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Summary. — A preliminary group classification of the class 2D nonlinear heat
equations ut = f(x, y, u, ux, uy)(uxx+uyy), where f is the arbitrary smooth function
of the variables x, y, u, ux and uy is given. Furthermore, we have proved that an
optimal system of one-dimensional Lie subalgebras of this equation is generated by
〈Z1, . . . , Z12〉 and we obtain Zis in Theorem 4.1. Also we take their optimal system’s
projections on the space (x, y, u, ux, uy, f). The paper is one of the few applications
of an algebraic approach to the problem of group classification using Lie method
that is called the method of preliminary group classification.

PACS 02.20.Sv – Lie algebras of Lie groups.
PACS 02.30.Jr – Partial differential equations.

1. – Introduction

It is well known that the symmetry group method plays an important role in the
analysis of differential equations. The history of group classification methods goes back
to Sophus Lie. The first paper on this subject is [1], where Lie proves that a linear two-
dimensional second-order PDE may admit at most a three-parameter invariance group
(apart from the trivial infinite parameter symmetry group, which is due to linearity).
He computed the maximal invariance group of the one-dimensional heat conductivity
equation and utilized this symmetry to construct its explicit solutions. The theory of
Lie systems [2, 3] deals with non-autonomous systems of first-order ordinary differential
equations [4] and then for partial differential equations [5] such that all their solutions
can be written in terms of generic sets of particular solutions and some constants, by
means of a time-independent function. Such functions are called superposition rules and
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the systems admitting this mathematical property are called Lie systems. Lie succeeded
in characterizing systems admitting a superposition rule. Saying it the modern way,
he performed symmetry reduction of the heat equation. Nowadays symmetry reduc-
tion is one of the most powerful tools for solving nonlinear partial differential equations
(PDEs). Recently, there have been several generalizations of the classical Lie group
method for symmetry reductions. Ovsiannikov [6] developed the method of partially
invariant solutions. His approach is based on the concept of an equivalence group, which
is a Lie transformation group acting in the extended space of independent variables,
functions and their derivatives, and preserving the class of partial differential equations
under study. In [7], symmetry reduction for the some equation is applied using a loop
algebra.

In an attempt to study nonlinear effects Saied and Hussain [8] gave some new simi-
larity solutions of the (1+1)-nonlinear heat equation. Later Clarkson and Mansfield [9]
studied classical and nonclassical symmetries of the (1+1)-heat equation and gave new
reductions for the linear heat equation and a catalogue of closed-form solutions for a
special choice of the function f(x, y, u, ux, uy) that appears in their model. In higher
dimensions Servo [10] gave some conditional symmetries for a nonlinear heat equation
while Goard et al. [11] studied the nonlinear heat equation in the degenerate case. Non-
linear heat equations in one or higher dimensions are also studied in literature by using
both symmetry as well as other methods [12,13].

There are a number of papers to study (1+1)-nonlinear heat equations from the
point of view of Lie symmetries method. In the paper [14], Basarab-Horwath et al.
solve completely the problem of the group classification of nonlinear heat-conductivity
equations of the form

(1) ut = F (t, x, u, ux)uxx + G(t, x, u, ux).

There are some papers in which group classification of particular equations of the form (1)
is presented in table I. The present paper solves the problem of the preliminarily group
classification of two-dimensional nonlinear heat equations of the form

(2) ut = f(x, y, u, ux, uy)(uxx + uyy).

In a particular case in eq. (2), for f = f(u), the (2+1)-dimensional nonlinear heat
equation ut = f(u)(uxx + uyy) is investigated by using Lie symmetry method in [15].

2. – Symmetry methods

Let a partial differential equation contain p independent variables and q dependent
variables. The one-parameter Lie group of transformations

(3) xi �−→ xi + εξi(x, u) + O(ε2); uα �−→ uα + εϕα(x, u) + O(ε2),

where i = 1, . . . , p and α = 1, . . . , q. The action of the Lie group can be recovered from
that of its associated infinitesimal generators. We consider the general vector field

(4) X =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

ϕα(x, u)
∂

∂uα
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Table I. – Some papers in which group classification of particular equations of the form (1) has
been carried out.

Authors Functions of F and G Reference

Ovsjannikov (1959) F = F (u), G = dF
du

u2
x [16]

Akhatov et al. (1987) F = F (ux), G = 0 [17]

Dorodnitsyn (1982) F = F (u), G = dF
du

u2
x + g(u) [18]

Oron and Rosenau (1986)

Edwards (1994) F = F (u), G = dF
du

u2
x + f(u)ux [19, 20]

Gandarias (1996) F = un, G = dF
du

u2
x + g(x)umux + f(x)us [21]

Cherniha and Serov (1998) F = F (u), G = dF
du

u2
x + f(u)ux + g(u) [22]

Zhdanov and Lahno (1999) F = 1, G = G(t, x, u, ux) [23]

on the space of independent and dependent variables. Therefore, the characteristic of
the vector field X given by (4) is the function

(5) Qα(x, u(1)) = ϕα(x, u) −
p∑

i=1

ξi(x, u)
∂uα

∂xi
, α = 1, . . . , q.

Theorem 2.1. Let X be a vector field given by (4), and let Q = (Q1, . . . , Qq) be its
characteristic, as in (5). The n-th prolongation of X is given explicitly by

(6) X(n) =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

∑
J

ϕα
J (x, u(n))

∂

∂uα
J

,

with coefficients

(7) ϕα
J,i = Diϕ

α
J −

p∑
j=1

Diξ
juα

J,j .

Here, J = (j1, . . . , jk), with 1 ≤ k ≤ p is a multi-index, and Di represents a total deriva-
tive and subscripts of u are the derivatives with respect to the respective coordinates [24].

The symmetry generator associated with (4) is given by

(8) X = ξ1 ∂

∂x
+ ξ2 ∂

∂y
+ ξ3 ∂

∂t
+ ϕ

∂

∂u
,
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where ξ1, ξ2, ξ3, ϕ are real functions with respect to x, y, t, u variables. The second
prolongation of X is denoted by the vector field

X(2) = X + ϕx ∂

∂ux
+ ϕy ∂

∂uy
+ ϕt ∂

∂ut
+ ϕxx ∂

∂uxx
+ ϕxy ∂

∂uxy
(9)

+ϕxt ∂

∂uxt
+ ϕyy ∂

∂uyy
+ ϕyt ∂

∂uyt
+ ϕtt ∂

∂utt
,

its coefficients are obtained with the following formulas with coefficients

ϕι = DιQ + ξ1uxι + ξ2uyι + ξ3utι,(10)

ϕιj = Dι(DjQ) + ξ1uxιj + ξ2uyιj + ξ3utιj,(11)

where Q = ϕ − ξ1ux − ξ2uy − ξ3ut is the characteristic of the vector field X and the
operators Dι, Dj denote the total derivatives with respect to ι and j where ι, j ∈ {x, y, t}.

Theorem 2.2. A connected group of transformations G is a symmetry group of a differ-
ential equation Δ = 0 if and only if the classical infinitesimal symmetry condition

(12) X(n)(Δ) = 0 whenever Δ = 0,

holds for every infinitesimal generator X ∈ g of G [24].

Therefore we have X(2)[ut − f(x, y, u, ux, uy)(uxx + uyy)]|(2) = 0 whenever ut −
f(x, y, u, ux, uy)(uxx + uyy) = 0. We obtain the following determining function:

(13) ϕt − (fxξ1 + fyξ2 + fuϕ + fux
ϕx + fuy

ϕy)(uxx + uyy) − f(ϕxx + ϕyy) = 0.

In the case of arbitrary f it follows

(14) ξ1 = ξ2 = ϕ = 0, ξ3 = C.

Therefore, for arbitrary f(x, y, u, ux, uy) eq. (2) admits the one-dimensional Lie algebra
g1, with the basis

(15) X1 =
∂

∂t
.

g1 is called the principle Lie algebra for eq. (2). So, the remaining part of the group
classification is to specify the coefficient f such that eq. (2) admits an extension of
the principal algebra g1. Usually, the group classification is obtained by inspecting
the determining equation. But in our case the complete solution of the determining
eq. (13) is a wasteful venture. Therefore, we do not solve the determining equation but,
instead we obtain a partial group classification of eq. (2) via the so-called method of
preliminary group classification. This method was suggested in [6] and applied when
an equivalence group is generated by a finite-dimensional Lie algebra gE . The essential
part of the method is the classification of all nonsimilar subalgebras of gE . Actually, the
application of the method is simple and effective when the classification is based on the
finite-dimensional equivalence algebra gE .
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3. – Equivalence transformations

An equivalence transformation is a nondegenerate change of the variables t, x, y,
u taking any equation of the form (2) into an equation of the same form, generally
speaking, with different f(x, y, u, ux, uy). The set of all equivalence transformations
forms an equivalence group E . We shall find a continuous subgroup EC of it making use
of the infinitesimal method.

We consider an operator of the group EC in the form

Y = ξ1(x, y, t, u)
∂

∂x
+ ξ2(x, y, t, u)

∂

∂y
+ ξ3(x, y, t, u)

∂

∂t
+ ϕ(x, y, t, u)

∂

∂u
(16)

+μ(x, y, t, u, ux, uy, ut, f)
∂

∂f
,

from the invariance conditions of eq. (2) written as the system

ut − f(x, y, u, ux, uy)(uxx + uyy) = 0,(17)

ft = fut
= 0,(18)

where u and f are considered as differential variables: u on the space (x, y, t) and f on
the extended space (x, y, t, u, ux, uy).

The invariance conditions of the system (17) and (18) are

Y (2)[ut − f(x, y, u, ux, uy)(uxx + uyy)] = 0,(19)

Y (2)[ft] = Y (2)[fut
] = 0,(20)

where Y (2) is the 2th prolongation of the operator Y

Y (2) = Y + ϕx ∂

∂ux
+ ϕy ∂

∂uy
+ ϕt ∂

∂ut
+ ϕxx ∂

∂uxx
+ ϕxy ∂

∂uxy
+ ϕxt ∂

∂uxt
(21)

+ϕyy ∂

∂uyy
+ ϕyt ∂

∂uyt
+ ϕtt ∂

∂utt
+ μt ∂

∂ft
+ μut

∂

∂fut

.

The coefficients ϕx, ϕy, ϕt, ϕxx, ϕxy, ϕxt, ϕyy, ϕyt, ϕtt are given in (10) and (11).
The other coefficients of (21) are obtained by applying the prolongation procedure to
differential variables f with independent variables (x, y, t, u, ux, uy, ut). We have

μt = D̃t(μ) − fxD̃t(ξ1) − fyD̃t(ξ2) − fuD̃t(ϕ) − fux
D̃t(ϕx) − fuy

D̃t(ϕy),

μut = D̃ut
(μ) − fxD̃ut

(ξ1) − fyD̃ut
(ξ2) − fuD̃ut

(ϕ) − fux
D̃ut

(ϕx) − fuy
D̃ut

(ϕy),

where

(22) D̃t =
∂

∂t
, D̃ut

=
∂

∂ut
.
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So, we have the following prolongation formulas:

μt = μt − fxξ1
t − fyξ2

t − fuϕt − fux
(ϕx)t − fuy

(ϕy)t,(23)

μut = μut
− fux

(ϕx)ut
− fuy

(ϕy)ut
.(24)

By the invariance conditions (19) and (20) give rise to

(25) μt = μut = 0,

that holds for every f . Substituting (25) into (23) and (24), we obtain

μt = μut
= 0,(26)

ξ1
t = ξ2

t = ϕt = 0,

(ϕx)t = (ϕx)ut
= (ϕy)t = (ϕy)ut

= 0.

Moreover with substituting (21) into (19) we have

(27) ϕt − f(x, y, u, ux, uy)(ϕxx + ϕyy) − μ(uxx + uyy) = 0.

We are left with a polynomial equation involving the various derivatives of u(x, y, t)
whose coefficients are certain derivatives of ξ1, ξ2, ξ3 and ϕ. Since ξ1, ξ2, ξ3, ϕ only
depend on x, y, t, u we can equate the individual coefficients to zero, leading to the
complete set of the determining equations:

ξ1 = ξ1(x, y),

ξ2 = ξ2(y),

ξ3 = ξ3(t),

ϕu = ξ1
x = ξ2

y ,

ϕuu = ϕxu = ϕyu = 0,

μ = (ξ1
x − ξ3

t )f.

So, we find that

ξ1 = c1x + c2y + c3,

ξ2 = c1y + c4,

ξ3 = a(t),

ϕ = c1u + β(x, y),

μ = (c1 − a′(t))f,

with constants c1, c2, c3 and c4, also we have βxx = −βyy.
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The class of eq. (2) has an infinite continuous group of equivalence transformations
generated by the following infinitesimal operators:

Y = (c1x + c2y + c3)
∂

∂x
+ (c1y + c4)

∂

∂y
+ a(t)

∂

∂t
+ (c1u + β(x, y))

∂

∂u
(28)

+(c1 − a′(t))f
∂

∂f
.

Therefore the symmetry algebra of eq. (2) is spanned by the vector fields

Y1 = x
∂

∂x
+ y

∂

∂y
+ u

∂

∂u
+ f

∂

∂f
, Y2 = y

∂

∂x
, Y3 =

∂

∂x
,(29)

Y4 =
∂

∂y
, Y5 = a(t)

∂

∂t
− a′(t)f

∂

∂f
, Yβ = β(x, y)

∂

∂u
.

Moreover, in the group of equivalence transformations there are included also discrete
transformations, i.e. the reflections

(30) t −→ −t, x −→ −x, y −→ −y, u −→ −u, f −→ −f.

4. – Preliminary group classification

It is possible to observe in many applications of group analysis that most of the
extensions of the principal Lie algebra admitted by the equation under consideration are
taken from the equivalence algebra gE , these extensions are called E-extensions of the
principal Lie algebra. The classification of all nonequivalent equations with respect to a
given equivalence group GE , admitting E-extensions of the principal Lie algebra is called
a preliminary group classification. Note that GE is not necessarily the largest equivalence
group but it can be any subgroup of the group of all equivalence transformations.

Therefore, we can take any finite-dimensional subalgebra (desirable as large as possi-
ble) of an infinite-dimensional algebra with basis (29) and use it for a preliminary group
classification. We select the subalgebra g6 spanned on the following operators:

Y1 = x
∂

∂x
+ y

∂

∂y
+ u

∂

∂u
+ f

∂

∂f
, Y2 = y

∂

∂x
, Y3 =

∂

∂x
,(31)

Y4 =
∂

∂y
, Y5 =

∂

∂t
, Y6 =

∂

∂u
.

The communication relations of (31) are shown in table II. For each s-parameter sub-
group there corresponds a family of group-invariant solutions. Generally, it is quite
impossible to determine all possible group-invariant solutions of a PDE. For minimizing
this search, we construct the optimal system of solutions. It is well known that the
problem of the construction of the optimal system of solutions is equivalent to that of
the construction of the optimal system of subalgebras [6,25]. Here, we want to construct
the optimal system of subalgebras of g6.

Let G be a Lie group with the corresponding Lie algebra g. There is an inner auto-
morphism Ta �−→ TTaT−1 of the group G for each T ∈ G. Every automorphism of the
group G induces an automorphism of g. The set of all these automorphism is a Lie group
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Table II. – Commutation relations satisfied by infinitesimal generators in (33).

[ , ] Y1 Y2 Y3 Y4 Y5 Y6

Y1 0 0 −Y3 −Y4 −Y5 −Y6

Y2 0 0 0 −Y3 0 0

Y3 Y3 0 0 0 0 0

Y4 Y4 Y3 0 0 0 0

Y5 Y5 0 0 0 0 0

Y6 Y6 0 0 0 0 0

called the adjoint group GA. The corresponding Lie algebra of the Lie group GA is the
adjoint algebra of g, defined as follows.

Let us give two infinitesimal generators X,Y ∈ g. The linear mapping AdX : Y −→
[X,Y ] is an automorphism of g, called the inner derivation of g. The set of all in-
ner derivations adX(Y ) where X,Y ∈ g, together with the Lie bracket [AdX,AdY ] =
Ad[X,Y ] is a Lie algebra gA called the adjoint algebra of g. Clearly gA is the Lie algebra
of GA. Two subalgebras in g are conjugate if there is a transformation of GA which takes
one subalgebra into the other. The collection of pairwise non-conjugate s-dimensional
subalgebras is the optimal system of subalgebras of order s. The construction of the one-
dimensional optimal system of subalgebras can be carried out by using a global matrix of
the adjoint transformations as suggested by Ovsiannikov [6]. The latter problem tends
to determine a list (that is called an optimal system) of conjugacy inequivalent subalge-
bras with the property that any other subalgebra is equivalent to a unique member of
the list under some element of the adjoint representation, i.e. h Ad(g) h for some g of a
considered Lie group.

The adjoint action is given by the Lie series

(32) Ad(exp[s Yi])Yj = Yj − s [Yi, Yj ] +
s2

2
[Yi, [Yi, Yj ]] − · · · ,

where s is a parameter and i, j = 1, · · · , 6. The adjoint representations of g6 are listed
in table III, it consists of the separate adjoint actions of each element of g6 on all other
elements.

Table III. – Adjoint relations satisfied by infinitesimal generators in (33).

[ , ] Y1 Y2 Y3 Y4 Y5 Y6

Y1 Y1 Y2 esY3 esY4 esY5 esY6

Y2 Y1 Y2 Y3 Y4 + sY3 Y5 Y6

Y3 Y1 − sY3 Y2 Y3 Y4 Y5 Y6

Y4 Y1 − sY4 Y2 − sY3 Y3 Y4 Y5 Y6

Y5 Y1 − sY5 Y2 Y3 Y4 Y5 Y6

Y6 Y1 − sY6 Y2 Y3 Y4 Y5 Y6
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Theorem 4.1. The optimal system of one-dimensional Lie subalgebras of eq. (2) is pro-
vided by those generated by

1) Y 1 = Y1 = x∂x + y∂y + u∂u + f∂f ,

2) Y 2 = Y2 = y∂x,

3) Y 3 = −Y4 = −∂y,

4) Y 4 = Y1 + Y5 = x∂x + y∂y + ∂t + u∂u + f∂f ,

5) Y 5 = Y1 − Y2 = (x − y)∂x + y∂y + u∂u + f∂f ,

6) Y 6 = Y2 − Y4 = y∂x − ∂y,

7) Y 7 = −Y4 + Y6 = −∂y + ∂u,

8) Y 8 = −Y4 − Y6 = −∂y − ∂u,

9) Y 9 = Y2 + Y5 = y∂x + ∂t,

10) Y 10 = Y2 − Y5 = y∂x − ∂t,

11) Y 11 = Y2 + Y6 = y∂x + ∂u,

12) Y 12 = Y2 − Y6 = y∂x − ∂u,

13) Y 13 = Y1 + Y2 = (x + y)∂x + y∂y + u∂u + f∂f ,

14) Y 14 = −Y4 + Y5 + Y6 = −∂y + ∂t + ∂u,

15) Y 15 = Y2 − Y4 − Y5 + Y6 = y∂x − ∂y − ∂t + ∂u,

16) Y 16 = Y2 − Y4 + Y6 = y∂x − ∂y + ∂u,

17) Y 17 = Y2 − Y4 + Y5 − Y6 = y∂x − ∂y + ∂t − ∂u,

18) Y 18 = Y2 − Y4 − Y6 = y∂x − ∂y − ∂u,

19) Y 19 = Y1 + Y2 + Y5 = (x + y)∂x + y∂y + ∂t + u∂u + f∂f ,

20) Y 20 = Y2 + Y5 + Y6 = y∂x + ∂t + ∂u,

21) Y 21 = Y2 + Y5 − Y6 = y∂x + ∂t − ∂u,

22) Y 22 = Y2 − Y5 − Y6 = y∂x − ∂t − ∂u,

23) Y 23 = Y2 − Y5 + Y6 = y∂x − ∂t + ∂u,

24) Y 24 = −Y4 − Y5 − Y6 = −∂y − ∂t − ∂u,

25) Y 25 = −Y4 − Y5 + Y6 = −∂y − ∂t + ∂u,

26) Y 26 = −Y4 + Y5 − Y6 = −∂y + ∂t − ∂u,

27) Y 27 = Y2 − Y4 + Y5 + Y6 = y∂x − ∂y + ∂t + ∂u,

28) Y 28 = Y1 + Y2 − Y5 = (x + y)∂x + y∂y − ∂t + u∂u + f∂f ,

29) Y 29 = Y1 − Y2 − Y5 = (x − y)∂x + y∂y − ∂t + u∂u + f∂f ,

30) Y 30 = Y1 − Y2 + Y5 = (x − y)∂x + y∂y + ∂t + u∂u + f∂f ,

31) Y 31 = Y1 − Y5 = x∂x + y∂y − ∂t + u∂u + f∂f

32) Y 32 = Y2 − Y4 − Y5 − Y6 = y∂x − ∂y − ∂t − ∂u.

Proof. Let g6 be the symmetry algebra of eq. (2) with the adjoint representation deter-
mined in table III and

(33) Y = a1Y1 + a2Y2 + a3Y3 + a4Y4 + a5Y5 + a6Y6
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is a nonzero vector field of g6. We will simplify as many of the coefficients ai, i = 1, . . . , 6,
as possible through proper adjoint applications on Y . We follow our aim in the following
easy cases:

Case 1)
At first, assume that a1 �= 0. Scaling Y if necessary, we can assume that a1 = 1 and

so we get

(34) Y = Y1 + a2Y2 + a3Y3 + a4Y4 + a5Y5 + a6Y6.

Using the table of adjoint (table III), if we act on Y with Ad(exp[a3Y3]), the coefficient
of Y3 can be vanished:

(35) Y ′ = Y1 + a2Y2 + a4Y4 + a5Y5 + a6Y6.

Then we apply Ad(exp[a4Y4]) on Y ′ to cancel the coefficient of Y4:

(36) Y ′′ = Y1 + a2Y2 + a5Y5 + a6Y6.

At last, we apply Ad(exp[a6Y6]) on Y ′′ to cancel the coefficient of Y6:

(37) Y ′′′ = Y1 + a2Y2 + a5Y5.

Case 1a)
If a2, a5 �= 0 then we can make the coefficient of Y2 and Y5 either +1 or −1. Thus

any one-dimensional subalgebra generated by Y with a2, a5 �= 0 is equivalent to one
generated by Y1 ± Y2 ± Y5 which introduces parts 19), 28), 29) and 30) of the theorem.

Case 1b)
For a2 = 0, a5 �= 0 we can see that each one-dimensional subalgebra generated by

Y is equivalent to one generated by Y1 ± Y5 which introduces parts 4) and 31) of the
theorem.

Case 1c)
For a2 �= 0, a5 = 0, each one-dimensional subalgebra generated by Y is equivalent to

one generated by Y1 ± Y2 which introduces parts 5) and 13) of the theorem.
Case 1d)
For a2 = 0, a5 = 0, each one-dimensional subalgebra generated by Y is equivalent to

one generated by Y1 which introduces part 1) of the theorem.
Case 2)
The remaining one-dimensional subalgebras are spanned by vector fields of the form

Y with a1 = 0.
Case 2a)
If a4 �= 0 then by scaling Y , we can assume that a4 = −1. Now by the action of

Ad(exp[a3Y3]) on Y , we can cancel the coefficient of Y3:

(38) Y = a2Y2 − Y4 + a5Y5 + a6Y6.

Let a2 �= 0 then by scaling Y , we can assume that a2 = 1, and we have

(39) Y
′
= Y2 − Y4 + a5Y5 + a6Y6.
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Case 2a-1)
Suppose a5 = a6 = 0, then the one-dimensional subalgebra generated by Y is equiv-

alent to one generated by Y2 − Y4 which introduces part 6).
Case 2a-2)
Suppose a5 = 0, a6 �= 0, all of the one-dimensional subalgebra generated by Y is

equivalent to one generated by Y2 − Y4 ± Y6 which introduces parts 16) and 18).
Case 2a-3)
Suppose a5 �= 0, a6 �= 0, all of the one-dimensional subalgebra generated by Y is

equivalent to one generated by Y2 − Y4 ± Y5 ± Y6 which introduces parts 15), 17), 27),
and 32).

Now if a2 = 0, we have

(40) Y
′′

= −Y4 + a5Y5 + a6Y6.

Case 2a-4)
Suppose a5 = a6 = 0, then the one-dimensional subalgebra generated by Y is equiv-

alent to one generated by −Y4 which introduces part 3).
Case 2a-5)
Suppose a5 = 0, a6 �= 0, all of the one-dimensional subalgebra generated by Y is

equivalent to one generated by −Y4 ± Y6 which introduces parts 7) and 8).
Case 2a-6)
Suppose a5 �= 0, a6 �= 0, all of the one-dimensional subalgebra generated by Y is

equivalent to one generated by −Y4 ± Y5 ± Y6 which introduces parts 14), 24), 25) and
26).

Case 2b)
Let a4 = 0 then Y is in the form

(41) Ŷ = a2Y2 + a5Y5 + a6Y6.

Suppose that a2 �= 0 then, if necessary, we can let it equal to 1 and we obtain

(42) Ŷ ′ = Y2 + a5Y5 + a6Y6.

Case 2b-1)
Let a5 = a6 = 0, then Y2 remains and we find 2) section of the theorem.
Case 2b-2)
If a5 �= 0, a6 �= 0, then Ŷ ′ is equal to Y2 ± Y5 ± Y6. Hence this case suggests parts

20), 21), 22) and 23).
Case 2b-3)
If a5 �= 0, a6 = 0, then Ŷ ′ = Y2 ± Y5. Hence this case suggests parts 9) and 10).
Case 2b-4)
If a5 = 0, a6 �= 0, then Y2 ± Y6 is obtained. So, this case suggests part 11) and 12).
There is not any more possible case for studying and the proof is complete.
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The coefficients f of eq. (2) depend on the variables x, y, u, ux, uy. Therefore, we take
their optimal system’s projections on the space (x, y, u, ux, uy, f). We have

1) Z1 = Y 1 = Y 4 = x∂x + y∂y + u∂u + f∂f ,

2) Z2 = Y 2 = Y 9 = Y 10 = y∂x,

3) Z3 = Y 3 = −∂y,

4) Z4 = Y 5 = Y 29 = Y 30 = Y 31 = (x − y)∂x + y∂y + u∂u + f∂f ,

5) Z5 = Y 6 = y∂x − ∂y,

6) Z6 = Y 7 = Y 25 = Y 14 = −∂y + ∂u,

7) Z7 = Y 8 = Y 24 = Y 26 = −∂y − ∂u,

8) Z8 = Y 11 = Y 20 = Y 23 = y∂x + ∂u,

9) Z9 = Y 12 = Y 21 = Y 22 = y∂x − ∂u,

10) Z10 = Y 13 = Y 19 = Y 28 = (x + y)∂x + y∂y + u∂u + f∂f ,

11) Z11 = Y 15 = Y 16 = Y 27 = y∂x − ∂y + ∂u,

12) Z12 = Y 17 = Y 18 = Y 32 = y∂x − ∂y − ∂u,

Proposition 4.2. Let gm := 〈Y1, . . . , Ym〉 be an m-dimensional algebra of infinite-
dimensional algebra g. Denote by Y i(i = 1, . . . , r, 0 < r ≤ m, r ∈ N) an optimal system
of one-dimensional subalgebras of gm and by Zi (i = 1, · · · , t, 0 < t ≤ r, t ∈ N) the
projections of Y i, i.e. Zi = pr(Y i). If equations

(43) f = Φ(x, y, u, ux, uy)

are invariant with respect to the optimal system Zi, then the equation

(44) ut = Φ(x, y, u, ux, uy)(uxx + uyy)

admits the operators Xi = projection of Y i on (t, x, y, u, ux, uy).

Proposition 4.3. Let eq. (44) and the equation

(45) ut = Φ′(x, y, u, ux, uy)(uxx + uyy)

be constructed according to Proposition 4.2 via optimal systems Zi and Zi′, respectively.
If the subalgebras spanned on the optimal systems Zi and Zi′, respectively, are similar
in gm, then eqs. (44) and (45) are equivalent with respect to the equivalence group Gm,
generated by gm.

Now we apply Proposition 4.2 and Proposition 4.3 to the optimal system (19) and
obtain all nonequivalent equation (2) admitting E-extensions of the principal Lie algebra
g, by one dimension, i.e. equations of the form (2) such that they admit, together with
the one basic operators (22) of g, also a second operator X(2). For every case, when
this extension occurs, we indicate the corresponding coefficients f and the additional
operator X(2).

We perform the algorithm passing from operators Zi (i = 1, · · · , 12) to f and X(2)

via the following example.
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Table IV. – The result of the classification.

N Z Invariant λ Function f Additional operator X(2)

1 Z1 u − yα(x
y
) Φ(λ) − yβ(x

y
) x∂x + y∂y + t∂t + u∂u

2 Z2 u Φ(λ) y∂x, y∂x − ∂t, y∂x + ∂t

3 Z3 u Φ(λ) −∂y

4 Z4 u − yγ
`

x−y
y

´

Φ(λ) − yδ
`

x−y
y

´

(x − y)∂x + y∂y + u∂u,

(x − y)∂x + y∂y − ∂t + u∂u,

(x − y)∂x + y∂y + ∂t + u∂u

5 Z5 y + x
y

Φ(λ) y∂x − ∂y

6 Z6 u + y Φ(λ) −∂y + ∂u, −∂y − ∂t + ∂u, −∂y + ∂t + ∂u

7 Z7 u − y Φ(λ) −∂y − ∂u, −∂y − ∂t − ∂u, −∂y + ∂t − ∂u

8 Z8 u − x
y

Φ(λ) y∂x + ∂u, y∂x − ∂t + ∂u, y∂x + ∂t + ∂u

9 Z9 u + x
y

Φ(λ) y∂x − ∂u, y∂x − ∂t − ∂u, y∂x + ∂t − ∂u

10 Z10 u − yζ(x+y
y

) Φ(λ) − yη(x+y
y

) (x + y)∂x + y∂y + u∂u,

(x + y)∂x + y∂y + ∂t + u∂u,

(x + y)∂x + y∂y − ∂t + u∂u

11 Z11 u − y − ω(u − x
y
) Φ(λ) y∂x − ∂y + ∂u,

y∂x − ∂y − ∂t + ∂u,

y∂x − ∂y + ∂t + ∂u

12 Z12 u − y − π(u + x
y
) Φ(λ) y∂x − ∂y − ∂u,

y∂x − ∂y − ∂t − ∂u,

y∂x − ∂y + ∂t − ∂u

Let us consider the vector field Z1 = x∂x + y∂y + u∂u + f∂f . Then the characteristic
equation corresponding to Z1 is

dx

x
=

dy

y
=

du

u
=

df

f
,(46)

and can be taken in the form I1 = u − yα(x
y ); I2 = f − yβ(x

y ), where g, h are arbitrary
smooth functions. From the invariance equations, we can write I2 = Φ(I1), it follows
that f = Φ(λ) + yβ(x

y ), where λ = I1. From Proposition 4.3 applied to the operator Z1

it is obtained the additional operator X(2) is equal to y∂x + ∂y + ∂t + ∂u.
After similar calculations applied to all operators (19) we obtain the results (table IV)

for the preliminary group classification of eq. (2) admitting an extension g3 of the prin-
cipal Lie algebra g1.

5. – Conclusions and discussions

Summarizing the results of our group classification of nonlinear 2D heat equations of
the form (2) we conclude that:

1) In the present paper the preliminary group classification for the class of heat
equation (2) is obtained and the algebraic structure of the symmetry groups for this
equation is investigated.
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2) The classification is obtained by constructing an optimal system with the aid of
Propositions 4.2 and 4.3. We have proved that an optimal system of one-dimensional
Lie subalgebras of eq. (2) is provided by those generated by 〈Z1, . . . , Z12〉 and we obtain
Zis, then we take their optimal system’s projections on the space (x, y, u, ux, uy, f).

3) The result of the work is summarized in table IV. Of course it is also possible to
obtain the corresponding reduced equations for all the cases in the classification reported
in it.
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