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V. V. LYCHAGIN

ABSTRACT. A general scheme is presented for constructing solutions of systems of
differential equations with a prescribed type of singularities. The scheme is then
applied to the homological equation arising in the problem of classifying Lie algebras
of vector fields in the neighborhood of a rest (or equilibrium) point. The formal, C°°
and C^' variants of the classification problem are discussed. Sufficiency conditions in
the contact, symplertic, and general cases are given in terms of spectral sequences.

Bibliography: 18 titles.

There are two approaches to investigating the solubility of systems of differential
equations within classes of functions with a given type of singularity: the algebraic -
or formal and the functional. In this paper, we present a general scheme for obtaining
conditions for formal solubility. We give the general definition of the type of a singularity
below; here we only remark that, in the case of the so-called μ-adic filtration associated
to a singularity of the type uorder of smallness at a point", our scheme (for regular
systems of differential equations) comes in contact with the Spencer-Quillen-Goldschmidt
theory of formal solubility [13]. And for singularities of the type "order of smallness on
a submanifold of codimension Γ' the method includes the classical theory of transfer
operators.

Our approach is based on spectral sequences. There are two reasons for this: first,
the solubility conditions have a homological nature, and, secondly, the construction of
solutions is based on the method of successive approximations. We note that in the
spectral sequences that arise, the term (Ε^,ά^) corresponds to the symbolic part, the
differential dv^ in the term [E\q,άψ) is the transfer operator, and the differentials dv

r

q,
r > 2, which were not as a rule considered in the classical approach, are higher transfer
operators which are most adequately defined using the machinery of spectral sequences.

From our point of view, the most interesting illustration of our approach (another
illustration involving the computation of the stable eohomology of Spencer was presented
in [10]) is in obtaining conditions for the formal solubility of the homological equation
which arises in classification problems. In this case, spectral sequences not only give
solubility conditions, but they also indicate the normal forms to which the classification
problem under consideration can be reduced.
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V. I. Arnol'd [2] was the first to use spectral sequences in application to degenerate
singular points of functions. Here, we apply spectral sequences to the determination
of normal forms of Lie algebras of vector fields (contact, Hamiltonian, or general) in a
neighborhood of a rest (or equilibrium) point.

A well-known theorem of Elie Cartan asserts that the (analytic or smooth) action of
a compact Lie group in a neighborhood of a fixed point is equivalent to a linear action.
In the case of semisimple Lie algebras, Hermann [15] proved that formal linearization is
possible. Kushnirenko [4], as well as Guillemin and Sternberg [17], using Weyl's "unitary
trick", proved that an analytic action of a semisimple Lie algebra is equivalent to a linear
action. In this paper, we consider the case of an arbitrary Lie algebra and the cases
when the Lie algebra is realized as an algebra of contact or Hamiltonian fields. The
triviality of the first term of the corresponding spectral sequence is analogous to the
absence of resonances—the Poincare conditions—while for a one-dimensional Lie algebra
it is analogous to coincidence with these conditions.

For reductive, semisimple and commutative Lie algebras we obtain conditions under
which formal equivalence implies C°° or Οω equivalence. Here, a basis role is played
by the presence in the algebra of a vector field for which the fixed point is a node
(Re λ > 0). We note that this coincides with the condition that the Gel'fand-Fuks
cohomology be finite-dimensional [14]. This is not by chance. Finite-dimensionality of
a Lie algebra <& represented by vector fields is not essential for consideration of formal
questions. In particular, applying the spectral sequences of §2 to representations of
filtered algebras on Lie pseudogroups and using the Gel'fand-Fuks cohomology instead of
the finite-dimensional Lie algebra cohomology, we obtain analogous results about normal
forms of intransitive Lie pseudogroups.

The main results of this paper were announced in the notes [8] and [9].

§1. Singularities

Consider a smooth manifold Μ with dim Μ = η + m and a smooth submanifold
Mo C Μ with codimMo = m. Let & (respectively, &Q) be the R-algebra of smooth
functions on Μ (on Mo) and μ C SF the ideal corresponding to Mo:

= 0}.

In what follows, we shall identify ,Ψ§ and & j'μ. More generally, let a: E(a) —> Μ be a
smooth vector bundle, and A = T(a) the module (over &~) of smooth sections of a. Then
AQ = Α/μΑ can be identified with the ^-module of smooth sections of the restriction
of a to Mo-

If β: Ε(β) -> Μ is another vector bundle, then DiS k{A,B), where Β = Τ(β), will
denote the ^-module of differential operators which have order less than or equal to k
and which operate from sections of the bundle a to the sections of the bundle β.

1.1. We consider C°°(M\MQ) as an ^-module and choose a submodule Q together
with a decreasing filtration by ^-modules:

U ^^
jez jez

DEFINITION, a) We say that submanifold Mo C Μ has a singularity of type Q if an
• "̂-module Q C C°°(M\M0) is fixed together with a decreasing filtration {Qj} satisfying
the following conditions:

1) Differential stability: A(Qj) C Qj-k for all differential operators Δ €
and A{Qj) C Qj-k+i if A{&~) C μ.
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2) Differential completeness: Qj-k = \J&.eOiKk(.9-,.?-) MQj) f° r a l l 3 £ Z.

3) Localness: if a function / £ C°°(M\M0) is such that for each χ £ Μ there exist a
neighborhood ^ , 3 1 and a function <̂ · € Qj such that / Ξ q3 in d?x\M0, then f £ Q3.

b) A function / € C°°(M\Mo) has α singularity of type Q and order j if / £ Q/, but

For the vector bundle a we get Q-,̂ 4 = Qj ®^ A. The elements of QjA will be
considered as sections of a having a singularity of type Q on Μ and order greater than
or equal to j .

EXAMPLE 1. The μ-adic filtration: Qj = μ3 for j > 1 and Q^ = ^ for j < 0.

EXAMPLE 2. Let M o = {0} C R m , and let /σ(χι,... ,xm), σ = (ai,...,am), σ, £ Ζ,
be a collection of smooth functions on R m \ 0 such that dfa/dxi = / σ - ι , and / σ · ε Ε
C°°(R m ) for all functions ε which are flat at the origin. Let Q be the module generated
by functions of the form x\l • • • x7^ • fa{x), where Ti > 0, and let Q3 be the submodule
generated by those xT ja[x) for which \r\ — \σ\ < j .

EXAMPLE 3. The preceding example admits the following generalization. Suppose
that Mo C Μ is the submanifold cut out by functions hi,...,hm £ C°°(M), Mo =
h^1 (0) Π · · • Π h^1 (0), whose differentials are independent of Mo, and let fa be the above
collection. Then the module Q generated by hTfa(hi,..., hm), τ = ( r i , . . . , r m ) , with
filtration Q3, \r\ — \σ\ < j , determines a singularity on Mo-

EXAMPLE 4 (a homogeneous filtration). To each variable xi,...,xm we associate a
degree: ku...,km. We set Q = .<? = C°°(R m ) and Q3 = Q {j < 0), and let Q3 {j > 1)
be the functions of total degree of homogeneity greater than or equal to j . Then Q
determines a singularity on Mo = {0} C R m .

REMARK 1. Note that by applying property 1) to the scalar differential operators
that are multiplication by functions / £ μ. we obtain μζλ, c Qj+ι for each singularity

Q-
REMARK 2. All the preceding examples carry over to a trivial vector bundle a if

the elements of Q3A are understood to be vector-valued functions on M\MQ whose
components all lie in Q3.

1.2. A filtration {Qj} determines an additional filtration on the .^"-module of differ-
ential operators

Diff.(yl,B)= \jOiSk{A,B).
fc>0

For this we define the .^-module Diff^(yl, B) of differential operators of order less than
or equal to r with respect to a singularity of type Q to be the set of differential operators
A€Diff,(,4,S) such that

1) A(Qj) C Qj-r, and
2) ad/, ο . . . ο adfk(A){QJA) c Qj.r+k{B) for all Λ,.. ., fk £ .9~ and j £ Z. Here

ad/(A)(o) = Δ(/α) — /Δ(α) is the commutator of Δ and the operator of multiplication
by/·

The inclusions

Diflf (Λ, B) C Diff?+1 (A, B) and Diffr(A, B) C Diflf (Λ, Β)

are obvious, so that

Diff.(/l,i?)= (J Omf{A,B),

and {ΌϊΗ®(Α, Β)} defines an increasing filtration in DifT*(/l, 5 ) .



552 V. V. LYCHAGIN

Σ™ V(z)d on R m
EXAMPLE. Consider the vector field V = Σ™ V,(z)d, on R m , where dt = d/dxt and

Vj(O) = 0. If Q is a singularity on the submanifold Mo = {0} C R m and V,(x) φ μ2 for
at least one value i, l<i<m, then V e D i f f ^ y , ^ ) . Otherwise, V e Difff (.5^.

1.3. The symbolic algebra and the Weyl algebras. Let

be the graded module associated to the filtration {Differ (Λ, Β)}; that is,

S?(A,B) =

We put S?(.^",y) = S.{Q) and S?{^,.^) = Sr{Q). Since μ χ Diftf (Λ,Β) C
Diff,!_i(.<4, Β), e a c n homogeneous component S®(A, B) (and, together with it, the entire
module S?(A, B)) is an -^-module.

In the case when A = B. composition of differential operators defines the additional
structure of a (noncommutative) .^-algebra on S*(A,A). We call the J^-modules
5* (A, B) symbolic modules and the ,^-algebra S»(Q) the symbolic algebra of the singu-
larity Q.

EXAMPLE. Let Mo = {0} C R m , and let Qj = μ3 (j > 0) be the μ-adic filtra-
tion. Then S* (Q) can be identified with the algebra of polynomial differential operators
Σ σ το·τ,σχ

σ9τ, where σ = (σ ΐ 5 . . . ,am) and r = (τχ,... ,rm) are multi-indices, and Sr{Q)

\σ\ = r.can be identified with the set of operators of this form for which
With this example in mind, we shall call the symbolic algebra of a μ-adic filtration

the infinitesimal Weyl algebra of the ideal μ (of the submanifold Mo), and denote it by
\ν(μ).

We give another description of this algebra. Consider the ^-module Ε(μ) = VQ θ
VQ. where VQ = μ j μ2 is the module of sections of the conormal bundle and VQ =
Ήοτη^τ0(ΐΌ,·^ό) is the module of sections of the normal bundle of the submanifold Mo-
We define a symplectic structure on Ε(μ) using the skew-symmetric two-form Ωμ €
Λ2(£(μ)*), where

"μΙΛ,ΐ j | Q . f d i 0 , ^

Let υ){μ) be the quotient of the tensor algebra Τ(μ) of the module Ε(μ) by the ideal
generated by

Χ®Υ-Υ®Χ-Ωμ(Χ,Υ)-1, Χ,Υ<ΕΕ{μ).

The following holds.

PROPOSITION. The infinitesimal Weyl algebra \ν(μ) is isomorphic to τυ(μ)

PROOF. Choose a local coordinate system (χχ,..., xn, j/i,. . ., ym) on a neighborhood
<f of the point a € Mo such that Mo Π tf is given by the equations J/i = · · · = ym = 0.
The operator

has order equal to the maximum of the sums σ^ +ord οσ, ι(72, where ord ασι>σ2 is the order
of smallness of the coefficient α σ ι , σ 2 on the submanifold MQ. It remains to observe that
the elements yTdy are elements of ιν(μ) and aa{x)d% e Oifi*(.%,,%).

1.4. Consider the graded module i?*(A) = Σ)7·€Ζ-^>(-^) associated to the filtration
Qj{A): that is, R3(A) = QJA/QJ + ̂ A. We set R3 = Qj/Qj+i and β, = T,jez,Rj-
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It follows from the conditions defining the filtration {Q3} that μΙΙ^(Α) — 0. Hence,
Rj(A) can be considered as an ,^-module. We also remark that the natural map R3 ®ψ-0

Ao —> Rj{A) which sends q3 mod Q3 + i <8>a and mod μΑ to the element q3a mod Q3+\A
establishes an isomorphism of .^-modules.

Let Δ G DirT̂  (A B). We define the j'th symbol of A with respect to the singularity Q
to be the map

where σ^(Δ) (a3 mod QJ + iA) — Δ (ay) mod Q3~k+iB, and we define the complete sym-

bol to be the map σ?{A) = Σ^-σ^(Δ): R*{A) -» R*(B). From the conditions on the

filtration {Q3} it follows that the symbols σ®(A), j G Z, are J^-morphisms.
1.5. Transfer operators. Consider the following problem: find a solution of the

equation Δ(α) = 0, Δ G Diff»(^4,i?), having a singularity type Q on a submanifold MQ.
In other words, find ay G ζλ,/l such that A{u3) = 0. We first consider the cruder problem
in which we merely require that Aa3 £ QooB C B. The natural way to try to solve the
latter problem is as follows. Choose an arbitrary element a3 € Q0A. Then Αα3 G Q3-kB
if Δ € Diff^(A -0). We determine what kind of conditions must be imposed on a3 for
A(aj) to be a "smoother" section; that is, A(a,j) € Q3-k+]_B. Using the symbol of the
differential operator Δ with respect to the singularity Q, we can describe this condition
succinctly as

aJ{A){[a3)) = 0, where [aj] = oj mod Qj+1A € R3{A).

Suppose [a3] G kera^(A), and consider the conditions under which it is possible to
obtain an even •'smoother" right-hand side without changing [a3}. For this, it is clearly
necessary that A(a3 + α, + ι) € Q3-k+2B for some choice of a3+1 € Q3 + iA. In other
words, it is necessary that Δ (ay) mod Qj-k+^B G \η\σ^+ι{Α), and so forth.

We formalize this process. To do so, we introduce the ̂ -modules

and consider the operators Δ] : .^3{A) —> ^ · + 1 (Δ), where

A)(\a3\) = [A(a3)\ mod l

THEOREM. The operators Aj, j G Z, are differential operators of order less than or

equal to 1 over .9^.

PROOF. It is sufficient to verify that ad/, oad/2(Aj) = 0 for all / i ,/ 2 G .%. Let
Λ112 € i ^ be extensions of /i and fc. Then

ad/, (A))([a3}) = [ad/, (Δ)(α,)] mod imaf+1(A)

and
ad/2 ο ad/, (Δ^)([α,-]) = [ad/2 ο ad/-, (Δ)(α;)] mod im^Q

+ 1 (Δ),

but ad/2 oad/, (Δ)(α^-) G Q3-k+iB and, therefore,

[ad / 2 oad / i (A)(o i )]=0.

1.6. Spectral sequences. In this section, we consider the case when the operators
are differentials of degree +1 in a graded complex ,sf = ΣΑ3:

O ^ / Λ Α ' Λ . . , Λ Α ' Λ AS+1 - • • · A AN - o.
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This case is important, first of all, because considering the Spencer complex associated
with the differential operator allows us to obtain more significant (in comparison with
§1.5) information about the transfer operator in overdetermined problems. On the other

hand, considering complexes of the form 0 —> A0 = A —> A1 = Β —> 0 allows us to more
naturally introduce the higher transfer operators and thereby give a complete solution
to the problem formulated in the preceding subsection.

Using the singularity Q, we introduce a filtration on the complex Qsnf by setting

FP{A3) = Q

subject to the condition that Δ e Diff^ ( j / , stf). The differential Δ is compatible with
this nitration. Consider the spectral sequence

EPQ = ZF/Zfll"-1 + BPq_v

where Zpq = {a € Fp{Ap+q),A{a) G Fp+r{Ap+q+1)} and Bpq = &{Zp-r>q+T-1). We
note that elements in Z%£ can be interpreted as formal (that is, considered up to flat
ones) cycles in Ap+q having a singularity of type Q on Mo. Thus, for a complex of the

form 0 —> A —• Β —» 0, the elements of E^~p are solutions of the problem formulated

in §1.5.

We describe the initial terms of the spectral sequence: E%'q = Fp{Ap+q)/Fp+i{Ap+q),

and therefore Ε™ is isomorphic to Rp(i-k)-qk ® AP

)

+q and the differential dp

o

q coincides

with the symbol crHl_k, .(A). Consequently, Epq coincides with the cohomology of

the symbolic complex

4
o

at the term -Rp(i—fc)_Qfc ® -^ο+9•

In particular, since the maps cy (Δ) are .^-homomorphisms, the terms Epq are 9Q-

modules. We remark that for the complex 0 —* AQ — A —> A1 = Β —> 0 we have
Epq = 0 if ρ + q φ 0,1, and E\~v = -%{t\), while Ε\Λ~ν = %{Α).

THEOREM. In the spectral sequence {Epq,dPq), the terms Epq are •%-modules, and
the operators dpq: Epq —+ Ep+ 'q are differential operators of order less than or equal to
1.

PROOF. AS in the proof of Theorem 1.5, it suffices to verify that ad/, °s.af.2(dpq)([aj})
— 0 for all / i , / 2 e -̂ o and j = p{\ - k) — qk, where [a,] is the image of a, in Epq. But

ad/, oMlf2(dPiq)(laj}) = ad/, oad/ 2 (A)(K]) = 0,

because ad/, oad/ 2 (A)(a J ) € Fp+2A
p+q+l.

1.7. As a first example of an application of the spectral sequences we have con-
structed, consider the problem of the existence of first integrals of dynamical systems in
a neighborhood of a rest point.

Let V = 53™ ^i(x)di t)C a vector field on R m for which 0 G R m is an equilibrium
point; that is, Vj(0) = 0 for 1 < i < m. Consider the μ-adic filtration: Qj = μ3 (j > 1)
and Qj = -Ψ (j < 0), and the spectral sequence (EPq,dPq) of the cohomology of the

complex 0 —> AQ — .Φ~ —* Αχ = . ? " - » 0 with respect to this filtration.
We assume that the linear part of V is not identically zero; that is, V G DiffQ(·!?",.!?").

In the given case, R3 — SJT*, where T* is the cotangent space to R m at the point
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0 e R m and CT?(V): S^T* -> S3T* is the operator of taking the derivative along the

linear part of V; here a f (V) : T* —> T* is the operator dual to the linear part. It is

well known that the spectrum of the operator <7J*(V) coincides with J2T ntXi where

Σ™ ητ — j , πχ,... ,nm are natural numbers, and Aj,...,Am is the spectrum of the

linear part of V. Consequently, E\~p = 0 and ΕρΛ~ρ = 0 if Σ? η^ φ 0 for all

natural numbers rii such that ΣΤ ni = P' ^ n e t e r m s E\°'~p = ker cr|f(V) and Ep' ~v =

coker^(V) can be nontrivial only if there exist resonances ΣΤ ni^1 - "> Σ " ι - Ρ-

Note also that fc, = Σρ>ο E\ ~p C S*T* = Σρ>ο SPT* i s a subalgebra of the algebra

of homogeneous polynomials on Τ = To(Rm) a n d C* = Σρ>ο^' ~V ^s a m °dule over

this subalgebra. Moreover, if the linear part of V is semisimple, then C* is isomorphic

to fc*. The differential d\ = Σ ρ > ο ^ ? ' ~ Ρ : ^* ~* C* is> first, an R-linear operator and,

second, a derivation: d\[ab) = ad\{b) -Ybd\(a). In the semisimple case, d\ is a derivation

(of degree 1) of the algebra k,. If d\'~p = · · · = dPs~
p = 0, then

and, as above, the differential d*s+1 = Σ Ρ > Ο ^ Β + Ι Ρ : ^* —* C1* is a derivation.

Thus, the geometrical image which we can associate to the first nontrivial term of
the spectral sequence consists in an algebraic manifold Ρ corresponding to algebra kt,
a vector bundle W over Ρ corresponding to the module C*, and a derivation d*s+1 with
values in W. In the semisimple case, this corresponds to a vector field d^+1 on P. The
next term of the spectral sequence coincides, respectively, with the kernel and cokernel
of this vector field (or derivation), and each successive term is obtained by passing to
the kernel and cokernel of the appropriate derivation dr: kr —* Cr determined by the
(r + l)-jet of the vector field V. Here we have the following possibilities: 1) dr = 0, and
then Cr+i = Cr and fcr+1 = kr; 2) dr φ 0, and the action of the generators of kr on CT is
not nilpotent; or 3) dr φ 0, but the generators of kr act on Cr in a nilpotent (or trivial)
manner.

Suppose that all the algebras kr are finitely generated. Then in situation 2) the
dimension of kr+i is less than the dimension of kr, and therefore the spectral sequence
stabilizes after a finite number of nontrivial steps (under the condition that each step
corresponds to 2)) and fcoo = R. This corresponds to the situation that all first integrals
h of the field V, h(0) = 0, are functions flat at the origin. Note, too, that here the
stabilization conditions for the spectral sequence are determined by a finite jet of the
field V.

The case in which 3) occurs is the main reason for the lack of finite determinacy in the
problem under consideration. In fact, passing to the next term of the spectral sequence
kills the finite-dimensional part of kr and Cr, and leaves us, as before, in situation 3).
Therefore, the stabilization cannot be verified in a finite number of steps.

We go into more detail on the low-dimensional cases m — 2,3. Suppose m = 2 and let
Ai, A2 be the spectrum of the linear part of V. Then the term Σρ>ο EP'~F is nontrivial
if either 1) Αι = Α2 = 0 or (after multiplying V by a nonzero number, if necessary) 2)
Ai — 1 and A2 = —a/b, where a and b are natural numbers. We first consider case 2)
when A2 φ 0. If (a.b) = 1, then Ep'~p ~ Ep' ~ p is different from zero if ρ is a multiple
of {a + b) and ki = (\ = R[0], where θ = x\x\ and X\,x-i € T* is an eigenbasis of
af(V). The first nontrivial differential dr is possible when r = a + b and dr{9) = 7i#2,
so that dr = ηιθ2ΰ/()θ. If ~n φ 0, which is determined by the (a + b) + 1-jet of V, then

EP,-P = 0 for r > α + 6 and ρ > 0, and ΕΡΛ~Ρ = 0 for r > a + b and p> a + b.
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If da+b = 0, then the next nontrivial differential is possible when r = 2(a + b) and
dr = η2θ

3θ/δθ, and so forth.

The explicit expression, for example for 71, takes a simple form in the coordinates t\,
t2, doti = χι, dot2 = x2 in which V has Poincare-Dulac normal form:

b da+b+1V,,^

If Ai = 1 and X2 = 0, then Ep'~p — Ep%l~p = Rx^ and the first nontrivial differential
dr could occur when r = 1, d\ — ηιΧ28/3χ2\ the rest is similar to the case α φ 0.

If Αι = λ2 = 0 and σ%(V) is nilpotent: af (V)(xi) = x2 and a^(V){x2) = 0, then
Ep{~p = Rx%. EpA~p = Rxp, and the action of fci on d is trivial. Thus, we are in
situation 3).

Finally, if <(V) = 0, then Ερ·~ρ = EpA~p = SPT* and άγ = Pl{x1,x2)d/dx1 +
P2{xi,X2)d/dx2, where Pi and P 2 are quadrics on T. If d\ does not have nontrivial
homogeneous first integrals (this can be determined from the 2-jet of V), then the spectral
sequence stabilizes at the second step.

Let m = 3; we restrict ourselves to the case when σ^(ν) is a semisimple operator
with spectrum Ai — 1, X2 = —αϊ/61, Χ3 = «2/^2, and fci = Χ^ρ>[1 Ε

ρ'~p is a free
algebra. In this case, the first nontrivial differential is a homogeneous vector field on
the plane. Let (61,62) = c, and suppose (6,,a,) = 1 for i = 1,2. Then it follows from
the resonance condition ηιλχ + η2λ2 + η^λ^ — 0 that n2 = fci/3i and n^ — Ic202: where
bi = c/?i, 62 = c/?2, and k± and fc2 are natural numbers such that fciOi - /c2a2 = 0
mod c and m e = kiax - k2a2- Choose vectors ei and e2 on the (fci,fc2)-plane such that
ei = (c, 0) and e2 is the least vector with positive integral coordinates lying on the line
k\a\ — k2a2 = 0. Let ê  = (ku, k2i), i > 3, be vectors, with positive integral coordinates,
lying inside the parallelogram with sides e\ and e2 and such that kuai — k2ia2 = 0 mod c.
To each vector ê  there corresponds a homogeneous polynomial yi = χ"1'χ^2'χ^3', where
nuc = kuai - k2la2, n 2 i = kupi, and n 3 , = fc2i/92·

The polynomials yx,y2,... generate ki, and the relation ys

z' - y^'y^' = 0 holds for
each i > 3. Consequently, fci is a free algebra only in the case when the vectors ej,
i > 3, are absent. The latter is possible only in the case when a\ = 1. Then t\ = (c,0),
e2 = (a 2 , l ) , j/i = xix\\ 2/2 = x2

20l^32: and ci = /ci =R[yi,i/2]·

We shall show that it is possible to choose A2 and A3 so that kr+i acts trivially on
C r + i . The first nontrivial differential dr is a homogeneous vector field on the plane
(2/15ϊ/2)ι and therefore /cr+i will act trivially on Cr+i if, for example, d r(yi) = y2 and
dr{y2) = 0 or dr(y2) = yi and dr(2/1) = 0. This situation (by reason of the dimension)
always occurs if degi/i < degy2 < f degi/χ or degy2 < degyi < | degj/2-

In view of the form of yn, the second case is possible only if /?2 = 1 • Finally, we find
that if either

U a - f c j f t + f l j < §, c < a 2 < | c , (1)

or

i i + i >0, a2 < |c, b2 = c, (2)

holds, then the differential dr has the form dr = ^y2d/dyi or dr — •~iy\d/dy2, where
r = (a2 — c)/3i + β2-1\η case 1) and r = (1 - Xz)/bi in case 2). In both cases, situation
3) occurs for almost all (r + l)-jets of vector fields with a given spectrum.
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§2. Spectral sequences and normal forms
of Lie algebras of vector fields

In this section we apply the method discussed above for constructing approximate
solutions of systems of differential equations to find normal forms of Lie algebras of vector
fields. The corresponding system of differential equations is the homological equation.
Here, as a rule, the appearance of singularities in the classification problem results in the
appearance of singularities in the corresponding homological equation.

In this connection, we only use the μ-adic filtration and we take Mo — *; in fact,
all the results carry over word for word to the case of a homogeneous filtration and an
arbitrary invariant submanifold MQ.

2.1. Let D = D(M) be the Lie algebra (over R) of vector fields on the manifold M,
MQ = a C Μ a fixed point, and μ C C°°(M) the maximal ideal corresponding to this
point. Suppose that we are given a representation of a finite-dimensional Lie algebra 0
over R in the Lie algebra D, p: 0 —> D, for which a € Μ is a fixed point, p(0) C μθ.
We say that two such representations p\ and P2 are locally equivalent if there exists a
local diffeomorphism Α: Μ —> Μ, Α(α) = a. such that A*(pi(V)) = P2{V) for all V € 0 .

2.2. Let D% = μΌj'/ifc+1 D be the Lie algebra of fc-jets at a of vector fields on Μ
which vanish at a, and let jk '• μθ —> £)£ denote the natural projection, 1 < k < oo,
which gives the fc-jet at the point a. The Lie algebra D"^° will also be denoted by D*.

Let //fc' : 0 —• Z?£, pW = j k ο ρ, be the reduction of the representation ρ to the level
of fc-jets.

DEFINITION 1. We shall say that the representation p\ and p2 are k-equivalent if
there exists a local diffeomorphism A for which (pj ο A*)^ = p2 . When k = oo, the
representations will be said to be formally equivalent.

DEFINITION 2. A representation ρ will be called k-sufficient if any representation p'
which is fc-equivalent to ρ is equivalent to p. If the fc-equivalence of the representations ρ
and p' implies formal equivalence, then the representation ρ will be said to be k-sufficient
in the formal sense.

DEFINITION 3. A representation ρ is said to be sufficient if it is fc-sufficient for some
k. Otherwise, the representation will be said to be wild.

2.3. With a view to obtaining algebraic conditions for formal equivalence of repre-
sentations of © and to finding formal normal forms of such representations, we consider
the complex constructed from the representation ρ of the Lie algebra 0:

0 ^ 1 ) , ^ 6 ' 8 ϋ , ^ Λ 20* <g> £>, Λ · • · - i A m 0* <g> £>» — 0. (1)
R R R

where m = diiriR 0 and the differential

d:As<S*®Dt ^ A s + 1 0 * ® £ > t (2)
R R

acts according to the formula

), (3)

in which the elements ω € AS0* C3>R. D» are considered as skew-symmetric forms on the
Lie algebra 0 taking values in the Lie algebra of formal vector fields £>*; here, as usual,
the caret over an element indicates that the element is omitted, and V i , . . . , V s + i G 0 .
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We postpone the motivation for considering this complex to §2.7. Here, instead,
we shall indicate some properties of the operator d. Define the bracket [ωι Λ ω2] €
As+1<5* ® £>» of ωι Ε As<8* ® D* and ώ 2 € Λ'0* <8> D, (see [5]) so that for decomposable
elements of the form ωx = a®X, ω2 = β®Υ, where a e As<5*, /? e A*®*, andX, y e £>*,
we have

[ωι Λω2] = α/\β®[Χ,Υ}. (4)

This bracket defines an R-linear pairing and is such that the following commutation
relations hold:

[ωιΛω2] = ( - 1 ) 8 ' + 1 [ ω 2 Λ ω ι ] . (5)

The Jacobi identity in the Lie algebra D* implies that if u>3 € Afc0* ® Z)*, then

(-l)sfc[wi Λ [ω2 Λ ω3]] + (-l)s*[w2 Λ [ω3 Λ ωχ]}

+ {-ΐΥ*[ω3Λ[ω1Λω2}}=0: (6)

and (see [5])
d[wi Λ ω-i] - [du>i Λ ω2] + (-1)5[ωι Λ du;2]. (7)

2.4. Introduce a filtration on the complex (1) by setting

F = Λ ρ + ? 0 * ® μ Ρ - 1 £ > * . (1)
R

In other words, the terms of filtration ρ are the forms on the algebra 0 taking values in
vector fields of order of smallness p. It follows from the condition imp c fl, that the
differential d is compatible with the filtration dFpq c Fpq+i. We set

Zj?" = {ω€ Fp,,; do; € F p + r , a _ r + i } ,

B™ = {ω G F p , , ; 30 e F p _ r , g + r _ i , ω = άθ},

where Z^q is the set of cycles of order r and B?q the set of boundaries of order r,
B™ - d Z P - r ' « + r - 1 . The spectral sequence (£P 9, cf?9) of the cohomology of the complex
(1) constructed with respect to the filtration (1) has the form:

and the differentials d^q : E^q —> EP+r'q~r+1 are generated by d by passing to quotients.
In the given case ρ > 0 and 0 < ρ + q < m; therefore the Dynkin table of this spectral

sequence has the form of the band between the lines ρ + q = 0 and ρ 4- q = τη, ρ > 0.

2.5. PROPOSITION. The following inclusions hold:

\Ζ™ Λ Z r

p V ] C

Λ Z r

p V ] C

PROOF. We shall prove the first inclusion. Let εχ € 2™ and ε 2 € - ^ Ρ ' 9 ' . Then, in
view of (4) in §2.3,

[ei Λ ε2] € AP+p'+q+q'<8* ® μ ρ + ρ ' - 2 £ ) ,

and
d[si Λ ε2] = [dei Λ ε2] + ( - l ) p ' + 9 ' [ £ l Λ de2].

But etei € Ap+«+10* <g)pp + r-1D,, and so

[dei Λ ε2] e Λ ρ + 9 + ρ ' + 9 ' + 1 0 · ® μ ρ + ρ ' + ? - 2 £>».

Similarly,
[ei Λ dei] € Ap + 9 + p '+«' + 1 0 * ® μ ρ + ρ '+ Γ - 2 £>».
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Consequently,

[ει Λ ε2] € F p + P ' _ i , 9 + 9 ' + i and

whence [ει Λ ε2]
Now. let ει £ BPq_1 and ε 2 € Ζ»1'9', and let θ e ΛΡ+ 9" 1©* <g> μρ~τ D* be such that

ει = d#. We have
[e i Λ ε2] = d[0 Λ ε2] + ( - l ) p + 9 [ 0 Λ cfe2].

But [θ Λ ε2] 6 ΛΡ+'+ρ'+ί'- 1©* ® μΡ+Ρ'- ' - 1 A,, and therefore

Furthermore, [θ Λ cte2] e Λ Ρ + 9 + Ρ ' + « ' < 5 * ® μΡ+ρ'" 1/?,. In addition,

d[0 Λ ̂ ε2] = [di Λ de2] e Λ Ρ + < 7 + Ρ ' + 9 ' + 1 6 * ® M P+P' + r - 2 £>,,

and therefore [ff Λ de2] € Z*±?'9+q'.

COROLLARY. [Zr
p« Λ Ζ?9'} C Z P + P ' - 1 · ' - 1 " 9 ' · * - 1 /or r > s.

In fact, ZP' c Z?q for r > 5. Using the proof of the proposition, we define a pairing

£P ? x £?'«' — ̂ ρ+ρ'-ι.β+β'+ΐ) (1)

by setting

[xw Λ yP'9'] = [iAy] mod {Zp

rtf
q+q' + B

p

r^'^q+q'+l) (2)

on the cosets

x*q = x mod ( Ζ ^ Ι · 9 - 1 + B™!), y ? ' q ' = y m o d f ^ 1 ' 1 '4

where χ e Z?" and y e Z P ' ? ' .
From §2.3 we find that this bracket satisfies the relations

[xpq A yP'q'} = ( - 1 ) ( P + 9 ) ( P ' + 9 ' + 1 ) [ 2 / P ' 9 ' Λ rPq], (3)

(-iyk[x?q Λ [2/Ρ'9' Λ zfq"]\ + (-1)«Μ'<' Λ [^"'" Λ χ**]]

+ (-l)tk[zfq" A[xPqAy?'q'}}=0, (4)

where s = p + q, t = p' + q', and k — p" + q", and

aT\xr i\yr \ — [arxr /\yr \-r\ — i) [xr /\aryr j . (,oj

2.6. We describe the initial terms of the spectral sequence. We have

Epq = FpJFp+i,,-! = Ap+q<$* Θ SpT* ® Γ, (1)
R. R

where Γ (respectively, T*) is the tangent (cotangent) space to Μ at the point α s M; in
(1) we used the isomorphism

Since T*®T = EndR T, the reduction p^ of the representation ρ defines a representation
of the algebra (3 on the tangent space T; p^: & —* EndRT. The representations
gp(p(i))· (g, p(i) thereby define a ©-module structure on all the spaces SPT* <g> T, and
formula (3) in §2.3 shows that the complexes

0 -> SPT* ® Γ -^— C5* ® 5ρΓ* ® Γ -» • Am<5* ® 5PT* 0 Γ -+ 0 (2)
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are Koszul complexes for the cohomology of the Lie algebra ® with values in the 0-module
5pT* <g> T. Therefore.

Epq =Hp+v(®,SpT* ®T). (3)

In particular, for ρ + q = 0, we have

E*'p = {SPT* *

where if L# is a ©-module, L* = {x £ L\V(x) = 0, VV € C5} denotes the subspace
of 0-invariant elements of L. We note that here E\'~l = End β Γ is the module of
(5-homomorphisms of T.

THEOREM. The filtration Fp^q defines a spectral sequence (EPQ,dpq) in which
1) Elq = Λρ+«<5* <g> SpT* (g> T,
2) £ f = Hp+q{<3, SpT* (g) T),
3) £/ie terms Epq carry the structure of a bigraded Lie algebra; that is, there is a bilinear

pairing Evq χ Ep'q' -> ^P+P'-1-9+9' +1 ο η φ ρ ? EPq satisfying the relations §2.5 and the
differentials dr are derivations of this algebra; and

4) the spectral sequence stabilizes in the following sense: for each pair of numbers (p, q)
there exists a number ra = ro(p, q) such that

and the stable terms of the spectral sequence are thereby isomorphic to the terms of the
graded module associated to the cohomology of the complex (3) in §2.3.

It remains to prove the last assertion. To do this, note that there is a finite-dimensional
space in each cell (p, q) in which a subspace is then distinguished with successive factor-
ization; in this connection the dimension is not increased.

REMARK. If we put L°r = EP+q=0 m O d 2 £ r M and L\ = J2P+q=i mod2
E?Q^ then

Er = L° Θ L\ is a Lie superalgebra.
2.7. The use of spectral sequences to obtain normal forms of representations is based

on the following remarks. A representation p: © —> D* determines an element of ©*®D,,
denoted as above by p, which satisfies the Maurer-Cartan equation

dp-\[pi\P)=Q. (1)

But if the form ρ + ε, where ε £ 0 * ® ί ) , , also determines a representation of the algebra
<5, then

, (p + e)(V2)] = {p + e)([Vu V2])

or
[p(V1),s(V2)] - [p(V2),e(V!)] - ε([ν ΐ 5 V2]) + [£(V1),£(V2)] = 0,

for all Vi, V2 € 0. It follows from this that

d e + i [ £ A e ] = 0 . (2)

Therefore, if ε € FP:i-p, we have [ε Λ ε] e ί2Ρ-ι,3-2Ρ and, consequently, ε G ΖρΛ~ρ

for all r < ρ — 1. The second remark is connected with the following observation. Let
X € D, be a formal vector field. Let At = exp(i adX) denote the one-parameter group
of formal diffeomorphisms corresponding to X. Let At· (ω) G &* ® £>* be the image of
the form wG(9*®D,, /lt-(w)(V) =Λ-(ω(ν)) , where At.(Y) = ( ^ Γ Ό Υ ο Α ; is the
image of the vector field Υ e /?» under the action of ylt. We have

^-(P)(V) = p(V) + t[p(V),X] + i 2

which leads to the following proj)osition.
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PROPOSITION. If X G Zp'~p, then the formal diffeomorphism A = exp(adX) gener-
ated by X is such that

A*(p) - p-dX G i^p+r-1.2-2p-r-

2.8. THEOREM (the normal form of the pth approximation). Suppose that vu,.. ,vs,

vt G 25* <8> μρΰ, are such that their images generate Ep'_^p (p > 2). Then for each
representation of the Lie algebra 0 of the form ρ + ε, where ε € β * ® μρΌ (ρ > 2), there
exists a local diffeomorphism A such that

s

A*(p) - ρ - ε = 2jcjt>i mod .Fp+1,_p,
ι

where c, € R, 1 < i < s.

PROOF. It suffices to prove that if ε G Zp°^~p + Bp

p^
p, then there is a formal

diffeomorphism A such that A*(p)— ρ — ε € Fp+i~p. Let ε = y + dX, where y £ Zp^2~V

and X e /2,-2· Then it suffices to prove that A*{p) - ρ - dX e Fp+iiP for some
diffeomorphism A. It remains to remark that, in view of Proposition 2.7, A can be taken
to be exp(adX); since X G Zp'S2

2> w e n a v e At(p) - ρ - dX G ^3Ρ_3,4-3Ρ C Fp+1,-P for
P>2.

REMARK 1. If η G F P , I _ P and X e F2,_2, then At(η) - η G F p + 1 ) _ p and At thereby
induces identity transformations on Ep'2^p. Therefore, Theorem 2.8 can be reformulated
as follows: there exists a local diffeomorphism A for which A*(p + ε) — ρ = Σ°ίνί
mod F p + i , _ p .

REMARK 2. The image [e]p_i of the element '^clVi in £1pl1~
p is not arbitrary; in

view of (2) in §2.7, it must satisfy the equation

2.9. Successive application of Theorem 2.8 leads to the following result.

THEOREM. // the elements vi,... ,vs...., v% G <3* ®μΡιΌ, are such that their images
generate all of Εζ'^ρ, ρ > 2, then for each representation of the Lie algebra © of the
form ρ + ε, where ε G <S* 0 μρΰ, ρ > 2, there exists a local diffeomorphism A such that

At(p) - p~e = ̂ 2clvl mod 0* Θ μ°°/λ

COROLLARY. In order that the representation ρ be formally sufficient, it is sufficient

that £'pl1

1~
p = 0 for all ρ starting with some number po > 2. In this case the representa-

tion p'°°' is determined by ρ ' Ρ ο ' .

2.10. DEFINITION. We call ε ρ _! € £ρ

>11ΓΡ a Maurer-Cartan element if there exists a

representative ε € Zp^p of the class ερ-ι for which άε + ̂ [ε Α ε] = 0.

We shall obtain a condition which singles out a Maurer-Cartan element. For ερ_ι G

Ep'_^p to be a Maurer-Cartan element, it is necessary that

Po(ep-i) = dp-iep-i + | [ ε Ρ - ι Λ ε ρ - , ] = θ € ^ Τ 1 ' 3 " 2 " . (1)

Furthermore, suppose that condition (1) holds. Then for an arbitrary representative

ε G Z p l j~ p we have

άε + Ι [ε Λ ε] = χ 4- dy,
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where x G Z p

p ' 2 2 p and y G Z p i J ' P · Replacing ε by an ε — y that is not an element of

the class ε ρ_ι and taking advantage of §2.5, we find that the representative ε G Ζρ1 1

]~
ρ

can be chosen so that

In fact, χ € Ζ 2 * 1 2 " 2 " , because

dx = [de Α ε] = [χ Λ ε] - \[ε Λ [ε Λ ε]] = [ζ Λ ε].

Here we have used the fact that [ε Λ [ε Λ ε]] = 0 (which follows from the Jacobi identity).
Therefore, da; = [χ Λ ε] € F 3 p _ M _3p and, consequently, χ e Z 2 p ' 2 ~ 2 p . Let ϊ e £ 2 p ' 2 ~ 2 p

be the image of the element x. We find out to what extent the element ερ_ι is uniquely
determined. Let ε + η where η — a + db for a e Ζζ^\'~ν, and let b e Z 2 i ^ 2 be another
representative of ε ρ_ι such that

d(e + r?) + I[(e + η) Λ (ε + η)} e Z p

a£' a

2- 2 p . (2)

Expanding the brackets and using the fact that de + \ [ε Λ ε] € ZpP_'%~2p, we find that
the element

d(a + |[6 Λ db) - [ε Λ b\) + [ε Λ α] + [de Λ 6] + \[a Λ ο] 4- [ο Λ d6]

lies in Z2f.' |"2 p. But, in view of §2.5,

[ε Λ a] € [ 2 £ ! f Λ Z ^ · " " ] C z £ 3

2 - 3 p ,

[de Λ 6] € [ ^ I 1 · 3 - * Λ Ζρ

2Γ2

2] C Z ^ " * ,

μ»]61^1 ·-"Λz^1 ·-"] c

[α Λ Λ] G [ Z ^ 1 · " " Λ Zl'lp] C p

On the other hand, by the same considerations

θ = a + i[6 Λ db] - [ε Λ b] e Ζ^ϊ\~ρ.

Therefore, condition (2) means that d^ € Z^2~2v o r ' equivalently,

^ 6 Ζ ρ

ρ +ί'- ρ · (3)

Representing α = θ + [ε Λ b] - | [6 Λ d6], we find that the element χ € Z 2 p ' | ~ 2 p translates
to χ + λ, where

λ = άθ + [ε Λ θ] + [άε Λ 6] + [ε Λ [ε Λ 6]] + [θ Λ d&]

It follows from the Jacobi identity (6) in §2.3 that [εΛ[εΛ6]] = 5[[εΛε]Λ&] and, therefore,

[de Λ b] + [ε Λ [ε Λ 6]] = [χ Λ 6] € Ζ 2 ^ 1 ' 1 - 2 " .

Furthermore,

[θ Λ db] G [ Ζ ^ ί ' - " Λ BplVn € Ζ 2 ^ 1 · 1 " 2 " + 5ρ-2 2" 2 Ρ-

In addition,
d[[6 Λ d&] Λ b] = [[d6 Λ d6] Λ 6] - [[6 Λ db] Λ db]. (4)
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Using the Jacobi identity, we obtain

-[db A[bA db}} + [b A [db A db}} + [db A [db A b}} = 0,

and so 2[dbA [bAdb]} — [bA [dbAdb]}. P u t t i n g the latter equality in (4), we finally obtain

[[b A db} A db} = -^άη,

where 7 = [[b A db} A b}. Therefore, [[6 Λ db} A db] € Β^γΑ~2ρ'· Furthermore, suppose

that ω = [[ε A b] A b]. Then

du = \[de A b} A b) - [ [ ε Λ db] Ab}- [[ε Λ δ] Λ db].

Exploiting the Jacobi identity, we get

- [ ε Λ [b A db}} + [b A [db Α ε}} + [db Λ [ε Λ b}} = 0.

From this we have

\[e A [db A b}} - [[b Λ ε] Λ db] = -±[ό Λ [e Λ db}] -\[dbA[bA ε}}

= -±duj + ±[[d£Ab]/\b].

But ω 6 Z ^ | ' ~ 1 ~ p and, therefore, άω G Β^~2ρ; and, in addition, [[οίε Λ b] A b] e

ΖΐΡ_γΛ~2ρ. So, finally, the class χ gets carried to

i + dp_i0 + [ep_iA0), (5)

where θ € Ε**\'~ρ is the equivalence class of the element Θ. We define the operator

p+r-l,-2p-r+g + 2

by the equality
1{ερ-1)(θ)=άρ-1θ + [ερ-1Λθ]. (6)

It follows from the Jacobi identity that the 1-form ερ_χ satisfies the relation

[ερ_ι Λ [ερ_! Λ 7]] = ^[[εΡ-ι Λ ερ_ι] Λ 7]·

Therefore.

(L(£p_i))2((?) = dp-ifep-! Λ θ] + [ερ_ι Λ dp-rf] + [ερ-1 Α [ερ_χ Λ θ]]

= [d p _ l £ p _! Αθ} + ^[[ερ_! Λ ερ_!] Λ θ] = 0,

so that L(ep-i) under the condition dp_i£p_i + \[εν-ι Α ερ_ι] = 0 determines the
complex at the term £ p _i . We let Ηβ>*(ερ-ι) denote the cohomology of this complex at
the term E*'!^

We now return to relation (5), which shows that the class χ modulo \mL(sp-i) is
well-defined by the element ερ_ι. On the other hand,

L(eP_i)(i) = (dx + [ε Λ χ]) mod (Ζ^~3ρ + B^1'4-3"),

but, since χ = ds + |[εΛε],

dx + [ε A x] = [άε Α ε] + [ε Λ de] + \ [ε Α [ε Α ε]] = 0.

Consequently, χ is a cycle with respect to the differential L(ep_i), and the cohomology
class

-2v(ep-i) (7)

is the first obstruction to ερ_ι being a Maurer-Cartan element.
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Furthermore, if this obstruction is trivial, then we can find a representative ε G
of the class ερ_χ for which

άε + ±[ε Λ ε] e Z2

v

p_\^~2p + B2/j2

2~'2f'.

Let άε + \[ε Λ ε] = χ + dy: where χ € ^ ρ + ι , ι - ί ρ a n d y £ ^ p + | , - i - P _ U p Q n r e p l a c i n g ε

by e — j/, we can assume that

άε+^[εΛε}=χΕΖ2ρ_+1'1-2ρ. (8)

We now use the following assertion, whose proof completely repeats the construction of
the first obstruction <ρι(ερ-ι).

LEMMA. Let ε € Zp!_^p be a representative of the class ερ_ι € Εζ^ρ such that

άε + ±[ε Λ ε] = χ e ζ ^ · 2 " 2 * ' - ' · . (9)

Then χ £ 2p^i ~ p ~ r , and ί/ie dass χ G .E p

P j ~ p ~ r is a cocycle with respect to the
differential Z/(ep_i), while the cohomology class tpr+i(ep-i) € H2p+r'2~2p~r(ερ-ι) of
the element χ is equal to zero if and only if there exists a representative ε' of the class
ερ-ι differing from ε by an element in ζρ^+1·~ρ~τ and for which άε' + \[ε' Λ ε'] e

Zp-2

PROPOSITION. For the element ερ_ι € -Epl1)~P to be a Maurer-Cartan element, it is
necessary that ( ί ρ _ιε ρ _ι + | [ ε ρ _ ι Λε ρ _ι] = 0 and φι(ερ-\) = 0, and sufficient that all

obstructions φ^ερ-\), ι' = 0 , 1 , . . . , be trivial,

COROLLARY 1. Let po be a number such that Ep'_^s = 0 for s > po and po ^ 2p.

Then each element ερ_ι S i?plj~p for which είρ_ιερ_ι + | [ ε ρ - ι Λερ_ι] =0 is a Maurer-

Cartan element.

COROLLARY 2. Let ε ρ_ι € £ ;

Ρ11ΓΡ be an element such that

^ ρ - ι ε ρ - ι + ^[ερ_ι Λε ρ_ι] = 0

and the second cohomology Hs<'2~s{ep-i) is trivial for s > 2p. Then ερ_ι is a Maurer-
Cartan element.

SUPPLEMENT TO THEOREM 2.8. The elements J2civi occurring in the normal form
of a p-approximation are Maurer-Cartan elements.

2.11. Let (Μ, Ω) be a symplectic manifold, where Ω € Λ2(Μ) is the 2-form defining
the symplectic structure, and let p: <& —* Ham(M) be a representation of the Lie algebra
0 by Hamiltonian fields which have a fixed point α Ε Μ, imp C μϋ(Μ). The use
of the correspondence / e C°°{M) i-> Xf e Ham(M) between Ham(M) and C°°{M),
where the Hamiltonian field Xf is determined from the equality XfjU = df, allows us to
assume that a representation p: (9 —> C°°(M) is given, where C°°(M) is considered as a
Lie algebra with respect to the Poisson bracket: (/, g) = Xj{g)\ f, g € C°°(M). In this
connection, imp C μ2.

Suppose that μ, C (7°ο(Μ)/μο° = f™ is the image of the ideal μ in the space ^ ° °
of formal power series at the point a € Μ. As in §2.3, we consider a complex constructed
from the representation p:

R Ft Ft
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where

. , . . . , V e + i ) = _

~~ -l) < + M[Vi,V i ],Vi, . . . ,V i , . . . ,V i -, . . . ,V s + i ) . (2)

The elements ω G ASC5* ® R ^ ° ° can be considered to be skew-symmetric s-forms on the
Lie algebra ® taking values in the Lie algebra of formal power series on M.

As above, we define the bracket [ωι Λ 0J2) € As+t<5* ® R ^ ° ° of the elements ωχ €
ASC5* ® R ̂ ° ° and w2 € Λ*0* ® R ̂ ° ° so that on decomposable elements ωχ = α ® /
and ^2 = /? ® g we have

(uiAu2) = eAjSi8(/)ff). (3)

This bracket determines a bilinear pairing for which the commutation relations (5)-(7)
in §2.3 hold.

We introduce a filtration into the complex (1) by setting

F P , , = A " + ^ * ® M P + 1 . (4)

The differential d preserves this filtration. We consider the spectral sequence (Epq

:d
pq)

constructed from (4). The proof of the next theorem is similar to that of Theorem 2.6.

THEOREM. The filtration Fp<g determines a spectral sequence (Epq,dpq) in which
1) E%q = Ap+q<3* ® R SP+1T*\

and the differential df^: Epq —• Ep'q+1 is the differential in the Koszul complex of the
Lie algebra & constructed from the symmetric power of the reduction p^ 1 ' : <8 —> S2T* ~
sp(T) of the representation of the Lie algebra & in the symplectic algebra sp(T). There-
fore,

2) Epq = HP+q(e,Sp+1T*),

3) there is a bilinear pairing of terms of the spectral sequence Epq X Ep q —*

Ep+P'-i,q+q'+i that satisfies relations (3)-(5) in §2.5,

4) the spectral sequence (Efq,dpq) stabilizes in the following sense: for each pair (p,q)
there exists a number TQ — ro(p.q) such that

Epq = Efq

+1 = --- = EpJ, dpq=0, r>r0,

and the terms of the spectral sequence are isomorphic to the terms of the graded module
associated to the cohomology of the complex (1).

2.12. We say that two representations p\ and p2 of a Lie algebra & into a Lie alge-
bra of Hamiltonian vector fields are (formally) equivalent if there exists a local (formal)
symplectic diffeomorphism A carrying ρχ into p2 (respectively, p[°°' into ρ2°°'). Simi-
larly, when we speak of k-sufficiency (respectively, k-sufficiency in the formal sense) in
this context, we shall understand fc-sufficiency with respect to the group of symplectic
diffeomorphisms. The proof of the following theorem is word for word the same as the
proof of Theorems 2.8 and 2.9.

THEOREM. 1) Let v1,...,vfi, vx € ©* ® μ ϊ + 1 , be such that their images generate
£plYP, Ρ > 2. Then for each representation by Hamiltonian fields of the Lie algebra <£>
of the form ρ + ε, where ε € (5* <8>μρ+1, ρ > 2, there exists a local diffeomorphism A sur/i
that

At(p) - ρ - ε = ̂ ( V - i j mod F p + i , _ p ,
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where Ci € R for 1 < i < s and the image of the element Σ^νι in E^_^p is a Maurer-
Cartan element.

2) Let vi,..., vs,..., υτ e 6* <gi μΡι + 1 , be such that their images generate -Epl_1

1~
p for

ρ > 2. Then for each representation by Hamiltonian fields of the Lie algebra © of the
form ρ + ε, where ε Ε &* <Ε> μρ+1, ρ > 2, there exists a local diffeomorphism A such that

A*(p) - ρ-ε = Y^clvi mod (β* ®μ°°.

COROLLARY. // Εζ'_^ρ — Ο in the spectral sequence for all p, starting with some
number po, then the representation ρ is po-sufficient (in the formal sense).

REMARK. The description of the Maurer-Cartan element presented in §2.10 is also
valid in the symplectic case.

2.13. Let (Μ, ω) be a contact manifold with contact structure given by the 1-form
ω G Λ1 (Μ), and let ct(M) be the Lie algebra of contact vector fields. In order to describe
the elements of this algebra [6], [7], we consider the one-dimensional bundle / over Μ
whose fiber at the point χ G Μ is the quotient space Tx/Ex = lx, where Ex — kerwx.
Each contact vector field X on Μ is uniquely determined by a section S\ of this bundle,
where Sx(x) = Xx mod Ex (see [6]) and each section uniquely determines a contact
vector field on M. Choosing the structural form ω determining the contact structure
is equivalent to choosing a basis in the dual bundle I* whose fiber at a point χ can
be identified with Ann Ex C T*. Let Xf be a contact field whose generating section
determines a basis dual to ω. This field is uniquely determined by the conditions

XfjiL· = 0, XfM = 1. (1)

Then each section Sx can be represented in the form Sx = f • Sx^, where / is the
generating function of the field X with respect to ω: / = XJOJ. Using this isomorphism
with the Lie algebra of contact vector fields, we can also introduce a Lie algebra structure
on the module Γ(7) of smooth sections of the bundle / by setting

[SX,SY]=SIX,Y] (2)

for arbitrary contact vector fields X and V. In terms of the generating functions (with
respect to a fixed structure from ω) the bracket (2), called the Lagrange bracket, has the
form

[f,g] = Xf(g)-X'i(f)-g, (3)

where XJ is the contact vector field corresponding to the function /.

More generally, for an arbitrary section S € Γ(Ζ), we let Xs denote the contact vector
field corresponding to S. We remark that the correspondence S —> Xs is a first order
linear differential operator (see [6]).

Let f™ = C°° {Μ)/μ™ be the algebra of formal series at the point a, and let fa°° (I) =
Γ(1)/μ%Ύ(1) be the module over the ^^-jets of infinite order of sections of the bundle
/ at the point α; Λ°°(0 = Λ°° ®R Ό·

For a given representation p: <S —> ct(M) of a Lie algebra into the Lie algebra of
contact vector fields, we consider the complex

(4)

o - Λ ° ° ( 0 - © Λ ( 0
R R
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where

, . . . , V f c + 1) = ^ ( - l ) l + 1 [ 5 p ( v , ) ^ ( V i , · · ·, V i f . . ·, V f c + 1)]

for all ω Ε A f c©*(g)^o o(i) and Vi , . . . , V f e +i e 0 . As above, we use the Lagrange bracket
(2) to introduce a bilinear pairing [ωχ Λ α^] for which relations (5)-(7) in §2.5 hold.

Let Cp C ^α°°{1) be the set of oo-jets of sections of / for which the contact field Xs
has a zero at α € Μ of order greater than or equal to p. The quotient algebra Cp/Cp+\
is a commutative Lie algebra and admits the following description.

A generating function / of a contact field which has a zero at a € Μ of order k
can be represented in the form / = Xhk + ε, where λ € R, h is a function such that
dah = ωα and h(a) — 0, and ε is a function of order of smallness k + 1. Here the
coefficient λ is uniquely determined by the function / (and the structure form ω); k\X —
(X?)k(f)(a), where (X?)k = Χ? ο · · · ο Χ? is the fcth iterate of the differentiation

operator Xf. The map Cp/Cp+1 -^ S?" 1 /* which takes the contact field Xf to the
tensor (1/ρ!)(-Χ^)ρ(/)(α) • ω ρ - 1 , does not depend on the choice of the structure form ω,
and is an epimorphism. In view of the above description of the elements of Cp, its kernel

1

Thus, the sequence

o - sp+1T;/sp+1ra ® i a ^ cp/cp+l - s^U: -> ο (5)

of commutative (for ρ > 2) Lie algebras is exact.
Let p: <S —> ct(M) be a representation such that imp C μϋ(Μ); we introduce a

filtration on the complex (4) by setting

F p , g = Ap +«(5*®(7p. (6)

The differential d preserves this filtration; we consider the spectral sequence (Epq,dpq)
constructed from this filtration.

The term E%q in this spectral has the form E%" = AP + ?(S* <g> Cp/Cp+1 and, therefore,
is contained in an exact sequence

0 -» Λρ+«(!Τ ® Sp+1T*/Sp+1l*a ® la -» Elq — A p + 9 0 * ® Sp-H* -• 0. (7)

The spaces SP+1T*, Sp+1l*, and Cp/Cp+X are 0-modules with respect to the linear
part of the representation p\ p ' 1 ' : 0 —» C i / C 2 '-»• EndR T a , and the differential dpq is the
differential of the Koszul complex of the cohomology of the algebra (5 with coefficients
in Cp/Cp+1. From the short exact sequence (5) we obtain a long exact cohomology
sequence

0 -> H°{e, Sp+lT*/Sp+1l*a <8) la) -» £ p ' - p -» i/°(0,5P- 1/*)

_+ > H p + < 1 ( < 8 , S p + 1 T Z / S p + 1 l * a ® / „ ) - » E f ' 9 — i / p + « ( ( i 5 , S " - 1 ^ ) -*•••.

Finally, we obtain the following description of the spectral sequence.

THEOREM. The filtration (6) determines a spectral sequence (Epq,dpq) in which the
following conditions are satisfied:

1) The term Egq = Λ ρ + ? 0 * ® Cp/Cp+i is included in an exact sequence

Sp+lT*/Sp+lra ® la — JSg« — Ap + < ?0* ® S·11-1/* — 0,
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and the differential d^ is a differential in the Koszul complex of the Lie algebra 0 con-
structed from the representation in Cp/Cp+i induced by p^K Therefore,

2) The terms Epq — HP+Q(Q5,CP/CP+1) are contained in an exact sequence

... _> Hp+q(<&, Sp+1T*/Sp+1l*a 0 /„) — Epq — # ρ + « ( 0 , Sp-H*a)

-+ Hp+Q+\<&,Sp+lT*ISp+1ra®la) -+Ep'q+l -^ Hp+q+1{e,Sp-1l*a) -* • • • .

3) There is a bilinear pairing Ep" χ Ep'"' -* Ep+p'~1'q+(i'+l induced by the bracket

[Aser χ j-a°°{i) Α Δ ( Θ

which converts Er into a bigraded Lie algebra; dr is a derivation of this algebra.
4) The spectral sequence stabilizes in the following sense: for each pair (p, q) there

exists a number r® = ro(p,q) such that

E% = E%+1 = --- = E%, < * = 0 , r > r 0 .

2.14. The concepts of (formal) equivalence and sufficiency of representations of an
algebra 0 into a Lie algebra of contact vector fields carries over in the obvious way to
the contact case: all diffeomorphisms in the definitions are contact diffeomorphisms.

THEOREM. 1) Letvi,... ,vs, v% G 0*®C P , be such that their images generate Εζ'^ρ,
ρ > 2. Then for each representation by contact vector fields of the Lie algebra 0, of the
form ρ + ε, where ε G 0* <8> Cp, p>2, there exists a local contact diffeomorphism A such
that

A*(p) -ρ-ε = ^CiVi mod F p + i ,_p,

where Ci € R for 1 < i < s and the image of the element Σ°ινι ζ η Εζ~ϊ^Ρ z s a Maurer-
Cartan element.

2) Let «χ,... ,vs,... ,Vi S 0* ® C P l , be such that their images generate Ep'_^p for
ρ > 2. Then for each representation by contact vector fields of the Lie algebra of the
form ρ + ε, where ε ε 0* ® C p , ρ > 2, there exists a local contact diffeomorphism A such
that

A*(p)- p-e = Y^c%vt mod 0* ® μ°°Ό.

COROLLARY. If EV

V^
V = 0 in the spectral sequence for all ρ > po, then the repre-

sentation ρ is po-sufficient in the formal sense.

§3. Applications of spectral sequences

3.1. Let 0 be a semisimple Lie algebra and p: 0 —> μϋ{Μ) a representation into the
Lie algebra of vector fields with fixed point at α G Μ. In this case the terms Εζ'_ι ρ are
trivial (see [11]) arid we obtain the following result from Theorem 2.9.

THEOREM [15]. The representation ρ: 0 —+ μϋ(Μ) of the Lie algebra(& is 1-sufficient
in the formal sense.

3.2. By considerations similar to those is the contact and symplectic cases, we have
Ep'2^p = 0 for representations of a semisimple Lie algebra. Therefore, we obtain the
following result.

THEOREM. A representation of a semisimple Lie algebra 0 by Hamiltonian (contact)
vector fields is l-sufficient in the formal sense with respect to the group of symplectic
(contact) diffeomorphisms.

3.3. Let p: 0 —> ct(M) be a representation of a semisimple Lie algebra 0 by analytic
contact vector fields. Recall that in special local coordinates, the contact vector field
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corresponding to the generating function / has the form

Xf ~ f ~ ^ dPl dqt

 + ^ W +Pldu) dPi

where ω = du — J2" Pi d<li-

We note that if the function / has the form / = u — \Y^lPiQi + ε. where ε is
a function of third order of smallness, then the linear part of Xf has the spectrum
Ai = · · • = \2n = 2' ^2n + l = 1·

LEMMA 1 [19]. An analytic contact vector field with generating function f = u —
i Σ™ pzqt + ε can be reduced to a linear field by a local analytic contact diffeomorphism.

LEMMA 2. The generating function of an analytic contact vector field Xf, X/,o = 0,
commutes with X/o. where fo = u—^ Σ™ ptqt has the form f = ku + H(p,q) in which
H(p. q) is a quadric.

THEOREM 1. A representation of a semisimple Lie algebra by analytic contact vector
fields in a neighborhood of a common fixed point is contact analytically 1-sufficient.

PROOF. The proof is analogous to that of Theorem 1 in [4]. The crucial point is the
construction of a contact vector field which commutes with p(&) and has the form cited in
Lemma 1. To construct such a field, we consider the representation p^1': 0 —• Endjt T.
The subspace Ε = kerwa is invariant, with respect to this representation, and since © is
semisimple, there exists a complementary invariant subspace F such that F®E = T. We
now choose a structure from ω so that Xf a will be a generator in F. Furthermore, since
one-dimensional representations of semisimple algebras are trivial, the representation p^
is a direct sum of a trivial representation on F and some representation by symplectic
transformations in E. The linear part of the vector field Xf, where / = u — ̂  Σ™ Piqi,
is a homothety of the space Ε with coefficient | and is the identity on F. Therefore,
passing to the compact real form 0 ® C and averaging with respect to the action of
the corresponding compact group (see [4]). we obtain a contact vector field Xf with
generating function / = u — | ]ζ ρ^-\-ε, where ε is a function of third order of smallness,
which commutes with all vector fields p(V), V G 0. According to Lemma 1, Xf can be
reduced by an analytic contact diffeomorphism to Xf0; it remains to use Lemma 2.

Similarly, by using an averaging procedure with respect to the Haar measure, together
with the fact that. Lemmas 1 and 2 are also true in the C°° situation, we can prove the
following generalization of a theorem due to Cart an.

THEOREM 2. A smooth (C°°) action of a compact Lie group by contact diffeomor-
phisms in a neighborhood of a fixed point is contact l-sufficient.

Using contactification of symplectic manifolds, together with the theorems proved
above, we obtain the following result.

THEOREM 3. 1) An analytic representation of a semisimple Lie algebra by Hamil-
tonian vector fields in a neighborhood of a fixed point is contact equivalent to a linear
one.

2) A smooth (C°°) action of a compact Lie group by symplectic transformations in a
neighborhood of a fixed point is contact equivalent to a linear action.

3.4. In the general case, the coincidence of conditions for formal and (7°° equivalence
of representations is based on the following lemma.
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LEMMA. Let X be a smooth vector field on Μ, dim Μ = r, with an equilibrium point
a € M, Xa = 0, at which the spectrum vi,...,vr ofthe linear part satisfies the conditions
ReUj > 0, j = l , . . . , r . Then each flat vector field Υ s μ^Ό(Μ) which satisfies an
equation (Lx — X)kY = 0, where L\ is the Lie derivative along Χ, X is an arbitrary
constant, and k is a natural number, is zero in a neighborhood of a.

PROOF. Let Y\,..., Yr be the components of a vector field Υ with respect to a system
of local coordinates (gi, . . . ,qr) centered at the point a € M. If q{t) is a trajectory of
the field X and A(t) the matrix obtained by restricting the matrix | |9iXj| | to q(t), then
on this trajectory the equation (Lx - X)kY — 0 has the form

[d/dt - A(t) - X]kY{t) = 0, (1)

where Y(t) denotes the vector-valued function with components Yj(t) = Yj(q(t)).
It follows from (1) that the norm of Y(t) is bounded in a sufficiently small neighbor-

hood of a as follows:
C2exp(pt) < \\Y(t)\\ < d e x p ( a i ) (2)

for some constants Ci, C2, a, and β. In addition, Ci > C2 > 0 if Y{t) φ 0. On the
other hand, in a sufficiently small neighborhood

(3)

for positive constants Kx > K2, δ and 7. Hence, \\Y{t)\\ > C2K20/S\\q{t)\\0/S on those
trajectories q(t) for which Y(t) φ 0. On the other hand, from the fact that Υ G μ^Ό(Μ),
it follows that | | F ( i ) | | < CN\\q{t)\\N for all natural numbers N.

COROLLARY. //, under the conditions of the lemma, Υ is a flat vector field which
commutes with X, then Υ = 0.

THEOREM I . Let p: <£> -+ μΟ(Μ) be a representation of the Lie algebra 0 for which
there exists an element Vo € 0 with the property that the spectrum of the linear part
p^^(Vo) lies in the right half-plane (Reλ > 0). Then each representation p': (5 —>
μϋ(Μ) which is formally equivalent to ρ is C°° equivalent to p.

PROOF. Using a lemma of Borel, we may assume that ε ( ν ) = p(V) — p'(V) €
μ°°£)(Μ) for all V e 0. Moreover, the conditions on the spectrum of p^'(Vo) and a
theorem due to Chen [16] show that we may assume that e(Vo) = 0. We shall prove that
e(V) = 0 for all V € 0 .

For this we represent the Lie algebra 6 a s a direct sum 0 = 0{λ} ®λ> where (λ) is
the spectrum of a d y 0 : 0 —• 0 and <S\ is the invariant subspace corresponding to the
eigenvalue λ. It evidently suffices to prove that e(V) = 0 for any element V € 0A· But
then (adv0 -A)fc(V) = 0 for some natural number k. Therefore, if we set X — p(V0)
and Υ = e(V), we have

( L x - X)k(Y) = p((ad V o -X)k)(p(V)) - p '((ad V o -A) fc)(p'(V))

= p((ad V o -A) fc(V)) - p'((adV [ ) -A) fc(V)) = 0.

It remains to use the previous lemma.
The contact analogue of Theorem 1 is proved similarly.

THEOREM 2. If ρ is a representation of a Lie algebra 0 by contact vector fields which
satisfies the conditions of the preceding theorem, then each representation p' formally
contact equivalent to ρ is C°° contact equivalent to p.

3.5. We consider representations of commutative Lie algebras.
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LEMMA 1. Let 0 be a commutative Lie algebra and a: 0 —• EndR,V a completely
reducible, finite-dimensional representation. Then Hk(&, V) — Ak<3* ® V*, where V& =
{v € F|a(F)(i>) = 0 for all V e 0 } , is the subspace of fixed elements.

PROOF. Let V = φ ^ Κ be a decomposition of V into irreducible components. Then
Hk{<3, V) - φ ; Hk{®, Vi), and, consequently, it suffices to calculate Hk{<5, V) for simple
©-modules V. If the action of 0 on V is trivial, then Hk{<3, V) = Ak<£>*®V. We show that
if 0 acts in a nontrivial manner on V, then Hk(<3, V) = 0. Without loss of generality, we
may assume that V is one-dimensional (by passing, if necessary, to the complexification).
In this case, the action of 0 on V is determined by the 1-form λ e 0* (the weight of
the representation): a(V)v — A(V)t>, υ £ V. Let v0 € V be a generator of V and
/ € Ak&* cg> V a cocycle. Representing / in the form / = /o ® VQ, where /o € Ak&*, we
obtain

fc+l

df(Vu ..., Vfc+1) = £(-l) i + 1A(Vi)/0(Vi,. . . , V,,..., Vk+1)v0 = 0
t = l

for all V j , . . . , Vfc+1 € 0 . Thus, λ Λ /ο = 0. Consequently, there exists a (k - l)-form
h € Ak~1<&* such that f0 = λ Λ /ι. But then οί(/ϊ ® υο) = /. The lemma is proved.

LEMMA 2. Let a: 0 —• EndR. V 6e a finite-dimensional representation of a commu-

tative algebra, and V* = {ν Ε V|VV e 0, 3k, (a(V))fc?; = 0} the subspace associated to

the zero weight. Then Hk(®,V) = i/ f c(0,V o

#).

PROOF. By Engel's theorem, all operators Q ( V ) (over the field C) can be reduced to
triangular form. Suppose that the weights of the representation a are nontrivial: then
a basis Vi , . . . , V m of the algebra 0, subject to the condition that all weights are not
equal to zero on Vi, forms a regular sequence (see [12]); in this case Hk(&*,V) = 0.

Consider the short exact sequence of 0-modules 0 —> V* —• V —* V'/V* -+ 0, to
which corresponds the long exact cohomology sequence

The representation a: 0 —» EndRF/V 0

# , being a quotient representation of a, does
not have zero weights. Therefore W^^V/V*) - 0, and the inclusion # ' ( 0 , V*) —>
Hl(<&,V) is an isomorphism.

COROLLARY. Let a: 0 —• EndR, V be a finite-dimensional representation of a com-
mutative Lie algebra. Then HZ(0,V) = 0 for i > 0 if V* = 0 or, equivalently, the
representation a does not have zero weight.

3.6. Let p: 0 —> μϋ{Μ) be a representation of a commutative Lie algebra 0 whose
linear part p ' 1 ' : 0 —• EndR Γ is completely reducible. Using the lemma proved above,
we find that the first term of the spectral sequence of §2.6 has the form

EPI = Λ Ρ + « 0 * Θ ( 5 P T * Θ T ) # .

Let Aj,.. ., Xr e 0* be the weights of the representation p^"1: 0 —• EndR Τ (generally
speaking, complex). Then the representation 5 p (p( 1 ^)*®p' 1 ' is also completely reducible,
and its weights are equal to

respectively, where m\,....mr are natural numbers and Σ\ mi = p. Therefore, E\q φ 0
if and only if there exists a resonance on the level p: ]Pj mlXi = Xj for some weight Xj
and natural numbers m i , . . . . mr such that ]Pj mi — P-
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Let Mp = Ep'~p. Then Μ» = ΣΡ>α MP is a L i e algebra and the differential dp{~p : Mp

—• 0* ® Mp+l determines a graded "©-module structure on M». Let Hp+q<p(&, M*) be
the Koszul cohomology of this module at the term AP+Q<S* ® M p . Theorem 2.6 can be
supplemented as follows.

THEOREM. Suppose that p: C5 —• μϋ(Μ) is a representation of a commutative Lie al-
gebra for which the linear part p ' 1 ' is completely reducible. Then, in the spectral sequence
of §2.6, the following is true:

1) Epq = Ap+q<3* ® M p , w/iere M p = (5 Ρ Γ* ® T ) # is ί/ie space o/ invariants of 0
corresponding to resonances of the terms (1). 77ie differential dp'~p determine a graded
^-module structure on Μ, = Σ ρ > ο ^ ρ ·

2) β^9 = Hp+q'p(<&, M.) coincides with Koszul cohomology of the Lie algebra <3 with
values in M*.

Supplement. If the representation p ' 1 ' is not completely reducible, then

Epq = Hp+q{<5,(SpT* ®T)#)

in view of Lemma 3.5(2). Therefore Epq = 0 if ^rnl\i φ λ3 for all j and natural
numbers ml such that Y^ml— p.

3.7. THEOREM. Let p: <& —> μΟ(Μ) be a representation of a commutative Lie
algebra and \γ,... ,\r the weights (over C) of the representation p1-1^.

1) // 2Zi m t ^ ? 7̂  Aj for all natural numbers mi,... ,mr such that Σ\ ml > po, then
the representation ρ is po-sufficient in the formal sense.

2) //, in addition, A+ φ 0, where

A+ = { V e e | R e A j ( V ) > 0 , j = l , . . . , r } ,

then the representation ρ is po-sufficient.

The first part of the assertion is a corollary of Theorems 3.6 and 2.9. The second part
follows from Theorem 3.4(1).

REMARK 1. Assertion 1) of Theorem 3.7 admits the following generalization for a
completely reducible representation p^ 1 ' : if /ί 1 ) Ρ (®,Μ*) = 0 for all ρ > p0, then the
representation ρ is po-sumcient in the formal sense.

REMARK 2. Theorem 2.9, applied in the given situation, gives a resonant normal form
for vector fields in p(25).

REMARK 3. In the case of a one-dimensional Lie algebra, Theorem 2.9 under the
conditions ReAj φ 0 (in view of Chen's theorem [16]), gives a description of po-sufficient
orbits in the C°°-case.

3.8. Let p: 0 —> ct(M), imp C μΌ, be a representation of a commutative Lie algebra
by contact vector fields. We suppose that the linear part p^ is completely reducible. We
denote the weights of p^ by λο, Αι,..., A2n, where Ao is the weight of the representation
p^ on la. There is the following relation among the weights [7]: for each A; there exists
a Xj (i,j φ 0) such that Xi + Xj = Ao·

If we suppose that λ0 φ 0, then Hk(<&,Sp-1l*a) = 0 for all k > 0 and ρ > 2, and,
consequently, in the spectral sequence of §2.13, the term Epq appears in the following
form:

Epq = Hp+q{<3,Sp+1T*/Sp+1ra®la), (1)

where ρ > 2. Using the exact cohomology sequence of a pair

0 -» Sp+1l*a — SP+1T* -> Sp+1T*/Sp+1l*a -> 0,
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we obtain isomorphisms

Epq = Hp+q{@, sp+lT* ® la) = Ap+q<&* ® (SP+1T* ® la)*.

In terms of the generating functions, the action of <& on SP+1T* has the form

V ( [ / ] S + 1 ) = [ P ( V ) ( / ) - A - ! ( / V ) / ] S + 1 , (2)

where /v is a generating function of p(V), / G μ ρ + 1 , and

\f\l+l = f mod μρ+2 eSp+1T*.

Since Ao(V) = Χι(/ν)(α), it follows from (2) that the weights of the representation of 0

in Sp+lT* tg>la have the form — Χ^ο" m,A, + λο under the condition that ]C0™
 m» ~ P + -*•·

We set Mp = Ε\·~ν = (Sp+lT* ® la)*. Then Mt = £ p > 0 M p is a Lie algebra and the

differential dp'~p: Mp —> 6* <g> M p + i determines the structure of a graded ©-module on

M,. As in §3.7. let Hp+Q'p(<5, M*) be the Koszul cohomology of this module at the term

Λ.ρ+«0* (gi MP : Theorem 2.13 can be supplemented as follows.

THEOREM. Let ρ: 0 —> ct(M), imp C μ-D, δε a representation of a commutative Lie
algebra by contact vector fields for which the linear part of p^ is completely reducible. In
addition, let XQ.XI,. .., X2n, 2n+l = dimM, be the weights (overC) of the representation
p^l\ where Ao is the weight of the representation p ' 1 ' on la. Then, if XQ φ 0, the spectral
sequence o/§2.13 is such that the following conditions hold:

1) The term Epq = Λρ + < ?6* ® Mv, where Mp = {SP+1T* ® la)*, is the space of
invariants o/0 corresponding to resonant terms Mp = 0, if Xo φ Χ̂ ο™

 mi^i for all natural
numbers rriQ..... min such that X̂ o™

 m i — Ρ + 1- Ρ ̂  2. The differential dp'~p: Mp —>
©* <g) Mp+i determines a ̂ -module structure on Μ* = Σρ>οΜρ.

2) The term Ep'g = Hp+q'p{<5,Mt) coincides with the Koszul cohomology of the Lie
algebra © with values in M*.

3.9. The proof of the following theorem is similar to that of 3.5.

THEOREM. With the notation of the preceding theorem:
1) The representation ρ is p^-sufficient in the formal sense if H1'P(<&,M*) = 0 for all

P-^Po- In particular, this is always the case if conditions 3.6 are satisfied for all natural
numbers mo rn^n such that 5Zo

n mi > Po + 2.
2) //, in addition, A+ φ 0, then the representation ρ is po-sufficient in the C°° sense.

REMARK 1. In the case of a one-dimensional Lie algebra, when Re Ay φ 0, Theorem
2.14, in view of the results of [7], gives a description of the po-sufficient orbits in the C°°
case.

REMARK 2. The assumption that p'1) be completely reducible can be omitted when
the conditions of 3.6 hold.

3.10. In conclusion, we consider representations of reductive algebras.

LEMMA. Let a: 0 —*· E n d n F be a finite-dimensional representation of a reductive
Lie algebra whose restriction to the center 3 C © is completely reducible. Then

Hk(<3.V)= Σ #l(©o,R.)®
i+j=k

where &o = [0. 25] is the semisimple part of<£>.

PROOF. From the Serre-Hochschild spectral sequence for the pair (©,3) it follows
that

Hk{®.V)= Σ #
)
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and it remains to use Lemma 3.5. The lemma is proved.

3.11. Let p: 0 —• μΟ(Μ) be a representation of a reductive Lie algebra 0 for which
the restriction of the linear part pi 1 ' to the center 3 is completely reducible. Then the
term Epq of the spectral sequence in §2.6 has the form

Epq = Σ Hl(®0,R)®Aiy®{SpT*®T)#. (1)
i+j=p+q

Let Τ = Vi φ · · · ® Vr be the decomposition of Τ into a direct sum of irreducible 0 O =
[0,0]-modules. Then the restriction of the representation pi 1 ' to 3 is scalar on each
subspace Vi:

1 R

for some weight A; € (3 ®R C)*.
Let {SPT* ® T) e° be the module of invariants of the algebra 0O . Then Σ,ρ>0{3ρΤ* ®

T ) e ° is a module over the algebra of invariants Σ Ρ > ο ( δ Ρ Τ * ) β ° > a n d therefore {SPT* ®

Γ) β ° is nontrivial for arbitrarily large values of p. The weights (over C) of the represen-

tation of 3 in SPT* ® Τ are equal to Xj - Σ ^ λ ; , where the m» are natural numbers

and Σ mi — P- Consequently, Epq = 0 for ρ > p 0 if resonances are absent in the repre-

sentation p i 1 ' : Y^rriiXi φ Xj for all natural numbers m\,...,mr such that Σ r n i > Po·

THEOREM. Let p: 0 —> μϋ[Μ) be a representation of a reductive Lie algebra 0 whose
linear part restricts to a completely reducible representation on the center 3 C 0 . Let
Αχ,..., Ar 6 (3 ®R C)* be the weights of the restriction of the representation pi 1 ' to 3·

1) If Y^rriiXi Φ Xj for all natural numbers mi,... ,mr for which J2mi ^ Po, the
representation ρ is po-sufficient in the formal sense.

2) 7/A+ φ 0 where A+ = {z 6 3|ReAj(z) > 0, 1 < j < r} and condition 1) is
satisfied, the representation ρ is po-sufficient in the class C°°.

3) If Λ+ φ 0, then formal and C°° equivalence of representations of the Lie algebra
0 are equivalent.

COROLLARY. 7/Λ+ φ 0, then Theorem 2.9 gives normal forms of representations in
the class C°°.

The first two assertions of the theorem were proved above; the equivalence of formal
and C°° sufficiency follows from Theorem 3.4.

3.12. Comparing the results of §§3.10 and 3.8, we obtain the following result.

THEOREM. Let p: 0 —> ct(M), imp C μ/Λ be a representation of a Lie algebra 0 by
contact vector fields, whose linear part pi 1 ' restricts to a completely reducible represen-
tation on the center 3 C 0 . Let λο, Αι,..., Ar be the weights {over C) of the restriction
o/pi 1 ' to 3 where Xo ε 3* for all representations ofb in la. If XQ φ 0 and

1) λο φ Σ ^ λ ι for all natural numbers m o , . . . ,mr, for which ^ m , > po + 2, then
the representation ρ is pg-sufficient in the formal sense;

2) Α.). φ 0 and condition 1) is satisfied, then the representation ρ is pQ-sufficient in
the C00-sense;

3) Λ+ φ 0, then formal and C°°-equivalence are equivalent and Theorem 2.14 gives
normal forms of representations in the class C°°.
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