)

dxχϕϕ(y) for all y ∈ (CG(x))p′ .

Proof. Let χ be afforded by the RG-lattice V . Furthermore, let H := CG(x).
By Theorem 4.11.5 we have

χ(xy) =
∑
bG=B

χεbV (xy) =
∑

b∈Blp(H)

bG=B

∑
θ∈Irr(b)

(χ|H , θ)H θ(xy)

=
∑

b∈Blp(H)

bG=B

∑
θ∈Irr(b)

∑
ϕ∈IBr(b)

(χ|H , θ)Hθ(x)
θ(1)

dθϕ ϕ(y)

=
∑

b∈Blp(H)

bG=B

∑
ϕ∈IBr(b)

dxχϕ ϕ(y),
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as in the proof of Lemma 4.11.3.
Corollary 4.11.6 says that the generalized decomposition matrices Dx break

up into (rectangular) submatrices Dx
B corresponding to the blocks B ∈ Blp(G)

with rows indexed by Irr(B) and columns indexed by
⋃
{Irr(b) | b ∈ Blp(CG(x)),

bG = B}.
Example 4.11.7 Let G := M11 and p := 2. We have four p-sections in addition
to secp(1) = Gp′ :

secp(2a) = 2a ∪ 6a, secp(4a) = 4a, secp(8a) = 8a, secp(8b) = 8b,

where we have replaced x by the name of its conjugacy class. From the ATLAS
([38]) we know that H1 := CG(2a) = Q8 � S3, a split extension of a quaternion
group Q8 with S3, and hence its 2-Brauer character table is given by

ψ1
ψ2

[
1 1
2 −1

]
.

For the other classes we get H2 := CG(4a) = CG(8a) = CG(8b) ∼= C8 having
only the trivial Brauer character 1. We present all the generalized decomposition
numbers in one matrix as follows:

section: 1a 2a 4a 8a 8b
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ψ1 ψ2 1 1 1

χ1 1 0 0 0 0 1 0 1 1 1
χ2 0 1 0 0 0 0 1 2 0 0
χ3 0 1 0 0 0 0 −1 0

√
−2 −

√
−2

χ4 0 1 0 0 0 0 −1 0 −
√
−2

√
−2

χ5 1 1 0 0 0 1 1 −1 −1 −1
χ8 0 0 1 0 0 2 1 0 0 0
χ9 1 0 1 0 0 −1 −1 1 −1 −1
χ10 1 1 1 0 0 −1 0 −1 1 1
χ6 0 0 0 1 0 0 0 0 0 0
χ7 0 0 0 0 1 0 0 0 0 0

�

Lemma 4.11.8 Let x be a p-element of G. If a class function θ ∈ cf(G,K)
vanishes on the whole section secp(x), then the same holds for the B-part θB of
θ for every B ∈ Blp(G).

Proof. Let θ =
∑
χ∈Irr(G) aχχ with aχ ∈ K. Then θB =

∑
χ∈Irr(B) aχχ. Let

H := CG(x). By assumption we have for every y ∈ Hp′

0 = θ(xy) =
∑

B∈Blp(G)

∑
χ∈Irr(B)

aχ
∑

b∈Blp(H)

bG=B

∑
ϕ∈IBr(b)

dxχϕ ϕ(y)

=
∑

b∈Blp(H)

∑
ϕ∈IBr(b)

(
∑

χ∈Irr(bG)

aχd
x
χϕ) ϕ(y).
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Since IBr(H) is linearly independent, we conclude that
∑
χ∈Irr(bG) aχd

x
χϕ = 0

for all b ∈ Blp(H). But then

θB(xy) =
∑

χ∈Irr(B)

aχ
∑

b∈Blp(H)

bG=B

∑
ϕ∈IBr(b)

dxχϕ ϕ(y)

=
∑

b∈Blp(H)

bG=B

∑
ϕ∈IBr(b)

(
∑

χ∈Irr(B)

aχd
x
χϕ) ϕ(y) = 0.

Theorem 4.11.9 (Block orthogonality) If g, g′ ∈ G are in different p-
sections then ∑

χ∈Irr(B)

χ(g)χ(g′) = 0 for any B ∈ Blp(G).

Proof. Put θ :=
∑
χ∈Irr(G) χ(g′)χ. Then θ vanishes on sec(gp) by the ordinary

orthogonality relations (Theorem 2.1.15). From Lemma 4.11.8 we conclude that
θB also vanishes on sec(gp). But θB(g) =

∑
χ∈Irr(B) χ(g′)χ(g).

The following important consequence of Brauer’s second main theorem (and
Theorem 4.11.9) shows that the basis of Z(KG) introduced in Lemma 4.11.2 is
adapted to the block decomposition.

Theorem 4.11.10 Let x be a p-element of G and b ∈ Blp(CG(x)). Then for
any B ∈ Blp(G) and ϕ ∈ IBr(b)

εB · fx,ϕ =
{

0 if B 
= bG,
fx,ϕ if B = bG.

Proof. Recall that fx,ϕ ∈ Z(KG) (see Lemma 4.11.2). We abbreviate H :=
CG(x). Assume that secp(x) = (xy1)G ∪̇ · · · ∪̇ (xyr)G with yi ∈ Hp′ . Then

εB · fx,ϕ =
∑

χ∈Irr(B)

ω(fx,ϕ)εχ =
r∑
i=1

ϕ(y−1
i )|(xyi)G| ·

∑
χ∈Irr(B)

χ(xyi)
χ(1)

εχ︸ ︷︷ ︸
=:a

(4.46)

with (using Corollary 2.1.7)

a =
∑
g∈G

1
|G|

∑
χ∈Irr(B)

χ(xyi)χ(g) g =
1
|G|

r∑
j=1

∑
χ∈Irr(B)

χ(xyi)χ(xyj) ((xyj)G)+.
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Here we have used Theorem 4.11.9. Next we invoke Brauer’s second main the-
orem (Theorem 4.11.6) and subsequently Lemma 4.11.3, obtaining

a =
1
|G|

∑
b,b′∈Blp(H)

bG=B

∑
ϕ′∈IBr(b)

∑
ψ∈IBr(b′)

∑
χ∈Irr(B)

dxχ,ϕ′dxχ,ψϕ
′(yi)fx,ψ

=
1
|G|

∑
b,b′∈Blp(H)

bG=B

∑
ϕ′∈IBr(b)

∑
ψ∈IBr(b′)

c
(x)
ψ,ϕ′ϕ

′(yi)fx,ψ

=
1
|G|

∑
b∈Blp(H)

bG=B

∑
ψ∈IBr(b)

(
∑

ϕ′∈IBr(b)

c
(x)
ψ,ϕ′ϕ

′(yi) )fx,ψ

=
1
|G|

∑
b∈Blp(H)

bG=B

∑
ψ∈IBr(b)

Φψ(yi)fx,ψ.

Plugging this into (4.46), we get

εB · fx,ϕ =
1
|H|

∑
b∈Blp(H)

bG=B

∑
ψ∈IBr(b)

r∑
i=1

|yHi |ϕ(y−1
i )Φψ(yi)fx,ψ

=
∑

b∈Blp(H)

bG=B

∑
ψ∈IBr(b)

δϕ,ψfx,ψ

by Theorem 4.3.3. This completes the proof.

The following interesting consequence shows that k(B)− l(B) (for the defi-
nition of k(B) and l(B) see Lemma 4.4.6) can be determined “locally,” that is,
by considering the centralizers of non-trivial p-elements.

Theorem 4.11.11 Let B ∈ Blp(G). Then

(a)
k(B)− l(B) =

∑
x∈Sp(G)

x	=1

∑
b∈Blp(CG(x))

bG=B

l(b);

(b) if D ∈ Def(B) with |D| = p and B = bG for some b ∈ Blp(CG(D)) then

l(B) = e := [TNG(D)(b) : CG(D)] and k(B) = e+
p− 1
e

.

Proof. (a) By Corollary 4.1.22, k(B) = dimK εB Z(KG). On the other hand,
by Lemma 4.11.2 and Theorem 4.11.10,

εB Z(KG) =
∑

x∈Sp(G)

∑
ϕ∈IBr(CG(x))

εBfx,ϕK =
∑

x∈Sp(G)

∑
b∈Blp(CG(x))

bG=B

∑
ϕ∈IBr(b)

fx,ϕK.
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Since the fx,ϕ are linearly independent (see Lemma 4.11.2), the result follows.
(b) For the case that G = NG(D), see Theorem 4.8.14. Also, by Theo-

rem 4.9.8, l(B) = l(bNG(D)). So it suffices to prove k(B) − l(B) = p−1
e in the

general case.
By Corollary 4.7.31 there is a unique NG(D)-conjugacy class of p-blocks b of
CG(D) with bG = B. Its length is [NG(D) : TNG(D)(b)]. Theorem 4.6.12 shows
that l(b) = 1 for each such b. By Theorem 4.7.19 for x ∈ Sp(G) there is a
b ∈ Blp(CG(x)) with B = bG if and only if xg ∈ D for some g ∈ G. In this case
we may choose x ∈ D and then CG(x) = CG(D) unless x = 1. The number of
non-trivial p-sections intersecting D is (p− 1)/[NG(D) : CG(D)]. Applying (a)
we obtain

k(B)− l(B) =
p− 1

[NG(D) : CG(D)]
· [NG(D) : TNG(D)(b)] =

p− 1
e

.

We would like to give a very simple application of Theorem 4.11.9. For this
we need the following definition.

Definition 4.11.12 If B ∈ Blp(G) then the kernel of B is

kerB :=
⋂

χ∈Irr(B)

kerχ.

Obviously kerB = {g ∈ G | g εB = εB}.

Theorem 4.11.13 If B is a p-block of G and χ ∈ Irr(B) then

kerB = Op′(kerχ).

In particular, for the principal block we get kerB0(G) = Op′(G).

Proof. Let χ ∈ Irr(B) and H := Op′(kerχ). We first show that H ⊆ kerB.
Let

εH :=
1
|H|

∑
h∈H

h ∈ Z(RG).

Observe that εH is in RG, since p � |H|, and it is central because H is normal
in G. Thus

εH = ε1 + · · ·+ εr with block idempotents εi ∈ Z(RG).

SinceH ⊆ kerχ we have h εχ = εχ for all h ∈ H, hence εHεχ = εχ. Consequently
εB ∈ {ε1, . . . , εr} and

h εB = h εHεB = εHεB = εB for all h ∈ H.
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Assume now that kerB 
⊆ H. Since kerB � kerχ, there must be a p-element
1 
= x ∈ kerB. Theorem 4.11.9 (applied with g := x, g′ := 1) gives

0 =
∑

ξ∈Irr(B)

ξ(x)ξ(1) =
∑

ξ∈Irr(B)

ξ(1)2,

a contradiction.

Theorem 4.11.14 Let u be a p-element of G and v ∈ Op′(CG(u)). Then

χ(uv) = χ(u) for every χ ∈ Irr(B0(G)).

Proof. By Brauer’s second and third main theorem (Corollary 4.11.6 and
Theorem 4.7.15) we have

χ(uv) =
∑

ϕ∈IBr(b0)

duχϕϕ(v),

where b0 = B0(CG(u)). But by Theorem 4.11.13 ϕ(v) = ϕ(1) for ϕ ∈ b0. From
this the result follows.

Example 4.11.15 Let G = M22 and p = 3. There is just one conjugacy class of
3-elements, uG = 3a, and one class, xG = 6a, of elements of order six. Note that
CG(u) contains exactly three involutions because [CG(x2) : CG(x)] = 3. Since
there are no elements of order four in CG(u), it follows that CG(u) has a normal
Sylow 2-subgroup (of order four). Theorem 4.11.14 implies that χi(3a) = χi(6a)
for i ∈ I := {1, 5, 7, 10, 11, 12} because B0(G) = {χi | i ∈ I}. Compare this
with Exercise 4.11.1.

Since G = M22 has only one 2-block, we can also deduce from Theorem
4.11.14 that O2′(CG(u)) = {1} for any 2-element u ∈ G. �

We are aiming at an interesting and important group theoretical application,
which deals with finite groups containing a conjugacy class C of involutions such
that every Sylow 2-subgroup of G contains exactly one element of C. Trivially
(by the Sylow theorems) this condition is fulfilled whenever a Sylow 2-subgroup
of G contains just one involution. The 2-groups with this property are all known.

Lemma 4.11.16 If a 2-group P contains just one involution, then either P is
cyclic or is a generalized quaternion group

Qn = 〈x, y | x2n

= 1, y2 = x2n−1
, y−1xy = x−1〉.

If P ∈ Syl2(G) is cyclic, then G = O2′(G)P .

Proof. See [88], Satz I.14.9 and Satz IV.2.8. The proof is purely group
theoretical. Transfer is used for the last assertion.



404 Modular representations

So a finite simple group cannot have a cyclic Sylow 2-subgroup. It cannot
have a generalized quaternion group as a Sylow subgroup either, as the following,
much deeper, theorem shows.

Theorem 4.11.17 (Brauer–Suzuki) Let P ∈ Syl2(G) be a generalized quater-
nion group. Then O2′(G) 
= {1} or |Z(G)| = 2.

Proof. For a proof see [126]. All known proofs require representation theory.
The hardest case is when P is the quaternion group of order eight. Here block
theory is used.

The last two results imply the following: if P ∈ Syl2(G) has a unique invo-
lution u, then

u ∈ Z�(G) := {g ∈ G | gO2′(G) ∈ Z(G/O2′(G))}.

The following theorem is a generalization of this.

Theorem 4.11.18 (Glauberman’s Z∗-theorem) Suppose that u is an invo-
lution in P ∈ Syl2(G) with uG ∩P = {u}. Then u ∈ Z�(G). In particular, G is
not simple, unless G ∼= C2.

Before entering into the proof, we give a lemma.

Lemma 4.11.19 Let u be an involution in P ∈ Syl2(G). Then uG ∩ P = {u}
if and only if h = u ug has odd order for every g ∈ G.

Proof. Observe that D := 〈u, ug〉 is a dihedral group of order 2m, if h := u ug

has order m. If m = 2k is even then hk ∈ Z(D) and

x := u hk = ugu . . . ug︸ ︷︷ ︸
k−1

uugu . . . ug︸ ︷︷ ︸
k−1

∈ uG ∩ P y for some y ∈ G,

because 〈u, x〉 has order four. Moreover uG∩P 
= {u}. The converse is obvious.

Proof of Theorem 4.11.18. We use induction on |G| and assume that
u ∈ P ∈ Syl2(G) satisfies the hypothesis of the theorem.
(1) We may assume that O2′(G) = {1} and that u is not contained in any
proper normal subgroup of G. For, ū := uO2′(G) ∈ Ḡ := G/O2′(G) satisfies
ūḠ ∩ P̄ = {ū} with P̄ := PO2′(G)/O2′(G). If O2′(G) 
= 1 then, by induction,
ū ∈ Z�(Ḡ) = Z(Ḡ), which means that u ∈ Z�(G). Likewise, if u ∈ N � G,
then by induction u ∈ Z�(N) = Z(N), since O2′(N) ≤ O2′(G) = {1}. From
Lemma 4.11.19 we conclude that u ∈ Z(G), because for all g ∈ G we have
uug ∈ Z(N) ≤ O2(G).

(2) If t ∈ G \ uG is an involution, then y := ut has order 2m with m odd. If the
order of y were odd, then 〈u〉, 〈t〉 ∈ Syl2(〈u, t〉), so t ∈ uG. So the order of y is
even. But y2 = uut is of odd order by Lemma 4.11.19.
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(3) If χ ∈ B0(G) and t ∈ P \ {u} is an involution, then

χ(ut) = χ(u′t′) for all u′ ∈ uG , t′ ∈ tG. (4.47)

Since χ is a class function, we may assume that u′ = u.
(a) If tg = t′ ∈ CG(u), then u, ug ∈ CG(tg), since u ∈ Z(P ) and thus

u ∈ CG(t). By Lemma 4.11.19 there is an h ∈ 〈u, ug〉 ≤ CG(tg) with ugh = u.
Then (ut)gh = utg = u′t′ and (4.47) holds for all χ ∈ Irr(G).

(b) So assume t′ 
∈ CG(u) and put y := ut′ and x := ym, where 2m is the
order of y; see (2). Then x is a central involution in 〈u, t′〉. We put H :=
CG(x) ≥ 〈u, t′〉. If H = G, then u〈x〉 ∈ Z�(G/〈x〉) = Z(G/〈x〉) and 〈u, x〉�G,
which gives a contradiction to (1). Thus H < G, and by induction u ∈ Z�(H)
and y = ut′ ≡ t′u mod O2′(H). Hence y2 ≡ ut′t′u = 1 mod O2′(H) and
y = xh with h ∈ O2′(G). By Theorem 4.11.14 we get

χ(ut′) = χ(xh) = χ(x) for every χ ∈ Irr(B0(G)).

But t′′ := ux is an involution in 〈u, t′〉 which is not conjugate to u (by
Lemma 4.11.19), hence conjugate to t′. Thus x = ut′′ and, since t′′ ∈ CG(u),
we can use part (a) to see that χ(x) = χ(ut′′) = χ(ut) for all χ ∈ Irr(G).

(4) If t ∈ P \ {u} is an involution, then for any χ ∈ Irr(B0(G))

χ(t) = 0 or χ(u) = ±χ(1).

Let ω := ωχ be the central character corresponding to χ ∈ Irr(B0(G)). Then

ω((uG)+)ω((tG)+) = ω((uG)+(tG)+),

so

χ(u)χ(t) =
χ(1)2

|uG||tG|ω((uG)+(tG)+).

Note that (uG)+(tG)+ is a sum of |uG||tG| elements of the form u′t′ with u′ ∈ uG
and t′ ∈ tG. By (3) we have

ω((uG)+(tG)+) = |uG||tG|χ(ut)
χ(1)

,

and consequently
χ(u)χ(t) = χ(1)χ(ut).

Note that ut is also an involution in P \ {u}. Replacing t by ut we get

χ(u)χ(ut) = χ(1)χ(t), hence χ(u)2χ(t) = χ(1)2χ(t),

from which the result follows.

(5) Final part of the proof. By Lemma 4.11.16 and Theorem 4.11.17, we may
restrict ourselves to the case in which P contains an involution t 
= u. By (1)
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we may also assume that χ(u) 
= χ(1) for all non-trivial χ ∈ Irr(G). Using block
orthogonality (Theorem 4.11.9) twice we get

0 =
∑

χ∈B0(G)

χ(u)χ(t) and 0 =
∑

χ∈B0(G)

χ(1)χ(t).

Hence by (4) we have
0 = 2 +

∑
χ∈B0(G)
χ	=1G

(χ(u) + χ(1)) χ(t) = 2,

which is a contradiction.

Exercises

Exercise 4.11.1 Let G := M11 and let u be a 3-element of G. From the
character table of G (p. 177) one can see that CG(u) contains an involution v.
Verify that χ(uv) = χ(u) does not hold for every χ ∈ Irr(G) in the principal
3-block.

Exercise 4.11.2 Let B ∈ Bl2(G) be a 2-block of defect one. (a) Show that

DB =
[

1
1

]
and Dx

B =
[

1
−1

]
,

if 〈x〉 ∈ Def(B).
Hint: Use Theorem 4.11.11.

(b) Conclude that Irr(B) = {χ, χ′} and χ(g) = χ′(g) for all g ∈ G of odd
order, whereas χ(g) = −χ′(g) for all g ∈ G of even order.

(c) Assume that CG(x) ∼= C2×A5. Show that Irr(B) = {χ, χ′} with
{χ(x), χ′(x)} = {4,−4}.

Exercise 4.11.3 Let G := J1, let x be an involution in G and let g, h ∈ G be
elements of order three and five respectively.

(a) Use the character table of G and the fact (proved in Example 4.12.10) that
CG(x) ∼= C2×A5 to verify that

Dx
B0(G) =



1 0 0
1 1 1

−1 0 −1
−1 −1 0

1 1 1
−1 0 −1
−1 −1 0

1 0 0

.

(b) Using the fact (proved in Example 4.12.10) that CG(g) ∼= CG(h) ∼= C3×D10,
verify Theorem 4.11.14 for p = 3 and p = 5.

Exercise 4.11.4 (See ref. [133].) Let B ∈ Blp(G). Show that

(a) kerB = {g ∈ G | g · ε̂B = ε̂B};
(b) kerB = InvG(V ) for any projective FG-module V belonging to B;
(c) kerB = Op′(

⋂
{ InvG(V ) | V simple FG-module belonging to B } ) if V is

a simple FG-module belonging to B.
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4.12 Brauer’s theory of blocks of defect one

In this section we assume that (K,R, F, η) is a p-modular splitting system for
the finite group G.

We are going to present one of the highlights of modular representation
theory, Brauer’s description of p-blocks of defect one, which was later extended
by Thompson and Dade to blocks with cyclic defect groups. We will not give a
proof of the theorem, but rather point to practical applications. In particular
we will show the power of this method by computing the complete character
table of a simple group of order 175560 purely by using a few group theoretic
restrictions and the theory of blocks of defect one.

We collect the description of p-blocks of defect one in the following theorem.
Note that the case p = 2 is not so interesting and has been dealt with in
Exercise 4.11.2.

Theorem 4.12.1 (R. Brauer) Let p > 2 and B ∈ Blp(G) be a p-block of
defect one, P ∈ Def(B). We abbreviate N := NG(P ) and C := CG(P ). Let
b ∈ Blp(C) such that bG = B with canonical character θ ∈ Irr(b). Put e :=
[TN (θ) : C] and m := p−1

e . Then we have the following.

(a) l(B) = e and k(B) = e+m.

(b) Irr(B) = {χ1, . . . , χe, ζ1, . . . , ζm} with a family {ζ1, . . . , ζm} of p-conjugate
characters (see Definition 2.2.12), called the exceptional characters of B, and
χ1, . . . , χe being p-rational characters, called the non-exceptional characters
of B. In particular ζi|Gp′ = ζj |Gp′ for i, j ∈ {1, . . . ,m}.
(c) All entries in the decomposition matrix D(B) are zero or one. If Φj is
a projective indecomposable character belonging to B (1 ≤ j ≤ e) then Φj =
χj1 + χj2 with j1 
= j2 ∈ {0, . . . , e}, where χ0 := ζ1 + · · ·+ ζm.

(d) There are uniquely defined “signs” εi ∈ {1,−1} for i = 0, . . . , e such that

χi(1)p′ ≡ εi[G : N ]p′
[N : C]

e
θ(1)p′ mod p (1 ≤ i ≤ e) (4.48)

and

ζk(1)p′ ≡ ε0[G : N ]p′ [N : C]θ(1)p′ mod p (1 ≤ k ≤ m). (4.49)

(e) For g ∈ Gp′

ε0ζk(g) =
e∑
i=1

εiχi(g) (1 ≤ k ≤ m).

(f) Let RGej with e2j = ej ∈ RG be a projective indecomposable RG-module
belonging to B with character Φj = χj1 + χj2 as in (c). For i ∈ {0, . . . , e} put
Yj,i := KGejεχi ∩ RGej, where εχ0 :=

∑m
k=1 εζk

. Then KYj,i has character χi
for i ∈ {j1, j2}. Furthermore Ŷj,j1 , Ŷj,j2 are uniserial submodules of FGêj and

Rad(FGêj) = Ŷj,j1 + Ŷj,j2 , Ŷj,j1 ∩ Ŷj,j2 = Soc(FGêj).
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Proof. A proof of parts (a) to (e) may be found in [69], sect. 11. For a proof
of (f) see [56], sect. VII.8. Observe that part (a) of the theorem was already
proved in Theorem 4.11.11.

Corollary 4.12.2 If in Theorem 4.12.1 |G|p = p then the congruences (4.48)
and (4.49) may be replaced by

χi(1) ≡ εi
[N : C]

e
θ(1) mod p and ζk(1) ≡ ε0[N : C]θ(1) mod p.

If B is the principal p-block, then θ = 1C and e = [N : C]. Thus the congruences
(4.48) and (4.49) may be replaced by

χi(1) ≡ εi mod p and ζk(1) ≡ ε0[N : C] mod p.

Proof. If |G|p = p then P ∈ Sylp(G) and [G : N ] ≡ 1 mod p by the Sylow
theorems. Also p does not divide χi(1), θ(1) or ζj(1).

Corollary 4.12.3 Let P ∈ Sylp(G) have order p. Then

|{χ ∈ Irr(G) | χ(1) ≡ ± i mod p}| = |{χ ∈ Irr(NG(P )) | χ(1) ≡ ± i mod p}

for i = 1, . . . , p− 1.

Proof. Every irreducible character χ of G or N := NG(P ) with χ(1) 
≡ 0
mod p belongs to a p-block with defect group P . By Brauer’s first main theorem
(Theorem 4.7.22) the blocks B of G with defect group P are in bijection to those
of N with defect group P . So it suffices to compare the number of χ ∈ Irr(B)
with degree ≡ ± i mod p to those of B′ with the same property, where B′ ∈
Blp(N) with (B′)G = B. If b ∈ Blp(CG(P )) is a block with bG = B then
bN is also defined (by Theorem 4.7.19) and bN = B′ (by Exercise 4.7.3 and
Theorem 4.7.22). So the result follows on applying Theorem 4.12.1(d) to B and
B′.

Lemma 4.12.4 Let p, q be odd primes with p − 1 = 2 q and P ∈ Sylp(G)
with |CG(P )| 
= |NG(P )| = p (p − 1). Then NG(P )/P ∼= C2 q or D2 q. Let
B1, . . . , Br be the p-blocks of G with defect one and let e(i) := | IBr(Bi)| for
i = 1, . . . , r. We also abbreviate di = |{χ ∈ Irr(G) | χ(1) ≡ ± i mod p}| for
i ∈ {1, 2, q}. It is easily verified that there are just four possibilities for these
parameters, as specified in Table 4.6.

Corollary 4.12.5 Let Vj be a simple FG-module with Brauer character ϕj ∈
IBr(B) and let Φj = Φϕj = χi+χk with i 
= k ∈ {0, . . . , e}. Then FGêj ∼= P (Vj)
has the submodule structure shown in Figure 4.3. Here Vj , Vj+1, . . . , Vj+r−1 and
Wj+1, . . . ,Wj+s−1 are simple FG-modules with Vx 
∼= Wy for x ∈ {j+1, . . . , j+
r − 1} and y ∈ {j + 1, . . . , j + s − 1}. Any uniserial submodule of FGêj is
contained in Ŷj,i or Ŷj,k. If Vj+l has Brauer character ϕj′ , then the composition
factors of Ŷj′,i are Vj+l+1, . . . , Vj+l+r, where the indices should be read modulo
j + r.
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Table 4.6.

[NG(P ) : CG(P )] NG(P )/P r e(1), . . . , e(r) d1 d2 dq

2 · q C2 q 1 p− 1 p . .
q C2 q 2 q, q 2 · q . 4
2 C2 q q 2, . . . , 2 2 · q q2 .

2 D2 q
q+1
2 2, 1, . . . , 1 2 q + (q−1)p
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Figure 4.3. Submodule structure of FGêj .

Proof. The structure of FGêj follows immediately from part (f) of Theo-
rem 4.12.1. By part (c) of this theorem (and Brauer reciprocity, see
Theorem 4.1.23(b)), χi and χk have only one modular constituent in common.
Thus Rad(FGêj)/ Soc(FGêj) is the direct sum of two uniserial modules having
no composition factor in common, and the poset of submodules is as indicated
in the theorem (with exactly r + s + 2 submodules). By Theorem 1.6.27 the
uniserial module Ŷj,i/ Soc(FGêj) embeds into P (Vj+r−1) and hence into Ŷj′,i,
if Vj+r−1 has Brauer character ϕj′ . Thus the composition factors of Ŷj′,i are
Vj , Vj+1, . . . , Vj+r−1, that is, they are obtained from those of Ŷj,i by a cyclic
permutation. From this the last assertion follows.

Corollary 4.12.6 If in Theorem 4.12.1 χi is real for some i ∈ {0, . . . , e}, then
χi has at most two real Brauer constituents.

Proof. Let ϕj be a real Brauer constituent of χi and let ej ∈ RG be a
primitive idempotent as in Theorem 4.12.1(f). By part (b), Φj = χi + χk for
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some k 
= i ∈ {0, . . . , e}. Then (FGêj)� ∼=FG FGêj . By duality

(Ŷj,i)� ∼= (FGêj)�/(Ŷj,i)◦ ∼= FGêj/Ŷj,k. (4.50)

Let Vj+1, . . . , Vj+r−1, Vj be the composition factors of the uniserial FG-module
Ŷj,i, then the composition factors of the uniserial FG-module FGêj/Ŷj,k are
Vj , Vj+1, . . . , Vj+r−1. Hence, by (4.50),

Vj ∼= (Vj)�, Vj+1 ∼= (Vj+r−1)�, Vj+2 ∼= (Vj+r−2)� , . . . , Vj+r−1 ∼= (Vj+1)�.

If i 
= 0 then Vj , Vj+1, . . . , Vj+r−1 are pair-wise non-isomorphic and we see that
Vj+r/2 ∼= (Vj+r/2)� if r is even, whereas Vj is the only selfdual composition
factor of Ŷj,i if r is odd. For i = 0 note that by Theorem 4.12.1(b) the modular
irreducible constituents of χ0 have multiplicity m. Hence Vx ∼= Vy if and only if
x ≡ y mod s, where s = r/m. As above we see that χ0 has two real constituents
if s is even and only one otherwise.

There is a nice geometrical way to present most of the information about
p-blocks with cyclic defect groups. We recall that a tree is a finite, connected,
undirected graph without loops or cycles. A planar graph is a graph together
with an embedding into the Euclidean plane. Such an embedding induces a
circular ordering of the edges emanating from each vertex by going around the
vertex in a counter clockwise manner. The converse holds also, that is, such a
a circular ordering of the edges determines a unique planar embedding.

By Theorem 4.12.1(c) every ϕj ∈ IBr(B) is a constituent of exactly two of
the characters χ0, . . . , χe. Representing ϕj by an edge with end points χj1 , χj2
if Φj := Φϕj = χj1 + χj2 , we obtain graph Γ(B) with vertices χ0, . . . , χe and
edges the ϕj ∈ IBr(B). Theorem 1.7.7 shows that Γ(B) is connected. Since
Γ(B) has e edges and e+ 1 vertices, it must be a tree.

The planar embedding encodes the information contained in part (f) of The-
orem 4.12.1. Assume that ϕj and ϕj′ are constituents of χi (0 ≤ i ≤ e). As
shown in Corollary 4.12.5, the composition factors of Ŷj′,i are obtained from
those of Ŷj,i by a cyclic permutation. We thus obtain a unique cyclic ordering
of the modular irreducible constituents of χi, i.e. of the edges of Γ(B) emanating
from χi.

Definition 4.12.7 Let B be a p-block of G as in Theorem 4.12.1. The Brauer
tree Γ(B) of B is a planar tree with vertices χ0, . . . , χe (χ0 = ζ1 + · · · + ζm
is called the “exceptional vertex” and m its “multiplicity”) and edges the irre-
ducible Brauer characters belonging to B; χk is incident to ϕi ∈ IBr(B) if and
only if ϕi is a constituent of χk|Gp′ . The circular ordering of the edges ema-
nating from χk is given by ordering the Brauer characters according to their
occurrence as Brauer characters of the factors in the unique composition series
of the uniserial module Ŷi,k, provided that χk is incident to ϕi.

Example 4.12.8 Let B ∈ Blp(G) be a block of defect one having a normal
defect group. Then by Theorem 4.8.14 the Brauer tree Γ(B) is a “star” with
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Figure 4.4. Brauer tree: a star.

the exceptional vertex in the center, and is as shown in Figure 4.4. Here for
i = 1, . . . , e the vertex χi ∈ Irr(B) satisfies χi|G′

p
= ϕi, where ϕi is the Brauer

character of the simple FG-module Vi in the notation of Theorem 4.8.14. We
have omitted the labels for the edges, which is common practice. �

Theorem 4.12.9 Let B be a p-block (p > 2) of defect one which is invariant
under complex conjugation. Then the edges and vertices of Γ(B) consisting of
real characters and real Brauer characters, respectively, form a subgraph, which
is an open polygon, called the real stem of Γ(B).

Proof. Complex conjugation induces an automorphism of order two of Γ(B).
Since there is a unique path in Γ(B) joining two vertices, two real vertices must
be joined by a path consisting of real edges and vertices. Moreover, the vertices
that are incident with an edge cannot have the same degree, since p > 2. Thus
vertices incident with a real edge are real. Hence the real vertices and edges of
Γ(B) form a connected subgraph, which is an open polygon by Corollary 4.12.6.
Observe that, since e or e+ 1 is odd, Γ(B) always contains a real edge or a real
vertex.

Example 4.12.10 We consider a simple group G of order n := 23 ·3·5·7·11·19,
which is the order of the sporadic simple Janko group J1. In order to determine
its character table we apply the theory of blocks of defect one and Brauer’s
main theorems on block theory. The main task is not to compute the character
values, but to find the structure of the Sylow normalizers, often called the
“local structure” of G. Block theory plays an essential role here and also in
determining the centralizer orders of the elements of G. Once this is achieved,
the computation of the characters presents no further difficulties.

We start by considering the possibilities for the number np of Sylow p-
subgroups Pp and the orders of the normalizers of Sylow p-subgroups for p =
19, 11, 7 using purely group theoretical arguments, such as the Sylow theorems.
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The simple GAP function syl of Exercise 2.10.1 may be used and gives the
possible orders of the Sylow normalizers, as shown in Table 4.7. The correct
values are printed in boldface. Using simple group theoretical arguments we
will work through each in turn.

Table 4.7. Possible orders of Sylow normalizers

n19 |NG(P19)| n11 |NG(P11)| n7 |NG(P7)|
1540 2 · 3 · 19 1596 2 · 5 · 11 4180 2 · 3 · 7
210 22 · 11 · 19 210 22 · 11 · 19 1254 22 · 5 · 7
77 23 · 3 · 5 · 19 133 23 · 3 · 5 · 11 330 22 · 7 · 19
20 2 · 3 · 7 · 11 · 19 56 3 · 5 · 11 · 19 190 22 · 3 · 7 · 11

57 23 · 5 · 7 · 11
22 22 · 3 · 5 · 7 · 19

(a) |NG(P7)| = 7 · 6. n19 = 20 is impossible, because this would imply that
G is isomorphic to a subgroup of the alternating group A20 and on the other
hand would contain elements of order 11 · 19, which is absurd. Hence G has no
elements of order 7·19. Looking at the possible orders of NG(P11) one finds that
there are no elements of order 7 · 11 either. Thus |NG(P7)| is coprime to 11 · 19
and hence equal to 7 · 6 or 7 · 20. But the latter implies that P5 � NG(P7) for
P5 ∈ Syl5(NG(P7)), so 7 ·20 | |NG(P5)|, and consequently |NG(P5)| = 7 ·20 ·19,
which is a contradiction since this would lead to elements of order 7 · 19 (in a
5-complement in NG(P5)). Hence (a) follows.

(b) |NG(P19)| = 19 · 6. In the proof of (a) we have already excluded n19 =
20. We have to show that n19 
∈ {77, 210}.

(i) Assume that n19 = 77. Then N := NG(P19) = P19 � U with |U | = 120.
It follows that 19 | |NG(P5)|. We already know from (a) that 7 � |NG(P5)|
(observe that otherwise P7 and P5 must centralize each other). We use syl (see
Exercise 2.10.1) to find the possible number of Sylow 5-subgroups of G:

gap> Filtered( syl( 175560, 5 ), x-> x mod 19 <> 0 and x mod 7 = 0 );
[ 21, 231 ]

Thus 3 � |NG(P5)|, and so G has no elements of order 15. On the other hand,
in a solvable group of order 120 a Sylow 2-complement (see [88], sect. VI.1)
has order 15. So A5 must be a composition factor of U , and consequently
U ∈ {S5,SL2(5),A5×C2} by [38], p. 2. Hence [N : CG(P19)] = 2, so U ∼= S5
or U ∼= A5×C2, and there are elements of order 3 · 19. We consider the (five)
possible orders of NG(P3):

gap> s := Filtered( syl(175560, 3), x-> x mod 19 <> 0 and x mod 5 = 0 );;
gap> for m in s do Print("19 * ",175560/(m*19)," , "); od;
19 * 6 , 19 * 42 , 19 * 132 , 19 * 24 , 19 * 168 ,

In each case NG(P3) would have just one Sylow 19-subgroup, thus NG(P3) ⊆ N
and NG(P3) = NN (P3). But |NU (P3)| = 12, so |NN (P3)| = 19 ·12, which gives
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a contradiction.

(ii) Assume now that n19 = 210. Then N := NG(P19) = NG(P11) and
[N : CN (P19)] = [N : CN (P11)] = 2. Obviously the commutator subgroup N ′
is cyclic of order 11 ·19, and so N has exactly four linear characters and χ(1) | 4
for all χ ∈ Irr(N) by Theorem 3.6.5. By Corollary 4.12.3, G must have exactly
four irreducible characters of degree ≡ ±1 mod p for p = 11, 19. The principal
19-block B0 has nine exceptional characters of degree b with b ≡ ±2 mod 19,
the trivial character and one further non-exceptional character of degree a with
a ≡ ±1 mod 19. Of course, a and b must be divisors of |G| and 2 < a, b <

√
|G|

(by Exercise 2.2.4), that is, a, b must be in the following list degs:

gap> degs := Filtered( [1..419], x -> IsInt(175560/x) and x <>2 );;
gap> List([1,2] , i -> Filtered( degs, x -> x mod 19 in [i,19-i] ));
[ [ 1, 20, 56, 77, 132, 210 ], [ 21, 40, 55, 154, 264 ] ]

Thus a ∈ {20, 56, 77, 132, 210} and b ∈ {21, 40, 55, 154, 264}. Theorem 4.12.1(e)
implies b = a± 1, so b ∈ {21, 55}. Since G has only four irreducible characters
of degree ≡ ±1 mod 11, we conclude that b 
= 21. Lemma 4.12.4 applied with
p = 7 implies that G has at most seven irreducible characters of degree ≡ ±1
mod 7, hence b 
= 55. This contradiction proves (b).

(c) CG(P19) = P19 and G has three algebraically conjugate conjugacy classes
19a, 19b and 19c of elements of order 19. Also the principal 19-block B0 is the
only 19-block of defect one.

(i) Assume that [NG(P19) : CG(P19)] = 2. Then G has elements of order
3 ·19. If there are also elements of order 3 ·11, that is, if 3 | |NG(P11)|, it follows
(using syl) that |NG(P3)| ∈ {2·3·5·11·19 , 22·3·11·19}, hence by the Sylow the-
orems P19 �NG(P3), which gives a contradiction to (b). So |NG(P11)| = 10 ·11,
since the other possibility, 22 · 11 · 19, would imply 11 | |NG(P19|. As in the
proof of (b) part (ii), we see that the principal 19-block B0 contains nine ex-
ceptional characters θ1, . . . , θ9 of degree b ∈ {21, 55} and a non-exceptional
character of degree a ∈ {20, 56}. Again the case b = 55 can be ruled out
by Lemma 4.12.4 with p = 7. Similarly, Lemma 4.12.4 applied with p = 11
and q = 5 shows that (a, b) 
= (20, 21), because 20 ≡ −2 mod 11 implies that
[NG(P11) : CG(P11)] = 2, and θ1, . . . , θ9 with θi(1) = 21 ≡ −1 mod 11 would
have to be the only non-trivial non-exceptional characters in the five 11-blocks
of defect one. Exactly one of these characters would have to be in the principal
11-block, which is a contradiction, since the θi are algebraically conjugate.

(ii) Now assume that [NG(P19) : CG(P19)] = 3. The principal 19-block B0
contains six exceptional characters of degree b with 7 | b or b ≡ ±2 mod 7 by
Lemma 4.12.4. The GAP program degblock of Exercise 4.12.2 shows that there
is just one possibility for the degrees of the irreducible characters in B0:

gap> d := List([1,3], i -> Filtered( degs, x -> x mod 19 in [i,19-i] ));;
gap> d[2]:= Filtered(d[2], x->6*xˆ2 < 175560 and x mod 7 in [0,2,5]);; d;
[ [ 1, 20, 56, 77, 132, 210 ], [ 35, 168 ] ]
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gap> dd := degblock( 175560, d[1], d[2], 3, 19 );
[ [ [ -56, 1, 20 ], -35 ] ]

Thus the non-exceptional characters in B0 have degree 1, 20 and 56 and the
exceptional characters have degree 35, which contradicts Theorem 4.12.9. This
proves (c).

(d) |NG(P11)| = 11 · 10 or [NG(P11) : CG(P11)] = 2 and CG(P11) ∼= P11 ×A5.
There is no χ ∈ Irr(G) with χ(1) = 20.

Since 19 � |NG(P11)| we know |NG(P11)| ∈ {11 · 10, 11 · 120}. Assume that
|NG(P11)| = 11 · 120, that is, N := NG(P11) = P11 � U with U of order 120.
Then U can have one or six Sylow 5-subgroups, so |NU (P5)| ∈ {120, 20} for
P5 ∈ Syl5(U). We rule out 120, since |NG(P5)| ∈ {10, 110, 60, 660} as the
following code shows:

gap> List(Filtered( syl(175560,5), x -> x mod (7*19) = 0 ), x-> 175560/x);
[ 10, 110, 60, 660 ]

Thus U has six Sylow 5-subgroups and as in (b) it follows that U is isomorphic
to S5, SL2(5) or A5×C2. Since U has a normal subgroup U ∩CG(P11) of index
2, 5 or 10, we can exclude SL2(5). It follows that CG(P11) ∼= P11 ×A5, and by
Exercise 4.12.1 G has no irreducible character of degree 20.

If |NG(P11)| = 110 then by Lemma 4.12.4 applied with p = 11, q = 5 there
would be zero or at least five irreducible characters of degree 20. On the other
hand, any such character would be a non-exceptional character in the principal
19-block B0. But by Theorem 4.12.1 B0 has just five such characters 
= 1G and
they cannot all have degree 20 because otherwise Theorem 4.12.1(e) would imply
that the exceptional characters in B0 would have degree 1 + 5 · 20 = 101 � |G|.

(e) CG(P7) = P7 and G has just one conjugacy class 7a of elements of order
seven. The principal block is the only 7-block of defect one.

Let degs be the set of positive divisors of |G| congruent to 0, ±1 or ±6
modulo 19 which are less than

√
|G| and different from 2 and 20. By (c) and

(d) we know that χ(1) ∈ degs for χ ∈ Irr(G). For i = 1, 2, 3 we consider
d[i] := {x ∈ degs | x ≡ ±i mod 7}:

gap> degs := Filtered( degs, x-> x mod 19 in [0,1,6,13,18] and x <> 20);;
gap> d := List( [1,2,3], i-> Filtered(degs, x -> x mod 7 in [i,7-i]) );
[ [ 1, 6, 57, 76, 120, 132, 190, 209 ], [ 19, 44, 114, 152, 285, 380, 418 ],

[ 38, 95, 165, 228 ] ]
gap> Print(degblock(175560,d[1],d[2],2,7),degblock(175560,d[1],d[3],3,7));
[ ][ ]

The degrees of the non-exceptional characters in the principal 7-block are in
d[1]. If [NG(P7) : CG(P7)] = 2 or 3 then the degrees of the exceptional
characters in the principal 7-block are in d[2] and d[3], respectively. The GAP
program degblock of Exercise 4.12.2 shows that these cases cannot occur, and
(e) follows.
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(f) The degrees of the irreducible characters in the principal 19-block B0 are
1, 56, 56, 56, 77, 210, 120, 120, 120 or 1, 56, 56, 77, 77, 77, 120, 120, 120.
|NG(P11)| = 11 · 10, CG(P11) = P11, and G has just one class 11a of elements
of order 11.

By (e) χ(1) ∈ {x ∈ N | x ≡ a mod 7 for a ∈ {0,±1} }, so we easily see that
the non-exceptional characters of B0 have degrees in d1 := {1, 56, 77, 132, 210}
and the exceptional ones in d2 := {6, 70, 120}. The first assertion follows by
applying again the GAP program degblock of Exercise 4.12.2:

gap> degs := Filtered(degs, x -> x mod 7 in [0,1,6]);;
gap> d := List( [1,6] , i-> Filtered(degs, x -> x mod 19 in [i,19-i]) );
[ [ 1, 56, 77, 132, 210 ], [ 6, 70, 120 ] ]
gap> degblock( 175560, d[1], d[2], 6, 19 );
[ [ [ -56, -56, -56, 1, 77, 210 ], 120 ],
[ [ -56, -56, 1, 77, 77, 77 ], 120 ] ]

In both cases there are more than five irreducible characters of degree ≡ ±1
mod 11. Applying Exercise 4.12.1 we see that (d) implies |NG(P11)| = 11 · 10.
Similarly as in (e), we see that CG(P11) = P11.

(g) G has 13 or 15 conjugacy classes and

( χ(1) | χ ∈ Irr(G) ) =
( 1, 56, 56, 56, 76, 76, 77, 120, 120, 120, 133, 209, 210 ), (4.51)

or

( 1, 56, 56, 76, 76, 77, 77, 77, 120, 120, 120, 133, 133, 133, 209 ). (4.52)

By (f), eight (or six, respectively) of the characters in the principal 19-block
have 11-defect one. So the principal 11-block must also contain three (or five)
characters of 19-defect zero. These have degrees in {76, 133} as the following
GAP code shows:

gap> Filtered( degs, x-> x mod 19 = 0 and x mod 11 in [1,10] );
[ 76, 133 ]

By Theorem 4.12.1 we have to find x, y ∈ N0 with

1 + 3 · 56 + 210− 3 · 120 = 19 = x · 76− y · 133, x+ y = 3
and

1 + 2 · 56− 3 · 120 = −247 = x · 76− y · 133, x+ y = 5,

respectively. It is easily seen that the only solution is (x, y) = (2, 1) in the first
case and (x, y) = (2, 3) in the second case. We define

I := {χ ∈ Irr(G) | d19(χ) = 1 or d11(χ) = 1}

and obtain in both cases

|G| −
∑
χ∈I

χ(1)2 = (11 · 19)2.

This means that there is a unique irreducible character of degree 11 · 19 = 209,
which is not of p-defect one for p = 19 or p = 11, and (g) follows.
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(h) The degrees of the irreducible characters of G are given in (4.52). All
χ ∈ Irr(G) have Frobenius Schur indicator one and G has a single class 2a of
involutions with centralizer order 120.

From (c), (e) and (f) we know that Pq is self-centralizing for q = 7, 11, 19.
Hence the centralizer of any p-element 
= 1 for p 
∈ {7, 11, 19} has order dividing
23 ·3 ·5. In particular there are at least 175560/(23 ·3 ·5) = 1463 involutions. By
Theorem 2.9.9,

∑
χ∈Irr(G) χ(1) is an upper bound for the number of elements of

order ≤ 2 in G. For the sum of the degrees we find 1310 in (4.51) and 1464 in
(4.52). Thus (h) follows.

We finally determine the normalizers of Pp for p ∈ {3, 5}. Using the proof
of (h) we find for the possible orders of NG(Pp):

gap> List( [3,5], p -> Filtered( List( syl(175560, p), x -> 175560/x ),
> y -> IsInt( 120/y ) ) );
[ [ 6, 60, 24 ], [ 10, 60 ] ]

From (h) we get 10 | |CG(P5)|, so |NG(P5)| = 60. Consequently 5 | |CG(P3)|
and |NG(P3)| = 60. It follows that

N := NG(P5) ∼= NG(P3) ∼= P5 � U5 ∼= P3 � U3

with Sylow complements U5 and U3. From (4.52) we see that G has 12 irre-
ducible characters of 5-defect one. By Theorem 4.12.1 a 5-block of defect one
contains five (if e = 4 or 1) or four (if e = 2) irreducible characters. Hence
G and, by Brauer’s first main theorem, N has three 5-blocks of defect one,
all with e = 2. It follows that [N : CG(P5)] = 2. Since | Irr(N)| = 12, it
is clear that CG(P5) cannot be abelian, thus CG(P5) ∼= P5 × S3. Similarly
CG(P3) ∼= P3 ×D10, and we conclude that N ∼= S3×D10.

Hence G has two conjugacy classes 5a, 5b of elements of order five with
centralizer order 30, two conjugacy classes 15a, 15b of elements of order 15
with centralizer order 15, two conjugacy classes 10a, 10b of elements of order
ten with centralizer order 10, and a conjugacy class 3a and 6a with centralizer
order 30 and 6, respectively. Observe that we were using the trivial fact that
CG(g) ⊆ CG(gi) for any i ∈ N and any g ∈ G.

In total we have found the centralizer orders of 15 (that is, of all) conjugacy
classes of G. Also the power maps are easily determined, since we know that
the classes 5a, 5b are algebraically conjugate as well as the classes of elements
of order 19. Of course, we may assume that the cubes of elements in 15a are in
5a as well as the fifth powers of those of 10a. As noted in Remark 3.2.27, the
character table of J1 is uniquely determined by this information, since one can
just induce up the linear characters of the cyclic subgroups and use the LLL
algorithm to extract all irreducible characters of G:

gap> t := CharacterTable("J1");;
gap> ind := InducedCyclic( t, "all" );; ll := LLL( t, ind );;
gap> List( ll.irreducibles, y -> y[1] );
[ 56, 56, 120, 120, 120, 76, 76 ]
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gap> red := ReducedClassFunctions( t, [List([1..15],x->1)],ll.remainders);;
gap> List( red.irreducibles, y -> y[1] );
[ 77, 77, 77, 133, 133, 133, 209 ]

The LLL algorithm applied to all characters induced from the linear characters
of cyclic subgroups yields seven irreducible characters. Reducing the remainders
with the trivial character we obtain all the missing irreducible characters of G.
We display the character table of G in Table 4.8.

Table 4.8. Character table of J1

J1 |G| 120 30 30 30 6 7 10 10 11 15 15 19 19 19
1a 2a 3a 5a b 6a 7a 10a b 11a 15a b 19a b c

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 56 . 2 α α′ . . . . 1 β β′ −1 −1 −1
χ3 56 . 2 α′ α . . . . 1 β′ β −1 −1 −1
χ4 76 4 1 1 1 1 −1 −1 −1 −1 1 1 . . .
χ5 76 −4 1 1 1 −1 −1 1 1 −1 1 1 . . .
χ6 77 5 −1 2 2 −1 . . . . −1 −1 1 1 1
χ7 77 −3 2 β β′ . . β β′ . β β′ 1 1 1
χ8 77 −3 2 β′ β . . β′ β . β′ β 1 1 1
χ9 120 . . . . . 1 . . −1 . . γ ε δ
χ10 120 . . . . . 1 . . −1 . . δ γ ε
χ11 120 . . . . . 1 . . −1 . . ε δ γ
χ12 133 5 1 −2 −2 −1 . . . 1 1 1 . . .
χ13 133 −3 −2 −β −β′ . . β β′ 1 −β −β′ . . .
χ14 133 −3 −2 −β′ −β . . β′ β 1 −β′ −β . . .
χ15 209 1 −1 −1 −1 1 −1 1 1 . −1 −1 . . .

α, α′ := 1 ∓ √
5, β, β′ := 1

2 (−1 ± √
5), γ := ζ19 + ζ7

19 + ζ8
19 + ζ11

19 + ζ12
19 + ζ18

19,
δ := η4(γ) and ε := η2(γ), with ηi ∈ Gal(Q(ζ19)/Q) mapping ζ19 to ζi

19.

Of course, it would also be easy to complete the character table by hand
just using the degrees and the information about the conjugacy classes we had
proved above. For instance, χ4, χ5 (of degree 76) are of 2-defect one with defect
group 〈x〉, where x ∈ 2a. The centralizer orders and element orders show that
CG(x) ∼= C2×A5. In fact, since G has no elements of order 30 we conclude that
CG(x) is non-solvable, and since there are no elements of order four we know
CG(x) 
∼= 2.A5. From Exercise 4.11.2 we get {χ4(x), χ5(x)} = {4, −4}. The
remaining values of χ4, χ5 are completely determined by the congruence method
(see Remark 2.2.3). Observe that G has four 3-blocks of defect one, for which
we may use Exercise 4.12.3. In particular, for the principal block B0 ∈ Bl3(G)
with Irr(B0) = {χ1, χ4, χ6}, we see that χ6 can be directly obtained from χ1
and χ4.

We continue by determining the Brauer tree of the principal 19-block B0(G).
Since all characters are real it is an open polygon. The leaves correspond to
irreducible characters which stay irreducible modulo p = 19, one of course being
the trivial character and the other one necessarily being a character χa ∈ Irr(G)
of degree 77, because the non-trivial irreducible characters χi with εi = 1 (in
the notation of Theorem 4.12.1) all have degree 77. The reduction of constants
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of the neighbor of χa thus has a modular irreducible constituent of degree 77;
this must be the exceptional vertex. So we know the degrees of the irreducible
characters corresponding to the nodes of the Brauer tree:

1 56 77 56 77 120 77
� � � � � � ��

We will follow the custom of denoting the irreducible characters just by their
degrees with an index a, b, . . . identifying them among characters of the same
degree (in their order of appearance in the character table of G). We may
assume that the neighbor of 1a is 56a, since we may switch the classes 5a, 5b
and 15a, 15b if need be. In order to locate at least one of the characters of
degree 77 in the Brauer tree, we compute the permutation character 1GCG(z) for
an involution z ∈ G. It is a permutation character of degree 7 · 11 · 19 and is
uniquely determined by the character table of G:

gap> ct := CharacterTable("J1");; perm := PermChars(ct, 7*11*19);;
gap> b19 := Filtered([1..15], i -> Irr(ct)[i][15] <> 0);;
gap> MatScalarProducts( Irr(ct){b19}, perm );
[ [ 1, 1, 1, 2, 0, 0, 1, 1, 1 ] ]

The permutation character perm[1] is 19-projective, and since we have com-
puted its scalar product with the characters in Irr(B0) (which are precisely the
irreducible characters that do not vanish on the class 19c), this gives us the
B0(G)-part of perm[1]:

perm[1]B0(G) = (1a + 56a) + (56b + 77a) + (77a +
∑

x∈{a,b,c}
120x).

Thus the Brauer tree is as follows:
1a 56a 77b/c 56b 77a 120 77c/b
� � � � � � ��

In order to find the position of 77b and 77c in the Brauer tree we induce up
the irreducible characters of NG(P11) to G. We know the structure of NG(P11),
and the character table is easily determined. There are two possible class fusions
of the character table t11 of NG(P11) into the character table ct of G, but both
yield the same set of characters when inducing the irreducibles of t11 to ct. We
compute the scalar product of the first eight of these induced characters with
the characters in Irr(B0(G)):

gap> gg := AllSmallGroups(110);;
gap> gg := Filtered(gg,g-> Size(Centralizer(g,SylowSubgroup(g,11)))=11);;
gap> t11 := CharacterTable(gg[1]);; pf:=PossibleClassFusions(t11,ct);
[ [ 1, 2, 4, 10, 8, 5, 9, 5, 9, 4, 8 ], [ 1, 2, 5, 10, 9, 4, 8, 4, 8, 5, 9 ] ]
gap> ind1 := InducedClassFunctionsByFusionMap(t11, ct, Irr(t11), pf[1]);;
gap> ind2 := InducedClassFunctionsByFusionMap(t11, ct, Irr(t11), pf[2]);;
gap> Set(ind1) = Set(ind2);
true
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gap> MatScalarProducts(Irr(ct){b19},ind1{[1..8]});
[ [ 1, 1, 1, 2, 0, 0, 1, 1, 1 ], [ 0, 1, 1, 1, 1, 1, 1, 1, 1 ],

[ 0, 0, 1, 0, 1, 1, 1, 1, 1 ], [ 0, 1, 0, 0, 1, 1, 1, 1, 1 ],
[ 0, 1, 0, 0, 1, 1, 1, 1, 1 ], [ 0, 0, 1, 0, 1, 1, 1, 1, 1 ],
[ 0, 0, 1, 1, 1, 0, 1, 1, 1 ], [ 0, 1, 0, 1, 0, 1, 1, 1, 1 ] ]

All these induced characters are 19-projective. Looking at the eighth induced
character we see that the following character is 19-projective:

56a + 77c + 77a +
∑

x∈{a,b,c}
120x,

which finally shows that the Brauer tree is given by

1a 56a 77c 56b 77a 120 77b
� � � � � � ��

From this we immediately obtain IBr(B0):

ϕ1 := (1a)|Gp′ , ϕ5 := (56a)|Gp′ − ϕ1, ϕ2 := (77c)|Gp′ − ϕ5,

ϕ3 := (56b)|Gp′ − ϕ2, ϕ4 := (77a)|Gp′ − ϕ3, ϕ8 := (77b)|Gp′ .

Finally, we display the complete Brauer character table (Table 4.9), including
also the defect-zero characters restricted to Gp′ . As one can see from Table 4.9,
we have several examples of non-rational Brauer characters for which an alge-
braic conjugate is not a Brauer character.

Table 4.9. 19-Brauer character table of J1

IBr19(J1) 1a 2a 3a 5a 5b 6a 7a 10a 10b 11a 15a 15b

ϕ1 1 1 1 1 1 1 1 1 1 1 1 1
ϕ2 22 −2 1 α α′ 1 1 −α −α′ . δ δ′

ϕ3 34 2 1 β β′ −1 −1 α α′ 1 −β′ −β
ϕ4 43 3 −2 −α −α′ . 1 −α −α′ −1 −α −α′

ϕ5 55 −1 1 γ −γ −1 −1 −1 −1 . −β′ −β
ϕ6 76 4 1 1 1 1 −1 −1 −1 −1 1 1
ϕ7 76 −4 1 1 1 −1 −1 1 1 −1 1 1
ϕ8 77 −3 2 α α′ . . α α′ . α α′

ϕ9 133 5 1 −2 −2 −1 . . . 1 1 1
ϕ10 133 −3 −2 −α −α′ . . α α′ 1 −α −α′

ϕ11 133 −3 −2 −α′ −α . . α′ α 1 −α′ −α
ϕ12 209 1 −1 −1 −1 1 −1 1 1 . −1 −1

α, α′ := −1±√
5

2 , β, β′ := 3±√
5

2 , γ := −√
5, δ, δ′ := −1 ∓ √

5.

�
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Example 4.12.11 We consider the 11-modular characters of the Mathieu group
M11 of order 7920 = 24 ·32 ·5 ·11. The prime 11 divides the order of M11 exactly
once, and, as we can read off easily from the ordinary character table of M11,
the structure of the normalizer of a Sylow 11-subgroup is a Frobenius group
11 � 5 of order 55. This implies that the principal block B0 of defect one is
the only block not of defect zero. According to Brauer’s theorem on blocks of
defect one (Theorem 4.12.1), there are e := (11 − 1)/2 = 5 irreducible Brauer
characters in B0 and seven irreducible ordinary characters. The following table
summarizes useful information about these characters:

χ1 χ2 χ3 χ4 χ6 χ7 χ9
1a 10a 10b 10c 16a 16b 45a

Note further that χ6, χ7 are the exceptional characters in the block and
that all characters are real-valued on the 11-regular classes but the complex
conjugate pair χ3, χ4. Hence the Brauer tree will have the following real stem
with four vertices:

1a 45a
� � � �

Since the irreducible character χ5 is not in B0, it is of defect zero, and the
restriction to the block of the tensor product χ5 ⊗ χ5 = χ1 + χ2 is a projective
character and obviously a projective indecomposable character. This shows that
the vertex indexed by χ2 is linked to the one for χ1, and hence the real stem is
forced to look as follows:

1a 10a 45a 16a, 16b
� � � ��

The vertices of the complex pair χ3 and χ4 with ε3 = ε4 = −1 (in the
notation of Theorem 4.12.1) both have to be linked to a vertex with character
χi on the real stem with εi = 1. The only feasible choice for this vertex is the
vertex corresponding to the character χ9. Hence the Brauer tree is given as
follows:

1a 10a 45a

10b

10c

16a, 16b
� � � �

�

�

�

�

Exercises

Exercise 4.12.1 Let p > 7 be a prime and let P ∈ Sylp(G) with [NG(P ) :
CG(P )] = 2 and CG(P ) ∼= P × A5. Show that G has no irreducible characters
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of degree ≡ ±2 mod p and exactly two irreducible characters of degree ≡ ±1
mod p.

Exercise 4.12.2 Let P ∈ Sylp(G) be of order p and let e := [NG(P ) : CG(P )].
Let B0 be the principal block of G and ε0, . . . , εe,∈ {−1, 1} be defined as in
Theorem 4.12.1, that is, χi(1) ≡ εi mod p for i = 1, . . . , e and ζ(1) ≡ ε0e
mod p, where χ1, . . . , χe are the non-exceptional characters in B0 and ζ is one
of the exceptional characters in B0. If di := εiχi(1) for i = 1, . . . , e and d0 :=
ε0ζ(1), then the di satisfy

e∑
i=1

di = d0 and
e∑
i=1

d2
i +

p− 1
e

· d2
0 ≤ n := |G|. (4.53)

Verify that the following program returns a list dd such that [[d1, . . . , de], d0] ∈
dd provided that χi(1) ∈ degne for i = 1, . . . , e and ζ(1) ∈ dege:

gap> degblock := function( n, degne, dege, e, p )
> local dd, d1, d2, de, tup, x;
> dd:= []; d1:= ShallowCopy( degne ); d2 := ShallowCopy( dege );
> for x in [1..Length(d1)] do
> if d1[x] mod p <> 1 mod p then d1[x] := - d1[x]; fi;
> od;
> for x in [1..Length(d2)] do
> if d2[x] mod p <> e then d2[x]:= -d2[x]; fi;
> od;
> tup := UnorderedTuples(d1, e);;
> for x in tup do
> if Sum(x) in d2 then Add( dd , [x, Sum(x)] ); fi;
> od;
> for x in dd do Sort( x[1] ); od; dd := Set(dd); Sort(dd);
> dd:=Filtered(dd, x -> Sum(List(x[1], a -> aˆ2)) + ((p-1)/e)*x[2]ˆ2 < n);
> dd:=Filtered(dd, x -> Length(Positions(x[1],1)) = 1);
> return(dd);
> end;;

Of course, the program should only be used if e and |degne| are small.

Exercise 4.12.3 Let B ∈ Bl3(G) and NG(P ) ∼= S3×D10 for P ∈ Def(B).
(a) Show that

DB =

 1 0
0 1
1 1

 .
(b) Deduce that Irr(B) = {χ, χ′, χ′′} with

χ′′(g) =
{

χ(g) + χ′(g) if g is 3-regular,
−χ(g) = −χ′(g) else.

Exercise 4.12.4 Assume that the centralizer and element orders of G := J1
are known as well as the degrees of the irreducible characters. Complete the
character table of G just by using the congruence relations and block theory.
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4.13 Brauer characters of p-solvable groups

In this section we consider a class of groups for which modular representation
theory is easier and further developed. In fact, for p-solvable groups a number of
fundamental problems in modular representation theory have been solved that
in the general case still seem to be intractable. As usual we assume that G is a
finite group, p is a prime and (K,R, F, η) is a p-modular splitting system for G.

Definition 4.13.1 G is called p-solvable if every chief factor of G is either a
p-group or a p′-group.

Part (a) of the following result is often called the “Hall-Higman lemma.”

Lemma 4.13.2 For a group G let Op′p(G) ≤ G be defined by Op′p(G)/Op′(G) =
Op(G/Op′(G)). Assume that G is p-solvable. Then

(a) CG/Op′ (G)(Op′p(G)/Op′(G)) ≤ Op′p(G)/Op′(G);

(b) if g ∈ G \Op′p(G) then p | |gG|.

Proof. (a) We may assume that Op′(G) = {1}. Assume that CG(Op(G)) 
≤
Op(G) and that M ≤ Op(G) CG(Op(G)) such that M/Op(G) is a chief factor
of G. By assumption, p � [M : Op(G)], and by the Schur–Zassenhaus theorem
(see [5], p. 70) Op(G) has a complement C in M . Since C ⊆ CG(Op(G)), we
have M = C ×Op(G) and C ≤ Op′(G), a contradiction.

(b) If p � |gG| then CG(g) contains a Sylow p-subgroup P of G, hence
g ∈ CG(P ). Since Op′p(G) ≤ Op′(G)P ,

gOp′(G) ∈ CG/Op′ (G)(Op′p(G)/Op′(G)) ≤ Op′p(G)/Op′(G),

where the last inclusion follows from part (a). Hence g ∈ Op′p(G).

Clifford correspondence, which we have introduced for Brauer characters in
Corollary 4.3.8, is useful in particular for the representation theory of p-solvable
groups.

Lemma 4.13.3 Let N � G with p � [G : N ]. Assume that ψ ∈ Irr(N) is such
that ψ′ := ψ|Np′ ∈ IBr(N) and TG(ψ) = TG(ψ′). Then

τ : Irr( G | ψ ) → IBr( G | ψ′ ), χ �→ χ|Gp′ is a bijection.

Proof. We use induction on |G|. Let T := TG(ψ) = TG(ψ′) and assume first
that T < G. Then, using induction, we have a bijection

Irr(T | ψ) → IBr(T | ψ′), θ �→ θ|Tp′ .

Since (θ|Tp′ )G = (θG)|Gp′ , the result follows from the Clifford correspondences
(Lemma 3.6.8 and Lemma 4.3.8) in this case.
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We may assume that T = G, which means that ψ, ψ′ are G-invariant. Let
W be a simple FN -module with Brauer character ψ′ and for ϕ ∈ IBr(G) let
Yϕ be a simple FG-module with Brauer character ϕ. Using Corollary 3.2.18 we
may write

ψG =
∑

χ∈Irr(G|ψ)

aχ χ and ψ′G =
∑

ϕ∈IBr(G|ψ′)

bϕ ϕ.

By Theorem 3.2.13, χ|N = aχψ. Since p � [G : N ], we can deduce from Exer-
cise 4.9.2 that WG is also semisimple. Thus using Frobenius–Nakayama reci-
procity (Theorem 3.2.12) we obtain for ϕ ∈ IBr(G | ψ′)

bϕ = dim HomFG(WG, Yϕ) = dim HomFN (W, (Yϕ)N )

and (Yϕ)N ∼= W ⊕ · · · ⊕W︸ ︷︷ ︸
bϕ

, because ψ′ is G-invariant. Thus for χ ∈ Irr( G | ψ )

aχψ
′ = (χ|N )Np′ = (χ|Gp′ )|N =

∑
ϕ∈IBr(G)

dχϕϕN =
∑

ϕ∈IBr(G|ψ′)

dχϕbϕψ
′.

Hence
aχ =

∑
ϕ∈IBr(G|ψ′)

dχϕbϕ for χ ∈ Irr(G | ψ)

and dχϕ = 0 for ϕ 
∈ IBr(G | ψ′). Similarly

ψG|Gp′ =
∑

χ∈Irr(G|ψ)

aχ(
∑

ϕ∈IBr(G)

dχϕϕ) =
∑

ϕ∈IBr(G)

(
∑

χ∈Irr(G|ψ)

dχϕaχ) ϕ.

Since ψG|Gp′ = ψ′G we get

bϕ =
∑

χ∈Irr(G|ψ)

dχϕaχ for ϕ ∈ IBr(G | ψ′).

Hence

aχ =
∑

ϕ∈IBr(G|ψ′)

dχϕ(
∑

ξ∈Irr(G|ψ)

dξϕaξ) =
∑

ξ∈Irr(G|ψ)

(
∑

ϕ∈IBr(G|ψ′)

dχϕdξϕ)aξ.

It follows that ∑
ϕ∈IBr(G|ψ′)

dχϕdξϕ =
{

1 for ξ = χ ∈ Irr(G | ψ),
0 for ξ 
= χ ∈ Irr(G | ψ).

This means that χ|Gp′ ∈ IBr(G | ψ′) and also that χ|Gp′ 
= ξ|Gp′ for ξ 
= χ in
Irr(G | ψ). So τ is injective.

Finally, if ϕ ∈ IBr(G | ψ′) then

0 
= bϕ =
∑

χ∈Irr(G|ψ)

dχϕaχ,

and hence there is a χ ∈ Irr(G | ψ) with dχϕ 
= 0. By the above we have
χ|Gp′ ∈ IBr(G | ψ′), so ϕ = χ|Gp′ , which shows that τ is surjective as well.
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Theorem 4.13.4 (Wolf) Let G/N be p-solvable and let ψ ∈ Irr(N) be such
that ψ|Np′ ∈ IBr(N) and TG(ψ) = TG(ψ|Np′ ). Assume further that p does
not divide o(ψ)ψ(1), where o(ψ) is the determinantal order of ψ, see Defini-
tion 3.6.18. Then for every ϕ ∈ IBr(G | ψ|Np′ ) there is a χ ∈ Irr(G | ψ) with
χ|Gp′ = ϕ.

Proof. We use induction on |G/N |. If T := TG(ψ) = TG(ψ|Gp′ ) < G, then let
θ ∈ IBr(T | ψ|Gp′ ) be the Clifford correspondent of ϕ. By induction there is a
ξ ∈ Irr(T | ψ) with ξ|Gp′ = θ. Then the Clifford correspondent ξG does the job.
So we may assume that ψ is G-invariant.

Let M/N be a chief factor of G. If p � [M : N ], then by Lemma 4.13.3 we
have a bijection

τM : Irr(M | ψ) → IBr( M | ψ|Np′ ) , ξ �→ ξ|Mp′ .

So there is a ξ ∈ Irr(M | ψ) such that ϕ ∈ IBr( G | ξ|Mp′ ). Since τM is
a bijection, we have TG(ξ) = TG(ξ|Mp′ ). Since ψ is M -invariant, ξ|N = eψ
with e, the degree of an irreducible representation of M/N (see Theorem 3.7.5)
dividing [G : N ]. Thus p � ξ(1). Obviously ker(detψ) ≤ ker(det ξ) ≤ M , hence
o(ξ) | o(ψ)[M : N ] is coprime to p. Hence by induction there is a χ ∈ Irr( G | ξ )
with χ|Gp′ = ϕ.

Now letM/N be a p-group. By Corollary 3.6.14 there is a unique θ ∈ IBr(M)
with θ|N = ψ|Np′ . Also by Theorem 3.6.19 there is a unique ξ ∈ Irr(M) with
ξ|N = ψ and ([M : N ], o(ξ)) = 1. The uniqueness properties ensure that both
θ and ξ are G-invariant. Also (ξ|Mp′ )|Np′ = (ξ|N )|Np′ = ψ|Np′ , hence ξ|Mp′ = θ.
Since ϕ ∈ IBr( G | ξ|Mp′ ), the inductive hypothesis implies the existence of
χ ∈ Irr(G | ξ) with χ|Gp′ = ϕ.

Choosing N = {1} in the theorem one obtains the following important result.

Theorem 4.13.5 (Fong–Swan theorem) If G is p-solvable, then for every
ϕ ∈ IBr(G) there is a χ ∈ Irr(G) with ϕ = χ|Gp′ .

It follows that for p-solvable groups the irreducible Brauer characters can be
found easily from the ordinary character table.

Corollary 4.13.6 If G is p-solvable, then

IBr(G) = {χ|Gp′ | χ ∈ Irr(G) with χ|Gp′ 
= χ1|Gp′ +χ2|Gp′ , χ1, χ2 ∈ CharK(G)}.

Theorem 4.13.7 (Fong) Assume that G is p-solvable and θ ∈ Irr(Op′(G))
is G-invariant. Let b ∈ Blp(Op′(G)) be the block with Irr(b) = {θ}. Then
Bl(G | b) = {B} with Irr(B) = Irr(G | θ) and IBr(B) = IBr(G | θ). Furthermore
Def(B) = Sylp(G).

Proof. We may assume p | |G|. Let b ∈ Blp(Op′(G)) with Irr(b) = {θ}. By
Lemma 4.7.28 (a) and (b) it suffices to show that Irr(G | θ) = Irr(B) for some
B ∈ Blp(G) with Def(B) = Sylp(G). We will prove this by induction on |G|.
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Let N be a maximal normal subgroup of G containing Op′(G). Assume
B ∈ Bl(G | b) and let b1 ∈ Blp(N) be a block covered by B. By Exercise 4.7.7
b1 ∈ Bl(N | b). Since Op′(G) = Op′(N), we may use induction and conclude
that Irr(b1) = Irr(N | θ) and Def(b1) = Sylp(N). It suffices to show that
Bl(G | b1) = {B} and that Def(B) = Sylp(G).

If G/N is a p-group, then Bl(G | b1) = {B} follows from Lemma 4.7.28(f).
Also b is invariant in G, since b1 is the unique p-block of N covering b. Thus ε̂B =
ε̂b1 . Let hG be a defect class for B and let D ∈ Defp(hG). By Theorem 4.4.7
hG ⊆ Gp′ ⊆ N . Then, since [G : N ] = p,

hG = hN1 ∪̇ · · · ∪̇hNr with r =
{

1 if [CG(h) : CN (h)] = p,
p if CG(h) = CN (h).

Note that ω̂b1((hNi )+) = ω̂b1((hN )+) for all i, since b is invariant in G. By
Lemma 4.7.28(c) ω̂b((hG)+) = ω̂B((hG)+) 
= 0, so r = p is impossible. By the
min–max theorem |N |p | |CN (h)|, hence D ∈ Sylp(G).

Since G is p-solvable, we may thus assume that p � [G : N ]. Let ψ ∈ Irr(b1)
have height zero, thus p � ψ(1), because Def(b1) = Sylp(N). Let B ∈ Bl(G | b1).
By Lemma 4.7.28(a) and Exercise 4.4.8 there is a χ ∈ Irr(B) with χ ∈ Irr(G | ψ).
Then p � χ(1) and hence Def(B) = Sylp(G). So it suffices to show that any two
characters χ, χ′ ∈ Irr(G | ψ) belong to the same p-block of G. For this we use
the criterion of Theorem 4.4.8. For C = gG ⊆ N we have by Lemma 4.7.28(c)

η(ωχ(C+)) = ω̂b(C+) = η(ωχ′(C+)).

On the other hand, Op′p(G) ≤ N , and Lemma 4.13.2(b) implies that for g ∈
G \N and C := gG we have p | |C| and thus

η(ωχ(C+)) = η(|C| χ(g)
χ(1)

) = 0 = η(|C| χ
′(g)
χ′(1)

) = η(ωχ′(C+)),

because p � χ(1), χ′(1). Hence η ◦ ωχ = η ◦ ωχ′ and χ, χ′ belong to the same
p-block B.

Corollary 4.13.8 Let G be a p-solvable group, let B ∈ Blp(G) and assume that
k(H/Op′(H)) ≤ |H|p holds for all H ≤ G. Then

k(B) ≤ |D| for D ∈ Def(B). (4.54)

Proof. We use induction on |G| and assume that B ∈ Blp(G) and that B
covers b ∈ Blp(Op′(G)) with Irr(b) = {θ}.

If θ is G-invariant then by Fong’s theorem (Theorem 4.13.7) Def(B) =
Sylp(G) and Irr(B) = Irr(G | θ). From Theorem 3.7.32(b) we conclude that
k(B) ≤ k(G/Op′(G)) and (4.54) follows in this case.

So we may assume that T := TG(θ) < G. By the Fong–Reynolds theorem
(Theorem 4.7.32) there is a unique block B1 ∈ Blp(T | b) with BG1 = B.
Furthermore k(B1) = k(B) and if D ∈ Def(B1) then D ∈ Def(B). By the
induction hypothesis k(B1) ≤ |D|, hence (4.54) follows.

The question whether or not (4.54) holds in general for all groups and all
blocks is called Brauer’s k(B)-problem or k(B)-conjecture; see Section 4.14.
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Exercises

Exercise 4.13.1 Let G be p-solvable and let χ ∈ Irr(G) such that χ(g) = 0 for
g ∈ G \Gp′ . Show that χ is a p-projective character (see Definition 4.3.1).

Exercise 4.13.2 Let G be p-solvable, ϕ ∈ IBr(G) and σ ∈ Gal(Q|G|/Q). Show
that ϕσ ∈ IBr(G). Compare with Exercise 4.2.2.

Exercise 4.13.3 The following is the character table of GL2(3), essentially in
GAP format:

2 4 4 3 1 1 2 3 3
3 1 1 . 1 1 . . .

1a 2a 4a 3a 6a 2b 8a 8b

X.1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 -1 -1 -1
X.3 2 2 2 -1 -1 . . .
X.4 3 3 -1 . . -1 1 1
X.5 3 3 -1 . . 1 -1 -1
X.6 2 -2 . -1 1 . A -A
X.7 2 -2 . -1 1 . -A A
X.8 4 -4 . 1 -1 . . .

A = -E(8)-E(8)ˆ3 = -ER(-2) = -i2

Find the table of p-Brauer characters for p = 2, 3.

4.14 Some conjectures

One of the oldest and most famous conjectures in modular representation theory
is the following (see prob. 20 in [13]).

Conjecture 4.14.1 (Brauer’s k(B)-conjecture) Let B ∈ Blp(G) with D ∈
Def(B). Then k(B) := | Irr(B)| ≤ |D|.

If d(B) = 0 then by Theorem 4.4.14 k(B) = 1 = pd(B). For d(B) = 1
we know from Theorem 4.11.11(b) that k(B) ≤ p. More generally, the conjec-
ture holds true for blocks with cyclic defect groups (see [56], theorem VII.2.12,
p. 277). Furthermore, the conjecture is known to be true for blocks of defect
two (see [14]). But the general case is still open.

The following purely group theoretical theorem is of interest in its own right,
but its main importance is in connection with the k(B)-conjecture.
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Theorem 4.14.2 (k(GV )-theorem) Let V be an elementary abelian
p-subgroup and let G be a finite group with p � |G| acting faithfully and irre-
ducibly on V . If GV denotes the corresponding semidirect product, then the
number of conjugacy classes of GV is given by

k(GV ) ≤ |V |. (4.55)

Note that by Corollary 3.6.6 the assertion (4.55) holds provided that G has
a regular orbit on V , that is, if there is a v ∈ V such that

CG(v) := {g ∈ G | g v = v} = {1}.

In fact, in this case one has k(GV ) < |V | unlessG is abelian (see Corollary 3.6.6).

For more than 40 years Theorem 4.14.2 was called the k(GV )-conjecture or
k(GV )-problem. The first major partial results on this problem were obtained
by Knörr ([102]). He proved the conjecture for supersolvable groups. One of
his fundamental results says that k(GV ) ≤ |V | holds provided that V contains
a vector v such that CG(v) is abelian. These methods were further refined by
Gluck ([64]), Gow ([70]) and Robinson and Thompson ([152]), who showed that
k(GV ) ≤ |V | holds if there is a v ∈ V such that VCG(v) contains a faithful selfd-
ual submodule. These authors were able to conclude that the k(GV )-conjecture
holds whenever p > 530. This bound was lowered considerably by Robinson
([151]), before Gluck, Magaard and Riese ([65], [149]) and, using somewhat dif-
ferent methods, Köhler and Pahlings ([104]) proved that the conjecture holds
whenever p 
∈ {3, 5, 7, 11, 13, 19, 31}. Later, Gluck and Magaard ([66]) were able
to treat the case p = 31, and Riese and Schmid ([150]) proved the conjecture
for all p 
= 5. Finally even this case could be settled by Gluck, Magaard, Riese
and Schmid ([67]). For a complete proof of Theorem 4.14.2, see the monograph
[155].

The relevance of the k(GV )-problem for the k(B)-conjecture was first noticed
by Nagao ([124]).

Theorem 4.14.3 If G is p-solvable and B ∈ Blp(G) with D ∈ Def(B) then
k(B) ≤ |D|.

Proof. Let G be a p-solvable group. We show by induction on |G| that
k′(G) := k(G/Op′(G)) ≤ |G|p, the case |G| = 1 being trivial. The claim then
follows from Corollary 4.13.8. If Op′(G) 
= {1} then by induction

k′(G) = k′(G/Op′(G)) ≤ |G/Op′(G)|p = |G|p.

So we may assume that Op′(G) = {1} and consequently k′(G) = k(G). We
define Op p′(G) � G by Op p′(G)/Op(G) = Op′(G/Op(G)). If Op p′(G) 
= G
then we may use induction and Exercise 2.1.10 and get

k(G) ≤ k(Op p′(G)) · k(G/Op p′(G)) ≤ |Op p′(G)|p|G/Op p′(G)|p = |G|p.

So we may assume that G = Op p′(G). This means that P := Op(G) ∈ Sylp(G),
and by the Schur–Zassenhaus theorem P has a complement H ∼= G/P in G.
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Let V ≤ P be a minimal normal subgroup of G and let Op′(G/V ) = Q/V
with V ≤ Q �G. If V 
= P then using induction and Exercise 2.1.10 again we
get

k(G) ≤ k(Q) · k(G/Q) = k′(Q) · k′(G/Q) ≤ |Q|p · |G/Q|p· = |G|p.

So we may assume that V = P = Op(G), which means that the p′-group H acts
faithfully (since CG(V ) = V by Lemma 4.13.2(a)) and irreducibly (since V is
minimal) on the elementary abelian p-group V , and the assertion follows from
Theorem 4.14.2.

A long series of conjectures started with an observation by McKay. For any
finite group G, let

mp(G) := |{χ ∈ Irr(G) | p � χ(1)}| for a prime p.

Browsing through the ATLAS ([38]), or the character table library of GAP
([19]), one quickly finds that m2(G) is a power of two for many simple groups.
We give evidence in Table 4.10 using the character tables of simple groups
in the character table library of GAP. We leave aside the groups L2(q) for
odd q, because a glance at the generic character table on p. 197 shows that
m2(L2(q)) = 4 for odd q.

Of course, characters of odd degree belong to 2-blocks of maximal defect.
In all the groups in Table 4.10, there is just one such 2-block (the principal
block), with two exceptions, namely U3(9) and L3(11). Both of these groups
have five 2-blocks of maximal defect, each containing four characters of odd
degree. One may observe that in many of the cases m2(G) = [P : P ′] for
NG(P ) = P ∈ Sylp(G). In these cases the above findings are “explained” by
the following conjecture.

Conjecture 4.14.4 (McKay’s conjecture) For any finite group G

mp(G) = mp(NG(P )) for P ∈ Sylp(G).

Recently an important step towards the proof of this conjecture has been
made, see [91], by reducing it to a question about simple groups. The authors
introduce the notion a group to be “good,” which unfortunately is too com-
plicated to be stated here, and show that if all simple groups involved in a
group G are “good” then the McKay conjecture holds for G. In particular they
give a proof that the McKay conjecture holds for groups with an abelian Sylow
p-subgroup.

If χ ∈ Irr(B) satisfies p � χ(1), then χ belongs to a p-block B of maximal
defect (that is, a block with defect group P ∈ Sylp(G)) and, of course, htp(χ) =
0. Hence

mp(G) =
∑

B∈Blp(G)

Def(B)=Sylp(G)

k0(B).
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Table 4.10. m2(G) for some simple groups G

G m2(G)

A5,A6,A7,L3(3),M11,U3(5),L3(7) 4

L2(8),U3(3),A8,L3(4),U4(2),Sz(8),M12, J1,A9,L3(5),M22, J2, 8
A10,U4(3),G2(3),S4(5),L4(3),M23,

2F4(2)′,A11,HS, J3,U3(11),
S4(7),McL,G2(5),L4(5),R(27),U4(5),Ru,L5(3),ON,L4(9),Ly

L2(16),U3(4),S4(4),S6(2),U3(7),L5(2),U5(2),L3(9),O+
8 (2), 16

O−
8 (2), 3D4(2),A12,M24,G2(4),A13,He,O7(3),U6(2),Suz,

Co3,O+
8 (3),A16,Fi22,A17,O7(5),HN,S8(3),O9(3),Th,Fi23

U3(9),L3(11) 20

U3(8) 24

L2(32),Sz(32),S6(3),L6(2),A14,S8(2),A15,O−
8 (3),O+

10(2), 32
O−

10(2),Co2,S6(5),F4(2),Co1, J4,
2E6(2),Fi′24

L2(64),L3(8),L4(4),U4(4),S4(8),S6(4),L7(2),S10(2),E6(2), 64
2F4(8),B,M

L8(2),S12(2) 128

We follow the notation of the ATLAS ([38]).

Recall that ki(B) = |{ χ ∈ Irr(B) | htp(χ) = i }|. Furthermore the Brauer
correspondent of a block with maximal defect is again a block with maximal
defect. Thus the following is a generalization of McKay’s conjecture.

Conjecture 4.14.5 (Alperin–McKay conjecture) If G is a finite group and
B is a p-block of G with defect group P ∈ Def(B) and Brauer correspondent
b ∈ Blp(NG(P )), then k0(B) = k0(b).

Exercise 4.6.4 verifies the conjecture for G := J2 and p = 2. It also shows
that the conjecture would be false if one replaced (k0(B), k0(b)) by (k(B), k(b))
or by (k1(B), k1(b)).

An old related conjecture is the following (see prob. 23 in [13]):

Conjecture 4.14.6 (Brauer’s height-zero conjecture) The defect groups
of a p-block B ∈ Blp(G) are abelian if and only if all χ ∈ Irr(B) have height
zero.

This is obviously true for blocks of defect zero or one. One can also show
that it holds for blocks with cyclic defect group. Moreover there is a theorem of
Gluck and Wolf saying that Brauer’s height-zero conjecture holds for p-solvable
groups. For a proof, see [117].

There is also a conjecture concerning nonabelian defect groups as follows.
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Conjecture 4.14.7 (Robinson’s conjecture) If B ∈ Blp(G) has a non-
abelian defect group D then

phtp(χ) < [D : Z(D)] for all χ ∈ Irr(B).

As an example consider G = M12. From the character table of G one can see
thatG has a non-abelian Sylow 3-subgroup P of order 33, so [P : Z(P )] = 32. On
the other hand the principal 3-block (the only one having a non-abelian defect
group) has two characters of height one and none of larger height. Similarly for
p = 2, the principal p-block B0 and P ∈ Sylp(G), one finds

max{phtp(χ) | χ ∈ Irr(B0)} = 23 < 25 = [P : Z(P )],

which is also in accordance with Robinson’s conjecture.
The following conjecture is related to Brauer’s height-zero conjecture and to

the k(B)-conjecture.
Conjecture 4.14.8 (Olsson’s conjecture) If D ∈ Def(B) for B ∈ Blp(G)
then

k0(B) ≤ [D : D′].

As a consequence of the proof of the k(GV )-conjecture, we mention the following
result.
Theorem 4.14.9 Let B ∈ Blp(G) and let D ∈ Def(B). Assume that b ∈
Blp(NG(D)) is the Brauer correspondent of B. Then we can state the following.

(a) The Alperin–McKay conjecture implies Olsson’s conjecture, that is,

k0(B) = k0(b) =⇒ k0(B) ≤ [D : D′].

(b) If D is abelian and k(B) = k(b), then k(B) ≤ |D|.

Proof. (a) was proved by Külshammer in [106].
For (b) see [155], theorem 12.3b.

It has been mentioned before that no group theoretical description of the
number of p-blocks of a finite group G is known. The same is true for the
number of p-blocks of defect zero, which is, of course, the number of irreducible
defect-zero characters. For a fixed prime p and d ∈ N0 we define

k(d)(G) := |{χ ∈ Irr(G) | dp(χ) = d}|.

Definition 4.14.10 A p-weight for G is a pair (P, χ), where P is a p-subgroup
of G and χ ∈ Irr(NG(P )/P ) has p-defect zero. A p-weight (P, χ) belongs to a
p-block B ∈ Blp(G) if Inf(χ) ∈ Irr(b) for b ∈ Blp(NG(P )) with bG = B.

Lemma 4.14.11 Let (P, χ) be a p-weight of G.

(a) If Inf(χ) ∈ Irr(b) for b ∈ Blp(NG(P )) then bG is defined and P ≤ D for
some D ∈ Def(bG).
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(b) P is a radical p-subgroup of G.

Proof. (a) follows from Theorem 4.7.19.
(b) By Theorem 4.6.10 Op(NG(P )) is contained in any defect group of b.

On the other hand, νp(|P |) = d(Inf(χ)) ≤ d(b). Hence Def(b) = {P} and
P = Op(NG(P )).

Observe also that G acts in a natural way on the set of p-weights of G and
also on those belonging to a fixed p-block B ∈ Blp(G). The following conjecture
was proposed by Alperin in [2].

Conjecture 4.14.12 (Alperin’s weight conjecture)

(a) The number of G-orbits of p-weights of G equals the number l(G) of p-regular
conjugacy classes.

(b) If B ∈ Blp(G), then the number of G-orbits of p-weights of G belonging to
B equals l(B).

Part (a) of the conjecture may be considered as expressing k(0)(G) in terms
of l(G) and the numbers of irreducible defect-zero characters of some smaller
groups:

k(0)(G) = l(G)−
∑
P\{1}

k(0)(NG(P )/P ), (4.56)

where the sum extends over a set of representatives of the conjugacy classes of
non-trivial p-subgroups (or radical p-subgroups) of G.

Lemma 4.14.13 Conjecture 4.14.12(b) holds if B has defect one.

Proof. Let B ∈ Blp(G) be a block of defect one, let D ∈ Def(B) with N :=
NG(D) and let b ∈ Blp(N) be the Brauer correspondent of B. By Theorem 4.9.8
we have l(B) = l(b). If V is a simple FN -module belonging to b then, by
Theorem 4.8.15, V has a vertex contained in D, hence V is D-projective. Since
D is in the kernel of V , we have V | (FD)N . Thus V is the inflation of a
projective F (N/D)-module V̄ and yields a p-weight (D,χ), where χ ∈ Irr(N/D)
is the character of the projective K(N/D)-module belonging to V̄ .

Conversely, if (D,χ) is a p-weight belonging to B, and V̄ is a projective
F (N/D)-module with Brauer character χ|(N/D)p′ , then V := Inf(V̄ ) is a simple
FN -module belonging to b.

Remark 4.14.14 Using Remark 4.9.9 (instead of Theorem 4.9.8) in the proof
of Lemma 4.14.13, one can see that Conjecture 4.14.12(b) holds more generally
for p-blocks with cyclic defect groups.

It is known that Alperin’s weight conjecture holds for p-solvable groups (see
[71]). It has also been verified for many other groups, including all finite groups
of Lie type in defining characteristic p and all symmetric groups, for all primes.
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Example 4.14.15 We check Alperin’s weight conjecture for G := M11 and
p = 2. From the table of marks of G (see Example 3.5.24) we find the conjugacy
classes of p-subgroups P and also [NG(P ) : P ] (see Lemma 3.5.3(a)). If [NG(P ) :
P ] is a non-trivial power of p then P is obviously not a radical p-subgroup of
G. Similarly [NG(P ) : P ] = 24 can be excluded for a radical p-subgroup P of
G. Using Lemma 3.5.3(c) we see that there are four conjugacy classes of radical
p-subgroups P , and we also get the isomorphism types of NG(P )/P and thus
the number of weights as shown in Table 4.11.

Table 4.11.

P {1} V4 Q8 QD16 l(G)
[ NG(P ) : P ] 7920 6 6 1
NG(P )/P G S3 S3 {1}

Orbits of weights 2 1 1 1 5

Altogether we see that we have five G-orbits of 2-weights, and this is precisely
the number of 2-regular conjugacy classes of G. All 2-weights (P, χ) belong
to B0(G) (which is the only 2-block of non-zero defect) except for those with
P = {1}. So Conjecture 4.14.12(b) holds also. �

The GAP library of tables of marks contains in many cases, for each con-
jugacy class of subgroups, generators for a representative of the class, so that
concrete computations can be carried out for this group, for instance, the charac-
ter table can be computed. In these cases one can automatically check Alperin’s
weight conjecture.

Example 4.14.16 The Higman–Sims group G := HS has 589 conjugacy classes
of subgroups, 250 conjugacy classes of 2-subgroups, but only nine classes of
radical 2-subgroups. Seven of these contain subgroups P such that (P, χ) is
a weight with some defect-zero character χ ∈ Irr(NG(P )/P ). There are two
2-blocks, the principal block B0 and a block B1 of defect two. Table 4.12 lists
the number of weights (P, χ) belonging to these blocks with specified |P |:

Table 4.12.

|P | 4 16 64 128 256 256 512 l(B)
[ NG(P ) : P ] 60 720 168 6 6 6 1
NG(P )/P C15 � C4 S6 L2(7) S3 S3 S3 {1}

Weights in B0 . 1 1 1 1 1 1 6

Weights in B1 3 . . . . . . 3

�
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While in Alperin’s weight conjecture only defect-zero characters play a role,
the Dade conjectures, to be introduced now, deal with characters of arbitrary
p-defect. We need a few definitions first.

A p-chain C of G of length |C| := n ≥ 0 is any strictly increasing chain

C : P0 < P1 < · · · < Pn (4.57)

of p-subgroups of G. The group G acts on such chains by conjugation, and the
stabilizer of C is defined as

NG(C) :=
n⋂
i=0

NG(Pi).

The chain C is called “elementary” if all its members Pi are elementary abelian;
C is called “normal” if all Pi are normal subgroups in Pn; and C is called a
“radical p-chain” if

Pi = Op(NG(C(i−1))) for 1 ≤ i ≤ n, (4.58)

where C(i) is the subchain

C(i) : P0 < P1 < · · · < Pi.

The set of all elementary p-chains, normal p-chains and p-chains consisting of
radical p-subgroups of G starting with P0 = Op(G) will be denoted by E(G),
N (G) and U(G), respectively, the set of all radical p-chains of G beginning with
P0 = Op(G) byR(G). We choose sets of representatives of the G-orbits on these
sets of chains and denote them by E(G)/G, N (G)/G, U(G)/G and R(G)/G,
respectively.

Lemma 4.14.17 With the notation introduced above we have

(a) E(G) ∪R(G) ⊆ N (G);

(b) if C ∈ N (G) and b ∈ Blp(NG(C)) then bG is defined.

Proof. (a) Obviously E(G) ⊆ N (G). Let C ∈ R(G) be as in (4.57). From
(4.58) we conclude that

Pi ≤ Pn ≤ NG(C(n−1)) (0 ≤ i < n).

(a) follows from this, since Pi � NG(C(n−1)) for i < n.
(b) Let C ∈ N (G) be as in (4.57). Then

Pn CG(Pn) ≤ NG(C) ≤ NG(Pn),

and (b) follows from Theorem 4.7.19.

Remark 4.14.18 Knörr and Robinson ([103], lemma 3.2) have shown that for
an arbitrary p-chain C and b ∈ Blp(NG(C)) the block bG is defined.
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We put

k(C, B, d) := |
⋃

b∈Blp(NG(C))

bG=B

{χ ∈ Irr(b) | dp(χ) = d} |.

Then the “ordinary Dade conjecture” can be stated as follows (see [46]).

Conjecture 4.14.19 (Ordinary Dade conjecture) If Op(G) = {1} and B ∈
Blp(G) with d(B) > 0 then∑

C∈R(G)/G

(−1)|C| k(C, B, d) = 0 for any d ∈ N. (4.59)

Although all the conjectures of Dade are stated in terms of radical
p-subgroups, it follows from results of Knörr and Robinson ([103], prop. 3.3)
and Dade ([46], prop. 3.7) that one can replace R(G) in all of these by E(G)
or N (G) or U(G). In fact it appears that for large groups E(G)/G is easier to
compute than R(G)/G or U(G)/G, although there are cases in which R(G)/G
or U(G)/G is significantly smaller than E(G)/G.

Example 4.14.20 We verify Conjecture 4.14.19 for G := M11 and p := 2.
There are two p-blocks of defect zero and B := B0(G), and G has up to con-
jugacy just three elementary abelian 2-subgroups, E0 := {1}, E1 ∼= C2 and
E2 ∼= V4, with normalizers G, GL2(3) and S4, respectively (see Exercise 3.1.2).
There is up to conjugacy just one elementary chain of length three, because
the normalizer (S4) of E2 acts transitively on the involutions in E2. Table 4.13
lists for each orbit E(G)/G a representative C (by the isomorphism types of its
members), the isomorphism type of NG(C), the parity of |C| and the number of
irreducible characters of NG(C) of defect d for d = 0, . . . , 4. Except for C = C0
the stabilizer NG(C) has just one p-block, so that for d = 0, . . . , 4 we have
k(d)(NG(C)) = k(C, B, d). Table 4.13 verifies Conjecture 4.14.19 and also shows
that it would be false if blocks of defect zero were admitted.

Table 4.13.

C (−1)|C| NG(C) [ k(d)(NG(C)) | d = 0 . . . 4 ]

C0 : {1} +1 G [ 2, 0, 1, 3, 4 ]

C1 : {1} < C2 −1 GL2(3) [ 0, 0, 1, 3, 4 ]
C2 : {1} < V4 −1 S4 [ 0, 0, 1, 4, 0 ]
C3 : {1} < C2 < V4 +1 D8 [ 0, 0, 1, 4, 0 ]

[ 2, 0, 0, 0, 0 ]

On the other hand, we have already seen in Example 4.14.15 that G has four
conjugacy classes of radical p-subgroups, (which are isomorphic to {1}, V4, Q8
and QD16). We get the results shown in Table 4.14.
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Table 4.14.

C (−1)|C| NG(C) [ k(d)(NG(C)) | d = 0 . . . 4 ]

C0 : {1} +1 G [ 2, 0, 1, 3, 4 ]

C1 : {1} < V4 −1 S4 [ 0, 0, 1, 4, 0 ]
C2 : {1} < V4 < D8 +1 D8 [ 0, 0, 1, 4, 0 ]
C3 : {1} < Q8 −1 GL2(3) [ 0, 0, 1, 3, 4 ]
C4 : {1} < Q8 < QD16 +1 QD16 [ 0, 0, 0, 3, 4 ]
C5 : {1} < QD16 −1 QD16 [ 0, 0, 0, 3, 4 ]

[ 2, 0, 0, 0, 0 ]

Note also that QD16 occurs as a stabilizer of the chains C4 and C5. These
chains have lengths of different parity, so their contributions to (4.59) cancel
out, regardless of the character degrees of QD16. �

Now assume that Z(G) = {1}. Then G can be identified with the group
Inn(G) of inner automorphisms of G, and G�A := Aut(G) with A/G ∼= Out(G).
Note that A also acts on the chains E(G) or N (G) or R(G) or U(G), and
we define for C, as in (4.57), NA(C) :=

⋂n
i=0 NA(Pi). Obviously NG(C) �

NA(C), and we can embed NA(C)/NG(C) ⊆ Out(G). For χ ∈ Irr(NG(C)) let
TNA(C)(χ) ≤ NA(C) be the inertia subgroup of χ and T̄ (χ) := TNA(C)(χ)/NG(C)
may be embedded in Out(G). For B ∈ Blp(G), d ∈ N and H ≤ Out(G) we define

k(C, B, d,H) := |
⋃

b∈Blp(NG(C))

bG=B

{χ ∈ Irr(b) | dp(χ) = d, T̄ (χ) = H} |.

We then arrive at the following refinement of Conjecture 4.14.19.

Conjecture 4.14.21 (Invariant Dade conjecture) If Z(G) = Op(G) = {1}
and B ∈ Blp(G) with d(B) > 0 then∑

C∈R(G)/G

(−1)|C| k(C, B, d,H) = 0 (4.60)

for any d ∈ N and any subgroup H of Out(G).

Example 4.14.22 We consider p := 3 and the sporadic simple McLaughlin
group G := McL with [Aut(G) : G] = 2. Apart from three blocks of defect
zero there is only the principal 3-block B := B0(G) with | Irr(B)| = 21. Here it
is easier to work with chains consisting of radical 3-subgroups, because G has
ten conjugacy classes of elementary abelian 3-subgroups, whereas there are just
three non-trivial radical 3-subgroups Ri up to conjugacy. We use the table of
marks of G in the GAP library and the notation of Definition 3.5.1 to obtain
the content of Table 4.15.
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Table 4.15. Non-trivial radical 3-subgroups of McL and their normalizers

Order Name NG(Ri) |NG(Ri)| NAut(G)(Ri)

34 R1 =G H157 M1 =G H367 ∼= 34 : M10 58320 34 : (M10 × 2)
35 R2 =G H243 M2 =G H368 ∼= 31+4

+ : 2S5 58320 31+4
+ : 4S5

36 R3 =G H304 M3 =G H352 ∼= 34.32.Q8 5832 34.32.Q8.2

The table of marks of G reveals that R3 ∈ Syl3(G) contains just one subgroup
conjugate to R1 (in G) and also just one conjugate to R2, whereas R1 
≤G R2.
So there are up to conjugacy only two chains of length two in U(G). Also M1
and M2 are maximal subgroups of G, and M3 is a maximal subgroup of M1 and
of M2. Thus we obtain representatives for U(G)/G and their normalizers in G
and Aut(G) as displayed in Table 4.16.

Table 4.16. Chains of radical 3-subgroups of McL and their normalizers

C NG(C) NAut(G)(C)

C0 = ({1}) G Aut(G)
Ci = ({1} ≤ Ri) Mi Mi.2 (i = 1, 2, 3)

C1,3 = ({1} ≤ R1 ≤ R3) M3 M3.2 ∼= 34.32.Q8
C2,3 = ({1} ≤ R2 ≤ R3) M3 M3.2 ∼= 34.32.Q8

We see that the contributions of C3 and C1,3 to the sum in (4.60) cancel out,
so these chains may be omitted in the following. The character tables of M1, M2
and M1.2, M2.2 (which are maximal subgroups of Aut(G)) are contained in the
GAP library. The character tables of M3 and M3.2 are easily computed. It
turns out that each of these groups has a single 3-block. We obtain the following
results:

d ≤ 2 d = 3 d = 4 d = 5 d = 6
k(C0, B, d, {1}) . 2 . 2 4

− k(C1, B, d, {1}) . . . −2 −4
− k(C2, B, d, {1}) . −2 −2 −2 −4
k(C2,3, B, d, {1}) . . 2 2 4

d ≤ 2 d = 3 d = 4 d = 5 d = 6
k(C0, B, d,Out(G)) . 1 3 1 8

− k(C1, B, d,Out(G)) . . −3 −1 −8
− k(C2, B, d,Out(G)) . −1 −4 −1 −8
k(C1,3, B, d,Out(G)) . . 4 1 8

As all the columns add up to zero, this verifies the invariant conjecture (and
hence also the ordinary conjecture) for the prime p = 3. The invariant conjecture
was proved for all primes dividing |G| in [55]. �
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Dade has formulated even stronger conjectures in the hope that for the
verification of the strongest form it would be sufficient to consider only simple
non-abelian groups. We just mention the following conjecture (see [47]) that
takes account of projective representations (or characters of covering groups).

Conjecture 4.14.23 (Projective Dade conjecture) Assume that Op(G) =
{1} and that G̃ is a factor group of a representation group of G with G̃/Z ∼= G
for a cyclic subgroup Z ≤ Z(G̃) and choose λ ∈ Irr(Z). For B ∈ Blp(G̃), an
integer d and a p-chain C of G, define

k(C, B, d, λ) := |
⋃

b∈Blp(N
G̃

(C))

bG̃=B

{χ ∈ Irr(b) | dp(χ) = d, χZ = χ(1) · λ} |.

Then ∑
C∈R(G)/G̃

(−1)|C| k(C, B, d, λ) = 0 (4.61)

for any d ∈ N provided that d(B) > νp(|Z|).

Observe that G̃ acts on p-chains of G. Also for λ = 1Z equation (4.61)
coincides with (4.59) in Dade’s ordinary conjecture.

Example 4.14.24 We consider again G := McL and p = 3. The Schur multi-
plier of G has order three, so we have a unique representation group G̃ ∼= 3 ·G.
The principal block B0 is the only 3-block of G with d(B) > 1. Let λ ∈ Irr(Z) be
faithful. The chains we need have already been determined in Example 4.14.22,
but we need to find the preimages M̃i ≤ G̃ of the stabilizers Mi ≤ G for
i = 1, 2, 3. It turns out that all M̃i are non-split extensions of Z and all have
just one 3-block. The character tables of M̃i are contained in the GAP library
for i = 1, 2 and in [55] for i = 3. We obtain

d ≤ 3 d = 4 d = 5 d = 6 d = 7
k(C0, B0, d, λ) . 6 12 . .

− k(C1, B0, d, λ) . −6 −15 . .
− k(C2, B0, d, λ) . . −12 . .
k(C2,3, B0, d, λ) . . 15 . .

which verifies Conjecture 4.14.23 in this case. �

Another important conjecture related to the previously mentioned conjec-
tures was stated by Broué, see [22]. It relies on the following notion.

Definition 4.14.25 Let G and H be two groups, p a prime, (K,R, F, η) a p-
modular splitting system for G and H and let µ ∈ Z Irr(G × H) be a virtual
character of G×H. Then µ is called a perfect character if the following two
conditions are satisfied:

(1) µ(g,h)
|CG(g)| ∈ R and µ(g,h)

|CH(h)| ∈ R for all g ∈ G and all h ∈ H;
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(2) if µ(g, h) is non-zero then g and h are both p-regular or both p-singular.

To a given perfect character we assign two K-linear maps. Define Iµ :
cf(H,K) → cf(G,K) by

Iµ(α)(g) :=
1
|H|

∑
h∈H

µ(g, h−1)α(h)

and Rµ : cf(G,K) → cf(H,K) by

Rµ(β)(h) :=
1
|G|

∑
g∈G

µ(g−1, h)β(g)

for α ∈ cf(H,K) and β ∈ cf(G,K). The map Iµ is called “generalized in-
duction” and Rµ is called “generalized restriction.” Moreover, it is easy to
check that (Iµ(α), β)G = (α,Rµ(β))H . Condition (1) above shows that an R-
valued class function is mapped to an R-valued class function by both Iµ and
Rµ. Condition (2) above shows that functions that are zero on the p-singular,
respectively p-regular, classes are mapped to functions that are zero on the p-
singular classes, respectively p-regular classes. A motivation for this definition
is the fact that if L is an (RG,RH)-bilattice such that the restriction to both
RG and RH is projective, then the character µL is a perfect character; see [22].

Given a p-block of a group G and a p-block of a group H, a perfect isometry
for the two blocks is now described as follows.

Definition 4.14.26 Let B be a p-block of a group G and let b be a p-block of
a group H. Then an isometry I from K Irr(b) to K Irr(B) is called a per-
fect isometry if there is a perfect character µ ∈ Z(Irr(B) × Irr(b)) with
I = Iµ|K Irr(b). Note that in this case there is a bijection J : Irr(b) → Irr(B)
and signs ε : Irr(b) → {−1, 1} such that Iµ(ζ) = ε(ζ)J(ζ) for all ζ ∈ Irr(b) and
µ =

∑
ζ∈Irr(b) ε(ζ)J(ζ)× ζ.

One of Broué’s conjectures can now be stated as follows.

Conjecture 4.14.27 (Broué’s conjecture) Let G be a finite group, p a prime,
B a p-block with abelian defect group D and b the p-block of NG(D) with bG = B
(the Brauer correspondent). Then B and b are perfectly isometric.

It is shown in [22] that in this situation the Alperin weight conjecture,
the Alperin–McKay conjecture and the ordinary Dade conjecture follow from
Broué’s conjecture.

Remark 4.14.28 Broué’s conjecture is only the shadow of a more general mod-
ule theoretic conjecture about a so-called equivalence of the bounded derived
module categories of B and b; see [22].

In the following we are going to look at the sporadic simple group J1 for
p = 2. Before we do this, we discuss a necessary condition that an isometry has
to satisfy and which is also easy to check.
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Remark 4.14.29 Let Iµ be a perfect isometry as above and let ζ, ζ ′ ∈ Irr(b).
From condition (2) for a perfect isometry we conclude (using Definition 4.2.18)
that

(ζ, ζ ′)Hp′ = (ζ̂, ζ̂ ′)H = ( ̂ε(ζ)J(ζ), ̂ε(ζ ′)J(ζ ′))G = (J(ζ), J(ζ ′))Gp′ ε(ζ)ε(ζ ′).

By Exercise 4.4.7 this equation can also be expressed as follows:

D(b)C(b)−1D(b)T = MD(B)C(B)−1D(B)TMT,

where D(b), respectively D(B), is the decomposition matrix of b, respectively B;
C(b), respectively C(B), is the Cartan matrix of b, respectively B; and finally
M is the (monomial) matrix of Iµ with respect to the bases Irr(b) and Irr(B).
Note that MT = M−1.

Example 4.14.30 We study the case of the principal 2-block B0 of the sporadic
simple group G := J1. A Sylow 2-subgroup P is elementary abelian of order
eight and its normalizer in G has structure N := NG(P ) = 23 : (7 : 3). The or-
dinary irreducible characters χ1, χ6, χ7, χ8, χ12, χ13, χ14, χ15 are the characters
in the principal block B0 of G, and all eight irreducible characters ζ1, . . . , ζ8 of
N are in the principal block b0 of N . The following GAP code computes the
inner product matrices on the 2-regular classes for these characters and then
verifies that the isometry given by

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8
χ1 χ6 χ7 −χ8 −χ14 −χ15 −χ12 −χ13

satisfies the equality mentioned above. In order to simplify the display of the
inner product matrices, both will be multiplied by |P | = 8 and T will be the
matrix of the isometry.

We first write a short GAP program hat which computes χ̂i for the ith
irreducible character χi of a character table t:

gap> hat := function(t,i)
> local n,y,j ; n:=Length(Irr(t)); y := List([1..n], x -> 0);
> for j in [1..n] do
> if not IsInt(OrdersClassRepresentatives(t)[j]/2) then y[j]:=Irr(t)[i][j];fi;
> od;
> return(y);end;;
gap> ct := CharacterTable("J1");;
gap> b1 := Positions( PrimeBlocks(ct,2).block, 1 );
[ 1, 6, 7, 8, 12, 13, 14, 15 ]
gap> hchi := List( b1, i -> hat(ct,i) );;
gap> res := 8*MatScalarProducts( ct, hchi, hchi );;
gap> Display(res);
[ [ 5, 1, 1, 1, 1, 1, 1, -3 ],
[ 1, 5, 1, 1, -3, 1, 1, 1 ],
[ 1, 1, 5, 1, 1, -3, 1, 1 ],
[ 1, 1, 1, 5, 1, 1, -3, 1 ],
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[ 1, -3, 1, 1, 5, 1, 1, 1 ],
[ 1, 1, -3, 1, 1, 5, 1, 1 ],
[ 1, 1, 1, -3, 1, 1, 5, 1 ],
[ -3, 1, 1, 1, 1, 1, 1, 5 ] ]

gap> ct1 := CharacterTable("2ˆ3.7.3");;
gap> hxi := List( [1..8], i -> hat(ct1,i) );;
gap> resn:= 8*MatScalarProducts( ct1, hxi, hxi );;
gap> Display(resn);
[ [ 5, 1, 1, -1, -1, 3, -1, -1 ],
[ 1, 5, 1, -1, -1, -1, 3, -1 ],
[ 1, 1, 5, -1, -1, -1, -1, 3 ],
[ -1, -1, -1, 5, -3, 1, 1, 1 ],
[ -1, -1, -1, -3, 5, 1, 1, 1 ],
[ 3, -1, -1, 1, 1, 5, 1, 1 ],
[ -1, 3, -1, 1, 1, 1, 5, 1 ],
[ -1, -1, 3, 1, 1, 1, 1, 5 ] ]

gap> T:=
> [ [ 1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0 ],
> [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, -1, 0, 0, 0, 0 ],
> [ 0, 0, 0, 0, 0, 0, -1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, -1 ],
> [ 0, 0, 0, 0, -1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, -1, 0, 0 ] ];;
gap> res = T*resn*TransposedMat(T);
true

We now construct the function µ according to Definition 4.14.26:

gap> J := [1,6,7,8,14,15,12,13];; eps := [1,1,1,-1,-1,-1,-1,-1];;
gap> mu := function(i,j) return( Sum( List( [1..8], k ->
> eps[k] * Irr(ct)[ J[k] ][i] * Irr(ct1)[k][j])) ); end;;
gap> domain := Cartesian( [1..Length(Irr(ct))], [1..Length(Irr(ct1))] );;

Since µ(g,h)
|CG(g)| ∈ R if µ(g,h)

|CG(g)|p is a cyclotomic integer, we compute the 2-parts
of the centralizer orders and check that conditions (1) and (2) hold true:

gap> ctpord := List( SizesCentralizers(ct),
> x -> Product( Filtered(Factors(x), p -> p=2) ) );;
gap> ct1pord := List( SizesCentralizers(ct1),
> x -> Product( Filtered(Factors(x), p -> p=2) ) );;
gap> ForAll( domain ,
> x -> IsIntegralCyclotomic(mu(x[1],x[2])/ctpord[x[1]]) and
> IsIntegralCyclotomic(mu(x[1],x[2])/ct1pord[x[2]]) );
true
gap> nz := Filtered( domain, x -> mu(x[1],x[2]) <> 0);;
gap> ForAll( nz, x -> ( IsInt(OrdersClassRepresentatives(ct)[x[1]]/2)
> and IsInt(OrdersClassRepresentatives(ct1)[x[2]]/2) )
> or ( not IsInt(OrdersClassRepresentatives(ct)[x[1]]/2)
> and not IsInt(OrdersClassRepresentatives(ct1)[x[2]]/2) ) );
true

�
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Exercise

Exercise 4.14.1 Write GAP programs to compute representatives for the con-
jugacy classes of elementary p-chains and p-chains consisting of radical
p-subgroups of a group. Use these to verify the results of Examples 4.14.20,
4.14.22 and 4.14.24.
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[20] T. Breuer and E. Horváth, On block induction. J. Algebra, 242(1):213–
224 (2001).

[21] T. Breuer and G. Pfeiffer, Finding possible permutation characters.
J. Symbolic Comput., 26(3):343–354 (1998).
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[141] H. Pahlings, On the Möbius function of a finite group. Arch. Math.
(Basel), 60(1):7–14 (1993).

[142] R. A. Parker, The computer calculation of modular characters (the meat-
axe). In Computational Group Theory (Durham, 1982), ed. M. D. Atkin-
son (London: Academic Press, 1984), pp. 267–274.

[143] R. A. Parker, An integral meataxe. In The Atlas of Finite Groups: Ten
Years On (Birmingham, 1995), London Mathematical Society Lecture
Note Series., vol. 249 (Cambridge: Cambridge University Press, 1998).

[144] A. E. Parks, A group-theoretic characterization of M -groups. Proc. Amer.
Math. Soc., 94(2):209–212 (1985).

[145] G. Pfeiffer, Character tables of Weyl groups in GAP. Bayreuth. Math.
Schr., 47:165–222 (1994).



References 453

[146] G. Pfeiffer, The subgroups of M24, or how to compute the table of marks
of a finite group. Experiment. Math., 6(3):247–270 (1997).

[147] W. Plesken, Solving XXtr = A over the integers. Linear Algebra Appl.,
226/228:331–344 (1995).

[148] W. Plesken and D. Robertz, Representations, commutative algebra, and
Hurwitz groups. J. Algebra, 300(1):223–247 (2006).

[149] U. Riese, The quasisimple case of the k(GV )-conjecture. J. Algebra,
235(1):45–65 (2001).

[150] U. Riese and P. Schmid, Real vectors for linear group and the k(GV )-
problem, J. Algebra, 267(2): 725–755 (2003).

[151] G. R. Robinson, Further reductions for the k(GV )-problem. J. Algebra,
195(1):141–150 (1997).

[152] G. R. Robinson and J. G. Thompson, On Brauer’s k(B)-problem. J. Al-
gebra, 184(3):1143–1160 (1996).

[153] S. Roman, Advanced Linear Algebra, 2nd edn. Graduate Texts in Mathe-
matics, vol. 135 (New York: Springer, 2005).

[154] A. I. Saksonov, An answer to a question of R. Brauer. Vesci Akad. Navuk
BSSR Ser. Fiz.-Mat. Navuk, 1967(1):129–130 (1967).

[155] P. Schmid, The Solution of the k(GV ) Problem. ICP Advanced Texts in
Mathematics, vol. 4 (London: Imperial College Press, 2007).

[156] G. J. A. Schneider, Dixon’s character table algorithm revisited. J. Sym-
bolic Comput., 9(5-6):601–606 (1990).

[157] I. Schur, Untersuchungen über die Darstellungen der endlichen Gruppen
durch gebrochen lineare Substitutionen. J.Reine Angew.Math., 130:85–
137 (1907).

[158] L. L. Scott Integral equivalence of permutation representations. In Group
Theory (Granville, OH, 1992), eds. S. Sehgal and R. Soloman (River Edge,
NJ: World Scientific, 1993), pp. 262–274.
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