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Abstract. The present paper solves completely the problem of the Lie group
analysis of nonlinear equation ut(x, t) + g(u)ux(x, t) = 0, where g(u) is a
smooth function of u. And apply these results on inviscid Burgers equation.
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1. Introduction

The theory of Lie symmetry groups of differential equations was developed by
Sophus Lie [5]. Such Lie groups are invertible point transformations of both the
dependent and independent variables of the differential equations. The symmetry
group methods provide an ultimate arsenal for analysis of differential equations
and is of great importance to understand and to construct solutions of differential
equations. Several applications of Lie groups in the theory of differential equations
were discussed in the literature, the most important ones are: reduction of order
of ordinary differential equations, construction of invariant solutions, mapping
solutions to other solutions and the detection of linearizing transformations (for
many other applications of Lie symmetries see. [7], [2] and [1]).

Burgers’ equation is a fundamental partial differential equation from fluid
mechanics. It occurs in various areas of applied mathematics, such as modeling of
gas dynamics and traffic flow. It is named for Johannes Martinus Burgers (1895-
1981).

For a given velocity u and viscosity coefficient ν, the general form of Burgers’
equation is:

ut(x, t) + g(u)ux(x, t) = ν uxx(x, t), (1)

where g(u) is a smooth function of u. When ν = 0, Burgers’ equation becomes the
inviscid Burgers’ equation:

IBE : ut(x, t) + g(u)ux(x, t) = 0 (2)



102 M. Nadjafikhah AACA

which is a prototype for equations for which the solution can develop discontinuities
(shock waves). Specially, study the geometry of equations

ut(x, t) + u(x, t)ux(x, t) = 0 (3)

and

ut(x, t) +
1− u(x, t)
1 + u(x, t)

ux(x, t) = 0. (4)

This work is a generalization of the paper [6]; i.e. the general form of Lie
point symmetries group of the nonlinear equation IBE are presented, and found
some special solutions of certain IBE’s.

This work is organized as follows. In section 2 we recall some results needed
to construct Lie point symmetries of a given system of differential equations. In
section 3, we give the general form of an infinitesimal generator admitted by IBE.
In section 4, we give the general form of a projectable infinitesimal generator ad-
mitted by the equation IBE. In section 5, we determine the group transformation
corresponding to every infinitesimal generator obtained by projectable symme-
tries. In section 6, we show how symmetries may be used to construct some exact
solutions for the (3).

2. Method of Lie Symmetries

In this section, we recall the general procedure for determining symmetries for any
system of partial differential equations (see [7] and [2]). To begin, let us consider
the general case of a nonlinear system of partial differential equations of order nth
in p independent and q dependent variables is given as a system of equations:

∆ν(x, u(n)) = 0, ν = 1, . . . , l, (5)

involving x = (x1, . . . , xp), u = (u1, . . . , uq) and the derivatives of u with respect
to x up to n, where u(n) represents all the derivatives of u of all orders from 0 to
n. We consider a one-parameter Lie group of infinitesimal transformations acting
on the independent and dependent variables of the system (5):

x̃i = xi + sξi(x, u) + O(s2), i = 1, . . . , p,
(6)

ũj = uj + sηj(x, u) + O(s2), j = 1, . . . , q,

where s is the parameter of the transformation and ξi, ηj are the infinitesimals
of the transformations for the independent and dependent variables, respectively.
The infinitesimal generator v associated with the above group of transformations
can be written as

v =
p∑

i=1

ξi(x, u)∂xi +
q∑

j=1

ηj(x, u)∂uj . (7)

A symmetry of a differential equation is a transformation which maps solutions
of the equation to other solutions. The invariance of the system (5) under the
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infinitesimal transformations leads to the invariance conditions (Theorem 2.36 of
[7]):

Pr(n)v
[
∆ν(x, u(n))

]
= 0, ν = 1, . . . , l, whenever ∆ν(x, u(n)) = 0, (8)

where Pr(n) is called the nth order prolongation of the infinitesimal generator given
by

Pr(n)v = v +
q∑

α=1

∑
J

φα
J (x, u(n))∂uα

J
, (9)

where J = (j1, . . . , jk), 1 ≤ jk ≤ p, 1 ≤ k ≤ n and the sum is over all J ’s of order
0 < #J ≤ n. If #J = k, the coefficient φα

J of ∂uα
J

will only depend on k-th and
lower order derivatives of u, and

φJ
α(x, u(n)) = DJ(φα −

p∑
i=1

ξiuα
i ) +

p∑
i=1

ξiuα
J,i, (10)

where uα
i := ∂uα/∂xi and uα

J,i := ∂uα
J/∂xi.

One of the most important properties of these infinitesimal symmetries is
that they form a Lie algebra under the usual Lie bracket.

3. Symmetries of Equation IBE

We consider the one parameter Lie group of infinitesimal transformations on (x1 =
x, x2 = t, u1 = u),

x̃ = x + sξ(x, t, u) + O(s2),
t̃ = x + sη(x, t, u) + O(s2), (11)
ũ = x + sφ(x, t, u) + O(s2),

where s is the group parameter and ξ1 = ξ, ξ2 = η and φ1 = φ are the infinitesimals
of the transformations for the independent and dependent variables, respectively.
The associated vector field is of the form:

v = ξ(x, t, u)∂x + η(x, t, u)∂t + φ(x, t, u)∂u. (12)

and, its first prolongation is

Pr(1)v = v + φx ∂ux + φt ∂ut , (13)

(by (9)), with

φx = Dxφ− uxDxξ − utDxη,

φt = Dtφ− uxDtξ − utDtη, (14)

where Dx and Dt are the total derivatives with respect to x and t respectively.
The vector field v generates a one parameter symmetry group of IBE if and

only if

Pr(1)v[ut + g(u)ux] = 0, whenever ut + g(u)ux = 0; (15)
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by (8); The condition (15) is equivalent to,

φ.g′ux + gφx + φt = 0, ut + gux = 0; (16)

and hence the condition (16) gives the set of defining equations:

ut + g.ux = 0, (17)
φ.g′ + g2.ηx + gηt − g.ξx − ξt = 0, (18)

g.φx + φt = 0. (19)

x− tg and u are characteristics of homogeneous linear first order PDE (19), there-
fore

φ(t, x, u) = F (u, x− t.g(u)), (20)

where F : R2 → R is an arbitrary smooth function.
Now, the PDE (18) reduced to

ξt + g(u)ξx = g′(u).F (u, x− t.g(u)) + g(u).ηt + g2(u).ηx. (21)

x−tg and u are characteristics of homogeneous linear first order PDE ξt+g(u)ξx =
0, and g(u).η(t, x, u) + t.g′(u).F (u, x − t.g(u)) is a particular solution of (21).
Therefore, the solution of (21) is

ξ(t, x, u) = g(u).η(t, x, u) (22)
+t.g′(u).F (u, x− t.g(u)) + G(u, x− t.g(u))

where G : R2 → R is an arbitrary smooth function. Therefore, we prove that

Theorem 1. Infinitesimal generator of every one parameter Lie group of point
symmetries of IBE has the form

v =
(
g(u).H(t, x, u) + t.g′(u).F (u, x− t.g(u)) + G(u, x− t.g(u))

)
∂x

+H(t, x, u) ∂t + F (u, x− t.g(u)) ∂u, (23)

where F , G : R2 → R and H : R3 → R are arbitrary smooth functions.
If vi = (g.Hi+t.g′.F i+Gi) ∂x+Hi ∂t+F i ∂u with i = 1, 2, 3 and [v1, v2] = v3,

then

F 3 = (G1.D2F
2 −G2D2F

1) + (F 1.D1F
2 − F 2.D1F

1),
G3 = (F 1.D1G

2 − F 2.D1G
1) + (G1.D2G

2 −G2.D2G
1), (24)

H3 = (H1.D1H
2 −H2.D1H

1) + (G1.D3H
2 −G2.D3H

1)
+(F 1.D2H

2 − F 2.D2H
1),

where Dkf is derivative with respect to kth variable of function f . Therefore, the
symmetry Lie algebra of IBE is infinite dimensional.
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4. Projectable Symmetries

An one parameter Lie group of point symmetries gt is called projectable or fiber-
preserving, if the action on the independent variables does not depend on the
dependent variables: gt.(x, u) = (X(x), U(x, u)) (see [3] and page 93 of [7]). In
this case, ξis only depend on x; and there are differential invariants in the form
y = I(x). Now, may be used to reduce the order of the given system (5) (see page
145 of [7]).
Lemma 1. Let g(u) be a smooth nonconstant function, and k be an integer. Then,
the functions 1, g(u), g2(u), . . . , gk(u) are linearly independent.

Proof. Let there are constants ai for i = 0, . . . , k such that a0 + a1.g(u) + · · · +
ak.gk(u) = 0. Then, g(u) is a root of polynomial with real coefficients a0 + a1.x +
· · ·+ak.xk = 0 for any u. Therefore, g(u) is constant, contradicting our assumption.

�

By repeating the algorithm of section 3, we find that

Theorem 2. Let g(u) be a smooth nonconstant function. Then, every projectable
infinitesimal generator of one parameter Lie group of symmetries of ut+g(u)ux = 0
has the form(

c4x
2 + c1tx + c6x + c8t + c7

)
∂x +

(
c4xt + c1t

2 + c5x + c2t + c3

)
∂t (25)

+
c1x + c8 +

(
2c4x + c6 + c1t− c4x− 2c1t− c2

)
.g(u)− (c4t + c5).g(u)2

g′(u)
∂u

where ci’s are arbitrary constants.
If g(u) ≡ C be constant, then every projectable infinitesimal generator of one

parameter Lie group of symmetries has the form

F (t, x− C.t). ∂x +
(
C.F (t, x− C.t) + H(x− C.t)

)
. ∂t + H(x− C.t). ∂u. (26)

Proof. If we assume ξ = F (x, t) and η = G(x, t) in (12), and apply its prolonged
on E := ut + g(u).ux = 0, we conclude that

φ(t, x, u) =
g(u)
g′(u)

.
(
g(u).Fx(x, t) + Ft(x, t)− g(u)2.Gx(x, t)−Gt(x, t)

)
. (27)

By setting this φ in v(1)(E) ≡ 0 modE, we find that

Ftt(x, t) + (2.Fxt(x, t)−Gtt(x, t)).g(u) (28)
+(Fxx(x, t)− 2Gxt(x, t)).g(u)2 −Gxx(x, t).g(u)3 = 0.

and, by Lemma 1, we obtain a system of PDEs:

Ftt(x, t) = 0, 2.Fxt(x, t)−Gtt(x, t) = 0,
Fxx(x, t)− 2Gxt(x, t) = 0, Gxx(x, t) = 0.

(29)

By solving this system of PDEs, we conclude that

F (x, t) = c4x
2 + (c6 + c1t)x + c8t + c7, (30)

G(x, t) = c4xt + c1t
2 + c5x + c2t + c3.
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Now, we put F and G in (27), and find η. �

Theorem 3. Let g(u) be a smooth nonconstant function. Then, every projectable
infinitesimal generator of one parameter Lie group of symmetries of IBE has the
form v =

∑8
i=1 aivi, where a1, . . . , a8 are arbitrary constants and

v1 = ∂t, v2 = ∂x,

v3 = t ∂x +
1

g′(u)
∂u, v4 = t ∂t + x ∂x,

v5 = t ∂t −
g(u)
g′(u)

∂u, v6 = x∂t −
g2(u)
g′(u)

∂u,

v7 = t2 ∂t + tx ∂x +
x− t.g(u)

g′(u)
∂u,

v8 = tx ∂t + x2 ∂x +
g(u)(x− t.g(u))

g′(u)
∂u.

(31)

These vector fields span a Lie algebra g with following commutator table

v1 v2 v3 v4 v5 v6 v7 v8

v1 0 0 v2 v1 v1 0 v4 + v5 v6

v2 0 0 0 v2 0 v1 v3 2v4 − v5

v3 −v2 0 0 0 −v3 −v4 + 2v5 0 v7

v4 −v1 −v2 0 0 0 0 v7 v8

v5 −v1 0 v3 0 0 −v6 v7 0
v6 0 −v1 v4 − 2v5 0 v6 0 v8 0
v7 −v4 − v5 −v3 0 −v7 −v7 −v8 0 0
v8 −v6 −2v4 + v5 −v7 −v8 0 0 0 0

Theorem 4. 1) The algebra g is semisimple.
2) If Ai be the matrix of adjoint transformation

ad(vi) : g → g, Ad(vi)(vj) := [vi, vj ], i = 1, . . . , 8

with respect to base {v1, . . . , v8}, then

A1 = E14 + E15 + E23 + E47 + E57 + E68,

A2 = E16 + E24 + E37 + 2E48 − E58,

A3 = −E21 − E35 − E46 + 2E56 + E78,

A4 = −E11 − E22 + E77 + E88,

A5 = −E11 + E33 + E87, (32)
A6 = −E12 + E43 − 2E53,

A7 = −E32 − E41 − E51 − E74 − E85,

A8 = −2E42 + E52 − E61 − E73 − E84;
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where, Eijs are 8 × 8−elementary matrixes, for i, j = 1, . . . , 8; that is, the
(i, j)-entry of Ei,j is 1, and all other entries are zero.

5. Lie Symmetries of (3)

The (3) is ut + u.ux = 0; i.e., an IBE with m = 1. In this case, Theorem 2 yields
to the following vector fields:

v1 = ∂t, v2 = ∂x,

v3 = t ∂x + ∂u, v4 = t ∂t + x ∂x,

v5 = t ∂t − u ∂u, v6 = x∂t − u2 ∂u,

v7 = t2 ∂t + tx ∂x + (x− t.u) ∂u, v8 = tx ∂t + x2 ∂x + u(x− t.u) ∂u.

(33)

To obtain the group transformation which is generated by the infinitesimal
generators vi = ξi∂t + ηi∂x + φi∂u for i = 1, . . . , 8, we need to solve the 8 systems
of first order ordinary differential equations,

dx̃(s)
ds

= ξi(x̃(s), t̃(s), ũ(s)), x̃(0) = x,

dt̃(s)
ds

= ηi(x̃(s), t̃(s), ũ(s)), t̃(0) = t,

dũ(s)
ds

= φi(x̃(s), t̃(s), ũ(s)), ũ(0) = u.

i = 1, . . . , 8 (34)

Exponentiating the infinitesimal symmetries of (3), we get the one parameter
groups gk(s) generated by vk for k = 1, . . . , 8:

g1 : (t, x, u) 7−→ (s + t, x, u),
g2 : (t, x, u) 7−→ (t, s + x, u),
g3 : (t, x, u) 7−→ (t, x + st, s + u),
g4 : (t, x, u) 7−→ (est, esx, u,

g5 : (t, x, u) 7−→ (est, x, e−su),

g6 : (t, x, u) 7−→
(
t + sx, x,

u

1 + su

)
,

g7 : (t, x, u) 7−→
( t

1− st
,

x

1− st
, u + s(x− tu)

)
,

g8 : (t, x, u) 7−→
( t

1− sx
,

x

1− sx
,

u

1− s(x− tu)

)
.

(35)
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Consequently,

Theorem 5. If u = f(x, t) is a solution of (3), so are the functions

g1(s) · f(x, t) = f(x, s + t),
g2(s) · f(x, t) = f(x + s, t),
g3(s) · f(x, t) = f(x + st, t)− s,

g4(s) · f(x, t) = f(esx, est),
g5(s) · f(x, t) = es f(x, est), (36)

g6(s) · f(x, t) =
f(x, t + sx)

1− s f(x, t + sx)
,

g7(s) · f(x, t) =
1

1− s t

(
f
( x

1− st
,

t

1− st

)
− s x

)
,

g8(s) · f(x, t) =
(
1− s x

)
f
( x

1− sx
,

t

1− sx

)
÷

(
1− s t f

( x

1− sx
,

t

1− sx

))
.

If we let u(x, t) = 1 be a constant solution of (3), we conclude that the trivial
functions gi(s) · 1 = 1, for i = 1, 2, 3, 4, g5(s) · 1 = es, and g6(s) · 1 = 1/(1− s) and
a nontrivial solution for (3):

g7(s) · 1 = g8(s) · 1 =
s x− 1
s t− 1

, (37)

Now, by applying g1 and g2 on (37), we conclude the solution

u(x, t) =
ax + b

at + c
, (38)

where a, b and c are arbitrary constants, with a2 + c2 6= 0. By using the other gk’s
we can not find any new nontrivial solution for (3).

6. Invariant Solutions of (3)

The first advantage of symmetry group methods is to construct new solutions from
known solutions. The second is when a nonlinear system of differential equations
admits infinite symmetries, so it is possible to transform it to a linear system.
Neither the first advantage nor the second will be investigated here, but symmetry
group method will be applied to the (3) to be connected directly to some order
differential equations. To do this, a particular linear combinations of infinitesimals
are considered and their corresponding invariants are determined.

The (3) is expressed in the coordinates (x, t, u), so to reduce this equation is
to search for its form in specific coordinates. Those coordinates will be constructed
by searching for independent invariants (y, v) corresponding to the infinitesimal
generator. So using the chain rule, the expression of the equation in the new
coordinate allows us to the reduced equation.

Now, we find four nontrivial solution of (3).
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1. First, consider v3 = t ∂x + ∂u. To determine independent invariants I, we need
to solve the first partial differential equations vi(I)=0, that is(

t ∂x + x∂x

)
I = t

∂I

∂x
+ x

∂I

∂x
+ 0

∂I

∂u
, (39)

which is a homogeneous first order PDE. Thus, we solve the associated character-
istic ordinary differential equation

dt

t
=

dx

x
=

du

0
. (40)

Hence, we obtain two functionally independent invariants y = x/t and v = u.
If we treat v as a function of y, we can compute formulae for the derivatives

of u with respect to x and t in terms of y, v and the derivatives of v with respect
to y, along with a single parametric variable, which we designate to be t, so that
x will be the corresponding principle variable. We find, using the chain rule, that
if u = v = u(y) = u(x/t), then

ut =
∂u

∂t
=

∂v

∂t
=

∂v

∂y

∂y

∂t
= − x

t2
vy = −1

t
y vy,

ux =
∂u

∂x
=

∂v

∂x
=

∂v

∂y

∂y

∂x
=

1
t

vy. (41)

Substituting for ut and ux their expressions in the equation (3), we obtain the
order ordinary differential equation

0 = ut + uux =
1
t

vy

(
− y + v

)
. (42)

The solutions of this equation are y = x/t and v = u. Consequently, we obtain
that

u(x, t) = cte, u(x, t) =
x

t
, (43)

are v4 invariant solutions of equation (3); These solutions belong to set (38).

2. The invariants of v1 + v3 are y = t2 + 2x and v = u + t. The reduced equa-
tion is 2v(y) v′(y) + 1 = 0; that implies v(y) = ±

√
y + a. Therefore, u(x, t) =

±
√

t2 + 2x + a− t is another solution of the equation (3). By applying the one pa-
rameter groups gi on this solution, we conclude a set of three parameter solutions
for equation (3):

u(x, t) = ±
√

a2t2 + 2ax + bt + c− at− b

2a
. (44)
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3. The invariants of v4 + v5 are y = x/
√

t and v = u
√

t. The reduced equation is

v′(y) (y − 2 v(y)) + v(y) = 0; that implies v(y) =
1
2t

(
x ±

√
x2 − a2t

)
. Therefore,

u(x, t) = ±
√

t2 + 2x + a − t is another solution of the equation (3). By applying
the one parameter groups gi on this solution, we conclude a set of three parameter
solutions for equation (3):

u(x, t) =
(2bt− a)x + a

√
x2 + t(bt− a)

2t(bt− a)
, (45)

where a, and b are arbitrary constants.
4. The invariants of v8 are y = x/t and v = t(x− tu)/(xu). The reduced equation
is y v′(y) v(y) + v2(y) = 0; that implies v(y) = a/y. Therefore

u(x, t) = −1
t
LW

(
− tea−x

)
(46)

is another solution of (3), where LW is the Lambert W-function; i.e. a function de-
fined by function-equation f(x) . ef(x) = x. By applying the one parameter groups
gi on this solution, we conclude a set of three parameter solutions for (3):

u(x, t) =
1

ct + d
LW((ct + d) ea+bt+cx)− b

c
, (47)

where a, b, c, and d are arbitrary constants.

7. Lie Group Analysis of Equation (4)

By Theorem 2, every projectable infinitesimal generator of one parameter Lie
group of symmetries of (4) has the form v =

∑8
i=1 aivi, where a1, . . . , a8 are

arbitrary constants and

v1 = ∂x, v2 = ∂t,

v3 = t ∂x +
1
2
(1 + u)2 ∂u, v4 = t ∂t + x∂x,

v5 = t ∂t +
1
2
(1− u2) ∂u, v6 = x∂t + (1− u)2 ∂u,

v7 = t2 ∂t + xt ∂x +
1
2
(u + 1)(x.u + t.u + x− t) ∂u,

v8 = xt ∂t + x2 ∂x +
1
2
(u− 1)(x.u + t.u + x− t ∂u.

(48)
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The one parameter groups gk(s) generated by vk for k = 1, . . . , 8 are:

g1 : (x, t, u) 7−→ (x + s, t, u),
g2 : (x, t, u) 7−→ (x, t + s, u),

g3 : (x, t, u) 7−→
(
x + ts, t,−s + (s− 2).u

2 + s + s.u

)
,

g4 : (x, t, u) 7−→ (esx, est, u),

g5 : (x, t, u) 7−→
(
x, est, tanh

(1
2

s +
1
2

ln
(1 + u

1− u

)))
,

g6 : (x, t, u) 7−→
(
x, t + sx,

s + (2− s).u
2 + s− s.u

)
,

g7 : (x, t, u) 7−→
( x

1− st
,

t

1− st
,

2(u + 1)
2 + s(x− t) + s(t + x).u

− 1
)
,

g8 : (x, t, u) 7−→
( x

1− sx
, 1 +

2(u− 1)
s(x− t) + s(t + x).u− 2

)
.

(49)

Consequently,

Theorem 6. If u = f(x, t) is a solution of (4), so are the functions

g1(s) · f(x, t) = f(x + s, t),
g2(s) · f(x, t) = f(x, t + s),

g3(s) · f(x, t) =
s + (s + 2).f(x + ts, t)
2− s− s.f(x + ts, t)

,

g4(s) · f(x, t) = f(esx, est),

g5(s) · f(x, t) = tanh
(
− 1

2
s +

1
2

ln
(1 + f(x, est)

1− f(x, est)

))
, (50)

g6(s) · f(x, t) =
s + (2− s).f(x, t + sx)
2 + s− s.f(x, t + sx)

,

g7(s) · f(x, t) =
2(f

(
x

1−st ,
t

1−st

)
+ 1)

2− s(x− t)− s(t + x).f
(

x
1−st ,

t
1−st

) − 1,

g8(s) · f(x, t) = 1−
2(f

(
x

1−sx , t
1−sx

)
− 1)

s(x− t) + s(t + x).f
(

x
1−sx , t

1−sx

)
+ 2

.

If we let u(x, t) = 1 be a constant solution of (4), we conclude that the trivial
functions gi(s) · 1 = 1, for i = 1, . . . , 8, a nontrivial solution for (4):

u(x, t) = 1− 2x

x + t + c
, (51)

where a is an arbitrary constant.

Now using the differential invariants of v3 − v2 for a nontrivial solution of
(4). Its differential invariants are y = x + t2/2 and v = (2 − tu + t)/(u + 1). The
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reduced equation is v′(y).(v(y) + 1) = 1. Therefore,

u(x, t) =
t + 1±

√
1 + 2x + t2 + 2a

1∓
√

1 + 2x + t2 + 2a
, (52)

is a nontrivial solution of the equation (4).
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