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Abstract We suggest a new method for studying fi-
nite dimensional dynamics for evolutionary differ-
ential equations. We illustrate this method for the
case of the KdV equation. As a side result we give
constructive solutions of the boundary problem for
the Schrodinger equations whose potentials are so-
lutions of stationary KdV equations and their higher
generalizations.
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1 Introduction

We suggest a method for studying finite dimensional
dynamics for evolutionary differential equations and
we illustrate this method for the KdV equation. We
outline the method for scalar evolutionary PDEs in di-
mension 2 but similar constructions for higher dimen-
sional cases and systems of PDEs can be carried out
in the same way by using results in [6] instead of the
classical Frobenius theorem.

Let us discuss in more details the case of scalar evo-
lutionary PDEs in dimension 1 + 1. In this case there
are two main points. First of all, if we consider an evo-
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lutionary PDE as a “dynamics” on a function space,
then a finite-dimensional sub-dynamics can be viewed
as a dynamics on the solution space of some ordinary
differential equation (ODE). This leads us to the sec-
ond step, namely description of this finite-dimensional
dynamics. We search for such an ODE basing on the
requirement that a given evolutionary PDE is the sym-
metry for the ODE. Putting all this together we will
reformulate the problem of finding finite dimensional
dynamics for an evolutionary PDE as a problem of
finding ODEs for which the given evolutionary PDE
is a symmetry. This gives us a differential equation for
functions on jet spaces describing ordinary differential
equation. In practice it is sufficient to find polynomial
solutions of the equation.

The paper is organized as follows. In the first part we
present geometrical theory of ODEs in the form suitable
for us. Namely, we consider general ordinary differen-
tial equations (not necessarily resolved with respect
to highest derivative) and recall the theory of shuffling
symmetries and their use for integrating ODEs. We will
use this type of ordinary differential equations to de-
scribe dynamics. We illustrate this approach for the
Schrödinger equation. This is done for two reasons: it
is instructive to see how shuffling symmetries work in
this case, and we will apply these results to the KdV
equation. It is worth to note that shuffling symmetries
allow us to solve in quadratures the eigenvalue problem
for the Schrödinger equations whose potentials satisfy
the stationary KdV equation or its higher analogues. In
the second part of the paper we describe in the details
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low-dimensional dynamics (up to dimension 4) for the
KdV equation.

2 ODEs and dynamics

2.1 Geometry

Denote by Jm the space of m-jets of scalar
functions on R with canonical coordinates
(pm, pm−1, . . . , p1, p0, x).

In these coordinates the Cartan distribution Cm on
Jm ([1, 5]) is given by the Cartan differential 1-forms

ω0 = dp0 − p1dx, . . . , ωm−1 = dpm−1 − pm dx .

This is a 2-dimensional distribution generated by two
vector fields

Dm = ∂

∂x
+ p1

∂

∂p0
+ · · · + pm

∂

∂pm−1
,

and

∂

∂pm
.

For any smooth function f ∈ C∞(Jm) we have

d f = f pm d pm + Dm( f ) dx mod(ω0, ..., ωm−1).

Define a bracket on the algebra C∞(Jm) as follows

{ f, g} = f pm Dm(g) − gpm Dm( f ). (1)

This is a skew-symmetric bracket which satisfies the
following version of the Jacobi identity

{ f, {g, h}} + {g, {h, f }} + {h, { f, g}} (2)

= f pm−1{g, h} − gpm−1{ f, h} + h pm−1{ f, g}. (3)

The bracket is a bi-derivation and we denote by Z f the
vector field corresponding to the function f :

Z f (g) = { f, g}.

Then

Z f = ∂ f
∂pm

Dm − Dm( f )
∂

∂pm
.

Note that the vector field Z f belongs to the Cartan
distribution, and due to (2)

[Z f , Zg] = Z{ f,g} + ∂ f
∂pm−1

Zg − ∂g
∂pm−1

Z f

+ { f, g} ∂

∂pm−1
.

An ordinary differential equation (ODE)

F
(
x, y, y′, . . . , y(m)) = 0 (4)

of order m defines in the standard way a subset

E = {F(x, p0, . . . , pm) = 0} ⊂ Jm .

We call point xm ∈ E singular if eitherE is not a smooth
submanifold at xm , or the tangent space TxmE and the
Cartan plane Cm(xm) are not transversal, i.e.

Cm(xm) ⊂ TxmE .

Denote by �(E) ⊂ E the set of the singular points, and
by E0 = E\�(E) the set of regular points of E .

Note that the subset �(E) of singular points is de-
fined by the equations

F = 0,
∂ F
∂pm

= 0, Dm(F) = 0 (5)

and in general has codimension 2 in E .
The restriction of the Cartan distribution Cm on the

regular part E0

CE : xm ∈ E0 �→ CE (xm) = Cm(xm) ∩ TxmE

defines a 1-dimensional distribution on E0.
It is easy to see that this distribution is generated by

the vector field Z F .
By solutions of ODE (4) we shall mean integral

curves of the distribution CE or integral curves of Z F .
Note that the condition ∂ F

∂pm
(xm) 
= 0 at a point xm ∈

E0 implies that the coordinate function x can be used
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as a local coordinate on the integral curve of Z F pass-
ing through the point, and therefore the curve can be
presented at the form

pm = ∂mh(x)

∂xm
, . . . , p0 = h(x),

where the function h(x) is a smooth solution of the
ordinary differential Equation (4).

If ∂ F
∂pm

(xm) = 0, then the smooth integral curve of CE
shall represent a “multivalued” solution of (4).

Example 1. Consider the hypergeometric ordinary dif-
ferential equation

F = x(1 − x)p2 + (c − (a + b + 1)x)p1 − abp0,

where a, b, c are constants with ab 
= 0. Then E is a
3-dimensional submanifold in J2 = R4 which is dif-
feomorphic to R3 and the set �E of singular points
consists of two straight lines

abp0 + (1 + a + b − c)p1 = 0,

(2 + a + b − c)p2 + (1 + a + b + ab)

× p1 = 0, x = 1,

and

abp0 − cp1 = 0, (1 + c)p2

− (1 + a + b + ab)p1 = 0, x = 0.

Therefore, integral curves which do not coincide with
these two lines represent (multivalued) hypergeometric
functions.

2.2 Shuffle symmetries

By Sol(E) we denote the space of solutions of the
ordinary differential equation (4), that is, the set of
all integral curves of the Cartan distribution CE . In
general, this set does not possess any “good” topo-
logical or smooth structure, so we shall use geome-
try of jet spaces to induce a geometry on Sol (E). In
some particular cases, for example when the equation
can be resolved with respect to the highest derivative,
F = pm − F0(x, p0, . . . , pm − 1), E is diffeomorphic
to Rm+1, and Sol (E) is diffeomorphic to Rm . The last

diffeomorphism can be established by taking the initial
data.

Two notions have the greatest importance for us:
functions and vector fields on Sol (E).

Namely, by functions on Sol(E) we mean 1-st inte-
grals of E , or in other words, functions f on E which are
smooth in some domain and are constants on integral
curves of CE : Z F ( f ) = 0, or

{F, f } = 0

on E .
“Vector fields” on Sol (E) correspond to (infinitesi-

mal) symmetries of differential Equation (4). One may
consider symmetries as vector fields on E0 that are sym-
metries of the Cartan distribution CE It is easy to see
that all vector fields proportional to Z F are symmetries,
and they are trivial (or characteristic) in the sense that
they produce trivial (or identity) transformations on the
set Sol (E).

Due to triviality we shall consider equivalence
classes of symmetries modulo characteristic symme-
tries. We call them shuffle symmetries, (see [1]).

To find them we note that any such class has a rep-
resentative Y of the form

Y =
m∑

i=0

ai
∂

∂pi
.

Computing the Lie derivatives of the Cartan forms we
get

LY (ω j ) = da j − a j+1dx = ∂a j

∂pm
d pm + (Dm(a j )

− a j+1) dx mod(ω0, . . . , ωm−1)

=
− ∂a j

∂pm
Dm(F) + Fpm (Dm(a j ) − a j+1)

Fpm

dx

mod(ω0, . . . , ωm−1, d F)

=
(

[F, a j ]

Fpm

− a j+1

)
dx mod

× (ω0, . . . , ωm−1, d F).

Since dx does not vanish on E0, we get

a j+1 = δ(a j ) on E0
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for all j = 0, . . . , m − 1.
Here

δ = 1

Fpm

Z F .

Summarizing, we see that shuffling symmetries have
representatives of the form

Xϕ = α
∂

∂p0
+ δ(ϕ)

∂

∂p1
+ · + δm(ϕ)

∂

∂pm

for some functions ϕ ∈ C∞(E0).
The requirement that Xϕ is tangent to E0, leads to

the Lie equation

m∑
i=0

∂ F
∂pi

δi (ϕ) = 0 on E0. (6)

We call ϕ ∈ C∞(E0) a generating function of the shuf-
fling asymmetry.

One can easily check that

[Xϕ, Xψ ] = X [ϕ,ψ],

where

[ϕ, ψ] = Xϕ(ψ) − Xψ (ϕ)

=
m∑

i=0

(
∂ϕ

∂pi
δi (ψ) − ∂ψ

∂pi
	i (ϕ)

)
.

The bracket [ϕ, ψ] defines a Lie algebra structure on
the space of all shuffling symmetries.

In order to see the analytical meaning of shuffling
symmetries let us consider a smooth (low) solution of
the ordinary differential equation h0(x) and let

L0 = {
p0 = h0, p1 = h′

0, . . . , pm = h(m)
0

}
be the prolongation of h0(x) to m – jets.

Let At be the flow corresponding to a shuffling sym-
metry Xϕ . Then L0 ⊂ E and Lt = At (L0) ⊂ E . Curves
{Lt } (at least locally and for small t) are m – jets of the
functions ht (x), that is

Lt = {
p0 = ht , p1 = h′

t , . . . , pm = h(m)
t

}

and ht (x) satisfies the same ordinary differential equa-
tion. Moreover, the function u(t, x) = ht (x) satisfies
the following evolutionary equation

∂u
∂t

= ϕ

(
x, u, ux , . . . ,

∂mu
∂xm

)
(7)

and

u|t=0 = h0(x).

In other words, if ϕ is a generating function of a
symmetry and h0(x) is a solution of E , then the func-
tion u(t, x) satisfies Equation (7) with the initial data
u(0, x) = h0(x), and u(t, x) is a solution of E at any
fixed moment t.

2.3 Integration by symmetries

We refer to [1] for integration of ordinary differential
equations with solvable symmetry group, and we dis-
cuss here only of the case of the commutative symmetry
algebra.

We begin with the following observation. Let
v1, ..., vn be linearly independent vector fields on do-
main D ⊂ Rn , and let

[vi , v j ] = 0

for all i, j = 1, . . ., n.
Take independent functions f1, ..., fn on D and de-

fine deferential 1-forms θ1, ..., θn as follows

θ = W −1d f,

where

θ =

⎡⎢⎢⎢⎢⎢⎣
θ1

θ2

...

θn

⎤⎥⎥⎥⎥⎥⎦ , d f =

⎡⎢⎢⎢⎢⎢⎣
d f1

d f2

...

d fn

⎤⎥⎥⎥⎥⎥⎦ ,
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and

W =

⎡⎢⎢⎢⎢⎢⎣
v1( f1) v2( f1) · · · vn( f1)

v1( f2) v2( f2) · · · vn( f2)
...

... · · · ...

v1( fn) v2( fn) · · · vn( fn)

⎤⎥⎥⎥⎥⎥⎦ .

Then θ1, . . . , θn constitute the dual basis to v1, ..., vn .

Lemma 2. dθi = 0 for all i = 1,...,n.

Proof: We have θi (v j ) = δi j , and therefore,

dθi (va, vb) = va(θi (vb)) − vb(θi (va))

−θi ([va, vb]) = 0.

�

We apply this result to the integration of ordinary
differential equations.

Assume that in a domain D ⊂ E0 ⊂ E = F−1(0) ⊂
Jm one has m commuting linear independent shuffling
symmetries ϕ1, . . ., ϕm . Then [Z F , Xϕi ] = 0. Indeed,
by the definition of symmetry [Z F , Xϕi ] = λZ F for
some function λ. Applying both sides to the coordi-
nate function x we get λ = 0.

Therefore, vector fields Z F , Xϕ1 , ..., Xϕm commute
and linearly independent. To get 1-st integrals we need
the following construction. Let us define a Cartan form
w f corresponding to a function f ∈ C∞(Jm) as follows

ω f =
m∑

i=0

∂ f
∂pi

ωi ,

where

ωi = dpi − pi+1dx, 0 ≤ i ≤ m − 1,

and

ωm = Fpmdpm − Dm(F)dx
FPm

.

Then

ω f (Xϕ) = Xϕ( f ) and ω f (Z F ) = 0.

Theorem 3. Let ϕ1, . . ., ϕm be commuting shuffling
symmetries for the ordinary differential equation
E = F−1(0) ⊂ Jm, and let D ⊂ E0 be a domain
where vector fields Xϕ1 , . . . , Xϕm are linearly indepen-
dent. Let f1, . . ., fm be functions such that functions
x, f1, . . . , fm are independent in D. Then the differen-
tial 1-forms θ1, . . . , θm defined by

θ = W −1ω f ,

where

θ =

⎡⎢⎢⎢⎢⎢⎣
θ1

θ2

...

θm

⎤⎥⎥⎥⎥⎥⎦ , ω f =

⎡⎢⎢⎢⎢⎢⎣
ω f1

ω f2

...

ω fm

⎤⎥⎥⎥⎥⎥⎦ ,

and

W =

⎡⎢⎢⎢⎢⎢⎣
Xϕ1 ( f1) Xϕ2 ( f1) · · · Xϕm ( f1)

Xϕ1 ( f2) Xϕ2 ( f2) · · · Xϕm ( f2)
...

... · · · ...

Xϕ1 ( fn) Xϕ2 ( fn) · · · Xϕm ( fm)

⎤⎥⎥⎥⎥⎥⎦ .

are closed in D and θi (Z F ) = 0 for all i = 1, . . . , m.

Proof: We have

dx(Z f ) = 1, ω fi (Z f ) = 0,

and

dx(Xϕi ) = 0, ω f j (Xϕ j ) = Xϕ j ( fi )

for all i, j = 1, . . ., m.

Therefore, the differential 1-forms

dx, θ1, . . . , θm

constitute the dual basis for

Z F , Xϕ1 , . . . , Xϕm

and the theorem follows from the above lemma. �
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Theorem 4. Let ϕ, ϕ1, . . ., ϕr be shuffling symmetries
for the ordinary differential equation E = F−1(0) ⊂
Jm, and let D ⊂ E0 be a domain where vector fields
Xϕ1 , . . . , Xϕr are linearly independent. If a vector field
Xϕ is a linear combination of the fields Xϕ1 , . . . , Xϕr

then the shuffling symmetry ϕ is a linear combination
of ϕ1, . . ., ϕr in the domain D:

ϕ = λ1ϕ1 + · · · + λrϕr ,

where the coefficients λ1, . . . , λr are 1st integrals for
E .

Proof: In the domain D we have

Xϕ = λ1 Xϕ1 + · · · + λm Xϕm

for some functions λ1, . . . , λm .
Then ϕ = Xϕ(p0) = λ1ϕ1 + · · · + λrϕr .
As we have seen [Z F , Xψ ] = 0, for all shuffling

symmetries, therefore

[Z F , Xϕ] = Z F (λ1)Xϕ1 + · · · + Z F (λm)Xϕm = 0

and Z F (λi ) = 0 for all i = 1, . . ., m. �

2.4 The Shrödinger equation

2.4.1 Linear symmetries

In this section we apply the above approach to the
Shrödinger equation

y′′ + w(x)y = 0. (8)

We study the linear symmetries of this equation given
by generating functions

ϕ = a(x)p1 + b(x)p0.

Substituting ϕ into the Lie equation we find that ϕ =
cp0 + ϕz , where c is a constant, and

ϕz = z(x)p1 − z′(x)

2
p0,

where the function z = z(x) satisfies the following
equation

z′′′ + 4wz′ + 2w′z = 0. (9)

Note that the symmetries p0 and ϕz commute and as-
suming that z is given, one can find first integrals by
quadratures. Namely, taking f1 = p0, f2 = p1 in the-
orem (3), one can get two differential 1-forms θ1 and
θ2 and integrals H1 and H2.

The first integral H = H1 can be chosen to be
quadratic in p0, p1:

H = 2zp2
1 − 2z′ p0 p1 + (z′′ + 2wz)p2

0.

We rewrite this integral in the following way. Let us
note that Equation (9) is defined by the skew-adjoint
operator

L = d3

dx3
+ 4w

d
dx

+ 2w′

and the Lagrange formula shows that

K (z) = 2z(z′′ + 2wz) − z′2

is a first integral for Equation (9).
We say that a symmetry ϕz is elliptic, hyperbolic or

parabolic if K (z) > 0, K (z) < 0 or K (z) = 0 respec-
tively.

Using the symmetry we can rewrite the first integral
in the form

H = 2
(
ϕ2

z + kp2
0

)
z

,

where 4k = K (z).
Taking now f1 = H, f2 = p0 in theorem () we find

two differential 1-forms with

θ1 = d H
2H

,

and the restriction θ of the second form θ2 on levels
H = 2c equals to

θ = dp0 − p1dx
ϕz

.
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Let

α = ϕz√|z| ,

β = p0√|z| .

Then

H = 2(α2 + kβ2) = 2c

and the restriction θ takes the following form

θ = dβ

α
− dx

z
.

Integration of θ gives the following solutions of the
Schrödinger equation.

Theorem 5. Let ϕz be a linear symmetry of (8). Then
solutions of the Shrödinger equation have the following
form� for elliptic symmetry ϕz ,

y(x) =
√

|cz(x)|
k

sin

(√
k

∫
dx

z(x)

)
,

� for hyperbolic symmetry ϕz ,

y(x) =
√ |cz(x)|

−k
sinh

(√−k
∫

dx
z(x)

)
,

� for parabolic symmetry ϕz ,

y(x) =
√

|cz(x)|
∫

dx
z(x)

.

2.4.2 The spectral problem

In this section we consider such potentials w(x) for
which the corresponding eigenvalue problem

y′′ + w(x)y = λy (10)

possesses linear symmetries z(x, λ) that are polynomial
in λ.

Let

z(x, λ) = z0(x)λn + z1(x)λn−1 + · · ·
+zn−1(x)λ + zn(x)

be a linear symmetry for Equation (10).
Then the Lie equation gives a polynomial (in λ) of

degree n + 1

z′′′(x, λ) + 4(w(x) − λ)z′(x, λ) + 2w′(x)z(x, λ) = 0

and the recursive set of equations on zk are

z′
0 = 0,

z′
k+1 = 1

4
L(zk), k = 0, . . . , n − 1,

L(zn) = 0.

Setting z0 = 1, we obtain inductively functions zk =
zk(w) such that

zk+1(w) = 1

4

∫
L(zk(w)), dx,

k = 0, 1, . . ..
The first functions are the following:

z1(w) = w

2
+ c1,

z2(w) = w′′ + 3w2

8
+ c1

2
w + c2,

z3(w) = w(4)

32
+ 5

16

(
ww′′ + w′2

2
+ w3

)
+c1

8
(w′′ + 3w2) + c2

2
w + c3,

z4(w) = w(6)

128
+ 7w′w(3)

32

+7(3w′′2 + 10w2w′′ + 10ww′2 + 5w4)

128

+ c1

32

(
w(4) + 10(ww′′ + w′2

2
+ w3

)
+c2

8
(w′′ + 3w2) + c3

2
w + c4.
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The conditions L(zn(w)) = 0 which can be reformu-
lated also as z′

n+1(w) = 0 are called the n-th KdV sta-
tionary Equations (2).

Below we list the first KdV equations:
The 0-th KdV equation

w′ = 0,

The 1st KdV equation

w′′′ + 6ww′ + 4c1w
′ = 0,

The 2nd KdV equation

w(5) + 10(ww′′′ + 2w′w′′ + 3w2w′)

+4c1(w′′ + 6ww′) + 16c2w
′ = 0.

We conclude that potentials w which satisfy the n-th
stationary KdV equation possess linear symmetry ϕSn

with

Sn = λn +
n∑

k=1

zkλ
n−k .

As we have seen the function K = 2z(z′′ + 2(w −
λ)z) − z′2 is the first integral of the Lie equation and
therefore, coefficients of the polynomials

Qn = 2Sn(S′′
n + 2(w − λ)Sn) − S′2

n

are first integrals for the n-th KdV equation.
For example, for the classical (first) KdV equation,

w′′′ + 6ww′ + 4c1w
′ = 0, one has

S1 = λ + w

2
+ c1

and

Q1 = −4λ3 = 8c1λ
2 + q11λ + q10,

where

q11 = w′′ + 3w2 + 4c1w − 4c2
1,

q10 = 2ww′′ − w′2 + 4w3

4
+ c1(w′′ + 4w2 + 4c1w)

are first integrals.

Solving the KdV equation together with the equa-
tions q11 = const, q10 = const we find the 1st order
ODE for w:

w′2 = −2w3 − 4c1w
2 + 2

(
q11 + 4c2

1

)
w

+4
(
c1q11 − q10 + 4c3

1

)
and solutions

w = −2℘(x + c, g2, g3) − 2c1

3
,

where ℘(x, g2, g3) is the Weierstrass elliptic function
with invariants

g2 = 4c2
1 − 6c1

3
, g3 = −152c3

1

27
− 5q11c1

3
+ 2q10.

For the second KdV equation,

w(5) +10(ww′′′ + 2w′w′′ + 3w2w′)

+ 4c1(w′′ + 6ww′) + 16c2w
′ = 0,

one has

S2 = λ2 +
(

w

2
+ c1

)
λ + w′′ + 3w2

8
+ c1

2
w + c2,

and

Q2 = −4λ5 − 8c1λ
4 − 4

(
c2

1 + 2c2
)
λ3

+q22λ
2 + q21λ + q20,

where

q22 = 10w3 + 5w′2 + 10ww′′ + w(4)

10

−8c1c2 + (w′′ + 3w2)c1 + 4wc2,

q21 = 2ww(4) − 2w′w′′′ + w′′2 + 20w2w′′ + 15w4)

16

+(w′′ + 3w2)c2
1 + 4wc1c2 − 4c2

2 + 4w(4) + 12ww′′ + 4w′2 + 14w3

4
c1 + w2c2,

q20 = 2w′′w(4) + 6w2w(4) + 4w(4w′′2 − 3w′w′′′) − w′′′2 + 12w′2w′′ + 60w3w′′ + 36w5

64

+ 4w3 − w′2 + 2ww′′

4
c2

1 + (w′′ + 4w2)c1c2 + 4wc2
2

+ 12w4 + 13w2w′′ + w′′2 − w′w′′′ + ww(4)

8
c1 + 12w3 + 6w′2 + 10ww′′ + w(4)

4
c2

are the first integrals for the second KdV.

Springer



Nonlinear Dyn (2007) 48:29–48 37

Using these integrals one can reduce the 2-nd KdV
equation to the following 2-nd order ODE EJ T :

25w8 + 80w7c1 + 32w6(2c2
1 + 5c2

)
−16w5(24c1c2 + 5Q22) + 32w4(−72c2

1c2 + 28c2
2

+ 5Q21 − 9c1 Q22
) + 256

(−8c2
1c2 + 4c2

2

+ Q21 − c1 Q22
)2 + 256W (8c1c2 + Q22)

× (
8c2

1c2 − 4c2
2 − Q21 + c1 Q22

)
−256w3(8c3

1c2 − c1
(−4c2

2 + Q21
))−256w3

× (
c2

1 Q22 + c2 Q22
) + 64w2(32c3

2 + Q2
22

+ 8c2(Q21 + c1 Q22)
) + 76w5(w′)2 + 152w4c1

× (w′)2 + 64w3(c2
1 + 3c2

)
(w′)2 − 64w

× (
4c2

2 + Q21
)
(w′)2 − 64w2(6c1c2 + Q22(w′)2

+ 128(8c3
1c2 − c1

(
20c2

2 + Q21
) + c2

1 Q22

+ 2(2Q20 − c2 Q22))(w′)2 − 20w2(w′)4

−16wc1(w′)4 + 16
(
c2

1 − 4c2
)
(w′)4

+ 80w3(w′)2w′′ + 96w2c1(w′)2w′′

+ 128wc2(w′)2w′′ − 32(8c1c2 + Q22)(w′)2

× w′′ − 8(w′)4w′′ − 10w4(w′′)2 − 16w3c1(w′′)2

−32w2c2(w′′)2 + 16w(8c1c2 + Q22)(w′′)2

−32
(−8c2

1c2 + 4c2
2 + Q21 − c1 Q22

)
(w′′)2

+ (20w + 8c1)(w′)2(w′′)2 + (w′′)4 = 0.

Two cases when c = 0, and c = 0, q = 0 give us
shorter ODEs:

c = 025w8 + 160w4 Q21 + 256Q2
21 − 80w5 Q22

− 256wQ21 Q22 + 64w2 Q2
22 + 76w5(w′)2

+ 512Q20(w′)2 − 64wQ21(w′)2

− 64w2 Q22(w′) − 20w2(w′)4

+ 80w3(w′)2w′′ − 32Q22(w′)2w′′

− 8(w′)4w′′ − 10w4(w′′)2 − 32Q21(w′′)2

+ 16wQ22(w′′)2 + 20w(w′)2(w′′)2 + (w′′)4 = 0

c = 0, q = 0

25w8 + 76w5(w′)2 − 20w2(w′)4

+ 80w3(w′)2w′′ − 8(w′)4w′′ − 10w4(w′′)2

+ 20w(w′)2(w′′)2 + (w′′)4 = 0

We shall see later on that these equations has a 2-
dimensional commutative symmetry Lie algebra gen-
erated by translations and the 1st KdV, and therefore,
they can be solved in quadratures.

Now we apply theorem (5) to the spectral problems
for the Shrödinger ordinary differential equations in
which potentials are solutions of the n-th KdV equa-
tions. This gives us complete and explicit solutions of
the spectral problems.

We illustrate this method for potentials which satisfy
the first KdV equation (this is the case of a special
Lame equation) and for the following boundary value
problem on an interval [a, b]

y(a) = y(b) = 0. (11)

Then theorem (5) shows that smooth eigenfunctions

y(x) = 2

√
|S1(x)|
Q1(λ)

sin

(√
Q1(λ)

2
)
∫ x

a

dτ

S1(τ )

)

do exist if:� S1 = λ + w
2 + c1 
= 0 on the interval,� Q1 = (λ) > 0,�

∫ b

a

dτ

S1(τ )
= 2πn√

Q1(λ)

for n ∈ Z.

Summarizing we get the following result.

Theorem 6. If a potential w satisfies the classical

KdV equation, w′′′ + 6ww′ + 4c1w
′ = 0, then the

spectral values λ for value boundary problem (11) of
Shrödinger Equation (10) are given by the formula

λ = ℘(α, g2, g3) − 2c1/3,

where α are solutions of the equations

2(b − a)ζ (α) + ln
σ (b + c − α)σ (a + c + α)

σ (a + c − α)σ (b + c + α)

= 2πni, n ∈ Z,
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such that Q1(λ) > 0 and

λ > −c1 − 1

2
min[w(x), a ≤ x ≤ b],

or

λ < −c1 − 1

2
max[w(x), a ≤ x ≤ b].

Here

Q1(λ) = −4λ3 − 8c1λ
2 + q11(w)λ + q10(w),

and constants q11(w) and q10(w) are values of the first
integrals q10 and q11 on the solution w. The function
ζ (α) is the Weierstrass zeta function and σ (z) is the
Weierstrass sigma function with invariants

g2 = 4c2
1 − 6c1

3
, g3 = −152c3

1

27
− 5q11(w)c1

3
+ 2q10(w).

The eigenfunctions corresponding to the eigenvalue λ

have the following form:

yλ(x) = 2

√
|λ + w(x)

2 + c1|
Q1(λ)

sin

(√
Q1(λ)

2

×
(

2(x − a)ζ (α) + ln
σ (x − α)σ (a + α)

σ (x + α)σ (a − α)

))

Proof: Since

w = −2℘(x + c, g2, g3) − 2c1

3
,

we have

I =
∫ b

a

dτ

λ + w
2 + c1

=
∫ b

a

dτ

λ − ℘(τ + c, g2, g3) + 2c1/3
.

Let α be such that

℘(α, g2, g3) = λ + 2c1/3.

Then (see [7])

I = −
∫ b + c

a + c

dτ

℘(τ, g2, g3) − ℘(α, g2, g3)

= − 1

℘ ′(α, g2, g3)

(
2zξ (α) + ln

σ (z − α)

σ (z + α)

)∣∣∣∣b + c

a + c
.

Since

℘ ′2(x, g2, g3) = 4℘3(x, g2, g3) − g2℘(x, g2, g3) − g3

and

℘ ′′(x, g2, g3) = 6℘2(x, g2, g3) − g2/2,

we obtain the following values of the first integrals q11

and q10:

q11(w) = w′′ + 3w2 + 4c1w − 4c2
1

= g2 − 16/3c2
1 = −2c1 − 4c2

1,

q10(w) = 2ww′′ − w′2 + 4w3

4

+ c1(w′′ + 4w2 + 4c1w)

= 2/3c1g2 + g3 − 32/27c3
1.

Note that for

℘(α, g2, g3) = λ + 2c1/3

we have

℘ ′2(α, g2, g3)

= 4℘3(α, g2, g3) − g2℘(α, g2, g3) − g3

= −Q1(λ).

Therefore,

℘ ′(α, g2, g3) = ±
√

−Q1(λ)

and we get that

I = ± 1√−Q1(λ)

(
2zξ (α) + ln

σ (z − α)

σ (z + α)

)∣∣∣∣b + c

a + c

= 2πn√
Q1(λ)

.
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So we have

±
(

2zζ (α) + ln
σ (z − α)

σ (z + α)

)∣∣∣∣b + c

a + c
= 2πni,

where ζ (α) is the Weierstrass zeta function and σ (z) is
the Weierstrass sigma function.

Finally we get the following equations for α:

2(b − a)ζ (α) + ln
σ (b + c − α)σ (a + c + α)

σ (a + c − α)σ (b + c + α)

= 2πni.
�

In a the similar way one gets the following result.

Theorem 7. If a potential w satisfies the n-th KdV
Equation, then the spectral values λ for value boundary
problem (11) of Shrödinger Equation (10) are given by
solutions of the Equation∫ b

a

dτ

Sn(τ )
= 2πm√

Qn(λ)
, m ∈ Z,

such that Qn(λ) > 0 and Sn 
= 0 on the interval [a, b].
The eigenfunctions corresponding to the eigenvalue

λ have the following form:

yλ(x) = 2

√
|Sn(x)|
Qn(λ)

sin

(√
Qn(λ)

2

∫ x

a

dτ

Sn(τ )

)
.

2.5 Dynamics

It is common to use symmetries to integrate ordinary
differential equations. Now we turn it over and we will
use ODEs for integrating of evolutionary differential
equations.

Let

ut = ϕ

(
x, u, ux , . . . ,

∂ku
∂xk

)
. (12)

We are interested in ordinary differential equations

F
(
x, y, y′, y′′, . . . , y(m−1), y(m)) = 0

for which the Lie equation is satisfied for the given
generating function ϕ. In other words, we find such

ODEs for which ϕ is a generating function of shuffling
symmetry.

In this case any solution of the Cauchy problem

{
∂u
∂t

= ϕ

(
x, u, ux , . . . ,

∂m + ku
∂xm + k

)
, u|t=0 = h0(x)

under the condition that h0(x) satisfies our ordinary
differential equation, can be found as a path ht

u(t, x) = ht (x)

in the space of all solutions of the ODE
F(x, y′, y′′, . . . , y(m−1), ym) = 0 (see 2.2).

Conditions on F are given by Equation (6):

m∑
i=0

∂ F
∂pi

δi (ϕ̃) = 0, if F = 0. (13)

In this equation ϕ̃ is the restriction of the generating
function ϕ on the equation F−1(0) and all its prolon-
gations:

F = 0,

D(F) = 0,

D2(F) = 0, . . . ,

where

D = ∂

∂x
+ p1

∂

∂p0
+ · · · + pm

∂

∂pm−1
+ . . .

is the total derivative.
We consider relation (13) as a differential equation

on the function F.
The ordinary differential equation {F = 0} corre-

sponding to the solution F of this equation we call dy-
namics of order m for evolutionary Equation (12).

Note that in this case in order to find a trajectory of
a solution h(x) one should integrate the system

⎧⎪⎪⎨⎪⎪⎩
ṗ0 = ϕ̃,

ṗ1 = δ(ϕ̃),
· · · · ·
ṗm = δm(ϕ̃)
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on E with the initial conditions⎧⎪⎪⎨⎪⎪⎩
p0|t=0 = h(x),
p1|t=0 = h′(x),
· · · · ·
pm |t=0 = h(m)(x).

Then p0(t) = ht (x) gives the unknown function ht (x),
and u(t, x) = ht (x) is a solution of the evolutionary
equation ∂u

∂t = ϕ(x, u, ux , . . . ,
∂k u
∂xk ).

3 Dynamics for the KdV equation

As an illustration of the above method let us describe
finite dimensional dynamics for the KdV equation:

ut = u · ux + uxxx .

Substitution u = 6w establishes a relation between
KdV equations considered above and this equation.
We rewrite functions zn(w), sn(λ, w), Qn(λ, w) in
the canonical coordinates (p0, . . . , pn, . . .) on the jet
spaces where p0 corresponds to u.

In these notations we have the following Lenard’s
recursion (see [2]):

z0 = 1, z1 = p0

12
+ c1, . . .

and

D(zn + 1) = 1

4
L(zn)

for n = 0, 1, . . ., and

L = D3 + 2

3
p0D + 1

3
p1.

The functions

Kn = D(zn + 1)

correspond to the n-th stationary KdV equations.
Let

Sn =
n∑

i=0

ziλ
n−i ,

and

Qn = 2SnD(Kn−1) + 2

3
p0S2

n − 4λS2
n − K 2

n−1

=
2n + 1∑
i=0

qniλ
i

Then we have

Xϕ(zn) = D3(zn) + p0zn,

and

Xϕ(Kn) = D3(Kn) + p1D(Kn) + p0 Kn,

where ϕ = p3 + p0 p1, and

Xϕ =
∑
i=0

Di (ϕ)
∂

∂pi
.

This shows that differential equations corresponding to
linear combinations of zn or Kn give finite dimensional
dynamics for the KdV equation. Moreover, functions
qni also produce finite dimensional dynamics.

Remark that the order of zn + 1 is 2n, and the order
of Kn is 2n + 1. Therefore z’s give even dimensional
and K’s odd dimensional dynamics.

Summarizing we arrive to the following result.

Theorem 8. Let a0, . . . , an ∈ R be constants. Then the
differential equations:

n∑
i=0

ai zi = 0,

n∑
i=0

ai Ki = 0,

qni = 0

give finite dimensional dynamics for the KdV equation.

In addition to the above theorem the low dimensional
dynamics given by polynomials can be found by direct
computations. Below we give and describe some of
them in dimensions ≤3.
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3.1 1st order dynamics

One can check that the functions

F = 3p2
1 + p3

0 + a2 p2
0 + a1 p0 + a0

satisfy the equation of the dynamics for ϕ = p0 p1 +
p3 and arbitrary constants a0, a1, a2.

The solution space Sol (E) can be identified with the
curve

3p2
1 + p3

0 + a2 p2
0 + a1 p0 + a0 = 0

on the (p0, p1) plane.
The vector field Xϕ on the ODE E has the following

form

−a2

3

(
p1

∂

∂p0
− a1 + 2a2 p0 + 3p2

0

6

∂

∂p1

)
.

Moreover, the vector field

p1
∂

∂p0
− a1 + 2a2 p0 + 3p2

0

6

∂

∂p1

is Hamiltonian with respect to the standard symplectic
structure dp1 ∧ dp0 with the Hamiltonian

H = 3p2
1 + p3

0 + a2 p2
0 + a1 p0.

In other words the curves H = const define the solution
spaces and the Hamiltonian flow is the flow generated
by KdV.

KdV 1-st order dynamics
Solutions of the equation F = 0, have the form

u = −12℘(x + c, g2, g3) − a2

3
,

where ℘(x, g2, g3) is the Weierstrass elliptic function
with invariants

g2 = a2
2 − 3a1

108
, g3 = 27a0 − 9a1a2 + 2a3

2

11664
.

The shift of these solutions along Xϕ leads us to the
following solutions of the KdV equation

u(x, t) = −12℘

(
x − a2t

3
+ c, g2, g3

)
− a2

3
.
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These pictures show the solution space and a trajec-
tory for the 1-st order dynamics with

F = p3
1 + (p0 − 1)(p0 − 2)(p0 − 3).

3.2 Second order dynamics

Here we describe the second order dynamics. We shall
consider dynamics F(p0, p1, p2) = 0 which are invari-
ant with respect to the scale symmetry xpx + 3tpt +
2p0 for the KdV equation. We assign weight 2 for p0,
weight 3 for p1 and weight 4 for p2 and we assume that
F is a sum of homogeneous polynomial of degree ≤n.

The following list gives non-trivial homogeneous
dynamics for small n:
n = 4

F4 = p2
0 + 2p2 + ap0 + b,

n = 6

F6 = 2(a + 3p0)p2 − 6p2
1 + p3

0 + 3ap3
0

+ 3ap2
0 + b p0 + c,

n = 8

F8 = p4
0

/
4 + p2

0 p2 + p2
2 + a

(
2p3

0 − 3p2
1

+6p0 p2) + b
(

p2
0 + 2p2

) + c

where a, b and c are constants, and
n = 10

F10 = 8p3
2 + 9p4

1.

Not that the dynamics F4 and F6 coincide with q10

and q11.
The previous differential equation EJ T gives us the

following dynamics:

16384c4
1c2

2 − 16384c2
1c3

24096c4
2 + 8192

3
c3

1c2
2 p0

−4096

3
c1c3

2 p0 + 512

9
c3

2 p2
0 − 256

27
c3

1c2 p3
0

−128

27
c1c2

2 p3
0 − 16

9
c2

1c2 p4
0 + 56

81
c2

2 p4
0 − 4

81
c1c2 p5

0

+ 1

729
c2

1 p6
0 + 5c2 p6

0

1458
+ 5c1 p7

0

17496
+ 25p8

0

1679616

+ 256

9
c3

1c2 p2
1 − 640

9
c1c2

2 p2
1 − 32

27
c2

2 p0 p2
1

− 8

27
c1c2 p2

0 p2
1 + 2

243
c2

1 p3
0 p2

1 + 2

81
c2 p3

0 p2
1

+ 19c1 p4
0 p2

1

5832
+ 19p5

0 p2
1

69984
+ 1

81
c2

1 p4
1

− 4

81
c2 p4

1 − 1

486
c1 p0 p4

1 − 5p2
0 p4

1

11664

−32

27
c1c2 p2

1 p2 + 8

81
c2 p0 p2

1 p2 + 1

81
c1 p2

0 p2
1 p2

+ 5p3
0 p2

1 p2

2916
− 1

972
p4

1 p2 + 64

9
c2

1c2 p2
2 − 32

9
c2

2 p2
2

+ 16

27
c1c2 p0 p2

2 − 2

81
c2 p2

0 p2
2 − 1

486
c1 p3

0 p2
2

−5p4
0 p2

2

23328
+ 1

162
c1 p2

1 p2
2 + 5p0 p2

1 p2
1

1944
+ p4

2

1296

+ 128

9
p2

1 Q20 − 4096c2
1c2 Q21 + 2048c2

2 Q21

−1024

3
c1c2 p0 Q21 + 128

9
c2 p2

0 Q21

+ 32

27
c1 p3

0 Q21 + 10

81
p4

0 − 32

9
c1 p2

1 Q21

− 8

27
p0 p2

1 Q21 − 8

9
p2

2 Q21 + 256Q2
21

+ 4096c3
1c2 Q22 − 2048c1c2

2 Q22

+ 2048

3
c2

1c2 p0 Q22 − 512

3
c2

2 p0 Q22

+ 128

9
c1c2 p2

0 Q22 − 32

27
c2

1 p3
0 Q22
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−32

27
c2 p3

0 − 2

9
c1 p4

0 Q22 − 5

486
p5

0 Q22

+ 32

9
c2

1 p2
1 Q22 − 64

9
c2 p2

1 Q22

− 4

81
p2

0 p2
1 Q22

4

27
p2

1 p2 Q22 + 8

9
c1 p2

2 Q22

+ 2

27
p0 p2

2 Q22 − 512c1 Q21 Q22 − 128

3
p0 Q21 Q22

+ 256c2
1 Q2

22 + 128

3
c1 p0 Q2

22 + 16

9
p2

0 Q2
22 = 0

Let us look at the dynamics in more details.

3.2.1 F4 = p2
0 + 2p2 + ap0 + b

In this case the vector field − 2
a Xϕ is a restriction of the

vector field

Vϕ = p1
∂

∂p0
+ p2

∂

∂p1
− (a + 2p0)p1

2

∂

∂p2

on the zero level F4 = 0, and Xϕ can be integrated in
the same way as for the 1-st order dynamics.

Trajectories of Xϕ are given by the formula

p0(t) = −12℘(t + K , g2, g3) − a/2,

where

g2 = a2 − 12ab
48

, g3 = a3 − 12ab − 12c2

1738

and the constant can be found from the initial data.
These formulas lead us to the following pathes in

the solution space

u(t, x) = −12℘
(

t − ax
2

+ const, g2, g3

)
− a/2

with arbitrary invariant g3 and g2 given above.

3.2.2 F6 = 2(a + 3p0)p2 − 6p2
1 + p3

0 +
ap2

0 + b p0 + c

The differential equation E = F−1
6 (0) has singular

points at

p0 = −a
3
,

p2
1 = a3

81
− ab

18
+ c

8
.

Moreover, in this case symmetries X p1 and Xϕ are lin-
early dependent on the differential equation E and

Xϕ =

−H
(

p1
∂

∂p0
+ 6p2

1 − p3
0 − ap2

0 − bp0 − c
2(a + 3p0)

∂

∂p1

)
,

where

H = ab + 3c + 6bp0 − 6p3
0 − 18p2

1

2(a + 3p0)2

is the fist integral for E , and for the vector filed Xϕ :

Xϕ(H ) = 0

on E .
The vector field Xϕ has also singularities at the

points where a + 3p0 
= 0, and

p3
0 + ap2

0 + bp0 + c = 0, p1 = 0.

Depending on the roots of the polynomial p3
0 + ap2

0 +
bp0 + c we have the following three types of phase
portraits:

� Three real distinct roots. In the following picture we
take roots: −1, 1, 2, and

F6 = 2(3p0 − 2)p2 − 6p2
1 + p3

0 − 2p2
0 − p0 + 2
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� A real root of multiplicity 2. In the picture we take
roots: 1, 1, 2, and

F6 = 2(3p0 + 4)p2 − 6p2
1 + p3

0 − 4p2
0 + 5p0 − 2

� Two complex roots. In the picture we take roots:
1, −1 + √−3

2 , −1−√−3
2 , and

F61 = 6p0 p2 − 6p2
1 + p2

0 − 1

Solutions of the equations F−1
6 (0) one can find from the

first integral H. So they are solutions of the following
1-st order ODE

p2
1 = − p3

0

3
− kp2

0 + b − 2ak
3

p0 + ab + 3c − 2a2k
18

for some constant k, H = k.
Thus solutions of the ODE can be represented in

terms of the Weierstrass function as follows

u(x) = −12℘(x + C0, g2, g) − k

where

g2 = k(b + k − 2ak)

12
,

g3 = 12k3 − 12ak2 + 2(a2 + 3b)k − ab − c
2592

.

Note that along Xϕ , function the H is constant and
Xϕ = −H X p1 .

Therefore, the corresponding path in the solution
space is

u(x, t) = −12℘(x − kt + C0, g2, g3) − k.

3.3 F = 6(p0 − λ)p2 − 6p2
1 + (p0 − λ)3

This is a special case when the polynomial p3
0 +

ap2
0 + bp0 + c has root λ of multiplicity 3. Without

loss of generality we can assume that λ = 0, and we
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study the ordinary differential equation E , where

F = 6p0 p2 − 6p2
1 + p3

0 = 0.

The vector field Xϕ on E is proportional to X p1

Xϕ = −H X p1

with

H = − p3
0 + 3p2

1

3p2
0

.

Here H is a first integral for ordinary differential equa-
tion E and for the vector field Xϕ .

The ODE E can be solved directly and one gets

u(x) = a2

cosh2
( a(x + b)

2
√

3

) .

The restriction of H on these solutions has the value
−a2/3, and therefore the corresponding path is the
solitary wave solution

u(x, t) = a2

cosh2
( a(x + a2t/3 + b)

2
√

3

) .

3.3.1 F10 = 8p3
2 + 9p4

1

In this case the vector field Xϕ on F−1
10 (0) is proportional

to X p1 :

Xϕ = −H X p1

with

H = 3p2
1 − 2p0 p2

2p2
.

Solutions of the equation F10 = 0 have the form

u(x) = B − 12

(x + A)2
,

and H = −B for these solutions. Therefore, the corre-
sponding path has the form of a rational solution

u(x, t) = B − 12

(x + A − Bt)2
.

3.3.2 Trivial dynamics

The following ODEs

2p2
0 − 3p2

1 + 6p0 p2 + a
(

p2
0 + 2p2

) + b,

p4
0/4 + p2

0 p2 + p2
2 + a

(
2p3

0 − 3p2
1 + 6p0 p2

)
+ b

(
p2

0 + 2p2
) + c,

p4
0

/
4 + p2

0 p2 + p2
2 + a

(
2p3

0 − 3p2
1 + 6p0 p2

)(
p2

0 + 2p2
) + c
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give the trivial dynamics: Xϕ = 0 on E-s.

3.4 Third order dynamics

The following dynamics represent nontrivial polyno-
mial dynamics in degree ≤10:

F1 = ap1 + b(p0 p1 + p3) + 1

2
p2

0 p1 − p1 p2 + p0 p3,

F2 = p2
3 + 2p2

1 p2 − a(p3 + p0 p1)2,

F3 = (p3 + p1 p0 + a)(p1 + bp0 + c)

where a, b, c are constants.

3.4.1 Dynamics for F1 = ap1 + b(p0 p1 +
p3) + 1

2 p2
0 p1 − p1 p2 + p0 p3

In this case Xϕ = H X p1 , where

H = 2p2 + p2
0 − 2a

2(b + p0)

is a first integral of the ordinary differential equation
F−1

1 (0).
Solutions of the ordinary differential equations H =

c, where c is a constant, or

p2 = − p2
0

2
+ cp0 + a + bc

can be expressed in terms of the Weierstrass functions:

u = −12℘(x + c1, g2, g3) − c

with arbitrary g3 and

g2 = (1 − 3b)c2 − 3ac
12

.

The corresponding pathes in the solution space are

u(x, t) = −12℘(x + ct + c1, g2, g3) − c.

3.4.2 Dynamics for
F2 = p2

3 + 2p2
1 p2 − a(p3 + p0 p1)2

Let a 
= 1, then Hϕ = H X p1 , where

H =

√
p0 ±

√
ap2

0 + 2(1 − a)p2

1 − a

is a first integral of ordinary differential equation
F−1

2 (0).
Solutions of the ordinary differential equations H =

c, where c is a constant,

p2 = p2
0

2
− cp0 + c2(1 − a)

can be expressed in terms of the Weierstrass functions:

u = 12℘(x + c1, g2, g3) + c

with arbitary g3 and

g2 = c2

12
+ c3(1 − a)

2
.

The corresponding pathes in the solution space are

u(x, t) = 12℘(x + ct + c1, g2, g3) + c.

In the case a = 1, we have

F2 = p2
1

(
2p2 − p2

0

) − 2p0 p1 p3

and Xϕ = H X p1 , where

H = p2
0 + 2p2

2p0

is a first integral of ODE F−1
2 (0).

Solutions of ODEs H = c, where c is a constant,

p2 = − p2
0

2
+ cp0

can be expressed in terms of the Weierstrass functions:

u = −12℘(x + c1, g2, g3) − c
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with arbitrary g3 and

g2 = c2

12
.

The corresponding pathes in the solution space are

u(x, t) = −12℘(x + ct + c1, g2, g3) − c.

3.6 Fourth order dynamics

The fourth order dynamics are defined by functions

F = p4 + 5p0 p2

3
+ 5p2

1

6
+ 5p3

0

18

+
(

p2 + p2
0

2

)
+ bp0 + c,

where a, b, c are constants.
It is easy to check that the vector field Xϕ and the

ODE F−1(0) has the following first integral

H1 = −36bp2
0 − 12ap2

0 − 5p4
0 − 12p0

(
6c + 5p2

1

)
+ 36

(
6ac − ap2

1 + p2
2 − 2p1 p3

)
,

and the restriction on H1 = k admits first integral

H2 = 72(2a2 + 5b)p6
0 + 120ap7

0 + 25p8
0

+ 24p5
0

(
36ab + 30c + 19p2

1

) + 432p4
1

×(3a2 − 12b − 4p2) + 2p4
0(648b2 − 216ac

+ 5k + 684ap2
1 − 180p2

2) + (−216ac

+ k − 36p2
2

)2 − 24p
0 (216(a2 − b)c − ak

+ 36ap2
2 − 12p2

1(3a2 + 9b + 10p2))

−216p2
1(72(a2 + 2b)c − ak − 12p2

×(4c + ap2)) − 72p2
0(72(3ab − c)c

−bk + 10p4
1 + 36bp2

2 − 12p2
1(3ab

+ 4c + 6ap2)) + 24p0
(−36ap4

1

+ 6c
( − 216ac + k − 36p2

2

)
+ p2

1(432ac − k + 36p2(12b + 5p2))
)
.

The last ordinary differential equation H2 = k2 has two
symmetries Xϕ and X p1 and they are independent and

commute. Therefore, the differential equation can be
integrated in quadratures.

Namely, the method discussed above gives us two
1-forms

θ0 = p2dp0 − p1dp1

G
,

θ1 = Adp0 + Bdp1

G
− dx,

where

G = cp1 + bp0 p1 + 1

2
ap2

0 p1 + 5

18
p3

0 p1 − p3
1

6

+ 3acp2

p1
− kp2

72p1
− cp0 p2

p1
− bp2

0 p2

2p1

−ap3
0 p2

6p1
− 5p4

0 p2

72p1
+ 1

2
ap1 p2

+ 5

6
p0 p1 p2 + p3

2

2p1
,

A = c + bp0 + a
(

p2 + p2
0

2

)
+ 1

18

(
5p3

0 − 3p2
1 + 12p0 p2

)
,

B = 3ac
p1

− k
72p1

− cp0

p1
− bp2

0

2p1
− ap3

0

6p1

− 5p4
0

72p1
− ap1

2
+ p0 p1

6
+ p2

2

2p1
,

and integrals I0(p0, p1), I1(p0, p1) such that

dI0 = p2

G
dp0 − p1

G
dp1,

dI1 = A
G

dp0 + B
G

dp1,

and solutions can be found from relations

I0 = c0, I1 = x + c1

for some constants c0, c1.
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