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Preface

Many problems in science and engineering have their mathematical formu-
lation as an operator equation

Tx = y,

where T is a linear or nonlinear operator between certain function spaces. In
practice, such equations are solved approximately using numerical methods,
as their exact solution may not be often possible or may not be worth
looking for due to physical constraints. In such situation, it is desirable
to know how the so-called approximate solution approximates the exact
solution, and what would be the error involved in such procedures.

This book is concerned with the investigation of the above theoretical
issues related to approximately solving linear operator equations. The main
tools used for this purpose are the basic results from functional analysis and
some rudimentary ideas from numerical analysis. However, no in-depth
knowledge on these disciplines is assumed for reading this book.

Although there are many monographs and survey articles on particular
topics under discussion, there exists hardly any book which can be used for
a mathematical curriculum to deal with operator theoretic aspects of both
well-posed and ill-posed equations. This book is an attempt to fill this gap
so as to be used for a second level course for an M.Sc. programme or for a
pre-Ph.D. programme. Such a course will enable students to know how the
important theorems of functional analysis are in use for solving practical
problems that occur in other disciplines.

In the first chapter the concepts of well-posedness and ill-posedness
are formally introduced and a few examples of such problems are listed.
The second chapter equips the reader with the basics of functional ana-
lytic results which have been used throughout the text. The problem of
approximately solving well-posed equations, in particular, the second-kind

vii



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

viii Linear Operator Equations: Approximation and Regularization

equations, is treated in the third chapter. The fourth chapter is concerned
with the problems associated with ill-posed equations and their regulariza-
tion. In the fifth chapter, ill-posed equations with approximately specified
operators have been treated.

Although the book discusses some of the results published in a very
recent past, especially, on topics in ill-posed problems, this book is meant
only as an introductory text dealing with the issues concerning well-
posedness and ill-posedness of linear operator equations. Hence, the topics
covered and the discussions carried out in this text are far from exhaus-
tive. Readers interested in the topics under discussion are advised to look
into some of the excellent books on the subjects. For instance, the book
[5] by Atkinson is a very good reference for second kind operator equa-
tions, whereas the books by Baumeister [8], Louis [39], Engl, Hanke and
Neubauer [17] and Kirsch [34] give fairly good account on ill-posed opera-
tor equations. In fact, there are many journals exclusively devoted to the
subject on operator equations, for example, Integral Equations and Opera-
tor Theory, Journal Integral of Equations, Numerical Functional Analysis
and Optimization, Inverse Problems, Journal of Inverse and Ill-Posed Prob-
lems, etc., and the readers are encouraged to refer to these journals to have
up-to-date status on the topics.

Examples, illustrations, remarks and exercises are interspersed through-
out the text. They, along with the problems at the end of each chapter, are
intended to help the reader in understanding the concepts under discussion.

Now, some words about numberings and certain notations. Lemmas,
propositions, theorems, corollaries, examples and remarks are numbered
consecutively within each category using two digits. To mark the end of a
proof of a Lemma, Proposition, Theorem, or Corollary, we use the symbol
� while for marking the end of a Remark and Example, the symbol ♦ is
used. Bold face is used when a new terminology is defined, and italics are
used to emphasize a terminology or a statement.

Acknowledgments: This book had its origin in the form of Notes on
Linear Operator Equations prepared for my personal use during my second
visit to the Centre for Mathematics and its Applications (CMA), Australian
National University, Canberra, during June–December 1993. My interac-
tion and collaboration with Professors Bob Anderssen and Markus Hegland
during that visit were of immense input for sustaining my interest in the
area of ill-posed problems. Subsequently, the notes grew in size along with
my own contributions to the field and my collaborations with my doctoral
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in laying the ground work to bring out my notes in the form of a book.
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Chapter 1

Introduction

1.1 General Introduction

Abstract model for many problems in science and engineering take the form
of an operator equation

Tx = y, (1.1)

where T : X → Y is a linear or nonlinear operator (between certain func-
tion spaces or Euclidean spaces) such as a differential operator or integral
operator or a matrix. The spaces X and Y are linear spaces endowed with
certain norms on them. The first and foremost question that one raises
about the operator equation (1.1) is whether a solution exists in X for a
given y ∈ Y . Once this question is answered affirmatively, then the next
question is that of the uniqueness of the solution. Third question, which is
very important in view of its application, is whether the solution depends
continuously on the data y; that is, if y is perturbed slightly to, say ỹ, then,
is the corresponding solution x̃ close to x? If all the above three questions
are answered positively, then (according to Hadamard [29]) the problem of
solving the equation (1.1) is well-posed; otherwise it is ill-posed.

We plan to study linear equations, that is, equations of the form (1.1)
with T : X → Y being a linear operator between normed linear spaces
X and Y , and methods for solving them approximately. In the following
chapters, we quote often the case when T is a compact operator or T is of
the form λI −A, where A is a compact operator and λ is a nonzero scalar.
Prototype of a compact operator K that we shall discuss at length is the
Fredholm integral operator defined by

(Kx)(s) =
∫ b

a

k(s, t)x(t)dt, s, t ∈ [a, b],

1
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where x belongs to either C[a, b], the space of continuous functions on [a, b],
or L2[a, b], the space of all square integrable functions on [a, b] with respect
to the Lebesgue measure on [a, b], and k(·, ·) is a nondegenerate kernel.
Thus, examples of equations of the form (1.1) include Fredholm integral
equations of the first kind,∫

Ω

k(s, t)x(t)dt = y(s), s, t ∈ Ω, (1.2)

and Fredholm integral equations of the second kind,

λx(s)−
∫

Ω

k(s, t)x(t)dt = y(s), s, t ∈ Ω. (1.3)

We shall see that equation (1.2) is an ill-posed whereas equation (1.3) is
well-posed whenever λ is not an eigenvalue of K.

Now we shall formally define the well-posedness and ill-posedness of
equation (1.1).

1.2 Well-Posedness and Ill-Posedness

Let X and Y be linear spaces over the scalar field K of real or complex
numbers, and let T : X → Y be a linear operator. For y ∈ Y , consider the
equation (1.1). Clearly, (1.1) has a solution if and only if y ∈ R(T ), where

R(T ) := {Tx : x ∈ X}

is the range space of the operator T . Also, we may observe that (1.1) can
have at most one solution if and only if N(T ) = {0}, where

N(T ) := {x ∈ X : Tx = 0}

is the null space of the operator T .
If the linear spaces X and Y are endowed with norms ‖ · ‖X and ‖ · ‖Y

respectively, then we can talk about continuous dependence of the solution;
i.e., if ỹ ∈ Y is such that ‖y− ỹ‖Y is ‘small’, and if x and x̃ satisfy Tx = y

and T x̃ = ỹ, respectively, then we can enquire whether ‖x − x̃‖X is also
‘small’.

Throughout this book, norms on linear spaces will be denoted by ‖ · ‖
irrespective of which space under consideration, except in certain cases
where it is necessary to specify them explicitly.

Let X and Y be normed linear spaces and T : X → Y be a linear
operator.
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We say that equation (1.1) or the problem of solving the equation (1.1)
is well-posed if

(a) for every y ∈ Y , there exists a unique x ∈ X such that Tx = y, and
(b) for every y ∈ Y and for every ε > 0, there exists δ > 0 with the

following properties: If ỹ ∈ Y with ‖ỹ − y‖ ≤ δ, and if x, x̃ ∈ X are such
that Tx = y and T x̃ = ỹ, then ‖x− x̃‖X ≤ ε.

Condition (a) in the above definition is the assertion of existence and
uniqueness of a solution of (1.1), and (b) asserts the continuous dependence
of the solution on the data y.

If equation (1.1) or the problem of solving (1.1) is not well-posed, then
(1.1) is called an ill-posed equation or an ill-posed problem.

We may observe that equation (1.1) is well-posed if and only if the
operator T is bijective and the inverse operator T−1 : Y → X is continuous.
We shall see later that if X and Y are Banach spaces, i.e., if X and Y are
complete with respect to the metrics induced by their norms, and if T is a
continuous linear operator, then continuity of T−1 is a consequence of the
fact that T is bijective.

It may be interesting to notice that the condition (a) in definition of
well-posedness is equivalent to the following:

(c) There exists δ0 > 0 and y0 ∈ Y such that for every y ∈ Y with
‖y − y0‖Y < δ0, there exists a unique x ∈ X satisfying Tx = y.

The equivalence of (a) and (c) is a consequence of the facts that the
range of T is a subspace, and a subspace can contain an open ball if and
only if it is the whole space.

Exercise 1.1. Prove the last statement.

Next we mention a few examples of well-posed as well as ill-posed equa-
tions which arise in practical situations. Our claims, that a quoted example
is in fact well-posed or ill-posed, can be justified after going through some
of the basics in functional analysis given in Chapter 2.

1.2.1 Examples of well-posed equations

• Love’s equation in electrostatics (Love [40]):

x(s)− 1
π

∫ 1

−1

x(t)
1 + (t− s)2

dt = 1, s ∈ [−1, 1].

• A singular integral equation in the theory of intrinsic viscosity (Polymer
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physics) (Kirkwood and Riseman [33]):

λx(s)−
∫ 1

−1

1
|s− t| 12

x(t)dt = s2, 0 < α < 1, s ∈ [−1, 1].

• Two-dimensional Dirichlet problem from potential theory (Kress [35]):

x(s)−
∫ 2π

0

k(s, t)x(t)dt = −2y(s), s ∈ [0, 2π],

where

k(s, t) = − ab

π[a2 + b2 − (a2 − b2)cos(s+ t)]
, a > 0, b > 0.

1.2.2 Examples of ill-posed equations

• Geological prospecting (Groetsch [26]):

γ

∫ 1

0

1
[1 + (s− t)2]3/2

x(t)dt = y(s), s ∈ [0, 1].

• Backward heat conduction problem (Groetsch [26]):∫ π

0

k(s, t)x(t)dt = y(s), s ∈ [0, π],

where

k(s, t) =
2
π

∞∑
n=1

e−n2
sin(ns) sin(nt).

• Computerized tomography (Abel equation of the first kind) (Engl [15]):∫ R

s

2tx(t)√
t2 − s2

dt = y(s), s ∈ (0, R].

1.3 What Do We Do in This Book?

For well-posed equations, the situation where the data y is known only
approximately, say ỹ in place of y, is taken care. But in examples which
arise in applications, the operator T may also be known only approximately,
or we may approximate it for the purpose of numerical computations. Thus,
what one has is an operator T̃ which is an approximation of T . In such
case, it is necessary to ensure the existence of a unique solution x̃ for the
equation T̃ x̃ = ỹ, and then to guarantee that x − x̃ is ‘small’ whenever
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T − T̃ and y − ỹ are ‘small’. This aspect of the problem has been studied
in Chapter 3 with special emphasis on the second kind operator equation

λx−Ax = y,

where A is a bounded operator on a Banach space X and λ is a nonzero
scalar which is not in the spectrum of A. In the special case of A being a
compact operator, the above requirement on λ is same as that it is not an
eigenvalue of A.

If equation (1.1) has no solution, then the next best thing one can think
of is to look for a unique element with some prescribed properties which
minimizes the residual error ‖Tx− y‖, and then enquire whether the mod-
ified problem is well-posed or not. If it is still ill-posed, then the need of
regularization of the problem arises. In a regularization, the original prob-
lem is replaced by a family of well-posed problems, depending on certain
parameter. Proper choice of the parameters yielding convergence and order
optimal error estimates is crucial aspect of the regularization theory. These
aspects of the problem have been considered in Chapter 4.

In Chapter 5, we use the approximation methods considered in Chapter
3 to study the ill-posed problems when the operator under consideration
is also known only approximately. This chapter includes some of the new
results on integral equations of the first kind which have not appeared so
far in the literature.

Discussion on all the above considerations require a fare amount of
results from Functional Analysis and Operator Theory. The purpose of
Chapter 2 is to introduce some of the results in this regard.
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Chapter 2

Basic Results from Functional
Analysis

In this chapter we recall some of the basic concepts and results from Func-
tional Analysis and Operator Theory. Well-known results are stated with-
out proofs. These concepts and results are available in standard textbooks
on Functional Analysis, for example the recent book [51] by the author.
However, we do give detailed proofs of some of the results which are par-
ticularly interested to us in the due course.

2.1 Spaces and Operators

2.1.1 Spaces

Let X be a linear space (or vector space) over K, the field of real or complex
numbers. Members of X are called vectors and members of K are called
scalars.

A linear space endowed with a norm is called a normed linear space.
Recall that a norm on a linear space X is a non-negative real-valued func-
tion

x 7→ ‖x‖, x ∈ X,

which satisfies the following conditions:

(i) ∀x ∈ X, ‖x‖ = 0 ⇐⇒ x = 0,
(ii) ‖αx‖ = |α|‖x‖ ∀x ∈ X, ∀α ∈ K,
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ X.

It is easily seen that the map

(x, y) 7→ ‖x− y‖, (x, y) ∈ X ×X,

7
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is a metric on X. It also follows from the inequality (iii) above that

‖x− y‖ ≥
∣∣‖x‖ − ‖y‖∣∣ ∀x, y ∈ X,

so that the map x 7→ ‖x‖, x ∈ X, is a uniformly continuous function from
X to K with respect to the above metric on X.

In due course, convergence of sequences in a normed linear space and
continuity of functions between normed linear spaces will be with respect
to the above referred metric induced by the norm on the spaces.

NOTATION: For a convergent sequence (sn) in a subset of a metric space
with lim

n→∞
sn = s, we may simply write ‘sn → 0’ instead of writing ‘sn → 0

as n→∞’.

If a normed linear space is complete with respect to the induced metric,
then it is called a Banach space.

Now, we consider a linear space X with an inner product 〈·, ·〉 on it,
that is, a K-valued map

(x, y) 7→ 〈x, y〉

on X ×X satisfying

(i) 〈x, x〉 ≥ 0 ∀x ∈ X,
(ii) ∀x ∈ X, 〈x, x〉 = 0 ⇐⇒ x = 0,
(iii) 〈αx, y〉 = α〈x, y〉 ∀α ∈ K, ∀x, y ∈ X,
(iv) 〈x+ y, u〉 = 〈x, u〉+ 〈y, u〉 ∀x, y, u ∈ X,
(v) 〈x, y〉 = 〈y, x〉 ∀x, y ∈ X.

Here α denotes the complex conjugate of α.
A linear space together with an inner product on it is called an inner

product space. An important inequality on an inner product space X is
the Schwarz inequality, also known as Cauchy–Schwarz inequality.

Schwarz inequality: For every x and y in an inner product space,

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉. (2.1)

Using the Schwarz inequality, it can be seen that the map

x 7→ ‖x‖ := 〈x, x〉1/2, x ∈ X,

defines a norm on X. If X is complete with respect to the metric induced
by this norm, then it is called a Hilbert space.
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The reader is advised to verify the assertions in the following examples.

Example 2.1. For x = (α1, . . . , αn) in Kn, let

‖x‖1 =
n∑

j=1

|αj | and ‖x‖∞ := max
1≤j≤n

|αj |.

Then, it can be easily seen that ‖ · ‖1 and ‖ · ‖∞ are norms on Kn, and
Kn is a Banach space with respect to these norms. Also, we see that 〈·, ·〉
defined by

〈x, y〉 :=
n∑

j=1

αjβj

for x = (α1, . . . , αn), x = (β1, . . . , βn) in Kn is an inner product on X,
which induces the norm

‖x‖2 =
( n∑

j=1

|αj |2
)1/2

, x = (α1, . . . , αn) ∈ Kn.

With respect to the above inner product, Kn is a Hilbert space. ♦

Note that, the Schwarz inequality (2.1) on Kn with respect to inner
product in the above example takes the form

n∑
j=1

|αjβj | ≤
( n∑

j=1

|αj |2
)1/2( n∑

j=1

|βj |2
)1/2

for x = (α1, . . . , αn), x = (β1, . . . , βn) in Kn, which is a consequence of the
inequality 2ab ≤ a2 + b2 for a, b ∈ R.

A more general form of such inequality is the Hölder’s inequality:

Hölder’s inequality: For x = (α1, . . . , αn), x = (β1, . . . , βn) in Kn and
1 < p <∞,

n∑
j=1

|αjβj | ≤
( n∑

j=1

|αj |p
)1/p( n∑

j=1

|βj |q
)1/q

, (2.2)

where q > 0 is such that p+ q = pq (cf. [51], section 2.1.1).

Example 2.2. Let 1 < p <∞. For x = (α1, . . . , αn) in Kn, let

‖x‖p =
( n∑

j=1

|αj |p
)1/p

.
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Using the Hölder’s inequality (2.2), it can be shown that

‖x‖p =
( n∑

j=1

|αj |p
)1/p

, x = (α1, . . . , αn) ∈ Kn

also defines a norm on Kn for 1 < p < ∞ and Kn is a Banach space with
respect to this norm. For 1 ≤ p ≤ ∞, we shall denote the space Kn with
the norm ‖ · ‖p by `p(n).

More generally, let X be a finite dimensional linear space, and let E =
{u1, . . . , un} be a basis of X. For x ∈ X, let α1(x), . . . , αn(x) be the scalars
such that

x =
n∑

j=1

αj(x)uj .

For 1 ≤ p ≤ ∞, let

‖x‖E,p =


( n∑

j=1

|αj(x)|p
)1/p

if p <∞

max1≤j≤n |αj(x)| if p = ∞.

Then, as in the case of Kn, ‖ · ‖E,p is a norm on X, and X is a Banach
space with respect to this norm. Also, the map

(x, y) 7→ 〈x, y〉 :=
n∑

j=1

αj(x)αj(y), x, y ∈ X,

defines an inner product on X which makes it a Hilbert space. ♦

Example 2.3. (Space `p(N)) Let 1 ≤ p ≤ ∞ and for a sequence x = (αn)
of scalars, let

‖x‖p =


( ∞∑

j=1

|αj |p
)1/p

if p <∞

maxj∈N |αj | if p = ∞.

Let `p(N) or simply `p, be the set of all sequences x = (αn) such that
‖x‖p <∞. It can be easily seen that ‖ · ‖1 and ‖ · ‖∞ are norms on `1 and
`∞, respectively. To see that ‖ · ‖p is norm on `p for 1 < p < ∞, one may
make use of the Hölder’s inequality (2.2) to obtain

∞∑
j=1

|αjβj | ≤
( ∞∑

j=1

|αj |p
)1/p( ∞∑

j=1

|βj |q
)1/q
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for scalar sequences (αn) and (βn), where q > 0 satisfies p+ q = pq. It can
be shown that `p is a Banach space with respect to the norm ‖ · ‖p. Also,
for x = (αn) and y = (βn) in `2, the map

(x, y) 7→ 〈x, y〉 :=
∞∑

j=1

αjβj

defines an inner product on `2 which induces the norm ‖ · ‖2 and makes it
a Hilbert space. ♦

Example 2.4. (Space C[a, b]) Consider the linear space C[a, b] of all K-
valued continuous functions defined on [a, b]. For x ∈ C[a, b] and 1 ≤ p ≤
∞, let

‖x‖p =


(∫ b

a

|x(t)|pdt
)1/p

if p <∞

supa≤t≤b |x(t)| if p = ∞.

It can be easily seen that ‖ · ‖1 and ‖ · ‖∞ are norms on C[a, b]. To see that
‖ · ‖p is also a norm on C[a, b], one may make use of the Hölder’s inequality
(2.2) on C[a, b], namely,∫ b

a

|x(t)y(t)| dt ≤
(∫ b

a

|x(t)|p dt
)1/p(∫ b

a

|x(t)|p dt
)1/q

for x, y ∈ C[a, b]. It can be seen that the metric induced by ‖·‖p is complete
only for p = ∞. Also, the map

(x, y) 7→ 〈x, y〉 :=
∫ b

a

x(t)y(t)dt

defines an inner product on C[a, b]. Since the induced norm ‖ · ‖2 is not
complete, C[a, b] with the above inner product is not a Hilbert space. ♦

Example 2.5. (Space Lp[a, b]) For 1 ≤ p < ∞, the completion of the
space C[a, b] with respect to the norm ‖·‖p is linearly isometric with Lp[a, b],
the space of all Lebesgue measurable functions x on [a, b] such that∫ b

a

|x(t)|pdt <∞.

Here, the integration is with respect to Lebesgue measure, and equality of
elements in Lp[a, b] is defined by

f = g ⇐⇒ f(t) = g(t) for almost all t ∈ [a, b].
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The norm on Lp[a, b] is defined by

‖x‖p =
(∫ b

a

|x(t)|pdt
)1/p

, x ∈ Lp[a, b].

On the space L2[a, b],

〈x, y〉 =
∫ b

a

x(t)y(t)dt, x, y ∈ L2[a, b],

defines an inner product which makes it a Hilbert space.
More generally, let (Ω,A, µ) be a measure space, that is, A is a σ-algebra

of subsets of a set Ω and µ is a measure on (Ω,A). Then, defining

‖x‖p =
(∫

Ω

|x(t)|pdt
)1/p

for measurable functions x on Ω, we have the general form of Hölder’s
inequality as ∫

Ω

|x(t)y(t)| dµ(t) ≤ ‖x‖p‖y‖q (2.3)

for any two measurable functions x, y on Ω. In this case, it is known that

Lp(Ω,A, µ) := {x : x measurable on Ω, ‖x‖p <∞}

is a Banach space with respect to the norm ‖ · ‖p (cf. Rudin [66]). ♦

We remarked in Example 2.1 that a finite dimensional space with norm
‖ · ‖E, p is a Banach space. One may ask whether this is true with respect
to any arbitrary norm. The answer is affirmative as the following theorem
shows (cf. [51], Theorem 2.25).

Theorem 2.1. Every finite dimensional subspace of a normed linear space
is complete.

The above theorem can be proved by first showing that a finite di-
mensional linear space is complete with respect to a particular norm, say
‖ · ‖E,∞ defined as in Example 2.2, and then use the following result (cf.
see [51], Theorem 2.24).

Theorem 2.2. Any two norms on a finite dimensional linear space are
equivalent.



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

Basic Results from Functional Analysis 13

We may recall that two norms, say ‖ · ‖ and ‖ · ‖∗ on a linear space X
are equivalent, if there exist positive numbers a and b such that

a‖x‖ ≤ ‖x‖∗ ≤ b‖x‖ ∀x ∈ X.

CONVENTION: Unless otherwise specified, the norm and inner product
on any linear space will be denoted simply by ‖ · ‖ and 〈·, ·〉 respectively,
and the metric under discussion is the one induced by the corresponding
norm. On K, we always take the standard norm defined by the absolute
value. In the sequel, the closure of a subset S of a normed linear space is
denoted by cl(S) or S.

The notion of orthogonality of vectors is very important in an inner
product space. Elements x, y in an inner product space are said to be
orthogonal if 〈x, y〉 = 0, and in that case we may write x ⊥ y. Associated
with orthogonality, we have the following identity:

Pythagoras theorem: Let X be an inner product space and x, y ∈ X.
Then

‖x+ y‖2 = ‖x‖2 + ‖y‖2 whenever x ⊥ y. (2.4)

For a subset S of X, we write

S⊥ := {x ∈ X : 〈x, u〉 = 0 ∀ u ∈ S}.
It can be seen that S⊥ is a closed subspace of X and S ∩ S⊥ ⊆ {0}. If
S1 and S2 are subsets of an inner product space such that x ⊥ y for every
x ∈ S1 and y ∈ S2, then we write S1 ⊥ S2.

A subset E of X is said to be an orthogonal set if x ⊥ y for every
distinct x, y ∈ E, and it is said to be an orthonormal set if it is orthogonal
and ‖x‖ = 1 for every x ∈ E. It can be seen that every orthogonal set which
does not contain the zero element is linearly independent. In particular,
every orthonormal set is linearly independent. A maximal orthonormal set
is called an orthonormal basis. It can be seen that an orthonormal set
E is an orthonormal basis if and only if E⊥ = {0}, that is, if and only if,
for every x ∈ X, x ⊥ u for every u ∈ E implies x = 0.

A sequence (xn) in X is said to be an orthonormal sequence if the
set {xn : n ∈ N} is an orthonormal set.

The following two theorems are well known ([51], Theorem 4.9 and
Theorem 4.10).

Theorem 2.3. Let X be a Hilbert space and (un) be an orthonormal se-
quence in X. Then the following are equivalent.
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(i) E = {un : n ∈ N} is an orthonormal basis.
(ii) For every x ∈ X, x =

∑∞
n=1〈x, un〉un.

(iii) For every x ∈ X, ‖x‖2 =
∑∞

n=1 |〈x, un〉|2.

Theorem 2.4. A Hilbert space X is separable if and only if every orthonor-
mal basis of X is countable.

The equalities in Theorem 2.3 (ii) and (iii) are called Fourier expan-
sion and Parseval’s formula, respectively.

2.1.2 Bounded operators

Recall that a function T : X → Y between linear spaces X and Y is called
a linear operator if

T (x+ y) = T (x) + T (y) ∀x, y ∈ X,

T (αx) = αT (x) ∀x ∈ X, α ∈ K.

If T : X → Y is a linear operator, then we shall often write Tx instead of
T (x) for x ∈ X. We note that

N(T ) = {x ∈ X : Tx = 0}

is a subspace of X, called the null space of T , and

R(T ) = {Tx : x ∈ X}

is a subspace of Y , called the range of T . It is immediate that a linear
operator T : X → Y is one-to-one or injective if and only if N(T ) = {0},
and it is onto or surjective if and only if R(T ) = Y .

Let T : X → Y be a linear operator between normed linear spaces X
and Y . It can be seen that T is continuous if and only if there exists c > 0
such that

‖Tx‖ ≤ c ‖x‖ ∀x ∈ X,

and in that case

inf{c > 0 : ‖Tx‖ ≤ c ‖x‖ ∀x ∈ X} = sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}.

Moreover, T is continuous if and only if T maps every bounded subsets of
X onto bounded subsets of Y . Therefore, a continuous linear operator is
also called a bounded linear operator or simply a bounded operator.
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We denote the set of all bounded operators from X to Y by B(X,Y ).
If Y = X then we write B(X,Y ) as B(X). If T ∈ B(X), then we say that
T is a bounded operator on X.

It is seen that B(X,Y ) is a linear space with addition and scalar mul-
tiplication are defined pointwise, that is, if T , T1, T2 are in B(X,Y ) and
α ∈ K, then T1 + T2 and αT are defined by

(T1 + T2)(x) = T1x+ T2x, x ∈ X,

(αT )(x) = αTx, x ∈ X.

Also, the map T 7→ ‖T‖ defined by

‖T‖ := sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}, T ∈ B(X,Y ),

is a norm on B(X,Y ). If we want to specify the spaces under consideration
we write ‖T‖ as ‖T‖X→Y . We observe that for T ∈ B(X,Y ),

‖Tx‖ ≤ ‖T‖ ‖x‖, ∀x ∈ X,

and if c > 0 is such that ‖Tx‖ ≤ c‖x‖ for all x ∈ X, then ‖T‖ ≤ c. Hence,
if there exists c ≥ 0 and a nonzero vector x0 ∈ X such that ‖Tx‖ ≤ c‖x‖
for all x ∈ X and ‖Tx0‖ = c‖x0‖, then it follows that ‖T‖ = c0.

If Y is a Banach space, then B(X,Y ) is also a Banach space (cf. [51],
Theorem 3.12). If Y is the scalar field K, then the space B(X,K) is called
the dual of X and it is denoted by X ′. Elements of X ′ are called contin-
uous or bounded linear functionals on X. Usually, elements of X ′ are
denoted by smaller case letters f , g, etc.

Let X, Y and Z be normed linear spaces, and T1 ∈ B(X,Y ) and T2 ∈
B(Y, Z). Then it follows that

T2T1 ∈ B(X,Z) and ‖T2T1‖ ≤ ‖T2‖ ‖T1‖.

Here, the operator T2T1 is defined as the composition of T2 and T1, i.e.,

(T2T1)(x) = T2(T1x), x ∈ X.

From the above observations, it follows that if T ∈ B(X,Y ), then for every
f ∈ Y ′, the map gf : X → K defined by

gf (x) = f(Tx), x ∈ X,

belongs to X ′. Moreover, the map T ′ : Y ′ → X ′ defined by

T ′f = gf , f ∈ Y ′,

belongs to B(Y ′, X ′). The operator T ′ is called the transpose of T . We
see that ‖T ′‖ ≤ ‖T‖.
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Example 2.6. Let (aij) be anm×n matrix of scalars and let T : Kn → Km

be defined by

Tx = (β1, . . . , βm), x := (α1, . . . , αn) ∈ Kn,

where βi :=
∑n

j=1 aijαj for i = 1, . . . ,m. If

a := max
j

m∑
i=1

|aij |, b := max
i

n∑
j=1

|aij |,

then we can see that

‖Tx‖1 ≤ a ‖x‖1, ‖Tx‖∞ ≤ b ‖x‖∞.

In fact, we can find unit vectors u0, v0 in Kn with ‖u0‖1 = 1 = ‖v0‖∞ such
that ‖Tu0‖1 = a ‖u0‖1 and ‖Tv0‖∞ = b ‖v0‖∞ (see Section 3.2 in [51]). ♦

Example 2.7. Let (aij) be an infinite matrix of scalars, that is, aij ∈ K
for (i, j) ∈ N× N. Then, the following can be verified easily:

(i) If a := sup
j∈N

∞∑
i=1

|aij | <∞, then

∞∑
i=1

∞∑
j=1

|aij | |x(j)| ≤ a‖x‖1 ∀x ∈ `1.

(ii) If b := sup
i∈N

∞∑
j=1

|aij | <∞, then

max
i∈N

∞∑
j=1

|aij | |x(j)| ≤ b‖x‖∞ ∀x ∈ `∞.

(iii) If c :=
∞∑

i=1

∞∑
i=1

|aij |2 <∞ or if assumptions in (i) and (ii) hold, then

∞∑
i=1

( ∞∑
j=1

|aij | |x(j)|
)2

≤ min{
√
ab,

√
c}‖x‖22 ∀x ∈ `2.

Hence, for every x ∈ `∞,

(Tx)(i) :=
∞∑

j=1

aijx(j)
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is well-defined for every i ∈ N, and we have the following inequalities:

‖Tx‖1 ≤ a‖x‖1 ∀x ∈ `1,
‖Tx‖∞ ≤ b‖x‖∞ ∀x ∈ `∞,
‖Tx‖2 ≤ min{

√
ab,

√
c}‖x‖2 ∀x ∈ `2.

Clearly, T is a linear operator on `p for p ∈ {1, 2,∞}. We can also identify
vectors u0 ∈ `1 and v0 ∈ `∞ with ‖u0‖1 = 1 = ‖v0‖∞ such that ‖Tu0‖1 =
a ‖u0‖1 and ‖Tv0‖∞ = b ‖v0‖∞. (see Section 3.2 in [51].) ♦

Example 2.8. Let X = C[a, b], the space of all continuous functions on
[a, b] with the supremum-norm, ‖·‖∞. Consider T : X → X and f : X → K
defined by

(Tx)(s) =
∫ s

a

x(t)dt and f(x) =
∫ b

a

x(t)dt ∀x ∈ X.

It is easily seen that T ∈ B(X), f ∈ X ′ and ‖T‖ = 1 = ‖f‖. ♦

Example 2.9. Let k ∈ C([a, b]× [a, b]). For x ∈ L2[a, b], let

(Tx)(s) =
∫ b

a

k(s, t)x(t)dt, a ≤ s ≤ b.

It can be seen that Tx ∈ C[a, b] for all x ∈ L2[a, b]. Also, we see that

|(Tx)(s)| ≤ ‖x‖∞ sup
a≤s≤b

∫ b

a

|k(s, t)|dt, s ∈ [a, b],

for all x ∈ C[a, b], and by Cauchy-Schwarz inequality,

|(Tx)(s)| ≤

(∫ b

a

|k(s, t)|2dt

)1/2

‖x‖2, s ∈ [a, b],

for all x ∈ L2[a, b]. Hence, it follows that,

‖Tx‖∞ ≤ ‖x‖∞ sup
a≤s≤b

∫ b

a

|k(s, t)|dt ∀x ∈ C[a, b],

‖Tx‖∞ ≤ sup
a≤s≤b

(∫ b

a

|k(s, t)|2dt

)1/2

‖x‖2 ∀x ∈ L2[a, b],

‖Tx‖2 ≤

(∫ b

a

∫ b

a

|k(s, t)|2dtds

)1/2

‖x‖2 ∀x ∈ L2[a, b].
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Let X = C[a, b] with ‖ · ‖∞ and Y = L2[a, b]. Then, from the above
inequalities, together with the fact that

‖x‖2 ≤ (b− a)1/2‖x‖∞ ∀x ∈ C[a, b],

it follows that T ∈ B(X), T ∈ B(X,Y ), T ∈ B(Y,X), and T ∈ B(Y ) with
their norms at most equal to

sup
a≤s≤b

∫ b

a

|k(s, t)|dt,

(
(b− a)

∫ b

a

∫ b

a

|k(s, t)|2dtds

)1/2

,

sup
a≤s≤b

(∫ b

a

|k(s, t)|2dt

)1/2

,

(∫ b

a

∫ b

a

|k(s, t)|2dtds

)1/2

,

respectively. In fact,

‖T‖X→X = max
a≤s≤b

∫ b

a

|k(s, t)|dt.

See ([51], Example 3.3 (viii)) for a proof of this. ♦

Example 2.10. For u ∈ L∞[a, b], let

(Tx)(t) = u(t)x(t), x ∈ L2[a, b], t ∈ [a, b].

Then, for x ∈ L2[a, b],

‖Tx‖22 =
∫ b

a

|u(t)x(t)|2dt ≤ ‖u‖2∞‖x‖22.

Thus, taking X = L2[a, b], we have T ∈ B(L2[a, b]) and ‖T‖ ≤ ‖u‖∞.
If u ∈ C[a, b], then for every x ∈ C[a, b], we have

‖Tx‖∞ ≤ ‖u‖∞‖x‖∞.

Thus, taking X = C[a, b] with ‖ · ‖∞, we have T ∈ B(X) and ‖T‖ ≤ ‖u‖∞.
In this case, it can be easily seen that ‖T‖ = ‖u‖∞. ♦

Next we give examples of unbounded linear operators, that is, linear
operators which are not continuous.

Example 2.11. Let X = C1[0, 1], the linear space of all continuously
differentiable functions on [0, 1] and let Y = C[0, 1]. Let these spaces be
endowed with the same norm ‖ · ‖∞. Consider T : X → Y and f : X → K
defined by

Tx = x′ and f(x) = x′(1), x ∈ X.
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It is easily seen that T and f are linear. But they are not continuous. To
see this, consider

xn(t) = tn, n ∈ N.

Then

‖xn‖∞ = 1, ‖Txn‖∞ = n, |f(xn)| = n ∀n ∈ N.

Thus E = {xn : n ∈ N} is bounded in X, but its images under the maps T
and f are not bounded. ♦

Example 2.12. Let X = C[0, 1] with ‖ · ‖∞ and Y = C[0, 1] with ‖ · ‖1.
We note that

‖x‖1 =
∫ 1

0

|x(t)| dt ≤ ‖x‖∞ ∀x ∈ C[0, 1].

However, there does not exist a c > 0 such that the relation ‖x‖∞ ≤ c‖x‖1
holds for all x ∈ C[0, 1]. Thus, the identity operator from X to Y is
continuous. However, the identity operator from Y to X is not continuous.
This is seen as follows: For n ∈ N, let

xn(t) =

{
n
( 1
n
− t
)
, 0 ≤ t ≤ 1

n ,

0, 1
n ≤ t ≤ 1.

Then we observe that ‖xn‖1 = 1/2n→ 0 as n→∞, but ‖xn‖∞ = 1 for all
n ∈ N. ♦

Remark 2.1. In Example 2.11, we note that N(T ) is a one-dimensional
subspace of X whereas N(f) is infinite-dimensional. Not only that, N(f)
is not even a closed subspace. This is seen by considering

un(t) = t− tn/n and u(t) = t,

and noting that

f(un) = 0 and ‖un − u‖∞ = 1/n→ 0 but f(u) = 1.

In fact, the non-closedness of N(f) is a characteristic property of discon-
tinuous linear functionals (see [51], Theorem 3.8). ♦

A linear operator T : X → Y may not be continuous with respect to
certain norms on X and Y , but can be continuous with respect to some
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other norms. For example, let T : X → Y be a linear operator between
normed linear spaces X and Y . Then taking the norm,

x 7→ ‖x‖∗ := ‖x‖X + ‖Tx‖Y , x ∈ X

on X instead of ‖ · ‖X , we see that T is continuous.

Example 2.13. In Example 2.11, if we take the norm

‖x‖∗ := ‖x‖∞ + ‖x′‖∞, x ∈ C1[0, 1],

then it is obvious that the maps T : x 7→ x′ and f : x 7→ x′(1) are continuous
on X∗, the space C1[0, 1] with ‖ · ‖∗. Now, taking

un(t) = tn/(n+ 1), t ∈ [0, 1], n ∈ N,

it follows that

‖un‖∗ = 1, ‖Tun‖∞ = n/(n+ 1), n ∈ N,

so that
n

n+ 1
= ‖Tun‖∞ ≤ ‖T‖ ≤ 1 ∀n ∈ N.

Thus ‖T‖ = 1. Similarly, we see that ‖f‖ = 1. ♦

In Example 2.13, we see that there does not exist an element x0 ∈ X

such that ‖Tx0 = ‖x0‖. This, in particular, shows that the closed unit ball
{x ∈ X : ‖x‖∗ ≤ 1} is not compact in X∗. This is a common feature of all
infinite dimensional spaces as we see in the following proposition (see [51],
Theorem 2.39).

Proposition 2.1. A closed unit ball in a normed linear space is compact
if and only if the space is finite dimensional.

The main ingredient for proving Proposition 2.1 is the following lemma
(see [51], Lemma 2.40).

Lemma 2.1. (Riesz) Suppose X is a normed linear space, X0 is a closed
subspace of X and 0 < r < 1. Then there exists x0 ∈ X such that

‖x0‖ = 1 and dist(x0, X0) ≥ r.

We close this subsection by giving an important example of a linear
operator, namely the projection operator which is of great importance in
applications.
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A linear operator P : X → X on a linear space X is called a projection
operator or simply a projection if

Px = x ∀x ∈ R(P ).

Thus, a linear operator P : X → X is a projection operator if and only if
P 2 = P .

If P is a projection, then it can be seen that I − P is also a projection,
and

R(P ) = N(I − P ), R(I − P ) = N(P ).

Hence, if X is a normed linear space and P is continuous, then R(P ) and
N(P ) are closed subspaces of X. In case X is a Banach space, we have the
converse as well (see [51], Corollary 7.3). Also, if P : X → X is a nonzero
continuous projection on a normed linear space, then ‖P‖ ≥ 1. Indeed, for
every nonzero x ∈ R(P ),

‖x‖ = ‖Px‖ ≤ ‖P‖ ‖x‖,

so that ‖P‖ ≥ 1.

Let X be an inner product space. Then a projection P : X → X is
called an orthogonal projection if R(P ) ⊥ N(P ), that is, if

〈x, y〉 = 0, ∀x ∈ R(P ), ∀y ∈ N(P ).

The following is an important observation about orthogonal projections.

Proposition 2.2. Let P : X → X be an orthogonal projection on an inner
product space X. Then P ∈ B(X) and ‖P‖ = 1.

Proof. Since R(I − P ) = N(P ) ⊥ R(P ), by Pythagoras theorem 2.4, we
have

‖x‖2 = ‖Px‖2 + ‖(I − P )x‖2 ≥ ‖Px‖2 ∀x ∈ X.

Thus, ‖P‖ ≤ 1. We already know that, if P 6= 0, then ‖P‖ ≥ 1. Thus, for
a nonzero orthogonal projection P , we have ‖P‖ = 1. �

2.1.3 Compact operators

An important class of operators which occur frequently in applications is
the so-called compact operators.

Let X and Y be normed linear spaces and T : X → Y be a linear
operator. Recall that T is a bounded operator if and only if for every
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bounded subset E of X, the set T (E) is bounded in Y so that clT (E), the
closure of T (E), is closed and bounded. If clT (E) is compact for every
bounded subset E of X, then the operator T is said to be a compact
operator. We shall denote the set of all compact operators from X to Y
by K(X,Y ). In case Y = X, then we denote K(X,Y ) by K(X), and an
operator T ∈ K(X) is said to be a compact operator on X.

Clearly, T is a compact operator if and only if for every bounded se-
quence (xn) in X, the sequence (Txn) in Y has a convergent subsequence,
and every compact operator is a bounded operator. By Proposition 2.1 it
follows that, for any normed linear spaceX,

• the identity operator on X is compact if and only if X is finite
dimensional, and

• a finite rank operator is compact if and only if it is a bounded operator.

Exercise 2.1. Justify the last sentence.

Suppose T : X → Y is a linear operator of finite rank, that is, R(T ) is
finite dimensional. Then it can be seen that there exist vectors v1, . . . , vn

in R(T ) and linear functionals f1, . . . , fn on X such that

Tx =
n∑

i=1

fi(x)vi, x ∈ X. (2.5)

This T is compact if and only if T is a bounded operator.

Exercise 2.2. Suppose T : X → Y is a finite rank operator between normed
linear spaces X and Y with representation (2.5). Show that T ∈ B(X,Y )
if and only if fi ∈ X ′ for every i ∈ {1, . . . , n}.

Hint: Observe that ‖Tx‖ ≤
∑n

i=1 ‖vi‖max{|fj(x)| : j = 1, . . . , n},
and ‖Tx‖ ≥ |fj(x)|dist(vj , Xj), where Xj := span {vi : i 6= j} for each
j ∈ {1, . . . , n}.

One of the important examples of compact operators which is very useful
in view of its applications is the Fredholm integral operator K defined by

(Kx)(s) =
∫ b

a

k(s, t)x(t)dt, a ≤ s ≤ b, (2.6)

where k(·, ·) is a certain admissible function on [a, b]× [a, b], and the domain
and codomain of K are certain function spaces. We shall come back to this
example a little later.

The following theorem lists some important properties of compact
operators (see [51], Chapter 9).
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Theorem 2.5. Let X, Y and Z be normed linear spaces. Then the follow-
ing hold.

(i) The set K(X,Y ) is a subspace of B(X,Y ).
(ii) If Y is a Banach space and if (Tn) is a sequence in K(X,Y ) such that

‖Tn − T‖ → 0 as n→∞ for some T ∈ B(X,Y ), then T ∈ K(X,Y ).
(iii) If A ∈ B(X,Y ) and B ∈ B(Y, Z), and one of them is a compact opera-

tor, then BA is a compact operator.
(iv) If T ∈ K(X,Y ), then T ′ ∈ K(X,Y ).

Corollary 2.1. Suppose T ∈ K(X,Y ). If T is bijective and T−1 ∈ B(Y,X),
then X is finite dimensional.

Proof. By Theorem 2.5 (iii), the operator T−1T : X → X is a compact
operator. But, T−1T is the identity operator on X which can be compact
if and only if X is finite dimensional (cf. Proposition 2.1). �

Example 2.14. (Diagonal operator) Suppose X and Y are Hilbert spaces,
and (un) and (vn) are orthonormal sequences in X and Y respectively.
Suppose (λn) is a sequence of scalars which converges to 0. For x ∈ X, let

Tx :=
∞∑

j=1

λj〈x, uj〉vj , x ∈ X. (2.7)

It can be seen that T ∈ B(X) and ‖T‖ ≤ maxj |λj |. Moreover, if we define

Tnx :=
n∑

j=1

λj〈x, uj〉vj , x ∈ X,

then we see that

‖(T − Tn)x‖2 :=
∞∑

j=n+1

|λj |2|〈x, uj〉|2 ≤ max
j>n

|λj |2‖x‖2, x ∈ X,

so that

‖T − Tn‖ ≤ max
j>n

|λj | → 0 as n→∞.

Since each Tn is a compact operator, as it is a finite rank bounded operator,
by Theorem 2.5(ii), T is also a compact operator. ♦

Remark 2.2. We shall see in Section 2.3.6 that every compact operator
T : X → Y between infinite dimensional Hilbert spaces X and Y can be
represented in the form (2.7); in fact, with λj ≥ 0 for every j ∈ N. ♦
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Next we show that the operatorK defined by (2.6) is a compact operator
on certain spaces for suitable kernel function k(·, ·). For this and for many
results in the sequel, we shall make use of the following result from analysis
(see [51], Theorem 6.7).

Theorem 2.6. (Arzela–Ascoli) Let Ω be a compact metric space and S be
a subset of C(Ω). Then S is totally bounded with respect to the norm ‖ · ‖∞
if and only if it is pointwise bounded and equicontinuous.

In the statement of the above theorem, we used the concepts of point-
wise boundedness, total boundedness and equicontinuity. Let us recall their
definitions:

Let Ω be a metric space with metric d.

(i) A subset S of Ω is said to be totally bounded in Ω if for every
ε > 0, there exists a finite number of points t1, . . . , tk in Ω such that
S ⊆ ∪k

i=1{t ∈ Ω : d(t, ti) < ε}.

It is known that S ⊆ Ω is compact if and only if it is complete and
totally bounded. In particular, if Ω is a complete metric space, then S is
totally bounded if and only if its closure, cl(S), is compact.

(ii) A set S of functions from Ω to K is said to be pointwise bounded
if for each t ∈ S, there exists Mt > 0 such that |x(t)| ≤Mt for all x ∈ S.

(iii) A set S of functions from Ω to K is said to be equicontinuous if
for every ε > 0, there exists δ > 0 such that

s, t ∈ Ω, d(s, t) < δ =⇒ |x(t)− x(s)| < ε ∀x ∈ S.
Thus, every function in an equicontinuous family is uniformly continu-

ous.
Let us give a simple example of an equicontinuous family.

Example 2.15. For ρ > 0, let

Sρ := {x ∈ C1[a, b] : ‖x′‖∞ ≤ ρ}.
Then Sρ is equicontinuous in C[a, b]. This follows by observing that for
every x ∈ Sρ and s, t ∈ [a, b],

x(t)− x(s) =
∫ t

s

x′(τ) dτ,

so that

|x(t)− x(s)| ≤ ρ|s− t|.
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Note that the above set is not pointwise bounded. To see this, consider
the sequence (xn) in C[a, b] defined by xn(t) = n for all n ∈ N. Clearly,
xn ∈ Sρ for all n ∈ N. However, the set

S̃ρ := {x ∈ C1[a, b] : x(a) = 0, ‖x′‖∞ ≤ ρ}
is both equicontinuous and pointwise bounded. Indeed, if x ∈ S̃ρ, then

x(t) =
∫ t

a

x′(τ)dτ,

so that |x(t)| ≤ ρ(b − a) for all x ∈ S̃ρ. Thus, in fact, S̃ρ is uniformly
bounded.

It can be easily seen that the set S̃ρ is the image of the closed ball
{x ∈ C[a, b] : ‖x‖∞ ≤ ρ} under the Volterra integral operator V defined by

(V x)(s) =
∫ s

a

x(t) dt, x ∈ C[a, b], s ∈ [a, b].

Thus,

S̃ρ = {V x : x ∈ C[a, b], ‖x‖∞ ≤ ρ}
is pointwise bounded and equicontinuous. Hence, by Arzela-Ascoli theorem
(Theorem 2.6), V is a compact operator on C[a, b] with respect to the norm
‖ · ‖∞. ♦

Now, we discuss the example of the operator K defined in (2.6).

Example 2.16. For k ∈ C([a, b] × [a, b]) consider the operator K in (2.6)
for x ∈ C[a, b]. We have already observed in Example 2.9 that

Kx ∈ C[a, b] ∀x ∈ C[a, b],

K is a bounded operator on C[a, b] with respect to the norm ‖ · ‖∞ and
‖K‖ = supa≤s≤b

∫ b

a
|k(s, t)|d. Now, we show that K is, in fact, a compact

operator. For this, first we note that, for s, τ ∈ [a, b] and x ∈ C[a, b],

|(Kx)(s)− (Kx)(τ)| ≤
∫ b

a

|k(s, t)− k(τ, t)| |x(t)| dt

≤ max
a≤t≤b

|k(s, t)− k(τ, t)|(b− a)‖x‖∞.

Hence, by uniform continuity of k(·, ·),
E := {Kx : x ∈ C[a, b], ‖x‖∞ ≤ 1}

is a uniformly bounded and equicontinuous subset of C[a, b]. Therefore, by
Arzela-Ascoli theorem (Theorem 2.6), the closure of E is compact in C[a, b]
with respect to the norm ‖ · ‖∞, and hence, K is a compact operator on
C[a, b] with respect to the norm ‖ · ‖∞. ♦



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

26 Linear Operator Equations: Approximation and Regularization

Remark 2.3. Using the arguments used in the above example, it can be
shown that if Ω is a compact Jordan measurable subset of Rk and k(·, ·) ∈
C(Ω× Ω), then the operator K defined by

(Kx)(s) =
∫

Ω

k(s, t)x(t)dt, s ∈ Ω,

is a compact operator from C(Ω) to itself. Here, by Jordan measurability
of Ω, we mean that the characteristic function of Ω is Riemann integrable.
In fact, in this case, it is also known that

‖K‖ = max
s∈Ω

∫
Ω

|k(s, t)| dt.

For details of the above statements, one may see Kress [35]. ♦

Example 2.17. For k ∈ C([a, b] × [a, b]) consider the integral operator
K defined in (2.6) for x ∈ L2[a, b] with respect to the Lebesgue measure.
Recall from Example 2.9 that

Kx ∈ C[a, b] ∀x ∈ L2[a, b].

For s, τ ∈ [a, b] and x ∈ L2[a, b], using Schwarz inequality, we also have

|(Kx)(s)| ≤
∫ b

a

|k(s, t)x(t)|dt ≤ max
s,t∈[a,b]

|k(s, t)|(b− a)1/2‖x‖2,

and

|(Kx)(s)− (Kx)(τ)| ≤
∫ b

a

|k(s, t)− k(τ, t)| |x(t)| dt

≤ max
a≤t≤b

|k(s, t)− k(τ, t)|(b− a)1/2‖x‖2.

The above two inequalities show that the set

E := {Kx : x ∈ L2[a, b], ‖x‖2 ≤ 1}

is a uniformly bounded and equicontinuous subset of C[a, b]. Therefore, by
Arzela-Ascoli theorem (Theorem 2.6), the closure of E is compact in C[a, b]
with respect to the norm ‖·‖∞. Now, to show that K is a compact operator
on L2[a, b], let (xn) be a sequence in L2[a, b] with ‖xn‖2 ≤ 1 for all n ∈ N.
Then by the above observation, (Kxn) has a convergent subsequence with
respect to ‖ · ‖∞, and hence, with respect to ‖ · ‖2. Thus, K is a compact
operator on L2[a, b]. ♦
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In fact, it has been shown in [51] that (2.6) defines a compact operator
from Lp[a, b] to Lr[a, b] for any p, r satisfying 1 ≤ p ≤ ∞, 1 ≤ r ≤ ∞.

Example 2.18. Let k(·, ·) ∈ L2([a, b] × [a, b]) and (kn) be a sequence in
C([a, b]× [a, b]) such that

‖k − kn‖2 :=
∫ b

a

∫ b

a

|k(s, t)− kn(s, t)|2dsdt→ 0.

Let K be as in (2.6) for x ∈ L2[a, b] and for n ∈ K, let Kn be the operator
defined by

(Knx)(s) =
∫ b

a

kn(s, t)x(t)dt x ∈ L2[a, b], a ≤ s ≤ b.

Then, by the results in Example 2.17 and an inequality in Example 2.9,
Kn : L2[a, b] → L2[a, b] is a compact operator and

‖K −Kn‖ ≤ ‖k − kn‖2 → 0 as n→∞.

Therefore, by Theorem 2.5(ii), K is a compact operator on L2[a, b]. ♦

Example 2.19. In this example, we take k(·, ·) to be a weakly singular
kernel defined on [a, b]× [a, b], that is, k(·, ·) is continuous on {(s, t) : s 6= t}
and there exists β with 0 < β < 1 and M > 0 such that

|k(s, t)| ≤ M

|s− t|1−β
, s 6= t.

Consider the integral operator K defined in (2.6) for x in either C[a, b] or
L2[a, b]. In the following C[a, b] is endowed with the norm ‖ ·‖∞. Following
the arguments in Kress [35], we show that K is a compact operator on
C[a, b] and L2[a, b] for β ∈ (0, 1) and β ∈ (1/2, 1), respectively.

First we observe that, for any c, d ∈ R with c < d, the integral∫ d

c
1

|s−t|1−β dt exists for each s ∈ [c, d]. In fact, we see that∫ d

c

1
|s− t|1−β

dt =
∫ s

c

1
|s− t|1−β

dt+
∫ d

s

1
|s− t|1−β

dt

=
1
β

[(s− c)β + (d− s)β ]. (2.8)

Let h : [0,∞) → R be defined by

h(t) =


0, 0 ≤ t ≤ 1/2,
2t− 1, 1/2 ≤ t ≤ 1,
1, 1 ≤ t <∞,
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and for n ∈ N and s, t ∈ [a, b], let

kn(s, t) =
{
h(n|s− t|)k(s, t) s 6= t,

0, s = t.

It can be seen that kn(·, ·) is continuous on [a, b] × [a, b] for every n ∈ N.
For x ∈ L2[a, b], let

(Knx)(s) =
∫ b

a

kn(s, t)x(t) dt, s ∈ [a, b].

Then, by the considerations in Examples 2.16 and 2.17, Kn is a compact
operator on C[a, b] and L2[a, b].

In order to show that K is a compact operator, by Theorem 2.5, it is
enough to show that ‖Kn −K‖ → 0 as n→∞. We show this as follows.

Observe that, if |s− t| ≥ 1/n, then h(n|s− t|) = 1, so that in this case,
kn(s, t) = k(s, t). Hence,

(Kx)(s)− (Knx)(s) =
∫
|s−t|≤1/n

[k(s, t)− kn(s, t)]x(t) dt.

Since |kn(s, t)| ≤ |k(s, t)| ≤ M/|s − t|1−β for s 6= t, by (2.8), we have for
x ∈ C[a, b] and s ∈ [a, b],

|(Kx)(s)− (Knx)(s)| ≤ 2M
∫
|s−t|≤1/n

|x(t)|
|s− t|1−β

dt

≤ 4M
β

(
1
n

)β

‖x‖∞.

Thus,

‖(K −Kn)x‖∞ ≤ 4M
β

(
1
n

)β

‖x‖∞ ∀x ∈ C[a, b],

so that ‖K −Kn‖ → 0. Consequently, K is a compact operator on C[a, b]
for all β ∈ (0, 1).

Next, for x ∈ L2[a, b] and s ∈ [a, b], we have

|(Kx)(s)− (Knx)(s)| ≤ 2
∫
|s−t|≤1/n

|k(s, t)| |x(t)| dt

≤ 2

(∫
|s−t|≤1/n

|k(s, t)|2 dt

)1/2

‖x‖2

≤ 2M

(∫
|s−t|≤1/n

dt

|s− t|2−2β

)1/2

‖x‖2.
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Now, if 1/2 < β < 1, then 2− 2β = 1− µ with µ := 2β − 1 > 0, so that∫
|s−t|≤1/n

dt

|s− t|2−2β
≤ 2
µ

(
1
n

)µ

.

Thus,

‖(K −Kn)x‖22 ≤
8M2

µ

(
1
n

)µ

(b− a)‖x‖22 ∀x ∈ L2[a, b],

so that ‖K −Kn‖ → 0. Consequently, K is a compact operator on L2[a, b]
for β ∈ (1/2, 1). ♦

Remark 2.4. It has been shown in [22] that the integral operatorK defined
in (2.6) is a compact operator from Lp[a, b] to C[a, b] (with ‖ · ‖∞) if and
only if

sup
a≤s≤b

∫ b

a

|k(s, t)|p dt <∞

and

lim
s→τ

∫ b

a

|k(s, t)− k(τ, t)|p dt = 0.

In the above, the integral is with respect to the Lebesgue measure, and it
is assumed that k(·, ·) is measurable on [a, b]× [a, b]. ♦

2.2 Some Important Theorems

In this section we shall discuss some of the important theorems of basic
functional analysis and their immediate consequences which are of much
use in the subsequent chapters.

2.2.1 Uniform boundedness principle

Let X and Y be normed linear spaces and (Tn) be a sequence of operators
in B(X,Y ) which converges pointwise on X, that is, for each x ∈ X,
(Tnx) converges. Then, it can be seen easily that T : X → Y defined by
for each

Tx := lim
n→∞

Tnx, x ∈ X,

is a linear operator. However, T need not belong to B(X,Y ) as the following
example shows.
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Example 2.20. Consider the vector space

c00 :=
∞⋃

n=1

{(α1, . . . , αn, 0, 0, . . . , ) : αj ∈ K, j = 1, 2, . . . , n}.

Let X = c00 with the norm ‖x‖∞ := supn∈N |x(n)|, x ∈ c00. For n ∈ N, let

fn(x) =
n∑

j=1

x(j), x ∈ X.

Then it is easily seen that each fn belongs to X ′ = B(X,K) and ‖fn‖ = n

for all n ∈ N. But the limiting operator f defined by

f(x) =
∞∑

n=1

x(n), x ∈ X,

does not belong to X ′. This is seen by considering a sequence (xn) defined
by

xn(j) =
{

1, j ∈ {1, . . . , n}
0, j 6∈ {1, . . . , n},

and observing that ‖xn‖∞ = 1 and f(xn) = n for all n ∈ N. ♦

Suppose (Tn) in B(X,Y ) converges pointwise on X. A sufficient con-
dition to ensure the continuity of the limiting operator T defined by
Tx := limn→∞ Tnx, x ∈ X, is the uniform boundedness of (Tn), that is,
to have the sequence (‖Tn‖) to be bounded. Indeed, if (Tn) is uniformly
bounded, say ‖Tn‖ ≤M for all n ∈ N, then

‖Tx‖ = lim
n→∞

‖Tnx‖ ≤M‖x‖ ∀x ∈ X,

so that T is continuous and ‖T‖ ≤M .
The above observation can be made in a more general context involving

a family {Tα}α∈Λ of operators, where Λ is a subset of R having a limit
point. For this purpose we introduce the following definition.

Let X be a normed linear space, Λ ⊆ R, α0 be a limit point of Λ and
xα ∈ X for every α ∈ Λ. We say that (xα) converges to x ∈ X as α→ α0,
and write

xα → x as α→ α0 or lim
α→α0

xα = x,

if for every ε > 0 there exists δ > 0 such that

‖x− xα‖ < ε whenever α ∈ Λ, |α− α0| < δ.
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A family {Tα}α∈Λ of operators in B(X,Y ) is said to be uniformly
bounded if the set {‖Tα‖}α∈Λ is bounded in R, and (Tα) is said to con-
verge pointwise on X as α → α0 if (Tαx) converges for every x ∈ X as
α→ α0.

The proof of the following proposition is analogous to the case of se-
quence of operators considered above.

Proposition 2.3. Let X and Y be normed linear spaces, {Tα}α∈Λ be a
uniformly bounded family of operators in B(X,Y ), where Λ is a subset of
R having a limit point α0. If (Tα) converges pointwise on X as α → α0,
then the operator T : X → Y defined by Tx := lim

α→α0
Tαx, x ∈ X, belongs

to B(X,Y ).

Exercise 2.3. Write the proof of the above proposition.

Next question one would like to ask is whether the convergence on the
whole space X can be replaced by convergence on a dense subspace, or more
generally, on a dense subset. The answer is affirmative if Y is a Banach
space as the following theorem shows (see [51], Theorem 3.11).

Theorem 2.7. Let X be a normed linear space, Y be a Banach space
and (Tn) be a uniformly bounded sequence in B(X,Y ). Suppose D is a
dense subset of X such that (Tnx) converges for every x ∈ D. Then (Tnx)
converges for every x ∈ X, and the operator T : X → Y defined by

Tx = lim
n→∞

Tnx, x ∈ X,

belongs to B(X,Y ).

More generally, we have the following.

Theorem 2.8. Let X be a normed linear space, Y be a Banach space, Λ be
a subset of R having a limit point α0 and {Tα}α∈Λ be a uniformly bounded
family of operators in B(X,Y ). Suppose D is a dense subset of X such
that (Tαx) converges as α→ α0 for every x ∈ D. Then (Tαx) converges as
α→ α0 for every x ∈ X and the operator T : X → Y defined by

Tx = lim
α→α0

Tαx, x ∈ X,

belongs to B(X,Y ).

Exercise 2.4. Write the proof of the above theorem.
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As we have already pointed out, pointwise convergence of (Tn) may not
ensure the boundedness of (‖Tn‖) (see Example 2.20). If the space X is
complete, then pointwise convergence of (Tn) does imply the boundedness
of (‖Tn‖). This is the essence of the Uniform Boundedness Principle (see
[51], Chapter 6).

Theorem 2.9. (Uniform Boundedness Principle) Let X be a Banach space,
Y be a normed linear space and {Tα}α∈Λ be a subset of B(X,Y ). If
{‖Tαx‖}α∈Λ is bounded for every x ∈ X, then {Tα}α∈Λ is uniformly
bounded.

Combining Theorem 2.9 and Proposition 2.3, we have the following
result.

Theorem 2.10. (Banach Steinhaus Theorem) Let X and Y be normed lin-
ear spaces and {Tα}α∈Λ be a subset of B(X,Y ), where Λ be a subset of
R having a limit point α0. If X is a Banach space and (Tαx) converges
as α → α0 for every x ∈ X, then {Tα}α∈Λ is uniformly bounded and the
operator T : X → Y defined by

Tx = lim
α→a0

Tαx, x ∈ X

belongs to B(X,Y ).

The following theorem, which is also known as Banach Steinhaus theo-
rem, is a special case of Theorem 2.10.

Theorem 2.11. (Banach Steinhaus Theorem) Let X and Y be normed lin-
ear spaces, and (Tn) be a sequence of operators in B(X,Y ). If X is a
Banach space and (Tn) converges pointwise on X, then (Tn) is uniformly
bounded and the operator T : X → Y defined by

Tx = lim
n→∞

Tnx, x ∈ X,

belongs to B(X,Y ).

Theorems 2.11 and 2.7 lead to the following.

Theorem 2.12. Let X and Y be Banach spaces and (Tn) be a sequence
in B(X,Y ). Then (Tn) converges pointwise on X if and only if (Tn) is
uniformly bounded and there exists a dense set D ⊆ X such that (Tnx)
converges for each x ∈ D.
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The main nontrivial ingredient in proving the following theorem is The-
orem 2.11.

Theorem 2.13. Let X be a Banach space, Y be a normed linear spaces
and (Tn) is a sequence of operators in B(X,Y ) which converges pointwise
on X. Let T : X → Y be defined by Tx = lim

n→∞
Tnx, x ∈ X, and S ⊆ X is

such that cl(S) is compact. Then

sup
x∈S

‖Tnx− Tx‖ → 0 as n→∞.

In particular, if Z is a normed linear space and K : Z → X is a compact
operator, then

‖(Tn − T )K‖ → 0 as n→∞.

Proof. By Theorem 2.11, there exists M > 0 such that ‖Tn‖ ≤ M for
every n. Let ε > 0 be given. By the compactness of cl(S), there exist
x1, . . . , xk in S such that

S ⊆
k⋃

j=1

{x ∈ X : ‖x− xj‖ < ε}.

For i ∈ {1, . . . , k}, let Ni ∈ N be such that ‖Tnxi−Txi‖ < ε for all n ≥ Ni.
Now, let x ∈ S, and let j ∈ {1, . . . , k} be such that ‖x− xj‖ < ε. Then for
all n ≥ N := max{Ni : i = 1, . . . , k}, we have

‖Tnx− Tx‖ ≤ ‖Tnx− Tnxj‖+ ‖Tnxj − Txj‖+ ‖Txj − Tx‖
≤ ‖Tn‖‖x− xj‖+ ‖Tnxj − Txj‖+ ‖T‖‖x− xj‖
< (M + 1 + ‖T‖)ε.

Since N is independent of x and ε is arbitrary, it follows that

sup
x∈S

‖Tnx−Ax‖ → 0 as n→∞.

The particular case follows by taking S = {Ku : ‖u‖ ≤ 1}. �

Remark 2.5. We observe that, in proving Theorem 2.13, the assumption
that X is a Banach space is used only to assert the boundedness of (‖Tn‖),
which is a consequence of Theorem 2.11. Thus, Theorem 2.13 will still
hold if we replace the completeness assumption of X by the boundedness
of (‖Tn‖). ♦
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2.2.2 Closed graph theorem

Among the unbounded linear operators, the so called closed linear operators
are of special importance. Recall that if T : X → Y is a continuous linear
operator between normed linear spaces X and Y , then for every sequence
(xn) in X with xn → x in X, we have Txn → Tx in Y . In particular, the
graph of the operator T , namely,

G(T ) := {(x, Tx) : x ∈ X}

is a closed subspace of the product space X×Y with respect to the product
norm defined by

‖(x, y)‖ := ‖x‖+ ‖y‖, (x, y) ∈ X × Y.

Let X and Y be normed linear spaces, X0 be a subspace of X and
let T : X0 → Y be a linear operator. Then T is called a closed linear
operator or a closed operator if the graph of T , namely,

G(T ) := {(x, Tx) : x ∈ X0},

is a closed subspace of the product space X × Y .
Thus, a linear operator T : X0 → Y is a closed linear operator if and

only if for every sequence (xn) in X0,

xn → x in X, Txn → y in Y =⇒ x ∈ X0, Tx = y.

Example 2.21. Let X = Y = C[0, 1], X0 = C1[0, 1] and T and f be
defined as in Example 2.11. It is seen that T is a closed linear operator
whereas f is neither closed nor continuous. ♦

Proposition 2.4. Let X and Y be normed linear spaces, X0 be a subspace
of X, and T : X0 → Y be a closed operator. Then we have the following.

(i) N(T ) is a closed subspace of X.
(ii) If T is injective, then T−1 : R(T ) → X is a closed operator.
(iii) If Y is a Banach space and T is a bounded operator, then X0 is closed

in X.

Proof. (i) Let (xn) in N(T ) be such that xn → x. Since Txn = 0, by
the closedness of T , we have x ∈ X0 and x ∈ N(T ). Thus, N(T ) is a closed
subspace.

(ii) Suppose T is injective. Let (yn) in R(T ) be such that

yn → y and T−1yn → x.
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Taking xn = T−1yn, it follows that xn → x and Txn → y as n→∞. Hence,
by the closedness of T , we have x ∈ X0 and Tx = y. Thus, y ∈ R(T ) and
T−1y = x showing that T−1 : R(T ) → X is a closed operator.

(iii) Suppose Y is a Banach space and T : X0 → Y is a closed operator
which is also a bounded operator. Let (xn) in X0 be such that xn → x in
X. Since T is continuous, it follows that (Txn) is a Cauchy sequence in Y .
Let y = limn→∞ Txn. Thus, we have xn → x and Txn → y as n → ∞, so
that by the closedness of T , we have x ∈ X0 and Tx = y. This shows that
X0 is closed in X. �

The following corollary is immediate from Theorem 2.4.

Corollary 2.2. Let X and Y be normed linear spaces, X0 be a subspace
of X, and T : X0 → Y be a closed operator. If X is a Banach space, T
is injective and R(T ) is not closed in Y , then T−1 : R(T ) → X is not
continuous.

The closed graph theorem furnishes a criterion for a closed linear oper-
ator to be continuous (cf. [51], Theorems 7.1 and 7.2).

Theorem 2.14. (Closed Graph Theorem) Let X and Y be Banach spaces
and X0 be a subspace of X. Then a closed linear operator T : X0 → Y is
continuous if and only if X0 is closed in X.

The following is an immediate consequence of Theorem 2.14 and Propo-
sition 2.4.

Theorem 2.15. (Bounded Inverse Theorem) Let X and Y be Banach
spaces, X0 be a subspace of X and T : X0 → Y be a closed operator.
Suppose T is injective. Then T−1 : R(T ) → X is bounded if and only if
R(T ) is closed.

Usually the following corollary of the above theorem is known as
Bounded Inverse Theorem.

Corollary 2.3. (Bounded Inverse Theorem) Let X and Y be Banach spaces
and T ∈ B(X,Y ). If T is bijective, then T−1 ∈ B(Y,X).

Here is another important consequence of the closed graph theorem (see
[51], Theorem 7.9).

Theorem 2.16. (Open Mapping Theorem) Let X and Y be Banach spaces
and T ∈ B(X,Y ). If T is onto, then T is an open map, that is, image of
every open set under T is an open set.
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Closed graph theorem also gives a criterion for continuity of projection
operators (see [51], Corollary 7.3).

Corollary 2.4. Suppose X is a Banach space and P : X → X is a pro-
jection operator. If R(P ) and N(P ) are closed subspaces of X, then P is
continuous.

The following is an important consequence of open mapping theorem
(Theorem 2.16).

Theorem 2.17. Let X and Y be Banach spaces and T : X → Y be a
compact operator. If T is of infinite rank, then R(T ) is not closed in Y .

Proof. Suppose R(T ) is closed in Y . Then T : X → R(T ) is a compact
operator from the Banach space X onto the Banach space R(T ). Hence,
by Open Mapping Theorem 2.16, there exists δ > 0 such that

{y ∈ R(T ) : ‖y‖ ≤ δ} ⊂ {Tx : ‖x‖ < 1}.

Since the closure of the set {Tx : ‖x‖ < 1} is compact, we see that the
closed ball of radius δ, and thereby the closed unit ball in R(T ), is compact.
Therefore by Proposition 2.1, R(T ) is finite dimensional. �

2.2.3 Hahn-Banach theorem

Now we state one of the important results of functional analysis concerning
bounded linear functionals, and consider some of its consequences (cf. [51],
Chapter 5).

Recall that for a normed linear space X, X ′ is the dual space B(X,K).

Theorem 2.18. (Hahn-Banach Extension Theorem) Let X0 be a subspace
of a normed linear space X and g ∈ X ′

0. Then there exists f ∈ X ′ such
that ‖f‖ = ‖g‖ and f(x) = g(x) for every x ∈ X0.

Corollary 2.5. If X0 is a closed subspace of a normed linear space X and
x0 6∈ X0, then there exists f ∈ X ′ such that ‖f‖ = 1,

f(x0) = dist(x0, X0) and f(x) = 0 ∀x ∈ X0.

Taking X0 = {0} in the above corollary, we get

Corollary 2.6. If x0 is a nonzero element in a normed linear space X,
then there exists f ∈ X ′ such that ‖f‖ = 1 and f(x0) = ‖x0‖.
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The following two corollaries are immediate consequences of the above
corollary.

Corollary 2.7. For every x in a normed linear space X,

‖x‖ = sup{|f(x)| : f ∈ X ′, ‖f‖ ≤ 1}.

Corollary 2.8. If u1, . . . , un are linearly independent in a normed linear
space X, then there exist linearly independent elements f1, . . . , fn in X ′

such that

fi(uj) =
{

1 if i = j

0 if i 6= j.

As a consequence of Corollary 2.7, we have

‖T ′‖ = ‖T‖ ∀T ∈ B(X,Y ).

Indeed, for T ∈ B(X,Y ), we know that ‖T ′‖ ≤ ‖T‖; and by Corollary 2.7,
for every x ∈ X,

‖Tx‖ = sup{|f(Tx)| : f ∈ X ′, ‖f‖ ≤ 1}
= sup{|(T ′f)(x)| : f ∈ X ′, ‖f‖ ≤ 1}
≤ ‖T ′‖‖x‖

so that we also have ‖T ′‖ ≤ ‖T‖.
The following result can be easily verified.

Corollary 2.9. Let X0 be a finite dimensional subspace of a normed lin-
ear space X, {u1, . . . , un} be a basis of X0 and f1, . . . , fn in X ′ be as in
Corollary 2.8. Then P : X → X defined by

Px =
n∑

j=1

fj(x)xj , x ∈ X,

is a continuous projection operator with R(P ) = X0. In particular,

X = X0 +X1, X0 ∩X1 = {0},

with X1 = N(P ).

If the space X is an inner product space and {u1, . . . , un} is an or-
thonormal basis of X0, then Corollary 2.8 will follow without using the
Hahn Banach Theorem. For, in this case, one may define fj : X → X as

fj(x) = 〈x, uj〉, x ∈ X, j = 1, . . . , n.

In this case, it can be seen that P is an orthogonal projection.
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2.2.4 Projection and Riesz representation theorems

One may ask whether the conclusion of Corollary 2.9 is true if X0 is any
general closed subspace of X. The answer is, in fact, negative. For example,
it is known that if X = `∞ and X0 = c0, the space of all sequences which
converges to zero, then X0 is a closed subspace of X but there is no closed
subspace X1 such that X = X0 + X1, X0 ∩ X1 = {0}. In case X is a
Hilbert space, then we do have a positive answer. More generally, we have
the following.

Theorem 2.19. (Projection Theorem) If X0 is a complete subspace of an
inner product space, then

X = X0 +X⊥
0 and (X⊥

0 )⊥ = X0.

In particular, the above conclusion holds if X0 is a closed subspace of a
Hilbert space X.

Let X0 and X be as in Theorem 2.19. Then, every x ∈ X can be
uniquely written as

x = u+ v with u ∈ X0, v ∈ X⊥
0 ,

and in that case, P : X → X defined by P (x) = u, x ∈ X, is seen to be an
orthogonal projection onto X0, i.e.,

R(P ) = X0, N(P ) = X⊥
0 .

Corollary 2.10. Suppose X is an inner product space and X0 is a complete
subspace of X. Then for every x ∈ X, there exists a unique element x0 ∈ X0

such that

‖x− x0‖ = inf{‖x− u‖ : u ∈ X0}.

In fact, the element x0 is given by x0 = Px, where P is the orthogonal
projection of X onto X0.

Proof. By Theorem 2.19, an orthogonal projection P onto X0 exists.
Then, for every u ∈ X0, we have x − u = (x − Px) + (Px − u), where
x− Px ∈ N(P ) and Px− u ∈ R(P ). Hence, by Pythagoras theorem,

‖x− u‖2 = ‖x− Px‖2 + ‖Px− u‖2

≥ ‖x− Px‖2.

Thus, taking x0 = Px,

‖x− x0‖ = inf{‖x− u‖ : u ∈ X0}.
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If x1 ∈ X0 also satisfies the relation

‖x− x1‖ = inf{‖x1 − u‖ : u ∈ X0},

then, again by Pythagoras theorem, we have

‖x− x1‖2 = ‖(x− x0) + (x0 − x1)‖2

= ‖x− x0‖2 + ‖x0 − x1‖2.

But, ‖x − x1‖ = ‖x − x0‖. Hence, it follows that x1 = x0, proving the
uniqueness. �

A subspace X0 of a normed linear spaceX is said to have the best
approximation property if for every x ∈ X, there exists x0 ∈ X0 such
that

‖x− x0‖ = inf{‖x− u‖ : u ∈ X0}.

If x0 is the unique element having the above required property, then X is
said to have the unique best approximation property with respect to
X0.

Corollary 2.10 shows that every complete subspace of an inner product
space has unique best approximation property. What about for a general
normed linear space?

Proposition 2.5. Normed linear spaces have the best approximation prop-
erty with respect to finite dimensional subspaces.

Proof. Let X be a normed linear space and X0 be a finite dimensional
subspace of X. For x ∈ X, and for a fixed v ∈ X0, consider the set

S = {u ∈ X0 : ‖x− u‖ ≤ ‖x− v‖}

and the map

f : u 7→ ‖x− u‖, u ∈ S.

Since the set S is closed and bounded in the finite dimensional space X0,
it is compact, and therefore, the continuous function f attains infimum at
some x0 ∈ S. Then it follows that

‖x− x0‖ = inf{‖x− u‖ : u ∈ X0}.

This completes the proof. �
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It is to be remarked that the element x0 in Proposition 2.5 need not be
unique (Exercise).

Now we set to state another important theorem of functional analysis.
To motivate the result we first recall that if X is an inner product space,
then every u ∈ X gives rise to a bounded linear functional fu defined by
fu(x) = 〈x, u〉, x ∈ X. Clearly, ‖fu‖ = 1. A question is whether every
continuous linear functional on X is obtained in the above manner. The
answer is affirmative if the space is complete.

Theorem 2.20. (Riesz Representation Theorem) Let X be a Hilbert space.
Then for every f ∈ X ′, there exists a unique u ∈ X such that

f(x) = 〈x, u〉 ∀x ∈ X.

The above theorem need not hold in an arbitrary inner product space
(cf. [51], Section 3.3).

Using Theorem 2.20, we define the adjoint of an operator (cf. [51],
Section 3.3).

2.2.4.1 Adjoint of an operator

Let X and Y be inner product spaces, and let T : X → Y be a linear
operator. A linear operator T ∗ : Y → X is called an adjoint of T if

〈Tx, y〉 = 〈x, T ∗y〉, ∀x ∈ X, y ∈ Y.

Notice that the inner products on the left-hand side and right-hand side of
the above equation are that of X and Y , respectively.

If X and Y are Hilbert spaces, and T : X0 → Y is a linear operator,
where X0 is a dense subspace of X, then the adjoint T ∗ of T can be defined
uniquely on a dense subspace of Y as follows:

Let Y0 be the set of all y ∈ Y such that the linear functional gy : X0 → K
defined by

gy(x) = 〈Tx, y〉Y , x ∈ X0,

is continuous. Then each gy can be extended continuously and uniquely
(since X0 is dense in X) to all of X. Therefore, by Riesz representation
theorem (Theorem 2.20), there exists a unique element in X, say T ∗y ∈ X,
such that

〈Tx, y〉 = 〈x, T ∗y〉 ∀x ∈ X0.

The map y 7→ T ∗y from Y0 to X is the adjoint of T .
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It can be verified, using the denseness of X0, that T ∗ : Y0 → X is a
closed operator. Also, Y0 is dense in Y and T ∗∗ = T , provided T is a closed
operator.

It can be seen that if T ∈ B(X,Y ), then T ∗ ∈ B(Y,X), and the following
relations can be easily verified:

‖T ∗‖ = ‖T‖, ‖T ∗T‖ = ‖T‖2

N(T ) = R(T ∗)⊥, N(T ∗) = R(T )⊥,

N(T )⊥ = clR(T ∗), N(T ∗)⊥ = clR(T ).

Exercise 2.5. Verify the conclusions in the above statement.

The following result will be extensively used in later chapters.

Theorem 2.21. Let X and Y be Hilbert spaces and T : X → Y be a linear
operator. Then T ∈ K(X,Y ) if and only if T ∗ ∈ K(Y,X).

Proof. Suppose T ∈ K(X,Y ). Let (yn) be a bounded sequence in Y .
By Theorem 2.5(iii), TT ∗ ∈ K(Y ). Hence, the sequence (TT ∗yn) has a
convergent subsequence, say (TT ∗ynk

). Note that, for every n,m ∈ N,

‖T ∗yn − T ∗ym‖2 = 〈TT ∗(yn − ym), (yn − ym)〉
≤ ‖TT ∗(yn − ym)‖ ‖yn − ym‖.

Since (yn) is bounded and (TT ∗ynk
) is convergent, it follows from the above

inequality that (T ∗ynk
) is a Cauchy sequence. Hence, it converges. Thus,

we have proved that T ∗ ∈ K(Y,X). Now, the converse part is a consequence
of the fact that T = T ∗∗. �

For T ∈ B(X), where X is a Hilbert space, we define the following:

(i) T is said to be a self adjoint operator if T ∗ = T ,
(ii) T is said to be a normal operator if T ∗T = TT ∗, and
(iii) T is said to be a unitary operator if T ∗T = I = TT ∗.

An important property of a self-adjoint operator T is that

‖T‖ = sup{〈Tx, x〉 : ‖x‖ = 1}.
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2.3 Spectral Results for Operators

2.3.1 Invertibility of operators

Let X and Y be normed linear spaces and T : X → Y be a linear operator.
As we have remarked in Chapter 1, it is important to know when T is
bijective and its inverse T−1 is continuous. There are problems of practical
interest in which one may know that T has continuous inverse, but one
would like to know if it is the same case if T is replaced by T +E for some
operator E : X → Y . Thus, knowing that a linear operator T : X → Y has
a continuous inverse, one would like to know the conditions on E : X → Y

under which T + E also has continuous inverse. First let us observe the
following easily verifiable result.

Proposition 2.6. Let X and Y be normed linear spaces, X0 be a subspace
of X and T : X0 → Y be a linear operator. Then there exists c > 0 such
that

‖Tx‖ ≥ c ‖x‖ ∀x ∈ X

if and only if T is injective and T−1 : R(T ) → Y is continuous, and in that
case ‖T−1‖ ≤ 1/c.

Proof. Left to the reader. �

A linear operator T : X0 → Y , where X0 is a subspace of X, is said to
be bounded below if there exists c > 0 such that

‖Tx‖ ≥ c ‖x‖ ∀x ∈ X.

Corollary 2.11. Let X and Y be normed linear spaces, X0 be a subspace
of X and T : X0 → Y be a closed linear operator. If X is a Banach space
and T is bounded below, then R(T ) is a closed subspace of Y .

Proof. Suppose X is a Banach space and T is bounded below. By Propo-
sition 2.6, T−1 : R(T ) → X is continuous. Since T−1 : R(T ) → X is also a
closed operator, by Proposition 2.4, R(T ), the domain of T−1, is a closed
subspace of Y . �

Corollary 2.12. Let X be a Hilbert space and T ∈ B(X) be a self adjoint
operator which is bounded below. Then T is bijective.

Proof. The proof follows from Corollary 2.11 by making use of the facts
that N(T )⊥ = clR(T ∗) = clR(T ) and X = N(T ) +N(T )⊥. �
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We shall also make use of the following two results (see [51], Theorem
10.8 and Corollary 10.9) to derive a perturbation result which will be used
subsequently.

We recall from bounded inverse theorem (Corollary 2.3) that if X and
Y are Banach spaces and T ∈ B(X,Y ) is bijective then T−1 ∈ B(Y,X).

The following result is crucial for obtaining perturbation results (see
[51], Section 10.2).

Theorem 2.22. Let X be a Banach space and A ∈ B(X). If ‖A‖ < 1,
then I −A is bijective and

‖(I −A)−1‖ ≤ 1
1− ‖A‖

.

As a consequence of the above result, we have the following perturbation
result.

Corollary 2.13. Let X be a normed linear space, Y be a Banach space
and T : X → Y be a bijective linear operator with T−1 ∈ B(Y,X). If
E : X → Y is a linear operator such that ET−1 ∈ B(Y ) and ‖ET−1‖ < 1,
then T + E is bijective, (T + E)−1 ∈ B(Y,X) and

‖(T + E)−1‖ ≤ ‖T−1‖
1− ‖ET−1‖

.

Proof. Since ‖ET−1‖ < 1, by Theorem 2.22 with A = ET−1, the oper-
ator I + ET−1 on the Banach space Y is bijective and

‖(I + ET−1)−1‖ ≤ 1
1− ‖ET−1‖

.

Hence, T + E = (I + ET−1)T is also bijective and
(T + E)−1 = T−1(I + ET−1)−1.

From this it follows that (T + E)−1 ∈ B(Y,X) so that

‖(T + E)−1‖ ≤ ‖T−1‖
1− ‖ET−1‖

.

This completes the proof. �

A more general result than the above is possible by making use of the
following corollary.

Corollary 2.14. Let X be a Banach space and A ∈ B(X). If ‖Ak‖ < 1
for some positive integer k, then I −A is bijective and

‖(I −A)−1‖ ≤
‖
∑k−1

i=0 A
i‖

1− ‖Ak‖
.
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Proof. Using the identity

I −Ak = (I −A)(I +A+ . . .+Ak−1)

= (I +A+ . . .+Ak−1)(I −A),

the proof can be deduced from Theorem 2.22. �

The following perturbation result is under weaker assumption than in
Corollary 2.13.

Corollary 2.15. Let X be a normed linear space, Y be a Banach space and
T : X → Y be a bijective linear operator with T−1 ∈ B(Y,X). If E : X → Y

is a linear operator such that ET−1 ∈ B(Y ) and ‖(ET−1)2‖ < 1, then T+E
is bijective, (T + E)−1 ∈ B(Y,X) and

‖(T + E)−1‖ ≤ ‖T−1‖(1 + ‖ET−1‖)
1− ‖(ET−1)2‖

.

Proof. Since ‖(ET−1)2‖ < 1, Corollary 2.14 with A = ET−1 and k = 2
implies that the operator I+ET−1 on the Banach space Y is bijective, and

‖(I + ET−1)−1‖ ≤ 1 + ‖ET−1‖
1− ‖(ET−1)2‖

.

Therefore, T + E = (I + ET−1)T is bijective and

(T + E)−1 = T−1(I + ET−1)−1

so that (T + E)−1 ∈ B(Y,X) and

‖(T + E)−1‖ ≤ ‖T−1‖(1 + ‖ET−1‖)
1− ‖(ET−1)2‖

.

This completes the proof. �

2.3.2 Spectral notions

An important set of scalars associated with a linear operator is its spectrum.
Let X0 be a subspace of a normed linear space X and let A : X0 → X be
a linear operator. Then the set

ρ(A) := {λ ∈ K : A− λI : X0 → X bijective and (A− λI)−1 ∈ B(X)}

is called the resolvent set of A, and its compliment in K,

σ(A) := {λ ∈ K : λ 6∈ ρ(A)},
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is called the spectrum of A. Elements of σ(A) are called spectral values
of A, and the quantity

rσ(A) := sup{|λ| : λ ∈ σ(A)}

is called the spectral radius of A.
In view of the bounded inverse theorem (Theorem 2.15), ifX is a Banach

space and A : X0 → X is a closed operator, then

ρ(A) = {λ ∈ K : A− λI : X0 → X is bijective}.

The set of all scalars λ for which the operator A− λI is not injective is
called the eigen spectrum of A, and it is denoted by σe(A). Thus,

σe(A) ⊆ σ(A).

Elements of the eigen spectrum are called eigenvalues. Thus, a scalar λ
is an eigenvalue of A if and only if there exists a nonzero x ∈ X0 such that

Ax = λx,

and in that case x is called an eigen vector of A corresponding to the
eigenvalue λ. The set of all eigen vectors corresponding to an eigenvalue
λ together with the zero vector, that is, the subspace N(A− λI), is called
the eigen space of A corresponding to the eigenvalue λ.

In the case of a finite dimensional X, we know that every linear operator
A : X → X is continuous, and A injective if and only if it is bijective, so
that, in this case, we have

σ(A) = σe(A).

We may also observe that if A is an n × n matrix of scalars, then it
can be considered as a linear operator A : Kn → Kn by defining Ax = Ax
for x ∈ Kn, where x denotes the column vector obtained by transposing
x ∈ Kn. Then it can be seen that

λ ∈ σe(A) ⇐⇒ ∃ nonzero x ∈ Kn such that Ax = λx

⇐⇒ det(A− λI) = 0.

If λ ∈ K is such that A − λI is not bounded below, then we say that
λ is an approximate eigenvalue of A, and the set of all approximate
eigenvalues of A is denoted by σa(A). It can be shown that λ ∈ σa(A) if
and only if there exists (xn) in X0 such that ‖xn‖ = 1 for all n ∈ N and

‖Axn − λxn‖ → 0 as n→∞.
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Clearly,

σe(A) ⊆ σa(A) ⊆ σ(A).

If X is a Banach space and A is a compact operator on X of infinite rank,
then we know (cf. Theorem 2.17) that R(A) is not closed in X, so that by
Corollary 2.11, 0 ∈ σa(A).

The following result can be verified easily.

Theorem 2.23. Let X and Y be Banach spaces, and A ∈ B(X,Y ), B ∈
B(Y,X) and λ be a nonzero scalar. Then

λ ∈ ρ(AB) ⇐⇒ λ ∈ ρ(BA),

and in that case

(BA− λI)−1 =
1
λ

[B(AB − λI)−1A− I].

In particular,

σ(AB) \ {0} = σ(BA) \ {0} and rσ(AB) = rσ(BA).

It can be verified that if X is a Hilbert space and A ∈ B(X), then

σa(A) ⊆ cl{〈Ax, x〉 : ‖x‖ = 1},

and if A is a normal operator, then

λ ∈ σe(A) ⇐⇒ λ ∈ σe(A∗).

Exercise 2.6. Prove the above facts.

The set

w(A) := {〈Ax, x〉 : x ∈ X, ‖x‖ = 1}

is called the numerical range of A.

The following result is significant (see [51], Section 12.1).

Theorem 2.24. Let X be a Hilbert space and A ∈ B(X). Then

σ(A) = σa(A) ∪ {λ : λ ∈ σe(A∗)}.

In particular,

(i) σ(A) ⊆ clw(A),
(ii) if A is a normal operator, then σ(A) = σa(A), and
(iii) if A is self adjoint, then σ(A) = σa(A) ⊆ R.
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Now, let X be a Hilbert space and A ∈ B(X). From the above theorem,
it is clear that

rσ(A) ≤ rw(A) ≤ ‖A‖,

where

rw(A) := sup{|λ| : λ ∈ ω(A)},

called the numerical radius of A. Further, if A is a self adjoint operator,
then

σ(A) ⊆ [αA, βA],

where

αA = inf w(A), βA = supw(A).

An operator A ∈ B(X) is called a positive operator if

w(A) ⊆ [0,∞).

It is also known (cf. [51], Theorem 12.8) that for a self adjoint operator
A ∈ B(X),

rσ(A) = ‖A‖ = sup{|〈Ax, x〉| : x ∈ X, ‖x‖ = 1}. (2.9)

By this relation it follows that the spectrum of a self adjoint operator is
non-empty.

We observe that if X and Y are Hilbert spaces and T ∈ B(X,Y ), then
the operators T ∗T ∈ B(X) and TT ∗ ∈ B(Y ) are positive as well as self
adjoint.

In general, we have the following (see [51], Section 10.2).

Proposition 2.7. Let X be a Banach space and A ∈ B(X). Then ρ(A) is
open, σ(A) is compact and

rσ(A) ≤ inf{‖Ak‖1/k : k ∈ N}.

In case K = C, then σ(A) is nonempty, and

rσ(A) = inf{‖Ak‖1/k : k ∈ N} = lim
k→∞

‖Ak‖1/k. (2.10)

The equality in (2.10) need not hold if K = R. For example, if we take
X = R2 and A is the operator which maps x := (α1, α2) to Ax := (α2,−α1),
then it is seen that σ(A) = σe(A) = ∅. Since

A2k = (−I)k, A2k+1 = (−I)kA ∀ k ∈ N,
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for any norm on R2, we have
0 = rσ(A) < min{1, ‖A‖} = inf{‖Ak‖1/k : k ∈ N}.

Example 2.22. Let X = C1[0, 1] and let A : X → X be defined by
Ax = x′, the derivative of x. Then it can be easily seen that for λ ∈ K,
a function x ∈ X satisfies the equation Ax = λx if and only if x(t) = eλt,
t ∈ [0, 1]. Thus, σe(A) = K. If we take

X0 := {x ∈ C1[0, 1] : x(0) = 0},
and consider A as an operator on X0, then we have σe(A) = ∅. ♦

Example 2.23. Let X = C[0, 1] with ‖ · ‖∞ and let A : X → X be defined
by

(Ax)(t) =
∫ t

0

x(s)ds, x ∈ C[0, 1].

Clearly for x ∈ X, Ax = 0 if and only if x = 0 so that 0 6∈ σe(A). Now, let
λ be a nonzero scalar and x ∈ X. Then we see that Ax = λx if and only if

x(t) =
1
λ

∫ t

0

x(s)ds.

There does not exist a nonzero function x in C[0, 1] satisfying the above
equation, as the above equation for a nonzero x implies that x is differ-
entiable, x(0) = 0 and x(t) = et/λ for all t ∈ [0, 1], which is impossible.
Thus, σe(A) = ∅. One may ask whether A has a nonzero spectral value.
Recall that A is a compact operator. We shall see that every nonzero spec-
tral value of a compact operator is an eigenvalue. Hence, for the above
A, σ(A) ⊆ {0}. Since A cannot be surjective, as every function in the
range of A has to be differentiable, it follows that 0 ∈ σ(A). Thus, we have
σ(A) = {0}, and 0 is not an eigenvalue. ♦

For more examples of eigenvalues, approximate eigenvalues, spectral
values, and spectral properties of operators, one may refer ([51], Chapters
10, 12, 13).

2.3.3 Spectrum of a compact operator

We consider some important results regarding the spectral values of com-
pact operators on a Banach space and self adjoint operators on a Hilbert
space (cf. [51], Chapter 9).

Proposition 2.8. Let X be a Banach space, A ∈ B(X) be a compact op-
erator and 0 6= λ ∈ K. Then
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(i) N(A− λI) is finite dimensional, and
(ii) R(A− λI) is closed.

Theorem 2.25. Let X be a Banach space and A ∈ B(X) be a compact
operator. Then we have the following.

(i) Every nonzero spectral value of A is an eigenvalue of A, and it is an
isolated point of σ(A).

(ii) σ(A) is countable.

Theorem 2.25 together with the relation (2.9) shows that every nonzero
compact self adjoint operator on a Hilbert space has a nonzero eigenvalue.

2.3.4 Spectral Mapping Theorem

Let X be a Banach space and A ∈ B(X). If p(t) is a polynomial, say
p(t) = a0 + a1t+ . . .+ ant

n, then we define

p(A) = a0I + a1A+ . . .+ anA
n.

One may enquire how the spectrum of p(A) is related to the spectrum of
A. In this connection we have the following theorem (see [51], Theorems
10.14 and 12.12).

Theorem 2.26. Let X be a Banach space, A ∈ B(X) and p(t) be a poly-
nomial. Then

{p(λ) : λ ∈ σ(A)} ⊆ σ(p(A)).

If either K = C or if X is a Hilbert space and A is self adjoint, then

{p(λ) : λ ∈ σ(A)} = σ(p(A)).

Corollary 2.16. Let X be a Hilbert space, A ∈ B(X) be a self adjoint
operator and p(t) be a polynomial with real coefficients. Then p(A) is self
adjoint and

‖p(A)‖ ≤ ‖p‖∞ := sup{|p(λ)| : λ ∈ [αA, βA]},
where αA := inf w(A) and βA := supw(A).

Now, suppose that A ∈ B(X) is a self adjoint operator on a Hilbert
space X and f is a real valued continuous function defined on [αA, βA]. By
Weierstrass approximation theorem, there exists a sequence (pn) of poly-
nomials with real coefficients such that

‖f − pn‖∞ := sup
αA≤t≤βA

|f(t)− pn(t)| → 0
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as n,m→∞. By Corollary 2.16,

‖pn(A)− pm(A)‖ ≤ ‖pn − pm‖∞.

Hence, by completeness of B(X), the sequence (pn(A)) converges to an
operator in B(X). We denote this operator by f(A), that is,

f(A) := lim
n→∞

pn(A). (2.11)

It can be easily seen that f(A) is also self adjoint. Moreover, by Corollary
2.16,

‖f(A)‖ = lim
n→∞

‖pn(A)‖ ≤ lim
n→∞

‖pn‖∞ = ‖f‖∞. (2.12)

If A is a positive self adjoint operator, then using the definition (2.11), we
can define Aν , ν > 0, by taking f(λ) = λν ; in particular, square root of A,
A1/2, is the operator f(A) with f(λ) =

√
λ, λ > 0.

2.3.5 Spectral representation for compact self adjoint

operators

We know from linear algebra that if A is a self adjoint operator on a finite
dimensional inner product space, then it can be represented in terms of its
eigenvalues and a basis consisting of orthonormal eigen vectors. This result
can be extended to any compact self adjoint operator on a Hilbert space as
follows.

Theorem 2.27. Let X be a Hilbert space and A ∈ B(X) be a compact self
adjoint operator. Let σ(A) = {λj : j ∈ Λ} where Λ is either {1, 2, . . . , n}
for some n ∈ N or Λ = N according as σ(A) is finite or infinite. For
each nonzero eigenvalue λj, let {u(j)

1 , . . . , u
(j)
mj} be an orthonormal basis of

N(A− λjI) and Pj be the orthogonal projection onto N(A− λjI). Then

Ax =
∑
j∈Λ

mj∑
i=1

λj〈x, u(j)
i 〉u(j)

i ∀x ∈ X,

and

A =
∑
j∈Λ

λjPj .

Moreover ∪j∈Λ{{u(j)
1 , . . . , u

(j)
mj} is an orthonormal basis of N(A)⊥.



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

Basic Results from Functional Analysis 51

From Theorem 2.27 we see that if A is a compact self adjoint operator
on a Hilbert space then there exists a sequence (µn) of scalars and an
orthonormal set {un : n ∈ N} in X satisfying

Ax =
∞∑

n=1

µn〈x, un〉un ∀x ∈ X. (2.13)

From the above representation of A, it follows that, for every polynomial
p,

p(A)x =
∞∑

n=1

p(µn)〈x, un〉un, x ∈ X,

and hence, using the definition (2.11), it can be verified that for every
continuous real valued function f on [a, b],

f(A)x =
∞∑

n=1

f(µn)〈x, un〉un, x ∈ X. (2.14)

Exercise 2.7. Let A be as in (2.13). Then, for every continuous real valued
function f defined on [a, b] ⊇ cl{µn : n ∈ N}, f(A) given in (2.14) is a
compact self adjoint operator. Why?

2.3.6 Singular value representation

One may ask whether a representation similar to (2.13) is possible if A is a
compact operator which is not a self adjoint. There are compact operators
having no nonzero eigenvalues. Therefore, a representation as in (2.13), in
terms of eigenvalues, is not possible for a general compact operator. But
we do obtain a representation in terms of singular values of A.

We have observed in Theorem 2.5 that if A,B ∈ B(X) and one of them
is compact, then their products, AB and BA, are also compact operators.
Therefore, for any compact operator T on a Hilbert space X, the operators
T ∗T and TT ∗ are also compact. Moreover they are self adjoint operators.
Since T ∗T is also a positive operator, there exist non-negative scalars σn

and orthonormal basis {un : n ∈ N} for N(T ∗T )⊥ such that

T ∗Tx =
∞∑

n=1

σ2
n〈x, un〉un ∀x ∈ X. (2.15)

Note that

T ∗Tun = σ2
nun, n ∈ N.
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The scalars σn, n ∈ N, are called the singular values of the compact
operator T . Let vn = Tun/σn for n ∈ N. Then we see that

Tun = σnvn and T ∗vn = σnun

for every n = 1, 2, . . .. The set {(σn, un, vn) : n ∈ N} is called a singular
system for the compact operator T .

Theorem 2.28. Let T : X → Y be a compact operator between Hilbert
spaces X and Y and {(σn, un, vn) : n ∈ N} be a singular system for T .
Then {un : n ∈ N} and {vn : n ∈ N} are orthonormal bases of N(T )⊥ and
clR(T ) respectively, and for x ∈ X and y ∈ Y ,

Tx =
∞∑

n=1

σn〈x, un〉vn, T ∗y =
∑

n

σn〈y, vn〉un. (2.16)

Proof. Recall that {un : n ∈ N} is an orthonormal basis of N(T ∗T )⊥.
Also, we have N(T ∗T )⊥ = N(T )⊥. Thus {un : n ∈ N} is an orthonormal
basis of N(T )⊥.

Now, to show that {vn : n ∈ N} is an orthonormal basis of clR(T ), it is
enough (Why ?) to show that

y ∈ R(T ), 〈y, vn〉 = 0 ∀n ∈ N =⇒ y = 0.
So, let y ∈ R(T ) such that 〈y, vn〉 = 0 for all n ∈ N. Let x ∈ N(T )⊥ be
such that y = Tx. Then, for all n ∈ N, we have

〈y, vn〉 = 〈Tx, vn〉 = 〈x, T ∗vn〉 = 〈x, σnun〉 = σn〈x, un〉.
Thus, 〈x, un〉 = 0 for every n ∈ N. Since {un : n ∈ N} is an orthonormal
basis of N(T )⊥, it follows that x = 0 so that y = 0. Since {vn : n ∈ N} is
an orthonormal basis of clR(T ), and since for x ∈ X,

〈Tx, vn〉 = 〈x, T ∗vn〉 = σn〈x, un〉 ∀n ∈ N
we have, by Fourier expansion (Theorem 2.3),

Tx =
∞∑

n=1

〈Tx, vn〉vn =
∞∑

n=1

σn〈x, un〉vn.

Also, since {un : n ∈ N} is an orthonormal basis of N(T )⊥ and R(T ∗) ⊆
N(T )⊥, for y ∈ Y , we have

T ∗y =
∞∑

n=1

〈T ∗y, un〉vn =
∞∑

n=1

σn〈y, vn〉un.

This completes the proof. �

The representation of T in (2.16) is called the singular value repre-
sentation of T .

If X and Y are Euclidean spaces, then the representation of T in (2.16)
is nothing but the singular value decomposition of T .
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2.3.7 Spectral theorem for self adjoint operators

Now we take up the case when A ∈ B(X) is a self adjoint operator, but not
necessarily a compact operator. In this case also we have a representation
theorem, but not in terms of sums but in terms of integrals (cf. [51], Section
13.3).

As earlier, for a self adjoint operator A, let us denote

αA = inf w(A) and βA = supw(A),

where w(A) is the numerical range of A.

Theorem 2.29. Let X be a Hilbert space and A ∈ B(X) be a self adjoint
operator. Then there exists a family {Eλ : a ≤ λ ≤ b} of orthogonal
projections with a = αA and b = βA such that Ea = O, Eb = I, Eλ ≤ Eµ

whenever a ≤ λ ≤ µ ≤ b, Eλ+1/nx→ Eλx as n→∞ for every x ∈ X and
a < λ < b, and

A =
∫ b

a

λdEλ. (2.17)

Moreover, for every real valued f ∈ C[a, b],

f(A) :=
∫ b

a

f(λ)dEλ (2.18)

is a self adjoint operator on X, and

〈f(A)x, y〉 :=
∫ b

a

f(λ)d〈Eλx, y〉 ∀x, y ∈ X. (2.19)

In particular,

‖f(A)x‖2 =
∫ b

a

|f(λ)|2d〈Eλx, x〉 ∀x ∈ X. (2.20)

The family {Eλ : αA ≤ λ ≤ βA} of projections in Theorem 2.29 is called
the normalized resolution of identity corresponding to A, and the in-
tegral representation (2.17) of A is called the spectral representation of
A. The integrals in (2.18) and (2.19) are in the sense of Riemann-Stieltjes.
For instance, f(A) in (2.18) is defined as follows: For every ε > 0, there
exists a δ > 0 such that∥∥∥f(A)−

n∑
j=1

f(τ (n)
j )(E

λ
(n)
j
− E

λ
(n)
j−1

)
∥∥∥ < ε

whenever

αA = λ
(n)
0 ≤ λ

(n)
1 ≤ . . . ≤ λ(n)

n = βA, τ
(n)
j ∈ [λ(n)

j−1, λ
(n)
j ], j = 1, . . . , n



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

54 Linear Operator Equations: Approximation and Regularization

and

max
1≤j≤n

(λ(n)
j − λ

(n)
j−1) < δ.

It can be shown that the operator f(A) defined above is the same as the
one defined in (2.11), so that

‖f(A)‖ ≤ sup{|f(λ)| : αA ≤ λ ≤ βA}. (2.21)

We end this chapter here. Additional results from functional analysis
and basic operator theory will be recalled from standard texts as and when
necessary.

PROBLEMS

(1) Let X be a linear space and Y be a normed linear space. If T : X → Y

is an injective linear operator, then show that ‖x‖ := ‖Tx‖Y , x ∈ X,
defines a norm on X.

(2) Let ‖ · ‖ and ‖ · ‖∗ be norms on a linear space X such that there exist
c1 > 0, c2 > 0 such that c1‖x‖ ≤ ‖x‖∗ ≤ c2‖x‖ for all x ∈ X. Show
that X is a Banach space with respect to ‖ · ‖ if and only if X is a
Banach space with respect to ‖ · ‖∗ as well.

(3) Let X be an inner product space and S ⊆ X. Show that S⊥ is a closed
subspace of X and S ∩ S⊥ ⊆ {0}.

(4) Show that every orthogonal set which does not contain the zero vector
is linearly independent.

(5) Show that an orthonormal subset E of an inner product space is an
orthonormal basis if and only if E⊥ = {0}.

(6) Suppose X and Y are normed linear spaces, T : X → Y be a linear
operator and S := {x ∈ X : ‖x‖ = 1}. Show that T is continuous if
and only if F : S → Y defined by F (x) = Tx, x ∈ S, is a bounded
function.

(7) Let X and Y be normed linear spaces and T : X → Y be a linear
operator. If T is an open map, then show that T is onto.

(8) Let X and Y be normed linear spaces and T : X → Y be a linear
operator. If there exist c ≥ 0 and a nonzero vector x0 ∈ X such
that ‖Tx‖ ≤ c‖x‖ for all x ∈ X and ‖Tx0‖ = c‖x0‖, then show that
T ∈ B(X,Y ) and ‖T‖ = c.
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(9) Let X be an inner product space, u ∈ X and f : X → K be defined
by f(x) = 〈x, u〉, x ∈ X. Show that f is a continuous linear functional
and ‖f‖ = ‖u‖.

(10) Let (aij) be an m×n matrix of scalars and let T : Kn → Km be defined
by

(Tx)(i) =
n∑

j=1

aijx(j), x ∈ Kn, i = 1, . . . ,m.

Let a := maxj

∑m
i=1 |aij | and b := maxi

∑n
j=1 |aij |. Find nonzero

vectors u0, v0 in Kn such that ‖u0‖1 = 1 = ‖v0‖∞ and ‖Tu0‖1 =
a ‖u0‖1 and ‖Tv0‖∞ = b ‖v0‖∞.

(11) Let T and f be as in Example 2.8. Find nonzero u and v in C[a, b]
such that ‖Tu‖ = ‖u‖∞ and |f(v)| = ‖v‖∞.

(12) Show that there does not exist a constant c > 0 such that ‖x‖∞ ≤ c‖x‖2
for all x ∈ C[a, b].

(13) If the space X is an inner product space and {u1, . . . , un} is an
orthonormal subset of X, then show that P : X → X defined
by Px =

∑n
j=1〈x, uj〉uj , x ∈ X, is an orthogonal projection with

R(P ) = span {u1, . . . , un}.
(14) Let X and Y be inner product spaces and A : X → Y and B : Y → X

be linear operators such that 〈Ax, y〉 = 〈x,By〉 for all x ∈ X, y ∈ Y .
Show that A ∈ B(X,Y ) if and only if B ∈ B(Y,X).

(15) LetX and Y be Hilbert spaces and T : X → Y be a linear operator such
that 〈Tx, y〉 = 〈x, Ty〉 for all x ∈ X, y ∈ Y . Show that T ∈ B(X,Y ).
Hint: Show that T is a closed operator.

(16) Give a direct proof for Proposition 2.11, without using Propositions 2.6
and 2.4.

(17) Let X and Y be normed linear spaces and T : X → Y be a linear
operator. Show that T is bounded below if and only if

γ := inf{‖Tx‖ : ‖x‖ = 1} > 0,

and in that case, the norm of T−1 : R(T ) → X is 1/γ.
(18) Let X and Y be a normed linear space, T ∈ B(X,Y ). Show that T

is not bounded below if and only if there exists (xn) in X0 such that
‖xn‖ = 1 for all n ∈ N and ‖Txn‖ → 0 as n→∞.

(19) Let X be a Banach space and let G(X) be the set of all bijective
operators in B(X). Show that, if A ∈ G(X), then

{B ∈ B(X) : ‖A−B‖ ≤ 1/‖A−1‖} ⊆ G(X).
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(20) Let X be a Banach space. Show that {T ∈ B(X) : 0 ∈ σ(T )} is a closed
subset of B(X).

(21) If T ∈ K(X) and X is infinite dimensional, then show that 0 ∈ σa(T ).
(22) Let X be a Hilbert space and T ∈ B(X) be a normal operator. Show

that ‖Tx‖ = ‖T ∗x‖ for all x ∈ X.
(23) For u ∈ C[a, b], let (Ax)(t) = u(t)x(t) for x ∈ L2[a, b] and t ∈ [a, b].

Show that A is a normal operator on L2[a, b]. Taking X to be either
C[a, b] with ‖ · ‖∞ or L2[a, b], show that σ(A) = [a, b]. (Hint: Show
that, for λ ∈ K, A− λI is bounded below if and only if λ 6∈ [a, b].)

(24) Justify: Let X and Y be Hilbert spaces and T ∈ K(X,Y ). Then there
exists a sequence (Tn) of finite rank operators in B(X,Y ) such that
‖T − Tn‖ → 0 as n→∞. (Hint: Use singular value representation.)
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Chapter 3

Well-Posed Equations and Their
Approximations

3.1 Introduction

In this chapter we consider the problem of approximately solving the oper-
ator equation

Tx = y, (3.1)

where T : X → Y is a bounded linear operator between normed linear
spaces X and Y , and y ∈ Y .

We shall assume that (3.1) is well-posed, that is, T is bijective and
T−1 : Y → X is continuous. Thus, for every y ∈ Y , there exists a unique
x ∈ X such that (3.1) is satisfied, and small perturbations in y lead only to
small variations in the corresponding solution. Recall from Theorem 2.15
that if X and Y are Banach spaces, then continuity of T−1 is a consequence
of the bijectivity of T .

By an approximation method for obtaining approximate solutions
for (3.1) we mean a countable family

A := {(Xn, Yn, Tn, yn) : n ∈ N}

of quadruples, where, for each n ∈ N, Xn and Yn are subspaces of X and Y ,
respectively, and Tn : Xn → Yn is a bounded linear operator and yn ∈ Yn.
We say that such a method is convergent if there exists N ∈ N such that
for every n ≥ N , the equation

Tnxn = yn (3.2)

is uniquely solvable and (xn) converges to a solution x of equation (3.1).
Once we have a convergent method, one would also like to obtain estimates
for the error ‖x− xn‖ for n ≥ N which would enable us to infer the rate of
convergence of (xn).

57
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In applications, the space Xn may be finite dimensional which is close
to X in some sense for large enough n ∈ N. Then the problem of solving
equation (3.2) is reduced to that of solving a system of linear equations
involving scalar variables. Let us see how it happens.

Suppose Xn is a finite dimensional subspace with dim (Xn) = kn. Let
{u1, . . . , ukn

} be a basis of Xn. Since every solution xn ∈ Xn of equation
(3.2), if exists, is of the form

xn =
kn∑

j=1

αjuj (3.3)

for some scalars α1, . . . , αkn , the problem of solving (3.2) is equivalent to
the problem of finding scalars αj , j = 1, . . . , kn, such that

kn∑
j=1

αjTnuj = yn.

Obviously, for the above problem to have a solution, it is necessary that
yn lie in Tn(Xn). Without loss of generality, assume that Yn := Tn(Xn)
and yn ∈ Yn. Let `n := dim (Yn), and let {v1, . . . , v`n} be a basis of Yn.
Then there exist scalars β1, . . . β`n

such that yn =
∑`n

i=1 βivi. Let aij be
the kn × `n matrix of scalars such that

Tnuj =
`n∑

i=1

aijvi, j = 1, . . . , kn.

Thus, if xn in (3.3) is a solution of equation (3.2), then α1, . . . , αkn satisfy
the system of equations

kn∑
j=1

aijαj = βi, i = 1, . . . , `n. (3.4)

Conversely, if α1, . . . , αkn
are scalars such that (3.4) is satisfied, then it is

seen that

xn :=
kn∑

j=1

αjuj

satisfies equation (3.2).

Exercise 3.1. Justify the last two statements.
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We know that if X is infinite dimensional and T is a compact operator,
then T does not have a continuous inverse (cf. Corollary 2.1). Consequently,
for a compact operator T defined on an infinite dimensional normed linear
space, the operator equation (3.1) is ill-posed.

We note that if X is a Banach space and T is of the form T := λI −A

with A ∈ B(X) and λ is a known scalar, then equation (3.1),

λx−Ax = y, (3.5)

is well-posed if and only if λ 6∈ σ(A).

Operator equation of the form (3.1) in which T does not have a con-
tinuous inverse is usually called an equation of the first kind, and a
well-posed equation of the form (3.5) is called an equation of the sec-
ond kind. Major part of this chapter is devoted to the study of operator
equations of the second kind.

Recall that, for a compact operator A on a Banach space, the spectrum
is a countable set, and 0 is the only possible limit point of the spectrum,
so that outside every open neighbourhood of the origin of K, there can be
only a finite number of spectral values which are in fact eigenvalues (see
Section 2.3.3). Thus, if λ is a nonzero scalar which is not an eigenvalue of
a compact operator A on a Banach space, then the operator equation (3.5)
is well-posed.

In order to obtain approximate solutions for a second kind operator
equation (3.5), we may approximate A by a sequence (An) in B(X). Thus,
in place of equation (3.2), we have

λxn −Anxn = yn. (3.6)

In applications, usually the operators An are of finite rank. But, Tn =
λI −An is not of finite rank if the space X is infinite dimensional. In this
special case, we now present an alternate way of obtaining approximate
solutions as follows:

Suppose that An ∈ B(X) is of finite rank. Let R(An) be spanned by
{v1, . . . , vkn

}. Then, we know (cf. Section 2.1.3) that there exist continuous
linear functionals f1, . . . , fkn on X such that

Anx =
kn∑

j=1

fj(x)vj ∀x ∈ X.

Thus, a solution xn of (3.6), if exists, satisfies the equation

xn =
1
λ

(yn +Anxn) =
1
λ

[
yn +

kn∑
j=1

fj(xn)vj

]
.



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

60 Linear Operator Equations: Approximation and Regularization

On applying fi to the above equation, we obtain

fi(xn) =
1
λ

[
fi(yn) +

kn∑
j=1

fj(xn)fi(vj)
]
,

showing that the scalars αj := fj(xn), j = 1, . . . , kn, satisfy the system of
equations

λαi −
kn∑

j=1

κijαj = γi, i = 1, . . . , kn, (3.7)

where

κij = fi(vj), γi = fi(yn)

for i, j = 1, . . . , kn. Conversely, if scalars α1, . . . , αkn satisfy (3.7), then

xn :=
1
λ

[
yn +

kn∑
j=1

αjvj

]
is a solution of (3.6). Indeed,

fi(xn) =
1
λ

[
fi(yn) +

kn∑
j=1

αjfi(vj)
]

=
1
λ

[
γi +

kn∑
j=1

κijαj

]
= αi

so that

xn :=
1
λ

[
yn +

kn∑
j=1

fj(xn)vj

]
=

1
λ

(yn +Anxn).

NOTE: In the above discussion, the scalars αj , βj and vectors uj , vj

would depend on n, and hence, strictly speaking, we should have written
α

(n)
j , β

(n)
j , u

(n)
j , v

(n)
j in place of αj , βj , uj , vj . We avoided the superscripts

to make the exposition less cumbersome.

3.2 Convergence and Error Estimates

Consider an approximation method

A := {(Xn, Yn, Tn, yn) : n ∈ N}

for (3.1). We assume that X and Y are Banach spaces, T ∈ B(X), and for
each n ∈ N, Xn and Yn are closed subspaces of X and Y , respectively.

A natural way the sequence (yn) in Y can be an approximation of y ∈ Y
is to have the convergence

‖y − yn‖ → 0 as n→∞.
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But the sequence (Tn) has to be an approximation of T in such a way that
equation (3.2) is uniquely solvable for all large enough n and the sequence
(xn) converges to x as n → ∞, where Tx = y. Also, we would like to get
error estimates in terms of Tn and yn. In this regard, we introduce the
following definition:

A sequence (Tn) in B(X,Y ) is said to be stable with a stability index
or simply an index N ∈ N, if

(a) (‖Tn‖) is bounded,
(b) Tn is bijective for all n ≥ N , and
(c) {‖T−1

n ‖ : n ≥ N} is bounded.

For analogous definitions of stability of a sequence of operators, one may
see Chatelin [10] and Prössdorf and Silbermann [64].

First we shall consider the case of Xn = X and Yn = Y for all n ∈ N.
Thus, the method under consideration is

A0 := {(X,Y, Tn, yn) : n ∈ N}.
The following proposition essentially specifies conditions on (Tn) which

ensures well-posedness of (3.1).

Proposition 3.1. Suppose there exists N ∈ N such that Tn is invertible in
B(X,Y ) for all n ≥ N and ‖(T − Tn)x‖ → 0 as n → ∞ for every x ∈ X.
Then the following hold:

(i) If {‖T−1
n ‖}n≥N is bounded, then T is injective.

(ii) If y ∈ Y is such that (T−1
n y) converges, then y ∈ R(T ).

In particular, if (Tn) is stable, ‖(T −Tn)x‖ → 0 as n→∞ for every x ∈ X
and (T−1

n y) converges for every y ∈ Y , then (3.1) is well-posed.

Proof. (i) Suppose {‖T−1
n ‖}n≥N is bounded, say ‖T−1

n ‖ ≤ c for all n ≥
N . Let x ∈ X be such that Tx = 0. Then, for all n ≥ N ,

‖x‖ = ‖T−1
n Tnx‖ = ‖T−1

n (Tn − T )x‖ ≤ c‖(Tn − T )x‖ → 0

as n→∞. Hence, x = 0.
(ii) Since ‖(T−Tn)x‖ → 0 for every x ∈ X, as a consequence of Uniform

Boundedness Principle, there exists b > 0 such that ‖Tn‖ ≤ b for all n ∈ N.
Let y ∈ Y be such that (T−1

n y) converges, say x := limn→∞ T−1
n y. Note

that

‖y − Tnx‖ = ‖Tn(T−1
n y − x)‖ ≤ b‖T−1

n y − x‖ → 0 as n→∞.
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Hence,

‖y − Tx‖ ≤ ‖y − Tnx‖+ ‖(Tn − T )x‖ → 0 as n→∞.

Therefore, y = Tx.
The particular case is obvious. �

We may observe that if xn is a solution of (3.2), then for any x ∈ X,

Tn(x− xn) = Tnx− yn. (3.8)

Now, we prove a theorem on convergence and error estimates.

Theorem 3.1. Suppose (Tn) is stable with index N ∈ N. Let xn be the
unique solution of (3.2) for n ≥ N. Then for any x ∈ X,

c1‖Tnx− yn‖ ≤ ‖x− xn‖ ≤ c2‖Tnx− yn‖, (3.9)

where c1 and c2 are positive real numbers such that

‖Tn‖ ≤ 1/c1 and ‖T−1
n ‖ ≤ c2 ∀n ≥ N.

If, in addition, x ∈ X and y ∈ Y are such that

αn := ‖(T − Tn)x+ (yn − y)‖ → 0 as n→∞,

then

xn → x ⇐⇒ Tx = y,

and in that case, αn = ‖Tnx− yn‖.

Proof. Let n ≥ N . Then, from (3.8), we have

‖x− xn‖ = ‖T−1
n (Tnx− yn)‖ ≤ ‖T−1

n ‖ ‖Tnx− yn‖,

‖Tnx− yn‖ = ‖Tn(x− xn)‖ ≤ ‖Tn‖ ‖x− xn‖

so that
‖Tnx− yn‖

‖Tn‖
≤ ‖x− xn‖ ≤ ‖T−1

n ‖ ‖Tnx− yn‖.

From this, we obtain (3.9). The inequalities in (3.9) imply that

xn → x ⇐⇒ ‖Tnx− yn‖ → 0.

Further, we observe that

αn → 0 ⇐⇒ Tnx− yn → Tx− y.

The assumption αn → 0 together with the above two equivalence imply
that xn → x if and only if Tx = y, and in that case, αn = ‖Tnx− yn‖. �
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A particular case of Theorem 3.1 is worth stating as a corollary.

Corollary 3.1. Suppose T is bijective and (Tn) is stable with index N ∈ N.
Let x be the solution of (3.1) and xn be the solution of (3.2) for n ≥ N .
Suppose further that

yn → y and (T − Tn)x→ 0 as n→∞.

Then αn := ‖Tnx− yn‖ → 0 as n→∞ and

c1αn ≤ ‖x− xn‖ ≤ c2αn ∀n ≥ N,

where c1 and c2 are positive real numbers such that ‖Tn‖ ≤ 1/c1 and
‖T−1

n ‖ ≤ c2 for all n ≥ N . In particular, xn → x as n→∞.

Exercise 3.2. Write details of the proof of Corollary 3.1.

Remark 3.1. In applications, xn may be obtained as a result of computa-
tion and x may be unknown. Hence, in Theorem 3.1 and in Corollary 3.1,
the quantity αn is of a priori nature as it involves the ‘unknown’ x. If T is
invertible, then from the relation

T (xn − x) = Txn − y,

we obtain
1
‖T‖

βn ≤ ‖x− xn‖ ≤ ‖T−1‖βn, (3.10)

where βn := ‖Txn − y‖. Note that the quantity βn can be thought of as
computational as it is in terms of known quantities. Thus, combining (3.9)
and (3.10), we have

κ1 max{αn, βn} ≤ ‖x− xn‖ ≤ κ2 min{αn, βn}
where

κ1 = min{c1, ‖T‖−1} and κ2 = max{c2, ‖T−1‖}.
Since

αn := ‖Tnx− yn‖ ≤ ‖(T − Tn)x‖+ ‖yn − y‖,

βn := ‖Txn − y‖ ≤ ‖(T − Tn)xn‖+ ‖yn − y‖,
we have

‖x− xn‖ ≤ κ2εn,

where

εn := ‖y − yn‖+ min{‖(T − Tn)x‖, ‖(T − Tn)xn‖}.
Thus, the quality of the approximation (xn) can be inferred from the quality
of the approximations (yn) and (Tn). We shall elaborate this point at a
later context. ♦
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NOTATION: For sequences (an) and (bn) of positive reals such that
an → 0 and bn → 0 as n→∞, we shall use the notation

an = O(bn)

to mean that there exist κ > 0 and N ∈ N such that

an ≤ κ bn ∀n ≥ N.

If an = O(bn) and bn = O(an), then we shall write

an ≈ bn.

We shall use c1, c2, etc., for generic positive constants which may take
different values at different contexts, but independent of n.

Now, we consider the case, where the spaces Xn and Yn need not be
equal to X and Y , respectively. So, for each n ∈ N, let Tn ∈ B(Xn, Yn)
and yn ∈ Yn. We would like to have sufficient conditions under which (3.2)
is uniquely solvable for all large enough n, say for n ≥ N and xn → x as
n → ∞, where x is the unique solution of (3.1). One would also like to
obtain estimates for the error ‖x− xn‖ for n ≥ N . In order to do this, we
first assume that there exists a sequence (Pn) of projections in B(X) such
that R(Pn) = Xn, n ∈ N. We may recall from Sections 2.2.3 and 2.2.4 that
existence of a continuous projection onto Xn is guaranteed if either Xn is
finite dimensional or if X is a Hilbert space and Xn is a closed subspace.
A specific example of such a projection when X = C[a, b] is considered in
Section 3.4.1.

Theorem 3.2. Assume that (Tn) is stable with index N and let xn be the
solution of (3.2) for all n ≥ N . Then for any x ∈ X,

‖x− xn‖ ≤ ‖x− Pnx‖+ c‖TnPnx− yn‖, (3.11)

where c ≥ ‖T−1
n ‖ for all n ≥ N . Further, if x ∈ X and y ∈ Y are such that

α̃n := ‖(TnPn − T )x+ (y − yn)‖ → 0

and Pnx→ x as n→∞, then

xn → x ⇐⇒ Tx = y,

and in that case, α̃n = ‖TnPnx− yn‖.

Proof. For x ∈ X, we have

x− xn = (x− Pnx) + T−1
n (TnPnx− yn). (3.12)
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From this, the estimate in (3.11) follows.
Next assume that α̃n := ‖(TnPn − T )x + (y − yn)‖ → 0 and Pnx → x

as n→∞ for some x ∈ X, y ∈ Y . Then

TnPnx− yn → Tx− y as n→∞.

Therefore, (3.12) together with boundedness of the sequences (‖Tn‖) and
(‖T−1

n ‖)n≥N imply that xn → x if and only if Tx = y, and in that case,
α̃n = ‖TnPnx− yn‖. �

Now, analogous to Corollary 3.1 we have the following result.

Corollary 3.2. Suppose T is bijective and (Tn) is stable with index N . Let
x be the solution of (3.1) and xn be the solution of (3.2) for all n ≥ N .
Suppose further that

yn → y, Pnx→ x, (TnPn − T )x→ 0

as n→∞. Then

‖x− xn‖ ≤ ‖x− Pnx‖+ c‖TnPnx− yn‖,

where c > 0 is such that ‖T−1
n ‖ ≤ c for all n ≥ N . In particular,

xn → x as n→∞.

Exercise 3.3. Write details of the proof of Corollary 3.2.

3.3 Conditions for Stability

In this section we discuss some sufficient conditions on the approximation
properties of the sequence (Tn) of operators which ensure its stability when
X = X and Yn = Y . A simplest assumption that one may impose on (Tn)
would be to have pointwise convergence, that is, for each x ∈ X,

‖Tx− Tnx‖ → 0 as n→∞,

and in that case, we also say that (Tn) is a pointwise approximation of
T , and write Tn → T pointwise.

We may observe that, if (Tn) is a pointwise approximation of T , then
by Banach Steinhaus theorem (Theorem 2.11), the sequence (‖Tn‖) is
bounded.

Example 3.1. Suppose T ∈ B(X,Y ), and (Pn) and (Qn) are projection
operators in B(X) and B(Y ), such that for each x ∈ X and y ∈ R(T ),

Pnx→ x and Qny → y as n→∞.
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Then we have

‖TPnx− Tx‖ = ‖T (Pnx− x)‖ ≤ ‖T‖ ‖Pnx− x‖ → 0,

and

‖QnTx− Tx‖ → 0

as n→∞ for every x ∈ X. Thus, (TPn) and (QnT ) are pointwise approx-
imations of T .

Suppose, in addition, (‖Qn‖) is bounded. Then we have

‖QnTPnx− Tx‖ ≤ ‖Qn(TPnx− Tx)‖+ ‖QnTx− Tx‖
≤ ‖Qn‖ ‖TPnx− Tx‖+ ‖QnTx− Tx‖
→ 0

as n→∞ for every x ∈ X. Thus, in this case, (QnTPn) is also a pointwise
approximation of T . ♦

Exercise 3.4. Let X be a separable Hilbert space and {un : n ∈ N} be an
orthonormal basis of X. For n ∈ N, let

Pnx =
n∑

i=1

〈x, ui〉ui, x ∈ X.

Prove that
(i) Pn is an orthogonal projection for each n ∈ N, and
(ii) ‖Pnx− x‖ → 0 as n→∞ for each x ∈ X.

Pointwise approximation is, in fact, too weak to satisfy even well-
posedness of the approximating equation. For example, suppose (Pn) is
a sequence of projection operators in B(X) such that Pnx → x as n → ∞
for each x ∈ X. Then it is obvious that equation (3.2) is not well-posed
with Tn = Pn, unless Pn = I.

So we are looking for stronger approximation properties for (Tn) which
guarantee solvability of (3.2) and convergence of (xn) to x.

3.3.1 Norm approximation

A sequence (Tn) in B(X,Y ) is called a norm approximation of T if

‖T − Tn‖ → 0 as n→∞.

If (Tn) is a norm approximation of T , then we may also say that (Tn)
converges to T in norm, and write Tn → T in norm.
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Remark 3.2. We may observe that if T : X → X is of the form λI − A

for some nonzero scalar, and if (An) in B(X) is a norm approximation of
A ∈ B(X), then taking Tn : λI −An, we have

‖T − Tn‖ = ‖A−An‖ → 0

as n→∞. ♦

Theorem 3.3. Suppose T is bijective and (Tn) is a norm approximation
of T . Then (Tn) is stable.

Proof. For n ∈ N, let Tn = T + En, where En = Tn − T . By hypothesis
‖EnT

−1‖ → 0 as n → ∞. Let N ∈ N be such that ‖EnT
−1‖ ≤ 1/2 for all

n ≥ N . Then, by Corollary 2.13, Tn is bijective and

‖T−1
n ‖ ≤ ‖T−1‖

1− ‖EnT−1‖
≤ 2‖T−1‖ (3.13)

for all n ≥ N . Thus, (Tn) is stable. �

Let us state explicitly the implication of the above theorem for the
operator equation (3.1) which follows from Corollary 3.2.

Corollary 3.3. Suppose T is bijective and (Tn) is a norm approximation
of T . Then there exists N ∈ N such that (3.2) is uniquely solvable for all
n ≥ N , and

‖x− xn‖ ≤ c‖(T − Tn)x‖+ ‖y − yn‖ ∀n ≥ N,

where c is a positive number and x and xn are the solutions of (3.1) and
(3.2) respectively. In particular, if yn → y as n→∞, then

xn → x as n→∞.

Example 3.2. Suppose Pn ∈ B(X) and Qn ∈ B(Y ) are projection opera-
tors such that Pnx→ x and Qny → y as n→∞ for each x ∈ X and y ∈ Y .
Let K : X → X be a compact operator. Then by Theorem 2.13,

‖QnK −K‖ → 0 as n→∞.

Thus, (QnK) is a norm approximations of K.
Now, suppose X and Y are Hilbert spaces, and (Pn) is a sequence of

orthogonal projections. Then by compactness of K∗, the adjoint of K, we
have

‖KPn −K‖ = ‖PnK
∗ −K∗‖ → 0.
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Hence, by the boundedness of (‖Qn‖) (cf. Theorem 2.11), we also have

‖QnKPn −K‖ ≤ ‖Qn(KPn −K)‖+ ‖QnK −K‖
≤ ‖Qn‖ ‖KPn −K‖+ ‖QnK −K‖
→ 0

as n→∞. Thus, in this case, (KPn) and (QnKPn) are also norm approx-
imations of K.

Next, suppose that X = Y ,

T = λI −K and Tn : λI −Kn,

where λ is a nonzero scalar and Kn belongs to {QnK, KPn, QnKPn}. By
Remark 3.2, it follows that (Tn) is a norm approximation of T if Kn = QnK

or if X is a Hilbert space, Pn are orthogonal projections and Kn belongs
to {KPn, QnKPn}. ♦

Remark 3.3. (a) Recall that if P is a projection, then I − P is also a
projection. Hence, ‖I − P‖ ≥ 1 whenever P 6= I. Thus, if (Pn) is a
sequence of projections such that Pn 6= I for infinitely many n, then (Pn)
cannot be a norm approximation of I.

(b) Suppose T ∈ B(X,Y ) is invertible, and (Pn) and (Qn) are sequences
of (non-identity) projections in B(X) and B(Y ) respectively. Then neither
(QnT ) nor (TPn) is a norm approximation of T . ♦

Exercise 3.5. Justify the last statement in Remark 3.3(b).

Example 3.3. Consider the integral operator K defined by

(Kx)(s) =
∫ b

a

k(s, t)x(t)dt, a ≤ s ≤ b, x ∈ C[a, b], (3.14)

where k(·, ·) ∈ C([a, b]× [a, b]). Then we know (See Examples 2.9 and 2.16)
that K : C[a, b] → C[a, b] is a compact operator on C[a, b] with ‖ · ‖∞, and

‖K‖ ≤ sup
a≤s≤b

∫ b

a

|k(s, t)|dt.

For each n ∈ N, let kn(·, ·) be a continuous function such that

sup
a≤s≤b

∫ b

a

|k(s, t)− kn(s, t)|dt→ 0
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as n→∞. Note that the above condition of convergence is satisfied if, for
example, kn(·, ·) is such that

sup
s,t∈[a,b]

|k(s, t)− kn(s, t)| → 0 as n→∞.

We know that Weierstrass approximation theorem guarantees the existence
of such a sequence (kn(·, ·)) for every continuous k(·, ·). Now, we define
Kn : C[a, b] → C[a, b] by

(Knx)(s) =
∫ b

a

kn(s, t)x(t)dt, a ≤ s ≤ b, x ∈ C[a, b].

Then it follows that

‖K −Kn‖ ≤ sup
a≤s≤b

∫ b

a

|k(s, t)− kn(s, t)|dt→ 0

as n → ∞. Thus, (Kn) is a norm approximation of K. Hence, for any
nonzero scalar, if we take

T := λI −K and Tn := λI −Kn

then (Tn) is also a norm approximation of T . ♦

Example 3.4. Let K : X → Y be a compact operator of infinite rank,
where X and Y are Hilbert spaces. Consider the singular value represen-
tation

Kx =
∞∑

j=1

σj〈x, uj〉vj , x ∈ X

of T (see Theorem 2.28). Recall that {un : n ∈ N} and {vn : n ∈ N}
are orthonormal bases of N(K)⊥ and clR(K) respectively, and (σn) is a
sequence of positive real numbers such that σn → 0 as n→∞. Now, let

Knx =
n∑

j=1

σj〈x, uj〉vj , x ∈ X, n ∈ N.

Then, for every x ∈ X and for every n ∈ N, we have

‖(K −Kn)x‖2 =
∞∑

j=n+1

σ2
j |〈x, uj〉|2

≤ (max
j>n

σ2
j )‖x‖2.

Thus,
‖K −Kn‖ ≤ max

j>n
σj → 0 as n→∞.

Thus, (Kn) is a norm approximation of K. ♦

We shall see that, in certain standard numerical approximation proce-
dures, norm convergence is too strong to hold. In order to treat such cases,
in the next subsection, we shall consider a requirement on (Tn) which is
weaker than norm convergence.
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3.3.2 Norm-square approximation

Suppose T ∈ B(X,Y ) is bijective. Then a sequence (Tn) in B(X,Y ) is
called norm-square approximation of T if

‖[(T − Tn)T−1]2‖ → 0 as n→∞. (3.15)

If (Tn) is a norm-square approximation of T , we also say that (Tn) converges
to T in norm-square sense.

Clearly, norm convergence implies norm-square convergence. But, the
converse need not hold. The following two simple examples illustrate this.

Example 3.5. Let X = K2 with any norm, and let

A =
[

1 0
0 1

]
, B =

[
1 1
0 1

]
, C =

[
0 −1
0 0

]
.

Then we have

A−B = C and [(A−B)A−1]2 = C2 = 0.

Now, for n ∈ N, let T , Tn, E be the operators corresponding to the matrices
A, B, C and respectively. Then we have

T − Tn = E and [(T − Tn)T−1]2 = E2 = 0

for all n ∈ N. Thus, (Tn) is a norm-square approximation of T which is not
a norm approximation. ♦

Example 3.6. Let X = Y = `2, T = I and Tn := I − An, where An is
defined by

Anx = x(2)e1 +
x(n)
n

en, x ∈ `2.

Then we see

‖T − Tn‖ = ‖An‖ = 1 ∀n ∈ N,

whereas

‖[(T − Tn)T−1]2‖ = ‖A2
n‖ =

1
n2

→ 0 as n→∞.

Thus, (Tn) is a norm-square approximation of T which is not norm approx-
imation. ♦

In due course, we shall give examples of practical importance where we
do not have norm convergence, but have norm-square convergence.

Theorem 3.4. Suppose T is bijective, (Tn) is a norm-square approximation
of T and (‖Tn‖) is bounded. Then (Tn) is stable.
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Proof. For n ∈ N, let Tn = T +En, where En = Tn − T . Since (‖Tn‖) is
bounded, there exists c > 0 such that ‖EnT

−1‖ ≤ c for all n ∈ N. Also, the
hypothesis ‖

(
EnT

−1
)2 ‖ → 0 implies that there exists a positive integer N

such that

‖
(
EnT

−1
)2 ‖ ≤ 1/2 ∀n ≥ N.

Therefore, by Theorem 2.22, the operator Tn is bijective and

‖T−1
n ‖ ≤

‖T−1‖
(
1 + ‖EnT

−1‖
)

1− ‖ (EnT−1)2 ‖
≤ 2(1 + c)‖T−1‖ (3.16)

for all n ≥ N . Thus, (Tn) is stable. �

Exercise 3.6. Give one example each for the following:
(i) Norm-square approximation does not imply pointwise approxima-

tion.
(ii) Pointwise approximation does not imply norm-square approxima-

tion.

3.4 Projection Based Approximation

We have seen in Remark 3.3(b) that if T is invertible in B(X,Y ), and if (Pn)
and (Qn) are sequences of non-identity projection operators in B(X) and
B(Y ) respectively, then neither (QnT ) nor (TPn) can be a norm approxima-
tion of T . Thus, in order that (QnT ) or (TPn) to be a norm approximation,
it is necessary that T is not invertible in B(X,Y ). In fact, we have seen in
Example 3.2 that if Y is a Banach space, (Qn) is a sequence of projections
in B(Y ) such that Qn → I pointwise and K ∈ K(X,Y ), then (QnK) is a
norm approximations of K. We have also seen in Example 3.2 that if, in
addition, X and Y are Hilbert spaces, and (Pn) is a sequence of orthogo-
nal projections on X such that Pn → I pointwise, then both (KPn) and
(QnKPn) are norm approximations of K ∈ K(X,Y ).

In the following subsection, we shall discuss a special class of projections
on the space C[a, b] which will be used in later sections.

3.4.1 Interpolatory projections

Let t1, . . . , tN be distinct points in [a, b] and let X be the space C[a, b] or
B[a, b] (the space of all bounded functions on [a, b]). Let {u1, . . . , uN} be a
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set of functions in X such that

ui(tj) =
{

1 if i = j

0 if i 6= j
(3.17)

Then the operator P : X → X defined by

Px =
N∑

i=1

x(ti)ui, x ∈ X,

is a linear operator with R(P ) = span {u1, . . . , uN}. We note that, for every
x ∈ X,

(Px)(tj) = x(tj) ∀j ∈ {1, . . . , N}

so that P is a projection operator. This projection operator is called an
interpolatory projection associated with (ti, ui), i = 1, . . . , N .

Exercise 3.7. Show that the functions u1, . . . , uN considered above satisfy-
ing (3.17) are linearly independent, and the projection P is a bounded linear
operator on C[a, b] with respect to the norm ‖·‖∞ and ‖P‖ =

∑N
i=1 ‖ui‖∞.

A particular case of an interpolatory projection is the so-called La-
grange interpolatory projection in which

ui(t) = `i(t) :=
∏
j 6=i

t− tj
ti − tj

, t ∈ [a, b].

Note that each `i(t) above is a polynomial of degree N −1. For x ∈ C[a, b],
the polynomial

(Px)(t) :=
N∑

i=1

x(ti)`i(t), t ∈ [a, b],

is called the Lagrange interpolatory polynomial based on the nodes
t1, . . . , tN , which is the unique polynomial having the property (Px)(tj) =
x(tj), j = 1, . . . , N .

For n ∈ N, let t(n)
i ∈ [a, b] for i = 1, . . . , n be such that

a ≤ t
(n)
0 < t

(n)
1 < . . . < t(n)

n ≤ b

and

max{t(n)
j − t

(n)
j−1 : j = 1, . . . , n} → 0, as n→∞.

Let Pn be the Lagrange interpolatory projection based on the nodes t(n)
i ,

i = 1, . . . , n. One may ask if we have the convergence ‖Pnx− x‖∞ → 0 as
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n→∞ for every x ∈ C[a, b]. Unfortunately, this need not hold (cf. [6]; see
also, [51], Section 6.2).

Because of the above non-convergence result, it is useful to take piece-
wise polynomial interpolatory projections, that is, an interpolatory projec-
tion Pn such that for each x ∈ C[a, b], Pnx|(t(n)

i−1,t
(n)
i )

is a polynomial of
degree k, for i = 1, . . . , n, where

a = t
(n)
0 ≤ t

(n)
1 < t

(n)
2 < . . . ≤ t(n)

n ≤ b

is a partition of [a, b]. A simple example of such an interpolatory projection
is obtained by taking k = 1 as follows: For i = 2, . . . , n and t ∈ [t(n)

i−1, t
(n)
i ],

take the graph of Pnx to be the straight line segment joining the points
(t(n)

i−1, x(t
(n)
i−1)) and (t(n)

i , x(t(n)
i )), and on [a, t(n)

1 ] and [t(n)
n , b], define Pnx to

be the constants x(t(n)
1 ) and x(t(n)

n ), respectively. It can be seen that,

Pnx =
n∑

i=1

x(t(n)
i )u(n)

i , x ∈ C[a, b], (3.18)

where u(n)
i are the hat functions based on the nodes t(n)

1 , . . . , t
(n)
n , that is,

u
(n)
1 (t) =


1 if a ≤ t < t

(n)
1

t
(n)
2 − t

t
(n)
2 − t

(n)
1

if t(n)
1 ≤ t < t

(n)
2

0 if t(n)
2 ≤ t ≤ b,

u(n)
n (t) =


0 if a ≤ t < t

(n)
n−1

t
(n)
n − t

t
(n)
n − t

(n)
n−1

if t(n)
n−1 ≤ t < t

(n)
n

1 if t(n)
n ≤ t ≤ b

and for i = 2, . . . , n− 1,

u
(n)
i (t) =



0 if a ≤ t < t
(n)
i−1

t
(n)
i−1 − t)

t
(n)
i−1 − t

(n)
i

if t(n)
i−1 ≤ t < t

(n)
i

t
(n)
i+1 − t

t
(n)
i+1 − t

(n)
i

if t(n)
i ≤ t < t

(n)
i+1

0 if t(n)
i+1 ≤ t ≤ b

It can be shown that the sequence (Pn) of interpolatory projections
defined in (3.18) converges pointwise to the identity operator on C[a, b]
(see Problem 8).

For more examples of projections Pn such that ‖Pnx−x‖ → 0 as n→∞,
we refer the reader to Problem 9 and Limaye [38].



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

74 Linear Operator Equations: Approximation and Regularization

3.4.2 A projection based approximation

For n ∈ N, let Pn be an interpolatory projection on [a, b] based on the nodes
t
(n)
1 , . . . , t

(n)
n and functions u(n)

1 , . . . , u
(n)
n in C[a, b] satisfying the condition

(3.17), that is,

Pnx =
n∑

j=1

x(t(n)
j )u(n)

j , x ∈ C[a, b]. (3.19)

Let K be the integral operator in (3.14) with continuous kernel. Then, we
see that PnK is an integral operator,

(PnKx)(s) =
∫ b

a

kn(s, t)x(t) dt, x ∈ C[a, b], s ∈ [a, b],

with the kernel kn(s, t) is defined by

kn(s, t) =
n∑

j=1

k(t(n)
j , t)u(n)

j (s), s, t ∈ [a, b].

Note that the kernel kn(s, t) is a finite sum of products of functions of s
and t. Such a kernel is called a degenerate kernel on [a, b]. More precisely,
a function κ(·, ·) on [a, b] × [a, b] is said to be a degenerate kernel if it
can be written as

κ(s, t) =
m∑

j=1

φj(s)ψj(t), s, t ∈ [a, b],

for some functions φ1, . . . , φm, ψ1, . . . , ψm defined on [a, b].
In case of Pn → I pointwise on C[a, b] with respect to ‖ · ‖∞, then we

know by Theorem 2.13 that

‖K − PnK‖ → 0 as n→∞.

Exercise 3.8. In the above, if ‖x − Pnx‖∞ → 0 as n → ∞ for every x ∈
C[a, b], then show that

sup
a≤s≤b

∫ b

a

|k(s, t)− kn(s, t)|dt→ 0 as n→∞.

Hint: See Example 3.3.

Now, we show that (KPn) is not a norm approximation of K. First we
recall that K is a compact operator on C[a, b] with ‖ · ‖∞, and

‖K‖ = sup
a≤s≤b

∫ b

a

|k(s, t)|dt.
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Thus, using the continuity of the map s 7→
∫ b

a
|k(s, t)|dt, s ∈ [a, b], there

exists τ ∈ Ω such that

‖K‖ =
∫ b

a

|k(τ, t)|dt.

The following lemma will be used in due course.

Lemma 3.1. Let K be the integral operator in (3.14) with continuous
kernel k(·, ·). Let τ ∈ [a, b] be such that

∫
Ω
|k(τ, t)|dt = ‖K‖, and for

ε > 0, let Ωε ⊂ [a, b] and xε ∈ C[a, b] be such that

‖xε‖∞ ≤ 1, m(Ωε) < ε,

and for t 6∈ Ωε,

xε(t) =
{
|k(τ, t)|/k(τ, t) if k(τ, t) 6= 0
0 if k(τ, t) = 0,

where m(·) denotes the Lebesgue measure. Then

‖Kxε‖∞ → ‖K‖ as ε→ 0.

Proof. Taking Ω := [a, b] we have

|(Kxε)(τ)| = |
∫

Ω

k(τ, t)xε(t)dt|

≥
∫

Ω−Ωε

|k(τ, t)|dt− |
∫

Ωε

k(τ, t)xε(t)dt|

≥
∫

Ω−Ωε

|k(τ, t)|dt− ε max
s,t∈Ω

|k(s, t)|.

In particular,

‖K‖ ≥ ‖Kxε‖∞ ≥ |(Kxε)(τ)| ≥
∫

Ω−Ωε

|k(τ, t)|dt− ε max
s,t∈Ω

|k(s, t)|.

Using a continuous version of monotone convergence theorem (cf. [51]), it
follows that∫

Ω−Ωε

|k(τ, t)|dt→
∫

Ω

|k(τ, t)|dt = ‖K‖ as ε→ 0.

Hence,

‖K‖ ≥ lim
ε→0

‖Kxε‖∞ ≥ ‖K‖,

proving the required result. �
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Remark 3.4. It can be easily seen that for each ε > 0, set Ωε ⊂ [a, b]
and xε ∈ C[a, b] satisfying the requirements in Lemma 3.1 do exist. In the
situations where we shall make use of the above lemma, we have t(n)

i ∈ [a, b],
i = 1, . . . , n, for each n ∈ N, and Ωε and xε are to be chosen in such a way
that

t
(n)
i ∈ Ωε and xε(t

(n)
i ) = 0, i = 1, . . . , n.

It can be seen that Ωε ⊆ [a, b] and xε ∈ C[a, b] with the above additional
requirements also exist. ♦

For ε > 0, let Ωε and xε ∈ C[a, b] be as in Lemma 3.1 with additional
conditions (see Remark 3.4)

t
(n)
i ∈ Ωε and xε(t

(n)
i ) = 0, i = 1, . . . , n.

Let Pn be as in (3.19). Then we see that Pnxε = 0 so that

‖K −KPn‖ ≥ ‖(K −KPn)xε‖∞ = ‖Kxε‖∞.

Letting ε→ 0, by Lemma 3.1, we have

‖K −KPn‖ ≥ ‖K‖ ∀n ∈ N.

In particular, ‖K −KPn‖ 6→ 0 as n→∞.

3.5 Quadrature Based Approximation

A well considered numerical procedure for obtaining approximations for
integral equations of the second kind,

λx(s)−
∫ b

a

k(s, t)x(t)dt = y(s), a ≤ s ≤ b,

is the so-called Nyström method. We assume that k(·, ·) is continuous on
[a, b]× [a, b]. The above equation can be written as

λx−Kx = y,

where K is the integral operator as in (3.14) and λ 6= 0 is a scalar which
is not an eigenvalue of K. In Nyström method that we discuss in Section
3.5.3, the integral appearing in the definition of K is approximated by a
convergent quadrature rule giving an approximation (Kn) of K, called the
Nyström approximation of K.

In the following two subsections, we describe a quadrature rule and
the associated Nyström approximation, and show that (Kn) is a pointwise
approximation of K, but not a norm approximation.
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3.5.1 Quadrature rule

A quadrature rule for approximating the integral

ϕ(x) :=
∫ b

a

x(t)dt, x ∈ C[a, b], (3.20)

is a finite sum

ϕ̃(x) :=
N∑

i=1

x(ti)wi, x ∈ C[a, b], (3.21)

where t1, . . . , tN are distinct points in [a, b] with

a ≤ t1 < t2 < . . . < tN ≤ b,

and w1, . . . , wN are real numbers. The points t1, . . . , tN in [a, b] are called
the nodes and w1, . . . , wN are called the weights of the quadrature rule
ϕ̃.

Remark 3.5. It is easily seen that ϕ and ϕ̃ defined in (3.20) and (3.21),
respectively, are continuous linear functionals on the Banach space C[a, b]
with respect to the norm ‖ · ‖∞, and ‖ϕ‖ = b− a and ‖ϕ̃‖ ≤

∑N
i=1 |wi|. In

fact, ‖ϕ̃‖ =
∑N

i=1 |wi|. ♦

Exercise 3.9. Justify the statements in Remark 3.5.

Suppose that for each positive integer n we have a quadrature rule ϕn

determined by the nodes t(n)
1 , . . . , t

(n)
kn

in [a, b] and weights w(n)
1 , . . . , w

(n)
kn

,
that is,

ϕn(x) :=
kn∑
i=1

x(t(n)
i )w(n)

i , x ∈ C[a, b]. (3.22)

Here, (kn) is an increasing sequence of positive integers. In this case, we
may also say that (ϕn) is a quadrature rule. We say that (ϕn) is a con-
vergent quadrature rule if

ϕn(x) → ϕ(x) as n→∞

for every x ∈ C[a, b].
Regarding the convergence of (ϕn) we have the following result.

Proposition 3.2. The sequence (ϕn) in (3.22) of quadrature rules con-
verges if and only if it converges on a dense subset of C[a, b] and

sup
n

kn∑
i=1

|w(n)
i | <∞.
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Proof. We know (cf. Remark 3.5) that

‖ϕn‖ =
kn∑
i=1

|w(n)
i |

so that supn

∑kn

i=1 |w
(n)
i | < ∞ if and only if (‖ϕn‖) is bounded. Now

suppose that the sequence (ϕn) converges on C[a, b]. Then, by Uniform
Boundedness Principle (Theorem 2.9), it follows that the sequence (‖ϕn‖)
is bounded.

Conversely, suppose that (ϕn) converges on a dense subset of C[a, b] and
(‖ϕn‖) is bounded. Then by Theorem 2.7, (ϕn) converges on C[a, b]. �

3.5.2 Interpolatory quadrature rule

Suppose P is an interpolatory projection given by

Px =
N∑

i=1

x(tj)uj , x ∈ X,

where X is either C[a, b] or B[a, b] with norm ‖ · ‖∞ and ui ∈ X, i =
1, . . . , N , are Riemann integrable. Then, associated with P we have a
quadrature rule, namely,

ϕ̃(x) =
∫ b

a

(Px)(t)dt =
N∑

i=1

x(ti)wi, x ∈ C[a, b],

with

wi =
∫ b

a

ui(t)dt, i ∈ {1, . . . , N}.

Conversely, if we have a quadrature rule

ϕ̃(x) =
N∑

i=1

u(ti)wi, x ∈ C[a, b],

then it is always possible to choose Riemann integrable functions (even
continuous functions) u1, . . . , uN such that

ui(tj) =
{

1 if i = j

0 if i 6= j
and

∫ b

a

uj(t)dt = wj ,

so that P defined by Px =
∑N

i=1 x(tj)uj , x ∈ X, satisfies

ϕ̃(x) =
∫ b

a

(Px)(t)dt, x ∈ C[a, b].
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The above quadrature rule is called an interpolatory quadrature rule
induced by or associated with the interpolatory projection P . It is to be
observed that a quadrature rule can associate more than one interpolatory
projections.

We note that if (Pn) is a sequence of interpolatory projections on C[a, b]
which converges pointwise to the identity operator I on C[a, b], then

ϕn(x) =
∫ b

a

(Pnx)(t)dt→ ϕ(x), x ∈ C[a, b].

Thus, we can say that an interpolatory quadrature rule associated with a
sequence of pointwise convergent interpolatory projections converges.

We have observed in Section 3.4.1 that if Pnx is the Lagrange interpo-
lation of x ∈ C[a, b] based on nodes t(n)

i , i = 1, . . . , n with

a = t
(n)
0 < t

(n)
1 < . . . < t(n)

n

and

max{t(n)
j − t

(n)
j−1 : j = 1, . . . , n} → 0 as n→∞,

then it is not necessary that ‖Pnu−u‖∞ → 0. However, the corresponding
quadrature rule can converge. In fact, this is the case if we take t(n)

1 , . . . , t
(n)
n

as the zeros of the n-th Legendre polynomial (cf. [76] or [51]).

3.5.3 Nyström approximation

Consider the integral operator K in (3.14) with continuous kernel which is
a compact operator on C[a, b] (cf. Example 2.16). Let (ϕn) be a convergent
quadrature rule on C[a, b] given by

ϕn(x) :=
n∑

i=1

x(t(n)
i )w(n)

i , x ∈ C[a, b].

Then the Nyström approximation associated with the quadrature rule
(ϕn) is a sequence (Kn) of operators, where

(Knx)(s) :=
n∑

i=1

k(s, t(n)
i )x(t(n)

i )w(n)
i (3.23)

for x ∈ C[a, b] and s ∈ [a, b]. We note that, for each n ∈ N,

‖Knx‖∞ ≤ sup
s,t∈Ω

|k(s, t)|
n∑

i=1

|w(n)
i | ‖x‖∞ ∀x ∈ C[a, b],
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so that Kn ∈ B(X). In fact, Kn is a finite rank operator with

R(Kn) ⊆ span {k(·, t(n)
i ) : i = 1, . . . , n}.

In particular, each Kn is a compact operator on C[a, b].

Theorem 3.5 below shows that the Nyström approximation (Kn) is a
pointwise approximation of K, however, we do not have the norm conver-
gence (Theorem 3.6). For the proof of Theorem 3.5, we shall make use of
the following lemma from real analysis which follows from Arzela-Ascoli
theorem (Theorem 2.6). Here, we present an independent proof for the
same.

Lemma 3.2. Let (xn) be an equicontinuous sequence in C[a, b] and x ∈
C[a, b] be such that for each t ∈ [a, b], |xn(t)− x(t)| → 0 as n→∞. Then
‖xn − x‖∞ → 0 as n→∞.

Proof. Let ε > 0 be given. By the equicontinuity of (xn), there exists
δ1 > 0 such that

|xn(t)− xn(s)| < ε ∀n ∈ N whenever |s− t| < δ1. (3.24)

Since x ∈ C[a, b] is uniformly continuous on [a, b], there exists δ2 > 0 such
that

|x(t)− x(s)| < ε whenever |s− t| < δ2. (3.25)

Let δ := min{δ1, δ2}. By the compactness of the interval [a, b], there exist
t1, . . . , tk such that [a, b] ⊆ ∪k

i=1{s ∈ [a, b] : |s − ti| < δ}. For each i ∈
{1, . . . , k}, let Ni ∈ N be such that

|xn(ti)− x(ti)| < ε ∀n ≥ Ni. (3.26)

Now, let t ∈ [a, b], and let j ∈ {1, . . . , k} be such that |t − tj | < δ. Thus,
by (3.24), (3.25) and (3.26), we have

|xn(t)− x(t)| ≤ |xn(t)− xn(tj)|+ |xn(tj)− x(tj)|+ |x(tj)− x(t)|
< 3ε

for all n ≥ N := max{Nj : j = 1, . . . , k}. This is true for all t ∈ [a, b].
Hence,

‖xn − x‖∞ := sup
a≤t≤b

|xn(t)− x(t)|

< 3ε

for all n ≥ N . Thus, we have proved that ‖xn − x‖∞ → 0 as n→∞. �
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Remark 3.6. We may observe that in proving Lemma 3.2, the only fact
that we used about [a, b] is its compactness. Thus, Lemma 3.2 holds by
replacing [a, b] by any compact metric space Ω. ♦

Now, we prove the pointwise convergence of (Kn) to K.

Theorem 3.5. Let X = C[a, b] with ‖ · ‖∞ and (Kn) be the Nyström
approximation of the integral K in (3.14) with continuous kernel k(·, ·).
Then the following hold:

(i) ∪∞n=1{Knx : x ∈ C[a, b] ‖x‖∞ ≤ 1} is equicontinuous.
(ii) (Kn) is a pointwise approximation of K.

Proof.

Writing ks(t) = k(s, t), by the convergence of the quadrature rule ϕn,
we have

(Knx)(s) = ϕn(ksx) → ϕ(ksx) = (Kx)(s)

for each x ∈ C[a, b] and s ∈ [a, b]. Moreover for s, τ ∈ [a, b] and x ∈ C[a, b]
with ‖x‖∞ ≤ 1,

|(Knx)(s)− (Knx)(τ)| ≤ c sup
a≤t≤b

|k(s, t)− k(τ, t)|,

where c ≥
∑n

i=1 |w
(n)
i |. Hence, by uniform continuity of k(·, ·), the set

{Knx : x ∈ C[a, b] with ‖x‖∞ ≤ 1, n ∈ N}

and, for each x ∈ C[a, b], the set {Knx : n ∈ N} are equicontinuous. Since
we also have

|(Kx)(s)− (Knx)(s)| → 0 as n→∞

for each s ∈ [a, b], by Lemma 3.2, it follows that (Knx) converges uniformly
to Kx for each x ∈ C[a, b]. Thus,

‖Kx−Knx‖∞ → 0 as n→∞

for each x ∈ C[a, b]. Thus we have proved (i) and (ii). �

Corollary 3.4. Let K and Kn be as in (3.14) and (3.23) respectively. Then

‖(K −Kn)K‖ → 0 and ‖(K −Kn)Kn‖ → 0

as n→∞.
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Proof. By Theorem 3.5, (Kn) is a pointwise approximation of the com-
pact operator K and the set

S := {Knx : x ∈ C[a, b] with ‖x‖∞ ≤ 1, n ∈ N}

is equicontinuous. Hence, by Theorem 2.13, ‖(K −Kn)K‖ → 0 and

‖(K −Kn)Kn‖ ≤ sup
u∈S

‖(K −Kn)u‖ → 0

as n→∞. �

Next theorem shows that the Nyström approximation is not a norm
approximation.

Theorem 3.6. Let X = C[a, b] with ‖ · ‖∞ and (Kn) be the Nyström
approximation of the integral K in (3.14) with continuous kernel k(·, ·).
Then

‖K −Kn‖ ≥ ‖K‖ ∀n ∈ N.

Proof. Let ε > 0 and Ωε and xε ∈ C[a, b] be as in Lemma 3.1, satisfying
the conditions as in Remark 3.4, namely,

t
(n)
i ∈ Ωε and xε(t

(n)
i ) = 0, i = 1, . . . , n.

Then we have

Knxε = 0 ∀n ∈ N

and

‖K −Kn‖ ≥ ‖(K −Kn)xε‖∞ = ‖Kxε‖∞.

Hence, by Lemma 3.1, we have ‖K −Kn‖ ≥ ‖K‖ for all n ∈ N. �

3.5.4 Collectively compact approximation

The properties of Nyström approximation (Kn) enlisted in Theorem 3.5
have been observed long ago by Brackage [9]. These properties have been
studied by Anselone [3] in the operator theoretic setting, and called such a
sequence of operators collectively compact.

A sequence (Kn) in B(X,Y ) is said to be collectively compact if
closure of the set

∞⋃
n=k

{Knx : ‖x‖ ≤ 1}
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is compact in Y for some k ∈ N.
A very good reference, apart from the book of Anselone [3], where

collectively compact approximation has been dealt for the solution of inte-
gral equation of the second kind is the recent book by Atkinson [5].

The following theorem can be proved easily.

Theorem 3.7. Suppose (Kn) is a collectively compact sequence in B(X,Y ).
Then the following hold.

(i) Each Kn is compact.
(ii) If Kn → K pointwise, then K is compact.

Exercise 3.10. Prove Theorem 3.7.

In order to apply the property of collectively compactness to possibly
non-compact operators, we consider the following definition, as in Chatelin
[10] and Limaye [38].

A sequence (Tn) in B(X,Y ) is said to be a collectively compact
approximation of T ∈ B(X,Y ) if Tn → T pointwise and (Tn − T ) is
a collectively compact sequence.

By Theorem 3.7, if (En) is a sequence of non-compact operators such
that ‖En‖ → 0 as n→∞, then (Tn) with Tn = T + En converges to T in
norm, but not in a collectively compact manner. For example, we may take
Y = X and En = (1/n)I. Thus, the class of collectively compact approx-
imations does not include the class of norm approximations. However, if
Tn−T are compact operators for all large enough n, then norm convergence
does imply collectively compact convergence (cf. [38]).

In particular, we have the following result.

Theorem 3.8. Suppose that (Kn) is a sequence in K(X) which is a norm
approximation of some K ∈ B(X). Then (Kn) is a collectively compact
approximation of K.

Remark 3.7. We know from Theorem 2.17 that a compact operator on
an infinite dimensional Banach space can never be bijective. However,
Theorem 3.8 is still useful for a well-posed equation (3.1). For instance,
consider the second kind equations (3.27) and (3.28), that is,

λx−Kx = y, λxn −Knxn = yn
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with K and Kn being compact operators on X. In this case, we have
T = I − K and Tn = I − Kn so that Tn = T + (K − Kn), a compact
perturbation of T . It follows from Theorem 3.8 that if ‖K−Kn‖ → 0 then
(Kn) is a collectively compact approximation of K, and hence (Tn) is a
collectively compact approximation of T . ♦

3.6 Norm-square Approximation Revisited

In order to be able to apply Theorem 3.4 in Section 3.3.2, to the situations
described in the last two subsections, we consider the well-posed operator
equation (3.1) with T = λI −K, i.e.,

λx−Kx = y (3.27)

where K ∈ B(X) and λ is a nonzero scalar not in the spectrum of K.
Suppose (Kn) is a sequence in B(X) and (yn) is a sequence in Y . Consider
the associated approximate equation (3.2) with Tn = λI −Kn, i.e.,

λxn −Knx = yn. (3.28)

Throughout this section we assume that X is a Banach space.
Clearly, (λI − Kn) is a norm-square approximation of λI − K if and

only if

(A0) ‖[(K −Kn)(λI −K)−1]2‖ → 0.

Let us consider two conditions which are independent of λ:

(A1) ‖(K −Kn)K‖ → 0.

(A2) ‖(K −Kn)Kn‖ → 0.

The above conditions (A1) and (A2) which are used in Ahues [1],
Bouldin [7] and Nair [44] in the context of spectral approximations have
been made use extensively in the book [2] by Ahues, Largillier and Limaye.
In [2], the convergence of (Kn) to K in the sense that the conditions (A1)
and (A2) together with the boundedness of (‖Kn‖) are satisfied is called
the ν-convergence.

Remark 3.8. By Corollary 3.4, if (Kn) is a Nyström approximation of the
integral operator in (3.14), then the conditions (A1) and (A2) are satisfied.
In this case, by Theorem 3.6, (Kn) is not a norm approximation of K. ♦
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Next, our aim is to show that conditions (A1) and (A2) together with
boundedness of (Kn) imply norm-square convergence. In this regard, we
consider another condition on (Kn):

(A3) ‖(K −Kn)2‖ → 0.

Note that if (Kn) is a norm approximation of K, then all the conditions
(A0)-(A3) are satisfied.

The following theorem is a consequence of the identity

(K −Kn)K = (K −Kn)Kn + (K −Kn)2.

Theorem 3.9. Any two of (A1)-(A3) imply the third.

Next two theorems specify certain class of approximations which satisfy
conditions (A1)-(A3).

Theorem 3.10. Suppose (Pn) is a sequence of projections in B(X) such
that (‖Pn‖) is bounded and ‖(I − Pn)K‖ → 0, and let

Kn ∈ {PnK,KPn, PnKPn}.

Then (Kn) satisfies (A1)-(A3).

Proof. Obvious from the assumptions. �

Theorem 3.11. Suppose (Kn) is a collectively compact approximation of
K. Then (A3) is satisfied. If in addition K is compact, then condition
(A1)-(A2) are also satisfied.

Proof. By the assumption on (Kn), the closure of the set

S :=
∞⋃

n=1

{Kx−Knx : x ∈ X, ‖x‖ ≤ 1}

is compact in Y . Hence, by Theorem 2.13,

‖(K −Kn)2‖ ≤ sup
x∈S

‖(K −Kn)x‖ → 0 as n→∞

so that (A3) is satisfied. Next, suppose that K is compact. Then, again by
Theorem 2.13,

‖(K −Kn)K‖ → 0 as n→∞

so that (A1) is satisfied, and consequently, by Theorem 3.9, (A2) is also
satisfied. �
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Next we link the conditions (A0) with (A1)-(A3).

Theorem 3.12. Suppose (‖Kn‖) is bounded. Then any two of the condi-
tions (A1)–(A3) imply (A0).

Proof. By Theorem 3.9, any two of (A1)-(A3) imply the third. Hence,
it is enough to show that conditions (A1) and (A3) imply (A0). For this,
first we observe that for every nonzero scalar λ 6∈ σ(K),

(λI −K)−1 =
1
λ

[I +K(λI −K)−1].

Thus, denoting Rλ := (λI −K)−1 and Tλ := I +K(λI −K)−1, we have

λ2[(K −Kn)Rλ]2 = [(K −Kn)Tλ]2

= [(K −Kn)2 + (K −Kn)KRλ(K −Kn)]Tλ.

From this, it is clear that conditions (A1) and (A3) together with the
boundedness of (‖Kn‖) imply (A0). �

Corollary 3.5. Suppose K is a compact operator and (Kn) is a pointwise
approximation of K. Then (λI −Kn) is a norm-square approximation of
λI −K if and only if ‖(K −Kn)2‖ → 0 as n→∞.

Proof. Since (Kn) is a pointwise approximation of K, by Banach Stein-
haus theorem (Theorem 2.11), (‖Kn‖) is bounded. Also, since K is com-
pact, Theorem 2.13 implies that ‖(Kn −K)K‖ → 0 as n → ∞. Now, the
result is a consequence of Theorem 3.12. �

The following example shows that the condition (A0) is (strictly) weaker
than the conditions required for ν-convergence, namely the conditions (A1)
and (A2).

Example 3.7. Let X = `2 and An be as in Example 3.6. Let

K = I, λ 6= 1 and Kn := I −An.

Then we have

‖(K −Kn)K‖ = ‖An‖ = 1

‖(K −Kn)Kn‖ = ‖An(I −An)‖ ≥ ‖An‖ − ‖A2
n‖ = 1− 1

n2

for all n ∈ N, whereas

‖[(K −Kn)(K − λI)−1]2‖ =
‖A2

n‖
(1− λ)2

=
1

n2(1− λ)2
→ 0

as n → ∞. Thus, conditions (A1) and (A2) are not satisfied, but (A0) is
satisfied. ♦
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The following theorem is a consequence of Theorems 3.4 and 3.12. How-
ever, we give an alternate proof for the same.

Theorem 3.13. Let (Kn) be a uniformly bounded sequence in B(X) such
that any two of the conditions (A1)–(A3) are satisfied. Then (λI −Kn) is
stable.

Proof. [An alternate proof.] In view of Theorem 3.9 we assume condi-
tions (A2) and (A3), that is,

‖(K −Kn)Kn‖ → 0, ‖(K −Kn)2‖ → 0.
For n ∈ N, let

An := λI − (K −Kn), Bn := λI + (λI −K)−1(K −Kn)Kn.

First we observe the identity
An(λI −Kn) = (λI −K)Bn. (3.29)

Let 0 < c0 < 1 and N be a positive integer such that
‖(K −Kn)2‖ ≤ (c0|λ|)2

and

‖(K −Kn)Kn‖ ≤
c0|λ|

‖(λI −K)−1‖
for all n ≥ N . Then, by Theorem 2.22 and Corollary 2.14, the operators
An and Bn are invertible for all n ≥ N . Therefore, from (3.29), it follows
that λI −Kn is invertible for all n ≥ N , and

(λI −Kn)−1 = B−1
n (λI −K)−1An.

This leads to the inequality

‖(λI −Kn)−1‖ ≤ ‖(λI −K)−1‖(|λ|+ ‖K −Kn‖)
|λ| − ‖(λI −K)−1‖‖(K −Kn)Kn‖

.

Now let M > 0 be such that ‖K − Kn‖ ≤ |λ|M for every n ∈ N. Such
an M exists since (‖Kn‖) is bounded. Hence from the above inequality we
have

‖(λI −Kn)−1‖ ≤ 1 +M

1− c0
‖(λI −K)−1‖ ∀n ≥ N.

This completes the proof. �

Now, in view of Theorem 3.12 and Corollary 3.5, we have the following.

Corollary 3.6. The conclusions of Theorem 3.13 hold if one of the follow-
ing is satisfied.

(i) (Kn) is a norm approximation of K.
(ii) K is a compact operator, (Kn) is a pointwise approximation of K and

‖(K −Kn)2‖ → 0.

Exercise 3.11. Write detailed proof of the above corollary.



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

88 Linear Operator Equations: Approximation and Regularization

3.7 Second Kind Equations

As we have already remarked earlier, a typical form of well-posed equations
which often occur in applications is the equation of the second kind,

λx−Kx = y, (3.30)

where K : X → X is a bounded operator on a Banach space X, y ∈ X

and λ is a nonzero scalar which is not a spectral value of K. This equation
is a particular case of (3.1) in which T = λI − K. Recall from Theorem
2.25 that if K is a compact operator, then the requirement on λ that it is
not a spectral value is the same as saying that it is not an eigenvalue of
K. In fact, this special case is important, as mathematical formulation of
many well-posed equations in applications appear in the form of integral
equations of the second kind,

λx(s)−
∫

Ω

k(s, t)x(t)dt = y(s), s ∈ Ω, (3.31)

where the kernel k(·, ·) and the set Ω ⊆ Rk are such that the operator K
defined by

(Kx)(s) =
∫

Ω

k(s, t)x(t)dt, s ∈ Ω, (3.32)

is a compact operator on a suitable function space. In Chapter 2, we have
discussed many such examples. To see the compactness of the above integral
operator in more general contexts the reader may refer the book by Kress
[35] and the paper by Graham and Sloan [22].

As we have already discussed in the last section, in order to approximate
the solution of (3.30), one may have a sequence (Kn) in B(X) and (yn) in
Y instead of K and y. Thus the equation at hand would be

λxn −Knxn = yn. (3.33)

For instance, we may have a norm approximation (Kn) of K, that is

‖K −Kn‖ → 0 as n→∞

so that by taking T = λI −K and Tn = λI −Kn we have

‖T − Tn‖ → 0 as n→∞.

One such case is when Kn := PnK, where K is a compact operator on
X and (Pn) is a sequence of projections in B(X) which is a pointwise
approximation of the identity operator. Recall that if K is a Fredholm



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

Well-Posed Equations and Their Approximations 89

integral operator on C[a, b] and (Kn) is a Nyström approximation of K,
then (Kn) is not a norm approximation of K (cf. Theorem 3.6). However,
(Kn) is a pointwise approximation of K and

‖(K −Kn)K‖ → 0, ‖(K −Kn)Kn‖ → 0

as n → ∞ (Theorem 3.6 and Corollary 3.4). Hence, by Theorem 3.13,
Theorem 3.4 can be applied with T := λI −K and Tn := λI −Kn.

We note that if x and xn are solutions of (3.30) and (3.33), respectively,
then (3.8) takes the form

(λI −Kn)(x− xn) = (K −Kn)x+ (y − yn). (3.34)

The following theorem is a consequence of Theorems 3.3 and 3.13.

Theorem 3.14. Assume that either ‖K − Kn‖ → 0 or any two of the
conditions (A1)–(A3) are satisfied. Then (λI −Kn) is stable with stability
index N and

c1αn ≤ ‖x− xn‖ ≤ c2αn ∀n ≥ N,

where x and xn are solutions of (3.30) and (3.33), respectively, αn :=
‖(K −Kn)x + (y − yn)‖, c1 and c2 are positive real numbers independent
of n.

Exercise 3.12. Write detailed proof.

3.7.1 Iterated versions of approximations

After obtaining an approximation xn as the solution of the equation (3.33)
for the solution x of (3.30), one may look for a better approximation, that
is, an x̃n having better rate of convergence than xn. In this connection,
the first attempt would be to look for an iterated version of xn, obtained
by replacing x on the right-hand side of the identity

x =
1
λ

(y +Kx)

by xn, that is, by defining x̃n as

x̃n =
1
λ

(y +Kxn). (3.35)

Then we have

x− x̃n =
1
λ
K(x− xn) (3.36)

and obtain the following theorem on error estimate.
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Theorem 3.15. Let x, xn be the solutions of (3.30) and (3.33), respec-
tively, and x̃n be defined by (3.35). Then

‖x− x̃n‖ ≤
1
|λ|
‖K(x− xn)‖ (3.37)

and

c1,λ‖x̃n − xn‖ ≤ ‖x− xn‖ ≤ c2,λ‖x̃n − xn‖, (3.38)

hold, where

c1,λ =
1

‖λ(λI −K)‖
and c2,λ =

‖(λI −K)−1‖
|λ|

.

Proof. The estimate in (3.37) follows from (3.36). To obtain the estimate
in (3.38), first we observe that

x̃n − xn =
1
λ
{(y − yn) + (K −Kn)xn}.

Hence, estimate in (3.38) is obtained from (3.10) since the quantity βn there
takes the form

βn = ‖(y − yn) + (K −Kn)xn‖ = |λ|‖x̃n − xn‖.

This completes the proof. �

By the estimate in (3.37), the accuracy of x̃n is at least that of xn. We
can say that the rate of convergence of (x̃n) is higher than that of (xn)
provided there exists a sequence (ηn) of positive reals such that ηn → 0 as
n→∞ and

‖K(x− xn)‖ ≤ ηn‖x− xn‖.

We shall describe such cases in due course. We may also observe that the
bounds in (3.38) is purely computational, not involving the ‘unknown’ x.
We shall discuss this case again in the context of projection methods and
quadrature methods for integral equations.

3.8 Methods for Second Kind Equations

We have already given conditions on the approximating operators Kn so
that equation (3.33) is uniquely solvable for all large enough n, and also
obtained certain estimates for the error ‖x − xn‖, where x is the unique
solution of equation (3.30).
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In practical situations, the approximating operators Kn are of finite
rank, say R(Kn) ⊆ Xn with dim (Xn) <∞, so that, as explained in Section
3.1, xn can be obtained using a finite system of linear algebraic equations.
Having obtained the solution xn of (3.33), one would like to modify the
method so as to have a better order of convergence and/or better conver-
gence properties. The modified approximation may be an equation of the
second kind, but not necessarily in a finite dimensional setting.

In this section we shall consider the above aspects for two types of
methods. The first one is based on a sequence of projections on X and the
second is based on quadrature rules for the particular case of the integral
equation (3.31).

3.8.1 Projection methods

We would like to obtain approximations for the solution of equation (3.30)
with the help of a sequence (Pn) of projections in B(X). In applications,
the projections Pn are usually of finite rank, though our analysis of the
methods often does not require this restriction.

Throughout this subsection we assume that K ∈ B(X) with X being
a Banach space, λ is a nonzero scalar not belonging to the spectrum of K
and the sequence (Pn) of projections in B(X) satisfies

‖(I − Pn)K‖ → 0 as n→∞. (3.39)
Hence, by Theorem 3.14, (λI − PnK) is stable.

Recall that if (Pn) converges pointwise to the identity operator and K

is a compact operator, then we do have the convergence in (3.39). It is
easily seen that if (Xn) is a sequence of finite dimensional subspaces of X
such that

Xn ⊆ Xn+1 and cl
∞⋃

n=1

Xn = X,

then for each n ∈ N we can define a projection Pn onto Xn such that for
all x ∈ X,

‖x− Pnx‖ → 0 as n→∞.

Exercise 3.13. Using the assumptions, prove the conclusion in the last state-
ment.

In the following we shall consider essentially four methods, namely
the (i) Galerkin method, (ii) iterated Galerkin method, (iii) Kantorovich
method and (iv) a modified projection method. We shall also discuss some
iterated versions of the above methods.
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(i) Galerkin method

The idea in Galerkin method is to find a sequence (xn) in X, for large
enough n, such that

xn ∈ Xn := R(Pn) and Pn(λxn −Kxn − y) = 0.

Equivalently, one has to solve the equation

λxn − PnKxn = Pny. (3.40)

Note that this is of the form (3.33) with yn = Pny and

Kn = PnK or Kn = PnKPn.

Suppose Pn is of finite rank. In the following discussion, for the sake
of simplicity, we assume rank (Pn) = n. Then we know that Pn can be
represented by

Pnu =
n∑

j=1

f
(n)
j (u)u(n)

j , u ∈ X, (3.41)

where {u(n)
1 , . . . , u

(n)
n } is a basis of Xn := R(Pn) and f

(n)
1 , . . . , f

(n)
n are

continuous linear functionals on X such that

f
(n)
i (u(n)

j ) =
{

1 if i = j

0 if i 6= j.
(3.42)

For the sake of simplicity of presentation, at the cost of preciseness, we
shall omit the superscripts in u(n)

1 , . . . , u
(n)
n and f (n)

1 , . . . , f
(n)
n , and write as

u1, . . . , un and f1, . . . , fn, respectively.
The following theorem shows that the problem of solving (3.40) is equiv-

alent to that of solving a system of equations involving scalar variables.

Theorem 3.16. Let Pn be as in (3.41) and (α1, . . . , αn) ∈ Kn. Then

xn =
n∑

j=1

αjuj

is a solution of (3.40) if and only if

λαi −
n∑

j=1

aijαj = fi(y), i = 1, . . . , n, (3.43)

where aij = fi(Kuj) for i, j ∈ {1, . . . , n}.
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Proof. First we observe, using the representation (3.41) of Pn, that equa-
tion (3.40) takes the form

λxn −
n∑

j=1

fj(Kxn)uj =
n∑

i=1

fj(y)uj .

Now suppose that xn =
∑n

j=1 αjuj is a solution of (3.40). Then applying
fi to the above equation and using the property (3.42), we get

λfi(xn)− fi(Kxn) = fi(y).

But

fi(xn) =
n∑

j=1

αjfi(uj) = αi

and

fi(Kxn) = fi

( n∑
j=1

αjKuj

)
=

n∑
j=1

αjfi(Kuj).

Thus we see that (α1, . . . , αn) ∈ Kn satisfies (3.43).
Conversely, suppose that (α1, . . . , αn) ∈ Kn satisfies (3.43) and let xn =∑n

j=1 αjuj . Now, (3.43) implies that

λ
n∑

i=1

αiui −
n∑

i=1

( n∑
j=1

fi(Kuj)αj

)
ui =

n∑
i=1

fi(y)ui

which is the same as (3.40) with xn =
∑n

j=1 αjuj . �

We obtain different methods by choosing different type of projections,
which is decided by the choice of the basis elements uj ’s and the functionals
fj ’s. This choice is often dictated by the computational feasibility of the
method.

The terminology Galerkin method, named after the Russian mathemati-
cian Galerkin (Boris Grigoryvich Galerkin) (1871–1945), pronounced as
“Gulyorkin”, is often used when the space X is endowed with an inner
product, which does not necessarily induce the original norm on X, and
the projections involved are orthogonal projections with respect to this
inner product. We call such method as orthogonal Galerkin method. We
shall consider this special case and also another important procedure known
as collocation method in the context of X = C[a, b]. These methods are gen-
eral enough to cover various problems which one encounters in applications.
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The solution xn of equation (3.40) or the sequence (xn) is called the
Galerkin approximation of the solution x of (3.30). We shall denote the
Galerkin approximation by xG

n . Thus, xG
n satisfies the equation

λxG
n − PnKx

G
n = Pny. (3.44)

Hence, equation (3.34) gives

x− xG
n = λ(λI − PnK)−1(x− Pnx). (3.45)

Theorem 3.17. Let N be a stability index of (λI − PnK). Then the fol-
lowing hold for all n ≥ N .

(i) c1 ‖x− Pnx‖ ≤ ‖x− xG
n ‖ ≤ c2 ‖x− Pnx‖.

(ii) ‖x− xG
n ‖ → 0 ⇐⇒ ‖y − Pny‖ → 0.

(iii) If (‖Pn‖) is bounded, then

dist(x,Xn) ≤ ‖x− xG
n ‖ ≤ c3 dist(x,Xn).

Proof. The result in (i) follows from (3.45). The result in (ii) is a conse-
quence of (i), since

(I − Pn)x =
1
λ

(I − Pn)(y +Kx)

and ‖(I − Pn)K‖ → 0. To obtain (iii), suppose (‖Pn‖) is bounded, say
‖Pn‖ ≤ c for all n ∈ N. We first observe that

xG
n =

1
λ

(Pny + PnKx
G
n ) ∈ R(Pn).

Hence, it is clear that dist(x,Xn) ≤ ‖x− xG
n ‖. Also, for all un ∈ Xn,

‖x− Pnx‖ = ‖(I − Pn)(x− un)‖ ≤ (1 + ‖Pn‖)‖x− un‖

so that

‖x− Pnx‖ ≤ (1 + c) dist(x,Xn).

This together with (i) gives

‖x− xG
n ‖ ≤ c2‖x− Pnx‖‖ ≤ c2(1 + c) dist(x,Xn).

Thus, (iii) holds with c3 = c2(1 + c). �

Remark 3.9. The result (iii) in Theorem 3.17 shows that the order of
convergence of the Galerkin approximation (xG

n ) cannot be improved by
any other element from Xn := R(Pn). ♦
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In view of the above remark, we say that a method which gives an
approximation (zn) is a superconvergent method if the corresponding
order of convergence is better than O(‖x − xG

n ‖), that is, if there exists a
sequence (ηn) of positive reals such that ηn → 0 and

‖x− zn‖ ≤ ηn‖x− xG
n ‖

for all large n.
Our next attempt is to modify the Galerkin method so as to obtain a

superconvergent method, at least in certain special cases. We shall see if the
iterated Galerkin approximation provides superconvergence. Before that let
us consider two special cases of Galerkin method, namely, the orthogonal
Galerkin method and the collocation method in the context of X = C[a, b].

(a) Orthogonal Galerkin method

Suppose the space X is also endowed with an inner product, say 〈·, ·〉0
such that the associated norm ‖ · ‖0 is weaker than the original norm ‖ · ‖
on X, that is, there exists a constant c > 0 such that

‖x‖0 ≤ c ‖x‖ ∀x ∈ X. (3.46)

For each n ∈ N, let Xn be a finite dimensional subspace of X and let
{u1, . . . , un} be a basis of Xn which is orthonormal with respect to the
inner product 〈·, ·〉0 , that is

〈ui, uj〉0 =
{

1 if i = j

0 if i 6= j.

In orthogonal Galerkin method one looks for xn ∈ Xn such that

〈λxn −Kxn, u〉0 = 〈y, u〉0 ∀u ∈ Xn,

which is equivalent to

〈λxn −Kxn, ui〉0 = 〈y, ui〉0 i = 1, . . . , n. (3.47)

Writing xn =
∑n

j=1 αjuj , the above system of equations is equivalent to
the problem of finding (α1, . . . , αn) ∈ Kn such that

λαi −
n∑

j=1

aijαj = βi, i = 1, . . . , n

with aij = 〈Kuj , ui〉0 and βi = 〈y, ui〉0 for i, j = 1, . . . , n. Define

Pnx =
n∑

j=1

〈x, uj〉0uj , x ∈ X.
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It is seen that Pn is an orthogonal projection, and (3.47) is the same as
equation (3.40). Clearly, Pn is continuous with respect to the norm ‖ · ‖0 .
In view of the inequality (3.46), it also follows that Pn ∈ B(X).

Exercise 3.14. Justify the last two statements.

As an example of the above situation, one may take X = C[a, b] with
‖ · ‖∞ or X = L2[a, b]. In both cases we may take the inner product as

〈x, u〉0 :=
∫ b

a

x(t)u(t) dt, x, y ∈ X.

Recall that C[a, b] is not a Banach space with respect to ‖ · ‖0 .

(b) Collocation method

This method is specially meant for a Banach space X of functions de-
fined on a subset Ω of Rk. For the sake of simplicity of presentation, we take
X = C[a, b] with ‖ · ‖∞. In this method, we take Pn to be an interpolatory
projection based on nodes t(n)

1 , . . . , t
(n)
n in [a, b] and functions u(n)

1 , . . . , u
(n)
n

in X satisfying

u
(n)
i (tjv) =

{
1 if i = j

0 if i 6= j,

that is,

Pnx =
n∑

j=1

x(t(n)
j )u(n)

j , x ∈ C[a, b]. (3.48)

Since

(Pnx)(t
(n)
i ) = x(t(n)

i ), i = 1, . . . , n,

the problem of solving equation (3.40) for xn =
∑n

j=1 αju
(n)
j is same as the

problem of finding (α1, . . . , αn) ∈ Kn such that

αi −
n∑

j=1

aijαj = βi, i = 1, . . . , n

with aij = (Kuj)(t
(n)
i ) and βi = y(t(n)

i ) for i, j = 1, . . . , n.
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(ii) Iterated Galerkin method

Having defined Galerkin approximation xG
n , its iterated version, introduced

and studied extensively by Sloan (see e.g. [72] or [73]) and his collaborators,
is defined by

xS
n =

1
λ

(y +KxG
n ).

Then xS
n or the sequence (xS

n) is called the iterated Galerkin approxi-
mation or Sloan approximation of x. As in (3.36) we have

x− xS
n =

1
λ
K(x− xG

n ). (3.49)

From the definition of the Galerkin approximation, it follows that

Pnx
S
n =

1
λ

(Pny + PnKx
G
n ) = xG

n . (3.50)

If Pn is as in collocation method, (3.48), then the above observation implies
that

xS
n(t(n)

i ) = xG
n (t(n)

i ), i = 1, . . . , n. (3.51)

The observation (3.50) shows that

xS
n =

1
λ

(y +KxG
n )

=
1
λ

(y +KPnx
S
n).

Thus, xS
n satisfies a second kind equation of the form (3.33), namely

λxS
n −KPnx

S
n = y. (3.52)

Hence, equation (3.34) gives

(λI −KPn)(x− xS
n) = K(x− Pnx). (3.53)

From the above equation we also obtain

x− xS
n = (λI −KPn)−1K(I − Pn)(x− xG

n ). (3.54)

The following lemma is a consequence of Theorems 3.10 and 3.13. How-
ever, we shall supply an independent proof for the same.

Lemma 3.3. In addition to (3.39), assume that (‖Pn‖) is bounded. Then
(λI −KPn) is stable.
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Proof. [An alternate proof.] By the assumption of (3.39), we know that
the sequence (λI − PnK) is stable. Now, by Theorem 2.23, the operators
PnK and KPn have the same nonzero spectral values, and

λ(λI −KPn)−1 = I +K(λI − PnK)−1Pn (3.55)

for all n ≥ N . Hence, the result follows by the additional assumption that
(‖Pn‖) is bounded. �

Exercise 3.15. Assume that n ∈ N is such that λ is not a spectral value of
λI − PnK. Then verify

(λI − PnK)−1Pn = Pn(λI −KPn)−1,

I +KPn(λI −KPn)−1 = I +K(λI − PnK)−1Pn.

Also, deduce (3.55) from the last equality.

Theorem 3.18. Let N be a stability index of (λI − PnK). Then the fol-
lowing hold for all n ≥ N .

(i) ‖x− xS
n‖ ≤ 1

|λ|‖K(x− xG
n )‖ for all n ≥ N .

(ii) c1‖K(xS
n − xG

n )‖ ≤ ‖x− xS
n‖ ≤ c2‖K(xS

n − xG
n )‖.

If, in addition, (‖Pn‖) is bounded, then

(iii) c3‖K(I − Pn)x‖ ≤ ‖x− xS
n‖ ≤ c4‖K(I − Pn)x‖,

(iv) ‖x− xS
n‖ ≤ c‖K(I − Pn)‖ ‖x− xG

n ‖.

Proof. The result in (i) follows from (3.49). Recall that xS
n satisfies

equation (3.52). Now, taking yn = y and Kn = KPn in (3.10) we obtain
(ii) since the quantity βn in (3.10) takes the form

βn = ‖K(I − Pn)xS
n‖ = ‖K(xS

n − xG
n )‖.

Now, assume that (‖Pn‖) is bounded. Hence, by Lemma 3.3, (iii) and (iv)
follow from (3.53) and (3.54) respectively. �

Considering the iterated form of xS
n , namely,

x̃S
n =

1
λ

(y +KxS
n),

we see that

K(xS
n − xG

n ) = λ(x̃S
n − xS

n).
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Hence, the relation (ii) in Theorem 3.18 takes the form

c1|λ|‖x̃S
n − xS

n‖ ≤ ‖x− xS
n‖ ≤ c2|λ|‖x̃S

n − xS
n‖. (3.56)

In fact, the above relation also follows from Theorem 3.15.

Remark 3.10. Theorem 3.18 shows that iterated Galerkin method is as
good as Galerkin method, and if

‖K‖ < |λ|,
then it gives less error than the Galerkin method. Also, part (iv) in Theo-
rem 3.18 shows that the iterated Galerkin method is, in fact, a supercon-
vergent method whenever

‖K(I − Pn)‖ → 0 as n→∞.

If X is a Hilbert space, K is a compact operator and (Pn) is a sequence
of orthogonal projections which converges pointwise to I, then we do have
the convergence ‖K(I − Pn)‖ → 0 as n→∞ since, in this case, we have

‖K(I − Pn)‖ = ‖(I − Pn)K∗‖
as the adjoint operator K∗ is also a compact operator.

We shall see in Section 3.8.3 that ‖K(I − Pn)‖ → 0 if K has certain
smoothness properties.

We have already seen an example of a sequence of projections, namely,
interpolatory projections, with

‖K(I − Pn)‖ ≥ ‖K‖.
Therefore, in a general situation we are not in a position to say whether
iterated Galerkin method is superconvergent. ♦

(iii) Kantorovich method

In Galerkin and iterated Galerkin methods, we saw that the convergence
rates depend on the ‘unknown’ solution x and that the convergence is guar-
anteed under the additional assumption Pny → y. In fact, Galerkin approx-
imation converges if and only if Pny → y. We can get rid of these short-
comings if we allow y to vary over the range of K. Thus, if y ∈ R(K),
then

x :=
1
λ

(y +Kx) = Kw

for some w ∈ X. In this case the estimate for ‖x − xG
n ‖ in Theorem 3.17

(i) is

‖x− xG
n ‖ ≤ c2‖w‖ ‖(I − Pn)K‖.
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Note that the rate of convergence, εn := ‖(I −Pn)K‖, does not depend on
the particular choice of y.

Now we consider a method which yields an estimate of the above form
without the additional assumption y ∈ R(K). For this, first we note that,
by applying K to both sides of equation (3.30), we have

λu−Ku = Ky (3.57)

with u = Kx. Conversely if u is the solution of (3.57), then

x =
1
λ

(y + u) (3.58)

is the solution of (3.30). Now the relation (3.58) motivates us to define an
approximation of x by

xK
n =

1
λ

(y + uG
n ), (3.59)

where (uG
n ) is the Galerkin approximation of the solution u of equation

(3.57), that is,

λuG
n − PnKu

G
n = PnKy. (3.60)

We call xK
n or sequence (xK

n ) as the Kantorovich approximation
of x. This approximation procedure for second kind equations was first
studied in detail by Schock ([67–69]).

Note that

λxK
n = y + uG

n

= y +
1
λ

[PnKy + PnKu
G
n ]

= y + PnKx
K
n .

Thus, xK
n satisfies the second kind equation

λxK
n − PnKx

K
n = y.

From (3.58) and (3.59) we have

x− xK
n =

1
λ

(u− uG
n ). (3.61)

As in (3.45) we have

u− uG
n = λ(λI − PnK)−1(I − Pn)u.

Thus,

x− xK
n = (λI − PnK)−1(I − Pn)Kx. (3.62)

Theorem 3.19. Let N ∈ N be a stability index of (λI − PnK). Then the
following hold for all n ≥ N .
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(i) c1‖(I − Pn)Kx‖ ≤ ‖x− xK
n ‖ ≤ c2‖(I − Pn)Kx‖.

In particular,

‖x− xK
N‖ ≤ c2‖x‖ ‖(I − Pn)K‖

and ‖x− xK
n ‖ → 0 as n→∞.

(ii) c3‖x̃K
n − xK

n ‖ ≤ ‖x− xK
n ‖ ≤ c4‖x̃K

n − xK
n ‖.

(iii) If (‖Pn‖) is bounded, then

dist(Kx,Xn‖ ≤ ‖x− xK
n ‖ ≤ cdist(Kx,Xn).

Proof. The estimates in (i) follow from (3.62), and the convergence is a
consequence of the fact that ‖(I − Pn)K‖ → 0. The relations in (ii) follow
from Theorem 3.15. As in Theorem 3.17, we have

dist(u,Xn) ≤ ‖u− uG
n ‖ ≤ c dist(u,Xn),

under the assumption that (‖Pn‖) is a bounded sequence. Hence, we obtain
(iii) by using the relation (3.61). �

Remark 3.11. Theorem 3.19 (i) shows that, unlike Galerkin and iterated
Galerkin approximations, the convergence of Kantorovich approximation is
independent of the data y.

We have seen that in some cases, the iterated Galerkin method would
give better error estimates. We shall see that the Kantorovich method
can also yield better convergence rate provided the operator K has certain
desirable smoothing properties. ♦

(iv) Iterated Kantorovich method

Analogous to the definition of iterated Galerkin approximation, we now
define the iterated version of xK

n , the iterated Kantorovich approxi-
mation as

x̃K
n =

1
λ

(
y +KxK

n

)
.

As in (3.36) we have

x− x̃K
n =

1
λ
K(x− xK

n ). (3.63)

In this case we have the following theorem on error estimate. First recall
from Lemma 3.3 that the sequence (λI −KPn) of operators is stable.
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Theorem 3.20. Let N ∈ N be a stability index for (λI − PnK). Then for
all n ≥ N ,

x− x̃K
n =

1
λ

(λI −KPn)−1K(I − Pn)(x− xK
n ).

In particular, if N1 ≥ N is a stability index for (λI −KPn), then

c1 ‖K(I − Pn)(x− xK
n )‖ ≤ ‖x− x̃K

n ‖ ≤ c2 ‖K(I − Pn)(x− xK
n )‖

for all n ≥ N1.

Proof. First we note that

x− xK
n = (λI − PnK)−1(I − Pn)(x− xK

n ) (3.64)

which follows from (3.62) using the fact that

(I − Pn)Kx = (I − Pn)(u− uG
n ) = (I − Pn)(x− xK

n ).

From (3.64) we have

λ(x− x̃K
n ) = K(x− xK

n )

= K(λI − PnK)−1(I − Pn)(x− xK
n )

= (λI −KPn)−1K(I − Pn)(x− xK
n ).

From this, we obtain the required result. �

Remark 3.12. The above theorem, in particular, shows that

‖x− x̃K
n ‖ ≤ c2 ‖K(I − Pn)‖ ‖x− xK

n ‖.

Thus, in case ‖K(I−Pn)‖ → 0 as n→∞, the iterated Kantorovich approx-
imation x̃K

n does have a better order of convergence than the Kantorovich
approximation xK

n . ♦

(v) Modified projection method

Now we introduce another method based on the sequence (Pn) of projec-
tions which has some of the good properties common to iterated Galerkin
method and the Kantorovich method, and also has the simplicity of the
Galerkin method. This method, called modified projection method,
considered in [43] by the author is defined by

xM
n = xG

n +
1
λ

(I − Pn)y. (3.65)

Note that

Pnx
M
n = xG

n . (3.66)
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Thus, as in the case of iterated Galerkin approximation (see (3.51)), if
X = C[a, b] and Pn is an interpolatory projection based on the nodes t(n)

i ,
i = 1, . . . , n, xM

n also satisfies

xM
n (t(n)

i ) = xG
n (t(n)

i ), i = 1, . . . , n.

Using the relation (3.66), we have

λxM
n = y + (λxG

n − Pny)

= y + PnKx
G
n

= y + PnKPnx
M
n .

Thus, xM
n satisfies the second kind equation

λxM
n − PnKPnx

M
n = y.

Using the relations

Pnx
M
n = xG

n = Pnx
S
n ,

(I − Pn)xM
n =

1
λ

(I − Pn)y = (I − Pn)xK
n , (3.67)

and the identity x = Pnx+ (I − Pn)x, we also have

x− xM
n = Pn(x− xS

n) + (I − Pn)(x− xK
n ). (3.68)

The following theorem gives conditions under which the method con-
verges and also provides error estimates in terms of the errors involved in
xS

n and xK
n .

Theorem 3.21. Let N be a stability index of (λI − PnK). Then the fol-
lowing hold.

(i) If ‖y − Pny‖ → 0, then ‖x− xM
n ‖ → 0.

(ii) If (‖Pn‖) is bounded, then

c1‖x− xK
n ‖ ≤ ‖x− xM

n ‖ ≤ c2 max{‖x− xK
n ‖, ‖x− xS

n‖}

for all n ≥ N .

Proof. By Theorem 3.17 (ii), xG
n → x as n→∞. Hence, (i) follows from

the definition of xM
n . Now, suppose (‖Pn‖) is bounded and n ≥ N . Then

from (3.68), we have

‖x− xM
n ‖ ≤ cmax{‖x− xK

n ‖, ‖x− xS
n‖} ∀n ≥ N,
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where c > 0 is such that ‖Pn‖ + ‖I − Pn‖ ≤ c for all n ∈ N. Also, from
(3.61), (3.62) and (3.67),

x− xK
n = (λI − PnK)−1(I − Pn)Kx

= (λI − PnK)−1(I − Pn)(u− uG
n )

= (λI − PnK)−1(I − Pn)(x− xK
n )

= (λI − PnK)−1(I − Pn)(x− xM
n )

so that

‖x− xK
n ‖ ≤ c0‖x− xM

n ‖.

Thus, (ii) follows by taking c1 = 1/c0 and c2 = c. �

Remark 3.13. From Theorem 3.21, we can infer the following :
(a) If the iterated Galerkin approximation (xS

n) and the Kantorovich
approximation (xK

n ) have better orders of convergence than the Galerkin
approximation (xG

n ), then (xM
n ) is also better than (xG

n ).
(b) If the iterated Galerkin approximation (xS

n) is a better approxima-
tion than the Kantorovich approximation (xK

n ), then the modified projec-
tion approximation (xM

n ) is of the same order of convergence as Kantorovich
approximation, that is,

‖x− xS
n‖ = O

(
‖x− xK

n ‖
)

=⇒ ‖x− xM
n ‖ ∼= ‖x− xK

n ‖.

♦

(vi) Iterated version of the modified projection method

Recall that the iterated versions of xS
n and xK

n are defined by

x̃S
n :=

1
λ

(
y +KxS

n

)
and x̃K

n :=
1
λ

(
y +Kx̃K

n

)
,

respectively. Similarly, we define the iterated form of the modified projec-
tion approximation xM

n by

x̃M
n =

1
λ

(
y +KxM

n

)
.

This approximation has been considered in [52]. Clearly

x− x̃S
n =

1
λ
K(x− xS

n). (3.69)

x− x̃K
n =

1
λ
K(x− xK

n ). (3.70)
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x− x̃M
n =

1
λ
K(x− xM

n ). (3.71)

The following theorem shows the convergence properties of the iterated
modified projection approximation x̃M

n in terms of those of xS
n , x̃K

n and x̃S
n .

Theorem 3.22. Let N be a stability index for (λI−PnK), and let (‖KPn‖)
be bounded. Then for every n ≥ N ,

‖x− x̃M
n ‖ ≤ c max{‖x− x̃S

n‖, ‖x− x̃K
n ‖, ‖K(I − Pn)(x− xS

n)‖},

where c = 1 + c0 + |λ|+ 1/|λ| with ‖KPn‖ ≤ c0 for all n ∈ N.

Proof. From (3.71) and (3.68), we have

x− x̃M
n =

1
λ
K(x− xM

n )

=
1
λ
K
[
Pn(x− xS

n) + (I − Pn)(x− xK
n )
]

=
1
λ
KPn(x− xS

n) +
1
λ
K(I − Pn)(x− xK

n ).

Now,

KPn(x− xS
n) = K(x− xS

n)−K(I − Pn)(x− xS
n)

= λ(x− x̃S
n)−K(I − Pn)(x− xS

n),

and by Theorem 3.20,

K(I − Pn)(x− xK
n ) = λ(λI −KPn)(x− x̃K

n ).

Hence, we have

x− x̃M
n = (x− x̃S

n)− 1
λ
K(I − Pn)(x− xS

n)

+(λI −KPn)(x− x̃K
n ).

From this, we obtain the required bound for ‖x− x̃M
n ‖. �

3.8.2 Computational aspects

Let us now consider the computations involved in approximations
xG

n , x
S
n , x

K
n , x

M
n considered above when Pn is of finite rank. Suppose Pn

has the representation (3.41), that is,

Pnu =
n∑

j=1

fj(u)uj , u ∈ X,
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where {u1, . . . , un} is a basis of Xn := R(Pn) and f1, . . . , fn are continuous

linear functionals on X such that fi(uj) =
{

1 if i = j

0 if i 6= j
. Then we know that

xG
n , x

S
n , x

K
n , x

M
n have the representations

xG
n =

n∑
j=1

αjuj ,

xS
n =

1
λ

[
y +

n∑
j=1

αjKuj

]
,

xK
n =

1
λ

[
y +

n∑
j=1

βjuj

]
,

xM
n =

y

λ
−

n∑
j=1

(
αj −

fj(y)
λ

)
uj ,

where (α1, . . . , αn) and (β1, . . . , βn) are the solutions of the equations

λαi −
n∑

j=1

aijαj = fi(y), i = 1, . . . , n,

and

λβi −
n∑

j=1

aijβj = fi(Ky), i = 1, . . . , n,

respectively. From the above expressions for the approximations, we can
infer that the additional computation required for xS

n than xG
n is the com-

putation of Kui, i = 1, . . . , n whereas for xK
n one needs fi(Ky) in place of

fi(y) for i = 1, . . . , n. Observe that the computations involved in obtaining
xM

n and xG
n are the same.

The additional computations required for xS
n and xK

n would be more ap-
parent if we consider the special nature of the functionals fi, i = 1, . . . , n,
in certain specific cases. In this regard we consider two cases, one is col-
location method and the other one is the orthogonal Galerkin method for
the integral equation (3.31).

(a) Collocation method

Let X = C[a, b] and K : X → X be the integral operator defined by
(3.32) with k(., .) ∈ C([a, b]× [a, b]). Let Pn be an interpolatory projection
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associated with the nodes t1, . . . tn, and basis functions {u1, . . . , un}, that
is, ui ∈ C[a, b] with

ui(tj) =
{

1 if i = j

0 if i 6= j,

so that

fi(u) = u(ti), u ∈ C[a, b], i = 1, . . . , n.

In this case, we know that for i = 1, . . . , n,

(Kui)(s) =
∫ b

a

k(s, t)ui(t)dt, s ∈ [a, b],

and

fi(Ky) =
∫ b

a

k(ti, t)y(t)dt.

(b) Orthogonal Galerkin method

Let X be C[a, b] or L2[a, b] and K : X → X be the integral operator defined
by (3.32) with k(., .) ∈ C([a, b]×[a, b]). Let (Pn) be a sequence of orthogonal
projections with respect to the L2-inner product and let {u1, . . . , un} be
an orthonormal basis of Xn := R(Pn) so that

Pnx =
n∑

j=1

〈x, uj〉uj , x ∈ X.

In this case, for i, j = 1, . . . , n, we have

fi(u) = 〈u, ui〉 =
∫ b

a

u(t)ui(t) dt, u ∈ C[a, b],

(Kui)(s) =
∫ b

a

k(s, t)ui(t)dt, a ≤ s ≤ b,

fi(Ky) = 〈Ky, ui〉 =
∫ b

a

∫ b

a

k(s, t)y(t)ui(t) dt ds.
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3.8.3 Error estimates under smoothness assumptions

In order to see the relative merits of the four methods considered in the
last subsection, we shall consider bounded linear operators from Lp[a, b] into
itself with some smoothing properties, and Pn as a finite rank projection
onto certain piecewise polynomial space.

For each n ∈ N, consider a partition

∆n : a = t
(n)
0 < t

(n)
1 < . . . < t

(n)
n−1 < t(n)

n = b

of [a, b] such that

hn := max{t(n)
i − t

(n)
i−1 : i = 1, . . . , n} → 0 as n→∞.

We shall also assume that the partition ∆n is quasi-uniform, in the sense
that there exists a constant c > 0 such that

hn ≤ c min{t(n)
i − t

(n)
i−1 : i = 1, . . . , n} ∀n ∈ N.

For r ∈ N with r ≥ 2, let

Sr
n := {u ∈ L∞[a, b] : u|

(t
(n)
i−1,t

(n)
i )

is a polynomial of degree atmost r − 1}.

Smoothing properties of an operator K will be inferred by knowing
that the range of K or K∗ is contained in certain Sobolev space. For 1 ≤
p ≤ ∞ and m ∈ N0 := N ∪ {0}, the Sobolev space Wm

p is the space of
functions u ∈ Lp such that for each k ∈ {0, 1, . . . ,m}, the k-th distributional
derivative u(k) belongs to Lp. Thus, u ∈Wm

p if and only if u ∈ Lp and for
each k ∈ {0, 1, . . . ,m}, there exists vk ∈ Lp such that

〈u,w(k)〉 = (−1)k〈vk, w〉 ∀w ∈ C∞[a, b].

Here, and in what follows, we use the notation Lp := Lp[a, b] and

〈u, v〉 :=
∫ b

a

u(t)v(t) dt.

We may recall that Wm
p is a Banach space with respect to the norm

‖u‖m,p :=
m∑

k=0

‖u(k)‖p, u ∈Wm
p ,

and the identity operator from Wm
p into Lp is a compact operator (cf.

Kesavan [32]). It is obvious from the definition of the Sobolev norms that
if s ≤ m, then Wm

p ⊆W s
p and

‖u‖s,p ≤ ‖u‖m,p ∀u ∈Wm
p .
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In the following, c is a generic constant which may take different values
at different contexts, but independent of n.

We shall make use of the following known result (cf. De Vore [14] and
Demko [13]).

Proposition 3.3. For every u ∈Wm
p ,

distp(u, Sr
n) := inf{‖u− v‖p : v ∈ Sr

n} ≤ c hµ
n‖u‖m,p ,

where µ := min{m, r} and c > 0 is a constant independent of n.

Corollary 3.7. If Pn is a projection onto Sr
n such that (‖Pn‖) is bounded

then

‖(I − Pn)u‖p ≤ c hµ
n‖u‖m,p ∀u ∈Wm,p.

Proof. Let u ∈Wm
p and (‖Pn‖) be bounded, say ‖Pn‖ ≤ c0 for all n ∈ N

for some c0 > 0. Then we have

‖(I − Pn)u‖p = ‖(I − Pn)(u− v)‖p ≤ (1 + c0)‖u− v‖, ∀ v ∈ Sr
n.

Hence,

‖(I − Pn)u‖p ≤ (1 + c0)distp(u, Sr
n).

Now, the result follows by applying Proposition 3.3. �

We shall consider the error estimates for the approximations when the
projection Pn onto Sr

n is orthogonal in the sense that

〈Pnu, v〉 = 〈u, Pnv〉 ∀u, v ∈ Lp. (3.72)

For the case of an interpolatory projection, we refer the reader to the pa-
pers of Sloan [74], Joe [30] and Graham and Sloan [23], specifically for the
approximations xG

n and xS
n .

As a consequence of the quasi-uniformity of the partition ∆n, it is known
that (‖Pn‖) is bounded (cf. Werschulz [77], Lemma 3.1).

We obtain the following theorem on error estimates by applying Propo-
sition 3.3 to Theorems 3.17 and 3.19.

Theorem 3.23. Suppose x is the solution of (3.30) with X = Lp and
Xn = Sr

n. Then the following hold.

(i) If x ∈W s,p, then

‖x− xG
n ‖p ≤ c hζ

n‖x‖s,p, ζ := min{s, r}.
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(ii) If K(Lp) ⊆Wm
p , then

‖x− xK
n ‖p ≤ c hµ

n‖Kx‖m,p, µ := min{m, r}.

Next we consider the concept of the adjoint K∗ of a bounded linear
operator K : Lp → Lp.

For 1 ≤ p < ∞, let q be such that 1 < q ≤ ∞ and 1
p + 1

q = 1 with the
understanding that q = ∞ when p = 1. Then it is known that for every
continuous linear functional ϕ on Lp, there exists a unique vϕ ∈ Lq such
that

ϕ(u) = 〈u, vϕ〉 ∀u ∈ Lp,

and the map ϕ 7→ vϕ is a surjective linear isometry from L′p to Lq, where
L′p denotes the space of all continuous linear functionals on Lp (cf. [51]).
Now, for a bounded operator K : Lp → Lp with 1 ≤ p <∞, we denote by
K∗ : Lq → Lq the unique linear operator defined by the requirement

〈Ku, v〉 = 〈u,K∗v〉 u ∈ Lp, v ∈ Lq.

Indeed, for each v ∈ Lp, the function ϕv : Lp → K defined by

ϕv(u) = 〈Ku, v〉, u ∈ Lp,

is a continuous linear functional on Lp, so that by the relation between Lq

and L′p, there exists a unique w ∈ Lq such that

〈Ku, v〉 = ϕv(u) =
∫ b

a

u(t)w(t)dt, u ∈ Lp.

Then K∗v is defined to be the element w ∈ Lq. The above operator K∗

is called the adjoint of K. It can be seen that K∗ is a bounded linear
operator, and K∗ is compact if and only if K is compact (cf. [51], Theorem
9.12).

Example 3.8. Let K : Lp → Lp be the integral operator,

(Kx)(s) :=
∫ b

a

k(s, t)x(t) dt, x ∈ Lp, s ∈ [a, b],

with k(·, ·) ∈ C[a, b](×[a, b]). Then it can be seen that

(K∗x)(s) :=
∫ b

a

k(t, s)x(t) dt, x ∈ Lp, s ∈ [a, b],

and both K and K∗ are compact operators. ♦
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For specifying the smoothing properties of the operators, we consider
the class Tp,m,` of all bounded linear operators T from Lp into itself such
that R(T ) ⊆Wm

p , R(T ∗) ⊆W `
q and relations

‖Tu‖m,p ≤ c1‖u‖p ∀u ∈ Lp, (3.73)

and

‖T ∗u‖`,q ≤ c2‖v‖q ∀u ∈ Lq (3.74)

hold for some constants c1, c2, where 1 ≤ p <∞ and m, ` ∈ N0.
Note that the requirements (3.73) and (3.74) on T and T ∗ are nothing

but the requirements that

T : Lp →Wm
p and T ∗ : Lq →W `

p

are continuous. Since the imbeddings

Wm
p ↪→ Lp and W `

q ↪→ Lq

are compact (cf. Kesavan [32]), from Theorem 2.5 we can infer the following.

Proposition 3.4. If T ∈ Tp,m,` with at least one of `, m is nonzero, then
both T : Lp → Lp and T ∗ : Lq → Lq are compact operators.

Exercise 3.16. Suppose `,m ∈ N, and K ∈ Tp,m,0 ∪ Tp,0,`. Show that both
K and K∗ are compact operators. Further, if 1 6∈ σ(K) show the following:

(i) If K ∈ Tp,m,0, then I −K : Wm
p →Wm

p is bijective.
(ii) If K ∈ Tp,0,`, then I −K∗ : W `

p →W `
p is bijective.

Exercise 3.17. Show that if K ∈ Tp,m,0, then

‖x− xK
n ‖p ≤ c hµ

n‖x‖p,

where µ := min{m, r}.

Next theorem is crucial for deriving error estimates for approximation
methods for (3.30) under certain smoothing properties of the operator K.

In the following, without loss of generality, we assume that λ = 1.

Theorem 3.24. Suppose T ∈ Tp,0,` and K is a bounded operator on Lp

such that ‖(I − Pn)K‖ → 0 as n → ∞. Assume further that T commutes
with K and 1 6∈ σ(K). For u ∈ Lp, let v ∈ Lq and un ∈ Sr

n be such that

(I −K)u = v and (I − PnK)un = Pnv.

Then

‖T (u− un)‖p ≤ c hρ
n‖u− un‖p,

where ρ := min{`, r}.
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Proof. By the duality of Lp and Lq, we have

‖T (u− un)‖p = sup
w 6=0

|〈T (u− un), w〉|
‖w‖q

.

Hence, it is enough to show that

|〈T (u− un), w〉| ≤ c hλ
n‖u− un‖p‖w‖q ∀w ∈ Lq.

So, let w ∈ Lq. Since 1 6∈ σ(K), it follows that 1 6∈ σ(K∗), so that there
exists a unique z ∈ Lq such that (I −K∗)z = T ∗w. Hence,

|〈T (u− un), w〉| = |〈u− un, T
∗w〉|

= |〈u− un, (I −K∗)z〉|
= |〈(I −K)(u− un), z〉|.

But, since (I − PnK)(u− un) = (I − Pn)u, we have

Pn(I −K)(u− un) = (I − PnK)(u− un)− (I − Pn)(u− un) = 0

so that

(I −K)(u− un) = (I − Pn)(I −K)(u− un).

Thus,

|〈T (u− un), w〉| = |〈(I −K)(u− un), z〉|
= |〈(I −K)(u− un), (I − Pn)z〉|.

Now, since T commutes with K, T ∗ also commutes with K∗. Hence

z = (I −K∗)−1T ∗w = T ∗(I −K∗)−1w ∈W `
q .

Therefore, by Proposition 3.3,

|〈T (u− un), w〉| = |〈(I −K)(u− un), (I − Pn)z〉|
≤ (1 + ‖K‖)‖u− un‖p‖(I − Pn)z‖q

≤ c hρ
n‖u− un‖p‖z‖`,p,

where ρ := min{`, r}. But, since T ∈ Tp,0,`, we have

‖z‖`,q = ‖T ∗(I −K∗)−1w‖`,q

≤ c ‖(I −K∗)−1w‖q

≤ c′ ‖(I −K∗)−1‖ ‖w‖q.

Hence,

|〈T (u− un), w〉| ≤ c hρ
n‖u− un‖p‖w‖q.

This completes the proof. �
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Corollary 3.8. Suppose x is the solution of (3.30). Then we have the
following.

(i) If K ∈ Tp,0,`, then

‖x− xS
n‖p ≤ c hρ

n‖x− xG
n ‖p,

‖x− x̃K
n ‖p ≤ c hρ

n‖x− xK
n ‖p, ρ := min{`, r}.

(ii) If K2 ∈ Tp,0,`′ , then

‖x− x̃S
n‖p ≤ c hρ′

n ‖x− xG
n ‖p, ρ′ := min{`′, r}.

Proof. Let x ∈ Lp be the solution of (3.30). Then (i) and (ii) follow from
Theorem 3.24 by observing the relations

x− xS
n = K(x− xG

n ),

x− x̃K
n = K(x− xK

n ) = K(u− uG
n ),

x− x̃S
n = K(x− xS

n) = K2(x− xG
n ),

where u and uG
n are as in (3.57) and (3.60), respectively. �

Corollary 3.8 together with Theorem 3.21 and Theorem 3.23 lead to the
following.

Theorem 3.25. Suppose x is the solution of (3.30). Then we have the
following.

(i) If x ∈W s
p and K ∈ Tp,0,`, then

‖x− xS
n‖p ≤ c hρ+ζ

n ‖x‖s,p,

where ρ := min{`, r} and ζ := min{s, r}.
(ii) If x ∈W s

p , K(Lp) ⊆Wm
p ) and K ∈ Tp,0,`, then

‖x− xM
n ‖p ≤ c max{hµ

n, h
ρ+ζ
n },

where µ := min{m, r}.
(iii) If K(Lp) ⊆Wm

p ) and K ∈ Tp,0,`, then

‖x− x̃K
n ‖p ≤ c hρ+µ

n ‖Kx‖m,p.

(iv) If x ∈W s
p and K2 ∈ Tp,0,t, then

‖x− x̃S
n‖p ≤ c ht′+ζ

n ‖x‖s,p,

where t′ := min{t′, r}.
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Exercise 3.18. Write details of the proofs of Corollary 3.8 and Theorem
3.25.

Remark 3.14. It is apparent from Theorems 3.23 and 3.25 that if x ∈W s
p

and K ∈ Tp,m,0 ∩ Tp,0,` with s = 1 and r = ` = m = 2, then

‖x− xG
n ‖p = O

(
hn

)
,

‖x− xS
n‖p = O

(
h3

n

)
,

‖x− xK
n ‖p = O

(
h2

n

)
,

‖x− xM
n ‖p = O

(
h2

n

)
.

Thus, xM
n does provide better rate of convergence than xG

n , though the
computations involved in xM

n is of the same order as in xG
n . ♦

Next we derive estimates for the errors ‖x − x̃S
n‖ and ‖x − x̃M

n ‖ by
assuming smoothness conditions on K2. For this, we require the following
theorem, which can be derived from Theorem 3.24, by observing that

K(I − Pn)u = (I −KPn)K(u− uG
n ),

u− uG
n = (I − PnK)−1(I − Pn)u.

However, we shall give below an independent proof as well.

Theorem 3.26. Suppose K ∈ Tp,0,`. Then

‖K(I − Pn)u‖p ≤ c hρ
n‖u‖p, ∀u ∈ Lp,

where ρ := min{`, r}. In particular,

‖K(I − Pn)‖Lp→Lp
≤ c hρ

n, ρ := min{`, r}.

Proof. Let u ∈ Lp. By the duality of Lp and Lq, we have

‖K(I − Pn)u‖p = sup
w 6=0

|〈K(I − Pn)u,w〉|
‖w‖q

.

Hence, it is enough to show that

|〈K(I − Pn)u,w〉| ≤ c hρ
n‖u‖p‖w‖q ∀w ∈ Lq.

So, let w ∈ Lq. Then

|〈K(I − Pn)u,w〉| = |〈(I − Pn)u,K∗w〉|
= |〈(u, (I − Pn)K∗w〉|
≤ ‖u‖p ‖(I − Pn)K∗w‖q.
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Since K∗w ∈W `
q , by Proposition 3.3,

‖(I − Pn)K∗w‖q ≤ c hρ
n‖K∗w‖q,`,

where ρ := min{`, r}. But, since K ∈ Tp,0,`, we have

‖K∗w‖q,` ≤ c‖w‖q.

Hence,

|〈K(I − Pn)u,w〉| ≤ c hρ
n‖u‖p‖w‖q.

This completes the proof. �

Exercise 3.19. Derive Theorem 3.24 and Corollary 3.8 from Theorem 3.26.

The following Corollary is immediate from Theorems 3.25 and 3.26.

Corollary 3.9. Suppose x is the solution of (3.30) and K ∈ Tp,o,`. Then

‖K(I − Pn)(x− xS
n)‖p ≤ c hρ

n‖x− xS
n‖p,

where ρ := min{`, r}. If, in addition, x ∈W s
p , then

‖K(I − Pn)(x− xS
n)‖p ≤ c h2ρ+ζ

n ‖x‖s,p,

where ζ := min{s, r}.

Applying the estimates obtained in Theorem 3.25(iii) & (iv) and Corol-
lary 3.9 to Theorem 3.22 we obtain the following.

Theorem 3.27. Suppose x is the solution of (3.30) with x ∈ W s
p , K ∈

Tp,0,` ∩ Tp,m,0 and K2 ∈ Tp,0,`′ . Then

‖x− x̃M
n ‖p ≤ c max{hρ′+ζ

n , h2ρ+ζ
n , hρ+µ

n },

where ζ := min{s, r}, ρ := min{`, r}, ρ′ := min{`′, r} and µ := min{m, r}.

Remark 3.15. Under the assumptions in Theorem 3.27, we obtain the
following.

(i) If s = 1 and r = ` = m = 2 and `′ = 2, then

‖x− x̃K
n ‖p = O

(
h4

n

)
,

‖x− x̃S
n‖p = O

(
h3

n

)
,

‖x− x̃M
n ‖p = O

(
h3

n

)
.
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(ii) If s = 2 and ` = m = 2 and r = `′ = 3, then

‖x− x̃K
n ‖p = O

(
h4

n

)
,

‖x− x̃S
n‖p = O

(
h5

n

)
,

‖x− x̃M
n ‖p = O

(
h4

n

)
.

♦

Example 3.9. Consider the integral operator K defined by

(Ku)(s) =
∫ 1

0

u(t)
1 + (s− t)2

dt, 0 ≤ s ≤ 1,

for u ∈ L2[0, 1], and let Pn be the orthogonal projection onto the space Xn

of all continuous piecewise linear functions on the equally spaced partition
of [0, 1]. As in Sloan [72], let y(t) =

√
t, 0 ≤ t ≤ 1. In this case, we have

x(t) =
√
t+ z(t), 0 ≤ t ≤ 1,

for some z ∈ C∞[0, 1]. Hence, dist(x,Xn) ≤ cdist(y,Xn). It is known that
dist(y,Xn) ≤ c hn (cf. De Vore [14], Theorem 4.1). Thus,

dist(x,Xn) ≤ c hn.

Since Kx ∈ C∞[0, 1] and K is self-adjoint, we have

dist(Kx,Xn) ≤ c h2
n

and

‖K(I − Pn)‖ = ‖(I − Pn)K‖ = O(h2
n).

Thus, we have

‖x− xG
n ‖ = O(hn),

‖x− xK
n ‖ = O(h2

n),

‖x− xS
n‖ = O(h3

n),

and hence, by Theorem 3.21 (ii),

‖x− xM
n ‖ = O(max{‖x− xS

n‖, ‖x− xK
n ‖}) = O(h2).

We observe that the orders of convergence of xK
n and xS

n are better than
the order of convergence of xG

n , and consequently, xM
n has a better order of

convergence than xG
n . ♦
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Example 3.10. Consider the integral operator K defined by

(Kx)(s) =
∫ 2π

0

log
∣∣∣∣(s− t

2

)∣∣∣∣x(s)ds.
We observe that with X = L2[0, 1], K∗ = K. From the results in Sloan
and Thomeè [73] it can be deduced that

K ∈ T2,m,0, K ∈ T2,0,`, K2 ∈ T2,0,`′

with m = 1 = `, `′ = 2 (see also, [52]). Hence, if y ∈W ν
2 [0, 2π], then

x = y +Kx ∈W β
2 , β := min{ν, 1},

and we obtain the following estimates:

‖x− xG
n ‖2 = O(hβ

n),

‖x− xK
n ‖2 = O(hn),

‖x− xS
n‖2 = O(h1+β

n ),

‖x− x̃K
n ‖2 = O(h2

n),

‖x− x̃S
n‖2 = O(h2+β

n ),

‖x− x̃M
n ‖2 = O(h2

n).

From these estimates, relative advantage of the methods can be inferred.
For instance, if β < 1, then it is possible that x̃M

n gives better accuracy
than Galerkin, Kantorovich and iterated Galerkin approximations. ♦

Remark 3.16. For considering the collocation case, we consider the Pn to
be an interpolatory projection with R(Pn) = Sr

n. In this case, the choice
of the nodes of interpolation are important. One such choice is as follows:
Divide the interval by partition points t(n)

i with a = t
(n)
0 < t

(n)
1 . . . < t

(n)
n =

b, and on each [t(n)
i−1, t

(n)
i ], consider τ (n)

i,j with j = 1, . . . , r such that

t
(n)
i−1 ≤ τ

(n)
i,1 < τ

(n)
i,2 < . . . < τ

(n)
i,r ≤ t

(n)
i .

In particular, we take τ (n)
i,1 , τ

(n)
i,2 , . . . , τ

(n)
i,r to be points in [t(n)

i−1, t
(n)
i ] ob-

tained by shifting the r Gauss points τ1, . . . , τr, that is, zeroes of the rth

degree Legendre polynomial on [−1, 1]. Thus, τ (n)
i,j = fi(τj) for j = 1, . . . , r,

where

fi(t) := t
(n)
i−1 +

t
(n)
i − t

(n)
i−1

2
(t+ 1) (3.75)

for i = 1, . . . , n. Then the nodes of interpolatory nodes as τ (n)
i,j with j =

1, . . . , r, i = 1, . . . , n. It is known that there exists cr > 0 such that
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‖Pn‖ ≤ cr for all n ∈ N. Hence, Proposition 3.3 and Corollary 3.7 still
hold. In this case, we have the following result proved in Sloan [74].

Theorem 3.28. Suppose k(t, ·) ∈ Wm
1 for every t ∈ (a, b) such that

{‖k(t, ·)‖m,1 : t ∈ (a, b)} is bounded and u ∈ W s
1 with 1 ≤ s ≤ 2r and

1 ≤ m ≤ r. Then

‖K(I − Pn)u‖∞ ≤ c hγ
n‖u‖s,1, γ := min{m+ r, s}.

The above theorem together with Corollary 3.7 will give error estimates
for the approximations xG

n , xS
n ,xK

n ,xM
n and x̃K

n . ♦

3.8.4 Quadrature methods for integral equations

In this subsection we consider quadrature based approximation methods
for the integral equation (3.31),

λx(s)−
∫

Ω

k(s, t)x(t)dt = y(s), s ∈ Ω, (3.76)

where Ω = [a, b], k(., .) ∈ C(Ω × Ω) and x, y ∈ C(Ω). The idea here is to
replace the operator K,

(Ku)(s) =
∫

Ω

k(s, t)u(t)dt, s ∈ Ω, (3.77)

in the above equation by a finite rank operator based on a convergent
quadrature formula, and thus obtaining an approximation Kn of K.

(i) Nyström and Fredholm methods

Recall from Section 3.5.3 that the Nyström approximation (Kn) of K cor-
responding to a convergent quadrature rule

ϕn(u) :=
kn∑

j=1

u(t(n)
j )w(n)

j , u ∈ C(Ω), (3.78)

is defined by

(Knx)(s) =
the∑
j=1

k(s, t(n)
j )x(t(n)

j )w(n)
j , x ∈ C(Ω),

where t(n)
1 , . . . , t

(n)
kn

in Ω are the nodes and w(n)
1 , . . . , w

(n)
kn

are the weights of
the quadrature rule and (kn) is an increasing sequence of positive integers.
We have seen that the (Kn) converges pointwise to K and also it satisfies
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conditions (A1)–(A3) in Section 3.6. Thus, (λI−Kn) is stable with stability
index, say N .

The Nyström approximation (xNn ) of the solution x of (3.76) is de-
fined by the solutions of the equations

λxNn −Knx
N
n = y (3.79)

for n ≥ N . We note that

xNn (s) =
1
λ

[
y(s) + (Knx

N
n )(s)

]
=

1
λ

[
y(s) +

kn∑
j=1

k(s, t(n)
j )xNn (t(n)

j )w(n)
j

]
.

Thus, xNn is determined by its values at the nodes t(n)
1 , . . . , t

(n)
kn

. From
(3.79), it also follows that

λxNn (t(n)
i )−

kn∑
j=1

k(t(n)
i , t

(n)
j )xNn (t(n)

j )w(n)
j = y(t(n)

i )

for i = 1, . . . , kn. Therefore, if (α(n)
1 , . . . , α

(n)
kn

) is the solution of the system
of equations

λα
(n)
i −

kn∑
j=1

k(t(n)
i , t

(n)
j )w(n)

j α
(n)
j = y(t(n)

i ), i = 1, . . . , kn, (3.80)

then xNn is given by

xNn (s) =
1
λ

[
y +

kn∑
j=1

k(s, t(n)
j )w(n)

j α
(n)
j

]
, s ∈ Ω.

Thus, in order to obtain the approximation xNn , we need only to solve the
system of equations (3.80).

Suppose u(n)
1 , . . . , u

(n)
kn

are continuous functions on Ω such that

u
(n)
i (t(n)

j ) =
{

1, j = i,

0, j 6= i

and

zn =
kn∑

j=1

α
(n)
j u

(n)
j , (3.81)
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where (α(n)
1 , . . . , α

(n)
n ) is the solution of the system (3.80). Then we see

that

xNn =
1
λ

(y +Knzn). (3.82)

Moreover, if we consider the interpolatory projection Pn based on the nodes
t
(n)
1 , . . . , t

(n)
kn

and functions u(n)
1 , . . . , u

(n)
kn

, that is,

Pnv =
kn∑

j=1

v(t(n)
j )u(n)

j , v ∈ C(Ω), (3.83)

then we have
KnPn = Kn and Pnx

N
n = zn, (3.84)

so that equation (3.82) is the same as (3.79), and zn satisfies the equation
λzn − PnKnzn = Pny,

which again is an operator equation of the second kind.
Let us observe the following about the sequence (PnKn).

Proposition 3.5. If (Pn) is a sequence of projections on C[a, b] such that
Pn → I pointwise, then PnKn → K pointwise and it satisfies the conditions
(A1)–(A3) in Section 3.6. In particular, (λI − PnKn) is stable.

Proof. We observe that
K − PnKn = (K −Kn) + (I − Pn)Kn.

Let us denote An = K − Kn and Bn = (I − Pn)Kn. Since Kn → K

pointwise, Pn → I pointwise, K compact and (Kn) satisfies conditions
(A1)–(A3), it follows that (‖An‖) bounded, |AnK‖ → 0 and ‖Bn‖ → 0.
Hence,

‖(K − PnKn)K‖ ≤ ‖AnK‖+ ‖BnK‖ → 0
and

‖(K − PnKn)2‖ = ‖A2
n +AnBn +BnAn +B2

n‖
≤ ‖A2

n‖+ 2‖An‖ ‖Bn‖+ ‖Bn‖2

→ 0.
Thus (PnKn) satisfies conditions (A1)–(A3). �

The sequence (zn) defined by (3.81) is called the Fredholm approxi-
mation of x, and we denote it by (xFn ). Thus, xFn := zn and

λxFn − PnKnx
F
n = Pny.

Recall from (3.84) that Pnx
N
n = xFn . Thus, the Nyström approximation

xNn is, in some sense, an interpolated form of the Fredholm approximation
xFn , and xFn → x whenever xNn → x and Pn → I pointwise.
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(ii) Error estimates

Now we derive error estimates for the Nyström and Fredholm approxima-
tions.

Theorem 3.29. Let (Kn) be the Nyström approximation of the integral
operator K in (3.77) on C[a, b] corresponding to a convergent quadrature
rule, and let N be a stability index for (λI −Kn). Then

c1‖(K −Kn)x‖ ≤ ‖x− xNn ‖ ≤ c2‖(K −Kn)x‖ (3.85)
for all n ≥ N and for some c1, c2 > 0. In particular,

‖x− xNn ‖ → 0 as n→∞.

Proof. From equations (3.30) and (3.79), it follows that
(λI −Kn)(x− xNn ) = (K −Kn)x,

so that the estimates for ‖x − xNn ‖ follows by the stability of (λI − Kn).
The convergence of (xNn ) to x is a consequence of the pointwise convergence
of (Kn). �

Theorem 3.30. Let (Kn) and N be as in Theorem 3.29. Let Pn be an
interpolatory projection associated with the nodes of the quadrature rule. If
(‖Pn‖) is bounded, then

‖x− xFn ‖ ≤ cmax{‖x− xG
n ‖, ‖x− xNn ‖},

‖x− xNn ‖ ≤ cmax{‖x− xG
n ‖, ‖x− xFn ‖},

‖x− xG
n ‖ ≤ cmax{‖x− xFn ‖, ‖x− xNn ‖},

for all n ≥ N , where xG
n is the Galerkin approximation associated with the

projection Pn.

Proof. Suppose (‖Pn‖) is bounded. Then, from the definitions of xFn and
xG

n , we have
(λI − PnKn)(x− xFn ) = (λI − PnKn)x− Pny

= (λI − PnKn)x− (λI − PnK)xG
n

= (λI − PnK)(x− xG
n ) + Pn(K −Kn)x.

Now, boundedness of (‖Pn‖) and the estimate in (3.85) imply the required
estimates. �

Remark 3.17. From Theorem 3.30 it is apparent that if
‖x− xG

n ‖ ≤ c ‖x− xNn ‖ or ‖x− xG
n ‖ ≤ c ‖x− xFn ‖,

then
‖x− xFn ‖ ≈ ‖x− xNn ‖.

In fact, Theorem 3.30 shows that the order of convergence of two of the
approximations xG

n , x
N
n , x

F
n are always the same. ♦
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3.8.5 Accelerated methods

Let us again consider the second kind equation (3.30),

λx−Kx = y (3.86)

and its approximated version (3.33),

λxn −Knxn = yn. (3.87)

The method (3.87) may give certain error estimate of the form

‖x− xn‖ ≤ c εn,

for all large enough n, say for n ≥ N , where both c and εn may depend
on x or y, but one has εn → 0. In order to have a better and better
approximations to the exact solution, the only possible way seems to be
taking larger and larger n. But, this is not feasible in applications, as the
finite dimensional system to be solved becomes very large. So, in order
to have better accuracy, what one would desire to have is a system for a
reasonably large n, but fixed, and then obtain iterative refinements of the
approximations that are obtained already. For example, one would like to
have an equation of the form

λx
(k)
N −KNx

(k)
N = ϕ

(
y, x

(k−1)
N

)
,

where the function ϕ(·, ·) : X×X → X must be simple enough to evaluate.
There are many such procedures in the literature (see e.g. [18], [19], [12],
[47]). We discuss here only one simple procedure.

We assume that the sequence (‖Kn‖) is bounded and (λI−Kn) is stable.
Observe that equation (3.86) is equivalent to

λx−Knx = y + (K −Kn)x. (3.88)

This motivates the following procedure. Fix N ∈ N and let x(0)
N = 0. For

each k ∈ N, define x(k)
N iteratively as the solution of the equation

λx
(k)
N −KNx

(k)
N = y + (K −KN )x(k−1)

N . (3.89)

From equations (3.88) and (3.89) we see that

(λI −KN )(x− x
(k)
N ) = (K −KN )(x− x

(k−1)
N ).

Thus, taking

∆N = (λI −KN )−1(K −KN ),

we have

x− x
(k)
N = ∆N (x− x

(k−1)
N )
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so that

x− x
(k)
N = ∆k

Nx. (3.90)

This implies

‖x− x
(k)
N ‖ ≤ ‖∆N‖ ‖x− x

(k−1)
N ‖

≤ ‖∆N‖k‖x‖.

Thus, if we have norm convergence ‖K−Kn‖ → 0 and if N is large enough
so that ‖∆N‖ < 1, then the error bound decreases strictly monotonically
as k increases. In particular, the iterative process converges, that is,

x
(k)
N → x as k →∞.

What happens if ‖∆N‖ ≥ 1?
In order to discuss this case of ‖∆N‖ ≥ 1, first we observe from (3.90)

that

‖x− x
(2k)
N ‖ ≤ ‖∆2

N‖ ‖x− x
(2k−2)
N ‖

≤ ‖∆2
N‖k‖x‖,

‖x− x
(2k+1)
N ‖ ≤ ‖∆2

N‖ ‖x− x
(2k−1)
N ‖

≤ ‖∆2
N‖k‖∆Nx‖.

Thus if we have ‖∆2
N‖ < 1, then and the iterative procedure converges

with decrease in error bound at every alternate stage. The requirement
‖∆2

N‖ < 1 will be satisfied for large enoughN if (Kn) satisfies the conditions
(A1)–(A3) in Section 3.6, since in that case we have

∆2
N =

1
λ

(λI −KN )−1
{
(K −KN )2 + (K −KN )KN∆N

}
.

We summarise the above discussion in the form of a theorem.

Theorem 3.31. Suppose the sequence (Kn) of operators is such that there
exists N ∈ N with λ 6∈ σ(KN ). For each k ∈ N, let x(k)

N be defined as in
(3.89) with x(0)

N = 0. Then, for each k ∈ N, the inequalities

‖x− x
(2k)
N ‖ ≤ ‖∆2

N‖ ‖x− x
(2k−2)
N ‖

≤ ‖∆2
N‖k‖x‖,

‖x− x
(2k+1)
N ‖ ≤ ‖∆2

N‖ ‖x− x
(2k−1)
N ‖

≤ ‖∆2
N‖k‖∆Nx‖

hold. In particular, if ‖∆2
N‖ < 1, then x

(k)
N → x.

Exercise 3.20. Write details of the proof of the above theorem.
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3.9 Qualitative Properties of Convergence

In this section we consider some qualitative properties of convergence of
approximate solutions of well-posed equations.

3.9.1 Uniform and arbitrarily slow convergence

Suppose we have an approximation method to solve the well-posed equation
(3.1),

Tx = y, (3.91)

which gives the approximation (xn) of x = T−1y. Suppose that the method
is convergent, i.e.,

‖x− xn‖ → 0 as n→∞.

We may ask whether there can be an order of convergence for the method
which must hold for all y ∈ Y . In other words, the question is whether
there exists a sequence (δn) of positive reals with δn → 0 such that

‖x− xn‖ ≤ c δn

for all large enough n and for all y ∈ Y . Here, the constant c > 0 may
depend on y. If such a sequence (δn) exists, then we say that the method
converges uniformly. Otherwise the method is said to converge arbi-
trarily slowly or an arbitrarily slow convergent (ASC) method.

Thus, a method which gives an approximation (xn) is arbitrarily slowly
convergent if and only if for every sequence (δn) of positive reals with
δn → 0, there exists a y ∈ Y such that the sequence (‖x − xn‖) converges
to zero more slowly than (δn), that is,

lim sup
n

‖x− xn‖
δn

= ∞.

We shall give a characterization, due to Schock [71], of arbitrarily slow
convergence of methods. For this purpose we consider a convergent method
which gives an approximation (xn) to the solution x of (3.91). Correspond-
ing to this method, consider the reminder operators Rn : X → X defined
by

Rnx = x− xn.

Since we are discussing approximation methods for (3.91) using a sequence
of bounded linear operators, we assume, at the outset, that each Rn is a
bounded linear operator.
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It is immediate from Theorem 2.11 that if the method is convergent,
then (‖Rn‖) is bounded.

Theorem 3.32. (Schock) A convergent method with associated sequence of
remainder operators Rn is arbitrarily slowly convergent if and only if

lim sup
n

‖Rn‖ > 0.

Proof. Let (δn) be a sequence of positive real numbers such that δn → 0,
and suppose lim supn ‖Rn‖ > 0. Then we obtain

lim sup
n

‖Rn‖
δn

= ∞.

Therefore, by Uniform Boundedness Principle, there exists x ∈ X such that

lim sup
n

‖Rnx‖
δn

= ∞.

Thus, the method is arbitrarily slowly convergent.
Conversely, suppose that

lim sup
n

‖Rn‖ = 0.

Then, taking δn = supk≥n ‖Rk‖, we have

‖x− xn‖ ≤ ‖Rn‖‖x‖ ≤ ‖x‖δn,

for all x ∈ X, so that the method is uniformly convergent. �

In view of our methods for the second kind equations, let us consider
an approximation method for (3.91) which gives an approximation (xn)
obtained by solving the equation

Tnxn = Qny, (3.92)

where (Tn) and (Qn) are in B(X,Y ) and B(Y ) respectively with Tn bijective
for all large enough n.

Theorem 3.33. Suppose (Tn) and (Qn) are in B(X,Y ) and B(Y ) respec-
tively such that for every u ∈ X,

‖(Tn −QnT )u‖ → 0 as n→∞.

Assume further that (Tn) is stable with stability index N . Then the method
corresponding to (3.92) is convergent. The method is uniformly convergent
if and only if

lim sup
n

‖Tn −QnT‖ = 0.
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Proof. For x ∈ X, let y = Tx and let xn be the solution of (3.92) for
n ≥ N . Then we have

Tn(x− xn) = (Tn −QnT )x,

so that

‖(Tn −QnT )x‖
‖Tn‖

≤ ‖Rnx‖ ≤ ‖T−1
n ‖‖(Tn −QnT )x‖.

Let c1 > 0 and c2 > 0 be constants such that

c1‖Tn‖ ≤ 1 and ‖T−1
n ‖ ≤ c2 ∀n ≥ N.

Then we have

c1‖Tn −QnT‖ ≤ ‖Rn‖ ≤ c2‖Tn −QnT‖.

Thus, by Theorem 3.32, the method is uniformly convergent if and only if
lim sup

n
‖Tn −QnT‖ = 0. �

Let us apply Theorem 3.33 to equations (3.86) and (3.87) with yn =
Qny. In Theorem 3.33 we shall take X = Y , T = λI−K and Tn = λI−Kn.
In this case we have

Tn −QnT = (QnK −Kn) + λ(I −Qn).

If we take Qn = I, then we have that

‖Tn −QnT‖ = ‖K −Kn‖,

so that the corresponding method is uniformly convergent if and only if

‖K −Kn‖ → 0.

Example 3.11. Now, we consider some specific examples.
In the following cases (i) - (iv), let (Pn) be a uniformly bounded sequence

of projections in B(X) such that

‖K − PnK‖ → 0 as n→∞.

(i) If Kn = PnK and Qn = I, then the corresponding method is the
Kantorovich method, and we have

‖Tn −QnT‖ = ‖K − PnK‖ → 0 as n→∞.

Thus, the Kantorovich method converges uniformly.
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(ii) If Kn = KPn and Qn = I, then the corresponding method is the
iterated Galerkin method, and

‖Tn −QnT‖ = ‖K −KPn‖.

Thus, the iterated Galerkin method converges uniformly if and only if

‖K −KPn‖ → 0 as n→∞.

We have already seen cases where ‖K −KPn‖ → 0 and also cases in which
‖K −KPn‖ ≥ ‖K‖.

(iii) If Kn = PnK and Qn = Pn, then the corresponding method is the
Galerkin method, and

‖Tn −QnT‖ = |λ|‖I − Pn‖.

Therefore, if Pn 6= I for infinitely many n, then the Galerkin method con-
verges arbitrarily slowly.

(iv) If Kn = PnKPn and Qn = I, then the corresponding method is
the modified projection method, and

Tn −QnT = K − PnKPn

= (K −KPn) + (I − Pn)KPn.

Since ‖(I − Pn)K‖ → 0 as n→∞ and (‖Pn‖) is bounded, it follows that

‖Tn −QnT‖ → 0 ⇐⇒ ‖K −KPn‖ → 0.

Thus, the modified projection method is uniformly convergent if and only
if ‖K −KPn‖ → 0.

(v) Suppose (Kn) is the Nyström approximation of the integral operator
K defined in (3.77). We have seen that

‖K −Kn‖ ≥ ‖K‖,

so that the Nyström method is arbitrarily slowly convergent. ♦

3.9.2 Modification of ASC-methods

In this subsection, we see how an arbitrarily slowly convergent method can
be modified to obtain a uniformly convergent method in the context of a
second kind equation (3.86). Such issues have been dealt in [46].

In order to have a little more generality, we consider a companion prob-
lem using a bounded operator Q : X → X which commutes with K. We
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observe that if x is the solution of (3.86), then applying Q on both sides of
(3.86), it is seen that z := Qx is the solution of

z −Kz = Qy. (3.93)

Conversely, if z is the solution of (3.86), then it follows that

x := z + (I −K)−1(I −Q)y (3.94)

is the solution of (3.86). Clearly, if Q = I then (3.86) and (3.93) are the
same.

Now, we consider an approximation method for solving (3.86) based on
sequences (Kn) and (Qn) of bounded operators. We assume that (I −Kn)
is stable with stability index N . Further conditions on (Kn) and (Qn) will
be imposed subsequently.

Note that the above assumption on Kn ensures that the equation

zn −Knzn = Qny (3.95)

is uniquely solvable for every n ≥ N . Hence, in view of (3.94), we may
define the approximation as

xn := zn + (I −K)−1(I −Q)y (3.96)

with zn as the solution of (3.95).
In the above definition, although xn involves the term

w := (I −K)−1(I −Q)y,

that is, the problem of solving an equation of the second kind, appropriate
choice of Q may avoid such problem. For example, if Q = I, then w = 0,
and if Q = Km for some m ∈ N, then w =

∑m−1
j=0 Kjy. More generally, if

p(t) is a polynomial with p(1) = 0, then we can find a polynomial q(t) such
that 1 − p(t) = (1 − t)q(t), and in that case the choice Q := p(K) gives
w = q(K)y, so that

xn := zn + q(K)y.

Now, we have the following result.

Theorem 3.34. Consider the method defined by (3.95) and (3.96) with
(Kn) and (Qn) in B(X) such that Kn → K and Qn → Q pointwise, and
(I −Kn) is stable with stability index N . Then the following hold.

(i) The method converges, and there exists c > 0 such that

‖x− xn‖ ≤ c (‖(K −Kn)Qx‖+ ‖(Q−Qn)y‖) ∀n ≥ N.
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(ii) The method is uniformly convergent if and only if

‖(K −Kn)Q+ (Q−Qn)(I −K)‖ → 0.

In particular, the method is uniformly convergent if

‖(K −Kn)Q‖ → 0 and ‖Q−Qn‖ → 0.

Proof. By the hypothesis, zn and xn are well defined for all n ≥ N . Also,
from (3.86), (3.93), (3.95) and (3.96), it follows that

x− xn = z − zn

= Qx− (I −Kn)−1Qny

= (I −Kn)−1[(I −Kn)Qx−Qny].

But, using the relation x = y +Kx,

(I −Kn)Qx−Qny = Qx−Qny −KnQx

= (Q−Qn)y + (K −Kn)Qx.

Thus,

x− xn = (I −Kn)−1[(K −Kn)Qx+ (Q−Qn)y]. (3.97)

From this, we obtain (i).
To see the proof of (ii), we further observe from (3.97) that the remain-

der operator Rn : X → X defined by Rnx := x − xn, x ∈ X, is given
by

Rn := (I −Kn)−1[(K −Kn)Q+ (Q−Qn)(I −K)], n ≥ N.

Thus,

(I −Kn)Rn = (K −Kn)Q+ (Q−Qn)(I −K).

Since

‖Rn‖
‖(I −Kn)−1‖

≤ ‖(I −Kn)Rn‖ ≤ (1 + ‖Rn‖)‖R‖n

it follows that

lim sup
n

‖Rn‖ = 0 ⇐⇒ lim sup
n

‖(I −Kn)Rn‖ = 0.

Thus, we obtain (ii). The particular case is immediate. �
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Remark 3.18. We have already remarked that the following specific cases
of the method (3.33) are arbitrarily slowly convergent methods:

(a) Galerkin method.

(b) Iterated Galerkin method when ‖K(I − Pn)‖ 6→ 0.

(c) Modified projection method when ‖K(I − Pn)‖ 6→ 0.

(d) The Nyström method for second kind integral equations.

Now, in view of Theorem 3.34, we can modify an arbitrarily slowly
convergent method to obtain a uniform convergent method as in (3.95)
and (3.96) by suitable choices of Q and Qn. For example, in the case of
Nyström method one may modify it by taking Q = K = Qn or Q = K

and Qn = PnK for some pointwise convergent sequence (Pn) of finite rank
projections.

Also, in the case of Nyström method, if we choose

Q = K and Qn = Kmn ,

where mn is much larger than n, then it can be easily seen that the accuracy
of the method given by (3.95) and (3.96) would be much better than the
ordinary Nyström method. However, for this choice, Theorem 3.34 does
not guarantee uniform convergence. ♦

Exercise 3.21. Prove the assertion in the last paragraph of Remark 3.18.

PROBLEMS

In the following X and Y denote Banach spaces.

(1) Let X be a separable Hilbert space and {un : n ∈ N} be an orthonormal
basis of X. For n ∈ N, let Pnx =

∑n
i=1〈x, ui〉ui, x ∈ X. Prove that

Pn is an orthogonal projection for each n ∈ N, and for each x ∈ X,
‖Pnx− x‖ → 0 as n→∞.

(2) Let T ∈ B(X,Y ) be bijective and Tn ∈ B(X,Y ) for all n ∈ N. Prove
that ‖T − Tn‖ → 0 if and only if ‖(T − Tn)T−1‖ → 0.
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(3) Suppose T ∈ B(X,Y ) is invertible, and (Pn) and (Qn) are sequences of
(non-identity) projections in B(X) and B(Y ) respectively. Then neither
(QnT ) nor (PnT ) is a norm approximation of T – Why?

(4) Prove Theorem 3.4 by replacing the condition (3.15) by the convergence
‖[(T − Tn)T−1]k‖ → 0 as n→∞ for some positive integer k.

(5) If K = C, then prove Theorem 3.4 by replacing the condition (3.15) by
rσ((T − Tn)T−1) → 0 as n→∞.
Hint: Recall spectral radius formula (2.10).

(6) Justify the following statements:
(i) A compact operator K : X → Y is invertible if and only if the
spaces X and Y are finite dimensional with the same dimension.
(ii) A sequence (Pn) of projections on a finite dimensional space is
point approximation of the identity operator if and only if Pn = I for
all large n.

(7) Show that the projection P : X → X defined above, where X is any
one of C[a, b] and B[a, b] is a bounded linear operator with respect to

the norm ‖ · ‖∞, and ‖P‖ =
N∑

i=1

‖ui‖∞.

(8) Let ∆n : a = t0 < t
(n)
1 < . . . < t

(n)
n = b be a partition of the interval

[a, b]. Prove that, if max{t(n)
i − t

(n)
i−1 : i = 1, . . . , n} → 0 as n → ∞,

then the sequence (Pn) of interpolatory projections defined in (3.18)
converges pointwise to the identity operator I on C[a, b].

(9) Let ∆n : a = t0 < t
(n)
1 < . . . < t

(n)
n = b be a partition of the in-

terval [a, b], and for each i ∈ {1, . . . , n}, let τ (n)
i1 , . . . , τ

(n)
ir be points

in [t(n)
i−1, t

(n)
i ] such that t

(n)
i−1 = τ

(n)
i1 < . . . < τ

(n)
ir = t

(n)
i , and for

x ∈ C[t(n)
i−1, t

(n)
i ], let L(n)

ir x be the Lagrange interpolation polynomial
of x based on τ (n)

i1 , . . . , τ
(n)
ir . Define

(Pnx)(t) = (L(n)
ir x)(t), x ∈ C[a, b], t

(n)
i−1 ≤ t ≤ t

(n)
i .

Then show the following.

(i) Pn is a projection on C[a, b] such that the restriction of Pnx to the
interval [t(n)

i−1, t
(n)
i ] is a polynomial of degree less than r.

(ii) If x ∈ Cr[a, b], then

‖x− Pnx‖∞ ≤ chn‖x(r)‖∞,

where hn := max{t(n)
i − t

(n)
i−1 : i = 1, . . . , n}.
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(iii) For every x ∈ C[a, b],

‖x− Pnx‖∞ → 0 whenever hn → 0.

(10) Suppose ϕ and ϕ̃ are as above. Show that ϕ and ϕ̃ are continuous
linear functionals on the Banach space C[a, b] (with sup-norm) and

‖ϕ‖ = b− a, ‖ϕ̃‖ =
N∑

i=1

|wi|.

(11) Suppose K is a compact operator such that its range is dense in X.
Then show that (Kn) is pointwise approximation of K if and only if
(‖Kn‖) is bounded and ‖(K −Kn)K‖ → 0.

(12) Prove the claims made in Remark 3.4.
(13) Give an example in which (A0) is satisfied for some nozero λ 6∈ σ(K),

but one of (A1)-(A3) is not satisfied.
(14) Give an example where (A1)–(A3) are satisfied but (Kn) is neither

norm approximation nor collectively compact approximation of K.
(15) Justify: Suppose K is a compact operator with dense range and as-

sumption (3.39) is satisfied. Then boundedness of (‖Pn‖) implies the
pointwise convergence of (Pn) to the identity operator.

(16) Prove that the conclusions of Theorem 3.13 hold if

‖(K −Kn)Kn‖ → 0 as n→∞,

the sequence (‖K−Kn‖) is bounded and one of the following conditions
is satisfied :

(i) ‖(K −Kn)K‖ → 0.
(ii) ‖Kn(K −Kn)‖ → 0.
(iii) ∃N ∈ N such that Kn compact for every n ≥ N .
(iv) ∃N ∈ N such that K −Kn compact for every n ≥ N .

(17) Let (Pn) be a sequence of projections in B(X). For x ∈ X, y ∈ X,
prove that

(λI −KPn)x = y =⇒ (λI − PnK)Pnx = Pny.

(18) From Problem 17, deduce that, if n ∈ N is such that λI − PnK is
bijective, then the following hold:
(i) λI −KPn is bijective and

(λI −KPn)−1y =
1
λ

[y +K(λI − PnK)−1Pny].

(ii) For y ∈ X, if xG
n → x := (λI−K)−1y, then xS

n → x for each y ∈ X
and if (‖Pn‖) is bounded then the sequence (λI −KPn) is stable.
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(19) Suppose `,m ∈ N, and K ∈ Tp,m,0 ∪ Tp,0,`. Show that both K and K∗

are compact operators. Further, if 1 6∈ σ(K) show the following:
(i) If K ∈ Tp,m,0, then I −K : Wm

p →Wm
p is bijective.

(ii) If K ∈ Tp,0,`, then I −K∗ : W `
p →W `

p is bijective.
(20) Suppose K ∈ Tp,0,`. From Theorem 3.24, deduce

‖K(I − Pn)u‖p ≤ c hρ
n‖(I − Pn)u‖p ∀u ∈ Lp,

where ρ := min{`, r}, and derive Theorem 3.26.
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Chapter 4

Ill-Posed Equations and Their
Regularizations

4.1 Ill-Posedness of Operator Equations

In this chapter we consider the operator equation

Tx = y, (4.1)

when it is ill-posed. Here, T : X → Y is a linear operator between normed
linear spaces X and Y . Recall that (4.1) is an ill-posed equation if T violates
one of the following conditions for well-posedness:

• T is bijective,

• T−1 : Y → X, if exists, is continuous.

From Lemma 2.6, it follows that (4.1) is ill-posed if and only if either T is
not surjective or it is not bounded below.

Of course, if T is not surjective, then there will be y ∈ Y such that
(4.1) is not solvable. In such case, we shall look for the so-called least
residual norm solution of minimal norm, say x̂. Once the existence of such
an x̂ is guaranteed, then one would like to know whether the problem of
finding x̂ is well-posed. If this modified problem is also ill-posed, then one
has to regularize the problem. That is, the original ill-posed problem is
to be replaced by a family of nearby well-posed problems and then obtain
approximations for x̂ when the error in the data y approaches zero.

Let us illustrate the situation of ill-posedness of (4.1) when T is not
bounded below: Suppose T is not bounded below. Then for each n ∈ N,
there exists nonzero un ∈ X such that ‖Tun‖ < (1/n)‖un‖ for all n ∈ N.
Thus, if x ∈ X and xn := x+

√
nun/‖un‖, then

‖Txn − Tx‖ =
√
n‖Tun‖
‖un‖

<
1√
n
→ 0

135
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but

‖xn − x‖ =
√
n→∞.

By Corollary 2.11, if X is a Banach space and T is a bounded opera-
tor with non-closed range, then T is not bounded below. Thus, for such
operators T ,

• (4.1) need not be solvable, and

• if T is injective, then the inverse operator T−1 : R(T ) → X is not
continuous.

There is a large class of operators T of practical interest for which R(T )
is not closed, namely, the compact operators of infinite rank (cf. Theorem
2.5). A prototype of an ill-posed compact operator equation is the Fredholm
integral equation of the first kind,∫

Ω

k(s, t)x(t)dm(t) = y(s), s ∈ Ω,

where Ω ⊂ Rn and the kernel k(., .) are such that the operator K defined
by

(Kx)(s) =
∫

Ω

k(s, t)x(t)dm(t), s ∈ Ω,

is a compact operator on a suitable function space. In Section 2.1.3, we
have given examples of compact integral operators.

Before going further, let us illustrate the ill-posedness of a compact op-
erator equation and also give a specific example of an ill-posed compact
operator equation of practical interest which also lead to an integral equa-
tion of the first kind.

4.1.1 Compact operator equations

Let X and Y be Hilbert spaces and T : X → Y be a compact operator of
infinite rank. Then we know, by Theorem 2.28, that T can be represented
as

Tx =
∞∑

n=1

σn〈x, un〉vn, x ∈ X,

where (σn) is a decreasing sequence of positive real numbers which con-
verges to 0, and {un : n ∈ N} and {vn : n ∈ N} are orthonormal bases of
N(T )⊥ and clR(T ) respectively.
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Note that for x ∈ X and y ∈ Y ,

Tx = y =⇒ 〈x, un〉 =
〈y, vn〉
σn

∀n ∈ N.

Thus, for equation (4.1) to have a solution, it is necessary that
∞∑

n=1

|〈y, vn〉|2

σ2
n

<∞.

We also have

‖Tun‖ = σn → 0 as n→∞

but

‖un‖ = 1 ∀n ∈ N.

In particular, T is not bounded below.
More generally, if x ∈ X and xn := x + un/

√
σn for n ∈ N, then

Txn = Tx+
√
σnvn so that

‖Txn − Tx‖ =
√
σn → 0 as n→∞

but

‖xn − x‖ =
1

√
σn

→∞ as n→∞.

Thus, a small perturbation in the data y can result in large deviation in
the solution x.

4.1.2 A backward heat conduction problem

Let u(s, t) represent the temperature at a point s on a ‘thine wire’ of length
` at time t. Assuming that the wire is represented by the interval [0, `] and
its end-points are kept at zero temperature, it is known that u(·, ·) satisfies
the partial differential equation

∂u

∂t
= c2

∂2u

∂s2
(4.2)

with boundary condition

u(0, t) = 0 = u(`, t). (4.3)

Here, c represents the thermal conductivity of the material that the wire
made of. The problem that we discuss now is the following: Knowing the
temperature at time t = τ , say

g(s) := u(s, τ), 0 < s ≤ `, (4.4)
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determine the temperature at t = t0 < τ , that is, find

f(s) := u(s, t0), 0 < s < `. (4.5)

It can be seen easily that for each n ∈ N,

un(s, t) := e−λ2
nt sin(λns) with λn :=

c nπ

`

satisfies (4.2) and (4.3). Let us assume for a moment that the general
solution of (4.2) is of the form

u(s, t) :=
∞∑

n=1

anun(s, t), s ∈ [0, `], t ≥ 0.

Assuming that f0 := u(·, 0) belongs to L2[0, `], we have

f0(s) := u(s, 0) =
∞∑

n=1

anun(s, 0) =

√
`

2

∞∑
n=1

anϕn(s), s ∈ [0, `],

where

ϕn(s) :=

√
2
`

sin(λns), s ∈ [0, `], n ∈ N.

Note that {ϕn : n ∈ N} is an orthonormal basis of L2[0, `]. Thus, under
the assumption that f0 belongs to L2[0, `], we have

an =

√
2
`
〈f0, ϕn〉, n ∈ N,

so that

u(s, t) =
∞∑

n=1

e−λ2
nt〈f0, ϕn〉ϕn(s). (4.6)

Since |ϕn(s)| ≤
√

2/` for all s ∈ [0, `], by Schwarz inequality and Theorem
2.3, we have

∞∑
n=1

|e−λ2
nt〈f0, ϕn〉ϕn(s)| ≤ 2

`
‖f0‖2

( ∞∑
n=1

e−2λ2
nt
)1/2

for every s ∈ [0, `] and for every t > 0. Hence u(s, t) is well defined for
every s ∈ [0, 1] and for every t > 0. Since u(s, t) has to satisfy (4.4), we
also must have

g(s) = u(s, τ) =
∞∑

n=1

e−λ2
nτ 〈f0, ϕn〉ϕn(s). (4.7)

Thus, we have

〈g, ϕn〉 = e−λ2
nτ 〈f0, ϕn〉 ∀n ∈ N;
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equivalently,

〈f0, ϕn〉 = eλ2
nτ 〈g, ϕn〉 ∀n ∈ N.

Hence, the data g must satisfy the condition
∞∑

n=1

e2λ2
nτ |〈g, ϕn〉|2 <∞. (4.8)

The above requirement can be interpreted as the additional smoothness
conditions that the data g must satisfy. In particular, we can conclude that
the existence of a solution f is not guaranteed under the sole assumption
that the data g belongs to L2[0, 1]. Again, from (4.6) we have

f(s) = u(s, t0) =
∞∑

n=1

e−λ2
nt0〈f0, ϕn〉ϕn(s), s ∈ [0, `],

so that

〈f, ϕn〉 = e−λ2
nt0〈f0, ϕn〉 ∀n ∈ N,

and consequently, from (4.7), we obtain

g =
∞∑

n=1

e−λ2
n(τ−t0)〈f, ϕn〉ϕn.

Thus, the problem of finding f from the knowledge of g is equivalent to
that of solving the operator equation

Kf = g,

where

Kϕ =
∞∑

n=1

e−λ2
n(τ−t0)〈ϕ,ϕn〉ϕn, ϕ ∈ L2[0, `]. (4.9)

Since e−λ2
n(τ−t0) → 0 as n → ∞, the above K is a compact operator from

L2[0, `] into itself, and

σn := e−λ2
n(τ−t0), n ∈ N,

are the singular values of K. Thus, K is not only not onto but also does
not have continuous inverse from its range. In particular, the backward
heat conduction problem considered above is an ill-posed problem.

We may also observe that the operator K in (4.9) has an integral rep-
resentation, namely,

(Kf)(s) :=
∫ `

0

k(s, ξ)f(ξ)dξ, ξ ∈ [0, `],
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where

k(s, ξ) :=
2
`

∞∑
n=1

e−λ2
nτ sin(λns) sin(λnξ), s, ξ ∈ [0, `].

Thus, equation Kf = g is an integral equation of the first kind with a
smooth kernel.

Remark 4.1. For t ≥ 0, define

Ktϕ :=
∞∑

n=1

e−λ2
nt〈ϕ,ϕn〉ϕn, ϕ ∈ L2[0, `]. (4.10)

Then we see that Kt is a compact, positive, self adjoint operator on L2[0, `]
with singular values e−λ2

nt, which are eigenvalues of Kt with corresponding
eigenvectors ϕn. It can also be seen that, for positive real numbers p, t, t1, t2,

Kt1+t2 = Kt1Kt2 , Kpt = (Kt)p.

Thus, we have f = Kt0f0 and g = Kf = Kτ−t0Kt0f0 = Kτf0. ♦

Exercise 4.1. (a) Prove the assertions in Remark 4.1.
(b) For t > 0, let Kt be as in Remark 4.1. Then, for 0 < t0 < τ , show

that

Kt0 = (K∗
τ−t0Kτ−t0)

ν with ν =
t0

2(τ − t0)
.

4.2 LRN Solution and Generalized Inverse

4.2.1 LRN solution

Let X and Y be linear spaces and T : X → Y be a linear operator. Recall
that for y ∈ Y , the operator equation (4.1):

Tx = y

has a solution if and only if y ∈ R(T ). If y 6∈ R(T ), then we look for an
element x0 ∈ X such that Tx0 is ‘closest to’ y. For talking about closeness
we require Y to be endowed with a metric. We assume that Y is a normed
linear space.

Suppose Y is a normed linear space and y ∈ Y . Then we may look for
an x0 ∈ X which minimizes the function

x 7→ ‖Tx− y‖, x ∈ X,
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that is, to find x0 ∈ X such that
‖Tx0 − y‖ = inf{‖Tx− y‖ : x ∈ X}.

If such an x0 exists, then we call it a least residual norm solution or an
LRN solution of equation (4.1).

At this point it should be mentioned that, in literature, the terminology
least-squares solution is used instead of least residual norm solution.
This is because, in applications, one usually has the space Y as either
L2[a, b] or Kn with norm ‖.‖2. The nomenclature least residual norm solu-
tion (LRN solution), used by the author elsewhere as well (see, e.g., [51]),
conveys more appropriate meaning in a general setting.

Clearly, if y ∈ R(T ), then every solution of (4.1) is an LRN solution.
However, if y 6∈ R(T ), then an LRN solution need not exist. Here is a
simple example to illustrate this point.

Example 4.1. Let X = C[a, b] with norm ‖ · ‖2, Y = L2[a, b] and T :
X → Y be the identity map. If we take y ∈ Y with y 6∈ X, then using the
denseness of X in Y , it follows that

inf{‖Tx− y‖ : x ∈ X} = inf{‖x− y‖2 : x ∈ C[a, b]} = 0,
but there is no x0 ∈ X such that ‖Tx0 − y‖ = ‖x0 − y‖2 = 0. ♦

Exercise 4.2. Suppose X is a linear space, Y is a normed linear space , and
T : X → Y is a linear operator such that R(T ) is dense in Y . If R(T ) 6= Y ,
then show that there exists y ∈ Y such that equation (4.1) does not have
an LRN solution.

Now we give certain sufficient conditions which ensure the existence of
an LRN-solution for (4.1) for every y ∈ Y .

Theorem 4.1. Let X be a linear space, Y be a normed linear space and
T : X → Y be a linear operator. If either

(i) R(T ) is finite dimensional or if
(ii) Y is a Hilbert space and R(T ) is a closed subspace of Y ,

then an LRN solution of (4.1) exists for every y ∈ Y .

Proof. Let y ∈ Y . In case (i) we apply Proposition 2.5, and in case
(ii) we apply a consequence of Projection Theorem, namely Corollary 2.10.
Thus, in both cases, there exists y0 ∈ R(T ) such that

‖y − y0‖ = inf{‖y − v‖ : v ∈ R(T )}.
Now an x0 ∈ X such that Tx0 = y0 is an LRN solution of (4.1). �
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We know that the condition that R(T ) closed is too strong to hold in
many of the problems of practical interest. One way to relax this condition
is to restrict the data y to lie in a suitable subspace of Y .

Theorem 4.2. Let X be a linear space, Y be a Hilbert space and T : X → Y

be a linear operator. Let P : Y → Y be the orthogonal projection onto
clR(T ), the closure of R(T ). For y ∈ Y , the following are equivalent.

(i) equation (4.1) has an LRN solution.
(ii) y ∈ R(T ) +R(T )⊥.
(iii) The equation Tx = Py has a solution.

Proof. Let y ∈ Y . First we observe that, Py ∈ R(T ) if and only if
y ∈ R(T ) +R(T )⊥. Thus, (ii) and (iii) are equivalent. Now, we show that
(i) is equivalent to (iii). Note that, by Corollary 2.10, we have

inf{‖v − y‖ : v ∈ clR(T )} = ‖Py − y‖.

Hence,

inf{‖Tx− y‖ : x ∈ X} = inf{‖v − y‖ : v ∈ R(T )}
= inf{‖v − y‖ : v ∈ clR(T )}
= ‖Py − y‖.

Thus, equation (4.1) has an LRN solution x0 if and only if

‖Tx0 − y‖ = ‖Py − y‖.

Now, for every x ∈ X we have

Tx− y = (Tx− Py) + (Py − y)

with

Tx− Py ∈ R(T ), Py − y ∈ N(P ) = R(T )⊥,

so that

‖Tx− y‖2 = ‖Tx− Py‖2 + ‖Py − y‖2.

Therefore, x0 ∈ X is an LRN solution of (4.1) if and only if Tx0 = Py.
This completes the proof. �

Let X, Y and T be as in Theorem 4.2. For y ∈ Y , we denote the set of
all LRN solutions of (4.1) by Sy, i.e.,

Sy := {x ∈ X : ‖Tx− y‖ = inf
u∈X

‖Tu− y‖}.
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We know that Sy can be empty (see Example 4.1 and Exercise 4.2). By
Theorem 4.2,

Sy 6= ∅ ⇐⇒ y ∈ R(T ) +R(T )⊥.

Corollary 4.1. Let X, Y and T be as in Theorem 4.2, y ∈ Y be such that
Sy 6= ∅. If x0 ∈ Sy, then

Sy = {x0 + u : u ∈ N(T )}.

In particular, if T is injective and y ∈ R(T ) + R(T )⊥, then (4.1) has a
unique LRN solution.

Proof. It is clear that if x0 is an LRN solution, then for every u ∈ N(T ),
x0 +u is also an LRN solution. Thus, x0 +N(T ) ⊆ Sy. Also, if P : Y → Y

is the orthogonal projection onto clR(T ) and x0 ∈ Sy, then by Theorem
4.2, for every x ∈ Sy,

Tx = Py = Tx0,

so that

x = x0 + u with u = x− x0 ∈ N(T )

and hence

Sy ⊆ {x0 + u : u ∈ N(T )}.

Thus, we have proved that Sy = x0 +N(T ). The particular case is imme-
diate, since N(T ) = {0} whenever T is injective. �

In general, when T is not injective, then a unique LRN solution from
the set Sy of all LRN solutions is usually identified by imposing certain
additional restrictions. A common procedure, suggested by applications of
(4.1), is to choose an element in Sy at which certain non-negative function
ϕ attains its infimum. The domain of ϕ can be a proper subset of X. The
simplest case is when X itself is a normed linear space, and

ϕ(x) = ‖x‖, x ∈ X.

Another example of ϕ which is important in applications and also attracted
the attention of many experts in the field of ill-posed problems is when X

is a normed linear space and

ϕ(x) = ‖Lx‖, x ∈ D(L),

where L : D(L) → Z is a linear operator with its domainD(L) is a subspace
of X, and Z is another normed linear space. In applications, X, Y , Z may
be certain function spaces and L may be a differential operator.
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In spite of the importance of general situations, in the following, we
shall be concerned mainly with the simple case of minimizing x 7→ ‖x‖,
x ∈ Sy when both X and Y are Hilbert spaces. The theory can also be
used to deal with the case of minimizing

x 7→ ‖Lx‖, x ∈ D(L) ∩ Sy

(cf. [53]; also see Problem 5).

Theorem 4.3. Let X and Y be Hilbert spaces, X0 be a subspace of X
and T : X0 → Y be a linear operator with N(T ) closed in X. Let y ∈
R(T ) +R(T )⊥. Then there exists a unique x̂ ∈ Sy such that

‖x̂‖ = inf
x∈Sy

‖x‖.

In fact,

x̂ ∈ N(T )⊥ and x̂ = Qx0,

where Q : X → X is the orthogonal projection onto N(T )⊥ and x0 is any
element in Sy.

Proof. Let y ∈ R(T ) + R(T )⊥. Then, by Theorem 4.2, the set Sy of all
LRN solutions of (4.1) is nonempty. Let x0 ∈ Sy. By Corollary 4.1, we
have Sy = {x0 + u : u ∈ N(T )}. Let x̂ = Qx0, where Q : X → X is the
orthogonal projection onto N(T )⊥. Then, we have

x0 = x̂+ u with u ∈ N(T ).

This also implies that x̂ = x0 − u ∈ X0. Hence, by Theorem 4.2,

T x̂ = Tx0 = Py,

where P : Y → Y is the orthogonal projection onto clR(T ). Thus, x̂ ∈ Sy.
Again, by Corollary 4.1, for any x ∈ Sy, x−x̂ ∈ N(T ) so that by Pythagoras
theorem, we have

‖x‖2 = ‖x̂‖2 + ‖x− x̂‖2.
Thus,

‖x̂‖ ≤ ‖x‖ ∀x ∈ Sy.

Suppose there exists another element x̃ ∈ Sy such that ‖x̃‖ ≤ ‖x‖ for all
x ∈ Sy. Then, it follows that

‖x̃‖ ≤ x̂‖ ≤ ‖x̃‖
so that ‖x̃‖ = ‖x̂‖. Using again Corollary 4.1 and Pythagoras theorem, we
have x̃− x̂ ∈ N(T ) and

‖x̃‖2 = ‖x̂‖2 + ‖x̃− x̂‖2.
Consequently, x̃ = x̂. �
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Corollary 4.2. Let X, X0, Y and T be as Theorem 4.3 and Q : X → X

be the orthogonal projection onto N(T )⊥. Let y ∈ R(T ) +R(T )⊥. Then

{x ∈ Sy : ‖x‖ = inf
u∈Sy

‖u‖}, N(T )⊥ ∩ Sy and {Qx : x ∈ Sy}

are singleton sets.

Proof. By Theorem 4.3, there exists a unique x̂ ∈ Sy such that

{x̂} = {x ∈ Sy : ‖x‖ = inf
u∈Sy

‖u‖} = {Qx : x ∈ Sy}.

Thus, x̂ ∈ N(T )⊥∩Sy. Hence, it suffices to show that N(T )⊥∩Sy does not
contain more than one element. Suppose x1, x2 are in N(T )⊥ ∩ Sy. Then,
by Theorem 4.2, Tx1 = Tx2, so that we have

x1 − x2 ∈ N(T )⊥ ∩N(T ) = {0}.

Thus, x1 = x2, and the proof is complete. �

Remark 4.2. We may recall (Proposition 2.4) that null space of a closed
operator is closed. Thus, the condition that N(T ) is closed in Theorem 4.3
is satisfied if T : X0 → Y is a closed operator. ♦

4.2.2 Generalized inverse

Let X, Y be Hilbert spaces, X0 be a subspace of X, and T : X0 → Y

be a linear operator with N(T ) closed in X. By Theorem 4.3, for every
y ∈ R(T ) +R(T )⊥, the set

Sy := {x ∈ X0 : ‖Tx− y‖ = inf
u∈X0

‖Tx− y‖}

of LRN solutions of (4.1) is non-empty and there exists a unique x̂ ∈ Sy

such that

‖x̂‖ = inf
x∈Sy

‖x‖.

In fact, by Theorems 4.2 and 4.3, x̂ is the unique element in N(T )⊥ such
that

T x̂ = Py,

where P : Y → Y is the orthogonal projection onto clR(T ).

Let T † be the map which associates each y ∈ R(T ) + R(T )⊥ to the
unique LRN-solution of minimal norm. Then it can be seen that

T † : R(T ) +R(T )⊥ → X
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is a linear operator with dense domain

D(T †) := R(T ) +R(T )⊥.

The operator T † is called the generalized inverse or Moore–Penrose
inverse of T , and x̂ := T †y is called the generalized solution of (4.1).
In fact,

T †y = (T |N(T )⊥∩X0)
−1Py, y ∈ D(T †).

Exercise 4.3. Let Y be a Hilbert space and Y0 be a subspace of Y . Show
that Y0 is closed if and only if Y0 + Y ⊥0 = Y .

Exercise 4.4. Let X, Y be Hilbert spaces, X0 be a subspace of X, and
T : X0 → Y be a linear operator with N(T ) closed. Show that

(i) D(T †) is dense in Y ,
(ii) T † is a linear operator, and
(iii) for y ∈ D(T †), T †y = (T |N(T )⊥∩X0)

−1Py, where P : Y → Y is the
orthogonal projection onto clR(T ).

Theorem 4.4. Let X and Y be Hilbert spaces, X0 be a subspace of X and
T : X0 → Y be a closed linear operator. Then

(i) T † is a closed linear operator, and
(ii) T † is continuous if and only if R(T ) is a closed subspace of Y .

Proof. To prove the closedness of T †, let (yn) be sequence in D(T †) such
that yn → y in Y and T †yn → x in X. Now, by the definition of T † and
using Theorem 4.2, we have

T (T †yn) = Pyn → Py,

where P is the orthogonal projection of Y onto the clR(T ). Since T is a
closed operator, it follows that x ∈ X0 and Tx = Py. Hence, by Theorem
4.2, y ∈ D(T †) and x ∈ Sy. Since T †yn ∈ N(T )⊥ ∩ X0 and N(T )⊥ is a
closed subspace of X, we have

x = lim
n→∞

T †yn ∈ N(T )⊥

so that by Theorem 4.3, T †y = x. This proves that T † is a closed operator.
The second part of the theorem is a direct consequence of the closed graph
theorem (Theorem 2.14). �
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In view of Theorem 4.4, the problem of finding a generalized solution
for (4.1) is ill-posed if and only if R(T ) is not a closed subspace of Y . In
this context we may recall from Theorem 2.17 that every compact operator
of infinite rank between Banach spaces has non-closed range.

The following example shows that a large class of operators of practical
interest having non-closed range.

Example 4.2. Let X = Y = L2[a, b]. Consider the Fredholm integral
operator K,

(Kx)(s) =
∫ b

a

k(s, t)x(t)dm(t), a ≤ s ≤ b,

where k(·, ·) ∈ L2([a, b] × [a, b]). We know that K : L2[a, b] → L2[a, b] is a
compact operator (cf. Example 2.18). We claim that K is of finite rank if
and only if k(·, ·) is degenerate in the sense that there exists a finite number
of functions φ1, . . . , φn and ψ1, . . . , ψn in L2[a, b] such that

k(s, t) =
n∑

i=1

φi(s)ψi(t), s, t ∈ [a, b].

Clearly, if k(·, ·) is degenerate, then K is of finite rank. Conversely, suppose
that K is of finite rank, say R(K) = span {φ1, . . . , φn}. Then, for any
x ∈ L2[a, b], there exist scalars α1(x), . . . , αn(x) such that

Kx =
n∑

i=1

αi(x)φi.

It can be seen that, for each i ∈ {1, . . . , n}, αi(·) is a continuous linear
functional on L2[a, b]. Hence, by Riesz representation theorem (cf. Theorem
2.20), there exist u1, . . . , un in L2[a, b] such that αi(x) = 〈x, ui〉 for every
x ∈ L2[a, b]. Thus,

Kx =
n∑

i=1

αi(x)φi =
n∑

i=1

〈x, ui〉φi ∀x ∈ L2[a, b]

so that, for every x ∈ L2[a, b],∫ b

a

k(s, t)x(t)dm(t) =
n∑

i=1

φi(s)
∫ b

a

x(t)ui(t) dt

=
∫ b

a

( n∑
i=1

φi(s)ui(t)
)
x(t) dt.

Therefore, by taking ψi(t) := ui(t), t ∈ [a, b], i ∈ {1, . . . , n}, we have

k(s, t) =
n∑

i=1

φi(s)ψi(t), s, t ∈ [a, b].

The above discussion shows that a Fredholm integral operator has non-
closed range if the kernel is non-degenerate. ♦
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4.2.3 Normal equation

Now, we give another characterization of an LRN-solution. Although the
following theorem is given for a bounded operator between Hilbert spaces,
the result can be shown to be true for a closed densely defined operator as
well.

Theorem 4.5. Let X and Y be Hilbert spaces, T ∈ B(X,Y ) and y ∈
D(T †). Then x ∈ X is an LRN-solution of (4.1) if and only if

T ∗Tx = T ∗y. (4.11)

Proof. Let P : Y → Y be the orthogonal projection onto clR(T ). By
Theorem 4.2, equation (4.1) has an LRN solution x ∈ X if and only if
y ∈ D(T †), if and only if Tx = Py. Now,

Tx = Py ⇐⇒ P (Tx− y) = 0

⇐⇒ Tx− y ∈ R(T )⊥ = N(T ∗)

⇐⇒ T ∗Tx = T ∗y.

Thus, the proof is complete. �

The equation

T ∗Tx = T ∗y

in Theorem 4.5 is called the normal form of equation (4.1).

As a corollary to Theorem 4.5 we have the following.

Proposition 4.1. Let X and Y be Hilbert spaces, and T ∈ B(X,Y ). Then
T †T : X → X is the orthogonal projection onto N(T )⊥. If, in addition,
R(T ) is closed, then TT † : Y → Y is the orthogonal projection onto R(T ),
and

N(T )⊥ = R(T ∗) = R(T ∗T ) = N(T ∗T )⊥.

In particular, if R(T ) is closed, then both R(T ∗) and R(T ∗T ) are closed in
X and are equal.

Proof. Let P : Y → Y be the orthogonal projection onto clR(T ) and
Q : X → X be the orthogonal projection onto N(T )⊥. We observe that for
every x ∈ X, Tx = P (Tx). Hence, by Theorem 4.3,

T †T = Q.
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Also, by Theorem 4.2,

T (T †y) = Py

for every y ∈ D(T †). Now suppose that R(T ) is closed in Y . Then by
Theorem 4.4, T † ∈ B(Y,X) and D(T †) = Y , so that

TT † = P.

Next, assume that R(T ) is closed. Note that

R(T ∗T ) ⊆ R(T ∗) ⊆ N(T )⊥ = N(T ∗T )⊥.

Therefore, the proof will be over, once we prove

N(T )⊥ ⊆ R(T ∗T ). (4.12)

Since T †T = Q and T † ∈ B(Y,X),

Q = Q∗ = T ∗(T †)∗u ∈ R(T ∗).

Thus,

N(T )⊥ ⊆ R(T ∗). (4.13)

Also, for every v ∈ R(T ∗), there exists y ∈ Y such that v = T ∗y. SinceR(T )
is closed in Y , by Theorem 4.1, there exists x ∈ X such that T ∗Tx = T ∗y.
Thus,

R(T ∗) ⊆ R(T ∗T ). (4.14)

Combining (4.13) and (4.14) we get (4.12), that completes the proof. �

Remark 4.3. Proposition 4.1 provides another proof for the known result
in functional analysis, namely, if T ∈ B(X,Y ), where X and Y are Hilbert
spaces, then

R(T ) closed ⇐⇒ R(T ∗) closed.

Here is another observation:
Suppose X and Y are Hilbert spaces, and T ∈ B(X,Y ) with R(T ) is

closed. Then by Proposition 4.1, we have R(T ∗T ) = N(T ∗T )⊥ so that the
map A : N(T ∗T )⊥ → R(T ∗T ) defined by

Ax = T ∗Tx, x ∈ N(T ∗T )⊥,

is bijective. Thus, from the normal form (4.11) of equation (4.1), it follows
that

T † = A−1T ∗.

In particular, if X = Y and T itself is invertible, then T † = T−1. ♦

Exercise 4.5. Let X and Y be Hilbert spaces and T ∈ B(X,Y ) with R(T )
closed in Y . Show that R(T ∗T ) = R(T ∗) without relying on Theorem
4.1(ii).
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4.2.4 Picard criterion

If T is a compact operator, then the generalized inverse of T can be repre-
sented by a singular system of T .

Theorem 4.6. (Picard criterion) Let T ∈ B(X,Y ) be a compact operator
of infinite rank, y ∈ Y and let {(σn, un, vn) : n ∈ N} be a singular system
for T . Then

y ∈ D(T †) ⇐⇒
∞∑

n=1

|〈y, vn〉|2

σ2
n

<∞,

and in that case

T †y =
∞∑

n=1

〈y, vn〉
σn

un.

Proof. Recall that

Tx =
∞∑

n=1

σn〈x, un〉vn, x ∈ X,

where {un : n ∈ N} and {vn : n ∈ N} are orthonormal bases of N(T )⊥ and
clR(T ), respectively, and (σn) is a sequence of positive real numbers such
that σn → 0. Let P : Y → Y and Q : X → X be the orthogonal projection
onto clR(T ) and N(T )⊥ respectively. Then we have

Qx =
∞∑

n=1

〈x, un〉un and Py =
∞∑

n=1

〈y, vn〉vn

for every x ∈ X, y ∈ Y . Now, let x ∈ X, y ∈ Y . Using the fact that
Tun = σnvn for every n ∈ N, we have Tx = Py if and only if

∞∑
n=1

σn〈x, un〉vn =
∞∑

n=1

〈y, vn〉vn,

if and only if σn〈x, un〉 = 〈y, vn〉 for every n ∈ N. Hence, by Theorems 4.2
and 4.3, it follows that y ∈ D(T †) if and only if there exists x ∈ X such
that Tx = Py, if and only if

∞∑
n=1

|〈y, vn〉|2

σ2
n

<∞,

and in that case,

T †y = Qx =
∞∑

n=1

〈y, vn〉
σn

un.

This completes the proof. �
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The above theorem illustrates the discontinuity of T † for a compact
operator of infinite rank as follows: Taking yn = y +

√
σn vn we have

‖y − yn‖ =
√
σn → 0 as n→∞

but

‖T †y − T †yn‖ =
1

√
σn

→∞ as n→∞.

4.3 Regularization Procedure

Let X and Y be Hilbert spaces, and X0 be a dense subspace of X. Let
T : X0 → Y be a closed linear operator. Recall from Theorem 4.4 that
if R(T ) is not closed in Y , then the generalized inverse T † of T is not
continuous, and therefore the problem of finding the generalized solution
x̂ := T †y of (4.1) is ill-posed. In such situation we would like to obtain stable
approximations to x̂ := T †y. Procedures that lead to stable approximations
to an ill-posed problems are called regularization methods.

4.3.1 Regularization family

The first requirement for a regularization method for (4.1) is a family
{Rα}α>0 of operators in B(Y,X) such that

Rαy → T †y as α→ 0

for every y ∈ D(T †). Such a family {Rα}α>0 of operators is called a
regularization family for T , and for each α > 0,

xα(y) := Rαy

is called a regularized solution of the ill-posed equation (4.1).

In practice, one may have to work with an inexact data ỹ in place of
y. In such situation what one would desire to have is the convergence of
(Rαỹ) to, say x̃, as α→ 0, such that ‖x̂− x̃‖ is small whenever ‖y − ỹ‖ is
small. Unfortunately, this is not always possible.

Proposition 4.2. Let X and Y be Hilbert spaces, X0 be a subspace of X
and T : X0 → Y be a closed linear operator. Then a regularization family
{Rα}α>0 for T is uniformly bounded if and only if R(T ) is closed in Y .
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Proof. Suppose {Rα}α>0 is uniformly bounded. Since D(T †) is a dense
subspace of Y and since Rαy → T †y as α → 0 for every y ∈ D(T †), by
Theorem 2.8, it follows that (Rαy) converges as α→ 0 for every y in Y and
the limiting operator, say R0, defined by

R0y := lim
α→0

Rαy, y ∈ Y,

belongs to B(Y,X). But

T †y = R0y ∀y ∈ D(T †)

so that T †, the restriction of the bounded operator R0, is also a bounded
operator. Therefore by Theorem 4.4, R(T ) is closed in Y .

Conversely suppose that R(T ) is closed in Y . Then D(T †) = Y and
therefore, by the hypothesis, (Rαy) converges as α → 0 for every y ∈
Y . Hence, Corollary 2.10 implies that the family {Rα}α>0 is uniformly
bounded. �

The following corollary is a consequence of Proposition 4.2.

Corollary 4.3. Let X, Y and T be as in Proposition 4.2 and {Rα}α>0 be
a regularization family for T . If R(T ) is not closed in Y , then for every
δ > 0 and for every y ∈ D(T †), there exists ỹ ∈ Y such that ‖y − ỹ‖ ≤ δ

and {‖Rαỹ‖}α>0 is unbounded.

Proof. Suppose R(T ) is not closed. By Proposition 4.2, {Rα}α>0 is not
uniformly bounded. Hence, by uniform boundedness principle (Theorem
2.9), there exists v ∈ Y such that {‖Rαv : α > 0} is not bounded. Now, let
y ∈ D(T †) and δ > 0. Let

ỹ := y +
δv

2‖v‖
.

Clearly, ‖y − ỹ‖ ≤ δ. Also,

Rαỹ := Rαy +
δRαv

2‖v‖
∀α > 0.

Since Rαy → T †y as α→ 0 and {‖Rαv : α > 0} is not bounded, it follows
that {‖Rαỹ : α > 0} is also not bounded. �

Suppose ỹ is an inexact data available in a neighbourhood of the exact
data y ∈ D(T †). Then the above corollary shows the importance of choosing
the regularization parameter α depending on ỹ in such a way that

Rαỹ → T †y as ‖y − ỹ‖ → 0.
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4.3.2 Regularization algorithm

Suppose that {Rα}α>0 is a regularization family for T . We have observed
that if we are given an inexact data ỹ in place of y ∈ D(T †) and if R(T ) is
not closed, then {Rαỹ}α>0 need not converge unless R(T ) is closed in Y .

Let us assume that y ∈ D(T †) and ỹ ∈ Y is such that

‖y − ỹ‖ ≤ δ

for some known error level δ > 0. For the case of R(T ) closed, we have the
following result.

Theorem 4.7. Suppose R(T ) is closed. Then for every y ∈ Y ,

Rαỹ → T †y as α→ 0, δ → 0.

In fact, for every y ∈ Y ,

‖T †y −Rαỹ‖ ≤ ‖T †y −Rαy‖+ c δ

where c ≥ sup
α>0

‖Rα‖.

Proof. Since R(T ) is closed, we have D(T †) = Y so that for every y ∈ Y ,
‖T †y − Rαy‖ → 0 as α → 0. Also, by Proposition 4.2, there exists c > 0
such that ‖Rα‖ ≤ c for all α > 0. Hence,

‖Rαy −Rαỹ‖ ≤ ‖Rα‖ ‖y − ỹ‖ ≤ cδ.

From this, the results follow. �

Suppose R(T ) is not closed. Then our attempt must be to choose the
regularization parameter α depending on δ or ỹ or on both such that

Rαỹ → x̂ as δ → 0,

where x̂ := T †y for y ∈ D(T †). Notice that

x̂−Rαỹ = (x̂−Rαy) +Rα(y − ỹ),

where the term x̂ − Rαy corresponds to the error in the regularization
method, and the term Rα(y − ỹ) corresponds to the error in the data.
Since Rαy → x̂ as α → 0, the attempt should be to choose the parameter
α = α(δ, ỹ) in such a way that

α(δ, ỹ) → 0 and Rα(δ,ỹ)(y − ỹ) → 0 as δ → 0.

A regularization family {Rα : α > 0} together with a parameter choice
strategy

(δ, ỹ) 7→ α := α(δ, ỹ)
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is called a regularization algorithm if

α(δ, ỹ) → 0 and Rα(δ,ỹ)ỹ → T †y as δ → 0

for every y ∈ D(T †).
We observe that

‖Rα(y − ỹ)‖ ≤ ‖Rα‖ δ.

We know that the family (‖Rα‖)α>0 is unbounded whenever R(T ) is not
closed. Thus, if we can choose α := α(δ) such that

α(δ) → 0 and ‖Rα(δ)‖ δ → 0 as δ → 0,

then

Rα(δ)ỹ) → T †y as δ → 0.

This procedure may also lead to an estimate for ‖T †y−Rαỹ‖. For instance,
suppose we know a priorily that x̂ := T †y belongs to certain subset M of
X and there exist functions f and g on [0,∞) such that

‖T †y −Rαy‖ ≤ f(α) and ‖Rα‖ ≤ g(α)

for all α > 0. Then we have

‖T †y −Rαỹ‖ ≤ f(α) + g(α) δ.

Further, if f and g are such that there exists αδ := α(δ) satisfying

f(αδ) = g(αδ)δ,

then for such αδ,

‖T †y −Rαδ
ỹ‖ ≤ 2 f(αδ).

If such functions f and g exist, then the question would be to see if the
estimate obtained above is optimal in some sense. In the next section we
shall consider a well-known regularization method, the so-called Tikhonov
regularization, and discuss certain parameter choice strategies leading to
convergence and error estimates.
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4.4 Tikhonov Regularization

In Tikhonov regularization, the regularized solution

xα(y) := Rαy

for y ∈ Y and α > 0 is defined as the unique element which minimizes the
Tikhonov functional

x 7→ ‖Tx− y‖2 + α‖x‖2, x ∈ X0.

The existence of the above minimizer is established in the following theo-
rem.

Hereafter, we assume that X and Y are Hilbert spaces.

Theorem 4.8. Let X0 and T be as in Proposition 4.2. For each y ∈ Y

and α > 0, there exists a unique xα(y) ∈ X0 which minimises the map

x 7→ ‖Tx− y‖2 + α‖x‖2, x ∈ X0.

Moreover, for each α > 0, the map

Rα : y 7→ xα(y), y ∈ Y

is a bounded linear operator from Y to X.

Proof. Consider the product space X × Y with the usual inner product
defined by

〈(x1, y1), (x2, y2)〉X×Y
= 〈x1, x2〉X

+ 〈y1, y2〉Y

for (xi, yi) ∈ X ×Y , i = 1, 2. It is easily seen that X ×Y is a Hilbert space
with respect to this inner product. For each α > 0, consider the function
Fα : X0 → X × Y defined by

Fαx = (
√
αx, Tx), x ∈ X0.

Clearly, Fα is an injective linear operator. Since the graph of T is a closed
subspace of X × Y , it follows that Fα is a closed operator and R(Fα) is a
closed subspace of X × Y . Therefore, by Theorems 4.3 and 4.4, for every
y ∈ Y , there exists a unique xα ∈ X0 such that for every x ∈ X0,

‖Txα − y‖2 + α‖xα‖2 = ‖Fαxα − (0, y)‖
X×Y

≤ ‖Fαx− (0, y)‖
X×Y

= ‖Tx− y‖2 + α‖x‖2,

and the generalized inverse F †α of Fα is a continuous. In particular, the
map y 7→ xα := F †α(0, y) is continuous. �
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For α > 0, the unique minimizer xα(y) ∈ X0 of the Tikhonov functional

x 7→ ‖Tx− y‖2 + α‖x‖2, x ∈ X0

is called the Tikhonov regularized solution of (4.1).

Recall from Theorem 4.5 that if T ∈ B(X,Y ), then x ∈ X is a minimizer
of the map x 7→ ‖Tx− y‖2 if and only if T ∗Tx = T ∗y. Now, we show that
the minimizer xα(y) of the Tikhonov functional x 7→ ‖Tx−y‖2+α‖x‖2 also
satisfies an operator equation. In fact, we show that xα(y) is the unique
solution of a second-kind equation. First we prove the following lemma.

Lemma 4.1. Suppose A ∈ B(X) is a positive self-adjoint operator. Then
for every α > 0, the operator A+ αI is bijective and

‖(A+ αI)−1‖ ≤ 1
α
, (4.15)

‖(A+ αI)−1A‖ ≤ 1. (4.16)

Proof. Let α > 0. Since A is positive,

‖(A+ αI)x‖ ‖x‖ ≥ 〈(A+ αI)x, x〉
= 〈Ax, x〉+ α‖x‖2

≥ α‖x‖2

for every x ∈ X. Thus,

‖(A+ αI)x‖ ≥ α‖x‖ ∀x ∈ X. (4.17)

Hence, A + αI is injective with its range closed and its inverse from the
range is continuous. Since A+ αI is also self adjoint, we have (cf. Section
2.2.4.1)

R(A+ αI) = N(A+ αI)⊥ = {0}⊥ = X.

Thus, it is onto as well. Now, the relation (4.15) follows from the inequality
(4.17) above.

Next we observe that

(A+ αI)−1A = I − α(A+ αI)−1.

Hence, using the fact that 〈(A+ αI)−1x, x〉 ≥ 0 for every x ∈ X, we have

〈(A+ αI)−1Ax, x〉 = 〈(I − α(A+ αI)−1)x, x〉
= 〈x, x〉 − α〈(A+ αI)−1x, x〉
≤ 〈x, x〉.

Since (A+ αI)−1A is self adjoint, we have ‖(A+ αI)−1A‖ ≤ 1 (cf. (2.9)).
Thus, (4.16) is also proved. �
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Corollary 4.4. Let T ∈ B(X,Y ) and α > 0. Then

‖(T ∗T + αI)−1T ∗‖ ≤ 1
α
.

Proof. Let v ∈ X. Then we have

‖(T ∗T + αI)−1T ∗v‖2 = 〈(T ∗T + αI)−1T ∗v, (T ∗T + αI)−1T ∗v〉
= 〈T ∗(TT ∗ + αI)−1v, T ∗(TT ∗ + αI)−1v〉
= 〈TT ∗(TT ∗ + αI)−1v, (TT ∗ + αI)−1v〉
= 〈(TT ∗ + αI)−1TT ∗v, (TT ∗ + αI)−1v〉.

Hence, by Lemma 4.1,

‖(T ∗T + αI)−1T ∗v‖2 ≤ ‖v‖2

α
.

From this, the result follows. �

The relations (4.15) and (4.16) in Lemma 4.1 also follow from the follow-
ing proposition, which also provide a better estimate than the one obtained
in Corollary 4.4.

Proposition 4.3. Suppose A ∈ B(X) is a positive self-adjoint operator.
Then for every α > 0,

σ((A+ αI)−1) =
{ 1
λ+ α

: λ ∈ σ(A)
}
, (4.18)

σ((A+ αI)−1A) =
{ λ

λ+ α
: λ ∈ σ(A)

}
, (4.19)

σ((A+ αI)−2A) =
{ λ

(λ+ α)2
: λ ∈ σ(A)

}
. (4.20)

Proof. By the first part of Lemma 4.1, the operator A+ αI is bijective.
To see (4.18), (4.19) and (4.20), we first observe that, for α > 0 and λ ≥ 0,

(i) (A+ αI)−1 − (λ+ α)−1I = (λ+ α)−1(A+ αI)−1(λI −A),
(ii) (A+ αI)−1A = I − α(A+ αI)−1,
(iii) (A+ αI)−2A = (A+ αI)−1 − α(A+ αI)−2.

From (i), λ ∈ σ(A) if and only if (λ + α)−1 ∈ σ((A + αI)−1). Thus, we
obtain (4.18). Now, relations (ii) and (iii) together with (4.18) imply

σ((A+ αI)−1A) = {1− µ : µ ∈ σ((A+ αI)−1)}

=
{

1− α

λ+ α
: λ ∈ σ(A)

}
=
{ λ

λ+ α
: λ ∈ σ(A)

}
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and

σ((A+ αI)−2A) = {µ− αµ2 : µ ∈ σ((A+ αI)−1)}

=
{ 1
λ+ α

− α

(λ+ α)2
: λ ∈ σ(A)

}
=
{ λ

(λ+ α)2
: λ ∈ σ(A)

}
.

Thus, (4.19) and (4.19) are also proved. �

Corollary 4.5. Let T ∈ B(X,Y ) and α > 0. Then

‖(T ∗T + αI)−1T ∗‖ = sup
{ √

λ

λ+ α
: λ ∈ σ(T ∗T )

}
≤ 1

2
√
α
.

Proof. Let Rα be as in (4.23). Then

R∗αRα = (T ∗T + αI)−2T ∗T.

Since R∗αRα is a self adjoint operator, by Proposition 4.3, we have

‖Rα‖2 = ‖R∗αRα‖
= rσ(R∗αRα)

= sup{λ(λ+ α)−2 : λ ∈ σ(T ∗T )}.

Thus, using the relation 2
√
αλ(λ+ α)−1 ≤ 1 for λ, α > 0, we obtain

‖Rα‖ = sup
{ √

λ

λ+ α
: λ ∈ σ(T ∗T )

}
≤ 1

2
√
α
.

This completes the proof. �

Exercise 4.6. Derive the estimates in (4.15) and (4.16) from (4.18) and
(4.19) respectively.

Suppose T ∈ B(X,Y ). Since T ∗T is a positive self-adjoint operator, by
Lemma 4.1, the operator equation

(T ∗T + αI)xα = T ∗y (4.21)

has a unique solution for every α > 0 and for every y ∈ Y , and

(T ∗T + αI)−1 ∈ B(X) ∀α > 0,

that is, equation (4.21) is well-posed for every α > 0.
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In the following we denote

xα := (T ∗T + αI)−1T ∗y,

the unique solution of (4.21) and

x̂ := T †y

for y ∈ D(T †). Then we note that

(T ∗T + αI)x̂ = T ∗y + αx̂,

so that

x̂− xα = α(T ∗T + αI)−1x̂. (4.22)

Theorem 4.9. Let T ∈ B(X,Y ), y ∈ Y and α > 0. Then the solution xα

of equation (4.21) minimizes the function

x 7→ ‖Tx− y‖2 + α‖x‖2, x ∈ X.

Proof. Let xα = (T ∗T + αI)−1T ∗y. Then for every x ∈ X, taking
u = x− xα we have

‖Tx− y‖2 + α‖x‖2 = ‖Txα − y‖2 + α‖xα‖2 + 〈(T ∗T + αI)u, u〉
≥ ‖Txα − y‖2 + α‖xα‖2.

Thus xα minimizes the function x 7→ ‖Tx− y‖2 + α‖x‖2. �

Hereafter, we assume that T ∈ B(X,Y ).

Remark 4.4. Let α > 0. Since the map x 7→ ‖Tx − y‖2 + α‖x‖2 has
a unique minimizer and the equation (T ∗T + αI)x = T ∗y has a unique
solution for every y ∈ Y , Theorem 4.9 shows that, for x ∈ X,

‖Tx− y‖2 + α‖x‖2 = inf
u∈X

‖Tu− y‖2 + α‖u‖2

if and only if (T ∗T + αI)x = T ∗y. ♦

Our next attempt is to show that {Rα}α>0 with

Rα = (T ∗T + αI)−1T ∗ ∀α > 0 (4.23)

is a regularization family for (4.1). For this purpose, we shall make use of
the relation

clR(T ∗T ) = N(T ∗T )⊥ = N(T )⊥. (4.24)

Lemma 4.2. For every u ∈ N(T )⊥ and v ∈ N(T ∗)⊥,

‖α(T ∗T + αI)−1u‖ → 0, ‖α(TT ∗ + αI)−1v‖ → 0

as α→ 0.
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Proof. Let Aα := α(T ∗T + αI)−1 for α > 0. By the relation (4.15) in
Lemma 4.1, we know that ‖Aα‖ ≤ 1 for every α > 0, and by (4.24), R(T ∗T )
is a dense subspace of N(T )⊥. Now, for x ∈ R(T ∗T ), let z ∈ X be such
that x = T ∗Tz. Then by the relation (4.16) in Lemma 4.1, we have

‖Aαx‖ = ‖AαT
∗Tz‖

= α‖(T ∗T + αI)−1T ∗Tz‖
≤ α‖v‖.

Thus, for every x ∈ R(T ∗T ), ‖α(T ∗T +αI)−1x‖ → 0 as α→ 0. Therefore,
by Theorem 2.8, ‖α(T ∗T + αI)−1u‖ → 0 for every u ∈ N(T )⊥.

By interchanging the roles of T and T ∗ in that above argument we also
obtain ‖α(TT ∗ + αI)−1v‖ → 0 for every u ∈ N(T ∗)⊥. �

Theorem 4.10. For y ∈ D(T †),

‖x̂− xα‖ → 0 as α→ 0.

In particular, the family {Rα}α>0 with Rα as in (4.23) is a regularization
family.

Proof. Let y ∈ D(T †). Recall from (4.22) that

x̂− xα = α(T ∗T + αI)−1x̂.

Hence, by Lemma 4.2, we have ‖x̂− xα‖ → 0 as α→ 0. �

Corollary 4.6. Let T ∈ B(X,Y ) and Rα as in (4.23). Then {Rα}α>0 is
uniformly bounded if and only if R(T ) is closed, and in that case

sup
α>0

‖Rα‖ = ‖T †‖.

Proof. By Theorem 4.10, {Rα}α>0 is a regularization family for T .
Hence, by Proposition 4.2, {Rα}α>0 is uniformly bounded if and only if
R(T ) is closed. Now, suppose R(T ) is closed. Then by Proposition 4.1,
P := TT † is the orthogonal projection onto R(T ). Since N(P ) = R(T )⊥ =
N(T ∗), it then follows using the estimate (4.16) in Lemma 4.1 that

‖Rαy‖ = ‖RαTT
†‖

= ‖(T ∗T + αI)−1T ∗TT †‖
≤ ‖T †y‖

for all y ∈ Y and for all α > 0. Thus, ‖Rα‖ ≤ ‖T †‖. We also have

‖T †y‖ = lim
α→0

‖Rαy‖ ≤ ‖y‖ sup
α>0

‖Rα‖

for every y ∈ Y . This completes the proof. �
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Remark 4.5. For a more general form of Tikhonov regularization using
an unbounded operator L, one may refer [36] or [53]. Problem 6 describes
such a procedure. ♦

In Section 4.2.4 we have seen for a compact operator, how the ill-
posedness of (4.1) related to the singular values of T . Next we show, using
the family of operators Rα = (T ∗T +αI)−1T ∗, α > 0, that ill-posedness of
the equation (4.1) is closely associated with the nature of the spectrum of
T ∗T in the neighbourhood of zero.

Theorem 4.11. Let T ∈ B(X,Y ). Then R(T ) is closed in Y if and only
if zero is not an accumulation point of σ(T ∗T ).

Proof. Let Rα as in (4.23). Then by Corollary 4.5, we have

‖Rα‖ = sup
{√

λ(λ+ α)−1 : λ ∈ σ(T ∗T )
}
.

Let

fα(λ) =
√
λ (λ+ α)−1, λ ∈ σ(T ∗T ).

Now, suppose that zero is an accumulation point of σ(T ∗T ). Then there
exists a sequence (λn) in σ(T ∗T ) such that λn → 0 as n → ∞, so that
fλn

(λn) →∞ as n→∞. Note that

‖Rλn‖ ≥ fλn(λn) =
1

2
√
λn

∀n ∈ N.

Hence, ‖Rλn
‖ → ∞ as n→∞, so that by Corollary 4.6, R(T ) is not closed

in Y .
To see the converse, suppose that zero is not an accumulation point of

σ(T ∗T ). Then there exists λ0 > 0 such that

σ(T ∗T ) ⊂ {0} ∪ [λ0, ‖T‖2].
Since fα(0) = 0 and

fα(λ) ≤ 1√
λ
≤ 1√

λ0

, 0 6= λ ∈ σ(T ∗T ),

we have

‖Rα‖ = sup{fα(λ) : λ ∈ σ(T ∗T )} ≤ 1√
λ0

.

Thus, {‖Rα‖ : α > 0} is bounded. Hence, again by Corollary 4.6, R(T ) is
closed in Y . �

Remark 4.6. Theorem 4.11 and some other characterizations of closedness
of R(T ) are available in [37]. ♦
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4.4.1 Source conditions and order of convergence

Let T ∈ B(X,Y ). As in (4.23), we denote

Rα := (T ∗T + αI)−1T ∗, α > 0,

and for y ∈ D(T †), we denote

x̂ := T †y, xα := Rαy, α > 0.

In this subsection we obtain estimates for the error ‖x̂− xα‖ under certain
assumptions on x̂.

Theorem 4.12. Suppose y ∈ D(T †).

(i) If x̂ = T ∗v for some v ∈ Y , then

‖x̂− xα‖ ≤ ‖v‖
√
α.

(ii) If x̂ = T ∗Tu for some u ∈ X, then

‖x̂− xα‖ ≤ ‖u‖α.

Proof. Suppose x̂ = T ∗v for some v ∈ Y . Then from the relation (4.22)
and the estimate in Corollary 4.4, we have

‖x̂− xα‖ = ‖α(T ∗T + αI)−1T ∗v‖
≤ ‖v‖

√
α.

Next, assume that x̂ = T ∗Tu for some u ∈ X. Then from the relation
(4.22) and the estimate (4.16) in Lemma 4.1, we have

‖x̂− xα‖ = ‖α(T ∗T + αI)−1T ∗Tu‖ ≤ ‖u‖α.
This completes the proof. �

Corollary 4.7. Suppose R(T ) is closed. Then for every y ∈ Y , there exists
u ∈ X such that

‖x̂− xα‖ ≤ ‖u‖α.

Proof. Since R(T ) is closed, by Proposition 4.1, we have

N(T )⊥ = R(T ∗) = R(T ∗T ).

Hence, the result follows from Theorem 4.12 (ii). �

In view of Theorem 4.12 (ii), A natural question would be whether it is
possible to improve the order O(α) to o(α). The answer is negative except
in a trivial case.

Theorem 4.13. If ‖x̂− xα‖ = o(α), then x̂ = 0 and xα = 0.
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Proof. From (4.22), we have

‖x̂− xα‖ = α‖(T ∗T + αI)−1x̂‖ ≥ α‖x̂‖
α+ ‖T ∗T‖

.

In particular,
‖x̂‖

α+ ‖T ∗T‖
≤ ‖x̂− xα‖

α
.

Hence,
‖x̂− xα‖ = o(α) implies ‖x̂‖ = 0,

and in that case,
xα = (T ∗T + αI)−1T ∗y = (T ∗T + αI)−1T ∗T x̂ = 0.

This completes the proof. �

A priori assumptions on the unknown ‘solution’ T †y, as in Theorem
4.12, are called source conditions.

Now, let us look at the source conditions imposed on x̂ := T †y in The-
orem 4.12 in the context of T being a compact operator.

Let T be a compact operator and {(σn, un, vn) : n ∈ N} be a singular
system of T . Then, from the representations

Tx =
∞∑

n=1

σn〈x, un〉vn, x ∈ X, (4.25)

T ∗Tx =
∞∑

n=1

σ2
n〈x, un〉un, x ∈ X, (4.26)

we have

x̂ ∈ R(T ∗) ⇐⇒
∞∑

n=1

|〈x̂, un〉|2

σ2
n

<∞, (4.27)

x̂ ∈ R(T ∗T ) ⇐⇒
∞∑

n=1

|〈x̂, un〉|2

σ4
n

<∞. (4.28)

Exercise 4.7. Prove (4.27) and (4.28).

We observe that the source conditions (4.27) and (4.28) are special cases
of the condition

∞∑
n=1

|〈x̂, un〉|2

σ4ν
n

<∞ (4.29)

for ν > 0. The condition (4.29) is known as a Hölder-type source con-
dition. We shall soon define such condition for non-compact operators as
well. First let us obtain an estimate for the error ‖x̂−xα‖ under the source
condition (4.29).
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Estimates under Hölder-type source condition

Since T ∗Tun = σ2
nun for all n ∈ N, we have

(T ∗T + αI)−1un =
un

σ2
n + α

∀α > 0, n ∈ N.

Therefore,

xα := Rαy = (T ∗T + αI)−1T ∗y

=
∞∑

n=1

σn

σ2
n + α

〈y, vn〉un.

Also, using the Fourier expansion
∑∞

n=1〈x̂, un〉un of x̂, we have

x̂− xα = α(T ∗T + αI)−1x̂

=
∞∑

n=1

α〈x̂, un〉
σ2

n + α
un.

Suppose x̂ satisfies the condition (4.29) for some ν > 0. Then, taking

u :=
∞∑

n=1

〈x̂, un〉
σ2ν

n

un, (4.30)

we see that u ∈ N(T )⊥ and 〈x̂, un〉 = σ2ν
n 〈u, un〉 for all n ∈ N so that we

have

x̂− xα =
∞∑

n=1

α〈x̂, un〉
σ2

n + α
un

=
∞∑

n=1

ασ2ν
n

σ2
n + α

〈u, un〉un.

Since, for λ > 0 and 0 < ν ≤ 1,
λν

λ+ α
= αν−1 (λ/α)ν

1 + λ/α
≤ αν−1

we obtain

‖x̂− xα‖2 =
∞∑

n=1

α2σ4ν
n

(σ2
n + α)2

|〈u, un〉|2

≤ α2ν‖u‖2.
Thus, we have proved the following theorem.

Theorem 4.14. Suppose T is a compact operator with singular system
{(σn, un, vn) : n ∈ N} and y ∈ D(T †). If x̂ := T †y satisfies (4.29) for some
ν ∈ (0, 1], then there exists u ∈ X such that

‖x̂− xα‖ ≤ αν‖u‖.
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Remark 4.7. In view of the definition (2.14) and the representation (4.26)
for the compact positive operator T ∗T , we have

(T ∗T )νx =
∞∑

n=1

σ2ν
n 〈x, un〉un, x ∈ X, (4.31)

for any ν > 0. Thus, the condition (4.29) on x̂ := T †y is equivalent to the
condition x̂ ∈ R((T ∗T )ν). ♦

Recall also that for every T ∈ B(X,Y ), the operator T ∗T is positive
and self-adjoint, and hence by the discussion in Section 2.3.4, for every any
ν > 0, we have a positive self-adjoint operator (T ∗T )ν . Now, in place of
Theorem 4.14, we have the following theorem.

Theorem 4.15. Suppose x̂ ∈ R((T ∗T )ν) for some ν ∈ (0, 1]. Then

‖x̂− xα‖ ≤ αν‖u‖,

where u ∈ X is such that x̂ = (T ∗T )νu.

Proof. Recall that from (4.22) that

x̂− xα = α(T ∗T + αI)−1x̂

= α(T ∗T + αI)−1(T ∗T )νu.

Then, using the relation (2.12) in Section 2.3.4, we have

‖x̂− xα‖ ≤ ‖u‖ sup
λ∈σ(T∗T )

αλν

λ+ α
.

Since, for λ > 0 and 0 < ν ≤ 1,

λν

λ+ α
≤ αν−1 (λ/α)ν

1 + λ/α
≤ αν−1

it follows that

‖x̂− xα‖ ≤ ‖u‖αν .

This competes the proof. �

Remark 4.8. The source conditions considered in Theorem 4.12 are partic-
ular cases of the assumption x̂ := T †y ∈ R((T ∗T )ν) in Theorem 4.15 by tak-
ing ν = 1/2 and ν = 1 respectively. Clearly, the condition T †y ∈ R(T ∗T )
is obtained by taking ν = 1. The fact that T †y ∈ R(T ∗) is obtained by
taking ν = 1/2 follows by observing that

R(T ∗) = R((T ∗T )1/2)
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which is a consequence of the polarization identity (cf. Kato [31])

T = U |T |, (4.32)

where |T | := (T ∗T )1/2. Here, the linear operator U : X → X is a partial
isometry, that is, U satisfies ‖Ux‖ = ‖x‖ for all x ∈ N(|T |)⊥, and U∗U is
the orthogonal projection onto clR(|T |). Indeed, the polarization identity
(4.32) implies T ∗ = |T |U∗ and

T ∗U = |T |U∗U = (U∗U |T |)∗ = |T |∗ = |T |

so that

R(T ∗) = R(|T |U∗) ⊆ R(|T |) = R(T ∗U) ⊆ R(T ∗).

Thus, R(T ∗) = R(|T |) = R((T ∗T )1/2). ♦

4.4.2 Error estimates with inexact data

Now, let us consider Tikhonov regularization with an inexact data ỹ in
place of the actual data y ∈ D(T †). In this case, in place of the regularized
solution xα := Rαy, we have x̃α := Rαỹ, where Rα is as in (4.23). By
Theorem 4.10, we know that {Rα}α>0 is a regularization family. But, if
R(T ) is not closed, then {‖Rα‖ : α > 0} is unbounded (see Corollary
4.6) and by Corollary 4.3, even if ỹ is close to y, the regularized solution
x̃α := Rαỹ need not be close to T †y.

As in previous subsection, for y ∈ D(T †), we use the notations

x̂ := T †y, xα := Rαy.

For δ > 0, let yδ ∈ Y be such that ‖y − yδ‖ ≤ δ, and

xδ
α := Rαy

δ.

Lemma 4.3. For every α > 0 and δ > 0,

‖xα − xδ
α‖ ≤

δ

2
√
α
.

Proof. Using the estimate for ‖Rα‖ in Corollary 4.5, we have

‖xα − xδ
α‖ = ‖Rα(y − yδ)‖

≤ ‖y − yδ

2
√
α

≤ δ

2
√
α
.

This completes the proof. �
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For the case of R(T ) closed, the following theorem is immediate from
Theorem 4.7, Corollaries 4.6 and 4.7 and Lemma 4.3.

Theorem 4.16. Suppose R(T ) is closed in Y and y ∈ Y . Then x̂ ∈
R(T ∗T ) and for every yδ ∈ Y

‖x̂− xδ
α‖ ≤ ‖u‖α+ ‖T †‖δ,

where u ∈ X is such that x̂ = T ∗Tu.
In particular, if α ≤ c0δ for some c0 > 0, then

‖x̂− xδ
α‖ ≤ c1δ,

where c1 := ‖u‖c0 + ‖T †‖.

Exercise 4.8. Prove Theorem 4.16.

Exercise 4.9. If R(T ) is closed, then show that for every y, yδ ∈ Y with
‖y − yδ‖ ≤ δ, ‖x̂− xδ

α‖ ≤ c(α+ δ) for some c > 0 depending on y.

In the following theorem we specify a parameter choice strategy which
ensures convergence.

Theorem 4.17. The inequality

‖x̂− xδ
α‖ ≤ ‖x̂− xα‖+

δ

2
√
α

(4.33)

holds. In particular, if α := α(δ) is chosen such that

α(δ) → 0 and
δ√
α(δ)

→ 0 as δ → 0,

then

‖x̂− xδ
α(δ)‖ → 0 as δ → 0.

Proof. Using the estimate in Lemma 4.3, we have

‖x̂− xδ
α‖ ≤ ‖x̂− xα‖+ ‖xα − xδ

α‖

≤ ‖x̂− xα‖+
δ

2
√
α

proving (4.33). Also, by Theorem 4.10, ‖x̂ − xα‖ → 0 as α → 0. Hence,
the remaining part of theorem is obvious. �
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Remark 4.9. By Theorem 4.17, a sufficient condition for the Tikhonov
regularization to be a regularization method is to have α = α(δ) such that

α(δ) → 0 and
δ√
α(δ)

→ 0 as δ → 0.

We may observe that these conditions are satisfied if, for example, α =
c0δ

2(1−µ) for some µ ∈ (0, 1) and for some constant c0 > 0.

Now we give a general error estimate and an order of convergence under
a specific smoothness assumption on x̂ together with an a priori parameter
choice strategy.

Theorem 4.18. Let x̂ ∈ R((T ∗T )ν) for some ν with 0 < ν ≤ 1. Then
‖x̂− xδ

α‖ ≤ cmax{αν , δ/
√
α},

where c > 0 is independent of α and δ.
In particular, if α = c0δ

2/(2ν+1) for some constant c0 > 0, then
‖x̂− xδ

α‖ = O(δ2ν/(2ν+1)).

Proof. By Theorem 4.15, ‖x̂− xα‖ = O(αν), so that by (4.33) we get
‖x̂− xδ

α‖ ≤ cmax{αν , δ/
√
α}

for some constant c > 0. The particular case is immediate. �

Remark 4.10. We note that the map
α 7→ max{αν , δ/

√
α}, α > 0,

attains its minimum at α = δ2/(2ν+1), so that the order
‖x̂− xδ

α‖ = O(δ2ν/(2ν+1))
given in Theorem 4.18 is the best order possible from the estimate
max{αν , δ/

√
α}. In fact, the above order is sharp. To see this consider the

case of a compact operator T with singular system {(σn, un, vn) : n ∈ N},
and for a fixed ν ∈ (0, 1] and k ∈ N, take y = σ2ν+1

k vk. Then, we see that
x̂ = σ2ν

k uk and

x̂− xα =
ασ2ν

k

σ2
k + α

uk.

Taking yδ := y − δvk, we have

xα − xδ
α =

δσk

σ2
k + α

uk.

Now, taking δ := σ2ν+1
k and α := δ2/(2ν+1), it follows that yδ = 0 so that
‖x̂− xδ

α‖ = ‖x̂‖ = σ2ν
k = δ2ν/(2ν+1).

This justify our claim. ♦
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We observe that the best rate for ‖x̂− xδ
α‖ that one obtains from The-

orem 4.18 is O
(
δ2/3

)
which happens if ν = 1. One may ask the following

questions:

(i) Can we obtain the order O(δ2/3) by a weaker assumption of α, say for
α := cδ2/3−ε for some ε ∈ (0, 2/3)?

(ii) Is it possible to improve the above order O(δ2/3) to

‖x̂− xδ
α‖ = o(δ2/3)

possibly by a stronger assumption on x̂ and by a different parameter
choice strategy?

The following two theorems (cf. Groetsch [25]) show that the answers, in
general, are negative.

Theorem 4.19. If x̂ 6= 0 and α := α(δ, yδ) is such that α(δ, yδ) → 0 as
d→ 0, then

α(δ, yδ) = O(‖x̂− xδ
α‖+ δ).

In particular, if ‖x̂− x̃α‖ = O(δµ) for some µ ∈ (0, 1], then

α(δ, yδ) = O(δµ).

Proof. From the definitions of x̂ and xδ
α we have

(T ∗T + αI)(x̂− xδ
α) = αx̂+ T ∗(y − yδ),

so that

α‖x̂‖ ≤ (α+ ‖T ∗T‖)‖x̂− xδ
α‖+ ‖T ∗‖δ.

Therefore, if x̂ 6= 0 and if α := α(δ, yδ) is a parameter choice strategy such
that α(δ, yδ) → 0 as δ → 0, then

α(δ, yδ) = O
(
‖x̂− xδ

α‖+ δ
)
.

The particular case of the result is immediate. �

Theorem 4.20. Suppose T is compact with infinite rank, x̂ := T †y ∈
R(T ∗T ) and α := α(δ, yδ) is chosen such that

α(δ, yδ) → 0 as δ → 0

and

‖x̂− xδ
α‖ = o

(
δ2/3

)
.

Then x̂ = 0.
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Proof. Let {(σn, un, vn) : n ∈ N} be a singular system of T . Recall that
σn → 0 as n→∞. Let

yδ
n = y − δvn, n ∈ N,

so that ‖y − yδ
n‖ = δ. Since T ∗vn = σnun and T ∗Tun = σ2

nun, we have

Rα(y − yδ
n) = δ(T ∗T + αI)−1T ∗vn

=
δσn

σ2
n + α

un.

Thus,

x̂−Rαy
δ
n = x̂−Rαy +

δσn

σ2
n + α

un

so that

‖x̂−Rαy
δ
n‖2 =

〈
(x̂−Rαy) +

δσn

σ2
n + α

un, (x̂−Rαy) +
δσn

σ2
n + α

un

〉
≥ 2δσn

σ2
n + α

Re〈x̂−Rαy, un〉+
(

δσn

σ2
n + α

)2

.

Hence,

(δ−2/3‖x̂−Rαy
δ
n‖)2 ≥

2δ−1/3σn

σ2
n + α

Re〈x̂−Rαy, un〉+
(
δ1/3σ−1

n

1 + ασ−2
n

)2

.

Let us take δn := σ3
n, and let αn be the corresponding regularization pa-

rameter. Then δ−1/3
n σn = 1 = δ1/3σ−1

n for all n ∈ N, so that(
δ−2/3
n ‖x̂−Rαny

δ
n‖
)2 ≥ ξn +

1

(1 + αδ
−2/3
n )2

, (4.34)

where

ξn :=
2σ−2

n

1 + αnδ
−2/3
n

Re〈x̂−Rαn
y, un〉.

Since x̂ ∈ R(T ∗T ), by Theorem 4.12 we have ‖x̂−Rαn
y‖ ≤ ‖u‖α for some

u ∈ X. Hence,

|ξn| ≤
2‖u‖αnσ

−2
n

1 + αnδ
−2/3
n

=
2‖u‖αnδ

−2/3
n

1 + αnδ
−2/3
n

. (4.35)

Now, suppose x̂ 6= 0. Then, by Theorem 4.19 we have

α(δ, yδ) = O(‖x̂−Rαy
δ‖),

and hence using the hypothesis ‖x̂−Rαy
δ‖ = o(δ2/3), we obtain

αnδ
−2/3
n → 0 as n→∞.

Thus, from (4.35) we have ξn → 0, and therefore, the right-hand side of
(4.34) tends to 1 whereas the left-hand side of (4.34) tends to 0. Thus, we
arrive at a contradiction. Therefore, x̂ = 0. �
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4.4.3 An illustration of the source condition

Now we illustrate the validity of the source condition in Theorem 4.18 in the
context of the ill-posed problem associated with the backward heat conduc-
tion problem. In Section 4.1.2, we considered the problem of determining
the temperature f := u(·, t0) at a time t0 ≥ 0 on a “thin wire” of length `

from the knowledge of the temperature g := u(·, τ) at a time t = τ > t0,
under the assumption that the temperature at both ends of the wire are
kept at zero temperature. We have seen that this problem is equivalent to
solving a compact operator equation

Kf = g,

where K is a compact operator with singular values

σn := e−λ2
n(τ−t0), where λn :=

cnπ

`
, n ∈ N.

In fact, σn are the eigenvalues of K with corresponding eigen functions

ϕn(s) :=

√
2
`

sin(λns), n ∈ N.

Using the notations in Section 4.1.2, we also know that f := u(·, t0) must
satisfy

〈f, ϕn〉 = e−λ2
nt0〈f0, ϕn〉, n ∈ N,

where f0 := u(·, 0) is the initial temperature. Hence, the condition f0 ∈
L2[0, `] implies that

∞∑
n=1

eλ2
nt0 |〈f, ϕn〉|2 =

∞∑
n=1

|〈f0, ϕn〉|2 <∞.

Equivalently,
∞∑

n=1

|〈f, ϕn〉|2

σ4ν
n

<∞ with ν :=
t0

2(τ − t0)
.

Thus, in view of the representation (4.31), we see that f satisfies the con-
dition

f := K†g ∈ R((K∗K)ν) with ν :=
t0

2(τ − t0)
.

From the above, it is clear that, for determining the initial temperature
u(·, 0), that is, for t0 = 0, it is necessary to impose additional assumption
on f0 := u(·, 0). Note that if t0 = 0, then the singular values are given by

σn := e−λ2
nτ , n ∈ N.



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

172 Linear Operator Equations: Approximation and Regularization

Hence, the requirement f0 := K†g ∈ R((K∗K)ν) for some ν > 0 takes the
form

∞∑
n=1

e4νλ2
nτ |〈f0, ϕn〉|2 <∞,

which is not satisfied automatically by f0. In order to address this issue, in
Section 4.6, we consider a more general type of source condition than the
above.

4.4.4 Discrepancy principles

A parameter choice strategy in which a priori knowledge on the unknown
element x̂ required is called an a priori parameter choice strategy. For
example, the choice of α in Remark 4.9 and Theorem 4.17 (iii) are a pri-
ori choices. As against this, in a posteriori parameter choice strategies,
the parameter α is chosen based on the knowledge of the available data.
It has been well recognized that, in applications, an a posteriori parame-
ter choice strategy is preferable to an a priori strategy (cf. [11]). Many
a posteriori strategies are available in the literature (cf. [17] and refer-
ences therein). We consider two of the simplest and oldest a posteriori
parameter choice strategies, namely the ones introduced by Morozov and
Arcangeli in the year 1966 (cf. [4], [42]) on which the author and his stu-
dents and collaborators also made some contributions in various contexts
(cf. [20, 21, 45, 49, 50, 53, 55–61]).

As in previous subsection, for y ∈ D(T †) and δ > 0, let yδ ∈ Y be such
that ‖y − yδ‖ ≤ δ, and

x̂ := T †y, xα := Rαy, xδ
α := Rαy

δ,

where Rα := (T ∗T + αI)−1T ∗ for α > 0.

(i) Morozov’s and Arcangeli’s methods

In Morozov’s method, the parameter α is chosen in such a way that the
equation

‖Txδ
α − yδ‖ = δ (4.36)

is satisfied, and in Arcangeli’s method, the equation to be satisfied is

‖Txδ
α − yδ‖ =

δ√
α
. (4.37)
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For proving the existence of unique solutions α in equations (4.36) and
(4.37) and also to obtain the corresponding error estimates, we shall make
use of a few lemmas.

Lemma 4.4. Suppose y ∈ R(T ). Then for all α > 0,

Txδ
α − yδ = −α(TT ∗ + αI)−1yδ, (4.38)

α‖yδ‖
α+ ‖T‖2

≤ ‖Txδ
α − yδ‖ ≤ δ + ‖α(TT ∗ + αI)−1y‖, (4.39)

lim
α→0

‖Txδ
α − yδ‖ ≤ δ and lim

α→∞
‖Txδ

α − yδ‖ ≥ ‖yδ‖. (4.40)

Proof. From the definition of xδ
α we have

Txδ
α − yδ = T (T ∗T + αI)−1T ∗yδ − yδ = −α(TT ∗ + αI)−1yδ.

Thus, (4.38) is obtained. Now, since ‖(T ∗T + αI)−1‖ ≤ 1/α (cf. Lemma
4.1), we have

‖(T ∗T + αI)−1yδ‖ ≤ ‖(T ∗T + αI)−1(yδ − y)‖+ ‖(T ∗T + αI)−1y‖

≤ δ

α
+ ‖(T ∗T + αI)−1y‖.

We also have

‖yδ‖ ≤ ‖T ∗T + αI‖ ‖α(T ∗T + αI)−1yδ‖
≤ (α+ ‖T‖2)‖T x̃− yδ‖.

The above two inequalities together with (4.38) give (4.39).
Now, using the estimate ‖(TT ∗ + αI)−1T‖ ≤ 1/(2

√
α) (see Corollary

4.5) and the fact that y ∈ R(T ), we have

‖α(T ∗T + αI)−1y‖ = α‖(T ∗T + αI)−1T x̂‖ ≤
√
α‖x̂‖
2

.

In particular,

‖α(T ∗T + αI)−1y‖ → 0 as α→ 0.

Hence (4.39) imply (4.40). �

Lemma 4.5. Let A ∈ B(X) be a positive self-adjoint operator. Then, for
0 ≤ τ ≤ 1,

‖Aτx‖ ≤ ‖Ax‖τ‖x‖1−τ ∀x ∈ X.
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Proof. The result is obvious for τ = 0 and for τ = 1. Hence suppose
that 0 < τ < 1. Now, using the spectral representation of Aτ , we have (see
(2.20)),

‖Aτx‖2 =
∫ b

a

λ2τd〈Eλx, x〉 ∀x ∈ X,

where (a, b) ⊇ σ(A) and {Eλ : a < λ < b} is the spectral resolution of
A. Applying Hölder’s inequality (2.3) (see Example 2.5) with p = 1/τ and
q = 1/(1− τ), we have

‖Aτx‖2 ≤

(∫ b

a

λ2d〈Eλx, x〉

)τ (∫ b

a

d〈Eλx, x〉

)1−τ

= ‖Ax‖2τ‖x‖2(1−τ) ∀x ∈ X,

so that the result follows. �

The inequality in Lemma 4.5 is called an interpolation inequality.

For the next lemma we use the fact that if ν ∈ (0, 1], then R((T ∗T )ν) ⊆
R((T ∗T )µ), where µ := min{ν, 1/2}.

Exercise 4.10. Justify the above statement.

Lemma 4.6. Suppose x̂ ∈ R((T ∗T )ν) for some ν ∈ (0, 1]. Then for every
α > 0,

‖α(TT ∗ + αI)−1T x̂‖ ≤ ‖u‖αµ+1/2,

where µ := min{ 1
2 , ν} and u ∈ X is such that x̂ = (T ∗T )µu.

Proof. Using the spectral representation (2.19), we have

(TT ∗ + αI)−1T x̂ = (TT ∗ + αI)−1T (T ∗T )µu

= T (T ∗T + αI)−1(T ∗T )µu,

and

‖(TT ∗ + αI)−1T x̂‖2 = 〈(T ∗T + αI)−2(T ∗T )2µ+1u, u〉
= ‖u‖2‖(T ∗T + αI)−2(T ∗T )2µ+1‖.

Hence, using the inequality (2.12) (cf. Section 2.3.4), we obtain

‖α(TT ∗ + αI)−1T x̂‖ ≤ ‖u‖αµ+1/2.

This completes the proof. �
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Lemma 4.7. Let 0 6= y ∈ D(T †). Suppose that α := α(δ, yδ) is chosen
such that αr‖Txδ

α − yδ‖ → 0 as δ → 0 for some r ∈ R. Then α(δ, yδ) → 0
as δ → 0.

Proof. Suppose the conclusion in the lemma does not hold. Then, there
exists a sequence (δn) of positive real numbers which converges to 0 and
a sequence (yn) in Y such that ‖y − yn‖ ≤ δn for all n ∈ N, but αn :=
α(δn, yn) → c for some c > 0. Now, from the relation (4.38) in Lemma 4.4,
for any r > 0 we obtain

lim
n→∞

αr
n‖Txδn

αn
− yδn‖ = cr‖(TT ∗ + cI)−1y‖ 6= 0.

This is a contradiction to the hypothesis of the lemma. �

Theorem 4.21. Let 0 6= y ∈ D(T †). Then equations (4.36) and (4.37)
have unique solutions, say α(M)(δ, yδ) and α(A)(δ, yδ), respectively. More-
over,

α(M)(δ, yδ) → 0 and α(A)(δ, yδ) → 0 as δ → 0,

and

α(M)(δ, yδ) = O(δ) and α(A)(δ, yδ) = O(δ2/3).

Proof. It is seen that the map

α 7→ ‖Txδ
α − yδ‖2 = α2〈(TT ∗ + αI)−2yδ, yδ〉, α > 0,

is continuous and strictly increasing, so that the existence of a unique
α = α(δ, yδ) satisfying (4.36) (resp. (4.37)) follows from (4.40) by us-
ing intermediate value theorem. Hence, by Lemma 4.7, taking r = 0 and
r = 1/2, respectively, we have

α(M)(δ, yδ) → 0 and α(A)(δ, yδ) → 0 as δ → 0.

Now, writing the relation (4.39) in Lemma 4.4 as

α ≤ (α+ ‖T‖2)‖Txδ
α − yδ‖

‖yδ‖

and using the facts that α(M)(δ, yδ) → 0 and α(A)(δ, yδ) → 0 as δ → 0, we
have α(M)(δ, yδ) = O(δ) and α(A)(δ, yδ) = O(δ2/3). �

Theorem 4.22. Let 0 6= y ∈ R(T ) and x̂ ∈ R(T ∗T )ν for some ν ∈ (0, 1].
Then the following hold.
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(i) If α is chosen according to the Morozov’s discrepancy principle (4.36),
then

‖x̂− xδ
α‖ ≤ ‖u‖

1
2µ+1 δ

2µ
2µ+1 , (4.41)

where µ = min{ν, 1/2} and u ∈ X is such that x̂ = (T ∗T )µu.
(ii) If α is chosen according to the Arcangeli’s discrepancy principle (4.37),

then

‖x̂− xδ
α‖ = O(δ

2ν
3 ). (4.42)

Proof. (i) Suppose α is chosen according to (4.36). The we have

δ2 + α‖xδ
α‖2 = ‖Txδ

α − yδ‖2 + α‖xδ
α‖2

≤ ‖T x̂− yδ‖2 + α‖x̂‖2

≤ δ2 + α‖x̂‖2,

so that ‖xδ
α‖ ≤ ‖x̂‖. Therefore,

‖x̂− xδ
α‖2 = 〈x̂− xδ

α, x̂− xδ
α〉

= ‖x̂‖2 − 2Re〈x̂, xδ
α〉+ ‖xδ

α‖2

≤ 2‖x̂‖2 − 2Re〈x̂, xδ
α〉

= 〈x̂, x̂− xδ
α〉+ 〈x̂− xδ

α, x̂〉
≤ 2|〈x̂− xδ

α, x̂〉|.

Now, assume that x̂ ∈ R((T ∗T )ν) for some ν, and let u ∈ X be such that
x̂ = (T ∗T )µu, where µ = min{1/2, ν}. Then we have

‖x̂− xδ
α‖2 ≤ 2〈(T ∗T )µ(x̂− xδ

α), u〉
≤ 2‖(T ∗T )µ(x̂− xδ

α)‖‖u‖.

Since ‖(T ∗T )1/2x‖ = ‖Tx‖ for all x ∈ X, it follows from Lemma 4.5 by
taking A = (T ∗T )1/2 and τ = 2µ that

‖(T ∗T )µx‖ ≤ ‖Tx‖2µ‖x‖1−2µ (4.43)

for any x ∈ X. Therefore, we obtain

‖x̂− xδ
α‖2 ≤ 2‖u‖‖T (x̂− xδ

α)‖2µ‖x̂− xδ
α‖1−2µ,

so that

‖x̂− xδ
α‖2µ+1 ≤ 2‖u‖‖T (x̂− xδ

α)‖2µ.

But,

‖T (x̂− xδ
α)‖ = ‖y − Txδ

α‖ ≤ ‖y − yδ‖+ ‖yδ − Txδ
α‖ ≤ 2δ.
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Therefore,

‖x̂− xδ
α‖ ≤ (2‖u‖)1/(2µ+1)(2δ)2µ/(2µ+1)

= ‖u‖1/(2µ+1)δ2µ/(2µ+1).

Thus, proof of (i) is over.
(ii) Now, let α satisfy (4.37). Then by Lemma 4.6 and the relation

(4.39), we have

δ√
α

= ‖Txδ
α − yδ‖

≤ δ + ‖α(TT ∗ + αI)−1T x̂‖
≤ δ + ‖u‖αω,

where ω := min{1, ν + 1/2}. Hence, using the fact that α = O(δ2/3), it
follows that δ/

√
α = O(δ2ω/3). Therefore, Theorem 4.17 (ii) gives

‖x̂− xδ
α‖ = O(max{αν , δ/

√
α})

= O(δ2ν/3).

This completes the proof of the theorem. �

Remark 4.11. By Theorem 4.22, we see that if x̂ ∈ R((T ∗T )ν) with
0 < ν ≤ 1, then the optimal rate

‖x̂− xδ
α‖ = O

(
δ

2ν
2ν+1

)
is obtained under Morozov’s discrepancy principle if 0 < ν ≤ 1/2, and
under Arcangeli’s discrepancy principle if ν = 1. In fact, it is known that,
under Morozov’s discrepancy principle, it is not possible to get a rate better
than O

(
δ1/2

)
(cf. Groetsch [24]).

We may also observe that

δ2ν/3 > δ1/2 if and only if 3/4 < ν ≤ 1,

so that the rate obtained under Arcangeli’s method is better than the rate
under Morozov’s method for 3/4 < ν ≤ 1, whereas for 0 < ν < 3/4, the rate
under Arcangeli’s method is not as good as that under Morozov’s method.

We may also recall from Section 4.4.2 that under Tikhonov regulariza-
tion we cannot obtain a rate better than O(δ2/3); whatever be the mode of
parameter choice strategy. ♦
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Remark 4.12. Looking at the proof of Theorem 4.22, it can be seen that
results in (i) and (ii) in Theorem 4.22 hold with α satisfying

δ ≤ ‖Txδ
α − yδ‖ ≤ c1δ

and
δ√
α
≤ ‖Txδ

α − yδ‖ ≤ c2
δ√
α

for some c1, c2 ≥ 1 instead of (4.36) and (4.37) respectively. ♦

Exercise 4.11. Verify the assertions in Remark 4.12.

A natural query, at this point, would be whether we can modify the proof
Theorem 4.22 so as to obtain a rate better than O(δ1/2) under Morozov’s
method for 1/2 ≤ ν ≤ 1. The following result due to Groetsch ([24]) shows
that it is not possible.

Theorem 4.23. If T : X → Y is a compact operator of infinite rank,
then the best rate possible under Morozov’s discrepancy principle (4.36) is
O(δ1/2).

Proof. Let {(σn, un, vn) : n ∈ N} be a singular system for T . Let us
assume that under Morozov’s discrepancy principle (4.36), it is possible to
get the rate

‖x̂− xδ
a‖ = o(δ1/2)

whenever x̂ ∈ R(T ∗T ). We shall arrive at a contradiction.
Let (δn) be a sequence of positive reals such that δn → 0 as n → ∞,

and let

y = v1, yn = y − δnvn ∀n ∈ N.
In this case we have x̂ := T †y = u1/σ1. Clearly ‖y − yn‖ = δn for every
n ∈ N. For each fixed n ∈ N, let αn = α(δn, yn) be the regularization
parameter obtained under the Morozov’s discrepancy principle (4.36), and
let

xn = xαn
, xδ

n = xδ
αn
.

Since (T ∗T + αnI)−1un = un/(σ2
n + αn) for all n ∈ N, we have

x̂− xδ
n = (x̂− xn) + (xn − xδ

n)

= αn(T ∗T + αnI)−1x̂+ (T ∗T + αnI)−1T ∗(y − yn)

=
αn

σ1
(T ∗T + αnI)−1u1 + δn(T ∗T + αnI)−1T ∗vn

=
αn

σ1(σ2
n + αn)

u1 +
δnσn

σ2
n + αn

un.
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Hence for n > 1,

‖x̂− xδ
n‖2 =

α2
n

σ2
1(σ2

n + αn)2
+

δ2nσ
2
n

(σ2
n + αn)2

≥
( δnσn

σ2
n + αn

)2

.

Now, taking δn = σ2
n we have

‖x̂− xδ
n‖ ≥

δnσn

σ2
n + αn

=
δ
3/2
n

δn + αn
.

Thus, the assumption ‖x̂− xδ
α‖ = o(δ1/2) implies

δn
δn + αn

≤ ‖x̂− xδ
n‖√

δn
→ 0 as n→∞.

Consequently, we get
αn

δn
→∞ as n→∞.

This is a contradiction to the fact that αn = O(δn) obtained in Theorem
4.21. �

Our next attempt is to look for an a posteriori parameter choice strategy
which gives a better rate than O(δ2ν/3) for 0 < ν < 1. In this regard, we
consider a modified form of Arcangeli’s method defined using a pair (p, q)
of parameters.

(ii)Generalized Arcangeli’s method

For p > 0 and q > 0, consider the equation

‖Txδ
α − yδ‖ =

δp

αq
(4.44)

for choosing the regularization parameter α.
Let δ0 > 0 be such that ‖y‖ ≥ 2δ0 and for δ ∈ (0, δ0], let yδ ∈ Y be such

that

‖y − yδ‖ ≤ δ.

Theorem 4.24. For each δ ∈ (0, δ0], the equation (4.44) has a unique
solution α = α(δ, yδ). Moreover

α(δ, yδ) → 0 as δ → 0

and

α(δ, yδ) ≤ c1δ
p

q+1 (4.45)



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

180 Linear Operator Equations: Approximation and Regularization

for some c1 > 0. If in addition y ∈ R(T ), x̂ ∈ R(T ∗T )ν for some ν ∈ (0, 1]
and

p

q + 1
≤ min

{
1,

4q
2q + 1

}
, (4.46)

then
δ√
α

= O (δµ) ,

where

µ = 1− p

2(q + 1)

(
1 +

1− ω

q

)
with ω = min

{
1, ν +

1
2

}
.

Proof. The existence of a unique α = α(δ, yδ) such that (4.44) is satisfied
follows as the case of Morozov’s and Arcangeli’s discrepancy principles (cf.
Theorem 4.21), that is, by using the fact that the map

α 7→ ‖Txδ
α − yδ‖2 = α2〈(TT ∗ + αI)−2yδ, yδ〉, α > 0,

is continuous and strictly increasing and then appealing to intermediate
value theorem. By Lemma 4.7, we also obtain the convergence α(δ, yδ) → 0
as δ → 0. Now, recall from Lemma 4.4 that

α‖yδ‖
α+ ‖T‖2

≤ ‖Txδ
α − yδ‖ ≤ δ + ‖α(TT ∗ + αI)−1y‖. (4.47)

The first inequality in (4.47) and the convergence α(δ, yδ) → 0 as δ → 0
imply that α(δ, yδ) ≤ c1δ

p
q+1 for some c1 > 0. Also, the second inequality

in (4.47) together with Lemma 4.6 implies that
δp

αq
= ‖Txδ

α − yδ‖ ≤ δ + ‖u‖αω,

where u ∈ X is such that x̂ = (T ∗T )νu. Therefore, by the estimate in
(4.45),

δp

αq
≤ δ + cω1 ‖u‖δ

pω
q+1 .

From this we have

δ√
α

= δ1−
p
2q

(
δp

αq

) 1
2q

≤
(
δ2q−p+1 + cω1 ‖u‖δ

2q−p+ pω
q+1

)1/2q

.

Using the condition (4.46) on (p, q), we have

0 ≤ 2q − p+
p

2(q + 1)
≤ 2q − p+

pω

q + 1
≤ 2q − p+ 1.
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Hence, it follows that

δ√
α
≤ c2δ

µ

for some c2 > 0, where

µ =
1
2q

(
2q − p+

pω

q + 1

)
= 1− p

2(q + 1)

(
1 +

1− ω

q

)
.

This completes the proof. �

Theorem 4.25. Suppose
p

q + 1
≤ min

{
1,

4q
2q + 1

}
and α is chosen ac-

cording to (4.44). If x̂ ∈ R((T ∗T )ν) for some ν ∈ (0, 1], then

‖x̂− xδ
α‖ ≤ c0δ

t

for some c0 > 0, where

t = min
{

pν

q + 1
, 1− p

2(q + 1)

(
1 +

1− ω

q

)}
.

In particular, if p ≤ 3/2, q ≥ 1/2 and

p

q + 1
≤ 2

2ν + 1 + 1−ω
q

,

then

‖x̂− xδ
α‖ = O(δ

pν
q+1 ).

Proof. Under the assumption on x̂, from Theorem 4.17 we have

‖x̂− xδ
α‖ ≤ cmax

{
αν ,

δ√
α

}
,

so that the result follows from Theorem 4.24. We obtain the particular case
by observing that

4q
2q + 1

≤ 1 ⇐⇒ q ≥ 1
2
;

p ≤ 3
2
, q ≥ 1

2
=⇒ p

q + 1
≤ 1

and
pν

q + 1
≤ 1− p

2(q + 1)

(
1 +

1− ω

q

)
⇐⇒ p

q + 1
≤ 2

2ν + 1 + 1−ω
q

.

This completes the proof. �
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Remark 4.13. Since p/(q+1) is assumed to be less than 1, the order O(δt)
that results from Theorem 4.25 is not as good as O(δν), and hence the rate
is not as good as O(δ2ν/(2ν+1)) for 0 < ν < 1/2. ♦

The following corollary is immediate from Theorem 4.25.

Corollary 4.8. Suppose x̂ ∈ R(T ∗T )ν with 0 < ν ≤ 1 and α is chosen
according to (4.44) where p/(q+ 1) = 2/3 with p ≤ 3/2 and q ≥ 1/2. Then

‖x̂− xδ
α‖ ≤ c0δ

2ν
3

for some c0 > 0.

Exercise 4.12. Supply details for the proof of Corollary 4.8.

Remark 4.14. Corollary 4.8 shows that the estimate

‖x̂− xδ
α‖ = O(δ

2ν
3 )

is not only valid for the Arcangeli’s method, that is for p = 1, q = 1/2, but
for a class of discrepancy principles (4.44) with p and q satisfying

p

q + 1
=

2
3
, p ≤ 3

2
, q ≥ 1

2
.

Moreover, from Theorem 4.25, we can infer that if x̂ ∈ R(T ∗T )ν , ν ≥ 1/2,
and if we know some upper estimate ν0 of ν, i.e.,

1
2
≤ ν0 ≤ 1 and 1/2 ≤ ν ≤ ν0,

then by taking
p

q + 1
=

2
2ν0 + 1

with p ≤ 3/2 and q ≥ 1/2, for example, taking p = 1 and q = ν0 + 1/2 or
p = 2 and q = 2ν0 + 1, we obtain

‖x̂− xδ
α‖ = O(δ

2ν
2ν0+1 ).

It is still an open question whether the Arcangeli’s method can lead to the
rate O(δ2ν/(2ν+1)) when x̂ ∈ R((T ∗T )ν) for any ν ∈ (0, 1). ♦

Remark 4.15. The discrepancy principle (4.44) was first considered by
Schock [70], and obtained the rate

‖x̂− xδ
α‖ = O(δs), s :=

2ν
2ν + 1 + 1

2q
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under the assumption

p

q + 1
=

2
2ν + 1 + 1

2q

.

This result was a generalized form of the earlier known result for Arcangeli’s
method (cf. Groetsch and Schock [28]), namely,

‖x̂− xδ
α‖ = O(δ1/3).

Later, Nair [45] improved the result of Schock and proved that if

p

q + 1
=

2
2ν + 1 + (1− ν)/2q

then

‖x̂− xδ
α‖ = O(δr), r :=

2ν
2ν + 1 + (1− ν)/2q

.

This result not only improves the result of Schock, but also gives the best
rate

‖x̂− xδ
α‖ = O(δ2/3)

for a class of discrepancy principles (4.44) with p/(q + 1) = 2/3. Theorem
4.25 is an improved form of the above result in [45], and it is proved by
George and Nair [20]. ♦

4.4.5 Remarks on general regularization

Tikhonov regularization is a special case of a general regularization given
by

Rα := gα(T ∗T )T ∗, α > 0,

where gα is a piecewise continuous non-negative real valued function defined
on [0, a] where a ≥ ‖T‖2 (cf. [17]). Here, the operator gα(T ∗T ) is defined
via spectral theorem, that is,

gα(T ∗T ) =
∫ a

0

gα(λ)dEλ,

where {Eλ : 0 ≤ λ ≤ a} is the resolution of identity for the self adjoint
operator T ∗T . Note that the choice gα(λ) = 1/(λ + α) corresponds to
the Tikhonov regularization. Of course, for the above {Rα}α>0 to be a
regularization family, we have to impose certain conditions on gα, α > 0.
In this regard, we have the following.
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Theorem 4.26. Suppose there exists c > 0 such that

|1− λgα(λ)| ≤ c ∀λ ∈ [0, a], α > 0,

and

ξα := sup
√
λ|1− λgα(λ)| → 0 as α→ 0.

Then {Rα}α>0 to be a regularization family.

Proof. For y ∈ D(T †), let x̂ := T †y. Then we have

x̂−Rαy = x̂− gα(T ∗T )T ∗y

= [I − gα(T ∗T )T ∗T ]x̂.

Let Aα := I − gα(T ∗T )T ∗T . Then we have

‖Aα‖ ≤ sup
0<λ≤a

|1− λgα(λ)| ≤ c ∀α > 0,

and for x ∈ R(T ∗), if u ∈ Y is such that x = T ∗u, then

‖Aαx‖ = ‖AαT
∗u‖

≤ ‖u‖ sup
0<λ≤a

√
λ|1− λgα(λ)|

= ‖u‖ξα
→ 0 as α→ 0.

Now, since x̂ ∈ N(T )⊥ and R(T ∗) is dense in N(T )⊥, it follows from
Theorem 2.8 that ‖x̂−Rαy‖ = ‖Aαx̂‖ → 0 as α→ 0. �

Some of the special cases of the general regularization method other
than the Tikhonov regularization are the iterated Tikhonov regulariza-
tion, asymptotic regularization or Schwalter’s method, truncated spectral
method.

(i) In iterated Tikhonov regularization, the regularized solution
xα,m for m ∈ N, is defined iteratively as the solution of

(T ∗T + αI)xα,k = αxk−1 + T ∗y, k = 1, . . . ,m.

In this case, it can be seen that xα,m = gα(T ∗T )T ∗y with

gα(λ) :=
1
λ

[
1−

( α

λ+ α

)m]
.

(ii) In asymptotic regularization, the regularized solution xα is de-
fined as xα := uα(1/α), where u(·) is the solution of the initial value prob-
lem,

u′(t) + T ∗Tu(t) = T ∗y, u(0) = 0, t ∈ (0,∞).
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In this case, it can be seen that

gα(λ) :=
1
λ

(1− e−λ/α).

(iii) In truncated spectral method, gα is defined by

gα(λ) =
{

1/λ, λ ≥ α,

0, λ < α.

Thus, the regularized solution xα is given by

xα =
(∫ a

α

1
λ
dEα

)
T ∗y.

If T is a compact operator with singular system {(σn, un, vn) : n ∈ N}, then
xα takes the form

xα =
∑

n∈Λα

〈y, vn〉
σn

un,

where Λα := {n ∈ N : σ2
n > α}.

It can be seen that for Tikhonov regularization and in all the above
three methods, the conditions in Theorem 4.26 are satisfied.

4.5 Best Possible Worst Case Error

We have seen that under the assumption of x̂ ∈ R((T ∗T )ν), the best rate
possible under Tikhonov regularization is O(δµ) where µ = min{ 2ν

2ν+1 , 1}
(see Remark 4.10 in Section 4.4.2). Now, we would like to know the best
rate possible under any regularization method whenever x̂ belongs to a
subset of R((T ∗T )ν), ν > 0. In fact, we shall address the above question
not only for the above situation, but also when x̂ belongs to a certain subset
of R([ϕ(T ∗T )]1/2), where ϕ : [0, a] → [0,∞) for a ≥ ‖T‖2 is a continuous
function satisfying certain additional conditions.

First let us define the concept of order optimal algorithms in terms of
a quantity which can be considered as a measure of order optimality with
respect to a source set M ⊆ X, irrespective of the regularization that we
use.

A map R : Y → X is called a reconstruction algorithm for solving
equation (4.1), and corresponding to the inexact data yδ ∈ Y , Ryδ can be
thought of as an approximation of x̂. For example, R := Rα can be an
operator associated with a regularization method with certain parameter
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α. Given an algorithm R, a source set M ⊆ X and an error δ > 0, the
quantity

ER(M, δ) := sup{‖x−Ryδ‖ : x ∈M, ‖Tx− yδ‖ ≤ δ}

is called the worst case error associated with the triple (R,M, δ). Let R
be the family of all reconstruction algorithms for equation (4.1), and

E(M, δ) := inf
R∈R

ER(M, δ).

Then the effort would be to have a regularization method R0 such that for
any y ∈ D(T †) and yδ ∈ Y with ‖y − yδ‖ ≤ δ,

‖x̂−R0y
δ‖ ≤ c0E(M, δ), (4.48)

for some c0 ≥ 1. Such an algorithm, if exists, is called an order optimal
algorithm for equation (4.1), and the quantity E(M, δ) is called the best
possible worst case error for (4.1).

Let us define another quantity associated with the source setM , namely,

ω(M, δ) := sup{‖x‖ : x ∈M, ‖Tx‖ ≤ δ}. (4.49)

It is obvious from the definition of ER(M, δ) that if R is a linear operator,
then

ER(M, δ) ≥ ω(M, δ).

Exercise 4.13. Prove the above statement.

Thus, if R0 is a linear regularization method for (4.1) for which

‖x̂−R0y
δ‖ ≤ c0ω(M, δ), (4.50)

holds for some c0 > 0, then

‖x̂−R0y
δ‖ ≤ c0 inf

R∈L(Y,X)
ER(M, δ),

where L(Y,X) denotes the space of all linear operators from Y to X. The
following proposition due to Miccelli and Rivlin [41] shows that we, in
fact, have (4.48) whenever (4.50) holds, provided the source set satisfies
{−x : x ∈M} ⊆M .

Proposition 4.4. Suppose M ⊂ X satisfies {−x : x ∈M} ⊆M . Then

ω(M, δ) ≤ E(M, δ).
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Proof. Suppose x ∈ M such that ‖Tx‖ ≤ δ and R : Y → X be any
arbitrary map. Then,

‖x−R(0)‖ ≤ ER(M, δ).

Since −x ∈M and ‖T (−x)‖ = ‖Tx‖ ≤ δ , we also have

‖x+R(0)‖ = ‖ − x−R(0)‖ ≤ ER(M, δ).

Thus,

2‖x‖ = ‖2x‖ = ‖(x−R(0)) + (x+R(0))‖ ≤ 2ER(M, δ).

Since this is true for all R : Y → X, we have ‖x‖ ≤ E(M, δ) for all x ∈M
with ‖Tx‖ ≤ δ. Hence, ω(M, δ) ≤ E(M, δ). �

Remark 4.16. It has also been shown in [41] that if M is balanced and
convex, then

E(M, δ) ≤ 2ω(M, δ).

We may recall that a subset E of a vector space is said to be a balanced
set if λx ∈ E whenever x ∈ E and λ ∈ K such that |λ| ≤ 1, and E is said
to be a convex set if λx+ (1− λ)y ∈ E whenever x, y ∈ E and λ ∈ [0, 1].

Note that, if T is injective, then the quantity ω(M, δ) can be thought
of as the modulus of continuity of T−1 : T (M) → X. ♦

If we are looking for a regularization method R0 satisfying (4.49), then
it is apparent that the requirement on the source set M should be such that

ω(M, δ) → 0 as δ → 0. (4.51)

In this context, it is to be observed that if T has continuous inverse, then
for any M ,

ω(M, δ) ≤ ‖T−1‖δ

so that the requirement (4.51) is met.

Exercise 4.14. Justify the above statement.

The following proposition shows that if T is not injective and if M
contains a non-zero element from the null space of T , then (4.51) does not
hold.

Proposition 4.5. If x0 ∈M ∩N(T ), then

ω(M, δ) ≥ ‖x0‖.
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Proof. Clearly, if x0 ∈ M ∩N(T ), then ‖Tx0‖ = 0 ≤ δ for every δ > 0.
Hence ω(M, δ) ≥ ‖x0‖. �

Question: For all injective operators T , can we expect to have conver-
gence in (4.51) for any M ⊆ X?

The answer, in general, is not in affirmative. To see this, let us consider
the set

Mρ := {x : ‖x‖ ≤ ρ}.
Clearly, ω(Mρ, δ) ≤ ρ. But we have the following discouraging situation.

Theorem 4.27. If T is not bounded below and Mρ := {x : ‖x‖ ≤ ρ}, then

ω(Mρ, δ) = ρ.

Proof. Suppose T is not bounded below. Then there exists a sequence
(xn) in X such that ‖xn‖ = 1 for all n ∈ N and ‖Txn‖ → 0 as n → ∞.
Now, for any ρ > 0, let un := ρxn, n ∈ N. Then un ∈Mρ, and ‖Tun‖ → 0
as n→∞ so that there exists N ∈ N such that ‖TuN‖ ≤ δ. Thus,

ρ = ‖uN‖ ≤ ω(Mρ, δ) ≤ ρ.

Thus, ω(Mρ, δ) = ρ. �

Let us recall the following:

• If R(T ) is not closed, then T is not bounded below.

• If T is a compact of infinite rank, then R(T ) is not closed.

Thus, for every operator with R(T ) not closed, in particular, for every
compact operator of infinite rank, the set Mρ := {x : ‖x‖ ≤ ρ} is not suit-
able as a source set to measure the order of convergence of a regularization
method.

4.5.1 Estimates for ω(M, δ)

In the last subsection we have seen that if T is not bounded below, then
the set Mρ := {x : ‖x‖ ≤ ρ} is not a suitable source set for considering
reconstruction algorithms. In the following we specify two commonly used
source sets for the reconstructions corresponding to the source conditions
specified in Theorem 4.12.

For ρ > 0, let

M1 := {x = T ∗u : ‖u‖ ≤ ρ}
M2 := {x = T ∗Tu : ‖u‖ ≤ ρ}.
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Theorem 4.28. The following inequalities hold:

(i) ω(M1, δ) ≤ ρ1/2δ1/2,
(ii) ω(M2, δ) ≤ ρ1/3δ2/3.

Proof. Let x ∈ M1 be such that ‖Tx‖ ≤ δ. By the definition of M1,
there exists u ∈ X such that x = T ∗u with ‖u‖ ≤ ρ. Then we have

‖x‖2 = 〈x, x〉 = 〈x, T ∗u〉 = 〈Tx, u〉 ≤ ‖Tx‖ ‖u‖ ≤ δ ρ.

Hence, we have ω(M1, δ) ≤ ρ1/2δ1/2.
Next, let x ∈M2 such that ‖Tx‖ ≤ δ. Let u ∈ X be such that x = T ∗Tu

with ‖u‖ ≤ ρ. Then we have
‖x‖2 = 〈x, x〉 = 〈x, T ∗Tu〉 = 〈Tx, Tu〉 ≤ ‖Tx‖ ‖Tu‖ ≤ δ ‖Tu‖.

Note that
〈Tu, Tu〉 = 〈u, T ∗Tu〉 = 〈u, x〉 ≤ ‖u‖ ‖x‖ ≤ ρ‖x‖.

Hence, we get
‖x‖2 ≤ δ ‖Tu‖ ≤ δ(ρ‖x‖)1/2.

From this we get ‖x‖ ≤ ρ1/3δ2/3. Thus, ω(M2, δ) ≤ ρ1/3δ2/3. �

In view of Remark 4.8, the source sets M1 and M2 considered above are
special cases of

Mν,ρ = {x = (T ∗T )νu : ‖u‖ ≤ ρ}, ν > 0.
Corresponding to the set Mν,ρ we have the following result.

Theorem 4.29. The following inequality hold:
ω(Mν,ρ, δ) ≤ ρ1/(2ν+1)δ2ν/(2ν+1).

Proof. Let x = (T ∗T )νu for some u ∈ X and ν > 0. We observe that

x = (T ∗T )νu = [(T ∗T )
2ν+1

2 ]
2ν

2ν+1u = Aτu,

where A = (T ∗T )(2ν+1)/2 and τ = 2ν/(2ν + 1). Hence, from Lemma 4.5
we obtain

‖x‖ = ‖Aτu‖ ≤ ‖Au‖τ‖u‖1−τ .

But,
‖Au‖ = ‖(T ∗T )

2ν+1
2 u‖ = ‖(T ∗T )

1
2x‖ = ‖Tx‖.

Hence,
‖x‖ ≤ ‖Tx‖

2ν
2ν+1 ‖u‖

1
2ν+1 .

Thus, for every x ∈Mν,ρ with ‖Tx‖ ≤ δ, we obtain

‖x‖ ≤ δ
2ν

2ν+1 ρ
1

2ν+1

so that the required estimate follows. �
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Remark 4.17. Obviously, results in Theorem 4.28 are particular cases of
Theorem 4.29 obtained by taking ν = 1/2 and ν = 1, respectively. However,
the proof we gave for Theorem 4.28 for these special cases is simpler than
that of Theorem 4.29, as the latter made use of Lemma 4.5. ♦

The following theorem shows that the estimate in Theorem 4.29 is sharp.

Theorem 4.30. Let T be a compact operator with singular system
{(σn, un, vn) : n ∈ N}. Then there exists a sequence (δn) of positive real
numbers such that

ω(Mν,ρ, δn) ≥ ρ1/(ν+1)δν/(ν+1)
n ∀n ∈ N.

Proof. For n ∈ N, let xn := ρσ2ν
n un and δn := ρσ2ν+1

n . Then we have

xn := ρσ2ν
n un = (T ∗T )ν(ρun) = (T ∗T )νwn

with wn := ρun. Note that ‖wn‖ = ‖ρun‖ = ρ and

‖Txn‖ = ρσ2ν
n ‖Tun‖ = ρσ2ν+1

n = δn.

Hence, xn ∈Mν,ρ and ω(Mν,ρ, δn) ≥ ‖xn‖. But,

‖xn‖ = ρσ2ν
n = ρ

(
δn
ρ

) 2ν
2ν+1

= ρ
1

2ν+1 δ
2ν

2ν+1
n .

Thus, we have proved that ω(Mν,ρ, δn) ≥ ρ1/(2ν+1)δ
2ν/(2ν+1)
n . �

In view of Theorems 4.29 and 4.30, a regularization method R for equa-
tion (4.1) is said to be of order optimal with respect to the source set
Mν,ρ := {x = (T ∗T )ν/2u : ‖u‖ ≤ ρ} if

‖x̂−Ryδ‖ ≤ c0ρ
1/2ν+1)δ2ν/(2ν+1)

whenever yδ ∈ Y is such that ‖y − yδ‖ ≤ δ.

4.5.2 Illustration with differentiation problem

Let us consider the problem of differentiation, namely the problem of finding
derivative of a function. Thus, given a function y : [0, 1] → R which is
differentiable almost everywhere on [0, 1], we would like to find an integrable
function x : [0, 1] → R such that y′ = x a.e. This problem is equivalent to
solving the integral equation

(Tx)(t) :=
∫ t

0

x(s)ds = y(s), 0 ≤ s ≤ 1.
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To make our discussion simple, let us assume that the function x we are
looking for is differentiable and x′(1) = 0. Then we have

‖x‖22 =
∫ 1

0

x(t)x(t)dt

=
[
x(t)

∫ t

0

x(t)ds
]1
0

−
∫ 1

0

x′(t)
(∫ t

0

x(s)ds
)
dt

= −
∫ 1

0

x′(t)
(∫ t

0

x(s)ds
)
dt

≤ ‖x′‖2‖Tx‖2.

The above inequality shows that if ‖x′‖2 ≤ ρ and ‖Tx‖2 ≤ δ, then we have
‖x‖2 ≤ ρ1/2δ1/2. Thus, if we take

M = {x ∈ C1[0, 1] : x(1) = 0, ‖x′‖2 ≤ ρ},

then we get

ω(M, δ) ≤ ρ1/2δ1/2.

More generally, if we define

H1(0, 1) := {x ∈ L2(0, 1) : x absolutely continuous}

and

Mρ = {x ∈ H1(0, 1) : x(1) = 0, ‖x′‖2 ≤ ρ},

then we get

ω(Mρ, δ) ≤ ρ1/2δ1/2.

We may observe, in this case, that

(T ∗u)(t) =
∫ 1

t

u(s)ds, 0 ≤ t ≤ 1,

so that

R(T ∗) = {x ∈ H1(0, 1) : x(1) = 0}

and

Mρ = {x = T ∗u : ‖u‖2 ≤ ρ}.

Thus, the estimate ω(Mρ, δ) ≤ ρ1/2δ1/2 is sharp for the set Mρ.
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4.5.3 Illustration with backward heat equation

Consider ill-posed problem associated with the backward heat conduction
problem discussed in Sections 4.1.2 and 4.4.3, where the problem is to
determine the temperature f := u(·, t0) at a time t = t0 of a thin wire of
length ` using the knowledge of the temperature g := u(·, τ) at a later time
t = τ > t0. Recall that, this problem is equivalent to that of solving the
compact operator equation

Kf = g,

with K is defined by

Kϕ :=
∞∑

n=1

σn〈ϕ,ϕn〉ϕn, ϕ ∈ L2[0, `],

where

σn := e−λ2
n(τ−t0), ϕn(s) :=

√
(2/`) sin(λns)

with λn := cnπ/` for s ∈ [0, `] and n ∈ N.
Now, using Hölder’s inequality, for p ∈ (1,∞) and q satisfying 1/p +

1/q = 1,

‖f‖22 =
∞∑

n=1

e−2λ2
nt0 |〈f0, ϕn〉|2

=
∞∑

n=1

|〈f0, ϕn〉|2/p|〈f0, ϕn〉|2/qe−2λ2
nt0

≤
( ∞∑

n=1

|〈f0, ϕn〉|2|
)1/p( ∞∑

n=1

|〈f0, ϕn〉|2e−2λ2
nt0q

)1/q

.

Taking q = τ/t0 we have p = 1/(1− t0/τ) and noting that g = Tf , we have

‖f‖22 ≤
( ∞∑

n=1

|〈f0, ϕn〉|2
)(1−t0/τ)( ∞∑

n=1

|〈f0, ϕn〉|2e−2λ2
nτ
)t0/τ

= ‖f0‖2(1−t0/τ)
2 ‖Kf‖2t0/τ

2 .

Consequently, taking

Mρ := {f ∈ L2[0, `] : f = Kt0ϕ, ‖ϕ‖2 ≤ ρ} (4.52)

we have

ω(Mρ, δ) ≤ ρ1−t0/τδt0/τ . (4.53)

Here Kt0 is the operator defined as in Remark 4.1.
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4.6 General Source Conditions

4.6.1 Why do we need a general source condition?

Suppose X and Y are Hilbert spaces and T : X → Y is a compact operator
with singular system {(σn;un, vn) : n ∈ N}. Then we know (see Remark
4.7) that for ν > 0, x ∈ R((T ∗T )ν) if and only if

∞∑
n=1

|〈x̂, un〉|2

σ4ν
n

<∞. (4.54)

In Section 4.4.3 we have seen that, in the case of backward heat conduction
problem, if the problem is to determine the temperature at a time t = t0 > 0
from the knowledge of the temperature at time t = τ > t0, the condition
(4.54) is satisfied with ν = t0/[2(τ − t0)], whereas, for the case of t0 = 0,
then the condition (4.54) has to be additionally imposed on the initial
temperature f0 := u(·, 0). In this case, condition (4.54) takes the form

∞∑
n=1

e4νλ2
nτ |〈f0, ϕn〉|2 <∞,

where λn = cπn/` with c > 0. The above considerations motivate us to
have a source condition which is milder than the one in (4.54). In this
regard, one may consider a condition of the form

∞∑
n=1

|〈x̂, un〉|2

ϕ(σ2
n)

<∞, (4.55)

where the decay rate of the sequence (ϕ(σ2
n)) is much more slowly than

(σ4ν
n ) for any ν > 0. Note that

∞∑
n=1

|〈x̂, un〉|2

ϕ(σ2
n)

<∞ ⇐⇒ x̂ ∈ R([ϕ(T ∗T )]1/2). (4.56)

Motivated by the above, we consider a source condition of the form
x̂ ∈ R([ϕ(T ∗T )]1/2).

for any bounded operator T : X → Y , where ϕ is a continuous, strictly
monotonically increasing real valued function defined on an interval [0, a]
containing the spectrum of T ∗T such that lim

λ→0
ϕ(λ) = 0. We call such a

function a source function for the operator T on [0, a], where a ≥ ‖T‖2.

Remark 4.18. Since the function λ 7→
√
φ(λ) is continuous on [0, a], the

definition of the operator [φ(T ∗T )]1/2 is as discussed in Section 2.3.4 or in
Section 2.3.7. Our preference to the map λ 7→

√
φ(λ) instead of λ 7→ φ(λ)

is due to the equivalence (4.56). This preference also facilitates to make
some of the calculations involved in the following analysis simpler. ♦
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Clearly, for each ν > 0, the function ϕ(λ) = λν , λ > 0, defines a source
function for every bounded operator T . The following consideration will
generate another class of source functions.

Suppose T ∈ K(X,Y ) with singular system (σn;un, vn), n ∈ N, and
suppose ϕ is a source function for T . Now, suppose that (σn) decays expo-
nentially, say σn is of the form

σn = e−γnp

, n ∈ N,

for some β > 0 and p > 0. Then for any q > 0, we have

nq =
[ 1
2γ

ln
( 1
σ2

n

)]q/p

.

In this case the condition (4.54) takes the form
∞∑

n=1

e4νγnp

|〈x, un〉|2 <∞. (4.57)

But, if we define

ϕ(λ) :=
[ 1
2γ

ln
( 1
λ

)]−q/p

, λ ∈ [0, a], (4.58)

then we see that the condition (4.55) takes the form
∞∑

n=1

nq|〈x, un〉|2 <∞. (4.59)

Clearly, the condition (4.59) is much weaker than the condition (4.57).

Example 4.3. In the case of backward heat conduction problem (cf. Sec-
tion 4.1.2) of determining the initial temperature f0 := u(·, 0) from the
knowledge of the temperature at t = τ , the source set Mρ in (4.52) is of no
use. In this case, we have to rely on a general source condition of the form
(4.55). In this case, we have

σn := e−λ2
nτ , λn := cnπ/`, n ∈ N.

Thus, p = 2 and γ = τc2π2/`2 so that ϕ in (4.58) takes the form

ϕ(λ) :=
[ `2

2τc2π2
ln
( 1
λ

)]−q/2

, λ ∈ [0, a],

and

f0 ∈ R([ϕ(K∗
τKτ )]1/2) ⇐⇒

∞∑
n=1

nq|〈f, ϕn〉|2 <∞,

where Kτ and ϕn are as in Remark 4.1. ♦



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

Ill-Posed Equations and Their Regularizations 195

4.6.2 Error estimates for Tikhonov regularization

Recall that in Tikhonov regularization, we have the regularization family
{Rα : α > 0} with

Rα := (T ∗T + αI)−1T ∗, α > 0.

In this case we know that if y ∈ D(T †) and for δ > 0, if yδ ∈ Y satisfies
‖y − yδ‖ ≤ δ, then

‖x̂− xα‖ → 0 as α→ 0

and

‖xα − xδ
α‖ ≤

δ√
α
,

where x̂ := T †y, xα := Rαy and xδ
α := Rαy

δ. We may also recall that

x̂− xα = α(T ∗T + αI)−1x̂.

In the following we obtain error estimates under the assumption that
x̂ ∈ R([ϕ(T ∗T )]1/2) for some source function ϕ : [0, a] → R.

Theorem 4.31. Suppose x̂ = [ϕ(T ∗T )]1/2u for some u ∈ X and for some
source function ϕ satisfying

sup
0<λ≤a

α
√
ϕ(λ)

λ+ α
≤
√
ϕ(α), (4.60)

where a ≥ ‖T‖2. Then

‖x̂− xα‖ ≤ ‖u‖
√
ϕ(α).

Proof. First we observe that

‖x̂− xα‖ = ‖α(T ∗T + αI)−1[ϕ(T ∗T )]1/2u‖

≤ ‖u‖ sup
0<λ≤a

α
√
ϕ(λ)

λ+ α
.

Hence, the required result follows from the inequality (4.60). �

The following lemma specifies a condition under which the condition
(4.60) holds.

Lemma 4.8. Suppose ϕ is a source function for T such that λ 7→
√
ϕ(λ)

is concave. Then the inequality (4.60) is satisfied.
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Proof. Since the map λ 7→
√
ϕ(λ) is concave and monotonically increas-

ing, we have

α
√
ϕ(λ)

λ+ α
≤
√
ϕ
( αλ

λ+ α

)
≤
√
ϕ(α).

This completes the proof. �

Remark 4.19. It can be seen that the functions

λ 7→ λ2ν

for 0 < ν ≤ 1/2, and the function

λ 7→
[ 1
2γ

ln
( 1
λ

)]−q/p

for p > 0, q > 0, γ > 0 are concave. ♦

Now, we derive estimates for the error ‖x̂ − xδ
α‖ under certain a priori

and a posteriori parameter choice strategies. For this purpose we shall use
the source set

Mϕ,ρ := {x ∈ X : x = [ϕ(T ∗T )]1/2u, ‖u‖ ≤ ρ}

for some ρ > 0. We shall also make use of the function ψ defined by

ψ(λ) = λϕ−1(λ), λ ∈ [0, aϕ(a)].

4.6.3 Parameter choice strategies

(i) An a priori parameter choice

From the definition of the function ψ, the relations in the following lemma
can be derived easily.

Lemma 4.9. For δ > 0 and α > 0,

ρ2αϕ(α) = δ2 ⇐⇒ α = ϕ−1
[
ψ−1

( δ2
ρ2

)]
,

and in that case

ρ2ϕ(α) =
δ2

α
= ρ2ψ−1

( δ2
ρ2

)
.
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Theorem 4.32. Suppose x̂ ∈Mϕ,ρ, where ϕ satisfies the condition (4.60).
For δ > 0, let α be chosen such that ρ2αϕ(α) = δ2. Then

‖x̂− xδ
α‖ ≤ 2ρ

√
ψ−1

( δ2
ρ2

)
.

Proof. By Theorem 4.31 and using the estimate for ‖xα − xδ
α‖ we have

‖x̂− xδ
α‖ ≤ ρ

√
ϕ(α) +

δ√
α
.

Thus, the estimate follows from Lemma 4.9. �

Remark 4.20. (a) Suppose ϕ(λ) = λ2ν for ν > 0. Then we see that

ϕ−1(λ) = λ1/2ν , ψ(λ) = λ(2ν+1)/2ν , ψ−1(λ) = λ2ν/(2ν+1).

Hence, in this case, we have

ρ

√
ψ−1

(
δ2

ρ2

)
= ρ1/(2ν+1)δ2ν/(2ν+1).

(b) For λ ∈ [0, a], let ϕ(λ) :=
[ 1
2γ

ln
( 1
λ

)]−q/p

. We note that

ϕ(λ) = s ⇐⇒ λ = e−2γ/sq/p

.

Hence,

ψ(s) = sϕ−1(s) = se−2γ/sq/p

.

Now,

ψ(s) = t ⇐⇒ 1
t

=
1
s
e2γ/sq/p

⇐⇒ ln
1
t

= ln
1
s

+
2γ
sq/p

.

Hence,

s =
[

2γ
ln 1

t − ln 1
s

]p/q

=
(

2γ
ln 1

t

)p/q [
1−

ln 1
s

ln 1
t

]−p/q

.

But, we have
ln 1

s

ln 1
t

=
ln 1

s

ln 1
s + 2γ/sq/p

→ 0 as s→ 0.

Hence

ψ−1(t) = (2γ)p/q
[
ln

1
t

]−p/q

[1 + o(1)]

so that

ρ

√
ψ−1

(
δ2

ρ2

)
= (2γ)p/2q

[
ln
ρ

δ

]−p/q

[1 + o(1)].

♦
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In view of the above remark we obtain the following corollaries.

Corollary 4.9. Suppose x̂ ∈ Mϕ,ρ with ϕ(λ) := λ2ν , 0 ≤ λ ≤ a, for some
ν ∈ (0, 1/2], and for δ > 0, let α be chosen such that αϕ(α) = δ2/ρ2. Then

‖x̂− xδ
α‖ ≤ 2ρ1/(2ν+1)δ2ν/(2ν+1).

Corollary 4.10. Suppose x̂ ∈Mϕ,ρ with

ϕ(λ) :=
[ 1
2γ

ln
( 1
λ

)]−q/p

, λ ∈ [0, a],

for some positive real numbers p, q and γ, and let α be chosen such that
αϕ(α) = δ2/ρ2. Then

‖x̂− xδ
α‖ ≤ (2γ)p/2q

[
ln
ρ

δ

]−p/q

[1 + o(1)].

(i) An a posteriori parameter choice

Now we obtain estimate for the error ‖x̂− xδ
α‖ by choosing the parameter

α as per Morozov-type discrepancy principle
δ ≤ ‖Txδ

α − yδ‖ ≤ c δ (4.61)
for some c ≥ 1. We shall make use of the Jensen’s inequality stated in the
following lemma. For its proof, one may refer to Rudin [66].

Lemma 4.10. (Jensen’s inequality) Let µ be a positive measure on a
σ-algebra A on a set Ω such that µ(Ω) = 1. If f is a real valued function on
Ω integrable with respect to µ and if J is an integral containing the range
of f , then for every convex function g on J ,

g
(∫

Ω

f dµ
)
≤
∫

Ω

(g ◦ f)dµ.

Theorem 4.33. Suppose y ∈ R(T ) and x̂ ∈ Mϕ,ρ, where ϕ is a concave
function. For δ > 0, let α satisfy the discrepancy principle (4.61) for some
c ≥ 1. Then

‖x̂− xδ
α‖ ≤ (c+ 1) ρ

√
ψ−1

(
δ2

ρ2

)
.

Proof. Since xδ
α minimizes the function x 7→ ‖Tx − yδ‖2 + α‖x‖2 and

y = T x̂, we have
δ2 + α‖xδ

α‖2 ≤ ‖Txδ
α − yδ‖2 + α‖xδ

α‖2

≤ ‖T x̂− yδ‖2 + α‖x̂‖2

= ‖y − yδ‖2 + α‖x̂‖2

≤ δ2 + α‖x̂‖2.
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Hence, ‖xδ
α‖ ≤ ‖x̂‖. Therefore,

‖x̂− xδ
α‖2 = 〈x̂, x̂〉 − 2 Re〈x̂, xδ

α〉+ 〈xδ
α, x

δ
α〉

≤ 2 [〈x̂, x̂〉 − Re〈x̂, xδ
α〉]

= 2Re〈x̂, x̂− xδ
α〉

= 2 |〈x̂, x̂− xδ
α〉|.

Since x̂ ∈ Mϕ,ρ, there exists u ∈ X such that x̂ = [ϕ(T ∗T )]1/2u with
‖u‖ ≤ ρ. Hence,

〈x̂, x̂− xδ
α〉 = 〈[ϕ(T ∗T )]1/2u, x̂− xδ

α〉
= 〈u, [ϕ(T ∗T )]1/2(x̂− xδ

α)〉
≤ ρ‖[ϕ(T ∗T )]1/2(x̂− xδ

α)‖.

Thus,

‖x̂− xδ
α‖2 ≤ 2 ρ‖[ϕ(T ∗T )]1/2(x̂− xδ

α)‖

so that

‖x̂− xδ
α‖

2ρ
≤ ‖[ϕ(T ∗T )]1/2(x̂− xδ

α)‖
‖x̂− xδ

α‖
.

Therefore, using spectral theorem for the positive self-adjoint operator T ∗T
with respect to its spectral family {Eλ : 0 < λ ≤ a],

‖x̂− xδ
α‖2

4ρ2
≤ ‖[ϕ(T ∗T )]1/2(x̂− xδ

α)‖2

‖x̂− xδ
α‖2

=

∫ a

0
ϕ(λ)d ‖Eλ(x̂− xδ

α)‖2∫ a

0
d ‖Eλ(x̂− x̃α)‖2

.

We may observe that the measure µ on [0, a] defined by

dµ(λ) :=
d ‖Eλ(x̂− xδ

α)‖2∫ a

0
d ‖Eλ(x̂− x̃α)‖2

satisfies µ([0, a]) = 1. Since ϕ−1 is convex, applying ϕ−1 on the above
inequality and by using Jensen’s inequality (see Lemma 4.10), we get

ϕ−1

[
‖x̂− xδ

α‖2

4ρ2

]
= ϕ−1

(∫ a

0

ϕ(λ)dµ(λ)
)

≤
∫ a

0

λdµ(λ).
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But, ∫ a

0

λdµ(λ) =

∫ a

0
λd ‖Eλ(x̂− xδ

α)‖2∫ a

0
d ‖Eλ(x̂− xδ

α)‖2

=
‖T (x̂− xδ

α)‖2

‖x̂− xδ
α‖2

.

Thus, we obtain

ϕ−1

[
‖x̂− xδ

α‖2

4ρ2

]
≤ ‖T (x̂− xδ

α)‖2

‖x̂− xδ
α‖2

.

But
‖T (x̂− xδ

α)‖ = ‖y − Txδ
α‖ ≤ ‖y − yδ‖+ ‖yδ − Txδ

α‖ ≤ (1 + c) δ.
Hence

ϕ−1

[
‖x̂− xδ

α‖2

(c+ 1)2ρ2

]
≤ ϕ−1

[
‖x̂− xδ

α‖2

4ρ2

]
≤ ‖T (x̂− xδ

α)‖2

‖x̂− xδ
α‖2

≤ (c+ 1)2δ2

‖x̂− xδ
α‖2

.

Since ψ(λ) = λϕ−1(λ), it follows from the above inequality that

ψ

(
‖x̂− xδ

α‖2

(c+ 1)2ρ2

)
=
‖x̂− xδ

α‖2

(c+ 1)2ρ2
ϕ−1

[
‖x̂− xδ

α‖2

(c+ 1)2ρ2

]
≤ δ2

ρ2
.

Thus,

‖x̂− xδ
α‖ ≤ (c+ 1) ρ

√
ψ−1

(
δ2

ρ2

)
which completes the proof. �

In view of Remark 4.20 we obtain the following corollaries.

Corollary 4.11. Suppose y ∈ R(T ) and x̂ ∈ Mϕ,ρ with ϕ(λ) := λ2ν ,
0 ≤ λ ≤ a, for some ν ∈ (0, 1/2], and for δ > 0, let α satisfy the discrepancy
principle (4.61) for some c ≥ 1. Then

‖x̂− xδ
α‖ ≤ (c+ 1)ρ1/(2ν+1)δ2ν/(2ν+1).

Corollary 4.12. Suppose y ∈ R(T ) and x̂ ∈Mϕ,ρ with

ϕ(λ) :=
[ 1
2γ

ln
( 1
λ

)]−q/p

, λ ∈ [0, a],

for some positive real numbers p, q and γ, and let α satisfy the discrepancy
principle (4.61) for some c ≥ 1. Then

‖x̂− xδ
α‖ ≤ (c+ 1)(2γ)p/2q

[
ln
ρ

δ

]−p/q

[1 + o(1)].
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4.6.4 Estimate for ω(Mϕ,ρ, δ)

Now we show that the estimates obtained in Theorems 4.32 and 4.33 are
order optimal, by obtaining a sharp estimate for the quantity ω(Mϕ,ρ, δ).

Theorem 4.34. Suppose ϕ is a source function for T such that ϕ is con-
cave. Then

ω(Mϕ,ρ, δ) ≤ ρ

√
ψ−1

(
δ2

ρ2

)
,

where ψ(λ) := λϕ−1(λ) for λ ∈ [0, aϕ−1(λ)].

Proof. Let x = [ϕ(T ∗T )]1/2u with ‖u‖ ≤ ρ and ‖Tx‖ ≤ δ. Then we have
‖x‖2 = 〈[ϕ(T ∗T )]1/2u, x〉

= 〈u, [ϕ(T ∗T )]1/2x〉
≤ ρ‖[ϕ(T ∗T )]1/2x‖.

Thus,
‖x‖
ρ

≤ ‖[ϕ(T ∗T )]1/2x‖
‖x‖

.

Hence, using spectral theorem for the positive self-adjoint operator T ∗T
with respect to its spectral family {Eλ : 0 < λ ≤ a}, we have

‖x‖2

ρ2
≤ ‖ϕ(T ∗T )]1/2x‖2

‖x‖2

=

∫ b

0
ϕ(λ)d〈Eλx, x〉∫ b

0
d〈Eλx, x〉

.

Since ϕ−1 is convex, we can apply Jensen’s inequality so that

ϕ−1

(
‖x‖2

ρ2

)
≤
∫ b

0
λd〈Eλx, x〉∫ b

0
d〈Eλx, x〉

=
‖Tx‖2

‖x‖2

≤ δ2

‖x‖2
.

Thus,

ψ

(
‖x‖2

ρ2

)
=
‖x‖2

ρ2
ϕ−1

(
‖x‖2

ρ2

)
≤ δ2

ρ2
.

From this, we obtain

‖x‖2 ≤ ρ2ψ−1

(
δ2

ρ2

)
which completes the proof. �
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In view of Remark 4.20, Theorem 4.34 provides the following corollaries.

Corollary 4.13. If ϕ(λ) := λ2ν , 0 ≤ λ ≤ a, for some ν ∈ (0, 1/2], then

ω(Mϕ,ρ) ≤ ρ1/(2ν+1)δ2ν/(2ν+1).

Corollary 4.14. If

ϕ(λ) :=
[ 1
2γ

ln
( 1
λ

)]−q/p

, λ ∈ [0, a],

for some positive real numbers p and q, then

ω(Mϕ,ρ) ≤ (2γ)p/2q
[
ln
ρ

δ

]−p/q

[1 + o(1)].

The following theorem shows that the estimate obtained in Theorem
4.34 is, in fact, sharp.

Theorem 4.35. Let T be a compact operator with singular values σn, n ∈
N. Then with δn = ρσn[ϕ(σ2

n)]1/2,

ω(Mϕ,ρ, δn) ≥ ρ

√
ψ−1

(
δ2n
ρ2

)
.

Proof. Let wn = ρun so that ‖wn‖ = ρ and

xn := [ϕ(T ∗T )]1/2wn = ρ[ϕ(σ2
n)]1/2un

satisfies

wn ∈Mϕ,ρ and ‖Txn‖ = ρσn[ϕ(σ2
n)]1/2.

Thus taking δn := ρσn[ϕ(σ2
n)]1/2, it follows that

ω(Mϕ,ρ, δn) ≥ ‖xn‖ = ρ[ϕ(σ2
n)]1/2.

Now, by Lemma 4.9, we have ϕ(σ2
n) = ψ−1

(
δ2n/ρ

2
)
. Hence,

ω(Mϕ,ρ, δn) ≥ ρ[ϕ(σ2
n)]1/2

= ρ

√
ψ−1

(
δ2n
ρ2

)
.

This completes the proof. �
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PROBLEMS

In the following, the operators are between Hilbert spaces.

(1) Show that a compact operator of infinite rank is not bounded below.
(2) Let T : L2[0, 1] → L2[0, 1] be defined by

(Tx)(t) =
∫ t

0

x(t) dt, x ∈ L2[0, 1], t ∈ [0, 1].

Find y ∈ L2[0, 1] such that Tx = y does not have an LRN solution.
(3) If R(T ) is dense, then D(T †) = R(T ) - Why?
(4) If R(T ) is dense, then show that for every y ∈ Y , ‖Txα − y‖ → 0 as

α→ 0, where xα := (T ∗T + αI)−1T ∗y.
(5) Suppose T ∈ B(X,Y ) and L : D(L) ⊆ X → X is a closed operator

with its domain X0 dense in X such that

‖Tx‖2 + ‖x‖2 ≥ γ‖x‖2 ∀x ∈ D(L).

Then prove the following:
(i) The map (x, u) 7→ 〈x, u〉0 := 〈Tx, Tu〉 + 〈x, u〉 defines an inner
product on D(L), and X0 := D(L) with 〈·, ·〉0 is a Hilbert space.
(ii) T0 := T |X0 : X0 → Y is a bounded linear operator.
(iii) D(T †0 ) = R(T0) + R(T )⊥, and for y ∈ D(T †0 ), x

L
:= T †0 y is the

unique element in

{x ∈ X0 : ‖Tx− y‖ ≤ inf
u∈X0

‖Tu− y‖}

such that ‖x
L
‖ = inf

x∈X0
‖Lx‖.

(6) Suppose T and L are as in Problem 5. Prove the following:
(i) The operator T ∗T+αL∗L is a closed bijective operator fromD(L∗L)
to X and its inverse (T ∗T + αL∗L)−1 is a bounded operator.
(ii) For y ∈ D(T †0 ) and α > 0, if xL,α := (T ∗T + αL∗L)−1T ∗y, then
xL,α → T †0 y as α→ 0.

(7) Suppose X is a linear space, Y is a normed linear space and T : X → Y

is a linear operator. Let y0 ∈ Y , δ0 > 0 and V0 := {y ∈ Y : ‖y − y0‖ <
δ0}. If the equation Tx = y has a solution for every y ∈ V0, then show
that Tx = y has a solution for every y ∈ Y .

(8) Let X and Y be Banach spaces, X0 be a subspace of X and T : X0 → Y

be a closed operator. Show that the map F : X0 → X × Y defined by
F (x) = (x, Tx), x ∈ X0, is a closed operator and R(F ) is closed in
X × Y .
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(9) Let u ∈ C[a, b] and T be defined by

(Tx)(t) = u(t)x(t), x ∈ L2[a, b], t ∈ [a, b].

Show that R(T ) is closed if and only if 0 is an accumulation point of
the set {|u(t)| : a ≤ t ≤ b}.

(10) Let X and Y be Hilbert spaces, T ∈ B(X,Y ) and A ∈ B(X). If A is a
positive self-adjoint operator and µ ≥ 0, then prove

(i) ‖(A+ αI)−2µAµ‖ ≤ (4α)−µ, and
(ii) ‖T (T ∗T + αI)−2µ−1(T ∗T )µ‖ ≤ (4α)−µ− 1

2 .

(11) For y ∈ D(T †), prove that
(i) T †y ∈ R(T ∗) ⇐⇒

∑∞
n=1 |〈y, vn〉|2/σ4

n <∞,
(ii) T †y ∈ R(T ∗T ) ⇐⇒

∑∞
n=1 |〈y, vn〉|2/σ6

n <∞.
(12) Let {un : n ∈ N} be an orthonormal set and for ν > 0 and for a

sequence (σn) of positive real numbers which converges to 0, let

Xν := {x ∈ X :
∞∑

n=1

|〈x, un〉|2

σ4ν
n

<∞}.

Show that

〈x, y〉ν :=
∞∑

n=1

〈x, un〉〈un, y〉
σ4ν

n

defines an inner product on X and X with the inner product 〈·, ·〉ν is
a Hilbert space.

(13) Let Xν be as in Problem 12. Show that for ν ≤ µ, Xµ ⊆ Xν , and the
embedding Xµ ↪→ Xν is a compact operator.

(14) Suppose Xν , (un) and (σn) are as in Problem 12. Let ϕ be a real valued
function defined on cl{σ2

n : n ∈ N} such that ϕ(σ2
n) → 0 as n → ∞.

Let

Xϕ := {x ∈ X :
∞∑

n=1

|〈x, un〉|2

ϕ(σ2
n)

<∞}.

Show that

〈x, y〉ϕ :=
∞∑

n=1

〈x, un〉〈un, y〉
ϕ(σ2

n)

defines an inner product on X, and X with the inner product 〈·, ·〉ϕ is
a Hilbert space.
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(15) Let K0 : L2[0, `] → L2[0, `] defined by

K0x =
∞∑

n=1

e−λ2
nτ 〈x, vn〉vn, ϕ ∈ L2[0, `],

where λn = nπ/` and vn(s) :=
√

2/` sin(λns) for s ∈ [0, `] and n ∈ N.
Show that

{x : x′′ ∈ L2[0, `], ‖x′′‖2 ≤ ρ} = {x = ϕ(K∗
0K0)v, ‖v‖2 ≤ ρ},

where ϕ(λ) :=
[

1
2τ

ln
(

1
λ

)]−1

, λ ∈ [0, e−2λ2
1τ ].

(16) Using the notations in Section 4.5.3,
(i) show that f = (K∗K)νf0 with ν := t0/2(τ − t0), and
(ii) deduce the estimate ω(Mρ, δ) ≤ ρ1−t0/τδt0/τ from Theorem 4.29,
where, Mρ := {f ∈ L2[0, `] : f = Kt0ϕ, ‖ϕ‖2 ≤ ρ} with Kt0 as in (4.1).

(17) Show that in the backward heat conduction problem (cf. Section 4.1.2)
of determining the initial temperature f0 := u(·, 0) from the knowledge
of the temperature at t = τ with ` = 1 and c = 1,

{ϕ ∈ L2[0, `] : ‖ϕ′′‖2 ≤ ρ} = {[ϕ(K∗
τKτ )]1/2ϕ : ‖ϕ‖ ≤ ρ},

where ϕ(λ) :=
(

1
2τ

ln
1
λ

)−1

.
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Chapter 5

Regularized Approximation Methods

5.1 Introduction

As in Chapter 4, we are again interested in obtaining stable approximate
solutions for the ill-posed operator equation

Tx = y,

where T : X → Y is a bounded linear operator between Hilbert spaces X
and Y . Recall that, as approximations for the generalized solution x̂ := T †y

of such ill-posed equations whenever y ∈ D(T †), we considered regularized
solutions

xδ
α := Rαy

δ,

where yδ is an approximation to y with

‖y − yδ‖ ≤ δ

for some noise level δ > 0, and {Rα : α > 0} is a family of bounded
operators, known as a regularization family. Since Rα is continuous for
each α > 0, the above regularized solution is often obtained by solving
some well-posed problems.

In practice, one may have to satisfy with some approximations xδ
α,n

of xδ
α obtained by approximating the operators involved in the well-posed

problems, say by considering an approximation R(n)
α of Rα, and taking

xδ
α,n := R(n)

α yδ.

Now, the question is, how well xδ
α,n approximates x̂, by suitable choice of

the parameters α > 0 and n ∈ N. Clearly

‖x̂− xδ
α,n‖ ≤ ‖x̂− xα‖+ ‖(Rα −R(n)

α )y‖+ ‖R(n)
α ‖δ. (5.1)

207
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In particular, if ‖(Rα − R
(n)
α )y‖ → 0 as n → ∞ for each α > 0 and if

α := α(δ, n, yδ) can be chosen in such a way that α(δ, n, yδ) → 0 and
‖R(n)

α ‖ δ → 0 as δ → 0 and n→∞, then
‖x̂− xδ

α,n‖ → 0 as δ → 0, n→∞.

In such case, we say that xδ
α,n is a regularized approximation of x̂.

Estimates for the error ‖x̂−xδ
α,n‖ can be obtained, once we have estimates

for the quantities ‖x̂− xα‖, ‖(Rα −R
(n)
α )y‖ and ‖R(n)

α ‖.
In this chapter we discuss the above issues in the case of Tikhonov

regularization, that is, when
Rα := (T ∗T + αI)−1T ∗, α > 0.

Thus, the equation to which an approximate solution is sought is
(T ∗T + αI)xδ

α = T ∗yδ. (5.2)
As approximation of Rα one may consider operators of the form

R(n)
α := (An + αI)−1Bn, α > 0,

for large enough n, say for n ≥ N , where (An) and (Bn) are approximations
of T ∗T and T ∗, respectively, in some sense, so that for each α > 0, An +αI

is bijective for all n ≥ N . Thus, a regularized approximate solution would
be a solution of the equation

(An + αI)xδ
α,n = Bny

δ. (5.3)
IfAn is a finite rank operator then the problem of solving the above equation
can be converted into a problem of solving a system of linear algebraic
equations. Indeed, for a fixed n, if R(An) is spanned by u1, . . . , uN , then
there exist continuous linear functionals f1, . . . , fN on X such that for every
x ∈ X,

Anx =
N∑

j=1

fj(x)uj ,

and then xδ
α,n is given by

xδ
α,n =

1
α

[
Bny

δ −
N∑

j=1

cjuj

]
,

where cj , j = 1, . . . , N , satisfy the system of equations

αci −
N∑

j=1

fi(uj)cj = di, j = 1, . . . , N,

with di = fi(Bnỹ), and in that case
cj = fj(xδ

α,n), j = 1, . . . , N.

Exercise 5.1. Prove the assertion in the last sentence.
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If an approximation (Tn) of T is known, then a choice for An and Bn

could be

An := T ∗nTn, Bn = T ∗n .

In this special case, since An is positive and self adjoint, equation (5.3) can
be solved uniquely. In the next section, we shall be considering exactly this
special case. In the section that follows, we shall deal with a general An

and Bn. In the final section, we shall consider certain numerical approxi-
mation procedures meant for obtaining regularized approximate solutions
for integral equations of the first kind.

5.2 Using an Approximation (Tn) of T

One of the well-known numerical procedures to obtain approximations for
the operator equations of the second kind is the so-called Ritz method. In
the present context, the second kind equation is (5.2), and in Ritz method
for this, one looks for an element xδ

α,n in a finite dimensional subspace Xn

of X such that

〈T ∗Txδ
α,n + αxδ

α,n, un〉 = 〈T ∗yδ, un〉 ∀un ∈ Xn. (5.4)

If Pn : X → X is the orthogonal projection onto the space Xn, then the
above requirement is equivalent to that of finding xδ

α,n ∈ Xn such that

T ∗nTnx
δ
α,n + αxδ

α,n = T ∗ny
δ, (5.5)

where

Tn = TPn.

Thus, the Ritz method for obtaining approximate solution for (5.2) boils
down to a specific case of the situation in which we use an approximation
Tn := TPn of T . Note that, in the above discussion, Pn is not necessary to
be of finite rank.

Exercise 5.2. Show that xδ
α,n is a solution of (5.4) if and only if it is a

solution of (5.5), and the solution is unique.

5.2.1 Convergence and general error estimates

Let (Tn) be a sequence of operators in B(X,Y ). Let

R(n)
α := (T ∗nTn + αI)−1T ∗n , α > 0, n ∈ N.
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Then from Corollary 4.5 with Tn in place of T , we have

‖R(n)
α ‖ ≤ 1

2
√
α
.

Thus, from the inequality (5.1), we have

‖x̂− xδ
α,n‖ ≤ ‖x̂− xα‖+

δ

2
√
α

+ ‖(Rα −R(n)
α )y‖. (5.6)

The following proposition shows that ‖(Rα − R
(n)
α )y‖ can be made small

for small enough α and large enough n provided (Tn) is an approximation
of T in certain sense. First we observe that

Rα −R(n)
α = R

(n)
α,1 +R

(n)
α,2 +R

(n)
α,3, (5.7)

where

R
(n)
α,1 = (T ∗ − T ∗n)(TT ∗ + αI)−1, (5.8)

R
(n)
α,2 = R(n)

α Tn(T ∗n − T ∗)(TT ∗ + αI)−1, (5.9)

R
(n)
α,3 = R(n)

α (Tn − T )Rα. (5.10)

In order to see the relation (5.7), first we note that

Rα −R(n)
α = (T ∗T + αI)−1T ∗ − (T ∗nTn + αI)−1T ∗n

= T ∗(TT ∗ + αI)−1 − T ∗n(TnT
∗
n + αI)−1

= (T ∗ − T ∗n)(TT ∗ + αI)−1

+T ∗n [(TT ∗ + αI)−1 − (TnT
∗
n + αI)−1].

Now, (5.7) follows by writing (TT ∗ + αI)−1 − (TnT
∗
n + αI)−1 as

(TnT
∗
n + αI)−1(TnT

∗
n − TT ∗)(TT ∗ + αI)−1

and observing

TnT
∗
n − TT ∗ = Tn(T ∗n − T ∗) + (Tn − T )T ∗.

Throughout this chapter we assume that

y ∈ D(T †) and ‖y − yδ‖ ≤ δ.

Proposition 5.1. For every α > 0 and n ∈ N,

‖(Rα −R(n)
α )y‖ ≤ 2‖T − Tn‖‖(TT ∗ + αI)−1y‖+

‖(T − Tn)xα‖
2
√
α

≤ ‖(T − Tn)x̂‖
2
√
α

+
‖T − Tn‖√

α
ηα(y),

where

ηα(y) := 2‖
√
α(TT ∗ + αI)−1y‖+

1
2
‖x̂− xα‖.

In particular, if y ∈ R(T ), then ηα(y) → 0 as α→ 0.
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Proof. Let R(n)
α,1, R

(n)
α,2 and R

(n)
α,3 be as in (5.8), (5.9) and (5.10), respec-

tively. Now, using the relations

‖R(n)
α Tn‖ ≤ 1, ‖R(n)

α ‖ ≤ 1
2
√
α
, ‖T ∗ − T ∗n‖ = ‖T − Tn‖

we obtain

‖R(n)
α,1y‖ ≤ ‖T − Tn‖ ‖(TT ∗ + αI)−1y‖,

‖R(n)
α,2y‖ ≤ ‖T − Tn‖ ‖(TT ∗ + αI)−1y‖,

‖R(n)
α,3y‖ ≤

‖(Tn − T )xα‖
2
√
α

≤ ‖(Tn − T )x̂‖
2
√
α

+
‖Tn − T‖

2
√
α

‖x̂− xα‖.

Thus, from (5.7),

‖(Rα −R(n)
α )y‖ ≤ ‖R(n)

α,1y‖+ ‖R(n)
α,2y‖+ ‖R(n)

α,3y‖

≤ 2‖T − Tn‖‖(TT ∗ + αI)−1y‖+
‖(T − Tn)xα‖

2
√
α

≤ ‖(T − Tn)x̂‖
2
√
α

+
‖T − Tn‖√

α
ηα(y),

where

ηα(y) := 2‖
√
α(TT ∗ + αI)−1y‖+

1
2
‖x̂− xα‖.

Next, suppose y ∈ R(T ). Then we have

‖
√
α(TT ∗ + αI)−1y‖ = ‖

√
α(TT ∗ + αI)−1T x̂‖.

Let Aα :=
√
α(TT ∗ + αI)−1T for α > 0. Recall from Lemma 4.1 and

Corollary 4.4 that

‖(TT ∗ + αI)−1T ∗T‖ ≤ 1 and ‖(TT ∗ + αI)−1T‖ ≤ 1
2
√
α

for all α > 0. Hence, ‖Aα‖ ≤ 1/2 for all α > 0. Also, for u ∈ R(T ∗), if
u = T ∗v with v ∈ Y , then

‖Aαu‖ = ‖
√
α(TT ∗ + αI)−1TT ∗v‖ ≤

√
α‖v‖

so that ‖Aαu‖ → 0 as α → 0 for every u ∈ R(T ∗). Recall that R(T ∗) is
dense in N(T )⊥ and x̂ ∈ N(T )⊥. Thus, by Theorem 2.8, we have

‖
√
α(TT ∗ + αI)−1y‖ = ‖Aαx̂‖ → 0 as α→ 0.

We already know that ‖x̂−xα‖ → 0 as α→ 0. Hence, ηα(y) → 0 as α→ 0
whenever y ∈ R(T ). �
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Corollary 5.1. Suppose y ∈ R(T ). Then for every α > 0 and n ∈ N,

‖(Rα −R(n)
α )y‖ ≤ 3

2
√
α
‖x̂‖ ‖T − Tn‖.

Proof. By Proposition 5.1 we have

‖(Rα −R(n)
α )y‖ ≤ 2‖T − Tn‖‖(TT ∗ + αI)−1y‖+

‖(T − Tn)xα‖
2
√
α

for all α > 0 and n ∈ N. Now, if y ∈ R(T ) then y = T x̂ so that

‖(TT ∗ + αI)−1y‖ = ‖(TT ∗ + αI)−1T x̂‖ ≤ ‖x̂‖
2
√
α

and

‖(T − Tn)xα‖ = ‖(T − Tn)(T ∗T + αI)−1T ∗T x̂‖ ≤ ‖x̂‖.

From these, the required result follows. �

Results in the following two theorems can be derived by applying Propo-
sition 5.1 and Corollary 5.1 to the inequality (5.6).

Theorem 5.1. Let y ∈ R(T ) and (Tn) be a sequence in B(X,Y ). For
δ > 0, let αδ > 0 be such that αδ → 0 and δ/

√
αδ → 0 as δ → 0. Further

let nδ ∈ N be such that

‖(T − Tnδ
)x̂‖ = o(

√
αδ),

‖T − Tnδ
‖ = O(

√
αδ)

as δ → 0. Then

‖x̂− xδ
αδ,nδ

‖ → 0 as δ → 0.

Theorem 5.2. Let y ∈ R(T ) and (Tn) be a sequence in B(X,Y ). Let (εn)
be a sequence of positive real numbers such that

‖T − Tn‖ ≤ εn ∀n ∈ N.

Then

‖x̂− xδ
α,n‖ ≤ ‖x̂− xα‖+ c

(
δ + εn√

α

)
,

where c = 3
2 max{1, ‖x̂‖}.

Remark 5.1. We may observe that the conditions that one has to impose
on α and n so as to obtain convergence from the estimate in Theorem 5.2
are stronger than the conditions in Theorem 5.1. ♦
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Exercise 5.3. Write detailed proofs of Theorems 5.1 and 5.2.

Exercise 5.4. Prove that

‖(Rα −R(n)
α )y‖ ≤ ‖(T − Tn)x̂‖

2
√
α

+ ‖x̂− xα‖ηα,n

where

ηα,n :=
‖(T ∗ − T ∗n)T‖

α
+
‖T − Tn‖√

α
.

Hint: Use (5.7).

5.2.2 Error estimates under source conditions

Suppose ϕ is a source function for T . As in Section 4.6.2, consider the
source set

Mϕ,ρ := {[ϕ(T ∗T )]1/2u : ‖u‖ ≤ ρ}

for some ρ > 0. Assume further that

sup
0<≤λ≤a

λ
√
ϕ(λ)

λ+ α
≤
√
ϕ(α), (5.11)

where a ≥ ‖T‖2. Then, by Theorem 4.31, we have

‖x̂− xα‖ ≤ ρ
√
ϕ(α) (5.12)

whenever x̂ ∈ Mϕ,ρ. Recall from Lemma 4.8 that if ϕ is concave, then it
satisfies (5.11).

Now, from Theorem 5.2 we shall deduce an estimate for ‖x̂− x̃α,n‖ by
choosing the parameter α appropriately.

Theorem 5.3. Suppose x̂ ∈ Mϕ,ρ. Let (εn) be a sequence of positive real
numbers such that

‖T − Tn‖ ≤ εn ∀n ∈ N.

Let

α := αδ,n := ϕ−1[ψ−1((δ + ε2n)/ρ2)].

Then

‖x̂− x̃α,n‖ ≤ 2cρ

√
ψ−1

(
(δ + εn)2

ρ2

)
for all n ∈ N, where ψ(λ) = λϕ−1(λ) and c is as in Theorem 5.2.
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Proof. By Theorem 5.2 and the inequality (5.12), we have

‖x̂− xδ
α,n‖ ≤ c

(
ρ
√
ϕ(α) +

δ + εn√
α

)
.

Now, since α := α(δ, n) satisfies the relation ρ2αϕ(α) = (δ + εn)2, as in
Lemma 4.9, we have

ρ2ϕ(α) =
(δ + εn)2

α2
= ρ2ψ−1

( (δ + εn)2

ρ2

)
.

Thus, the result follows. �

Corollary 5.2. Suppose x̂ ∈ R((T ∗T )ν) for some ν ∈ (0, 1] and

α(δ, n) = (δ + εn)
2

2ν+1 .

Then

‖x̂− xδ
α,n‖ ≤ c0(δ + εn)

2ν
2ν+1

for some c0 > 0.

Proof. Follows from Theorem 5.3 by taking ϕ(λ) = λ2ν . �

Remark 5.2. In Theorem 5.3, if we choose α := α(δ, n) satisfying

κ1(δ + εn)2 ≤ ρ2αϕ(α) ≤ κ2(δ + εn)2

for some κ1, κ2 > 0, then we get the estimate as

‖x̂− xδ
α,n‖ ≤ 2cρ

√
1
κ1

ψ−1
(κ2(δ + εn)2

ρ2

)
,

where c is as in Theorem 5.2. ♦

Exercise 5.5. Prove the assertion in Remark 5.2.

5.2.3 Error estimates for Ritz method

We have already mentioned that if (Pn) in B(X) is a sequence of orthogonal
projection operators on X, then the choice Tn = TPn leads to the Ritz
method for equation (5.2). In this case, we have

T − Tn = T (I − Pn).

Thus, if T is a compact operator and if Pnx→ x for every x ∈ X, then we
have

‖T − Tn‖ = ‖(I − Pn)T ∗‖ → 0.
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It can be seen that if the sequence (Xn) of subspaces has the property that

Xn ⊆ Xn+1, n = 1, 2, . . . ,

and

∪∞n=1Xn dense in X,

and if Pn is the orthogonal projection onto Xn, then we do have

Pnx→ x as n→∞
for every x ∈ X.

Exercise 5.6. Prove the assertions in the above sentence.

In the setting of the above special choice of the operators Tn, we deduce
an error bound which is different from the one we obtained in the last
section. Throughout this subsection we assume that (εn) is a sequence of
positive real numbers such that

‖T (I − Pn)‖ ≤ εn ∀n ∈ N.

Theorem 5.4. Suppose y ∈ R(T ). Then

‖x̂− xδ
α,n‖ ≤

(
3 +

εn

2
√
α

)
(‖x̂− xα‖+ ‖(I − Pn)x̂‖) +

δ

2
√
α
.

Proof. From inequality (5.6), we have

‖x̂− x̃α,n‖ ≤ ‖x̂− x̃α‖+
δ

2
√
α

+ ‖(Rα −Rα,n)y‖.

The required inequality would follow once we prove

‖(Rα −Rα,n)y‖ ≤
(
2 +

εn

2
√
α

)
(‖x̂− xα‖+ ‖(I − Pn)x̂‖) .

Let R(n)
α,1, R

(n)
α,2 and R(n)

α,3 be as in (5.8), (5.9) and (5.10), respectively. Since
Tn = TPn, we have

R
(n)
α,1y = (I − Pn)T ∗(TT ∗ + αI)−1y = (I − Pn)xa,

R
(n)
α,2y = Rα,nTn(Pn − I)T ∗(TT ∗ + αI)−1y

= Rα,nTn(Pn − I)xα,

R
(n)
α,3y = Rα,n(Tn − T )xα = Rα,nT (Pn − I)xα.

Thus, using the relations

‖Rα,n‖ ≤
1

2
√
α
,

‖(I − Pn)xα‖ ≤ ‖(I − Pn)x̂‖+ ‖x̂− xα‖,
‖T (Pn − I)xα‖ ≤ ‖T (Pn − I)‖ (‖(I − Pn)x̂‖+ ‖x̂− xα‖) ,
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we obtain

‖R(n)
α,1y‖ ≤ ‖(I − Pn)x̂‖+ ‖x̂− xα‖,

‖R(n)
α,1y‖ ≤ ‖(I − Pn)x̂‖+ ‖x̂− xα‖,

‖R(n)
α,1y‖ = ‖Rα,nT (Pn − I)xα‖

≤ ‖T (I − Pn)‖
2
√
α

(‖(I − Pn)x̂‖+ ‖x̂− xα‖) .

Thus, we obtain

‖(Rα −Rα,n)y‖ ≤
(
2 +

εn

2
√
α

)
(‖x̂− xα‖+ ‖(I − Pn)x̂‖) .

This completes the proof. �

The following two corollaries are immediate from Theorem 5.4 and the
inequality (5.12).

Corollary 5.3. Suppose ‖(I−Pn)x̂‖ → 0 and ‖T (I−Pn)‖ → 0 as n→∞
and suppose (εn) is such that ‖T (I − Pn)‖ ≤ εn and εn → 0 as n→∞. If
α = α(δ, n) is chosen such that

δ√
α

= o(1) and
εn√
α

= O(1)

as δ → 0 and n→∞, then

‖x̂− x̃α,n‖ → 0 as δ → 0, n→∞.

Corollary 5.4. Suppose x̂ ∈ Mϕ,ρ, where ϕ is as in Section 5.2.2, and
suppose αδ := ϕ−1[ψ−1(δ2/ρ2)] and nδ ∈ N is such that

εn ≤ c1
√
αδ ∀n ≥ nδ

for some c1 > 0. Then there exist c2, c3 > 0 such that

‖x̂− x̃αδ,n‖ ≤ c2‖(I − Pn)x̂‖+ c3ρ
√
ψ−1 (δ2/ρ2).

Exercise 5.7. Write detailed proofs of Corollaries 5.3 and 5.4.

Remark 5.3. Regularized approximation discussed in the above two sub-
sections has been the subject matter of many works in the literature (see,
e.g., [16, 21, 62, 63]). ♦



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

Regularized Approximation Methods 217

5.3 Using an Approximation (An) of T ∗T

In this section we consider a more general situation in which we approxi-
mate the operators T ∗T and T ∗ by sequences of operators (An) and (Bn)
respectively, and consider the approximate equation (5.3). We shall derive
the error estimates under the following general assumption.

Assumption 5.1. For each α > 0, there exists a positive integer Nα such
that for every n ≥ Nα, the operator An + αI is bijective. Let cα,n > 0 be
an upper bound for ‖(An + αI)−1‖, that is,

‖(An + αI)−1‖ ≤ cα,n ∀n ≥ Nα. (5.13)

In the following we use the notation A := T ∗T .

We observe the following specific cases wherein the assumption made
above is satisfied:

(i) Suppose An is a positive operator on X for each n ∈ N. Then
An + αI is bijective for every α > 0 and n ∈ N, and

‖(An + αI)−1‖ ≤ 1
α

∀α > 0, ∀n ≥ Nα.

(ii) Suppose ‖A− An‖ → 0 as n→∞. For α > 0, let Nα ∈ N be such
that ‖A− An‖ ≤ α/2 for all n ≥ Nα. Then, for every n ≥ Nα, An + αI is
bijective and

‖(An + αI)−1‖ ≤ 2
α

∀n ≥ Nα.

Exercise 5.8. Prove the assertions (i) and (ii) above.

Recall that if (Tn) is a sequence of operators in B(X,Y ) such that
‖T − Tn‖ → 0 as n→∞, then with An := T ∗nTn, we have

‖A−An‖ → 0 as n→∞.

Moreover, for each n ∈ N, An is a positive operator. A particular case of
this situation, as we have already noted in Section 5.2.3, is Tn := TPn,
where T is a compact operator and (Pn) is a sequence of projections on X
which converges pointwise to the identity operator. In the next subsection
we shall describe another example of practical importance where (An) is a
sequence of positive operators such that ‖A−An‖ → 0 as n→∞.

Now, let us derive an estimate for the error ‖x̂ − xδ
α,n‖ under the As-

sumption 5.1. From equations (5.2) and (5.3), we obtain

(An + αI)(xδ
α − xδ

α,n) = (T ∗ −Bn)yδ − (A−An)xδ
α.
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Hence, the following theorem is immediate.

Theorem 5.5. Let Assumption 5.1 be satisfied. Then
‖x̂− xδ

α,n‖ ≤ ‖x̂− xδ
α‖+ cα,n

(
‖(T ∗ −Bn)yδ‖+ ‖(A−An)xδ

α‖
)
.

The following corollary is a consequence of the above theorem, as
‖x̂− xδ

α‖ ≤ ‖x̂− xα‖+ δ/2
√
α and ‖y − yδ‖ ≤ δ.

Corollary 5.5. Let Assumption 5.1 be satisfied. Then

‖x̂− xδ
α,n‖ ≤ an(α)‖x̂− xα‖+ bn(α)

δ

2
√
α

+ εn(α),

where
an(α) := 1 + cα,n‖A−An‖,
bn(α) := 1 + cα,n

(
2
√
α‖T ∗ −Bn‖+ ‖A−An‖

)
,

εn(α) := cα,n (‖(T ∗ −Bn)y‖+ ‖(A−An)x̂‖) .

Remark 5.4. In view of the observations following Assumption 5.1, in
Theorem 5.5 and Corollary 5.5 we can take cα,n = 1/α if An is a positive
operator for every n ∈ N, and cα,n = 2/α for every n ≥ nα for some nα ∈ N
if ‖A−An‖ → 0 as n→∞. ♦

5.3.1 Results under norm convergence

In order to derive meaningful inference from the estimate in Corollary 5.5,
it is necessary that the quantities ‖A − An‖ and ‖T ∗ − Bn‖ should be
small. In the next two theorems, which are consequences of Theorem 5.5
and Corollary 5.5, respectively, we obtain convergence and certain error
estimates under the assumption that ‖A−An‖ → 0 and ‖T ∗−Bn‖ → 0 as
n→∞ and under appropriate choices of α := α(δ) and n := nδ.

Theorem 5.6. Suppose ‖A − An‖ → 0 and ‖T ∗ − Bn‖ → 0 as n → ∞.
Let αδ := α(δ) be such that

αδ → 0 and
δ

√
αδ

→ 0 as δ → 0,

and let nδ ∈ N be such that
‖A−Anδ

‖ = O(αδ), ‖T ∗ −Bnδ
‖ = O(

√
αδ),

‖(T ∗ −Bnδ
)y‖ = o(αδ), ‖(A−Anδ

)x̂‖ = o(αδ).
Then

‖x̂− xδ
αδ,nδ

‖ → 0 as δ → 0.
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Theorem 5.7. Suppose ‖A−An‖ → 0 and ‖T ∗−Bn‖ → 0 as n→∞. Let
c, c1, c2 be positive constants such that for each α > 0, there exists Nα ∈ N
such that

‖A−An‖ ≤ c1α, ‖T ∗ −Bn‖ ≤ c2
√
α, ‖(An + αI)−1‖ ≤ c

α
for all n ≥ Nα. Then

‖x̂− xδ
α,n‖ ≤ a‖x̂− xα‖+ b

δ√
α

+ c
1
α

(‖(T ∗ −Bn)y‖+ ‖(A−An)x̂‖) ,

where a = 1 + cc1 and b = 1 + cc1 + cc2.
In particular, if An is a positive self adjoint operator and Bn := T ∗ for

all n ∈ N, then

‖x̂− xδ
α,n‖ ≤ (1 + c)

(
‖x̂− xα‖+

δ√
α

)
+
‖(A−An)x̂‖

α
.

Remark 5.5. Error analysis of the method (5.3) in a more general setting
has been carried out in [48] and [65]. ♦

Exercise 5.9. Write detailed proofs of Theorems 5.6 and 5.7.

Now, let us obtain some error estimates under a general source condition
on x̂.

Theorem 5.8. Suppose ‖A − An‖ → 0 and ‖T ∗ − Bn‖ → 0 as n → ∞,
and x̂ ∈ Mϕ,ρ, where ϕ is a source function for T satisfying the relation
(5.11) as in Section 5.2.2. Suppose

αδ := ϕ−1[ψ−1(δ2/ρ2)]

and nδ ∈ N is such that

‖A−Anδ
‖ = O(αδ), ‖T ∗ −Bnδ

‖ = O(
√
αδ),

‖(T ∗ −Bnδ
)y‖+ ‖(A−Anδ

)x̂‖ = O(δ
√
αδ).

Then

‖x̂− xδ
αδ,nδ

‖ = O
(√

ψ−1 (δ2/ρ2)
)
.

Proof. By Theorem 5.7, the assumptions on Anδ
and Bnδ

imply that

‖x̂− xδ
αδ,nδ

‖ ≤ c̃
(
‖x̂− xαδ

‖+
δ√
α

)
for some c̃ > 0. Now, recall from Theorem 4.31 that ‖x̂−xαδ

‖ ≤ ρ
√
ϕ(αδ).

Hence, the result follow from Lemma 4.9. �

Exercise 5.10. Write details of the proof of Theorem 5.8.
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5.4 Methods for Integral Equations

In this section, we shall consider two methods for integral equations of the
first kind, ∫ b

a

k(s, t)x(t) dt = y(s), s ∈ [a, b],

where k(·, ·) is a continuous function defined on [a, b]×[a, b] and y ∈ L2[a, b].
The first one is a degenerate kernel method, proposed by Groetsch in [27],
obtained by approximating the kernel of the integral operator A := T ∗T

by a convergent quadrature rule, and the second one is obtained by using
the Nyström approximation of A. In both methods we shall obtain error
estimates in terms of the uniform norm ‖ · ‖∞ as well as the L2-norm ‖ · ‖2.

We have seen in Chapters 2 and 4 that the operator T defined by

(Tx)(s) =
∫ b

a

k(s, t)x(t)dt, x ∈ X, s ∈ [a, b],

is a compact operator from X to Y , where X and Y are any of the spaces
L2[a, b] with ‖ · ‖2 and C[a, b] with ‖ · ‖∞. The same is the case with the
integral operators T ∗ and T ∗T . Note that T ∗ and T ∗T are defined by

(T ∗x)(s) =
∫ b

a

k(t, s)x(t)dt, x ∈ L2[a, b],

and

(T ∗Tx)(s) =
∫ b

a

k̃(s, t)x(t)dt, x ∈ L2[a, b],

respectively, where

k̃(s, t) =
∫ b

a

k(τ, s)k(τ, t)dτ, s, t ∈ [a, b].

As in earlier sections, we assume that for δ > 0, yδ ∈ L2[a, b] is such
that

‖y − yδ‖2 ≤ δ.

We also recall that from Theorem 4.10 and Lemma 4.3 that,

‖x̂− xα‖2 → 0 as α→ 0

and

‖xα − xδ
α‖2 ≤

δ

2
√
α
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for y ∈ D(T †), where

x̂ := T †y, xα := (T ∗T + αI)−1T ∗y, xδ
α := (T ∗T + αI)−1T ∗yδ.

However, with respect to the uniform ‖ · ‖∞, we only have the following
theorem (cf. Groetwsch [27]), for the proof of which we shall make use of
the relation

‖T ∗x‖∞ ≤ κ0‖x‖2, (5.14)

where

κ0 :=
(

sup
a≤s≤b

∫ b

a

|(k(s, t)|2dt
)1/2

.

Since k(·, ·) is continuous, we know that for every x ∈ L2[a, b], the functions
Tx, T ∗x and T ∗Tx are in C[a, b]. In particular, it follows that xα and xδ

α

are in C[a, b].

Exercise 5.11. Justify the assertion in the last statement.

Theorem 5.9. For α > 0 and δ > 0,

‖xα − xδ
α‖∞ ≤ κ0

δ

α

with κ0 as in (5.14). If x̂ ∈ R(T ∗), then

‖x̂− xα‖∞ → 0 as α→ 0.

Proof. Using the relation (5.14), we have

‖xα − xδ
α‖∞ = ‖T ∗(TT ∗ + αI)−1(y − yδ)‖∞

≤ κ0‖(TT ∗ + αI)−1(y − yδ)‖2

≤ κ0δ

α
.

Next, suppose that x̂ ∈ R(T ∗). Then there exists u ∈ N(T ∗)⊥ such that
x̂ = T ∗u. Hence, by the relation (5.14) and the fact that x̂−xα = α(T ∗T +
αI)−1x̂, we have

‖x̂− xα‖∞ = α‖T ∗(TT ∗ + αI)−1u‖∞
≤ κ0‖α(TT ∗ + αI)−1u‖2.

Now, by Lemma 4.2, we have ‖α(TT ∗ + αI)−1u‖2 → 0 as α → 0. Thus,
‖x̂− xα‖∞ → 0 as α→ 0. �

Exercise 5.12. Derive the inequality in (5.14).
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As we have already mentioned in the beginning of this section, the
methods that we describe are based on a convergent quadrature rule, say
with nodes τ (n)

j in [a, b] and weights w(n)
j ≥ 0 for j ∈ {1, . . . , n}. Thus, we

have
n∑

j=1

x(τ (n)
j )w(n)

j →
∫ b

a

x(t) dt as n→∞

for every x ∈ C[a, b].
In the following, for the simplicity of notation, we drop the superscripts

in t
(n)
j and w

(n)
j , and write them as tj and wj , respectively, for n ∈ N

and j = 1, . . . , n. The convergence in C[a, b] is with respect to the norm
‖ · ‖∞, and for a bounded operator B : L2[a, b] → L2[a, b], ‖B‖ denotes,
as usual, the operator norm induced by the norm ‖ · ‖2 on L2[a, b]. If
B : C[a, b] → C[a, b] is a bounded operator with respect to the norm ‖ · ‖∞
on C[a, b], then we shall denote the operator norm of B by ‖B‖∞. We shall
also assume, without loss of generality, that b− a = 1.

5.4.1 A degenerate kernel method

In this method, we take An to be an approximation of A := T ∗T by ap-
proximating the kernel k̃(·, ·) of A by the quadrature formula. Thus, we
define the integral operator An by

(Anx)(s) =
∫ b

a

k̃n(s, t)x(t) dt, x ∈ L2[a, b], s ∈ [a, b],

where

k̃n(s, t) =
n∑

j=1

k(τj , s)k(τj , t)wj , s, t ∈ [a, b].

Note that An is a degenerate kernel approximation of A := T ∗T .
An important observation about the operator An is that if Fn is the

Nyström approximation of T ∗ which is considered as an operator from
C[a, b] into itself, that is,

(Fnx)(s) =
n∑

j=1

k(τj , s)x(τj)wj , x ∈ C[a, b],

then

An := FnT. (5.15)
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Indeed, for x ∈ L2[a, b] and s ∈ [a, b],

(Anx)(s) =
∫ b

a

k̃n(s, t)x(t) dt

=
∫ b

a

n∑
j=1

k(τj , s)k(τj , t)wjx(t) dt

=
n∑

j=1

k(τj , s)
(∫ b

a

k(τj , t)x(t) dt
)
wj

= (FnTx)(s).

By Theorem 3.5, we know that for every x ∈ C[a, b],

‖T ∗x− Fnx‖∞ → 0 as n→∞. (5.16)

The above observations facilitate us to prove the following result.

Proposition 5.2. For each n ∈ N, An is a positive operator and

‖A−An‖ → 0 as n→∞.

Proof. We observe that, for every x ∈ X,

〈Anx, x〉 =
∫ b

a

(FnTx)(s)x(s)ds

=
n∑

j=1

∫ b

a

k(τj , s)
(∫ b

a

k(τj , t)x(t)dt
)
wjx(s)ds

=
n∑

j=1

wj

∫ b

a

∫ b

a

k(τj , s)k(τj , t)x(t)x(s)dsdt

=
n∑

j=1

wj

∣∣∣ ∫ b

a

k(τj , s)x(s)ds
∣∣∣2

≥ 0.

Thus, An is a positive operator for every n ∈ N.
Since T is a compact operator from L2[a, b] to C[a, b], by (5.16) and

Theorem 2.13, we also have

‖A−An‖ = ‖(T ∗ − Fn)T‖ → 0 as n→∞.

This completes the proof. �
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(i) Error estimate with respect to ‖ · ‖2

By Proposition 5.2, the sequence (An) of operators not only converges in
norm, but also satisfy the resolvent estimate

‖(An + αI)−1‖ ≤ 1
α

∀α > 0. (5.17)

In particular, the equation

(An + αI)xδ
α,n = T ∗yδ (5.18)

has a unique solution for every n ∈ N and δ > 0.
Thus, results in Section 5.3 can be applied. In fact, in this case, the

following theorem is a consequence of Theorem 5.7.

Theorem 5.10. For α > 0, let nα ∈ N be such that ‖A− An‖ ≤ α for all
n ≥ nα. Then,

‖x̂− xδ
α,n‖2 ≤ 2

(
‖x̂− xα‖2 +

δ√
α

)
+

1
α
‖(A−An)x̂‖2.

In particular, if αδ is such that αδ → 0 and δ/
√
αδ → 0 as δ → 0, and if

nδ ∈ N is such that ‖A−Anδ
‖ = o(αδ), then

‖x̂− xδ
αδ,nδ

‖2 → 0 as δ → 0.

Exercise 5.13. Write details of the proof of Theorem 5.10.

As a special case of Theorem 5.8, we now obtain an error estimate under
a general source condition.

Theorem 5.11. Suppose x̂ ∈Mϕ,ρ, where ϕ is a source function satisfying
the relation (5.11) as in Section 5.2.2. Suppose

αδ := ϕ−1[ψ−1(δ2/ρ2)]

and nδ ∈ N is such that

‖A−Anδ
‖ = O(αδ) and ‖(A−Anδ

)
√
ϕ(A)‖ = O

(
αδ

√
ϕ(αδ)

)
.

Then

‖x̂− xδ
αδ,nδ

‖ = O
(√

ψ−1 (δ2/ρ2)
)
.

Proof. In view of Theorems 4.13 and 4.31, if x̂ ∈Mϕ,ρ then α = O(ϕ(α))
so that

‖A−Anδ
‖ = O(αδ) = O(ϕ(αδ)) = O(

√
ϕ(αδ)).

Hence, the proof follows from Theorems 5.10 by recalling Lemma 4.9. �
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Remark 5.6. The degenerate kernel method (5.18) has been considered by
Groetsch in [27]. However, our observation (5.15) paved the way for a sim-
pler presentation of the analysis than the one adopted by Groetsch. More-
over, the conditions required in Theorem 5.10 are weaker than the corre-
sponding conditions in [27]. In fact, in [27], Groetsch requires the condition
‖A−An‖ = O(α3/2) for convergence and the condition ‖A−An‖ = O(α2)
for error estimate (under Hölder-type source condition), whereas, we ob-
tain convergence as well as order optimal estimate under the assumption
‖A−An‖ = O(α). ♦

(ii) Error estimate with respect to ‖ · ‖∞

Since R(T ∗) and R(An) are subsets of C[a, b], we have

xδ
α,n =

1
α

(T ∗yδ −Anx
δ
α,n) ∈ C[a, b].

Recall from Theorem 5.9 that

‖xα − xδ
α‖∞ ≤ κ0

δ

α

and if x̂ ∈ R(T ∗), then

‖x̂− xα‖∞ → 0 as α→ 0.

In order to derive estimate for the error ‖xδ
α − xδ

α,n‖∞, we require an esti-
mate for ‖(An + αI)−1‖∞. We shall also make use of the convergence

‖A−An‖∞ = ‖(Fn − T ∗)T‖∞ → 0 as n→∞

which follows from (5.16) by the compactness of the operator T , by using
Theorem 2.13.

Exercise 5.14. Show that ‖Anx‖∞ ≤ k̃‖x‖2 for every n ∈ N and x ∈ L2[a, b],

where κ̃ :=
(
supa≤s≤b

∫ b

a
|k̃(s, t)|2dt

)1/2

and

‖(An + αI)−1‖∞ ≤ 1
α

(
1 +

κ̃

α

)
for every α > 0 and n ∈ N.
Hint: Use the identity: (An + αI)−1 = 1

α

[
I −An(An + αI)−1

]
.

Now, we derive an estimate for ‖(An + αI)−1‖∞ which is better than
the one given in Exercise 5.14 for small α. For this purpose, first we obtain
another representation for the operator An.
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Since the quadrature formula under consideration is convergent, as a
consequence of uniform boundedness principle, we know (cf. [51], Section
6.2.2) that there exists ω > 0 such that

n∑
j=1

wj ≤ ω ∀n ∈ N. (5.19)

Let Kn
w be the space Kn with the inner product

〈a, b〉w :=
n∑

j=1

aibjwj , a,b ∈ Kn,

and the corresponding induced norm ‖ · ‖w, where aj denotes the jth coor-
dinate of a.

Proposition 5.3. Let Kn : L2[a, b] → Kn
w be defined by

(Knx)(j) := (Tx)(τj), x ∈ L2[a, b], j = 1, . . . , n.

Then

An = K∗
nKn ∀n ∈ N.

Further, R(K∗
n) ⊆ C[a, b] and

‖K∗
na‖∞ ≤ ‖k‖∞

√
ω‖a‖w ∀ a ∈ Kn

w, (5.20)

where ‖k‖∞ := sups,t∈[a,b] |k(s, t)|.

Proof. We note that, for x ∈ L2[a, b] and a ∈ Kn
w,

〈Knx, a〉w =
n∑

j=1

(Tx)(τj)ajwj

=
∫ b

a

x(t)
( n∑

j=1

k(τj , t)ajwj

)
dt.

Thus, K∗
n : Kn

w → L2[a, b], the adjoint of Kn is given by

(K∗
na)(s) :=

n∑
j=1

k(τj , s)ajwj , a ∈ Kn
w, s ∈ [a, b].

Clearly, R(K∗
n) ⊆ C[a, b]. For x ∈ L2[a, b] and s ∈ [a, b], we have

(K∗
nKnx)(s) =

n∑
j=1

k(τj , s)(Tx)(τj)wj

=
∫ b

a

x(t)
( n∑

j=1

k(τj , s)k(τj , t)wj

)
dt

= (Anx)(s).
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Next, we observe that for a ∈ Kn
w and s ∈ [a, b],

|(K∗
na)(s)| ≤

n∑
j=1

|k(τj , s)| |aj |wj

≤ ‖k‖∞
n∑

j=1

(|aj |
√
wj)

√
wj

≤ ‖k‖∞
( n∑

j=1

|aj |2wj

)1/2( n∑
j=1

wj

)1/2

≤ ‖k‖∞‖a‖w

√
ω,

where ω is as in (5.19). Thus, we have proved (5.20). �

Theorem 5.12. For every α > 0 and n ∈ N,

‖(An + αI)−1‖∞ ≤ 1
α

(
1 +

c0
2
√
α

)
, (5.21)

where c0 := ‖k‖∞
√
ω with ω is as in (5.19).

Proof. Let x ∈ C[a, b]. Using the identity

(An + αI)−1 =
1
α

[
I −An(An + αI)−1

]
,

the representation An = K∗
nKn with Kn as in Proposition 5.3, we have,

‖(An + αI)−1x‖∞ ≤ 1
α

(
‖x‖∞ + ‖An(An + αI)−1x‖∞

)
≤ 1
α

(
‖x‖∞ + ‖K∗

nKn(K∗
nKn + αI)−1x‖∞

)
.

Now, using the relation (5.20) in Proposition 5.3 and

‖Kn(K∗
nKn + αI)−1‖ ≤ 1

2
√
α
,

we have

‖K∗
nKn(K∗

nKn + αI)−1x‖∞ ≤ c0‖Kn(K∗
nKn + αI)−1x‖w

≤ c0
2
√
α
‖x‖2

≤ c0
2
√
α
‖x‖∞.

The above inequalities yield the required estimate. �
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Now, we are in a position to obtain an estimate for ‖x̂− xδ
α,n‖∞.

Theorem 5.13. For every α > 0 and n ∈ N,

‖x̂− xδ
α,n‖∞ ≤ (1 + cα‖A−An‖∞)‖x̂− xδ

α‖∞ + cα‖(A−An)x̂‖∞,

where

cα :=
1
α

(
1 +

‖k‖∞
√
ω

2
√
α

)
.

Proof. Recall that

(An + αI)(xδ
α − xδ

α,n) = (An −A)xδ
α.

Hence, using the resolvent estimate (5.21) in Theorem 5.12, we have

‖xδ
α − xδ

α,n‖∞ ≤ cα‖(An −A)xδ
α‖∞.

But,

‖(An −A)xδ
α‖∞ ≤ ‖An −A‖∞‖xδ

α − x̂‖∞ + ‖(An −A)x̂‖∞.

The above inequalities together with the inequality

‖x̂− xδ
α,n‖∞ ≤ ‖x̂− xδ

α‖∞ + ‖xδ
α − xδ

α,n‖∞

give the required estimate. �

Theorem 5.13 together with Theorem 5.9 yield the following convergence
result.

Corollary 5.6. Suppose x̂ ∈ R(T ∗). For each δ > 0, let αδ be such that
αδ → 0 and δ/αδ → 0 as δ → 0 and let nδ ∈ N be such that

‖A−Anδ
‖∞ = O

(
α

3/2
δ

)
, ‖(A−Anδ

)x̂‖∞ = o
(
α

3/2
δ

)
.

Then

‖x̂− xδ
α,nδ

‖∞ → 0 as δ → 0.

Exercise 5.15. Write details of the proof of Corollary 5.6.

Remark 5.7. In the case when Bn is not necessarily equal to T ∗, we have
the equation

(An + αI)x̃δ
α,n = Bny

δ. (5.22)

For obtaining error estimate in terms of the norm ‖ · ‖∞, we consider oper-
ators Bn to be bounded operators from L2[a, b] to C[a, b] and denote their
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norm by ‖Bn‖∗. In applications, one of the choices of Bn can be of the
form

Bn := PnT
∗,

where Pn : C[a, b] → C[a, b] is a bounded projection operator with respect
to the norm ‖ · ‖∞ on C[a, b] such that

‖Pnx− x‖∞ → 0 as n→∞.

In this particular case, we also have

‖T ∗ −Bn‖ → 0 and ‖T ∗ −Bn‖∗ → 0 as n→∞.

Note that

x̃δ
α,n = xδ

α,n + zδ
α,n,

where xδ
α,n is as in (5.18) and

zδ
α,n = (An + αI)−1(Bn − T ∗)yδ.

Since

x̃δ
α,n − x̂ = (xδ

α,n − x̂) + zδ
α,n,

it is enough to obtain estimates for ‖zδ
α,n‖2 and ‖zδ

α,n‖∞. Now, using the
bounds for the norms of (An + αI)−1 given in (5.17) and (5.21), we have

‖zδ
α,n‖2 ≤

1
α

(‖Bn − T ∗‖δ + ‖(Bn − T ∗)y‖2) ,

and

‖zδ
α,n‖∞ ≤ 1

α

(
1 +

c0
2
√
α

)
(‖Bn − T ∗‖∗δ + ‖(Bn − T ∗)y‖∞) ,

where c0 := ‖k‖∞
√
ω with ω is as in (5.19). ♦

Remark 5.8. The representation An = K∗
nKn given in Proposition 5.3 has

been used by Nair and Pereverzev in [54] to analyse a regularized collocation
method wherein the operator Bn is taken to be K∗

n and the noisy data yδ

is in Kn
w satisfying ‖y(τj)− yδ

j | ≤ δ for j = 1, . . . , n. ♦
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5.4.2 Regularized Nyström method

In this method we consider regularized approximation of x̂ as the Nyström
approximation of the solution of (5.2). Thus, in place of the integral opera-
tor A := T ∗T , we consider its Nyström approximation Ãn which is defined
by

(Ãnx)(s) =
n∑

j=1

k̃(s, τj)x(τj)wj

for every x ∈ C[a, b] and s ∈ [a, b] using a convergent quadrature formula
based on the nodes τ1, . . . , τn and weights w1, . . . , wn. The resulting ap-
proximate equation is

(Ãn + αI)xδ
α,n = T ∗yδ. (5.23)

It is to be born in mind that the operator Ãn above is defined on C[a, b];
not on the whole of L2[a, b]. Thus, it is not apparent that equation (5.23)
is uniquely solvable. So, our first attempt is to prove the unique solvability
of (5.23). For doing this, first we observe that Ãn can be represented as

Ãn := T ∗Tn, (5.24)

where Tn is the Nyström approximation of T , that is,

(Tnx)(s) =
n∑

j=1

k(s, τj)x(τj)wj

for every x ∈ C[a, b], s ∈ [a, b]. Indeed, for x ∈ C[a, b] and s ∈ [a, b],

(Ãnx)(s) =
n∑

j=1

k̃(s, τj)x(τj)wj

=
n∑

j=1

(∫ b

a

k(t, s)k(t, τj) dt
)
x(τj)wj

=
∫ b

a

k(t, s)(Tnx)(t) dt

= (T ∗Tnx)(s).

As in Proposition 5.2, it can be shown that TnT
∗ is a positive operator on

L2[a, b]. In particular, TnT
∗ + αI is bijective from L2[a, b] to itself, and

hence

‖(TnT
∗ + αI)−1‖ ≤ 1

α
. (5.25)
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Theorem 5.14. For every α > 0 and n ∈ N, the operators TnT
∗ + αI

and T ∗Tn + αI are bijective from C[a, b] into itself. Further, for every
v ∈ C[a, b],

(T ∗Tn + αI)−1v =
1
α

(
v − T ∗(TnT

∗ + αI)−1Tnv
)

and

(TnT
∗ + αI)−1v =

1
α

(
v − Tn(T ∗Tn + αI)−1T ∗v

)
.

Proof. Let v ∈ C[a, b], n ∈ N and α > 0. We have already observed that
TnT

∗ +αI is bijective from L2[a, b] to itself. Let un be the unique element
in L2[a, b] such that

(TnT
∗ + αI)un = v.

Then,

un =
1
α

(v − TnT
∗un) ∈ C[a, b].

Thus, TnT
∗ +αI : C[a, b] → C[a, b] is bijective. Hence, we also see that for

v ∈ C[a, b],

xn :=
1
α

(
v − T ∗(TnT

∗ + αI)−1Tnv
)

is the unique element in C[a, b] such that

(T ∗Tn + αI)xn = v

so that T ∗Tn + αI : C[a, b] → C[a, b] is also bijective. Remaining part of
the theorem can be verified easily. �

The following corollary is obvious from the above theorem.

Corollary 5.7. For every α > 0 and v ∈ L2[a, b], there exists a unique
xn ∈ C[a, b] such that

(T ∗Tn + αI)xn = T ∗v.

Exercise 5.16. Write the proof of Corollary 5.7.

In view of Corollary 5.7, there exists a unique xδ
α,n ∈ C[a, b] such that

(T ∗Tn + αI)xδ
α,n = T ∗yδ. (5.26)

We observe that

xδ
α,n = T ∗uδ

α,n,
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where uδ
α,n ∈ L2[a, b] is the unique element satisfying the equation

(TnT
∗ + αI)uδ

α,n = yδ. (5.27)

We also have

xδ
α = T ∗uδ

α, xα = T ∗uα,

where

uδ
α = (TT ∗ + αI)−1yδ, uα = (TT ∗ + αI)−1y.

We shall use the following notations:

εn := ‖(T − Tn)T ∗‖, ηn := ‖(T − Tn)T ∗T‖.

Let us recall from Chapter 3 that (Tn) converges pointwise to T on C[a, b].
Hence, by compactness of T ∗ and A := T ∗T , it follows from Theorem 2.13
that

εn := ‖(T − Tn)T ∗‖ → 0 and ηn := ‖(T − Tn)A‖ → 0

as n→∞.

Proposition 5.4. For α > 0 and n ∈ N,

‖uδ
α − uδ

α,n‖2 ≤
εnδ

α2
+
ηn‖x̂− xα‖2

α2
.

Proof. From the definition of uδ
α and uδ

α,n, we have

uδ
α − uδ

α,n = [(TT ∗ + αI)−1 − (TnT
∗ + αI)−1]yδ

= (TnT
∗ + αI)−1(TnT

∗ − TT ∗)(TT ∗ + αI)−1yδ

= (TnT
∗ + αI)−1(Tn − T )T ∗(TT ∗ + αI)−1yδ,

and using the fact that x̂− xα = α(T ∗T + αI)−1x̂,

(T ∗T + αI)−1T ∗y = (T ∗T + αI)−1T ∗T x̂

= T ∗T (T ∗T + αI)−1x̂

=
1
α
T ∗T (x̂− xα).

Hence,

T ∗(TT ∗ + αI)−1yδ = T ∗(TT ∗ + αI)−1(yδ − y) +
1
α
T ∗T (x̂− xα).
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Thus, using (5.25),

‖uδ
α − uδ

α,n‖2 = ‖(TnT
∗ + αI)−1(Tn − T )T ∗(TT ∗ + αI)−1yδ‖

≤ 1
α
‖(Tn − T )T ∗(TT ∗ + αI)−1yδ‖2

≤ 1
α
‖(Tn − T )T ∗(TT ∗ + αI)−1(yδ − y)‖2

+
1
α2
‖(Tn − T )T ∗T (x̂− xα)‖2

≤ δ

α2
‖(Tn − T )T ∗‖+

1
α2
‖(Tn − T )A‖ ‖x̂− xα‖2.

This competes the proof. �

Now, we deduce estimates for the error in the regularized approximation
with respect to the norms ‖ · ‖2 and ‖ · ‖∞.

(i) Error estimate with respect to ‖ · ‖2

From the observations

‖xα − xδ
α‖2 ≤

δ√
α

and ‖xδ
α − xδ

α,n‖2 ≤ ‖T ∗‖ ‖uδ
α − uδ

α,n‖2,

we obtain the following theorem using the bound for ‖uδ
α−uδ

α,n‖2 obtained
in Proposition 5.4.

Theorem 5.15. Let κ := ‖T ∗‖. Then for every α > 0 and n ∈ N,

‖x̂− xδ
α,n‖2 ≤

(
1 +

κηn

α2

)
‖x̂− xα‖2 +

(
1 +

κεn

α3/2

) δ√
α
.

As a consequence of Theorem 5.15, we have the following theorem.

Theorem 5.16. Let κ := ‖T ∗‖. For α > 0, let nα ∈ N be such that

εn := ‖(T − Tn)T ∗‖ ≤ α3/2

κ
and ηn := ‖(T − Tn)A‖ ≤ α2

κ

for all n ≥ nα. Then

‖x̂− xδ
α,n‖2 ≤ 2

(
‖x̂− xα‖2 +

δ√
α

)
for all n ≥ nα. In particular, if αδ > 0 is such that αδ → 0 and δ/

√
αδ → 0

as δ → 0, and if nδ := nαδ
, then

‖x̂− xδ
α,nδ

‖2 → 0 as δ → 0.
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Next we deduce another estimate for ‖x̂−xδ
α,n‖2 which leads to a result

under weaker conditions on ‖(T−Tn)A‖ and ‖(T−Tn)T ∗‖ than in Theorem
5.16.

Theorem 5.17. For every α > 0 and n ∈ N,

‖x̂− xδ
α,n‖2 ≤ ãn(α)‖x̂− xα‖2 + b̃n(α)

δ√
α
,

where

ãn(α) := 1 +
ηn

α3/2

(
1 +

εn

α

)
and b̃n(α) := 1 +

εn

α

(
1 +

εn

α

)
.

In particular, for α > 0, if nα ∈ N is such that

εn := ‖(T − Tn)T ∗‖ ≤ α and ηn := ‖(T − Tn)A‖ ≤ α3/2

for all n ≥ nα, then

‖x̂− xδ
α,n‖2 ≤ 3

(
‖x̂− xα‖2 +

δ√
α

)
.

Proof. Using the definitions

uδ
α := (TT ∗ + αI)−1yδ, uδ

α,n := (TnT
∗ + αI)−1yδ,

and the resolvent identity

(TT ∗ + αI)−1 − (TnT + αI)−1 = (TT ∗ + αI)−1(Tn − T )T ∗(TnT
∗ + αI)−1,

we have

‖xδ
α − xδ

α,n‖2 = ‖T ∗(uδ
α − uδ

α,n‖2
= ‖T ∗(TT ∗ + αI)−1(Tn − T )T ∗uδ

α,n‖2

≤ 1√
α
‖(Tn − T )T ∗uδ

α,n‖2

≤ 1√
α

(
εn‖uδ

α,n − uδ
α‖2 + ‖(Tn − T )T ∗uδ

α‖2
)
.

Note that

‖(Tn − T )T ∗uδ
α‖2 = ‖(Tn − T )T ∗(TT ∗ + αI)−1yδ‖2

=
εnδ

α
+ ‖(Tn − T )T ∗(TT ∗ + αI)−1y‖2.

Now, since x̂− xα = α(T ∗T + αI)−1x̂, we have

(T ∗T + αI)−1T ∗y = (T ∗T + αI)−1T ∗T x̂

= T ∗T (T ∗T + αI)−1x̂

=
1
α
A(x̂− xα)
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so that

‖(Tn − T )T ∗(TT ∗ + αI)−1y‖2 = ‖(Tn − T )(T ∗T + αI)−1T ∗y)‖2

=
1
α
‖(Tn − T )A(x̂− xα)‖2

≤ ηn

α
‖x̂− xα‖2.

Thus,

‖(Tn − T )T ∗uδ
α‖2 =

εnδ

α
+
ηn

α
‖x̂− xα‖2

and hence,

‖xδ
α − xδ

α,n‖2 ≤ 1√
α

(
εn‖uδ

α,n − uδ
α‖2 + ‖(Tn − T )T ∗uδ

α‖2
)

≤ 1√
α

(
εn‖uδ

α,n − uδ
α‖2 +

εnδ

α
+
ηn

α
‖x̂− xα‖2

)
.

Using the estimate

‖uδ
α − uδ

α,n‖2 ≤
εnδ

α2
+
ηn‖x̂− xα‖2

α2

obtained in Proposition 5.4, we have

‖xδ
α − xδ

α,n‖2 ≤
1√
α

( ε2n
α2
δ +

εnηn

α2
‖x̂− xα‖2 +

εnδ

α
+
ηn

α
‖x̂− xα‖2

)
=
εn

α

(
1 +

εn

α

) δ√
α

+
ηn

α3/2

(
1 +

εn

α

)
‖x̂− xα‖2.

The above inequality together with the inequality

‖x̂− xδ
α,n‖2 ≤ ‖x̂− xα‖2 +

δ√
α

+ ‖xδ
α − xδ

α,n‖2,

imply the required estimates. �

(ii) Error estimate with respect to ‖ · ‖∞

Now we deduce an error estimate with respect to the norm ‖·‖∞ on C[a, b].
Let us first observe that, since R(T ∗) ⊆ C[a, b], both xα and xδ

α belong to
C[a, b].

Theorem 5.18. Let κ0 be as in (5.14). Then for every α > 0 and n ∈ N,

‖x̂− xδ
α,n‖∞ ≤ ân(α)‖x̂− xα‖∞ + b̂n(α)

δ

α
where

ân(α) := 1 +
κ0ηn

α2
and b̂n(α) := κ0

(
1 +

εn

α

)
.
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Proof. By the relation (5.14), we have

‖xδ
α − xδ

α,n‖∞ = ‖T ∗(uδ
α − uδ

α,n)‖∞
≤ κ0‖uδ

α − uδ
α,n‖2.

Again, by the relation (5.14),

‖xα − xδ
α‖∞ = ‖T ∗(TT ∗ + αI)−1(y − yδ)‖∞

≤ κ0‖(TT ∗ + αI)−1(y − yδ)‖2

≤ κ0δ

α
.

Thus, using the estimate in Proposition 5.4,

‖x̂− xδ
α,n‖∞ ≤ ‖x̂− xα‖∞ + ‖xα − xδ

α‖∞ + ‖xδ
α − xδ

α,n‖∞.

≤ ‖x̂− xα‖∞ + κ0
δ

α
+ κ0‖uδ

α − uδ
α,n‖2

≤ ân(α)‖x̂− xα‖∞ + b̂n(α)
δ

α
.

This completes the proof. �

Theorem 5.19. Let κ0 be as in (5.14). For α > 0, let nα ∈ N be such that

‖(T − Tn)A‖ ≤ α2

κ0
and ‖(T − Tn)T ∗‖ ≤ α

for all n ≥ nα. Then

‖x̂− xδ
α,n‖∞ ≤ 2

(
‖x̂− xα‖∞ + κ0

δ

α

)
∀n ≥ nα.

In particular, if αδ > 0 is such that αδ → 0 and δ/αδ → 0 as δ → 0, and if
nδ := nαδ

, then

‖x̂− xδ
α,nδ

‖∞ → 0 as δ → 0.

Proof. Follows from Theorem 5.18 and Theorem 5.9. �

Next, let us look at the case in which Bn is not necessarily equal to T ∗.
In this case, we have the equation

(Ãn + αI)x̃δ
α,n = Bny

δ. (5.28)

As in Remark 5.7, we observe that

x̃δ
α,n = xδ

α,n + z̃δ
α,n,

where

z̃δ
α,n = (Ãn + αI)−1(Bn − T ∗)yδ.
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We consider operators Bn to be bounded operators from L2[a, b] to C[a, b]
and denote their norm by ‖Bn‖∗. Thus,

‖z̃δ
α,n‖∞ ≤ ‖(Ãn + αI)−1‖∞‖(Bn − T ∗)yδ‖∞,

where

‖(Bn − T ∗)yδ‖∞ ≤ ‖(Bn − T ∗)(yδ − y)‖∞ + ‖(Bn − T ∗)y‖2
≤ ‖Bn − T ∗‖∗δ + ‖(Bn − T ∗)y‖∞.

Now, in order to derive an estimate for ‖(Ãn + αI)−1‖∞, we first recall
from the definition of Tn that

sup{‖Tnv‖∞ ≤ ĉ0‖v‖∞, v ∈ C[a, b], (5.29)

where ĉ0 := ‖k‖∞ω with ω is as in (5.19).

Proposition 5.5. For every v ∈ C[a, b],

‖(Ãn + αI)−1v‖∞ ≤ 1
α

(
1 +

κ0ĉ0
α

)
‖v‖∞,

where κ0 and ĉ0 are as in (5.14) and (5.29), respectively.

Proof. Let v ∈ C[a, b]. By Theorem 5.14 and the relations (5.14) and
(5.29), we have

‖(T ∗Tn + αI)−1v‖∞ ≤ 1
α

(
‖v‖∞ + ‖T ∗(TnT

∗ + αI)−1Tnv‖∞
)

≤ 1
α

(
‖v‖∞ + κ0‖(TnT

∗ + αI)−1Tnv‖2
)

≤ 1
α

(
‖v‖∞ +

κ0

α
‖Tnv‖2

)
≤ 1
α

(
‖v‖∞ +

κ0

α
‖Tnv‖∞

)
≤ 1
α

(
1 +

κ0ĉ0
α

)
‖v‖∞.

Thus, the proof is over. �

Thus, from the above lemma, we have

‖zδ
α,n‖∞ ≤ 1

α

(
1 +

κ0ĉ0
α

)
(‖Bn − T ∗‖∗δ + ‖(Bn − T ∗)y‖∞) .

Since

x̂− x̃δ
α,n = (x̂− xδ

α,n) + zδ
α,n,

we obtain an estimate for the norm of x̂− x̃δ
α,n by using estimates for the

norms of x̂− xδ
α,n and zδ

α,n.
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PROBLEMS

(1) Suppose y ∈ R(T ) and (Tn) is a sequence of operators in B(X,Y ) such
that ‖T − Tn‖ → 0 as n → ∞. Let xδ

α,n be as in Section 5.2. Then
show that there exists nδ ∈ N such that for every n ≥ nδ,

‖x̂− xδ
α,n‖ ≤ ‖x̂− xα‖+ c1

( δ√
α

)
,

where c = 3max{1, ‖x̂‖}.
(2) Suppose y ∈ R(T ). If α satisfies ‖Txδ

α − yδ‖ ≤ δ and xδ
α,n is as in

Section 5.2, then show that ‖(TT ∗ + αI)−1T x̂‖ ≤ 3δ/α and

‖x̂− xδ
α,n‖ ≤

‖(T − Tn)x̂‖
2
√
α

+ c
(
1 +

‖T − Tn‖√
α

)(
‖x̂− xα‖+

δ√
α

)
for some constant c > 0.

(3) Suppose x̂ ∈ Mϕ,ρ and ‖T − Tn‖ → 0 as n → ∞ and xδ
α,n is as in

Section 5.2. Let α := α(δ) be chosen such that

κ1δ
2 ≤ ρ2αϕ(α) ≤ κ2δ

2

for some κ1, κ2 > 0. Then show that there exists nδ ∈ N such that

‖x̂− xδ
α,n‖ ≤ c̃ρ

√
ψ−1

(
δ2

ρ2

)
∀n ≥ nδ

for some c̃ > 0, where ψ(λ) = λϕ−1(λ).
(4) Let ψ(λ) = λϕ−1(λ). Then show that

α := αδ,n := ϕ−1[ψ−1((δ + ε2n)/ρ2)] ⇐⇒ ρ2αϕ(α) = (δ + εn)2

and in that case

ρ2ϕ(α) =
(δ + εn)2

α2
= ρ2ψ−1

( (δ + εn)2

ρ2

)
.

(5) If ‖(A − An)A‖ → 0 and ‖(A − An)An‖ → 0 as n → ∞, then show
that for every α > 0 there exists a positive integer Nα such that
Assumption 5.1 is satisfied with cα,n = c/α2 for some constant c > 0
(independent of α and n).

(6) Obtain a result analogous to Corollary 5.5 with assumptions on

‖(A−An)A‖, ‖(A−An)An‖ and ‖(A−An)T ∗‖

instead of assumptions on ‖An −A‖.
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(7) Suppose cα,n is as in Assumption 5.1 and xδ
α,n is th unique solution

of (5.3). Then show that

‖xδ
α − xδ

α,n‖ ≤ cα,n

[
‖(T ∗ −Bn)yδ‖+

‖(A−An)T ∗‖√
α

( δ√
α

+ ‖x̂‖
)]
.

(8) Let κ := sup
a≤s≤b

(∫ b

a

|k(s, t)|2dt
)1/2

. Then show that for every α > 0,

A+ αI is bijective from C[a, b] to itself, and for every x ∈ C[a, b],

‖(A+ αI)−1x‖∞ ≤ cα‖x‖∞,

where cα := (
√
α+ κ/2)/α3/2.

(9) Prove that for every α > 0 and n ∈ N,

‖(Ãn + αI)−1x‖∞ ≤ 1
α

(
1 +

c0κ0

α

)
‖x‖∞,

where κ and c0 are positive constants as in (5.29) and (5.14) respec-
tively.

(10) Using the resolvent estimate in Proposition 5.5, derive an estimate for
‖x̂− x̃δ

α,n‖, where x̃δ
α,n is as in (5.28).
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Hölder’s inequality, 9

Hahn-Banach

Extension Theorem, 36

Theorem, 36

hat functions, 73

Hilbert space, 8

ill-posed, 59

equation, 135

index, 61

inexact data, 151

inner product, 8

integral operator, 76

Interpolation inequality, 174

interpolatory

quadrature rule, 78, 79

interpolatory projection, 72

Invertibility of operators, 42

iterated

Galerkin approximation, 97

Galerkin method, 97

Kantorovich approximation, 101

Kantorovich method, 101

Modified projection method, 104

versions, 104

Jensen’s inequality, 198

Jordan measurable, 26

Kantorovich

approximation, 100

method, 99

Lagrange interpolation, 79

Legendre polynomial, 79

linear operator, 14

modified projection

method, 102

modulus of continuity, 187

Morozov’s method, 172

nodes, 77
norm, 7
norm approximation, 66
Normal equation, 148
normal form, 148
normed linear space, 7
null space, 14
numerical

radius, 47
range, 46, 53

Nyström
approximation, 76, 79, 118, 119
method, 76, 118

Open Mapping Theorem, 35
Order of convergence, 162
order optimal, 190

algorithm, 186
orthogonal, 13

projection, 109
set, 13

orthonormal
basis, 13
sequence, 13
set, 13

Parseval’s formula, 14
Picard criterion , 150
pointwise

approximation, 65
bounded, 24
convergence, 65

positive operator, 47
projection, 21

operator, 21
orthogonal, 37
theorem, 38

Projection methods, 91
Pythagoras theorem, 13

quadrature rule, 77

range, 14
reconstruction algorithm, 185
regularization

algorithm, 153, 154



March 20, 2009 12:10 World Scientific Book - 9in x 6in ws-linopbk

Index 249

family, 151, 160, 207
method, 151
parameter, 152
Procedure, 151

regularized
Nyström method, 230
solution, 151

resolution of identity, 53
resolvent set, 44
Riesz Representation Theorem, 40
Ritz method, 209

scalars, 7
Schwarz inequality, 8, 17
Second Kind Equations, 88, 90
singular

system, 52
value representation, 51, 52
values, 52

Sloan approximation, 97
Sobolev space, 108
source

conditions, 162, 163
function, 193

source condition
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