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Abstract We suggest a new method for studying fi-
nite dimensional dynamics for evolutionary differ-
ential equations. We illustrate this method for the
case of the KdV equation. As a side result we give
constructive solutions of the boundary problem for
the Schrodinger equations whose potentials are so-
lutions of stationary KdV equations and their higher
generalizations.

Keywords Evolutionary differential equations -
Shuffle symmetry - KdV equation - Finite dimensional
dynamic

1 Introduction

We suggest a method for studying finite dimensional
dynamics for evolutionary differential equations and
we illustrate this method for the KdV equation. We
outline the method for scalar evolutionary PDEs in di-
mension 2 but similar constructions for higher dimen-
sional cases and systems of PDEs can be carried out
in the same way by using results in [6] instead of the
classical Frobenius theorem.

Let us discuss in more details the case of scalar evo-
lutionary PDEs in dimension 1 + 1. In this case there
are two main points. First of all, if we consider an evo-
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lutionary PDE as a “dynamics” on a function space,
then a finite-dimensional sub-dynamics can be viewed
as a dynamics on the solution space of some ordinary
differential equation (ODE). This leads us to the sec-
ond step, namely description of this finite-dimensional
dynamics. We search for such an ODE basing on the
requirement that a given evolutionary PDE is the sym-
metry for the ODE. Putting all this together we will
reformulate the problem of finding finite dimensional
dynamics for an evolutionary PDE as a problem of
finding ODEs for which the given evolutionary PDE
is a symmetry. This gives us a differential equation for
functions on jet spaces describing ordinary differential
equation. In practice it is sufficient to find polynomial
solutions of the equation.

The paper is organized as follows. In the first part we
present geometrical theory of ODEs in the form suitable
for us. Namely, we consider general ordinary differen-
tial equations (not necessarily resolved with respect
to highest derivative) and recall the theory of shuffling
symmetries and their use for integrating ODEs. We will
use this type of ordinary differential equations to de-
scribe dynamics. We illustrate this approach for the
Schrddinger equation. This is done for two reasons: it
is instructive to see how shuffling symmetries work in
this case, and we will apply these results to the KdV
equation. It is worth to note that shuffling symmetries
allow us to solve in quadratures the eigenvalue problem
for the Schrodinger equations whose potentials satisfy
the stationary KdV equation or its higher analogues. In
the second part of the paper we describe in the details
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low-dimensional dynamics (up to dimension 4) for the
KdV equation.

2 ODEs and dynamics
2.1 Geometry

Denote by J" the space of m-jets of scalar
functions on R with canonical coordinates
(Pms Pm=1s« -+ P1, Pos X).

In these coordinates the Cartan distribution C,, on
J" ([1, 5]) is given by the Cartan differential 1-forms

wo =dpy— prdx,...,0n—1 =dpm—1 — pmdx.

This is a 2-dimensional distribution generated by two
vector fields

P
For any smooth function f € C*°(J™) we have
df = fpmdpm + Dm(f) dx mOd(w01 ceey wmfl)'

Define a bracket on the algebra C*°(J™) as follows

{fs g} = fmem(g) - gl’mDn1(f)~ (1)

This is a skew-symmetric bracket which satisfies the
following version of the Jacobi identity

{f:{g. hi} +1{g. (h, f}} +{h. {f. g} 2
= foui&: MY = gp, S 1y + 0y, {f g} (3)

The bracket is a bi-derivation and we denote by Z ; the
vector field corresponding to the function f:
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Then

of 9
dpm OPm

Note that the vector field Z; belongs to the Cartan
distribution, and due to (2)

(ZrZd=Zsmt T 7 %8,
fs &gl = £{fg} i g i f
9
+{f’g}3 .
pm—l

An ordinary differential equation (ODE)

F(x,y.y,....y™)=0 “)

of order m defines in the standard way a subset

E=A{F(x, po,..., pm) =0} CJ".

We call point x,, € £ singular if either £ is not a smooth
submanifold at x,,, or the tangent space T, & and the
Cartan plane C,, (x,,) are not transversal, i.e.

Co(xm) C Txm £.

Denote by X (&) C £ the set of the singular points, and
by & = E\X(E) the set of regular points of £.

Note that the subset (&) of singular points is de-
fined by the equations

OF
F =0, =0,
Opm

D, (F)=0 (%)

and in general has codimension 2 in £.
The restriction of the Cartan distribution C,, on the
regular part &

Cg:xm € 50 = Cg(xm) = Cm(xm) N T,'c,,,g

defines a 1-dimensional distribution on &.

It is easy to see that this distribution is generated by
the vector field Zr.

By solutions of ODE (4) we shall mean integral
curves of the distribution C¢ or integral curves of Zp.

Note that the condition %(xm) # (0 at a point x,,, €
&y implies that the coordinate function x can be used
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as a local coordinate on the integral curve of Zg pass-
ing through the point, and therefore the curve can be
presented at the form

3" h(x)
Pm = 8)6—”” ooy po = h(x),
where the function 4(x) is a smooth solution of the
ordinary differential Equation (4).
If ;’p%(xm) = 0, then the smooth integral curve of C¢
shall represent a “multivalued” solution of (4).

Example 1. Consider the hypergeometric ordinary dif-
ferential equation

F =x(1-x)py+(c—(a+b+ Dx)py —abpo,

where a, b, ¢ are constants with ab # 0. Then £ is a
3-dimensional submanifold in J*> = R* which is dif-
feomorphic to R?® and the set ©& of singular points
consists of two straight lines

abpo+ (1 +a+b—c)p =0,
Q4+a+b—-c)pp+ U +a+b+ab)

xp1=0, x=1,

and

abpy — cp1 =0,(1+c)p2
—(1+a+b+ab)p; =0,x =0.

Therefore, integral curves which do not coincide with
these two lines represent (multivalued) hypergeometric
functions.

2.2 Shuffle symmetries

By Sol(€) we denote the space of solutions of the
ordinary differential equation (4), that is, the set of
all integral curves of the Cartan distribution Cg. In
general, this set does not possess any ‘“good” topo-
logical or smooth structure, so we shall use geome-
try of jet spaces to induce a geometry on Sol (£). In
some particular cases, for example when the equation
can be resolved with respect to the highest derivative,
F = pn — Fo(x, po, ..., pm — 1), € is diffeomorphic
to R™*! and Sol (£) is diffeomorphic to R”. The last

diffeomorphism can be established by taking the initial
data.

Two notions have the greatest importance for us:
functions and vector fields on Sol (£).

Namely, by functions on Sol(£) we mean 1-st inte-
grals of £, or in other words, functions f on £ which are
smooth in some domain and are constants on integral
curves of Ce : Zp(f) =0, or

{F.f}=0

oné.

“Vector fields” on Sol (£) correspond to (infinitesi-
mal) symmetries of differential Equation (4). One may
consider symmetries as vector fields on & that are sym-
metries of the Cartan distribution Cg It is easy to see
that all vector fields proportional to Z are symmetries,
and they are trivial (or characteristic) in the sense that
they produce trivial (or identity) transformations on the
set Sol (£).

Due to triviality we shall consider equivalence
classes of symmetries modulo characteristic symme-
tries. We call them shuffle symmetries, (see [1]).

To find them we note that any such class has a rep-
resentative Y of the form

Computing the Lie derivatives of the Cartan forms we
get

aa;
Ly(w)) =da; —aj dx = aT’dpm + (Dpla;)

m

—ajr1)dx mod(wy, ..., Wy—1)

— 29D, (F)+ F,,(Du(a;) — aj1)

_ _ Opm dx
FPm
mod(a)o, ey, W1, dF)
F.,a;
= <[ Faj] — ai,‘_H)dx mod
Pm
X ((,()(), cees Win—1, dF)

Since dx does not vanish on &, we get
ajq] = S(aj) on 50
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forall j =0,...,m— 1.
Here

8§ = 1Z
_Fpm "

Summarizing, we see that shuffling symmetries have
representatives of the form

X 0 + 8(¢p) 0 + -+ 8"(p) 0
= o— N . R
= %ap0 O oom

for some functions ¢ € C*(&).
The requirement that X, is tangent to &, leads to
the Lie equation

m

IF
Za 5'(9)=0 on &. (6)

i=0 !

We call ¢ € C*°(&) a generating function of the shuf-
fling asymmetry.
One can easily check that

[Xg, Xyl = Xig,y1,

where

lo. ¥]=X,(¥) — Xy (9)

m 3(,0 . 81# . )
= 1) - —A .
2 <8p,~ W) o (®)

The bracket [¢, V] defines a Lie algebra structure on
the space of all shuffling symmetries.

In order to see the analytical meaning of shuffling
symmetries let us consider a smooth (low) solution of
the ordinary differential equation /o(x) and let

Lo ={po=ho.p1 =hiy, ... pu = hy"}
be the prolongation of /((x) to m — jets.

Let A, be the flow corresponding to a shuffling sym-
metry X,.Then Ly C £and L, = A,(Lg) C €. Curves
{L,} (at least locally and for small ) are m — jets of the
functions /,(x), that is

Le={po=hepi=h....pw=h"}
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and /,(x) satisfies the same ordinary differential equa-
tion. Moreover, the function u(t, x) = h,(x) satisfies
the following evolutionary equation

ou 0"u 7
— =g x,u, Uy, ..., ——

or ¢ oxm

and

ul—o = ho(x).

In other words, if ¢ is a generating function of a
symmetry and A¢(x) is a solution of &£, then the func-
tion u(t, x) satisfies Equation (7) with the initial data
u(0, x) = ho(x), and u(t, x) is a solution of £ at any
fixed moment ¢.

2.3 Integration by symmetries

We refer to [1] for integration of ordinary differential
equations with solvable symmetry group, and we dis-
cuss here only of the case of the commutative symmetry
algebra.

We begin with the following observation. Let
V1, ..., Uy be linearly independent vector fields on do-
main D C R”, and let

[vi,v;1=0

foralli, j=1,..., n.
Take independent functions fi, ..., f, on D and de-

fine deferential 1-forms 6, ..., 6, as follows
0 =w-ldf,
where
0 df
0, df>
0= , df = ,
On dfy
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and
vi(f1)  va(f1) v, (f1)
vi(f2) va(f2) v, (f2)
W = . . .
vl(fn) UZ(fn) vn(fn)
Then 6y, ..., 0, constitute the dual basis to vy, ..., v,.

Lemma 2. d6; =0 foralli = 1,...,n.
Proof: We have 6;(v;) = §;;, and therefore,

d0;(va, vp) = va(6; (V) — V5(6;(Va))

—0i([va, vp]) = 0.
U

We apply this result to the integration of ordinary
differential equations.

Assume that in adomain D C & C £ = F~1(0) C
J" one has m commuting linear independent shuffling
symmetries @i, ..., ¢,. Then [ZF, X, ] = 0. Indeed,
by the definition of symmetry [Zfp, X, ] = AZp for
some function A. Applying both sides to the coordi-
nate function x we get A = 0.

Therefore, vector fields Zr, X, ..., X, commute
and linearly independent. To get 1-st integrals we need
the following construction. Let us define a Cartan form
w ¢ corresponding to a functionf € C*(J™) as follows

wf = i 8f_ w;,

where

w; =dp; — pividx, 0=<i<m-—1,

and
Fopd,, — Dy, (F)dx
wp = F .
Pm
Then

wr(Xy) =X,(f) and wp(Zp)=0.

Theorem 3. Let ¢y, ..., ¢, be commuting shuffling
symmetries for the ordinary differential equation
E=FY0)CJ", and let DC& be a domain
where vector fields X, , ..., X, are linearly indepen-
dent. Let f, ..., fn be functions such that functions
X, fi, ..., fm are independent in D. Then the differen-
tial 1-forms 0y, . . ., 0,, defined by

6= Wﬁla)f,
where
91 Cz)f1
02 @,
9 = . a)f = B
Om wy,
and
Xo (f1) Xg(fD) Xy, (f1)
Xp (f2) X4 (f2) Xy, (f2)
Xy (fn) Xg,(f2) Xy, (fin)

are closed in D and 0;(Zp) =0 foralli =1, ..., m.
Proof: We have

dx(Zy) =1, 05(Zf) =0,

and
dx(Xy) =0, w5(Xy) =X, (fi)
foralli, j=1,...,m.

Therefore, the differential 1-forms
dx,01,...,0n
constitute the dual basis for
Zr, Xy X

and the theorem follows from the above lemma. O
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Theorem 4. Let ¢, ¢y, ..., ¢ be shuffling symmetries
for the ordinary differential equation & = F~'(0) C
J", and let D C &) be a domain where vector fields
Xy, ..., Xy, are linearly independent. If a vector field
X, is a linear combination of the fields X, , ..., X,
then the shuffling symmetry ¢ is a linear combination
of 1, ..., @ inthe domain D:

©=r@r+ -+ Ao,

where the coefficients Ay, ..

.

., Ay are lst integrals for

Proof: In the domain D we have
Xo=MXg + - 4+ Xy,

for some functions Ay, ..., A,,.

Then ¢ = X,(po) = Aig1 + -+ + Ay

As we have seen [Zp, Xy ] =0, for all shuffling
symmetries, therefore

(ZF, Xl =Zr )Xy, + -+ Zr(Am) Xy, =0
and Zp(A;) =0foralli =1,...,m. O
2.4 The Shrodinger equation

2.4.1 Linear symmetries

In this section we apply the above approach to the
Shrodinger equation

y' +wx)y =0. (®)

We study the linear symmetries of this equation given
by generating functions

¢ = a(x)p1 + b(x)po.

Substituting ¢ into the Lie equation we find that ¢ =
cpo + ¢., where c is a constant, and

Y, = z(x)Pl - D)

Po,

@ Springer

where the function z = z(x) satisfies the following
equation

2" + 4wz +2w'z = 0. 9)

Note that the symmetries py and ¢, commute and as-
suming that z is given, one can find first integrals by
quadratures. Namely, taking fi = po, f» = pi in the-
orem (3), one can get two differential 1-forms 6; and
6, and integrals H; and H,.

The first integral H = H; can be chosen to be
quadratic in pg, p;:

H =2zp} — 22 pop1 + (&' + 2wz)pg.

We rewrite this integral in the following way. Let us
note that Equation (9) is defined by the skew-adjoint
operator

d3 d
L=—+4w— +2u’
dx3+ wdx+ w

and the Lagrange formula shows that
K(z) = 2z(z" 4+ 2wz) — 2

is a first integral for Equation (9).

We say that a symmetry ¢, is elliptic, hyperbolic or
parabolic if K(z) > 0, K(z) <0 or K(z) = 0 respec-
tively.

Using the symmetry we can rewrite the first integral
in the form

2(p2 +kpd
H — ((pZ p()) ,
z
where 4k = K (2).
Taking now f} = H, f» = po in theorem () we find
two differential 1-forms with

dH
0= —,
2H

and the restriction 6 of the second form 6, on levels
H = 2c equals to

_dpo — prdx
2

0
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Let
o = (2
JVizl’
Po
p=
|z]
Then

H =2(a? + kp*) = 2¢
and the restriction 0 takes the following form

d d
0 = _,3__)(
o 4

Integration of 6 gives the following solutions of the
Schrodinger equation.

Theorem 5. Let ¢, be a linear symmetry of (8). Then

solutions of the Shrodinger equation have the following
form

e for elliptic symmetry ¢.,

Y(x)—\/m' (f/z(x)>

e for hyperbolic symmetry ¢,

ezl .
YO =T (F/ z(x))

e for parabolic symmetry ¢-,

d
() = Viez ()] / =

2.4.2 The spectral problem

In this section we consider such potentials w(x) for
which the corresponding eigenvalue problem

Yy +w)y = Ay (10)

possesses linear symmetries z(x, A) that are polynomial
in A.

Let

z(x, 1) = 2gCOA" + 21 (O +
+2p—1(0)A + 2, (x)

be a linear symmetry for Equation (10).
Then the Lie equation gives a polynomial (in A) of
degree n + 1

2", M) + Hw(x) — )2 (x, &) + 2w (x)z(x, 1) =0
and the recursive set of equations on z; are

26 =0,
1

i1 = ZL(Zk),k=0,...,n—1,
L(zy) =0.

Setting zop = 1, we obtain inductively functions z; =
zr(w) such that

Zgr1(w) =

% /L(Zk(w)), dx,

k=0,1,...
The first functions are the following:

w
z1(w) = 5 +ci,
w” 4+ 3wr ¢
Zz(ll)) = T + Ew + ¢,
w(4) 5 B w/2 3
B =g\ gty
1 ” 2
+§(w + 3w )+ w+C3,
w®  Tww®
“W =5 T 5
7Gw”? + 10ww” + 10ww? + 5wh)
+ 128

/2
+;;< o)

(w” + 3w?) + w + cq.
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The conditions L(z,(w)) = 0 which can be reformu-
lated also as z,, , (w) = 0 are called the n-th KdV sta-
tionary Equations (2).

Below we list the first KAV equations:
The 0-th KdV equation

The 1st KdV equation
w” +6ww +4cw =0,
The 2nd KdV equation

w® + 10(ww” + 2w'w” + 3ww’)
+4ci(w” + 6ww’) + 16c,w" = 0.
We conclude that potentials w which satisfy the n-th

stationary KdV equation possess linear symmetry ¢g,
with
n
Sp=2"4> "k
k=1

As we have seen the function K = 2z(z"” + 2(w —
M)z) — 2’2 is the first integral of the Lie equation and
therefore, coefficients of the polynomials

0, = 25,(S] +2(w — 1)S,) — S
are first integrals for the n-th KdV equation.

For example, for the classical (first) KdV equation,
w” + 6ww’ + 4c;w’ = 0, one has

w
Sl = A + 3 + C1
and
01 = —42% =8¢ 1A% + g1 + 1o,

where

g = w" +3w? +4dejw — 4c?,
2ww” — w? + 4w?
4

qi0 = +c1(w” + 4w? + dejw)
are first integrals.
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Solving the KdV equation together with the equa-
tions g1 = const, gj9p = const we find the 1st order
ODE for w:

w? = —2w? —4decjw? + 2(6111 + 4c%)w
+4(c1q11 — q10 +4c7)

and solutions

2C1
w=—2p(x +c¢, g, &) — 3

where ©(x, g2, g3) is the Weierstrass elliptic function

with invariants

4c? — 6y
3 9

_ 1526% _ 56]1161
27 3

& = &= + 2q10.

For the second KdV equation,

w® +10(ww” + 2w'w” + 3w’w’)
+4ei(w” + 6ww) + 16c,w =0,

one has

w w’ +3w? ¢
S2=A2+<5+61>A+T+%w+62,

and

0> = —405 —8ciA* — 4(cf + 2¢2)A°
+q2A” + gk + g,

where

10w? + 5w? + 10ww” + w®

m= —
10

—8c1cy 4 (w” 4 3w?)e; + dwes,

_ 2uww® —2w'w” + w? + 20w?w” + 15w*)
16

4w + 12ww” + 4w + 14uw?
4

+w" +3wh)et +dwejey —4e3 + o1+ wle,

_ 20 w® + 6wrw® + 4w@w” — 3w'w”) — w"? + 12w?w” + 60w w” + 36w°
B 64

4w — w? 4 2ww”
%C% + W + 4w + 4wc§

12w + 13w’w” + w”? — w'w” + ww® 12w3 + 6w? + 10ww” + w®
¢ (53
8 4

are the first integrals for the second KdV.
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Using these integrals one can reduce the 2-nd KdV
equation to the following 2-nd order ODE &;7:

25w + 80w’y + 3211)6(26% + 5C2)
—16w’(24c1cr + 502) + 32w (—72c%cz + 286%
+5021 — 901Q22) + 256(—86%62 + 4¢3
+ 021 — 01Q22)2 + 256W (8cica + On)
X (86‘%02 — 4¢3 — 0y + ¢ sz)
—256w?(8cica — c1(—4c3 + Qa1))—256w’
x (c10n + ©20») + 64w*(32¢; + 03,
+8c2(Q21 + ¢102)) + T6w (W)’ + 152w
x (W) + 64w’ (c] + 3c2)(w')? — 64w
X (4¢3 + Q)W) — 64w?(6cicr + Qm(w')’
+ 128(8c?02 — c1(20c% + Q21) + C%sz
+2(2020 — 202))(w')* = 20w*(w')*
—16we;(w)* + 16(0% — 462)(u/)4
+ 80w (w)*w” + 96w’ e (w')’w”
+ 128wer(w')*w” — 32(8cica + 0xn)(w')?
x w” = 8(w)w” — 10w*(w”)? — 16wc;(w")?
—32w?cr(w”)? + 16w(8cicr + 02 (w”)?
—32(—8ctcr + 4¢3 + Qa1 — 10n)W")?
+ 0w + 8c)W"*w")? + (w")* =0.

Two cases when ¢ =0, and ¢ =0,¢g = 0 give us
shorter ODEs:

¢ =025w" + 160w* Qa1 + 25603, — 80w’ Qxn
—256wQ02 02 + 64w’ Q3, + 76w’ (w')?
+512020(w')? — 64w 0 (w')’
— 64w’ 0y (w') — 20w (w')*
+ 80w’ (w')*w” — 3202w’y w”
—8(w)*w” — 10w*(w”)? — 320,51 (w")?
+16w0nw")? + 20w’ (W)’ + ") =0
c=0,g=0
25w8 + 76w (w')? — 20w (w')*

4 80w3(w/)2w// _ 8(w/)4w// _ 10w4(w//)2

+2Ow(w/)2(w//)2 + (w//)4 =0

We shall see later on that these equations has a 2-
dimensional commutative symmetry Lie algebra gen-
erated by translations and the 1st KdV, and therefore,
they can be solved in quadratures.

Now we apply theorem (5) to the spectral problems
for the Shrodinger ordinary differential equations in
which potentials are solutions of the n-th KdV equa-
tions. This gives us complete and explicit solutions of
the spectral problems.

We illustrate this method for potentials which satisfy
the first KdV equation (this is the case of a special
Lame equation) and for the following boundary value
problem on an interval [a, b]

y(a) = y(b) = 0. an

Then theorem (5) shows that smooth eigenfunctions

o 1S V01 f“’ dt
y(x)=2 sin )
01(0) 2 . Si(1)

do exist if:

® Si=A+ § + c1 # 0 on the interval,
*0;=A)>0,

/b dt _ 27n
. S0 VO
forn € Z.

Summarizing we get the following result.
Theorem 6. If a potential w satisfies the classical
KdV equation, w” + 6ww’ + 4cyw’ =0, then the

spectral values A for value boundary problem (11) of
Shrodinger Equation (10) are given by the formula

A= K‘)(av 82, g3) - 261/3’
where o are solutions of the equations

ob+ c—a)o(a + ¢ + @)
ola+c—a)yb + c + a)
new,

2(b —a)t(a) + In

= 2mni,
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such that Q1(\) > 0 and

1
A>—c) — > min[w(x), a < x < b],
or
1
A< —C— Emax[w(x), a <x <b].
Here
0100 = 41> = 8c1A* + quw)r + qro(w),

and constants q11(w) and q10(w) are values of the first
integrals qio and gy, on the solution w. The function
¢ (@) is the Weierstrass zeta function and o (z) is the
Weierstrass sigma function with invariants

_ Act —6c
N 3

152¢
27 3

5q11(w)ey

82 , 83 =

The eigenfunctions corresponding to the eigenvalue A
have the following form:

(x)=2 I+ 252 + el sin )
W= 0% 2

X (2(x —a)(a) + lng(x —@ol@ + oz)))

o(x + a)o(a — )

Proof: Since

2C1

w = _260()( + ¢, 82, 83) - T’

we have

/” dt
I = 3L w .
« A+ 5 t+a

_/” dr
a A_@(T+C932»g3)+261/3'

Let o be such that

o, g2, 83) = A + 2¢1/3.
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— + 2g10(w).

Then (see [7])

I_ /-b+c dr
ate (T, 8, 83) — o, g2, &3)

— _;(225(05) + In M)
(e, 8. 83) o(z + a)

b+c

a+c

Since

©2(x, g2, 83) = 49°(x, g2, 83) — ©20(X, €2, 83) — &3

and

9" (x, g2, 83) = 69°(x, g2, g3) — £2/2,

we obtain the following values of the first integrals g,
and ¢o:
giui(w) = w” + 3w? + 4cw — 46%
=gy — 16/3¢ = —2¢| — 4¢3,
2ww” — w? + 4w?
4
+ei(w” + 4w? + dcjw)

=2/3c192 + g3 — 32/27¢;.

qro(w) =

Note that for

o, g2, 83) =M + 2¢1/3

we have

9 (e, g2, 83)
=49 (@, g2, 83) — 220(t, &2, 83) — &3
=—01(A).

Therefore,

50/(()[, 82 g3) = :b\/ _Ql()")

and we get that

I = :I:;<225(a) +In M) e
V=01(2) oz +a)/|, 4.
_ 2mn
V)
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So we have

o(z —a)

b+c
= 2mni,

a+c

where ¢ () is the Weierstrass zeta function and o (z) is
the Weierstrass sigma function.
Finally we get the following equations for «:

ob+ c—a)(a + ¢ + @)
ola+c—a)yob + c + a)

2(b —a)t(a) + In

= 2mni.
O

In a the similar way one gets the following result.

Theorem 7. If a potential w satisfies the n-th KdV
Equation, then the spectral values ). for value boundary
problem (11) of Shrédinger Equation (10) are given by
solutions of the Equation

/b drt 2mm <7
= b m 9

a Sn(@) VO,

such that Q,(A) > 0and S, # 0 on the interval [a, b].

The eigenfunctions corresponding to the eigenvalue
A have the following form:

_ [Sn ()] . v Ou() /X dt
nx) =2 sin .
0.(2) 2 « Sn()

2.5 Dynamics

It is common to use symmetries to integrate ordinary
differential equations. Now we turn it over and we will
use ODEs for integrating of evolutionary differential

equations.
Let
*u
u,:ga(x,u,ux,...,ﬁ) (12)

We are interested in ordinary differential equations

F(‘x’ Y, y’, )’”, ey y(mil)’ y(m)) — 0

for which the Lie equation is satisfied for the given
generating function ¢. In other words, we find such

ODE:s for which ¢ is a generating function of shuffling
symmetry.
In this case any solution of the Cauchy problem

ou
— =gl x,u,u,,...
Y @ x

under the condition that so(x) satisfies our ordinary
differential equation, can be found as a path A,

om +ku

T gxmtk

>, ul—o = ho(x)

u(t,x) = h,(x)

in the space of all solutions of the ODE
F(x,y',y", ..., y™=D ym) =0 (see 2.2).
Conditions on F are given by Equation (6):

m 8F )

Y 5@ =0, ifF=0. (13)
= i
In this equation ¢ is the restriction of the generating
function ¢ on the equation F~'(0) and all its prolon-
gations:

F =0,
D(F) =0,
D*(F)=0,...,
where
D= 9 + 9 + +
- ax P1 8}70 P apmfl

is the total derivative.

We consider relation (13) as a differential equation
on the function F.

The ordinary differential equation {F = 0} corre-
sponding to the solution F of this equation we call dy-
namics of order m for evolutionary Equation (12).

Note that in this case in order to find a trajectory of
a solution /(x) one should integrate the system

Po =@,
p1 = 68(p),
Pm = 8"(9)

@ Springer
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on £ with the initial conditions

p0|l=0 = h(-x)v
p1|[=0 = h/(-x)v

Puli=o = A" (x).

Then po(t) = h,(x) gives the unknown function /,(x),
and u(t, x) = h,(x) is a solution of the evolutionary

. du ?*u
equation 57 = @(x, U, uy, ..., 55).

3 Dynamics for the KdV equation

As an illustration of the above method let us describe
finite dimensional dynamics for the KdV equation:

Uy = U Uy + Uyyy.

Substitution u = 6w establishes a relation between
KdV equations considered above and this equation.
We rewrite functions z,(w),s,(A, w), Q,(A, w) in
the canonical coordinates (po, ..., pu, . ..) on the jet
spaces where pg corresponds to u.

In these notations we have the following Lenard’s
recursion (see [2]):

Po
1=— 4+ cy,...

=L o=

and
1
D(z,4 1) = - L(zy)
4
forn=0,1,...,and

2 1
L=D°+ ZpD + -p.
+3P0 +3171

The functions
K, = D(ZnJr 1)

correspond to the n-th stationary KdV equations.
Let

n
Sn = Z Z,‘)\.n_i,

i=0

@ Springer

and

n—1

2

anﬂm@¢0+§mﬁ—%$—K2

2n+1 )

= Z qni)\l

i=0
Then we have
X(ﬂ(zn) = DS(Zn) + pozn,
and

X,(K,) =D*K,) + piD(K,) + poK,,

where ¢ = p3 + pop1, and

0
opi ’

X, =Y D)
i=0

This shows that differential equations corresponding to
linear combinations of z,, or K, give finite dimensional
dynamics for the KdV equation. Moreover, functions
qni also produce finite dimensional dynamics.

Remark that the order of z, ,; is 21, and the order
of K, is 2n + 1. Therefore z’s give even dimensional
and K’s odd dimensional dynamics.

Summarizing we arrive to the following result.

Theorem 8. Letay, ..
differential equations:

., a, € Rbeconstants. Then the

n
ZCII'Z,‘ = O,
i=0

n

ZaiK,- = 0,
i=0

qni =0

give finite dimensional dynamics for the KdV equation.

In addition to the above theorem the low dimensional
dynamics given by polynomials can be found by direct
computations. Below we give and describe some of
them in dimensions <3.
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3.1 1st order dynamics

One can check that the functions

F = 3pf + pg + azl?(z) + aipo + ao

satisfy the equation of the dynamics for ¢ = pop; +
p3 and arbitrary constants ag, a1, a;.

The solution space Sol (£) can be identified with the
curve

3pt + py + aapg + aipo + ag =0

on the (po, p1) plane.
The vector field X, on the ODE & has the following
form

@ i _a + 2axpo + 3péi
3 \"ap 6 op1 )

Moreover, the vector field

i_ a; + 2axpo + 3pgi
P opo 6 o

is Hamiltonian with respect to the standard symplectic
structure dp; A dpo with the Hamiltonian

H =3pi + p; + axpj + aipo.

In other words the curves H = const define the solution
spaces and the Hamiltonian flow is the flow generated
by KdV.

KdV 1-st order dynamics
Solutions of the equation F = 0, have the form

a
u=—12pkx + c, g, 83) — 3

where (x, g2, g3) is the Weierstrass elliptic function
with invariants

a3 — 3a
108 °

. 27ay — 9ajar + 2a;’
&= 11664

82 =

The shift of these solutions along X, leads us to the
following solutions of the KdV equation

ast as
u(x, 1) =—12¢ x—?+c,g2,g3 -3

N
N/

The solution space

@ Springer
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These pictures show the solution space and a trajec-
tory for the 1-st order dynamics with

F =p}+ (po—D(po —2)(po — 3).

The trajectory

3.2 Second order dynamics

Here we describe the second order dynamics. We shall
consider dynamics F (pg, p1, p2) = 0 which are invari-
ant with respect to the scale symmetry xp, + 3tp, +
2 po for the KAV equation. We assign weight 2 for py,
weight 3 for p; and weight 4 for p, and we assume that
F is a sum of homogeneous polynomial of degree <n.
The following list gives non-trivial homogeneous
dynamics for small n:
n=4

Fy=p§ + 2p2 + apo + b,
n==o6

Fs =2(a + 3po)ps — 6p> + pi + 3ap]
+3ap2 + b po + c,

n==2,8

Fs = po/4 + pips + p3 + a(2p; —3p}
+6pop2) + b(P(% + 2p2) + ¢

where a, b and ¢ are constants, and
n=10

Fio=8p; + 9p}.

@ Springer

Not that the dynamics F4 and Fy coincide with ¢jo
and q11-

The previous differential equation £;7 gives us the
following dynamics:

8192
16384ctc3 — 16384¢2¢34096¢5 + Tc?cg Po
4096 512 5 5 256 4
T3 Gam + Tgan - e
128 16 56 4
—EC1C§P8 - 36‘%02173 + acgl’g 31 cieapy
1 5¢,p8 5¢1p] 25
+—cf (6)"‘ 2Pg + 1P 2
729 1458 17496 1679616
256 , , 640 L, , 32
+ TC102P1 TCICQZH 27C2P0P1
8 2 2
—35C1CPIPT F 32 CIPPT + gC2PiPT
19¢1 pg p? 19p3 p? n L 2,8
5832 69984 g1 1P
4 4 1 . 5pipi
81°2P1 ™ 2861 POP1 T 11664
32 2 4 8 2 4 1 2 2
——C1C —C —C
77 1C2P1 P2 31 2PoP1 P2 31 1PoP1DP2
5P0P1P2 1 64 , 5, 32,,
T 0016 " gaPip T g eian — gan
16 2
+ ECICZPOP% - ﬁc'zpépi — MQPSP%
5p0p2 1 2 5P0P1P1 p§
23328 + 162 “ lp + 1944 + 1296
128 , ) )
+ Tpleo 40966’162Q21 =+ 204862Q21
1024 128
3 c1c2po0a1 + 7C2P0Q21
32 0, 32 5
+27C1170Q21 + — 81 361P1Q21
8
_EPOP%QN - §P§Q21 + 25603,
+4096¢3 202 — 2048¢1c3 0
2048 12,
+ Tclczponz - Tczponz
128 32
+TC162P0Q22 2761P0Q22
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32 2 an 5 s,
Zc
27 2[’0 9 1Pog22 — 486p0 22
32 64
C1!71Q22 62P1Q22
4 4 8
81P0P1Q22 pip202n + §C1P2Q22
2, 128
+ ﬁposzzz —512¢102102 — TPOQ21 02

128 16
+256C%Q§2 + TQPOQ%z + 3p(2)Q%2 =0

Let us look at the dynamics in more details.

320 Fy=pi+2ps +apo + b

In this case the vector field — % X, is arestriction of the
vector field

0 0 ((l + 2p0)p1 0
Vo=pio— +pre————
apo p 2 ap2

on the zero level F4 = 0, and X, can be integrated in
the same way as for the 1-st order dynamics.
Trajectories of X, are given by the formula

po(t) = =120 + K, g1, 83) —a/2,

where

a’® = 12ab — 12¢2
1738

a* — 12ab

82=T, 83 =

and the constant can be found from the initial data.
These formulas lead us to the following pathes in
the solution space

ax
u(t,x)=—12p (t -7 + const, g7, g3> —a/2
with arbitrary invariant g3 and g, given above.

322 Fg=2a + 3po)p2 —
ap(z) +bpo+c

6p7 + py +

The differential equation & = Fg '(0) has singular
points at

. a
Po = 3’

Moreover, in this case symmetries X, and X, are lin-
early dependent on the differential equation £ and

0 6p% — p3 —ap? —bpy—c 9
—H <p1— 4 2P1 = Po = 9Py ~ BPo _)
apo 2(a + 3po) ap1

where

_ab + 3¢ + 6bpy — 6p; — 18p]
B 2a + 3po)>

is the fist integral for £, and for the vector filed X,

X, (H) =0

on €.
The vector field X, has also singularities at the
points where @ + 3py # 0, and

p(3]~|—ap(2,~|—bp0+c=0, p1 =0.

Depending on the roots of the polynomial pj + ap3 +
bpy + ¢ we have the following three types of phase
portraits:

¢ Three real distinct roots. In the following picture we
take roots: —1, 1, 2, and

Fe =2(3py — 2)p> —6p7 + py —2pg — po + 2

@ Springer
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i
¢ A real root of multiplicity 2. In the picture we take
roots: 1, 1, 2, and

Fo=2(3po + 4)p> — 6p} + py —4pj +5po — 2

/

N
N

N \\\\\ //// &

e Two complex roots. In the picture we take roots:
S B R o o
k 2 b 2 b

Fe1 = 6pops — 6p7 + pi — 1

@ Springer

Solutions of the equations F, 6_' (0) one can find from the
first integral H. So they are solutions of the following
1-st order ODE

2 2 b —2ak

=20 _kp?
Pi 3 Py + 3

ab + 3¢ —2a*k
18

Do +
for some constant k, H = k.
Thus solutions of the ODE can be represented in

terms of the Weierstrass function as follows

u(x) =—12px + Co, 82, 8) —k

where
k(b + k —2ak)
£2= 12 :
1263 — 12ak* + 2(a® + 3b)k —ab — ¢
8= .

2592

Note that along X, function the H is constant and
X, =—-HX,,.

Therefore, the corresponding path in the solution
space is

ulx,t) = —12px — kt + Co, g2, g3) — k.

3.3 F =6(py — X)p2 — 6p} + (po — A)°

This is a special case when the polynomial P(3) +
apl + bpo + c¢ has root A of multiplicity 3. Without
loss of generality we can assume that A = 0, and we
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study the ordinary differential equation &£, where
F =6pop, —6p; + p; =0.

The vector field X, on £ is proportional to X ,,

X, =—-HX),
with
by Dot 30
=TT 22
3py

Here H is a first integral for ordinary differential equa-
tion £ and for the vector field X,,. 33.1 Fo= 8]7; + 9p‘1‘

In this case the vector field X, on F/ 1_0' (0) is proportional

to X, :

X, =—HX,,

with

H— 3pi — 2[’0[72.

2p2

Solutions of the equation Fjy = 0 have the form

) = B 12

X)=B— ———,

” & + A7

and H = — B for these solutions. Therefore, the corre-

sponding path has the form of a rational solution

12

M(X,[)ZB— m

The ODE £ can be solved directly and one gets

2 3.3.2 Trivial dynamics

ulx) = —————p-

cosh? (—”(;jgb ))

The following ODEs
The restriction of H on these solutions has the value 5 5 )
—a?/3, and therefore the corresponding path is the 2p5 —3pi + 6pop2 + a(pg + 2p2) + b,
solitary wave solution P3/4 + Pél?z + p% + a(2p8 _ 31?% + 6p0p2)
a? +b(pé + 2p2) + ¢,
M(X,t): x4+a%t/3+b)\ "
cosh? (“H7EED) py/4 + pap2 + p3 + a(2pg —3pT + 6pop2)

(g + 2p2) + ¢
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give the trivial dynamics: X, = 0 on &-s.

3.4 Third order dynamics

The following dynamics represent nontrivial polyno-
mial dynamics in degree <10:

1
Fi = api + b(pop1 + p3) + Epépl — pip2 + pops,

Fy = p3 + 2pip> —a(ps + pop1)’,
F3 = (p3 + pipo + a)(p1 + bpy + ¢)

where a, b, ¢ are constants.

3.4.1 Dynamics for Fiy = apy + b(pop1 +
p3) + 5p3p1— pip2 + pops

In this case X, = H X, where
_2pr+ pi—2a
2(b + po)

is a first integral of the ordinary differential equation
FH0).

Solutions of the ordinary differential equations H =
¢, where ¢ is a constant, or

2

pz=—%+0po+a+bc

can be expressed in terms of the Weierstrass functions:

u=—12px + c1,8,8)—¢

with arbitrary g3 and

(1 =3b)c? — 3ac

82 = 2

The corresponding pathes in the solution space are

M(x’ t) = _1260()( + ct +C1’ 82, g3) —C.

@ Springer

3.4.2 Dynamics for
Fy = p3 + 2pip2 —a(ps + pop1)’

Leta # 1,then H, = HX , , where

\/Poi api + 2(1 —a)ps

1—a

H =

is a first integral of ordinary differential equation
F; 1 (0).

Solutions of the ordinary differential equations H =
¢, where ¢ 1s a constant,

p2
pr="3r—cpo + (- a)

can be expressed in terms of the Weierstrass functions:
u=12px + c1, 8. 8) + ¢
with arbitary g3 and

c? A(l—a
+7( ).

3225 5

The corresponding pathes in the solution space are
ulx,t) = 12px + ct + c1, g, 83) + c.

In the case a = 1, we have

F> = pi(2p2 = pg) — 2popip3

and X, = HX,, where

_ p§ + 2p
2po

H

is a first integral of ODE F, 1(O).
Solutions of ODEs H = ¢, where c is a constant,

2

Po
_ _Fro c
P2 = P Po

can be expressed in terms of the Weierstrass functions:

u=—12pkx + ¢, g,83) —c¢
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with arbitrary g3 and

2

82 = 12
The corresponding pathes in the solution space are

M(X,t): _lzéo(x + ct + ¢y, 82, g3)_C.

3.6 Fourth order dynamics
The fourth order dynamics are defined by functions

Spop2 | 5pi | 5Py

3 6 18

F =ps+

p2
+<P2+70> + bpo + ¢,

where a, b, ¢ are constants.
It is easy to check that the vector field X, and the
ODE F ~1(0) has the following first integral
Hy = —36bpy — 12ap; — Spy — 12po(6¢ + 5p})
+36(6ac —api + p; —2pips),

and the restriction on H| = k admits first integral

Hy, = 72(2a* + 5b)p§ + 120ap] + 25p§
+24p;(36ab + 30c + 19p7) + 432p]
x(3a® — 12b — 4p,) + 2pg(648b* — 216ac
+5k + 684ap} — 180p3) + (—216ac
+k —36p3)° —240(216(a® — b)c — ak
+36ap3 — 12p?(3a* + 9b + 10py))
—216p3(72(a® + 2b)c — ak — 12p,
x(4c + apa)) — 72p3(72(3ab — c)c
—bk + 10p] + 36bp; — 12pi(3ab
+4c + 6apy)) + 24po(—36ap}
+6¢(—216ac + k —36p3)

+ pi@32ac — k + 36p2(12b + 5p»))).

The last ordinary differential equation H, = k; has two
symmetries X, and X, and they are independent and

commute. Therefore, the differential equation can be
integrated in quadratures.

Namely, the method discussed above gives us two
1-forms

p2dpo — prdpy

o

G 9
Ad Bd
0, = Adpo + Bdpy dx,
G
where
1 5 pl
G = b —ap; —pap1 —
cp1 + bpop1 + 20!P0P1 + 18170171 6
3acpy  kp»  cpop2  bpipa
D1 72p1 D1 2py
3 4
apyp2 Spop2 | 1
—— 2= -+ capips

6p1  12p1 | 2
3

5 D5
+ = + —,
6P0P1P2 2

n
A=c+bpo+a(p2+70>

1
+ §(5P(3] —3p;i + 12pop2).

3ac k cpo bpg ap(3,

5p;  api popi . D3

S 72p 2 6 2p1

and integrals Io(po, p1), I1(po, p1) such that

P2 P1
dly = —dpy — —dp;,
0 G Po G P1
A B
dl, = —d —dp,
1 G po + G D1

and solutions can be found from relations
Iy=co, I1i=x+ ¢
for some constants ¢y, ¢j.

References

1. Duzhin, S.V., Lychagin, V.V.: Symmetries of distributions
and quadrature of ordinary differential equations. Acta Appl.
Math. 24, no.1, 29-57 (1991)

@ Springer



48

Nonlinear Dyn (2007) 48:29-48

. Ibragimov, N.H.: Transformation groups in mathematical

physics. M. Nauka (1983)

. Lax, P.D.: Integrals of nonlinearequations of evolution and

solitary waves. Comm. Pure Appl. Math. 21, 467-490 (1968)

. Gardner, C.S. Greene, J.M., Kruskal, M.D., Miura, R.M.:

Kortweg- de Vries equation and generalizations, VI, Meth-
ods for exact solution. Comm. Pure Appl. Math. 27, 97-133
(1974)

@ Springer

5. Krasilshchik, 1.S., Lychagin, V.V., Vinogradov, A.M.: Ge-

ometry of Jet Spaces and Non-Linear Differential Equations.
Gordon and Breach, New York (1986)

. Kruglikov Boris, Lychagin Valentin, Mayer brackets and

solvability PDEs, 1. Diff. Geometry Appl. 17 251-272
(2002)

. Abramowitz, M., Stegun, [.A.: Handbook of Mathematical

Functions, Dover, New York (1972)



