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Abstract

We discuss here the categorical approach to quantizations of monoidal categories
and functors between them. We outline also some methods of finding quantizations
and compare them with the known ones. Applying the scheme to differential equa-
tions we get that the quantized one is a differential equation which corresponds to
quantized braiding.
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1  Quantizations

1.1  Quantizations of Monoidal Categories

Let C be a strict monoidal category [[11],[14],[2]]equipped with a tensor prod-
uct bifunctor ® : C x C — C and a unit object k.

By a quantization of category C we mean ([7],[8]) a natural isomorphism of
the bifunctor @:® = ®, Qxy : X ®Y —» X ®Y, X,Y € 0b(C), which
preserves a unit, Qxx = Qx x = 1x and the following diagram

idx @ Qyz

XQRYeZ XY Q7
Oxy ®idz Oxyez
XoVvez X  yoves
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commutes.

Natural isomorphisms act in the natural way on the totality of all quanti-
zations. Namely, if Q is a quantization and A is a unit preserving natural
isomorphism of C then a new natural isomorphism A (Q) : ® == ® given by
the formula

M) xy = Ax ®Ay) o Qxyy 0 Axgy
is a quantization too.

Denote by Q (C) the totality of all quantizations of the category. The totality
of quantizations is closed with respect to composition where (Q' o Q")xy def
Qxy o Qxy , and the composition determines a group structure. Denote by
H q2 (C) the factor-set of all quantizations by the above action of the group of

natural isomorphisms.

We call ([9]) HZ(C) the nonlinear 2nd cohomology group of the monoidal
category.

1.2  Quantizations of Functors

Let ® : C — C' be a unit preserving functor between two monoidal categories.
By a quantization of ® we mean a natural isomorphism Q@ :Q0Px$ — Po®,
Oxy : P(X)®®(Y) > (X ®Y), X,Y € O0b(C), of the bifunctors which
preserves units and satisfies the coherence condition. Namely, the following
diagram

ide(x) ® Qv,z

B(X)® (V) ® 0(2) BX)RB(Y ®Z)
Qxy ® ids(z) Oxyez
X QY)® (Z) Oxevz X RY ® Z)

commutes [cf.[3]].

The guantizations of the identity functor id : C — C are precisely quantizations
of the category.

Moreover, if ® : C — €' and ¥ : ¢’ — C” are functors between monoidal
categories and if Q% and QY are corresponding quantizations then the natural
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1Isomorphism

Vo def & 14
QX,Y =y (Qx,y) ° Q@(X),tb(y)
determines the quantization of the composition ¥ o .
We call quantized functor a pair (<I>, Q‘I’) consisting of a unit preserving functor

and a quantization. The above statement means that the totality of quantized
functors is closed with respect to the composition.

2 What do we quantize?
2.1 Algebras

Let 1 : AQ A — A be an algebra into category C. We shall define a quantization
Aq of the algebra given a quantization Q of the category as the same object
A equipped with new product g =poQsa: A®A = A

Then (A, 1) is an algebra in C.

2.2 Modules

Let (A, p) be an algebra and px : A® X — X be a left A-module in C . By
a quantization of the module we mean the same object X equipped with new
multiplication pxq=px 0 Qax AR X = A.

Then (X, ux,) is a left A-module in C too.

2.8 Coalgebras

Let A: A — A®A be a coalgebra in-C with diagonal A. We define quantization
of the coalgebra to be the same object A equipped with new diagonal A, :
QZ}AOA:A%A@)A.

Then (A4, A,) is a coalgebra in C.
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2.4 Braidings
Let o be a braiding in C and Q be a quantization. We define 0%, = Q;}X o
oxyoQxy : X®Y =Y ®X. Then 07 is a braiding into C.

If (A, p) is a o-commutative algebra in C then (A4, u,) is a o%commutative
algebra.

2.5 Bialgebras

In this subsection we fix a braiding ¢ in monoidal category C .

Let (A, 1) be an algebra in C. The tensor square A%2 = A®A can be considered
as an algebra with respect to multiplication u®? = (1, ® 044 ® 14)o(u®pu) :
A®? @ A% 5 A%?,

By o-bialgebra (A, p, A) in C we mean an algebra (A, 1) and a coalgebra (A4, A)
such that the diagonal A is an algebra morphism A : (4, ) — (A%?, u22).

Then the quantization (A, pq, A,) is a 04-bialgebra in C.

2.6 Internal Homomorphisms

Assume that C is closed category. Then for any pair of objects X, Y one has the
internal homomorphisms Hom (X,Y) object together with the composition
¢ :Hom (Y, Z) @ Hom (X,Y) > Hom (X, Z), pu°: f®g+— f*g.

We consider the totality of all internal homomorphisms as an ”algebra” with
partially determined operation * and quantization of internal homomorphisms
as the quantization of this algebra. Namely, we define a quantization of internal
homomorphisms to be a natural isomorphism Qj, : Hom (X,Y) — Hom (X,Y)
such that Qn(f) *xz = f xT for all f € Hom (X,Y), = € Hom (1,X) where

f xg= e (QHom(X,Y),Hom(Y,Z) (f® 9)) .

Then Qp, (z) =z and @, (f *xg) = Qn (f) * Cu(g) -
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3 Description of Quantizations

The description of quantizations is based on a some kind of non-abelian coho-
mology theory intrinsically connected to a monoidal category.

3.1 Quantizers and Non-Abelian Cohomologies

Let €2 be a totality of generators in C. We shall assume that {2 contains an
unit object 1 and closed with respect to the tensor product. In other words 2
is a monoid.

One can reformulate categorical constructions in terms of ”geometry” of €.
Namely, objects of the category we can view as “bundles” over Q. If X is
an object then the "fibre” of the corresponding bundle at point w € € is
Mor ¢ (w, X) . In this interpretation elements of objects correspond to sections
the bundles and morphisms correspond to bundle morphisms.

To describe the quantizations we consider bundles I,, over Q" = Q2 x --- x Q
—_———

n times

where the fibre I, at (w1, ...,ws) 18 I (w1, .-, wp) =Is0 (W1 ® -+ - Q@ wy) -

Let T',, be the totality of all sections of I,. An element s € I',, establishes a
correspondence (wi, -..,w,) € Q" —— s (w1, ..., wn) € Iso (w1 ® -+ ®wy,) . Note
that I',, is a group with obvious group structure.

We define differentials 6, : I’y = ['pi1, n = 1,2 as follows:

6 (8) (wr,w2) = (s (w1) ® 8(wa)) 057 (w) ® wa),
R 6y (8) (wr,we,ws) = (1u, ® s (wa,ws)) 0 s(wy,ws ®ws) 0 571 (w) @ wa,ws) 0
(3_1 (whw?) ® 1@3) .

Then § 06, = 1.

Tensor preserving natural transformations A determine elements sy € I'y where
sy (w) = A (w) and s, € keré;.

In the same manner quantizations Q determine elements g € I's where g (wy, ws) =
Qo w, and g € kerd;. We call these elements gquantizers.

The correspondence between quantizations and quantizers can be extended to
the map from H7 (C) to the second non-abelian cohomology space ker 6,/ im 6.
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3.2  FEzamples

3.2.1 Graded Categories

Let G be a group and let C be the category of G-graded k-modules equipped
with the standard monoidal structure. Then Q = G and H; (C) = H? (G, U (k))
where U (k) is the group of invertible elements of the ring k. Therefore, quan-
tizations of the category are in one-to-one correspondence with the second
cohomology group.

3.2.2 Harmonic Oscillator

One of the most interesting application of graded quantizations we can find in
dynamical systems. If such system possesses a non-trivial group of symmetries
then the corresponding algebra of functions inherits a grading .

Let us consider, for example, 1-dimensional oscillator with Hamiltonian H =
p? + ¢%. The symmetry algebra of conformal symplectic transformations con-
tains two-dimensional abelian algebra generated by the rotation and the scale
transformation. The algebra of polynomials A = C[p,q] has the canonical
G = Z ® Z grading with respect to the symmetry algebra. Namely, compo-
nents Ay, a,b € N, are generated by the polynomials 2°z® where z = p+1q.
Therefore, this algebra can be viewed as algebra in the monoidal category of
Z ® Z - graded C-vector spaces. The cohomologies H? (Z & Z,C*) represent
by 2-cocycles of the form ¢ (z,y) = exp (: (Qz,y)) where z,y € ZDZ and

0 v
Q:
-0

The quantization of the algebra corresponding to the quantizer ¢ gives the
following multiplication table for the quantized algebra

z2z2=2-2, 2-Z2=€%2-Z2,Z-2=€e¥2-2,2-2=2Z-%.
q q q q

Denote by H, = p? + ¢? the classical Hamiltonian and by H, = p*p+ g *q
the quantum one.

Then Hy = H.cosv, and
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sinv
2

sin v
p*q=pq—THc,q*p=pq+ H.,

pxq—qxp= H.sinv.

Note that the algebra is the quantum plane [[12]].

3.2.8 Modules over Hopf Algebras

Let H be a Hopf algebra over ring k and let C = H-mod be the monoidal
category of left H-modules. In this case one has a single generator H and the
quantizer is represented by an element ¢ € H % H satisfying the following

conditions

(A®id)(q) - (¢®1)=(1d®A)(9) - (1®9),
g-A(h)=A(h)-q, YVh € H,
(e®id)(¢)=(d®e)(g) = 1,

where € : H — k 18 the counit.

The quantization Q corresponding to quantizer ¢ has the form Qxy : c®y €
X®Yr—q- (z®y)e XQY.

Note that quantizers ¢ which satisfy the first and the third coherence condi-
tions produce quantizations of the forgetful functor.

The unit preserving natural isomorphisms correspond to invertible elements
h € H. The action the group of units U (H) on quantizers given by the for-
mula ¢ — A (h) - ¢ - h~®2. The spaceQH? (H) of U (H)-orbits is called the
2nd nonlinear cohomology of H. The linearization of nonlinear cohomologies
(the ”tangent space” to QH? (H) at id) coincides with the second Hochschild
cohomology group of the coalgebra H (see, 77)

3.2.4 Symmetries

Let G be a Lie group and let H = D (G) be the corresponding Hopf algebra
of distributions. We shall consider here special type of quantizations. Namely,
by exponential quantizations we mean quantizations given by quantizers of
the form ¢(t) = exp (tK),t > 0, for some element K € H @ H.

In other words, ¢{t) is the solution of the differential equation
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oK

T _Kxq t>0
6t *q7 —_— b
q(0)=1

in the algebra of distributions on G x G.

We shall distinguish two types of quantizations. The first one, we call them
Moyal quantizations, K is skew-symmetric and ¢(t) is invertible[cf. [1],[4]].
The second type, we call them Nelson quantizations, K is symmetric and g(t)
is not invertible. Strictly speaking they are not quantizations in our sense
because they produce natural transformations but not natural isomorphisms.
One may consider this type transformations to deforms algebras, modules,
internal homomorphisms, but not coalgebras, bialgebras and braidings.

The picture produces by the Moyal type quantizations corresponds to the
Heisenberg approach to quantum mechanics. On the other hand, the Nelson
type quantizations correspond to the stochasti¢ quantizations.

To write down the coherence conditions for the kernel K we shall consider K
as 2-cochain: K : C* (G) ® C* (G) — C.

Then the coherence conditions for K mean:

(1) K is a Ad G-invariant,
(2) K(L,f)=K(f,1)=0, Vf € C*(G),
(3) K(fg,h)+h(e)K(f,9) =K (f,gh)+f(e)K (g,h), Vf,g9,h € C=(G).

In other words, K € Chocpscniia (C°° (G),C) is a normalized Ad G-invariant
Hochschild 2-cocycle. '

Assume now that G acts on a manifold M and let K be the image of a kernel
K under the action. We identify K with an operator into C*° (M x M). To
find a quantized product f 29 = F | f,g € C®(M) one should solve the

following differential equation

OF

=K(F),t>0

=K (F), 20,
F|t=O:f®g

on M x M.

It is easy to check that any Ad G-invariant tensor 7 : T2 (G) ® T (G) — C
determines a distribution K, , K, (f,g) = 7 (def ® d.g) which satisfy the
coherence condition.

The classical Moyal quantization we obtain for the abelian group G = R*®
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with K, corresponding to the standard symplectic structure [ [1],[13]]. The
more general type of quantizations we shall get for an arbitrary algebra Lie
® of symmetries by taking bivectors 7 € A% ()" on a Cartan subalgebra §
which are invariants of the Weyl group W.

The Casimir elements 7 € S? (T2 (G)) give us examples of stochastic type
quantizations.

The second approach to use symmetries for quantizations is based on the
Grothendieck algebra of G [[9]].

We shall illustrate this method for the simplest non-trivial group S3. The rep-
resentation algebra K (S3) is generated by the non-trivial (sign) representation
A1 , the two-dimensional irreducible representation A, and the following rela-
tions A2 =1, A\ he = Ay, A2 =1+ Ay + 2. To define quantizations we should
fix isomorphisms w;; : s ® A; = A; ® A; in such a way that the coherence
conditions hold. Let us write w;; = 5 w); - Ay where wf; is the restriction of
w;j on Ag-component of A; ® A;. In our case

wn:az-1,w12=w21za-/\z,wQQ:ab~1+b~/\1+c-A2
for some a,b,c € C*.

Natural isomorphisms of the category can be represented by elements h =
hi- A1+ ha- Ao, hy,hy € C, with the following action on the quantizations

h (wn) = h1_2w11, h, (wlg) = hl_lwlz, h (wgg) = h;lc . Az + hﬂ'&;Qb . /\1 + hz_za,b - 1.

Therefore, one has 1-parameter family of nontrivial quantizations of the cat-
egory.

4 Differential Operators in ABC-Categories

In this section we discuss differential operators in monoidal categories equipped
with braiding. The main reason for such type of generalization is based on the
fact that the quantizations of ”classical” differential operators lead us to this
type of differential operators .

4.1 ABC-categories

To build up suitable calculus we need the following extra ingredients for ba-
sie category C. Namely, we shall assume that category under consideration
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satisfies the following three conditions:

A C is an abelian monoidal category (in the sense that C is abelian monoidal
and the tensor product bifunctor is biadditive and right exact).

B C is a braided category. That is, C is equipped with a braiding o.

C Cisaclosed category. That is, the internal homomorphism bifunctor X,Y ——
Hom (X,Y) is determined for all objects of the category.

We use abbreviation ABC-category for a category satisfying the above prop-
erties.

4.2 Symmetrizations and Differential Approzimations

Let (A, 1) be a o-commutative algebra in an ABC-category and let (X, ub, %)
be a A-A-bimodule. We say that X is o-symmetric if ply = p% oox 4 and
1y = py o 04 x. For any A-A-bimodule X we define a o-symmetric part X,
of X as maximal o-symmetric submodule. That is,

X, ={z e X|(ux -t ooax)(@®A) =0, ( sy -tk ooxa) (z® A) =0}

Let us consider a quotient bimodule X /X, and define X! as preimage of
(X X,), with respect to the canonical projection X — X X,. Proceeding
in this way we get a filtration of the bimodule X by bimodules X, i = 0,1, ...;

0=XPVcxP=x,cxPc.-cxXPcxiVc...cxPcx.

We call a bimodule X{) = Uiso X® a differential approzimation of X. We
say that A-A-bimodule X is differential if X = X(*).

The graded object Gr, X = 3. X /XY is a o-symmetric A-A-bimodule.

4.8 o-Differential Operators

Now we apply the differential approximation procedure to bimodules of inter-
nal homomorphisms and obtain bimodules of o-differential operators. Namely,
the differential approximations (Hom (X, Y))® we denote by Diff? (X,Y) and
call modules of o-differential operators of the order < 4. The composition
of internal homomorphisms induces a composition of o-differential operators
Diff{ (Y, Z) ® Diff] (X,Y) — Diff{,; (X, Z).

ity
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The corresponding graded object Gr, (Hom (X,Y")) we call a symbol module
and denote by Smbl? (X,Y"). All of them are symmetric A-A-bimodules and
the symbol algebra Smbl? (4, A) is, an addition, o-commutative algebra.

Follow the classical scheme we can define o-Poisson structure into the symbol,
algebra. Namely, let us denote by smbl] (A) the symbol of A € Diff7 (4, A),
smblf (A) = Amod Diff7_; (A, A). Then the o-commutativity of symbol alge-
bra Smbl? (A, A) means that the o-commutator

(A, V)7 = u(A ® V — opirg (4,4),piig (4,4) (V @ A))
of operators A € Diff{ (A, A), V € Diff] (A, A) belongs to Diff{,; , (4, 4).

The symbol smbl7, ;_, ([A, V]”) depends on symbols of A and V and deter-
mines o-Poisson bracket

{smbl? (A) ,smblf (V)} = smblf,;_, (A, V]°)

and o-Poisson structure into the symbol algebra Smbl? (4, A).
4.4  Quantizations of Differential Operators

The quantization procedure for differential operators is based on the follow-
ing observation. Let (X ik ,uT) be A-A-bimodule over o-commutative alge-
bra A and let @ be a quantization. Then the differential approximations for

X, i, ,u’) and (X, p}, uZ) considered as A,-A,-bimodule coincide as objects
but differ in the bimodule structures.

Applying this remark to the bimodules of internal homomorphisms we get
that the quantization of internal homomorphisms induced a quantization of o-
differential operators to ¢?differential operators. This quantization preserves
order and composition of differential operators and therefore isomorphisms
between corresponding o-Poisson algebras of symbols,[[7]].

Linear differential equations in a monoidal category can be viewed as modules
over the algebra of o-differential operators and therefore can be quantized due
to the general scheme. In the same manner non-linear differential equations
correspond to algebras over the differential operators and the same scheme
can be applied. Note that the results of these quantizations are differential
equations but with the quantized o.

As a toy example, let us consider ODEs which possess the solvable two-
dimensional Lie algebra ® = (X,Y) of symmetries. Then applying the above
quantization scheme to the ODEs as objects of category -modules and choose
7= X AY € A?(8) one gets a quantization of the ODEs.
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Take for example the more common algebra of point transformations generated
by the translation a% and the scale transformation u%. Then 7 = ua% A 5% €

A? (&) and, say, the action of the quantized operator Qh(%) on functions

f € C* (R) shall be the following Qh(%)f = g—f; + t%i—g +o(t).
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