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Abstract

Lie symmetry group method is applied to study the wave equation
on hyperbolic space. Using Lie symmetry algebra of the equation, an
optimal system of subalgebras is presented.
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1 Introduction

It is well known that the symmetry group method plays an important role
in the analysis of differential equations. One of useful applications is to
construct new solutions from known ones. To do this, a particular linear
combinations of infinitesimals must be considered and their corresponding
invariants must be determined.

Inspired by Galois’ theory of, Sophus Lie developed an analogous theory
of symmetry for differential equations. Lie’s theory led to an algorithmic
way to find special explicit solutions to differential equations with symmetry.
These special solutions are called group invariant solutions and they consti-
tute practically every known explicit solution to the systems of non-linear
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partial differential equations arising in mathematical physics, differential ge-
ometry and other areas.

These group-invariant solutions are found by solving a reduced system of
differential equations involving fewer independent variables than the origi-
nal system. For example, the solutions to a partial differential equation in
two independent variables which are invariant under a given one-parameter
symmetry group are all found by solving a system of ordinary differential
equations. Today the search for group invariant solutions is still a common
approach to explicitly solving non-linear partial differential equations. [9].

Symmetry and reductions for a lot of equations with the flat background
metric are considered [5, 6]. Also the classifying problem has been completely
expressed for some wave equations on flat spaces [6, 1, 3, 4, 8, 11]. Symmetry
and reductions of wave equation with ds2 = dt2−dx2−sin2(x)dy2 background
metric on the space S2 × R was studied in [2]. In the present paper we find
symmetries of the wave equation on the space R × R × R+ equipped with
the metric of constant negative sectional curvature −1. Such space named as
hyperbolic space. Next we present an optimal system of subalgebras related
to the Lie algebra of symmetries. The wave differential equation is:

t(uxx + uyy + utt) = ut. (1)

For classifying all subalgebras of the symmetry Lie algebra, we classify
subalgebras in to conjugate classes by the adjoint action of the symmetry
group [12]. The wave equation on the hyperbolic space is considered in section
2 and Symmetry algebra of equation (1) has been presented in section 3. In
section 4 we study complete classification of subalgebras for the symmetry
algebra, obtained from section 3.

2 Wave equation on the hyperbolic space

Wave equation on the hyperbolic space is a special type of the equation
∆gu + f(u) = 0,

∆gu =
1√
g

∂

∂xi
(
√

ggij ∂u

∂xj
)

(2)
= gij∇i∇ju = ∇j∇ju = ∇i∇iu

where ∇g is the Laplace-Beltrami operator on an arbitrary (pseudo) Rie-
mannian manifold (Mn, g) and ∇i is the covariant derivative corresponding
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to the Levi-Civita connection, the Einstein summation convention over re-
peated indices is understood and f(u) is a smooth function on the background
manifold [7].

Now if we set the metric ds2 = 1
t2

(dx2 + dy2 + dt2) on the space H3 =
R × R × R+ and write the Laplace-Beltrami equation where f(u) = 0, the
wave equation (1) is obtained on the hyperbolic space.

3 Lie symmetries of the equation

How to find the symmetry Lie algebra of a differential equation is studied in
many books such as [10].

A PDE with p, independent and q, dependent variables has a Lie point
transformations

x̃i = xi + εξi(x, u) + O(ε2), ũα = uα + εφα(x, u) + O(ε2) (3)

where ξi = ∂x̃i

∂ε
|ε=0 for i = 1, ..., p and φα = ∂ũα

∂ε
|ε=0 for α = 1, ..., q The action

of the Lie group can be considered by its associated infinitesimal generator

V =

p∑
i=1

ξi(x, u)
∂

∂xi

+

q∑
α=1

φα(x, u)
∂

∂uα

(4)

on the total space of PDE (the space containing independent and dependent
variables). Furthermore, the characteristic of the above vector field is given
by

Qα(x, u(1)) = φα(x, u)−
p∑

i=1

ξi(x, u)
∂uα

∂xi

(5)

and its n-th prolongation is determined by

V [n] =

p∑
i=1

ξi(x, u)
∂

∂xi

+

q∑
α=1

n∑

]J=j=0

φJ
α(x, u(j))

∂

∂uα
J

(6)

where φJ
α = DJQα+

∑p
i=1 ξiu

α
J,i. (DJ is the total derivative operator described

in [10]).
For specifying the symmetry algebra, we think the algebra generator as

following:

V = ξ1(x, y, t, u)∂x + ξ2(x, y, t, u)∂y + ξ3(x, y, t, u)∂t + ϕ(x, y, t, u)∂u. (7)

3



Because of the differential equation (1) can be considered as a function on the
second jet, we prolong the vector field V to the second order. By affecting
V [2] on the differential equation (1) and vanishing, where u is the solution of
(1), we find the following equations:

∂uξ1 = 0, ∂uξ2 = 0, ∂uξ3 = 0, ∂u2ϕ = 0,

∂yξ1 + ∂xξ2 = 0, ∂tξ2 + ∂yξ3 = 0, ∂xξ3 + ∂tξ1 = 0,

t∂t2ϕ + t∂x2ϕ + t∂y2ϕ− ∂tϕ = 0,

−t∂x2ξ1 + 2 t∂xuϕ− t∂y2ξ1 + ∂tξ1 − t∂t2ξ1 = 0, (8)

−t∂x2ξ2 − t∂t2ξ2 + ∂tξ2 − t∂y2ξ2 + 2 t∂yuϕ = 0,

−t2∂x2ξ3 − t2∂t2ξ3 − t2∂y2ξ3 + ξ3 − t∂tξ3 + 2 t2∂tuϕ = 0,

−2 t∂xξ1 − t2∂y2ξ3 + 2 t2∂tuϕ− ∂t2ξ3 + ξ3 − t2∂x2ξ3 + t∂tξ3 = 0,

−t2∂y2ξ3 + t∂tξ3 − t2∂t2ξ3 + 2 t2∂tuϕ + ξ3 − 2 t∂yξ2 − t2∂x2ξ3 = 0.

After solving the above system of PDEs we have:

ξ1(x, y, t, u) = C3(−t2 + x2 − y2) + (2C1y + C2)x + C4y + C5,

ξ2(x, y, t, u) = C1(−t2 − x2 + y2) + (2C3y − C4)x + C2y + C6, (9)

ξ3(x, y, t, u) = (2C3x + 2C1y + C2)t, ϕ(x, y, t, u) = C7u + f(x, y, t).

Where f(x, y, t) is a function that satisfies equation (1). So the symmetry
algebra generators are:

X1 = xy∂x − 1
2
(t2 − y2 + x2)∂y + yt∂t, X2 = x∂x + y∂y + t∂t,

X3 = xy∂y − 1
2
(t2 − x2 + y2)∂x + xt∂t, X4 = −y∂x + x∂y, (10)

X5 = ∂y, X6 = ∂x, X7 = u∂u, Xf = f∂u.

Table 1: Commutation table of symmetry algebra of the equation (1)

X1 X2 X3 X4 X5 X6 X7

X1 0 −X1 0 −X3 −X2 X4 0
X2 X1 0 X3 0 −X5 −X6 0
X3 0 −X3 0 X1 −X4 −X2 0
X4 X3 0 −X1 0 X6 −X5 0
X5 X2 X5 X4 −X6 0 0 0
X6 −X4 X6 X2 X5 0 0 0
X7 0 0 0 0 0 0 0
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4 Classifying subalgebras of the symmetry al-

gebra

Attending to table 1, we understand that the center of algebra is Z = 〈X7〉
and then L7 = 〈X7〉 ⊕ 〈X1, · · · , X6〉.

Because of the subalgebra 〈X1, · · · , X6〉 is semi-simple, R = 〈X7〉 is the
radical and L6 = 〈X1, · · · , X6〉 is the Levi factor [12]. The subalgebra 〈X7〉
is the center of algebra, so it is enough to specify the subalgebras of L6.

Keep in mind vectors {X1, · · · , X6} as a basis for L6. For an unspecified
vector V = v1X1 + · · · + v6X6 the adjoint map ad(V )〈x〉 = [x, V ] is defined
as follows:

ad(V ) =




v2 −v1 −v4 v3 0 0
v5 0 v6 0 −v1 −v3

v4 −v3 v2 −v1 0 0
−v6 0 v5 0 −v3 v1

0 v5 0 v6 −v2 −v4

0 v6 0 −v5 v4 −v2




(11)

So the Killing form K〈V, W 〉 = tr(ad(V ) ◦ ad(W )) has the form:

K(V, W ) := 4(v2w2 − v1w5 − v4w4 − v3w6 − v5w1 − v6w3), (12)

where W = w1X1 + · · ·+ w6X6; Thus the matrix of Killing form is:

K = 4




0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 −1
0 0 0 −1 0 0
−1 0 0 0 0 0
0 0 −1 0 0 0




(13)

Because of the above matrix is non-degenerate, the subalgebra L6 is semi-
simple.

We classify one dimensional subalgebras of L6 by specifying a list of non-
equivalent subalgebras under the conjugate relation of subalgebras. So any
one dimensional subalgebra is equivalent with some element of the list. It
means h̄ = ad(g)h for some g in the Lie group G.

If V ∈ g be an optional element, the conjugate action related to V , named
MV , is obtained by solving the system ∂tMV = ad(V )◦MV , where MV (0) = I.
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If the action of each base element of the Lie algebra g be specified, we can
obtain the general conjugate action ad(g) as the combination of base elements
actions.

Theorem. One dimensional subalgebras of L7 are:

A1
1 : X3 + aX5 + bX6 + cX7, A2

1 : X1 + aX5 + bX6 + cX7,

A3
1 : X4 + aX2 + bX5 + cX7, A4

1 : X2 + aX7,

A5
1 : X6 + aX7, A6

1 : X5 + aX7,

A8
1 : X7.

Proof: As mentioned above, to specify subalgebras of L7, we find subalgebras
of L6 at first and next we add the vector X7. Now we characterize the
conjugate action related to each base element of the algebra L6. If F s

i :
L6 → L6 be the conjugate map related to ei, (i = 1, 2, · · · , 6), we show the
matrix of F s

i in the base {ei}6
i=1 by M s

i . So we have:

M1(s)=




1 0 0 0 0 0
s 1 0 0 0 0
0 0 1 0 0 0
0 0 s 1 0 0

s2/2 s 0 0 1 0

0 0 −s2/2 −s 0 1


, M2(s)=




1/s 0 0 0 0 0
0 1 0 0 0 0
0 0 1/s 0 0 0
0 0 0 1 0 0
0 0 0 0 s 0
0 0 0 0 0 s


,

M3(s)=




1 0 0 0 0 0
0 1 s 0 0 0
0 0 1 0 0 0
−s 0 0 1 0 0

−s2/2 0 0 s 1 0

0 s s2/2 0 0 1


, M4(s)=




cos s 0 − sin s 0 0 0
0 1 0 0 0 0

sin s 0 cos s 0 0 0
0 0 0 1 0 0
0 0 0 0 cos s − sin s
0 0 0 0 sin s cos s


,

M5(s)=




1 −s 0 0 s2/2 0
0 1 0 0 −s 0

0 0 1 −s 0 −s2/2
0 0 0 1 0 s
0 0 0 0 1 0
0 0 0 0 0 1


, M6(s)=




1 0 0 s −s2/2 0
0 1 0 0 0 −s

0 −s 1 0 0 s2/2
0 0 0 1 −s 0
0 0 0 0 1 0
0 0 0 0 0 1


.

Case 1 If a3 6= 0 by setting s4 = tan−1(a1/a3), s1 = −a4/a3, s6 = −a2/a3,
s2 = 1 and s5 = s6 = 0 coefficients a1, a2 and a4 are vanished. By
scaling if needed, we can suppose a3 = 1 and so after adding vector X7,
X gets the form A1

1.

Case 2 If a3 = 0 and a1 6= 0 by setting s1 = −a2/a1, s2 = 1, s3 = a4/a1,
s5 = 0 and s6 = 0 coefficients a2 and a4 are vanished. By scaling if
needed, we can suppose a1 = 1 and so after adding vector X7, X gets
the form A2

1.

Case 3 If a1 = a3 = 0 and a4 6= 0 by setting s1 = a6/a4, s2 = 1, s3 = s4 =
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s5 = s6 = 0 the coefficient a6 is vanished. By scaling if needed, we can
suppose a4 = 1 and so after adding vector X7, X gets the form A3

1.

Case 4 If a1 = a3 = a4 = 0 and a2 6= 0 by setting s1 = −a5/a2, s2 = 1,
s3 = −a6/a2 and s4 = s5 = s6 = 0 the coefficients a5 and a6 are
vanished. By scaling if needed, we can suppose a2 = 1 and so after
adding vector X7, X gets the form A4

1.

Case 5 If a1 = a3 = a4 = a2 = 0 and a6 6= 0 by setting s1 = 0, s2 = 1,
s3 = 0 and s4 = tan−1(a5/a6) and s5 = s6 = 0 the coefficient a5 is
vanished. By scaling if needed, we can suppose a6 = 1 and so after
adding vector X7, X gets the form A5

1.

Case 6 If a1 = a2 = a3 = a4 = a6 = 0 by scaling if needed, we can suppose
a5 = 1 and so after adding vector X7, X gets the form A6

1.

Because of X7 is an one dimensional subalgebra of L7, independent from L6,
so the case A8

1 must be regarded. ¤

Theorem. Two dimensional subalgebras of L7 are:

A1
2 : 〈X3 + aX5 + bX6 + cX7, X1 − bX5 + aX6〉, (abelian) (a2 + b2 6= 0)

A2
2 : 〈X3 + cX7, aX1 + bX2〉), (non− abelian)

A3
2 : 〈X4 + aX2 + bX5 + cX7, X6 +

(1 + a2

b

)
X2 + aX5〉, (abelian) (b 6= 0)

A4
2 : 〈X4 + aX7, X2〉, (abelian)

A5
2 : 〈X2 + cX7, aX5 + bX6〉, (non− abelian)

A6
2 : 〈X3 + aX5 + bX6, X7〉, (abelian)

A7
2 : 〈X1 + aX5 + bX6, X7〉, (abelian)

A8
2 : 〈X4 + aX2 + bX5, X7〉, (abelian)

A9
2 : 〈X2, X7〉, (abelian)

A10
2 : 〈X6, X7〉, (abelian)

A11
2 : 〈X5, X7〉, (abelian)
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Proof: Like the previous theorem we determine two dimensional subalgebras
of L6 at first. So get an optional vector Y = b1X1 + · · · + b6X6 and a
vector X of one dimensional subalgebras. Suppose h = Span{X, Y } is a two
dimensional subalgebra of L6 and g be the corresponding subalgebra of L7;
so we have:

Case 1 If X = X3 +aX5 + bX6 then because h must be closed under the Lie
bracket, we set [X, Y ] = αX + βY . Now two states may be happened:

a) If a, b 6= 0 or a = 0, b 6= 0 or a 6= 0, b = 0 then we have α = β = 0
and Y = b1(X1 − bX5 + aX6) + b3X. By choosing suitable basis
we can get Y = X1− bX5 + aX6. After adding X7, g forms as A1

2

and the algebra is abelian.

b) If a = b = 0 then we have α = −b2, β = 0 and Y = b1X1 + b2X2 +
b3X3. By choosing suitable basis we can get Y = b1X1 + b2X2.
After adding X7, g forms as A2

2 and the algebra is not abelian.

Case 2 If X = X1 +aX5 + bX6 then because h must be closed under the Lie
bracket, we set [X, Y ] = αX + βY . Now two states may be happened:

a) If a, b 6= 0 or a = 0, b 6= 0 or a 6= 0, b = 0 then we have α = β = 0
and Y = b1X + b3(X3 + bX5 − aX6). By choosing suitable basis
we can get Y = X3 + bX5− aX6. After adding X7, g forms as A1

2

and the algebra is abelian.

b) If a = b = 0 then we have α = −b2, β = 0 and Y = b1X1 + b2X2 +
b3X3. By choosing suitable basis we can get Y = b2X2 + b3X3.
After adding X7, g forms as A2

2 and the algebra is not abelian.

Case 3 If X = X4 +aX2 + bX5 then because h must be closed under the Lie
bracket, we set [X, Y ] = αX + βY . Now two states may be happened:

a) If b 6= 0 then we have α = β = 0 and Y = b4X+b6((1+a2)/b)X2+
aX5 +X6). By choosing suitable basis we can get Y = X6 +((1+
a2)/b)X2 + aX5. After adding X7, g forms as A3

2 and the algebra
is abelian.

b) If b = 0 then we have α = β = 0 and Y = b2X2 + b4X4. By
choosing suitable basis we can get Y = X2 and X = X4. After
adding X7, g forms as A4

2 and the algebra is abelian.
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Case 4 If X = X2 then because h must be closed under the Lie bracket, we
set [X,Y ] = αX + βY . Now three states may be happened:

a) We have α = β = 0 and Y = b2X2 + b4X4. By choosing suitable
basis we can get Y = X4. After adding X7, g forms as A4

2 and the
algebra is abelian.

b) We have α = −b2, β = 1 and Y = b1X1 + b2X2 + b3X3. By
choosing suitable basis we can get Y = b1X1 + b3X3. After adding
X7, g forms as A2

2 and the algebra is not abelian.

c) We have α = b2, β = −1 and Y = b2X2 + b5X5 + b6X6. By
choosing suitable basis we can get Y = b5X5 + b6X6. After adding
X7, g forms as A5

2 and the algebra is not abelian.

Case 5 If X = X6 then because h must be closed under the Lie bracket, we
set [X, Y ] = αX+βY . Now α = b2, β = 0 and Y = b2X2+b5X5+b6X6.
By choosing suitable basis we can get Y = b2X2 + b5X5 and . After
adding X7, g forms as A5

2 and the algebra is not abelian.

Case 6 If X = X5 then because h must be closed under the Lie bracket, we
set [X, Y ] = αX+βY . Now α = b2, β = 0 and Y = b2X2+b5X5+b6X6.
By choosing suitable basis we can get Y = b2X2 + b6X6. After adding
X7, g forms as A5

2 and the algebra is not abelian.

Cases A6
2, · · · ,A11

2 are concluded by adding X7 to each one dimensional sub-
algebras. ¤

Theorem Three dimensional subalgebras of L7 are:

A1
3 : 〈X3, aX1 + bX2, aX4 − bX6 + cX7〉, (a 6= 0, b 6= 0)

A2
3 : 〈X3, X2, X6 + aX7〉,

A3
3 : 〈X3, X1, aX2 + bX4 + cX7〉,

A4
3 : 〈X2, aX5 + bX6, aX1 + bX3 + cX7〉, (a 6= 0, b 6= 0)

A5
3 : 〈X2, X5, X6 + aX7〉,

A6
3 : 〈X2, X5, X1 + aX7〉,

A7
3 : 〈X3 + aX5 + bX6, X1 − bX5 + aX6, X7〉,

A8
3 : 〈X3, aX1 + bX2, X7〉),
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A9
3 : 〈X4 + aX2 + bX5, X6 + ((1 + a2)/b)X2 + aX5, X7〉,

A10
3 : 〈X4, X2, X7〉,

A11
3 : 〈X2, aX5 + bX6, X7〉.

Proof: Like the previous theorem we determine three dimensional subalgebras
of L6 at first. So get an optional vector Z = b1X1 + · · · + b6X6 and vectors
X, Y of two dimensional subalgebras. Suppose h = Span{X,Y, Z} is a three
dimensional subalgebra of L6 and g be the corresponding subalgebra of L7;
so we have:

Case 1 If X = X3 +aX5 + bX6 and Y = X1− bX5 +aX6 (not a=b=0) then
we have:

a) If a 6= 0 and b 6= 0 then Z = b1(X1− bX5 + aX6) + b3(X3 + aX5 +
bX6), so in this case we receive a two dimensional algebra.

b) If a = 0 and b 6= 0 then X = X3 + bX6, Y = X1 − bX5 and
Z = b1(X1− bX5) + b3(X3 + bX6), so in this case we receive a two
dimensional algebra.

c) If a 6= 0 and b = 0 then X = X3 + aX5, Y = X1 + aX6 and
Z = b1(X1 +aX6)+ b3(X3 +aX5), so in this case we receive a two
dimensional algebra.

Case 2 If X = X3 and Y = aX1 + bX2 then we have several states:

a) If a 6= 0 and b 6= 0 then Z = b1(X1 +(b/a)X2)+ b3X3 +aX4− bX6

and by choosing a suitable basis we have Z = aX4 − bX6, so we
have the case A1

3 and other states concluding to two dimensional
algebras.

b) If a = 0 and b 6= 0 then X = X3, Y = X2 and we have two states:

b-1) Z = b2X2 + b3X3 + b6X6 and we can get Z = X6, after adding
X7 this is the case A2

3.

b-2) Z = b1X1 + b2X2 + b3X3 and we can get Z = X1, after adding
X7 this is the case A3

3.

c) If a 6= 0 and b = 0 then X = X3, Y = X1 and Z = b2X2 + b4X4,
so after adding X7 this is the case A3

3.
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Case 3 If X = X4 + aX2 + bX5 and Y = X6 + ((1 + a2)/b)X2 + aX5 then
we have two states:

a) If a 6= 0 then so we have Z = b6(X6 + ((1 + a2)/b)X2 + aX5) +
b4(X4 + aX2 + bX5), so we receive a two dimensional algebra.

b) If a = 0 then X = X4 + bX5, Y = X6 + (1/b)X2 and Z =
b2(X2 + bX6) + b4(X4 + bX5) and we receive a two dimensional
algebra.

Case 4 If X = X4 and Y = X2 then we have Z = b2X2 + b4X4 and so we
receive a two dimensional algebra.

Case 5 If X = X2 and Y = aX5 + bX6 then we have several states:

a) If a 6= 0 and b 6= 0 then we have:

a-1) Z = b2X2+b5(X5+(b/a)X6) and we receive a two dimensional
algebra.

a-2) Z = b1(X1 + (b/a)X3) + b2X2 + b5(X5 + (b/a)X6) and by
choosing a suitable basis we have Z = aX1 + bX3, so after
adding X7 we have the case A4

3.

a-3) Z = b2X2 + b3X3 + b6X6 and we receive a two dimensional
algebra.

b) If a 6= 0 and b = 0 then X = X2 and Y = X5 then we have:

b-1) Z = b2X2 + b5X5 and we receive a two dimensional algebra.

b-2) Z = b2X2+b5X5+b6X6, so by choosing suitable basis Z = X6

and after adding X7 we receive case A5
3.

b-3) Z = b1X1+b2X2+b5X5, so by choosing suitable basis Z = X1

and after adding X7 we receive case A6
3.

c) If a = 0 and b 6= 0 then X = X2 and Y = X6 then we have

c-1) Z = b2X2 + b5X5 + b6X6 so by choosing a suitable basis we
have Z = X5, so we receive case A6

3.

c-2) Z = b2X2 + b3X3 + b6X6 so by choosing a suitable basis we
have Z = X3, so we receive case A2

3.

Cases A7
3, · · · ,A11

3 are concluded by adding X7 to each two dimensional sub-
algebras of L6. ¤
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Theorem Four dimensional subalgebras of L7 are:

A1
4 : 〈X1, X2, X3, X4 + aX7〉,

A2
4 : 〈X2, X4, X5, X6 + aX7〉,

A3
4 : 〈X3, aX1 + bX2, aX4 − bX6, X7〉, (a 6= 0, b 6= 0),

A4
4 : 〈X3, X2, X6, X7〉,

A5
4 : 〈X3, X1, aX2 + bX4, X7〉,

A6
4 : 〈X2, aX5 + bX6, aX1 + bX3, X7〉, (a 6= 0, b 6= 0)

A7
4 : 〈X2, X5, X6, X7〉,

A8
4 : 〈X2, X5, X1, X7〉,

Proof: We determine four dimensional subalgebras of L6 at first. So get an
optional vector W = b1X1 + · · · + b6X6 and vectors X,Y, Z of three dimen-
sional subalgebras. Suppose h = Span{X,Y, Z, W} is a four dimensional
subalgebra of L6 and g be the corresponding subalgebra of L7; so we have:

Case 1. If X = X3, Y = aX1 + bX2 and Z = aX4− bX6 (a 6= 0, b 6= 0) then
we conclude W = b1(X1+(b/a)X2)+b3X3+b1(X4−(b/a)X6)+aX4−bX6

and so W = (b1/a)Y + b3X + (b1/a)(Z + 1). Consequently we have a
three dimensional algebra.

Case 2. If X = X3, Y = X2 and Z = X6 then we have W = b2Y +b3X+b6Z
and so the generated algebra is three dimensional.

Case 3. If X = X3, Y = X1 and Z = aX2+bX4 then we have several states:

a) If a 6= 0 and b 6= 0 then we have:

a-1) W = b1Y +b3X+Z where a = b2 and b = b4. So the generated
algebra is three dimensional.

a-2) W = b1Y +(b2/a)Z +b3X and so we have a three dimensional
algebra.

b) If a = 0 and b 6= 0 then X = X3, Y = X1 and Z = X4, so we
have:

b-1) W = b1Y + b2X + b4Z, so the generated algebra is three
dimensional.
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b-2) W = b1Y + b2X2 + b3X + b4Z and by choosing suitable basis
W = X2 and after adding X7 we receive case A1

4.

c) If b = 0 and a 6= 0 then X = X3, Y = X1 and Z = X2, so we
have:

c-1) W = b1Y + b2Z + b3X, so the generated algebra is three
dimensional.

c-2) W = b1Y + b2Z + b3X + b4X4 and by choosing suitable basis
W = X4 and after adding X7 we receive case A1

4.

Case 4. If X = X2, Y = aX5 + bX6 and Z = aX1 + bX3, (a 6= 0, b 6= 0),
then we conclude W = (b1/a)Z +(b5/a)Y +(1+ b5/a)X. Consequently
we have a three dimensional algebra.

Case 5. If X = X2, Y = X5 and Z = X6 then we have two states:

a) W = b2X +b5Y +b6Z and so we have a three dimensional algebra.

b) W = b2X + b4X4 + b5Y + b6Z and by choosing suitable basis
W = X4 and after adding X7 we receive case A2

4.

Case 6. If X = X2, Y = X5 and Z = X1 then W = b1Z + b2X + b5Y . So
the generated algebra is three dimensional.

Cases A3
4, · · · ,A8

4 are concluded by adding X7 to each three dimensional
subalgebras of L6. ¤

Theorem Five dimensional subalgebras of L7 are:

A1
5 : 〈X1, X2, X3, X4, X7〉, A2

5 : 〈X2, X4, X5, X6, X7〉.

Proof: We determine five dimensional subalgebras of L6 at first. So get an
optional vector T = b1X1 + · · ·+ b6X6 and vectors X,Y, Z, W of four dimen-
sional subalgebras. Suppose h = Span{X, Y, Z, W, T} is a five dimensional
subalgebra of L6 and g be the corresponding subalgebra of L7; So, we have:

Case 1 If X = X1, Y = X2, Z = X3 and W = X4 then we have T =
b1X + b2Y + b3Z + b4W , so the generated algebra is four dimensional.

Case 2 If X = X2, Y = X4, Z = X5 and W = X6 then we have T =
b2X + b4Y + b5Z + b6W , so the generated algebra is four dimensional.
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Thus five dimensional subalgebras of L7 are generated by adding X7 to each
four dimensional subalgebras. So we obtain cases A1

5,A2
5 ¤

Corollary The only six dimensional subalgebra of L7 is L6.

Proof According to the last theorem L6 doesn’t have any five dimensional
subalgebra to be added by X7. So the only six dimensional subalgebra of L7,
is L6 itself! ¤
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