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106 V. V. Lychagin

Introduction

0.1. The version of the problem of classifying non-linear partial differential
equations formulated here was first stated precisely by A. M. Vinogradov in
[6]. There is an obvious connection between this question and the equiva-
lence problem of E. Cartan [35]. A consequence of this connection is the
fact that some standard results, such as Darboux's theorem on the local
structure of 1-forms, and also those of Stern berg [19], [20] and others, can
be interpreted as results on the local classification of first order differential
equations.

0.2. The approach to the classification problem we follow here, which
allows us to give a meaningful solution of the problem, is based on the
geometrical treatment of differential equations going back to Monge, Pfaff,
Lie [29], E. Cartan [10], [35] and others. A modern invariant formulation
of this approach was given by Vinogradov [6].

0.3. The paper consists of five chapters. The first is of an introductory
nature. Its main aim is an exposition of the structures connected with non-
linear first order differential equations. A first step in this direction is to
give an invariant definition of a (non-linear) differential equation on a smooth
manifold M, and of its solution. The natural arena for the action in this
case is the manifold J1(M) of 1-jets of functions as introduced by Ehresmann.
In this approach a first order differential equation is most naturally inter-
preted as being a closed subset Ε C Ρ (Μ). Unless the contrary is specifically
stated, we assume throughout that Ε is a smooth submanifold of Jl(M).

The central feature of Chapter I is an analysis of the concept of solution
of a non-linear first order differential equation. Apart from its own independent
interest, this question is fundamentally important for us in that its resolution
determines the choice of the classifying group; that is, according to Klein, the
choice of the corresponding geometry. Indeed, the only and natural require-
ment imposed on the group is that the transformations it contains must
preserve the class of solutions.

For instance, if by a solution of an equation Ε C Jl{M) we understand,
as usual, a smooth function / G C°°(M) whose 1-jets j\(f) lie in E, then the
classifying group reduces (as follows easily from Theorem 1.3.3) to the group
T*(M) of canonical diffeomorphisms preserving the fibre of the projection
T*(M) ->· M. The classification problem for arbitrary non-linear equations
relative to this group is void.

A rougher and more interesting classification is achieved at the expense of
an extension of the classifying group, induced by an analysis of the many-
valued solutions furnished by the i?-manifolds. The meaning of the latter is
that they are submanifolds of maximal dimension transforming the universal
1-form ϋγ £ h.l(JlM) to zero. In a special system of local coordinates

η

qu . . . , qn, u, pi, • • • , pn in J\M), Ux takes the form Ux = — Σ />; dqt + du.
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The /?-manifolds are closely connected with the Lagrangian submanifolds of
T*(M). In fact, the (local) projection of an i?-manifold in T*(M) is a
Langrangian submanifold. However, if we are thinking globally, then the
class of R-manifolds is wider than that of Langrangian manifolds. We mention
that the necessity for studying R-manifolds was first pointed out by Lie. In
recent times the role of Langrangian manifolds in linear differential equations
has been significantly clarified in papers of Maslov [14] along axiomatic lines
and of Hormander [23] using Fourier integrals. The role of Λ-manifolds for
the theory of non-linear differential equations was pointed out by Vinogradov
[6], and the term "R-manifold" was proposed by him.

The classifying group obtained on considering many-valued solutions is the
group of contact diffeomorphisms of Jl{M) relative to the natural contact
structure given by the form Uv The importance of this group in the theory
of differential equations was again first clarified by Lie.

In the Lie algebra of this group (the algebra of contact vector fields) there
arises a formalism analogous to the Hamiltonian formalism in symplectic
structures (see [2], [18]). We note that this formalism is as vital in the
theory of non-linear differential equations as the Hamiltonian formalism is
in the theory of linear differential operators. This is traced more carefully
in [7] and [6].

0.4. The solution of the classification problem relative to the group of
contact diffeomorphisms of J\M) is begun in the second chapter. Here we
consider the local classification of involutory equations Er C J\M),
codim Er - r, at a non-singular point, that is, a point χ G J1(M) where
Tx(Er) and Γ χ = Ker Ulx are transversal. We restrict ourselves to the class
of involutory equations, because being involutory is a necessary condition
for solubility.

The main result of this chapter is that any two involutory equations
E[ C J\M) and Er

2 C JV{M) of the same codimension are locally equivalent
at non-singular points. This means in particular, that after a contact
diffeomorphism an involutory equation can be written in the neighbourhood
of a non-singular point in the form px = 0, . . . , pr = 0, where qu . . . , qn,
u, pu . . . , pn is a special system of local coordinates in Jl{M). It follows
from this that any two involutory equations of the same codimension in
the neighbourhood of a non-singular point have the same stock of many-
valued solutions, that is, in particular, they are always locally soluble (in
the sense of Λ-manifolds). As regards the existence of ordinary solutions,
it turns out that a necessary and sufficient condition for their existence is
that the skew-orthogonal complement to Tx(Er) Π Γχ in Γ̂ . projects non-
degenerately onto M.

In particular, if Ε is the set of zeros of a function
. F 6 C°° {JlM), £ = {(<?, u, p) 6 P{M) \^{q, u, p)-=0},then the condition
for local solubility in the class of ordinary functions takes the form of a
condition of "smooth type", -ψ- 0.



108 ν. V. Lychagin

0.5. Beginning in Chapter III, we consider the local equivalence of
equations at singular points, that is, points χ £ Er where Tx(Er) and Γχ

are not transversal, so that Tx(Er) C Γ χ .
As in the classical Morse theory, we first construct a bilinear form /ζω on

Tx(Er) such that the orbit of hu or the orbit of an operator Η naturally
connected with Ηω under the conformal-symplectic group CSp(2n) is an
invariant of the classification problem.

In Chapter HI we give a co'mplete list of the invariants characterizing the
orbits just mentioned.

Apart from these fundamental questions, we consider necessary conditions
for the linearization of equations and we give normal forms of the 2-jet of
an equation at a singular point.

0.6. Chapter IV is devoted to the problem of formal equivalence of
equations at a singular point. Sufficient conditions are obtained for the
formal equivalence of involutory equations E[ and Er

2 at a singular point
x: if the operators Hk are GSp-equivalent, k = 1,2, and the eigenvalues

{Xs} are such that 2 mi^i Φ 1 f° r a u < natural numbers mi whose sum is

greater than 2, then the formal Poincare condition for linearization of the
characteristic vector field Χω at the singular point χ £ Er

k holds when
r = codim Ek = \.

For if kj = 2 ™.iXi, with 2 mt ^ 2, then since 1 - λ;· is also an

eigenvalue of Hk, we have 1 = (1 — Xj) + 2 i i WAi·

Similar conditions for formal equivalence are obtained (see 4.2.11) for
equations with a singularity. We consider the most important case, when Ε
is of the form Ε = {3F = 0}, where & is a smooth function on T*(M),
understood as a function on Jl{M) via the natural projection
IT:J\M) -* T*(M), and d&x = 0.

The formal equivalence conditions so obtained allow us to establish the
algebraic insolubility of the classification of Hamiltonians in the neighbour-
hood of a singular point relative to the group of canonical diffeomorphisms.

0.7. In the concluding Chapter V we establish the sufficiency of the
formal condition (4.2.9.1) and the CSp-equivalence of the operators Η for
the local equivalence at a singular point of involutory equations of the
same codimension.

We also consider applications of the result so obtained to two classical
problems. The first was raised in 1814 by Pfaff, the teacher of Gauss. The

problem concerns the reduction of a 1-form ω = 2 ai(x)dxi to the
i=i

simplest shape. It was solved by Darboux when the exterior differential
dcu has locally constant rank and ω does not vanish. A full investigation
of this case, without the assumption that άω has locally constant rank, was
carried out by Martinet [13]. The present article contains an investigation
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of the case when ω G A' (R 2 ") is involutory (for example, when άω has
maximal rank) and ωχ - 0.

The second question is that of the local equivalence of Hamiltonians under
the group of canonical diffeomorphisms in the neighbourhood of a singular
point. Because of the algebraic insolubility of the question as posed, formal
equivalence must be included in the statement of the problem. In this form,
and under the condition that the singularity is elementary, the local equiva-
lence problem has already been solved. As above, the classification problem
allows us to prove the corresponding results for local solubility.

Finally, I express my deepest thanks to A. M. Vinogradov, who pointed
out this circle of problems to me, and who has been a source of constant
encouragement and consideration throughout the work. I am grateful also
to V. I. Arnol'd for critical remarks and advice, which have helped to
improve the article.

CHAPTER I

Geometry of non-linear first order differential equations

The aim of this chapter is to describe the structures connected with non-
linear first order equations. It turns out most convenient to represent a
differential equation as a closed subset of the manifold of 1-jets of functions.
The fundamental structure that arises quite naturally in this approach is the
contact structure on the smooth manifold of 1-jets. Here and throughout
the sequel, smoothness means belonging to the class C°°.

§ 1. Jets

Let Μ be a smooth manifold, dim Μ = n, and C°°(M) the ring of smooth
functions on M.

Consider the maximal ideal μιη C C°°(M), m G M, consisting of the
functions that vanish at m:

μ™ = {/ € C°°(M) | Km) = 0},

and the powers of μιη :

£ = { / c c ° ° { M ) \ f = . Σ . : u • • • gih; Siseμ™}, ^ = g μ * .

1.1.1. DEFINITION. A function / G C°°(M) is said to be k-flat, or to be
a function of order of smallness k at m, if / G μ^+ 1. The functions
/ G μ^ are said to be flat at m.

This definition is associated with the fact that / G μ £ + 1 if and only if
dMflbq"' . . . 9g°" \m = 0 in every system of local coordinates qu . . . , qn

in the neighbourhood of m, and for every σ = (σ ΐ 5 . . . , an) with
\σ\ = σ1 + . . . + ση < k.

We write / £ (M) for the factor ring



110 V. V.Lychagin

1.1.2. DEFINITION. The image of / G C°°(M) in J^ (M) under the
natural projection C°°(M) -> j£ (M) is called the k-jet of / at m G Μ and
is denoted by ik(f)\m·

If a system of local coordinates qu . . . , qn is chosen in the neighbour-
hood of m, then we can take as representative of 4 ( / ) | m the segment of the
Taylor series for / up to the terms of degree k, so that the elements of
j£ (M) can be thought of as the segments up to terms of degree k of the
Taylor series of arbitrary functions at m.

1.1.3. Consider Jk(M) = U Jk{M). We give to Jk(M) the structure of a

smooth manifold, 0 < k < °o.
Let qu . . . , qn be a system of local coordinates in a neighbourhood

*UczM. In Jm(M), m 6 1L, regarded as a vector space, we introduce
coordinates ρσ, σ = (σ ΐ5 . . . , ση), \ σ \ < k. relative to the basis

/*O) \m »/jfc(9i -<?i0)) \m > • · · ·/*((<?;, " 4ί Ο ) ) σ ' • · · (Qik -q§})"n) \m . where
now q? = qj(m) are the coordinates of m. Thus, the element jk(f)\m can be
written in these coordinates as

h(f)U=(f(m), -g-

that is,

Pa (/ft (/) |m) = ·

We now introduce coordinates in the set °1ί = \j Jm(M), which is by

definition open, in the following way. Every point χ ζ 11 is uniquely
determined by the point τη f U such that χ G Jk(M), and by the
coordinates ρσ of χ in J^(M). Thus, a point χ ζ_ UU is uniquely determined
by the (n + l)-tuple (qu . . . , qn, ρσ, \ σ | < k), where qu . . . , q^ are_the
coordinates of m and χ G Jk{M). It is easily checked that if i f i / j Π ^2
and its coordinates q\l>, . . . , q(

n' in °llx and qy', . . . , q\' in <U2 are
smoothly connected, then the transition from the coordinates
(q\l\ . . . , σ ( 1 ) , p ( 1 ) ) to (q\2), . . . , q(2), p ( 2 ) ) in Ψί, η ^/2 is also smooth.

DEFINITION. The set /^(M) with the smooth structure just introduced is
called the manifold of k-jets of functions on M.

1.1.4. Let F: Mx -*• M2 be a smooth mapping. Then the ring homomorphism

F*: C°{M2) -+ C°°(MX), F*(f) = f ° F, induces a homomorphism / * (F) of

the factor rings: / * (F): ^ (^2) •* / J W i ) , F(mi) = wi2» such that

Vn (F)] (/A;(/)|m2) = //ti^COilm,· Taking the union of the J^(F) for all

points w 2 G M2, we obtain a smooth mapping Jk(F): Jk(M2) -* Jk(M\)-
PROPOSITION. Let F: Mx -> M2 and G: M2 -* Λί3 Z?e iwo smooth

mappings and 1: Μ -»• Μ the identity mapping. Then
Jk{G ο F) = Jk(F) ο /*(G), /*(1) = 1.
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1.1.5. We consider the mappings irk: Jk(M) -> M, nk ,: Jk(M) -» Jl(M),k>l,
defined by the relations irk(jk(f)\m) = m, irkii(jk(f)\m) = !i(f)\m· Then nk

turns Jk{M) into a vector bundle over Μ whose fibre at m is J^(M), with
the natural vector space structure.

Let fh{M) be the module of smooth sections of this bundle. Then the
projection itk f. Jk(M) -»· Jl(M), which is obviously a morphism of vector
bundles, defines a module homomorphism vkil: fh(M) -> fl(M) for k > I.

Let fh(M) be the kernel of the homomorphism vk Q. By definition of

vk 0 , the elements of fh {M), can be represented as sections of the bundle

\: 7k(M) -» M, where Ik(M) = J ^ / ^ W and j£ ^ 1

EXAMPLE a). Let k = 0. Then Jm(M) = R1, so that π 0 : J°(M) -* Λ7 is
a one-dimensional vector bundle over Λ/. For a section trivializing
π 0 : J°(M) -+ Μ we can take / 0 ( l) : Μ -> /°(M), [/0(l)] (m) = jQ(\)\m. Thus,
J°(M) = Μ X R1 and f-»(M) = C°°(M).

EXAMPLE b). If k = 1, then J ' (M) = Γ*(Λί) is the cotangent manifold
to M, and ψχ'(Μ) = Λ1(Λί) is the module of differentiable 1-forms on M.

In addition to the homomorphisms vk /, we introduce the mapping
/*: C°°(M) -+• fh(M), i}h(f)](m) = jh(f) L,' ™ 6 ^ . / 6 C"(Af), which (unlike
vk ;) is a differential operator of order k [7] .

1.1.6. Let F: Mx ^ M2 be a smooth mapping. Then Jk(F) is a module
homomorphism: fh(F): fk(M2)-^-fh(M1) over the ring homomorphism1

F*: C°°(M2) -> C~(Mi): if s£f\M2), then
[^(/•Χβ)]^) = [Ji2(F)](s(m2)), m2 = /"(TOX). The homomorphism
fk{F): fh(M») -> "fh{Mi) is defined similarly; it is also a homomorphism
over F * : C~(M2) -> ClAfj).

EXAMPLE a), k = 0. Then f°(F) = /"*: C 0 0 ^ ^ ) - v C 0 0 ^ ) .
EXAMPLE b). k = 1. Then f 1 ^ ) = Ζ1: Λ 1 ^ ) ->• Λ 1 ^ ) .
As a consequence of Proposition 1.1.4. we find that if G: M2 -*• M3 is a

smooth mapping, then

fh (GoF) = fh (F) ο fk (G), ih(l) = U

PROPOSITION. For every smooth manifold M, we have
fh(M) = fh(M) φ f° (M); in addition, if F: Μγ -> Μ2 is smooth, then
fh(F) = f\F)®t°(F).

PROOF. We define an embedding ih: f°(M)-+fh(M), such that
[ik(f)] (m) = jk(f{m))\m , where / ζ f>(M) = C°°(M), m (Ε Μ.

Then vk Qo ik = 15 that is, ik is a right inverse to i» i 0 , therefore
fk(M)= Ker v f e t 0 φ Im ift-The decomposition f f t(F) = "fh(F) φ ^"(F)
follows from the fact that fh{F) and vk 0 , /fc commute:

vft. ο« ^ A W = f ° (F) ο vft. o, fft(^) ? ih = ift " V(F).

' We recall that, given a ring homomorphism φ: K1 -*• K2, a mapping f: Εt -+E2 of a ίΓ,-modulei",
to a K2-module E2 is called a homomorphism over φ if a) /is additive and
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COROLLARY 1. f\M) = Kl{M) φ C°°(M), '"^(F) = F* φ F*.
COROLLARY 2. J\M) = T*{M) X R1.
Thus, the elements of f\M) can be thought of as pairs (ω, f), with

ω e h\M), f G C"(M). If F: Mx -» M2, then f\F){a, /) = (F*(a>), F*(f)).
In terms of the direct decomposition of f l(M) the mapping
h- C°°(M) ->- f\M) can be written in the form jx{f) = (/, c?/)·

The representation of Jl(M) as a direct product T*(M) X R1 correspond-
ing to the direct decomposition of f-x(M) allows us to define a projection
π: /'(Λί) -»• Γ*(Λί) and an injection α: Γ*(Μ) -» /'(Λ/), where
π(χ, t) = χ, a(x) = (x, 0), χ G T*(M), t G R1.

§2. Non-linear differential equations and many-valued solutions

Using the manifold of 1-jets of functions, we can give an invariant
definition of a non-linear first order differential equation and its solutions.

1.2.1. DEFINITION 1. A non-linear first order partial differential equation
on a manifold Μ is a submanifold Ε C J\M).

DEFINITION 2. A solution of an equation Ε C Jl{M) is a smooth
function / G C°°(M) such that the image of Μ under j\(f) lies in E, that is,
Uiif)} (M) C E.

REMARK. If codim Ε > 1, then Ε is said to be overdetermined.
Let us see how our definitions of equation and solution connect with the

classical definitions. To this end we choose local coordinates qu . . . , qn in
some neighbourhood <?/ c Μ. Let qx, . . . , qn, u, pu . . . , pn be the
coordinate system induced in ?/. = π71(<?/), where u = pa, when
a = (0, . . . , 0) and p,· = pa when a - (0, . . . , 1, . . . , 0) with 1 in the
i-th position.

In this coordinate system we can find for every point χ G Ε a neighbour-
hood & cz °11, χ 6 Θ, in which Ε [) Θ can be given by equations

•F«(?i, · · ·, qn, u, px, . . ., pn) = 0,

where 1 < 5 < k, k = codim E. In this coordinate system the section j\(f)
can be written as

( , · · · , qn, f(q), - ^ - , · · · , -J

Therefore, the condition for the image of [h(f)] (M) in 0 to lie in
Ε f\ G, means that

&.(qu ••·, Qn, f(q), -~, . . . , - i L ) = 0 , l < s < / c ,

that is, it corresponds to the usual representation.
Having in mind the above Definition 1.2.1, we endeavour to extract geo-

metrically from the set of all sections of πι: Jl(M) -*• Μ those that are
"integrable", that is, have the form j\(f) for some / G C°°(M).

1.2.2. PROPOSITION. There exists a unique element Pi € f\JxM) such
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that for every θ ζ Τ 1 (Μ),

(1.2.2.1) [f 1(θ)1(ρ1) = θ.

PROOF. Before defining the element p l 5 we make the following remark.
Every point χ Ε Jl{M) may be interpreted as the 1-jet of some function
/ Ε C°°(M) at the point m - ity{x) Ε Μ, that is χ = iiif)\m • We now define
Pj as follows: ρί\χ = ]\(ττι*(ί))\χ, where χ - h(f)\m, m - π^χ) . Let us check
that the element px so defined satisfies (1.2.2.1). Let χ and / be as above,
and 6{m) - x. Then

([r 1(0)](P l))L = [?1(θ)](/1(πΐ(/)) \X) = Α(θ*πΐ(/)) L = h(f) \m = x= Q{m).
Now we give the form of px in a special system qu . . . , qn, u, pu . . . , pn

of local coordinates in Jl(M). Suppose that χ £ Jl(M) has the coordinates
(g?, . . . , q°n, u, pi, . . . , p°n). Then for an / with χ = /i(/)|m we can choose

η

the function u° -f- 2 .Pife — ??); hence we obtain, using the definition of
i = l n

pu that Pi !.τ = (u°, S jo° dg;) or, counting χ as arbitrary, Pi = (u, p), where

ρ Ε ΛΗ·/1 Λί) and in the special local coordinate system ρ has the form
η

Σ Pi d(ii·
i = l

The uniqueness of P! follows from the simple observation that the only
element p\ such that [fΛ(θ)](ρ[) = 0 for any θ 6 f W ) is p'i = 0.

REMARK. The function u Ε Cx(JlM), p1 - {u, p), does not depend on
the choice of coordinates and can be defined as the composition of two
projections:

In addition, if we utilize the direct decomposition of ty1-, then u and ρ
can be defined as the lifting to J1(M) corresponding to p 0 and p, where
Po € f°(J°M) and ρ 6 A.\T*M) are determined by the universal properties
analogous to (1.2.2.1):

[?°(θ)Ι(Ρο) = θ if θζ

θ*(ρ) = θ if θζΑ

Thus, u = π* o(po), Ρ = π*(ρ).
1.2.3. Consider the operator S : f 1(Λί)-> Λ^Μ), which in terms of

the direct decomposition fx{M) = Λ1^/) ®C°(Af), can be written as
Sr(f, ω) = d/ — ω.

PROPOSITION. The operator STJ has the following properties:
a) Ker SS = Im /V



114 V. V.Lychagin

b) 3 is natural, that is, for every smooth mapping F: Μ -» Mu

3) ο f\F) = f * . f , where. F*: A 1 ^ ) -> A^M).

PROOF. Property a) follows from the definition of 3) , and b) from the
direct decomposition f^F) = F* ® F* and the fact that the operator of
outer differentiation is natural.

REMARK. 3): f\M)-> A\M) is the Spencer operator from the first
Spencer resolvent, which in this case has the form

0->C°°(M) — - U T(M) —-> Λ 1 (Μ)-ν0.

We note that, in contrast to the de Rham sequence, the Spencer sequence
is exact on every smooth manifold M.

DEFINITION. The form U1 = 3Dpx 6 A^/W) is a classifying element of

Ux on J\M).
We use the proof of Proposition 1.2.2 to establish the form of U in the

special coordinate system (qu . . . , qn, u, plt . . . , pn). As we have seen,
Pj = (u, p) , where ρ = ρ dq. Therefore, U = du-p = du-p dq.

1.2.4. PROPOSITION. The section 0 Ε J\M) is "integrable", that is,
θ = h(f) for some function f S C°°(M), if and only if 0·(ί/,) = 0.

PROOF. By Proposition 1.2.3, θ = /,(/) if and only if 3)Q = 0. Next we
use Proposition 1.2.2 and represent θ in the form θ =•= ['Ρ(θ)ΚΡι)· Then
0 = 3)θ = ΣΕ\Τ{β)\{Ρι) = θ*(2ίρ!) = θ*(£/1)·

REMARK. The construction of px and of the classifying element Ul given
here was first proposed by A. M. Vinogradov, and is an analogue to one of
the possible ways of constructing the universal forms ρ = ρ dq and
dp = dp A dq on the cotangent manifold T*(M). Here the module A\M)
is naturally replaced by fl{M), and the de Rham sequence by the Spencer
resolvent. Note that the assertion corresponding to Proposition 1.2.4 is true
for T*(M) only when Μ is simply-connected.

1.2.5. DEFINITION, a). A submanifold i: L C J\M), dim L = dim M, is
said to be an R-manifold if i*(,U{) = 0. b) A many-valued solution of an
equation Ε C J\M) is an R-manifold L lying in E.

Thus, Proposition 1.2.4 can be interpreted as a condition for a many-
valued solution to correspond to an ordinary (single-valued) solution
determined by a smooth function. For a many-valued solution corresponds
to an ordinary one if and only if L = Θ{Μ) for some section θ: Μ -> J\M)
or, what is the same thing, if and only if the restriction iTi\L : L -*• Μ of
nl to L is a diffeomorphism.

1.2.6. In this subsection we use the direct decomposition
J\M) = T*(M) X R1 indicated in §1 to describe a connection between
Λ-manifolds and Lagrangian submanifolds of T*(M).

First we note that the universal form ρ on T*(M) can be defined by the
equation ρ = - α*(ί/1), because U1 = du - p, where ρ has the form
ρ - ρ dq in the local coordinate system qu . . . , qn, u, p1, . . . , pn, and
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. . . , qn, pu . . . , pn) = (qu . . . , qn, 0, pu . . . , pn).
THEOREM a). Let i: L C Jl(M) be an R-manifold. Then for each point

χ G L there is a neighbourhood Θ czL, χ ζ Θ, whose projection
π ο i: 0 -> Τ*(Μ) in T*(M) is a Lagrangian submanifold of T*(M) on
which ρ is exact.

b) For every connected Lagrangian submanifold za: L C_j. T*{M) there is
an R-manifold i: L C J1(M) such that the mapping π ° /: L -• L1 is a
covering.

PROOF, a) As a preliminary we describe the elements of the subspace
V = Ker π* χ C Tx{JlM), χ e J\M). To do this we note that V is one-
dimensional, since π: J1(M) -*• T*(M) is a projection and
dim J\M) = 1 + dim T*(M).

Next we show that the restriction of Ulx to V is a non-zero 1-form.
For if (qu . . . , qn, u, pu . . . , pn) is a special system of coordinates in
the neighbourhood of a point χ e J\M) (that is, qlt . . . , qn are local
coordinates in the manifold M), then π has the form
π(<7,, ..., qn, u, pi, . . . , pn) = (qu . . . , qn, pu . . . , pn). Consequently,

V is generated by the vector -τ- , on which Ult x(— ) = 1-

Suppose now that L C J1(M) is an R-manifold and χ €Ξ L. Then TX(L) -
and V intersect in zero alone, because Ulx is zero on TX(L). Therefore,
π *,χ : ^χ(-£) "*• ̂ rr(x)(^*^) i s a monomorphism, which gives the existence
of a neighbourhood 0 c l , as required.

Let us check that the form ρ is exact on π ° i: Θ ->• Τ* (Μ) We have

(π ο i)*(p) = (η ο ί)*(α*(ρ)) = (α ο π ο i)*(du -UJ = d(i*(u)).

b) We fix a point l0 G L1. Then for every point χ £ Ll and every path
γ = {x(t)}, x(0) = l0, x(l) .= a;, we define a function

ν
Further, since the submanifold Lx is Lagrangian, that is, dp\L = 0, it follows
from Stokes's theorem that S(y, x) depends in fact only on the homotopy
class [7] of paths joining l0 and x.

Let
L= U (x,S(y,x)), (x,S(y, x))$Jl(M).

dv]. *)

Standard arguments show that L is a smooth submanifold of J l(M), and
by construction we have Ux \L = 0.

It follows from the proof of part a) of the theorem that

ir\L : L -*• Li is a local diffeomorphism. Therefore, to conclude the proof
it is enough to compute the pre-image π\Ιι (χ) of x.
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We consider the homomorphism χ: π^-ί-ι) ->• R of the fundamental
group π ' ^ ι ) of L1 into the additive group of real numbers:

V

By construction of L, the fibre ir\l\(x), χ e L 1 ; is then isomorphic to the
factor group ir^L^/Ker χ.

EXAMPLE 1, Assertion a) of the theorem is not true globally. Consider
the curve i: R1 C / ^ R 1 ) :

It is easily checked that i*(U{) = 0. But the projection of the curve on
^ ( R 1 ) is a curve with an ordinary double point at (t2 - 1, t{t2 - 1)).

EXAMPLE 2. Let Μ = R\ Lx = {(q, p) 6 Z^R 1 ) | q2 + p2 = 1}. Then
L is the universal covering over a circle.

§3. Contact diffeomorphisms and symmetries

From the point of view adopted in §2, it is natural to consider not
arbitrary diffeomorphisms of J\M), but only those that preserve the class
of R-manifolds. Such diffeomorphisms must preserve the zero form Ux, and
so must multiply Ui by some function.

1.3.1. DEFINITION. A diffeomorphism F: J\M) ->• J\M) is said to be
a contact (or a Ux-) diffeomorphism if F*(UX) = fUu f G C°°{JlM) (or
F*(Ui) = Uu respectively).

REMARK. Every contact structure on an odd-dimensional manifold Ν is
a "maximally non-integrable" field of hyperplanes g, that is, for each point
χ Ε Ν there is a subspace %x czTx(N), codim %x == 1, depending smoothly
on χ € N. "Maximal non-integrability" means that, for any 1-form ω in a
neighbourhood 1L a N of χ and such that Ker ω = g , the restriction of
άω to % is non-degenerate. In this situation contact diffeomorphisms
F: Ν -»· TV are those that preserve %, that is, for which F^, x(%x) = %F(X),

for every χ G N.
In the case of the manifold J1(M) of 1 -jets of functions, a contact

structure % is given by a 1-form Ux: g x = Ker Ult x, χ 6 JX(M), and the
contact diffeomorphisms of this structure are just the contact diffeomorphisms
in the sense of Definition 1.3.1.

1.3.2. DEFINITION. A symmetry of an equation Ε C J1(M) is a contact
diffeomorphism F: Jl{M) -+ /'(M) preserving £: F(£) = E.

Thus, symmetries are the contact transformations that preserve an equation
and the class of its many-valued solutions.

1.3.3. THEOREM. Let F: J\M) -> J\M) be a U^diffeomorphism. Then
F preserves the fibre of the_ projection π: J\M) -*• T*{M) and determines a
canonical diffeomorphism F: T*(M) ->• T*(M) having a generating function,
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that is, F*{p) - ρ = dS, where S Ε C°°(T*M). Conversely, for every canoni-
cal diffeomorphism G having a generating function there is a U-diffeomor-
phism F such that F = G.

PROOF. Let us show that F preserves the fibre of π. To do this we look
at a vector field Xx on J\M) whose direction at a point χ Ε J1(M) is that
of the degenerate form dUxx and which is normed by the condition
υχ(Χχ) = 1. In other words, Xx can be defined by the equations
Xx J U1 = 1, Χι J dU\ = 0, where J is the symbol for interior multiplication.

It follows at once from the last definition that a diffeomorphism F pres-
erves the field Xu F^^Xj) = Xu whenever it preserves Ux. On the other
hand, the trajectories of Χλ are the fibres of π.

We can prove this, for example, by choosing a special system of local
coordinates qx, . . . , qn, u, pu . . . , pn in J\M). In this system Ux has the
form du - ρ dq, so that X1 = | ^ . The projection π has in this coordinate

system the form π: (qu . . . , qn, u, pu . . . , pn) -> {qx, . . . , qn, pu . . . , pn),
so that a trajectory of Xx is a fibre of π.

Let us verify that the diffeomorphism F: T*{M) ->• T*{M) determined by
F, F{y) = π ° F ° π" 1 (y), is canonical.

To do this, we represent F in the form F(x, t) - (F(x), t + TT*(S)(X)), where
χ Ε Τ*(Μ), t Ε R, S € C°°{T*M). Note that such a representation is
possible, since F^{X{) = Xv

Making use now of the equalities Ux - du - ρ, ρ = π*(ρ), we see that
U, = F*(C/,) = d(F*(u)) - n*F*(p) = v*(dS) + du - π·(Ρ*(ρ)), that is,
n*(F*(p) - p) = n*(dS).

But, as F*(p) - ρ <= Λ1 (T*M) and dS G Α^Μ), and as
π: Jl(M) -> T*(M) is a projection, it follows that F*(p) — ρ = dS.

Conversely, suppose that G is a canonical diffeomorphism of T*(M) and
that 5 Ε C""(r*/li) a generating function for it. Then, setting
F(x, t) = (G(x), t + π*(Ξ)(χ)), we obtain the Ux-diffeomorphism F we are
looking for.

REMARK. As is clear from the preceding proof, the i/j-diffeomorphisms
covering 1: T*(M) -*• T*(M) are translations r s along Xv Therefore, if the
t/t-diffeomorphisms Fx and F 2 cover one and the same canonical diffeo-
morphism, then Fl = TS ° F2 for some s £ R ' .

1.3.4. To conclude this section we describe the special class of υχ-
diffeomorphisms corresponding to diffeomorphisms of M.

Let Κ be a diffeomorphism of M. We construct a diffeomorphism
K': J\M) -»• J\M):

where JC Ε Jl(M), m = π^χ).
PROPOSITION. K' is a U-diffeomorphism such that (K')*u - u. Conversely,

if F is a U-diffeomorphism such that F*(u) = u, then F = K' for some
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diffeomorphism Κ: Μ -*• Μ.
PROOF. Let us show that K' preserves px, that is,

(1.3.4.1) ifHK'Wp,) = P l .

For this we use the equality

(1.3.4.2) Κ' ο {[f\K)]{Q)) = θ ο Κ,

which follows at once from the definition of K'', and is valid for

Θ e f\M).
We show next that the element [^1(^')KPi) als° satisfies the condition

1.2.2, hence(1.3.4.1) follows, by the uniqueness of p1.
For arbitrary θ 6 fx{M) we have

i r (θ)ΐ (ir {K')\ ( P I ) ) = ϊ ι (Kr ο θ) ( Ρ ι ) =

= r {Κ) ο ψ (ir (Κ)]-ι (θ)) ( Ρ ι ) = ψ (Κ) 0 \ψ (Κ)]-ι (β)=Θ.

Further, because of the direct decomposition
fl(K')_= (Κ')* θ (Κ1)*, Ρι = (ρ, u),we see that
(K')*(p) = p, (K')*(u) = u.

We assume now that the t/t-diffeomorphism F fixes u, F*(u) - u. It
follows from the preceding theorem that F has zero generating function,
that is, F*{p) = p. Therefore, as is well known, F is a lifting of the
diffeomorphism Κ: Μ -* Μ to T*(M), and K' = F.

§4. The algebra of contact vector fields

1.4.1. We recall some fundamental properties of the Lie derivative.
Let X be a vector field on a manifold N, and Tt a local one-parameter

group of translations along X. The Lie derivative LX{OJ) of a form
ω €= Ah(N) along Ζ is defined as

i0

The basic properties of the Lie derivative that we need in the sequel are
summed up in the following proposition. Proofs can be found in [18].

PROPOSITION. Suppose that f Ε C°°(A )̂, ω £ Ak(N), ωι £ ΛΓ(Λ0, and
let X and Υ be vector fields on N. Then

(1.4.1.1)

(1.4.1.2) [

(1.4.1.3)

(1.4.1.4)

(1.4.1.5) L

1.4.2. We now consider a local one-parameter group Tt: Jl(M)-+Jl(M) of
contact diffeomorphisms, Τ*{υγ) = gt· Ux. Let X be the corresponding
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vector field on J\M). Then by the definition of the Lie derivative,

(1.4.2.1) Lx(Ul) = g-Ul, where £ = - ^ -

On the basis of this last remark, we make the following definition.
DEFINITION. An infinitesimal contact transformation or a contact

vector field is a vector field X on Jl{M) satisfying (1.4.2.1).
REMARK. For any contact structure I o n a manifold N, a vector field

X is said to be contact if the one-parameter group of translations along X
consists of contact diffeomorphisms. Since, in general, a contact structure is
not necessarily given by the zeros of a 1-form, the above definition can be
reformulated as follows: X is a contact vector field if for every vector field
Υ such that Yx 6 %x, χ 6 Ν we have LXl(Y) \x = [Y, X]x 6 %x.

EXAMPLE 1. The vector field Xx on J\M) defined in the proof of
Theorem 1.3.3 is contact. For LX(UX) = Xx J dUx + d(Xx J Ux) = 0,
because Xx J dUx = 0, Xx J Ux = 1.

EXAMPLE 2. Let Tt be_ a one-parameter group of translations along a
Hamiltonian vector field X on T*(M). Then Tt (see Theorem 1.3.3) is a one-
parameter group of translations along a contact vector field X on J\M) such
that π . (JT) = X.

PROPOSITION. A vector field X on J\M) is contact if and only if the
group of translations along X is a one-parameter group of contact diffeo-
morphisms.

PROOF. The condition LX(UX) = g· Ux is equivalent to the fact that
LX{UX) A Ux = 0. Therefore, the condition for X to be contact can be
written in the form

dt t=o ^ V 1// /\ 1

On the other hand, since Ts+t = Ts ° Tt,

d
dt t=s

Thus, T*{UX) A Ux = T$(UX) A Ux = 0, that is, the Tt are contact diffeo-
morphisms.

1.4.3. THEOREM. Every contact vector field X on J\M) is uniquely
determined by the function f = UX(X). To every function f & C°°(JlM)
there corresponds a unique contact vector field Xf such that

(1.4.3.1) Ux(Xf) = f,

(1-4.3.2) LXf (U,) = Xx{f)-Ux,

/ / i / q q \ y , y ι y ffc Γ<ΧΊΤ1Μ\

(1.4.3.4) Xfg = fXg + gXf - fgXx,

(1.4.3.5) Xf(f) = Xi(f)-f.

PROOF. Let X be a contact vector field on J\M), LX(UX) = h- Ux,
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h Ε C V 1 M). We represent X in the form

(1.4.3.6) X = f'XY + Y, where / Ε C"(/'M) and U^Y) = 0.

We now use the property (1.4.1.4) of a Lie derivative:
LX{U{) = X JdU, + d(X J tA) = h · Uu or, substituting (1.4.3.6),

(1.4.3.7) Υ JdU1 = h-U1 — df.

In particular, by applying the left- and right-hand sides of (1.4.3.7) to X
we see that h = Xiif).

To conclude the proof it is enough to note that (1.4.3.7) determines the
field Υ uniquely, because the form dOx establishes an isomorphism
Υ -*• Υ J dUi between the vector fields on which U1 vanishes and the
1-forms that are zero on X.

If now / is any smooth function on Jl(M), then with Υ defined by
(1.4.3.7), h = Xiif), and X = Xf defined by (1.4.3.6), we obtain the
required field Χ*.

The equalities (1.4.3.l)-( 1.4.3.5) for Xf follow from (1.4.3.6), (1.4.3.7),
and the properties of the Lie derivative.

DEFINITION. The function / = UX{X) is called the Hamiltonian of the
contact vector field X on Jl(M).

EXAMPLE. Every function Η Ε C°°(T*M) can be regarded as a smooth
function on Jl(M) via the projection π: Jl{M) -*• T*(M), f = π*(Η). Here
the projection of the contact vector field Xf on T*{M) is the Hamiltonian
vector field XH, and from (1.4.3.2) it follows that XH J dp = dH, because
dUl = - TT*(dp).

We now indicate the form of the contact vector field Xf in local
coordinates. Let qu . . . , qn, u, Pi, • • • , Pn be a special system of local
coordinates in J\M). The form of Xf is easy to find from the relations
(1.4.3.6) and (1.4.3.7):

η

Y v df a ι, v df \ d v / of , _ 5/

i = l {=1 t = l

REMARK. The assertion analogous to Theorem 1.4.3 is valid for any con-
tact structure % on N. To formulate it, we consider a 1-dimensional fibration
ξ on Ν whose fibre at a point χ Ε Ν is the factor space TX{N)I^X. Every
vector field Υ on Ν determines a section SY of ξ: SY(x) is the image of
Yx in the factor space ξχ under the natural projection TX(N) -> TX(N)I%X.

The analogue to Theorem 1.4.3 can now be formulated as follows. Every
contact vector field X on Ν is uniquely determined by the section Sx of ξ.
To every section s there corresponds a contact vector field X = Xs such
that Sx = s.

If the contact structure is given by a 1-form ω, then ξ is trivialized via
a non-zero section Sx where Χχ is a vector field such that
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Xx J dp = 0, Xx J ω = 1. Hence for such structures the contact vector
fields are determined by Hamiltonians.

1.6.6. The existence of an isomorphism between contact vector fields on
J\M) and smooth functions allows us to define various pairings between
functions.

(A) THE LAGRANGE BRACKET. Take / and in g C^M), and let
Xf and X be contact vector fields with Hamiltonians / and g, respectively.
By (1.4.1.2), their commutator [Xf, Xg] is also a contact vector field, so
that it has the form Xh for some function h.

DEFINITION. The Lagrange bracket [f, g] of two functions / and g is
the Hamiltonian of the contact vector field [Xf, Xg ], that is,
If, g] = ̂ ([Xf. Xg]).

BASIC PROPERTIES OF THE LAGRANGE BRACKET.

L I . Bilinearity:

[α/ι + bf» g\ = «[/ι, g\ + w / a , g], a, ten
[f, agl + bg2] = a[f, gl] + b[f, gtl

L2. Antisymmetry: [f,f\ = 0 .

L3. Jacobi identity.

If, [g, h]] + [g, [h, /]] + [h, [/, g]] = 0.

(B) THE JACOBI BRACKET.

DEFINITION. The Jacobi bracket {/, g} of two functions / and g in
C°°(JlM) is the function {/, g} = dU^Xf, Xg).

BASIC PROPERTIES OF THE JACOBI BRACKET.
Jl . Bilinearity:

{ah + bf2, g} = a {/15 g} + b {fι, g},
{/, agl + bg2} = a {/, gl) + b {/, g2}, a, b Ε R.

32. Antisymmetry: {/, /} = 0.
J3. {f, {g, h}} + {g, {h, /}} + {h, {f, g}} = XM) {g, h) + XM {h, /} +

+ Xi(h) {/, g).
J4. {/, g} = Xt(g) - fXM-
(C) THE POISSON BRACKET.
DEFINITION. The Poisson bracket if, g) of two functions / and g in

C°{JlM) is the function (f, g) = X/g).
BASIC PROPERTIES OF THE POISSON BRACKET.
PL Bilinearity:

[ah + bft, g) = a(U, g) + b(f2, g),

{f, agx + bg2) = a(f, gl) + b(f, g2), a,b£R.

P2. (/, g) + (g, f) = X^g + Xx{g)f.
P3. (/, g) = [/, g] + X!(f)g.
P4. if, g) = {/, g) + Xt(g)f.
REMARK. If we consider only functions / G C°iJlM) that are liftings of
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functions in T*(M), f = π*(Η), Η G C°°(T*M), then for these functions the
three brackets [, ], {, }, (,) coincide with the Poisson bracket in C°°(T*M),
because X^iH)) = 0.

Let us compute these brackets in special local coordinates
qu . . . , qn, u, pu . . . , pn in Jl(M). Using the expression for Xf in these
coordinates, together with properties L4 and J4, we find

1L21. LAuin./JL f „
dqi dPi dPi dgi ) "*" Zj P l \ du dPi du dPi )-T~J~d^~S ~du~>

i = l i=l

V ' Hi Zl \dQidpi dPi dqt ) ^ Zi ^ \ du dPi

i=l i=l

(t e)-V (-^—^ i A l i V s . i 5 ' S s dgdf\..dg
V' B) — 2j \ d g . dPi dPi dgi j + Zi Vi \ du dpi—9^-^1)^-1 du ·

i = l i=l

§5. Cauchy's problem

In this section we consider differential equations of the form

Ef = {χ ζ β(Μ) | /(Ϊ) = 0}, / 6 C

We describe the one-parameter group Tt of symmetries of the equation
Ef. It follows from the results of the preceding section that Tt is a group
of translations along the contact vector field Xg with Hamiltonian g. The
requirement that Tt{Ef) = Ef means that Xg is tangent to Ef, or that
df(Xg)\Ef = (g, f)\E = 0.

1.5.1. DEFINITION. An infinitesimal symmetry of Ef is any contact

vector field Xg whose Hamiltonian is such that (g, f) \β = 0 .

We note that Ef always has at least one symmetry, namely the field Xf.

(ff X ( f f 0
f f

REMARK. The vector field Υ = Xf — fXx is called the characteristic
vector field for E. But for us the only important thing is the action of the
field on Ef\ therefore, Υ can be replaced by Xf, which, unlike Y, is contact.

1.5.2. PROPOSITION. Every R-manifold L C Ef is invariant under Xf.
PROOF. Let χ €E L, and let TX(L) be the tangent space to L at x. We

must prove that Xfx G TX{L). To do this we consider the linear span V
of the subspaces TX(L) and Xfx in Tx(J

lM). We claim that V has the
following two properties: 1) u\ X{Y) = 0 for Υ G V;
2)dUhx(Yl; Y2) = 0 for Yu Y2 G V.

The first property is clear, because L is an Λ-manifold, that is,
UX\L = 0, and also Ulx(XfX) = f(xj = 0. Let us establish the second
property. It is obviously true if Yu Y2 G TX(L). Thus, it is enough to
consider the pair Yx = Xfx, Y2 G TX{L). Using (1.4.3.7) we find that
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dUliX(Xf,x, Yi) = Xi(f)\x · ϋι,*(γ) ~ dfAYi) = 0.
Thus, V C Ker Uhx and it is Langrangian with respect to dUlx. There-

fore, dim V < n, or, since dim TX{L) = n, Xfx Ε TX(L).
COROLLARY. If the R-manifold L is tangent to Ef at χ Ε Ef, then

xftX e TX{L).

1.5.3. DEFINITION. We say that a generalized Cauchy problem is posed
for an equation Ef C J\M) if there is given an (n - l)-dimensional sub-
manifold i: L' C Ef such that i*(Ux) = 0 and Xfx Ε TX(L') for any
χ Ε L'. The submanifold L' is called the Cauchy data.

PROPOSITION. A generalized Cauchy problem L' C Ef has a unique
solution, that is, there is an R-manifold L C Ef, L D V, and any two such
R-manifolds coincide in a neighbourhood of L'.

PROOF. Consider the embedding i^. Θ czEf, where Θ c= L' χ (—ε, ε) —
is some neighbourhood of L' X 0, & > 0; here i^x, t) = Tt(x), χ & L',
(x, t) 6 0,and Tt is a one-parameter group of translations along Xf.

Since the Tt are contact diffeomorphisms and Ui(Xf)\£f ~ 0, we have

^(Ui) = 0. Thus, ij: 0 c £ f is a solution of the Cauchy problem
L' C Ef.

On the other hand, any many-valued solution of the Cauchy problem
L' C Ef must be invariant under Xf, so that it must coincide with (9 in
some neighbourhood of L'.

COROLLARY. We assume that the translation group Tt is defined for
all values of t, — °° < t < °°, and that the manifold L = U Tt(L') projects

diffeomorphically onto M. Then the generalized Cauchy problem V C Ef
has a solution f e C°°(M) given by the formula

(1.5.3.1) f(m) = u ( l ' ) + j p ,
ν

where y(t) is a trajectory of Xf such that 7Ti(7(l)) - rn, γ(0) = /' G L'.
PROOF. We note that L is an Λ-manifold, and, as L projects diffeomor-

phically onto M, we see that L = [j\(h)] (M) for some function h Ε C°°(M).
It follows from the definition of u Ε CV'A/) that «(/) = him) if

IEL, m = n,U) Ε Μ. Next, Xf(u)\L = du(Xf)\L = UJXfa + piXf)\L =p(Xf)\L,
that is, if 7O) is a trajectory of Xf, then duiyit))/dt = piXf)\y{t) and (1.5.3.1)
follows.

1.5.4. Suppose that we are given a submanifold ν: Ν C M, codim JV = 1,
and an i?-manifold i: L' C JliN). The embedding ν: Ν C Μ induces a
mapping'?: Jl

viM) Π Ef -+ J*iN), where Jl

v{M) is the restriction of
Έλ: J\M) -> Μ to N, and ν that of /'(»») to Jl

v(M) Π ^ ,
DEFINITION, a). A point y Ε /'(TV) is said to be free relative to Ef if

1> is a diffeomorphism at the point. If not, then y is said to be character-
istic.

b). An i?-manifold L C /'(/V) is said to be free icharactenstic) relative to
Ef if all its points are free (characteristic) relative to Ef.



124 V. V. Lychagin

PROPOSITION. Let L C J\N) be an R-manifold that is free relative to
Ef. Then L' = V'1^) gives us Cauchy data for E.

PROOF. As a preliminary, we establish the following equation:

(1-5.4.1) v*(t/f) = t/f)l4<M)nE,,

where U^il/f) is a classifying element of the manifold N( or M, respectively).
To prove (1.5.4.1) we choose a system of local coordinates qu . . . , qn

in Μ such that Ν is given by the equation qn = 0. Then

v* (t/f) = (du - "Σ/?, dqt) \Ef = t/f |,x ( M ) n Ef.

Further,· taking (1.5.4.1) into account, we see that
U1! \L' ~ v{U^)\L< = U?\L = 0. In a similar way it can be checked that L
is free if Xfx k TX(L') whenever χ G L'.

§6. Involutory equations

1.6.1. Let Γ be a vector space, dim = In, carrying a symplectic structure,
that is, a non-degenerate skew-symmetric 2-form Ω.

IMPORTANT EXAMPLE. Let Γ = Γχ = Ker Ulx C TX(PM), χ G J\M).
Then the restriction of dUlx to Γ gives a symplectic structure.

For every subspace ΓΊ C Γ we define the skew-orthogonal complement
Γ | to be the set of all vectors Ι 6 Γ such that Ω(Ζ, Υ) = 0 for every
Υ G Γ\. Since Ω is non-degenerate, dim Γ | = codim Γι.

DEFINITION. A subspace Γχ C Γ is said to be involutory if Γ^ C Γν

EXAMPLE 1. Every subspace Γ] C Γ with codim Tx - 1 is involutory.
This is because a generator X G Γ | , dim Γ | = 1, is determined by the condition
Ω(Χ, Υ) = a{Y) for arbitrary Υ G Γ, where α Φ 0 is a 1-form such that
α | Γ = 0. Since Ω is non-degenerate, such an X always exists and
a{X) = Sl(X, X) = 0, that is, I G T , .

EXAMPLE 2. Every Lagrangian (= maximal isotropic) subspace Γ, C Γ
is involutory, in fact Γ} = Γχ. For if X G Γ[ but Ζ Γ ] Φ Γ 1 ; then the linear
span of Fj and X would be an {n + 1 )-dimensional Lagrangian subspace.

LEMMA. If Τ ι C Γ is an involutory subspace and Γ2 Ι> Th then Γ2 is
also involutory.

PROOF. If X G Ti then X G Γ[, so that X G Υλ; that is,
Γ | C Γ | C Γ, C F 2 .

PROPOSITION (CRITERION FOR A SUBSPACE TO BE INVOLUTORY).
A subspace Γ, C Γ is involutory if and only if there exists a Lagrangian
subspace T2 C r t .

PROOF. Suppose that Tx is involutory. Then Tj = Γ[ ® Γ3, and the
restriction of Ω to Γ 3 is a non-degenerate 2-form. Let Γ 4 C Γ 3 be a
Lagrangian subspace. Then Γ2 = Ff © Γ 4 C Tj is the required Lagrangian
subspace of r t .

The converse assertion follows immediately from Lemma 1.6.1 and Example
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COROLLARY I. If Γχ is involutory, then T{ lies in all Lagrangian sub-
spaces Γ 2 C Th

COROLLARY 2. If Tx C Γ is involutory, then dim Γ1 > ^ dim Γ.
REMARK. Suppose that Γ, is an involutory subspace with codim Γ\ = k.

Then the form Ω | Γ is of rank 2{n - k), and Γ | is the degeneracy sub-
space of the 2-form Ω | Γ .

1.6.2. DEFINITION. An equation Ε C J\M) is said to be involutory at a
point χ G Ε if the subspace TX{E) Π Γχ is involutory in Fx - Ker Ulx.

EXAMPLE. Every equation Ε C Jl(M) such that codim Ε - 1 is
involutory at every point χ G E.

Thus, the concept of being involutory has real force only for overdeter-
mined equations E, codim Ε > 1.

PROPOSITION (CRITERION FOR AN EQUATION TO BE INVOLUTORY).
An equation Ε C Jl(M) is involutory at a point χ if and only if there exists
an R-manifold L C P(M) tangent to Ε at x.

PROOF. The assertion follows immediately from Proposition 1.6.1 and the
fact that a Lagrangian subspace of Tx is the tangent space TX(L) of some
Λ-manifold L C J\M).

1.6.3. We consider an equation of the following form:

Ε = Efi ,h = {x 6 J\M) | /,(*) = 0, 1 < i < k},

where the ft G C°°{JlM) are independent functions on E.
DEFINITION. A system of independent functions fu . . . , fk is said to

be involutory at a point χ if the equation Ef * is involutory at

PROPOSITION.^ system of independent functions fu . . . , fk is
involutory at χ Ε Ef * if and only if

Ift, fjh = <fi, fi) I, = {/V. 1i) \x = 0, 1 < / < A:.
PROOF. We consider the subspace

I\ = Tx(Efi _ fj) η Γχ = Ker dfhx Γ) • · · η Ker dfkx η Γχ. Since the

/i, . . . , fk are independent, two cases are possible:

1) dfi,x> · • • , dfk x, Ulx are linearly independent;

i = l

These two cases are determined by the conditions:

(1.6.3.1) codim Γχ = k,
(1.6.3.2) codim I\ = k— 1.

Further, it follows from the definition of the vector field X·. that

UL,x(XfitX) = /;(a;) = 0, Xf.tX _,· Ω-χ = —d/, | Γ ν

where Ω χ = c?t/ l x | r ^. Thus, if (1.6.3.1) (or (1.6.3.2)) is satisfied, then the

vectors Xf. x G Γχ are linearly independent (or linearly dependent). Let Γ 2

denote the linear span of the vectors Xf x, . . . , Xf x. We show that
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Τ2 = ri. By what we have said above, it is enough to establish that
Γ2 C Γ[. Suppose that Υ Ε. Γ\; then, using (1.4.3.7), we obtain

Q(Xf.,x, Y) = dUUx{Xf.<x, Y) = XM) \X.UUX(Y) - dfUx(Y) = 0.

Thus, the equation E^ , . . . , / . i s involutory at χ if and only if

Xfi>x

 G TX{E) or Xf.x(ff) = (/;, ή)\χ = 0, 1 < i, / < *.

COROLLARY. Let L C /'(Λί) fte a many-valued solution of the involutory

equation Efit...,/.· Then L is invariant under the vector fields

Xf, 1 < i < k.

1.6.4. DEFINITION, a) An equation Ε C Jl{M) is said to be involutory
if it is involutory at each of its points.

b) A system of functions fu . . . , fk is involutory if
\fi. ff] = 0, 1 < i, j < k.

EXAMPLE. The maximum codimension of an involutory equation Ε is
η + 1. Let Ε C />(Μ) be such an equation. Then TX(E) C Γχ, χ Ε Ε, so
that £ is an Λ-manifold. Thus, the i?-manifolds are the involutory equations
of maximal codimension.

1.6.5. Let Ε C Jl{M) be an involutory equation, codim Ε - k. Consider
the field of subspaces Cx = Pf x . In general, the dimension of Cx varies as
χ varies. In fact, dim Cx = k if TX(E) C Γχ.

DEFINITION. An involutory equation Ε C Jl{M) is said to be regular
(at a point x0 G E) if TX(E) and Γχ are transversal at every point χ G Ε
(at x0 G £) .

REMARK 1. An involutory equation of the form E* t is regular only

if the vector fields Xt, . . . , Xf are linearly independent at every point of

%...,4·
REMARK 2. If Ε is involutory and regular, then the field of subspaces

Cx determines a differentiable distribution CE on E.
PROPOSITION. Let Ε be an involutory regular equation with

codim Ε = k. Then CE is a completely integrable distribution on E, and
dim CE - k.

PROOF. Since the assertion is of local character, we assume that Ε has
the form £ / . . , / and that the Λγ. are linearly independent on E.

Let Χ, Υ be vector fields on Ε such that Xx Ε Cx, Υχ Ε Cx, Vx 6 E.
We claim that [X, Y]x £ Cx, Vx 6 E. Let Xt denote the restriction of
Xf. to E, 1 < / < k. Then the Xi x form a basis for C .̂, and therefore,

h h

Let α(· and bt be any extensions of a,· and 6,· to smooth functions on

Jl{M). We consider contact vector fields Xh and Xg, where
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k _ k _

h=y.a,f,. s=y< b,fi. The restrictions of Xh and X. to Ε coincide on

X and Υ respectively, since for χ Ε Ε we have, for instance,

h

Xh,x = X k = 2.' Xoj, ^ , X =

= .Σ («ί (χ) Xtv x + ft (χ) X5 j i χ - β * (*)./* (*)*ι. *) = Χχ.

Therefore, [X, Y]x = [Xh, Xg]x = X[h g]rX, and by a straightforward
calculation we see that [X, Y]x Ε Cx.

COROLLARY. Let X be a vector field on a regular involutory equation
Ef f , and suppose that Xx 6 Cx, Va: £ Efu ..., / . Then there is a smooth

function f Ε C°°(JlM) such that f\E = 0 and the restriction of Xf
to EfiJkisX. fl----'fk

REMARK. The generalized Cauchy problem for an involutory equation

Ef ,... f consists in specifying an (n — A:)-dimensional submanifold

/: L CEfi , . . . i / f cfor which i*{Ux) = 0 and Cx ς£ TX(L), Vx ζ L. In this case

the solution of the Cauchy problem is (locally) unique and is U Ν when
X<EL

Nx is an integral manifold for the distribution CE , passing through
x<EL, with dim Nx = k. /..••-./*

§7. The theorems of Darboux and Chern

1.7.1. PROPOSITION. Let Ε C Jl(M) be an involutory equation with
codim Ε = k, and ω Ε Λ 1 ^ ) the restriction of U1 to Ε, ω - Ul \E. Then

(1.7.1.1) ω Α άω A . . . A du = 0.

η - k + 1 times

PROOF. If Ε is not regular at χ Ε Ε, then TX(E) C ^ . s o that ωχ = 0
and (1.7.1.1) is satisfied.

Now let χ Ε Ε be a regular point, ωχ Φ 0. Let Y2x C TX(E) denote the
degeneracy subspace of άωχ. We consider first the case when Xt x Ε Τχ (Ε)
(where X1 is a contact field, and ϋ^Χγ) = 1); then F2yX is the linear span
of Xlx and Γ\χ, Γ1χ - TX(E) ΓΊ Γχ, and the rank of du>x is 2(« - k) in
this case, so that (1.7.1.1) is satisfied.

Suppose that Xlx ^ TX(E). Then F 2 J C C T\x is a subspace of codimension
1, because a vector Υ Ε Γ\χ lies in Γ 2 ' χ if and only if άωχ(Χ, Υ) = 0 for
s o m e Χ Ε Τ χ ) , Χ φ. Γίχ-

Thus, the rank of d<s>k is 2(n - k + 1) in this case. Next, it is clear that
the form (1.7.1.1) is non-zero only on vectors Yo, Yly . . . , Y2(n-k + i) f° r

which (after renumbering if necessary) Yo φ Γιχ and Yu . . . , Y2(n-k+i)
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can be regarded as lying in Γ1Λ.. But in this case (1.7.1.1) is also satisfied,
because the restriction of άωχ to Γ 1 χ is a form of rank 2{n - k + 1).

COROLLARY. Let Ε C J\M), codim Ε = k, be an involutory equation
such that the restriction of π#>χ to TX(E), χ G Ε, is a monomorphism.
Then the rank of άωχ is 2{n - k + 1).

1.7.2. DEFINITION. A form ω G A\N) is said to be involutory if the
rank of άω is 2k and

ω Λ άω Λ . . . Λ άω = 0.

k times

EXAMPLE. Every 1-form ω on an even-dimensional manifold such that
άω is a form of maximal rank is involutory.

1.7.3. We recall that a local diffeomorphism carrying χ G Μ χ into y Ε M2

is a diffeomorphism F: Θχ ->- Θ 2 of some neighbourhoods Θχ cz Μγ and
© 2 czM2, such that χ £ 0 α and y ζ Θ2.

If F is a local diffeomorphism and θ G ΛΛ(Μ2), we understand by
F*(0) the Λ-form F*{Q |©2) on 0 ^

EXAMPLE. If M t = /^M) and M2 = J\M), then F is called a /oca/ contact
aiffeomorphism if F*(t/a) = /-t/i, / 6 ^ ( Θ ^ .

1.7.4. DEFINITION. Two forms 0! G A'CA^) and 0 2 G Ar(M2) are toca//y
equivalent at mi £ Λ/j and m 2 G Λ/2 if there exists a local diffeomorphism
F with F(mi) = m2, such that F*(02) = θν

THEOREM. Let ωχ Ε Αι(Μ) αηά ω2 G Al(M2) be two involutory forms
in neighbourhooas of m1 G Λίχ ana m2 G M2, ω 1 ( Μ ι =^0, ω 2 ^, 2 ¥= 0, SMC/Ϊ

ίΛαί ί/ze ranfcs ο/ άωχγη^ αηά άω2γη% are the same. Then ωχ αηά ω2 are
locally equivalent at m1 G Mx ana m2 G M2.

THEOREM (Darboux). Let ω G Αλ(Μ) be an involutory \-form in a
neighbourhooa of m G Μ such that 6Jm Φ Ο αηά άωγη is of rank 2k. Then
there exist local coordinates xu . . . , xk, yu .. . ,yk, zu . . . , zl in a

h

neighbourhooa of m G Μ such that ω = (1 + y1)dx1 -f 2 y( dxt.

A proof of Darboux's theorem can be found in [10], [18]; Theorem
1.7.4 follows in an obvious fashion from it.

1.7.5. Let Ν ι and N2 be two odd-dimensional manifolds, dim Ν ι - dim ./V2,
and suppose that the 1-form ω, G A\N() gives a contact structure in some
neighbourhood of x,- G JV,·, that is,

ω,- Λ άω( A . . . Λ άω{ Φ 0, where k = \ (dim Nt - 1).

k times

THEOREM. Suppose that the forms ω,· G A1^,·) satisfy the conaitions
statea above in neighbourhooas of two points χ χ G N1 αηά χ2 Ε N2. Then
the forms ω χ and ω 2 are locally equivalent at Χχ G Nu x2 G N2.

COROLLARY I. If the form ω G A\N) is as above, then we can choose
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a system of local coordinates xu . . . , xk, yx, .. ., yk, z, dim Ν - 2k + 1,
in a neighbourhood of χ in which

h

ω — dz — 2 yi dxt.
i=l

A proof of this lemma can also be found in [ 1 8 ] .

COROLLARY 2. Let f G C°°(JlM) be a function such that f(x) Φ 0. Then
there exists a local contact diffeomorphism F: F(x) = x, F*{UX) = g ' Ulf

such that f and g coincide in some neighbourhood of χ £ Jl(M).
PROOF. The assertion follows from Theorem 1.7.5 and the fact that

(fUx) Ad(fU,) Λ . . . Λ d(fUx) = f + HUiAdU! Λ . . . AdUx) Φ 0,
η times η times

where η = dim M.
1.7.6. The following theorem concerns the question of the local equivalence

of two vector fields X and Υ on Μ at a point m· £ Μ such that
%m ~ Ym ~ 0' m other words, the question of the existence of a local
diffeomorphism F such that F{m) = m, Ft (X) = Y.

Before formulating the theorem, we give the following definition.
DEFINITION. A vector field Ζ on Μ is said to be flat at m G Μ if

Z: C~(M) -* f£ .
In other words, Ζ is flat at m G M if, in any local coordinate system

xu . . . , xn in the neighbourhood of m, Ζ can be written in the form
71

Ζ = 2 -Zi(̂ ) ^ - , where the Z ;(x) are flat functions at m, 1 < /' < n.

Suppose now that the eigenvalues {kh} of the linear part of the vector
field I at m, I m = 0 , are such that Re \k Φ 0.

Then, as is well known, there exists a Lyapunov function for X, that is,
a function G having m £ Μ as a non-degenerate critical point and such
that X(G) > 0 in some neighbourhood of m (except at m itself).

THEOREM (Chern). Suppose that X is as above and Υ = X + Ζ, where
Ζ is a field that is flat at m G M. Then there exists a local diffeomorphism
F, F(m) - m, such that

F.(X) = Y and F | { G = 0 ) = 1.

A proof of this theorem can be found in [24].

CHAPTER 2

Local classification of regular differential equations

The main problem in any classification question is the choice of the
classifying group. For second order differential equations two natural
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classification problems arise, depending on the classes of solutions that are
considered. The first — and rougher — of these is defined by the group of
contract diffeomorphisms of P(M), that is, those that preserve the class of
many-valued solutions. The second is defined by the group of contact
diffeomorphisms of J1(M) that preserve the projection π1: Jl(M) -»· M, that
is, those defined by the class or ordinary solutions.

This paper is devoted to the classification with respect to the first of
these two groups.

§ 1. Statement of the problem

2.1.1. DEFINITION. Two equations £Ί C J\M) and E2 C J\M) are
locally equivalent (respectively, U1 -equivalent) at points χ γ €Ξ Εχ and
x2 €= E2 if there exist neighbourhoods Θί c Jl{M) and

© 2 αΡ(Μ), Χχ 6 ©ι, Χι 6 ©2>
 a n ^ a l ° c a l contact (respectively, V\ -)

diffeomorphism F: Θ1-^Θ2, Ffa) = .r2,such that F(Ei Π ©ι) = E2 f| ©2·
In what follows, we are interested in problems of local equivalence. We

may, therefore, assume that Μ is connected. In that case any two points
* ! Ε J\M) and x2 £ J\M) can be carried on to the other by a I V
diffeomorphism, so that henceforth we assume that χ γ = x2 - x-

2.1.2. THEOREM. Suppose that the equations ik: Ek CJ\M) (k = \, 2)
are such that the differential (π Ο ik)^ χ-_ Tx(Ek) -> Τπ(χ){Τ*Μ) is an iso-
morphism. Then the equations Ek are locally Όr^equivalent at a point
χ £ Ek if and only if the \-forms cuk = ί/χ \Ε are locally equivalent at x.

PROOF. The necessity is clear. Therefore we just prove the sufficiency.
Suppose that Gh c= JX{M), χ ζ &k (k = 1, 2) are neighbourhoods such that
the n(Ok) are simply-connected, that the inverse mapping (π ο j f t )- 1 _ > £' f t η Q
exists in n{Oh) and that F: E1 Π ©ι -» E2 Π ©a is a diffeomorphism with
F*(co2)_= coj.
_ Let G: niO^ ->· π(©2) be the diffeomorphism defined by the formula

G = (π ο i2) ° F ο (π ο ΐΊ)" 1 . We claim that G is a canonical diffeomorphism.
To see this, we use the equations π*(ί/ρ) = -dUx, a ° IT = 1, and obtain

G*(dp) = (π ο y - i · ο F* ο (π ο Ϊ 2)*(φ) = — (π ο ij-1* o F*(da>t) =
= - ( π ο i j ) " 1 * ^ ! ) = - ( π ο ij)-" ο ^(df/J =

= - ( α ο π ο j x ο (π ο t ^ - 1 ) * ^ ^ ) = — a*(dU^ = dp.

Next, the neighbourhoods © h c= /1(M) have been chosen so that the
Jt(©ft) are simply-connected; thus, the diffeomorphism G has a generating
function in S 6 C°° (π(CM).

Let G: ©x -> 0 2 be a ί/j-diffeomorphism covering G, with G(x) = x. We
consider the diagram
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η © ^

The outer and the right-hand squares in this diagram are commutative, so
that there exists a translation r along the fibres of π that makes the diagram
commute, that is,

(2.1.2.1) iioF=xoGoi1.

Next we represent τ in the form

(2.1.2.2) x(x, t) = (x,t + jF(x)), χ 6 T*(M), t ζ R, j F 6 C°° (n(©,)J.

Applying the right- and left-hand sides of (2.1.2.1) to the form U1 and

using (2.1.2.2), we get

ω ι = (it ο F^iUJ = (τ ο G ο i1)*(C/1) = if ο G* ο x *(d w — p) =

= i* ο G*(cfe - ρ + d&) = it ο G*{U1 + d&) = ffil + it ο G*(d^).

Thus, t* ο G*(d&) = 0, so that . F = const. But G(x) = x, so that ^ = 0

and r = 1.

§2. Local classification of regular equations

2.2.1. Τ Η Ε Ο R Ε Μ. Let ik: Ek C / ! (M) fee regular equations with codim Ek = 1,
SMC/Z i^ai ίΛβ differentials (π ο ffc), ^ are isomorphisms. Then the Ek are locally

Uι-equivalent at χ £ Ek(k = 1, 2).
PROOF. We show that the forms ωΙ(. are locally equivalent at x. To this

end we note that the form doik x has the maximal rank In, η = dim M,
because (π ο ik)t χ is an isomorphism, and dcjk x = (IT ° ik)*(^PU(x)^· The
regularity condition means that cok x Φ 0. The local equivalence of the
forms ojfc at χ now follows from Darboux's theorem.

2.2.2. LEMMA. Let Xf be a contact vector field on Jl(M\ F:JX(M)-+J\M)
a contact diffeomorphism, and F*(U0 = \UU\S C°°(JlM). Then F^ (Xf) = XX

if and only if\f= 1.
PROOF. F^(Xf) is a contact vector field whose Hamiltonian g is

S\F(X) = UlJM (F.{Xf)\FM) = F*{U1)\x {Xf>x) = (\f)\x, that is, F*(g) = Xf.
2.2.3. LEMMA. For every equation i: Ε C J1(M) there exists a local con-

tact diffeomorphism F, F{x) = χ, χ Ε F, such that the differential
( π ° 'i)*,x °f Me equation i: El = F(E) C J\M) is a monomorphism.

PROOF. Note that if Ε is not regular at x, then TX(E) C ΓΛ,, so that
(π ο /)* χ is a monomorphism. Suppose now that Ε is regular at χ Ε Ε, but
that (π ο i)^ χ is not a monomorphism, that is, X1 x Ε ΤΧ{Ε). We choose a
function / such that fix) Φ 0, Xfx <£ TX(E). Let F be a local contact
diffeomorphism such that F*(C/1)'= -L · Uu F(x) = χ (see 1.7.5). We show
that F is the required diffeomorphism. Indeed, by the preceding lemma we
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have Fm(Xf) = Xu and Xl>x <£ TX{F(E)) since Xfx £ TX(E); that is,
(π ° h)* χ is a monomorphism.

2.2.4. THEOREM. Any two regular equations Ek C J1(M), codim Ek = 1,
are locally equivalent at χ G Ek (k = 1, 2).

2.2.5. In this subsection we consider one of the ways of constructing
involutory equations.

PROPOSITION. Let Er C J\M) be an involutory equation,
codim Ε = r > 1, and Tt the group of translations along the contact vector
field Xf, Xfx <£ TX(E). Then the equation Er~l = U Tt(Er), in some

neighbourhood of x, is involutory; and Er~l D Er, codim Er~l = r - 1.
PROOF. We shall show that for each point y G Er~l there is an

/?-manifold touching Er~l at y. Let L C JX{M) be an R-manifold touching
Er at χ = Tt(y); then Tt(L) is obviously an /^-manifold of the sort
required.

2.2.6. PROPOSITION. Let i\: E{ C J\M), codim Er

k = r> 1 {k = 1, 2) be
involutory equations, where the (π ο /£)^ χ are monomorphisms. Then for
every local diffeomorphism Fr: E\ -*• Er

2, Fr{x) = x, that establishes the
equivalence of the 1-forms ω | = Ux\Er, there is an involutory equation

i{~1: Er

k~
l C J\M), codim E^1 = r - 1, E'f1 D Er

k (k = I, 2) and a
local diffeomorphism Fr_x, Fr_l(x) = x, establishing the equivalence of the
forms ω ^ 1 = Ux\Er-i. In addition the differential (π ° z'jt"1)*^ is a
monomorphism ana the diagram

Fr-i

r-xEl cz E2
commutes.

PROOF. We construct E^~l by means of translations along the Hamiltonian
vector field Xf (see 2.2.5): Er

2~
l = \) T?(Er

2). We also construct E[~l by
means of translations along the Hamiltonian vector field
Xg: E\~l = U Τ/(Ε[), where now we choose the Hamiltonian g so that

F?(f\Er} ~ 8\ΕΓ· The choice of g is always possible in some neighbourhood
of x, because (π ° ik)*,x i s a monomorphism.

We define a local diffeomorphism Fr_1 as follows:

Fr_x(y) = Tf ο Fr ο Tl_tiy), where t 6 (—ε, ε) is such that

Tlt(y) <ΞΕ[.
Let us check that F*_1(oo'{'1) = ω\~ι. To do this we note that T}

preserves Uv so that the restriction of T} to E\~l preserves ω'Γ1.
Similarly, the restriction of Tj to E^1 preserves ω^1. Thus, the equality
of the forms F ^ j i o o ^ " 1 ) and ω[~ι has been verified at points y G E\. But,
by construction, these forms coincide on vectors tangent to E\. On Xg y

the form ωι>γ is equal to g(y), and
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2.2.7. THEOREM. Suppose that ir

k: Er

k C J\M), codim Er

k = r(k=\, 2)
are regular equations, χ £ Ek. Then E\ and E\ are locally equivalent at x.

PROOF. Using Lemma 2.2.3, if necessary, we may assume that the
( π ° Z P * χ a r e monomorphisms. Further, we use the preceding proposition
and construct a chain of involutory regular equations Ek~' and local diffeo-
morphisms Fr_t (i = 0, . . . , r - 1) establishing the local equivalence of
the forms ω{~' at x. (The existence of Fr follows from Darboux's theorem).

In this situation the diagram

E\ cz El"1 cr . . . <zz Et

cz . E.

commutes, and (π ο f£ J)^ x is a monomorphism.
According to Theorem 2.2.1, there exists a local t^-diffeomorphism

F, F(x) = x, such that F \E, = Fu Therefore F ^.r-i - Fr_u that is, F

establishes the local £/t-equivalence of E[~' and Ετ{~* at x, / = 0, 1, . . . , r — 1.
COROLLARY \. If the regular involutory equations ik: Ek C Jl(M) are such

that the (π ° ik)^ x are monomorphisms, then E[ and Ε\ are U^-equivalent
at x.

COROLLARY 2. Let ir: Er C Jl{M) be a regular involutory equation.
Then there exists a local contact diffeomorphism F, F(x) = x, such that
F(Er) is given in a neighbourhood of χ by a system of equations
ρ ι = 0, . . . , pr - 0 in a special local coordinate system
< ? ! , . . . , qn, u, p,, . . . , pn.

2.2.8. REMARK. The f/j-classification of regular involutory equations
ir: Er C J1(M) can be considered at all points χ G Er where (π ο f)^ χ

is degenerate. By Thorn's transversality theorem ([1], [15]), we can arrange
by small displacements of the embedding ir that the degenerate singularities
are in general position, so that the set of degenerate points is a submanifold
of codimension 1 in Er. In this case the condition of general position is the
same as that for the 1-forms a/ at the points where the rank of do/ is not
maximal. Therefore, by Martinet's theorem (see [9]), the forms ω£ are
locally equivalent, whereas the problem of local Ui-equivalence remains open,
because, in general, Proposition 2.2.6 is not true when (π ° ir)^ is degenerate.

§3. Local solubility of regular involutory equations

In this section we investigate the local solubility of involutory equations,
using the classification theorems of §2.

2.3.1. THEOREM. An involutory equation Er C Jl(M) is locally soluble
in the neighbourhood of every regular point χ £ Er.
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2.3.2. As an illustration we consider the following example. Suppose that
the equation Ε C Jl(M) has the form u = 0 in the special local coordinate
system qu . . . , qn, u, p l 5 . . . , pn, and let χ G Ε be the point with the

η

coordinates (q\, . . . , q°, 0, p?, . . . , p°, where 2 (p?)V= 0, s o that χ is a
i=l

regular point of E. In invariant terms the equation u = 0 specifies a sub-
manifold T*{M) C Jl(M). The solutions of this equation are the Lagrangian
submanifolds L C T*(M) passing through χ and transforming the form ρ to
zero, p\L = 0. It is not hard to see that these solutions are essentially
many-valued, that is, even locally they do not have the form of the graph
of a section corresponding to the 1-jet of some function.

We remark incidentally that the store of many-valued solutions of this
equation is greater than that of generalized solutions (in the usual sense),
since the latter are altogether absent.

2.3.3. THEOREM. There exists a {locally) ordinary solution of a regular
involutory equation Er C J\M) passing through the point χ G Er, codim
Er = r, if and only if ir l t x: Cx -*• Γπ ( χ )(Λί) is a monomorphism.

PROOF. Let L C Er be an ordinary solution at χ £ L, that is, locally
L = [/,(/)] (M) for some function / G C°°(M). Then Cx C TX(L), so that
ΙΓΙΙ,,Χ is a monomorphism on Cx.

Assume now that there exists a Lagrangian subspace Lx C Γχ such that
Cx C Lx and Lx projects onto Tn (X)(M) without degeneracy. We choose a
local diffeomorphism F, F{x) = x, such that F(Er) can be written in the
form ρ ι = 0, . . . , pr - 0 in some special local coordinate system
qu . . . , qn, u, ρ χ, . . . , pn. Let L C F{Er) be an R -manifold whose
projection on T*(M) is invariant relative to the fields | - , . . . ,-f- and

oq\ aqr

which is tangent to Ft X(LX). Then F~l{L) C Er defines the required
i?-manifold.

Thus, it is enough to show the existence of a subspace Lx C Γ χ . To do
this we note that dUltX\c = 0, since Cx = Γχ>χ . Therefore Cx is an iso-
tropic subspace. If dim C^ = η (= dim M), then with Cx = Lx we get the
required subspace.

Otherwise we choose any Lagrangian subspace Lx D Cx for which
Lx Π Rx — {0}, where Rx = Ker πϊχ is also Lagrangian.

2.3.4. If an involutory equation Er C Jl(M) is given by a system

/i(?i, · · ·, qn, u, plt . . ., pn) = 0, . . ., fr(qv . . ., qn, u, pu . . ., pn) = 0

in a special local coordinate system qu . . . , qn, u, pu . . . , pn, then the

condition of local solubility in Theorem 2.3.3 means that _ίλ(χ) ... ,^LL(X)

dp 9P
are linearly independent. In particular, if r = 1, then this condition is
equivalent to the condition "of smooth type" —L(x) Φ 0.
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CHAPTER III

Singular points of first order differential equations

In the preceding chapter we have studied the structure of an involutory
differential equation in the neighbourhood of a regular point, that is, a
point χ G Er such that the subspaces Tx{Er) and Yx are transversal. In
this chapter we proceed to a study of the structure of an involutory differ-
ential equation in the neighbourhood of a singular point
χ G Er, Tx{Er) C Tx. In contrast to the regular case, there is now a
continuum of equivalence classes. The fundamental invariant distinguishing
these classes is the Hessian of the equation.

§ 1. The Hessian of an involutory equation at a singular point

3.1.1. Let Er be an involutory equation, Er C Jl(M), codim Er = r, and
let JC G Er be a singular point, that is, Tx{Er) C Γ^. If ω denotes the
restriction of the form i/, to Er, ω = UY\Er, then the condition for
χ G Er to be singular is equivalent to ω χ = 0. _ _

We consider any two vectors Χ, Υ £ Tx{Er) and extensions Χ, Υ of them
to Er, so that X2 = X,YX = Y.

We set λω(ΛΓ, Υ) = Χ(ω(Υ))\χ.
LEMMA-DEFINITION. Ηω is a bilinear form on Tx(Er) and is called

the Hessian of Er at the singular point x.
_PRO_OF. We show that Λω is well-defined. Note first that the expression

Χ(ω(Υ))\χ does not depend on the extension X and is determined by the
value Xx = X. Next, we make use of the standard formula
dco(X, f ) = Χ(ω(Ϋ)) - Ϋ(ω(Χ)) - ω([Χ, Ϋ]), which at a singular point
χ £ Er takes the form

(3.1.1.1) άωχ(Χ, Υ) = Χ(<ο(Ϋ))\χ - Ϋ(ω(Χ))\χ.

The left-hand side of (3.1.1.1) does not depend on the extensions X, Y,
therefore Υ(ω(Χ))\χ does not depend on X. Thus, Λω is well-defined on
Tx(Er).

COROLLARY. For all Χ, Υ G Tx(Er),

(3.1.1.2) hjX, Y) - ha(Y, X) = άωχ(Χ, Υ).

3.1.2. We indicate the form of /ζω in local coordinates. For this purpose
we note that άωγ is of rank 2(« - r + 1) if y G Er is sufficiently near
the singular point χ G Er (see 1.7.1). Therefore, we can choose a system of
l o c a l c o o r d i n a t e s x u . . . , χ η _ , + 1 , y u ... , y n _ r + 1 , z u . . . , ζν_γ i n t h e

n-r+l

neighbourhood of χ in which άω = 2 dUt Λ dxt. Further, since ω is

involutory, in this system of local coordinates we have
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n-r+l
= ά^ (χ, y)~ 2

It follows at once from the definition of
coordinates by the matrix:

that Ιιω is given in these

(3.1.2.1)

For example, ha (-~—

- δ , , ο
i°yj χ

Ο Ο

3.1.3. PROPOSITION. Let X G Tx{Er), Υ <Ξ Cx = Tx{ErY; then
Ηω(Χ, Υ) = ίιω(Υ, Χ) = 0.

PROOF. Since the assertion is of local character, we may assume that
Er= Ef _ j . Then Cx is the linear span of the vectors Xf x , . . . , Xf x

Therefore Y= 2 aJ^t χ-

For the extension Υ we take the restriction of the vector field Xf to

Er, / = 2 aJt. Then
i

K(X, Υ) = Χ(ω(Ϋ)) = = S at dft.x(X) = 0,
i

since Ι £ ζ (Er).
That hw(Y, X) = 0 now follows from (3.1.1.2) and the fact that Cx is

the degeneracy subspace of άωχ.
3.1.4. We consider the factor-space V = Tx(Er)\Cx. Since Cx is the

degeneracy subspace of άωχ, this form defines a non-degenerate 2-form Ω
on V and, thus, provides a symplectic structure on V. Here
dim V = 2{n - r + 1). Proposition 3.1.3 shows that, in its turn Ηω defines
a bilinear form Λω on V, and by (3.1.1.2),

(3.1.4.1) M X , Y)—ho(Y, X) = Ω(Χ, Υ), Χ, Υ 6 V.

The existence of a symplectic structure and a bilinear form on V allows us
to define an operator H: V -> V in the standard way:

Also, (3.1.4.1) takes the form

(3.1.4.2) Ω(ΗΧ, Υ) — Ω(Χ, = Ω(Χ, Υ).

3.1.5. Before considering how the operator Η and the form Ηω are
connected with the problem of the local equivalence of equations, we make
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the following remark.
PROPOSITION. Let Er

k C J\M) (k = 1, 2), codim Er

k = r, be involutory
equations, and let χ £ Er

k be a singular point. Then there exists a local
contact diffeomorphism F, F{x) = x, such that F^ X(TX(E\~)) = TX(E2).

PROOF. It is enough if we take for F any contact diffeomorphism
extending a symplectic map Α: Γχ -*• Γ 2 such that A(TX(E[)) - Tx{Er

2).
The fact that such an A exists can be proved, for example, as follows. Let
Αχ: Cx>1 -»• CXy2, CxA = Tx(Erx)1, CXy2= Tx(Er

2)
L be any non-degenerate

linear mappings. Then by Witt's theorem (see [25]), there is an extension
of Α ι to a symplectic map A and the mapping so obtained is easily seen
to be what we are looking for.

3.1.6. With Proposition 3.1.5 in mind, we consider in what follows
equations Er

k such that TX(E[) = TX(E2). Let F be a local contact
diffeomorphism, F(x) = x, establishing the equivalence of E\ and E2 at x.
Then its differential Ft x induces a conformally-symplectic map

Α: Γχ -*ΓΧ, where dUhx(AX, AY) = λ dUhx (X, Y) for all

χ, Υ e rx, λ Φ ο.
For, since F*{Uy) - g · t/1 ; we have

F*(dUhx) = d(F*(Ui))\x = dgx Λ Ul>x + g(x)dUhx, hence on restricting to
Γχ we find that λ = g(x).

Further, since A = ^* > Λ : | Γ is a conformally-symplectic transformation, it

follows that A preserves skew-orthogonal complements; that is, in particular,
A: Cx -* Cx, Cx = Tx{Er

k)
1. Consequently, A defines a mapping A: V -> V,

which is also conformally-symplectic with respect to the form
Ω, Λ·(Ω) = λΩ. Here, as usual, Α*(ΩΧΧ, Υ) = Ω(ΑΧ, AY).

Thus the differential F^ x of a local contact diffeomorphism determines
a conformally-symplectic map on Γ^; if F+ x preserves Tx(Ek), then it
determines a conformally-symplectic transformation on V. Therefore, it is
enough to study the behaviour of Λω and Η under such transformations.

3.1.7. PROPOSITION. Let F be a local contact diffeomorphism,
F{x) = x, such that F(E\~) = Er

2. Then A*(hu ) = λ Λω , where

A = F*,X\TX(E]) λ = g(x), F*(U,) =g-U1. ' _

PROOF. By definition we have Α*^ω){ΧΥ) = h^^AX, AY) = ΑΧ(ω2(ΑΥ))\χ

We choose extensions X and f such that AX = Ft(Χ), ΑΫ = Ft(Y). Then

, AY) - ΑΧ(ω2(ΑΫ)) Ιχ =

= (F*)-l(X(F*(az)(Y))) \x = Μωι(Χ, Υ),
since F*(cu2) = g · ων

_ COROLLARY. Let A be the transformation on V defined by A; then

AHγ = H2A, where the Hk are the operators generated by hw(k = 1, 2).

PROOF. Since J*( i2) = λΩ, it follows that
Υ) = χ-ίςΐ^ΑΗ^Χ, AY). On the other hand A*(h^ ) = λ/Γ or
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Ω,(Η2ΑΧ, AY) = ΧΩ^ΗγΧ, Υ). Comparingthe two equations so_ obtained,
we find that Ω(Η2ΑΧ, AY) = Sl(AHxX, AY), that is, H2A = AHX.

3.1.8. Let CSp(n - r + 1) denote the group of all conformally-symplectic
transformations on a 2{n - r + 1 )-dimensional symplectic space (V, Ω).

We define an action of A G CSp(n - r + 1) on bilinear forms as follows:

(3.1.8.1) A[b] = λ-Μ*(δ),

where b is a bilinear form and ^4*(Ω) = λΩ.
Combining Proposition 3.1.7 and Corollary 3.1.7, we now get the following

assertion.
THEOREM. A necessary condition for involutory differential equations

Ek C Jl(M) to be locally equivalent at a singular point χ E.Ek {k = 1, 2)
is that the Hessians or the operators Hk are equivalent under
CSp(n - r + 1).

3.1.9. Together with the form Λω we can consider its symmetric part

hi, hl{X, Y) =_± {h_w(X, Y) + h^{Y, X)), X, YE V, and its skew-

symmetric part hi, hl(X, Υ) = Ι (/ζω(Χ, Υ) - h^{Y, X)). It follows from

(3.1.4.2) that hi - j Ω. The symmetric form h^ can be arbitrary (see

3.1.2). Therefore, Theorem 3.1.8 can be reformulated as follows.
THEOREM. A necessary condition for involutory differential equations

Er

k C Jl{M) to be equivalent at a singular point χ Ε Er

k (k - 1,2) is that
the symmetric forms hi are CSp(n - r + \)-equivalent with respect to the
action (3.1.8.1).

3.1.10. REMARK 1. Results analogous to Theorem 3.1.8 can be obtained
for the Ux-equivalence of equations at a singular point, the only difference
being that we have to use the symplectic group Sp{n - r + 1).

REMARK 2. As is clear from the necessary conditions just mentioned, the
local classification of equations at a singular point is not discrete if
r Φ η + I.

§2. Csp-classification

In this section we investigate the question of the CSpin — r + 1)-
equivalence of operators H: V -*• V satisfying the conditions in 3.1.4.

3.2.1^ We denote by CV, CH, ch^, c i 2 the complexifications of
V, Η, /ζ ω , Ω, respectively. The following analogue to (3.1.4.2) holds:

CQ (CHX, Y) + °Ω (CHY, X) = CQ (X, Y),

where Χ, Υ Ε c V, and c f l is a form of maximal rank.
Let Κλ C C F be the subspace consisting of the vectors annihilated by

some power of CH - λ, λ Ε C, and Cx C i A C CV the eigenspace of CH
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corresponding to the eigenvalue λ.
The following lemma (see 3.2.2 b) is an analogue to the Poincare-Lyapunov

theorem on eigenvalues of Hamiltonian systems (see [2]).
3.2.2. LEMMA, a) Suppose that X G Kx, Υ G Kx, and Xt + λ2 Φ 1.

Then c£l(X, Υ) = 0, that is, the subspaces Kx and Kx are skew-orthogonal

b) Let λ Ε C be an eigenvalue of the operator H; then λ, Ι— λ and
1- λ are also eigenvalues of H.

PROOF, a) We use 3.2.1. If CHX = λ,Χ, CHY = \2Y, we obtain
(λι + λ 2 ) c i 2 ( X Υ) = €Ώ.(Χ, Υ). But X, + X2 # 1, so that €Ω,(Χ, Υ) = 0.
Suppose now that X G Kx , Υ G Kx are arbitrary. Then there exist nl and

n2 such that (CH - Xj)"' X G Cx, (CH - \2)
n*Y G C v We choose nx

and n2 minimal, and set Xk = pH - Xj)"'"* Z, Yk = (CH - X2)"^ f c Y.

Then Z o G C x , Yo G C x , and therefore cn(AO, 7 0) = 0. We now prove

by induction that c£l(Xk, Xo) = 0. We assume that this last equation has

been proved for Xk-i', then, replacing Xk and Yo in 3.2.1 by X and Y,

we get

( - 1 + λχ + λ2)°Ω(ΖΛ, y 0 ) = cQ(Xft_l5 Yo) = 0.

Similarly we can prove by induction on s that £l(Xk, Ys) = 0 for
arbitrary k and 5. In particular, on setting k = nl and s = n2 we find that

b) We assume the contrary, that is, that there exists an eigenvalue
Xi G C such that 1 — λχ is not an eigenvalue of H. It follows from a) that
if 0 Φ η G ΚΧι, then ε Ω ( η , X) = 0 for arbitrary X e CV, since
CV = ® Kx. Thus, the vector η is skew-orthogonal to the whole subspace
CV, which is impossible because the form ε Ω is non-degenerate.

3.2.3. Lemma 3.2.2, therefore, shows that the whole space CV splits into
the direct sum CV = ® (Κχ ® ΑΊ_ λ ) , whose summands are invariant under
CH and skew-orthogonal relative to € Ω . Here the restriction of ε Ω to each
direct summand Kx ® K1^x is non-degenerate.

Thus, the investigation of Η relative to the (symplectic) conformally-
symplectic group reduces to an investigation of the restriction of CH to

We introduce the following notation: Hx =
CH-\,H2 = cH-{\ -X).

Then (3.1.4.2) can be generalized as follows:

\ο.Δ.οΛ) iiyii jA , X ) = {— 1) ί£\Λ , H.%1 ) ,

where k > 0 is a natural number, and Χ, Υ G CV.
Let us prove these relations. They are obviously true for k = 0, 1. Assum-

ing that they are true for k < N, we find

, Y) = ( - l ) w €Ω (HtX, HzY) = ( - l ) i Y + 1 CQ (X,
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Next, using the relations so obtained, we describe the process of construct-
ing the canonical basis (with respect to c i 2 ) of Kx ® K^x, relative to which
the matrix of CH takes the Jordan form. We divide the construction into
several lemmas.

3.2.4. LEMMA. A basis . . . , / / , . . . ,f^,gj ,... ,gn.\ . . . (i = 1,. . . , dim Cx)

can be chosen in Kx θ Kt_x, with ft G Cx, g} G d_x, f* = # ? ' " * /?', gk =

H? k g"\ such that Η? ή' = Η? g"1 = 0. Moreover

(3.2.4.1) ° Ω ( φ /T) = ( - l ) m 6 i A , n f - m + i .

PROOF. We carry out the construction of a basis of this kind by induction
on the dimension of Kx. We assume that / " ' ε ΐ λ has maximal height with
respect to Hx among the vectors of Kx, that is, //"• X = 0, X G Kx, but
Hfi-i /«ι =£ o. The vector gn> G # χ _ λ is chosen so that
€ Ω ( / 1 , g">) = 1, where fk = H"i~kf"^ . As is easily seen, there always
exists a vector f"1 as indicated, since the restriction of the form ° Ω to
Κχ Θ ΑΊ_ λ is non-degenerate. The vector I""1 is of height nx, because
€ Ω ( / " · , H^-ig"*) = ( - l)".- l cS2(f 1, ?" ' ) # 0, that is, H^~lg^ Φ 0,
while on the other hand, €Ω(Χ, H%>gn>) = ( - 1)" CQ.{H^X, £ " · ) = 0 for
all X e Kx, so that H%gn* = 0.

We set g*k = ff"r'g"' and claim that 'gk can be replaced by gk in such

a way that the following relations are satisfied:
c£l(gk, /"•) = ( - I)" 1 5 1 / t, 1 < k < « 1 ; and H^~kgn' = gk. To see this

we choose g1 = g 1 , g2 = g 2 - «i? 1» where a 2 = ( - 1)" 1 < : Ω(^ 2 , / "•);

g 3 =g3 ~a2g
2 -a3g\ where a 3 = ( - 1)"· € Ω ( ? 3 , /"•) - « ! , . . . ,

gk =^k - a.2gk~l - a-igk~2 - • • --flfcg1, where the coefficient ak, under

the assumption that a2, . . . , α^-ι a r e known, is obtained from the formula

«ft = (— Ι)" 1 °Ω (gft, /n i) — a2ak^ — a3ak_2 — . . . — ^ . ^ Ϊ .

Replacing X by gfc and Υ by / s in (3.1.4.2), 1 < k, s < nu we find

(3.2.4.2)

But since ε Ω ( ^ 1 , / " · ) = (- 1)"', cSl(gk, /"«) = 0, it > 1, it follows at
once from (3.2.4.2) that °Ω(£*, / s ) = ( - D S 5 M _ S + 1 . We consider now the
subspaces Mx C /sTA, "Αί^χ C ^ ! _ λ , where Μ λ = {Χζ.Κ%\ °Ω(Χ, gft) = 0 , V/e}t

Ml_x = {X^Ki_x\
cQ{X, /*) = 0, VA}. Let [/] (respectively, [g]) be the

linear span of the vectors f1, . . . , / " > (respectively, g1, . . . , g"'). Then
ίΤλ = Mx ® [/], K^x = Μ Η λ θ [g]. For suppose that X ^ Kx and

n±

cn(X,gk) = ak, for example; then clearly Z = X— 2 (— l)ni~hakf
ni~k+1

lies inMx and X = X + 2 ( — l ) n i " A a A / n i " f t + 1 . Moreover, it is clear that
fel
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Μχ Π [f] = 0. The decompositions Κλ = Μχ © [/] and Kl-K=Mi-K®[g\
are such that the subspaces [/] and Μι_ λ (respectively, [g] and Μλ) are
skew-orthogonal by construction, and invariant relative to CH. For instance,
if X G Μλ, then HtX G Λ/λ, since ε Ω ( # ! Χ **) = ( - 1) (:Ω(ΛΓ, # 2 g * ) =
( - 1) €Ω.(Κ, gk~1) = 0. Thus, the restrictions of CH and ° Ω to
Μ λ θ Μ^χ are such that the restriction of c Ω is a form of maximal rank,
and Λ/ι_λ and Mx are invariant relative to CH; therefore, the inductive
hypothesis now yields a basis of the kind required.

The lemma just proved allows us to obtain the following intermediate
result.

3.2.5. THEOREM. Suppose that the eigenvalues {ks} of the operators
(k) ( £ = 1 , 2 ) are such that Re \ Φ i . Then the operators H^k) are

symplectically {conformally-symplectically) equivalent if and only if they
are equivalent under the full linear group.

PROOF. The set of all eigenvalues of the H^ can be represented as

a union of disjoint quadruples {\, \, 1 - \ s , 1 - λ5). By Lemma 3.2.4,

for each operator # w there is a basis . . .fr

m, . . . ,gr

m, . . . of K<k) © K\k\

satisfying (3.2.4.1), and for the similar basis in K~k^ ® K^J-we choose

. . . / ; , · · . , g'm, . . . . Then in V η (Κ^ ω K[k\ © K[k) © Kf\) we can

choose a basis consisting of vectors
Λ Λ A i

Jt~'Jn)i ~~Z\/2 ^ ~Τ7Ζ~\8νι~^'&τη)ι . -,/^ (Sm 8m)'1/2 Jt~'Jn)i ~~Z\/2 ^ Τ7Ζ\8νι^'&τη)ι .

relative to which the matrix of H^ has generalized Jordan form. If corres-
ponding bases are chosen for 7/(1^ and H^2\ then transition from one to
the other is a symplectic transformation.

3.2.6. We consider now the subspaces Kx © Κ1_λ with X = L· + ϊμ, μΦΟ.

The basis whose existence is asserted in Lemma 3.2.4 is unsatisfactory in
this case, because, in general, fm Φ gr

m, so that we cannot find a canonical
basis in V Π (Κλ © Κι-χ) by this method. To investigate this case as well
we give a proof of Lemma 3.2.4 when λ = i + ίμ, that is, when fr

m = gr

m-

3.2.7. LEMMA. Suppose that λ = i + ίμ, μ Φ 0; then a basis

. . . , / / , . . . ,f"r,f"r, • • • ,f"r, • • • , can be chosen in Κλ © ΑΓΧ_λ in which

fk &Kx,f* Ε Κ^χ = Κχ are vectors of height k, and such that
fk = u n r ~ k f " r ψΐς _ Tjnr-kjnr c Q/-f A: J m \ - t ι \m -1 c cfk = u n r ~ k f " r ψΐς _ Tjnr-kjnr c Q/-f A: J m \ - t
Jr

 n

r Jr ,Jr ~ n 2 Jr , i i U y ,Jr ) - ( —

ί i if nr is odd,
where enr. = < , .r- .

r [ 1 if nr is even.
PROOF. As in the proof of Lemma 3.2.4, the required basis is

constructed by induction on the dimension of KK,
Let / ' , . . . , /"> G KK, g\ ... ,gn> G Κι_λ be as in the proof of Lemma

3.2.4. We choose a, b G C so that
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(3.2.7.1) cQ(afnr + bg~ni, 7

hence # ? ' (a/"> + bgn>) = 0, since af"< + bgn^ G Kx. On the other hand,

H^'Haf"' + bg">) = ap + bgl Φ 0. Rewriting (3.2.7.1) and using the

fact that €Ω(Χ, Y) = cSl(X, Y), we find that

(3.2.7.2) \a\2CQ(fni,n + \b

Further, _ c n ( f " · , f l ) = CS2(/"·, Z 1) = ( - 1 ) " · c n ( f \ / ' ) , that is,
ci2(/"', / ' ) and cO(g"', ^*) are purely imaginary if «j is odd and real

if «i is even. Therefore, we can choose a, ft £ C so that

°Ω(α/"· + bg"\ of1 + bg1) = εηι.
The rest of the proof is completely analogous to that of Lemma 3.2.4.

3.2.8. We consider now the case λ = i . The following lemma is an

analogue to Lemmas 3.2.4 and 3.2.7.
LEMMA. In K^^ C V there is a basis

· . . , /•, · . · , / ? ' . g \ , ..-, # , . . . , h ) , ..., h p , . . . ,

where nt: is even and the gs

{ (respectively, /?, hs.) are vectors of height s

with respect to Η = Hx = H2, and

Ω(/ί, g*) = ( -

PROOF. As above, the proof is by induction on the dimension of K^^.
Let /"> be a vector of maximal height « 1 ; f

k = H"i~kfni. Since the
restriction of Ω to Κγβ has maximal rank, there exists a vector
g"· e ΚΛβ such that Ωί/1, g"·) = 1. There are two possibilities:

a) Representatives of g"1 and/" 1 in K^/K^f^ are linearly independent,

where now K[S1 is the subspace of Ki/2 consisting of the vectors of height

b) The representatives of g"1 and /"· for any g"1 with Ω(/\ g " ' ) = 1

in Kfy)/Ki"li~
1) are linearly dependent.

We consider a) and claim that we can change gk and fs so that they
satisfy the relations

Let A: be the smallest number such that Ω(/">, fk) = ak Φ 0. Then,

replacing /"· by / " ' - ( - l)* + 1afcg"'-fc, we get Ω(/"', / s ) = 0 for
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s < k + 1. Because Ω(Λ g*) = 0 for s < nu we have Sl(fk, gs) = 0 if
A: + s < η χ. Proceeding in this manner, we obtain vectors /*, g* satisfying
(3.2.8.1).

Now we consider case b) and note that Ωί/1, /"•) Φ 0, since
Ωί/1, Χ) = 0 for any X £ Κ")^1· We may assume here that

Ω(Λ /" ' ) = ±1. It follows from (3.2.3.1) that Ω*/1,/"') = (- 1)"· Ω(/ »,/"');
therefore, «ι must be even. Next, as in a), we can replace the /' by h' for

which Q(hs, hk) = (±ΙΫ 8n_sk_l, where the ±1 is chosen in accordance

with the sign of Ω(/ζ\ hn') = tl(f\ /"·)·
The rest of the proof is analogous to that of Lemma 3.2.4.
3.2.9. PROPOSITION. There exists a decomposition of V as a skew-

orthogonal direct sum (relative to Ω) of subspaces that are invariant under
H, V = e EKj, e Exj= V η (Κχ θ ΑΊ_λ ®ΚΚ Θ K ^ x ),such that

the restriction of Η to the direct summand Ex ;- is of one of the following types:

1) // λ G R, λ Φ j and dim Ex ;- = 2«;-, then there is a basis

Of ! , . . . , aUn, bj ,, . . . , 6/>Λ/ in wnicft Ω(α/>Λ, fl/s) = Ω(6/ > Λ, bjs) = 0,

Ω(α;· ^, i>;· s ) = ( - \)kbn_s k_x for 1 < k, s < «;·, anc? i^e matrix of the

restriction of Η to Ex • has the form

λ. 1.

0

0

•ι

'λ

ο

ο

1 - λ 1.

ο'
.0

1

•1-λ

2) // λ = σ + it, where ο Φ γ and τ Φ 0, dim Εχ ;· = 4«;·,

a basis ajx, α) Λ , . . . , ajn., a'jn., bjtl, b) x, . .., bjn., b'jn. of Exj in which

n(ajk, a'Ls) = Wb/ik, b'Ls) = Ω 0 ζ Μ , bj>s) = Sl(fl'itk, bfs) = 0, flty.*, bjs)=.

Ω(6,· s, a'j k) - ( — 1)* Sn~s,k-i for \ ^ k, s < nj, and the matrix of the

restriction of Η to Ex j is of the form

0

^2

J

0

0

h

0

0

h 0

Λ/λ
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where Μ χ =
σ τ

— τ σ

1 Ο

Ο 1

3) // λ = -| + ΐμ, μ Φ Ο, and dim Εχ j = 2η;· with «;- odd, then there i

a basis ajx, bjA, . . . , ajn., bf n. of Exj in which

Ω(α / Λ , ajs) = Sl(bjik, bjs) = 0, Ω(α/(Α., bjs) = ( - l ) s 5s_l <n._k for

1 < 5, k < nj, and the matrix of the restriction of Η to Ελ ;· is of the
form

h ** 0

is

ο •·
·/,

where

ι

4) // λ = j + ΐμ, μ Φ Ο, and dim Ελ ;· = 2«;· eve«, there is

a basis ajlt bjx, . . . , a} „., bf n. of Exj in which Ω ( α / > Α . , bj s ) = 0,

Ω(α,· τ., a,·,,) = Ω(&,· t , ft.- „) = (— If δ?, , „ „ for 1 < A:, s < «,·, anrf i^e

matrix of the restriction of Η to Ex ;- w o/ i^e /orm

• ·

where M% =

1
2"

—.μ

μ
1

I"

Ο

5) // λ = -i- fl«d dim £ λ > / · = 2«;·, ί/ien one ο/ ine following holds for

a) there is a basis aj t , . . . , α / η . , &;-fl, . . . , bj „. m w/z/c/?

„ bi t ) - 0.

1 < A:, s < «;- and ine matrix of the restriction of Η to Ex j is of the
form
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'

0

\

*

0

0
' · l

·. ι
2

T

0

0

ι 0

• ι
·. ι

2

b) there is a basis a;- ,, . . . , Λ/2«· Z" w ^ i ^

/Tie matrix of the restriction of Η to Ελ j has the Jordan form

τ. Vo
•·. · ι

Ο ' " · ι

PROOF. The five types listed follow immediately from the lemmas
proved above on transition to the basis

Λ , · _ , Λ _ Λ J

for complex λ, and to the basis consisting of vectors
f t , . . . , gj1,..., hj, . . . in the case of real λ.

We make a remark concerning the sign of Im λ in the four cases that
arise.

As is well-known, the Jordan form relative to the full_ linear group is the
same if the Jordan blocks are chosen corresponding to λ instead of λ. This
is true also for the classification of the operators Η relative to the symplectic
group when Re λ Φ | · , since in that case the linear transformation of
V Π (Κλ © tfj-Λ.) generated by the mapping fr

m -» fr

m, gr

m -> gr

m of the basis
is clearly a symplectic transformation. However, the latter is not always true
when λ = i + ϊμ. Indeed, if n;· is even, then the conjugate mapping
fk -*• f* induces a symplectic transformation in V Π {Κχ © K^), and if
n;- is odd, this is a conformally-symplectic transformation with the factor
(— 1). Therefore, the Jordan form in this case is determined to within ±μ.

3.2.10. For a given λ = γ + ϊμ, where for definiteness we take μ positive,
let I>£(M) (respectively, ν%(μ)) stand for the number of Jordan blocks of size
2k X 2k, k odd, that occur in the above decomposition of Η (type 3)) with
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+ μ (respectively, with -μ). We claim that ν^(μ) are invariants of Η relative
to the symplectic group.

We note that to prove the invariance of ν£(μ) relative to the symplectic

group it is enough to prove that of ν*ρ.{μ) - ν%(μ), because vk(jx) + ν^(μ) is

the number of Jordan blocks of size Ik X 2k corresponding to λ = γ + ϊμ.

Let Vk C V Π (Κλ Φ Kj) denote the subspace consisting of the vectors of

height <fc relative to the operator H2 - Η + (μ2 + j ) , and χ£(μ) the

positive (negative) index of the restriction of A£, to Vk. We evaluate

PfcOO ~ "*0Ό i n t e r m s o f X|(M)·
As a preliminary we make the following remark. If L C V is a subspace

invariant under Η and if Sl\L = 0, then /z£jL = 0. This follows at once from
the formula

(3.2.10.1) K{X, Y) = Q(HX, Y) - y Ω(Χ, Υ).

Next we note that if an operator Η in some space R2^, together with a skew-
symmetric form, is defined by the relations in Proposition 3.2.9 (types 3)
and 4)), then for the symmetric form h^ defined by (3.2.10.1) the difference
between the positive and negative indices of inertia is zero if k is even and
2 if A: is odd.

We now compute ν^(μ) - ^Γ(Μ)· We consider the decomposition of V into

the £ λ / . Then V1 = ® Vlf, where Vui = Vx Π Ελ ;-, λ = \ + ίμ and

hl\Vij - 0 if dim EKj > 2. Therefore 2{ν\{μ)- ν\(μ)) = Χ ι

+(μ)-χΧ{μ). We

now consider the restriction of hs

w to Vk Π Εκ.-. It follows from Proposition

3.2.9 that if k < nf, where 2«;· = dim Exj (with η} odd), or if k <nf (nf

even), then Ω,\ν nE - 0, so that h$

M \v nE . = 0. Further, if k > «.• (n·

odd) or k > rij («;- even), then the difference between the positive and

negative indices of the forms h^y nE .is zero if n;· is even and ±2 if «;·

is odd (the ± sign is chosen in accordance with the sign with which μ
occurs in the Jordan block). For example, suppose that « ; is odd. Then, as
V2n._k+l η Ελ • is the degeneracy subspace of h^\v nE ., it follows that

hi, can be extended to a form /£, on the factor space

Vk η Ελ j/V2n_k_i Π Ελj. By what was said above, the difference between the

positive and negative indices of inertia of the form h£, so obtained is ±2. Thus,
for arbitrary s and μ,

(3.2.10.2) Χ;(μ)-Χ7(μ) = 2 Σ (vj j + 1 (μ)-ν5,·+ι (μ)).

Using this formula, we can compute v*2s+l - v2s+i o n the assumption that

the preceding differences ν*2ί+ϊ - v2j+l, j < s, are known.

In a similar way it can be proved that the number of blocks of type 5 b)

such that Ω(<ζ; x , α;- 2n.) = + 1 (respectively, - 1) is an invariant of Η relative

to the symplectic group. As above, this invariant is evaluated in terms of
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χ* (0), the positive (negative) index of the restriction of ft£, to ^

3.2.11. Combining Proposition 3.2.9 and Theorem 3.2.5, we come to the
following assertion.

THEOREM a) Operators H(k): V -*• V (k = 1, 2) are symplectically equiva-
lent if and only if they are equivalent under the full linear group and if the
invariants χ*(μ), Χ*, ι(μ) = xt>2(M) coincide for all s and all λ = \ + ιμ.

b) Operators H^: V -> V (k = 1, 2) are conformally-symplectically equiva-
lent if and only if they are equivalent under the full linear group and either
X*,I(M) = X12(M) or X ^ C M ) = Xj,2(M) for all s and all λ = \ + ΐμ.

PROOF. Since we have already proved a), we turn to a proof of b). It
follows from Proposition 3.2.9 that b) is sufficient. So we prove the
necessity. Let R be a conformally-symplectic transformation of
V, Λ*(Ω) = αΩ, α Φ 0, establishing the equivalence of the H^; as
Λ*(Λω 2) = αΛω ], we then have R*(h~l) = ah'Ui. It follows that

Χ*,ι(μ) = Χ*, 2 (Μ) if α > 0 and χ* ,(μ) = χ ^ 2 ( μ ) otherwise.

COROLLARY. For the existence of a Lagrangian subspace of V, invariant

under H, it is sufficient that χ^(μ) = ΧΪ(μ) f°r a # s and λ = γ + ΐμ, μ Φ 0.

PROOF. We observe that a subspace Ex j with λ Φ γ + ίμ, μ Φ 0, con-

tains an invariant Lagrangian subspace, which we denote by Lxj. Next, for

every Ελ ;· with λ = j + ϊμ, μ Φ 0, when the matrix of Η in the decomposition

3.2.9 is a Jordan block taken with +μ, there exists a subspace Exj such

that the matrix of Η is a Jordan block with —μ. Thus, there is an invariant

Lagrangian subspace Lxj ;· in EXj © E\,i2- Th e subspace
j ; j ,i2

L = © Lx , θ L-, ,• ,· is also Lagrangian and invariant under H, since
(λ,/) λ ' ; / ( λ Λ / ) λ · ' · ^

the Ελj are skew-orthogonal.
3.2.12. We consider an equation Ε C P(M), codim Ε = 1, with a singular

point χ G E. Let us find out when it is that Ε is locally equivalent to a
linear equation in the neighbourhood of x, that is, to an equation of the

form u = J^"(g, p). where -^-j- = 0 in a special system of local coordinates

q1, . . . , qn, u, ρχ, . . . , pn. For this purpose we observe that a linear

= 0,equation Ex = {u— sp{q, p) = 0} at a singular point x, that i s , —
op

-g ρΛ\ = 0 , i ^ η, always has a Lagrangian subspace L invariant

under the operator H: Tx (£,) -• Tx (£Ί).
For L we can take, for example, the subspace spanned by the vectors

9 , which is clearly Lagrangian and lies in TX{EX), because

= 0. In addition, ΩΙΗ-J-
\ opi

that is, H(~
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We therefore have the following assertion:
PROPOSITION. For an equation Ε C J\M), codim Ε = 1, to be equiva-

lent to a linear equation in the neighbourhood of a singular point χ € Ε, it
is necessary that there exists a Lagrangian subspace of Tx (E) that is invariant
under Η: Τχ (β) -» Tx (E).

3.2.13. REMARK 1. In what follows, when we obtain conditions under
which the CSp-equivalence of operators Η is sufficient for local equivalence
at a singular point, Proposition 3.2.12 and Corollary 3.2.11 determine
conditions that are sufficient for the linearization of the equation at the
singular point.

REMARK 2. By (3.2.10.1), the CSp-classification of operators Η in this
section is also a CSp-classification of quadratic forms under the action
indicated above (see 3.1.8).

REMARK 3. The Sp-classification of symplectic transformations was
carried out by Williamson [4], [5]. Theorem 3.2.11 differs from William-
son's main theorem (see [4], Theorem 4) in that the invariants χ are more
constructive.

§3. Normal forms

3.3.1. We consider first an equation Ε C J1(M), codim Ε = 1. Let
qx, . . . , qn, u, pi, . . . , pn be a special system of local coordinates in the
neighbourhood of a singular point χ e E. We assume that the coordinates
of χ are all zero.

In this system, Ε takes the form

u = & (ft, . . ., qn, pu . . ., pn),

where jF(0) = 0, g (0) = ^ (0) = 0, ω = dp - P dq.

The operator Η determines the 2-jet oi.F at χ according to the formulae

f-3

(3.3.1.1)

dpi

-h
d

dps

d

χ ' &Q)

χ dPj

d

* ' dPi

X

X

d

dqj

d

θ

dp;

3.3.2. We now use Proposition 3.2.9 to establish normal forms for the
2-jet of J ^ at JC. To do this we assume that when

1) λ € R, dim EXj- = 2«;-, the coordinates qu . . . ,qn, u, pu . . . ,pn

are chosen so that at, j = - y

2) λ = σ + ίτ, α Φ γ, dim Ex • = 4η, the coordinates are chosen in two

ways, qx, . . . , qn., q\, . . . , q'n., px, . . . , pn., p\, · · · , p'n., so that
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dqt

3) λ = y + ιμ, μ =£ Ο, dim Ελ ;· = 2«;·, «;· odd, the coordinates

<7ι» • · · > 9«;·. Ρ ι» · • · ' Ρ η /

 a r e chosen so that

dqt

4) λ = \ + ϊμ, μ Φ Ο, dim Εχ ;· = 2η;·, η;- even, the coordinates

<7ι> · • · > i n - Pi» • · · - P n . a r e chosen so that

= «i. 7

5) λ = j , dim Ελ j = 2«;· the coordinates q1} . . . , qn., pu . . . , pn. are

chosen so that

a) -^r

When we now use (3.3.1.1) and the form of Η in the basis
. . . , α,·.·, bj ,·, . . . , we obtain the following normal forms for the 2-jet of
the equation at the singular point:

(I) A | M i + S

(Π) σ 2 (ρ,ι

(III) 4 Σ I

Λ j

t = l

nj-2

(V)

n}-X

" 7 - 1

3.3.3. PROPOSITION. For every equation Ε C ^(Λί), codim Ε = I, and
every singular point χ G Ε there exists a local contact diffeomorphism F,
F(x) = x, such that the equation F{E) can be represented in some special
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system of local coordinates qu . . . , qn, u, pu . . . , pn at χ in the form
u = 3F(q\,. . . , qn, ρ γ, . . . , pn), where the 2-jet ofJ2"at χ is a direct sum
of forms of types (I) — (V).

3.3.4. EXAMPLE 1. Suppose that all the eigenvalues λ of the operator
H: TX(E) -* TX(E) are real and distinct, and λ φ \. Then the 2-jet of Ε at

η

x takes the form u — Υ,
i l

EXAMPLE 2. If all the eigenvalues λ are distinct and Re λ = j ,

= Im Xs Φ 0, 1 < s < n, then the 2-jet of the equation is:
η

ί=1 s=l

3.3.5. Now let Er C Jl(M) be any involutory equation, codim Er = r > 1,
and χ £ Er a singular point. We choose an arbitrary contact field Xf such
that f(x) Φ 0. Then Xf;x ψ. Tx(Er), since Tx(Er) C Γχ and Xfx φ Γχ.
The equation Er~x - U Tt(Er), where Tt is a local one-parameter group of

translations along Xf and t is sufficiently small, is also involutory; but χ is
not singular for Er~l, because Tx(Er~l) and Γ^ are transversal. Thus, using
the results of Chapter II, we can choose a local contact diffeomorphism
F, F{x) = x, such that the equation F(Er~l) takes the form
ρ ι = 0, . . . , pr_l = 0 in some system of special local coordinates
qx, . . . , qn, u, ph . . . , pn (we assume here that χ - (0, 0, . . . , 0)). In
this same coordinate system the equation of F(Er) can then be written as
Pi = 0 , . . . , p r _ l = 0 , u = F(qr, ..., qn, p r , ... , p n ) , w h e r e n o w
F(0) = 0, df{0) = 0.

Further, as in 3.3.4, we can choose a coordinate system
qr, . . . , qn, pr, . . . , pn such that the 2-jet of F at χ is represented as a
direct sum of forms of types (I) — (V).

Thus, we have established the following proposition.
PROPOSITION. Every involutory equation Er C J\M), codim Er = r, is

equivalent in the neighbourhood of a singular point to an equation of the
form px = 0, . . . , pr_x = 0, u = ^{qr, . . ., qn, pr, . . ., Pn), where the
2-jet of Jf at χ is a direct sum of forms of types (I) - (V).

CHAPTER IV

Formal classification of equations at singular points

Let Er C Jl(M), codim Er = r, be an involutory equation with singular
point x. We say that two such equations E\ and E\ are formally equivalent
at χ G E^ (k = 1, 2) if there is a local contact diffeomorphism F, F(x) = x,
such that F(E\~) and ££ have contact of infinite order at x. It is clear that
formal equivalence of equations is necessary for local equivalence. In this
chapter we explain when the condition of formal equivalence follows from
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GSp-equivalence of the operators Hk.

§ 1 . The connection between local equivalence and local solubility

4.1.1. We replace the construction of a local contact diffeomorphism by
the construction of its graph. To do this we denote by prk: E\ X £ 2 -> ££
the projection onto the A>th component {k = 1, 2), and F: E\ -*• E\ X Er

2 the
graph of F, F(y) = (y, F(y)).

Similarly, if A: TX(E\) -*• Tx{Er

2) is a linear transformation, then we define
the graph λ: TX(E[) -* T(x X)(E[ X Er

2) by identifying T(x X)(E[ X Er

2) with
TX{E\) θ Tx(Er

2); here Ft'x = (F),x.
Let θ - ρ^(ωι) - pr*(a)2) be a 1-form on E\ X E2, where

">k = Ux \Erk (k = 1, 2), as above.

PROPOSITION. There exists an embedding E\ X Er

2 C /'(Λ/ Χ Λί) of some
neighbourhood of (x, x) such that θ = Ux \Er x g.

PROOF. Note that the rank of dwk is 4(n — r + 1) in some neighbour-
hood of (x, x), since the rank of du>k in some neighbourhood of χ is
2(« - r + 1), k - 1, 2.

Further, as well as ω 1 ; ω 2 , the form θ is involutory, because

Qf\dQ/\... /\dQ-=

2(n-r+l)

= 0 < ( ω 0 —Ρ^ί (ω2)) Λ ΡΓΐ (d®i Λ · · · Λ rftoQ Λ P r * (^ω2 Λ · · · Λ dQ)2) = 0;

n-r+1 n-r+1

therefore, since the rank of c?0 is constant in some neighbourhood of (x, x),
we can choose coordinates xu . . . , x2(n-r+l),yu . . . , y 2 ( w _ r + 1 ) , z 1 , . . . , z y _ 2

2(n-r+l)

in some neighbourhood of (x, x) £ £ J Χ £ 2 in which άθ = 2 ^ i Λ ^ί/;·
i l

In these coordinates θ has the form θ = ά^ψ — y dx, where 2F is a function
of the variables x 1 ; . . . , x 2 ( W _ r + 1 ) , > Ί , . . . , y 2(n-r+i), since θ is involutory.
We now specify the embedding of E\ X E2 in /'(-Μ Χ Μ) in the following
way:

" = Pi Vt = Pi> «i = ?«» 1 < i < 2(re — r + 1),
ZJ = i?i+2(n-r+i), 7 < 2r — 2, p7· = 0, ; > 2(re — r + 1),

where g 1 } . . . , <72n, u, pu . . . , p2n is some special coordinate system in
J\M Χ Λί).

4.1.2. PROPOSITION. A local U^-diffeomorphism F, F(x) = x, carries E[
to E2 if and only if F{_E\) is a many-valued solution of the equation
E\ X E\ C J\M X M) passing through (x, x).

PROOF. Since F establishes the local equivalence of E\ and E2 at χ if
and only if its restriction to E\ establishes the local equivalence of the
forms ojfc (see Chapter II), it is enough to check that Ρ*(θ) = 0 if and
only if (F|£. r)*(co2) = ω, . Let us compute F*(0). We have
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Ρ*(θ) = Ρ* ° j < K ) - F* οΡΓ(ω2) = (F \ΕΪ)*(ω1) - ω,, q.e.d.

4.1.3. Now let A: V -> F be a transformation establishing the Sp-
equivalence of the operators #*. {k = 1, 2). As in Chapter III, we assume
here that TX{E[) = Tx{Er

2), and that V = TX(E[)/CX is symplectic with the
form Ω.

PROPOSITION. For every extension A: TX(E[) -» Tx{Er

2) of a symplectic
transformation Ά the subspace λ{Τχ{Ε[)) of TX(E[ X Er

2) C T(x X)(J\M X M))
is a Lagrangian subspace of Γ(Λ. x) = Ker Ul^XiX) C T{x Χ)(Ρ(Μ Χ Μ)) on
which he vanishes.

PROOF. Thefact that A{TX{E[)) is Lagrangian is checked as in 4.1.2.
The fact that A establishes the equivalence of H1 and H2 means that the
image of A in Vl>2 = Γ(Λ. Χ){Ε[ Χ E2)/C^xxy is invariant under the operator
#1,2 = H\ θ H2. Indeed, V1 > 2 = V ® V, since θ = prf(wi)-pr*(oj 2). Thus,
#i,2 - # i ® #2> a n d the elements lying in the image of λ in F 1 2 have the
form (X,_AX) with X € F. But Hl2 (X, AX) = (H^, H2AX), so that
HU2(X, AX) lies in the image only when AH1X = H2AX, that is, when A
establishes the equivalence of Ηγ and H2. The fact that he vanishes on
A(TX{E[)) follows from the following remark.

4.1.4. LEMMA. Let Er C J\M) be an involutory equation and χ e Er

a singular point. Then the form /ζω vanishes on a subspace L C V,
dim L - j dim V, if and only if L is a Lagrangian subspace and invariant
under the operator H: V -*• V.

PROOF. If L is Lagrangian and invariant under H, then
ϋω(Χ, Υ) = Ώ(ΗΧ, Y) = 0 for all Ζ, Υ G L, since HX e L.

Suppose now that h^(X, Y) = 0 for all Χ, Υ € L. If X G L, then HX
is skew-orthogonal to L, since Ω(ΗΧ, Υ) = hw(X, Υ) = 0, and therefore
HX G Ll - L.

4.1.5. Summarizing what was said above, we see that the question of the
sufficiency of Sp-equivalence of the operators Hk for the local C/j-equivalence
of the equations reduces to the following problems on the local solubility of
an equation at a singular point: (i) how to choose a Lagrangian subspace
L C Tx(Er) on which hw vanishes (that is, such that the image of L in V
is invariant under H); if) is there a many-valued solution of Er passing
through χ and tangent to Ll

4.1.6. REMARK. If the operators Hk are GSp-equivalent, then the question
of the existence of a local contact diffeomorphism establishing the equivalence
of the equations and extending a conformally-symplectic transformation A,
ΑΗλ = Η2Α, ,4*(Ω) = λΩ, also reduces to the question about local solu-
bility just mentioned, with ω, replaced by λ ω 1 ; λ G R.

§2. Formal solubility of equations at a singular point

With the results of the preceding section in mind, we are concerned in
what follows with the local solubility question as indicated there.
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4.2.1. Let Ln be a many-valued solution of an involutory equation
Er C J\M) passing through the singular point x.

We consider the tangent space L = Tx(Lny, then h0J vanishes on L. For
if X 7 £ I , we can choose extensions Χ, Υ so that they are tangent to
L". In this case ϊιω(Χ, Υ) = Χ(ω(Ϋ)) = 0, because ω ( ? ) is a function that
is identically zero on Ln.

Further, since L C Tx(Er) is Lagrangian, so that L D C v , because Er

is involutory, the projection L of L in F is defined, and L is also a
Lagrangian subspace. In addition, Λω = h^ + -|Ω, so that /z^ also vanishes
on X. Thus, we get the following proposition.

PROPOSITION. // there is a many-valued solution of an involutory
equation Er C P{M) passing through a singular point x, then there is a
Lagrangian subspace L C Tx{Er) for which the following equivalent
conditions hold:

a> /I<O|L = 0 ;

b) / ^ | r = 0;

c) L C V is invariant under H.

4.2.2. REMARK. This proposition shows that the conditions for CSp-
equivalence of the operators Hk, which are necessary for local equivalence,
go over after the reduction (z, f) into necessary conditions for the existence
of a solution passing through a singular point for the corresponding
differential equation.

4.2.3. EXAMPLE. Suppose that in the special coordinate system
#1, . . . , qn, u, pi, . . . , pn the equation Ε takes the form

γ 2 Pili — Σ U • • -,Ρη)=0,

where λ, > Ο, μ,· > Ο, 1 < i < η, and &{qx, . . ., qn, u, px, . . .,
function of third order of smallness at (0, . . . , 0). Then in these
coordinates the form h^ is given by the matrix

λ,

Pn) is a

ο

0

μημ
Therefore, no many-valued solution passing through (0, . . . , 0) exists (and
in particular, no ordinary solution exists).

4.2.4. The necessary conditions in Proposition 4.2.1 become particularly
transparent in the case r = codim Er = 1.
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We consider the vector field Xw in some neighbourhood of the singular
point χ G Er = Ε that is defined in the following way:

(4.2.4.1) Χω J άω = ω.

This field Χω exists and is unique, since the form άω is of maximal rank
(= dim E) in the neighbourhood of a singular point. Also, Χω = 0 if and
only if ω = 0. In particular, Χω χ = 0.

ψΐ rpO

PROPOSITION. Let Τ = lim-^-ΐ i^L be the linear part of the field
t-o *

Χω at x. Here T' is a local one-parameter group of translations along Χω.
Then Η = T.

PROOF. Let / be a smooth function and Υ a vector field given in some
neighbourhood of the singular point χ Ε Ε. Then, by definition,

(TYX) (/) = lim | (Κ, x (Y) -Yx) (/) = [Y, X.) |x (/) = Yx (XJ),

since Χω x

 = 0. ^ ^
Denoting by df the vector field for which df J άω = df, we obtain

(TYx)(f) = ΥX(X«,(})) = Yx(df(X*)) = Yx(dco(df, Xa)) =

= -Yx(w{df)) = -hw(Yx,lfx) = dwx(dfx, HYX) = df(HYx) = HYx(f).

Thus, HYX = TYX for every Yx G TX(E), so that Η = T.
We consider now a function / such that f\E = 0, Xi (/) = 1. Then it is

easy to see that the restriction of Xf to Ε is Χω , since XjiU{) = Uv On the
other hand, every solution L" of Ε passing through χ must be invariant
under Xf, in particular, Tx {Ln) is invariant under the linear part of Xf at
x, that is, under H. So we have obtained another proof of Proposition
4.2.1 in the case codim Er = 1.

4.2.5. Next we describe the situation we have achieved in local coordinates.
Applying a contact diffeomorphism if necessary, we assume that the equation
Er C J1(M) is given in the neighbourhood of the singular point χ as follows:
PJ_ = 0, . . ., pn = 0, u = &(qT, . . ., qn, pr, . . ., pn) and L = TX(L")

is the linear span of the vectors J_
dqi

d
. Then

X
η

ω = dtp V ρχ dq·. The condition that hω\L - 0 means that

(4.2.5.1)
dqt dqj

= 0.

Further, the space V is spanned by -̂ —- , . . . , ^ — , -j— , -. · ,-g— , and
η

Ω = 2 dqt |s Λ -̂Ρϊ I*· The matrix of the restriction of Η to L is

, r < ! i , j^.n, in this basis.i dp}
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Note that incidentally we get another interpretation of the condition
H: L -> L, or Λω \L = 0. Namely, if we consider any R-manifold L" touching
L, then this manifold had contact of order > 3 with Er at x. This can be
proved in the following way. Locally, L" is given by the system

u = f(qu . . ., qn), Pi = p-· The condition of tangency with L means that

K°> = °' Wt (0) = °' ~&i (0) = °' x ==(0> · · ·' °- · • ·' °)' h e n c e '
(4.2.5.1), we get

This remark points to the need of studying i?-manifolds that are not
exact solutions of Er, but that have contact of sufficiently high order with
Er at x. Moreover, the existence of /?-manifolds having contact of infinite
order with Er is a necessary condition for the existence of a solution
passing through x.

4.2.6. We say that two R-manifolds Lx and L2 are s-equivalent at χ if
they have contact of order > s there.

DEFINITION. The jet Ls

x of order s of an R-manifold L at χ is the
class of Λ-manifolds that are (s + 1 )-equivalent to L at χ G Jl{M).

EXAMPLE. If Z, projects diffeomorphically into Μ at x, L C Jl{M), then
locally L = [/,(/)] (M). Therefore Ux = Js+l(f)UAx}&^x) (M), f G C°° (M).

4.2.7. DEFINITION. The extension Er

x'
s of order s of the equation

Er C Jl(M) at χ G Er is the set of jets of Λ-manifolds of order s at χ
whose representatives have contact of order s with Er at x.

EXAMPLE. Er

x·
0 = χ, ΕΧ

Λ Φ 0 if and only if Er is involutory at x.

REMARK. Usually (see [8], [7]), the definition of extensions of an
equation uses /?-manifolds without the restriction of projecting onto M. In
this case, U Ex'

s C Js+i(M). We consider arbitrary R-manifolds; therefore,
x£zE

U Ex·
5 C Js+i(M), where Js+l(M) is the augmented manifold of (s + 1)-

Er

jets, whose points are s-jets of i?-manifolds. Clearly, JS+1(M) C JS+1(M).
4.2.8. Let Π*: Ex'

s -+ Ex'
s"x denote the natural projection. Then every

solution L C Er passing through χ defines a sequence Lx G Ex'
s, 0 < s < °°,

with Lx = x, US

X(LX) = Ls

x

x.
DEFINITION. An equation Er C Jl(M) is said to be formally integrable

at χ G Er if there exists a sequence Ex of s-jets of R-manifolds at χ G Er

such that Lx G Ex and Π*(Ι*) = Ls~l. The sequence Lx, 0 < s < °°, is
called a formal solution of the equation Er at x.

EXAMPLE. Let χ G i f be a singular point, codim Er = r = 1. Then
Ex'° = x, and Er

x·
1 is the set of Lagrangian subspaces of Γχ. Let

L C .fi^·1 be such a subspace. Then the requirement that (ILJ)"1 (L) Φ 0
means that hw\L = 0 (see 4.2.1).
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4.2.9. THEOREM. Let Ε C J\M) be a first order differential equation
and χ Ε Ε a singular point, codim Ε = 1, ω^ = 0. If a formal solution {Ls

x}
exists, then the Lagrangian subspace L = Lx is invariant under H. If
L C Tx (E) is a Lagrangian subspace invariant under H, if the eigenvalues
{K} of the restriction of Η to L satisfies the condition

^ > 0 are natural numbers, then there exists

of Ε such that Lx = L.

(4.2.9.1)

and if^mi^- 3, where the

a unique formal solution {L*} of Ε such that Lx

PROOF. The necessity was proved above. For the sufficiency proof, we
choose a system of local coordinates xu . . . , xn, yu . . . , yn on Ε such
that the embedding Ε C^. J\M) in some neighbourhood of JC G Ε is given
by: i*(qk) = xh, i*(ph) = yk, i*(u) = & (x, y), 1 <fc < n, where
qu . . . , qn, u, ρ χ, . . . , pn is a special system of local coordinates in
J\M). Replacing Ε by a(E), if necessary, where α is a local diffeomorphism,
we may assume that L is the linear span of the vectors

that

the matrix

. As we have seen, the condition H: L -*• L then means

== 0, 1 <; i, / ^ n, while the restriction of Η to L is given by

I. Since L projects onto Μ without degeneracy, every
χ\\ atdf

/^-manifold tangent to L is given locally as follows: yk = ^ - , where

fixu . . . , xn) G C°° is of at least the third order of smallness at zero
(xk(x) = 0, 1 < k < ή). Therefore, the existence of the sequence Ls

x is
equivalent to that of a formal series/G R[[xu . . . , xn]];f has order of
smallness > 3, and the series is such that

of
f ... XnJL...,,4L) = 0,
" " & i 9xnf

xn> }/i, · · ·, yn) is the Maclaurin series forwhere
So we have to solve this formal equation. To do this we choose a basis

ku . . . , kn in L such that the matrix of H: L ->• L has the generalized
Jordan form.^Let yu . . . , yn be functions such that dyt\0 = k, where the
vector field dyt on Ε is defined by the equation dyi = ayi J άω, and
diu(dyit dyj) = 0. We now supplement (see [45], [34]) y1; . . . , yn to a

canonical system of coordinates xlt

In this system we have ω = dtp — "^ yt dxt, h

matrix of H: L -*• L takes the Jordan form, that is,

(da = 22 Λ dyt).

dxt

=dyi\0 and the

H =
dxy dy^ 0

0
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where

—x s os 0
0

0

— τ. σ.
if λ - as + irs, or else

λ 5 1

ο
1

if λΓ is real.
We solve the equation }{x) — & \x, -^-1 = 0 formally in this system of

coordinates xx, . . . , xn, yu . . . , yn. We solve this equation by induction
on the degrees of/, that is, we look for polynomials/^ (x i, . . . , xn) of degree
Ν such that

where μ is a maximal ideal in the ring R[[xj, . . . , xn] ] of formal power
series.

Suppose, then, that we have found polynomials fN, Ν > 2, satisfying the

above equation. To find the series fN + l, we first apply a canonical trans-

formation a: (x, y) -*• (x, y ~^\ , where fN is a smooth function whose

Maclaurin expansion is precisely fN. The equation for the polynomial/}y + 1 ,
which must now be homogeneous of degree Ν + 1, takes the following
form:

(4.2.9.2) f N + i ( x i , . . . , x n ) —

where <ρ' = a*(jF) —

d

obviously satisfies the following relations:

: = 0 '

= 0,

k =
dx*

dkh d x l n dyj

I t is m o r e c o n v e n i e n t t o solve ( 4 . 2 . 9 . 2 ) in t h e r ing C [ [ z 1 ; . . . , zn]\ o f
c o m p l e x f o r m a l p o w e r ser ies .

F i r s t w e m a k e a few r e m a r k s . W i t h every ser ies / £ R [ [ * i , . . . ,xn]] w e
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can associate its complexification c / , where now (^—\ =-^-ί-, ζ being
\ ox I 9z

the complexification of χ, ζ = cx. Further, as in the real case, every change
ζ' = φ(ζ) of coordinates can be thought of as a change η ' = φ(η), where
η is the complexification of y and φ(η) = [/'(φ)]" 1^), and 7 (φ) is the
Jacobian matrix of φ. The lifting η ' = φ(η) is such that if η = -^- for
some f Ε C [[zu . . . , zn ] ] , then after the change η ' = -~ , where

f'(z') = /(φ-^ζ')) (a complex canonical transformation).
We choose the change ζ' = φ(ζ) of coordinates so that the operator CH

(the complexification of H: L -> L) has the Jordan form in the basis
a o

«*;•

= zmi — » · • • ι z m i + 2 n 4 - l = z m i + 2 n s - l H~ izmi+2ns>

This can be done as follows. Suppose that Hs has size 2ns X 2ns and acts
on the vectors

a a .

Then we put

In this case
1 , 1 , 1 1

"(\πιι = ~2 Άτηι + -jjj- 11mi+1 > T )mi+l=y T ]mi — y ^ m t + l . · · ·

It is not hard to see that, after this change of coordinates, the equation

becomes

(4.2.9.3)

where the matrix

(4.2.9.4)

dzh dr]j

= 0

has the Jordan form

0 dzn

dy\n 0 ' " Szn dx\n

o · \[
We look f o r / ^ + 1 in the form

Κ 1 0

»\ 0
0 ' ·//* Γ

Κ =

hi, . -kn
Chi,...,hn

Zll
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where ^ kt = Ν + 1, since f'N+l must be a homogeneous polynomial. Sub-
stituting the expression in (4.2.9.3), we find the coefficients of the terms of
degree Ν + I. Note that the terms of degree Ν + 1_ on the left-hand side of
(4.2.9.3) consist of monomials of degree Ν + 1 of f'N+i, monomials of degree
iV + 1 of#" in zu zn, and finally, after the substitution η / =

j

of monomials of the form zkr\j of/", where the coefficients of these last
monomials are elements of the Jordan matrix (4.2.9.4). As a result, we get
a system of linear equations for the coefficients ck k . We solve this

system by induction on (kl, . . . , kn). To do this, we introduce the follow-

ing ordering on the set of «-tuples (ku . . . , kn) such that 2 kt = Ν + i.

We take (* l s . . . , * „ ) < (k[, . . . , k'n) if k'n > kn, or if kn = k'n, . . . , kn_s =
k'n_s, but k'n_s_l > kn_s_l for some s <n-\.

FIRST STEP OF THE INDUCTION. We find the coefficient ί ? ^ + 1 0 0 .
To this end we write out the coefficient of zN

x

 + l in (4.2.9.3) and find

1 dN+1SP'

" 1 Ο

which always has a solution, because 1 — (N + l)Xt Φ 0.
GENERAL STEP OF THE INDUCTION. Suppose that we have found the

coefficients ck k for all (ku . . . , kn) < {k\, . . . , k°). Let us find
ck°, ,k° • θ ' η writing out the coefficient of zf. . .zk

n

n in (4.2.9.3), we

have

(4.2.9.5) 1
L.01 tO |
KV • • • Kn'

where rs is the term corresponding to the 5-th column of
dzh dm

If

the 5-th column contains only Xm (m - m(s) depends on 5), then
rs = k° Xmcko ko. If the 5-th column also contains 1, then

c*?.-.*r
isBy the inductive hypothesis, the coefficient Ci-o to +, to , ..o

r *i lcs-l+1'Ks~1'Ks+l' • • • <n

known, because (k°u . . . , kQ

s_, + 1, k» - 1, k°+1, . . . , k°n) < (k°u . . . , k°n).

Thus, (4.2.9.5) has the form(l— Σ ^ T O ( s ) ) c f t ; , ..., h £ = . . ., where the right-

hand side consists of terms already known. Since 1 — 2 $ & m ( s ) =^ 0, (4.2.9.5)

has one, and in fact only one, solution.
Thus, if the conditions of Theorem 4.2.9 are satisfied, then there exists

a unique element fN+1 e C [[zu . . . , zn\] satisfying the complexified
equation (4.2.9.3), so that the real part of its restriction to JC1; . . . , xn

gives us (also uniquely) an element fN+1 G R [[xu . . . , xn]] satisfying
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(4.2.9.2). Hence, there exists a formal power series / satisfying the formal

equation f—Jpix, ^ ) = 0 .

REMARK 1. a) As we have seen, a solution of (4.2.9.2) is equivalent to
one of a certain system A^k]ck = v]/n, k = (ku . . . , kn) of linear equations,
for each \k\. About this system we remark, firstly, that vik\ can be homo-
geneous polynomial of degree k, and, secondly, that the above arguments show

that the eigenvalues of Aikl, more accurately of A]k](L), are 1 — 2 m i ^ i ,

where 2im; = \k \ and the λ,· are the eigenvalues of the restriction of

H: L -*• L. Therefore, the formal conditions 4.2.9 mean that the operators
A]k](L) are non-degenerate for | k | > 3.

b) Let us investigate how restrictive the conditions of Theorem 4.2.9 are.
For this purpose we consider the set of points (\u . . . , λη) Ε C" whose
coordinates do not satisfy (4.2.9.1). For every | k |, the set of (λ 1 ; . . . , λ,,)
such that ^rriiKi = 1 and > ^ ; = | & | is obviously closed and nowhere

dense in C", and therefore, the set of (λ ΐ 5 . . . , λΜ) such that ^ ^ = 1

and 2 mt >- I k I is thin in C". Baire's theorem now shows at once that

the set of all (λ1 ; . . . , λη) satisfying (4.2.9.1) is everywhere dense in C".
REMARK 2. The formal conditions (4.2.9.1) are a generalization of

Poincare's δ-lemma (see [9], [17]) to the non-linear case, since they ensure
the absence of any obstacle to the construction of the sequence Lx.

Moreover, Poincare's lemma applies to formally integrable equations. The
following definition is the natural generalization of the concept of formal
integrability to the non-linear case (see [8]).

Let Es = U Ex. Then the equation Ε C Jl{M) is said to be formally

integrable if Es is a smooth manifold for each s > 0, and I F : Es -*• Es~l

is a fibred manifold.
In our case, that is, when Ε contains a singular point x € E, the whole

equation Es is not a smooth manifold; however, if there exists a sequence
Ls

x Ε Es

x analogous to that described in Theorem 4.2.9, then some neigh-
bourhood of Lx G Ex is a smooth submanifold of / s + 1 (M).

EXAMPLE. The conditions (4.2.9.1) are always satisfied when Re Xk = j
for all Xk.

4.2.10. Suppose now that Er C Jl(M) is an involutory equation with
codim Er = r > 1. As before, we assume that coordinates
qx, . . . , qn, u, Pi, . . . , pn have been chosen so that the Lagrangian sub-
space L C TX{E), hw\L = 0, is the linear span of the vectors

d and Er is given by the system

p1 = 0, . . ., p r_ x = 0, u = ^(9/ . · · ·, ?n. Pr> · · ·, Pn)- In this basis, the
matrix of//: F-> Fis | | _ ^ £ _ | | s r > i, / < «; therefore, similarly to 4.2.9,

we get the following assertion:



Local classification of non-linear first order partial differential equations 161

THEOREM. Let Er C Jl{M) be an involutory differential equation and χ
a singular point. If a formal solution {Ls

x}exists, then the image L of the
Lagrangian subspace Lx in V is a Lagrangian subspace invariant under
H. If L C Tx(Er) is a Lagrangian subspace such that its image L C V is
invariant under Η and the eigenvalues {%h} of the restriction of Η to L
satisfy (4.2.9.1), then there exists a unique formal solution{Ls

x}of Er such
that Lx = L.

4.2.11. To conclude this section we consider the condition of formal
integrability for an equation with a singularity. Suppose that 3F\ 6 C°° (T*M).
Because of the natural projection π: J1(M) -*• T*(M) we can then regard
ψ\ as a function on Jl(M), ,ψ = π*(,^Ί), and the functions
ep g c°°(T*M) of the form π*(^ 1 ) are characterized by the fact that

Xi(&) = 0.

We assume now that Ε = {.f = 0}, where Χ\(ψ) = 0, and that
χ ε £ is a point for which djfx = 0. In this case Ε is not a smooth sub-
manifold of J\M) at all points of the trajectory of the field Χχ passing
through x.

Let Η: Τπ{χ)(Τ*Μ) -»• Tn(x)(T*M) be the operator corresponding to the
Hessian Ηψ of 1F\ at ir{x) relative to the canonical form dp Ε \2(Τ*Μ),
that is, % t ( Z , Y) = dpmx (HX, Y) for all Χ, Υ Ε Τπ(χ)(Τ*Μ).

Just as in 4.2.1, it can be shown that a necessary condition for the
existence of a solution L" of Ε passing through χ is the existence of a sub-
space L C 7τ

π(Λ.)(Γ*Λί) that is Lagrangian (relative to the form dpn(x)) and
invariant under H. The following is an analogue to Theorem 4.2.9.

THEOREM. // there exists a formal solution {L*} of the equation Ε at
the point x, then Lx = L is a Lagrangian subspace of Γπ ( χ )(7*Μ) invariant
under H. If L C Τπ^χ)(Τ*Μ) is a Lagrangian subspace invariant under Η
and such that the eigenvalues{Xk} of the restriction of Η to L satisfy the
condition

(4.2.11.1) Ύ,πι^φΟ

where the m,- are natural numbers and J mi > 3, then there exists a

unique formal solution{Ls

x}such that π, X(LX) = L.
PROOF. The proof of Theorem 4.2.11 is analogous to that of Theorem

4.2.9, with the difference that it is necessary to solve the formal equation

· · ·, qn, Pi, . . ., pn) = 0, where 11-^4— i s t h e matrix of
II "Pi "1i IIH: L -+ L in the basis JL·

d
(Here, as before, it is assumed

that local coordinates qu . . . , qn, u, pu . .. , pn are chosen such that L

is the linear span of -z— , .. . ,^—
dqi χ dqn

REMARK. Theorem 4.2.11 carries over in an obvious fashion to involutory
equations of codimension > 1 having a singularity of the type indicated.



162 V. V. Lychagin

4.2.12. We draw some consequences from Theorem 4.2.10 concerning the
question of local equivalence.

PROPOSITION. Let {L%} be a formal solution of the equation Er C J\M)
at χ G Er. Then there exists an R-manifold L C Jl{M) having contact of
infinite order with Er at χ and such that [L]s

x = Ls

x, where [L]s

x is the
s-jet of L at x.

PROOF. We choose a local Ux-diffeomorphism a such that the repre-
sentatives a*(L x) at χ project without singularity onto M, a(x) = x. By a
theorem of Borel (see [15]), there then exists a smooth function / defined
in some neighbourhood of π ^ χ ) G Μ such that / 5 (/) | π ( x ) = oct(Lx~

l) for
all ί > 1. If we now let Lx denote the Λ-manifold corresponding to jxif),
then the R-manifold L - oCl{Lx) is what we want.

4.2.13. Using Proposition 4.1.2, we now obtain the following result.
THEOREM. A necessary condition for the formal equivalence of involutory

equations Ek C J\M) at a singular point χ G Ek is that the operators Hk

(k - 1,2) are CSp-equivalent. If the eigenvalues of the Hk satisfy (4.2.9.1),
then the Csp-equivalence of the Hk is sufficient for the formal equivalence
of the equations.

§3. The algebraic insolubility of the local classification
of Hamiltonians

4.3.1. In this section we consider the question of the local equivalence of
two Hamiltonians Gx, G2 G C°°(T*M) in the neighbourhood of a point
χ G T*(M), where G^x) = G2(x) = 0, dGhx= dGXx = 0, that is, of the
existence of a local canonical diffeomorphism a: T*(M) -> T*(M), a(x) = x,
such that a*(G2) = Gx. As in 4.1.1, the construction of α can be replaced
by the construction of a solution of the equation Ε C Jl(M X M), where
Ε = {G = 0}, G= prf(Gi) - pri(G2), G G C°°(T*(M X M)), and pr%: T*(M X M)
-> T*(M) is the projection onto the A>th component (k - 1, 2).

4.3.2. THEOREM. The problem of the local classification of
Hamiltonians in the neighbourhood of a singular point is not algebraically
soluble, that is, there is no natural number k such that the local equivalence
of Hamiltonians relative to the group of canonical diffeomorphisms follows
from the equivalence of the k-jets of Hamiltonians relative to the same group.

PROOF. We assume that such a k exists. Then for any Hamiltonians Gx

and G2 having equal &-jets at the singular point χ G T*(M), there is a
canonical diffeomorphism a such that a*(G2) = Gx.

We now use the fact that the construction of a is equivalent to the
solution of the equation Ε C J\M X M). In the language of formal
equations, this last equation means: if fk G R[qu . .·. , qn ] satisfies the
equation

= 0 mod u h + 1 ,
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then there exists a series g Ε R [[qu . . . , qn ]] extending fk and such that

(4.3.2.1) * ( * , . · . , in. • £ - , . . . , - g

Suppose now that Lo C Γ ( χ χ)(Γ*(Λί ΧΜ)) is the graph of the differential
of α at (x, x) or, what is the same thing, the plane tangent to dg at (x, x).
By the Poincare-Lyapunov theorem (see [27]), the eigenvalues {λ8} of the
restriction of HG to LQ then split into the union of quadruples of type
( \ , \, - \, - \). Therefore, the condition (4.2.11.1) of formal integra-
bility is violated for arbitrarily large k.

Furthermore, the solution of the formal equation (4.3.2.1), as was the
case for the solution of the corresponding equation in the proof of Theorem
4.2.9, is equivalent (see Remark 1 a)) to the solution of the system of
linear equations A\k{(L0)ck ; k - vlkl for each \k\; clearly, Remark 1 a)
is valid here, except that the eigenvalues of the operator A\k\(L0) are of the

form 2 mfii, where 2 m i = I & l> ar>d the λ,· are the eigenvalues of

H: Lo -»· Lo. But since the eigenvalues are distributed in pairs (Xs, - Xs),
the corank r(\k\) of A]kl(L0) (the codimension of the image) is at any
rate not less than the number of solutions in natural numbers of the
equation 2 2 nt = \ k \ (summation is over the pairs (Xs, - Xs) ).

We now choose |A:| large enough so that r{\k\) > n(2n + 1) (note that
n(2n + 1) = dim Sp(2n)). As is not difficult to see, we can then choose
U|£| G R [<?i, . . . , qn] so that the equation A[k[(L0)Ck - υ^ is insoluble
for any Lo Ε T^x X^(T*(M X M)), which is the graph of the differential
of a canonical diffeomorphism and invariant under H.

Thus, in particular, there exist Hamiltonians G t and G2 whose A>jets are
canonically equivalent (with k any fixed number), whereas (4.3.2.1) is
insoluble.

CHAPTER V

Local classification at a singular point

In the two preceding chapters we have obtained necessary and sufficient
conditions for the formal equivalence of equations at a singular point. In
this chapter we investigate the sufficiency of formal equivalence of
equations for local equivalence at a singular point, and we also give some
applications of our results.

§ 1. Sufficient conditions

5.1.1. With Theorem 4.2.13 in mind, we consider in this section a pair
of involutory equations E\ and Er

2 which have infinite contact at a
singular point χ Ε Ek {k - 1, 2), and we take E\, say, as a model. We
require that E\ satisfy the following two conditions:
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(A) In some special local coordinate system qi,. . . ,q°,u,p1, • • • ,p°
in the neighbourhood of x, E2 has the form

p* = 0, . . . . p% = 0, u° = # · , ( # , . . ., <&, p°r, . . ., K ) , where
Jf2{qt·, . . ., qn, Pr, · • ·, Pn) is a quadratic function of its arguments.

(B) The eigenvalues {λ5} of the operators Hk:V -> F are such that
Re Xs =£ 0.

Note, firstly, that every involutory equation Er such that Η satisfies
(4.2.9.1) can be brought by a t/j-diffeomorphism to an equation having
contact of infinite order with E2, that is, E\, can be any involutory
equation Er with a singular point.

Moreover, condition (B) is automatically satisfied if (4.2.9.1) is. Other-
wise, for every \ with Re Xs = 0, we would have
N(XS + Xs) + Xs + (1 - Xs) = 1 for every natural number N, therefore
violating (4.2.9.1).

5.1.2. Thus, we consider a pair of involutory equations Er

k C J1(M)
(k - 1, 2) for which conditions (A) and (B) are satisfied.

Let Lo C TX{E\) be a Lagrangian subspace invariant under Hx. We may
suppose that local coordinates q®, . . . , q%, u°,p°, . . . ,p° (see (A)) have been

chosen so that L0 is the linear span of the vectors - ^ , . .^

„

x - (0, . . . , 0). For this can always be achieved by applying to E\ and
Ε2 a ί/j-diffeomorphism that is linear in the coordinate system
<7i, . . . , q°, pi, . . . , p° in (A) and takes Lo to the linear span of the

vectors The existence of such a transformation is a
#β% ο

consequence of Witt's theorem [25]. Suppose now that L C E2 is a solution
of £2. For Z, we may take the Λ-manifold corresponding to /Ί(0), for
example. We show how to construct a solution of E\ tangent to Lo, using
conditions (A), (B) and the solution L.

We consider first the case when codim Efc = r = I.
5.1.3. Let G be a smooth function on Jl(M), G(x) = 0, having a non-

degenerate singularity at x. The set {y | G(y) > 0} is called a conical
neighbourhood of JC.

5.1.4. PROPOSITION. 7/iere exisis α smooth function JF defined in
some neighbourhood of πχ(χ) and quadratic in the coordinates qi,. . . ,q%

(see (A)) for which

(5.1.4.1) n1,(X<i>kty)(&r)>0

for all y Φ χ in the complement of some conical neighbourhood Κ of χ.
Also, Κ can be chosen so that L\{x} lies in the interior of the complement
of K.

PROOF. Let / be a Lyapunov function for the restriction of Χω to L.
As Χω is a linear vector field in the coordinates qi, . . . , q%, u°, pi,. . . , pi,
we can choose / to be a quadratic form. The equations Ex and E2 have
contact of infinite order at x; therefore, the set of points y for which
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Πι*(Χω )(jF) Ξ̂ Ο can be included in a conical neighbourhood of

K* L\{x}(£K.
5.1.5. We assume now that m > 0 of the eigenvalues {λ8} of the

operator H: Lo -*• Lo have Re Xs > 0, and the remaining η - m > 0 have
Re Xs < 0.

We write e%*f = {jF' — <}· Then for sufficiently small f the S/Ct are sub-
manifolds of some neighbourhood of π ^ χ ) , t Φ 0. It is known that e%*( is
diffeomorphic to Rm X S"-"1'1 for t > 0, and to Rn~m X S™"1 for
ί > 0; but 2%Ό is a cone, so that 5fn — {π^χ)} is a submanifold.

PROPOSITION. TTie Cauchy initial data tpt = U o« f/ze submanifold °A'f
for t Φ 0 arcd on Sfo\{:rii0r)} /or t = 0 are free both for EX and for
E2.

PROOF. For sufficiently small t, since φ ( = 0, the check on the character-
istic property can be carried out in the complement to a conical neighbour-
hood Κ (see 5.1.4). Suppose that a local coordinate system qx, . . . , qn on
Μ in some neighbourhood of the point yt 6 S/Ct, that does not intersect
K, is chosen so that 2F(q\, • • •, qn) = qn in this neighbourhood. If Ex can
be written in the local coordinate system qx,. . . , qn, u, px, . . . , pn induced
b y <?i, . • • ,qn a s

« — ^ " 3 ( 7 1 . · · ·> qn, Pi, • • ·, Pn) = 0 ,

then the condition for the initial data φ ( = 0 to be characteristic is equivalent

to d^3 φ 0 at the pre-images of the points .^(φ*). But the latter lie in

the complement of K, where ̂ S±. = n^iX^i^) > 0.
"Pn

5.1.6. The family of functions φί (see 1.5.4) determines Cauchy initial
data L) C Ex for sufficiently small t; we take L°x to be supplemented by
x.

PROPOSITION. Suppose that L1 - U L), with t sufficiently small. Then
L1 is a smooth submanifold of Ex having contact of infinite order with L
at x.

PROOF. Let qu . . . ,qn, u, pu . . . ,pn be local coordinates in a neigh-
bourhood of χ as in conditions (A) and (B). Then E2 is given by the
equation u- JT2(qi, . . ., qn, pu • • ·, Pn) = 0, where ^2{q, p) is a
quadratic form in qlt . . . , qn, px, . . . ,pn. Since Ex has contact of infinite
order with E2 at x, Ex is given by the equation
u- 3^Sax, • • ·, qn, Px, • • •, Pn) = 0, where &{q, p) = &x(q, p) — &M, P)
is a flat function at χ = (0, . . . , 0). Moreover, we have chosen
3F(qx, • • ·, qn) to be quadratic in qlt . . . ,qn. In this case L1 is the set
of points of the form (qu . . . ,qn,0, Pi(q), . . . , pn(q)), since cp( = 0. The
functions p{{q) satisfy the equations

(5.1.6.1) \ Σ

, •• - , q n ,
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The first of the equations (5.1.6.1) follows from the fact that the
η

restriction of the form U± — du— 2 Pi dqt to the submanifold L) must
i=l

vanish; the second is a consequence of the fact that L1 = U L\ C E1.

Thus, the equations (5.1.6.1) show that L1 is determined by some
function \(q), which must satisfy the equation

(5.1.6.2) ^

since —Pi(q)=Mq)-~—. Now we use the fact that .,^Ί = JF2 + ε, where
,f2(q, p) is a quadratic form and ε is a flat function at zero. Then
(5.1.6.2) takes the form

-λ y °*±-q/°*+» y
^J dpidq} *} dqt ' ^J

i, j=i i, 3=1

It follows from 5.1.3 that Χ ω 2 ( ^ ) > 0 at points of L other than x.
η

But at (qlt. . . , qn, 0,. . . , 0), Χω^ takes the value 2 dp d\- gj 'W ' s o

that »,3=i ' ' l

2j dPidqi

 q s dqi
i, 3=i

is a positive definite quadratic form. We rewrite (5.1.6.3) as follows:

(5.1.6.4) λ =

dq ) \ ZA dqjdpi q i dqi
i j l

dPi dPj

We claim that the function on the right of (5.1.6.4), as a function of the
variables (q1}. . . , qn, λ), is smooth and flat at zero. We consider a neighbour-
hood of (0, . . . , 0, 0) that is sufficiently small so that in it

dSF
q T p q p p q d

x, 3 = 1 i, ? = 1

is a positive definite quadratic form in (qt,. . . , qn). We note next that the

Taylor series of g(q, λ) in the neighbourhood of (0,. . . , 0,0) under dis-

cussion divides the Taylor series of ε (q, — λ—^—) .

For it is easy to see that the zeros of g(q, λ) in this neighbourhood are

the points (0, . . . , 0, λ). But e(q, —λ -ητ-) is flat at these points, and

g(q, λ) is a quadratic. Thus, the Taylor series of g(q, λ) in the neighbour-

hood divides that of ε (q, —%-^-\. Further, by a theorem of Lojasiewicz
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and Hormander (see [11], [22]), there exists a smooth function h(q, λ)

such that είςτ, — λ ^ ) = h(q, X)g(q, λ); as follows from a discussion of the

formal power series corresponding to h, g, ε, we also see that h is flat
at the points (0, λ). Thus, (5.1.6.4) is equivalent to:

(5.1.6.5) λ = -h(q, λ),

where h{q, λ) is a flat function at (0, λ). It is not hard to see that
(5.1.6.5) has a unique smooth solution. This solution X(q) is flat at zero,
as follows at once from the properties of h(q, λ) if the solution of
(5.1.6.5) is considered in formal power series.

This last remark concludes the proof of the proposition.
5.1.7. Using the proposition just proved, we can establish the existence

of a solution as an equation Ε C Jl(M) that is tangent to a Lagrangian
subspace Lo C TX(E) invariant under H, and ωχ = 0.

PROPOSITION . Suppose that we are given an equation
Ε C J1(M), ωχ = 0, that the eigenvalues of Η satisfy (4.2.9.1), that among
the eigenvalues of H: LQ -> Lo there are some with real parts of opposite
signs, where Lo is a Lagrangian subspace of TX(E). Then there is a solution
of Ε C J1(M) tangent to Lo.

5.1.8. We prove a more general assertion from which the one just
formulated follows.

PROPOSITION. Suppose that we are given equations
Ek C J1(M), ωΙζ x = 0, codim Ek = 1, having contact of infinite order at
χ and satisfying the conditions (A) and (B). Suppose also that
Lo C Tx(El) is a Lagrangian subspace such that some of the eigenvalues of
H: Lo -*• Lo have real parts of opposite signs. Then there exists a solution
of Ex C Jl{M) tangent to Lo.

PROOF OF PROPOSITION 5.1.8. We consider the manifolds L) (with
the notation of Proposition 5.1.6), while Lx

0 is to be a manifold with a
singularity at χ € J1(M).

The vector field Χω was defined by the equation Χω J < ω̂ = ω 1 ;

from which it follows that Lx {ωχ) = ωγ. Therefore, if

Ts, — °° < s < °°, is a one-parameter group of translations along Χω , then

rs*(coi) = £ ! ω , . Moreover, it follows from 5.1.3 that Χω is transversal to

LQ everywhere except at the singular point χ € J1(M). Thus, the set
Ll = U TS(LQ \ X) in the neighbourhood of χ is a smooth submanifold of

Εϊ. Further, since Uy\Li N x = 0 and Τ*{ωχ) = βίωι, ω , ( Ι ω ) = 0, it

follows that Ux\Li = 0.

Let Ly be the closure of Ll; we show that Lx is the solution of
Ej C J1(M) that we are looking for. Clearly, it is enough to prove that
Li is a smooth submanifold of Ex.

We choose a t/j-diffeomorphism ax such that
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where L\ = {π*(,̂ ~) = 0} [\ L, and σ! differs from the identity diffeo-
morphism by a mapping that is flat at x.

Let us show that such a t/j-diffeomorphism ax exists. By Whitney's
extension theorem (see [11]), there is an Λ-manifold L3 containing Lo

and having contact of infinite order with L at x. Then, in some neighbour-
hood of π χ(χ), L3 is the graph of the 1-jet of a function f{q) that is flat
at iTi(x). If we now define

O i ( q i , · · • , ? „ , u , P i , . . . , / > „ ) = ( ? i > · · · > ? n , u — f ( q ) , p i — -^-, . . . , / ? „ — - ^ - ) ,

where the coordinates ( # ! , . . . , qn, u, px, . . . , pn) are as in conditions (A) and
(B), then clearly ox(L0) C L\.

Let G be a Lyapunov function for the vector field Χω such that
G\L = n*(F)\L on L. We consider a local diffeomorphism
a2: Jl(M) -*• J1(M), σ2(χ) = x, differing from the identity by a flat
function at χ € Jl{M) and such that σ2: σι(£Ί) -»· E2, o2\L2 = 1. The
vector fields Ζ ω and σ 2 * ° σ!*(Χω ) on E2 differ by a vector field that
is flat at x; therefore, by Chern's theorem (see Ch. I, §7), there exists a
local diffeomorphism σ 3 : E2 -*• E2 that fixes the cone G = 0 point wise
and is such that σ3* ° α2* ° σ!*(Χω ) = Χω . We note that the choice of
G ensures that σ 3 fixes LQ pointwise, therefore, Zj is taken by σ 3 ° α2 ° α ι

toa3 ο α2 ο OyiLi)^ σ3 ° σ2 ο Ol(U TS(L}) \x)) = L, or
Li = σ^1 ° o2

l ο o3

l{L), that is, L j , as the image of a smooth submanifold
under a diffeomorphism, is also a smooth submanifold of Ex, touches Lo,
and is therefore the required solution of Ελ.

PROOF OF PROPOSITION 5.1.7. We choose an equation
E2 C Jl(M), ω2χ - 0, touching Ex and satisfying conditions (A) and (B).
By Theorem 4.2.13, there exists a local Ux-diffeomorphism
a: Jl{M) -*• Jl{M), a{x) = x, such that E2 and α(£Ί) have contact of
infinite order at x, and consequently satisfy 5.1.8.

5.1.9. We now consider the case when Re \s > 0 for the eigenvalues
{λθ} of H: TX(EX) -»· TX(EX). Replacing the cone F = 0 by the sphere

F = 1, we can then prove the following propositions in complete analogy
to Propositions 5.1.7 and 5.1.8.

PROPOSITION, a) Suppose that we are given equations
Ek C Jl{M), oik x = 0 (k = 1,2) having contact of infinite order at χ and
satisfying conditions (A) and (B); suppose that the eigenvalues of
H: TX(EX) -> Τχ(Εχ) have real parts of the same sign only. Then, for every
Lagrangian subspace Lo C TX{E) invariant under H, the equation
Ελ C Jl(M) has a solution tangent to Lo.

b) Let Ε C J1(M), ωχ = 0, be an equation such that the eigenvalues of
H: TX{E) -+ TX(E) satisfy (4.2.9.1) and have real parts of the same sign.
Then, for every Lagrangian subspace Lo C TX(E) invariant under- H, the
equation has a solution tangent to Lo.
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5.1.10. THEOREM. Suppose that the equations
Ek C J1(M), codim Ek - 1, ω Λ x = 0 are such that the operators
Hk : Tx(Ek) -• Tx(Ek) (k = 1,2)' are conformally-symplectically
(symplectically) equivalent, and their eigenvalues satisfy (4.2.9.1). Then the
equations Ek C Jl{M) (k = 1, 2) are locally equivalent {U ^equivalent) at
χ GJl(M).

PROOF. We use Proposition 4.2.12. Since the operators Hk {k = 1, 2)
are symplectic (conformally-symplectic) and the conditions (4.2.9.1) are
satisfied, there exists a (contact) ί/j-diffeomorphism ax such that
αγ{Εγ) and E2 have contact of infinite order at x.

Lemma 3.2.2 shows that the eigenvalues of the Hk {k = 1,2) satisfy the
conditions either of Proposition 5.1.7 or of Proposition 5.1.9. It was proved
in Ch. IV that the local classification problem is equivalent to that of the
existence of a solution of some differential equation Ε C J1(M X M);
therefore, the theorem follows from Propositions 5.1.7 and 5.1.9.

5.1.11. THEOREM. Suppose that we are given an equation Ε C Jl{M),
codim Ε = 1, ωχ = 0, and that the eigenvalues of H: Tx {E) -> Tx (E)
satisfy (4.2.9.1). Then, for every Lagrangian subspace Lo C TX(E) invariant
under H, the equation has a solution tangent to Lo.

5.1.12. REMARK. Theorem 5.1.11 merely establishes the existence of a
solution. As for the question of uniqueness, it does not hold in the usual
sense of the word. However, there is uniqueness of the following type. Let
L^ and L2 be solutions of the equation Ε C JX{M), ωχ = 0, satisfying
(4.2.9.1). If Lx and L2 are tangent at the singular point χ € Ε, then they
have contact of infinite order at that point.

5.1.13. We consider now singular points of involutory equations
Er C Jl(M), where codim Er = r > 1.

In this case the classification problem reduces, as it did above, to that
of local solubility of an equation at a singular point. The equation obtained
here is also involutory, and so in suitable coordinates it has the form

Pi = 0, . . ., pr_x = 0 , u == JT{qr, . . ., qn, pT, . . ., pn),

that is, it reduces, in fact, to the solubility of the equation
u = JFiir, •••, <7n: p.T, • • ·, Pn) at the singular point. Therefore, using
Theorems 5.1.10 and 5.1.11, we obtain the following assertion.

THEOREM, a) If the involutory equations Ek C Jl(M) are such that the
operators Hk: V ->• V are conformally-symplectically {symplectically)
equivalent at a singular point, and their eigenvalues satisfy (4.2.9.1), then
the equations Ek{k = 1, 2) are locally equivalent {U^-equivalent) at that
point.

b) Let Er be an involutory equation satisfying (4.2.9.1) at the singular
point x; then for every Lagrangian subspace Lo C Tx(Er) such that
/ζωΐ£ = 0, there exists a many-valued solution of Er passing through χ and
tangent to Lo.
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5.1.14. REMARK. If Er is an involutory equation as above, then there
exists a local contact diffeomorphism a, a(x) = x, such that u(Er) has the
form p! = 0, . . ., pr.x = 0 , u =jF(qr, . . ., qn, Pr, · · ·, Pn), where

jF(qr, • • ·> <7n, Pr, • • • , Pn) — Σ ^"λ>; is a quadratic form, and the types

of ^λ,; are as listed in 3.3.2.

§2. Local classification of even-dimensional Pfaffian forms in the
neighbourhood of a singular point

5.2.1. Suppose that we are given 1-forms cofc G A X (R 2 ") (k = 1, 2). We
want to find out when these forms are equivalent at 0 Ε R2". If they have
constant rank r, 0 < / · < « , in some neighbourhood of 0 e R2", if they
are involutory, and if 0)k 0 =£0, then Darboux's theorem asserts that they
are equivalent.

In particular, if douk has maximal rank 2n at 0, then the conditions
cjfc Φ 0 turn out to be sufficient for the local equivalence of the ojk.
Furthermore, we can discard either the condition that the rank of dcuk is
constant in the neighbourhood of 0 Ε R2", or the condition that cofc 0 ^ 0.
The first possibility was investigated by Martinet [13]. We consider the
case when the άωΙ( are forms of maximal rank and ω .̂ 0 = 0.

5.2.2. In this subsection we consider an arbitrary 1-form ω Ε A ' (R 2 " )
that vanishes at 0 G R 2", ω | 0 = 0.

Acting as in Ch. Ill, we define the Hessian hw of ω at 0 as follows:
hu(X, Y) = Χ(ω(Ϋ))\0, where X, YG T0(R2n), and Χ, Ϋ are any vector
fields extending X and Y, Yo = Y, Xo = X.

It follows from the formula άωο(Χ, Υ) = Χω(Υ) - Υω(Χ) that the
bilinear form /ζω is well-defined and that Λ ω (* . Y)-hw(Y, Χ) = άωο(Χ, Υ).
Thus, Λω = \άω0 + h^, where hs

w is a bilinear symmetric form.
If now ίθ£ G A'CR2") (k = 1,2) and ω .̂ 0 = 0, then for local equivalence

of these forms at 0 G R 2 " the equivalence of the Hessians Λω under the
full linear group GL(2n, R) is necessary. Every linear transformation
A: T0(R2") ->• T0(R2") establishing the equivalence of Λωι and hw^ must
take the forms do)1>0 and hs

w to <2ω2,0 and h^ , respectively; that is, for
all Χ, Υ e r o ( R 2 M ) ,

da,,, 0(AX, AY) = du>2, Q(X, Y), hs

ai(AX, AY) = K2(X, Y).

5.2.3. We turn next to the case when ω*, e A'(R 2 / I), a)k 0 = 0, and the
d(X>k have the maximal rank 2M at 0 G R2". Then we may assume that
dco 1 ; 0 = άω20. The necessary condition for the local equivalence of the
forms ojk at 0 G R 2" in the preceding subsection reduces to the following:
the quadratic forms h*Wi and hs

u^ must lie in the same orbit of Spin).
Thus, the orbits of Spin) in the space of all quadratic forms on
7O(R2") « R 2" are invariants of the local classification problem.
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A description of these orbits based on the operators
Hk, dcjk 0(Hk, X, Y) = hwk(X, Y) was given in Ch. III.

5.2.4. Let ωΙί be forms as above. We claim that they can be realized as
ωΑ: = Ui\Ek f° r c e r t a i n equations Ek C JX(M), Μ = R". We use Darboux's

theorem and choose coordinates xx,. . . , xn, yx, . . . , yn in some neighbour-
n

hood of 0 Ε R 2 " in which άωκ = 2 άχι Λ dyt. In these coordinates cjfc

η

becomes <£>h = djfh(x, y) — T] ]Ji dxi. Therefore, Ek can be realized by
i = l

the embedding ik: R 2" C^. Jl(Rn), where

= y.i, 1 < ; ' < « , ift(u) = ^h(x, y)

for some special coordinate system qx, . . . , qn, u, px, . . . ,pn i n / ^ R " ) .
When we now use the results of the preceding section, we obtain the

following result.
5.2.5. THEOREM. A necessary condition for the local equivalence of

forms cuk Ε A ^ R 2 " ) , where cofc 0 = 0 and d<jik 0 is of maximal rank,
k = 1, 2, is that the quadratic forms hs {= the operators Hk) are
Sp{n)-equivalent. This condition is sufficient if the eigenvalues {λ,} of the
Hk satisfy the condition

(5.2.5.1) ^]τη,λ}φ1

for all natural numbers m^ such that Σ m; > 3.

COROLLARY. Suppose that ω Ε A ! (R 2 " ) reduces to the zero form at
the point 0 Ε R2", where <ico is a form of maximal rank and the eigen-
values {Xj} of Η satisfy (5.2.5.1); then there is a local coordinate system
xx, . . . , xn, yx, . • • ,yn in the neighbourhood ofO Ε R 2" in which ω takes the

η

form 05 = d,f — 2 Vi dxt, where JF is a quadratic form in the variables

x,, . . ., xn, ί/j, . . ., yn u ^ = Σ &%.i, and the types of the ̂ λ .
λ, 3

are as listed in Ch. IV, §3.
EXAMPLE. Suppose that the eigenvalues of Η - γ are purely imaginary

and distinct. Then the conditions (5.2.5.1) are satisfied, so that, in some
coordinate system xx, . . . ,xn,yl, . . . ,yn, ω takes the form

where the μ;· are the imaginary parts of the eigenvalues of Β - - j .

5.2.6. Theorem 5.2.5 allows of a generalization analogous to Chern's
theorem for vector fields. Namely, suppose that the form ω ι can be written

71

as ωχ = d,^1 — Σ yt dxi in some coordinate system xx, . . . , xn, y 1 ; . . . ,yn,
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where .J^ is a quadratic form. If ω 2 - ω ! = de, where ε is a flat function
at the origin, we derive the following result from Propositions 5.1.8 and
5.1.9.

THEOREM. Suppose that ω1 and ω 2 are forms as above and that
Re λ;· Φ 0 for the eigenvalues {h) of the operators Hk{k - 1, 2). Then
coj and ω2 are locally equivalent at 0 Ε R 2 ".

5.2.7. REMARK. The results of this section go over in an obvious way
to involutory 1-forms for which do /\ . . . ,/\ doa ^ 0 and

ϋ '
ω f\ άω /\ . . . /\ άω = 0. In this case the operator Η is induced by the

-, '
Hessian hw on the factor space TQ(R2n)/C0, where Co is the degeneracy
subspace of the 2-form άω0, so that locally ω can be written as

h

a = d^ (χι, . . ., xh, yu . . ., yh) — 2 \)idxi,

where #"(ζ ΐ 5 . . ., xh, yt, . . ., yk) is a quadratic form.

§3. Local classification of Hamiltonians in the
neighbourhood of a singular point

So far we have mainly considered first order equations on Μ correspond-
ing to smooth submanifolds of Jl{M). In this section we consider the case
when the equations are given by submanifolds with a singularity. Suppose,
then, that & ζ C°°(T*M), and that χ G T*(M) is a non-degenerate singu-
lar point, Jf{x) — 0, djf\x = 0. In this case the equation Eg: has a
singular line (x, u) C J1(M), at the points of which Eg: fails to be smooth.

5.3.1. We consider two questions, which are obviously connected with one
another.

1) Let Η be the operator generated by the Hessian hg: of JF relative to
the canonical 2-form dp:

dpx(HX, Y) = hg(X, Υ) Χ, Υ e TX(T*M),

and let Lo C TX(T*M) be a Lagrangian subspace invariant under H. Is
there a Lagrangian submanifold L cr {3? = 0} tangent to L01

2) Let &Ί, JF2 e C°° (T*M) be functions for which χ Ε Τ*(Μ) is a
non-degenerate singular point, djfhlX = 0, ^η(χ) = 0 (& = 1, 2). Is there
a local canonical diffeomorphism α, σ(χ) = χ, such that σ*(^Γ

2) = ^ Ί ?
We solve these problems simultaneously, as we did for equations without

singularities. It was proved above (Theorem 4.3.2) that to solve 2) it is not
enough to give some finite jet of JFh at x. Therefore, we have to go into
a study of "elementary" singular points.

5.3.2. DEFINITION. A point χ G T*(M) at which ^(x) = 0, d^x = 0 ,
is said to be an elementary singular point for a smooth function JF if
R e \ s Φ 0 for the eigenvalues {λ8} of Η and jcv(jF)\x is a polynomial
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in some system of local canonical coordinates.
5.3.3. THEOREM. Let χ €Ξ Τ*(Μ) be an elementary singular point for

Jfx and suppose that JFi and ^ " 2 are formally equivalent at χ relative to
the group of canonical diffeomorphisms; then JFX andjf2 are equivalent at
χ relative to the group of canonical diffeomorphisms.

The proof of this theorem is analogous to that of Proposition 5.1.8.

5.3.4. COROLLARY. Let χ G T*{M) be an elementary singular point for

βρ ζ c°° (T*M) and suppose that /«.(jF)!* ' s a quadratic form in some

system of local canonical coordinates in a neighbourhood of x. Then, for

every Lagrangian subspace Lo C TX(T*M) invariant under H, there is a

Lagrangian submanifold L C T*(M) tangent to Lo and such that <f\L = 0.
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