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V. V. LYCHAGIN

ABSTRACT. A general scheme is presented for constructing solutions of systems of

differential equations with a prescribed type of singularities. The scheme is then

applied to the homological equation arising in the problem of classifying Lie algebras

of vector fields in the neighborhood of a rest (or equilibrium) point. The formal, C*®

and C* variants of the classification problem are discussed. Sufficiency conditions in

the contact, symplectic, and general cases are given in terms of spectral sequences.
Bibliography: 18 titles.

There are two approaches to investigating the solubility of systems of differential
equations within classes of functions with a given type of singularity: the algebraic--
or formal --and the functional. In this paper, we present a general scheme for obtaining
conditions for formal solubility. We give the general definition of the type of a singularity
below; here we only remark that, in the case of the so-called u-adic filtration associated
to a singularity of the type “order of smallness at a point”, our scheme (for regular
systems of differential equations) comes in contact with the Spencer-Quillen-Goldschmidt
theory of formal solubility [13]. And for singularities of the type “order of smallness on
a submanifold of codimension 17 the method includes the classical theory of transfer
operators.

Our approach is based on spectral sequences. There are two reasons for this: first,
the solubility conditions have a homological nature, and, secondly, the construction of
solutions is based on the method of successive approximations. We note that in the
spectral sequences that arise, the term (ES?. df?) corresponds to the symbolic part, the
differential d{? in the term (E7?,d}?) is the transfer operator, and the differentials dP9,
r 2> 2, which were not as a rule considered in the classical approach, are higher transfer
operators which are most adequately defined using the machinery of spectral sequences.

From our point of view, the most interesting illustration of our approach (another
illustration involving the computation of the stable cohomology of Spencer was presented
in {10]} is in obtaining conditions for the formal solubility of the homological equation
which arises in classification problems. In this case, spectral sequences not only give
solubility conditions, but they also indicate the normal forms to which the classification
problem under consideration can be reduced.
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V. L. Arnol’d [2] was the first to use spectral sequences in application to degenerate
singular points of functions. Here, we apply spectral sequences to the determination
of normal forms of Lie algebras of vector fields (contact, Hamiltonian, or general) in a
neighborhood of a rest (or equilibrium) point.

A well-known theorem of Elie Cartan asserts that the (analytic or smooth) action of
a compact Lie group in a neighborhood of a fixed point is equivalent to a linear action.
In the case of semisimple Lie algebras, Hermann [15]) proved that formal linearization is
possible. Kushnirenko [4], as well as Guillemin and Sternberg [17], using Weyl’s “unitary
trick”, proved that an analytic action of a semisimple Lie algebra is equivalent to a linear
action. In this paper, we consider the case of an arbitrary Lie algebra and the cases
when the Lie algebra is realized as an algebra of contact or Hamiltonian fields. The
triviality of the first term of the corresponding spectral sequence is analogous to the
absence of resonances—the Poincaré conditions—while for a one-dimensional Lie algebra
it is analogous to coincidence with these conditions.

For reductive, semisimple and commutative Lie algebras we obtain conditions under
which formal equivalence implies C*° or C% equivalence. Here, a basis role is played
by the presence in the algebra of a vector field for which the fixed point is a node
(ReA > 0). We note that this coincides with the condition that the Gel'fand-Fuks
cohomology be finite-dimensional [14]. This is not by chance. Finite-dimensionality of
a Lie algebra & represented by vector fields is not essential for consideration of formal
questions. In particular, applying the spectral sequences of §2 to representations of
filtered algebras on Lie pseudogroups and using the Gel’fand-Fuks cohomology instead of
the finite-dimensional Lie algebra cohomology, we obtain analogous results about normal
forms of intransitive Lie pseudogroups.

The main results of this paper were announced in the notes [8] and [9].

§1. Singularities

Consider a smooth manifold M with dimM = n + m and a smooth submanifold
My C M with codim My = m. Let ¥ (respectively, %) be the R-algebra of smooth
functions on M (on Mp) and p C.# the ideal corresponding to Mp:

w={f€F|flm, =0}

In what follows, we shall identify .% and F /u. More generally, let a: E{(a) — M be a
smooth vector bundle, and A = T'(«) the module (over .# ) of smooth sections of . Then
Ap = A/uA can be identified with the F-module of smooth sections of the restriction
of o to M.

If 3: E(f) — M is another vector bundle, then Diffx(A4, B), where B = I'(3), will
denote the # -module of differential operators which have order less than or equal to k
and which operate from sections of the bundle « to the sections of the bundle 5.

1.1. We counsider C*°(M\My) as an % -module and choose a submodule Q together
with a decreasing filtration by % -modules:

"'Q13Q1+13"'7 jGZ, Q—oo:UszQv Qoo:ﬂQjCy'
jez jeZ
DEFINITION. a) We say that submanifold My C M has a singularity of type @ if an
F -module Q C C™(M\Mp) is fixed together with a decreasing filtration {Q;} satisfying
the following conditions:
1) Differential stability: A(Q;) C Q;—x for all differential operators A € Diff (¥, ),
and A(Q;) C Qj—k+1 if A(F) C p.
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2) Differential completeness: Qj—x = Uncmigr, (7.9 B(Q;) for all j € Z.

3) Localness: if a function f € C*°(M\Mpy) is such that for each z € M there exist a
neighborhood &, 5 z and a function ¢; € Q; such that f = ¢; in @\ Moy, then f € Q.

b) A function f € C°(M\My) has e singularity of type Q and order j if f € @5, but
[ & Q541

For the vector bundle o we get Q;A = Q; ®5 A. The elements of ();A will be
considered as sections of o having a singularity of type @ on M and order greater than
or equal to 7.

EXAMPLE 1. The p-adic filtration: ¢; = plfor j > 1and Q; =% for j <0.

EXAMPLE 2. Let Mp = {0} C R™, and let fo(z1,...,.2m), 0 =(01,.-.,0m), 0; € Z,
be a collection of smooth functions on R™\0 such that 0f,/0z; = f,_1, and f, - € €
C>(R™) for all functions € which are flat at the origin. Let @ be the module generated
by functions of the form z' - -zl - fo(z), where 7, > 0, and let @); be the submodule
generated by those z7 f,(z) for which |7| — |o] < J.

EXAMPLE 3. The preceding example admits the following generalization. Suppose
that My C M is the submanifold cut out by functions Aqy,..., Ay, € C® (M), My =
R7N0)N---NA;1H0), whose differentials are independent of My, and let f, be the above
collection. Then the module @ generated by h" fo(h1,...; hm), 7 = (71,...,7m), with
filtration Q,, |7| — |o] < j, determines a singularity on M.

EXAMPLE 4 (a homogeneous filtration). To each variable z,,...,z,, we associate a
degree: ky,... . ky. Weset Q=% =C®(R™)and Q; =Q (j <0),and let Q; (j > 1)
be the functions of total degree of homogeneity greater than or equal to 7. Then Q
determines a singularity on Mg = {0} C R™.

REMARK 1. Note that by applying property 1) to the scalar differential operators
that are multiplication by functions f € u, we obtain uQ; C Q;4; for each singularity
Q.

REMARK 2. All the preceding examples carry over to a trivial vector bundle « if
the elements of ();A are understood to be vector-valued functions on M\My whose
components all lie in ;.

1.2. A filtration {Q;} determines an additional filtration on the .# -module of differ-
ential operators

Diff. (A, B) = | Diffx(4, B).
k>0

For this we define the .7 -module Diff? (A, B) of differential operators of order less than
or equal to r with respect to a singularity of type @ to be the set of differential operators
A € Diff . (A, B) such that

1) A(Q,) C Q;—,, and
2) ady, 0---oady, (A)Q;A) C Qj—r+k(B) for all fy,...,fk € F and j € Z. Here
ads(A){a) = A(fa) — fA(a) 1s the commutator of A and the operator of multiplication
by f.

The inclusions

Diff?(A, B) € Diff? (A, B) aund Diff,(A, B) C Diff?(A, B)

are obvious, so that
Diff. (4, B) = | | Difi? (4, B),
1€Z

and {Diff®(A, B)} defines an increasing filtration in Diff, (A, B).
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EXAMPLE. Consider the vector field V = 37" V;(z)8, on R™, where 8; = 3/9z; and
V.(0) = 0. If Q is a singularity on the submanifold Mg = {0} C R™ and V;(z) ¢ u? for
at least one value i, 1 <1 < m, then V € Diff§(F,.7). Otherwise, V € Diff%(F,.7).

1.3. The symbolic algebra and the Weyl algebras. Let

S2(A,B) =3 SP(A,B)
rcZ

be the graded module associated to the filtration {Diff%(A, B)}; that is,
SS(A, B) = Diff¢(A, B)/ Diff?_ (A, B).

We put S2(F,.F) = S.(Q) and SP(F,.F) = S,(Q). Since u x Diff%(4,B) C
Diff?_1 (A, B), each homogeneous component S¥(A, B) (and, together with it, the entire
module SP(A, B)) is an F-module.

In the case when A = B, composition of differential operators defines the additional
structure of a (noncommutative) F-algebra on S9 (A, A). We call the F-modules
S?(A, B) symbolic modules and the Fp-algebra S.(Q) the symbolic algebra of the singu-
larity Q.

EXAMPLE. Let My = {0} ¢ R™, and let Q; = u’ (j > 0) be the p-adic filtra-
tion. Then S.(Q) can be identified with the algebra of polynomial differential operators
ZU,T ar o2°9", where 0 = (01,...,0m,) and 7 = (71, ..., T, ) are multi-indices, and S,(Q)
can be identified with the set of operators of this form for which |7]| — |o| = r.

With this example in mind, we shall call the symbolic algebra of a y-adic filtration
the infinitesimal Weyl algebra of the ideal u (of the submanifold Mp), and denote it by
W ().

We give another description of this algebra. Consider the F-module E(u) = vo @
v§, where vy = p/p? is the module of sections of the conormal bundle and v§ =
Homg, (10, %) is the module of sections of the normal bundle of the submanifold Mj.

We define a symplectic structure on E(u) using the skew-symmetric two-form 2, €
A2(E(u)*), where

_JY(X), Yeuy; X€uw,
Q“(X’Y)_{O if either X, Y € 5 or X, Y € 1.

Let w(u) be the quotient of the tensor algebra T'(u) of the module E(u) by the ideal
generated by
XY -YQ@X-Q,(X)Y)-1, XY € E(u).

The following holds.

PROPOSITION. The infinttesimal Weyl algebra W{u) is isomorphic to w(y) Qg
Diff (5, Fo).

PROOF. Choose a local coordinate system (z1,...,Zn.¥1,--.,¥m) O a neighborhood
& of the point a € Mg such that My N & is given by the equations y1 = -+ =y, = 0.
The operator

A= ag,0,(z,y)07 05

has order equal to the maximum of the sums o3 +ord s, ,, Where ord as, o, is the order
of smallness of the coefficient a,, », on the submanifold Mp. It remains to observe that
the elements y”d9 are elements of w(u) and a, ()07 € Diff (%, ).

1.4. Consider the graded module R.(A) = > ., R;(A) associated to the filtration

Q;(A): that is, Rj(A) = Q;A/Q;+1A. We set Rj = Q;/Q;4+1 and R = 3.7 R;.
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It follows from the conditions defining the filtration {Q;} that pR;(A) = 0. Hence,
R;(A) can be considered as an #-module. We also remark that the natural map R; ®
Agq — R;(A) which sends ¢; mod Q;4+; ®a and mod uA to the element g;a mod @414
establishes an isomorphism of .%-modules.

Let A € Difff(A. B). We define the jth symbol of A with respect to the singularity Q
to be the map

o2(A): Rj(A) — R;_x(B).
where UJQ(A) (a; mod Q;414) = A(a;) mod Q; k418, and we define the complete sym-
bol to be the map o%(A) = 2 UJQ(A).' R.(A) — R.(B). From the conditions on the
filtration {@;} it follows that the symbols J]Q(A), 4 € Z, are Fy-morphisms.

1.5. Transfer operators. Consider the following problem: find a solution of the
equation A{a) =0, A € Diff (A, B), having a singularity type @ on a submanifold M.
In other words, find a; € Q;A such that A{u;) = 0. We first consider the cruder problem
in which we merely require that Aa; € Qoo B C B. The natural way to try to solve the
latter problem is as follows. Choose an arbitrary element a; € Q;A. Then Aa; € Q;_ B
if A € Diff¥(A. B). We determine what kind of conditions must be imposed on a; for
Afay) to be a “smoother” section; that is, A{a;) € @j—k+1B. Using the symbol of the
differential operator A with respect to the singularity @, we can describe this condition
succinctly as

o?(A)(lay]) =0, where [a;] =a; mod Q,414 € R,(A).

Suppose [a;] € ker O'JQ(A), and consider the conditions under which it is possible to
obtain an even “smoother” right-hand side without changing [a;]. For this, it is clearly
necessary that A(e; + a;41) € Qj_k42B for some choice of a;.; € Q;j4+1A4. In other
words, it is necessary that A(a;) mod Q;_k12B € im 0';9+1(A), and so forth.

We formalize this process. To do so, we introduce the %-modules

F;(A) = kero®(A), % (A) = cokera?(A)

J J
and consider the operators Al: . 7;(A) — %41(4), where

Aj{la;]) = [Algy)] mod imo??

2 (A),

THEOREM. The operators A;, J € Z, are differential operators of order less than or
equal to 1 over %.

PROOF. It is sufficient to verify that ad, oade(A;) = 0 for all f1,f, € . Let
fi,f2 € F be extensions of f; and f,. Then

ady, (AN)([a;]) = [adf, (A)(a;)]  mod imo?, (A)
and
ady, oady, (Al)([g;]) = [adj, oadf, (A)(a;)]  mod ima¥  (A),

but ads, oady (A)(a;) € Qj_k+2B and, therefore,
[adf, oadf (A)(a;)] = 0.

1.6. Spectral sequences. In this section, we consider the case when the operators
are differentials of degree +1 in a graded complex & = > A7:

0 A 2 AL B, 08 g0 B gt B AN g,
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This case is important, first of all, because considering the Spencer complex associated
with the differential operator allows us to obtain more significant (in comparison with
§1.5) information about the transfer operator in overdetermined problems. On the other

hand, considering complexes of the form 0 — A° = A4 £, A = B — 0 allows us to more
naturally introduce the higher transfer operators and thereby give a complete solution
to the problem formulated in the preceding subsection.

Using the singularity ¢, we introduce a filtration on the complex Q% by setting

FP(A]-) = Qp—ijj
subject to the condition that A € Diffﬁ2 (& ,%). The differential A is compatible with
this filtration. Consider the spectral sequence
EPt =z ZPT 107 4 B,

where ZP9 = {a € F,(AP*9),A(a) € Fpy, (APTI1)} and BP? = A(ZP~™9t7~1), We
note that elements in Z%7 can be interpreted as formal (that is, considered up to flat
ones) cycles in AP*? having a singularity of type Q on My. Thus, for a complex of the

form0 — A = B — 0, the elements of EE;~P are solutions of the problem formulated
in §1.5.

We describe the initial terms of the spectral sequence: E5'? = F,(AP*2)/F,4(AP*9),
and therefore E§ is isomorphic to Rp(;—k)—qk ® A5 and the differential d5? coincides
with the symbol ‘7;?(1— k)_pk(A). Consequently, ET? coincides with the cohomology of
the symbolic complex

-1 o9(4)
T = Bp(1-k)—(q-1)k ® AS“ b Ry(1-k)-qk ® AS*"
0% (8)

Rp(1-k)+(a+ 1)k ® AR — ..

at the term R,y _x)y—qk ® A0
In particular, since the maps af(A) are Fo-homomorphisms, the terms ET? are F-

modules. We remark that for the complex 0 — A% = A =5 A! = B — 0 we have
EP?=0ifp+q#0,1, and EP P = Z,(A), while E}' 7P = Z,(A).

THEOREM. In the spectral sequence (EP9,dP?), the terms EV? are Fh-modules, and
the operators df%: EPY — EPY14 gre differential operators of order less than or equal to
1.

PROOF. As in the proof of Theorem 1.5, it suffices to verify that ady, o ady, (d}?)([a,])
=0 for all fi, f2 €% and 7 = p(1 — k) — gk, where [a,] is the image of a; in E7?. But

ady, oady, (d7)((e;]) = adj, cady, (A)([a;]) = 0,

because ad 7, ocady, (A)(a;) € FpiAPTITL

1.7. As a first example of an application of the spectral sequences we have con-
structed, consider the problem of the existence of first integrals of dynamical systems in
a neighborhood of a rest point.

Let V = 37" Vi(z)d; be a vector field on R™ for which 0 € R™ is an equilibrium
point; that is, V,(0 ) = () for 1 <4 < m. Consider the p-adic filtration: Q; = p? (j > 1)
and Q; = . (5 < 0), and the spectral sequence (EP?,dP?9) of the cohomology of the

complex 0 — Ag =.% Z, A, =% — 0 with respect to this filtration.
We assume that the lincar part of V is not identically zero; that is, V € Diff§ (7 ,.%).
In the given case, R; = S$?T*, where T* is the cotangent space to R™ at the point
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0 € R™ and o} (V): SIT* — S/T* is the operator of taking the derivative along the
linear part of V; here o (V): T* — T* is the operator dual to the linear part. It is
well known that the spectrum of the operator % (V) coincides with 377" n;); where
Z;" n; = j, ny,...,Ny, are natural numbers, and Aj,..., A, is the spectrum of the
linear part of V. Consequently, E}""" = 0 and EP'™P = 0 if ST nidi # 0 for all
natural numbers n; such that Y 1" n; = p: the terms E}""" = kero%(V) and EPIP =
coker 0#(V) can be nontrivial only if there exist resonances Y 1" n;A; = 0, Yon; = p.
Note also that kv = 3° o E7'"P C §*T* = 3° -, SPT™ is a subalgebra of the algebra

of homogeneous polynomials on 7' = To(R™) and C\ = }_ 5, EP'77? is a module over
this subalgebra. Moreover, if the linear part of V is semisimple, then C, is isomorphic
to k.. The differential dj = 3 50d]""7: k« — C. is, first, an R-linear operator and,
second, a derivation: dj(ab) = adj(b) +bd;(a). In the semisimple case, d} is a derivation
(of degree 1) of the algebra k,. If &P = ... = d8~P =0, then

P,—P __ __ pDp . p.l-p _ . _ pp,1-p
£y —"'—Es+1’ E3 = —Es+1

and, as above, the differential dj,; = 3_ 5, d} P k. — C. is a derivation.

Thus, the geometrical image which we can associate to the first nontrivial term of
the spectral sequence consists in an algebraic manifold P corresponding to algebra k.,
a vector bundle # over P corresponding to the module C,, and a derivation d},; with
values in . In the semisimple case, this corresponds to a vector field d;,; on P. The
next term of the spectral sequence coincides, respectively, with the kernel and cokernel
of this vector field (or derivation), and each successive term is obtained by passing to
the kernel and cokernel of the appropriate derivation d,: k, — C, determined by the
(r 4+ 1)-jet of the vector field V. Here we have the following possibilities: 1) d, = 0, and
then C,41 = Cy and k, | = ky; 2) dr # 0, and the action of the generators of k, on C, is
not nilpotent; or 3) d, # 0, but the generators of k, act on C, in a nilpotent (or trivial)
manner.

Suppose that all the algebras k, are finitely generated. Then in situation 2) the
dimension of k,,; is less than the dimension of k,, and therefore the spectral sequence
stabilizes after a finite number of nontrivial steps (under the condition that each step
corresponds to 2)) and ko, = R. This corresponds to the situation that all first integrals
h of the field V, k({0) = 0, are functions flat at the origin. Note, too, that here the
stabilization conditions for the spectral sequence are determined by a finite jet of the
field V.

The case in which 3) occurs is the main reason for the lack of finite determinacy in the
problem under consideration. In fact, passing to the next term of the spectral sequence
kills the finite-dimensional part of k., and C, and leaves us, as before, in situation 3).
Therefore, the stabilization cannot be verified in a finite number of steps.

We go into more detail on the low-dimensional cases m = 2,3. Suppose m = 2 and let
A1, Ag be the spectrum of the lincar part of V. Then the term 3° o, EY' ™7 is nontrivial
if either 1) X\, = Ay = 0 or (after multiplying V by a nonzero number, if necessary) 2)
A1 = 1 and Ay = —a/b, where a and b are natural numbers. We first consider case 2)
when Ag # 0. If (a.b) = 1, then E? ™7 ~ EP' "7 is different from zero if p is a multiple
of (a +b) and k; = C; = R[f], where § = z%zf and r,,22 € T* is an eigenbasis of
a{(V). The first nontrivial differential d, is possible when r = a + b and d,(8) = v,62,
so that d, = 710%9/00. If 4; # 0, which is determined by the (a + b) + 1-jet of V, then
Er?P=0forr>a+bandp>0,and EP-'?P=0forr >a+bandp>a+b.
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If dgyp = 0O, then the next nontrivial differential is possible when r = 2(a + b) and
d, = 72030/99. and so forth.

The explicit expression, for example for ~v;, takes a simple form in the coordinates ¢,,
ta, dot1 = x1, doto = x5 in which V has Poincaré-Dulac normal form:

a aa+b+1v1 b aa—f—b—klv2
(a+ 1)t 9attaeh al(b+ 1! gtag™!

Y1 =

If A\; = 1 and Ay = 0, then EV'"? = E?!™P = Rz} and the first nontrivial differential
d. could occur when r = 1, d; = ~;238/922; the rest is similar to the case a # 0.

If Ay = Ay = 0 and o4 (V) is nilpotent: o¥(V)(z1) = z2 and o} (V)(z2) = 0, then
EP7P = Rz®, EP'7P = Ra?, and the action of ky on € is trivial. Thus, we are in
situation 3).

Finally, if 6%(V) = 0, then EP™7 = EP'™? = §PT* and d; = Py(21,22)0/0z; +
Py(z1,22)0/0z,, where P; and P, are quadrics on T. If d; does not have nontrivial
homogeneous first integrals (this can be determined from the 2-jet of V), then the spectral
sequence stabilizes at the second step.

Let m = 3; we restrict ourselves to the case when o/ (V) is a semisimple operator
with spectrum Ay = 1, A2 = —a;/bi, A3 = az/bs, and ky = szo EY7P is a free
algebra. In this case, the first nontrivial differential is a homogeneous vector field on
the plane. Let {(b;,b2) = ¢, and suppose (b;,a;) = 1 for ¢ = 1,2. Then it follows from
the resonance condition n;A; + n9As + nzAz = 0 that no = k181 and n3 = ko Ga, where
by = ¢f1, by = c¢fl2, and k; and k; are natural numbers such that kja; — kqagy = 0
mod ¢ and nyc = k1a; — ke2aq. Choose vectors e; and e; on the (&1, k3)-plane such that
e1 = (¢,0) and ey is the least vector with positive integral coordinates lying on the line
kia; — kaag = 0. Let e; = (ky;, k2;), 7 > 3, be vectors, with positive integral coordinates,
lying inside the parallelogram with sides e; and es and such that ky;a1 —kg;a2 = 0 mod c.
To each vector e; there corresponds a homogeneous polynomial y; = z7' zh* z3°*, where
ni€ = kizay — kgsaa, nog = kyf1, and ngy = ko fa.

The polynomials y1,y2,... generate ky, and the relation y;* — yiy;' = 0 holds for
each 7 > 3. Consequently, k; is a free algebra only in the case when the vectors e;,
1 > 3, are absent, The latter is possible only in the case when a; = 1. Then e; = (¢,0),
e = (az,1), y1 = zlzg‘, Yo = mgzﬂ‘mé’?, and ¢; = ky = Rly1,y2].

We shall show that it is possible to choose A2 and Az so that k,; acts trivially on
Cry1. The first nontrivial differential d, is a homogeneous vector field on the plane
{(y1,y2), and therefore k,,; will act trivially on C,.; if, for example, d,(y;) = y2 and
dr(y2) = 0 or d;(y2) = y1 and d.(y;) = 0. This situation (by reason of the dimension)
always occurs if degy; < degys < %deg y1 or degys < degy; < %deg Ya-

In view of the form of yg, the second case is possible only if 83 = 1. Finally, we find
that if either

(ag—%c)ﬂ1+ﬂ2<§, c<a2§%c, (1)
or

(30-c)pi+d>0 msiet-e @)

holds, then the differential d, has the form d, = ~y20/dyy or d = ~yy13/0y2, where
r = (az—c¢)B1+ P2 —1in case 1} and r = (1 — A3)/b; in case 2). In both cases, situation
3) occurs for almost all (r + 1)-jets of vector fields with a given spectrum.
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§2. Spectral sequences and normal forms
of Lie algebras of vector fields

In this section we apply the method discussed above for constructing approximate
solutions of systems of differential equations to find normal forms of Lie algebras of vector
fields. The corresponding system of differential equations is the homological equation.
Here, as a rule. the appearance of singularities in the classification problem results in the
appearance of singularities in the corresponding homological equation.

In this connection, we only use the w-adic filtration and we take My = *; in fact,
all the results carry over word for word to the case of a homogeneous filtration and an
arbitrary invariant submanifold M.

2.1. Let D = D(M) be the Lie algebra {over R) of vector fields on the manifold M,
Mo = a C M a fixed point, and p C C*°(M) the maximal ideal corresponding to this
point. Suppose that we are given a representation of a finite-dimensional Lie algebra &
over R in the Lie algebra D, p: & — D, for which a € M is a fixed point, p(&) C uD.
We say that two such representations p; and py are locally equivalent if there exists a
local diffeomorphism A: M — M, A(a) = a. such that A (p1(V)) = p2(V) forall V € &.

2.2. Let D¥ = uD/uF+'D be the Lie algebra of k-jets at a of vector fields on M
which vanish at a, and let jx: uD — DF denote the natural projection, 1 < k < oo,
which gives the k-jet at the point a. The Lie algebra D2 will also be denoted by D..

Let pt%): & — D%, p¥) = j; o p, be the reduction of the representation p to the level
of k-jets.

DEFINITION 1. We shall say that the representation p; and pg are k-equivalent if
there exists a local diffeomorphism A for which (p; o 4,)®) = p{'?. When k = oo, the
representations will be said to be formally equivalent.

DEFINITION 2. A representation p will be called k-sufficient if any representation p’
which is k-equivalent to p is equivalent to p. If the k-equivalence of the representations p
and p' implies formal equivalence, then the representation p will be said to be k-sufficient
in the formal sense.

DEFINITION 3. A representation p is said to be sufficient if it is k-sufficient for some
k. Otherwise, the representation will be said to be wild.

3. With a view to obtaining algebraic conditions for formal equivalence of repre-
sentations of & and to finding formal normal forms of such representations, we consider
the complex constructed from the representation p of the Lie algebra &:

0—-D. 4 e 9D, LA @D, L. L A"6* @D, — 0, (1)
R R R
where m = dimg ® and the differential
d: A°®&*® D, —» A°T1e¢* @ D, (2)
R R
acts according to the formula

do(Vie... Va1 = Z(—ni“[p(vi),w(vl,...,vi,...,vw)]

+Z 2+Jw V V]vl....,vi,...,@]‘,...,vs+1), (3)
1<y
in which the elements w € A*®* ®gr D, are considered as skew-symmetric forms on the

Lie algebra & taking values in the Lie algebra of formal vector fields D, ; here. as usual,
the caret over an element indicates that the element is omitted, and V,,..., V41 € &.
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We postpone the motivation for considering this complex to §2.7. Here, instead,
we shall indicate some properties of the operator d. Define the bracket [wy A wp] €
At1B* ® D, of w; € A°&* @ D, and &, € A'G* ® D. (see [5]) so that for decomposable
elements of the form w; = a®X, wy = A®Y, where @ € A°8*, 8 € A'&* and X|Y € D,,
we have

Wi Awe] =aAB®[X,Y]. (4)
This bracket defines an R-linear pairing and is such that the following commutation
relations hold:
[w1 A UJQ] = (—I)St+1[(,g)2 A wl]. (5)
The Jacobi identity in the Lie algebra D, implies that if wy € A*&* @ D,, then

(=1)%*[wy A [wa Aws]] + (—1)*[wg A [wa A wy]]

+ (—1)*[w3 A [wy Aws]] =0, (6)
and (see [5])
dlwi Aws] = [dw1 A wa] + (—1)%[wy A dw2]. (7)
2.4. Introduce a filtration on the complex (1) by setting
Fpq=APTi* ® wP D, (1)

In other words, the terms of filtration p are the forms on the algebra & taking values in
vector fields of order of smallness p. It follows from the condition imp C D, that the
differential d is compatible with the filtration dF, , C F}, g+1. We set

Z:’q = {w (= Fp’q; dw € Fp+r,q—r+l}7
Bl ={we Foq € Foporgyr—1, w= de},

where ZP9 is the set of cycles of order » and BP? the set of boundaries of order r,
BP9 = dZP~m9+t7~1 The spectral sequence (EP?,dP9) of the cohomology of the complex
(1) constructed with respect to the filtration (1) has the form:

—_ +1,q~1 rq
Pt = gpo/zp+ie-t 4 pra

and the differentials dP?: EP9 — EP+74~7+1 are generated by d by passing to quotients.
In the given case p > 0 and 0 < p+ ¢ < m; therefore the Dynkin table of this spectral
sequence has the form of the band between the lines p+¢=0and p+qg=m, p > 0.

2.5. PROPOSITION. The followrng inclusions hold:
(279 A 27 0] c Zpremtatat,
g +p' —1,g+¢ +1 +p’.a+¢
(B29, A 227 € BUFY Thara et griland
PROOF. We shall prove the first inclusion. Let €; € ZP? and ¢2 € Z,?(q'. Then, in

view of (4) in §2.3,
[e1 Aeg) € APTP TOH g* @ Pt 2D,

and o
dler ANe2) = [deg Aea] + (=1)P 19 [g) Adey).

But de; € APHIHIG* @ uPt" 1D, and so
[dey Aeg) € APHIHP e +lgx o Mp+p'+r-2D*.

Similarly,
[€1 Adeg] € APTITPHIHIgr @ p¥o'tr=2p
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Consequently,
lex Ae2) € Fprpr—tqtg+1 and dles Aeo) € Fpypir_1,g4q—r42;

whence [e; A €3] € ZPTP —Latd +1,
Now, let e; € BP?| and ¢; € ZP'Y | and let § € APT918* ® uP~" D, be such that
€1 = df. We have
ey Aggl =d[0 Aes] + (_l)p-i—qw A desq).

But [§ Agg] € AP+ ~1@* @ yp+o' =71 D and therefore
[0 Aey] € BPFF ~Lata+L
Furthermore, [0 A deg] € APT91P'+9'&* @ uP+# =1 D, . In addition,
d[0 A deg] = [df A dey) € APHITPHFIg @ pto'+r=2D)
and therefore [ A dey) € ZPTP 910
COROLLARY. [ZPI A ZP'T| C ZptP'~Latd'+1 for p 5 5

In fact, ZP? C ZP9 for r > 5. Using the proof of the proposition, we define a pairing

EPY x EF'Y — EPHP-latd+l (1)
by setting
22 AT = (o ny] mod (ZEXP 4 BT TR 2)
on the cosets
=z mod (ZFI1TN 4 BRY),  yPY =y mod (224N 4 BPLY),

where z € ZP4 and y € ZP'7'.
From §2.3 we find that this bracket satisfies the relations

(277 Ay 7] = (—1) RO A 1), (3)

(=12 A g2 T AP ) 4+ (1) P A [ A 2P

+ (- AR A Y] =0, (4)
where s=p+gq,t=p + ¢, and k =p” + ¢”, and
de[z? AP0 = [dpa? A2 Y]+ (—1)PT 22 A dyy? 7). (5)
2.6. We describe the initial terms of the spectral sequence. We have
Eft = Fpg/Fpt1,4-1 = APTI8" %’ SPT* % T, (1)

where T (respectively, T*) is the tangent (cotangent) space to M at the point a € M; in
(1) we used the isomorphism

wD/uPt D = SPT*QT.

Since T*®T = Endg T, the reduction p(1) of the representation p defines a representation
of the algebra ® on the tangent space T; p{(1): & — Endgr T. The representations
SP(p(M)* @ p(V) thereby define a &-module structure on all the spaces SPT* ® T, and
formula (3) in §2.3 shows that the complexes

ar°

0 SPT" QT 2 8" QSPT* QT — - — A™S* @ SPT* QT — 0 (2)
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are Koszul complexes for the cohomology of the Lie algebra & with values in the &-module
SPT* @ T. Therefore,
EP? = HPT9(®, SPT* ® T). (3)
In particular, for p + g = 0, we have
EVP = (SPT* ©T)*,

where if L# is a 8-module, L# = {z € L|V(z) = 0, YV € &} denotes the subspace
of G-invariant elements of L. We note that here E}'™' = Ende 7 is the module of
®-homomorphisms of 7.

THEOREM. The filtration F, 4 defines a spectral sequence (EP?,dP9) in which

1) By = APHI6* Q SPT* Q@ T,

2) EYY = HPT9(8,SPT* QT),

3) the terms EPY carry the structure of a bigraded Lie algebra; that is, there 1s a bilinear
pairing EP9 x EP'Y — EPtr —Latd'+l op @D, , EF9 satisfying the relations §2.5 and the
differentials d, are derivations of this algebra; and

4) the spectral sequence stabilizes in the following sense: for each pair of numbers (p, q)
there exists a number ry = ro(p,q) such that

Pqe — P9 _— ...~ FP4 Pq
EVi=F_ ., = =E8, d7=0, r > 1o,

and the stable terms of the spectral sequence are thereby isomorphic to the terms of the
graded module assoctated to the cohomology of the complex (3) in §2.3.

It remains to prove the last assertion. To do this, note that there is a finite-dimensional
space in each cell (p,q) in which a subspace is then distinguished with successive factor-
ization; in this connection the dimension is not increased.

REMARK. If we put LY = > . noqoBPfand L =37 | ) L.q2EFY, then
E, = LY@ L! is a Lie superalgebra.

2.7. The use of spectral sequences to obtain normal forms of representations is based
on the following remarks. A representation p: ® — D, determines an element of ®*® D,

denoted as above by p, which satisfies the Maurer-Cartan equation

dp~ 3lp A p) =0. (1)
But if the form p+ ¢, where € € 8* @ D,, also determines a representation of the algebra
&, then

[((p+e)(V1),(p+e)(Va)] = (p+e)([V1. Va])
or
(p(V1),e(V2)] = [p(V2),e(V1)] = e([V1, Va]) + [(V1),&(V2)] = 0,

for all V1,V, € &. 1t follows from this that

de + t[e Ae) = 0. (2)

Therefore, if € € F, 1_p, we have [g A g] € Fop_1 32, and, consequently, ¢ € ZP!1=?
for all » < p — 1. The second remark is connected with the following observation. Let
X € D, be a formal vector field. Let A; = exp(t ad X) denote the one-parameter group
of formal diffeomorphisms corresponding to X. Let A (w) € &* @ D. be the image of
the form w € 8* ® D., A;-(w)(V) = Ay (w(V)), where A;- (Y) = (A7)~ oY 0 A} is the
image of the vector field Y € D, under the action of A;. We have

A (p)(V) = p(V) + tlp(V), X] + 12[[o(V), X], X] + - -,

which leads to the following proposition.
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PROPOSITION. If X € ZP~P, then the formal diffeomorphism A = exp(ad X) gener-
ated by X 1s such that

A*(p) -p—dX € F2p+r—1.2—2p—'r-

2.8. THEOREM (the normal form of the pth approximation). Suppose that vq,...,vs,
v; € 8* @ uPD, are such that their images generate Eg’_ll—p (p > 2). Then for each
representation of the Lie algebra & of the form p+ ¢, where e € 8* Q uPD (p > 2), there
exists a local diffeomorphism A such that

S
Ap)—p—e= Zcivi mod Fpi1,—p,
1

wherec; €ER, 1 <1< 5.

PROOF. It suffices to prove that if ¢ € Z27 77 + BP';'7, then there is a formal
diffeomorphism A such that A,(p) —p—¢ € Fpp1,—p. Let e = y+dX, wherey € Z;’fgl’_p
and X € Fy _9. Then it suffices to prove that A.(p) — p — dX € F,41, for some

diffeomorphism A. It remains to remark that, in view of Proposition 2.7, A can be taken
to be exp(ad X); since X € Zz‘_"zz, we have A,(p) —p—dX € F3p_34_3p C Fpy1,—p for
p=>2

REMARK 1. If n € Fj, 1, and X € Fy _, then A.(n) — n € Fy4q,—p and A, thereby
induces identity transformations on Eg’_ll— P Therefore, Theorem 2.8 can be reformulated
as follows: there exists a local diffeomorphism A for which A.(p+¢) —p = > civ;
mod Fp+1‘_p.

REMARK 2. The image [¢],—; of the element )" c¢,v; in Eg’_ll_p is not arbitrary; in
view of (2) in §2.7, it must satisfy the equation

dp—1(elp-1 + %Hs]p—l Alelp-1] = 0.
2.9. Successive application of Theorem 2.8 leads to the following result.

THEOREM. If the elementsvy,...,vs,..., v, € B* @ uP: D, are such that their images
generate all of Eg’_ll'p, p > 2, then for each representation of the Lie algebra ® of the
form p + €, where e € 8" @ uPD, p > 2, there exists a local diffeomorphism A such that

Adp)—p—e= chvi mod &* ® u>*D.

COROLLARY. In order that the representation p be formally sufficient, it 13 sufficient
that E;,“_’f” =0 for all p starting with some number py > 2. In this case the representa-

tion p{) is determined by p'Po).

2.10. DEFINITION. Wecalleg, ; € Eg‘_lfp a Maurer-Cartan element if there exists a
representative ¢ € Z2'' ™7 of the class e,_; for which de + [e Ag] = 0.
We shall obtain a condition which singles out a Maurer-Cartan element. For €p—1 €

J= ..
E;’_l ? to be a Maurer-Cartan element, it is necessary that

2p—1,3—
wolep—1) =dp_1gp_1 + S[ep1 NEp] =0¢€ Ep’ill’ i (1)
Furthermore, suppose that condition (1) holds. Then for an arbitrary representative
€€ Z’f",ll_” we have
de + e Ne] =z +dy,
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where z € ng’g_% and y € nggl’—p. Replacing ¢ by an € — y that is not an element of
the class e,—; and taking advantage of §2.5, we find that the representative ¢ € Zl’,’fl— P
can be chosen so that

de + e ne) =z € Z2)%.

In fact, z € ZZf’f‘g”, because
dz=[deNe]l=[zAne]-LteA[ene]l =z el

Here we have used the fact that [ A[e Ag]] = 0 (which follows from the Jacobi identity).
Therefore, dz = [z A €] € F3p_1,4-3, and, consequently, z € ng’f—%. Let 7 € Ezf‘f_h
be the image of the element z. We find out to what extent the element e,..; is uniquely
determined. Let ¢ + 7 where n =a +db fora € Z273 "7 and let b € Zz’__f be another
representative of €,_; such that

de+n)+ Lle +n) A (e +n) € Z2P5 7%, (2)
Expanding the brackets and using the fact that de + %[s Nel e Zﬁf 22 -2
the element

, we find that

d(a+ [bAdb ~[e Ab]) + [ Aa] + [de AD] + Lla Aa]+ [aAdb]
lies in Z2P2~%". But, in view of §2.5,
[ena] € (28PN ZEE) TP C 22007,
[de Ab] € [Z2P7437% N 2270 € 2207,
[anal €[22ty P AZEYy TP C 2205,
[andb] € (22372 A ZDTP € 22757,
On the other hand, by the same considerations
§=a+ibAdb]—[entle Zit)yP.
Therefore, condition (2) means that df € Zsf 272 or, equivalently,
0 ZrHie. (3)

Representing a = 6 + [¢ A b] — $[b A db], we find that the element z € Z 22220 translates

p—2
to = + A, where
A=df+ e AO)+ [de Ab] + [ Ale AD]] + [0 A db]

— 2le AfbAdb]] — (b Adb] A db]

+[[e AB) Adb) + L[a Aal
It follows from the Jacobi identity (6) in §2.3 that [eA[eAb]] = 3[[eAe]Ab] and, therefore,

[de Abl+[eAleAb]] = [z Abl € Z2PE1I2P,
Furthermore,
[0 Adb) € (222177 A BRI € 2P0 T 4 BIPE T

In addition,
d([b A db] A b] = [[db A db] A B] — [[b A db] A db]. (4)
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Using the Jacobi identity, we obtain
—[db A (b AdB)] + (b A [db A db]] + [db A [db AB)] =0,
and so 2[dbA [bAdb]] = [bA[dbAdb]]. Putting the latter equality in (4), we finally obtain
[[b A db] A db] = —3 d~,
where v = [[b A db] A b]. Therefore, [[b A db] A db] € 33521,1—2;;. Furthermore, suppose
that w = [[e A b] Ab]. Then
dw = [[de Ab] Ab] — [[e Adb] A b] — [[e A b] A db].
Exploiting the Jacobi identity, we get
~[en[bAdb]] +[bA[dbAE]]+[dbA e Ab]] = 0.
From this we have
HenldbAb]]—[[bAe]lAdD] = —L[bA[eAdD]] - [dbA[bAE]
= —1dw+ 3[[de A B AD]
But w € Z2%7 777 and, therefore, dw € B2»;~%"; and, in addition, [[de A b] A b] €
ng;m—zp. So. finally, the class Z gets carried to
Z+dp—10+ [ep—1 A, (5)
where 0 € El’,’fll ""P is the equivalence class of the element §. We define the operator
Lep-1): Egi;,—-p—r-{-q . Ezﬁr—1,—2p—r+q+2
by the equality
L(gp-1)(0) = dp—180 + [ep—1 A O]. (6)
It follows from the Jacobi identity that the 1-form e,—; satisfies the relation
[ep—1 Alep—1 AA]] = %[[517—1 Aep—1] A7l
Therefore,
(L{ep—1))2(0) = dp_r(ep—1 A O] + [ep—1 Adp—10] + [gp-1 A [Ep—1 A ]
= [dp_16p_1 A O] + [lep—1 Agp1] A O] =0,

so that L(ep—,) under the condition dp_16p_1 + 3[€p—1 A €p—1] = O determines the
complex at the term E,_;. We let H**(g,_;) denote the cohomology of this complex at
the term E;*',.

We now return to relation (5), which shows that the class Z modulo im L(ep_1) is
well-defined by the element €,_;. On the other hand,

L(ep—1)(7) = (dz +[e Az])  mod (Z,257% + Byry17%P),
but, since z = de + 3[e A€,
dr+lenz)=[dene]l+[ende]+ 3lenfene]] = 0.

Consequently, Z is a cycle with respect to the differential L(e,-1)}, and the cohomology
class

pi(e—p—1)=2 mod imL(ey_,) € H***7%P(g,_,) (7

is the first obstruction to £,_; being a Maurer-Cartan element.
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Furthermore, if this obstruction is trivial, then we can find a representative ¢ € Zlf’_ll— P
of the class g, for which

de + Lle nel € Z3PHH1 T 4 BIRITP

Let de + 1[e Ae] = o + dy, where z € Zﬁfgl’l_z” and y € ZPT271=P Upon replacing ¢

p—2
by € — y, we can assume that
de + e nel =z € Z2PENIPP (8)

We now use the following assertion, whose proof completely repeats the construction of
the first obstruction i(e,—1).

LEMMA. Lete€ Z;”_lf” be a representative of the class €1 € EP' [P such that
de+ilene]l=z¢€ Zzﬂ"’g_%_’. (9)

Then z € ZZfTT‘Z_Q”‘T, and the class I € EZT;TJ_M_T is a cocycle with respect to the
differential L(gp_1), while the cohomology class v, 1(ep—y) € HPFTZ=2P=T(c, 1) of
the element Z is equal to zero if and only if there exists a representative £ of the class
€p—1 differing from € by an element in Z§f§+1’_p_r and for which de' + [’ A €] €
ZZﬁ—;r-Pl,l—Zp—'r.

PROPOSITION. For the element g1 € E”Z‘_ll_” to be a Maurer-Cartan element, it is
necessary that dy_16p—1 + 3lep—1 Aep—1] =0 and p1(ep—1) = 0, and sufficient that all
obstructions p;(ep—1), 1 =0,1,..., be trivial.

COROLLARY 1. Let py be a number such that E;fl_s =0 for s > pp and py < 2p.
Then each element €, € ES‘_II_" Jor which dy_1€p—1 + 3lep—1 Aep—1]) = 0 is a Maurer-
Cartan element.

COROLLARY 2. Lete,_ € EP'[? be an element such that
dp—16p—1 + lep—1 A Ep—1] =0

and the second cohomology H*27%(ep_1) is trivial for s > 2p. Then €,_1 1s a Maurer-
Cartan element.

SUPPLEMENT TO THEOREM 2.8. The elements ) c;v; occurring in the normal form
of a p-approzimation are Maurer-Cartan elements.

2.11. Let (M, Q) be a symplectic manifold, where 2 € A%2(M) is the 2-form defining
the symplectic structure, and let p: & — Ham(M) be a representation of the Lie algebra
® by Hamiltonian fields which have a fixed point a € M, imp C uD(M). The use
of the correspondence f € C*°(M) — X; € Ham(M) between Ham(M) and C*(M),
where the Hamiltonian field X is determined from the equality X;.Q2 = df, allows us to
assume that a representation p: & — C°°(M) is given, where C°°(M) is considered as a
Lie algebra with respect to the Poisson bracket: (f,g) = X((g); f,9 € C*°(M). In this
connection, im p C u?.

Suppose that p. C C®°(M)/u™ = £ is the image of the ideal u in the space £,*°
of formal power series at the point ¢ € M. As in §2.3, we consider a complex constructed
from the representation p:

()_>/7a°°iqs*%j;zm—d-»AzQi*g/awi.--iAmQS*gﬁ‘”—»O, (1)
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where

dw(Vi,...,Vep1) = Z(—I)H'l(p( V), w(Vise s Vi oo, Ver1))

+Z 1+'7(A.) [V,,V]Vl,...,@i,...,@j,...,VsH). (2)

i<y

The elements w € A°®* ®@g £,°° can be considered to be skew-symmetric s-forms on the
Lie algebra & taking values in the Lie algebra of formal power series on M.

As above, we define the bracket (w; A wz) € AST'®* ®gr £ of the elements w; €
ASB* ®r 2> and wy € A'G* Qr £ so that on decomposable elements w; = a ® f
and we = 3 ® g we have

(wiAwz) =aAB®(f9) 3)

(
This bracket determines a bilinear pairing for which the commutation relations (5)-(7)
in §2.3 hold.
We introduce a filtration into the complex (1) by setting

Fpq=APHa 7" @ ubtt, (4)

The differential d preserves this filtration. We consider the spectral sequence (EP?, d?7)
constructed from (4). The proof of the next theorem is similar to that of Theorem 2.6.

THEOREM. The filtration F, 4 determines a spectral sequence (EP?,dE?) in which

1) E}? = APHI8* @g SPHIT*,
and the differential d5%: EP? — ER9T! is the differential in the Koszul complex of the
Lie algebra & constructed from the symmetric power of the reduction pV): & — §2T* ~
sp(T) of the representation of the Lie algebra ® in the symplectic algebra sp(T'). There-
fore,

2) EV? = HPH(&, SPHIT™),

3) there is a bilinear pairing of terms of the spectral sequence EPY x Ef’ql —
Eptv'=Lata'+ 1 ypat satisfies relations (3)-(5) in §2.5,

4) the spectral sequence (EP?,d29) stabilizes in the following sense: for each pair (p,q)
there exists a number rq = ro(p, q) such that

_ pa — —
EP = E =" -=EM, dP =0, r > 7o,

and the terms of the spectral sequence are isomorphic to the terms of the graded module
associated to the cohomology of the complex (1).

2.12. We say that two representations p; and p2 of a Lie algebra & into a Lie alge-
bra of Hamiltonian vector fields are (formally) equivalent if there exists a local (formal)
symplectic diffeomorphism A carrying p; into py (respectively, p(loo) into pgoo)). Simi-
larly, when we speak of k-sufficiency (respectively, k-sufficiency in the formal sense) in
this context, we shall understand k-sufficiency with respect to the group of symplectic
diffeomorphisms. The proof of the following theorem is word for word the same as the

proof of Theorems 2.8 and 2.9.

THEOREM. 1) Let vy,...,vs, v; € &* Q® ,uf“, be such that their tmages generate
E;”_ll_p, p > 2. Then for each representation by Hamiltonian fields of the Lie algebra &
of the form p+e, where e € &* Q uPtl p > 2, there exists a local diffeomorphism A such
that

s

Alp)—p—e= chvl mod Fy41,—p.

=1
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where ¢; € R for 1 <1 < s and the image of the element > c,u; in Eg’_ll—p 18 a Maurer-
Cartan element.

2) Let v1,...,Vs,...,0; € B* @ uPT1 be such that their images generate Ez’;’_ll_p for
p > 2. Then for each representation by Hamiltonian fields of the Lie algebra & of the
form p+ e, where e € 8* @ uPtL, p > 2, there exists a local diffeomorphism A such that

Aulp)—p—€= Zcivi mod &* Q@ u.

COROLLARY. If E,’;’_ll_p = 0 in the spectral sequence for all p, starting with some
number po, then the representation p is po-sufficient (in the formal sense).

REMARK. The description of the Maurer-Cartan element presented in §2.10 is also
valid in the symplectic case.

2.13. Let (M,w) be a contact manifold with contact structure given by the 1-form
w € A1(M), and let ct(M) be the Lie algebra of contact vector fields. In order to describe
the elements of this algebra [6], [7], we consider the one-dimensional bundle | over M
whose fiber at the point x € M is the quotient space T,/E, = l;, where E, = kerw,.
Each contact vector field X on M is uniquely determined by a section Sx of this bundle,
where Sx(z) = X; mod E, (see [6]) and each section uniquely determines a contact
vector field on M. Choosing the structural form w determining the contact structure
is equivalent to choosing a basis in the dual bundle [* whose fiber at a point z can
be identified with Ann E; C T;. Let X% be a contact field whose generating section
determines a basis dual to w. This field is uniquely determined by the conditions

X% .dw =0, @ =1, (1)

Then each section Sx can be represented in the form Sx = f - Sx;), where f is the
generating function of the field X with respect to w: f = X.w. Using this isomorphism
with the Lie algebra of contact vector fields, we can also introduce a Lie algebra structure
on the module T'({) of smooth sections of the bundle [ by setting

[Sx, Sy] = Six,v) (2)

for arbitrary contact vector fields X and Y. In terms of the generating functions (with
respect to a fixed structure from w) the bracket (2), called the Lagrange bracket, has the
form

[f.9] = X7 (9) — X7(f) -9 (3)
where X% is the contact vector field corresponding to the function f.

More generally, for an arbitrary section S € I'({), we let Xg denote the contact vector
field corresponding to S. We remark that the correspondence S — Xg is a first order
linear differential operator (see [6]).

Let £ = C®°(M)/u be the algebra of formal series at the point a, and let [Z,>°(l) =
I'(1)/pT (1) be the module over the £ >-jets of infinite order of sections of the bundle
[ at the point a; £*°(l) = £ ®r 4.

For a given representation p: & — ct(M) of a Lie algebra into the Lie algebra of
contact vector fields, we consider the complex

0— £2() % & %jam(l) 4, A2@ ® 5> ()

— o BHATE® 57 () — 0, (4)
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where

dw(Vl,...,Vk+1)— Z(—I)H’I[S V), (Vl,... V ...,Vk+1)]

+Z D 0([Vi, V5, Vi, Vi oo Vi, Vi)

i<y

for all w € AF&*®_£,°°(l) and V1,..., V41 € 8. As above, we use the Lagrange bracket
(2) to introduce a bilinear pairing [w; A ws] for which relations (5)-(7) in §2.5 hold.

Let Cp C Z,2°(1) be the set of oo-jets of sections of [ for which the contact field Xs
has a zero at a € M of order greater than or equal to p. The quotient algebra Cp/Cp41
is a commutative Lie algebra and admits the following description.

A generating function f of a contact field which has a zero at a € M of order &
can be represented in the form f = Ah¥ + ¢, where A € R, h is a function such that
doh = w, and h(e) = 0, and € is a function of order of smallness k + 1. Here the
coefficient A is uniquely determined by the function f (and the structure form w); kA =
(X)Y*(f)(a), where (X¢)* = Xy o--- 0 X¥ is the kth iterate of the differentiation
operator X¢. The map Cp/Cpt1 2, SP~11* which takes the contact field X¢ to the
tensor (1/p!)(X¢)P(f)(a) - wP~!, does not depend on the choice of the structure form w,
and is an epimorphism. In view of the above description of the elements of Cp, its kernel
is SPHITY/SPHI @ U,.

Thus, the sequence

0 — SPHITY/SPH2 @1y — Cp/Cpi1 — SPTHE -0 (5)

of commutative (for p > 2) Lie algebras is exact.
Let p: ® — ct(M) be a representation such that imp C uD(M); we introduce a
filtration on the complex (4) by setting

Fpq = APHI&* © O, (6)

The differential d preserves this filtration; we consider the spectral sequence (E¥??, dP?)
constructed from this filtration.

The term E}? in this spectral has the form E§? = AP*96* ® C,/C,11 and, therefore,
is contained in an exact sequence

0 — APHI®* @ SPHIT /SPHIE @ 1, — EET — APYI8° @ SP71I% — 0. (7)

The spaces SPTIT}, SP*+1i* and C,/Cpy1 are B-modules with respect to the linear
part of the representation p; p(t): & — C;/Cy — Endg T,, and the differential dh? is the
differential of the Koszul complex of the cohomology of the algebra & with coefficients
in Cp/Cpt1- From the short exact sequence (5) we obtain a long exact cohomology
sequence

0— HOY(®,SPHITr/SPHt @1,) — EV 7P — HO(®, SP7112)
— o HPPY®, SPHITY /8P 1) — EDY — HPY(S, 8P —
Finally, we obtain the following description of the spectral sequence.

THEOREM. The filtration (6) determines a spectral sequence (EP?, dP?) in which the
following conditions are satisfied:
1) The term Ef? = APH96* @ Cp/Cpy1 13 included in an ezact sequence

0 — APHIB* ® SPHITY /SPH @1, — ERY — APTIG* @ SPHE — 0,
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and the differential d5? is a differential in the Koszul complex of the Lie algebra & con-
structed from the representation in Cp/Cpy1 induced by Y. Therefore,
2) The terms EY? = HP*9(®,C,/Cpy1) are contained in an ezact sequence

L= HPHU®, SPHIT /SPHLE @ 1,) — EPT — HPH(®, SPI)
— HPYOTU(@ SPHITY /P @) — EPIT! o grratl(@ §PTlry .
3) There is a bilinear pairing EPY x EP'Y" — EP+P'=Latd' 1 yndyced by the bracket
[A°8* x £ AAS* @ £°()] — A°T8* ® £>2°(1)

which converts E, into a bigraded Lie algebra; d, is a derivation of this algebra.
4) The spectral sequence stabilizes in the following sense: for each pair (p,q) there
exists a number rog = ro(p,q) such that

pe _ pPd ... pPd pe _
EX=E ., = =E§, d?*=0, T 2> 10.

2.14. The concepts of {formal) equivalence and sufficiency of representations of an
algebra ® into a Lie algebra of contact vector fields carries over in the obvious way to
the contact case: all diffeomorphisms in the definitions are contact diffeomorphisms.

THEOREM. 1) Letwy,...,vs, v; € 8*QC,, be such that their images generate ngfp,
p > 2. Then for each representation by contact vector fields of the Lie algebra &, of the
form p+ e, where e € 8" @ Cp, p > 2, there extsts a local contact diffeomorphism A such
that

A*(p) —p—&= Zcivi mod Fp+17_p,

where ¢; € R for 1 < ¢ < s and the image of the element Y c;v; in Elf;lfp is a Maurer-
Cartan element.
2) Let vi,...,04,...,0; € 8 @ Cp,, be such that their images generate E;”_ll_p for
p > 2. Then for each representation by contact vector fields of the Lie algebra of the
form p+e, wheree € 8 Q@ Cp, p > 2, there exists a local contact diffeomorphism A such
that
Adp)—p—e= Zcivi mod &* @ u>=D.

COROLLARY. If E;”_ll_p = ( in the spectral sequence for all p > pg, then the repre-
sentation p is pg-sufficient in the formal sense.

§3. Applications of spectral sequences

3.1. Let & be a semisimple Lie algebra and p: & — uD(M) a representation into the
Lie algebra of vector fields with fixed point at a € M. In this case the terms Eg’_ll_ P are
trivial (see [11]) and we obtain the following result from Theorem 2.9.

THEOREM [15]. The representation p: ® — uD(M) of the Lie algebra & is 1-sufficient
in the formal sense.

3.2. By considerations similar to those is the contact and symplectic cases, we have
E‘I’,"_ll_ P = () for representations of a semisimple Lie algebra. Therefore, we obtain the
following result.

THEOREM. A representation of a semistmple Lie algebra & by Hamiltonian (contact)
vector fields is 1-sufficient in the formal sense with respect to the group of symplectic
(contact) diffeomorphisms.

3.3. Let p: & — ct(M) be a representation of a semisimple Lie algebra & by analytic
contact vector fields. Recall that in special local coordinates, the contact vector field
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corresponding to the generating function f has the form

o ar @ af  af\ o
Ar=A7= Zapzé‘ql ;(sz+ BU)ai

"oar\ o
D P 1
+ (f i§:1plapi> 50’ (1)
where w = du — 3 p; dg;.

We note that if the function f has the form [ = u — = 21 piq; + €, where ¢ is
a function of third order of smallness, then the linear part of Xy has the spectrum
Al=- =X = 5. Agnpr = L.

LEMMA 1 [19]. An analytic contact vector field with generating function f = u —
%Z? piq: + € can be reduced to a linear field by a local analytic contact diffeomorphism.

LEMMA 2. The generating function of an analytic contact vector field Xy, X509 =0,
commutes with X;,, where fo = u — %Z? pig: has the form f = ku+ H(p,q) in which
H(p.,q) s a quadric.

THEOREM 1. A representation of a semisimple Lie algebra by analyfic contact vector
fields in a neighborhood of a common fized point is contact analytically 1-suffictent.

PROOF. The proof is analogous to that of Theorem 1 in [4]. The crucial point is the
construction of a contact vector field which commutes with p(®) and has the form cited in
Lemma 1. To construct such a field, we consider the representation p(*): & — Endg T
The subspace £ = kerw, is invariant with respect to this representation, and since & is
semisimple, there exists a complementary invariant subspace F such that FGF =T. We
now choose a structure from w so that Xy, will be a generator in F. Furthermore, since
one-dimensional representations of semisimple algebras are trivial, the representation p(!)
is a direct sum of a trivial representation on ¥ and some representation by symplectic
transformations in £. The linear part of the vector field X, where f =u — 3 21 Dii,
is a homothety of the space E with coeflicient % and is the identity on F. Therefore,
passing to the compact real form & ® C and averaging with respect to the action of
the corresponding compact group (see [4]). we obtain a contact vector field X; with
generating function [ = u— % > piq;+e¢, where ¢ is a function of third order of smallness,
which commutes with all vector fields p(V), V € &. According to Lemma 1, X; can be
reduced by an analytic contact diffeomorphism to Xy,; it remains to use Lemma 2.

Similarly, by using an averaging procedure with respect to the Haar measure, together
with the fact that Lemmas 1 and 2 are also true in the O situation, we can prove the
following generalization of a theorem due to Cartan.

THEOREM 2. A smooth (C) action of a compact Lie group by contact diffeomor-
phisms in a neighborhood of o fized point is contact 1-sufficient.

Using contactification of symplectic manifolds, together with the theorems proved
above, we obtain the following result.

THEOREM 3. 1) An analytic representation of a semisimple Lie algebra by Hamil-
tonian vector fields in a neighborhood of a fixed point is contact equivalent to a linear
one.

2} A smooth (C) action of a compact Lie group by symplectic transformations in a
netghborhood of a fized point is contact equivalent to a linear action.

3.4. In the general case. the coincidence of conditions for formal and C*° equivalence
of representations is based on the following lemma.
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LEMMA. Let X be a smooth vector field on M, dim M = r, with an equilibrium point
ae€e M, X, =0, at which the spectrum vy, ...,v, of the linear part satisfies the conditions
Rev; > 0, 5 = 1,...,r. Then each flat vector field Y € pu®D(M) which satisfies an
equation (Lx — \)*Y = 0, where Lx is the Lie derivative along X, X is an arbitrary
constant, and k is a natural number, 1s zero in a neighborhood of a.

PROOF. Let Y, ..., Y, be the components of a vector field Y with respect to a system
of local coordinates (qi,...,¢,) centered at the point @ € M. If ¢(¢) is a trajectory of
the field X and A(t) the matrix obtained by restricting the matrix ||9; X,]| to g(t), then
on this trajectory the equation (Lx — A\)*Y = 0 has the form

[d/dt — A(t) — N*¥Y (t) = 0, (1)

where Y (t) denotes the vector-valued function with components Y;(t) = Y;(g(¢)).
It follows from (1) that the norm of Y (¢) is bounded in a sufficiently small neighbor-
hood of a as follows:
Caexp(ft) < ||Y ()| € Cy exp(at) (2)

for some constants C'1, Cs, @, and §. In addition, C, > Cy > 0if Y(¢) # 0. On the
other hand, in a sufficiently small neighborhood

K2 exp(6t) < |lg(t)]] < K1 exp(~t) (3)

for positive constants K; > Ko, 6 and ~. Hence, |[Y(¢){| > CgK{ﬁ/'Sllq(t)Hﬂ/5 on those
trajectories q(¢) for which Y (¢) # 0. On the other hand, from the fact that Y € u° D(M),
it follows that ||Y (¢)|| < Cn|lg(¢)||" for all natural numbers N.

COROLLARY. If, under the conditions of the lemma, Y is a flat vector field which
commutes with X, then' Y = 0.

THEOREM 1. Let p: ® — uD(M) be a representation of the Lie algebra & for which
there exists an element Vo € B with the property that the spectrum of the linear part
p(Vo) lies in the right half-plane (ReX > 0). Then each representation p': & —
uD(M) which is formally equivalent to p s C™ equivalent to p.

PROOF. Using a lemma of Borel, we may assume that €(V) = p(V) — p'(V) €
p®D(M) for all V € &. Moreover, the conditions on the spectrum of p!)(V,) and a
theorem due to Chen [16] show that we may assume that (Vo) = 0. We shall prove that
e(V)=0forall Ve @&.

For this we represent the Lie algebra & as a direct sum & = 65{,\} ®,, where ()) is
the spectrum of ady,: ® — & and &, is the invariant subspace corresponding to the
eigenvalue ). It evidently suffices to prove that (V) = 0 for any element V € ®,. But
then (ady, —A)¥(V) = 0 for some natural number k. Therefore, if we set X = p(Vj)
and Y = ¢(V), we have

(Lx = A*(Y) = p((adw, =A)*)(p(V)) = ¢ ((adw, =A)*) (0’ (V)
= p((adv, —N)*(V)) = ¢ ((adv, =A)*(V)) = 0.

It remains to use the previous lemma.
The contact analogue of Theorem 1 is proved similarly.

THEOREM 2. If p is a representation of a Lie algebra & by contact vector fields which
satisfies the conditions of the preceding theorem, then each representation p’ formally
contact equivalent to p 15 C°° contact equivalent to p.

3.5. We consider representations of commutative Lie algebras.
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LEMMA 1. Let & be a commutative Lie algebra and o: & — Endr V' a completely
reducible, finite-dimensional representation. Then H*(8,V) = A*&* @V #, where V# =
{veV]ia(V)(v) =0 for all V € &}, is the subspace of fized elements.

PROOF. Let V = @, V; be a decomposition of V into irreducible components. Then
H*(®,V) =, H*(8,V;), and, consequently, it suffices to calculate H*(®, V) for simple
®-modules V. If the action of & on V is trivial, then H*(®,V) = A*&*®V. We show that
if & acts in a nontrivial manner on V, then H*{®, V) = 0. Without loss of generality, we
may assume that V' is one-dimensional {by passing, if necessary, to the complexification).
In this case, the action of & on V is determined by the 1-form A € &* (the weight of
the representation): «(V)y = A(V)v, v € V. Let vo € V be a generator of V and
f € A¥®* ® V a cocycle. Representing f in the form f = fo ® vg, where fy € A¥B*, we
obtain

k+1

df (Vi Vi) = Y (=1 AV) (Vi Vi, Vi Jug = 0

1

for all Vy,..., Vg1 € & Thus, A A fo = 0. Consequently, there exists a (k — 1)-form
h € A¥~18* such that fo = A A h. But then d(h ® vo) = f. The lemma is proved.

LEMMA 2. Let a: & — Endgr V be a finite-dimensional representation of a commu-
tative algebra, and V¥ = {v € VIVV € 8, 3k, (a(V))*v = 0} the subspace associated to
the zero weight. Then H*(®,V) = H*(®,V).

PROOF. By Engel’s theorem, all operators a(V) (over the field C) can be reduced to
triangular form. Suppose that the weights of the representation o are nontrivial: then
a basis Vy,...,V,, of the algebra &, subject to the condition that all weights are not
equal to zero on V,, forms a regular sequence (see [12]); in this case H*(&*,V) = 0.

Consider the short exact sequence of B-modules 0 — V¥ — V — V/V# — 0, to
which corresponds the long exact cohomology sequence

= HTYB, V)V — H (S, V) - HY(®,V) — H(8,V/VF) — -
The representation &: ® — Endg V/Vo#, being a quotient representation of «, does

not have zero weights. Therefore H*(®,V/V,*) = 0, and the inclusion H'(®, V") —
H*(®,V) is an isomorphism.

+

.
I

COROLLARY. Let oa: & — Endr V be a finite-dimensional representation of a com-
mutative Lie algebra. Then H*(®,V) = 0 for i > 0 if V# = 0 or, equivalently, the
representation o does not have zero weight.

3.6. Let p: & — uD(M) be a representation of a commutative Lie algebra & whose
linear part p'):  — Endgr T is completely reducible. Using the lemma proved above,
we find that the first term of the spectral sequence of §2.6 has the form

EP? = APHIG* @ (SPT* @ T)*.

Let Aj,..., A\, € &* be the weights of the representation p(!): & — Endg T (generally
speaking, complex). Then the representation S?(p(1))*®p(1) is also completely reducible,
and its weights are equal to

r
- Zmi/\i + /\]',
=1

respectively, where my,....m, are natural numbers and Y| m; = p. Therefore, EY? # 0
if and only if there exists a resonance on the level p: Y7 m A, = A; for some weight A;
and natural numbers mq, ..., m, such that Y ] m; = p.
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Let My = E7""". Then M, = 3_ ., My is a Lie algebra and the differential i7" : M,
— &% @ My, determines a graded &-module structure on M,. Let HPT2P(®, M,) be
the Koszul cohomology of this module at the term AP*9&* @ M,. Theorem 2.6 can be
supplemented as follows.

THEOREM. Suppose that p: & — uD(M) s a representation of a commutative Lie al-
gebra for which the linear part pV) is completely reducible. Then, in the spectral sequence
of §2.6, the following 1s true:

1) EP? = APTI8* @ M, where M, = (SPT* ® T)* is the space of invariants of &
corresponding to resonances of the terms (1). The differential d)""* determine a graded
®-module structure on M. =3 oo Mp.

2) EY? = HPT9P(®, M,) coincides with Koszul cohomology of the Lie algebra & with
values in M,.

Supplement. If the representation p{}) is not completely reducible, then
EY! = HPT(®, (SPT" o T)])

in view of Lemma 3.5(2). Therefore E¥? = 0 if > m,A; # A; for all j and natural
numbers m; such that Y m; = p.

3.7. THEOREM. Let p: & — uD(M) be a representation of a commutative Lie
algebra and Ay, ..., ), the weights (over C) of the representation pt!).

1) If SSTmidi # A for all natural numbers my, ..., m, such that Y] m; > po, then
the representation p is po-sufficient in the formal sense.

2) If, n addition, Ay # O, where

AL ={VeBRer(V)>0, j=1,...,r},
then the representation p 1s pg-sufficient.

The first part of the assertion is a corollary of Theorems 3.6 and 2.9. The second part
follows from Theorem 3.4(1).

REMARK 1. Assertion 1) of Theorem 3.7 admits the following generalization for a
completely reducible representation p(1): if H“?(®, M,) = 0 for all p > pg, then the
representation p is pg-sufficient in the formal sense.

REMARK 2. Theorem 2.9, applied in the given situation, gives a resonant normal form
for vector fields in p(&).

REMARK 3. In the case of a one-dimensional Lie algebra, Theorem 2.9 under the
conditions Re A; # 0 (in view of Chen’s theorem [16}), gives a description of pg-sufficient
orbits in the C*-case.

3.8. Let p: & — ct(M), im p C uD, be a representation of a commutative Lie algebra
by contact vector fields. We suppose that the linear part p(!) is completely reducible. We
denote the weights of p(1) by Ag, A1, ..., Azn, where Ag is the weight of the representation
p) on l,. There is the following relation among the weights [7]: for each ); there exists
a Aj (4,5 #0) such that A\; + XA; = Ag.

If we suppose that Ag # 0, then H*(®,SP~1{*) = 0 for all k > 0 and p > 2, and,
consequently, in the spectral sequence of §2.13, the term E?? appears in the following
form:

EP = HPT9(B, SPHIT /SPH I ®1,), (1)

where p > 2. Using the exact cohomology sequence of a pair

0 — SPFLpx  gpips _, Pl gptlpr
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we obtain isomorphisms
EP1 = HPH(®, SPHIT* @ 1,) = APHI8* @ (SPTIT* ®1,)*

In terms of the generating functions, the action of & on SPT!T* has the form

V(IS = (V) = Xa(fo) fI5H, (2)
where fy is a generating function of p(V), f € u?*!, and

(/P! = f mod pPt? e SPTIT*.

Since Ag{V) = X (fv)(a), it follows from (2) that the weights of the representation of &
in SPH1T*®1, have the form — Eg" m; A + Ao under the condition that Eg" m; = p+1.
We set My = EV' 7P = (SPTIT* ®1,)%. Then M. =3 ., M, is a Lie algebra and the
differential ¢ "?: M, — &* ® M, determines the structure of a graded &-module on

M.,. As'in §3.7, let HPT4P(®, M.) be the Koszul cohomology of this module at the term
APT4G* @ Mp: Theorem 2.13 can be supplemented as follows.

THEOREM. Let p: ® — ct(M), imp C uD, be a representation of a commutative Lie
algebra by contact vector fields for which the linear part of pt) is completely reducible. In
addition, let Ag. Ay, ..., Aoy, 2n+1 = dim M, be the weights (over C) of the representation
pN) | where Ao is the weight of the representation p\') on l,. Then, if Ao # 0, the spectral
sequence of §2.13 is such that the following conditions hold:

1) The term EV? = APTI8* ® M,, where M, = (SPTIT* ® l.)#, is the space of
invariants of ® corresponding to resonant terms My = 0, if Ao # Zo myA; for all natural
numbers mg. ..., . Man such that Zo m; =p+1, p > 2. The differential &y ": M, —
&* ® My determines a &-module structure on M =2 p>0 Mp.

2) The term EY? = HPT9P(®, M,) coincides with the Koszul cohomology of the Lie
algebra & with values in M,.

3.9. The proof of the following theorem is similar to that of 3.5.

THEOREM. With the notation of the preceding theorem:

1) The representation p is po-sufficient in the formal sense if HYP(®, M,) = 0 for all
p 2 po- In particular, this is always the case if conditions 3.6 are satisfied for all natural
numbers mg, ..., mon Such that Zg" m; > pg + 2.

2) If, in addition, AL # O, then the representation p is po-sufficient in the C° sense.

REMARK 1. In the case of a one-dimensional Lie algebra, when Re A; # 0, Theorem
2.14, in view of the results of [7], gives a description of the pg-sufficient orbits in the C*
case.

REMARK 2. The assumption that p{!} be completely reducible can be omitted when
the conditions of 3.6 hold.

3.10. In conclusion, we consider representations of reductive algebras.

LEMMA. Let o: & — Endr V' be a finite-dimensional representation of a reductive
Lie algebra whose restriction to the center 3 C & 1s completely reducible. Then

HY®.V)= > H'(¢0,R A93 RV,
i+j=k
where By = (B, O] is the semisimple part of &.
PROOF. From the Serre-Hochschild spectral sequence for the pair (&, 3) it follows
that
HY®O.V)= Y H'(®o, R) @ (H7(3,V))*
1+r=k
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and it remains to use Lemma 3.5. The lemma is proved.

3.11. Let p: & — uD(M) be a representation of a reductive Lie algebra & for which
the restriction of the linear part p(1) to the center 3 is completely reducible. Then the
term ET? of the spectral sequence in §2.6 has the form

Ef= S H'®,R) §A73* ® (SPT* @ T)*. (1)
i+i=p+q
Let T=V; & --- ®V, be the decomposition of T into a direct sum of irreducible & =

[, ®]-modules. Then the restriction of the representation p{!) to 3 is scalar on each
subspace V7:

P (2)(v) = M(2)vi, v €V ®C,

for some weight A; € (3 ®r C)*.

Let (SPT* @ T)®° be the module of invariants of the algebra &y. Then 2p50(SPT*®
T)® is a module over the algebra of invariants 37 -,(SPT*)®°, and therefore (SPT* ®
T)® is nontrivial for arbitrarily large values of p. The weights (over C) of the represen-
tation of 3 in SPT™ ® T are equal to A; — >_m;);, where the m; are natural numbers
and )_ m; = p. Consequently, ET? = 0 for p > po if resonances are absent in the repre-
sentation p(1): Y_miA; # A; for all natural numbers my, ..., m, such that > m; > po.

THEOREM. Letp: 8 — uD(M) be a representation of a reductive Lie algebra & whose
linear part restricts to a completely reducible representation on the center 3 C &. Let
AL,-o s A € (3®R C)* be the weights of the restriction of the representation pt!) to 3.

1) If 3>mii # A; for all natural numbers my,...,m, for which 3 m; > po, the
representation p is po-sufficient in the formal sense.

2) If Ay # @ where Ay = {z € 3|ReX;(2) > 0, 1 < 7 < r} and condition 1) 1s
satisfied, the representation p is po-sufficient in the class C*°.

3) If Ay # O, then formal and C*° equivalence of representations of the Lie algebra
® are equivalent.

COROLLARY. IfA, # O, then Theorem 2.9 gives normal forms of representations in
the class C*°.

The first two assertions of the theorem were proved above; the equivalence of formal
and C® sufficiency follows from Theorem 3.4.
3.12. Comparing the results of §§3.10 and 3.8, we obtain the following result.

THEOREM. Let p: ® — ct(M), imp C uD, be a representation of a Lie algebra & by
contact vector fields, whose linear part p(1) restricts to a completely reducible represen-
tation on the center 3 C ®. Let Mg, A1,...,Ar be the weights (over C) of the restriction
of p(t) to 3 where Mg € 3* for all representations of 3 in ly. If g # 0 and

1) Ao # >_m;A; for all natural numbers mqg,...,m,, for which > m; > pg + 2, then
the representation p 1s py-suffictent in the formal sense;

2) Ay # D and condition 1) is satisfied, then the representation p 1s po-sufficient in
the C*°-sense;

3) Ay # D, then formal and C™-equivalence are equivalent and Theorem 2.14 gives
normal forms of representations in the class C°.
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