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INVARIANTS OF DIFFERENTIAL EQUATIONS DEFINED BY

VECTOR FIELDS

J C NDOGMO

Abstract. We determine the most general group of equivalence transforma-
tions for a family of differential equations defined by an arbitrary vector field
on a manifold. We also find all invariants and differential invariants for this
group up to the second order. A result on the characterization of classes of
these equations by the invariant functions is also given.

1. Introduction

In Lie theory, the invariance of functions and other objects under a transforma-
tion group G acting on an n-dimensional manifold V is usually characterized by
the vanishing of functions under some vector fields generating the group action,
and this vanishing is represented by a system of partial differential equations of the
form

∑

i

Ai(X) ∂xiF (X) = 0 (1.1)

where X = (x1, ..., xn) is a local coordinates system on V and where F is the
unknown function. The importance of linear partial differential equations of the
form (1.1) usually referred to as determining equations for the invariant objects
cannot be overstated. Indeed, they characterize invariant equations as well as their
invariant solutions, and they have a similar importance in the study of Lie algebras
and in representation theory. In physics, invariant operators of dynamical groups
characterize specific properties of physical systems and provide mass formulaes and
energy spectra [1, 2]. Invariants of physical symmetry groups also provide quantum
numbers useful in the classification of elementary particles [3]. It would therefore
be desirable to consider the group of equivalence transformations of equations of
the form (1.1) and to determined all functions invariant under this group. Such
functions are simply called invariants of the differential equation (1.1).

A method for the determination of invariants of linear and nonlinear equations
build on an idea suggested by Lie himself [4] was developed in [5]. The method is
based on the fact that the invariant functions for the infinite group of equivalence
transformations of a given system of equations are precisely the invariants of the
system of differential equations. That is, these functions are invariant under the
group of transformations that confine the system of equations to a prescribed family
of equations. The method also yields singular invariant equations, and has been
used to complete the problem of determination of the Laplace invariants in [6], and
in [7] to characterize linearizable second order ode’s.
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In the present paper we find the most general group G of equivalence transfor-
mations leaving unchanged, except for its coefficients Ai, an equation of the form

n
∑

i=1

Ai(X) ∂xiU = 0 (1.2)

where (x1, . . . , xn, U) ∈ R
n × R = M, and where we assume that none of the

coefficients Ai for i = 1, . . . , n vanishes identically. We then find the invariants and
differential invariants up to the second order for this group and for an arbitrary
number n of independent variables in the equation. We first treat with more details
the cases n = 2, 3 before giving some generalizations of the results. Next, by
investigating the regularity of the action of G on M, we show how the invariants
found can be used to characterize families of equations of the form (1.2).

2. The group of equivalence transformations

Owing to the linearity of equation (1.2), any invertible change of the dependent
variable U and the independent variables (x1, . . . , xn) = X that preserves the form
of the equation should be of the form

X = ψ(Y ) (2.1a)

U = H(Y )V (Y ), H(Y ) 6= 0 (2.1b)

where Y = (y1, . . . , yn) is the new set of independent variables, V is the new
dependent variable and H is an arbitrary function.

Theorem 1. The most general group G of equivalence transformations of equation

(1.2) consists of the set of all invertible changes of variables of the form

xi = ψi(Y ) ≡ ψi(yi), for i = 1, . . . , n (2.2a)

U = V. (2.2b)

That is, each ψi(Y ) is a function a the single variable yi, and G does not involve a

change of the dependent variable.

Proof. Under the general change of variables (2.1a), and by setting φ = ψ−1, equa-
tion (1.2) takes the form

∑

j

Bj(Y )∂yj (U) = 0 (2.3a)

where

Bj(Y ) =

n
∑

i

Ai(ψ(Y ))
∂ φj

∂ xi
(ψ(Y )) =

n
∑

i

Ai(X)
∂ φj

∂ xi
(X) (2.3b)

Equation (2.3a) together with the expression of U given by (2.1b) shows that none of
the coefficients Bj should vanish identically. However, the expression of Bj in (2.3b)
shows that if φj(X) depends on more than one of the variables xi, for i = 1, . . . , n
it can be chosen as an invariant of an appropriate vector field, and so that Bj = 0.
Hence φj(X) ≡ φj(xqj), for some qj ∈ {1, . . . , n} and because of the invertibility
of φ, φj must be a nonconstant map and all the variables xqj must be distinct for
j = 1, . . . , n. This implies in particular that xi = ψi(yki) must also be a nonconstant
function of a single variable. If we let σ be the permutation that maps the ordered
set

{

y1, . . . , yn
}

onto the ordered set
{

yk1, . . . , ykn
}

, then the ith component of

ψ ◦ σ−1 depends exactly on yi alone. On account of the arbitrariness of ψ, we may
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replace ψ, by ψ ◦ σ−1, and thus that we may always assume that xi = ψi(yi), and
equivalently yi = φi(xi). This reduces the expression for Bj(Y ) in (2.3b) to the
form

Bj = Aj(ψ(Y ))
∂ φj(xj)

∂ xj
=
Aj(ψ(Y ))

ψj ′(yj)
6= 0, (2.4)

where ψj ′ = ∂ ψj/∂ yj . Substituting (2.1b) into (2.3a) and expanding, equation
(1.2) takes the form

∑

j

H Bj ∂yjV + V





∑

j

Bj ∂yj H



 = 0. (2.5)

The fact that the coefficient of V appearing in (2.5) must identically vanish and
the arbitrariness of the n coefficients Aj in the expression of Bj in (2.4) show that
∂yj H(Y ) = 0, for all j = 1, . . . , n. Thus H(Y ) 6= 0 is a constant function and
without loss of generality we may assume that H = 1. This last equality transforms
equation (2.5) to the form

∑

j

Bj(Y )∂yjV (Y ) = 0, (2.6)

which is of the prescribed form. This completes the proof of the theorem. �

Remark . It should also be noted that under the general change of variables (2.1),
it is always possible, by the well-known result on the rectification of vector fields,
to put (1.2) in the form

∂y1(HV ) = 0, that is, (∂y1H)V +H(∂y1V ) = 0

Thus if we allow some of the coefficients Ai to vanish, then the only additional
condition to be imposed on the change of variables (2.1) would be ∂y1H = 0, and
all equations of the form (1.2) would be equivalent. There are clearly no invariant
functions or invariant equations of any order in such case.

We now move on to determine the infinitesimal generators of the group G. As
already noted, equation (2.2a) implies that yi = φi(xi), for i = 1, . . . , n, and this
shows that the infinitesimal transformation of (2.2) has the form

yi ≈ xi + ǫξi(xi), V ≈ U, (2.7)

where the functions ξi are also arbitrary, due to the arbitrariness of the functions
ψi. The first prolongation of this transformation has the form

∂yiV ≈ ∂xiU + ǫ(−ξi ′∂xiU), (2.8)

which implies that

∂xiU ≈ ∂yiV + ǫ(ξi ′∂yiV, ) (2.9)

where ∂x is the differential operator ∂ /∂ x, for any variable x. A substitution of
equation (2.9) into the original equation (1.2) yields the infinitesimal transformation
of that equation in the form

n
∑

i

(Ai + ǫAi ξ
i ′)∂yiV = 0. (2.10)
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This shows that the infinitesimal transformation Ã of the coefficient Ai is given
by

Ãi ≈ Ai + ǫAiξ
i ′.

The infinitesimal generators of the equivalence transformation G therefore has the
form

V =

n
∑

i

ξi∂xi +

n
∑

i

Ai ξ
i ′∂Ai

(2.11)

3. Zeroth-order invariants

We would like to first recall very briefly certain elementary facts about the invari-
ant functions of a given transformation group. Suppose that the infinitesimal gen-
erators of an r-parameters group of transformations G acting on the Q-dimensional
manifold M are of the form

Vk =
∑

j

ξkj∂xj , for k = 1, . . . , r. (3.1)

The invariant functions and invariant equations of G are determined by

Vk (F ) = 0 (3.2a)

Vk (F )
∣

∣

∣

F=0
= 0 (3.2b)

respectively, for k = 1, . . . , r. The number of fundamental invariants of G does not
exceed Q − τ , where τ is the rank of the matrix

(

ξkj
)

k,j
of coefficients of the r

operators Vk. Each of these functions naturally gives rise to an invariant equation.
Invariant equations F = 0, where F is not an invariant function, and obtained
by imposing the additional condition τ < Q to the second equation of (3.2b) are
often referred to as singular invariant equations. Using a Lie linearization test,
such equations were recently shown [7] to characterize all linearizable second order
ordinary differential equations.

When some of the independent variables xj in the expression of the Vk can
be taken as depend variables for other objects such as a differential equation, the
generators Vk can be extended to involve higher order derivatives of the dependent
variables. If V is a given infinitesimal generator of G, then we shall often use the
same symbol V to represent both V and its m-th prolongation V(m). Similarly, the
mth jet space of M will often be denoted simply by M.

Since the general change of variables (2.2) is merely a change of the independent
variables and does not involve the dependent variable U, this variable is trivially
an invariant for G. We shall therefore ignore this variable in our search for the
invariant functions of G whose general form for the zeroth-order operator (2.11) is
F (x1, . . . , xn, A1, . . . , An).

Theorem 2. The group of equivalence transformations G of (1.2) has neither

invariant functions nor invariant equations.

Proof. Rewriting the generic generator V in (2.11) as a linear combination of the
arbitrary functions ξi and their derivatives gives

V =

n
∑

i

ξi(∂xi) +

n
∑

i

ξi ′(Ai ∂Ai
),
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and this proves the first part of the theorem at once, on account of the arbitrariness
of the functions ξi. To show that G has no invariant equation, we use an elementary
technique similar to that used in [7]. Suppose that F (x1, . . . , xn, A1, . . . , An) =
0 is a nontrivial invariant equation for G, and so it explicitly involves at least
one of the variables, say x1, in the set

{

x1, . . . , xn, A1, . . . , An

}

. Then solving the

equation for x1 reduces it to the equivalent form x1 = K(x2, . . . , xn, A1, . . . , An).
The arbitrariness of the functions ξi and their derivatives implies again that we
must have in particular

∂x1

(

x1 −K
)

∣

∣

∣

x1=K
= 0.

But this last condition cannot hold because ∂x1

(

x1 −K
)

= 1, and this completes
the proof of the theorem. �

4. First-order differential invariants

The first prolongation V(1) of the infinitesimal generator (2.11) of G has the form

V(1) = V +

n
∑

i

Aiξ
i ′′ ∂

∂ Aii

+

n
∑

i

∑

j 6=i

Aji

(

ξj ′ − ξi ′
) ∂

∂ Aji

(4.1a)

where we have used the notation

Aij =
∂ Ai

∂ xj
, for i, j ∈ {1, . . . , n} . (4.1b)

In terms of the linear combination of the arbitrary functions ξi and their derivatives,
this expression takes the form

V(1) =

n
∑

i

ξi ∂

∂ xi
+

n
∑

i

ξi ′′ ∂

∂ Aii

+

n
∑

i

ξi ′





∂

∂ Ai

+
∑

j 6=i

(

Aij

∂

∂ Aij

−Aji

∂

∂ Aji

)



 .

(4.2)

Equation (4.2) clearly shows that any first-order differential invariant of G should
be independent of all the independent variables xi, as well as the variables Aii. This
last condition reduces V(1) to the form

V(1) =

n
∑

i

ξi ′ Vξi ′ (4.3a)

where

Vξi ′ = Ai∂Ai
+
∑

j 6=i

(

Aij

∂

∂ Aij

−Aji

∂

∂ Aji

)

. (4.3b)

As we are considering the arbitrary functions Ai in (1.2) in their most general
form, we may assume that the functions Aij = ∂xjAi do not vanish identically. It
then follows from (4.3) that the generators of the first prolongation of G depend on
Q = n2 independent variables. If however we assume that exactly p of the functions
Aij vanish identically, then this number p is invariant under the action of G and
Q = n2 − p.

Theorem 3. Consider the n operators Vξi ′ of (4.3).



6 J C NDOGMO

(a) The rank of the coefficients matrix M of the operator Vξi ′ is n, which is

maximal.

(b) The Vξi ′ form an n-dimensional commutative Lie algebra.

(c) The number fundamental first-order differential invariants of the group G
of equivalence transformations of equation (1.2) is n(n− 1).

Proof. In any coordinate system of the form {A1, . . . , An, . . . } on the extended jet
space on which the first prolongation of G operates, equation (4.3) shows that the
first n columns of M is represented by the matrix diag {A1, . . . , An} which has rank
n, owing to the fact that none of the coefficients Ai is zero, and this proves part
(a) and shows that the n vectors Vξi ′ are linearly independent. For part (b), if for
any k ∈ {1, . . . , n} we write

Vξk ′ = Ak∂Ak
+
∑

q 6=k

(

Akq

∂

∂ Akq

−Aqk

∂

∂ Aqk

)

then we readily see that the commutator
[

Vξi ′ ,Vξk ′

]

is a linear combination of the
identically vanishing commutators

[

Aij∂Aij
−Aji∂Aji

, Akq∂Akq
−Aqk∂Aqk

]

, [Ai∂Ai
, Ak∂Ak

]
[

Ai∂Ai
, Akq∂Akq

−Aqk∂Aqk

]

,
[

Aij∂Aij
−Aji∂Aji

, Ak∂Ak

]

,

This fact together with part (a) proves (b). Since the number of independent
variables involved in the complete system of n operators Vξi ′ is n2, the number
of their functionally independent invariants is precisely n2 − rank(M), which is
n(n− 1). �

The most practical way to find the n2 − n first order differential invariants of G
would be to compute these invariants for low dimensions of M, i.e. for n = 2, 3 and
then make use of the symmetry inherent in equation (1.2) to find the invariants in
the general case.

For n = 2 and n = 3 we write equation (1.2) in the form

aUx + bUy = 0, and aUx + bUy + cUz = 0, (4.4)

respectively. In case n = 2, the operators Vξi ′ are given by

Vξ1 ′ = a∂ a + ay∂ay
− bx∂bx

, Vξ2 ′ = b∂ b − ay∂ay
+ bx∂bx

.

Solving the system of equations Vξi ′(F ) = 0, for i = 1, 2 by the method of charac-
teristics shows that G has a fundamental system of invariants consisting of the two
functions

T12 =
ay b

a
, and T21 =

bx a

b
.

In case n = 3, the three operators Vξi ′ are given by

Vξ1 ′ = a∂ a + (ay∂ay
− bx∂bx

) + (az∂az
− cx∂cx

)

Vξ2 ′ = b∂ b + (bx∂bx
− ay∂ay

) + (bz∂bz
− cy∂cy

)

Vξ3 ′ = c∂ c + (cx∂cx
− az∂az

) + (cy∂cy
− bz∂bz

)
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and the corresponding set of six invariants is found to be

T12 =
ay b

a
, T21 =

bx a

b
, T13 =

az c

a

T31 =
cx a

c
, T23 =

bz c

b
, T32 =

cy b

c
.

The form of the invariants found for n = 2, 3 together with part (c) of Theorem 3
asserting that the number of invariants in the general case is n(n − 1), which is
2
(

n
2

)

, suggest that all invariants can be found by associating with each subset of two
elements of the set of n coefficients of the differential equation a pair of invariants
according to a very simple rule.

Theorem 4. The n(n−1) fundamental invariants Tij of the group G of equivalence

transformations of equation (1.2) are given by

Tij =
AijAj

Ai

, for i 6= j, where Aij =
∂ Ai

∂ xj
, (4.5)

and where Ai and Aj run over the set coefficients of the equation.

Proof. It is easily verified that the identity Vξi ′(Tkq) = 0 holds for all i = 1, . . . , n
and for all k 6= q. Next, the functions Aij for i, j ∈ {1, . . . , n} are functionally
independent by assumption, and each Tij depends on exactly one of them. �

Note that if we restrict the action of G to a sub-family of equations of the form
(1.2) for which exactly p of the function Aij vanish identically, then the maximal
number of functionally independent first order differential invariants is n(n−1)−p.

5. Second-order differential invariants

The second prolongation of the generator (2.11) of G has the form

V(2) = V +
n
∑

j

(Aj)ξ
j ′′∂Ajj

+
(

Ajξ
j ′′ +Ajjξ

j ′′ −Ajjjξ
j ′
)

∂Ajjj

+
∑

i6=j

Aji(ξ
j ′ − ξi ′)∂Aji

+ 2
(

Ajiξ
j ′′ −Ajjiξ

i ′
)

∂Ajji

+
[

(ξj ′ − 2ξi ′)Ajii −Ajiξ
i ′′
]

∂Ajii

+ 2
∑

i,k 6=j
i<k

(ξj ′ − ξi ′ − ξk ′)Ajik ∂Ajik
, (5.1a)

where as usual

Aji =
∂ Aj

∂ xi
, Ajik =

∂ Aj

∂ xi∂ xk
, etc. (5.1b)

Rewriting this expression as a linear combination of the arbitrary functions ξi and
their derivatives shows that any invariant function should be independent from the
independent variables and from variables of the form Aiii for i = 1, . . . , n. This
reduces the expression of V(2) to the form

V(2) =
n
∑

i

ξi ′Vξi ′ + ξi ′′Vξi ′′ (5.2a)
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where

Vξi ′ =Ai∂Ai
+
∑

j 6=i

(

Aij∂Aij
− Aji∂Aji

+Aijj∂Aijj
− 2

n
∑

k

Ajik∂Ajik

)

+ 2
∑

j,k 6=i
j<k

Aijk∂Aijk
(5.2b)

Vξi ′′ =Ai ∂Aii
+
∑

j 6=i

(

2Aij ∂Aiij
−Aji ∂Ajii

)

. (5.2c)

It readily follows from equations (5.2) that the second order differential invariants

of G depend in general on n+n
(

n+2
2

)

−2n variables, that is on n2(3+n)/2 variables.

This is the dimension of the subspace of the extended jet space M (2) of M on which
the second prologation of G acts.

Theorem 5. The set of operators
{

Vξi ′

}n

i=1
and

{

Vξi ′′

}n

i=1
given in (5.2) each

generate an n dimensional commutative Lie algebra.

Proof. Thanks to the term Ai∂Ai
appearing in the expression of each generator Vξi ′

as the only term involving ∂Ai
, the coefficients matrix of these operators admits a

submatrix of the form diag {A1, . . . , An} , which is clearly of rank n, showing that
the Vξi ′ generate an n-dimensional space. Similarly, as the term Ai∂Aii

appears in

the same manner in the expression of each generator Vξi ′′ , the set
{

Vξi ′′

}n

i=1
also

generate an n dimensional space. For each pair {i, k} , it is easy to see as in the
proof of Theorem 3 that each of the commutators [Vξi ′ ,Vξk ′ ] and [Vξi ′′ ,Vξk ′′ ] is a
linear combination of identically vanishing commutators. This completes the proof
of the theorem. �

If we denote by ξi (j) the jth derivative of ξi, then Theorem 5 asserts that for
j fixed, the Vξi(j) ’s form a commutative Lie algebra for j = 1, 2. However, the set
of all operator Vξi(j) for i = 1, . . . , n and j = 1, 2 that determine the second order
differential invariants of G do not form a Lie algebra in general when they are
considered together, as this easily appears from the low dimensional cases.

Indeed, if for n = 2, 3 we rewrite equation (1.2) as in (4.4), then for n = 2, we
have

Vξ1 ′ = a
∂

∂ a
+ ay

∂

∂ ay

+ ayy

∂

∂ ayy

− bx
∂

∂ bx
− 2bxx

∂

∂ bxx

− 2bxy

∂

∂ bxy

Vξ2 ′ = b
∂

∂ b
− ay

∂

∂ ay

− 2axy

∂

∂ axy

− 2ayy∂ayy
+ bx

∂

∂ bx
+ bxx

∂

∂ bxx

Vξ1 ′′ = a
∂

∂ ax

+ 2ay

∂

∂ axy

− bx
∂

∂ bxx

Vξ2 ′′ = −ay

∂

∂ ayy

+ b
∂

∂ by
+ 2bx

∂

∂ bxy

.

In this case we have

[Vξ1 ′ ,Vξ1 ′′ ] = Vξ1 ′′ , and [Vξ2 ′ ,Vξ2 ′′ ] = Vξ2 ′′

However, the span of
{

Vξ1 ′ , Vξ2 ′ ,Vξ1 ′′ ,Vξ2 ′′

}

does not contain the commutator
[Vξi (j) ,Vξk (p) ] for any sets {i, k} and {j, p} of distinct elements. For instance, we
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have

[Vξ1 (2) ,Vξ2 (1) ] = −2ay

∂

∂ axy

.

We have a similar situation in the case of three independent variables. The opera-
tors Vξi (j) are given in this case by

Vξ1 ′ = a
∂

∂ a
+ ay

∂

∂ ay

+ az

∂

∂ az

+ ayy

∂

∂ ayy

+ 2 ayz

∂

∂ ayz

+ azz

∂

∂ azz

− bx
∂

∂ bx
− 2bxx

∂

∂ bxx

− 2bxy

∂

∂ bxy

− 2bxz

∂

∂ bxz

− cx
∂

∂ cx

− 2cxx

∂

∂ cxx

− 2cxy

∂

∂ cxy

− 2cxz

∂

∂ cxz

Vξ2 ′ = b
∂

∂ b
− ay

∂

∂ ay

− 2axy

∂

∂ axy

− 2ayy

∂

∂ ayy

− 2ayz

∂

∂ ayz

+ bx
∂

∂ bx

+ bz
∂

∂ bz
+ bxx

∂

∂ bxx

+ 2bxz

∂

∂ bxz

+ bzz

∂

∂ bzz

− cy
∂

∂ cy

− 2cxy

∂

∂ cxy

− 2cyy

∂

∂ cyy

− 2cyz

∂

∂ cyz

Vξ3 ′ = c
∂

∂ c
− az

∂

∂ az

− 2axz

∂

∂ axz

− 2ayz

∂

∂ ayz

− 2azz

∂

∂ azz

− bz
∂

∂ bz

− 2bxz

∂

∂ bxz

− 2byz

∂

∂ byz

− 2bzz

∂

∂ bzz

+ cx
∂

∂ cx
+ cy

∂

∂ cy

+ cxx

∂

∂ cxx

+ 2cxy

∂

∂ cxy

+ cyy

∂

∂ cyy

Vξ1 ′′ = a
∂

∂ ax

+ 2ay

∂

∂ axy

+ 2az

∂

∂ axz

− bx
∂

∂ bxx

− cx
∂

∂ cxx

Vξ2 ′′ = −ay

∂

∂ ayy

+ b
∂

∂ by
+ 2bx

∂

∂ bxy

+ 2bz
∂

∂ byz

− cy
∂

∂ cyy

Vξ3 ′′ = −az

∂

∂ azz

− bz
∂

∂ bzz

+ c
∂

∂ cz
+ 2cx

∂

∂ cxz

+ 2cy
∂

∂ cyz

.

As in case n = 2, we have [Vξi ′ ,Vξi ′′ ] = Vξi ′′ . That is,
{

Vξi ′ ,Vξi ′′

}

spans a solvable

Lie algebra with nilradical
{

Vξi ′′

}

, for i = 1, 2, 3. However, here again the span of
{

Vξi (j)

}

i,j
does not contain the commutator [Vξi (j) ,Vξk (p) ] for any sets {i, k} and

{j, p} of distinct elements. Indeed, we have for instance

[Vξ1 (2) ,Vξ3 (1) ] = 2cx
∂

∂ cxz

.

There is no guarantee in this case that the number of invariant attains its maximum
which is Q − τ, with the usual notation. More over, they are much more difficult
to find using the method of characteristic. we shall therefore attempt to determine
the invariants of the second prolongation of G using the so-called method of total
derivatives [8, 9].

Suppose that we are given a system of equations of the form (3.2a) where the
Vk’s are arbitrary linear differential operators given as in (3.1) and depend on a



10 J C NDOGMO

total of Q variables. Denote again by τ the rank of the coefficients matrix
(

ξkj
)

k,j
,

and set p = Q− τ. Thus we can solve (3.2a) for τ of the variables ∂xt
F in terms of

the remaining p others, and this gives rise to the Jacobian system

∆tF ≡
∂ F

∂ xt

+

p
∑

s=1

Us,t

∂ F

∂ us

= 0, for t = 1, . . . , τ , (5.3)

where we have renamed the remaining p variables xτ+j as uj, for j = 1, . . . , p and
where the Us,t’s are functions depending in general on the Q vriables x1, . . . , xτ and
u1, . . . , up. In this case the equivalent adjoint system of total differential equations
takes the form

dus =
τ
∑

t=1

Us,tdxt, for s = 1, . . . , p. (5.4)

The equations (3.2a) and (5.4) are equivalent in the sense that they have the same
integrals [8]. We denote by Mu the coefficients matrix {Us,t} that completely
determines the adjoint system (5.4).

For n = 2, by permuting the coordinate system onM so as to have in diag {a, b, a, b}
as the submatrix corresponding to the first 4 columns of the coefficients matrix for
the system S22 =

{

Vξ1 ′ , Vξ2 ′ ,Vξ1 ′′ ,Vξ2 ′′

}

, we obtain the transposed matrix MT
u of

Mu in the form

MT
u =













0
ayy

a
− bx

a

ay

a
− 2bxx

a
− 2bxy

a

− 2axy

b
− 2ayy

b
bx

b
−ay

b
bxx

b
0

2ay

a
0 0 0 − bx

a
0

0 −ay

b
0 0 0 2bx

b













.

The corresponding system (5.4) of total differential equations can be solved using
methods described in [8]. We get stuck with a problem of finding some integrating
factors while trying to solve by the method of characteristics the equivalent system
(3.2a) of linear partial differential equations for the system of operators S22. How-
ever, we readily get the following set of six functions by solving the corresponding
adjoint system (5.4).

T12 =
ay b

a
, K12 =

ayy b

ay

+ by, J12 =
axy ab

ay

− 2ax

T21 =
bx a

b
, K21 =

bxx a

bx
+ ax, J21 =

bxy ab

bx
− 2by.

(5.5)

Although their number corresponds to the maximal number of functionally inde-
pendent invariants in this case, not all of them are actually invariants because the
system S22 is not complete. More precisely, only Tij and Kij , for i, j = 1, 2 are
invariants, and not only the Jij ’s are not invariants, but also the equations Ji,j = 0
are not invariant equations.

Similarly for n = 3, the total number Q of variables defining the invariants is 27,
and we have τ = 6. By permuting again the coordinate system on M, so as to have
diag {a, b, c, a, b, c} as the first six columns of the coefficients matrix for the system
of perators S32 =

{

Vξ1 ′ , Vξ2 ′ , Vξ3 ′ ,Vξ1 ′′ ,Vξ2 ′′ ,Vξ3 ′′

}

, we obtain a more convenient

representation of the 21 × 6 matrix Mu. The transpose MT
u of Mu in which only
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its first six columns are represented has the form

MT
u =























0 0
ayy

a

2ayz

a
azz

a
− bx

a
. . .

− 2axy

b
0 − 2ayy

b
− 2ayz

b
0 bx

b
. . .

0 − 2axz

c
0 −

2ayz

c
− 2azz

c
0 . . .

2ay

a
2az

a
0 0 0 0 . . .

0 0 −ay

b
0 0 0 . . .

0 0 0 0 −az

c
0 . . .























,

where the dots represent the remaining 15 matrix columns. Solving the correspond-
ing system (5.4) yields the expected maximal number of 21 functionally independent
functions. But since here again the corresponding system of operators S32 is not
complete, only 15 of them are actually invariants of G. Reverting back to the orig-
inal notation A1 = a,A2 = b and A3 = c, and using (5.1b), these 15 invariants can
be written in the form

Tij =
Aij Aj

Ai

, Kij =
Aijj Aj

Aij

+Ajj , Lijk = Aijk

(

AjAk

Ai

)

, (5.6)

where i, j ∈ {1, 2, 3} , with i 6= j, and where {j, k} = {1, 2, 3} \ {i} for i = 1, 2, 3.
We have thus obtained the following result.

Theorem 6. Let N be the maximal number of functionally independent invariants

of the second prolongation of the group of equivalence transformations of (1.2) in

n independent variables.

(a) For n = 2, N = 4, and the invariants are the function Tij and Kij of (5.5).
(b) For n = 3, N = 15, and the invariants are the functions Tij ,Kij and Lijk

given by (5.6).

Contrary to the case of the first prolongation of G, a determination of all in-
variants of the second prolongation for larger values of n using only invariants of a
lower order of n and a symmetry argument does not seem to be obvious. Indeed,
the equations (5.5) and (5.6) show that for n = 3, the invariants of type Tij and
Kij can be simply derived by symmetry from those for n = 2 without any further
calculations. However, the invariants of type Lijk in (5.6) cannot be obtained from
(5.5) using only a symmetry argument. This makes it more difficult to find all the
invariants for the second prolongation of G when n ≥ 4. Nevertheless, we do have
the following result which is solely based on a symmetry argument.

Theorem 7. For n ≥ 3, a fundamental set of invariants of the second prolongation

of G includes all the invariants of type Tij, Kij and Lijk of (5.6), whose total

number is n(n2 + n− 2)/2.

Indeed, this result clearly follows from (5.6) and the symmetry inherent in (1.2),
by noting that the total number of the Tij ,Kij and Lijk for n ≥ 3 is

2

(

n

2

)

+ 2

(

n

2

)

+ 3

(

n

3

)

=
1

2
n(n2 + n− 2). (5.7)

Although we may not find all the invariants of the second prolongation of G for
larger values of n > 3 using only symmetry arguments, it should be possible to
predict their number. Denote by Mn,j

k the number of fundamental invariants of the
kth prolongation of equation (1.2) (with n independent variables) involving terms of
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the form AI , where I is an index of the form i1i2 . . . ij with distinct ik ∈ {1, . . . , n}
for k = 1, . . . , j. Note that the corresponding type of functions appears for the first
time as invariants of (1.2) when the number of independent variables is j, where
2 ≤ j ≤ n. If we also denote by Mn

k the number of invariants of the kth prolongation

for n variables, then a closer look at equation (5.6) suggests that An,j
2 = j

(

n
j

)

and

Mn
2 = Mn

1 +Wn, where

Wn = An,2
2 +An,3

2 + · · · +An,n
2 =

n
∑

j=2

j

(

n

j

)

.

Using the properties of binomial coefficients, it can be shown that
∑n

2 j
(

n
j

)

equals

n(2n−1 − 1). Since by Theorem 3 we have Mn
1 = n(n− 1), our conjecture follows.

Conjecture. For any value n of independent variables in equation (1.2), the num-

ber Mn
2 of functionally independent invariants of the second prolongation of G is

n(2n−1 + n− 2).

This conjecture says that M4
2 = 40, and M5

2 = 95. By a result of Lie (see [6]), it
is possible to find differential invariants of G of higher order than 2 using invariant
differentiation, but we will not discuss that here.

6. Properties of the invariants

It follows from Theorem 1 that every element of the equivalence transformations
group G of equation (1.2) can be represented by an invertible map φ of the form

φ : R
n → R

n : X = (x1, . . . , xn) 7→ Y = φ(X) ≡ (φ1(x1), . . . , φn(xn)).

That is, the ith component of φ depends only on the single variable xi. In a given
coordinate system X = (x1, . . . , xn), each equation of the form (1.2) can be rep-
resented by the n-tuple (Ai(X))n

i=1 or just (Ai(X)). It follows from equation (2.4)
that under the action of φ ∈ G, the differential equation (Ai(X)) is mapped to the
differential equation (Bi(Y )) = φ · (Ai(X)), where

Bi(Y ) = Ai(φ
−1(Y ))φi ′(ψi(Y )) =

Ai(ψ(Y ))

ψi ′(yi)
,

and where ψ = φ−1. If θ is any other element of G, and Id is the identity transfor-
mation, it is easy to see that

Id ·(Ai(X)) = (Ai(X)), and θ · (φ · (Ai(X))) = θ ◦ φ · (Ai(X)). (6.1)

Thus if we denote by En the variety of all differential equations of the form (1.2),
then (6.1) shows that the action of G on M induces another group action of G on
En. This yields a partition of En into orbits which can be described by the original
action of G on M. For a given element (Ai(X)) in En, we set

TA
ij = AijAj/Ai.

Theorem 8. Suppose that the coefficients Ai, for n = 1, . . . , n in equation (1.2)
are non vanishing and that exactly p of the functions Aij in the expression of the

generators Vξi ′ of the first prolongation of G in (4.3) vanish identically. Then two

differential equations (Ai(X)) and (Bi(X)) are equivalent, i.e. they belong to the

same orbit of the first prolongation of G if and only if

TA
ij (X) = TB

ij (X)
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for all of the n(n− 1) − p nonzero such functions TA
ij and TB

ij .

Proof. If the coefficients Ai of (1.2) are non vanishing, then diag {A1, . . . , An} has
constant rank n, and by the expression of the generators in (4.3), G acts semi-
regularly. More over, the expression of the corresponding invariant functions in
(4.5) shows that this action is regular. Since the invariants of G are actually
the invariants of the induced group action of G on En, the result follows from
a theorem of [10, Theorem 2.34] stating that for regular group actions, two points
lie in the same orbit if and only if they take on the same values under all invariant
functions. �

7. Concluding Remarks

It follows from Theorem 8 above that all differential equations (Ai(X)) where
Ai = Ai(x

i) depends on xi alone are equivalent. The expression of the generators
in (4.3) shows that the action of G restricted to this family of equations has no
invariant of any order.
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