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Introduction

The purpose of this paper is to study non-linear second-order differential
equations defined on a smooth manifold M, from the point of view of the
contact geometry of the manifold of 1-jets.

A general approach to the geometry of non-linear differential equations,
which goes back to Sophus Lie, is based on regarding a non-linear differential
equation of the k-th order as a closed subset in the manifold of k-jets ([4], [S],
[8], [11], [18]). Then the geometry of second-order equations, as well as
that of the manifold /2 (M) tumn out to be exceptional compared with the
general case k > 2 [5].

The following observation is the starting point for the approach proposed in
this paper: each differential k-form w € A¥(J! M) on the manifold of 1-jets
J1M can be regarded as a non-linear second-order differential operator
A,:C™(M)~> A acting according to the rule A , (k) = o* (ny(w), where
0.y M - J1 (M) is the section corresponding to the 1-jet of the function
WEC™ M).
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In this approach, in contrast to the first, we use the geometrically simpler
space J ! M, although, of course, not all non-linear second-order differential
equations can then be but-enly  only a certain subclass. Nevertheless, this
subclass is broad enough and embraces all the equations that occur in practice:
quasi-linear equations and Monge—Ampére equations.

We call operators of the type A , : C™(M) ~> A¥(w), w € AF(J1M) Monge—
Ampére operators. The motivation behind this definition is the fact that when
written in local coordinates the operators A , lead to non-linearities of the
same type as the classical Monge—Ampére operators.

The correspondence w>A_ can be used in different ways. First of all, it
allows us to transfer directly the contact geometry from J! (M) to the
differential equations and so to determine contact symmetries and to generalize
the concept of an automodel solution.

On the other hand, the correspondence w+>A , distinguishes additional
structures in the algebra of exterior forms on J! M. In this algebra we consider
the ideal C C A*(J! M) consisting of differential forms that lead to the zero
operator,

C = {0 € A¥(J'M), A. = 0}.
Then the Monge—Ampére operators are uniquely determined by elements of
the factor-module A*(J1M)/C.

The presence of a contact structure on J2M makes it possible to split C
into direct summands and so to describe A*¥*(J1M)/C effectively; the
structures used here are similar to those occurring in Kédhler geometry ([3],
[14]). Just as in Kdhler geometry, operators T and _L are introduced, corres-
ponding to the effective (= primitive) forms L and A, and a theorem on the
decomposition into effective forms is proved.

§ § 1 and 2 deal with the details of this algebra.

Differential operators proper appear in §3. In this section, using the corres-
pondence w+>A  , we explain methods of computing contact symmetries and
conservation laws for J! M. For operators of divergent type we indicate the
links between symmetries and conservation laws. A brief discussion of discon-
tinuous solutions and of the Giugonio—Rankin conditions for non-linear
differential equations concludes this section.

Appendices I and IT deal with the application of the results obtained to
concrete non-linear differential equations. In Appendix I we consider the
Khoklov—Zabolotskaya equation, which describes the propagation of a bounded
sound beam in non-linear media; we calculate the contact symmetries and
conservation laws. The symmetries are used to find exact solutions, the con-
servation laws to study the evolution of the boundary of the sound beam.

In Appendix II V. N. Rubtsov considers equations associated with the non-
linear Klein—Gordon equation and calculates the algebras of symmetries and
the conservation laws. We mention the dependence of the algebra of symmetries
and of the conservation laws for equations of the type C u = #’(u) on the
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function # (u), which tum out to be finite-dimensional if #"(u) and #’(u)
are linearly independent, and infinite-dimensional (on J! M) otherwise.

In conclusion we dwell on a number of problems closely connected with
this paper. There are, first of all, the theorems of Sophus Lie on the contact
equivalence of the Monge—Ampére operators [ 11]. Using the correspondence
w—A_,, we can reduce these theorems to the problem of the contact
equivalence of differential forms on J' M, which we can then study according
to the scheme of [15] and [20]. However, we have calculated the conservation
laws for the Monge—Ampére operators only for J1 M. The resulting laws can be
used to obtain the conservation laws in J¥M if the higher symmetries of the
equation are used (see [5] and [19]).

§ 1. The exterior algebra on a symplectic space

1.0. We fix some notation. As usual, we denote by A¥(E) (respectively,
A¥(E*)) the space of all k-vectors (k-forms) on E, where E is a vector space
over R. If X € A¥(E) and w € AS(E*), s > k, we denote by iy(w) or X _lw
the result of interior multiplication by the k-vector X; if s <k, then iy(w) = 0.

Now let dim E = 2n and suppose that a 2-form Q € A% (E*) determines a
symplectic structure on E. Then the mapping I': E = E*  I'(X) = ix(£2), is an
isomorphism, while its exterior powers define isomorphisms
[y: AS(E) > AS(E*), Ty = A°(T"). For an arbitrary s-form w € A*(E*) we
denote by X, the s-vector in A°(E) corresponding to w under Iy,

I's(X,,) = w. We denote by i, the result of interior multiplication by X, .

In particular, for a 1-form w € E* the vector X, is uniquely determined by
the relation i, (£2) = w. For decomposable s-forms w = w; A ... A w;, w; EE*
wehave X, =X, A...AX, .

To write the operations introduced above in coordinate form we consider a
symplectic basis e, , . . ., ¢,, f}, - . ., f in the space
E: QUe;, €)= 8Uf;, ;) =0, 8e;, ;) =6;, L <i, j<n.

Using this basis §2 takes the form

Q=Del A\ fh
1

where ef, .. ., eF, fF, ..., f} is the dual basis in £*, while I acts as follows:
T: egr> 5 T fi>—ef.
Hence, if for a 1-form w € E* we have

0= g (el +PBiff), i, Pi€R, then X, = ; (Bie: — auif1).
We note here that the bivector X, = I';!(£2) can be written as
Xo= ; ei N\ fi

1.1. In the algebra of exterior forms on the symplectic space E
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AY (E*)= @ A (EY)
s=0
we .introduce: two operators:

T: AI(E*)_)AS+2(E*)

is gle operator of exterior multiplication by the 2-form 2, T (w) = 2 A w,
an
ALt A¥(E*)—> A2 (E*)

is the operator of interior multiplication by the bivector X ,l(w) =X _lw.
We set
1 k — 1 3 Q, — 1 Qh _ _
Te=737 T L=z L5 =373, do=To=1.

LEMMA 1L.1.1. ()= —k+ 1D _,.
mife,,...,e,, f1,..., fy is asymplectic basis in E, then
ie]- (Qh)=ie]- (Q) /\ Qh—i:‘_‘f? /\ Qh—h

ifj () = if]- (N Quoy= —ef A Qpy.
Hence,

n

la (@) =5§1 e ;nt; () =Ei i, (fF N\ Qpeg) =
= jgi CuaaFHBANEN Do)=(n—k+1)Qy. B

LEMMA 1.1.2. For an arbitrary 1-form w € E*,

(L, THe) = (n — Dao.
B, THo) = 1L(To) = LR = ix(LQ;) = (n — 1)ip(RQ) =
— (n — '1)(1) -

LEMMA 1.1.3. Let § €EE* w € A*(E*); then
LOA 0 =0A Lo — ifo).

@ If, as above, ey, ..., e,, f1,..., fu is a symplectic basis, then

n

3 ir (iey 6) 0—0 A\ e j0) =

=1

LEA0)= 3 i, 0 A )=

= D lie; (0) iy, (@) — i, (B) ic, (@) + F O A s, (ie;0) = —io (@) + O\ Lo B
=1 =1

THEOREM. Let w € A¥(E*). Thenl_, THw)=(n—k) w.

® The proof is by induction on k. The case £k = 1 is Lemma 1.1.2. Because
of the linearity in w of the relation to be proved we may assume that
w=0 N @, where § € E*, & € A¥(E*). Then
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L, TIOA® =1TOAD)—ToL(OA)=
=1 OATO)—TOA Lo—iw)=0A L To—ig(T o)—
—OAT L@+ Tie(@=0A[L, TIo—B8A0=@n—k—1)0 0. B
COROLLARY 1.1.If w € AF(E*), then
1L, Tdo=0n—k —s+ 1)T,,0, L Tlo = —k+s—1)1, 0.
1.2. PROPOSITION. The mappings

T AM(E*) > AM2(E*) and L: A*(E*) > A*2(E¥)

are monomorphisms, provided that k <n—lands>n+ 1.
® Suppose that w € AS(E*), where s 2 n + 1, lies in the kemel L; then,
using Corollary 1.1 we obtain

0= _1""Thuo = L "1, Thulo =
=(—8)L"Tpo=...=(=8(—s+1)...(—s+ne
and so w = 0. Similarly, if w € A¥(E*), Tw =0, and k <n — 1, then
0=T"" ), no=0Cn—% ... (n—ko,

hence w =0.m

1.3. DEFINITION. A form w € A¥(E*), k < n, is said to be effective if
1w =0.

1.4. THEOREM. For every k-form w € A¥(E*) the following Hodge—
Lepage expansion holds:

(0=(00+TC01+T2(02+.-.,

where w; € A¥~(E*) are uniquely determined effective forms.

® The proof is by induction on k, the case k = 1 being trivial. Assuming
that the proposition holds for forms of degree less than k, we prove it for
forms of degree k.

Let w € A¥(E*); then L w € A¥~2(E*) and, by the inductive hypothesis,

do =0y + To; + Tyt +...,
where o, a4 , a, . .. are uniquely determined effective forms. Hence, if we set
© =2y + Ta, + Tz, + .. ./then

do=FE—F+2z +n—Fk+3)Tz, +..

if we assume that x4, x4, . . . are effective. Consequently, if we take
1 1
HETE2 % TRy e
then

1l (0—Tx1—Tezs—...)=0,
that is,

(Do=0)—T.’I:1—T2x2— v

is an effective form.m
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Let w EA*(E*) andletw= T T, w, be the Hodge-Lepage expansion.

§=0
Elementary calculations using Corollary 1.1 lead to the formulae
(1.4.1) J_rm=2(”‘k+s+’)
s21 r
N n—k+s+r\(s
(1.4.2) Trlo= 2;( ! )(r )

from which it follows, in particular, that the effective part w, of w can be
computed as follows:

(1.4.3) o0=[ 3 (— 1) 51 TuLs | (@

520

1.5. PROPOSITION (1) The mappings
gt An-rh (E*) _>An_k (E*) u T AP-R (E*) — An+k (E*)

are isomorphisms, and for effective forms ®: o Ti(0) = o.

(2) The form w € N*~*(E*) is effective if and only if Tau(w) = 0.

® (1) Suppose that w € A" ¥ (E*) and Tro = 0. If 0 = @y + To; +...
is the Hodge-Lepage expansion, then simple calculations using the properties
(1.2) show that

LaTro= oo+ [Ch, )2 To1+ ... =0,

and so, by virtue of the uniqueness ot the expansion wy =0, w, =0, . . ..
(2) We note first that if w € A" ~¥(E*), then

LoTrts(0)=Trto L (0)

by Corollary 1.1. If L w =0, then 1 (T r40) = Oand T r+1® = 0 as follows
from Proposition 1.2.
Conversely, if T 40 = 0, then

Tra(lo) = 1 (Tro) =0

and hence, L w =0.m
1.6. THEOREM. Let the effective (n — k)-forms

@, 03 € APMEY), 0<h<n,

be such that for every isotropic subspace L C E, dim L =n — k, on which
wy | = 0 the form w, also vanishes, w, | = 0. Then w, =Aw,; for some
AER.

The proof is by induction on dim E/2, the case n = 1 being trivial. Let E, as
before, be a symplectic space of dimension 2n. We choose an arbitrary pair of
covectors 6, 8 € E* such that i, (8*) = 1. Then the restriction £’ of the form
Q to
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E’ = ker 0 ker 0*

defines a symplectic structure. We denote by T’ and_L the corresponding
operators. We note that, since

E = E' @ RX, + RX,.,

by identifying forms on E' with forms on E that degenerate on
RX, ® RX,+, we obtain for an arbitrary form o € A*(E*) the expansion

a=ao+9/\a1+'9+/\a2+9+/\9/\053,

where &,, &, @, , o3 are uniquely determined forms on E’, and
ie(oci) = ie+(ai) = 0.
Let us now assume that « is effective. Then using the expansion

) Xo=Xo+ A\ Xo+ Xor,
we obtain

0= _Loc:_l_'&o—{—e /\ __l_'a,+9+ /\ _J_’a2+e+ /\ 0 /\ _L’a3+a3.
Thus, o, a,, oy are effective, and I' & + a3 = 0. Let

ao=ao+T’x1+T£x2+ tee
be the Hodge-Lepage expansion; then

Llag=m—s+1) 2+ (n—s+2) T'zp+ ...

hence,
1
n—s-41 %3,

finally, we obtain the expansion

a=ag - o+ 0% A oy+0° A B A @y iy T e,

in which all the forms o; are effective.
In particular, for effective forms w; € AR E*) (=1, 2) the following
expansion holds:

1=+ 8 A 0+6* A 0ui+8* A 8 A\ 0u— 51 T oa

Let us now return to the conditions of the theorem. We construct isotropic
subspaces annihilating the forms w; in the following way. We choose an
arbitrary set of vectors z,, . . ., z,_j_, € E' that are linearly independent and
in involution: Q'(z;, z;) =0, and add to it vectors u + X, v+ Xy+, 4, v € E'in
such a way that the vectors u + Xy, v+ Xy+, 2y, . . .,2,_;_,are in involution.
To do this it is enough to require that

Q'(z;, u) = Q'(Ziv v) = 0, and Q'(u, v) =1

= — .1'2:0,...;
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Next, elementary computations show that

u+X) A w+Xe) ANz Loy=uAv A zJdou+

k+2 .
+vAzdogtu szii_m z - wg,

where z=2z; A\ ...\ Zp-p-2-
So we find that for a fixed vector v the u-linear equation

(1.6.1) u-l [v/\z_!(ooz—l—z.Jm,z]:%_%z_lm32——v/\z_lm22
is satisfied whenever
(1.6.2) { udv A\ zdoy+tzdoy]= :ii zdagy—v A 2oy,
ud@dQ)=—1, ud(z49)=0.

Hence, the forms
Bo=v Azt @pt+zdo, 0i=vAzd0y+2zday,
0, =T" (v), O140=F" (2:) (i=1,...,n—k—2)

must be linearly dependent for any choice of vectors v, z;, ..., 2z, _x_, in
involution. Therefore, B

(1.6.3) O A 6, A\ 6, ATI=0, where =63 A ... A O,

We consider (1.6.3) as an equation for v:

(1.6.4) (WA zdwe) N(v Az we) AT () A 14
FlwAzdo) A (zlo)FElo) A Azdo)] AT ) AT+
+(zdop) A zLoy) AT () AI=0,

which for a fixed involutory set z,, . . ., z, _;_, must be satisfied for all
vectors v for which '(z;, v)=0(@G =1, ..., n—k — 2). In what follows we
assume that w;; #0and z _lw;; # 0; otherwise the proof is simpler.

In (1.6.4) we replace v by tv, differentiate the resulting form with respect to
t, and set r = 0. We find that

(1.6.5) oo AGEa1og) AT'O)ATL=0

for all v, Q'(v, z;) = 0.

Hence, the restriction of z _lw;, and z _Jw;, to N Ker I''(z;) for any
involutory setz,, ..., z,_; _, leads to linearly dependent forms. This, in
particular, means that w;, vanishes on all isotropic subspaces that annihilate
w1, hence, by the inductive hypothesis, w;, =Aw;;.

We now isolate in (1.6.4) the terms of second order in v. To do this we

replace v by tv, differentiate the resulting form twice with respect to ¢, and set
t = 0. We find that

(1.6.6) v A z2dog, — AV A z2dop] A (zdop) AT'0) A I =0,
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and thus on N Ker I''(z;) the forms v _I[z] (wqz — Awgy)] and IV'(V) are
linearly dependent. Therefore, wg, —Awg; vanishes on all Lagrangian sub-
spaces, and since wqg, —Awy,; is effective, we see that wgy — Awg; = 0.

Similar arguments with v replaced by u prove that w,, = \'w,; . Hence, if
wo; # 0, A=2", and the left-hand sides of the first two equations in the
system (1.6.1)—(1.6.2) are proportional. Consequently,

z2d(@53 — Aoogy) =0,

for any involutory set z,,...,z,_g_,, and since w3, — Awg, is effective,
W3 = Aw3; and w3 = Aw;. When wy; = 0, then
:—i?—z < (031 —Mgy) —v A\ 2 4 (A—1A) 05y =0,
and it follows that
(b — A)zdwy =0

so that either wy; =0 orA=\'m

The following assertion [3] follows directly from the theorem just proved.

COROLLARY 1.6.1 (LEPAGE’'S THEOREM). The form w € AS(E*) lies in
the image of T ifand only if w|, = 0 for any isotropic subspace L C E with
dim L = n.

1.7. THEOREM. Let w, € A°(E*) be such that w, | =0 for each iso-
tropic subspace L C E with dim L = k on which w,|; = 0. If the form
w, € AK(E*) is effective and k > s, then w, lies in the image of T

® We show that w, |; = 0 for any isotropic subspace L C E. For if this were
not the case, we could select an involutive (k¥ — 1)-vector

2= N - Nz

in such a way that (z; A ... A z) J 0, #=0. Next we choose as z;,
linearly independent solutions of the system of linear equations specified by
the 1-forms I'(z, ), . . ., T'(zz_ ), (z1 A - .. A Zx-1) < ©;. Then the subspace
L spanned by the vectors zy, . . ., z; is such that w, | =0, but w,|; #0.8

§2. Differential forms on J'M

2.1. Let ® =J'M be the space of 1-jets of smooth functions on M. We recall
([11, [15]) that there is on ® a universal 1-form U, € A'(®), which defines
the contact structure. Thus, at each point x € & the restriction dU, , deter-
mines on

E, = Ker U,,, < T4(D)
a symplectic structure, and together with it the operators
T: A*(E%X)—> A™2(E%) and _|: A*(E%)—A*2(EY).
The tangent space T, (%) splits into a direct sum:

Tx((D) = Ex ©® RXl,xv
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where X, is the contact vector field on ® with generating function 1 (see [4]).
Hence, if we denote by AS(E*) the differential s-forms on & that vanish along
X, then, firstly, AS (E*) is naturally identified with A*(E¥), and, secondly,
A (D) S AP (E*) @ A1 (EY).
Formally, this isomorphism can be expressed as the relation
(DE“ Wy + Ul /\ My,
where w € AS(®), w, = A*(E*), w; € A*1(E*), and
(01=X1—l(0, (.00=0.)-"‘U1/\0)1.

We define a projection p: A¥(®) > A°(E*) by setting p(w) = w, and an
operator d,, : A°(E*) > A** 1 (E*),d, =p o d.

PROPOSITION. The operator d, satisfies the following relations:

(1) dp(Moy + A0%) = Mdp(0y) + Ady(0)),

}"lv }"2 E le (1)1, 0); E AS(E*)’

@ dp(or A ©) = dp(0) A @; + (—1)0; A dp(eg), g € AHE),

3 d+TeL =0,

(4) dpod =0,

() Tedp =dpoTT,

(6) if(dUl) = —‘dpf,
where L and i denote the operators of Lie derivation and of interior
multiplication on the contact vector field Xf (see [15]).

Using the properties of dy, it is easy to calculate its action in the special
local coordinates (q;, . . ., 45, 4, P15 - - -, Py) On P

d, (IZJ fr.o(a, u, P)) dg; A\ dp;= Iszp (fI.Jv) A dq; A dp;,
where ’ '

n

I ofy. . ofr. . i) :
dy (fr )= ) [ DL dput (Lt po 2L dga ],
k=1

here I and J are multi-indicesand |/ |+ |J | = s if

o= f1,7 (@ u, p)dg; \ Ips € A* (EY).

2.2. We denote by C* C A*(®) the ideal consisting of the differential forms
that vanish on all R-manifolds (that is, integral manifolds of U; of maximal
dimension). From Corollary 1.6.1 it follows that this ideal consists of
differential forms of the kind U; A a+dU; A B.

Let C* = ® C*® be the decomposition into homogeneous components.
s, +1>520

Then C° =0 and C* = A*(®) if s = n + 1, while the elements of the factor
module A = A%(®D).~C*, by virtue of the Hodge—Lepage expansion, can be
identified with effective s-forms on E fors <n = dim M.
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LEMMA. Any form w € C* has the decomposition
0)=U1/\ w1+dU1A (02,
where w, € A Y(E*) is uniquely determined, and w, € A* 72 (E*) is uniquely
determined if s <n + 2. Furthermore,
do = —U; \ dp(o; + dpoy) + dU; A (0, + dpoy).

® Forw= U, A\ ij(e) + p(w), butsince w € C°, we see that p(w)
vanishes on R-manifolds and p(w) = T w, by Corollary 1.6.1, where w, is
uniquely determined if s — 2 <n (Proposition 1.2). Moreover, if
o =U, \ o +dU; A\ w,, then do = —U; A do; + dU, A (0, + dwo,);
replacing dw; by dp(w;) + U; A i(dw;), we obtain
do= —U; N\ (dpo; — i, do,) + dU; A\ (0; + dpw,) and so the required
formula follows from Proposition 2.1(3).

2.3. THEOREM. The cohomology of the complex

(C): O—>C1—d>CZ-+...—> c 2 C* o . > 2™ ()

is trivial for all s except s=n + 1, where n = dim M.
mIf o = U; A o, + dU; A\ o, is aclosed form, then, by the preceding
lemma

dp (01 + dpwy) =0, T (0, + dpwy) = 0.
Hence, if w € C° and s <#u + 1, then it follows from the second relation that
w; + dp w, =0, and from Lemma 2.2. that

0 =dU; \ v,). &
2.4. We consider the factor complex
-Js: AS (CD)/CS — A ((D)/Cs+i,
which we shall identify with the complex of effective forms on E;
Es: As —> Ase+1.
Since (C) is exact in dimensions other than #n + 1, the cohomology H} of the
complex of effective forms is isomorphic to the de Rham cohomology of M
Ayt Hy = H*(M) if  ss£en.
THEOREM. 4 coset w + C" of an effective form w € A% contains a closed
form if and only if &(w) =0, where
E=Li+d,o 1 od,: Af - A},
® Using the fact that T: A" "1 (E*) > A" * 1 (E*) is an isomorphism, we can
write d, w = T &.
To find & we note that it is effective.
For
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Tzco:%‘rdpwzédp_‘r o=0.
Hence
Lody(0)=_1 T (@)=[L, Tl =e.
Next, let x € A" "1 (E*) and y € A" “2(E*) be such that
do+ U, A z+dU, Ay =0.
Using Lemma_2.2 we obtain
do — Uy A\ dy(z + dpy) + AUy N\ (z + dpy) = 0,
and since dw=d,w + U; A\ L, w,
Ui /\ (Li(")_dp (.Z+ dpy))+ dUi /\ (m+x+dpy) =0
Thus, the coset w + C" contains a closed form if and only if the following
system is soluble:
Lo = dp(z + dpy), @ = —z — dpy.
A necessary condition for the solubility of this system is that
Liw+d, (@) =0, thatis & (w) = 0. We claim that this condition is also
sufficient. For if & (w) = 0, then taking y = 0 and x =— & we obtain
d(w—U1 /\ 5)=0..
COROLLARY 2.4.1. Let w be an effective form such that & (w)=0;then
dlo — U; A\ Ldpo) = 0.
COROLLARY 2.4.2. The sequence
0 — Ker/Imd - Hy — Ay/Ker g — 0
is exact.
2.5.DEFINITION. The differential operator &: A — A} is called the
Euler operator, and effective forms w € Ker & are called divergent forms.
2.6. THEOREM. The Euler operator satisfies the following relations:
(1) 80L1=L,og,
(2) d,-&=0,
(3) é2=1L,- &,
(4) € (fo)=1E () + X (floddpf A L dpo+dyim; o€AL.
B (2) d,o&=d,oLi+dje Ledy=dyoli—T LedyoL;=
:dp°L1+[._Lv T]odpoL{—_Lo_r odpo_L‘.—_-
IdPOLi——dPOLi——_LOdpoL’oTZO
(3) dpo'_l__odpodpo__l__odp: —L1°dp0J_0To 1 cdp:
= —Ljodpe[ ], Tle L Odp:- —‘L1°dp°_L°dpq
therefore é*=L}+2Ly0d,0 | od,—L, odyo | od,=L,c&.

(4) dpo Lody(fo)=dyo L (dpf \ 0+ fd0)=d,i0+
+dp(f Ldyo)=djijod-d,f A\ Ldo+fd, | do. N
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2.7. PROPOSITION. Let o € AL. Then
p(Lyo) = f€(0) + dy(i;o — f L dpo) + T (i; L dpo).

®m Using the infinitesimal Stokes formula Ly w = if dw +dipw we obtain

p(Lf(D) = dpij(,l) + p(lf d(l)) = dpif(.l) + ifdp(o + le(.O =
— 1E(0) — fdyo 1 odp(w) + dpiso + ijdye =
= f€(0) + dp(i;o — f L dpo) + idpw + dpf N L dpo.

But (see 2.4) dpw T _Ldpw, hence
ifdpo = —dpf A Ldyo + T(; Ld,0).0

§3. Non-linear differential operators

3.1. For each differential n-form w € A" (®) we define a (non-linear)
differential operator A, : C*(M) —~ A" (M) acting according to the following
rule:

Ao (B) = 0F (1) (@),
where 0;. (h): M — & is the section determined by the function 2 € C*(M)
Oj ()t & == Ji (R) s
First of all, we note that two differential forms w,, w, € A" (®) determine
the same operator if and only if w; —w, € C". Thus, A, is uniquely deter-
mined by the effective part p(w). Bearing this in mind we assume in what
follows that the operators A ; are specified by effective forms w € AZ.
EXAMPLE (1). Let A: C™(M) —> C™(M) be a linear differential operator of
order < 2, and let £y € A" (M) be the volume form. We define an operator
A: C™(M)—~> A" (M) by setting A(h) = A(h)£2,. We claim that there is a
unique effective form w € A}, such that A=A . Uniqueness follows from
what has been said above, and existence can be proved by using local co-
ordinates and the relation
o2h
Wd% Ao A danofl(h)(d71 Ao ANt Adpy N dgi A - N dgy).
EXAMPLE (2) Let g be a metric on an orientable manifold M, £, the
volume form defined by this metric, and # € C™(T*M) the Hamiltonian of
the metric. The form

where 7, : ® > M is the natural projection, determines the Laplace operator
in the sense that A  (h) = A(h) 2, , where A: C™(M) — C*(M) is the Laplace
operator for the metric g.

3.2. DEFINITION. Operators of the form A, : C*(M) > A" (M), w € A%,
are called Monge—Ampére operators.

3.3. To justify this definition we express the operator A | in a local
coordinate system.
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Letq,, ..., g, be alocal coordinate system on M, letq,,...,g,, P1,-- -, Pn
be the corresponding coordinate system in ®, and suppose that w € A" (E*)
is written as

w:IZJmI.J(q’ u, p)dql/\dp.fv |Il+l']l’:n'

Since
ah oh
C"3'1(11): (g4, ceosGn) (Qia ceespy, U= (Q)’ P1=—5— EPA s ey Pp= aqn)
We see that

Do (W)= [2 o1 (9, 1@, 57) det| 70| Jdas A - A da,

where the multl-mdex T complementary to [ is chosen in such a way that

dg, N\ dgz =da, N ... N\ dg,-

3.4. We consider the differential equation determined by A,

The (ordinary) solutions of this equation are smooth functions # € C*(M)
such that A (%) = 0. Geometrically, such solutions can be regarded as
R-manifolds L = 0; (,(M) C ® of a special form, which are integrals for w,
because

0L =07 ) (0) =48, (h) =

Using this interpretation, we extend the class of solutions by including in it
all R-manifolds that are simultaneously integral manifolds of w.

3.5. Proceeding asin [15] to determine the symmetries of first order
equations, we define an action of the group Ct(®) of contact diffeomorphisms
of ® on the Monge—Ampére operators:

a(Ay) = Agr@y. &Ct(D).
The action of the algebra c#(®) of contact vector fields on ® is defined
similarly:
Xi(Ao)=ADr), X;€ct(®), fECT (D).
We single out the symmetry group of the operator
Sym(A,) = {a € CHD) | a(A,) = Ay}
and of the equation
Syme(A,) = {a € CHD) | a(Ay) = haly, hq € C Z(D)}.
We denote the corresponding algebras by
syme (A,) ={f € C% (D) | X; (M) =h;- Ay, f€ CT (D)},
sym (A,) ={f€C” (D) X; (A,) = 0j.
PROPOSITION. A function f lies in symc(A ), w €AZ, if and only if
(3.5.1) ho 4+ dpi;o + ifdpo + fLio = 0

for some function h € C~(P).
8 We note that if w € A%, then p (Lyw) € A%, therefore, the statement to be
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proved follows from the fact that
pL;0) = i}d,0 + dpi;o + fLio. B
EXAMPLE. As an illustration of the use of contact transformations in non-
linear second-order equations we give a proof of a theorem of Jorgens [7],
which states that every function #4(q,, g, ) defined on the whole plane and
satisfying the Monge—Ampeére equation

9%k, 0% ( 02h ]2
3 200, 0 0 —1=0
(052) 9q3 aq3 0q, 09,

is a second-order polynomial.
To prove this theorem we note that under the contact transformation

a: Jl(R2) ‘*Jl(Rz)y a*(g) = p1, a*(gy) = qq, o5*(171) = —{,
a*(py) = p2y A*(U) = u — pyg1, a*(gy) = ¢

the form
(3.5.3) ® =dp, N\ dp, — dg, N\ dq,,
representing the equation (3.5.2) goes over into the form
(3.5.4) a*(0) = dp, A\ dg; + dg; N\ dpy,
representing the Laplace operator
@ (80) (0) = — (G +-5) a1 A\ das.

Moreover, let L = 0;. (h,,)(Rz )be the solution of (3.5.2); then o«(L) is a
solution of the Laplace equation, and the R-manifold of a(L) is projected
without singularities onto the (g,, g, )-plane and, therefore, has the form
0j. (h)(R2 ), where A(q,, q,) is a harmonic function. For otherwise a vector of
the form

3 a
M T hegy,
would touch a(L), hence, the vector
o o\ a
— M (d—qr—f*PiW) T"zTP;

would touch L. But this is impossible, since then at the point of contact we
would have

0%h, 0%h,
( oo aqéhiqz)(_ﬁl) =(2). a0
0qy 94, aq3
for the solution %, of (3.5.2). Next, observe that the second derivatives
0%2h/0q? and 92h/9q% of h, which determine a(L), are non-zero.
For if at a certain point
ot o*h a2k

— = ——e=0, and - =b
aq} oq3 ’ ag, 0g,

’
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then at this point the vector
touches a(L), and so

touches L, which is impossible.
But the functions 824/3g% and 982h/0g% are harmonic, hence, by Liouville’s
theorem,
A2 2
—% = —%—: const == 0,
Thus,
02h

- = const
0q, dqy

and h(q,, q,), like 1y(q,, q;), is a polynomial of the second degree.

3.6. Let f€symc(A,, ) and 4;: ® > P be a one-parameter group of shifts
along the contact vector field Xy. Then from the definition of the algebra
symc(A,,) it follows that A,(L) is a solution whenever the R-manifold
L C & is one, where w|; = 0.

Therefore, from a known solution L and a symmetry f we can construct a
one-parameter system of solutions L, = A,(L).

We now consider the special case when L, = L, that is, when L is invariant
under the contact vector field X;. A condition equivalent to the invariance of
L, but more easily verifiable, is that L is a solution of the second order
equation corresponding to f, f|; =0 (see [15]).

DEFINITION. A solution L C ® is said to be an frautomodel solution if L
is invariant under the vector field X (f|; = 0).

We describe a scheme for construction f~automodel solutions. Let us assume
that on the level surface {f = 0} C J'(M) we can choose a hypersurface
I' C {f = 0} that is transversal to X ¥ and such that the trajectories of X f
intersect I" at only one point.

Then every f-automodel solution L, w); = 0, being invariant under
Xy (fi, = 0), is uniquely determined by its trace L, =L N T on I'. The manifold
Ly ,dim L, =n — 1, is simultaneously integral for the 1-form U, | and the
(n — 1)-form i(w)|r . When there are no singularities of the equation {f = 0}
on I' (see [15]), then U, | defines a contact structure on I', therefore, if we
choose an (n — 1)-dimensional manifold M, in such a way that J'(M,) is
contact-equivalent to I' (at least locally, which is always possible), then the
construction of L., and together with it that of the f~automodel solution L,
reduces to the solution of the equation defined by the form ifw)jp on M.

3.7 DEFINITION. Operators of the form A ,, where w is a divergent form,
are said to be of divergent type.

THEOREM. An operator A ,, w € A¢ is of divergent type if and only if
€ (w)=0.



Contact geometry and non-linear second-order differential equations 165

3.8. DEFINITION. A conservation law for an operator A, is an (n — 1)-form
6 € A" "1 (®) whose restriction to an arbitrary solution L, w 1=0,is a closed
form.

Let us set the goal of computing conservation laws, say 8. Then df vanishes
whenever w vanishes, hence, by Theorem 1.6, df — gw € C" for some function
g € C~(®), in other words, the operator 4, , is of divergent type. Thus,
€(go) = 0. Conversely, if &(gw) = 0, then from Corollary 2.4.1 it follows
that the n-formgw — U; A L dp (gw) is closed. Therefore, if there are no
topological obstructions, for example, if A (M) = 0 then the form
gw—U; L dp (gw) is exact and so defines a conservation law 8,

dd = go — U; A\ _Ldp(gw).
We also mention that when M is a compact orientable manifold, then the
condition for the n-form gw — U, N 1L d, (gw) to be exact is equivalent to

the fact that 5 0%y (g0) vanishes for some function # € C*(M). We note
M

that this condition is always satisfied if there is at least one smooth solution,
ho €C*M), A, (ho) =0. For in this case the integrand is zero, because

07 (ho) (@) = 0 (n,) (8) Ao (Ro) = 0.
Thus, we have proved the following theorem.

THEOREM. The conservation laws, to within closed (n — 1)-forms on ®,
are in one-to-one correspondence with the solutions of the equation &(gw) = 0
if either H" (M) = 0 or if there is at least one smooth solution
ho €C™(M), A, (ho) =0. Here, to each function g with &€ (go) = 0 there
corresponds the conservation law 0 satisfying the relation

d0 = go — U; A\ Ldy(gw).

3.9.COROLLARY.IfA  is of divergent type, then the functions g

defining the conservation laws satisfy the equation
dpigo + dpg N\ L dpo + Xy)(8)o = 0.

3.10. We indicate some explicit formulae for constructing conservation laws
from solutions of the equation &(gw) = 0. To do this we choose a function
u € C7(P) being determined by the composition of the natural projections
u:®->J°M)=M x R— R, and a solution 4, € C™(M), of n,)(8w) = 0. Let
A,: & > ® be the one parameter group of shifts along the contact vector field
Xy _n,- We note that

At (@ u, ) (g, w—h)e' 4 h, (p—'z—Z) e‘+%h;) .
Next, if 8 is a conservation law corresponding to the function
g,d0=gw-U, N 1L dp (gw), then using the relations

2 (A10) = AH(Lu-19)

and
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Lup, (8) = iy_n, (@0) +d (iu—n,8) = glu_no —

— (u—ho) L dy(g0) +Us A tun,[L dp (g0)]+ d (iu-n9),
we obtain
0

0 — A* o () = 5 2 4@ dt=
0
= | Aflglu-r,0— (u—ho) L dp (go)] di+

0 9
LU N 3 e‘A’{[iu_hn_[_dp(gm)]dt-{—d(S liu-nB1d2).

- 00

We set

1]
(3.10.1) 0, = 3 A% [giy_n,0—(u—ho) L dp(gw)] di.
Then the form 8, determines the same conservation law as 6. In fact, for an
arbitrary solution 4, of #y(w) = 0, we have

0F (y (d0—dBg) =07 () (A¥e0 dB) = (A0 0 03, m)* (dO) = 0,(n,) (d0) = 0.

3.11. Now we indicate a connection between contact symmetries and
conservation laws,

THEOREM. For every operator A, such that €(go) = Yo for some
function v € C7(®), in particular, for every operator A , of divergent type
(v =0) and for an arbitrary symmetry f € symc(A ), the form
0= irw—fld,w is a conservation law.

® Suppose that f € symc(A,, ). Then p(Ly w) — hyw = 0 for some function
hs € C™(®). Hence, by Proposition 2.7,

f &(0)+ dp (fjo—7f_L dpm) + T (L dpﬁ)) —hijo =
=(yf—hy) 0+d, ((;0—f_L dpo)+ T (i; Ld,0)=0. B

3.12. We note that a conservation law i;w — f L d, wis trivial (see Theorem
2.3) if and only if vf— ks = 0. In particular, for operators of divergent type
the trivial conservation laws correspond to the symmetries of the operator
f€sym(A ). On the other hand, Theorem 1.7 asserts that A , has non-trivial
conservation laws in dimension # — 2, but not below. However, such laws are
quite possible if we limit the class of solutions under consideration.

Let f€sym(A ) and let A, be of divergent type. Then
dlijw—fld,w)€ C",and since i;w —f1 d, w € C", this form determines
a cohomology class in

An—1q
HI ' B (M),

Let us assume that this class is trivial:
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)"n-—i (lf()) —_— f _l_ dp(l)) = 0.
Then there is an (n — 2)-form 6 such that
0 — (i;0 — f1 dpo) € C™ L,

It turns out that the restriction of 6 to any f-automodel solution L, w ; =0,
is closed.

For in this case if(w) ;1 =0,since wy =0,butLisX f-invariant and
(fLd, w)|, =0, because f1 =0. Thus, 0 determines an (n — 2)-dimensional
conservation law for f~automodel solutions.

THEOREM. Let f€ sym(A ) and )\nﬂ(ifw —fldp w) =0. Then an
(n — 2)-form 0 for which

do — (i;0 — f1dpe) € C™-1

is a conservation law for f-automodel solutions.

3.13. THEOREM. When A ,, w € A%, is of divergent type and such that
dp w = 0, then there is a one-to-one correspondence between the Lie algebra
symc(A , )/sym(A , ) and the conservation laws (to within trivial laws) in
which a symmetry f € symc(A , ) corresponds to the conservation law

® Suppose that a function g € C~(®P) determines the conservation law 6.
Then &(gw) = 0, or by Corollary 3.9,d,i, w + X,(g) w = 0. On the other
hand, p(L, w)= dp (ig ). Thus, g € syme(A,) and 6 =i, w to within a
trivial conservation law.

EXAMPLE. The Laplace operator for an arbitrary Riemannian manifold
satisfies the conditions of this theorem.

3 14. To conclude this section we return to the definition of solutions of
the Monge—Ampére equation and broaden the class by including discontinuous
solutions.

Let My C M be a submanifold of codimension 1, forming the boundary of
a domain O C M. We consider a discontinuous function

v = vt v-, where v* € C7(0), v- € C¥(M \_ O).

We call such a function a discontinuous solution corresponding to the
conservation law 0, d0 —w € C”, if

{ dh A\ ot (6) =0
M
for any test function # € Cy'(M).

THEOREM. A function v is a discontinuous solution corresponding to a
conservation law 0 if and only if A, (v) =0 on M \ M, and at points of M,
the Giugonio—Rankin equation holds:

0;(.1(13*') (e) 'Mo = 071(”') (e) lMo'

® Suppose first that # € Cy (M) is such that supp # "M, = Q. For example,
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let supp 2 C 0. Then from Stokes’ theorem it follows that
[ ah A oty © = [ d(haton O) — | hho ) = — | hAa @9 =0,
M M

M M

hence that A, (v) vanishes on M \ M,.
Now if supp # N M, # @, then the above calculation leads to the relation

5 dh /\ 01.;7?1('") (9) = 3 h IMo [0;‘1(1"") (e) JMo __0;.“1(1‘__) (e) IMo] = O' .
M o
COROLLARY. Suppose that M, is specified by a function S € C™(M),
My ={S = 0},and that dS # 0 at the points of M. Then the Giugonio—
Rankin equation is equivalent to the following condition:
[65,) (8) — 0o (B)] A dS =0
at the points of M,.

84. The use of contact geometry in the calculus of variations

Below we outline an invariant exposition of the calculus of variations, using
the apparatus of effective forms developed in the preceding sections.

With each differential n-form § € A} we associate a functional §2 acting
according to the following rule:

Qm)= | otwm @,  heCE ().
M

The Lagrangian of ﬁ, written in local coordinates, contains non-linearities
in the second derivatives of the same type as the Monge—Ampére operators.

The following theorem explains why the operator € of §2 is called the
Euler operator.

4.1. THEOREM. The extremals of the functional S are solutions of the
Euler equation corresponding to the n-form w = &€ (§2).

W Let hy € Cy(M) be an extremal ofé. We fix a function p, € Cy"(M) and
consider the function

@)= \ O, (ot thy) ().
M

Then since 4, is an extremal, ¢’ (0) =0 On the other hand,

¢ (0)= 5 0% na [ L1, Q]
M
or, by Proposition 2.7,

@ (0)= | g (€ @) = | hiotny (62).

M M

Since ki, is arbitrary, we obtain
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0fithe) (6RQ) = Ag (Bg) =0. W

4.2. A contact vector field Xf € ct(P) is said to be a symmetry of & if
L(Q)eC".

Under the assumption that M is compact this definition can be motivated as
follows. Let 4,: ® = ® be a one-parameter group of shifts along X;. Then for
any function 2 € C™(M) and for sufficiently small ¢, the R-manifolds
L,=A,(L)and L= o), (M) are projected diffeomorphically onto M, hence
(see [15]) L, = ojl(ht)(M) for some family 2, € C™(M).

Moreover, from the fact that L(§2) € C" it follows that AF(Q2) - Q € C",
consequently,

67, (n) () = 0F iy (ATR) == 0, (n (D),

that is, $2(k,) = S(h).
4.3. PROPOSITION. The contact vector field Xf is a symmetry of the
variational problem if and only if

dpi/Q + i,;d,Q + fLQ = 0.

44, THEOREM (Noether). Suppose that Xf is a symmetry of Q. Then the
differential (n — 1)-form ifSZ -f1 a’pﬂ is a conservation law for the Fuler
equation.

m Using Proposition 2.7 we obtain

0 = p(LQ) = FEQ) + dp(i}Q — [1d, Q) + T(irLd,Q),
that is,

fo +di,Q —fld,Q ec. |

4.5. THEOREM. Let L, (w) =0and w = €(Q); then every conservation law
Jor the Euler equation is determined by a symmetry of the Euler equation.

® We note that the condition for the divergence of A , is equivalent to
L, (w)=0.For é&(0) = Q) = L&) = L,(w). Therefore, the assertion
follows from Theorem 3.13 and the fact that d, o € = 0. &

4.6. We consider now the classical case when £ = kn§(£2,), where
k € C™(®) is the Lagrangian and 2, € A" (M) is the volume form on M. Then
w has the form

= & (knjQ,) = d iy (niQ) + Xy (k) nuT (20),
and the conservation law corresponding to the symmetry f of Qis
0 = ki (nfQ) — fin (n]Q0).
We also write down the equations for finding the symmetries:
dy (ki;niQ) + X (k) 1} (Q0) =0

and the conservation laws:
dpigw + Li{go) = 0.
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APPENDIX |

SYMMETRIES, AUTOMODEL SOLUTIONS, AND CONSERVATION
LAWS IN NON-LINEAR ACOUSTICS

I.1. The propagation of a bounded three-dimensional sound beam in non-
linear media is described in [17] by the Khokhlov—Zabolotskaya equation:

a (dp’" & P 90"\ e a%p’ a2p’
(1.1.1) r (E caba Y ot >_ 2 ( ay* + 5 )

Here p' = p — po is the deviation from the equilibrium p, of the density of the

medium, ¢, is the velocity of sound in the medium, & =y + 1/2, v is the

index of the adiabatic curve, 7 =t — x/cq, x is the coordinate in the direction

of propagation of the sound beam, and y and z are the transverse coordinates.
If we use the coordinates

G=-27, ga=2, G=(2/e)V?y,6=(/e)"?3
then 1.1.1. takes the simpler form:

a ¢ dp’ ,69’)_0%' 62p’
(1.1.2) " ( - 50 ) =5 T T

1.2. We write out the effective form w € A* (R?) representing the equation
(1.1.2):

1 )
0=+ dps \dgi A\ dgs A dgi— = dpa A\ dgs A dgs A dau + w dpy A dgs \das A\ dau+
+ pidgy Ndg, Ndgs \dg.+
+dps \dqs A\ dgs \ dg, — dp, \ dgs A\ dg, A\ dgs.

The algebra of symmetries symc(A ) of the Khokhlov—Zabolotskaya equation
can be found from (3.5.1). Solving this equation we see that the generating
functions of the symmetries have the form

(1.2.1) f(g, u, p) = [(2ag, + 2¢)q; + (g3 + ¢2) +
+ A'(g,)9s + B'(g5)9s + K(g2)lp, + (3agi + 2Bg, + Ap, +
+l(4ag, + B + ¢)g5 + 894 + A(g,)lps + l(4ag, + B + c)gs — 8gs + Blga)lps+
+ (dag, + 2B — 2c)u + 2049, + A"(q:)qs + B(q2)q. + K'(g2):

where «, f, 8, ¢ are arbitrary constants and A(q ), B(q,), K(q,) are arbitrary
smooth functions.
Thus, as in the case of a bounded two-dimensional beam [6] the algebra of
symmetries is infinite-dimensional.
However, if we limit ourselves to physically meaningful solutions p'(q)
(thatis, p'(g) > 0 as r = o0, r2 = g% + g%) and single out the subalgebra
S C symc(A ) of symmetries conserving the class of physical solutions, then
the generating functions f € S have the form (1.2.1), where &= 0,
A=A,qy +A,,B=B,q, +B,, A, B,, A,, B,, K are constants, and dim S = 9.
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As a basis in S we take the functions

fi = 2pqgy + P33 -+ Psta + 2u, fy =py T3 = Q@Ps — qaPss
fo = 2p1g1 + psqs + pags — 2u, f5 = pigs + psq2, fs = P
f1 = P19y -+ Pugsy fs = pa» o = p1.

Here f,, fs, fs, and fg correspond to translations in the directions
g2, 43, 44, and q, ; f; and f; are the scaled symmetries; f3 corresponds to
a rotation in the transverse (g3, g4)-plane.

The Lie algebra structure in S with respect to the Lagrange bracket is given
by the commutation relation:

fa fo fa fs 15 fe fa fs T
h 0 2/ 0 0 —fs fo  —F fs 0
fa ~2f, 0 0 0 —fs 0 — /s 0 0
fs 0 0 0 0 —fi —Js fs fs 0
fa 0 0 0 0 fs fe 1 fs  2fs
1s fs s fa  —fs 0 fo 0 0 0
fe —fs 0 fo —fe —fo 0 0 0 0
fa fa s —fH —h 0 0 0 fo 0
fs —fs 0 —fs —fs 0 0 —fo 0 0
fa 0 0 0 —2f, 0 0 0 0

From the table it follows that S is soluble. We show how § can be used to
construct exact solutions of (I.1.2).
To do this we note that if p(gq) is a solution of (I1.1.2) and

Q. (D), 0, (1), Q1(2), Q4(2) is a solution of the system of ordinary differential
equations

é1=2001+A103+3104+K, 01(0)=91,
(1.2.2) Q.2=2502+7~y Q2 (0) =gs,

3=(ﬁ+0) Qs+594+A102+A2, Qs (0) = g3,
Qu= —0Q;+(B+¢c)Qu+ B:1Q:+ By, Qu(0)==1,,
then for each ¢, — oo <t < oo, the function

ps(g) = p(Q(?)) -expl2(p — c)il
is displaced by a shift in time ¢ along Xy, where f € S, hence, is a solution of
(I.1.2). The initial solution p(gq) can, for example, be sought in the form

p(@)=Fi(q)-G(r), r=(q%+4q3)/.

For by substituting the expression for p(q) in (I.1.2) and separating the
variables we obtain the equations for F and G, respectively,
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(1.2.3) diql (7 j{i) F,
(1.2.4) ;r (r_) +rG2=0.

(1.2.3) reduces by elementary transformations to an elliptic integral of the
second kind

(1.2.5) SF(2F2 +Cl)'1/2df= 4_.3—1/2q1'

We note that (1.2.3) has the particular solution F=(q; + ¢)?/6.(1.2.4) hasa
unique solution satisfying the boundary conditions G(0) = a, lim G(r) =0,

y— oo
which can be found by using the substitution G = r~2v(log r), v’ = w(v) to
reduce the problem to the solution of the second-order equation

(1.2.6) w =428

1.3. Let us describe the conservation laws of (1.2.1) using § §3.8 and 3.10.
By solving the equation & (gw) = 0 we find that a function g defining a con-
servation law has the form

g = a(gs, 9s, 94) + 01092, 93, o)
where a(q) and b(q) satisfy the equations

9%b 72b b 9%a o2%a
(1.3.4) @t Gaam A

Thus, each conservation law is uniquely determined by a pair of functions
a(q2, 93, qa), bo(q3, qa), Where a(qa, g3, q4) is biharmonic in g3 and g4, and
bo(q3, q4) is harmonic. Here

qs
f o
(1.3.2) b(@ g5, 90 ="bo (g5, 90+ | (57 + 55 ) 4z
0
Evaluating the integral in (3.10.1) we now find the conservation laws
]
(3.3) 0= (—g Ptz u) das Adgo A\ dgs+

a,
‘|‘(g'P3—'£; u) dgi Ndgx \dgi+ gpy dgi \dgs \ dg. +
17} 1 4
+(gup1+—0q§2— ‘——Z‘—g‘uz)d‘Zz/\d‘Ia/\d%

Let us point out certain consequences of (1.3.3). To do this we integrate
o;':(p)(ﬂg) around the boundary of the domain D: 0<<¢q; <7,0<¢q, < ¢ for
the following functions g:

(@) if g = fe (g5)Ao(gs, q4), Where f. is shaped like the delta function and
Ao is harmonic, then
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030 | § (ogm—ap) [t ) daspda=o,

(i) if g ==hg (g2) A1 (93, 94) + Pe(q2) -q1, Where
02X,/0g% + 92X, /0g3 = 1 and h.(g:) converges (in the sense of generalized
functions) to the Heaviside function 6(g, — ¢) then

00

(1.35) || (os2—22)

0g, 0q,

Q=T

q,=0

Ai(gs, 9) dgs N\ dg. -+

— 0o

8

8 s
[

+5 p dgy Adgs A\ dg, =0,

or, bearing in mind (1.3.4),

q41=T 7‘2

(1.3.6) ﬂ (pj—;—j—;) |qﬁ0—dq3/\dq4+ ﬂ s S pdgi\dgs\dg,= 0.

— 0o ~o0 0

1.4. Let us use the conservation laws we have found to describe the pro-
pagation of perturbations in non-linear acoustics. We assume that the boundary
of the second beam is given by the function S(¢q,, q,, g3, q4), that is,

p(q) = 0if S(g) >0, p(q) 0 if S(q) <0, and S(g) = 0 is the propagation law
of the boundary of the sound beam.

We choose an arbitrary conservation law 6, and write out the corresponding
Giugonio—Rankin conditions. In our case, independently of the choice of b,
they lead to the Hamilton—Jacobi equation for S

as as as \2 a8 \2

a4 - () )

Suppose now, for example, that the disturbance for ¢, = 0 is localized in a
circle of radius r(g, ). Then, solving the Cauchy problem for (I.4.1) with the
initial conditions

S(g1, 0, g3, q1) = 5 + 0 — r(qv),

we find that in the section g, = const > 0 the disturbance is localized in a
circle of radius

. 2
(1.4.2) r (g, 0) =7 @)+
where g¥, 0 < g¥ <g¢q,, is a solution of
g1—qf __ 1
(1.4.3) % @R

We consider some particular cases connected with singularities of the solutions
of (1.4.3).

Firstly, for disturbances whose boundary grows when ¢, = 0 at a constant
rate &, r(g,) = ro + eq;, we find



174 V. V. Lychagin

1
(91, 92) =To+ 41+ - G-

Thus, to obtain a stable bounded beam, what is necessary is an auto-
oscillatory regime of change of the boundary of the initial disturbance. Let us
consider, for example, the following case:

r(g,) = ry + A sin og;.

Then the equation (1.4.3) for determining ¢F takes the form
A2 1

(1.4.4) o (01— 9D = ot ags
which, depending on ¢, and g, may have various sets of solutions,
0< g¥<q;.

Physically, this means that in a given section g, = const, as g; grows, there
must arise a stratification of the sound beam; this is the phenomenon of “‘self-
diffraction”. The stage at which the stratification occurs and the radii of the
resulting rings can be determined from (1.4.4) and (I.4.2).

APPENDIX II

ON CONSERVATION LAWS AND SYMMETRIES OF NON-LINEAR EQUATIONS
OF KLEIN-GORDON TYPE

V.N. Rubtsov

This appendix deals with an application of the theory developed above, to
find the conservation laws and the symmetry algebras (of infinitesimal
symmetries) of non-linear partial differential equations. We wish to emphasize
the fact that the presence of a large number of conservation laws is not just
peculiar to the *“‘selected” equations (for example, the Korteweg-de Vries or the
“Sine—Gordon’ equation) but quite generally, is a common phenomenon for
the majority of natural equations of mathematical physics. The family of
equations considered in this Appendix is grouped around the non-linear Klein—
Gordon equation:

O w==f(u), where = %——A, A is the Laplace operator.

In particular, the standard model “Sine—Gordon” equation is obviously
included in the class under consideration. With it we begin our study of the
conservation laws on J ! M.

II.1. The “Sine—Gordon’ equation. The initial manifold is
M=R?, J'R? = R®, and the equation is

(111.1) Ugy, gz = sin u,

where g, and g, are coordinates on R? and (q,, ¢, p;, P,, #) are the corres-
ponding coordinates on J! R* = R%. The effective form corresponding to
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(II.1.1)is

1 .
(1.1.2)  ©=——dp, A dg+5dp, \ dgy—sinudgy A\ das,
® € A2(J*R?).

To find the conservation law 6 € A! (J! R?) it is necessary to find
g€ C*(J1R?) from

(I1.1.3) € (go) = 0,

where € is an Euler operator.
In our case, since

do = —cosudu \dpy AN dg, 2 dyo = podo =0,

the action of the Euler operator on gw can be written as follows:
(I11.1.4) E(go) = gLio + dp(X, 1 o) + Li(go.
Computing the three terms in (I1.1.4), we obtain
gLio = —gcosudg A dq,,
1 . i
dy(Xg 30y =dy, { [ 5 (g0 +pisu’ +sin ugy, | dg, +
1 . . 1
+ [7 (g9, + P2gu) +sin ué’p:] dg>— 5 gp, dp1 +% &p. dpz} ,
R dg
Li(g) 0 =5 0.

Equating to zero the coefficients for the corresponding forms in (I1.1.3), we
find g after simple manipulations:

(I1.1.5) g = (ag, + b)py + (—aq, + c)p,,

where a, b, and ¢ are arbitrary constants.
After substituting it in the formula df =gw—U,; A Xy 1w, we obtain

db = (%gql—*—gpz sin u) du A\ dq,—
— (—;— £q, + &p, 8in u) du A\ dg, -+
+5 &, du )\ dpy—+ g5, du )\ dp,+
+5 P&, dps N\ dds—3 Pigp, dps A das—
——;—ngp, dps \ dgy +%p1gp, apy /\ dga.

To find 6 we evaluate the integral (3.10.1) and obtain the conservation law:
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1
(11.1.6) eg = (Z Ugq, — Bpg COSU—— p1p2gpz) dqi +
1
+ ( -7 ugq, + gp, COS u+7p1p2gp,) dga+

1 i1 1
+ 5 (P28, — P18p,) AU + - Ugp, dpy — - Ugp, AP,
Thus, as follows from (I1.1.5) and (I1.1.6), the space of conservation laws for
(I1.1.1) generated by J! (R?) is three-dimensional. We write out the basic
conservation laws:

61:[——iﬂ—ﬂ-—cosu——%sinu] dg, 4 {—

i J%u 1 ( du
4 4qy d42

Ot 1 du N2
6q2+4 0q )quz’

du du

1 du
esz[zum-l—%cosu-f-zqz—aq—la—qz—f‘

1 a2 1 .
+ZuqiT;§+zqusmu 4‘11( ) ]d91+
du ou

1 ou
+[Zu_ﬁq2 +41003u+zqijaqh

1 642+

aiz) | das

1 2u
+ 7 Uge —@-l' ugy sinu —
NOTE L. In the form
Uge — Uy = sin u,

to which it is transformed by the substitution

. x—t x+t
(I1.1.7) a="=, =<1

(T1.1.1) can be regarded as the Euler—Lagrange equation for the Lagrangian
2__ 2
(I1.1.8) Q= (B 4 cosu—1) dg, A dgs.

In the case of (I1.1.1) the algebras sym(A_, ) and symc(4, ) are the same,
namely, the semidirect product of the algebra of translations and that of hyper-
bolic rotations of the plane. All the conservation laws 6,, 6,, and 05 are
Noetherian. Using (11.1.7) and (11.1.8), we see that the laws 6, and 8, corres-
pond to two directions of translation, that is, they represent the laws of
conservation of energy and of momentum while the law 64 corresponds to the
conservation of the relativistic moment of momentum for a hyperbolic
rotation. In conclusion we give the general form of the vector field

Xf, f€sym(A ), for (II.1.1):

17} a I} a
X;= —(agq,+0b) E—(—042+C)E+0P15—h—apza—p2.

NOTE 2. Using f € sym(A ) and a method similar to that used in Appendix
I for the Khokhlov—Zabolotskaya equation, we can obtain f~automodel
solutions of (I1.1.1), which are familiar to physicists [2] and can be expressed
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in terms of elliptic functions.
For the following equations we give only the final results.
I1.2. The equation u, P F'(u). If #'(u) and #"(u) are linearly
independent, then there is a three-dimensional space of conservation laws on
J1(R?) for which the laws 51 , 52 , and 53 serve as a basis. They are obtained from
the corresponding 6, , 8, , and 65 for (I1.1.1) after replacing sin u by #'(u),
cos u by #"(u)and making the obvious sign change. The generating function g
is the same as in (I1.1).
If #'(v)and #"(u)are linearly dependent, then the equation is essentially
of the form

— pU
Ugyq, = e

In this case the space of conservation laws on J! (R?) becomes infinite-
dimensional. Each conservation law is determined by a pair of functions of a
single variable, and the generating function is

g=1(q1) p+ ¢ (q2) p: +—:—; (' (g0) + 9" (g2)).
I1.3. The Kruskal transformation ([ 13]). The Kruskal transformation
(I1.3.1) u = v = arcsin ey,
takes solutions of the equation
(11.3.2) Vgg = V1 £ e%? sinv, 0<e<1,
into solutions of (I11.1.1)
Ug,q, = SID L.

The form corresponding to (I1.3.2) is
. 1
(IL.3.3) o= ——%dpi A das+ 5 dp, \ dgs — V' 1 +-e2p} sinudgy A\ dgs.

For definiteness we take the negative sign under the radical.
In the case (11.3.3) d,w #*0

2
d,0=do—U \ (X, ddo)= ]/:__p—;ng sin udp; A\ dg; A\ dge.
After some manipulations we obtain the generating function
gEC™(J'(R?))

_ g1—¢e%g,co8u
g W—::E_ZE P1+g P2y

where g, =aq{ + b, g, =—aq, + c, and a, b and c are arbitrary constants.
We note that, as ¢ - + 0, the function g for (I11.3.2) goes over into the
corresponding function g for (I1.1.1). The conservation laws on J! (R?) form
a three-dimensional space. The basic forms for (I1.3.2) go over, as
e = + 0, into the basic forms for the Sine—Gordon equation.
11.4. The non-linear Klein—Gordon equation in R*. This equation has the
form
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Mu u Pu Pu ’ _
(I1.4.1) ——aar-l' FP + 72, + FPR —f (w)=0,
M=R*, J'*(R*)=R.
An effective form corresponding to (11.4.1) is

(I1.42) o = —dp, A dg, A\ dgs A dga — dp, A\ dgy A dgs A dg. +
=+ dps A\ dgx A\ dga A dgs — dp, A day A dg. N\ dgs —
— f(w)dg, N\ dg, N\ das A\ dgg
The generating function g € C*(J* R*) for (I11.4.1) is
g€ = (agy + bgs + cq4 + d)py + (aqy + egs + fg, + h)p, +
+ (bg: — egy + pgq + r)ps + (eg1 — fa, — P95 + Dpqs

wherea, b, c, d, e, f, h, p, r, and [, are arbitrary constants. The space of con-
servation laws on J! (R*) for (I1.4.1) is ten-dimensional if f'(x) and f" (u) are
linearly independent.

The algebra sym(A_,) in this case is the Poincaré algebra. The basic
conservation laws, as in II.1, are Noetherian.

Four conservation laws are generated by translations and six by rotations
conserving the Minkowski metric. As an example we write out one of the
basic conservation laws

0y = (/apigs — YoPs® — MaPie — Yap3 — Vsupy + qufdgy A dgs A dge +
+ (—'2pPigs + Vap2s — /203 + YaPls + Y5upy — qof)dg, Adgy \dgs —
— Yap1p2qudas A dgs A\ das + Y ougidp, N dgs A\ dgu — Yoprgudu A dgg N dg, —
— Yaugy dpy A\ dqy N\ dgs + Mapigs du A dg, N dgs —
— Yqugy dpy A dgy A dgs + (Yapugs + Y/agaps)du A dqy A dgs +
+ Yyugqudps A\ dgy A doy — Yopsqi du A\ dgy A\ dgu + aug, dps A dgy A\ dgy—
— Yapsgy du A dgy, A dgy, — Yqug, dp, A\ dgy N dgs.
This corresponds to the conservation of the relativistic moment of momentum
for a hyperbolic rotation in the (g, g, )-plane.

I1.5. The “stationary” Klein—Gordon equation in R?. This equation has
the form

(11.5.1) Au = f'(w), F(0)=0.
A corresponding effective form is
(I1.5.2) @ = dpy A\ dgy — dpy A\ dgy — f'(w)dg, A dg,.

Since dpw =0, the Euler operator acts according to (I1.1.4). Solving the
corresponding equation (I1.1.3), we find the generating function for the
conservation laws of (I1.5.1).

AsinIl.2, if af " + Bf’ # 0, then
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g = (—aqy + ¢)py + (agy + d)p,,

where a, b, and ¢ are arbitrary constants,
The space of conservation laws on J ! (R?) is in this case three-dimensional.
A basis is formed by the laws

T — 5o da+ [ 5 ()’ —f@+5u aqzjdqz,

°z=[—-§-(—)+¢<u>— w190+ [ T G e 7 % gy ) 9

o (o 4 (2 0 2]

q2[2 3411‘;‘12 ;t;?qli 642]}dq‘+{ qz[ ( ) gZ(H_z au
1 du 1 du é6u 1 ou du 1

2 %% YT 5 Be, T2 0q; 00, 2% 6416q ]} dg>.

The symmetry algebra for (I11.5.1) is the same as the algebra of the group of
motions of the Euclidean plane. The vector field Xy, f€ sym 4, , for (I1.5.1)
has the form

8
dpy *

All the conservation laws 0, , 62 , 03 are Noetherian, 6, and 0, correspond to
conservation of momentum for parallel displacements, while 83 corresponds
to conservation of moment of momentum under a rotation.

Because of the importance of (I1.5.1) in hydrodynamics [10] the
f-automodel solutions, which can be easily constructed by the method of §3,
are of particular interest.

If af” + Bf' = 0, then the equation is in effect

(11.5.3) Au = eau,

7} d
1= —(aq2-|-c) (‘lQ1+b)a—q2+aP2—aE—api

which was studied and solved already by Poincaré and Picard. The conservation
laws on J ! (R?) in this case, as with I1.2, form an infinite-dimensional space,
and each conservation law is determined by a pair of functions of a single
variable, but of different arguments.

NOTE. The results about the construction of the symmetry algebra in 11.4
and IL.5 are also valid only when

af” + Bf' =+ 0.
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