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Contact geometry and linear differential equations
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Introduction

The aim of this paper is to present a method for studying differential
equations based on contact geometry of the phase space. Let us clarify what
we have in mind. The role played by symplectic geometry in the study of
differential equations is well known. This refers first of all to the construction
of (global) asymptotic expansions of solutions of equations with a small (large)
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parameter by the canonical operator method due to Maslov (see [l]-[4] and
elsewhere). The same method can be used to obtain expansions of solutions
of differential equations in smoothness, which, in turn, enables us to prove
results on the solubility of equations in function spaces having to do with
smoothness. From the point of view of geometry, this case is substantially
different from the previous one: the principal object here is the homogeneous
phase space, as are, actually, all the objects it contains: homogeneous
Lagrangian manifolds, the "homogeneous" canonical Maslov operator and
Fourier-Maslov integral operators (FMIO's), and so on. It is quite possible
to construct a theory in this framework (see, for example, [5]-[10] and
references contained therein), which, of course, is quite rigorous.

However, in reality a more appropriate geometrical apparatus is provided
by the contact geometry(1) [11], [12] of a certain homogeneous space (that is,
one obtained by factorizing a group action). In the study of differential
equations one takes as the space to be factonzed the cotangent bundle without
the zero section, while the group is the group R* of non-zero real numbers.
The homogeneous space thus obtained is equipped with a natural contact
structure, and this is the framework in which the theory is developed.
Probably it is worth stressing at this point that factorization uses specifically
the group R» (and not the group R+ of positive real numbers), which leads to
a classification of kernels of Fourier-Maslov integral operators that is more
subtle than the standard classification obtained using the amplitude order
(see, [5] for example). Let us explain this in more detail. Generically the
kernel of a FMIO is locally a generalized function whose singularities lie on a
certain submanifold S with singularities of codimension 1 (a so-called caustic).
The singularities can be of two different types (for example, for distributions
of order of homogeneity — 1 it is δ(χ) and v.p. l/x), where χ is the coordinate
transverse to S. Factorization of the phase space with respect to the group R*
leads (locally) to the construction of two different types of FMIO, which
correspond to the usual homogeneity and to "sgn-homogeneity".^ Here each
type of homogeneity corresponds to a type of singularity of the kernel. When
given as initial conditions, these singularities preserve their form up to the
caustic and, which is the main point, can be represented as an image under
the action of our FMIO.

On the other hand, on passing through a caustic the type of singularity
can change, namely, one type of singularity can be transformed into
another; this phenomenon is known under the name of discontinuity

(1) The naturalness of specifically contact geometry in such questions already follows from
the definition of an operator of principal type (one of the main objects of study in this
kind of question) as an operator, the principal symbol of which has no contact stationary
points.
(2)We call a function/(x) homogeneous if/(Ax) = λ'/(χ) and sgn-homogeneous if
/(Ax) = Is sgnA/(x) VA ε R, and some s e C.
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metamorphosis (see [1], [3]). And again the solution can be written down in
terms of a FMIO (possibly of a different type). At the same time, the
standard representation of a FMIO based on positive homogeneity (see, for
example, [5]) does not capture these important effects, since in both cases the
solution is expressed in terms of a Fourier integral operator of only one type.
The situation in the study of lacunae of hyperbolic equations is similar.

Furthermore, the finer level of detail described above enables us to obtain
quite elegant and transparent formulae for the Fourier transforms of
homogeneous functions (compare with [14], [15]), and, incidentally, to
axiomatize them (see §2).

After this paper was submitted, there appeared a paper of Palamodov [29],
which also considers, in particular, questions of contact geometry in
connection with the integral Fourier transform. Even though it has certain
points of contact with the topic of the present article, [29] appeals, however,
to the contact space obtained by factorizing the tangent bundle over the action
of the group R+. In particular, that paper pays no heed at all to analysis on
projective spaces, which plays an important role here.

Let us survey briefly the contents of our paper.
In §1 we present certain geometrical questions having to do with symplectic

and contact geometry, and also establish the so-called classification lemma,
which deals with the one-to-one correspondence between Lagrange (Legendre)
manifolds and defining functions. In addition, we briefly review the main
facts concerning the integration over real projective spaces of homogeneous
forms. The formulae presented here form the technical apparatus needed for
the subsequent analysis.

In §2 we develop the Fourier transform for homogeneous functions and
present the main formulae in terms of integrals over projective spaces. The
third section is an exposition of Fourier-Maslov integral operators in
homogeneous (in the above sense) situations. This section contains the
construction of FMIO's and the main composition and commutation theorems.

In §4 we apply this theory to problems of discontinuity propagation
(metamorphosis) and to the study of lacunae of Green's function.

An important application of contact geometry is to be found in theorems
dealing with the microlocal classification of Hamiltonians (pseudodifferential
operators). These questions are considered in §5. The main points here are
classification theorems for PDO's in a neighbourhood of a stationary point of
the contact vector field and presentation of the corresponding normal forms of
orbits under the action of the contact group.

Finally, in §6, the techniques of §3 and the results of §5 are used to study
solubility and to prove finiteness theorems for operators of principal type, that
is, operators whose principal symbol has no contact stationary points, and for
operators of subprincipal type whose principal symbol can have contact
stationary points.

We are grateful to V.P. Maslov for his constant interest and support.
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§1. Technical preliminaries

1. Symplectic and contact geometry.
Let us first give a definition of a contact structure (compare with [11], [12]).
Let S be a smooth odd-dimensional manifold, dim S = 2n— 1, and consider
the fibre bundle

(1) T^S/R, -> S,

where TQS is the cotangent bundle T*S to S without the zero section, and the
action of the group R* = R \ {0} on the fibre of TJS1 is defined in the usual
way. We note that since T^S —• rjS/R» is a locally trivial bundle, each of its
sections is locally covered by some differential 1-form.

Definition 1. A contact structure on a manifold S is a section a* of the
bundle (1) which is non-degenerate in the following sense: if α is a 1-form
that covers a*, then the form da. | k e r a is non-degenerate.

Let us now define a homogeneous symplectic structure. Let Τ be an even-
dimensional smooth manifold, dim Τ = 2n, on which the group R» acts freely
in such a way that the orbit space S = Γ/R* admits the structure of a smooth
manifold and the canonical projection is a smooth mapping. Let us denote
the action of λ e R* on Τ by λ • t = F,(X) = Fx(t); F, : R* -• T, Fx : Τ -• Τ.

Definition 2. A homogeneous symplectic structure on the manifold Γ is a non-
degenerate 2-form ω on t e Τ that satisfies the condition

F A » = Χω.

Let djdk be the radial vector field defined by the action of the group R»
on T. Let s e S, t be a point of Τ that projects onto s, Υ e T£S), and
Y' e Tt(T), such that Y' projects onto Y. Let us define a form a, by

It is not hard to see that the coset a* of the form a, under the mapping (1) is
independent of t and defines a contact structure on S. The converse is also
true.

Proposition 1. Let (ΤΊ, ω{) and (T2, (02) be two homogeneous symplectic
structures. If Γι/R* = T2/R* = S and the contact structures on S determined by
the forms ωχ and a>2 coincide, then there exists a diffeomorphism from T\ to T2

that maps (O\ into ω 2 and acts as a shift on R*.

The direct product Tx χ Τ2 of two homogeneous symplectic manifolds is a
homogeneous symplectic manifold with form coi — ω2. On the other hand, the
product Si χ S2 of two contact manifolds does not admit a contact structure
(it is even-dimensional). We define the contact product Si χ S2 by

Si χ S2 = T-i χ T 2 / R ,
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(with the corresponding contact structure), where Tx -> 5Ί, T2 -> S2 are
symplectic coverings. We have the naturally defined mappings

< : Si x 5 2 -+ 5,· (« = i,2); Δ* : S -+ Si χ S2

c c

(projections and the diagonal mapping).
Let us discuss the concepts of symplectic and contact diffeomorphisms,

vector fields, and the corresponding Hamiltonians.

Definition 3. A homogeneous symplectic diffeomorphism is a diffeomorphism
G : Τλ -* T2 such that G*(o>2) = ω1 and FxoG = GoFx.

Definition 4. A contact diffeomorphism g : Si -> S2 is a diffeomorphism for
which g*(a2) = oc\.

We have the following statement.

Proposition 2. Any homogeneous symplectic diffeomorphism defines a contact
diffeomorphism. Conversely, every contact diffeomorphism uniquely determines
the homogeneous symplectic diffeomorphism covering it.

If g is a contact diffeomorphism, G is a homogeneous symplectic
diffeomorphism covering it, and iG : Τ -* Τ χ Τ, iG(t) = (t, G(t)), then the
diagram

Τ -i£-+TxT

<*> 1 1

uniquely determines the inclusion map i*
A vector field J ' on a homogeneous symplectic space Τ is called

Hamiltonian (more precisely, homogeneous Hamiltonian; homogeneity will not
be mentioned explicitly in the following) if the local one-parameter group {Gx}
consists of homogeneous symplectic diffeomorphisms. Similarly, a field X on
a contact space S is called a contact vector field if the local one-parameter
group of the field X consists of contact diffeomorphisms. Proposition 2 shows
that the correspondence between homogeneous Hamiltonian fields on Τ and
contact fields on the corresponding contact space S is a bijection.

Let us recall that a (local) Hamiltonian corresponding to a Hamiltonian
field X' is a function Η that satisfies the relation dH = Χ'\ω. In the
homogeneous case the Hamiltonian can be globally and uniquely determined
by the formula Η = ω(ά\άλ, Χ'). Then Η is a homogeneous function of
degree 1. The corresponding Hamiltonian vector field is denoted by V(H),
and the contact one by XH.

Let us also discuss here the concepts of Lagrangian and Legendre
manifolds. We recall that a manifold is called Lagrangian if ω \L = 0.
A submanifold / C S is called Legendre if a* \t = 0.
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Proposition 3. Any Lagrangian manifold L Q Τ that is invariant with respect
to the action of R« defines a Legendre manifold I C S and vice versa.

A typical example of a homogeneous symplectic manifold and of
the corresponding contact manifold is the cotangent bundle T^M to a
manifold M, taken without the zero section, and the corresponding projective
contact bundle S*M= rjM/R*. The latter can be represented as the
manifold of contact elements of the manifold M, that is, as the manifold of
pairs (xo> L), where L C TXa(M) is a hyperplane in the tangent space to Μ at
the point x0 (see Arnol'd [11]).

In conclusion, let us consider a method of setting up a Lagrangian (or the
corresponding Legendre) manifold using a defining function.

Let Φ(χ, 0) = Φ(χι, ..., χ"; 0Ο, θχ, ..., 0m) e O\(U) be a C00-function
defined in a neighbourhood U of a point (x0, 0°), 0° Φ 0, that satisfies the
following conditions:

1°. Φ(χ, λθ) = λΦ(χ, θ), λ e R t;
2°. άΦ(χ, θ) Φ 0 on {(χ, θ)\Φ(χ, θ) = 0};
3°. άΦβ0, •••, άΦβ are linearly independent on Q> = {(χ, θ)\Φθα = ... =

= Φθη = 0}.
Here subscripts indicate the corresponding partial derivatives, that is,

Φθι = 3Φ/90,. Let us consider the mapping α : RJxR^1 -> r*(R£) defined by

(3) α(χ,θ) = (χ,Φχ(χ,θ)).

Lemma 1. The mapping <x\c9 • £φ —> T"*(R") is an immersion. The image
<x(C<j>) is a homogeneous Lagrangian manifold in T*(Rn).

We shall denote the Lagrangian manifold constructed from the function Φ
by ί-(Φ), and call Φ the defining function of Ζ<(Φ). Let us note that (if
necessary, renumbering the variables and making the neighbourhood U
smaller) we can take θ0 Φ 0 in U; then the function Φ(χ, θ) is uniquely
determined by the function Φ^χ, θ') = Φ^χ, 0U ..., 0m) = Φ(χ, 1, 0'). We
shall also denote the manifold Ζ-(Φ) by Ι-(Φι).

Definition 5. F u n c t i o n s Φ{(χ, θ ' ) a n d Φ ί ' ( χ , η') w i l l b e c a l l e d directly
equivalent if they are connected by one of the three relations:

Α. η' = 0' and there exists a function χ(χ, 0') Φ 0 in U such that

ΦΚχ,θ') = χ(χ, 0')Φί(χ, 0');
Β. there is a smooth change of variables η' = η'(χ, θ') such that

Φ/(*. 0') = Φ{'(χ, η'(χ, θ'));
C. θ' = (0J, ..., 0m), η' = η\θ', 0 m + 1 ) and Φ['(χ, η') = Φ,'(χ, 0') ± 62

m+1.
Functions Φί(χ, 0') and Φι"(χ, η') will be called equivalent if they can be

connected by a chain of directly equivalent functions.
The following lemma, which plays an important part in what follows,

describes the role of Lagrangian manifolds in the classification of defining
functions given in Definition 5.
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Lemma 2 (classification).(I) The relation L(Q>i) = £(ΦΓ) holds if and only if
there exist changes of variables

Θ' = β'(χ,τ1,...,'ηι,ζ[,...,φ and η' = rf(x,n, • • • , T * , C " , · · ·,<"),

and functions χι(χ, θ'), %2(x, η') ¥= 0 such that

(4) Xl(x, θ')Φ[(χ, tf)\e,=e.ls,r,n = Φ(ΐ, r) ± (C()2 ± · · · ± (C/)2,

(5) X 2 ( x , ,,')*"(*, »?')l,'=,'(-.r,c») = * ( * · Ό ± (CD2 ± · · · ± (C) 2 ,

ancf /Λβίβ changes of variables can be chosen in such a way that the numbers of
squares with a negative coefficient in the right-hand sides of (4), (5) are the same
as the negative inertia indices of the matrices 32Φ'/90'30', 3 2Φ" βη 'δη',
respectively.

2. Integral calculus on
Much of the analysis below will make substantial use of integration in the
projective spaces RP". Since for even η these spaces are non-orientable, we
shall need the concept of odd forms. In view of this, we present a brief
review of the theory of odd forms (for more details see de Rham [17]).

An odd form ω e K\{M) of degree k is an object whose local expression in
the local coordinates (£/, xl, ..., x") on a manifold Μ is

ai1...ik(x)dx*1 Λ · · · A dx*k,

where the coefficients α,·,...̂ (χ) e C°°(i7) transform under changes of
coordinates as follows: the coefficients α,,.^ίχ) are related to the coefficients
bji-Jk(y) *n t n e * o c a ' coordinates (V, y1, ..., y") on the intersection U Π V by

/ΰ\ L I \ \ — ^ / / \\ _i O\X * , . . . , X k) OX

(6) bj....j. (y) == / fltS..·ΐ^(^(ϊΟ) "57—: :—^ ® S ^ d e t — .
M l — I»*

The space of usual (even) forms we shall denote here by A^(M). Let us
note that for odd forms we can define the concept of the exterior differential,
which is also an odd form, and of the exterior product operation. Then the
parity of the exterior product is expressed in terms of the parities of the
components of the product by the usual rule of signs.

Let us indicate an important particular case. The space ΛΟ(Μ) is called
the space of pseudoscalars. It is not hard to see that defining an orientation is
equivalent to defining a pseudoscalar ε satisfying ε2 = 1. Therefore an
orientation ε on Μ induces an isomorphism between the spaces Λ*(Μ) and
AQ(M) of odd and even forms on Μ by the relation ω -» εω.

Now l e t / : Μ -*• Ν be a Cx -mapping of manifolds. A mapping / i s
called oriented if for any pair U C M, V C Ν of oriented open sets such that

(1)The proof of this lemma can be found in Hormander [19].
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f(U) C V there is a correspondence between the orientations &υ and εν of
these sets that is compatible with respect to intersections. If / i s oriented, the
formula

(εν and ε κ are associated under the orientation o f / ) defines the induced
mapping/* : Ak(N) -> Af(M).

The law of transformation (6) of coefficients of an odd form enables us to
define an integral of an odd form of maximal degree with compact support
over a manifold M.

To integrate forms of arbitrary degree on a manifold Μ, the concepts of
odd and even chains on Μ of dimension k (0 < k ^ n) are introduced.
Namely, an odd singular simplex of dimension k is a C°° mapping σ of an
oriented standard simplex (Δ*, ε) into the manifold Μ, σ : (Ak, ε) -» Μ. An
even singular simplex of dimension k is an oriented mapping σ of the standard
simplex Ak into the manifold Μ, σ : Ak -> M. An odd (even) chain on Μ of
dimension A; is a formal finite linear combination of odd (even) singular
complexes with integer coefficients. Obviously, the set Ck

a(M), σ = 0, 1, of
chains on Μ forms a group under addition.

Next, an integral of an even form ω of degree k over a singular simplex
σ : (Ak, ε) -» Μ is defined by the formula

/ ω = / εσ*(ω),

while an integral of an odd form ω over an even simplex σ : Δ* -»• Μ (the
mapping σ is oriented!) is defined by the formula

f ω= ί σ*(ω).

The concept of integral extends by linearity to the groups Ck(M). Note that
only integrals of even forms over odd chains and of odd forms over even
chains are defined!

We define the boundary operator 9 : Ck(M) —> C^iM) in the spaces
Ck(M) in the usual way. Stokes' theorem is still valid:

Ι άω = Ι ω.
Jo Jda

Now let R n + 1 be the space with coordinates x°, ..., x", R^+1 = Rn + 1\{0},
and RP" projective space of dimension n. Let (x° : JC1 : ... : x") be the
homogeneous coordinates in RP", and C/, = {χ* Φ 0} C RP" affine

coordinate maps with coordinates x' = (x°, ..., x',...,x") (the hat here and
below means that the object beneath is omitted). In the following we shall
use the usual summation conventions.
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We introduce forms on R " + 1 (here J is the inner product (substitution)
operation; see Sternberg [18]) as follows:

dx = dx° A--Adxn,

dx1 = -^\dx = (-iydx° Λ · • · Λ ^ Λ · · · Λ dxn,
ox'

0 A • • • A dx{ A • · • Λ dx>A • • · Λ dxn, i < j ,

= <ί 0 , i = j ,

(-iy+Jdx° A • • • A dx>A ·• • Λ dx{ A • • • A dxn, i> j.

Observe that in the forms dx' and dxij the indices are lower ones!
We shall denote by d\dk the radial vector field x'Q/dx' induced by the

action of the group R, on R"+1. Note that the projection π of the fibre
bundle π : R^+1 -> RP" has the natural orientation determined by that of the
fibre defined by the vector field d/dk.

Let us introduce Leray forms in R"+1, which play an important part in
analysis on RP":

(7) * = x>dx>eAZ(R:+1),

(8) ω, = xkdx^k e A ^ - X ( R : + 1 ) .

Since R"+1 has the standard orientation, Leray forms can be regarded as both
odd and even forms. We shall consider the following two spaces of
homogeneous functions (k e Ζ, σ e {0, 1}):

the space i?o(R»+ 1) consisting of C °°-functions on R?+1 that are
homogeneous of degree k with respect to the action of the group R, given by
λ(χ°, ..., χ") = (λχ°, ..., λχ"):

for a l l / 6 Oj(R;+1) and any number λ Φ 0;
the space Of(P^+1) consisting of C™ functions on R?+1 that are anti-

homogeneous of degree k, that is:

f(\ro,...,\xn)=sgnXXkf(x°, . . , * " )

for all / e O\(R^+1) and any number λ Φ 0.

Theorem 1. For odd η and σ e {0, 1} we have the relations

(9) *·(Λ«(»ΡΒ)) = {/«|/ € O-

(10) ^(AJT'P&in) = {fJ"j\P €
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For even η and σ e {0, 1} we have the relations

(ii) * · ( Λ ; ( Κ Ρ " ) ) = {/ · «I / e ο- ( η + 1>(ΐκ:+ 1)},
(12) ^ ( Λ Γ ' ί » 1 1 ) ) = {fiUi\fi € O -

Therefore Theorem 1 shows that in the structure of the pre-images of forms
there is a substantial difference between the orientable (n odd) and non-
orientable (« even) cases.

L e t / e 0§(R^+1), g e O^(n+fc+1)(R?+1), δ = σ + η+ l(mod 2). Then
Theorem 1 shows that the pairing

(13) 0£(MP? + 1 )x0 i -
( n + f c + 1 ) (R:+ 1 )->]R ) </,,)= I fgw

is well defined.

Proposition 1. If f and g are such that the pairing (13) of f and Qg/dx' is
defined, then

(14) (f,dg/dxi) = -(df/dxi,g).

Let A e GL(n+1, R), A : Wt

+l -> R^+1, and A* the induced mapping

Proposition 2. We have the relation

(15) {At

Let us introduce the spaces

(these are spaces of functions that can be written in divergence form).

Proposition 3. For k ^ — η — 1 we have the relations

Here α = (α0, ..., αη) is a multi-index.

3. Homogeneous and formally homogeneous generalized functions on M " + \
Let us define the following spaces of generalized functions:

ϊ 7 ι-'σίΚ» ) — ι / € Χ» (IK,T ) I I /, φ I -r I 1 = λ (sgn A) T
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χ (f,<p),\ ™(Rn+1)\;

= {/ P'O*( n + 1 ) |(/(x) € C°° outside { 0 }}.

"Ι*(Let V'A^(M) be the space dual to Λ"Ι*(Μ) on the n-dimensional
manifold Μ (the space of flows of degree k and parity σ on M; see
deRham[17]).

Remark 1. Let us note that the pairing (13) can be extended to a bilinear
mapping 0£(R?+ 1) x £>'0~ ("+ f c + 1*(R;+ 1) -> R (σ + <5 = «+l(mod 2)); with
respect to this pairing the above spaces are dual to each other.

We obviously have mappings

(16) μ*,α : 2

(17) μΗίσ : O

In what follows we shall be mainly dealing with functions on
0£(R"+ 1). Let us try to construct an inverse operator to the operator (17).
For this purpose we introduce the operator

using the formula

(18) ( r e g / » = / f(x)
J\x\<l

/ f(x)
J\x\>l

1

*—' α!

|or|=0

-(n+t+2)

dx

φ{χ)-
|α|=0

(in the case of a negative upper limit the sum is taken to be equal to zero).
We have the following assertion.

Proposition 4. For k > —n—l or for even η + σ the operator (17) is invertible,
and its inverse is the operator (18). For k ^ —n—l and odd η + σ, the kernel
of the operator (17) is the set of linear combinations of derivatives of δ-functions
of order — (n + k+l), while the image is the space O*(R"+1). On this space the
operator (18) is the inverse o/(17) modulo Ker μΛ(7.

Proposition 4 can easily be generalized to the operator (16).
Let us also state the extension of Theorem 1 to generalized functions.
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Theorem 2. For odd η and σ e {0, 1} we have the relations

(19) ( )

(20)

For even η and σ e {0, 1} we have the relations

(21) π·(Γ>'Λ^(ΜΡ'ι)) = {/ .ω |/€2

(22) ιτ·(2)ΆΓ1(Μ»")) = {/'" .«,·| β € 2>'Ojn(M:+1)}.

Let us note that the operations π* are defined on generalized functions
and flows since π : R?+ 1 -> RP" is a fibre bundle with the natural fibre
orientation.

To conclude this section, let us introduce the following spaces, larger (in
general) than £ + 1

0*(m n + 1 ), η + σ even or k > -n-l;

(23) 0 * ( M n + 1 ) = { {f\f = Ttgg + T, . , , . , n CcS^ix), g €

« + σ odd and A: ^ — n— 1.

These spaces will play a principal part in the axiomatic description of the
Fourier transform.

§2. Fourier transforms of homogeneous functions

1. Statement of the problem.
The Fourier transform of a generalized function has the following property:
for any matrix A e GL(n+ 1, R) we have the relation

(1) (Ff)(p) — \felA\T(A*f){tAp)>

where .F/is the Fourier transform of the function/, A*f(x) =f(Ax), and Ά is

the transpose of the matrix A. It turns out that the property (1) actually

characterizes the transform T: more precisely, if

is a continuous mapping satisfying (1), then (up to a choice of constants) this
mapping coincides with the projection of the Fourier transform onto the space
V(fin+u). Let us note that apart from the case k ^ 0, σ = 0, the space
£>'(Rn+i*) can be replaced by the space 2?'(Rn + 1); in the case k > 0, σ = 0
we neglect the distributions concentrated at the origin.

In parallel with the proof of this fact, we shall obtain explicit formulae for
the transform F in terms of the pairing (1.8); these will later be of importance
in the construction of Fourier-Maslov integral operators.

In subsection 2 of this section we present a lemma which plays a basic role
in the proof of the theorem on the Fourier transform; subsection 3 contains
the statement of the main theorem of this section and a sketch of its proof.
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Finally, in subsection 4 we show how the constants in the transformations (2)
for different k, σ have to be coordinated in order to guarantee the usual
commutation relations of the Fourier transform with the operators of
differentiation and multiplication by an independent variable.

2. The main lemma.
In this subsection we formulate a lemma concerning the structure of
homogeneous generalized functions satisfying the equation

(3) Q(p,Ax) = Q( Ap,x)|detA\a(sgndet A)p, A G GL(n+ 1,M).

Lemma 2.1. Lei η > 1 anc? /ei g(/?, x) e X>'(Rn+i»xRn+i*) be a distribution

satisfying the relation (3) and homogeneous in the variable χ of degree k and

type σ:

Then α = β = 0 and there exists a function K(z) e O^R 1 ) such that
Q(p, x) = K(p • x).

The proof of this lemma is based on the following geometrical fact. If
μ : GL(n+ 1, R) -> C» = C\{0} is a continuous homomorphism of the group
GL(n+l, R) into the multiplicative group C», then μ(Α) = |det A T(sgndet Α)β

for some α e C, β e {0, 1}.

3. Structure theorem for the Fourier transform of a homogeneous function.
Theorem 2.1. Le/ ^ σ : O*(R n + 1 ) -> X»'(Rn+lt) 6e α continuous mapping
satisfying the relation (1). Then it is given by the formulae

(5)

(Fh,,f)(p) = Ck,* J *("+*>(! · ρ)/(ΐ)ω(ΐ), Jb > - η , η + σ even;

(6)

(7)

(Fk,*f)(p) = Ck<crJ sgn(i-p)(i.p)-(' l+ t+I)/(i)a l(i), t < -n - 1,

η + σ even;

(Fk,af)(P) = Ch,a j (x • p)-(»+*+D In \P-^if(x)u,(x)
; « r \x\

(8)

+ C[]l I (x • P)-(n+k+Vf(xMx), k < -n - 1, η + σ odd;
Jur1
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here f = reg/|R»+i. Also, iffe O*(RJ+1) and (in the case 0/(8)) satisfies the
orthogonality conditions (x?,f) = 0 , |<x| = — (n + k+l), then

and in this case the last term in (8) can be omitted.

Remark. Let us observe at this point that formulae of the type (5) -(8) for
the Fourier transform are well known (for example, in the paper [27] of
Semyaninskii). The point of Theorem 2.1 is that any continuous mapping of
O£(R"+ 1) into 2?'(Rn+i») satisfying (1) is given by these formulae, that is, (1)
characterizes the Fourier transform. In particular, we are not using the
Fourier transform formula in the derivation of formulae (5)-(8).

Proof (sketch). First let k > — η or η + σ be even. Then by (1.18)
1 = O£(R" + 1 ). Using Remark 1.1, we see that in this case

(Ff)(p) = j nQ(p,x)f(x)w(x),

where Q e P ' ( R n + 1 χ R?+1) satisfies the conditions of Lemma 2.1 (this follows
from the fact that F satisfies (1)). Applying this lemma, we see that

Ff{p) = 'eg / Κ{χ,ρ)/(χ)ω(χ) + Τ,
JRP"

where K(z) e O^^^^^R1), and Γ is a functional concentrated at zero.
Except when k ^ 0, σ = 0, it follows from homogeneity considerations that
Τ = 0; in the case k > 0, σ = 0 the function Τ disappears under projection
onto X>'(R;+1). It remains to note that by Theorem 1.2 we have the equality
ν'Οσ(Έ}) = O^R 1), and therefore K(z) = <5(n+fc)(z) for k > -n and η + σ even,
K(z) = v.p. z-?" + f e + 1 ) for k > -n and η + σ odd, and K(z) = ^n+k+l) sgn ζ
for k < — n — 1 and η + σ odd. The remainder of the theorem is easily
verified using (5)-(7).

Now let k < — n— 1 and let η + σ be odd. In this case for any
feOk

a(Rn+1) we have

/ = reg f f+

so that

(9) (Ff)(p)= f Q(p,z)g(xM*)+ Σ <?«.*« (ρ),
R | m |cr|=-(n+fc+l)

where Ψα(ρ) = F(d{ay)(p), Q e V'(Rn+lx Μξ+1). Using the property (1), we
can show that Ψα(/0 = Cop

a, where Co is independent of a. Further, for
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Ca = 0 we have

From the last equality, relation (9) and the property (1) we derive an equation
for g( p, x):

^ Γ >
 ln Wk

The general solution of this equation has the form

which concludes the proof of (8). The statement on homogeneity is verified
directly.

4. Commutation formulae and the choice of constants.
It is well known that the Fourier transform f satisfies the following
commutation relations with the operators of differentiation and multiplication
by an independent variable:

(11) ^ _ ( ^ / ) ( p ) = _ , T ( ^ » ( p ) , i = 0,l,. . .,n.

If we demand that the transformation (2) satisfy (11), then much of the
freedom in the choice of constants is lost. Let us present the results of
computations for the constants C^jff.

Theorem 2.2. If, in addition to the conditions of Theorem 2.1, the mapping F
also satisfies the commutation formulae (11), then the constants Ck,a in (5)-(8)
are

,n+fc
(12) Cfc,g = A/2 3 1An/2-i ' * > - n , n + <r even;

,-n+fc

2 ( _ {")«»+*•+

1

jn+fc

-1

) !

2(—i)+

(14) Ck<σ=μ^—L-7Γ-(n + k)\i k >-η,η + σ odd;

( 1 5 ) Ck'"=Zfi (3,)*/» [-(η+ *+!)] !• * *

λ, μ are arbitrary constants.

Let us note that the constants λ, μ depend on the normalization of the
Fourier transform. If this normalization is chosen so that the formulae for
the direct and inverse Fourier transforms are symmetric, then λ = μ = 1.
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§3. Fourier-Maslov integral operators

1. The Maslov canonical operator.
As in §1.1, let Φ(χ, θ) = Φ(χ\ ..., χ"; θ0, Bu ..., θη) e O\(U) be a
C°°-function defined in a neighbourhood U of a point (JC0, 0°) and satisfying
conditions 1-3 of §1.1. Here the spaces Ok

a are constructed relative to the
action of R* used in condition 1. Let us note that in accordance with 1 the
neighbourhood U can be taken to be invariant with respect to the action of
the group R«.

Now let a(x, Θ) e Ok

a{U). We set s = k + m and define the local elements
Fs σ[Φ, a] by the formulae

(1) Fi,0[*M =

£Ρί *(ΐ)(Φ(Μ))(ΜΜ*) ° + even;

e v e n >

W^-.'-i)! /trm [Φ(*,β)]^·+1)ΐη|Φ(χ,β)|α(ΐ,ίΜβ). « + ̂  odd, j < 0.

Let us note that the last integral is defined modulo C ""-functions.
It can be shown that by condition 2 these formulae define a generalized

function that belongs for all ε > 0 to the space

(2) Ρ,[Φ>ά\ζΗ-'-'ι<*-'{Μη).

Let us now present two lemmas, which (together with the classification
lemma, see §1.1) enable us to compare local elements (1) on common domains
of definition. For that let us introduce in OQ(U), a module of O*(U), the
submodule /£(Φ), defined by the ideal /(Φ) C OQ(U) generated by
{Φθο, ..., Φθ^} (the gradient ideal).

Lemma 1 (on the gradient ideal). If a{x, Θ) e /(Φ), α(χ, Θ) = bt(x, θ)Φθ.(χ, θ),
then modulo C" we have the congruence

(3) ^, σ[Φ,α] = ^_ 1 ι σ [Φ,6], b = dbi(x)e)/dei.

In addition to the inclusion (2) Lemma 1 shows, in particular, that
FsA®* a] e C™ outside the projection of the set C o on the space R"+ 1 .

To state the following lemma, we note that by localization in (χ, Θ) the
integrals in (1) can be rewritten in the affine coordinate map of the
space RIP". Assuming for definiteness that θ0 φ 0 in U, we have, for
example, for the case s ^ 0, m + σ even

(4) F e i f f [<M] = i4c7
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In the other cases the corresponding formulae have a similar form. Here
Φ , ( χ , θ') = Φ(χ, 1, 0U ..., em), αγ(χ, θ') = α(χ, 1, 0U ..., 0 m ) · F o r t h e
integrals (4) we shall use the notation FsJfi>, α] = FSia[Ou αχ].

Lemma 2 (on stabilization). We have the following congruences modulo C " :

(5) Fs+xia[^1(x,e') +

(6) F . + ^ ^ O ^ O + C H -*m+2.el(*.*')C(«m+l)C(*m+a)]

(7) Fs+lt(r[M*>n-U

Here ζ(η) e C^(Rl), ζ(η) Ξ 1 in a neighbourhood of η = 0.
Lemma 2 shows, in particular, the difference between the distributions

^,σ[Φι> «ι] for σ = 0 and σ = 1. To demonstrate this difference, let us
assume that Hess f l^i(x, Θ') is positive definite, k ^ 0, and m is even. Then,
using the Morse lemma and the stabilization lemma, we obtain

(8) Λ,ο[*ι.ο ι] = (-1)*5Γί

(9) F . l l { * l l « l ] K * ! . v . p .

where s{x) = Φι |C(p, φ(χ) = <2I|Q,· The function (8) is concentrated on the
manifold s (x) = 0, while the function (9) does not have that property. If on
the other hand (under the same assumptions on Φ ^ the number m is odd,
then (8), (9) take the form

(10) Γ,,σ[Φϊ>α1} = Γ(Ιο

where χ(η) is the characteristic function of the ray R+. Formulae (8)-(10)
show that the cases of σ = 0 and σ = 1, as well as the cases of even and
odd m, are significantly different from the point of view of the functions
defined by the integrals (1).

To compare the local elements, let us introduce the spaces {q = \m — s)

/,(Φ) = if(x)\f(x) = *ν,σ[Φ,a]+,/(*)•, /(*) e C°°).

It is easy to see that Ις(Φ) C /?(Φ) for q' > q, so the spaces /9(Φ) form a
descending filtration, which by (2) agrees with the scale H'.

Let us note that in general the spaces /?(Φ) depend on Φ, although
the associated gradation /?(Φ)//? + 1(Φ) depends only on the Lagrangian
manifold Ζ,(Φ). This fact follows from the classification lemma and
Lemmas 1, 2.

Now let L be a homogeneous Lagrangian manifold, and U C L an open
homogeneous set on which L is defined by the function Φ(χ, Θ):Σ Π U =
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Let α be the mapping defined in §1.1. Let us assume that there is on L a
homogeneous η-form μ of degree r. Let us define the function

αχ Λ άσο Λ · · · Λ o&m

It is assumed that α*μ is extended from Co to its neighbourhoods in an
arbitrary way, so that F[Q>, μ] is defined modulo /(Φ).

We shall need to take the square root of the function (11). Observe that
by disconnectedness of R» the neighbourhood U decomposes into two
disconnected components. There are four branches of ^F[<S>, μ}; two of these

belong to o'f~m~l) and the other two to of~m~l). We shall denote them by

For each of σ = 0, 1 let us choose one of the roots and fix it.
We define a local canonical operator k% in the coordinate map (U, Φ) of

type σ to be the mapping

(12) k? : O\

given by

(13) k"{<p) = 2 -

We have the following assertion.

Proposition 1. Let (Uu Φ2), (U2, Φ2) be two coordinate maps on L, U\ Π U2¥= 0-
Then on U\ Π U2 we have the congruence

(14) k^(ip) = eirdl2k^{<p) (mod/ k T-i n ) ,

where

(15) (T\ — (T2 Ξ C»i2 — ind_ _ — ind_ (mod 2),

2π ' 2

Now let {ί/α, Φα} be a locally finite covering of L by homogeneous
coordinate maps with defining function Φα. Equations (15) and (16) define
Cech cohomology classes c, d e Hl(L, Z2). It can be shown that for any
manifold L the class c is trivial. We shall call a Lagrangian manifold L on
which d = 0 quantized, and rf will be called the Maslov class index. Thus, we
have the following theorem.

Theorem 1 (on cocylicity). On a quantized manifold there exists a collection of
types {σα} and arguments arg F[<&a, μ] such that the operators (12) coincide
modulo 7_fc_(r_i)/2+i in the intersections of the corresponding coordinate maps.

Thus, we can define the Maslov canonical operator
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determined in each coordinate map by the relation (13). Then, obviously,
there are two ways (for connected L) to choose {σα}, so there are two types of
Maslov canonical operator on L.

2. Fourier-Maslov integral operators.
The analysis presented below repeats the well-known construction for defining
Fourier integral operators (see [5], [8], [19], [20]) and differs from these
references by using the R*-equi variant canonical operator introduced above
(instead of the R+-equivariant one used in these papers). Therefore we
restrict ourselves to a brief presentation, and do not stop to prove the
theorems we shall formulate.

We define a Fourier-Maslov integral operator to be an integral operator
with a canonically representable kernel, that is,

(17)
" (2jr) n / 2 - 1

The set of Fourier-Maslov integral operators is too large (in particular, it
includes boundary and coboundary operators), and we shall consider only
some of its subsets. Namely, let g : Τ*(Εζ) -> r*(Rp be a homogeneous
canonical transformation. The projection L -> T*(Rp is a diffeomorphism,
which enables us to regard a function φ e OQ(L) as a function on T*(RJ) and
to define a measure μ by the relation μ = g*((dy Adq)n). The operator we
obtain in this fashion will be denoted by Τ^{φ), and the set of such operators
by Opfc. The inclusion (2) gives us some a priori estimates for the operators
in Opfc:

(18) TQ\<PJ '. Η \Jj\yj —^ Η. \ϊ&.χ).

Let T*(R"Z) ^ T*(Rp ^ r*(R£) be homogeneous canonical transformations,
φι e Ο^(Γ*(Κ;)), φ2 e Ο^Τ*^)). We have the following assertion.

Theorem 2 (on commutation). We have the congruence

(19) Tgin) ο Τ£(Ψι) = ±T%+?{!pl • 9\{φ2)) mod O p t l + t a _ a >

where the sign depends on the choice of the arguments of measures in all the
operators involved.

Next, we define a pseudodifferential operator to be a Fourier-Maslov
integral operator with g = id. Let us observe that in this case there exists a
global defining function Φ = p(x—y) of the corresponding Lagrangjan
manifold. The function φ(χ, ρ), the amplitude of the operator Τ°ά(σ), is called
in this case the symbol of the corresponding pseudodifferential operator, and
the corresponding operator is denoted by φσ(χ, —id/dx). By computing the
"radial part" of the integral, which defines a classical pseudodifferential
operator, it is easy to show that the class of operators introduced is included
in the class of classical pseudodifferential operators (see [9]).
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Theorem 2 has the following corollaries.

Corollary 1. The following congruence holds:

^ ,p) •?)(modOp J b l + f c 2_1)·

Here kx and k2 are the orders of the operators Ρσ{χ, — i8/8x) and
respectively.

Corollary 2. The operator

modulo operators of order k—\ is a pseudodifferential operator with principal
symbol g*{P).

Let us now study the action of Fourier-Masloν integral operators on
canonical distributions.

Proposition 2. We have

(20) Τ

where s is the order of the operator Τ°ι(φ).

For a pseudodifferential operator (20) becomes

(21) Ρσι(χ, -id/dx)kiL'»X<p) = k^fC2{P\L • ψ).

Formulae (20) and (21) enable us to claim that the following assertions hold.

Corollary 3. A pseudodifferential operator of order r has order r in the scale
Iq{L) for any Lagrangian manifold L.

Corollary 4. If the principal symbol Ρ (χ, ρ) of a pseudodifferential operator
Ρσ(χ, —id/dx) of order r vanishes on L, then this operator has order r—\ in the
scale Iq(L).

In the situation of the last corollary, (21) can be refined. Namely, we have
the following result.

Theorem 3 (on commutation). If the principal symbol H(x, p) of Ησ(χ, —id/dx)
vanishes on L, and μ is invariant with respect to the Hamiltonian vector field
V(H) defined by the symbol H, then we have the commutation formula

(22) Ησι

where

is the transport operator.
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Let us note that (22) admits a generalization to a congruence modulo
arbitrarily smooth functions.

To conclude this section, let us observe that the usual estimates of
Fourier-Maslov integral operators can be obtained either by the method of
the auxiliary Cauchy problem (see, for example, [5]), or by computing A*A
(see [20]). Namely, we have the following theorem.

Theorem 4. Let the operator Τσ(φ) e Op^. Then this operator acts on the
spaces

•η(φ): H'(^)->H>-k(Mn

x).

Let us note that the proof of Theorem 4 (by any of the methods described
above) is based on the composition theorem and on the a priori estimates (18)
for the operators T"g{q>).

§4. Examples and applications

In this section we shall consider applications of the theory of the canonical
operator to three classical problems: the discontinuity propagation problem,
the discontinuity metamorphosis problem, and the investigation of Green's
function for the Cauchy problem.

1. Preliminary remarks.
First of all, we shall consider the relatively simple example of the Cauchy
problem for hyperbolic equations:

u t | 1 = o = 0.

Let us compare solutions obtained by R+-equivariant theory (as is usually
done) with those obtained by R*-equi variant theory from the point of view of
their naturalness. First let us note that the initial datum of problem (1) can
be given the canonical representation

=^y J
where L = {(x, p)\x = 0}, μ = dp, φ = (1/2π)Β. Therefore it is natural to
seek solutions u(x, t) in the form of an image of the canonical operator

for some Lagrangian manifold £ in the phase space R"+'xPln + \,P,E- From
Theorem 2 of §3 it can be seen that the manifold £ must lie in the zero level
set of the Hamiltonian E2 —p2 (and therefore £ must be invariant with respect

to the vector field V(E2 - p2) = IE— - 2p—). Hence it follows that the
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manifold £ can be constructed in the following way. First we lift L into the
space RJ+1 χ Ι , + ι ^ so that this lift is contained in {i = 0} Π {Ε2-ρ2 = 0}.
As a result we obtain an initial manifold for the Hamiltonian system. Next,
the manifold £ is constructed as the phase flow of the manifold £ 0 along the
trajectories of the Hamiltonian system corresponding to the Hamiltonian

Ε = 0, ρ = 0 , i = 2E, χ = -2p.

Since £o can be represented as the union of two connected components

it follows that the manifold £ can also be represented as £ + U £~. From the
point of view of K+-equivariant theory it is natural to represent the solution
u(x, t) = k(c'®((j>) as a sum

u(x\t) = ti+(«,t) + u-(x,t), ti^x.i) - klc±'*\<p)t

of terms corresponding to the connected components of £.
Since equation (1) is quite simple, we can write down explicit expressions

for the elements of the canonical operators appearing in the above formula.
Namely,

£± = {(χ,ί,ρ, E)\ Ε = ±|p|, χ = Ttp/\p\}

are the equations of the manifolds £*; the corresponding actions are given by

) = ±t\p\-

The invariant measure μ has density ± ^ |/?|, while the amplitude functions
depend only on the coordinate p. Therefore

with some functions φ±(ρ). These functions can easily be determined from
the initial data of problem (1):

Therefore the asymptotics of the solution of problem (1), obtained by using
the R+-equivariant theory of the Maslov canonical operator, is given by the
formula

(2) u(x,t) =

Since (1) is an equation with constant coefficients, the solution obtained is not
only an asymptotic one, but also an exact solution of the problem. Formula
(2) shows that the solution u(x, t) decomposes into a sum of two functions,
which correspond to the connected components of £.
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To see whether this kind of decomposition is natural, let us compute the
solution (2) for η = 1. We have

(3) ~\

where

/ ι \ n r=y ι
and

2

It can be seen that the solution (4) is concentrated on the "light cone"
x — +t, although each of its components «*(:*:, t) also has support outside
this cone. A similar situation also obtains for any odd number of spatial
variables. Hence it follows that the decomposition of the solution (4) as the
sum of functions (3) is unnatural. This is hardly surprising, since the
decomposition C = C+ U C~ is itself unnatural. Indeed, the principal symbol
E2—p2 is a homogeneous function with respect to the group R*, and the
connected components Cf of the initial manifold £ 0 are not invariant with
respect to the action of this group.

As we saw above, the R*-equivariant theory of the Maslov canonical
operator leads to a different decomposition of the function ^'μ\φ) (where L
is an R,-equivariant manifold). This decomposition is induced by the
decomposition of the amplitude φ (which can only be R+-homogeneous) into
the sum ψο + q>e of its odd and even components.

The decomposition k(Lji)(<p) = ^ί<μ\φ0) + ^ι>μ\φε) is in this case a
decomposition into a sum of two distributions of different types (for example,
solutions of the Cauchy problem (1) with different initial data can be

distributions of the form d(S(x, t)) or v.p. —-;—- ). These considerations
S{x, t)

enable us, in particular, to study the problem of discontinuity metamorphosis
of the solution (on passage through a focal (caustic) point), as well as the
problem of finding the lacunae of Green's function of the Cauchy problem for
hyperbolic equations.

To conclude, let us observe that Garding [28] noticed the usefulness of
combining the contributions of points in £+ and C~ that correspond to
antipodal points. However, in that paper he presents only a local analysis of
the result of such a combination. On the other hand, using the techniques of
the R*-equivariant version of the canonical operator method introduced above,
we can also consider global questions on the nature of the singularities of the
fundamental solutions of strictly hyperbolic operators (see subsection 3 below).



116 V.E. Nazaikinskii, B.Yu. Sternin, and V.E. Shatalov

In particular, our constructions immediately imply the stability of type of such
singularities under small deformations of the Lagrangian manifold. We will
also obtain topological conditions for lacunarity of the fundamental solution
(connected with the concept of sharpness of the wave front, which was
introduced in [28]), which are different from the well-known Petrovskii
conditions.

2. The discontinuity propagation problem.
We shall consider this problem using as an example the Cauchy problem

(5) / & = *(«·
where A(x, — 8/9x) is a second-order elliptic differential operator:

(e) Α («,-|Λ = £ °«(*)ft?L-. Σ ·«<**& *
As the Cauchy data we take canonically representable functions

where L C T"*(R") is a homogeneous Lagrangian manifold, μ is some
homogeneous measure on it, φ, ψ are homogeneous functions on L, and
σ = 0, 1.

We shall seek a solution of the problem (5) (a formally asymptotic one) in
the form u = ^^(φ), where £ is a homogeneous Lagrangian manifold in
T'CBJ*1), μ is some homogeneous measure on £, and φ is a homogeneous
function on C. By Theorem 3.3, for the equation in (5) to hold we must
require that

(7) C C charft = {(x,i,p,r)|?i(i,< ) P lr) = τ 2 -^a^pipj = 0},

where Ρ is the transport operator on £. In particular, £ is invariant with
respect to the field V(7i). We shall obtain initial conditions for £, φ from the
initial conditions in (5).

Let us consider the projection

and denote by £o the intersection n~l(L) Π char H. By condition (6) £ 0 is a
smooth manifold. It is obviously isotropic in 7T*(R"+1) and gives a two-
sheeted covering of L under the projection π. Let £ be the phase flow of £o
with respect to the vector field V(7i). By the construction of £ it is clear that
the first of conditions (7) holds. We shall choose the measure μ on £ to be
invariant with respect to V(H) and to coincide for t = 0 with the measure



Contact geometry and linear differential equations 117

π* (μ) Λ dt. By definition of £,μ, and the two-sheeted covering £ Π {t = 0} -* L,
we have

where φι is the sum of the values of φ on the two sheets of the covering

£ Π {/ = t» - L.
Now set <Ρι|/=0 =\π*φ, where (/>j satisfies the transport equation. Then

and the initial conditions

4 ( η ν ' + r2^) = 0

hold, where t j , τ2 are the values of τ on the two sheets of the covering
£ Π {ί = 0} -> L, which obviously have different signs. Therefore the
function ux = 4 £ | / 2 ) (^i) satisfies (5) with/(x) = ^'μ\ψ), g(x) = 0.

Similarly, let us set <p2lr=o = 1/{2τ)π*(.Ψ)> a n d demand that φ2 satisfy the
transport equation. Then equation (5) is satisfied in the corresponding
modulus, while the initial conditions are

) \i (j^ + ±1?) = 0,

k i ( < f > 2 ) \ ^ o = \ ^ { 2 Ψ ) = k y , ) = g ,

and therefore the function «2 = ^μ\φ2) satisfies (5) with/(x) = 0,
g(x) = tfWW).

So finally we have the solution of (5) in the form

that is, the solution of (5) is defined by a Maslov canonical operator of the
same type as the initial conditions. If the manifold L is non-singular, then for
I f I s$ ε(χ) the manifold £ will also be non-singular (ε(χ) is a sufficiently small
positive function of JC).

3. The discontinuity metamorphosis problem.
Let us continue the study of the problem from the previous subsection, taking
(for definiteness) initial conditions of the form

/(*) = Mx)S(S(x)), 9(x) = 0,

where S(x) is a function for which dS(x) Φ 0 when S(x) = 0. The
discontinuities of / are concentrated on the manifold X = {S(x) = 0}
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and here

where L = N*(X) for some choice of the measure μ. We shall assume that
the manifold C constructed in the previous subsection is a manifold in general
position and denote by X the projection of this manifold onto the space [x, t],
and ΣΧ will stand for the projection of the cycle ofjts singularities onto
[x, t], ΣΧ c X. It is clear that on the part of Χ\ΣΧ that has points in
common with t = 0, in view of subsection 2 the solution has the form

(8) u(x,t) = 4€<μ\φ) = ft

But if (x0, t0) lies in a different component of Χ\ΈΧ, then the type σ of the
local canonical operator can change. By the cocyclicity theorem, the type σ
can be determined in a neighbourhood of (xo, ίο) in the following way. Let /
be a curve on £., the initial point of which has t = 0, while the terminal point
projects onto (x0, t0), and / crosses the singularity cycle transversely. Let us
compute the number

(9) ind/ = J ; C g (mod2),

where the sum is determined as follows. Let {Uao, ..., t/ aJ be a sequence of
coordinate maps covering /, such that U^ and Uak are non-singular. Then C ^
are the values of the cochain C, computed from (3.15) for the intersection
£4,_, Π Uar We shall call the number (9) the index of the curve /. If it is
even, then the type σ in a neighbourhood of (x0, t0) is 0, but if it is odd, then
σ = 1. Thus, when ind / is even, the asymptotic behaviour of u(x, t) in a
neighbourhood of (x0, t0) is given by (8), while for odd ind / it is given by the
formula

Taking into account that the functions <5(z) and v.p. - are related by
1 z

v.p. - = Τ1(δ(ζ)), where H is the Riemann-Hubert operator, and that V, is

idempotent, we obtain the formula

which can be applied to any non-singular point (x0, io) ( 1 )

Let us now consider more general initial conditions for the problem (5):

(10) /(*)

(1) More precisely, in the right-hand side of the formula we should have a sum over all the
coordinate maps of L that project onto a neighbourhood of the point (x0, t0).
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where the requirements on S(x) are the same as before, and k(z) is a
generalized function that belongs to C°° outside ζ = 0. Let us write the
initial condition (10) in the form

f(x) = ί <po(x)S(S(x) - z)k{z)dz

(the integral is defined as a generalized function of x, since the supports of the
singularities ζ = S(x) and ζ = 0 of the factors intersect transversely). By the
above argument, the solution of the Cauchy problem with initial data

/(i) = ipQ{x)S{S{x) - z), g(x) = 0

(z is a parameter) has the form

U(x,t,z)=<p(x,t)(nind'S)(S(x,t)-z),

where S(x, t)—z is a non-singular action on the manifold £ z constructed as in
subsection 2 from the manifold L — N*({S(x) — ζ — 0}).

For (x0, t0), which is non-singular with respect to £Q, this point is also
non-singular for | ζ | < ε and the index ind / does not change with ζ
(homotopic stability). Hence it can be seen that

{t,x, z)k(z) dz = j φ{χ,t)(niad lS)(S(x, t) - z)k(z) dz

This also gives the formula for the metamorphosis of the discontinuity in the
general case.

4. Investigation of Green's function of the Cauchy problem.
In this subsection we shall study Green's function for the Cauchy problem (5),
that is, the solution of this problem with the initial data

/(*) = 0, g{x) = S(x-y),

where y = (y1, ..., y") is an «-dimensional parameter. First of all it is
necessary to represent δ(χ—y) as a canonical operator. Since <5(x—y) is the
kernel of a unitary PDO, for odd η we have

(11) S(x -y) = t ^ l J i(»-i)(p : {x -

while for even η

It is not hard to see that the integrals (11) and (12) correspond to a
Lagrangian manifold L C T*(R" χ R"), which is the graph of the identity
canonical transformation. Hence
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where μ is the measure (dp Λ dx)n and L has been described above. Let us
consider a sufficiently small t. Then

S(x, y,P,t)=P-(x-y) + r\Lt + o(t).

Since x\L = ±J^2"J=i aij(x)piPj, for small non-zero t the matrix || d2S/dpjdpj\\,
i, j = 2, ..., n, has for p\ = 1 non-zero determinant and zero negative inertial
index. Therefore for such t the manifold £ is non-singular. Since the
initial datum for the transport equation is l/τ and therefore the order of
homogeneity of the amplitude of the canonical operator is — 1, for odd η and
small / we have by Lemma 3.2

(13) G(x,y,t) = <p(x,t)S^s^)(S(x,t)).

For even η the number of "removable squares" in formulae of the form
(3.5)-(3.7) will be odd, and therefore these formulae are inapplicable. In this
case it can be shown that

(14) G(*)I,Ii) = # i
where the function zfj. equals z" for ζ > 0 and 0 for ζ < 0. The difference
between the functions (13) and (14) is that the function (13) is concentrated on
the light cone, while the function (14) is not. However, (13), (14) are
asymptotic, not exact, equalities.

Definition 1. We shall say that a function f(x) is concentrated on a set X
modulo the space H\Rn+1) if in the equivalence class {/(*) mod iTiR""1"1)}
there exists a function with support in X.

Thus the function (13) is concentrated on the light cone (mod /f) for
s = — (n — 3)/2+1/2, while the function (14) is not (for any s larger than —n/2).

Let us note that as a caustic is traversed, the situation changes. Namely, if
ind / changes by an odd number, then passing through a caustic the solution
for even η will be concentrated on the light cone, while for odd η it will not.

Let us note that similar results in terms of sharpness of the front were
obtained in the work of Tvorogov [30] for quasi-hyperbolic equations. This
result was obtained by using the method of paired Fourier integral operators
introduced by Garding [28].

§5. Microlocal classification of pseudodifferential operators

1. Microlocal equivalence.
Definition 1. We shall say that pseudodifferential operators H\ = H\ (x, — id/dx)
and Hj = H2(x, -Ί"9/9Χ) are microlocally equivalent at a point (x0, p0) e TQM

if there exists an elliptic Fourier integral operator Φ, associated with some
canonical transformation, such that in a neighbourhood of (x0, po) the full
symbols of the operators Hi and Φ QHiO coincide; here Q is some
elliptic PDO.
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Certain particular cases of the problem of microlocal classification of
PDO's have been considered in a number of papers (see [23], [24], [25]).
A complete solution of the problem is contained in [21] and [22].

Let us state the main results of [21], [22].

2. Elliptic operators and operators of principal type.
An elliptic operator Η is an operator whose Hamiltonian is non-zero at a
point (x0, Po) e Τ*0Μ:

It is clear that any two elliptic operators are equivalent. Therefore, all
elliptic operators form an orbit, as a representative of which we can take, for
example, the Laplacian.

Now let H{xQ, po) = 0. We call such a point a characteristic point. In
this case the main role in the classification is played by the contact vector field
XH of the Hamiltonian H. In this subsection we shall assume that at a
(characteristic) point of the Hamiltonian Η the contact vector field does not
vanish: XH(XO, PO) Φ 0. Such an operator is called an operator of
(microlocally) principal type. It turns out ([20], [26]) that in this case also
there exists precisely one orbit of the group: any two operators of principal
type are microlocally equivalent. A representative of this orbit is, for example,
the operator — id/dxl.

3. Operators of subprincipal type.
A substantially different picture occurs in the case when at a given (characteristic)
point the contact vector field vanishes: H(x0, p0) = XH(X0, p0) = 0. Now it
is the next term of the Taylor expansion that starts to play a crucial role, the
linear part of the contact vector field computed at the point (x0, p0), or more
precisely its spectrum

λο,λι, . . . , λ2η-1·

These eigenvalues have a number of remarkable properties. First of all, one
of the eigenvalues, which we shall denote by λ0, is, up to sign, the
proportionality constant between the Hamiltonian vector field(1) V(H) and the
"radial" one 3/3/7:

V{H)(XO,PO) =-*o^.

Furthermore, it can be shown that the eigenvalues can be renumbered so
that we have the relation

Xj + Xn+j-i = λο, j = 1, 2 , . . . , η — 1.

(1)We take this to be non-zero at the point under consideration.



122 V.E. Nazaikinskii, B.Yu. Sternin, and V.E. Shatalov

a) We shall assume initially that the following non-degeneracy (non-
resonance) condition is satisfied:

] T mjXj φ\0 I m,· > 0, J ^ m,- > 3

In this case two operators are equivalent if and only if the spectra of their
linear parts are the same, so that an orbit is in bijective correspondence with
the numbers XQ, ..., Xn. Moreover, the corresponding normal forms, the
simplest representatives of the orbits, are exhibited [21], [22]. For example, if
all the numbers Xy, j = 1, ..., n, are real and distinct, then the operator
H(x,p) can be reduced to the form

In the case of complex eigenvalues XQ, Χ\>2 = σ + *τ, the operator H(x,p)
reduces to

H(X,p) = -i [λοχ + ( , x r x )

b) Assume now that the condition of a) does not hold, but that instead we
have the weaker condition of absence of higher order resonances,

2n-2

> 0 ^ J m j >ifc+l

for some k ^ 2. The number k is then called the multiplicity of the point
(*o> Po)· In this situation the question of equivalence of operators is solved at
the level of truncations of order k of the Taylor series of their Hamiltonians
(jets of the field XH of order k— 1). In this case also the corresponding
normal forms are exhibited [22].

§6. Equations of principal and subprincipal types

1. Equations of principal type.
Let Η be a pseudodifferential operator with a real symbol. In this section we
shall study questions of solubility of the equation

(1) Hu = f

in the Sobolev spaces .//•S(R").(1) Let us note that we can always take the
order of the operator to be one; otherwise equation (1) can be multiplied by
a suitable invertible elliptic pseudodifferential operator.

( 1 )For simplicity, we consider the equation on R"; extending the results to the case of
equations on smooth manifolds does not present any difficulties.
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Let us recall the definition of equations of principal type; here we shall
distinguish the microlocal (in a neighbourhood of a point of the phase space),
local (in a neighbourhood of a point on R"), and global (on an arbitrary
compact set in R") situations.

Definition 1. Equation (1) is called
1) (microlocally) an equation of principal type in a neighbourhood of a point

α e S*Rn if the contact vector field Xn corresponding to the Hamiltonian
H(x, p) of (1) does not vanish at a;

2) (locally) an equation of principal type at a point x0 e R" if all the
trajectories of the contact vector field Xn contained in the set

(2) char Η = {a £ S*Rn \ H(a) = 0}

leave the fibre of the bundle S*Rn lying over the point x0 in finite time;
3) (globally) an equation of principal type if for any two compact sets

Ku K2 C R" there exists a number T(K\, K2) such that the trajectories of the
field Xn lying in char Η that start above K\ for t = 0 lie above the
complement of the compact set K2 for 11\ ^ T(KU K2).

To each of these cases there corresponds its own concept of solubility of
equation (1).

Definition 2. Equation (1) is called
1) microlocally soluble at a point α e S*R" if for every element fe /T(R")

there exists a function u e HS(R") such that the wave front(1) WF(Hu - / ) of
the difference Hu —/does not intersect a neighbourhood of the point a, and
furthermore | | κ | | , < C | | / | | , ;

2) locally soluble at a point x0 e R" if for every right-hand side / e Hs(Rn)
there exists a function u e Hs(Rn) such that Hu —f= 0 in a neighbourhood of
the point x0, and furthermore \\u \\s ^ Cll/ll*;

3) globally soluble if for any compact set Κ the kernel N(K) of the operator
H* adjoint to the operator Η: Hf^K) —• Hloc(K) is finite-dimensional,
independent of s, and for any function fe H5

loc(K) orthogonal to N(K) there
exists a function u e Hf^K) such that Nu = / i n a neighbourhood of the
compact set K; here also | | u | | , ^ C\\f\\s.

Here Κ is the closure of some domain Κ and H'^K) is the space of
functions defined in some neighbourhood (depending on the function) of the
compact set Κ and belonging to the space i/jo c in that neighbourhood.
Functions that are the same in Κ are deemed to be the same element.

Theorem 1. If equation (1) is microlocally (respectively, locally, globally) of
principal type, then it is microlocally (respectively, locally, globally) soluble.

The result of Theorem 1 is well known (see, for example, the work of
Egorov [10], or the book of Treves [9]). However, we present here a proof

( 1 ) Concerning the definition of a wave front, see [8], [9], and elsewhere.
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based on R*-equivariant techniques of Fourier integral operators to illustrate
the operators connected with a Lagrangian manifold with a boundary that
arise in the process, as well as R,-equivariant geometric objects that arise in
the construction of regularizers. We also present the scheme for constructing
a global regularizer following Sternin [16].

2. Proof of Theorem 1.

We present here a sketch of the proof of Theorem 1. This proof relies on
constructing a right regularizer for the operator Η and is based on a certain
modification of Fourier-Maslov integral operators (for details see [16]).

In the bundle 5*(R" xR") let us consider the set

(3) /0 = Δ* Π char tf.

Here Δ* has been defined in §1 as the image of the corresponding diagonal
mapping, while Η is the lift of the symbol Η of the operator Η to
TQR" χ TJIR" using the projection onto the first component. Let us denote by
/ the phase flow of the manifold (3) along trajectories of the contact vector
field Xjj. Let a e char Η be a point on 5*R", α = π{α, α e /0. For an
equation of principal type we obviously have Xj^a) Φ 0. Then it is not hard
to see that /0 is a submanifold in S*(K"x R") which is transversal to Xg in a
neighbourhood of the point a.

Without loss of generality we can assume that at the point α (and therefore
in some neighbourhood of that point) p\ > 0. Then as coordinates on S*M"
we can take the collection (x1, ..., x", pi, ..., p*n) = (x,p), where p* = pi/pi
(here (x, p) are the standard coordinates on T*R"). In these coordinates, the
field XH is

1{Χ, 1,ρ·) - H(x, l,p·)) ^ r + Ε Ηρ.(χ, l.p") A
\ί=2 / ί=2

#«'(«, I.P*) - P^«I(«. I.P·)) -A-
i=2 P«

Since XH Φ 0, we either have Ηρι (χ, \,ρ*) φ 0 for some i0 e {2, ..., n} or
(flyb -ρΙΗχή(χ, \,p*) ?0,ke {Χ-, n} (the case H^ = 0, ΣΙ2Ρ* Hp> - Η φ Ο

is not possible since at that point Η = 0). The first case is called non-
singular and the second one singular.

On Sr*(R" x R") we shall use the system of coordinates

(Xl, . . . ,Xn,p*, . . . ,ρ'η,ν1, • • • ,yn , g j , · • • ι 9 η ) ι

where (x, p) are the coordinates on TQR", (y, q) are the coordinates on
T*0W^,p* =Pi/qi, i= l,...,n, and q\ = qt/qu i = 2,...,«.

In the non-singular case a system of coordinates on / in a neighbourhood
of the point α is
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c£ has been omitted). The defining function for / in this case is

125

« = 2
f -

In the singular case coordinates on / in a neighbourhood of the point α are

where u = yx + tfl/0, while the defining function is given by the equation

(5)

»=2 i=2

The manifold / is divided by the manifold /0 into two parts, /+ and /_,
according to the sign of the parameter t in the shift along trajectories of the
field Xjj. For definiteness, we shall assume that on /+ we have the inequality

xh> > yia j n ^g non-singular case and />? > q*k in the singular case. Let us

introduce operators Φ(/+μ φ\ and Φ^,(/+ιί1ις)) as integral operators with kernels

.• · ·,5? 0 . · . · ,

for even «,
(6)

for odd η,

in the non-singular case and

(7) Ki0(x,y) =

for even n,

ίο,Αΐ)dpj ...dp* dud?r0

for odd n,
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in the singular case. Formulae (6), (7) define the operators Φ /̂+ μ % and
Φίο(/+,ίΐ,?>) o n ly f° r functions φ concentrated in some neighbourhood t/(a) of
the point a. However, using the methods of §3, these operators can be
defined for functions φ with support in the phase flow of the manifold
/ο Π U(a) along the vector field Xjj.

Let us now formulate an assertion concerning composition of the operators
constructed above with the operator H.

Proposition 1. We have the following formulae:

(8) Η (,, - Α ) ο φ·(?+ ^ = ^μνφ) + S.o ( . , _ £ ) ,

(9) Η ( χ , - — J ο Φ ί ο ( ι + ι μ , φ ) = Φίο(ΐ+,μ,νφ) + S i o \x, — ^ J .

Here V is the transport operator (see Theorem 3.3), while •S1'0, Sio are
pseudodifferential operators with symbols

(10) Si°(x,p)=APioH(x,p).[VF-<p]\,o,

(11) Sio(x,p)=[Ax>oH(x,p)-PioAxlH(x,p))[y/F-<p]\lo.

We shall denote by Ap, , Δχο, Δχι difference derivatives on char H:

Ρίο Ρ'ο Ichar Η Χ —Χ | c har/ί

Using equations (8), (9) of Proposition 1 we construct the microlocal
regularizer R of equation (1), that is, an operator such that H(x, —d/dx)oR
is a pseudodifferential operator whose symbol is equal to one in a
neighbourhood of a point up to operators of arbitrarily low order. The
operator R has the form 4$ , + T(x, —d/dx) in the non-singular case,
and Φ^μφ) + T(x, —d/dx) in the singular case (T(x, —d/dx) is some
pseudodifferential operator). Putting u = Rf, we obtain the microlocal
assertion of the theorem.

To prove the local statement we construct a local regularizer R, which is
the sum of Φί . and Φίο(/+ιί1,(ϊ,) over different coordinate maps of the
manifold and ajiseudodifferential operator. Here the operator R* is a left
regularizer for H*. Therefore if υ is a solution of the equation

(12) H*v = Q,

with support in a small neighbourhood U(xo) of the point x0, then

(13) 0 = R*H*v = v + Qv,

where Q is an arbitrarily smoothing operator. It follows from (13) that
υ e C ^ R " ) and that the space N(U(x0)) of solutions of equation (12) in the
neighbourhood U(x0) is finite-dimensional. Since N(U'(x0)) C N(U(xo)) for
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U'(x0) C U(x0), it follows that N(U(x0)) = 0 for a sufficiently small
neighbourhood U(x0) (there is no C°°-function whose support is a single
point). The remainder of the proof uses methods of functional analysis (see
[16], [20]).

The construction of the global regularizer is similar to that of the local
one. Since the set / is an everywhere regular immersion, we can construct a
global regularizer R : ΗcOmp(Rn) -> Η^ίβ") that satisfies

(14) HoR=\ + Q,

where the operator Q : Hs

comp(R") -* //foc(R") is continuous for every s' > s.
In this case, however, for any compact set Κ C Μ the space N{K), even
though it remains finite-dimensional, is not zero in general. Therefore for the
solubility of equation (1) in Κ it is necessary and sufficient for the right-hand
side of the equation to satisfy finitely many orthogonality conditions.

3. Equations of subprincipal type.
In this subsection we shall consider the question of solubility of equation (1)
under the assumption that the contact vector field XH defined by the
Hamiltonian Η has finitely many stationary points (we are still assuming that
the order of inhomogeneity of the function H(x, p) is equal to one). As we
shall show, in this case equation (1) is already insoluble in the whole scale of
spaces Hs. Indeed, even the simplest equation xu' = f(x) does not have any
(even locally) smooth solution even for an infinitely smooth right-hand side.
Furthermore, the kernel of the adjoint operator in this case does not consist
of smooth functions alone.

We assume that the following conditions hold.
a) dH φ 0 on the set char Η (note that by homogeneity in the variables ρ

the requirement dH φ 0 is well defined, that is, it depends only on the point
α e S*R").

b) There exist only finitely many points or7 e S*W,j = 1, 2, ..., N, where
the field XH vanishes: XH(<X-J) ~ 0 ( m w n a t follows these points will be called
singular).

c) The eigenvalues λ\, ..., λ}

2η_ι of the operator of the linear part of the
contact vector field XH in a neighbourhood of a point a7 satisfy the non-
resonance condition [12], [21], [22]:

2 n - l

where the w, are natural numbers with Σ τη, > 3. (Note that on a ray in
TQM" corresponding to the point a7 the Hamiltonian vector field and the

radial vector field o — are collinear. It can be shown that the coefficient of
p

proportionality between these two vector fields is an eigenvalue of the above
operator. This eigenvalue will always be denoted by λ\ in what follows.)
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d) The numbers Xlt ..., A2n_i are real and pairwise distinct.
e) The field XH has no finite motions. This means that, firstly, for any

compact set K<z S*Rn each trajectory of the field XH either leaves the
compact set Κ or goes to a singular point, and that, secondly, there is no
closed system of trajectories of XH joining singular points.

It can be shown that by condition d) for any singular point a·7 all the
eigenvalues λ{, ..., Λ·̂ Λ_1 have the same sign. Let us set

(15)

where

Furthermore, it is shown in [16] that under the above assumptions in a
neighbourhood of every point a7 there are Fourier integral operators UJ of
order kJ that microlocally reduce the operator Η to the form

(16) H> =
fc=l

The numbers kJ are determined by the principal and subprincipal symbols of
the operator Η at the point aJ. Let us define the numbers

Smin =max(sJ + fc·7),

where a*, aJ are defined by (15). For s > Smin, σ < σ^^ we shall define the
operator

(17) Η.,σ : H

As before, Κ is the closure of some domain i C R " J C R " . The domain
of definition of the operator (17) consists of distributions u e Hf^K) for
which Hu e Hs

Xoc(K) (Hu is understood here in the sense of distributions).
The operator (17) is closed and densely defined.

Let Ns<r(K) be the kernel of the adjoint operator

(18) K" • fl~

Let us state the main theorem of this subsection.

Theorem 2. Under conditions a)-e) above for any compact set Κ and any

numbers s > Smm, σ < "max.
a) the space Nsa(K) is finite-dimensional, and
b) for any element f e Hf^K) that is orthogonal to Nsa(K) there is a
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ο

Κ
^ ο

function u e Η^Χ(Κ) such that Hsau =fin Κ and we have the inequality

(19) IIHU < C.,*||*£.,«rU||.

with a constant Cs_a independent of u.

The proof of Theorem 2 is based on the construction of a regularizer, that
is, a continuous operator

Rs,a •

such that

where 1 is the identity operator, and Q : H^^K) —* C°°(JK) is a continuous
operator for s > .?„„„. The full proof can be found in [16]; here we just
indicate the main steps.

The point of departure in the construction of the regularizer is the
classification of pseudodifferential operators in a neighbourhood of a
stationary point of the contact vector^ field XH. We shall call pseudodifferential
operators H\ = H\(x, — i8/9x) and ΗΪ = Hi(x, — i9/9x) microlocally equivalent
in a neighbourhood of a point α if there exists an elliptic Fourier integral
operator U associated with some homogeneous canonical transformation g
such that in a neighbourhood of α the full symbols of the operators Hj and
U~XH\U coincide. Here U~l is a Fourier integral operator which is the
inverse of U modulo infinitely smoothing operators.

It is known (see, for example, [22]) that any two operators of principal
type are microlocally equivalent in a neighbourhood of any point. For
operators with contact stationary points this is no longer so. We have the
following theorem.

Theorem 3. Let H\ and Hi be two pseudodifferential operators with contact
stationary points oti and a2, satisfying the non-resonance condition c). Then H\
is equivalent to Hi if and only if they have the same spectrum of the operator of
the linear part of the contact vector field.

The reader can find the proof of this theorem in [22], which also contains
a list of normal forms in equivalence classes. Under condition d) the
corresponding normal form is (16).

The construction of the regularizer in a neighbourhood of a singular point
employs one of the two regularizers of the operator (16):

(20)
Jo

f1 . dt
(21) Roo[f]M = i I f(t• x) —

J+oo t
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where txx = (tXlxl, ..., t^x"). Let us note that if s > Smin the operator (20)

is well defined, since Jmin ^ π/2, and therefore the function f e HS(M") has

trace /(0) at the origin. It can be shown that the operators (20), (21) are

bounded in the spaces

Ro : H{oc(Rn) -> C ( K n ) , « > |A|/2.\min;

£ n ) - * < |A|/2Amax

£see [16]). For each singular point let us set α-'Φ·'' = Ro if A{. > 0 and

Φ7 = Λοο if λ\ < 0. The expression for the "singular part" of the regularizer

J?Sjng has the form

where the operators UJ are as defined above. The construction of the non-

singular part of the regularizer (similar to the constructions in subsection 2 of

this section) and the "gluing together" of the global regularizer are described

in detail in the article [16] cited above.
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