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The article is devoted to singularities of integral manifolds which realize solutions of nonlinear partial 
differential equations and to the algebraic geometric and topological questions related to them, 

Singularities, jumps, shock waves, or, in short, catastrophes are one of the most important and intriguing sections 

of the geometric theory of nonlinear differential equations. Modern theory of singularities explains plausibly enough 

the mechanism behind the formation of catastrophes (see, for example, [24]). However,  despite the simplicity and the 
vast number of applications (and also speculations), this mechanism is not satisfactory. The point is that, apparently, 

on the one hand, the majority of  processes to which this mechanism is applied are described using differential equations 
(and, as a rule, partial differential  equations) and, on the other hand, its use begins only when the differential  equation 
has been practically forgotten and during further  manipulations of the solution a Jacobian has vanished. 

In this work we attempt to approach the theory of singularities of  solutions of nonlinear differential equations 

from a unified geometric standpoint and in doing so we indicate a more direct and immediate connection between 
differential equations and the theory of singularities, applying the latter to projections of integral manifolds. 

1. JET BUNDLES 

Jet spaces lie at the basis of the geometric approach to the theory of nonlinear differential  equations. The 
concept of the jet  was introduced by Ehresmann. However, it should be noted that already the first integrated partial 

differential equation, the Euler equation of homogeneous functions, was integrated by Euler using the geometry of 

spaces of f i rs t -order  jets. 
1.1. Let M be a smooth manifold of dimension m + n, where m > 0 is a fixed natural number. For each smooth 

submanifold N c M of codimension m we denote by [Nix k a k- je t  of this submanifold at point x E N. Suppose that 

Jxk(M, m) is the space of all k-jets  of submanifolds of  codimension m at a fixed point x ~ M and 

is the submanifold of  all k-jets. Reduction of k- je t  [N]x k to s- jet  [N]x 8 for k > s generates projection ,"rk,s:Jk(M, m) --~ 

jS(M, m). Set %,0 = rk and J~ m) = M. 
If manifold M is the total space of smooth bundle c~: M = E(c~) --, B then we denote by Jk(c0 the manifold of all 

k-jets of the local sections of this bundle. Identifying (local) sections h: B --. M with their graphs, submanifolds in M 
of form h(B), we obtain imbedding jk(~) C jk(E(c0, m), where m = dim c~. Natural projections a .  rk: jk(~) _., B are 

denoted by ak. When bundle c~ is a vector bundle, then so are bundles %,  k > 0. Projections 7rk, ~ define morphisms of 
these vector bundles, and for s = k --  1 the following exact sequences hold: 

in which Skr * denotes the k- th  symmetric degree of the cotangent bundle r*: T*B --~ B. 

1.2. Keeping in mind the description in the general case of the fibers of projections rk,k_l: jk(M, m) --~ Jk-l(M, 

m), we consider the action of pseudogroup G(M) of local diffeomorphisms of manifold M in the space jk(M, m). Denote 
by G• k the set of all k- jets  [~o]x,yk of local diffeomorphisms ~o: M ~ M, taking point x onto point y, ~o(x) = y. The 

composition of the local diffeomorphisms generates the following pairing: 
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which determines the structure of a group in space Gx.x k = Gx k provided that x = y = z. 

Obviously, Gx ~ = {e) and Gx I = GL(TxM). 
Natural projections ~rk,k_l: Gx k ---, Gx k-1 are epimorphisms of  groups the kernels Hx k of which are Abelian 

groups isomorphic to tensor products SkT * | T x for k _> 2. Here, by T x = TxM and Tx* = Tx*M we denote the tangent 

and cotangent spaces in manifold M. 
Thus, for k >__ 2 groups Gx k are obtained by successive extensions of the complete linear group by means of the 

Abelian groups. 
Group Gx k acts in a natural way in the space of k-jets Jxk(M, m): if  [~]x,x k E Gx k, [N]x It E Jxk(M, m), then 

[~O]x,xk.([N]x k) = [9(N)]x k. Under this action, kernel Hx k acts transitively on fibers F(xk_l) of projection Irk,k_l: jk(M, 
m) ~ jk- l (M,  m) over elements xk_ 1 = [N]~ k-1 ~ jk - l (M,  m), A stationary subgroup (in Hx k) of element [Nix k ~ F(Xk_l) 

under such action when k > 2 is the following subspace: 

(Ann T xN)oS~-~T*x | T x R- SkT  x | T x N ,  

where by (Ann TxN ) �9 sk - lTx  * we denote the symmetric product of annihilator Ann TxN and space sk- lTx  *. 
This remark shows that fibers F(Xk_l) for k > 2 are homogeneous spaces relative to the action of a connected 

Abelian group Hx k and thus carry an affine structure associated with vector space Sk(Tx*N) | Ux, where by u x we denote 

a subspace normal to submanifold N: u x --- TxM/TxN. 
1.3. Every diffeomorphism ~ E G(M) is lifted in a natural way to local diffeomorphism ~(k): jk(M ' m) ---, Jk(M, 

m), where  ~(k)([N]xk ) = [~(N)]~,(x) k. Here,  ~(o) = ~, and liftings ~o(k), k >__ 1 are compatible with projections ~k,8: rk,s 

. ~o(k) = ~(s).  ~k,s, k > s. Obviously, diffeomorphisms ~o(k), for  k >_. 2, preserve the affine structure described above. 

When k -- 1, fibers F(x) of bundle ~h,o are identified with the Grassmannian manifolds of  n-dimensional subspaces in 

tangent space TxM, F(x) = Gn(Tx) "" Gn(Rn+m), and automorphisms 9(1) are linear collineations of these manifolds 

generated by differentials ~*,x. 
The following theorem describes the geometric structure of bundles of submanifold jets. 
THEOREM. Jet bundles Irk,it_l: Jk(M, m) ---, Jk--X(M, m) are affine for k >_ 2. Here fiber F(xk_l) over elements 

Xk_ 1 = [Nix k-1 is an affine space with which vector space Sk(Tx*N) | u x is associated. Liftings ~o(k) of local 
diffeomorphisms ~ ~ G(M) to spaces Jk(M, m) are affine automorphisms for k >_ 2 and are linear coUineations of 

Grassmannian manifolds for  k = 1. 
Supplement. If manifold M is additionally furnished with a contact (or symplectic) structure and Rk(M) is a 

manifold of all k- jets  of the Legendre (the Lagrange, respectively) submanifolds in M, then,  considering instead of 
G(M) a pseudogroup of contact or symplectic local diffeomorphisms and acting as above, we obtain that for k > 2 the 

projections Rk(M) ~ Rk-I(M) are affine bundles whose fibers over points [N]x k-1 are associated with vector spaces 
Sk+I(Tx*N) | TxM/C x in the contact case, where C x is a contact plane at point x ~ M, and with sk+I(Tx*N) in the 

symplectic case. Natural liftings of contact symplectic, respectively) local diffeomorphisms in Rk(M) are affine 

automorphisms for k >__ 2. 
1.4. Consider some specializations of the given general construction. 
1) Let a: M = E(a) ---, B be a smooth bundle. Then, identifying local sections of this bundle with submanifolds 

in M transversal to the fibers, we obtain imbedding ~k: Jk(Cx) ~ Jk( M, m), where m = dim ~. Transversality conditions 

are the conditions on l - je t ;  therefore,  the fibers of projections ~rk,k_l: Jk(cx) ---, jk--l(~) coincide for k >__ 2 with the fibers 
of the general projection 7rk,k_l: Jk(M, m) ~ Jk- l (M, m) and thus inherit an affine structure [5, 33]. Liftings of local 

automorphisms of bundle a are automorphisms of this structure. 
2) We shall assume in addition that bundle a is a vector bundle. In that case, bundles ~rk,k_l: Jk(cx) ---, Jk--l(o~) are 

also vector bundles and the affine structure defined by the vector one coincides with the one described above. Keeping 

this in mind, we describe a covering of manifold jk(M, m) by open sets of form Jk(o0 which would preserve affine 
structures and in doing so would provide a convenient method of realizing arbitrary affine structures. To this end, for 
each element x k = [Nix k ~ jk(M, m) we consider a tubular neighborhood G of submanifolds N c M and the normal 
bundle a: r = E(c0 ~ N. Then the image of natural imbedding ~k: jk (~)~ jk (M ' m) covers a neighborhood of element 

x k and the affine structure on jk(M, m) in this neighborhood is induced by a linear one. 
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The described construction is analogous to the construction of affine maps in a projective space. Keeping in 

mind this analogy we call imbeddings ~k: j k ( a ) ~  jk(M ' m) a f f i ne  maps on a manifold of k-jets. 
3) For a trivial bundle c~: M x N --, M manifold Jk(a) coincides with manifold jk(M, m) of k-jets  of smooth 

mappings from M into N. The affine structure described above is, in particular, an invariant of a left--right action. 

2. CARTAN DISTRIBUTION 

This distribution, which served as the source of the theory of differential  forms, enables us to isolate in an inner 

way among the various submanifolds of a jet  space those which correspond to the solutions of differential  equations. 
In other words, the Cartan distribution enables us to reformulate the problem of the integrability of differential 

equations into a differential  geometric problem. The Caftan distribution is a natural generalization of the classical 
contact structure and the geometry defined by it is the continuation of contact geometry. Many concepts of the theory 

of differential  equations (such as solutions, symmetries, conservation laws, shock waves, and others) are naturally 

formulated in terms of the arising geometry. 

2.1. The Cartan Distribution. Every submanifold N c M, codimN = m defines a submanifold Jk(N) = jk(M, 

m), a k - j e t  extension of N, where jk(N) = {[N]x k, Vx ~ N}. Analogously, each local section h: B --. E(cx) of bundle c~ 
defines a local section jk(h): B ---, Jk(a) of  bundle CZk: jk(h): x ---, [h]x k, Vx E B. We call submanifolds L ~_- jk(M, m) 

[sections 0: B --* jk(a)] that have form L = Jk(N) [0 = Jk(h)] for some manifold M (or section h) integrable. If k ~ 0, then 

of course not all the submanifolds are integrable. Keeping in mind the isolation of such manifolds, we consider the 

following construction. 
Each element Xk+ x = [Nix k+a E Jk+l(M, m) defines subspace L(xk+l) C Txk(Jk(M, m)) tangent to submanifold 

Jk(N) at point x k - [N]x k. Let C(x k) c Txk(Jk(M, m)) be a subspace spanned by a union of  various subspaces of form 

L(Xk+l' ) provided that elements Xk+ 1" pass through the whole fiber F(Xk). In other words, subspace C(Xk) is a linear span 
of the union of tangent spaces to integrable manifolds passing through point x k. 

Subspaces C(Xk), like d is t r ibut ionS:  x k ~ C(x k) defined by them on a k - je t  manifold jk(M~ m), are called 

Cartanian. 

The Cartan distribution on manifold Jk(c 0 is constructed analogously. Furthermore,  if  ~: E(~) ~ N = M, ~(k): 
jk(~) ~ jk(M ' m) is an affine map, then mapping n(k) carries the Cartan distribution on Jk(M, m) int,~ a Cartan 

distribution on jk(~;). Using this fact, we can limit ourselves to the consideration of  Cartan distributions on manifolds 

of form Jk(a), where c~ is a smooth vector bundle. 
Example. Manifold JI(M, 1) is identified in a natural way with the projectivization of  skew tangent bundle r*: 

T*M -4 M. The Cartan distribution on it is a standard contact structure. Affine maps, in this case, are manifolds of 

the 1-jets of smooth functions j l (1)  with natural contact structure. 
Here and fur ther  on by 1 we denote the trivial linear bundle B x R --* ]3. 

The definition of Cartan subspace C(Xk) directly implies that the differential  of projection zk,k_ 1 maps this 
subspace into L(Xk). Furthermore,  equality (~rk,k_l).,Xk--l(L(xk))= C(Xk), which gives an alternative definition of the 

Cartan distribution, is valid. In other words, Cartan subspace C(x k) can be represented in the form of a direct sum of 

subspaces L(Xk+l), u I ~ F(Xk), and Txk(F(Xk_l) ), Xk_ 1 = 7rk,k_l(Xk). 
k Submanifolds of  form jk(N) C J (M, m) are integral manifolds of the Carton distribution without degeneration 

projected in manifold M. The converse assertion is also true: each integral manifold L of a Carton distribution of 

dimension n for which mapping ~rk,o: L ---, M is a characteristic imbedding is integrabte. 
2.2. Carton Form. Suppose that a: E(a) --. B is a smooth bundle and  Aoi(jko~) is a module of differential a k- 

horizontal i - forms on a k- je t  manifold Jk(a). The operator of exterior differentiation d: Ai(B) --. Ai+a(B) on manifold 
B generates the operator of  complete differentiation d: Aoi(jk~ ) --+ Aoi+l(Jk+la), the value of which on i - form a~ ~ A0i(jk~) 
is determined by the following universality relation: 

o ,  e . ,  

] k+~ (h)(dm) = d (J ~ (k)(m)), 

which is valid for all local sections h: B --* E(a). 

Operator d is the 1-degree differentiation of graded algebra Ao*(Jka) with values in Ao*(jk+lot), while c1 ~ = 0. 
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To each function f ~ Coo(jk-lco we can associate two differentials: 

difference 

U ( f )  = z~;.~_~ (d f )  - -  d f ~ A  1 (J~cr 

exterior df  and the complete ~]f. Their 

is called the Cartan form corresponding to function f. 

The value of  this form on vector X ~ Txk(Jkc0 is calculated in the following way. Let  us represent tangent space 

Txk_ l(Jk--la) in the form of a direct sum of a horizontal space L(x k) and a vertical space TxkV, a space tangent to a fiber 
of projection %. Corresponding to this expansion, vector (Trk,k_l),(X) can be represented in the form X o + X v, where 
X o ~ L(Xk) , X v ~ TxkV. In this notation, equality U(f)(X) --- XV(f) is valid. 

THEOREM [5]. The distribution on manifold jk(~) defined by the zeros of Cartan 1-forms U(f), Vf E 
C~(Jk--Xa), coincides with the Cartan distribution. 

2.3. Metasymplectic Structure. Operator U: Coo(Jk-l~)---, Al(jk~), which associates with function f Cartan form 

U(f), is a C~(B)-l inear  differentiation over mapping ~tk,k_l*: U(fg) = fU(g) if  f ~ C~176 and U(fg) = fU(g) + gU(f), 
Vf, g ~ Coo(jk-1~). 

Keeping in mind the description of tangent spaces to integral manifolds of a Cartan distribution, we consider 
the restrictions of the differentials of  Cartan 1-forms to subspaces C(xk). To this end, we fix element x k ~ jk(~) and 

define operator 

f~.~: C = (J~-~)-+ A 2 (C* (xk)), 

where fixk(f)(vl, v2) = dU(f)(v x, v2), Vf ~ C~176 Vl, vg. E C(Xk). 

The properties of operator U imply tha t  fixk(fg) = f(Xk_l)fixk(g ) + g(Xk_l)flxk(f). Therefore,  operator fixk defines 

operator flxk: Txk_l* --, A~'(C(Xk)), where fiXk()0 --- fixk(f), A = dxk_lf , f(xk_l) = 0 .  Here it is obvious that fiXk(~) = 0 if 

E Im 0tk_l,k_2*. And, since Txk_l*/[motk_l,k_2*= (Txk_l(F(Xk_2)))* , mapping fiXk defines operator 

~q:T~k_ ' (F (x~_2))~2 (C (xk)), 

which we call a metasymplectic structure on Cartan space C(xk). 

If a is a vector bundle, then Txk_l(F(Xk_2)) --- Sk-lTx* | % and thus the metasymplectic structure here is the 
operator 

f~:&x| x ~  A 2 (C* (x~)). 

Before we calculate the value of this operator, we note that for each covector A ~ Txk_l*(F(Xk_2) ) the exterior 

2- form fl x = fi(;~) E a2(C*(Xk)) vanishes on subspaces L(Xk+a), u 1 ~ F(xk) , and Txk(F(xk_a) ). Therefore,  by virtue of 

decomposition C(Xk) = L(Xk+l) �9 Txk(F(Xk_l)), in order to compute the metasymplectic structure fi, it suffices to 

determine the value of the 2- form fix on the pair of vectors X e L(Xk+l), Y ~ Txk , Y ~ Txk(F(Xk_l) ). Using the affine 
structure, we identify tangent space Txk(F(Xk_l)) with the vector space SkTx " | Uxo, where x o = %,o(xk), Uxo is a tangent 
space to f iber c~(x) at point xo, and space L(Xk+ 1) with tangent space T x. Under these identifications we have for vectors 
X E T x, Y ~ SkTx * | u, ;~ ~ sk- lTx  | u*: 

f2a(X, Y ) =  ( L, X ~ 6 Y  } ,  (l) 

where by 6: SkTx * | u --* Tx*- | sk - lTx  * | ~ the Spencer 6-operator is denoted. 

Using this formula, it is not hard to describe the degeneration subspace of the exterior 2- form fl x. Namely, 

. |  Kerf lx={oESkT x |  (x~), 60ET x g~}, (2) 

where gx = Ker  ~ = {'1 ~ sk-- lTx * | v, (),, ~/) = 0}. 
Thus, the degeneration subspace of fl x coincides with the first prolongation of symbol gx c Sk--lTx * | v. 
2.4. Isotropic Subspaces. Let us say that vectors X, Y E C(Xk) are found in involution under a metasymplectic 

structure if fix(X, Y) = 0 for all tensors A ~ sk--lTx | v*. 
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Subspace E c C(Xk) in which every pair of vectors X, Y ~ E is found in involution is called isotropic. 
Examples. 1) Vectors X, Y ~ L(Xk+1) C C(xk) are found in involution and L(Xk+l) is thus an isotropic subspace. 

2) Vectors 0, ,7 ~ SkTx * | u c C(Xk) are found in involution; Txk(F(Xk_l) ) = SkTx * | u is an isotropic subspace. 

3) Let 0 ~ SkTx * | ~,~ X ~ L(Xk+l) --- T x. Then, by virtue of formula (1), vectors X and 0 are found in involution 

if and only if vector X determines the direction of degeneration of the symmetric tensor 0, i.e., X ? ~0 = 0o 

4) Fix subspace % c Tx*, and using decomposition C(x k) = L(xk+l) ~ SkT~ * | u and identification ek,: L(xk+l) 
-~T x, we define subspaces E(Xk+l), ~L) C C(xk), which is spanned by vectors of  form X �9 8, where X E Ann ~ c  T x, and 
0 ~ sk~ | u C SkTx * | ~. Then, by virtue of formula (1), subspace E(xk+l, ~ )  is isotropic. 

We say that E c C(x k) is a maximal isotropic subspace if  E is not a proper subset of  any other isotropic subspace. 
The following proposition gives a complete description of  a maximal isotropic subspace. 
Proposition. Each maximal isotropic subspace E c C(x k) has the form E ; E(xk+ 1, ~ for  some subspace q~C 

Tx*. Here subspace OA is uniquely determined by space E; vZg = Ann O~k,(E). 

COROLLARY. Let E c C(Xk) be an isotropic space for which mapping ~k*: $ '- '  Tx is an isomorphism. Then 

E is a maximal isotropic subspace and E = L(Xk+~) for some element Xk+ 1 ~ F(xk). 

3. INTEGRAL MANIFOLDS 

The introduction of  integral manifolds enables us to define a generalized, from a geometric viewpoint, solution 

of a system of partial differential  equations. Such a generalization is analogous in many ways to the approach to 

integration of  f i rs t -order  equations proposed in the last century by Sophus Lie. The need for such generalizations at 

present became obvious after  the works of  V. P. Maslov on asymmetric methods. 
3.1. Differential  Equations. A system of differential equations of  order at most k given on a submanifold of 

codimension m of manifold M is defined to be a smooth submanifold ~fc Jk(M, m). The solution of such a system of 
differential equations is a smooth submanifold N c M the k- je t  solution of which lies in manifold ~f, jk(N) c N. 

Let 9 ( 8 )  be a bounded cartan distribution on submanifold ~f; ~ (~ ) :~ '~  x k ---, C(Xk) n Txk(~'J = C(g, xk). We shall 
say that point a E ~ is the regular point of a system of differential equations if  in a neighborhood of this point function 

x k ~ dim C(~'-, x k) is constant. Otherwise, point a E ~ is called singular. 
If all the points of  the system are regular, then the family of subspaces ~(N) defines a distribution on manifold 

~f, while the solutions of  this system are integral manifolds of a distribution of ~'(~) having dimension n and being 

projected without degeneration into manifold M. Waiving the last condition, we arrive at the following geometric 

generalization of the concept of solution. The solutions of a system of differential equations g~ are n-dimensional 
integral manifolds of a distribution of  ~'($). n-dimensional integral manifolds of the Cartan distribution are called 

simply integral. 
Thus, the solutions of a system of differential  equations ~ are integral manifolds L c Jk(M, m) lying in 

submanifold ~f. If L = jk(N), then such a solution is called classical or smooth; otherwise, i.e., when mapping rk,0: L -* 
M is n o t a  characteristic imbedding, manifold L is called a generalized (in the geometric sense) solution. The affine 

variants of the above-given constructions are defined analogously. 
Examples. 1) Integral manifolds in contact manifold JX(M, 1) are Legendre manifolds. 

2) Every n-dimensional submanifold L c F(xk_l) is integral. 
3) A natural generalization of  the previous example is the following construction. Let N o be a submanifold in 

N and N c M, codimN = m. Denote by N0 (k-l) c Jk_l(N) a submanifold formed by (k --  l ) - je ts  [N]x k-1 provided that 

point x runs all submanifolds N o. And suppose that No(N) is the set of  those elements x k ~ Jk(M, m) for which 

lrk,k_l(Xk) E No (k-l), and subspace L(Xk) contains a tangent plane to submanifold No (k-l) at point xk_ 1. Then the tangent 
planes to submanifold No(N) coincide with the maximal involution subspaces described in the previous section. 

Therefore,  No(N) is the maximal integral manifold of the Carton distribution and, consequently, every n-dimensional 
submanifold is integral. 

4) In the case when mapping ~rk,0: L --, M has no singularities, i.e., when differential  (rk,0), is an imbedding, 
image Zrk,o(L) is an immersed submanifold in M. For such submanifolds N --+ M extension Jk(N) c Jk(M, m), which is 
an integral submanifold for k _> 1, is well-defined. 

3.2. Symbols and Prolongations. A prolongation of order l >_ 0 of a system of differential  equations ~ c jk(M, 

m) is defined to be subset ~o(l) c JK+~(M, m)formed by those elements [N]x k+~, the k- je t  extensions jk(N) of  which are 
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tangent to submanifold ~ at point [N]x k ~ ~ with order larger than or equal to l. A system of differential equations 

is called formally integrable if  for  all l >_ 0 prolongations g (0 are smooth submanifolds and projections ~rk+~+t,k+i 
(~+t) -4 f~ (~) and %,o: ~ ~ M are smooth bundles. 

The conditions for formal integrability are naturally formulated in terms of the symbols of differential  equations. 
Let g ~ jk(M, m) be a system of differential equations. The symbol of this system at point x k = [N]x k ~ ~ is 

defined to be subspace 

g (xn) = Tx k (~ f] Tx~ (F (x~_t))cS k (TxN)| x. 

If  all prolongations ~(0 are smooth manifolds, then their symbols g(0(x k) = sK+~Tx*N ) | u x at points Xk+ ~ = 

[Nix k+~ are l-thprolongations of symbol g(xk). Therefore,  6(g(l+X)(Xk)) C Tx*N | g(0(Xk), and thus at each point x k ~ 

the Spencer 6-complex 

6 6 5 

0-+ g(t) (Xk)_+ g(l--t) (xk)| T*~N-+ g(t-2) (Xk)| e (T x N)__~ . . .  

is defined. 
The cohomologies of this complex in the term g(J)(Xk) | /ti(Tx*N ) are denoted by HJ,i(~, Xk). They are called 

Spencer 6-cohomologies of  a system of differential  equations ~ at point x k ~ ~. 
We shall say that a system of differential  equations g ' c  Jk(M, m) is r-acyclical i f  HJ,i(~, Xk) = 0 for all values 

0 ___ i __. r, j >__ 0, Vx k ~ ~. n-acyclical systems are called involutive. Using affine maps and Goldschmidt's [32] results, 

we arrive at the following criterion for formal integrability. 

THEOREM. Suppose that ~ c jk(M, m) is a 2-acylical system of differential  equations for which projections 

rk+l,k: ~(1) ___, ~ and ~rk,O: ~ ---, M are smooth bundles. Then ~ is a formally integrable system of differential  equations. 

3.3. Integral Manifolds with Singularities. Suppose that L c Jk(M, m) is an integrable manifold and 

~.L = {~LI  Ker (n~,o).,~4= 0}. 

is a set of singular points of mapping ~rk,0: L --* M. 
Let us decompose L \ E L  = u L r into connected components L r. For every such component,  mapping 7rk,O: L r --* 

r 
M is an immersion, and thus L r can be represented as a graph of the k- th  prolongation of the immersed submanifold 

Nr, L r = jk(Nr). If, in addition, proper set EL has interior  points, then at almost every such point (locally) L is a 
submanifold in a maximal integral manifold of form No(N ) (see Example 3). Image L' = a'k,s(L ) C JS(M, m), k > s of the 

arbitrary integral manifold L c jk(M, m) is a smooth immersed integraI submanifold at points x s $ 7rk,s(EL ) and is a 
smooth manifold with "singularities" at the critical points of this mapping. Consider this process in reverse order. Subset 

L' defines an integral manifold L at all the nonsingular points. Namely, manifold L is a (k - -  s)-th prolongation of L'. 

At critical points x 8 ~ ~rk,s(EL) a "blowing up" of set L' analogous to the a-process occurs. Fix the arising type of 
singularities. An integral manifold with singularities is defined to be such subset L c Jk(M, m) for every point x k ~ L 
of which there is a smooth integral manifold L c Jk+a(M, m), s--- s(xk), the image Irk+8,k(L ) of which coincides with L 

at a neighborhood of point x k. We shall say that integral manifold L uniformizes L at a neighborhood of point x k. 
For every point x k of  an integral manifold with singularities L we choose a neighborhood tY(Xk) C jk(M, m) and 

a uniformizing integral manifold Lxk C Jk+S(M, m) such that a'k+s,k(Lxk ) ntT(Xk) = L n O(Xk). Suppose that x k" ~ L is 
another point and the integral manifold Lx. k c Jk+S'(M, m) uniformizes L in a neighborhood tY(xk' ) of point Xk'. If Yk E 

O'(Xk) n G(xk" ) n L, and in a neighborhood of this point subset L is a smooth manifold and Yk is not a singular point 
of mapping ~rk,O: L --* M, then projections a'k+s,k+s,, providing that s >__ s', are local diffeomorphisms between manifolds 
L x and Lxk. everywhere except for the set of singular points. If, however, at point Yk subset L is not a smooth 
submanifold, then s = s" and submanifold L x coincides with Lxk, at a neighborhood of the preimage of point Yk. Using 

this remark and coalescing uniformizing manifolds along the corresponding projections, we obtain a smooth manifold 
^ 

L, called the "blowing-up" of an integral manifold with singularities L, together with natural mapping ~. L --* L. which 

is a local diffeomorphism at the nonsingular points of manifold L. 
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Further generalization of the concept of a solution of a system of differential equations is related to the use of 

integral manifolds with singularities. And, specifically, an integral manifold with singularities L c Jk(M, m) is called 

a solution of a system of differential equations ~ c jk(M, m) if for each point x k ~ L the uniformizing integral manifold L 
c jk+s(M, m) lies in the s-th prolongation ~(s). 

We say that solution L of a system of differential equations ~'has a singularity at point x k ~ L if either (1) L 

is a smooth submanifold of  point x k but projection ~rk.o: L --, M has a singularity at this point, or (2) L is not a smooth 
submanifold at this point but this singularity is resolved for some prolongation. 

Note that case (2) reduces locally to (1). For this it is enough to pass from a system of  differential  equations 
to prolongation g(s and consider here solutions furnished by smooth integral submanifolds. 

3.4. Characteristics and Singularities. Consider the system of differential  equations ~ c Jk(o0 and let L c~(8) 
be its solution. Denote by E~L the set of  those points at which mapping ak+~: L --* B has a Thom--Boardman singularity 

of type N~. Tangent plane Txk+sL c C(Xk+~) at point Xk+ s E~tL,  taking into account the description of maximal isotropic 
subspaces given above, can be represented as the triad (Xk+~+ I, ~,  Lo), where ~ C Tx*, L o c sk(~) | ~x, Txk+sL = 

~0(Xk+8+l) ~ LO, dim ~ = dim L o = l, ~ = Ann(c~k+s),(Txk+sL), ~/~ ~ C L(Xk+s+l) is the preimage of Ann ~?~ C T x 

under isomorphism (~k+s)*: L(Xk+s+l) -~Tx. 
We indicate conditions under which a system of differential  equations ~ ( o r  its prolongation) has no solutions 

passing through point Xk+ s E:N(8) and having a singularity of type ~gat a given point. Everywhere in the sequel, unless 
particularly specified, we assume that all prolongations ~(s) are smooth submanifolds in Jk+S(M, m). 

We begin with singularities of type E~. In this case, triad (Xk+,+~, og, Lo), defining tangent plane Txk+,~(L), Xk+ ~ 

~ L ,  contains two lines: ~ C Tx* and L o c Sk+SN | o~ z. Suppose that A c Tx*, A # 0 is the generating vector of line ed; 

then the generator of line L o has the following form: 0 = A k+~ | e, where e ~ ax, e # 0. Inclusion Txk+L c Txk+~ 

implies that L o c g(S)(Xk), and thus covector A is characteristic for a system of  differential  equations at point x k ~ ~f, x k = 

7rk+s,k(Xk+s). 
THEOREM. For a system of differential  equations N c jk(~) tO have solutions L passing through point Xk+ ~ and 

projecting onto subspace ~o c "Ix, Xk+ s ~ l~lL, (Otk+s),(Txk+sL) = o~,0, codim~d~ = 1, it is necessary for the generators of 
line ~ = Ann ~o to be characteristics of system ~f at point x k. 

COROLLARY. Elliptic systems of differential  equations have no solutions with singularities of  type Bx. 

Note that, generally speaking, elliptic systems can have solutions with singularities of  type f2~, where I _> 2. 
Thus, branch points of Riemannian planes give singularities of type E~. for  solutions of  a system of Cauchy--Riemann 

differential equations. 
3.5. Let us return to the general case~ Fix point x k ~ N c jk(a) and type of singularity ~ .  We shall say that 

integral manifold L passes through point x k and is projected onto ~d ~ = Ann ~d c T x, where ~L c Tx* is a subspace, dim 

= l, if  Im(C~k+~),(Txk+ L) = ~o for some point Xk+ ~ ~ L, x k = ~rk+~,k(Xk+~). We give conditions under which a system 
of differential equations N has no solutions passing through point x k and being projected onto ~ ~ To this end we 
introduce the following notation. By V e we shall denote the complexification of vector (over R) field B. Covector A 

(Tx*) c, A ~ 0, is called the complex characteristic for a system of differential equations /Fat point x k ~ ff  if A k | e 
(g(xk)) C for a vector e ~ C~xC, e ~ 0. For each complex characteristic covector A we denote subspace 

~C X (~) = {eG ~,, ~.~| (x~)) c} 

by K(A) c C~xC. 
Suppose that P(Tx*) c is the projectivizafion of a complex cotangent space and P Char~  ", Xk) C P(Tx*) c is a 

complex projective characteristic manifold generated by complex characteristic covectors. In this notation the following 
result is valid. 

THEOREM [5, 12]. Let system of differential  equations ~ c Jk(a) and subspace ~ c  Tx* be such that 

1) the linear submanifold p(og)c of  a complex projective space P(Tx*) c intersects the complex projective 
characteristic manifold PCharC(~,  Xk) in a finite number of points A 1 . . . . .  A r, and 

2) j~=~ dimeK (~j) < dimR~. 
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Then there exists a natural  n u m b e r  s o depend ing  on dim~ d i m a ,  and on order  k of  system g" such that  all prolongations 

(s) of  a system of  d i f fe ren t ia l  equat ions ~ f o r  s ___ s o have no solutions given by smooth  integral  manifo lds ,  which  would 

pass through point  x k ~ ~ and be p ro jec ted  onto subspace~162 ~ 

R e m a r k .  1) The  n u m b e r  s o can be calculated exact ly  like the cor responding  n u m b e r  f r o m  the Poincar6 6-1emma. 
2) Assume that  P C h a r C ( ~ ,  x k) is a complex  pro jec t ive  mani fo ld  of  codimens ion  c and degree  d, not  lying in any 

hyperplane .  Then  in a general  posi t ion s i tuat ion r = d if  c = l - -  1 and r = 0 if  c > l - -  1. When c = l - -  1 and r --- d, we 

obtain f r o m  hypothes is  2) o f  the t heo rem that  d _< l - -  1, that  is, d _< c. But (see [18]) for  p ro jec t ive  manifo lds  not lying 

in any hyperp lane  we always have  d >_. c + 1. The re fo re ,  in a general  posi t ion s i tuat ion,  singulari t ies of  type r~ on 

integral  mani fo lds  that  are solutions of  sys tem t~ for  l ___ c are not,  as a rule, realized. 

4. G E O M E T R I Z A T I O N  OF G E N E R A L I Z E D  F U N C T I O N S  

In this sect ion we establish a connect ion  be tween  the solutions of  l inear systems of  d i f fe ren t ia l  equations that  

are general ized in a geomet r ic  sense and general ized solutions in the sense of  d is t r ibut ion theory.  The  pr incipal  

construct ions of  this sect ion (See. 4.3) were  the result  of  re th ink ing  the canonical  Maslov opera to r  and a t tempt ing  to 

carry  it over  to a more  genera l ized si tuation.  All the bundles ,  d i f fe ren t ia l  opera tors ,  and equat ions in this section are 

linear. 
4.1. Green ' s  Formula .  For  every  smooth  vector  bundle  a: E(a)  ---, B we denote  by  at: E(a  t) ~ B the bundle  dual 

to it: a t = Horn (a ,  /tnr*), where  r*: T*B ~ B is a co tangent  bundle  and n = d imB.  I f  a E F(a) is a smooth  section of  

bundle a ,  and a t ~ F(a t) is a sect ion of  the dual  bundle ,  then by  (a, a t) ~ An(B) we will denote  the d i f fe ren t ia l  n - f o r m  

that  is the value o f  sect ion a t on section a. Each morph i sm  o:. a ~ f of  vector  bundles  over  man i fo ld  B generates  a 
c o n j u g a t e - t o - i t  m o r p h i s m  at: f t  _._, at ,  where  (a(a), b t) = (a, at(bt)) ,  Va ~ r ( a ) ,  b t E r(flt). Denote  by  D i f f  1 (a, 8) the 

module  [over C~176 of  l inear  f i r s t - o r d e r  d i f fe ren t ia l  opera tors  act ing f r o m  sections of  bundle  a into sections of  bundle 

8. I f  A: a ~ f and V: f t  ~ a t  are two f i r s t - o rde r  operators ,  the symbols  a;~(A) and ax(V) of  which  on any d i f ferent ia l  

l - f o r m  ~ ~ ,tl(B) are skew adjoint:  axt(A) + ax(XT) = 0, then opera tor  

V(A, V)  : r ( ,~ |  

where  ,/(A, ~7)(a | b t) = (A(a),  b t) - -  (a, V(bt)),  is well  de f ined  and is a f i r s t - o rde r  l inear  d i f fe ren t ia l  operator .  

The  symbol  of  this opera to r  de te rmines  h o m o m o r p h i s m  w: a | f t  ~ An-I(B)  according  to the fo rmu la  

(~ ('~(A, V)  ) (a| = L A p  (a| 

So, opera tors  "/(A, X7) and d �9 w have  the same symbol  and consequent ly  d i f f e r  by  a ze ro -o rde r  operator .  Replacing,  if  

it is necessary,  opera to r  X7 by  V + V' ,  where  V '  ~ H o m ( f  t, at) ,  we obtain  for  each opera to r  A ~ D i f f a ( a  , 8) the single 
opera tor  At E D i f f  x (Bit, at)  called the adjoining to opera tor  A for  which  ,/(A, At) _- d .  w. 

Note that  h o m o m o r p h i s m  w is uniquely  de te rmined  by  the symbol  of  opera to r  A since aX(7(A, V))(a | b t) = 

(ax(A)(a), bt). Thus ,  w --- w a ,  and fo r  every  opera tor  A ~ D i f f  1 (a,  8) there exists a unique a d j o i n t - t o - i t  opera tor  for  

which  Green ' s  f o r m u l a  

( A ( a ) ,  b t ) - -  ( a, A t (b t) ) ~d(oa(a ,  b t) (1) 

is valid. 

This  f o r m u l a  can be carr ied  over  to opera tors  of  h igher  order  by  decompos ing  each opera to r  into f i r s t -o rde r  

operators .  So, i f  A = A 1 . A2, where  A E Di f f2 (a ,  "~), A 1 ~ D i f f  1 E ( f ,  "I), A2 E Di f f a ( a ,  f ) ,  then  At = A2t .  Alt ,  and 

Green ' s  fo rmula  has the f o r m  

( A ( a ) ,  b '  ) - -  ( a, At(b t) ) =da)a(a,  bt), (2) 

where  Wa(a, b t) -- waa(A2a, b t) + 6oA2(a, Altbt) .  
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Every k- th  order operator A ~ Diff  k (a, fl) can be realized as a composition of (k --  1)-th and first-order 

operators. To this end first note that operator A defines (and is defined by) a morphism of vector bundles ~a: CZk 

fl, where pA([h]x k) = A(h)(x). And, in addition, bundle c~ k is imbedded in a natural way into a bundle of  l - jets  of the 

sections of bundle Ok--l, which we will denote by Ok_l, v Let Fk_ 1 be an additional bundle: Ok_X, 1 - a k * Fk_ v Then, 
extending in a trivial way homomorphism ~ot~: ak --* fl to Fk_ 1 and identifying the obtained homomorphism ~o: O~k_l, 1 --, 

fl with the differential  operator A F ~ Di f f l (ak_  1, fl), we obtain a representation of operator A in the folaowing form: 

A = A F . Jk--1, where Jk--1 E Diffk_l((x, ~k--X), Jk--l: h ---, Jk_l(h). Iterating this process and using formula (2), we obtain 
Green's formula for operators of any order. Here, standard reasoning shows that operator &t ~ Diffk(f l t  at) does not 

depend on the choice of additional subbundles Fk_ ~, Fk_2 . . . .  , whereas Green's form ~0t~(a, b ~) does. Furthermore~ 

Green's form defines the (k --  l ) - th  order bidifferential operator o~: a x b ~ --, ~oA(a, b ~) with respect to each argument. 
4.2. Green's  Formula on Jet  Bundles .  We carry over Green's formula to bundles a k. Mapping ~o~x: ~k ~ fl 

corresponding to operator A ~ Diffk(a,  fl) defines a section of  the induced bundle ak*(fl), which, as before, we denote 

by ~o~. In particular, the identity operator id ~ Diff  k (a, ~) defines section Pk = ~~ ~/~(~176 For each section b ~ 
r(fl t) we denote by (~o/,, b t) the ak-horizontal n - fo rm on manifold jk(oe), the value at point x k ~ jk(~), Xk = [h]xk, of 

which equals (A(h)(x), bt(x)). In an analogous way we associate with Green's form tvzx and section b t an ~k_l-horizontal 

(n --  l ) - fo rm o~a(b ~) ~ Aon-l(Jk-lot)~ the value at point xk_ ~ of which equals ~A(h, bt)(x). 
In this notation Green's formula 

( q)a, b t ) - -  ( p~, Atb t ) :=d~a(b0  (l) 

is valid on manifold Jk((x). To prove this formula it is enough to restrict the left-  and right-hand sides of  (1) to a section 

of form jk(h), Vh ~ r(a) ,  and use Green's formula [see (1) from subsection 4.1]. 
4.3. Generalized Functions. Suppose that L c jk(~) is an oriented integral manifold for which projection %: 

L ---, B is a proper mapping. We connect with this integral manifold a generalized function rL of c lassY'  on manifold 
B the value of which on section a t ~ l'(~x t) with compact support is given by the formula 

~L(ag--- j' ( p~, s t ) .  (1) 
L 

The use of Green's formula in form (1) from subsection 4.2 leads to the following result. 
THEOREM [13]. If  L c N 8) c jk+s(~) is an integral manifold which is a generalized solution in a geometric 

sense of a linear system of  differential  equations ~fc jk(ot), then ~L is a solution of this system in the sense of generalized 

functions. Here the singular support of ~I~ is contained in the critical set ak(~L). 
Supplement .  I) Formula (1) can be carried over in an obvious way to arbitrary integral manifolds with 

singularities. In this connection, the theorem formulated above remains valid. 
2) We present formula (1) in terms of  the branches of integral manifold L. Assume that the basis of  B is oriented, 

and let L \ ~ L  = u L r be the partition into connected components of the complement to the singular set. For each block 
r 

of Lr, mappings ak+~: ~ " - '  a ~ / r  --  CZk+s(Lr) are local diffeomorphisms, and L r is the graph of a k- je t  of the smooth 
multivalued section h r in the neighborhood 02/r. We ascribe to each block of L r the sign r equal to the sign of  the 

Jacobian mapping Ok+8: L r -* U r. Let fl ~ An(B) be the volume form on manifold B and a t -- a*.f~, where a* ~ r(a*), 
a* = Hom(cz, 1). Then formula (1) takes the form 

og r 

where S ( hr' a* ) f2 is equal to the sum of the integrals along the branches of h r. 
eZr 

3) This formula shows how we can connect with any, possibly nonoriented, integral manifold a generalized 
function on P( ] a t ] ), where by [ a t I we denote the bundle geometrically dual to bundle o~ [29]. Orientation conditions 
enable us to choose in an unambiguous manner the sign r In the general case this is possible only if the first 
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characteristic class w (see below, Sec. 9) dual to the cycle of El-singularities vanishes on L. When bundle a is 
functorally connected to manifold B, for example, it is a bundle of half-forms, function e(Lr) assumes four values _+1, 
+_i. Compatibility conditions here are the triviality of class w computed with respect to mod 4 ("quantification 
conditions"). In this sense classes w are generalizations of the Maslov--Arnol'd classes to arbitrary jet bundles. 

4) Solutions of elliptic systems of differential equations do not contain singularities of type E 1. Therefore, on 
solutions of such systems class wl k is trivial and the sign e(Lr) can be chosen to be equal identically to 1. The previous 
theorem thus asserts that the sum of the branches of a multivalued solution of an elliptic system of differential equations 
is a smooth section. 

5. SINGULARITIES, TRANSFER OPERATORS, AND SHOCK WAVES 

The connection between generalized functions and integral manifolds which was indicated above and also the 
fact that singularities of generalized solutions of linear differential equations propagate along bicharacteristics permits 
us to hope that this circumstance has a purely geometric nature. In this section we show that this is indeed so. 

5.1. #-adic Singularities. Let B o c B be a submanifold of codimension t >__ 1 an d # = {f ~ C~176 I fBo = 0} an 
ideal corresponding to this submanifold. For each vector bundle c~: E(a) --, B the module of smooth sections 1"(,~ ~ of 
the restriction of bundle a to submanifold B 0 can be identified in a natural way with quotient-module l'(a)/#I'((x). In 

particular, Coo(Bo) = Coo(B)/#. 
Further exposition is a transposition of the general concept of transfer operators as applied to #-adic filtration 

[16]. The principal role here is played by the normal v: E(v) ---, B o and conormal v*: E(v*) ~ B o bundles to submanifold 
B o. The fiber v x of the normal bundle u at point x ~ B o is the quotient space TxB/TxB o and fiber Vx* of the conormal 
bundle v* is, correspondingly, Ann TxB o c Tx*B. Module .t v of smooth sections of the conormal bundle is identified 
with quotient #/#2, and quotients #k/#k+l are, naturally, identified with k-symmetric powers skAv. Correspondingly, 
for an arbitrary vector bundle o~ isomorphisms 

txh.P (,a)/~tk+lF (a) --~r (i~ ~ | 

hold. 
5.2. Transfer Operators. Let A E Diff  k(a,  fl). Consider the following model problem: find a section a 

#~l'(c~), having an e-th order of smallness on submanifold B o for which A(a) = 0 mod #ooF(fl). The natural course of 
solving this problem is as follows. For an arbitrary section aj E #J+kI'(a) inclusion A(aj) ~ #JI'(fl) is valid. We clarify 
which conditions should be imposed on section aj, so that A(aj) E #i+lI'(fl). To this end we introduce operator o~,(J)(A): 
F(a ~ | SJ+kAu --, F(fl ~ | sJA v acting according to the following rule: 

(r(~J) (A) ([a]]) = A (aj) rood l~J+II" (It), 

where [aj] ffi aj rood #J+lF(ot). 
It is easy to verify that operators au(J)(A) are Coo(Bo)-homomorphisms. We call them symbols of operator 5 

along submanifold B o. Using these symbols, conditions A(aj) ~ #J+Xl"(fl) can be written more concisely: %(J)([aj] ) ffi 0. 
Suppose that these conditions are fulfilled. Let us see under which conditions, without changing [aj], we can 

obtain an even "smaller" right-hand side. For this, obviously, it is necessary that A(aj + aj+l) ~ #J+2I'(/~) for a certain 
choice of section aj+ 1 ~ # J+k+lF(a), i.e., it is necessary that A(aj)rood #i+2r(fl) ~ Ima~(J+l)(Lx). Let us formalize this 
process. To this end, consider Coo(Bo)-modules ;~,J(~,) = Ker %(J)(A) c r (a  ~ | sJ+kAv, ~,J(z~) = Coker au0), and 
consider operators 

A~ ([ai])= (A (al) rood ld+~P (6)) rood Im (r(~ j+') (A). (1) 

The solubility conditions of our problem have the following form on the first two steps: [aj] Efftoi and Ajl([aj]) = 
0. For further progress we need to enlist spectral sequences. 
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It is easy to verify that operators Aj ~ are f irst-order linear differential operators on submanifold B o. We call 

them transfer operators. A nontriviality condition for the construction set forth is the requirement that ~ J ( A )  # 0. In 

this case, submanifold B o is said to be characteristic. 
From a geometric standpoint modules ~,J(A) [as, too, c~,J(A)] can be considered as the modules of the sections 

of families of vector spaces 130 ~ x --, K~(x) c % | S~+k~ x, where ~x  = Ann TxB o, and mappings a~,x(J)(A ) as the 
restrictions of the j-prolongations of the symbol of operator A to subspace ~x for which diagrams 

q .~J)(a) q 
O~x| x.--~-+px| x 

(2 )  

are commutative, 
Consider the commutative diagram: 

0 0 

,,- r(p~174 % ~, (~1--.-o 

H 4 

0 o 

o-.-x/i (~ rWl ~ % 
,; 4 

, . ~ ' s  | ~ . 

,1 4 4- 
. . . . . . . . . .  �9 , o ~ �9 �9 ~ . . . . . . .  �9 �9 �9 . �9 �9 �9 �9 �9 

. . . . . . .  �9 �9 �9 . �9 �9 �9 . . . . . . . . . . .  �9 �9 ~ * , ~ . + 

�9 , �9 . �9 . �9 �9 �9 �9 , . . . . . .  . �9 , �9 , '  , �9 �9 �9 | . ~ o * , 

1 + , + 
0 0 0 O 

(3) 

in which we denote by kui the i-th exterior power of module k v and by 6 the restriction of  the Spencer g-operator. 
Suppose that HvJ,i(A ) are cohomologies of the first column in the t e r m ~ ( J ) ( A )  | ~v i, and HvJ,k(~)  are 

cohomologies of the second column in the term ~ J ( A )  | kv i. Observe that HvJ,i(~) and HvJ,i(c~u) are C~176 

and the values of  the former at point x E B o equal the 6-cohomologies of the symbol of intersection ga(~ -- gx(A) n 

a x | Sk~x, where gx(A) is the kernel of the symbol of operator A at point x ~ B o. For this reason module HvJ,i(z~) is 

called the g-cohomologies of Spencer along submanifold B o. 
Note that since the middle two columns in the given diagram are acyclical, isomorphisms 

]_Z]v, t j - J ,  i-t-2 (~)~--Hv (A) 
(4) 

hold. In particular, sequence 

C 0 u  v ~ v  ,L ~ - V  

(5) 

is exact for all j >__ 3 if and only if 

/_/~++,2 a /_/{,3 ( ) =  (A)=0 

for all j>_ 0. 
The use of  diagram (3) and isomorphism (4) enables us to prove, analogously to the proof of  formal integration 

criteria given in [32], the first part of the following assertion [the second part uses the exactness of  sequence (5)]. 
THEOREM. Let submanifold B o C B and differential operator A E Diffk(c~, fl) be such that 
1) families of vector spaces k~ x -+ K~,(~ and kt: x --4 K,,(1)(x), Vx ~ B o define smooth vector bundles over 

manifold B o and 
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2) HvJ,2(A ) = 0, Vj > 0. Then for all j >__ 0 the families of vector spaces kJ: x ---, Kv(J)(x), cJ: x ---* Cv(J)(x ) define 

smooth vector bundles over manifold B o. 

If, in addition, HvJ'3(A) = 0, Vj > 0, then the symbols of transfer operators Ai~, j _> 2, are defined by the symbol 
of transfer operator Ax 1 from the following commutative diagram: 

o( i) 
ff~(j) (A)~A1 (Bo)" ~.c~(jq-1) (A) 

x'(j - ') (A)|174 (Bo) .~e(j ) (A)| 

and in this sense differential  operators AlJ are defined by the first transfer operator. 

5.3. Transfer  Operators in the Nonlinear Case. Before we carry over the results of the previous subsection to 

arbitrary differential  equations we make a small digression. Suppose that A ~ dif  k (a, fl) is a nonlinear differential 
operator acting from a section of bundle a into a section of bundle fl and h ~ F(~) is a fixed section. We define linear 

differential operator lh(A) ~ Diff  k (~, fl), the linearization of  operator A on section h, by the relation 

d t~ (a) (a) = ~ ],=o A (tt + ta), 
(l) 

where a ~ I'(~). 

In this ease, for  an arbitrary operator A we have 

a (h+8) - -h  (h) --th (A) (0 or~ 2~r (l~), (2) 

if 8 ~ #J+kr(ct). 

And when A is a quasilinear operator, we have 

a (h+8) - ,A (h) --th (~) (8) e ~ + ~ r  (~). 
(3) 

Note also that in this case 

lh+, (:A) (e) --th (A) (e) elx3F ([5), (4) 

if ~/, e ~/~k+lr(a). 

Therefore,  the solution of the problem, analogous to the one formulated in subsection 5.2, for a nonlinear 
operator (i.e., finding solutions different  f rom the given solution h by a "small" solution along submanifold B0) leads, 

as above, to transfer operators Al,h j corresponding to linearization lh(A ). Consider the quasilinear operator A ~ difk(a, 

f )  and the corresponding to it system of differential equations EA = ~O,X--l(0) C jk(a). Let L C $,~ be a solution of this 

system such that cycle of singularities EtL c L for some t > 0 is diffeomorphicaUy projected onto submanifold B 0 c B. 

Define on this cycle the following families of vector spaces: kr.(Xk) = Ker(ot k I L)*,xk Cot x | sk~/x, cr~(xk) = Cokeraxk(A), 

where x k ~ EtL, ag x = A n n l m ( a  k [ L)*,Xk C Tx*, and also kr0-) c ax | Sk+~~ to be the prolongations of spaces k S and 
cg(0 = cokeraxk(0(A), whereaxk(0(A) is an/ -prolongat ion of symbolaxk(A): (~x | Sk~x ~ fix and axk(l)(A): a x | Sk~ 

fix | S~~ x. Assume (see the Theorem in Sec. 5.2) that these families form smooth vector bundles over manifold EtL. 

Choose an arbitrary section h ~ l'(a) so that jk(h)(Bo) = EtL, and using linearization lh(A) construct the transfer operator 

(5) 

Relations (4) imply that this operator is independent of the choice of section h which represents EtL over 

manifold B o and in so doing unambiguously determines a f i rs t-order  operator on cycle EtL. Passing to prolongations 
~(~ of the given system of differential  equations we have the following result. 

THEOREM. Let  L c Jk+t(c0 be an integral manifold that defines a solution of a prolonged system of differential 

equations ~(0 c Jk+~(ct) whose cycle of singularities EtL c L for some fixed value t > 0 is diffeomorphically projected 
onto submanifold B o c B. Then the restrictions of transfer operators Al,h (t+l) to submanifold kE(t+l) define f irst-order 
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differential operators A~ (~+2) ~ Diff  I (kz  (k+l), CI2 (~+2)) on cycle of singularities I2tL independently of  the choice of 
representation section h ~ r(a).  

Remark. 1) Further on (see Sec. 7) we shall show that subspace kg0)(xk), Vx k ~ I2~L is endowed with a Jordan 

algebra structure if k = 1, and with a commutative algebra structure if k > 2. 

2) For l = 0, transfer operators do not depend on the choice of representative section h (or "background") only 

for the quasilinear operators A; for  l > 1, operator A can be arbitrary since its extensions A(0 are always quasilinear. 
~.4. Hamiltonian Formalism. The classical theorem on the propagation of singularities along bicharacteristics 

is essentially a theorem on the structure of transfer operators for El-singularities. In order to verify this we shall need 
the following version of Hamiltonian formalism on jet  bundles. 

Denote by ek(a) the total space of bundle czk*(r*) induced from cotangent bundle r*: T*B ~ B of projections 

air: Jk(r --* B, and by rk*: Ok(a) --, T 'B ,  rk,~: ek(a) ---, ~os(c~) natural projections. Let r be an algebra of smooth 
functions on space r and let qsoo (c0=l im prol r (cz). 

k-~eo 
Each section h e r(cz) defines section jkr(h): T*B --* ek(a) of bundle rk; jkr(h): (x, p) ~ ([h]x k, p). Define the 

higher Poisson bracket {H, G} on algebra r H ~ ek(O0, G E et(~x), {H, G} ~ ~ (~ ) ,  where s = max(k + 1, ! + 1), with 
the help of the following universality property: 

for all sections h ~ r((~). 
On the r ight-hand side of formula ( l)  the Poisson bracket on COO(T'M) is denoted by ( ,  }. 

The higher Poisson bracket gives a Hamiltonian structure on algebra Ooo(a) in the sense that this algebra is a Lie 

algebra relative to the bracket and, in addition, Leibnitz identity 

{H, Vl. G2}=iH, ~l}-O2--{-{H, ~2}- G1 

is fulfilled. 
The last property of the Poisson bracket shows that mapping Xri: Ooo(a) ---. Ooo(a), Xri(G) -- {G, H} defines 

Hamiltonian differentiation for every function H ~ Ok(a). Here on each finite step Xn: ~ ( ~ )  ---, ~8(ot) is a vector field 

over mapping r~,~. 
Suppose now that smooth integral manifold L c Jk+~(cz) is a solution of a system of differential equations ~ c ^ 

Jk(cz), L c~(~). Denote by L o submanifold ~1,o L c L, and by L o c ~sk+~(a) its natural lifting: L ~ --- ((Xk+~, p) t xk+~E Lo, 

p ~ AnnIm (ak+t).(Txk+~) C Tx* }. If a function S ~ C~176 is chosen such that ~k+~*(S) = 0 on L o but dc~k+~*(S) r 0, then 

by Lo, s c L o we denote the set of points (xit+s where Xk+ t runs L o. 
Assume now that ~" = $',x is a determined system of  differential equations, A E difk(c~, cz), and let H = H A be the 

Hamiltonian of operator A, H A E r H2~(Xk, p) -- det aXk,p(A) Vx k E Jk(ot), p E Tx* , O~k(Xk) = X. 
Let ~(Xk+~) be a set of points Xak+~+ 1 from E(*+I), such that L(xk+~+l) D Txk+~(Lo). Then g(Xk+~) is an affine 

subspace in fiber F(Xk+~) the dimension of which coincides with dim ker CrXk,p(A), where p ~ Tx* is a covector such that 

Ker  ak+t*(P) D Txk+~L0- Vectors XH,y E Txk+~,p (Ok+~(cz)) do not depend on the choice of elements y -- (Xk+~+ 1, p), 

where Xk+,+ 1 ~ ~(Xk+~), and define at the points of submanifold L o vector field VII tangent to this submanifold. H e r e ,  

if submanifold Lo. s c L o is chosen, then the projection of a vector fMd  from points of submanifold f-o,s onto jk+g(a) 
defines vector field VH, s tangent to submanifold L o. This field is called a field of bicharacteristics. 

THEOREM. For a determined system of  differential equations ~ a  c Jk(o~), transfer operators constructed on 

cycles of El-singularities cover the field of bicharacteristics on E1L provided that dim kE = I. 

5.g. Shock Waves. Projection ak,o(L) C ~(c~) of an arbitrary integral manifold can be viewed as a multivalued 
section of bundle cz. However,  the values occurring in the majority of differential equations are unique. The 

requirements for solution uniqueness lead to various rules for obtaining a unique but possibly piecewise smooth solution, 
shock waves, from a given multivalued solution L. Note that in contrast to the usually used approach, when a class is 

postulated in which a solution is sought, we start from a concrete object: integral manifolds. With this approach many 
empirical rules (for example, the rule of Maxwell areas) receive a geometric interpretation (for details see [39]). Taking 
into account the connection with generalized functions it seems to be most natural to conduct a selection of branches 
from the complement to the singular set L\I3L. However, it is not so. And the usually applied here principle of 

"maximal delay" is valid only for solutions of linear systems of differential equations. In the general case ('i.e., taking 
into account nonlinearity) projection B E = ak(EL ) C B describes the "area of metastability" of a solution [39]. A 
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"jumpover," i.e., passage f rom one branch to another, occurs along a submanifold (possibly with singularities) B o c B 

that lies in a "neighborhood" of a critical set. 

Consider brief ly some methods of branch selection. 

a) G u g o n i o - - R a n k i n  Rule. Assume that submanifold B 0 c B divides the basis of B into two domains B+ u B_ --- 

B\Bo, in each of which one of the branches of  solution h + or h -  is chosen. And suppose also that the conservation law 

of 0 is given, i.e., we are given an (n - -  1) - form 0 ~ A n - - l ( j k ~ ) ,  the restriction of whose differential  d0 to an arbitrary 

solution of a system of differential  equations is trivial. Gugonio- -Rankin  condition corresponding to the conservation 

of 0 consists in the fact the restrictions of differential  (n - -  1)-forms 0h+ = (jk(h+))*(0) ~ An-I(B+) and 0 h- = jk(h-)*(0) 

An-I(B ) to submanifold B o coincide (see, for example,  [11]). Gugonio- -Rankin  conditions Oh+ { B0 = 0 h- [ B0 give a 
differential equation connecting h +, h - ,  and function S if B o = S-1(0), S 6 C~176 For linear systems of equations these 

conditions coincide with the Hamil ton--Jacobi  characteristic equation on function S, which enables us to determine the 

boundary of the discontinuity of  B o. In particular, here B o = Bg always. In the nonlinear case in order to find function 

S and in so doing the boundary of the shock wave, we need to use additional conservation laws [39]. 

b) T h e r m o d y n a m i c a i  Pr inc iple .  Consider the simplest situation when in domains B• solution L is a graph 

of a k - j e t  of  multivalued section h + the branches of  which in domain B+\B~. are denoted by hi + . . . . .  hs+ . . . . .  and in 

domain B_\B~ by h i - ,  .... h t - ,  .... respectively. Fix also the conservation law of  0. To each branch hi ~ we associate the 

number  E ~  = i 0n~' where Bi + is the boundary of the domain of branch hi • which we call O-energy o:f branch 

hi • In addition to this we ascribe to each branch a number  ~i + = e(jk(hi+)) (an analog to spin) that determines the 
"decompatibility" of  orientation (or a number  determined by the index of the intersection with a cycle of E 1- 

singularities, for  the nonoriented case see Sec. 9). In both cases ~i ~ ~ Z 2. I f  c~ is a bundle of  ha l f - forms,  then ei • ~ Z4, 

etc. In all the cases, the possibility to associate to a branch the number  el• is equivalent to "quantification conditions": 

a class of cohomologies w (with respect to mod 2 or mod 4) on integral manifold L is trivial. 

State  I = (i, j )  is defined to be transfer  hi+ ~ h i - .  To each state we ascribe a number ,  t ransfer  energy E I = Ei + - -  

E j -  if  numbers ei + and ~j-  coincide, and E I = oo if ei + and ~j-  differ.  Introducing partition function Z - -  ~ exp ( - -  I~Ez), 

we can compute in the usual manner  (see, for example [7]) transfer probabilities, temperature,  entrop_y, etc. 

A somewhat di f ferent  principle is obtained if the "time" axis is isolated on a manifold: B -- B x R t. Then, 

considering various sections t = const and performing the situation described above on each section, we obtain a picture 

of the transfers (which depends on time). This reflects Prigogine's [25, 26] idea that "a description of a system 

undergoing bifurcat ion includes both a deterministic and a probabilistic element." 

6. INTEGRAL GRASSMANNIANS 

Grassmannians of  subspaces tangent to integral manifolds or, more concisely, integral Grassmannians are arranged 

quite curiously. They are project ive manifolds, but with the exception of several isolated cases, which also include the 

Grassmannian of Lagrange subspaces, they are not smooth manifolds. The conditions for the contiguity of  natural states 

to a regular cell lead to Jordan structures on cycles of  singularities, which we shall describe in the next section. 

6.1. Integral  P lanes .  An integral plane in Cartan subspace C(Xk), x k ~ Jk(ot) is defined to be an arbitrary n-  

dimensionalisotropic subspace. Recall that every such plane L is defined by triad (Xk+ 1, o~, Lo), where Xk+ 1 E F(Xk), 

L o = Ker(~k, :  L ~ Tx), 3~ = AnnIm(~k ,  [ L), dim ~g = dim Lo; moreover,  L o c ~x | Sk q~and L = ~(Xk+l) �9 Lo, where 

~(Xk+l) C L(Xk+l) is the preimage of  ~go = Im(C~k * [ L) under isomorphism ~k,: L(Xk+l) ~ Tx. Subspaces r and L o, as it 
follows f rom their description, are uniquely defined by integral plane L. Two triads (Xk+ 1, ~ ,  L o) and (Xk+l", ~g, Lo), 

where Xk+ 1' = Xk+ 1 + 0, 0 E ~x x | sk+lTx *, define the same integral plane if 0 E Tx* �9 L o + a x | sk~ where by Tx* �9 

L 0 c ax | sk+lTx * we denote a subspace spanned by symmetric products a o b, a E Tx*, b E L o. 

6.2. Integral  Grassmannians .  Denote by I(x k) the Grassmannian of all integral planes lying in C(Xk) and let I t = 

(L E I(Xk) { dim o~k,(L) = n - -  l}. The set of integral planes isomorphically projected onto a tangent space T x is 

identified with F(Xk) and is therefore isomorphic to c~ x | sk+lTx *. To describe subspaces 14 c I(Xk) , l _> 1, we need 
additional constructions. Let  GI(V) denote the Grassmannian o f / -d imens iona l  subspaces of  vector space V. Consider 

manifold Hi, the elements of  which are pairs (3A, Lo), where ~ E G~(Tx*), L o ~ G~(ct x | Sk:~), and bundle h i H i 

C~(Tx*), h t ~ ,  Lo) = ~ .  Natural  mapping k i 14 ~ Hi, associating with integral plane L -- (Xk+ 1, ~ ,  L o) pair (~ ,  Lo) ~ H~, 
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converts  I~ into a total space of  a smooth  a f f ine  bundle over  H~ the f iber  o f  which  at point  (U, Lo) is associated with 

vector  space 

ax | S*+~TJ / TJ ~ + ax | S~+~~ 

Therefore ,  

+k d i m I t = m  (nk + l ) +  - ~ /l +1~-1~ 
(1) 

We der ive  a n u m b e r  o f  consequences  f r o m  the obta ined formula .  First ,  observe  that  n u m b e r  m ~ + 1 )coincides 

with the d imens ion  o f  regular  cell I o. There fo re ,  n u m b e r  v(m, k, l) = d imI  o - - d i m  I~ can be in te rpre ted  as "codimension" 

relative to the regular  cell. Next ,  func t ion  v(m, k, l) decreases in variables m and k and fo r  l = 1 we have v(m, k, I) = 

1; for  k = 1 we have  v(m, 1, l) = (m/2 ) l  - -  ( m / 2  - -  1)l ~. There fo re ,  v(m, 1, l) < 0 if  l >_. 2, m > 4. For  bundles a and 

the d imension which  does not  exceed 4, all the cases when  v _ 0 are indicated in the tables given below. 

k ~  I 2 3 
I I 3 6 10 

2 1 2 1 -~ 
3 1 I -6 -29 

q -1--2S -12~ 
nT-- ? 

11~ I o -2 

m=3 

m=2 

raz~ 

Note that  fo r  k - 1 a n d m =  1 ,2 ,  w e h a v e  v ( 1 , 1 , / ) = ( ~ ) ,  v(2, 1, I ) = L  

These  cases, together  wi th  l = I and k = 1, m = 3, l -- 2, are called except ional .  

6.3. R - P l a n e s  and R - G r a s s m a n n i a n s .  In nonexcept ional  cases d im I~ > d i m I  o i f  t >__ 2. This fact  can be 

in terpre ted  in the fol lowing way. Let  L c Jk(c 0 be an integral  manifold .  Then at each point  x k E L tangent  space TxkL 

is an integral  p lane and,  consequent ly ,  TxkL E I(xk). The  condi t ion that  TxkL ~ I~(xk) is equivalent  to the fact  that at 
this point  mapp ing  ak: L ~ B has a T h o m - - B o a r d m a n  singular i ty  of  type ~ .  The  cMculation o f  dimensions  conducted 

above shows that i f  integral  plane TxkL does not lie on the boundary  of  regular  cell I0(xk) and a nonexcept iena l  case 

holds, then some ne ighborhood  o f  poin t  x k consists wholly of  the singular  points o f  mapp ing  c~k: L ~ B. Keep ing  Jn 

mind this c i rcumstance  we separa te ly  isolate a class of  R-planes, i.e., a class of  integral  planes lying in the closure of  

the regular  cell I0(Xk). The  Grassmann ian  o f  all R-p lanes  at point  x k is denoted by  RI(Xk). 

Integral  man i fo ld  L is called an R-manifold i f  s ingular  set EL is nowhere  compac t  in L. The  tangent  plane at 

each point  o f  R - m a n i f o l d  is an R-p l ane .  The  converse  is, o f  course,  not true. 

To descr ibe R-p l anes  we in t roduce  the fol lowing s t ra t i f icat ion in the R - G r a s s m a n n i a n .  Set RIr =I~(x k) n I a(• 

Next ,  induct ive ly  def ine  subsets RI~. ~ = I t (xk) f3 R I ~  ~r 1 ' c ~ 1 7 6  to sequence 0 < l 1 < ... < l r _< n. R-p lanes  
. L t . . .  ~ 1" r s  - -  

occurr ing in RI~I,...,~ r, can be character ized as R-p l anes  L ~ RI~r adjoining (i.e.o lying in the closure) to subsets RI~i, 0 _< 

i <  r - - 1 .  

T H E O R E M .  Integral  plane L def ined  by triad (xk+l, q~, Lo) is an R - p l a n e  i f  and only i f  there exists a sequence 

of  imbedded  subspaces  Tx* 3 ~d = r 3 ~ 1  ~ . . .  3 ~ r 3 0 and tensors aj ~ a• | Sk+l~ 1 _< j 5 r + l ,  such that 

subspace L o c a x | S k o~ is genera ted  by  tensors of  f o r m  v .2 6aj for  all l _< j _< r + 1 and v E Ann  ~ 

Supplement .  1) In the hypotheses  o f  the theorem the R - p l a n e  L lies in subset  RI~I,...,~ r, where  l i -- dim~?~r_i+v 
2) Tensors  0j involved in the fo rmula t ion  of  the theorem are not arbi t rary .  Dimens iona l i ty  considerat ions imply 

that  subspaces Lj = {v .3 5aj, Vv E Ann  ~j+l} have a d imension  equal to dimq.gj+ 1 - -  dima//j. 
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7. JORDAN STRUCTURES ASSOCIATED TO REGULAR INTEGRAL PLANES 

The description of R-planes  given in the previous section enables us to connect in a natural way to each "regular" 

R-plane  a Jordan algebra or an associative algebra with involution. For convenience of notation fix point x k ~ jk(a) and 

set ~x = W, Tx/Ann U = V. 
7.1. Tensors. Every  symmetric  tensor O ~ W | sk+Iv  * defines a symmetric  mapping Mo: V --, W |  *, where 

Me(v ) = v - -  60. Set L(0) = I m M  e. Number  dimL(0) is called the rank (rk0) of symmetric tensor 0. Tensor 0 is called 

nondegenerate if  rk 0 = dim V = n. 

Let Cdrk+l(Wo V) C W | sk+ Iv  * be a set of tensors of  rank r and Cdk+l(W, V) a cone of degenerate tensors. If  

Ker  0 = Ker  M o c V is a degeneration subspace of tensor 0, then restriction 0 ~ W | sk+l (V/Ker  O)* is well-defined; 

moreover,  tensor 0 is already nondegenerate.  To describe space Cdrk+l(W, V) we consider three bundles over 

Grassmannian Gr(V ) of  r -dimensional  subspaces: (1) ~7 is a tautological bundle, (2) ~Tw and r/v are trivial bundles with 
fibers W and V, respectively. Elements a(V1), V 1 E Gr(V ) of the total space of tensor product Ow | sk+I(T/V/~)* can be 

viewed as tensors 0 ~ W | sk+Iv  *, such that Ker0 D V 1. Therefore,  set Cdrk+l(W, V) is a smooth open submanifold in 

(n + k ) _ m  (n + k - - r ~  r (rL--r), where m dim W. And the W | sk+Iv  * of  codimension Ur(m , n, k + l ) = m  k + l  kq-1 } - -  = 

codimension of the 'cone of degenerate tensors Cdk+l(W, V) is equal to m (n+  k--1 k ) - n + l .  
So, for  example,  the codimension of degenerate quadrics in W | SZV * is equal to (m - -  l)n + 1, and the 

codimension of degenerate homogeneous polynomials in sk+Iv  *, dim V -- 2, is equal to k. 

7.2. Regular Subspaces. Subspace L C W | skv*  is called regular if  its first prolongation L(1) c W | sk+Iv* 

is nontrivial and is not contained in the cone of degenerate tensors. Note that if  the R-plane  is defined by triad (Xk+l, 

~ ,  L0), then L o = L(0) for  some tensor 0 ~ d x | sk+l~ i.e., in the representation of  the theorem of subsection 6.3 we 

can choose a chain of  length 1 if and only if L o is a regular subspace. 

Examples.  1) if  dim q.Z = 1, then L o = L(0) for some tensor 8. 

2) I f  d i m q / =  2, then triad (Xk+ 1, v/Z, Lo) defines an R-p lane  if and only if  either subspace L o is regular or L o o 

Cdlk(Ctx, Tx(Annq-/)) ~ ~. 

7.3. Jordan Algebras. Assume that nondegenerate tensors 0 and 0' define the same space L --- L(0) = L(0'). In 

this case, M e = M0-a for  some isomorphism a: V ---, V, i.e., v ~ 60' = av A 60, Vv ~ V, or 60" = (1 | a*)60. Thus, there 

exists tensor 0" = 0 a corresponding to operator a ~ EndV,  if and only if 6(1 | a*)50 = 0. Let Jor8 C E n d V  be the set 
of  operators satisfying this equality. 

Nondegenerate operators a E Jor0 are put in correspondence to various representations of  space L(0) in the form 

of L(0a). For arbitrary operators a E Jor 0 correspondence a ---, 0 a defines an isomorphism between Jor 0 and the first 

extension L(1)(0). 

An equivalent description of the elements of  Jor 0 can be given in terms of the second differential  0, Namely, 

define the second differential  6z0 of tensor 0 as mapping 620: S2V ---, W | sk+ Iv  *, where 620(v x, v2) = v 1 J 6(v9. / 60). 

It is not hard to ver i fy  that operator a ~ End V lies in set Jor 0 if  and only if 

620(avx, v2)=620(vl,  av2) (l) 

for all vectors v x, v 2 ~ V. 

This description implies that set JorO forms a Jordan algebra, i.e., Jor0 c EndV is a vector subspace closed with 

respect to ant icommutator  {al, a2} -- 1/2(ala 2 + azal). 
Examples.  Let d imV = 2, k = 2, dimW --- 1; then each nondegenerate tensor 0 ~ SZV * in the suitable coordinates 

x, y ~ V* can be written in one of  the following standard forms: 
1) elliptic case: 0 --- x s - -  3xy 2, 

2) hyperbolic case: 0 -- x 3 + yS, 

3) parabolic case: 0 = xy 2. 

Each of these cases is determined by the type of intersection of plane L(0) and cone Cd2(R, V) of  degenerate 

quadrics: in case 1) we have L(0) n Cd2(R, V) = 0; in case 2) L(0) n Cd~(R, V) is a pair of  distinct lines; and in case 3) 
L(O) n Cd2(R, V) is one straight line. The corresponding Jordan algebras are as follows: 1) Jor0 = R[X] /X 2 + 1; 2) Jor 
0 = R[X]/X 2 - -  1; 3) Jor0 = R[X] /X 2. 
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7.4. Associative Algebras. Denote by As (0) c EndV the associative algebra generated by Jordan algebra ]or 

0. Relation 620(av 1, v 2) = 620(v 1, a#v~) for  all v I, v 2 e V unambiguously determines for each operator a e As (0) 
operator a # e As(0), and in so doing also involution #: As(0) ---, As(0). This involution enables us to represent algebra 

As(0) as direct sum As(0) = Ao(0) �9 AI(0), where Ao(0) = Jor0 = (a e As(0) ] a # = a} is a space of  Hermitian elements 

and As(0) = {a ~ As (0) ] a#  = --a} is a space of skew symmetric Hermitian elements. 

Choose nondegenerate tensors 0", 0 E L(1)(0) and consider the following commutative diagram: 

in which a e Jor 0 is the representative of  tensor 9 and a" e Jor 0" of  tensor 0". Then Jor 0 = A(Jor 03, where A = 

Me-ZMe,. Relation (1) of subsection 7.3 implies that A, A-1E Jot0 and, therefore, As(0) C As(0"). Analogously, As 
(0') c As (0) and, therefore,  algebras As (0) and As (0') coincide. Involution # '  in algebra As 0", defined by tensor 0", is 
conjugate to involution #,  #" = A -1 �9 # �9 A. Thus, the change of a generator in LO)(O) leads to a "turn" of the Jordan 

algebra inside algebra As (0) and to the conjugation of the involution. 

7.5. To describe the structure of  algebra As 0, we define symmetric form F(a, b) = tr {a, b#}, a, b E As (~). 
Degeneration subspace Ker  F coincides with radical Rad (0) of algebra As (0). Therefore,  algebra As (0) is semisimple 

if and only if F is a nondegenerate symmetric form. 

Relation 620(avl, v2) = 69.0(v 1, a#v 2) implies that O(av 1 . . . . .  Vk+l) = 0(vl, a#v  2 . . . . .  vk+l) = a(vl, v~, ava . . . . .  
V(k+l)) = 0(a#va, v 2 . . . . .  vk+l), and since tensor 0 is nondegenerate, then for k _ 2 we have # = id and, consequently, 

As 0 is a commutative algebra. 
Radical Rad (0) of algebra As(0) is a nilpotent ideal. Denote by l = l(O) the degree of nilpotency of this ideal: 

(Rad (0)) ~+1 = 0, but (Rad (0)) ~ ~ 0. To indicate a more direct connection between the degree of  nilpotency of l(O) and 

tensor 0 we introduce the following concept. 
Let (A, #) be an arbitrary associative subalgebra in algebra End V. Consider subspace 

~q(A, @)~-{kfiS2V*l k (avl, v 2 ) = k  (vl, a#v2), Vva, v ~ V ,  YOGA} 

and define the index o f  tensor 0 in the following way: 

ind (0)----- rain (rain (n+ Q,), n_ 00-F no (X))), (2) 
zE~l(Ase, #) 

where by n_+(A) we denote the positive (negative, respectively) inertia index, and by no(A) the defect  of quadric A E S2V *. 

In other words, the index of tensor 0 is equal to the smallest dimension of the maximal isotropic subspaces of 
quadrics A e r/(As (0), #). Inertia index and the degree of nilpotency are related by the following inequality: 

. <-( - f f  lnd (o), (3) 

where ~(0) is the dimension of  the minimal irreducible representation of semisimple algebra As (0)/Rad (0). 

As a consequence of  this inequality, we get the following assertion: if  subspace ~7(As (0), #) contains a 
nondegenerate definite quadric, then algebra As (0) is semisimple. 

7.6. Realizatlon. We indicate first the conditions for the realization of an algebra with involution (A, #) C End 

V as algebra (As 0, #) for  some nondegenerate symmetric tensor 0 under the assumption that subspace t;(A, #) contains 
a nondegenerate quadric h. In this case, involution #h: End V --* End V generated by this quadric with restriction to 
algebra A coincides with involution #. Denote by 0 A e Co*(A) | S2V *, where Co(A) is the set of  Hermitian elements 

(relative to #h) of the centralizer C(A) of algebra A in End V, the quadric defined by relation 

<O, 0A>(v~, v2)=h(bv~, v2), (4) 
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where b ~ Co(A), v 1, v 2 ~ V. 
This quadric is nondegenerate since <1, 0A) = h. 
THEOREM 1. For an arbitrary algebra with involution (A, #)  c (End V, #h), generated by quadric h ~ Sg"V *, 

inclusion (A, #)  c (As(0A), #)  holds. I f  centralizer C(A), as an algebra over R, is generated by the Hermit ian part Co(A ) 
and double centralizer C(C(A)) coincides with algebra A, then this inclusion is isomorphic. 

COROLLARY. Suppose that A C End V is a semisimple algebra with involution generated by quadric h, the 

centralizer's Hermit ian part  Co(A) of which generates C(A); then A = As (0A). 

I f  we discard the conditions that algebra A be represented in vector space V and tensor 0 lie in W | S2V *, then 

the previous theorem can be augmented. 

THEOREM 2. Let  (A, #)  be a unitary semisimple f ini te-dimensional  algebra over R, the Jordan subalgebra Jor 

(A, #)  -- {a ~ A, a # -- a} of  which generates A. Then algebra (A, #)  can be realized as algebra (As 0 A, #) for 

nondegenerate symmetr ic  tensor 0 A ~ Jor(A, #)* | S2A * on algebra A given by formula  {b, 0A)(al, a2) = FA(Rba 1, a2). 

Here,  by FA(x, y) we denote a quadric on algebra A; FA(x, y) - t r (L x �9 Ly#),  and by L: A -4 EndA and R: A ~ 

End A we denote the left  and right regular representations Lx(a ) - xa, Rx(a) = ax, Vx, a ~ A. 
And, finally, an arbi trary unitary f ini te-dimensional  commutat ive algebra over R can be realized as algebra As 

(0A) for symmetric  tensor 0 A ~ A | S2A *, defined by the multiplication OA(al, a2) = axag., Val ,  a 2 E A .  

8. PRIMITIVE SINGULARITIES  AND CLIFFORD STRUCTURES 

8.1. Primitive Tensors. Nondegenerate  symmetric tensor 0 ~ W | sk+Iv  * is called primi t ive  if  we cannot 

indicate a chain of  subspaces V* =q-/o D~ D ... D~ = 0, r > 1 and tensors 0j E W | sk+J~ 1 < j < r, such that 

subspace L(0) is generated by tensors of  form v-J 60j, where v E AnnUj .  Tensor 0 is called decomp osa b l e  if  0 = 01 + 

... + 0 r, where 0 i E W | Sk+!~ and q.Z i c V* are subspaces such that V* = ~ 1 �9 ... �9 ~ r. 
Obviously primit ive tensors are nondecomposable.  

Geometrical ly the condition that tensor 0 E ~x | sk+l~/x be primit ive means that R-planes  L of form (Xk+l, ~ 

L(0)) lie in Rle(Xk), where 1 = dim ~x, but they do not lie in closures RIl,(xk), 0 < l" < I. Such R-planes  are also called 

primit ive.  

We indicate some connections between Jordan algebra Jot 0 and the conditions of  decomposabili ty and 

primitiveness. 

First, if  tensor 0 is primitive,  then Jor 0 is a simple Jordan algebra. In addition, decompositions of  a Jordan 

algebra into a direct sum of ideals are put in correspondence to the corresponding decomposition of tensor 0 into a direct 

sum. Moreover,  i f  k > 2, then in the decomposition of tensor 0 into a sum of indecomposable terms the latter are 

determined to within a permutation.  This decomposition is put in correspondence to the decomposition of algebra As 

0 = Jor 0 into a sum of local Artinian algebras over R. 

A complete description of the structure of  algebras As(0) for primitive tensors is given in the following theorem. 

THEOREM. (1) Tensor 0 E W | S2V * is primitive if and only if algebra As(0) is a Clifford algebra with r < 

3 generators and involution # coincides with the standard involutory automorphism of a Clifford algebra. (2) Tensor 

0 ~ W | sk+Iv  *, k >_ 2, is primit ive if and only if algebra As 0 = Jor 0 is isomorphic to R or to C. 

We give a sketch of the proof  of  this theorem. First, note that if  tensor 0 is primitive,  then algebra Jot0 contains 

no nontrivial nilpotents. Therefore ,  each operator a E Jor0 is semisimple. Next,  the factorization of the characteristic 

polynomial of  operator a E Jor0 into relatively prime factors is put in correspondence to a direct decomposition of tensor 

0. Therefore,  all the elements of  a E Jor 0 that are not a homothety satisfy the irreducible quadratic equation a 2 + pa + 

q = 0, p, q E R. 
Consider now the restriction of  fo rm F, associated with the representation of algebra As(0) in EndV (see See. 

7.5), to subspace Jor~ = {a ~ Jot  0, tr a = 0}. This fo rm is negative definite and the Jordan product  can be computed 

in its terms: {a, b} = l /nF(a ,  b), where a, b E Jor~ and n = d imV.  This implies that As(0) is a Clifford algebra over 

Jor~ associated with quadric F. It remains to show that dim Jor 0 _< 4 for  k = 1. To this end, consider in Clifford 

algebra As(0) element b = ala2a3a 4, where a i E Jor~ Then b# = b; consequently, b E Jor0. But b 2 = b-b # = 1 if al,  
a2, a3, a 4 are orthogonal (or of  length 1) relative to quadric F. Consequently, by virtue of  the aforementioned,  b = _+ I, 
whence a 1 = • 4 and thus al  2 = 1, which contradicts the negative definiteness of  form F. 
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8.2. A-Types .  We call R-p lane  L E RIl(Xk) regular i f  in its representation L = (Xk+l, o-//, Lo ) subspace L o is 

regular, i.e., L o = L(0) for  some nondegenerate tensor 0 ~ a x �9 sk+1~ We say that regular R-plane  L = (Xk+l,aZ/, Lo) 

has A-type, where A is a f ini te-dimensional  associative algebra with involution, i f  algebras A and As(0) are isomorphic 

as algebras with involution. The theorem of subsection 8.1 leads to the following result. 

THEOREM. Primitive R-planes  are regular and have A- type ,  where A = C1 r is a Clifford algebra with r _.< 3 

generators for k = 1 and with r < 1 generator for  k _> 2. Algebra As(0) corresponding to primit ive R-p lane  L= (Xk+1, 

o/2, Lo) defines in T x / ~ ~  = coker (ak, [Z) a module structure over a Clifford algebra. 

8.3. Codlmensions. We indicate conditions for the realization of Clr-types and their codimensions in the 
Grassmannian of  R-planes.  

THEOREM. (1) Primitive R-planes  L ~ RI~(Xk) are possible for the following values of  l, k, m = dima:  
R- types  for all values of  k, l, and m except m = 2, 1,2_ 2 and m = 1, l = 2, k = 2. 

C-types,  # - i d  for  all values of  k, l - -  0, mod2o m, except m = 2, l >__ 2, k = 1 and m = l,  k -- 2, l---- 4. 

C12 = H - t y p e  for  all values m >__ 3, l = 0mod4 ,  k -- 1. 
') Cls- type for  all values k = 1, l = 0 m o d 4 ,  l > 8, m ~ 2 + m a x  , ~+ where 4l+ = d i m K e r ( C  - -  1), 41 = 

dim Ker  (C + I), C is the generator of  the center of  algebra C13 and l+ ~ 1, l_ _> 1. 

(2) Codimensions of  primitive R-planes  of  a given type in the Grassmannian of all R-planes  are given in the 

I t.. 
l q - l m / + 3  lq-2)l+l-q-~rnl-b4 

following table: 

\ k+l }-yl +2 i 

Remark.  a) Cls- types are divided into subtypes corresponding to pairs of  natural numbers (l+, i_), where (1/4)l = 

l+ + l_, l+ _ 1, t_ >__ 1. The table gives the codimensions of  these types. 

2) The table implies that R- types  can be realized for all values of  k and m in codimension 1, and the smallest 

codimension of C- types  equals ink, for H- types  this codimension equals 7m - -  9, while for  Cls-types it is 32m - -  52, 

where m ___ 3. 

9. THE TOPOLOGY OF INTEGRAL GRASSMANNIANS 

9.1. Fix element x k ~ jk(M, m). The Grassmannian of integral planes in Cartan subspace C(Xk) will be denoted 

by Ik(n, m)(= I(Xk)). Set Ik(n, m) is obtained by intersecting a certain number  of  quadrics in Grassmann manifold 

Gn(C(Xk) ) and is therefore an algebraic manifold. In the following two cases, the topology of these Grassmannians is 

well known. First, if  n --- 1, then the integrability conditions are missing and all l -dimensional  subspaces in C(xk) are 

integrable. Therefore,  Ik(l,  m) '-" RP m. In addition, if  m = k = 1, then the Cartan distribution on JI(M, 1) coincides with 

the standard contact structure and, consequently, Grassmannian Ii(n, 1) is the Grassmannian of n-dimensional  Lagrange 

subspaces in the 2n-dimensional  symplectic space C(xl). Its cohomologies with coefficients in Zz were computed by 
Borel: 

where wi0) are Stiefel--Whitney classes of  a tautological bundle over the Grassmannian. 

Both of these cases are special f rom the standpoint of  the geometry of differential  equations. In this section we 

describe cohomology rings of  integral Grassmannian manifolds Ik(n, m) with coefficients in Z 2 provided that km > 2. 

We will also limit ourselves to the Grassmannian of  nonoriented planes; in the oriented case the results are analogous [ 14]. 
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THEOREM [14, 40]. Cohomology ring H*(Ik(n, m); Z2) up to dimension n is isomorphic to ring of polynomials 

Z2[wi (k) . . . . .  wn(k)] in Stiefel--Whitney classes wi (k) . . . . .  wn(k) of a tautological bundle over Ik(n, m). 
Supplement. Up to dimension n --  l ,  Stiefel--Whitney classes wi(k) are algebraically independent. In dimension 

n algebraic relations are possible only provided that k = l, m = 2. 
9.2. Grassmannians Associated with Differential Equations. Let  ~ c Jk(M, m) be a system of differential 

equations. For each element xk E ~ we denote by l~(Xk) the Grassmannian of the integral planes lying in tangent spaces 
Txk(~). Space l~(xk) is called the integral Grassmannian associated with a system of differential equations ~. 

We begin the description of the cohomologies of these spaces with determined spaces of f i rs t -order  differential 
equations. 

System of differential  equations ~ c j i (M, m) is called determined if  codim~--- m, and at each point x i E ~,  x i = 
[N]x i, not all covectors )~ E Tx*N\0 are characteristic. 

THEOREM. (A) Let  ~ c j i (M, m) be a determined system of differential  equations; then imbedding lg(xi)  
I(xi) induces an isomorphism of  the algebras of  cohomologies with coefficients in Z 2 up to dimension n in all cases, with 

the exception of the following. 
1) m = 2, n >_ 3. Here cohomology ring H*(IE(xi; Z2) up to dimension n is isomorphic to the algebra of 

polynomials Z2[wi (i) . . . . .  wn(1), Un_ i, Sq U ,_ i ] ,  where we denote by Sq Steenrod's square and degree Un_ i equals n --  
1. 

2) m = 3, n = 2. In this case, cohomology ring H*(IE(xi); Z2) up to dimension 2 is isomorphic to the algebra of 
polynomials Z2[wi(X), w2(i), a i . . . . .  Ctr], where degrees ai are equal to 2, and r is the number of connected components 
of characteristic manifold Char(d ,  x i) over which kernel bundle k is a line bundle. 

3) m = n = 2. In this case, integral Grassmannian lff(xi) is diffeomorphic either to torus S i x S ~" if system S i s  

hyperbolic at point x 1 E $ or to complex projective straight line CP i if system ~ is elliptic at point x x. 

(B) For determined system $ C J2(M, 1) imbedding lb~ c I(x~.) induces an isomorphism of  cohomology algebras 

up to dimension n in all cases except when n = 2. In the latter case, I$(x2) is diffeomorphic to torus S i x S 1 if ~is  

hyperbolic at point x~. and is diffeomorphic to CP 1 if E is elliptic at this point. 

9.3. Second-order differential  equations ~ c j2(1) of Monge--Ampere type can be determined with the help 
of effective n-forms on contact manifold J l ( l )  [11 ]. This enables us, compared to the general case, to go down one order 

and determine Grassmannians I(w) c Ix(n, 1) associated with Monge--Ampere equations. Here w E An(j1(1)) is a 

differential n - fo rm determining the given Monge--Ampere equation and I(w) is the Grassmannian of n-dimensional 
Lagrange subspaces annihilating this form. 

In dimension n -- 2 Grassmannians I(to) are arranged just as in the general case: if  the equation is hyperbolic, 
then I(w) = S x x S i, and if it is elliptic then I(w) = CP 1. 

In dimension n = 3 we can connect with each effective form w ~ /tZ(C*(Xl) a quadratic form qto [17], which 

differentiates the orbits of symplectic group Sp(6): q~(X, Y) = --1/41~'(X] to ^ Y _t o~). If  form qw is nondegenerate, 
then its signature signq~o is equal to either 0 or 2. The value of the signature differentiates two types of orbits. Note 

that for n = 3, orbits not containing quasilinear representatives exist. Specifically, they are put in correspondence to 

nondegenerate forms qor 
THEOREM [6]. (1) If form qoJ is nondegenerate and signq W = 0, cohomology ring H*(I(to); Z2) up to dimension 

3 is isomorphic to the quotient of algebra Zz[wi(i), w~(i), U~.] by the ideal spanned by polynomials (wi(i))~ and wl(i)u2: 

the degree of cohomology class U~. is equal to 2. If, however, sign qto = 2, then cohomology ring H*(I(w); Zg.) up to 
dimension 3 is isomorphic to the quotient of algebra Z~[wi(i), w~(i), U2] by the ideal generated by (wi(i)) ~'. 

(2) If  form qw is degenerate, then for elliptic differential equations cohomology ring H*(I(w); Z~.) up to dimension 
3 is isomorphic to the quotient of algebra H*(Ii( l ,  n); Zz) by the ideal generated by wi(1)wg(i). If, however, the equation 

is hyperbolic at a given point, then imbedding I(to) ~ Ii(n , I) induces an isomorphism of  cohomologies to dimension 3. 
To formulate a general (n _>_ 3) result, we introduce the important concept of the degree of nonlinearity of a 

Monge--Ampere differential  equation at a given point x 1 E jl(1). The degree of nonlinearity k(L) of effective form to 
E kn(C*(x~)) relative to Lagrange subspace L E I(w) is defined to be the minimal number among numbers k, such that 

k-vector  X -- X 1 ^ ... ^ X k, X i E L annihilates form to: X _~ to = 0. The degree of nonlinearity k(to) (at point xl) of a 
Monge--Ampere differential equation that corresponds to effective n - fo rm o~ is defined to be the smallest among numbers 
k(L) provided that L runs the whole Grassmannian I(to). 

THEOREM [6]. If  a Monge--Ampere equation is quasilinear at point x i [i.e., k(to) = 1], and n >__ 4, then 
imbedding I(to c II(n, 1) induces an isomorphism of cohomologies up to dimension n. 
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Supplement. In [6], Zil'bergleit also proved that the assertion of the theorem under certain additional conditions 
remains valid if  the degree of nonlinearity k of this equation and the dimension of the basis n are connected by the 
inequality n > k + 1/2 + v ~  + 1/4. 

9.4. Let us return to the general case. To describe cohomology ring H*(IE(xk); Z~.) in the general case is an 
insoluble problem. However, we can hope that this ring "stabilizes" for prolongations of a system of differential 
equations ~. This assertion, which is the topological variant of the Cartan--Kuranishitheorem on prolongation, constitutes 
the substance of the following theorem. 

Before we formulate this theorem, we introduce the concept of characteristic regularity for systems of first- 
order differential equations ~ c  J~(M, m). We note in this connection that integral plane L representable by triad (x~+z, 
%, Lo) lies in Grassmannian l$(0(x~+l) if L o C g(g)(eg, xl), where g(0(~, xl ) is the lth prolongation of symbol g(O~, Xl ) = 

g(xl) n v x | ~g, ~ c Tx*N, x 1 = [N]x 1. Set Chars~ ,  xl) = {T~ C Tx*N, dim ~ = s [ g(~!, x 1) ~ 0}. The elements of this 
set will be called s-dimensional characteristics. For s = I, l-dimensional characteristics coincide with the usual ones, 
so that Char 1 (~, x 1) = Char (~', xl). The condition that subspace .~! c Tx*N be characteristic can be reformulated 
differently if we use Guillemin's theorem [35]. Namely, subspace ~ is characteristic if and only if its complexification 
~c,  viewed as a linear submanifold in P(Tx*N) c intersects complex characteristic manifold Char c(N, xl). Denote by 
~+1(~ c S~§ | v x a subspace formed by tensors 0 such that S0 c Tx*N | g(0(xl) + ~ | S~+IT~ * | vx, and by 
(~(~+~) the family of vector spaces over Charn_,(N, x~), the fiber at point ~ of which is subspace ~+~(~).  

We say a formal integrable system of differential equations ~ C J~(M, m) is characteristically regular at point 
x~ if families of vector spaces r are vector bundles over Charn_~(E, x~) for all values 1 < s _< n -- 1 and I beginning 

with some number l o. 
THEOREM [14, 40]. Let ~ c  J~(M, m) be a formal integrable system of differential equations, the complex 

characteristic manifold CharC(~., x~) of which does not lie in any hyperplane and dim Chare(~ x 1) > 0. If ib'is 
characteristically regular at point xl, then imbedding I~(0(x~+x)~ I(x~+~), r~+~,~(xl+z) = x~ for sufficiently large values 
of I induces an isomorphism up to dimension n, inclusive. 

Supplement. Since 6($~+t(~Lj) c E~(~Z,) | Tx*N, it makes sense to speak of Spencer 6-cohomologies of bundles 
~(0 for every value of s. Analogously to Goldschmidt's formal integrabiity criteria we can obtain the following criterion 

for characteristic regularity. 
Proposition. Suppose that r and ~(~o +~) are vector bundles, the fibers of which are 2-acyclicaL Then r 

are vector bundles for all values of l > lo. 

10o CHARACTERISTIC CLASSES OF SOLUTIONS OF DIFFERENTIAL EQUATIONS 

10.1. We unite integral Grassmannians I(xk), x k E jk(M, m) into total space 

Ik(/14, m)___ U I(xk) 
x~GJ~(M, m) 

of bundle ik:Ik(M, m) --4 Jk(M, m), where ik(Xk, L) = x k, if (Xk, L) E Ik(M, m), L E I(xk). 
Each integral manifold L c jk(M, m) defines a tangential mapping tL: L ~ Ik(M, m), tL(xk) = (Xk, Txk(L)) , and 

each cohomology class w ~ HJ(Ik(M, m); Z 2) is a characteristic class On integral manifolds: L ---, w(L) --- tL*(w) ~ Hi(L; 
Z~), 0 _< j <_ n. Hirsch's theorem and the theorem from subsection 9.1 imply that the cohomology ring of space Ik(M, 
m) up to dimension n, as algebra over H*(jk(M, m); Z2), is generated by Stiefel--Whitney classes of a tautological bundle 
over Ik(M, m). Taking into account that bundles Irk,k_l: jk(M, m) ~ Jk-l(M, m) are affine for k >_. 2 and bundle ~1,o: 
JI(M, m) ~ M is the fibering of Grassmannians, we obtain the following result. 

THEOREM. Cohomology ring H*(Ik(M, m); Z2) to dimension n = dirnM -- m, as algebra over H(Jk(M, m); Z2), 
is generated by Stiefel--Whitney classes wl(k) . . . . .  wn (k) of a tautological bundle over Ik(M, m). Here algebra H*(Jk(M, 
m); Zz), as algebra over H*(M; Z2) , is generated by Stiefel--Whitney classes w 1 . . . . .  w n of a tautological bundle over 
JI(M, m). 

I0.2. Let N c jk(M, m) be a formally integrable system of differential equations and IN (0 c Ik+~M, m) is a 
subset formed by pairs (xk+~, L) E Ik+~(M, m), such that L ~ ]~f(~)Xk+~)and Xk+ ~ E ~" (0. The restriction of rr~apping ik+ ~ 
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to lg(~) defines mapping ik+ i I~ (~) ~ ~(~), the fibers of which are Grassmannians of integral planes associated with a 
given system of differential equations. And, since imbeddings lg(xk+t) ~ I(Xk+ ~) for sufficiently large l induce 
isomorphisms of cohomologies in dimensions much larger than n, according to Whitehead's theorem, an n-skeleton in 
the cell partition of I~ (m)(Xk+~),can be chosen, for sufficiently large values of l, homotopic to an n-skeleton in absolute 

the cell partition of l$(0(Xk, ~) can be chosen, for sufficiently large values of l, homotopic to an n-skeleton in absolute 

Grassmannian I(Xk+l), Therefore, for large l for formally integrable systems satisfying the hypothesis of the theorem 
from subsection 9.4, cohomology ring, as module over H*(E(~); Z2), is generated by Stiefel--Whitney classes wl (k+~ . . . . .  
Wn (k+0 of a tautological bundle over I~(O. Note also that since bundles $(*) ~ ~(~-1) are affine for l >_ l,  H*($(~); Z2) = 
I-I*(~', z2). 

10.3. The frame of the integral manifold of a Cartan distribution P c g(~), of dimension less than n is defined 
to be section h: g(0 --+ Ig(~) of bundle ik+ ~ such that h(Xk+~) D Txk+t(I') for all elements Xk+ ~ e I'. Framed (n -- 1)- 
dimensional integral manifold I' c g(~) is called Cauchy data (r, h). The solution of Cauchy problem with initial data 
(r, h) is defined to be integral manifold L with boundary 0L, such that L C g(0, 0L = 1" and Txk+~(L) = h(Xk+~), VXk+~ 
E OL. 

With each cohomology class oJ ~ H n - l ( l ~ 0 ;  Z~) and Cauchy data (1", h) we connect characteristic number x~(F, 
h) -- (h*o~, Zr), where Z r ~ Hn_I(F; Z2) is the fundamental cycle of manifold 1,. In particular, for an arbitrary partition 
of number (n -- l) into sum n -- l = i 1 + ... + i r + Jl + ... + Js, where 1 _ i 1 _< ... _< ir, 1 _< Jl < "" --- Js, we can determine 

characteristic n u m b e r  Xil,...,ir,jl,...,js(1 ~, h) = Xto(1,, h),  where r = wil.....Wir.Wjl(k+~)-....wjs(k+~)- 
For formally integrable systems of differential equations satisfying the hypothesis of the theorem from subsection 

9.4, for sufficiently large values of the number l, all the characteristic numbers are exhausted by numbers of form 

Xil,...,ir,j 1,...,is" 
THEOREM. To solve Cauchy problem with initial data (P, h) it is necessary that all characteristic numbers 

Xw(1", h) be equal to zero. 
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