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106 V. V. Lychagin

Introduction

0.1. The version of the problem of classifying non-linear partial differential
equations formulated here was first stated precisely by A. M. Vinogradov in
[6]. There is an obvious connection between this question and the equiva-
lence problem of E. Cartan [35]. A consequence of this connection is the
fact that some standard results, such as Darboux’s theorem on the local
structure of I-forms, and also those of Sternberg [19], [20] and others, can
be interpreted as results on the local classification of first order differential
equations.

0.2. The approach to the classification problem we follow here, which
allows us to give a meaningful solution of the problem, is based on the
geometrical treatment of differential equations going back to Monge, Pfaff,
Lie [29], E. Cartan [10], [35] and others. A modern invariant formulation
of this approach was given by Vinogradov [6].

0.3. The paper consists of five chapters. The first is of an introductory
nature. Its main aim is an exposition of the structures connected with non-
linear first order differential equations. A first step in this direction is to
give an invariant definition of a (non-linear) differential equation on a smooth
manifold M, and of its solution. The natural arena for the action in this
case is the manifold J! (M) of 1-jets of functions as introduced by Ehresmann.
In this approach a first order differential equation is most naturally inter-
preted as being a closed subset £ C J!(M). Unless the contrary is specifically
stated, we assume throughout that £ is a smooth submanifold of J!(M).

The central feature of Chapter I is an analysis of the concept of solution
of a non-linear first order differential equation. Apart from its own independent
interest, this question is fundamentally important for us in that its resolution
determines the choice of the classifying group; that is, according to Klein, the
choice of the corresponding geometry. Indeed, the only and natural require-
ment imposed on the group is that the transformations it contains must
preserve the class of solutions.

For instance, if by a solution of an equation £ C J'(M) we understand,
as usual, a smooth function f € C*(M) whose l-ets j,(f) lie in E, then the
classifying group reduces (as follows easily from Theorem 1.3.3) to the group
T*(M) of canonical diffeomorphisms preserving the fibre of the projection
T*(M) - M. The classification problem for arbitrary non-linear equations
relative to this group is void.

A rougher and more interesting classification is achieved at the expense of
an extension of the classifying group, induced by an analysis of the many-
valued solutions furnished by the R-manifolds. The meaning of the latter is
that they are submanifolds of maximal dimension transforming the universal
1-form U, € A'(J'M) to zero. In a special system of local coordinates

Gis -« Qp> U D1y - .., D, in JA M), U, takes the form U, = — > p; dg; -+ du. -
i=1
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The R-manifolds are closely connected with the Lagrangian submanifolds of
T*(M). In fact, the (local) projection of an R-manifold in T*(M) is a
Langrangian submanifold. However, if we are thinking globally, then the
class of R-manifolds is wider than that of Langrangian manifolds. We mention
that the necessity for studying R-manifolds was first pointed out by Lie. In
recent times the rdle of Langrangian manifolds in linear differential equations
has been significantly clarified in papers of Maslov [14] along axiomatic lines
and of Hormander [23] using Fourier integrals. The role of R-manifolds for
the theory of non-linear differential equations was pointed out by Vinogradov
[6], and the term “R-manifold” was proposed by him.

The classifying group obtained on considering many-valued solutions is the
group of contact diffeomorphisms of J'(M) relative to the natural contact
structure given by the form U,. The importance of this group in the theory
of differential equations was again first clarified by Lie.

In the Lie algebra of this group (the algebra of contact vector fields) there
arises a formalism analogous to the Hamiltonian formalism in symplectic
structures (see [2], [18]). We note that this formalism is as vital in the
theory of non-linear differential equations as the Hamiltonian formalism is
in the theory of linear differential operators. This is traced more carefully
in [7] and [6].

0.4. The solution of the classification problem relative to the group of
contact diffeomorphisms of J!(M) is begun in the second chapter. Here we
consider the local classification of involutory equations E" C JY(M),
codim E” = r, at a non-singular point, that is, a point x € JY(M) where
T,(E") and I'y, = Ker U, , are transversal. We restrict ourselves to the class
of involutory equations, because being involutory is a necessary condition
for solubility.

The main result of this chapter is that any two involutory equations
E{ C J' (M) and E} C JY(M) of the same codimension are locally equivalent
at non-singular points. This means in particular, that after a contact
diffeomorphism an involutory equation can be written in the neighbourhood
of a non-singular point in the form p, =0, ..., p, =0, where q4, ..., q,,
U, py, ..., P, is a special system of local coordinates in JI(M). It follows
from this that any two involutory equations of the same codimension in
the neighbourhood of a non-singular point have the same stock of many-
valued solutions, that is, in particular, they are always locally soluble (in
the sense of R-manifolds). As regards the existence of ordinary solutions,
it turns out that a necessary and sufficient condition for their existence is
that the skew-orthogonal complement to T,(E") N T, in I, projects non-
degenerately onto M.

In particular, if £ is the set of zeros of a function
F e C” (J*M), E ={(g, u, p) € J{M) | F (g, u, p)=0},then the condition
for local solubility in the class of ordinary functions takes the form of a
condition of ‘“smooth type”, %L;& 0.
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0.5. Beginning in Chapter III, we consider the local equivalence of
equations at singular points, that is, points x € E” where T, (E") and T,
are not transversal, so that 7, (E") C T, .

As in the classical Morse theory, we first construct a bilinear form %, on
T,(E") such that the orbit of i, or the orbit of an operator H naturally
connected with # , under the conformal-symplectic group CSp(2n) is an
invariant of the classification problem.

In Chapter III we give a complete list of the invariants characterizing the
orbits just mentioned.

Apart from these fundamental questions, we consider necessary conditions
for the linearization of equations and we give normal forms of the 2-jet of
an equation at a singular point.

0.6. Chapter IV is devoted to the problem of formal equivalence of
equations at a singular point. Sufficient conditions are obtained for the
formal equivalence of involutory equations £ and E% at a singular point
x: if the operators H, are CSp-equivalent, k£ = 1, 2, and the eigenvalues

{A;} are such that D) m;A; = 1 for all natural numbers m; whose sum is

greater than 2, then the formal Poincaré condition for linearization of the
characteristic vector field X, at the singular point x € E} holds when
r = codim E} = 1.

For if A; = 3} m;, with >} m; > 2, then since 1 — A; is also an
eigenvalue of H;, we have 1 = (1 — A;) -+ Nmih;.

Similar conditions for formal equivalence are obtained (see 4.2.11) for
equations with a singularity. We consider the most important case, when £
is of the form E = {&# =0}, where & is a smooth function on T*(M),
understood as a function on J!(M) via the natural projection
7. J'\(M) > T*(M), and d F, = 0.

The formal equivalence conditions so obtained allow us to establish the
algebraic insolubility of the classification of Hamiltonians in the neighbour-
hood of a singular point relative to the group of canonical diffeomorphisms.

0.7. In the concluding Chapter V we establish the sufficiency of the
formal condition (4.2.9.1) and the CSp-equivalence of the operators H for
the local equivalence at a singular point of involutory equations of the
same codimension.

We also consider applications of the result so obtained to two classical

problems. The first was raised in 1814 by Pfaff, the teacher of Gauss. The
N
problem concerns the reduction of a I-form o = ) a;(z)dz; to the

1=
simplest shape. It was solved by Darboux when the exterior differential
dw has locally constant rank and w does not vanish. A full investigation
of this case, without the assumption that dw has locally constant rank, was
carried out by Martinet [13]. The present article contains an investigation
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of the case when w € A’ (R?*") is involutory (for example, when dw has
maximal rank) and w, = 0.

The second question0 is that of the local equivalence of Hamiltonians under
the group of canonical diffeomorphisms in the neighbourhood of a singular
point. Because of the algebraic insolubility of the question as posed, formal
equivalence must be included in the statement of the problem. In this form,
and under the condition that the singularity is elementary, the local equiva-
lence problem has already been solved. As above, the classification problem
allows us to prove the corresponding results for local solubility.

Finally, I express my deepest thanks to A. M. Vinogradov, who pointed
out this circle of problems to me, and who has been a source of constant
encouragement and consideration throughout the work. I am grateful also
to V. L. Arnol’d for critical remarks and advice, which have helped to
improve the article.

CHAPTER I
Geometry of non-linear first order differential equations

The aim of this chapter is to describe the structures connected with non-
linear first order equations. It turns out most convenient to represent a
differential equation as a closed subset of the manifold of l-ets of functions.
The fundamental structure that arises quite naturally in this approach is the
contact structure on the smooth manifold of 1-jets. Here and throughout
the sequel, smoothness means belonging to the class C~.

§1. Jets

Let M be a smooth manifold, dim M = n, and C*(M) the ring of smooth
functions on M.

Consider the maximal ideal yu,, C C”(M), m € M, consisting of the
functions that vanish at m:

bm = {f € C¥(M) | f(m) = 0},
and the powers of u,,:

Wa={fEC™(M)|f= 2 1, - gy g,€0m}y BT =0 W
iy - ip) hz1

1.1.1. DEFINITION. A function f € C”(M) is said to be k-flat, or to be
a function of order of smallness k at m, if f € ufnﬂ. The functions
f € u,, are said to be flat at m.

This definition is associated with the fact that f € u,’;“ if and only if
d'°'flagd ... aq:" l, = 0 in every system of local coordinates ¢, ..., g,
in the neighbourhood of m, and for every o = (0, ..., 0,) with
lol=0,+...+0, <k

We write JX (M) for the factor ring C“(M)/urﬁ”.
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1.1.2. DEFINITION. The image of f € C™(M) in J" (M) under the
natural projection C™(M) - I k(M) is called the k-jet of fatm €M and
is denoted by j. (f)l,, .

If a system of local coordinates ¢q,, ..., q, is chosen in the neighbour-
hood of m, then we can take as representative of j, (f)|,, the segment of the
Taylor series for f up to the terms of degree k, so that the elements of
I k(M) can be thought of as the segments up to terms of degree k of the
Taylor series of arbitrary functlons at m.

1.1.3. Consider J* (M) & LéMJ,ﬁ(M). We give to JX¥(M) the structure of a

smooth manifold, 0 < k < oo,

Let g4, ..., q, be a system of local coordinates in a neighbourhood
U=M. In J:‘n(M), m € 9, regarded as a vector space, we introduce
coordinates p_, 6 = (04, ..., 0,), | 0| < k. relative to the basis
3o 7 @5 = @) s - - ey — 4O - @5, =)™ | » Where
now q? = q,(m) are the coordinates of m. lThus the elément ]k(f)|m can be
written in these coordinates as

. ooy
R R e Rk
that is,
. 991f
Pa U () ) =~ e |
We now introduce coordinates in the set % = | Ji(M), which is by
mE?/

definition open, in the following way. Every point x € % is uniquely
determined by the point m € % such that x € J k), and by the
coordinates p, of x in J k(M) Thus, a point z € Ol[ is uniquely determined
by the (n + 1)-tuple (q,, e Qn> P> | 01 < k), where q,4, ..., qn are the
coordinates of m and x € J (M). 1t is easily checked that 1f €U, N U,
and its coordinates g{l, . qf,l) in 9%, and ¢$?, ..., q,, in 9, are
smoothly connected, then the transition from the coordinates
@®, ..., 4P, p) to @2, ..., 4P, pP)in U, 0 U, is also smooth.
DEFINITION The set J* (M) w1th the smooth structure just introduced is
called the manifold of k-jets of functions on M.
1 1.4. Let F: M, > M, be a smooth mapping. Then the ring homomorphism
T C°(My) - C™M)), F*(fY) = f o F, induces a homomorphism Jk (F) of
the factor rings: Jk (F') Jk (M2) - Jk (Ml) F(m,) = m,, such that
[Jk (F)] (]k(f)|m2) = ]k(F*(f))|m Takmg the union of the Jk (F) for all
pomts m, € M,, we obtain a smooth mapping JE(F): Jk(M2) 5 JEM,).
PROPOSITION. Let F: M, - M, and G: M, - M3 be two smooth
mappings and 1: M - M the identity mapping. Then
TG o F) = JK(F) o JXG), J¥(1) = 1.
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1.1.5. We consider the mappings m: J*(M) > M, m i JEM) > Ty, k=1
defined by the relations m (N, ) = m, 7 1 G D) = 11, . Then m
turns J¥(M) into a vector bundle over M whose fibre at m is J (M), with
the natural vector space structure.

Let %"(M) be the module of smooth sections of this bundle. Then the
projection my ;: J k(M) - JYM), which is obviously a morphlsm of vector
bundles, defines a module homomorphism v, ;: (MY - $(M) for k = 1.

Let %*(M) be the kernel of the homomorphism vy . By definition of
Vk,0; the elements of %" (M), can be represented as sections of the bundle

s TEM) > M, where T¥(M) = O T 1(M) and J3(M) = uy, Ju, "

EXAMPLE a). Let k = 0. Then J2(M) = R, so that my: JO(M) - M is
a one-dimensional vector bundle over M. For a section ftrivializing
mo: JOAM) > M we can take jo(1): M - JOM), [jo(1)] (m) = jo(1)|,, . Thus,
JOM) = M X R! and 4%(M) = C™(M).

EXAMPLE b). If £ = 1, then J'Y(M) = T*(M) is the cotangent manifold
to M, and ¥Y(M) = AYM) is the module of differentiable 1-forms on M.

In addition to the homomorphisms v, ;, we introduce the mapping
Je: €M) — FHM), a(DNm) = jall) Ims m € M, f € C*(M), which (unlike
Vg ;) is a differential operator of order k [7].

1.1.6. Let F: Ml - M, be a smooth mapping. Then J*¥(F) is a module
homomorphlsm LR(F): ¥M(My) - ¥ *(M,) over the ring homomorphism®

1 C™(My) — C°°(M1) 1f s € ¥*(M,), then

[’gtk(F)(s)](ml) = [JE,(F))(s(my)), my = F(m,). The homomorphism
Fh(FY: FHM,) — FM(M,) is defined similarly; it is also a homomorphism
over F*: C*(M,) - C*(M,).

EXAMPLE a). k = 0. Then ¥%F) = F*: C*(M,) — C™(M,).

EXAMPLE b). k = 1. Then £Y(F) = F: AY(M,) — ANM,).

As a consequence of Proposition 1.1.4. we find that if G: M, > M, is a
smooth mapping, then

PGP =¥ (F)o35(6), 7" ()=1.

PROPOSITION. For every smooth manifold M, we have
¥HM) = (M) @ ¥° (M); in addition, if F: My > M, is smooth, then
FHE) =FHE) @ Fo(P). ,

PROOF. We define an embedding i, %°(M) — %"(M), such that
[, (D] () = j (fm)},, , Where [ € ¥°(M) = C=(M), m € M.

Then vy g0 i, = 1, that is, i, is a right inverse to V.05 therefore
¥H(M)= Ker vy, @ Im i,.The decomposition 4*(F) = $*(F) @ 4 %¥F)
follows from the fact that $*(¥) and v; , i, commute:

Vi, oo ¥E(F) = §O(F) o Vi oy $*(F)o iy = iy o LOF).

D) We recall that, given a ring homomorphism ¢: K; — K,, a mapping f: £, — E, of a K ,-module E
to a K ,-module £, is called a homomorphism over ¢ if a) f is additive and
b) flky-er) = @(ky)f(er)s k1 € K1y e € EL.
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COROLLARY 1. 3Y M) = A M) & C>(M), Y (F) = F* o F*.
COROLLARY 2. JXM) = T*(M) X R
Thus, the elements of %'(M) can be thought of as pairs (w, f), with
w € AM), fECM). If F: M, - M,, then 4 (F)(w, /) = (F*(0), F*({)).
In terms of the direct decomposition of %¥(M) the mapping
Jit C=(M) — %Y (M) can be written in the form j,(f) = (f, df).
The representation of J!'(M) as a direct product 7*(M) X R! correspond-
ing to the direct decomposition of $'(M) allows us to define a projection
m JU(M) - T*(M) and an injection a: T*(M) - JY(M), where
wlx, 1) =x, ax) = (x, 0), x € T*(M), t € R..

§2. Non-linear differential equations and many-valued solutions

Using the manifold of 1-jets of functions, we can give an invariant
definition of a non-linear first order differential equation and its solutions.

1.2.1. DEFINITION 1. A non-linear first order partial differential equation
on a manifold M is a submanifold £ C JY(M).

DEFINITION 2. A solution of an equation £ C JY M) is a smooth
function f € C*(M) such that the image of M under j,(f) lies in E, that is,
(A M) C E.

REMARK. If codim E > 1, then F is said to be overdetermined.

Let us see how our definitions of equation and solution connect with the

classical definitions. To this end we choose local coordinates g4, ..., g, in
some neighbourhood 9/ <= M. Let q,, ..., q,, u, py, ..., p, be the
coordinate system induced in 7 = x;%(%), where u = p_, when
0=(,...,0 and p; = p, when o = (0, ..., 1,..., 0) with 1 in the

i-th position.
In this C(E)rdinate system we can find for every point x € E a neighbour-
hood @ <7, = € ©, in which E 1 © can be given by equations

fs(‘hv ooy ny Uy Pys oo oy pn) = 01

where 1 < s < k, k = codim FE. In this coordinate system the section j,(f)
can be written as

71O s - -, g,.)=(q1, eees Iny F(0); (;)Tfi ceey a‘zfn)-

Therefore, the condition for the image of [j;(f)] (M) in © to lie in
E N ©, means that

. [7j
.FS (qh eovy Gn, f(Q), _a_qj;", e ey aiq]:;"):o, 1<S<k,

that is, it corresponds to the usual representation.

Having in mind the above Definition 1.2.1, we endeavour to extract geo-
metrically from the set of all sections of m,: J!(M) - M those that are
“integrable”, that is, have the form j(f) for some f € C™(M).

1.2.2. PROPOSITION. There exists a unique element 01 € ¥Y(J'M) such
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that for every 6 ¢ ¥Y(M),

(1.2.2.1) [#1(0))(0,) = 6.

PROOF. Before defining the element p,, we make the following remark.
Every point x € JY(M) may be interpreted as the l-jet of some function
f € C7(M) at the point m = m(x) € M, that is x = j;(f)|,, - We now define
p1 as follows: p; |, = j(m,*(N)|,, where x = j{(f)|,, m = my(x). Let us check
that the element p, so defined satisfies (1.2.2.1). Let x and f be as above,
and 8(m) = x. Then

(EHON P I = FHONG I 1) = HOTHD) bn = Al) |n = = = O(m).

Now we give the form of p, in a special system qy, ..., q,, 4, Py, ..., Py,
of local coordinates in J'(M). Suppose that x € J(M) has the coordinates
@3 ..., q° u p% ..., p%). Then for an f with x = j;(f)|,, we can choose

n
the function u® -+ 2 pig; — ¢3); hence we obtain, using the definition of

i=1pn

py, that 01 l. = (u0, X p%dg,) or, counting x as arbitrary, p; = (u, p), where
i=1

p € AYJ' M) and in the special local coordinate system p has the form

1_Z.lllf’i dgq;.
The uniqueness of p, follows from the simple observation that the only
element p} such that [¥%(0)l(p;) = 0 for any 6 € ¥*(M) is p; = 0.
REMARK. The function u € C*(J'M), p, = (u, p), does not depend on
the choice of coordinates and can be defined as the composition of two

projections:

JHM) —° e JO(M)= M x R

Ri

In addition, if we utilize the direct decomposition of %!, then u and p

can l?e defined as the lifting to J (M) corresponding to p, and p, where

0o € °%J°M)and p € AYT*M) are determined by the universal properties
analogous to (1.2.2.1):

[#° @)1 (p) =0 if e (M),
0*(p)=6 if 6cAY(M).
Thus, u = 77 0(po), B = 7 (p).

1.2.3. Consider the operator Z: ¥'(M)— AY(M), which in terms of
the direct decomposition ¥YM) = AYM) & C*(M), can be written as
F(f, ®) = df — o.

PROPOSITION. The operator & has the following properties:

a) Ker & = Im j,.
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b) @ is natural, that is, for every smooth mapping F: M - M,,
D o YU F) = F* o T, where.F*: AY(M,) - AY(M).

PROOF. Property a) follows from the definition of % , and b) from the
direct decomposition 41(¥) = F* @ F* and the fact that the operator of
outer differentiation is natural.

REMARK. Z: ¥Y(M)— AYM) is the Spencer operator from the first
Spencer resolvent, which in this case has the form

0 C= (M) —2s 31 b1y —2s AY (M)—0.

We note that, in contrast to the de Rham sequence, the Spencer sequence
is exact on every smooth manifold M.

DEFINITION. The form U, = Jp, € AYJ'M) is a classifying element of
U, on J'(M).

We use the proof of Proposition 1.2.2 to establish the form of U in the
special coordinate system (qy, ..., q,, ¥, p;, ..., P,)- As we have seen,
p1 = (u, p), where p = p dq. Therefore, U = du — p = du — p dq.

1.2.4. PROPOSITION. The section 6 € JY(M) is “‘integrable”, that is,

6 = j.(f) for some function f € C™(M), if and only if 6*%(U,) = 0.

PROOQF. By Proposition 1.2.3, 8 = j,(f) if and only if Z6 = 0. Next we
use Proposition 1.2.2 and represent 6 in the form 6 = [}#'(6)](p,). Then
0= 26 = FIF(O)(py) = 0*(Tpy) = 6%(Ty). |

REMARK. The construction of p, and of the classifying element U, given
here was first proposed by A. M. Vinogradov, and is an analogue to one of
the possible ways of constructing the universal forms p = p dg and
dp = dp A dgq on the cotangent manifold T*(M). Here the module A}(M)
is naturally replaced by #%!(M), and the de Rham sequence by the Spencer
resolvent. Note that the assertion corresponding to Proposition 1.2.4 is true
for T*(M) only when M is simply-connected.

1.2.5. DEFINITION. a). A submanifold i: L C J'(M), dim L = dim M, is
said to be an R-manifold if i*(U;) = 0. b) A many-valued solution of an
equation E C JY(M) is an R-manifold L lying in E.

Thus, Proposition 1.2.4 can be interpreted as a condition for a many-
valued solution to correspond to an ordinary (single-valued) solution
determined by a smooth function. For a many-valued solution corresponds
to an ordinary one if and only if L = (M) for some section 8: M — JY(M)
or, what is the same thing, if and only if the restriction my|;: L - M of
m; to L is a diffeomorphism. :

1.2.6. In this subsection we use the direct decomposition
JYM) = T*(M) X R?! indicated in §1 to describe a connection between
R-manifolds and Lagrangian submanifolds of T*(M).

First we note that the universal form p on T*(M) can be defined by the
equation p = — a*(U,), because U; = du — p, where p has the form
p = p dq in the local coordinate system q,, ..., q,, 4, Py, ..., Dy, and
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a(ql, «vos 4y, Do "'9pn) =(qla "-,qn909p15 "'5pn)-

THEOREM a). Let i: L C JYM) be an R-manifold. Then for each point
x € L there is a neighbourhood © — L,z € O, whose projection
noi: O — T*(M) in T*(M) is a Lagrangian submanifold of T*(M) on
which p is exact.

b) For every connected Lagrangian submanifold i,: L C T*(M) there is
an R-manifold i: L C JYM) such that the mapping m o i: L - L, is a
covering.

PROOF. a) As a preliminary we describe the elements of the subspace
V=Kerm  C T, (J'M), x € JY(M). To do this we note that V is one-
dimensional, since m: JYM) - T*(M) is a projection and
dim J'M) = 1 + dim T*M).

Next we show that the restriction of U,, to V is a non-zero 1-form.

For if (g4, ..., 4,, u, Py, ..., p,) is a special system of coordinates in
the neighbourhood of a point x € J(M) (that is, g, ..., g, are local
coordinates in the manifold M), then 7 has the form

gy oo Qps W Pys oo o5 D) = Wss - -5 Gy, Pys - - - > Pp). Consequently,

V is generated by the vector % L+ on which U, x(aiu‘x) = 1.

Suppose now that L C J!(M) is an R-manifold and x € L. Then T, (L) -
and V intersect in zero alone, because U;, is zero on T,(L). Therefore,
L T,(L) » ﬂ(x)(T*M) is a monomorphism, which gives the existence
of a neighbourhood © < L , as required.

Let us check that the form p is exact on mo i: O — T'*(M) We have

(o )*(p) = (o O)*(@*(p)) = (o 7o D)*(du —U,) = di*(w)).

b) We fix a point /4, € L,. Then for every point x € L, and every path
v = {z@)}, z(0) =1, z(1) =z, we define a function

St @)= | .
v
Further, since the submanifold L, is Lagrangian, that is, dpj, = 0, it follows
from Stokes’s theorem that S(y, x) depends in fact only on the homotopy
class [v] of paths joining /[, and x.
Let

L= U ('r’S('V’ .?2)), (I’S(V’ x))E-"(M)
(7], %)
Standard arguments show that L is a smooth submanifold of J(M), and
by construction we have U,|; = 0.
It follows from the proof of part a) of the theorem that

7|y : L - L, is a local diffeomorphism. Therefore, to conclude the proof
it is enough to compute the pre-image 7r|z'l (x) of x.
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We consider the homomorphism x: 71(L;) > R of the fundamental
group w'(L,) of L, into the additive group of real numbers:

x@=[ i), s=Mmen (L.
it
By construction of L, the fibre 7r|z‘l (x), x € L,, is then isomorphic to the
factor group w'(L,)/Ker x.
EXAMPLE 1, Assertion a) of the theorem is not true globally. Consider
the curve i: R' C JY(R!):

i) =(2—1, 212 (32 —5), tE—1)).

It is easily checked that i*(U,) = 0. But the projection of the curve on
T*(R!) is a curve with an ordinary double point at (¢2 — 1, #(t? — 1)).

EXAMPLE 2. Let M = R, L; = {(g, p) € T*(R) | ¢* 4 p? = 1}. Then
L is the universal covering over a circle.

8 3. Contact diffeomorphisms and symmetries

From the point of view adopted in §2, it is natural to consider not
arbitrary diffeomorphisms of J!(M), but only those that preserve the class
of R-manifolds. Such diffeomorphisms must preserve the zero form U,, and
so must multiply U; by some function.

1.3.1. DEFINITION. A diffeomorphism F: JY{(M) — J'(M) is said to be
a contact (or a U,-) diffeomorphism if F*(U,) = fU,, f € C*(J M) (or
F*(U,) = U,, respectively).

REMARK. Every contact structure on an odd-dimensional manifold N is
a “maximally non-integrable” field of hyperplanes &, that is, for each point
x € N there is a subspace &, < T.(N), codim &, == 1, depending smoothly
on x € N. “Maximal non-integrability” means that, for any 1-form w in a
neighbourhood % — N of x and such that Ker o = &, the restriction of
dw to & is non-degenerate. In this situation contact diffeomorphisms
F: N - N are those that preserve &, that is, for which F,, «(&.) = &r ),
for every x € N.

In the case of the manifold J!(M) of 14ets of functions, a contact
structure € is given by a l-form U;: €, = Ker Uy, ,, z € JY{M), and the
contact diffeomorphisms of this structure are just the contact diffeomorphisms
in the sense of Definition 1.3.1.

1.3.2. DEFINITION. A symmetry of an equation E C J!(M) is a contact
diffeomorphism F: JY(M) - J'(M) preserving E: F(E) = E.

Thus, symmetries are the contact transformations that preserve an equation
and the class of its many-valued solutions.

1.3.3. THEOREM. Let F: JY(M) - J'(M) be a U,diffeomorphism. Then
F preserves the fibre of the projection w: JY (M) -» T*(M) and determines a
canonical diffeomorphism F. T*(M) - T*(M) having a generating function,
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that is, F*(p) — p = dS, where S € C™(T*M). Conversely, for every canoni-
cal diffeomorphism G having a generating function there is a U,-diffeomor-
phism F such that F = G.

PROOF. Let us show that F preserves the fibre of 7. To do this we look
at a vector field X; on J'(M) whose direction at a point x € JY(M) is that
of the degenerate form dU,, and which is normed by the condition
Uy (X)) = 1. In other words, X, can be defined by the equations
X, U, =1, X, 1dU, =0, where _lis the symbol for interior multiplication.

It follows at once from the last definition that a diffeomorphism F pres-
erves the field X,, F,(X,;) = X,, whenever it preserves U,. On the other
hand, the trajectories of X, are the fibres of .

We can prove this, for example, by choosing a special system of local

coordinates ¢y, ..., q,, 4, Py, - -., P, in JYM). In this system U; has the
form du — p dgq, so that X, = % The projection 7 has in this coordinate
system the form 7 (g, ..., q,, U, Pty -- -3 Pp) = @15 - -, Gy P1s - -+ Py)s

so that a trajectory of X, is a fibre of 7.

Let us verify that the diffeomorphism F: T*(M) - T*(M) determined by
F, F(y) =7 o F o 771(y), is canonical.

To do this, we represent F in the form F(x, ¢) = (F(x),t + 7*(S)(x)), where
x € T*M), t € R, § € C7(T*M). Note that such a representation is
possible, since F,(X;) = X;.

Making use now of the equalities U, = du — p, p = 7*(p), we see that
U, = F¥(U,) = d(F*(u)) — T*F*(p) = 7*(dS) + du — 7*(F*(p)), that is,
THE*(p) — p) = 7*(dS).

But, as F*(p) — p € A (T*M) and dS € ANT*M), and as
. JY(M) > T*(M) is a projection, it follows that F*(p) — p = dS.

Conversely, suppose that G is a canonical diffeomorphism of T#(M) and
that § € C™(T*M) a generating function for it. Then, setting
F(x, t) = (G(x), t + #*(S)}x)), we obtain the U,-diffeomorphism F we are
looking for.

REMARK. As is clear from the preceding proof, the U,-diffeomorphisms
covering 1: T*(M) — T*(M) are translations 7, along X,. Therefore, if the
U,-diffeomorphisms F; and F, cover one and the same canonical diffeo-
morphism, then F; = 7, ° F, for some s € R.

1.3.4. To conclude this section we describe the special class of Uj;-
diffeomorphisms corresponding to diffeomorphisms of M.

Let K be a diffeomorphism of M. We construct a diffeomorphism
K': JYM) - JYM):

K’ (z) =[xk (K)]7* (2),
where x € JY(M), m = m,(x).

PROPOSITION. K' is a U-diffeomorphism such that (K'Y*u = u. Conversely,
if Fis a U,-diffeomorphism such that F*(u) = u, then F = K' for some
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diffeomorphism K: M - M.
PROOF. Let us show that K' preserves p,, that is,

(1.3.4.1) [(¥HE) () = o1
For this we use the equality

(1.3.4.2) K o ($Y(K)1(08)) = 0o K,
which follows at once from the definition of K', and is valid for
b € 71 (M).

We show next that the element [%¥(K')l(p,) also satisfies the condition
1.2.2, hence(1.3.4.1) follows, by the uniqueness of p,.
For arbitrary 6 ¢ ¥#*(M) we have

[F1OI([F (K] (p1)) =F1 (K" 20) (py) =
=¥ (([% (K)17'(0)) o K) (01) =
=FHK) F ((F1E)T1(0)) (p1) = F' (K)o [ (K)]7' (B) = O.

Further, because of the direct decomposition
YYK') = (K')* © (K'Y, 01 = (p, u), we see that
(K')*(p) = p, (K')*(u) = u.

We assume now that the U,-diffeomorphism F fixes u, F*(u) = u. It
follows from the preceding theorem that F has zero generating function,
that is, F*(p) = p. Therefore, as is well known, F is a lifting of the
diffeomorphism K: M - M to T*(M), and K' = F.

§4. The algebra of contact vector fields

1.4.1. We recall some fundamental properties of the Lie derivative.

Let X be a vector field on a manifold N, and T, a local one-parameter
group of translations along X. The Lie derivative Ly(w) of a form
w € A¥(N) along X is defined as

Lx (0) =1lim + (T} (0) — o).
t-0

The basic properties of the Lie derivative that we need in the sequel are
summed up in the following proposition. Proofs can be found in [18].

PROPOSITION. Suppose that f € C*(N), w € A*(N), w, € N'(N), and
let X and Y be vector fields on N. Then

(1.4.1.1) Ly (©) == Lx (®) - Ly (),
(1.4.1.2) (Lx, Ly] (@)= L[X,iY] (o),

(1.4.1.3) Ly (do) =d (Lx0),

(1.4.1.4) Lx(0)=X Jdo+d(X o),
(1.4.1.5) Lx (0 \©)=Lx (®) \ o-+0; A Lx (0).

1.4.2. We now consider a local one-parameter group 7T,:J (M) —J' (M) of
contact diffeomorphisms, T*(U,) = g,* U,. Let X be the corresponding
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vector field on JX(M). Then by the definition of the Lie derivative,
(1.4.2.1) Le(U)=g-Uy, where g=28t

dt |t=o0"

On the basis of this last remark, we make the following definition.

DEFINITION. An infinitesimal contact transformation or a contact
vector field is a vector field X on JYM) satisfying (1.4.2.1).

REMARK. For any contact structure & on a manifold N, a vector field
X is said to be contact if the one-parameter group of translations along X
consists of contact diffeomorphisms. Since, in general, a contact structure is
not necessarily given by the zeros of a 1-form, the above definition can be
reformulated as follows: X is a contact vector field if for every vector field
Y such that Y. €&, € N we have Lx(Y) |, =Y, X]x € E..

EXAMPLE 1. The vector field X, on J'(M) defined in the proof of
Theorem 1.3.3 is contact. For Ly(Uy) = X, 1dU, +d(X, 41Uy =0,
because X; 1dU, =0, X; 11U, = L.

EXAMPLE 2. Let T, be a one-parameter group of translations along a
Hamiltonian vector field X on T*(M). Then T, (see Theorem 1.3.3) is a one-
parameter group of translations along a contact vector field X on JY(M) such
that 7_(X) = X.

PROPOSITION. A vector field X on JXM) is contact if and only if the
group of translations along X is a one-parameter group of contact diffeo-
morphisms.

PROOF. The condition Ly (U,) = g* U, is equivalent to the fact that
Ly (U;) A U, = 0. Therefore, the condition for X to be contact can be
written in the form

2l Wy AT =0,

On the other hand, since Ty,, = T; o T,,

s
d

|, @O NU=0,
Thus, TF(U) A U, = T§(U,)) A U, = 0, that is, the T, are contact diffeo-
morphisms.

1.43. THEOREM. Every contact vector field X on JYM) is uniquely
determined by the function f = U(X). To every function f € C™(J M)
there corresponds a unique contact vector field X; such that

(1.4.3.1) U(Xy) =1,

(1.4.3.2) Lx, (Uy) = X,(f)-Us,

(1.4.3.3) Xprg = X; + X, g € C(JIM),
(1.4.3.4) Xig = fXg + gXs — feXy,
(1.4.3.5) X(f) = X:(f) -f.

PROOF. Let X be a contact vector field on J'(M), Ly(U,) = h* Uy,
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h € C™(J* M). We represent X in the form
(1436) X =f X, + Y, where f € C*(J'M) and U,(Y) = 0.

We now use the property (1.4.1.4) of a Lie derivative:
Ly(U)) =X 144U, +d(X 1U,)) = h-U,, or, substituting (1.4.3.6),

(1.4.3.7) Y J1dU, = h-U, — df.

In particular, by applying the left- and right-hand sides of (1.4.3.7) to X
we see that 2 = X, ().

To conclude the proof it is enough to note that (1.4.3.7) determines the
field Y uniquely, because the form dU, establishes an isomorphism
Y - Y _1dU, between the vector fields on which U; vanishes and the
1-forms that are zero on X.

If now f is any smooth function on J'(M), then with Y defined by
(1.4.3.7), h = X,(), and X = X defined by (1.4.3.6), we obtain the
required field X,.

The equalities (1.4.3.1)—(1.4.3.5) for Xf follow from (1.4.3.6), (1.4.3.7),
and the properties of the Lie derivative.

DEFINITION. The function f = U,(X) is called the Hamiltonian of the
contact vector field X on JY(M).

EXAMPLE. Every function H € C™(T*M) can be regarded as a smooth
function on J!(M) via the projection m: J{(M) - T*(M), f = w*(H). Here
the projection of the contact vector field Xy on T*(M) is the Hamiltonian
vector field Xy, and from (1.4.3.2) it follows that X, _J dp = dH, because
dU, = — w*(dp).

We now indicate the form of the contact vector field X £ in local
coordinates. Let g, ..., g,, 4, py, ..., P, be a special system of local
coordinates in J'(M). The form of X £ is easy to find from the relations
(1.4.3.6) and (1.43.7):

n n

n
af @ af d af af 0
XY= =3 gt (1= 2 rag) a2 (G p o) e

i=1{ i=1

REMARK. The assertion analogous to Theorem 1.4.3 is valid for any con-
tact structure € on N. To formulate it, we consider a l-dimensional fibration
¢ on N whose fibre at a point x € N is the factor space T,(N)/&,. Every
vector field ¥ on N determines a section Sy of §: Sy (x) is the image of
Y, in the factor space {, under the natural projection 7' (N)— T (N)/E,.

The analogue to Theorem 1.4.3 can now be formulated as follows. Every
contact vector field X on N is uniquely determined by the section Sy of .
To every section s there corresponds a contact vector field X = X such
that Sy = s.

If the contact structure is given by a l-form w, then ¢ is trivialized via
a non-zero section Sy ~ where X, is a vector field such that
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X, Jdp =0, X; Jw = 1. Hence for such structures the contact vector
fields are determined by Hamiltonians.

1.6.6. The existence of an isomorphism between contact vector fields on
JI(M) and smooth functions allows us to define various pairings between
functions.

(A) THE LAGRANGE BRACKET. Take f and in g C™(J!M), and let
Xf and X_be contact vector fields with Hamiltonians f and g, respectively.
By (1.4.1.2), their commutator [Xy, X,] is also a contact vector field, so
that it has the form X, for some function 4.

DEFINITION. The Lagrange bracket [f, g] of two functions f and g is
the Hamiltonian of the contact vector field [X S Xg], that is,

7 gl = Ul([Xf: Xg])-
BASIC PROPERTIES OF THE LAGRANGE BRACKET.
L1. Bilinearity:

laf, + bfs, g] = alfy, g] + blfy, gl, a, BER
[, ag: + bg,] = alf, g;] + blf, gl

L2. Antisymmetry: {f, f1 = 0.

L.3. Jacobi identity:

lf, lg, k1] + lg, [, {11 4 [, [f, g]l = 0.

(B) THE JACOBI BRACKET.

DEFINITION. The Jacobi bracket {f, g} of two functions f and g in
C=(J'M) is the function {f, g} = dU,(X;, X,).

BASIC PROPERTIES OF THE JACOB!I BRACKET.

J1. Bilinearity:

{afi + bfy, g} = a {f1, g} + b {fs g},
{f, a6, + b8} = a {f. &1} + b {f, 82}, a, bER.
J2. Antisymmetry: {f, f} = 0.
334, {6 Y 4 g (13} A+ (B U 8)) = Xal) {8, B} + Xal9) {0, 13 +
+ Xl(h) {fv g}'
T4 {f, €) = X&) — IX1(®)-
(C) THE POISSON BRACKET.
DEFINITION. The Poisson bracket (f, g) of two functions f and g in
C=(J'M) is the function (f, g) = X H8).
BASIC PROPERTIES OF THE POISSON BRACKET.
Pl. Bilinearity:

(afy + bfs, 8) = alfy, &) + b(fss &),
(f, ag, + bg,) = al(f, &) + b(f, g5), a, b ER.

P2. (1, 8) + (g, ) = Xi(f)g + Xi(g)f.
P4. (f, 8) = {/, g} + X«(o)f.
REMARK. If we consider only functions f € C°(J'M) that are liftings of
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functions in T*(M), f = #*(H), H € C™(T*M), then for these functions the
three brackets [, 1, {, }, (,) coincide with the Poisson bracket in C*(T*M),
because X, (7*(H)) =

Let us compute these brackets in special local coordinates
41, ---s4ys U, Dy - .., D, in JHM). Using the expression for Xf in these
coordinates, together with properties L4 and J4, we find

[, gl=2n‘, (—qf—a—g—if—i)Jri pi (e L)y g

du dp; Ou dp; ou ou !

§5. Cauchy’s problem
In this section we consider differential equations of the form
= {z € J\M) | f@2) = 0}, f€C™JM).

We describe the one-parameter group T, of symmetries of the equation
Ef. It follows from the results of the preceding section that 7T, is a group
of translations along the contact vector field X, with Hamiltonian g. The
requirement that T, (Ef) = E means that X is tangent to Ef, or that
df X Er = @ Nig, =

1.5.1. DEFIN|TI(§N An infinitesimal symmetry of E, is any contact
vector field X, whose Hamiltonian is such that (g, f) |Ef = 0.

We note that E; always has at least one symmetry, namely the field X,.
For (f, |Ef = Xl(f)~f|Ef =0.

REMARK. The vector field Y = X, — fX, is called the characteristic
vector field for £. But for us the only important thing is the action of the
field on Ef; therefore, Y can be replaced by Xf, which, unlike Y, is contact.

1.5.2. PROPOSITION. Every R-manifold L C E; is invariant under X

PROOF. Let X € L, and let T, (L) be the tangent space to L at x. We
must prove that Xfx e T, (). To do this we consider the linear span V
of the subspaces T, (L) and X in T, (J'M). We claim that V has the
following two properties: 1) U, (Y)=0forY €V,
2)dU,x(Y, Y,) =0for Y,, Y, €V.

The first property is clear, because L is an R-manifold, that is,

Uyl =0, and also U, (Xf,x) = fixy = 0. Let us establish the second
property. It is obviously true if Yy, Y, € T, (L). Thus, it is enough to
consider the pair Y, = X;,, ¥, € T,(L). Using (1.4.3.7) we find that
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dUl,x(Xf,x, Yy = Xi(Ale » Upx(Y) —dfi(Y)) = 0

Thus, ¥ C Ker U, and it is Langrangian with respect to dU, . There-
fore, dim V < n, or, since dim T, (L) = n, Xy, € T, (L).

COROLLARY. If the R-manifold L is tangent to Ef at x € Ey, then
Xiy € T (D).

1.5.3. DEFINITION. We say that a generalized Cauchy problem is posed
for an equation Ef C J1(M) if there is given an (n — 1)-dimensional sub-
manifold i: L' C E; such that i*(U,) = 0 and X,, € T, (L") for any
x € L'. The submanifold L' is called the Cauchy data.

PROPOSITION. A generalized Cauchy problem L' C Ef has a unique
solution, that is, there is an R-manifold L C E, L D L', and any two such
R-manifolds coincide in a neighbourhood of L.

PROOF. Consider the embedding i,: © < E;, where O < L' X (—e¢, &) —
is some neighbourhood of L' X 0, ¢ > 0; here iy(x, 1) =T,(x), x € L',

(z, t) € ©,and T, is a one-parameter group of translations along X -

Since the T, are contact diffeomorphisms and Ul(Xf)|Ef = 0, we have

i*(Uyp) = 0. Thus, ii: © < E; is a solution of the Cauchy problem
L' CE,.

On the other hand, any many-valued solution of the Cauchy problem
L' C Ef must be invariant under Xf, so that it must coincide with (@ in
some neighbourhood of L'.

COROLLARY. We assume that the translation group T, is defined for
all values of t, — oo < t < oo, and that the manifold L = LtJ Tt(L') projects

diffeomorphically onto M. Then the generalized Cauchy problem L' C Ef
has a solution f € C™(M) given by the formula

(1.5.3.1) Fom=u @)+ | o,

where «(t) is a trajectory of Xy such thavt T, (y(1) =m, y(0) =1'" € L'.
PROOF. We note that L is an R-manifold, and, as L projects diffeomor-
phically onto M, we see that L = [j,(h)] (M) for some function 2 € C~(M).

It follows from the definition of u € C*(J'M) that u() = h(m) if
le€e L, m=m()€ M. Next, X AW = dulXp), = U(Xp)|, +p(Xf)|L p(Xf)[L,
that is, if y(z) is a trajectory of Xf, then du(y(¢))/dt = p(Xf)| ( and (1.5.3.1)
follows.

1.5.4. Suppose that we are given a submanifold v: N C M, codim N = 1,
and an R-manifold i: L' C JYN). The embedding »: N C M induces a
mapping v JIM) N Ef > JI(N) where J1(M) is the restriction of

S M) - M to N, and 7 that of J'(») to JE(M) N Ey.

DEFINITION a). A point y € JY(N) is said to be free relative to E if
v is a diffeomorphism at the point. If not, then y is said to be character—
istic.

b). An R-manifold L C JY(N) is said to be free (characteristic) relative to
Ef if all its points are free (characteristic) relative to Ey.
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PROPOSITION. Let L C JY(N) be an R-manifold that is free relative to
E; Then L' = v7}(L) gives us Cauchy data for E.
PROOF. As a preliminary, we establish the following equation:

(1.5.4.1) V(UY)=UMlaonne,
where U{V (U{” ) is a classifying element of the manifold N( or M, respectively).
To prove (1.5.4.1) we choose a system of local coordinates ¢, ..., g,

in M such that N is given by the equation ¢, = 0. Then

n—1
v (UY) = (du— i; pi dgs) lEf= u¥ ,J},(Mm Eg

Further, taking (1.5.4.1) into account, we see that
UM L = ;(U{V)u, =yuy Iz = 0. In a similar way it can be checked that L
is free if X, & T.(L') whenever x € L'.

§6. Involutory equations

1.6.1. Let I" be a vector space, dim = 2n, carrying a symplectic structure,
that is, a non-degenerate skew-symmetric 2-form £2.

IMPORTANT EXAMPLE. Let I' = I, = Ker U, C T, (J'M), x € J'(M).
Then the restriction of dU,x to I' gives a symplectic structure.

For every subspace I’y C I we define the skew-orthogonal complement
I'i to be the set of all vectors X € I" such that Q(X, Y) = 0 for every
Y € T'y. Since 2 is non-degenerate, dim I'f = codim T',.

DEFINITION. A subspace I'y C TI' is said to be involutory if I't C T,.
EXAMPLE 1. Every subspace I'y; € I' with codim I'; = 1 is involutory.
This is because a generator X € '}, dim I'{ = 1, is determined by the condition
QUX, V) = a(Y) for arbitrary Y € T, where o # 0 is a 1-form such that

ajp = 0. Since £ is non-degenerate, such an X always exists and
oX) = QX, X) =0, that is, X € T,.

EXAMPLE 2. Every Lagrangian (=maximal isotropic) subspace I'y C I
is involutory, in fact I'f = I',. For if X € T'{ but Xp, ¢ I';, then the linear
span of I'; and X would be an (n + 1)-dimensional Lagrangian subspace.

LEMMA. If 'y C T is an involutory subspace and Ty DO Ty, then T’y is
also involutory.

PROOF. If X € T'} then X € I'{, so that X € I'y; that is,
rFcrycr, cr,

PROPOSITION (CRITERION FOR A SUBSPACE TO BE INVOLUTORY).
A subspace T'y C T is involutory if and only if there exists a Lagrangian
subspace T'y, C T';.

PROOF. Suppose that T, is involutory. Then I'; = I'{ @ '3, and the
restriction of € to I'; is a non-degenerate 2-form. Let I'y C I'; be a
Lagrangian subspace. Then I’y = I'f ® Ty C T, is the required Lagrangian
subspace of I';.

The converse assertion follows immediately from Lemma 1.6.1 and Example
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COROLLARY 1. If Ty is involutory, then T'i lies in all Lagrangian sub-
spaces T', C T"y,

COROLLARY 2. If T'y C T is involutory, then dim I'; > L dim T.

REMARK. Suppose that I'y is an involutory subspace with codim I'; = k.
Then the form Q‘F. is of rank 2(n — k), and T'{ is the degeneracy sub-
space of the 2-form Q|p .

1.6.2. DEFINITION. An equation E C JY(M) is said to be involutory at a
point x € E if the subspace T, (E) N T, is involutory in I', = Ker U, 4.

EXAMPLE. Every equation £ C JY(M) such that codim E = 1 is
involutory at every point x € E.

Thus, the concept of being involutory has real force only for overdeter-
mined equations E, codim E > 1.

PROPOSITION (CRITERION FOR AN EQUATION TO BE INVOLUTORY).
An equation E C J\(M) is involutory at a point x if and only if there exists
an R-manifold L C JY M) tangent to E ar x.

PROOF. The assertion follows immediately from Proposition 1.6.1 and the
fact that a Lagrangian subspace of I', is the tangent space T,(L) of some
R-manifold L C J'(M).

1.6.3. We consider an equation of the following form:

E=E) _4={c€l0D i) =0, 1<i<h),
where the f; € C™(J'M) are independent functions on E.

DEFINITION. A system of independent functions f;, ..., f; is said to
be involutory at a point x if the equation Efl 1 is involutory at
x€ Ep i

PROPOSITION. A system of independent functions fy, ..., f; is
involutory at x € Efl ,,,,, fkif and only if

Ui Iide = G £ e = o Fi} e = 0, 1 < i<k
PROOF. We consider the subspace

.....

Ly =T (&, | fk) NIy =Kerdfyx NN Kerdfy , NT,. Since the
f1, - .., [y are independent, two cases are possible:
Ddfix, ..., dfk,x, U, are linearly independent;

k
2) Uy x= 2 hidfixy MER.
i=1

These two cases are determined by the conditions:

(1.6.3.1) codim I'; = &,

(1.6.3.2) codim T, = k — 1.

Further, it follows from the definition of the vector field Xf, that

4
Uy, x(Xfl.,x) = fi(x) = 0, Xfi,x i S = —df; |rx7

where 2, = dUl,XlFx' Thus, if (1.6.3.1) (or (1.6.3.2)) is satisfied, then the
vectors Xfi’x € I', are linearly in_dependent (or linearly dependent). Let T,
denote the linear span of the vectors Xf“x, e, ka’x. We show that
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I, = T'{. By what we have said above, it is enough to establish. that
[, C I't. Suppose that Y € T',; then, using (1.4.3.7), we obtain

Xy, 5 V) = AUy, oKy, 5 ¥) = X3(f1) |e- Uy, oY) — dfs, oY) = 0.
Thus, the equation Ef f, 18 involutory at x if and only if
Xfi’x € T, (E) or Xf,-,x(fi) = ik =0, 1< j<k

COROLLARY. Let L C JY(M) be a many-valued solution of the involutory
equation E¢ i Then L is invariant under the vector fields
Xfi’ 1 <i<k

1.6.4. DEFINITION. a) An equation £ C JY(M) is said to be involutory
if it is involutory at each of its points.

b) A system of functions f;, ..., f; is involutory if
e ;1 =0 1< §j<k

EXAMPLE. The maximum codimension of an involutory equation E is
n+ 1. Let E C JY(M) be such an equation. Then T.(E)CT,,x €E, so
that F is an R-manifold. Thus, the R-manifolds are the involutory equations
of maximal codimension.

1.6.5. Let E C JY(M) be an involutory equation, codim E = k. Consider
the field of subspaces C, = I'f,. In general, the dimension of C, varies as
x varies. In fact, dim C, = k if T, (E) C T,.

DEFINITION. An involutory equation E C JY(M) is said to be regular
(at a point xo € E) if T,(E) and I', are transversal at every point x € E
(at xo € E).

REMARK 1. An involutory equation of the form E; fi regular only
if the vector fields Xf,’ R ka are linearly independent at every point of

Bt

REMARK 2. If F is involutory and regular, then the field of subspaces
C, determines a differentiable distribution Cr on E.

PROPOSITION. Let E be an involutory regular equation with
codim E = k. Then Cg is a completely integrable distribution on E, and
dim Cg = k.

PROOF. Since the assertion is of local character, we assume that E has
the form Ef fe and that the Xfi are linearly independent on E.

Let X, Y be vector fields on E such that X, € C,, Y, € C,, Vz € £.
We claim that [X, Y], € C,, Vz € E. Let X; denote the restriction of
Xy to E, 1 <i < k. Then the X;, form a basis for C,, and therefore,

k k
X:Z ai(x)Xi, YZZ bi(.l‘)Xi.
i=1 i=1
Let g; and l;,- be any extensions of @; and b; to smooth functions on

JY(M). We consider contact vector fields X, and X,, where
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k
h=2 Z, aifi, g= S‘ b;f;. The restrictions of X, and X, to E coincide on

‘l,_

Xand Y respectlvely, since for x € E we have, for instance,

Xh,x:Xk~ :Z X?z_i,fi,x=
2 ai'fi’x i=1

i=1
k
= 2 (@ @) Xy =+ Fi (@) X5, o= (@) i (2) Xi.w) = X

Therefore, (X, Y1, = [X,, X, 1, = Xin, g1 x5 and by a straightforward
calculation we see that [X, Y], € C,.
COROLLARY. Let X be a vector field on a regular involutory equation
...... T and suppose that X, € C,, Vx € Ey,, o P Then there is a smooth
function f € C*(J'M) such that f|E
to Ef Lt is X.

=0and the restriction of Xy

REMA R K. The generalized Cauchy problem for an involutory equation
fi consists in specifying an (n — k)-dimensional submanifold

,,,,, fi for which *(U,) = 0 and C, & T.(L), Yz € L. In this case
the solutlon of the Cauchy problem is (locally) unique and 1s U N , when

.....

N, is an integral manifold for the distribution CEf . passing through
x€L, withdimN, =k. 77 %

§ 7. The theorems of Darboux and Chern

1.7.1. PROPOSITION. Let £ C JYM) be an involutory equation with
codim E = k, and w € A!E) the restriction of U, to E, w = U, |z- Then

(1.7.1.1) WwAdwA... Adw = 0.
n —k + 1 times

PROOF. If E is not regular at x € E, then T, (F) CT,, so that w, =0
and (1.7.1.1) is satisfied.

Now let x € E be a regular point, w, # 0. Let ', C T, (£) denote the
degeneracy subspace of dw,. We consider first the case when X, ., € T, (E)
(where X, is a contact field, and Uy(X,) = 1); then I';, is the linear span
of X,, and I'{,, [y = T,(E) N Ty, and the rank of dw, is 2(n — k) in
this case, so that (1.7.1.1) is satisfied.

Suppose that X, , € T, (E). Then T',, C Fl,,x is a subspace of codimension
1, because a vector ¥ € I'j, lies in I', if and only if dw, (X, Y) = 0 for
some X €ET,), X €T, -

Thus, the rank of dw; is 2(n — k + 1) in this case. Next, it is clear that
the form (1.7.1.1) is non-zero only on vectors Yy, Y,, ..., Yon-k+1) for
which (after renumbering if necessary) Yo & ' x and Yy, ..., Yy,—k+y
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can be regarded as lying in I’y ,. But in this case (1.7.1.1) is also satisfied,
because the restriction of dw, to I'jx is a form of rank 2(n — k + 1).
COROLLARY. Let E C JY (M), codim E = k, be an involutory equation
such that the restriction of w, . to T,(E), x € E, is a monomorphism.
Then the rank of dw, is 2(n — k + 1).
1.7.2. DEFINITION. A form w € A!(N) is said to be involutory if the
rank of dw is 2k and

wAdw A... Adw =0.
S——e

k times

EXAMPLE. Every 1-form «w on an even-dimensional manifold such that
dw is a form of maximal rank is involutory.

1.7.3. We recall that a local diffeomorphism carrying x € M, into y € M,
is a diffeomorphism F: O, > 9, of some neighbourhoods ©, < M, and
O, <« M,, such that € ©, and y € O,.

If F is a local diffeomorphism and 8 € A*(M,), we understand by
F*(6) the k-form F*(0 |9,) on ©O,.

EXAMPLE. If M;=JY M) and M, = J' (M), then F is called a local contact
diffeomorphism if F*(U,) = f-U,, f € C~(0O,).

1.7.4. DEFINITION. Two forms 8, € A"(M,) and 6, € A"(M,) are locally
equivalent at m; € M, and m, € M, if there exists a local diffeomorphism
F with F(m,) = m,, such that F*(@@,) = 0,.

THEOREM. Let w, € AYM) and w, € AY(M,) be two involutory forms
in neighbourhoods of my € M, and m, € My, wyym, #0, wym, #* 0, such
that the ranks of dwyp, and dw,,,, are the same. Then w, and w, are
locally equivalent at m; € M and m, € M,.

THEOREM (Darboux). Let w € AYM) be an involutory 1-form in a
neighbourhood of m € M such that w,, # 0 and dw,, is of rank 2k. Then
there exist local coordinates Xy, ..., Xg, Y1, -« Vgs Z1s ---5 21 iR Q

k
neighbourhood of m € M such that o = (1 + y,)dz, + D) y; dz;.
=2

A proof of Darboux’s theorem can be found in [10], [18]; Theorem
1.7.4 follows in an obvious fashion from it.

1.7.5. Let N, and N, be two odd-dimensional manifolds, dim N, = dim N,,
and suppose that the l-form w; € AY(N,) gives a contact structure in some
neighbourhood of x; € N;, that is,

w; Adw; A ... Adw # 0, where k = 3 (dim N; - 1).
k times
THEOREM. Suppose that the forms w; € AYN;) satisfy the conditions
stated above in neighbourhoods of two points x; € N, and x, € N,. Then

the forms w; and w, are locally equivalent at x, € Ny, x5 € N,.
COROLLARY 1. If the form w € AYN) is as above, then we can choose
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a system of local coordinates x,, ..., X, Y1, ..., Vi, 2, dim N = 2k + 1,
in a neighbourhood of x in which

k
o =dz — ) y; dz;.
iz

A proof of this lemma can also be found in [18].

COROLLARY 2. Let f € C*(J'M) be a function such that f(x) # 0. Then
there exists a local contact diffeomorphism F: F(x) = x, F*(U) =g-U,,
such that f and g coincide in some neighbourhood of x € JY(M).

PROOF. The assertion follows from Theorem 1.7.5 and the fact that

(fUY Ad({Uy) A ... Ad(Uy) = YU AAU, A ... AdU) #0,

n times » times

where n = dim M.
1.7.6. The following theorem concerns the question of the local equivalence
of two vector fields X and Y on M at a point m € M such that
X, =Y, =0, in other words, the question of the existence of a local
diffeomorphism F such that F(m) = m, F_(X) = Y.
Before formulating the theorem, we give the following definition.
DEFINITION. A vector field Z on M is said to be flat at m € M if

Z: C°M) - .
In other words, Z is flat at m € M if, in any local coordinate system
Xy, ..., X, in the neighbourhood of m, Z can be written in the form

n
Z = Z Z(x) i, where the Z;(x) are flat functions at m, 1 < i < n.
i azi 1

Sﬁﬁﬁose now that the eigenvalues {A,} of the linear part of the vector
field X at m, X,, = 0, are such that Re A, # 0.

Then, as is well known, there exists a Lyapunov function for X, that is,
a function G having m € M as a non-degenerate critical point and such
that X(G) > 0 in some neighbourhood of m (except at m itself).

THEOREM (Chern). Suppose that X is as above and Y = X + Z, where
Z is a field that is flat at m € M. Then there exists a local diffeomorphism
F, F(m) = m, such that

F*(X) =Y and F I(G=0) = 1.
A proof of this theorem can be found in [24].
CHAPTER 2
Local classification of regular differential equations

The main problem in any classification question is the choice of the
classifying group. For second order differential equations two natural



130 V. V. Lychagin

classification problems arise, depending on the classes of solutions that are
considered. The first — and rougher — of these is defined by the group of
contract diffeomorphisms of J'(M), that is, those that preserve the class of
many-valued solutions. The second is defined by the group of contact
diffeomorphisms of J(M) that preserve the projection n,: JY (M) - M, that
is, those defined by the class or ordinary solutions.

This paper is devoted to the classification with respect to the first of
these two groups.

§ 1. Statement of the problem

2.1.1. DEFINITION. Two equations E; C JY (M) and E, C JY (M) are
locally equivalent (respectively, U,-equivalent) at points x; € E, and
x, € E, if there exist neighbourhoods ©, < J'M) and
O, <« JY M), z, € Oy, x5 € O,, and a local contact (respectively, U; —)
diffeomorphism F: 9, — ©,, F(x;,) = z,,such that F(E; N Oy) = E, N\ O,.

In what follows, we are interested in problems of local equivalence. We
may, therefore, assume that M is connected. In that case any two points
x, € J'M) and x, € J{(M) can be carried on to the other by a U,-
diffeomorphism, so that henceforth we assume that x; = x, = x.

2.1.2. THEOREM. Suppose that the equations iy: E} CJ\M) k=1, 2)
are such that the differential (7 o ik)*’x: T, (E) ~ T,,(x)(T*M) is an iso-
morphism. Then the equations E; are locally U,-equivalent at a point
x € E, if and only if the l-forms w, = U, g, are locally equivalent at x.

PROOF. The necessity is clear. Therefore we just prove the sufficiency.
Suppose that O, < JYM), = € O, (k = 1, 2) are neighbourhoods such that
the n(O;) are simply-connected, that the inverse mapping (o ix) ' Ex | O,
exists in n(Op) and that F: E, | O, — E, N O, is a diffeomorphism with
F*(w,) = wy.

_Let G: (O > n(Q,) be the diffeomorphism defined by the formula
G =(moiy)o Fo(moi;)!. We claim that G is a canonical diffeomorphism.
To see this, we use the equations 7m*(dp) = —dU,;, o« = 7 = 1, and obtain

G*(dp) = (m o iy) ™™ o F* o (s 0 ip)*(dp) = — (w0 iy) ™ o F¥(do,) =
= —(n o i) *(do,) = —(w o §,)* o i}(dU,) =
= —(aomeoipe (mo i) ) dUy) = —a*(@dU,) = dp.

Next, the neighbourhoods ©, < JY(M) have been chosen so that the
7t(©;) are simply-connected; thus, the diffeomorphism G has a generating
function in S € C* (n(©,)). B

Let G: ¢, - O, be a U,-diffeomorphism covering G, with G(x) = x. We
consider the diagram
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E{NO; CJ O, —x (©y)

iF lc lé
ExN©:G Oy —— 5(02)

The outer and the right-hand squares in this diagram are commutative, so
that there exists a translation 7 along the fibres of m that makes the diagram
commute, that is,

(2.1.2.1) o F=10Goi.

Next we represent 7 in the form

(21.2.2) t(z, t) = (z, t + F@), x € T*(M), t € R, F € C” (n(Oy)).

Applying the right- and left-hand sides of (2.1.2.1) to the form U, and
using (2.1.2.2), we get

0y = (i o F)*(Uy) = (v0 G o iy)*(Uy) = if o G* o 1%(du — p) =
= it o G*(du — p + dF) = i} o G*(Uy + dF) = 0, + i} o G*[dF).
Thus, if o G*(dF) = 0, so that F = const. But G(x) = x, so that & =0
and 7 = 1.

§2. Local classification of regular equations

2.2.1. THEOREM. Let iy: E; CJY(M) be regular equations with codim E = 1,
such that the differentials (7 o i), )*, . are isomorphisms. Then the E; are locally
U -equivalent at x €E; (k = 1, 2).

PROOF. We show that the forms w; are locally equivalent at x. To this
end we note that the form dwy , has the maximal rank 2n,n = dim M,
because (7 o i), , is an isomorphism, and dwy , = (7 o i )¥(dp |, ())- The
regularity condition means that W & # 0. The local equivalence of the
forms w; at x now follows from Darboux’s theorem.

2.2.2. LEMMA. Let X, be a contact vector field on JYM), F: J\(M) —» J\(M)
a contact dszeomorphzsm and F*(U,)=\NU,, N\EC™(J'M). Then F, Xp) =X,
if and only if A\f= 1.

PROOF. F, (Xf) is a contact vector field whose Hamiltonian g is
21r o = Unson Fr(Xp ) = FFUDL, (X7 ) = (M), that is, F*(g) = Af.

2.2.3. LEMMA. For every equation i: E C JX(M) there exists a local con-
tact diffeomorphism F, F(x) = x, x € F, such that the differential
(m o il)*,x of the equation i: E, = F(E) C J\M) is a monomorphism.

PROOF. Note that if E is not regular at x, then T,(E) C I',, so that
(m © i), , is a monomorphism. Suppose now that E is regular at x € E, but
that (m o i), x is not a monomorphism, that is, X, €T, (E). We choose a
function f such that fix) # 0, X $ T, (E). Let F be a local contact
diffeomorphism such that F*(Ul) =L Ul, F(x) = x (see 1.7.5). We show

that F is the required dlffeomorphlsm Indeed, by the preceding lemma we
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have F,(X;) = X, and X x & T, (F(E)) since Xy« & T, (E); that is,
(m o i), , is a monomorphism.

2.2.4. THEOREM. Any two regular equations E;,, C J' (M), codim E, = 1
are locally equivalent at x € E; (k = 1, 2).

2.2.5. In this subsection we consider one of the ways of constructing
involutory equations.

PROPOSITION. Let E" C JXM) be an involutory equation,
codim £ = r > 1, and T, the group of translations along the contact vector
field Xf, Xf,x & T, (E). Then the equation Er-1 = LzJ T,(E"), in some

>

neighbourhood of x, is involutory; and E’"~! D E", codim E""! =r — 1.

PROOF. We shall show that for each point y € E™"! there is an
R-manifold touching E7~! at y. Let L C J'(M) be an R-manifold touching
E” at x = T,(y); then T,(L) is obviously an R-manifold of the sort
required.

2.2.6. PROPOSITION. Let if: Ef C J'(M), codim Ef =r>1(k=1,2) be
involutory equations, where the (w o if), . are monomorphisms. Then for
every local diffeomorphism F,: E{ - E;,’F,(x) = x, that establishes the
equivalence of the 1-forms w§ = UllEfc’ there is an involutory equation
=l E7Y CJ\M), codim Ef7  =r— 1, E[TV DEf (k=1,2) and a
local diffeomorphism F,_y, F,_{(x) = x, establishing the equivalence of the
forms w7l = U, lgr-1. In addition the differential (m o i, isa
monomorphism and the diagram

ElcE]

E,c E;"
commuites.

PROOF. We construct E5~! by means of translations along the Hamiltonian
vector field X, (see 2.2.5): Ejl = Y T2(E%). We also construct Er-l by
means of translations along the Hamiltonian vector field
X, Eil = Y T!(EY}), where now we choose the Hamiltonian g so that

FXf|gr) = g|gr- The choice of g is always possible in some neighbourhood
of x, because (7 o i,ﬂ)*yx is a monomorphism.

We define a local diffeomorphism F,_; as follows:
F,_y(») =T} o F, o T! ,(y), where ¢ € (—e, &) is such that
T!,(v) € ET.

Let us check that F¥ (w5 ™)) = wi™l. To do this we note that T}
preserves U,, so that the restriction of T} to E 1 preserves wi L.
Similarly, the restriction of 77 to E5~Y preserves wj ™l Thus, the equality
of the forms F¥ (w5~ ') and w}~! has been verified at points y € Ej. But,
by construction, these forms coincide on vectors tangent to E7. On X,y

the form w,;, is equal to g(»), and
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Fr g (03 (X g ) = Fy i oi Frog «-(Xg ) = Fi(Hy) = g@).
2.2.7. THEOREM. Suppose that if,: Ef C J'(M), codim Ef = r(k=1, 2)
are regular equations, x € EJ. Then E{ and E} are locally equivalent at x.
PROOF. Using Lemma 2.2.3, if necessary, we may assume that the
(m o i), x are monomorphisms. Further, we use the precedmg proposition
and construct a chain of involutory regular equations £~ i and local diffeo-
morphisms F,_; (i =0, ..., r — 1) establishing the 1ocal equivalence of
the forms w,g / at x. (The existence of F, follows from Darboux’s theorem)
In this situation the diagram

r
ElcE'c...cE,

| | 7,
L |
ECE c...cE

commutes, and (7 o if™/), . is a monomorphism.
According to Theorem 2.2.1, there exists a local Ul-diffeomorphism
F, F(x) = x, such that Flp = Fy. Therefore F |gr-i = F,_;, that is, F

establishes the local U,-equivalence of Ej~% and E5}~  at x,i=0,1,...,r — 1.

COROLLARY 1.If the regular involutory equations if,: Ef C JYM) are such
that the (m ° i), , are monomorphisms, then E{ and E} are U,-equivalent
at x.

COROLLARY 2. Let i": E" C JYM) be a regular involutory equation.
Then there exists a local contact diffeomorphism F, F(x) = x, such that
F(ET) is given in a neighbourhood of x by a system of equations
p1 =0, ..., p, =0 in a special local coordinate system
41, ""qn’ U, P, <o Py

2.2.8. REMARK. The U,-classification of regular involutory equations
i": E" C JY (M) can be considered at all points x € E” where (7 o i’)*,x
is degenerate. By Thom’s transversality theorem ({1}, [15]), we can arrange
by small displacements of the embedding i” that the degenerate singularities
are in general position, so that the set of degenerate points is a submanifold
of codimension 1 in E”. In this case the condition of general position is the
same as that for the l-forms w” at the points where the rank of dw’” is not
maximal. Therefore, by Martinet’s theorem (see [9]), the forms wj are
locally equivalent, whereas the problem of local U,-equivalence remains open,
because, in general, Proposition 2.2.6 is not true when (7 o i"), is degenerate.

§3. Local solubility of regular involutory equations

In this section we investigate the local solubility of involutory equations,
using the classification theorems of §2.

2.3.1. THEOREM. An involutory equation E” C JYM) is locally soluble
in the neighbourhood of every regular point x € E”.
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2.3.2. As an illustration we consider the following example. Suppose that
the equation £ C JY(M) has the form u = 0 in the special local coordinate
system g4, ..., 4,, U, Dy, ..., Dy, and let x € £ be the point with the

n
coordinates (g9, ..., g2, 0, p%, ..., p%, where > (p})2= 0, so that x is a
i=1

regular point of E. In invariant terms the equation u = O specifies a sub-
manifold T*(M) C JY(M). The solutions of this equation are the Lagrangian
submanifolds L C T*(M) passing through x and transforming the form p to
zero, p|; = 0. It is not hard to see that these solutions are essentially
many-valued, that is, even locally they do not have the form of the graph
of a section corresponding to the 1-jet of some function.

We remark incidentally that the store of many-valued solutions of this
equation is greater than that of generalized solutions (in the usual sense),
since the latter are altogether absent.

2.3.3. THEOREM. There exists a (locally) ordinary solution of a regular
involutory equation E* C J* (M) passing through the point x € E", codim
E" =v if and only if mys x: C, = T, (x)(M) is a monomorphism.

PROOF. Let L C E” be an ordmary solution at x € L, that is, locally
L = [j;(N] (M) for some function f € C™(M). Then C, C T, (L), so that
T« x 1S @ monomorphism on C,.

Assume now that there exists a Lagrangian subspace L, C I', such that
C, € L, and L, projects onto T, )(M) without degeneracy We choose a
local dlffeomorphlsm F, F(x) = x such that F(E”) can be written in the
form p; =0, ..., p, = 0 in some special local coordinate system
4y -5 qp, U Py, .., P, Let L C F(E”) be an R-manifold whose

projection on T*(M) is invariant relative to the fields —g—q . ’%E and
1 r

which is tangent to F, ,(L,). Then F~Y(L) C E" defines the required
R-manifold.

Thus, it is enough to show the existence of a subspace L, C TI',. To do
this we note that dU, x|c_ = 0, since C, = 'ty . Therefore C, is an iso-
tropic subspace. If dim n (= dim M), then with C, = L, we get the
required subspace.

Otherwise we choose any Lagrangian subspace L, O C, for which
L. N R, = {0}, where R, = Ker 7, is also Lagrangian.

2.3.4. If an involutory equation E7 C J}(M) is given by a system

X

fl(qh o v vy QH’ ua Pn S ] pn) == 0’ o v ey fr(qlv LS ] qn1 uv Pn o % vy pn) = O
in a special local coordinate system ¢,, ..., g,, 4, py, --., p,, then the

condition of local solubility in Theorem 2.3.3 means that %(x) ...,_g_ff_(x)
op 14
are linearly independent. In particular, if » = 1, then this condition is

equivalent to the condition “of smooth type” %(x) #* 0.
/]
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CHAPTER 111
Singular points of first order differential equations

In the preceding chapter we have studied the structure of an involutory
differential equation in the neighbourhood of a regular point, that is, a
point x € E” such that the subspaces 7,(E”) and I', are transversal. In
this chapter we proceed to a study of the structure of an involutory differ-
ential equation in the neighbourhood of a singular point
x €E", T ,(E") CT,. In contrast to the regular case, there is now a
continnum of equivalence classes. The fundamental invariant distinguishing
these classes is the Hessian of the equation.

§ 1. The Hessian of an involutory equation at a singular point

3.1.1. Let E” be an involutory equation, E7 C JY(M), codim E” = r, and
let x € E” be a singular point, that is, T, (E") C T,. If w denotes the
restriction of the form U, to £7, w = U;|gr, then the condition for
x € E” to be singular is equivalent to w, = 0. _

We consider any two vectors X, Y € T,(E") and extensions X, Y of them
to E”, so that X, = X, Y =Y.

We set i (X, Y) = X(w(Y))|,-

LEMMA—DEFINITION. A, is a bilinear form on T,(E") and is called
the Hessian of E7 at the singular point x.
_PROOF. We show that s, is well-defined. Note first that the expression
X(w(Y))|, does not depend on the extension X and is determined by the
value X, = X. Next, we make use of the standard formula
dw(X, Y) = X(w(Y)) — Y(w(X)) — w(X, Y], which at a singular point
x € E’" takes the form

(3.1.1.1) do X, V) = X(o(¥)]x — Y(o(X))),.

The left-hand side of (3.1.1.1) does not depend on the extensions X, Y,
therefore Y(w(X))|, does not depend on X. Thus, h., is well-defined on
T, (E").

COROLLARY. For all X, Y € T, (E"),

(3.1.1.2) ho(X, V) — koY, X) = do. (X, Y).

3.1.2. We indicate the form of & in local coordinates. For this purpose
we note that dwy is of rank 2(n — r + 1) if y € E’ is sufficiently near
the singular point x € E7 (see 1.7.1). Therefore, we can choose a system of
local coordinates xy, ..., X, .41, V15 -+ Vy_pe1s 21> - -+ Z,_1 in the

n—r+1
neighbourhood of x in which do = >} dy; A\ dx;. Further, since w is
sy

involutory, in this system of local coordinates we have
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n—-r+1

0o=d4dF (z,y)— '2—:'1 yidx;.

It follows at once from the definition of A that & is given in these
coordinates by the matrix:

’F 02F
(3.1.2.1) OF s, 2F
Oy; 0yj lx 7y ou5ix
0 0 0
[7] a a 0F
For example, h (-—— -2 )=_(_._.>
pie, e dz; |x' yi |x dz; \ dyj /| |«

3.1.3. PROPOSITION. Let X € T, (E"), Y € C, = T, (E")*; then
h,X, Y)=h, ¥, X)=0.

PROOF. Since the assertion is of local character, we may assume that
E’= Ef“_._!fr. Then C, is the linear span of the vectors X ., ..., Xfr’x

Therefore Y= 2 a; Xy, x
i=1 !

For the extension Y we take the restriction of the vector field‘Xf to
r

El” f= 2 a,-fi. Then

i=1
hlX, V) = X(o(P) = X(O(X) = 3 a dfe, ) =0,

since X € T, (E").

That A, (Y, X) = 0 now follows from (3.1.1.2) and the fact that C, is
the degeneracy subspace of dw,.

3.1.4. We consider the factor-space V = T, (E")/C,. Since C, is the
degeneracy subspace of dw,, this form defines a non-degenerate 2-form
on V and, thus, provides a symplectic structure on V. Here
dim ¥V = 2(n — r + 1). Proposition 3.1.3 shows that, in its turn 2, defines
a bilinear form I;w on ¥V, and by (3.1.1.2),

(3.1.4.1)  RBy(X, V)— ho(Y, X) = Q(X, V), X, YEV.

The existence of a symplectic structure and a bilinear form on V allows us
to define an operator H: ¥V — V in the standard way:

ho(X, Y) = QHX, Y).
Also, (3.1.4.1) takes the form

(3.1.4.2) QHX, Y) — Q(X, HY) = QX, 7).

3.1.5. Before considering how the operator H and the form &, are
connected with the problem of the local equivalence of equations, we make
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the following remark.

PROPOSITION. Let Ef C JYM) (k = 1, 2), codim Ef = r, be involutory
equations, and let x € E[ be a singular point. Then there exists a local
contact diffeomorphism F, F(x) = x, such that F*,x(Tx(E{)) = T, (E3).

PROOF. It is enough if we take for F any contact diffeomorphism
extending a symplectic map 4: ', - T', such that A(T,(E])) = T, (E%).
The fact that such an A exists can be proved, for example, as follows, Let
Ay Cy,y > Cyg, Cxy = T (ED*Y, Cyp = T (E3)" be any non-degenerate
linear mappings. Then by Witt’s theorem (see [25]), there is an extension
of A, to a symplectic map A and the mapping so obtained is easily seen
to be what we are looking for.

3.1.6. With Proposition 3.1.5 in mind, we consider in what follows
equations Ef such that T, (E]) = T, (E;). Let F be a local contact
diffeomorphism, F(x) = x, establishing the equivalence of Ef and Ej at x.
Then its differential F, , induces a conformally-symplectic map
A: T, » Iy, where dU, x(AX, AY) = A dU,x (X, Y) for all
X, Yer, A#0.

For, since F¥(U,) = g+ U;, we have
F*(dUyx) = d(F*(U))|, = dg, N Upx + gx)dU, x, hence on restricting to
', we find that N = g(x).

Further, since 4 = F*inrx is a conformally-symplectic transformation, it

follows that A preserves skew-orthogonal complements; that is, in particular,
A: C, » C,, C, = T, (Ep)'. Consequently, A defines a mapping A: V - V,
which is also conformally-symplectic with respect to the form
Q, A*(£2) = AL. Here, as usual, 4*(Q)(X, Y) = QAX, AY).
Thus the differential F, , of a local contact diffeomorphism determines
a conformally-symplectic map on I',; if F «,x DIESETves T, (EY), then it
determines a conformally-symplectic transformation on V. Therefore, it is
enough to study the behaviour of A, and H under such transformations.
3.1.7. PROPOSITION. Let F be a local contact diffeomorphism,
F(x) = x, such that F(E{) = E}. Then A*(hwz) = A hwl, where
A= F*,x|Tx(E}) A =glx), F*(U,) =g U,.
PROOF. By definition we have A*(hwz)(XY)= hwz(AX, AY) =/ﬁ(w2(A YDy
We choose extensions X and Y such that AX = F _(X),AY = F_(Y). Then
hoolAX, AY) = AX(0,(AY) |« = F(X)(0x(F, () |z =

— (F¥Yy-YX(F* 2? x:}\'hmix,Y,
since F*(w,) = g+ w,. (FH) X (F*(0,)(Y)) s (X, )

_COROLLARY. Ler A be the transformation on V defined by A; then

AH, = H,A, where the H, are the operators generated by hwk(k =1, 2).

PROOF. Since ‘A—*(_gl) = A2, it follows that 3
SUH, X, Y) = NT'Q(AH, X, AY). On the other hand A*(h%) = 7\}7% or
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QH,AX, AY) = NUH, X, Y). Comparing the two equations so obtained,
we find that Q(H,AX, AY) = Q(AH, X, AY), that is, H,A = AH,.

3.1.8. Let CSp(n — r + 1) denote the group of all conformally-symplectic
transformations on a 2(n — r + 1)-dimensional symplectic space (V, ).

We define an action of 4 € CSp(n — r + 1) on bilinear forms as follows:

(3.1.8.1) Alb]l = A 1A*(b),

where b is a bilinear form and A*(Q2) = AQ.

Combining Proposition 3.1.7 and Corollary 3.1.7, we now get the following
assertion.

THEOREM. A necessary condition for involutory differential equations
E; C JYM) to be locally equivalent at a singular point x €E}, (k =1, 2)
is that the Hessians or the operators H, are equivalent under
CSp(n — r + 1).

3.1.9. Together with the form ﬁ we can consider its symmetric part
heys h,(X, Y) = 3 (h, (X, Y) + b (Y, X)), X, Y € V, and its skew-
symmetric part h h" X, V)= 1 (h (X, Y) — (Y, X)). It follows from
(3.1.4.2) that E{f, = -2- Q. The symmetrlc form hfu can be arbitrary (see

3.1.2). Therefore, Theorem 3.1.8 can be reformulated as follows.

THEOREM. A necessary condition for involutory differential equations
E} C JYM) to be equivalent at a singular point x € Ej (k = 1, 2) is that
the symmetric forms ht oy are CSp(n — r + 1)equivalent with respect to the
action (3.1.8.1).

3.1.10. REMARK 1. Results analogous to Theorem 3.1.8 can be obtained
for the U,-equivalence of equations at a singular point, the only difference
being that we have to use the symplectic group Sp(n — r + 1).

REMARK 2. As is clear from the necessary conditions just mentioned, the
local classification of equations at a singular point is not discrete if
r#*n+ 1.

§2. Csp-classification

In this section we investigate the question of the CSp(n —r + 1)-
equivalence of operators H: V —» V satisfying the conditions in 3.1.4.
3.2.1. We denote by ¢V, CH, Cﬁw, CQ the complexifications of
Vv, H, h—w, €, respectively. The following analogue to (3.1.4.2) holds:

Q CHX, V)+QCHY, X)="Q X, 1),
QCEHX, V)=, (X, Y),

where X, ¥ € €V, and €8 is a form of maximal rank.
Let K, C CV be the subspace consisting of the vectors annihilated by
some power of CH — A\, A € C, and ¢, €K, C Cy the eigenspace of CH



Local classification of non-linear first order partial differential equations 139

corresponding to the eigenvalue A.

The following lemma (see 3.2.2 b) is an analogue to the Poincaré-Lyapunov
theorem on eigenvalues of Hamiltonian systems (see [2]).

3.2.2. LEMMA. a) Suppose that X € K,\, Y € KA ,and Ay + Ny, F 1.
Then CQUX, Y) = 0, that is, the subspaces K, and K;\ are skew-orthogonal.

b) Let X\ € C be an eigenvalue of the operator H; then N, 1— X and
1— X are also eigenvalues of H.

PROOF. a) We use 3.2.1. If CHX = N\, X, CHY = \,Y, we obtain
M\ +20) QX V) =CQX, Y). But \; + A, # 1, so that CQ(X, Y) = 0.
Suppose now that X € K?\,’ Y € K,\2 are arbitrary. Then there exist n; and
n,such that (CH - \\)" X € Cy.» (CH — \,)=Y € C,,- We choose 1,
and 7, minimal, and set X, = (CH - A)"7*X, Y, = (CH - \)"*Y.
Then X, € Cy,» Y, € CM’ and therefore CQ(X,, Y, = 0. We now prove

by induction that QX x> Xo) = 0. We assume that this last equation has
been proved for X, _,; then, replacing X; and Y, in 3.2.1 by X and Y,
we get

(—1 + M+ A)°QAXy, Vo) = QX sy, Yo) = 0.

Similarly we can prove by induction on s that CQ(Xk, Y) =0 for
arbitrary k£ and s. In particular, on setting Kk = n, and s = n, we find that
CQx, v) =

b) We assume the contrary, that is, that there exists an eigenvalue
A, € C such that 1 — A, is not an eigenvalue of H. It follows from a) that
if 0 # n € K, , then CQ(n, X) = 0 for arbitrary X € €V, since
Cy=e K,. Thus the vector 7 is skew-orthogonal to the whole subspace
Cy, Wthh is impossible because the form € is non-degenerate.

3.2.3. Lemma 3.2.2, therefore, shows that the whole space €V splits into

the direct sum ©V = 631 (K, ® K,_»), whose summands are invariant under
x,1-0)

CH and skew-orthogonal relative to €. Here the restriction of €§ to each
direct summand K, @ K,_, is non-degenerate.

Thus, the investigation of H relative to the (symplectic) conformally-
symplectic group reduces to an investigation of the restriction of ¢H to
K, o K,_,.

We introduce the following notation: H, =CH -\, H, =CH— (1 -2).
Then (3.1.4.2) can be generalized as follows:

(3.2.3.1) CQUHEX, V) = (—1)*CQ(X, HEY),

where k£ = 0 is a natural number, and X, Y € CV.
Let us prove these relations. They are obviously true for k = 0, 1. Assum-
ing that they are true for £ < N, we find

QEHTMX, V) =(—0)VQH,.X, HYY)=(—1D " %X, Y *Y).
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Next, using the relations so obtained, we describe the process of construct-
ing the canonical basis (with respect to €§) of K, ® K,_,, relative to which
the matrix of CH takes the Jordan form. We d1v1de the construction into
several lemmas.

3.2.4. LEMMA. A basis . RN 02 SR AR (0 W dimC}\)
can be chosen ink, ®K,_,, wzthf EC,\, gl €C,_ ,\,fk = Hy™ kf."’, gk
Hy! i such that H\" f:" H}! gl"‘ = 0. Moreover

(3.2.4.1) Qg = (—1)"8:;0, n,-ms1.

PROOF. We carry out the construction of a basis of this kind by induction
on the dimension of K,. We assume that 't e K, has maximal height with
respect to H; among the vectors of K, that is, H{' X = 0, X € K, , but

Hu~1 fM 3 0. The vector g™ € K,_, is chosen so that
CQ(ft, g™) = 1, where f* = HH K™ Ag is easily seen, there always
exists a vector g’ as indicated, since the restriction of the form €€ to
K, ® K,_, is non-degenerate. The vector g™ is of height n,, because
CQun, Hp—lgm)y = (= 1w 1CQ(f1, gm) # 0, that is, Hh~1g™ # 0,
while on the other hand, CQ(X, Hhg™m) = (- 1) CQHM X, g™) = 0 for
all X € K,, so that Hf»g™ = 0.

We set g% = HI %™ and claim that 2% can be replaced by gf in such
a way that the following relations are satisfied:
CQE*, fMY=(-1"6u, 1 <k <ny and Hh *gh = g% To see this
we choose g! =21, g2 =32 — a,8!, where a, = (- 1) CQE?2, fM);
g =g3 —a,8* —asg!, where a3 = (- 1" CQ(E3, ™) -4}, ...,

g =8% —a,8F 1 —ayg%"? — ... —aq,g", where the coefficient a;, under
the assumption that a,, ..., a;_; are known, is obtained from the formula

ap=(— 1H™ ‘Q (ghy ™) — 2081 — 3083 — . . . — Bpyds.
Replacing X by g and Y by f% in (3.1.4.2), 1 <k, s < n,, we find

(3.2.4.2) Qg )+ QM =0

But since CQ(g!, f™) = (- 1), CQE*, ) =0, k > 1, it follows at
once from (3.2.4.2) that €Q(g*, /%) = (- 1)s5k,n,—s+1- We consider now the
subspaces M, C K,, M, C K,_,, where M, ={X¢K,| Q (X, g =0, Vk},
M|_1={XEK1-,‘|CQ (X, ff)=0, VE}. Let [f] (respectively, [g]) be the
linear span of the vectors f!, ..., f™ (respectively, g!, ..., g"). Then

K, =M, ®[f], K;-n = M;_, © [g]. For suppose that X € K, and

QX g ky= ay , for example then clearly X =X — 2( 1)"“kah]‘""h“
liesin M, and X =X+ 2 (—A)M% gy Bt Moreover, it is clear that
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M, N [f] = 0. The decompositions K, = M, @ [f] and K,_, =M _, &[g]
are such that the subspaces [f] and M,_, (respectively, [g] and M,) are
skew-orthogonal by construction, and invariant relative to CH. For instance,
if X € M,, then Hi X € M,, since “Q(H, X, g¥) = (- 1) CQX, H,g*) =
(= 1) CQK, g¥~1) = 0. Thus, the restrictions of €H and €Q to

M, ® M,_, are such that the restriction of ¢ is a form of maximal rank,
and M,_, and M, are invariant relative to CH; therefore, the inductive
hypothesis now yields a basis of the kind required.

The lemma just proved allows us to obtain the following intermediate
result.

3.2.5. THEOREM. Suppose that the eigenvalues {\,} of the operators
H® (k =1, 2) are such that Re A, F % Then the operators H*) are
symplectically (conformally-symplectically) equivalent if and only if they
are equivalent under the full linear group.

PROOF. The set of all eigenvalues of the H%*) can be represented as
a union of disjoint quadruples (A, )Ts, 1 = A, 1~ Xs). By Lemma 3.2.4,

for each operator H*) there is a basis ...f7,...,g0,... of K¥) & k{9,
satisfying (3.2.4.1), and for the similar basis in K’ _we choose
tisfying (3.2.4.1), and for the similar basis in K & K'*) we ch
e pid : (k) (k) (k) (k)
S5 8ms -« - - Then in V0O (K} GaKl‘)\GBKX GBKI_X)wecan

choose a basis consisting of vectors

T, S -, A e R S
relative to which the matrix of H‘¥) has generalized Jordan form. If corres-
ponding bases are chosen for H1) and H®, then transition from one to

the other is a symplectic transformation.
3.2.6. We consider now the subspaces K, ® K,_, with A = % + iu, u#0.

The basis whose existence is asserted in Lemma 3.2.4 is unsatisfactory in
this case, because, in general, fr’n #+ §;1, so that we cannot find a canonical
basis in ¥V N (K, @ K;_,) by this method. To investigate this case as well
we give a proof of Lemma 3.2.4 when A = % + iu, that is, when f,;1 = §fn

3.2.7. LEMMA. Suppose that \ = % + iu, u # 0; then a basis

B F L FT, L can be chosen in Ky @ K, _, in which
f,k S Kh,f,k € K-\ = K5 are vectors of height k, and such that
ny—k = k= = _
=T R = H TR CQUE Ty = (= 1)L e 80 S, it
i if n, is odd,
1 if n, is even.
PROOF. As in the proof of Lemma 3.2.4, the required basis is
constructed by induction on the dimension of X, .

Let f', ..., f™m €K,,g',...,g" € K,_» be as in the proof of Lemma
3.2.4. We choose a, b € C so that

where e, = {
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(3.2.7.1) Q (af™ -+ bg™, aft +bg') 0,

hence H (af™ + bg™ ) = 0, since af™+ + bg™ € K, . On the other hand,
HMh Y(af™ + bg™) = af' + bg'! # 0. Rewriting (3.2.7.1) and using the
fact that CQ(X, Y) = CQ(X, Y), we find that

(3.2.7.2)  |aPQ(™, T+ |bPRE™, &)+ (—1™ " ab—ab) 0.

Further, CQ(f™, f1) = CQ@™, f1) = (- 1y CQ(™, 1), that is,
CQU™, f1) and €Qg™, gt') are purely imaginary if n, is odd and real
if n, is even. Therefore, we can choose ¢, b € C so that
CQaf™ + bg™, af ' + bg') = en,.
The rest of the proof is completely analogous to that of Lemma 3.2.4,
3.2.8. We consider now the case A = % The following lemma is an

analogue to Lemmas 3.2.4 and 3.2.7.
LEMMA. In Ky C V there is a basis

1 n. 1 n. 1 m.
..y fi7 veey fil, gi, ey g ...,hj, ey h].], N

i b

where m; is even and the g} (respectively, [}, h]s. ) are vectors of height s
with respect to H = Hy = H,, and

Q(fi, )=9(gl &)= h)=Q (g}, h}) =0,
Q(fi, gh)=(—1)""180;, n-ht1
Q (b3, BY) = (F 1) 81j0s, n,-nt1-

PROOF. As above, the proof is by induction on the dimension of K1/2.
Let f™ be a vector of maximal height n,, f*¥ = H™ %" Since the
restriction of € to K,;, has maximal rank, there exists a vector
g™ € K,p, such that Q(f’, g") = 1. There are two possibilities:

a) Representatives of g™ and f™ in K f'/'i)/K(l';{l) are linearly independent
where now K f/s; is the subspace of K1/2 consisting of the vectors of height
<.

b) The representatives of g™ and f™ for any g" with Q(f!, g™)= 1
in Kl(;'z‘)/KS’z‘*l) are linearly dependent.

We consider a) and claim that we can change g€ and f* so that they
satisfy the relations

8 —_ 8.

(3.2.8.4) {2‘“; A

(g &)= )=0.
Let k& be the smallest number such that Q( ™, f ky = a; # 0. Then,
replacing f™ by f™ — (= 1f*lagm*, we get QU™, f*) = 0 for
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s < k + 1. Because SU(f1, g°) = 0 for s < n,, we have Q(%, g°) = 0 if
k + s < n,. Proceeding in this manner, we obtain vectors f k g° satisfying
(3.2.8.1).

Now we consider case b) and note that Q(f!, f™) # 0, since

(Y, X) =0 for any X € K’l';; ! We may assume here that

Q(fY, f™) = £1. It follows from (3.2.3.1) that QL /™) =(— 1Y Q( L, f™);
therefore, n, must be even. Next, as in a), we can replace the f' by A’ for
which Q(#%, h¥) = (£1)* 8, _s,k—1» Where the *1 is chosen in accordance
with the sign of Q(h!, #™) = Q(?, f™).

The rest of the proof is analogous to that of Lemma 3.2.4.

3.2.9. PROPOSITION. There exists a decomposition of V as a skew-
orthogonal direct sum (relative to §2) of subspaces that are invariant under

HYV = & ’ Ey i (g E\;=VN(K,® K _,®K;®K,_ x),such that

the restriction of H to the direct summand E, ; is of one of the following types:
DIFANER, \ # -;- and dim E, ; = 2n;, then there is a basis

af,l s v ey a]"n]., bf,l’ ey bj'"i in which Q(aj,k’ a]',s) = Q(bj,k’ bj,s) = 0,

g i, bj ) = (- 1)k6n]—s,k—l for 1 <k, s<nj;, and the matrix of the

restriction of H to E, ; has the form

A, 1.0

2y If A = 0 + ir, where ¢ # ;— and 7 # 0, dim EM- = 4n]~, then there is
a basis a; ,, a]f,l, e @ a]f,n]_, by, b]f,l, e, b]-,nj, b;,,,]_ of E, ; in which
Ua; i, a}’s) = Qb b]f’s) = QUa; i, b]f‘s) = Qa; ., bj ) = 0, Sa; i, b; )=
Qb; g ai) = (- DF 8y s k-1 Jor 1 <k s<n

iy and the matrix of the
restriction of H to E, ; is of the form

Ml., 12 0
R
M, ,
M}. Iz 0
0 O.. ' I,
* Ma
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" u g T 1 O“
whnere h=, 1 Gl’ 2: 0 1..

3N IfA =—21- + iu, u # 0, and dim EM = 2n with n; odd, then there is
a basis ‘111’ i1s ...,aj’n], jun; of Ey ; in whlch

Q( k% ) Q(b],k’ bj,S) O Q( i ks b] s) ( 1)S Bs—l,n]-——k for

1 <5, k < n;, and the matrix of the restriction of H to Eh,i is of the

form
‘17”}‘ 12 0 ‘
. I
K|
M)
where
1
7 P
M, = "

4 IfN=12+iu p+#0,and dim E, ; = 2n; with n; even, then there is
a basis a; 4, b; |, .. > B, ]n of E, ; in whzch Qa; g, by ) =
$a; i, a; ) = SUb; i, ]S)—(—I)Bkln for1<ks ],andthe
matrzx of the restriction of H to E, ; is of the form

M;\' 12 0
ol
O " M,
1
7 M 1
where My = NE
ot
SYIf A= % and dim E, ; = 2n;, then one of the following holds for
E)\j:
a) there is a basis a; y, ..., @ ., bj 4, ..., b],, in which

Q(a]',S’ aj,k) = Q(b]‘,s, b]"k) 0 Q( ] ) k) = (—I)S+16s n] k+1 for
1 <k s < n; and the matrix of the restrzctzon of H to Eh,] is of the
form
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b 1o
"y 0
0 -.1
2 ’

T 1o

0 RO

U

2

b) there is a basis %15 - Ban in which

Qlas, s aj.n) = (F 1)S+1‘Ss,2nrh+1a
and the matrix of the restriction of H to E, ; has the Jordan form

1
5 1.0

.... '.1
0 - 4

2

PROOF. The five types listed follow immediately from the lemmas
proved above on transition to the basis

S B, BT S5 @+, Sy -

for complex A, and to the basis consisting of vectors
ko, g].k, R h]s-, ... in the case of real A.
We make a remark concerning the sign of Im A in the four cases that
arise.
As is well-known, the Jordan form relative to the full linear group is the
same if the Jordan blocks are chosen corresponding to X instead of A. This
is true also for the classification of the operators H relative to the symplectic
group when Re N\ # ;—, since in that case the linear transformation of
VN (K, ® K;_,) generated by the mapping f,, f’,;, gl, — g5, of the basis
is clearly a symplectic transformation. However, the latter is not always true
when A = % + iu. Indeed, if n; is even, then the conjugate mapping
fsk - fsk induces a symplectic transformation in ¥V N (K, @ K5), and if
n; is odd, this is a conformally-symplectic transformation with the factor
(—1). Therefore, the Jordan form in this case is determined to within *pu.
3.2.10. For a given A = % + iu, where for definiteness we take u positive,

let vy (1) (respectively, vi(u)) stand for the number of Jordan blocks of size
2k X 2k, k odd, that occur in the above decomposition of H (type 3)) with
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+ wu (respectively, with —u). We claim that vi(u) are invariants of H relative
to the symplectic group.

We note that to prove the invariance of v,:;' () relative to the symplectic
group it is enough to prove that of wy(u) — vi(u), because vi(u) + vg(u) is
the number of Jordan blocks of size 2k X 2k corresponding to \ = L + iu.
Let V;, C V N (K, @ K5) denote the subspace consisting of the vectors of
height <k relative to the operator H?> — H + (u* + Z')’ and xk(u) the
positive (negative) index of the restriction of h—i to V. We evaluate
ve(u) — vi(w) in terms of X7 (u).

As a preliminary we make the following remark. If L C V is a subspace
invariant under H and if §|;, = 0, then %% |, = 0. This follows at once from
the formula

(3.2.10.1) B(X, Y) = QUX, Y) — 5Q(X, V).

Next we note that if an operator H in some space R%* together with a skew-
symmetric form, is defined by the relations in Proposition 3.2.9 (types 3)
and 4)), then for the symmetric form %}, defined by (3.2.10.1) the difference
between the positive and negative indices of inertia is zero if £ is even and
2 if k is odd.

We now compute vy{(u) — v{(u). We consider the decomposition of V into
the E, ;. Then V) = @ V,;, where V,; = V; N E, ;, A\ =1 + iu and
hfolyl,i = 0 if dim E, ; > 2. Iherefore 21 () — vi(w)) = X1 () — x7(w). We
now consider the restriction of 4},to V; N E, ;. It follows from Proposition
3.2.9 that if &k < n;, where 2n = dim E, J (with n; odd), or if k& <nj (’?j
even), then Qler‘Ex, 0, so that he, VenEy 5 = 0. Further, if £k = n; (n
odd) or k > n; (n even), then the dlfference between the positive and
negative md1ces of the forms h* wlvpnE, 1s zero if n; is even and £2 if n,
is odd (the * sign is chosen in accordance with the sign with which u
occurs in the Jordan block). For example, suppose that #; is odd. Then, as
Van—k+1 N Ey ; is the degeneracy subspace of than E. .» it follows that
hs can be extended to a form hs on the factor space
Ve NE, IV, N E, ;. By what was said above, the difference between the
positive and negatlve indices of inertia of the form hs so obtained is *2. Thus,
for arbitrary s and u,

(3.2.10.2)  Xj(w)—Xi(n) =2 20 (VEit1 () —Vzit1 ().
i=
Using this formula, we can compute vy, — v5.,, on the assumption that
the preceding differences V;i+ 1T Vo J < s, are known.

In a similar way it can be proved that the number of blocks of type 5 b)
such that (g, ,, @; 2,,]) = + 1 (respectively, — 1) is an invariant of H relative

to the symplectlc group. As above, this invariant is evaluated in terms of

n —k~
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xZ (0), the positive (negative) index of the restriction of &%, to K§7)2

3.2.11. Combining Proposition 3.2.9 and Theorem 3.2.5, we come to the
following assertion.

THEOREM a) Operators H®: V > V (k = 1, 2) are symplectically equiva-
lent if and only if they are equivalent under the full linear group and if the
invariants (1), X5, () = X ,(u) coincide for all s and all \ = % + iu.

b) Operators H®: V > V (k = 1, 2) are conformally-symplectically equiva-
lent if and only if they are equivalent under the full linear group and either
X5 () = x5, () or X% (W) = X ,(w) for all s and all \ = } + ip.

PROOF. Since we have already proved a), we turn to a proof of b). It
follows from Proposition 3.2.9 that b) is sufficient. So we prove the
necessity. Let R be a conformally-symplectic transformation of
V, R*() = af), a #+ 0, establishing the equivalence of the H®); as
R*(h,, ) = ah,, , we then have R*(hf, ) = aht, . It follows that

21 =%, if @ > 0 and x% | (k) = X ,(#) otherwise.

COROLLARY. For the existence of a Lagrangian subspace of V, invariant
under H, it is sufficient that Xy(u) = x;() for all s.and \ = L + iy, p # 0.

PROOF. We observe that a subspace E,\,]- with A # % + iu, o # 0, con-
tains an invariant Lagrangian subspace, which we denote by L, ;. Next, for
every E, i with A = % + in, u ¥+ 0, when the matrix of H in the decomposition
3.2.9 is a Jordan block taken with +u, there exists a subspace E,\,j2 such
that the matrix of H is a Jordan block with —u. Thus, there is an invariant
Lagrangian subspace L in EM-1 & E?\,J‘,' The subspace

L= L,;, & L is also Lagrangian and invariant under H, since
. TN GE)

the E, ; are skew-orthogonal.

3.2.12. We consider an equation £ C JY(M), ¢odim E = 1, with a singular
point x € E. Let us find out when it is that £ is locally equivalent to a
linear equation in the neighbourhood of x, that is, to an equation of the

ANy,
SV

form u = #(q, p). where a;i = (in a special system of local coordinates

g1, ---> 4y, W, Py, ..., p,. For this purpose we observe that a linear

equation E; = {u — # (g, p) = 0} at a singular point x, that is,.aa'_f =0,
x

0F
( dg;
under the operator H: T, (E,) - T, (E,).

For L we can take, for example, the subspace spanned by the vectors

—_ pi)lx =0, i << n, always has a Lagrangian subspace L invariant

9 cen 9 , Which is clearly Lagrangian and lies in T, (E,), because

opy |a’ ’ dpp |x

oF . 9 8 0 A 2F

- :O.Inaddltan( —_— = )zh (— , — ):_. =
ap; |x on, H op; |=' 0pj |x “\ap; x° 9pj Ix op; 0p; lx ’

that is, H (%

Jer
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We therefore have the following assertion:

PROPOSITION. For an equation E C J'(M), codim E = 1, to be equiva-
lent to a linear equation in the neighbourhood of a singular point x € E, it
is necessary that there exists a Lagrangian subspace of T, (E) that is invariant
under H. T, (E) —» T, (E).

3.2.13. REMARK 1. In what follows, when we obtain conditions under
which the CSp-equivalence of operators H is sufficient for local equivalence
at a singular point, Proposition 3.2.12 and Corollary 3.2.11 determine
conditions that are sufficient for the linearization of the equation at the
singular point.

REMARK 2. By (3.2.10.1), the CSp-classification of operators H in this
section is also a CSp-classification of quadratic forms under the action
indicated above (see 3.1.8).

REMARK 3. The Sp-classification of symplectic transformations was
carried out by Williamson [4], [5]. Theorem 3.2.11 differs from William-
son’s main theorem (see [4], Theorem 4) in that the invariants x are more
constructive.

§ 3. Normal forms

3.3.1. We consider first an equation £ C J}(M), codim E = 1. Let
91> -5 4, U P1, ..., D, be aspecial system of local coordinates in the
neighbourhood of a singular point x € E. We assume that the coordinates
of x are all zero.
In this system, E takes the form
U = .?(QIv ey Gny P1y o4 Pn),

where #(0) = o,‘la% 0) — f’a—f— 0) =0, © = dgF — pdg.

The operator H determines the 2-jet of # at x according to the formulae

F 9 F d 3
el ) e (] )
| 3g;8g5 1x O\ dg; =7 0gj |x dq; |x’ dq; ix!’
"F 3 FENI a a
) o b (] L Y= (F 2], & )
(3341 9q; Op; |x hm( dq; |x’ Opj x) Q( 4¢; ix’ 9py |x/’
RF 9 a 3 9
(el o) =2 (0]
L dp; 0p; I« O\ ap; =7 Op; Ix Op; =’ Op; x)’

3.3.2. We now use Proposition 3.2.9 to establish normal forms for the
2-jet of F at x. To do this we assume that when
1) A € R, dim EM- = 2n]-, the coordinates qy, ...,q,, U, Py, ..., Dy

7} 7}
are chosen so that a;, ;= .

g; |x' Op;
DA=0tir, 0 # %, dim E,\j = 4n]~ the coordinates are chosen in two

Ways, qu, - - - dnjs q%, .- - ,q,’1j, Pis -5 Puy P p,'1j, so that

=(—1) b 141,54,

x
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_a_: .__a_ —a 9 —_—f — ‘ib . . a — —1ibf . A
34 x=ai,jv aq; L——at, i 3p; x_( 1) "I_H'i']’—ap,'i . ( ) ny—it+1,

3) A=1+iu, u+# 0, dim E, ; = 2n;, n; odd, the coordinates

Gis -« -> Qpns P1s -« s pn]_ are chosen so that
9 9 i L
a—qi— x=az.j’ a—pl' x ) bnj—1+1,2)
4) A= % + ju, p #F 0, dim E” = 2n]-, n; even, the coordinates
i - - - ’q"i’ P1, ..., P, are chosen so that
j
3 9
=a; ; —— =b.
Ogaimt, [ 7 TOgg |x T
9 =(——1)i“a i s 9 =(—-1)i“b . .
Pai-g |x =30 Tapar ny=it+1, 5,
SYA = %, dim E, ; = 2n; the coordinates q,, . .. ,qnj, Pis-- - pn], are
chosen so that
a a .
D) Gqr =% Ty = (=D b i, 5
) a_| (= qyiss
D) Gl =% 35 Gpy g = (F D™ a2nm144, 5.

When we now use (3.3.1.1) and the form of H in the basis
> @i, bij, ..., we obtain the following normal forms for the 2-jet of
the equation at the singular point:

n-i

(I) )“qul'l‘ Z.J qiPit+1y

nj—
an o 2 (psgi + pig) + 2 (Pigi—Pig) + 2} (@Piss+aipiry),
ny ] nj-1
(11D Z piqi £ p Z (—i)iﬂ (qun —it1+ PiDn jmitt )+ 2 QiPi+1,s
i=1 i=1 =1
] ny nj=2
(IV) Z Pigi+ 1 E (—1)LHQZP1 —-nit Z GiPita,
i=1 i=1 i=1
n; nj- 1
Z Pigi+ D) 4iPis,
=1 i=1
(V) nj n; -1
b) - 2 2 Digi + Z QiDivy +Qn
i=1 i=1

3.3.3. PROPOSITION. For every equation E C JY(M), codim E = 1, and
every singular point x € E there exists a local contact diffeomorphism F,
F(x) = x, such that the equation F(E) can be represented in some special
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system of local coordinates q,, ..., q,, U, p1, ..., p, at x in the form
u=%{i.--, 49, P1, --., D,), Where the 2-jet of # at x is a direct sum
of forms of types (I) — (V).

3.3.4. EXAMPLE 1. Suppose that all the eigenvalues A of the operator
H: T,(E) - T,(E) are real and distinct, and N\ # ;— Then the 2-jet of E at

n
x takes the form u — > A;p.q,.
=1

EXAMPLE 2. If all the eigenvalues X are distinct and Re \ = 1,
Mg = Im A, # 0, 1 < s < n, then the 24et of the equation is:

n n
1
u— NERgE + pdl— 5D\ Peds-
=1 8=1

3.3.5. Now let E" C JY(M) be any involutory equation, codim E" =r > 1,
and x € E7 a singular point. We choose an arbitrary contact field X such
that f(x) # 0. Then X, E T, (E), since T,(E") C T, and X;, € T,.
The equation E'"! = LtJ T,(E"), where T, is a local one-parameter group of

translations along X, and ¢ is sufficiently small, is also involutory; but x is
not singular for E"~1, because T, (E""!) and I, are transversal. Thus, using
the results of Chapter II, we can choose a local contact diffeomorphism

F, F(x) = x, such that the equation F(E"~1) takes the form

p1 =0, ..., p,_, =0 in some system of special local coordinates

gy o> 4y U, Py, ..., D, (We assume here that x = (0, 0, ..., 0)). In
this same coordinate system the equation of F(E") can then be written as
pr=0,...,p,_,=0,u=F4q,,...,9, Py --., Dy), Where now

F) =0, dfi0o) = 0.

Further, as in 3.3.4, we can choose a coordinate system
4, -« qp, Dps - -, P, such that the 2jet of F at x is represented as a
direct sum of forms of types (I) — (V).

Thus, we have established the following proposition.

PROPOSITION. Every involutory equation E* C JYM), codim E" = r, is
equivalent in the neighbourhood of a singular point to an equation of the
formp, =0, ...,p,_, =0, u= F(m.-. Gy Pry - - ., Pn), Where the
2-jet of & at x is a direct sum of forms of types (I}) — (V).

CHAPTER IV
Formal classification of equations at singular points

Let E" C JY(M), codim E" = r, be an involutory equation with singular
point x. We say that two such equations £{ and Ej} are formally equivalent
at x € Ef (k = 1, 2) if there is a local contact diffeomorphism F, F(x) = x,
such that F(E]) and E% have contact of infinite order at x. It is clear that
formal equivalence of equations is necessary for local equivalence. In this
chapter we explain when the condition of formal equivalence follows from
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CSp-equivalence of the operators Hj .

§1. The connection between local equivalence and local solubility

4.1.1. We replace the construction of a local contact diffeomorphism by
the construction of its graph. To do this we denote by pri: E{ X E3 > EI
the projection onto the k-th component (k = 1, 2), and F: E7 - E{ X Ej the
graph of F, F(») = (v, F)).

Similarly, it 4: T, (E7) = T,(E%) is a linear transformation, then we define
thegraphA T, (E}) —> T, x)(E’AX E}) by identifying T(x,x)(E’ X E%) with
T.(E))® T, (E ); here F, = (F), .

Let 8 = prl(wl) - prz(wz) be a 1-form on E] X Ej, where

« = U lgp (k =1, 2), as above.

PROPOSITION. There exists an embedding Ef X Ej C J(M X M) of some
neighbourhood of (x, x) such that 8 = U, ler x B

2

PROOF. Note that the rank of dw,; is 4(n — r + 1) in some neighbour-
hood of (x, x), since the rank of dw; in some neighbourhood of x is
2n —r + 1), k=1, 2.

Further, as well as w;, w,, the form @ is involutory, because
OAdOA ... ANdO=

2n—~r+1)
=(prf (©,) —pry (@) A pridos A\ ... Ado) A pri (do, A ... A doy)=0;
n~r+1 n-r+1

therefore, since the rank of df is constant in some neighbourhood of (x, x),

we can choose coordinates X, ..., Xom—rt1), V15 -« > Vom-r+1)>Z1s - -+ s Z2rp
2(n—r+1)
in some neighbourhood of (x, x) € E] X Ej in which d6 = > dz; A dy;.
i=1

In these coordinates 0 has the form 6 = d# — y dz, where % is a function
of the variables xy, ..., Xyn—r+3), V1, - - -, Yan—r+1), since @ is involutory.
We now specify the embedding of E{ X Ej in J' (M X M) in the following
way:

u=%, yi=Dpi Ti=¢q, 1<ig<2n—r+1),
Zj = Qironrt1)y J<<2r—2, pj=0, j>2n-—r-+1),

where gy, ..., gan, U, Py, ..., Pan is some special coordinate system in
JYM X M).

4.1.2. PROPOSITION. 4 local U,-diffeomorphism F, F(x) = x, carries E}
to E if and only if FE 1) is a many-valued solution of the equation
E{ X E5 CJYM X M) passing through (x, x).

PROOF. Since F establishes the local equivalence of E{ and E} at x if
and only if its restriction to E{ establishes the local equivalence of the
forms w; (see Chapter II), it is enough to gheck that ﬁ*(@) = 0 if and
only if (FIE{)*(‘*’2) = w,. Let us compute F*(0). We have
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F*(0) = F* o pri(oy) — F*opr(wg) = (F |g)*(0)) — 0, qeed.

4.1.3. Now let A: ¥V - V be a transformation establishing the Sp-
equivalence of the operators H; (k = 1, 2). As in Chapter III, we assume
here that T,(E]) = T, (E3), and that V = T, (E])/C, is symplectic with the
form £2.

PROPOSITION. For every extension A: T,(E]) - T,(E}) of a symplectic
transformation A the subspace A(T (ED) of T (Ef X E2) C Ty, x) JY M X M))
is a Lagrangian subspace of l"(x x) = = Ker Uy xy C T, x)(J (M X M)) on
which hy vanishes.

PROOF. The fact that A(T (EY)) is Lagrangian is checked as in 4.1.2.

The fact that A establishes the equivalence of H, and H, means that the
image of A in Vig = Ty, x)(E’ X E3)/Cx xy is invariant under the operator
H,, =H;  H, Indeed, V,, =V &V, sincef = prl(wl) pry(w,). Thus,
H,, = H, ® H,, and the elements lying in the image of 4 in V12 have the
form (X, AX) with X € V. But H,, (X, AX) = (H,X, H,AX), so that
H,,(X, AX) lies in the image only when AH,X = H,AX, that is, when 4
establishes the equivalence of H, and H,. The fact that A, vanishes on
A(T (E})) follows from the following remark.

4.1.4. LEMMA. Let ET" C JY (M) be an involutory equation and x € E’

a singular point. Then the form h , vanishes on a subspace L C V,
dim L = % dim V, if and only if L is a Lagrangian subspace and invariant
under the operator H: V - V.

PROOF. If L is Lagrangian and invariant under H, then
h,(X, Y)=SQUHX, Y) =0 for all X, Y € L, since HX € L.

Suppose now that }Tw(X, Y)=0forall X, YEL.If X € L, then HX
is skew-orthogonal to L, since UHX, Y) = h (X, Y) = 0, and therefore
HX € L' = L.

4.1.5. Summarizing what was said above, we see that the question of the
sufficiency of Sp-equivalence of the operators H; for the local U;-equivalence
of the equations reduces to the following problems on the local solubility of
an equation at a singular point: (i) how to choose a Lagrangian subspace
L C T,(E") on which h vanishes (that is, such that the image of L in V
is invariant under H); (f) is there a many-valued solution of E” passing
through x and tangent to L?

4.1.6. REMARK. If the operators H; are CSp-equivalent, then the question
of the existence of a local contact diffeomorphism establishing the equivalence
of the equations and extending a conformally-symplectic transformation 4,
AH, = H,A, A*(2) = A\, also reduces to the question about local solu-
bility just mentioned, with w,; replaced by Aw,;, A € R.

§ 2. Formal solubility of equations at a singular point

With the results of the preceding section in mind, we are concerned in
what follows with the local solubility question as indicated there.
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4.2.1. Let L™ be a many-valued solution of an involutory equation
E" C JY(M) passing through the singular point x.

We consider the tangent space L = T,(L"); then h  vanishes on L. For
if X, Y € L, we can choose extensions X, Y so that they are tangent to
L". In this case h (X, Y) = X(w(?)) = (, because w(?) is a function that
is identically zero on L".

Further, since L C T,(E”) is Lagrangian, so that L O C,, because E’
is involutory, the projection L of L in V is defined, and L is also a
Lagrangian subspace. In addition, &, = &S, + 1Q, so that & also vanishes
on L. Thus, we get the following proposition.

PROPOSITION. If there is a many-valued solution of an involutory
equation E" C JY(M) passing through a singular point x, then there is a
Lagrangian subspace L C T, (E") for which the following equivalent
conditions hold:

ay helL=0;
b) holz=0;
¢) L C V is invariant under H.

42.2. REMARK. This proposition shows that the conditions for CSp-
equivalence of the operators H;, which are necessary for local equivalence,
go over after the reduction (i, f) into necessary conditions for the existence
of a solution passing through a singular point for the corresponding
differential equation.

42.3. EXAMPLE. Suppose that in the special coordinate system
i, - --»> qp U, P1, --., P, the equation £ takes the form

n

L n
u_"'z_ Z piQi_‘Z (7"z§ﬁ+!‘«zp3)+8(41, ceeyqn, U, Pgy .. -:Pn):Oa
i=1

i=1
where \; > 0, ; > 0, 1 <i<n,and e(q;, ..+, qn, U, Py ..., Pp)is a
function of third order of smallness at (0, ..., 0). Then in these
coordinates the form %}, is given by the matrix
Ay
) 0
- A’n
o M
. . " Hn
Therefore, no many-valued solution passing through (0, ..., 0) exists (and

in particular, no ordinary solution exists).
4.2.4. The necessary conditions in Proposition 4.2.1 become particularly
transparent in the case r = codim E” = 1.



154 V. V. Lychagin

We consider the vector field X, in some neighbourhood of the singular
point x € E” = E that is defined in the following way:

(4.2.4.1) Xo Jddo = .

This field X, exists and is unique, since the form dw is of maximal rank
(= dim E) in the neighbourhood of a singular point. Also, X , = 0 if and
only if w = 0. In particular, X, , = 0.

A
PROPOSITION, Let T = lim—*’—xt¢x— be the linear part of the field
t-0
X, at x. Here T" is a local one-parameter group of translations along X w-
Then H = T.
PROOF. Let f be a smooth function and Y a vector field given in some

neighbourhood of the singular point x € E. Then, by definition,
.1
(TY3) () = lim 4 (T, = (V) =Y (N =V, Xal|s (/) = ¥ (Xo),

since X, , = 0.
Denotmg by df the vector field for which df A dw = df, we obtain

(TY () = YKol = Yoldf(Xo) = Yaldo (@, Xu)) =
— —Y (@) = —ho(Ys, @) = doudfs, HY ) = d{(HY ) = HY ().

Thus, HY, = TY, for every Y, € T,(E), so that H = T.

We consider now a function f such that f|y = 0, X,(f) = 1. Then it is
easy to see that the restriction of Xf to E is X, since Xf(Ul) = U;. On the
other hand, every solution L" of E passing through x must be invariant
under X £ in particular, T, (L") is invariant under the linear part of X 5 at
x, that 1s, under H. So we have obtained another proof of Proposition
4.2.1 in the case codim E" = 1.

4.2.5. Next we describe the situation we have achieved in local coordinates.
Applying a contact diffeomorphism if necessary, we assume that the equation
E" C JY(M) is given in the neighbourhood of the singular point x as follows:

P1=0,...,p3=0u=%F@Gr «-3qns DPr -+« Pp)and L =T, (L")
is the linear spnan of the vectors E'Z—Jx, , % |x . Then
© =dF — 2 p: dg;. The condition that Aw|; = 0 means that
i==r
F:} 2
(4.2.5.1) P (-(% o T |k) :79;:_% =
a a

Further, the space V is spanned by>T‘;— y . , and

"' agn’ dpr T 777 dpy
n

Q= > u dgilx A\ dpi|x. The matrix of the restriction of H to L is

“ 82??,;, l " r<i, j<n, in this basis.
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Note that incidentally we get another interpretation of the condition
H: L L, or h, | = 0. Namely, if we consider any R-manifold L™ touching
L, then this manifold had contact of order = 3 with E” at x. This can be
proved in the following way. Locally, L"” is given by the system

of

u=Ffq - Qn) Pi = 7 The condition of tangency with L means that
#(0) = 0, gg— 0y = 0, 5;%‘(1—] 0) =0, z=(0, ..., 0, ..., 0), hence, using

(4.2.5.1), we get
— 0 4 2
F@—F (@ -+, 6_qf,. ---,5;—”)=0(q,+ - an).

This remark points to the need of studying R-manifolds that are not
exact solutions of E”, but that have contact of sufficiently high order with
E” at x. Moreover, the existence of R-manifolds having contact of infinite
order with £ is a necessary condition for the existence of a solution
passing through x.

4.2.6. We say that two R-manifolds L, and L, are s-equivalent at x if
they have contact of order = s there.

DEFINITION. The jet L of order s of an R-manifold L at x is the
class of R-manifolds that are (s + 1)-equivalent to L at x € JY(M).

EXAMPLE. If L projects diffeomorphically into M at x, L C J(M), then
locally L = [j, ()] (M). Therefore LS, = jory (Nin,x) S5 ) B, fE C™ (M)

4.2.7. DEFINITION. The extension EL° of order s of the equation
E" CJYM) at x € E” is the set of jets of R-manifolds of order s at x
whose representatives have contact of order s with E” at x.

EXAMPLE. E[® = x, E['! # O if and only if E” is involutory at x.
REMARK. Usually (see [8], [7]), the definition of extensions of an
equation uses R-manifolds without the restriction of projecting onto M. In
this case, x&rE;’s C JS*Y(M). We consider arbitrary R-manifolds; therefore,

P ~—
U _ELS C JS*Y(M), where J¥*1 (M) is the augmented manifold of (s + 1)-
xeE” P g
jets, whose points are s-jets of R-manifolds. Clearly, J5*' (M) C JS*1(M).

4.2.8. Let II: EL° — EL*~! denote the natural projection. Then every
solution L C E” passing through x defines a sequence L{ € E['5, 0 < s < oo,
with L0 = x, TIS(LS) = LS.

DEFINITION. An equation E” C JY(M) is said to be formally integrable
at x € E’ if there exists a sequence \L{ of s-jets of R-manifolds at x € E”
such that L € Ej and II3(L$) = L', The sequence LS, 0 < s< oo, is
called a formal solution of the equation E’ at x.

EXAMPLE. Let x € E” be a singular point, codim E” = r = 1. Then
E}° =x, and E'" is the set of Lagrangian subspaces of T,. Let
L C El'" be such a subspace. Then the requirement that )WL)y # @
means that i _|; = O (see 4.2.1).
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4.29. THEOREM. Let E C JYM) be a first order differential equation
and x € E a singular point, codim £ = 1, w, = 0. If a formal solution {L3}
exists, then the Lagrangian subspace L = L) is invariant under H. If
L C T,(E) is a Lagrangian subspace invariant under H, if the eigenvalues
{M.} of the restriction of H to L satisfies the condition

(4.2.9.1) Dimihi =1,
and if Y m; > 3, where the m; > 0 are natural numbers, then there exists
a unique formal solution {L%} of E such that L. = L.

PROOF. The necessity was proved above. For the sufficiency proof, we
choose a system of local coordinates x,, ..., x,, ¥y, ..., ¥, on E such
that the embedding £ C_, J'(M) in some neighbourhood of x € E is given
by: i*(gs) = xp, i*(pr) = Yr, i*(u) = F (=, ), 1 <k < n, where
g1y ---5 4y, U, Py, ..., P, is a special system of local coordinates in
JYM). Replacing E by a(F), if necessary, where « is a local diffeomorphism,
we may assume that L is the linear span of the vectors

__a_ .22 . As we have seen, the condition H: L — L then means

0y |x ? dxy, |x

that —— T390 | = 0,1 << i,j < n, while the restriction of H to L is given by

the matrlx H 525 07, . Since L projects onto M without degeneracy, every
7

R-manifold tangent to L is given locally as follows: y, = %, where

fixy, ..., x,) € C” is of at least the third order of smallness at zero

(xx(x) = 0, 1 < k < n). Therefore, the existence of the sequence L is

equivalent to that of a formal series f € R[[x, . . s Xu 115 f has order of

smallness 2 3, and the series is such that
af af
f"‘f(xh--wxna_zi-'n 6.1: )”‘Oa

where F (@1, - . ., Tp, Y1, « » -y Yn) is the Maclaurin series for #.

So we have to solve this formal equation. To do this we choose a basis
ky, ..., k, in L such that the matrix of H: L - L hg’s the generalized
Jordan form. Let Y1, - .., Yy be functions such that dy;|, = k, where the
vector field dy, on E is defined by the equation dy; = ﬁ/i Jdw, and
dw(dy,, dy]) 0. We now supplement (see [45], (34]) ¥y, ..., y, tO a

n
canonical system of coordinates Z;, « . «, Zns Yy, - - -, Y (doo = D) dz; A\ dyi).
i=1

=dy;lp and the

n
In this system we have © = dF — D) y; dz;, Ky =% .

i=1
matrix of H: L - L takes the Jordan form, that is,

n2F n2F i .
0240y |x " Bz, Oyy | . 0
| e 2z 1| | 0 . |
024 0yn |x ° "7 Oxp Oy, |x Hy
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where 6o 1, 1 0 0
—Ts 0 0 1
He = ) o a1 |
0 ‘0 T,
—7Ts O
if A, = og + itg, or else
As 1
. . 0
Hs —_ . . 1 y
0 “ e
if A, is real. .
a7

We solve the equation f(z)— & (x, e

coordinates xy, ..., X,, Vi, ..., ¥,. We solve this equation by induction
on the degrees of f, thatis, we look for polynomials fy(x;, ..., x,,) of degree
N such that

; - o ofn N
(24, ...,xn)-—f(z,, ""x"’a_x,’ ...,-a—zn—-)=0 mod p¥N+1,

where u is a maximal ideal in the ring R[[x,, ..., x,]] of formal power
series. i
Suppose, then, that we have found polynomials fy, N = 2, satisfying the

above equation. To find the series fp,,, we first apply a canonical trans-

formation o«: (z, y) — (x, y— %"IL") , where fy is a smooth function whose

Maclaurin expansion is precisely fN. The equation for the polynomial fN 1o
which must now be homogeneous of degree N + 1, takes the following
form:

(4.2.9.2) fN+1 (1) 00y Zn) —

2 ofw EIr
—y'(zi, ceey Ty 01‘“ . ...,%T*-)=OmoduN+2,

) = 0 formally in this system of

where ' = a*(#)—fy obviously satisfies the following relations:
d , 9 N _
E—O(y)zm(f)'o=0’ 1<<i<n,
okl (F1)
T =0 RISY,

k= (ki ..., k), k=2 ki
al* alkl rF! [ 2F
=

ot .. gzhn T oxk 7 0z 9y 0x; dy;

’ 1<i, jgn.

0

It is more convenient to solve (4.2.9.2) in the ring Cl[[z,, ..., z,]] of
complex formal power series. R
First we make a few remarks. With every series f € R[[x;, ..., x,]1] we
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a 2 c7
can associate its complexification €f, where now C(%’;_) _%zi, z being
the complexification of x, z = Cx. Further, as in the real case, every change
z' = @(z) of coordinates can be thought of as a change n' = o(n), where
n is the complexification of y and ¢(n) = [J' (p)1~X(n), and J (¢) isa the
Jacobian matrix of . The lifting n’ = g(y) is such that if n=—— for
of'

o where

some f € C [[zy, ..., z,]], then after the change 0’ =

f'(z'y = f(p~*(z")) (a complex canonical transformation).

We choose the change z’ = @(z) of coordinates so that the operator CH
(the complexification of H: L - L) has the Jordan form in the basis

d a
—(?_Z_{— N —az—;l

This can be done as follows. Suppose that H; has size 2n, X 2n, and acts
on the vectors

0 a ,
—_— e, g = O+ iTs 1.0,
azm‘ } ] azm1+2ns—1 ’ + s

Then we put

Zmy = Zmy - Zmya 15 Zmabd = Zmy— LBmy 1y o+ s Z;n1+2na—i = Zmy+2ng—1 1+ Zmy+2ng,
Z;'n1+2na = Zmy+2ns—1 — izm1+2ns'

In this case

1 1 , 1 1
nm1='§'nm1+—2'i—nm1+1, Tlm1+1=-2—”]mr—771m1+1, s

It is not hard to see that, after this change of coordinates, the equation

Fiver—F" (20 L) =0 mod pi+?

0z
becomes
(4.2.9.3) frvp1—F' (z, a—fg;*—‘) =0 mod puN+2,
where the matrix gh%n_j‘o n has the Jordan form
2F F ’
6z1 61]1 0 Tt ﬁzn a'r“ 0 Hi O
(4.2.9.4) e e e e e e = .. ,
2F »F 0 °-m |
Bzg 0, (0 """ Oz,0m, o
oo
H; = O _' 1 , Ag=0s+ it
. 7\43 |
We look for f,, in the form
]?J'v+1 = 2 Ch,,....hnz?l .. Zﬁn,

hi. . .kn,
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where ) k; = N + 1, since f}vﬂ must be a homogeneous polynomial. Sub-
stituting the expression in (4.2.9.3), we find the coefficients of the terms of
degree N + 1. Note that the terms of degree N + 1 on the left-hand side of
(4.2.9.3) consist of monomials of degree N + 1 of fNﬂ, monomials of degree
N+ 1 of F'in Zy, ..., Z,, and finally, after the substitution y; af“i

de
of monomials of the form z; 7, of F', where the coefficients of these last
monomials are elements of the Jordan matrix (4.2.9.4). As a result, we get
a system of linear equations for the coefficients ¢y =~ . We solve this

system by induction on (ky, ..., k,). To do this, we introduce the follow-
ing ordering on the set of n-tuples (ky, ..., k,) such that D)k, = N + 1.

We take (ky, ..., k,) < (ky, ..., kp) if ky, > k,,orif k, =k,,..., ky_s=
k, g, butk, . ,>kn e 1forsomes<n——l

FIRST STEP OF THE INDUCTION. We find the coefficient ¢ ;4 . o
To this end we write out the coefficient of zN+l in (4.2.9.3) and find

1 aN+16‘/
(1—'(N+1))\41)CN+1,0,...,0: (N+1)' azli\r+1 07

which always has a solution, because 1 — (N + 1)A; # 0.

GENERAL STEP OF THE INDUCTION. Suppose that we have found the
coefficients Ck,,... forall (ky, ..., k,) < (K9, .. k°) Let us find
Che, .. ko On writing out the coefﬁcxent of zf ﬁ" in (4.2.9.3), we

have

- 1
(4.2.95) o g~ =T m
i=1

where 7, is the term corresponding to the s-th column of

} NRF u If
| dzp, dm;j o]

the s-th column contains only A,, (m = m(s) depends on s), then

E 23 W xo. 1f the s-th column also contains 1, then
12y
0 0
7= ksAme ks—1+1)c, 0 0 0_4 40 0
s s/m h?,...,kg—{—( s—1 ) R, kg gk —1R) kD

By the inductive hypothesis, the coefficient co kS + 1K1K, L kG IS

known, because (k9, ..., k%, + 1, k0 — 1, k%, ,, ... ,kﬂ)<(k R )
Thus, (4.2.9.5) has the form (1— > E%po))en?, ...) xo=. . ., where the right-

hand side consists of terms already known. Since 1 — Zk‘;km{s) %0, (4.2.9.5)

has one, and in fact only one, solution.

Thus, if the conditions of Theorem 4.2.9 are satisfied, then there exists
a unique element fy,, € C [[zy, ..., z,]1] satisfying the complexified
equation (4.2.9.3), so that the real part of its restriction to x,, ..., x,
gives us (also uniquely) an element fy,, € R [[x,, ..., x, 1] satisfying
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(4.2.9.2). Hence, there exists a formal power series f satisfying the formal
equation f—f(x, 25)=0.

REMARK 1. a) As we have seen, a solution of (4.2.9.2) is equivalent to
one of a certain system Ay c; = Vig» K = (ky, ..., k,) of linear equations,
for each |k|. About this system we remark, firstly, that vj;, can be homo-
geneous polynomial of degree k, and, secondly, that the above arguments show

that the eigenvalues of A4,;,, more accurately of 4 (L), are 1 — Smih;,

where 2m; = | k| and the \; are the eigenvalues of the restriction of

H: L - L. Therefore, the formal conditions 4.2.9 mean that the operators
A|k|(L) are non-degenerate for | k | = 3.

b) Let us investigate how restrictive the conditions of Theorem 4.2.9 are,
For this purpose we consider the set of points (A}, ..., A,) € C* whose
coordinates do not satisfy (4.2.9.1). For every | k|, the set of (Ay, ..., ;)
such that X'mA; = 1 and >ym; = | k | is obviously closed and nowhere

dense in C", and therefore, the set of (A, ..., \,) such that Simih;=1

and Z‘ m; > | k| is thin in C". Baire’s theorem now shows at once that

the set of all (A, ..., \,) satisfying (4.2.9.1) is everywhere dense in C".

REMARK 2. The formal conditions (4.2.9.1) are a generalization of
Poincaré’s 8-lemma (see [9], [17]) to the non-linear case, since they ensure
the absence of any obstacle to the construction of the sequence L3.

Moreover, Poincaré’s lemma applies to formally integrable equations. The
following definition is the natural generalization of the concept of formal
integrability to the non-linear case (see [8]).

Let Ef = LEJE ES. Then the equation £ C JY(M) is said to be formally

X

integrable if E° is a smooth manifold for each s > 0, and II*: ES —» ES™!
is a fibred manifold.

In our case, that is, when E contains a singular point x € E, the whole
equation E° is not a smooth manifold; however, if there exists a sequence
L € E5 analogous to that described in Theorem 4.2.9, then some neigh-
bourhood of L} € Ef is a smooth submanifold of J*!(M).

EXAMPLE. The conditions (4.2.9.1) are always satisfied when Re A, =%
for all A;.

4.2.10. Suppose now that E” C JYM) is an involutory equation with
codim E” = r > 1. As before, we assume that coordinates
41 --->4p U, P1s ..., p, have been chosen so that the Lagrangian sub-
space L C T,(E), h,|;, = 0, is the linear span of the vectors
8 8
dgsl x* * 7 9gn |’
p1=0, ... prey =0, u =2, .- qn, Pry -+ ., Py)- In this basis, the

matrix of H: V- Vis ” 032? . r>i, j<<n; therefore, similarly to 4.2.9,
:9p;

we get the following assertion:

and E7 is given by the system
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THEOREM. Let E’ C JY(M) be an involutory differential equation and x
a singular point. If a formal solution{L3}exists, then the image L of the
Lagrangian subspace L} in V is a Lagrangian subspace invariant under
H If L C T,(E")is a Lagrangian subspace such that its image L C V is
invariant under H and the eigenvalues {A,} of the restriction of H to L
satisfy (4.2.9.1), then there exists a unique formal solution{Lz}of E" such
that L, = L.

4.2.11. To conclude this section we consider the condition of formal
integrability for an equation with a singularity. Suppose that %1 € C~ (T*M).
Because of the natural projection m: J' (M) - T*(M) we can then regard
F1as a function on JYM), # = n*(#,), and the functions
F € C(T*M) of the form n*(#,) are characterized by the fact that
Xx(?) = 0.

We assume now that E = {# = 0}, where X;(#) = 0, and that
x € E is a point for which d#, = 0. In this case E is not a smooth sub-
manifold of J!(M) at all points of the trajectory of the field X, passing
through x.

Let H: T, (T*M) — T, (T*M) be the operator corresponding to the
Hessian k_gzi of &1 at n(x) relative to the canonical form dp € N?(T*M),
that is, hgi(X, Y)=dom (HX,Y)forall X, Y E€T (x)(T M).

Just as in 4.2.1, it can be shown that a necessary condition for the
existence of a solution L” of E passing through x is the existence of a sub-
space L C T"(x)(T *M) that is Lagrangian (relative to the form dpw(x)) and
invariant under H. The following is an analogue to Theorem 4.2.9.

THEOREM. If there exists a formal solution {L3} of the equation E at
the point x, then L} = L is a Lagrangian subspace of T,r(x)(T*M) invariant
under H. If L C T, (T*M) is a Lagrangian subspace invariant under H
and such that the eigenvalues{\,} of the restriction of H to L satisfy the
condition

(4.2.11.1) S gk 50

where the m; are natural numbers and 3\ m; > 3, then there exists a

unique formal solution{L;}such that =, ,(Ll) = L.
PROOF. The proof of Theorem 4.2.11 is analogous to that of Theorem
4.2.9, with the difference that it is necessary to solve the formal equation

Flgr - - - Gns P1s -+ «, Pn) = 0, where H I ‘ is the matrix of
qj
H: L -» L in the basis ai Y e, 0‘7 . (Here as before, it is assumed
q |x n ix
that local coordinates q,, ..., q,, u,npl, ..., p, are chosen such that L
. . F
is the linear span of;q—;— e T e )

REMARK. Theorem 4.2.11 carries over in an obvious fashion to involutory
equations of codimension > 1 having a singularity of the type indicated.
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4.2.12. We draw some consequences from Theorem 4.2.10 concerning the
question of local equivalence.

PROPOSITION. Let {L3} be a formal solution of the equation E" C JY(M)
at x € E". Then there exists an R-manifold L C J'(M) having contact of
infinite order with E" at x and such that [L]5 = L3, where [L]5 is the
s-jet of L at x.

PROOF. We choose a local U,-diffeomorphism « such that the repre-
sentatives a.(L1) at x project without singularity onto M, a(x) = x. By a
theorem of Borel (see [15]), there then exists a smooth function f defined
in some neighbourhood of 7,(x) € M such that js(f)|1,l(x) = o, (LS71) for
all s =2 1. If we now let L, denote the R-manifold corresponding to j(f),
then the R-manifold L = a”1(L,) is what we want.

4.2.13. Using Proposition 4.1.2, we now obtain the following result.

THEOREM. A necessary condition for the formal equivalence of involutory
equations E; C J\(M) at a singular point x € E[ is that the operators H,

(k = 1, 2) are CSp-equivalent. If the eigenvalues of the Hy satisfy (4.2.9.1),
then the Csp-equivalence of the Hy is sufficient for the formal equivalence
of the equations.

§ 3. The algebraic insolubility of the local classification
of Hamiltonians

4.3.1. In this section we consider the question of the local equivalence of
two Hamiltonians G, G, € C™(T*M) in the neighbourhood of a point
x € T*(M), where G(x) = Gy(x) = 0, dG, x= dG,x = 0, that is, of the
existence of a local canonical diffeomorphism «: T*M) - T*(M), ax) = x,
such that a*(G,) = G,. As in 4.1.1, the construction of o can be replaced
by the construction of a solution of the equation E C JY(M X M), where
E = {G = 0},G=pr{(G)) — pri(Gy), G € C(T*(M X M)), and pri: T*(M X M)
— T*(M) is the projection onto the k-th component (k = 1, 2).

4.3.2. THEOREM. The problem of the local classification of
Hamiltonians in the neighbourhood of a singular point is not algebraically
soluble, that is, there is no natural number k such that the local equivalence
of Hamiltonians relative to the group of canonical diffeomorphisms follows
from the equivalence of the k-ets of Hamiltonians relative to the same group.

PROOF. We assume that such a k exists. Then for any Hamiltonians G,
and G, having equal k-jets at the singular point x € T*(M), there is a
canonical diffeomorphism a such that a*(G,) = G,.

We now use the fact that the construction of « is equivalent to the
solution of the equation £ C J'(M X M). In the language of formal
equations, this last equation means: if f € Rlg,, ..~ , g, ] satisfies the
equation

5 a a
G(Qh "':QHvqu}:y AR a;:)——'o mOth+1’
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then there exists a series g € R(lgq,, ..., ¢,1] extending f; and such that
5 a a
(4'3'2'1) G (QH -+ 5 Gn, —aq;i', ey %):0

Suppose now that L, C T(x,x)(T*(M XM)) is the graph of the differential
of a at (x, x) or, what is the same thing, the plane tangent to dg at (x, x).
By the Poincaré-Lyapunov theorem (see [27]), the eigenvalues {A,} of the
restriction of H; to L, then split into the union of quadruples of type
(A, Xs, - A, - Xs). Therefore, the condition (4.2.11.1) of formal integra-
bility is violated for arbitrarily large k.

Furthermore, the solution of the formal equation (4.3.2.1), as was the
case for the solution of the corresponding equation in the proof of Theorem
4.2.9, is equivalent (sce Remark 1 a)) to the solution of the system of
linear equations A|k|(Lo)ck,,...,kn = vy, for each |k|; clearly, Remark 1 a)
is valid here, except that the eigenvalues of the operator A (Lo) are of the

form ) mh;, where 2\ m; = | k |, and the \; are the eigenvalues of

H: L, —» L,. But since the eigenvalues are distributed in pairs (A;, — A),
the corank r(|k|) of A;(Le) (the codimension of the image) is at any
rate not less than the number of solutions in natural numbers of the
equation 23 n; = | k| (summation is over the pairs Ay, = A ).

We now choose |k| large enough so that r(1k|) > n(2n + 1) (note that
n(2n + 1) = dim Sp(2n)). As is not difficult to see, we can then choose
v, € Rlgy, ..., q,] so that the equation A, (Lo)Cy = v, is insoluble
for any Lo € T (T*(M X M)), which is the graph of the differential
of a canonical diffeomorphism and invariant under H.

Thus, in particular, there exist Hamiltonians G; and G, whose k-jets are
canonically equivalent (with k£ any fixed number), whereas (4.3.2.1) is
insoluble.

CHAPTER V
Local classification at a singular point

In the two preceding chapters we have obtained necessary and sufficient
conditions for the formal equivalence of equations at a singular point. In
this chapter we investigate the sufficiency of formal equivalence of
equations for local equivalence at a singular point, and we also give some
applications of our results.

§ 1. Sufficient conditions

5.1.1. With Theorem 4.2.13 in mind, we consider in this section a pair
of involutory equations EF7 and E’ which have infinite contact at a
singular point x € Ef (k = 1, 2), and we take E}, say, as a model. We
require that Ej satisfy the following two conditions:
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(A) In some special local coordinate system ¢9,...,q2,up9,....,p2
in the neighbourhood of x, £ has the form
pl=0, ..., p0, =0, ul= Fug ..., ¢ P¥ ..., P3), Where

F oAl - . ., g4, P, ..., D% is a quadratic function of its arguments.

(B) The eigenvalues {A;} of the operators H,:V - V are such that
Re A, # 0.

Note, firstly, that every involutory equation E7 such that H satisfies
(4.2.9.1) can be brought by a U,-diffeomorphism to an equation having
contact of infinite order with EJ, that is, E], can be any involutory
equation E” with a singular point.

Moreover, condition (B) is automatically satisfied if (4.2.9.1) is. Other-
wise, for_ every A, with Re A; = 0, we would have
N + Ag) + A, + (1 —Ay) =1 for every natural number N, therefore
violating (4.2.9.1).

5.1.2. Thus, we consider a pair of involutory equations Ef C J!(M)
(k = 1, 2) for which conditions (A) and (B) are satisfied.

Let L, C T,(E?) be a Lagrangian subspace invariant under H,. We may
suppose that local coordinates ¢, ..., q%3, u° p9,...,p% (see (A)) have been
L d

'a_q? 0 3 e e ey ‘5‘9‘0"‘1‘ 0 Py

x = (0,...,0). For this can always be achieved by applying to E] and
E5 a U,-diffeomorphism that is linear in the coordinate system
q%,...,q% p%,...,p2 in (A) and takes L, to the linear span of the

vectors o o

agY lo” * 777 agh o
consequence of Witt’s theorem [25]. Suppose now that L C Ej is a solution
of E5. For L we may take the R-manifold corresponding to j,(0), for
example. We show how to construct a solution of E{ tangent to L, using
conditions (A), (B) and the solution L.

We consider first the case when codim Ef =r = 1.

5.1.3. Let G be a smooth function on J!(M), G(x) = 0, having a non-
degenerate singularity at x. The set {y | G(y) > O} 1is called a conical
neighbourhood of x.

5.1.4. PROPOSITION. There exists a smooth function F defined in

chosen so that L, is the linear span of the vectors

. The existence of such a transformation is a

some neighbourhood of m,(x) and quadratic in the coordinates qf, ..., q°
(see (A)) for which
(5.1.4.1) u(Xa, JF) >0

for all y # x in the complement of some conical neighbourhood K of x.
Also, K can be chosen so that L~ {z} lies in the interior of the complement

of K.
PROOF. Let .¥ be a Lyapunov function for the restriction of X, tolL.
As X, is a linear vector field in the coordinates q%,...,q%,u° pl, ..., pY,

_ we can "choose Z to be a quadratic form. The equations £, and E, have
contact of infinite order at x; therefore, the set of points y for which
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1 (Xo, NF) <O can be included in a conical neighbourhood of
K, L \{z} & K.

5.1.5. We assume now that m > 0 of the eigenvalues {A;} of the
operator H: Ly — L, have Re A; > 0, and the remaining n — m > 0 have
Re A, < 0.

We write ;= {# =1t}. Then for sufficiently small ¢ the &%'; are sub-
manifolds of some neighbourhood of 7,(x), t # 0. It is known that &%, is
diffeomorphic to R”™ X S$* ™! for t > 0, and to R*™ X S™~! for
t > 0; but ¢4, is a cone, so that ¢, — {m(2)} is a submanifold.

PROPOSITION. The Cauchy initial data ¢; = 0 on the submanifold +#;
for t # 0 and on %, \{n,(x)} for t = 0 are free both for E, and for
E,.

PROOF. For sufficiently small ¢, since ; = Q, the check on the character-
istic property can be carried out in the complement to a conical neighbour-
hood K (see 5.1.4). Suppose that a local coordinate system ¢,,...,q, on
M in some neighbourhood of the point y; € ¢¥;, that does not intersect
K, is chosen so that #(q, ..., g,) = g, in this neighbourhood. If E; can
be written in the local coordinate system ¢,,...,q,,4 p;, ..., p, induced
by g,,...,4q, as

U — .6f~3(q17 s ooy Gny P1y - - < pn) =O,
then the condition for the initial data ¢, = 0 to be characteristic is equivalent

to 9%s = 0 at the pre-images of the points j,(g;). But the latter lie in

Pn o
the complement of K, where ‘2'” = . (Xo)(F) > 0.
n
5.1.6. The family of functions ¢; (see 1.5.4) determines Cauchy initial
data L; C E, for sufficiently small ¢; we take L9 to be supplemented by

X.
PROPOSITION. Suppose that L' = LtJ L) with t sufficiently small Then

L' is a smooth submanifold of E, having contact of infinite order with L
at x.

PROOF. Let q4,...,4,, 4, p;,...,p, be local coordinates in a neigh-
bourhood of x as in conditions (A) and (B). Then E, is given by the
equation u- F,(qy, - -« Gn, P1s - - - Pn) =0, where F,lg, p) is a
quadratic form in q,,...,4,, Py, --.,P,. Since £, has contact of infinite
order with E, at x, E, is given by the equation
u- Folgrs - -+, Guy P1s -« - Pr) = 0, where &g, p) = Filg, p) — Fula, p)
is a flat function at x = (0, ..., 0). Moreover, we have chosen
Flq, - .., gn) to be quadratic in ¢,,...,q,. In this case L' is the set
of points of the form (q,,...,q,,0,p:(q),...,p,(q)), since ¢, = 0. The
functions p;(q) satisfy the equations

n
(5'161) { 41';—1'1 Pi (Q)in:}"(Q) df,

t/f—:i(Qh s On, pi(q)y ceey Pn (q)):O‘



166 V.V. Lychagin

The first of the equations (5.1.6.1) follows from the fact that the
n
restriction of the form U, = du — )| p; dg; to the submanifold L} must
i1

vanish; the second is a consequence of the fact that L! = U L} CE,.

Thus, the equations (5.1.6.1) show that L! is determined by some
function A(g), which must satisfy the equation

OF aF
(5.1.6.2)  # (Qi, o @n—hgre, e —h 0qn)_0’

since —pilg)= Mq)T Now we use the fact that .#, = #, + &, where
% 5(q, p) is a quadratic form and e is a flat function at zero. Then
(5.1.6.2) takes the form
n

_ 92F, 2 Y‘ 0°Fy 0F 0F _
(5163) A £ 3p; 0q; q; 0q +7\' 4-] Op; Opj 6‘]1 6q] o

i, j=1 i, =1 oF
— (0 ~#55).

It follows from 5.1.3 that X,,(#)>0 at points of L other than x.
ngF, a

But at (¢, --,4,,0,...,0), X, takes the value D a0 g 1 5O
that i, j=1
2 02F aF
aplaql 6‘1i

i, j=1

is a positive definite quadratic form. We rewrite (5.1.6.3) as follows:
(5.1.6.4) A=

B AT (g 0T 0P o 0F, 0F oF \-1
__S(q’ A )( Z' 3q; 000 ¥ oq; Y ap; op; 0q; %)
i, j=1
We claim that the function on the right of (5.1.6.4), as a function of the
variables (g, ..., g,, N), is smooth and flat at zero. We consider a neighbour-
hood of (0, ...,0,0) that is sufficiently small so that in it
F 69' RF, OF oF
A —2 g _0%Fy
g(Q: ) ]Z— 6q ap; 6q1 Z dplap] 6‘11 aa]
is a positive definite quadratic form in (q‘, ...,4,). We note next that the
Taylor series of g(g, A\) in the neighbourhood of (0, ..., 0,0) under dis-
cussion divides the Taylor series of ¢ (q, —Ka—(‘;—) .
For it is easy to see that the zeros of g(gq, A) in this neighbourhood are
05 . .
the points (0, ..., 0, A). But e(q, —A 79;—) is flat at these points, and

g(g, \) is a quadratic. Thus, the Taylor series of g(g, A) in the neighbour-

hood divides that of ¢ (q, — %) . Further, by a theorem of Lojasiewicz
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and Hormander (see [11], [22]), there exists a smooth function A(g, A)
such that e(q, —A %)__— h(g, Mg(g, N); as follows from a discussion of the

formal power series corresponding to h, g, &, we also see that 4 is flat
at the points (0, A). Thus, (5.1.6.4) is equivalent to:

(5.1.6.5) A = —n(q, A),

where h(g, \) is a flat function at (0, A). It is not hard to see that
(5.1.6.5) has a unique smooth solution. This solution A(g) is flat at zero,
as follows at once from the properties of h(g, A) if the solution of
(5.1.6.5) is considered in formal power series.

This last remark concludes the proof of the proposition.

5.1.7. Using the proposition just proved, we can establish the existence
of a solution as an equation £ C J1(M) that is tangent to a Lagrangian
subspace L, C T, (E) invariant under H, and w, = 0.

PROPOSITION . Suppose that we are given an equation
E CJYM), w, = 0, that the eigenvalues of H satisfy (4.2.9.1), that among
the eigenvalues of H: Ly — Ly there are some with real parts of opposite
signs, where Ly is a Lagrangian subspace of T, (E). Then there is a solution
of E C JY (M) tangent to L,.

5.1.8. We prove a more general assertion from which the one just
formulated follows.

PROPOSITION. Suppose that we are given equations
E, CJY M), Wy x = 0, codim Ey = 1, having contact of infinite order at
x and satisfying the conditions (A) and (B). Suppose also that
Ly C T, (E,) is a Lagrangian subspace such that some of the eigenvalues of
H: Ly —» Ly have real parts of opposite signs. Then there exists a solution
of E; C JYM) tangent to L,.

PROOF OF PROPOSITION 5.1.8. We consider the manifolds L} (with
the notation of Proposition 5.1.6), while L} is to be a manifold with a
singularity at x € J'(M).

The vector field X, was defined by the equation X, 1d, = w;,
from which it follows that Lle (w;) = w,. Therefore, if
T, — = < s < oo, is a one-parameter group of translations along X w,» then
T} (w;) = e*w,. Moreover, it follows from 5.1.3 that le is transversal to

L} everywhere except at the singular point x € J'(M). Thus, the set
L, = LSJ T (L \ x) in the neighbourhood of x is a smooth submanifold of

Ey. Further, since U;|1\, = 0 and Tf(w)) = e*wy, wi(X,) =0, it
follows that U,|;, = 0.

Let L, be the closure of L,; we show that L 1 is the solution of
E, C JY(M) that we are looking for. Clearly, it is enough to prove that
L, is a smooth submanifold of E,.

We choose a U, -diffeomorphism ¢, such that o,(x)=x, o,(L}) C L3,
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where L? = {a{(#) = 0} N L, and o, differs from the identity diffeo-
morphism by a mapping that is flat at x.

Let us show that such a U,-diffeomorphism ¢, exists. By Whitney’s
extension theorem ¢see [11]), there is an R-manifold L; containing L}
and having contact of infinite order with L at x. Then, in some neighbour-
hood of m,(x), L, is the graph of the 1-jet of a function f(g) that is flat
at m,;(x). If we now define

8 ]
01(‘]1, sy (ImU, piy ---1Pn):(q“ LR ] Qn, U—f(Q),Pi*‘a—qj“, ""pn_ﬁ'an—)v
where the coordinates (q,,...,q,, 4, py,...,p,) are as in conditions (A) and

(B), then clearly o,(L}) C L3.

Let G be a Lyapunov function for the vector field X, such that
G|y = 7 (F), on L. We consider a local d1ffeomorph15m
gy JIM) - JYM), a,(x) = x, differing from the identity by a flat
function at x € J1(M) and such that o,: o,(F,) = E,, 0, |2 = 1. The

vector fields X w, and g, © 01*(Xw1) on E, differ by a vector field that

is flat at x; therefore, by Chern’s theorem (see Ch. I, §7), there exists a
local diffeomorphism o5: £, - £, that fixes the cone G = 0 pointwise
and is such that g3« o 02+ 0 01+ (X, ) = X, . We note that the choice of

G ensures that g5 fixes L3 pomtw1se therefore L, is taken by 05 ° 0, © 0,
t00300,0°0,(L;)=030°0,00,(UT(Ly\x)) =L, or

L, =07 o 03! o 03!(L), that is, L}, as the image of a smooth submanifold
under a diffeomorphism, is also a smooth submanifold of E,, touches L,,
and is therefore the required solution of E,.

PROOF OF PROPOSITION 5.1.7. We choose an equation
E, CJY(M), w,, = 0, touching E, and satisfying conditions (A) and (B).
By Theorem 4.2.13, there exists a local U,-diffeomorphism
a: JY M) - J'(M), a(x) = x, such that £, and «(E,) have contact of
infinite order at x, and consequently satisfy 5.1.8.

5.1.9. We now consider the case when Re A; > 0 for the eigenvalues
{As} of H: T, (E,) > T, (E,). Replacing the cone F = 0 by the sphere
F =1, we can then prove the following propositions in complete analogy
to Propositions 5.1.7 and 5.1.8.

PROPOSITION. a) Suppose that we are given equations
E, CJ'(D, Wy » = 0 (k = 1, 2) having contact of infinite order at x and
satisfying conditions (A) and (B); suppose that the eigenvalues of
H: T (E,) » T,(E,) have real parts of the same sign only. Then, for every
Lagrangian subspace Lo, C T, (E) invariant under H, the equation
E, C JY(M) has a solution tangent to L.

b) Let E C JY (M), w, = 0, be an equation such that the eigenvalues of
H: T, (E) » T,(E) satisfy (4.2.9.1) and have real parts of the same sign.
Then, for every Lagrangian subspace Lo, C T, (E) invariant under H, the
equation has a solution tangent to L.
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5.1.10. THEQOREM. Suppose that the equations
E, CJYM), codim E; = 1, wy , = 0 are such that the operators
Hy: T (Ey) = T, (E,) (k = 1,2) are conformally-symplectically
(symplectically) equivalent, and their eigenvalues satisfy (4.2.9.1). Then the
equations Ey, C JY M) (k = 1, 2) are locally equivalent (U,-equivalent) at
x €JYM).

PROOF. We use Proposition 4.2.12. Since the operators H; (k = 1, 2)
are symplectic (conformally-symplectic) and the conditions (4.2.9.1) are
satisfied, there exists a (contact) U,-diffeomorphism «; such that
«,(F,) and E, have contact of infinite order at x.

Lemma 3.2.2 shows that the eigenvalues of the H; (k = 1, 2) satisfy the
conditions either of Proposition 5.1.7 or of Proposition 5.1.9. It was proved
in Ch. IV that the local classification problem is equivalent to that of the
existence of a solution of some differential equation £ C JY(M X M);
therefore, the theorem follows from Propositions 5.1.7 and 5.1.9.

5.1.11. THEOREM. Suppose that we are given an equation E C J'(M),
codim £ = 1, w, = 0, and that the eigenvalues of H: T,(E) - T, (E)
satisfy (4.2.9.1). Then, for every Lagrangian subspace L, C T,(E) invariant
under H, the equation has a solution tangent to L.

5.1.12. REMARK. Theorem 5.1.11 merely establishes the existence of a
solution. As for the question of uniqueness, it does not hold in the usual
sense of the word. However, there is uniqueness of the following type. Let
L, and L, be solutions of the equation E C J'(M), w, = 0, satisfying
(4.2.9.1). If L; and L, are tangent at the singular point x € E, then they
have contact of infinite order at that point.

5.1.13. We consider now singular points of involutory equations
E" C JY(M), where codim E" =r > 1.

In this case the classification problem reduces, as it did above, to that
of local solubility of an equation at a singular point. The equation obtained
here is also involutory, and so in suitable coordinates it has the form

plzo""’pr—lzov u:y(Qrv'-WQnspr’-'-7pn)’

that is, it reduces, in fact, to the solubility of the equation
w= Fgr, .-+, Gn, Pr» - .., Pn) at the singular point. Therefore, using
Theorems 5.1.10 and 5.1.11, we obtain the following assertion.
THEOREM. a) If the involutory equations E; C JYUM) are such that the
operators Hy . V — V are conformally-symplectically (symplectically)
equivalent at a singular point, and their eigenvalues satisfy (4.2.9.1), then
the equations E,(k = 1, 2) are locally equivalent (U,-equivalent) at that
point.
b) Let E" be an involutory equation satisfying (4.2.9.1) at the singular
point x; then for every Lagrangian subspace L, C T,(E") such that
Mo, = 0, there exists a many-valued solution of E” passing through x and
tangent to L.
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5.1.14. REMARK. If E” is an involutory equation as above, then there
exists a local contact diffeomorphism «, a(x) = x, such that «(E7) has the
form p, =0, ..., pryy =0, u=%F(r - .. qn, Prs - - -, Pn), Where

F(Gry « - o Gny Pro -+ -y Pn) = AZ Fry is a quadratic form, and the types
)
of F s are as listed in 3.3.2.

§2. Local classification of even-dimensional Pfaffian forms in the
neighbourhood of a singular point

5.2.1. Suppose that we are given 1-forms w;, € AY(R?*") (k = 1, 2). We
want to find out when these forms are equivalent at 0 € R?”, If they have
constant rank r, 0 < r < n, in some neighbourhood of 0 € R?”, if they
are involutory, and if Wi o * 0, then Darboux’s theorem asserts that they
are equivalent.

In particular, if dw; has maximal rank 2n at O, then the conditions
wy; # 0 turn out to be sufficient for the local equivalence of the wy.
Furthermore, we can discard either the condition that the rank of dw; is
constant in the neighbourhood of 0 € R?”, or the condition that wy o #0.
The first possibility was investigated by Martinet [13]. We consider the
case when the dw; are forms of maximal rank and wy o = 0.

5.2.2. In this subsection we consider an arbitrary I form w € A! (R2")
that vanishes at 0 € R*", w|, = 0.

Acting as in Ch. III, we define the Hessian 2, of w at 0 as follows:
h,(X, Y) = X(w(Y))|0, where X, Y € TO(RZ"), and X, Y are any vector
ﬁelds extending X and ¥, ¥, = ¥, X, = X.

It follows from the formula dwo(X, Y) = Xw(¥) — Yw(X) that the
bilinear form 4, is well-defined and that # (X, Y)—h (Y, X) =dwe(X, Y).
Thus, &, = —dwo + h,, where kS, is a b111near symmetrlc form.

If now w; € A‘(Rz") k=1, 2) and Wi 0 = (), then for local equivalence
of these forms at 0 € R?” the equlvalence of the Hessians h,, under the
full linear group GL(2n, R) is necessary. Every linear transformation
A: To(R*™) — To(R?") establishing the equivalence of h,, and k., must
take the forms dw, o, and hfd to dw,. o and h{, , respectively; that is, for
all X, Y € To(R?™M),

dml: O(AX7 AY) = d(Dz, 0(X7 Y)7 hfoi(AX’ AY) = hfoz(X’ Y)

5.2.3. We turn next to the case when w; € AL(R?™M), Wy g = 0, and the
dw; have the maximal rank 2n at 0 € R?". Then we may assume that
dw,,g = dw, . The necessary condition for the local equivalence of the
forms w; at 0 € R?" in the preceding subsection reduces to the following:
the quadratic forms %5, and A}, must lie in the same orbit of Sp(n).
Thus, the orbits of Sp(n) in the space of all quadratic forms on
To(R?") = R?”" are invariants of the local classification problem.
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A description of these orbits based on the operators
Hy, doy o(Hy, X, Y) = h,, (X, Y) was given in Ch. IIL

5.2.4. Let wy be forms as above. We claim that they can be realized as
wi = U, lEk for certain equations £, C JYM), M = R". We use Darboux’s

theorem and choose coordinates x,,...,X,, ¥;,...,¥, in some neighbour-
n

hood of 0 € R?*" in which do, = D) dz; A dy;. In these coordinates w;
i=1

becomes oy = dF,lz, y) — ‘_‘ yi dx;. Therefore, E; can be realized by

the embedding i, : R?*" J 1(R”) where
ik(g) = z;, (p) =y, 1<j<n, it = Fulz, y)

for some special coordinate system q,,...,q,, 4, P1,...,p, inJ'(R").
When we now use the results of the preceding section, we obtain the
following result.
5.2.5. THEOREM. A necessary condition for the local equivalence of
forms w, € AY(R®™), where wy o = 0 and dwy o is of maximal rank,
k =1, 2, is that the quadratic forms hf,.‘k(= the operators Hy) are
Sp(n)-equivalent. This condition is sufficient if the eigenvalues {);} of the
H, satisfy the condition

(5.2.5.1) Dymhy 1
for all natural numbers m; such that D m; = 3.

COROLLARY. Suppose that w € AY(R*") reduces to the zero form at
the point 0 € R*", where dw is a form of maximal rank and the eigen-
values {\;} of H satisfy (5.2.5.1); then there is a local coordinate system
Xy, ooy Xy, Y1y s Vy in the neighbourhood of 0 € R*" in which w takes the

n

form o = dF — ) y; dx;, where F is a quadratic form in the variables
i=1

Tiy v ooy Tny Ypo - v o0 Yo U F = Y Fa.j, and the types of the F, ;
R, J

are as listed in Ch. 1V, §3.
EXAMPLE. Suppose that the eigenvalues of H — -2- are purely imaginary

and distinct. Then the conditions (5.2.5.1) are satisfied, so that, in some

coordinate system xy,...,Xx,,V;,...,¥,, w takes the form
n

03:2 (M]d(I] +yi) + (deyj yjdxj))’

j=1
where the p; are the imaginary parts of the eigenvalues of H —%.

5.2.6. Theorem 5.2.5 allows of a generalization analogous to Chern’s
theorem for vector fields. Namely, suppose that the form w, can be written

A=

|

as o, = dF, — 2 ‘1yl- dr; in some coordinate system xy,...,X,,Yi,...,V,,

i
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where .#, is a quadratic form. If w, — w,; = de, where ¢ is a flat function
at the origin, we derive the following result from Propositions 5.1.8 and
5.1.9.

THEOREM. Suppose that w, and w, are forms as above and that
Re )\j # 0 for the eigenvalues {A;} of the operators Hy(k =1, 2). Then
w, and w, are locally equivalent at 0 € R?",

5.2.7. REMARK. The results of this section go over in an obvious way
to involutory 1-forms for which deo A ... A do == 0 and

kR
o ANdo A ... A\ do=0. In this case the operator H is induced by the

h
Hessian s, on the factor space To(R*")/C,, where C, is the degeneracy
subspace of the 2-form dw,, so that locally w can be written as

3
(’):d.gj ('Ziv ceos Tpy Yty 00y yh)_.ziyidxi;
(==
where #(zy, ..., Zu, Y1, - .., Yu) i @ quadratic form.

§3. Local classification of Hamiltonians in the
neighbourhood of a singular point

So far we have mainly considered first order equations on M correspond-
ing to smooth submanifolds of J1(M). In this section we consider the case
when the equations are given by submanifolds with a singularity. Suppose,
then, that & ¢ C*(7*M), and that x € T*(M) is a non-degenerate singu-
lar point, #(x) = 0, d# |, = 0. In this case the equation £4 has a
singular line (x, ) C J!(M), at the points of which Eg fails to be smooth.

5.3.1. We consider two questions, which are obviously connected with one
another.

1) Let H be the operator generated by the Hessian hg of # relative to
the canonical 2-form dp:

do(HX, V) = hg(X, Y) X, Y € T(T*M),

and let Ly C T,(T*M) be a Lagrangian subspace invariant under H. Is
there a Lagrangian submanifold L — {# = 0} tangent to L,?

2) Let #F1, F, €C” (T*M) Dbe functions for which x € T*(M) is a
non-degenerate singular point, dF,, . = 0, Fp(x) =0 (k =1, 2). Is there
a local canonical diffeomorphism o, o(x) = x, such that o*(#,) = #,?

We solve these problems simultaneously, as we did for equations without
singularities. It was proved above (Theorem 4.3.2) that to solve 2) it is not
enough to give some finite jet of .# at x. Therefore, we have to go into
a study of ‘“‘elementary” singular points.

5.3.2. DEFINITION. A point x € T*(M) at which #(z) =0, dF, =0,
is said to be an elementary singular point for a smooth function # if
Re A; # O for the eigenvalues {A,} of H and j.(%)|, is a polynomial
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in some system of local canonical coordinates.

5.3.3. THEOREM. Let x € T*(M) be an elementary singular point for
F1and suppose that #, and F , are formally equivalent at x relative to
the group of canonical diffeomorphisms; then &, and ¥ , are equivalent at
x relative to the group of canonical diffeomorphisms.

The proof of this theorem is analogous to that of Proposition 5.1.8.

5.3.4. COROLLARY. Let x € T*(M) be an elementary singular point for
F € C> (T*M) and suppose that j.(F)|. is a quadratic form in some
system of local canonical coordinates in a neighbourhood of x. Then, for
every Lagrangian subspace Ly C T, (T*M) invariant under H, there is a
Lagrangian submanifold L C T*(M) tangent to Ly and such that #|;. = 0.
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