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Introduction

The purpose of this paper is to study non-linear second-order differential
equations defined on a smooth manifold M, from the point of view of the
contact geometry of the manifold of 1-jets.

A general approach to the geometry of non-linear differential equations,
which goes back to Sophus Lie, is based on regarding a non-linear differential
equation of the k-th order as a closed subset in the manifold of fc-jets ( [4] , [5],
[8], [11], [18]). Then the geometry of second-order equations, as well as
that of the manifold J2 (M) turn out to be exceptional compared with the
general case k > 2 [5].

The following observation is the starting point for the approach proposed in
this paper: each differential fc-form ω ε Λ^ί/'Λί) on the manifold of 1-jets
JlM can be regarded as a non-linear second-order differential operator
Δ ω : C°°(M) -»• Ak(M) acting according to the rule Δ ω (h) = af (/,)(ω), where
Of ( Λ ) : Μ -> Jl (Μ) is the section corresponding to the 1-jet of the function
h e C(m.
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In this approach, in contrast to the first, we use the geometrically simpler
space JlM, although, of course, not all non-linear second-order differential
equations can then be^but only only a certain subclass. Nevertheless, this
subclass is broad enough and embraces all the equations that occur in practice:
quasi-linear equations and Monge—Ampere equations.

We call operators of the type Δ ω : C°°(M) -* Λ*(ω), ω € Λ^/'Λί) Monge-
Ampere operators. The motivation behind this definition is the fact that when
written in local coordinates the operators Δ ω lead to non-linearities of the
same type as the classical Monge—Ampere operators.

The correspondence ωι-^Δοο can be used in different ways. First of all, it
allows us to transfer directly the contact geometry from J1 (M) to the
differential equations and so to determine contact symmetries and to generalize
the concept of an automodel solution.

On the other hand, the correspondence ω>-*-Δω distinguishes additional
structures in the algebra of exterior forms on JlM. In this algebra we consider
the ideal C C a*{JlM) consisting of differential forms that lead to the zero
operator,

C = {ω ξ Λ*(/1Μ), Δ,., = 0}.

Then the Monge—Ampere operators are uniquely determined by elements of
the factor-module A*(JlM)/C.

The presence of a contact structure on J2M makes it possible to split C
into direct summands and so to describe A*(JlM)/C effectively; the
structures used here are similar to those occurring in Kahler geometry ([3],
[ 14]). Just as in Kahler geometry, operators Τ and _L are introduced, corres-
ponding to the effective (= primitive) forms L and A, and a theorem on the
decomposition into effective forms is proved.

§ § 1 and 2 deal with the details of this algebra.
Differential operators proper appear in §3. In this section, using the corres-

pondence ω ι~*"Δω , we explain methods of computing contact symmetries and
conservation laws forJlM. For operators of divergent type we indicate the
links between symmetries and conservation laws. A brief discussion of discon-
tinuous solutions and of the Giugonio—Rankin conditions for non-linear
differential equations concludes this section.

Appendices I and II deal with the application of the results obtained to
concrete non-linear differential equations. In Appendix I we consider the
Khoklov—Zabolotskaya equation, which describes the propagation of a bounded
sound beam in non-linear media; we calculate the contact symmetries and
conservation laws. The symmetries are used to find exact solutions, the con-
servation laws to study the evolution of the boundary of the sound beam.

In Appendix II V. N. Rubtsov considers equations associated with the non-
linear Klein—Gordon equation and calculates the algebras of symmetries and
the conservation laws. We mention the dependence of the algebra of symmetries
and of the conservation laws for equations of the type π u = ¥'{u) on the
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function !f[u), which turn out to be finite-dimensional if F"(") and ψ'{υ)
are linearly independent, and infinite-dimensional (οη/'Λί) otherwise.

In conclusion we dwell on a number of problems closely connected with
this paper. There are, first of all, the theorems of Sophus Lie on the contact
equivalence of the Monge—Ampere operators [11]. Using the correspondence
ω | - > Δ ω , we can reduce these theorems to the problem of the contact
equivalence of differential forms onJlM, which we can then study according
to the scheme of [ 15] and [20]. However, we have calculated the conservation
laws for the Monge—Ampere operators only forJlM. The resulting laws can be
used to obtain the conservation laws in JkM if the higher symmetries of the
equation are used (see [5] and [ 19]).

§ 1. The exterior algebra on a symplectic space

1.0. We fix some notation. As usual, we denote by Ak(E) (respectively,
Ak(E*)) the space of all fc-vectors (Morms) on E, where Ε is a vector space
over R. If Χ <Ξ Ak(E) and ω G AS(E*), s>k,v/e denote by ΐχ(ω) or X J ω
the result of interior multiplication by the ^-vector X; if s < k, then ϊχ{ω) = 0.

Now let dim Ε = 2n and suppose that a 2-form Ω €= Λ2 (Ε*) determines a
symplectic structure on E. Then the mapping Γ: Ε -*• Ε*, Γ (Χ) = ίχ(Ω), is an
isomorphism, while its exterior powers define isomorphisms
Ts: AS(E) -*• As(£*), Ts = AS(T). For an arbitrary s-form ω e A'(E*) we
denote by Χω the s-vector in AS(E) corresponding to ω under Ts,
YS{X^,) = ω. We denote by ζω the result of interior multiplication by Χ ω .

In particular, for a 1-form ω £ Ε* the vector Χ ω is uniquely determined by
the relation /ω(Ω) = ω. For decomposable s-forms ω = ω χ Λ . · . Λ ω $, ω;· G Ε*
we have Χω =XUi Λ • · · Λ ^ ·

To write the operations introduced above in coordinate form we consider a
symplectic basis e1, . . ., en, fx , . . . , / „ in the space
Ε: Ω(β /, e,) = Ω</,. /,) = 0, Ω(£,, ή) = δφ 1 < i, j < π.

Using this basis Ω takes the form

where ef, . . ., e*, ff, . . ., f* is the dual basis in E*, while Γ acts as follows:

Γ: **->/?; Γ: /,-»--ef.
Hence, if for a 1-form ω Ε Ε* we have

| ί/Τ), at, foGR,then Χω = | (β,β,-οι/,).

We note here that the bivector Xn - Γ2' (Ω) can be written as

1.1. In the algebra of exterior forms on the symplectic space Ε
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Λ* (Ε*) = Θ Λ8 (Ε*)
s>0

we introduce; two operators:

Τ : Α'(Ε*) -»» A'+2(E*)

is the operator of exterior multiplication by the 2-form Ω, Τ (ω) = Ω Λ ω,
and

_L: AS(E*)^-AS-Z(E*)

is the operator of interior multiplication by the bivector Xa ,-Μω) = Xn J ω.
We set

_r- 1 -,-ft ι ^ ι ft Ο — ^ O f t I Τ " 1
Ι ϋ = · ^ Τ , _Lh—-^f_L , "&—-£]-"> _Lo— I o= J · ·

LEMMA 1.1.1.1(ΩΑ.) = («-Α:
• If ex,. . ., en, / x , . . ., /„ is a symplectic basis in E, then

i/j («*) = i/j (Ω) Λ fife_! = - 4 Λ
Hence,

t«/, (/? Λ

^ (

LEMMA 1.1.2. For arc arbitrary l-form ω&

[_L, Τΐ(ω) = (η -

• LL, Τΐ(ω) = 1(Τ0)) = ±.(i*Ci

= (Β — 1)ω. Ι

LEM ΜΑ 1.1.3. Let θ(ΞΕ*,ω<Ξ As(E*);then

J_ (θ Λ ω) = θ Λ _Ι_ω - ίβ(ω).

• If, as above, ex, . . ., en, fx, . . ., /„ is a symplectic basis, then

J_ (θ Λ ω) = j | iejAfj (θ Λ ω) = J j i,. (U. (θ) ω - θ Λ *./») =

η η

= Σ. ί̂ ,· (θ>'/, Ν - U. (θ) ί. · (ω)] + 2 θ Λ if. (U, ω) = - ίθ (ω) + Θ̂ Λ -L ω.

THEOREM. Let ω EAk(E*). Then[j_, Τ ΐ ( ω ) = (η - k) ω.
• The proof is by induction on k. The case k = 1 is Lemma 1.1.2. Because

of the linearity in ω of the relation to be proved we may assume that
ω = θ Λ ω, where θ G Ε*, ω <Ξ Ak(E*). Then
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) = ΘΛ U-,Τΐω-ΘΛ ω«(η —Α-1) θ Λ ω. •
COROLLARY 1.1. If ω € Ak(E*), then

LL, Τ.1ω =t(n — k — s + l )T .- i« , [j_,, Τ ΐ ω = (η - k + s — l)_Ls_lCo.

1.2. PROPOSITION. The mappings

T : Ah(E*)-+Ak+2(E*)and _L: Af (£*) -»- Λ 8 " ^ * )

are monomorphisms, provided that k < η - 1 and s > « + 1.
• Suppose that ω £ AS(E*), where s > « + 1, lies in the kernel 1; then,

using Corollary 1.1 we obtain

0 = _Ln+1Tn+i<u = J_"[_L, Τη + Χ]ω• =

= (s)j_nTn(o = . . · = (—*)(—« + 4) . . . ( - s + n)o>

and so ω = 0. Similarly, if ω Ε Ak(E*), Τ ω = 0, and k<n- 1, then

0 = T"+1_Ln+i« = (2ra — k) . . . (n — Α)ω,

hence ω = 0."

1.3. DEFIN ITION. A form ω G Ak(E*), k< n, is said to be effective if
1ω = 0.

1.4. THEOREM. For every k-form ω G A * ^ * ) the following Hodge-
Lepage expansion holds:

ω — ω0 + Τω! + Τ2ω2 + . . .,

vv/zere ω,- e Λ * " 2 1 ^ * ) are uniquely determined effective forms.
• The proof is by induction on k, the case k = 1 being trivial. Assuming

that the proposition holds for forms of degree less than k, we prove it for
forms of degree k.

Let ω Ε Ak(Ε*); then i ω G Λ*~2 (Ε*) and, by the inductive hypothesis,

J_co =* a 0 + T « i + T 2 «2 + · · ·»
where a 0 , a t , a 2 · • · a r e uniquely determined effective forms. Hence, if we set
ω = x0 + Txx + T ^ 2 + · . .,]then

j _ ( 0 = (re —

if we assume that x0, xlt . . . are effective. Consequently, if we take

1 „ 1

then

J_l
that is,

ωο = ω — Τ ^ ι — T 2 # 2 — . . .

is an effective form."
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Let ω G Ak(E*) and let ω = Σ T s cos be the Hodge-Lepage expansion.
s>0

Elementary calculations using Corollary 1.1 lead to the formulae

(1.4.1) A.^=Y

,1.4.2, T,X,<o= Σ

from which it follows, in particular, that the effective part ω 0 of ω can be
computed as follows:

(1.4.3) ω»

1.5. PROPOSITION (1) The mappings

J_h: Λ"** (£*) -> Λ""" (Ε*) u TV Λη-" (Ε*) -+ An*h (E*)

are isomorphisms, and for effective forms ω: Ι ^ τ ^ ω ) = ω.
(2) The form ω G An~k(E*) is effective if and only if T W o ) = 0.
• (1) Suppose that ω G An~k(E*) and Τ ή ω = 0. If ω = ω0 + T % + · · ·

is the Hodge-Lepage expansion, then simple calculations using the properties
(1.2) show that

l t T # « ωο + ICLJ'TiO! + . . . = 0,

and so, by virtue of the uniqueness ot the expansion ω 0 = 0, ω! = 0, . . . .
(2) We note first that if ω G An~k(E*), then

-L ° Tft+i (ω) = Tft+i ° _L (ω)

by Corollary 1.1. If 1 ω = 0, then_L(Tfe+i©) = Oand Tfe+i« = 0 as follows
from Proposition 1.2.

Conversely, if Ts+i» = 0, then

Tft+i(_L(o) = _L(Tft+iro) = 0

and hence, 1 ω = 0."
1.6. Τ Η Ε Ο R Ε Μ. Let the effective (η - kyforms

ωα, ω2 6 An-h(E*),

be such that for every isotropic subspace L C E, dim L - η ~ k, on which
CU1\L = 0 the form ω 2 also vanishes, ω 2 \ι - 0. Then ω2 = λ ω , for some
XGR.

The proof is by induction on dim E/2, the case η = 1 being trivial. Let E, as
before, be a symplectic space of dimension In. We choose an arbitrary pair of
covectors θ , θ+ G Ε* such that ΐθ (θ+)= 1. Then the restriction Ω' of the form
Ω to
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E' = kerGflker θ +

defines a symplectic structure. We denote by T ' and_l_'the corresponding
operators. We note that, since

Ε = Ε' 0 R Z e + RXe

+'

by identifying forms on Ε' with forms on Ε that degenerate on

e Θ ΆΧΘ+

g
RXe Θ ΆΧΘ+, we obtain for an arbitrary form a Ε AS(E*) the expansion

α = a0 + θ Λ ax -f θ+ Λ «2 + θ+ Λ θ Λ «3,

where αο>
 αι> α2, α3 a r e uniquely determined forms on Ε', and

h(cii) = ίθ+(α,) = 0.

Let us now assume that a is effective. Then using the expansion

we obtain

0 = J_a = _L'a0 + θ Λ -L'a4 + θ+ Λ ±-'^ + θ+ Λ θ Λ _L'«3 + «s-

Thus, οίχ, α2, α3

 a r e effective, and ϊ OIQ + α3 = 0. Let

be the Hodge-Lepage expansion; then

±fa0=(n —
hence,

finally, we obtain the expansion

α = α ο + θ Λ ^ι + θ + Λ «2+θ* Λ θ Λ « 3 - n _ l + i T'a3r

in which all the forms a,· are effective.
In particular, for effective forms ω , Ε Λ"~k{E*) (i = 1, 2) the following

expansion holds:

Let us now return to the conditions of the theorem. We construct isotropic
subspaces annihilating the forms ω,· in the following way. We choose an
arbitrary set of vectors zl, . . ., zn_k_2 Ε Ε' that are linearly independent and
in involution: Ω'Ο,-, zj) = 0, and add to it vectors u + Χθ, υ + Χθ+, u, υ Ε Ε' in
such a way that the vectors u + Χθ, υ + Χθ+, ζχ, . . ., zn_A._2are in involution.
To do this it is enough to require that

Ω'(Ζί, u) = Q'(*f, v) = 0, and Q'(u, v) = 1.
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Next, elementary computations show that

β) Λ (ν + Χβ+) Λ ζ_1_ω, = ιι Λ ι> Λ ζ-Ιω ο ;

Λ Ι , Ϊ _ L » Λ „ I r , ^ + 2 - ,·„

where ζ = ζι /\ . . . Λ ζη-»ι-2·

So we find that for a fixed vector υ the w-linear equation

(1.6.1) u-l [ν f\ ζ-I 0)02 + zJ(012] = - ^ j - z J ω32 — ν /\ ζ J ω22

is satisfied whenever
Ι. Ι Ο

; -Jo 3 1 — ν Λ ζ -Ιω 2 ΐ ,(1.6.2)

" u J (ι; J Q ' ) = — 1, MJ(zjJfi') = 0.

Hence, the forms

θ0 = t; /\ ζ J ω02 + ζ J ω12, 0 t = υ /\ ζ J ω01 + ζ J ω Η ,

must be linearly dependent for any choice of vectors v, zx, . . ., zn_k_2 in
involution. Therefore,

(1.6.3) ΘΟΛ Θ4Λ Θ2Λ Π = 0, where Π = Θ3Λ · · · Λ θη-ft-

We consider (1.6.3) as an equation for v.

(1.6.4) {v/\zJ ω02) Λ > Λ ζ -J «οι) Λ Γ* (ν) Λ Π +

+ [(ι; Λ <-" ω02) Λ (2 -<>„) + (ζ J ω12) MVAZJI ω»,)] Λ Γ' (ι;) Λ Π +

which for a fixed involutory set z1, . . .,zn_k_2 must be satisfied for all
vectors υ for which Ω'(ζ;-, υ) = 0 (/ = 1, . . ., η - k - 2). In what follows we
assume that ω η Φ 0 and z j u , , τ^ 0; otherwise the proof is simpler.

In (1.6.4) we replace υ by tv, differentiate the resulting form with respect to
t, and set t = 0. We find that

(1.6.5) (z j ω12) Λ (ζ J ωη) Λ Γ » Λ Π = 0

for all υ, Ω'(υ, ζ,·) = 0.
Hence, the restriction of ζ J ω 1 2 and ζ J ωη to Π Ker Γ'(ζ,) for any

involutory set zl,. . ., zn_k _Ί leads to linearly dependent forms. This, in
particular, means that ω 1 2 vanishes on all isotropic subspaces that annihilate
ω η , hence, by the inductive hypothesis, ω 1 2 = λ ω η .

We now isolate in (1.6.4) the terms of second order in v. To do this we
replace υ by tv, differentiate the resulting form twice with respect to t, and set
t = 0. We find that

(1.6.6) [ν Λ z J o 0 2 — λν Λ zJco01] Λ (zJ<on) Λ Γ » Λ Π = 0,
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and thus on η Ker Γ'(ζ,) the forms υ J [ζ] ( ω 0 2 ~ λω Ο ι)] and Γ'(Κ) are
linearly dependent. Therefore, ω 0 2 ~λω 0 1 vanishes on all Lagrangian sub-
spaces, and since ω02 ~λω 0 1 is effective, we see that ω02 ~ λ ω 0 1 = 0.

Similar arguments with υ replaced by u prove that ω 1 2 = λ 'ω 2 ι . Hence, if
ωΟι Φ 0, λ = λ', and the left-hand sides of the first two equations in the
system (1.6.1)—(1.6.2) are proportional. Consequently,

ζ -Ι(ω3 2 — λω3 1) = 0,

for any involutory set zl, . . ., zn_k_2, and since ω 3 2 ~ λ ω 3 1 is effective,
ω 3 2 = λω 3 ι and ω 3 = λ ω ι . When ωΟι = 0, then

4 ϋ - ζ J (ω31 - λω3ι) - ν Λ ζ J (λ - λ') ω21 = 0,

and it follows that
(λ — X')zJo)21 = 0

so that either ω2ι = 0 or λ = λ ' . ·
The following assertion [3] follows directly from the theorem just proved.
COROLLARY 1.6.1 (LEPAGE'S THEOREM). The form ω Ε AS(E*) lies in

the image of Τ if and only ifoj\L = 0 for any isotropic subspace L C Ε with
dim L = n.

1.7. THEOREM. Ζ,βί ω 2 G AS(E*) be such that ω 2 | χ = 0 for each iso-
tropic subspace L C Ε with dim L = k on which LUX\L = 0 . //f/ze /orm
ω ! Ε Ak(E*) is effective and k>s, then ω2 lies in the image of T ·

• We show that ω 2 \L = 0 for any isotropic subspace L C E. For if this were
not the case, we could select an involutive (k — l)-vector

Ζ = Ζχ Λ · · • Λ Zfe -1

in such a way that (zx Λ · · · Λ zs) J ω2 ^= 0. Next we choose as zfc

linearly independent solutions of the system of linear equations specified by
the 1-forms Γ ( ζ χ ) , . . . , r(z f c_ j), (zx /\ . . . /\ zft _x) -l ωχ. Then the subspace
L spanned by the vectors zx, . . ., zk is such that ω^ \L = 0 , but ω 2 |^ =̂= 0."

§2. Differential forms on J'M

2.1. Let Φ = J'M be the space of 1-jets of smooth functions on M. We recall
([ 1 ] , [15]) that there is on Φ a universal 1-form i/ t G Λ'(Φ), which defines
the contact structure. Thus, at each point χ G Φ the restriction dUx x deter-
mines on

Ex = Ker UltX <= ΤΧ(Φ)

a symplectic structure, and together with it the operators

Τ : Λ" {Ei) -*- A s + 2 (E%) and JL: A* (E%)->• A'~* (£•*)."

The tangent space ^ ( Φ ) splits into a direct sum:

ΤΧ(Φ) = Ex φ RZ l i 3 C,
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where Xt is the contact vector field on Φ with generating function 1 (see [4]).
Hence, if we denote by AS(E*) the differential s-forms on Φ that vanish along
X1, then, firstly, Λ* (£*) is naturally identified with AS(E*), and, secondly,

Formally, this isomorphism can be expressed as the relation

ω *==· ω0 -ι- Vx Ι\ α)!,

where ω Ε Λ*(Φ), ω 0 = AS(E*), ω1 Ε Α*'1 (Ε*), and

Qi = Xj J ω, ω0 = ω — i/t /\ ωχ.

We define a projection p: Λ*(Φ) -»• AS(E*) by setting ρ(ω) = ω 0 and an
operator dp : A"(E*) -* As+1 (E*), dp=p<>d.

PROPOSITION. The operator dp satisfies the following relations:

(1) dpik^! + λ8ωΊ) = λ ^ ο ^ ) + λ3ώρ(ωΊ),

λ!, λ2 6 R, ω1 ( ωί £ AS(E*),

(2) <Ζρ(ωι Λ ω2) = ^ρ(ωι) Λ ω2 + (—1)8ωχ Λ 4Ρ(®«). ω2 6 Aft(£"*),

(3) ^+ToL,=0,

(4) dpod = 0,

(5) Τ ο dp = dp ο τ,

(6) i,(dUJ = - d P / ,

w^ere Ly and if denote the operators of Lie derivation and of interior
multiplication on the contact vector field Xf (see [ 15]).

Using the properties of dp it is easy to calculate its action in the special
local coordinates (q1} . . -,qn, u,px, . . .,pn) on Φ:

dp ( Σ //. / (?. w . P)) d1i Λ dpj = 2 dp (fj, j) Λ dqj A dPj,
I, J It J

where

here / and / are multi-indices and I / I + I / I = s if

ω = Σ //,/ (?, «, Ρ) dqi Λ ^ € Λ' (Ε*).

2.2. We denote by C* C Λ*(Φ) the ideal consisting of the differential forms
that vanish on all R-manifolds (that is, integral manifolds of ί/λ of maximal
dimension). From Corollary 1.6.1 it follows that this ideal consists of
differential forms of the kind U1 Λ a + dUx Λ β.

Let C* = © Cs be the decomposition into homogeneous components.
s, + \>s> 0

Then C° = 0 and Cs = Λ*(Φ) if s > η + 1, while the elements of the factor
module Λ| = Α'(Φ)/03, by virtue of the Hodge—Lepage expansion, can be
identified with effective s-forms on Ε for s < η = dim M.
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LEMMA. Any form ω € Cs has the decomposition

ω = Ul Λ e>i + dUi f\ ω2,

where coj £ A S " ' (£*) is uniquely determined, and ω2 ε As ~2 (E*) is uniquely
determined ifs<n + 2. Furthermore,

d(o = — U1 Λ άρ(ω1 + άρω2) + dUx f\ (ω1 + άρω2).

• For ω = Ux Λ ίι(ω) + ^(ω)> but since ω ε C, we see that ρ(ω)
vanishes on Λ-manifolds andp(co) = Τ ω 2 by Corollary 1.6.1, where ω 2 is
uniquely determined if s - 2 < η (Proposition 1.2). Moreover, if
ω = Ui Λ ωχ + dt/j Λ ω2, then άω = — ί/χ Λ ^ ι + ώ ^ ι Λ («ι + άω2);
replacing 6?ω;-by dp(<uj) + U1 /\ hidaj), we obtain
d(o= —Ui f\ (άρω1 — ii ώω2) + dU1 f\ (ωχ + άρω2) and so the required
formula follows from Proposition 2.1(3).

2.3. THEOREM. The cohomology of the complex

(C): 0 -• Cl Λ C2 -> . . . -». C s Λ C 5 + l -v . . . - ν £2»+ΐ-^ Ο

is trivial for all s except s~ η + 1, where η = dim M.
• If ω = Ui /\ ωχ + dUi f\ ω2 is a closed form, then, by the preceding

lemma
dp (ω1 + άρω2) = 0 , Τ (ωχ + άρω2) = 0.

Hence, if ω G Cs and s < « + 1, then it follows from the second relation that
ω1 + dp ω2

 = 0, and from Lemma 2.2. that

ω = d(Ui Λ ω2). •

2.4. We consider the factor complex

ds:

which we shall identify with the complex of effective forms on E;

Since ( Q is exact in dimensions other than η + 1, the cohomology Hs

a of the
complex of effective forms is isomorphic to the de Rham cohomology ofAf;

Ks: H% ̂  HS(M) if 8φη.

THEOREM. A coset ω + C" of an effective form coSA? contains a closed
form if and only if <$(ω) = 0, where

Using the fact that Τ : Λ" - 1 (Ε*) -*• Λ" + 2 (Ε*) is an isomorphism, we can

write dp ω = Ύω.
To find ω we note that it is effective.
For
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Τ2ω = γ Τ dpo = y dp Τ ω = 0.

Hence

J_ ο dp (ω) = _L ° Τ (ω) = [_L, Τ ] (ω) = ω.

Next, let x G Λ" - 1 (£*) and y £ A " " 2 (£*) be such that

rf(io + {/,A^ + dU, Ay) =0.

Using Lemma^2.2 we obtain

dco — ί/χ Λ dp(z + dpj/) + di/x Λ (* + dpy) = 0,

and since άω = dp ω + ί7χ Λ L ι ω,
£/, Λ (Lico-dp (χ+dpi/)) + di/1 Λ (ω + Χ + ̂ ί/) = 0.

Thus, the coset ω + C" contains a closed form if and only if the following
system is soluble:

Ζ^ω = dp{x + dpi/), ω = —χ — dpy.
A necessary condition for the solubility of this system is that
Lx ω + άρ{ω) = 0, that is % (ω) = 0. We claim that this condition is also
sufficient. For if % (ω) = 0, then taking y = 0 and χ - - ω we obtain
ά(ω - Vx Λ ω) = 0.»

COROLLARY 2 A..1. Let ω be an effective form such that % (ω) = 0;then

d((u — ί/ι Λ J-dpO)) = 0.

COROLLARY 2.4.2. The sequence

0 ->• Ker/Imd -+• Hn

e -»- A"/Ker g -> 0
is exact.

2.5. DEFINITION. The differential operator g: AS -»- A? is called the
^w/er operator, and effective forms ω e Ker ^ are called divergent forms.

2.6. THEOREM. 77ze Euler operator satisfies the following relations:
(1) I o L 1 = L ( o I ,

(2) dp O g = 0,

(3) g2 = L l O g ,

(4) g (/co) = / S (ω)+Χ1(/)ω,+dp/Λ-Ldpco + dpi/co; ωζΛε

η.

• (2) d J ) o g = d p o L 1 + d | o j _ o d p = d p o L 1 - T _ L ° d p o L 1 =

= dp ο Li + [_L, ~Γ] ο dp ο Li — JL ° Τ ° d p ο Lt =

= dpo Li — d p o L i — JL° dp o L 1 o ~ r = 0

(3) dp ο _j_ ο dp ο dp ο _]_ ο dp = — Liodpoj_o-fo±odp =

= — L i ο dp ο [_j_, τ ] ο j _ ° d p = — Li ο dpo J_o dp,

therefore g 2 = L5 + 2L4 ο dp ο j _ ο dp~Li ο d p ο _L Ο d p = L, ο %.

(4) dp ο j _ ο dp (/ω) = dp ο J_ {dpf /\ω + fdpw) = d

(/ J_ dpω) = dpifti> + dpf f\ ± άρω + fdp ±
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2.7. PROPOSITION. Let ω £ Λ£. 77ζί?«

/>(£,ω) = /£(«) + dp(i,(o — / _L άρω) + Τ (ty J_ άρω).

• Using the infinitesimal Stokes formula LfCj- if άω + difOJ we obtain

= /ίί(ω) — fdp ο J_ ο άρ(ω) + dpi/ω + ΐ ^ ω =

= /£(ω) + dp(ifoi — / _i_ άρω) + ί(άρω + dpf A -L dpa.

But (see 2.4) 6?ρω Ύ±.άρω, hence
i/dpM = —dp/ Λ _L <ί?)ω + T(i/ J_ dj,a>). •

§3. Non-linear differential operators

3.1. For each differential «-form ω Ε Λ" (Φ) we define a (non-linear)
differential operator Δ ω : C°°(M) -*• A"(M) acting according to the following
rule:

Δω(/*) = σ; ι (/ ι )(ω),

where σ,· (h): Μ ->• Φ is the section determined by the function h Ε C°°(M)

^ ( h j : a; -> /j (A) | a . .

First of all, we note that two differential forms ω , , ^ Ε Λ " ( Φ ) determine
the same operator if and only if ω ι — ω2 &C". Thus, Δ ω is uniquely deter-
mined by the effective part ρ(ω). Bearing this in mind we assume in what
follows that the operators Αω are specified by effective forms ω Ε Λ?.

EXAMPLE (1). LetA: C°°(M) -• C°°(M) be a linear differential operator of
order < 2, and let Ω ο Ε Λ" (M)_be the volume form. We define an operator
Δ: C°°(M) -+ A" (M) by setting A(h) = Δ(Λ)_Ω0. We claim that there is a
unique effective form ω Ε Λ£, such that Δ = Δ ω . Uniqueness follows from
what has been said above, and existence can be proved by using local co-
ordinates and the relation

dq. dq. dqi/\ ... /\dqn = a*iW (dq, Λ . . . Λ άΊι-ι Λ dp, /\ dqi+l Λ . . . Λ <*?*)·

EXAMPLE (2) Let g be a metric on an orientable manifold Μ, Ω the
volume form defined by this metric, and Η Ε C°°(T*M) the Hamiltonian of
the metric. The form

ω = diH(n*Qg),

where -nx: Φ -+ Μ is the natural projection, determines the Laplace operator
in the sense that Δ ω (h) = A(h)Q,g, where Δ: C~(M) -> C°°(M) is the Laplace
operator for the metric g.

3.2. DEFINITION. Operators of the form Δ ω : C°°(M) -> An(M), ω Ε Λ?,
are called Monge—Ampere operators.

3.3. To justify this definition we express the operator Δ ω in a local
coordinate system.



162 V. V.Lychagin

Let qχ, . . ., qn be a local coordinate system onM, let qx, . . ., qn, P\, . . ., pn

be the corresponding coordinate system in Φ, and suppose that ω £ Λ" (Ε*)
is written as

ω = Σ ωΐ, J (?> «i P) rf?j Λ djrv, I /1 + 1 / J - «.

Since

V " > : (?ι, · · · , ? * ) ι— (?i, - . . , ? n . " = &(?)» Pi = -%£ , ..., pn =-$

We see that

where the multi-index / complementary to / is chosen in such a way that

d<li A dQi = dQi Λ · • · Λ dgn-

3.4. We consider the differential equation determined by Δ ω .
The (ordinary) solutions of this equation are smooth functions h G C°°(M)

such that Δ ω (h) = 0. Geometrically, such solutions can be regarded as
.R-manifolds L = σ;·ι(Α)(Λ/) C Φ of a special form, which are integrals for ω,
because

ω | L = o* ( h ) (ω) = Δω (h) = 0.

Using this interpretation, we extend the class of solutions by including in it
all R-manifolds that are simultaneously integral manifolds of ω.

3.5. Proceeding as in [ 15] to determine the symmetries of first order
equations, we define an action of the group Ο(Φ) of contact diffeomorphisms
of Φ on the Monge—Ampere operators:

The action of the algebra <:ί(Φ) of contact vector fields on Φ is defined
similarly:

We single out the symmetry group of the operator

Sym(Au) = {a 6 <7ί(Φ) | α(Δω) = Δω}

and of the equation

S y m c ^ J = {a 6 Ct(O) \ α(Δω) = haAa, ha 6 C "(Φ)}.

We denote the corresponding algebras by

symc (Δω) = {/ ζ C°° (Φ) | Xf (Δω) = hr Δω, /, ζ C°° (Φ)},

sym (Δω) = {/ ς. C°° (Φ) \ Xf (Δω) = 0}.

PROPOSITION. A function flies in symcCA^,), ω GAe", if and only if

(3.5.1) Λω + dpijU) + ifdpa> -f / ^ ω = 0

for some function h Ε (7°°(Φ).
• We note that if ω Ε Λ", then ρ (Ly-ω) Ε Λ2, therefore, the statement to be
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proved follows from the fact that

EXAMPLE. As an illustration of the use of contact transformations in non-
linear second-order equations we give a proof of a theorem of Jorgens [7],
which states that every function ho(qly q2) defined on the whole plane and
satisfying the Μ onge—Ampere equation

is a second-order polynomial.
To prove this theorem we note that under the contact transformation

a: ^(R 2 ) - ^ ( R 2 ) , α · ( ? 1 ) = Pl, a*(q2) = q2, a*(Pl) = -qlt

a*(p a ) = P2» a * ( " ) = " — Pi?i, a*(gr2) = q

the form

(3.5.3) ω = dp! /\ dp2 — dq1 /\ dq2,

representing the equation (3.5.2) goes over into the form

(3.5.4) α·(ω) = dp, Λ dqi + dq2 Λ dpu

representing the Laplace operator

Moreover, let L = σ;· (/,o)(R2 )be the solution of (3.5.2); then a{L) is a
solution of the Laplace equation, and the R-manifold of ot(L) is projected
without singularities onto the (qit q2 )-plane and, therefore, has the form
°j (Λ)(^2 )> where h(q1, q2) is a harmonic function. For otherwise a vector of
the form

would touch ot{L), hence, the vector

would touch L. But this is impossible, since then at the point of contact we
would have

dqx dg.dq, \ ( - λ 1 \ _ I 0

)qx dq2 dq\

for the solution h0 of (3.5.2). Next, observe that the second derivatives
d2h/dq\ and d2h/dql ofh, which determine a{L), are non-zero.

For if at a certain point

™ _ - * * . = <), and - * * _ = &,
^9? Oil ^ 9 ^
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then at this point the vector

touches a(L), and so
d . , d

u ο
"Pi "Pi

touches L, which is impossible.
But the functions d2h/dq'i and 92Λ/3ήΊ are harmonic, hence, by Liouville's

theorem,

4 T " = —ΓΤ" = const Φ 0.
dq\ dq\ ^

Thus,

——-— = const
dql dq2

and h{qx, q2), like ho(qi, q2), is a polynomial of the second degree.
3.6. Let / E symciAtj) and At: Φ -»• Φ be a one-parameter group of shifts

along the contact vector field Xf. Then from the definition of the algebra
symciA^,) it follows that^4 f(Z) is a solution whenever the R-manifold
L C Φ is one, where io\L = 0 .

Therefore, from a known solution L and a symmetry/we can construct a
one-parameter system of solutions Lt =At(L).

We now consider the special case when Lt — L, that is, when L is invariant
under the contact vector field Xf. A condition equivalent to the invariance of
L, but more easily verifiable, is that L is a solution of the second order
equation corresponding to / f\L = 0 (see [15]).

DEFINITION. A solution L C Φ is said to be an f-automodelsolution if L
is invariant under the vector field Xf (f\L = 0).

We describe a scheme for construction /-automodel solutions. Let us assume
that on the level surface {/ = 0} C J'{M) we can choose a hypersurface
Γ C {/ = 0} that is transversal to Xf and such that the trajectories of Xf
intersect Γ at only one point.

Then every/-automodel solution L, iu\L = 0, being invariant under
Xf (f\L = 0), is uniquely determined by its trace LT = L ΓΊΓ οηΓ. The manifold
LT, dim LT = η - 1, is simultaneously integral for the 1-form Ux \T and the
(« — l)-form /^(ω)|Γ . When there are no singularities of the equation {/ = 0}
on Γ (see [15]), then Ux | r defines a contact structure on Γ, therefore, if we
choose an (« - l)-dimensional manifold Ml in such a way that J'iM^) is
contact-equivalent to Γ (at least locally, which is always possible), then the
construction of LT, and together with it that of the /-automodel solution L,
reduces to the solution of the equation defined by the form ζ^(ω)|·Γ on Μ.

3.7 DEFIN ITION. Operators of the form Δ ω , where ω is a divergent form,
are said to be of divergent type.

THEOREM. An operator Δ ω , ω £ A£ is of divergent type if and only if
% (ω) = 0.
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3.8. DEFINITION. A conservation law for an operator Δ ω is an (« — l)-form
fl6A""' (Φ) whose restriction to an arbitrary solution L, ω ι = 0, is a closed
form.

Let us set the goal of computing conservation laws, say Θ. Then άθ vanishes
whenever ω vanishes, hence, by Theorem 1.6, άθ - goo Ε Cn for some function
g Ε ϋ°°(Φ), in other words, the operator Δ^ω is of divergent type. Thus,
ί?(#ω) = 0. Conversely, if Sf(gco) = 0, then from Corollary 2.4.1 it follows
that the «-form gai - l/χ Λ 1 dp(g(jo) is closed. Therefore, if there are no
topological obstructions, for example, if H"(M) = 0 then the form
gco — Ό χ Ldp (#ω) is exact and so defines a conservation law Θ,

dQ = g-ω — Ul Λ -Ldp(ga>).

We also mention that when Μ is a compact orientable manifold, then the
condition for the «-form gui — ϋχ Λ 1 dp (gco) to be exact is equivalent to

the fact that \ o*lih) (gco) vanishes for some function « Ε C°°(M). We note
Μ

that this condition is always satisfied if there is at least one smooth solution,
« 0 Ε C°°(M), Δ ω (/z0) = 0. For in this case the integrand is zero, because

<£(/..) (ga>) = σ;ι(Λο) (g) Δω (h0) = 0.

Thus, we have proved the following theorem.
THEOREM. The conservation laws, to within closed (« - \)-forms on Φ,

are in one-to-one correspondence with the solutions of the equation £{g<a) = 0
if either Η" (Μ) - 0 or if there is at least one smooth solution
h0 Ε C°°{M), Δ ω («ο) = 0. Here, to each function g with % (gu>) = 0 there
corresponds the conservation law θ satisfying the relation

dQ = gco — C/j Λ ±dp(g<u).
3.9. COROLLARY. / / Δ ω is of divergent type, then the functions g

defining the conservation laws satisfy the equation

dpig(u + dpg f\ JL dp(x> + X1(g
r)ro = 0.

3.10. We indicate some explicit formulae for constructing conservation laws
from solutions of the equation %(ga>) = 0. To do this we choose a function

u Ε (^"(Φ) being determined by the composition of the natural projections

u: Φ -+J°{M) =M χ R -*• R, and a solution « 0 Ε C°°(M), af(h )(£ω) = 0. Let

At: Φ -> Φ be the one parameter group of shifts along the contact vector field
Xu-hQ· We note that

At: (q, u, p)-

Next, if θ is a conservation law corresponding to the function
g, άθ = goo - U\ A 1 dp (goo), then using the relations

dt ' °

and
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Lu-h0 (θ) = iu_». (d6) + d (iu_h o6) = ^ ω _ Λ . ω -

- (u -h0) JL dp (get) + V, Λ *U-A. [JL dp (gw)] + d (iu-hfl),
we obtain

We set
ο

(3.10.1) Qg=

— 00

0

Λ? [giu-Λ.ω — (u — h0) _!_ dp (goo)] dt +
— oo

0 0

+ Ui/\
— oo

— oo

Then the form 0^ determines the same conservation law as θ. In fact, for an
arbitrary solution h, σ7*(/,)(ω) = 0, we have

σ?ι(Λ) (de-dQg) = o* ( h ) μ*_τ

Μ d6) = (Λ-, ο σ ί ι ( ή ))· (d9) = o| l ( f to) (d6) = 0.

3.11. Now we indicate a connection between contact symmetries and
conservation laws.

THEOREM. For every operator Δ ω such that %(gu>) — γ ω for some
function j G C " ^ ) , /« particular, for every operator Δ ω of divergent type
(γ = 0) awe? /or an arbitrary symmetry / E symciA^,), ifte /orm
0 = /y ω - / 1 dp ω is a conservation law.

• Suppose that / Ε symc(Au)). Then p(Z^· ω) - hf ω = 0 for some function
hf Ε C"°(<&). Hence, by Proposition 2.7,

/ g (ω) + d p (iyto—/ _i. ίίρω) + Τ (i/ _L ώρω)—/ι,ω =

= (Υ/ — ̂ )ω + άρ(ί}ω — f±dpu>)+ Τ (»/ J_ άΡ<ϋ) = 0.

3.12. We note that a conservation law ζ^ω -fldp ω is trivial (see Theorem
2.3) if and only if 7 / - fy· = 0. In particular, for operators of divergent type
the trivial conservation laws correspond to the symmetries of the operator
/ E sym(Aw). On the other hand, Theorem 1.7 asserts that Δ ω has non-trivial
conservation laws in dimension η - 2, but not below. However, such laws are
quite possible if we limit the class of solutions under consideration.

Let / E sym(A t J) and let Δ ω be of divergent type. Then
d(if ω - / I dp ω) Ε C", and since if ω - fl dp ω Ε C", this form determines
a cohomology class in

Let us assume that this class is trivial:
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Then there is an (n - 2)-form θ such that

dQ — (ifω — f±dp(u) € C""1.

It turns out that the restriction of θ to any /-automodel solution L, ω L =0,
is closed.

For in this case if (ω) L = 0, since os\L = 0, but L is Xfinvariant and
(/i dp ω) | £ = 0, because f L - 0. Thus, θ determines an (n - 2)-dimensional
conservation law for /-automodel solutions.

THEOREM . Let f Ε $γτη(Δω) and \_l(ifoj-fLdp ω) = 0. Then an
(n - 2)-form θ for which

dQ — (ifw — fj_dpw) ζ Cn-X

is a conservation law for f-automodel solutions.
3.13. THEOREM. When Αω, ω Ε Λ?, is of divergent type and such that

dp ω = 0, then there is a one-to-one correspondence between the Lie algebra
symc(Aw )/sym(Aw ) and the conservation laws (to within trivial laws) in
which a symmetry / E symc(Aw ) corresponds to the conservation law
θ = //ω).

• Suppose that a function g G C°°(<E>) determines the conservation law Θ.
Then S(g(o) = 0, or by Corollary 3.9, dpig ω + Χλ (g) ω = 0. On the other
hand, p(Lg ω) = dp (ig ω). Thus, g Ε symc(AC0) and θ = ig ω to within a
trivial conservation law.

EXAMPLE. The Laplace operator for an arbitrary Riemannian manifold
satisfies the conditions of this theorem.

3 14. To conclude this section we return to the definition of solutions of
the Monge—Ampere equation and broaden the class by including discontinuous
solutions.

Let Mo C Μ be a submanifold of codimension 1, forming the boundary of
a domain Ο CM. We consider a discontinuous function

v = v+ U v-, where v+ 6 C°°(O), ν- ζ C°°(M \ 0).

We call such a function a discontinuous solution corresponding to the
conservation law Θ, dQ — ω £ C", if

Μ

for any test function h Ε CQ(M).

THEOREM. A function υ is a discontinuous solution corresponding to a
conservation law θ if and only ί/Δω (υ) = 0 on Μ \M0 and at points ofMo

the Giugonio—Rankin equation holds:

σ* <ν+) (Θ) \M0 = o * l ( r - , (Θ) \Mo.

• Suppose first that h E. CQ(M) is such that supp h Π Μ0 = 0. For example,
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let supp h C 0. Then from Stokes' theorem it follows that

h Λ °t!w (Θ) = j d (/<<„+) (Θ)) - j ΛΔω (υ+) = - j ΑΔω (ι;+) = 0,
Μ Μ Μ
j j j
Μ Μ Μ

hence that Δ ω (υ) vanishes on Μ \ Μο.
Now if supp h Π Μ 0 Φ φ, then the above calculation leads to the relation

j dh Λ σ* ( r ) (θ) = j h |Mo [ < , „ , (Θ) \Mo - σ^,-) (θ) | M J = 0. •

COROLLARY. Suppose that Mo is specified by a function S Ε C°°(M),
Mo ={S = 0},and that dS Φ0 at the points ofM0. Then the Giugonio—
Rankin equation is equivalent to the following condition:

[<<->+) ( θ ) - σ ? ι Μ ( θ ) ] Λ <*S = 0
at the points ofM0.

§4. The use of contact geometry in the calculus of variations

Below we outline an invariant exposition of the calculus of variations, using
the apparatus of effective forms developed in the preceding sections.

With each differential η-form Ω € A" we associate a functional Ω acting
according to the following rule:

Μ

The Lagrangian of Ω, written in local coordinates, contains non-linearities
in the second derivatives of the same type as the Monge—Ampere operators.

The following theorem explains why the operator I of § 2 is called the
Euler operator.

4.1.THEOREM. The extremals of the functional Ω are solutions of the
Euler equation corresponding to the η-form ω = % (Ω).

• Let h0 G CQ(M) be an extremal ο/Ω. We fix a function / l l G CQ(M) and
consider the function

φ (t) = \ o ? l ( h i + ( h l , (Ω).
Μ

Then since h0 is an extremal, ^'(0) = 0 On the other hand,

Φ'(0) = J °WZ h i Q]
Μ

or, by Proposition 2.7,

φ'(0)= \ o W » i g ( Q ) ) = \ Kaf
Μ Μ

Since h l is arbitrary, we obtain
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<(/.„) (8Ω) = Δω (h0) = 0. •

4.2. A contact vector field Xf G ct(<&) is said to be a symmetry of Ω if

Under the assumption that Μ is compact this definition can be motivated as
follows. Let At: Φ -*• Φ be a one-parameter group of shifts along AV Then for
any function h G C°°(Ai) and for sufficiently small t, the R-manifolds
Lt =At(L) and L - σ;· φΛΜ) are projected diffeomorphically ontoM, hence
(see [ 15]) Lt = σ;· (Λ )(Λί) for some family Λ, G C°°(A/).

Moreover, from trie fact that Ζ,/Ω) G C" it follows that Λ *(Ω) - Ω G C",
consequently,

thatis, Ω(Λ,) = Ω(Λ).
4.3. PROPOSITION. The contact vector field Xf is a symmetry of the

variational problem if and only if

άρίβ + ijdpQ + /Ζ^Ω = 0.

44.THEOREM (Noether). Suppose that Xf is a symmetry of Ω. Then the
differen tial (n - 1 )-form ẑ  Ω - fldpfl,is a conservation law for the Euler
equation.

• Using Proposition 2.7 we obtain

0 = p(LfQ) = /Ι(Ω) + dp(ifQ - fA.dpQ) + T(if±.dpQ),
that is,

/ω + ά(ίβ — /J_dpQ) 6 Cn. •

4.5. THEOREM. Le/ Lt (ω) = 0 and ω = g (Ω); z7ze« every conservation law
for the Euler equation is determined by a symmetry of the Euler equation.

• We note that the condition for the divergence of Δ ω is equivalent to
Σ1(ω) = 0. For S(oo) = §2(Ω) = LXS(Q) = L^co). Therefore, the assertion
follows from Theorem 3.13 and the fact that dp ο % = 0. •

4.6. We consider now the classical case when Ω = &πί(Ω0), where
k G (7°°(Φ) is the Lagrangian and Ω ο G Λ" (Μ) is the volume form on M. Then
ω has the form

ω = % (&π!Ω0) = dpik (πΤΩ0) + X, (k) π? (Ωο),

and the conservation law corresponding to the symmetry /o f Ω is

We also write down the equations for finding the symmetries:

dp (Αϊ,πϊΩο) + Xf (k) nf (Ωο) = 0

and the conservation laws:
dpigd + L^ga) = 0.



170 V.V.Lychagin

APPENDIX I

SYMMETRIES, AUTOMODEL SOLUTIONS, AND CONSERVATION

LAWS IN NON-LINEAR ACOUSTICS

I.I. The propagation of a bounded three-dimensional sound beam in non-

linear media is described in [ 17] by the Khokhlov—Zabolotskaya equation:

, I H 1

 d
 (?PL 6 , dp' \ _ c» / a»P' . d-y \

y1·1·1' d% \ dx e o p o

 P d% ) ~ 2 V dy* ^ dz* ) ·

Here ρ - ρ - p 0 is the deviation from the equilibrium p 0 of the density of the
medium, c0 is the velocity of sound in the medium, ε = 7 + 1/2, γ is the
index of the adiabatic curve, τ = t — x/c0, χ is the coordinate in the direction
of propagation of the sound beam, and y and ζ are the transverse coordinates.

If we use the coordinates

then 1.1.1. takes the simpler form:

dq\ ^ dq\ •

1.2. We write out the effective form ω £ Α 4 (R 9 ) representing the equation
(1.1.2):

(u = ^-dpif\dqif\dqif\dqi-~-^-dpi/\dqif\dqzf\dqi+ud

+ p2

1dqi/\dq2/\dq3/\dqi +

The algebra of symmetries symc(A t J) of the Khokhlov—Zabolotskaya equation
can be found from (3.5.1). Solving this equation we see that the generating
functions of the symmetries have the form

(1.2.1) f(q, u, p) = l(2aq, + 2c)?1 + a{q\ + ?*) +

+ A'(qjq, + B'(qjqt + K(qt)]Pl •+- (3aq\ + 2β ? 2 + λ)Ρί +

+ [(4α9 ϊ + β + c)q3 + δ?4 + A(qt)]pa + l(4aq2 + β + c)g4 — δ ? 3 + B(q2)]Pi +

+ (Aaq2 + 2β - 2c)u + 2aqx + A'(qjq, + β"( ? 2)?4 + K'(qJ,

where α, β, δ, c are arbitrary constants andy4(<72). B(q2), K(q2) are arbitrary
smooth functions.

Thus, as in the case of a bounded two-dimensional beam [6] the algebra of
symmetries is infinite-dimensional.

However, if we limit ourselves to physically meaningful solutions p'(q)
(that is, p'(q) -» 0 as r -* °°, r2 = q\ + q\) and single out the subalgebra
S C symciA^,) of symmetries conserving the class of physical solutions, then
the generating functions /€= S have the form (1.2.1), where a = 0,
A=Alq2 + A2, B = B1q2 +B2,Ai,B1,A2,B2,Kare constants, and dimS = 9.
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As a basis in S we take the functions

A = 2j52g2 + p3q3 + ρ^ι + 2u, f2 = p2, U = q4p3 —

/4 = 2/?!?! + J33?3 + P4?4 — 2W, /5 = Pl?3 + />3?2> /β = 7?3τ

/τ = />1?4 + />4?2> /β = /?4ι /θ = Ρΐ·

Here / 2 , / 6 , / 8 , and / 9 correspond to translations in the directions
?2> ?3. ?4> and #1 ;/i and/ 4 are the scaled symmetries;/3 corresponds to
a rotation in the transverse (q3, <?4)-plane.

The Lie algebra structure in S with respect to the Lagrange bracket is given
by the commutation relation:
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From the table it follows that 5" is soluble. We show how S can be used to
construct exact solutions of (1.1.2).

To do this we note that if p{q) is a solution of (1.1.2) and
Qi(t), 22(0, Q3UX QAU) is a solution of the system of ordinary differential
equations

(1.2.2)

i + B2, Qk (0) =-- qit

then for each t, - °° < t < °°, the function

P.(?) = P(<?(<)) ·βχρ[2(β - e)t]

is displaced by a shift in time t along Xf, where f£S, hence, is a solution of
(1.1.2). The initial solution p(q) can, for example, be sought in the form

For by substituting the expression forp(<7) in (1.1.2) and separating the
variables we obtain the equations for F and G, respectively,
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(1.2.4) i

(1.2.3) reduces by elementary transformations to an elliptic integral of the
second kind

(1.2.5) JF(2/^ +c1y
il2df=±3~ll2q1.

We note that (1.2.3) has the particular solution F={qx + cf /6. (1.2.4) has a
unique solution satisfying the boundary conditions G(0) = a, lim G{r) = 0,

which can be found by using the substitution G = r~2 u(log r), υ = w(v) to
reduce the problem to the solution of the second-order equation

(1.2.6) W' = 4-VJ?±*L

1.3. Let us describe the conservation laws of (1.2.1) using § §3.8 and 3.10.
By solving the equation % (ga) = 0 we find that a function g defining a con-
servation law has the form

g = a(q2, q3, qt) + ς^(ς2, q3, qA),

where a{q) and b{q) satisfy the equations

T „ . d*b d*b _ n db _ d*a d*a
v > dq% dq\ dq2 dq\ dq*

Thus, each conservation law is uniquely determined by a pair of functions
a(<j2> 43> q*)» bo(q3> qn), where a(q2, q$, qn) is biharmonic in q3 and q4, and

t>o(<j3' QA) is harmonic. Here

(1.3.2) b(q2, q3, qi) = b0(q3, qk) +
Ό

Evaluating the integral in (3.10.1) we now find the conservation laws

(1.3.3) Qg= ( — g-pt + ^- u.) dqi/\dq2f\dq3 +

Let us point out certain consequences of (1.3.3). To do this we integrate

of(P){Qg) around the boundary of the domain D: 0 < qx < r, 0 < q2 < c for

the following functions g:
(i) if g = /ε (<72)λ0(<73, 94), where /ε is shaped like the delta function and

λ 0 is harmonic, then
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— OO — CO

(ii)if g = K(q2)Xl(q3, qk) + K{qz)-qu where
d2\l/dql + d2X1ldql = 1 and hs(q2) converges (in the sense of generalized
functions) to the Heaviside function 6(q2 ~ c) then

( Ι-3·5) ί ί ( ρ ^ — ^

or, bearing in mind (1.3.4),

0- oo 0

1.4. Let us use the conservation laws we have found to describe the pro-
pagation of perturbations in non-linear acoustics. We assume that the boundary
of the second beam is given by the function S(qly q2, q3, q$), that is,
p(q) = 0 if S(q) > 0, p(q) # 0 if S(q) < 0, and S(q) = 0 is the propagation law
of the boundary of the sound beam.

We choose an arbitrary conservation law 6g and write out the corresponding
Giugonio—Rankin conditions. In our case, independently of the choice of 6g,
they lead to the Hamilton—Jacobi equation for S:

Suppose now, for example, that the disturbance for q2 = 0 is localized in a
circle of radius r(qi). Then, solving the Cauchy problem for (1.4.1) with the
initial conditions

S(qi, 0, q3, q4) = q2

3 + q\ — Γ2(^),

we find that in the section q2 = const > 0 the disturbance is localized in a
circle of radius

(1.4.2) '·(??)•

where q*, 0 < qX < ql, is a solution of

Π 4 Ί) gi-g* _
( ί Λ - 0 ) 9 ~ [r

We consider some particular cases connected with singularities of the solutions
of (1.4.3).

Firstly, for disturbances whose boundary grows when q2 = 0 at a constant
rate ε, r(^1) = r0 + ε^, we find
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r(qi, ?2) = '"ο + ε?ι + — ?2·

Thus, to obtain a stable bounded beam, what is necessary is an auto-
oscillatory regime of change of the boundary of the initial disturbance. Let us
consider, for example, the following case:

r(?i) = r0 + A sin o ^ .

Then the equation (1.4.3) for determining qX takes the form

( L 4 4 > ( ? « ? > 4
which, depending on qx and q2 may have various sets of solutions,
0< qf<qi.

Physically, this means that in a given section q2 = const, as qx grows, there
must arise a stratification of the sound beam; this is the phenomenon of "self-
diffraction". The stage at which the stratification occurs and the radii of the
resulting rings can be determined from (1.4.4) and (1.4.2).

APPENDIX II

ON CONSERVATION LAWS AND SYMMETRIES OF NON-LINEAR EQUATIONS
OF KLEIN-GORDON TYPE

V. N. Rubtsov

This appendix deals with an application of the theory developed above, to
find the conservation laws and the symmetry algebras (of infinitesimal
symmetries) of non-linear partial differential equations. We wish to emphasize
the fact that the presence of a large number of conservation laws is not just
peculiar to the "selected" equations (for example, the Korteweg-de Vries or the
"Sine—Gordon" equation) but quite generally, is a common phenomenon for
the majority of natural equations of mathematical physics. The family of
equations considered in this Appendix is grouped around the non-linear Klein-
Gordon equation:

Π u=-f(u), where • = - ^ — Δ , Δ is the Laplace operator.

In particular, the standard model "Sine—Gordon" equation is obviously
included in the class under consideration. With it we begin our study of the
conservation laws on JlM.

II. 1. The "Sine—Gordon" equation. The initial manifold is
Μ = R2, J1 R2 == R s , and the equation is

(II.1.1) ",1,92 = s i n u>

where qx and q2 are coordinates on R2 and {qlt q2, P\> p2, u) are the corres-
ponding coordinates on Jl R2 = R s . The effective form corresponding to
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(Il . l . l ) is

(II.1.2) ω = - - ψ , Λ dqi + -^-dp2/\ dqz —sin udqt /\ dq2,

ω ζ Λ2 (Ζ1 R 2 ).

To find the conservation law θ Ε Λ1 (J1 R 2 ) it is necessary to find
gEC°°(/ 1 R 2 ) from

(11.1.3) Ε (ga>) = 0,

where % is an Euler operator.
In our case, since

da = —cos u du /\ dqt /\ dq2 Η άρω = ρ ο άω = 0 ,

the action of the Euler operator on goj can be written as follows:

(11.1.4) $(ga) = gL^ + dp(Xg J ω) + L^co.

Computing the three terms in (II. 1.4), we obtain

gLiW = — g cos u dqt /\ dq2,

dp (Xg J ω) = dp | - [-i (gQi +Plgu) 4- sin ugVt

u) + sin ugPi

Li(g) ω = — ω .

Equating to zero the coefficients for the corresponding forms in (II. 1.3), we
find g after simple manipulations:

(11.1.5) g = (aqx + b)Pl + (—aq2 + c)p2,

where a, b, and c are arbitrary constants.
After substituting it in the formula άθ = gco - Ul Λ Xg J ω, we obtain

dQ= ( γ gQl + gPi sin u^du /\ dqt —

— (γ gQl+ gPl sin u

gdΛ * 4
1 1

/>&dpi Λ dq2 — -^
1 1

— y PiSv, dPi/\ dqi+-£ Pigp, dp2 /\ dq3.

To find θ we evaluate the integral (3.10.1) and obtain the conservation law:
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+ ( — -ζ ugq, + gvxcos u + -jPiPzgpt)

Thus, as follows from (II. 1.5) and (II. 1.6), the space of conservation laws for
(II. 1.1) generated by J1 (R 2 ) is three-dimensional. We write out the basic
conservation laws:

1 du du

. 1 fl2tt 1 .

NOTEl. In the form

uxx — Utt = sin u,

to which it is transformed by the substitution

(II. 1.1) can be regarded as the Euler—Lagrange equation for the Lagrangian

In the case of (II.1.1) the algebras sym(Aw) and symciA^,) are the same,
namely, the semidirect product of the algebra of translations and that of hyper-
bolic rotations of the plane. All the conservation laws θχ,θ2, and θ3 are
Noetherian. Using (II. 1.7) and (II. 1.8), we see that the laws θ ι and θ2 corres-
pond to two directions of translation, that is, they represent the laws of
conservation of energy and of momentum while the law 0 3 corresponds to the
conservation of the relativistic moment of momentum for a hyperbolic
rotation. In conclusion we give the general form of the vector field
Xf,f Gsym(Au), for(II.l.l):

NOTE 2. Using/€= sym(Aa;) asid a method similar to that used in Appendix
I for the Khokhlov—Zabolotskaya equation, we can obtain /-automodel
solutions of (II. 1.1), which are familiar to physicists [2] and can be expressed
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in terms of elliptic functions.
For the following equations we give only the final results.
II.2. The equation u^ Qj = ̂ '(u). If ^'(u) and .^"(u)are linearly

independent, then there is a three-dimensional space of conservation laws on

J1 (R 2) for which the laws θ χ ,θ2, and θ3 serve as a basis. They are obtained from

the corresponding θί,θ2, and 0 3 for (II.1.1) after replacing sin u by JF'(U),

cos u by ^"(u),and making the obvious sign change. The generating function g

is the same as in (II. 1).
If ,jF'(u) and JF"{u) are linearly dependent, then the equation is essentially

of the form

In this case the space of conservation laws on J1 (R 2) becomes infinite-
dimensional. Each conservation law is determined by a pair of functions of a
single variable, and the generating function is

g = / (?0 ρ + φ (?2) Ρ2+4- (/' (?i) + Φ' (?*))·

Π.3. The Kruskal transformation ([ 13]). The Kruskal transformation

ill.3.1) u = υ ± arcsin evqi

takes solutions of the equation

(II.3.2) vqiQ2 = y i ± e V 5 l sin ν, 0 < β < 1 ,

into solutions of (II.1.1)

U<?!?2 = S i l 1 U-

The form corresponding to (II.3.2) is
Λ Λ

For definiteness we take the negative sign under the radical.
In the case (II.3.3) άρωΦ0

άρω = άω — t/4 /\ (X4 J dm) = ε Pl - sin u dp{ /\ dqt f\ dq2.

After some manipulations we obtain the generating function

# 1 — 8 2 ? o COS 1/

g= \

where gj = a^! + 6, g2 = - a^2 + c, and α, Ζ) and c are arbitrary constants.
We note that, as ε -> 4- 0, the function g for (II.3.2) goes over into the

corresponding function g for (II. 1.1). The conservation laws on J1 (R 2) form
a three-dimensional space. The basic forms for (II.3.2) go over, as
ε -> + 0, into the basic forms for the Sine—Gordon equation.

II.4. The non-linear Klein—Gordon equation in R4. This equation has the
form
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A/=R4, / ' ( R 4 ) ^ 9 .

An effective form corresponding to (II.4.1) is

(II.4.2) ω = — dp! A dq2 A dq3 /\ dqt — dp2 A <ki Λ dq3 Λ <*?4 +

+ dj»s Λ <ki Λ Φ ί Λ ^?4 — dp4 Α <%ι Λ <k* Λ dq3 —

— f(u)dQi Λ dqM Λ dff» Λ dq4;

The generating function g S CX·/1 R4) for (H.4.1) is

g = (aq2 + bq3 + cgr4 + d)^! + (a?1 -f eg3 + / j 4 + h)p2 +

+ (6?i — eq* + PQt + r)pa + (cqt — fq2 — pq3 + l)ptt

where a, b, c, d, e, f, h, p, r, and /, are arbitrary constants. The space of con-
servation laws on J1 (R4) for (H.4.1) is ten-dimensional if/'(«) and/"(w) are
linearly independent.

The algebra sym(Aw) in this case is the Poincare algebra. The basic
conservation laws, as in II. 1, are Noetherian.

Four conservation laws are generated by translations and six by rotations
conserving the Minkowski metric. As an example we write out one of the
basic conservation laws

X l \ V f e qif)dq1 /\ dq3 /\ dqk +
l/2up2 — q2f)dqlf\dq2l\dqa —

gj Λ dQa Λ d9* + ^ « ^ Φ ι Λ d?s Λ dQi — ^aPiQi du f\ dq3 f\ dg4 —

— ll2uq2 dpx Λ dq2 /\ dq3 + ilip1q2 du /\ dq2 /\ dq3 —

— ll2uq2 dp2 Λ dqx f\ dq3 + (Vrf4?4 + ll2q2p2)du f\ dqx j \ dq3 -f

+ ll2uqk dp3 A dq1 Λ dqk —
 1l2p3qt, du /\ dqx /\ dqk + 1/2uq2 dp3 /\ dqx Adq2—

— */»?,?, du Λ dqt A dq2 — V,u?t dpk A ^ A ^ s -

This corresponds to the conservation of the relativistic moment of momentum
for a hyperbolic rotation in the {qx, q2 )-plane.

Π.5. The "stationary" Klein—Gordon equation in R2. This equation has
the form

(Π.5.1) Δ« = / » , /'(Ο) = 0.

A corresponding effective form is

(II.5.2) ω = Ψ ι Λ di2 — dPt Λ d1i — 1'{u)dqx A dq2.

Since άρω = 0, the Euler operator acts according to (II. 1.4). Solving the
corresponding equation (II. 1.3), we find the generating function for the
conservation laws of (II.5.1).

As in II.2, if a/" + β/' Φ 0, then
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g = (—a1i + Φ ι + ("Ii + b)p2,

where a, b, and c are arbitrary constants.
The space of conservation laws on / l (R2) is in this case three-dimensional.

A basis is formed by the laws
d*u i du du Ί •, . Γ 1 / du \2 1 d*

2 _ . 1 d2u. η , . ί I du du

2 1

The symmetry algebra for (II.5.1) is the same as the algebra of the group of
motions of the Euclidean plane. The vector field Xf, / E sym Δ ω , for (II.5.1)
has the form

All the conservation laws θ v, θ2, θ3 are Noetherian, θ t and θ2 correspond to
conservation of momentum for parallel displacements, while 03 corresponds
to conservation of moment of momentum under a rotation.

Because of the importance of (II.5.1) in hydrodynamics [10] the
/-automodel solutions, which can be easily constructed by the method of §3,
are of particular interest.

If af" + β/' = 0, then the equation is in effect

(11.5.3) Au = e««,

which was studied and solved already by Poincare and Picard. The conservation
laws on / 1 (R2) in this case, as with II.2, form an infinite-dimensional space,
and each conservation law is determined by a pair of functions of a single
variable, but of different arguments.

NOTE. The results about the construction of the symmetry algebra in II.4
and II.5 are also valid only when

af + β/' φ 0.
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