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Notation

N := {1, 2, 3, ...} natural numbers
K× := {x ∈ K : x 6= 0}, K a field
A× := {x ∈ A : (∃y ∈ R)xy = yx = 1}, unit group of a unital algebra

For subsets A,B ⊆ G of a group:
A−1 := {a−1 : a ∈ A}
AB := {ab : a ∈ A, b ∈ B}
The identity element of a group G is usually denoted 1. If G is abelian and the product
is written as addition, we write 0 for the identity element.
For A = (aij)i,j=1,...,n ∈Mn(C): A> = (aji), A = (aij), A∗ = A

>
= (aji).



Chapter 1

Topological Groups

1.1 Definitions and Examples

Definition 1.1.1. A topological group is a pair (G, τ) of a group G and a Hausdorff
topology τ for which the group operations

mG : G×G→ G, (x, y) 7→ xy and ηG : G→ G, x 7→ x−1

are continuous if G×G carries the product topology. Then we call τ a group topology
on the group G.

Remark 1.1.2. The continuity of the group operations can also be translated into
the following conditions which are more direct than referring to the product topology
on G. The continuity of the multiplication mG in (x, y) ∈ G×G means that for each
neighborhood V of xy there exist neighborhoods Ux of x and Uy of y with UxUy ⊆ V .
Similarly, the continuity of the inversion map ηG in x means that for each neighborhood
V of x−1, there exist neighborhoods Ux of x with U−1

x ⊆ V .

Remark 1.1.3. For a group G with a topology τ , the continuity of mG and ηG already
follows from the continuity of the single map

ϕ : G×G→ G, (g, h) 7→ gh−1.

In fact, if ϕ is continuous, then the inversion ηG(g) = g−1 = ϕ(1, g) is the composition
of ϕ and the continuous map G → G × G, g 7→ (1, g). The continuity of ηG further
implies that the product map

idG×ηG : G×G→ G×G, (g, h) 7→ (g, h−1)

is continuous, and therefore mG = ϕ ◦ (idG×ηG) is continuous.

Remark 1.1.4. Every subgroup of a topological group is a topological group with
respect to the subspace topology.

1



2 CHAPTER 1. TOPOLOGICAL GROUPS

Example 1.1.5. (1) The additive group (X,+) of every normed space (X, ‖ · ‖) is a
topological group because addition and negation are continuous maps. In particular,
(Rn,+) is an abelian topological group with respect to any metric defined by a norm.

(2) (C×, ·) is a topological group and the circle group T := {z ∈ C× : |z| = 1} is a
compact subgroup.

(3) The group GLn(R) of invertible (n × n)-matrices is a topological group with
respect to matrix multiplication. The continuity of the inversion follows from Cramer’s
Rule, which provides an explicit formula for the inverse in terms of determinants: For
g ∈ GLn(R), the inverse of g is given by

(g−1)ij =
(−1)i+j

det g
det(gmk)m 6=j,k 6=i.

(see Proposition 1.1.9 for a different argument).
(4) Any group G is a topological group with respect to the discrete topology.

Lemma 1.1.6. Let G be a topological group. Then the following assertions hold:

(i) The left multiplication maps λg : G→ G, x 7→ gx are homeomorphisms.

(ii) The right multiplication maps ρg : G→ G, x 7→ xg are homeomorphisms.

(iii) The conjugation maps cg : G→ G, x 7→ gxg−1 are homeomorphisms.

(iv) The inversion map ηG : G→ G, x 7→ x−1 is a homeomorphism.

Proof. (i) The continuity of the multiplication map implies by restriction that the
maps λg are continuous. Since λg−1 is the inverse of λg, it follows that each λg is a
topological isomorphism, i.e., a homeomorphism.

(ii) is proved as in (i).
(iii) follows from (i) and (ii).
(iv) follows from the continuity of ηG and η2

G = idG.

We have already argued above that the group GLn(R) carries a natural group
topology. This group is the unit group of the algebra Mn(R) of real (n× n)-matrices.
As we shall see now, there is a vast generalization of this construction.

Definition 1.1.7. A Banach algebra is a triple (A,mA, ‖·‖) of a Banach space (A, ‖·‖),
together with an associative bilinear multiplication

mA : A×A → A, (a, b) 7→ ab

for which the norm ‖ · ‖ is submultiplicative, i.e.,

‖ab‖ ≤ ‖a‖ · ‖b‖ for a, b ∈ A.

By abuse of notation, we shall call A a Banach algebra, if the norm and the multipli-
cation are clear from the context.

A unital Banach algebra is a pair (A,1) of a Banach algebra A and an element
1 ∈ A satisfying 1a = a1 = a for each a ∈ A.



1.1. DEFINITIONS AND EXAMPLES 3

The subset
A× := {a ∈ A : (∃b ∈ A) ab = ba = 1}

is called the unit group of A (cf. Exercise 1.1.8).

Remark 1.1.8. In a Banach algebra A, the multiplication is continuous because
an → a and bn → b implies ‖bn‖ → ‖b‖ and therefore

‖anbn − ab‖ = ‖anbn − abn + abn − ab‖ ≤ ‖an − a‖ · ‖bn‖+ ‖a‖ · ‖bn − b‖ → 0.

In particular, left and right multiplications

λa : A → A, x 7→ ax, and ρa : A → A, x 7→ xa,

are continuous with
‖λa‖ ≤ ‖a‖ and ‖ρa‖ ≤ ‖a‖.

Proposition 1.1.9. The unit group A× of a unital Banach algebra is an open subset
and a topological group with respect to the topology defined by the metric d(a, b) :=
‖a− b‖.

Proof. The proof is based on the convergence of the Neumann series
∑∞
n=0 x

n for
‖x‖ < 1. For any such x we have

(1− x)
∞∑
n=0

xn =
( ∞∑
n=0

xn
)

(1− x) = 1,

so that 1− x ∈ A×. We conclude that the open unit ball B1(1) is contained in A×.
Next we note that left multiplications λg : A → A with elements g ∈ A× are contin-

uous (Remark 1.1.8), hence homeomorphisms because λ−1
g = λg−1 is also continuous.

Therefore gB1(1) = λgB1(1) ⊆ A× is an open subset, showing that g is an interior
point of A×. Therefore A× is open.

The continuity of the multiplication of A× follows from the continuity of the mul-
tiplication on A by restriction and corestriction (Remark 1.1.8). The continuity of the
inversion in 1 follows from the estimate

‖(1− x)−1 − 1‖ = ‖
∞∑
n=1

xn‖ ≤
∞∑
n=1

‖x‖n =
1

1− ‖x‖
− 1 =

‖x‖
1− ‖x‖

,

which tends to 0 for x → 0. The continuity of the inversion in g0 ∈ A× now follows
from the continuity in 1 via

g−1
n − g−1 = g−1(gg−1

n − 1) = g−1((gng−1)−1 − 1)

because left and right multiplication with g−1 is continuous. This shows that A× is a
topological group (cf. Exercise 1.1.2 for shortcuts in this argument).
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Example 1.1.10. (a) If (X, ‖·‖) is a Banach space, then the space L(X) of continuous
linear operators A : X → X is a unital Banach algebra with respect to the operator
norm

‖A‖ := sup{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1}

and composition of maps. Note that the submultiplicativity of the operator norm, i.e.,

‖AB‖ ≤ ‖A‖ · ‖B‖,

is an immediate consequence of the estimate

‖ABx‖ ≤ ‖A‖ · ‖Bx‖ ≤ ‖A‖ · ‖B‖ · ‖x‖ for x ∈ X.

In this case the unit group is also denoted GL(X) := L(X)×.
(b) Specializing (a) to Kn (K = R,C), we see that the algebra A = Mn(K) of

(n × n)-matrices with entries in K is a Banach algebra with respect to the operator
norm

‖A‖ := sup{‖Ax‖ : ‖x‖ ≤ 1, x ∈ Kn‖,

where ‖ · ‖ is any norm on Kn.
(c) If X is a compact space and A a Banach algebra, then the space C(X,A) of

A-valued continuous functions on X is a Banach algebra with respect to pointwise mul-
tiplication (fg)(x) := f(x)g(x) and the norm ‖f‖ := supx∈X ‖f(x)‖ (Exercise 1.1.7).
Its unit group is

C(X,A)× = C(X,A×),

because the continuity of the inversion in A× implies that for each A×-valued function
f , the pointwise inverse also is continuous.

(d) An important special case of (b) arises for A = Mn(C), where we obtain
C(X,Mn(C))× = C(X,GLn(C)) = GLn(C(X,C)).

Exercises for Section 1.1

Exercise 1.1.1. Let G be a group, endowed with a topology τ . Show that (G, τ) is
a topological group if the following conditions are satisfied:

(i) The left multiplication maps λg : G→ G, x 7→ gx are continuous.

(ii) The inversion map ηG : G→ G, x 7→ x−1 is continuous.

(iii) The multiplication mG : G×G→ G is continuous in (1,1).

Hint: Use (i) and (ii) to derive that all right multiplications and hence all conjugations
are continuous.

Exercise 1.1.2. Let G be a group, endowed with a topology τ . Show that (G, τ) is
a topological group if the following conditions are satisfied:

(i) The left multiplication maps λg : G→ G, x 7→ gx are continuous.

(ii) The right multiplication maps ρg : G→ G, x 7→ xg are continuous.
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(iii) The inversion map ηG : G→ G is continuous in 1.

(iv) The multiplication mG : G×G→ G is continuous in (1,1).

Exercise 1.1.3. Let α : G→ H be a homomorphism of topological groups.

(1) α is continuous if and only if α is continuous in 1.

(2) α is open if and only if the image α(U) of each identity neighborhood U in G is
an identity neighborhood in H.

Exercise 1.1.4. Let α : G→ H be a bijective homomorphism of topological groups for
which there exists an identity neighborhood U inG which is mapped homeomorphically
on an identity neighborhood V := α(U) in H. Then α is a homeomorphism.

Exercise 1.1.5. Show that if (Gi)i∈I is a family of topological groups, then the prod-
uct group G :=

∏
i∈I Gi is a topological group with respect to the product topology.

Exercise 1.1.6. Let G and N be topological groups and suppose that the homomor-
phism α : G→ Aut(N) defines a continuous map

G×N → N, (g, n) 7→ α(g)(n).

Then N ×G is a group with respect to the multiplication

(n, g)(n′, g′) := (nα(g)(n′), gg′),

called the semidirect product of N and G with respect to α. It is denoted N oα G.
Show that it is a topological group with respect to the product topology.

A typical example is the group

Mot(E) := E oα O(E)

of affine isometries of a euclidean space E; also called the motion group. In this case
α(g)(v) = gv and Mot(E) acts on E by (b, g).v := b+ gv (hence the name).

Exercise 1.1.7. Let X be a compact space and A be a Banach algebra. Show that:

(a) The space C(X,A) of A-valued continuous functions on X is a complex associative
algebra with respect to pointwise multiplication (fg)(x) := f(x)g(x).

(b) ‖f‖ := supx∈X ‖f(x)‖ is a submultiplicative norm on C(X,A) for which C(X,A)
is complete, hence a Banach algebra. Hint: Continuous functions on compact
spaces are bounded and uniform limits of sequences of continuous functions are
continuous.

(c) C(X,A)× = C(X,A×).

Exercise 1.1.8. Let A be a complex Banach algebra over K ∈ {R,C}. If A has no
unit, we cannot directly associate a “unit group” to A. However, there is a different
way to do that by considering on A the multiplication

x ∗ y := x+ y + xy.

Show that:
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(a) The space A+ := A × K is a unital Banach algebra with respect to the multipli-
cation

(a, t)(a′, t′) := (aa′ + ta′ + t′a, tt′).

(b) The map η : A → A+, x 7→ (x, 1) is injective and satisfies η(x ∗ y) = η(x)η(y).
Conclude in particular that (A, ∗, 0) is a monoid, i.e., a semigroup with neutral
element 0.

(c) An element a ∈ A is said to be quasi-invertible if it is an invertible element in the
monoid (A, ∗, 0). Show that the set A× of quasi-invertible elements of A is an
open subset and that (A×, ∗, 0) is a topological group.

Exercise 1.1.9. If q : G → H is a surjective open morphism of topological groups,
then the induced map G/ ker q → H is an isomorphism of topological groups, where
G/ ker q is endowed with the quotient topology.

1.2 Subgroups

Throughout this section, G denotes a group and 1 its identity element. We call a
subset W ⊆ G symmetric if W = W−1 := {w−1 : w ∈ W}. For two subsets A,B ⊆ G
we write AB := {ab : a ∈ A, b ∈ B} for the product of the sets A and B.

Lemma 1.2.1. Let G be a topological group. Then the following assertions hold:

(i) Let K be a compact and V an open subset of G with K ⊆ V . Then there exists an
open U ∈ UG(1) with KU ⊆ V .

(ii) For each U ∈ UG(1) and n ∈ N there exists a symmetric W ∈ UG(1) with Wn ⊆ U .

(iii) If U ⊆ G is open and M ⊆ G, then MU and UM are open subsets of G.

(iv) If A,B ⊆ G are arcwise connected subsets, then AB is arcwise connected.

(v) For a subset S ⊆ G we have

S0 = {s ∈ S : (∃U ∈ UG(1)) sU ⊆ S} and S =
⋂
{SU : U ∈ UG(1)}.

Proof. (i) LetmG : G×G→ G denote the group multiplication. Thenm−1
G (V ) ⊆ G×G

is an open subset containing K × {1}. Hence there exists an open U ∈ UG(1) with
K × U ⊆ m−1

G (V ) (Lemma A.4.6), and this means KU ⊆ V .
(ii) Since inversion is a homeomorphism, for each U ∈ UG(1) the set U−1 also is

a neighborhood of 1 and therefore V := U ∩ U−1 ∈ UG(1). This means that every
1-neighborhood contains a symmetric one.

An easy induction implies that the n-fold multiplication map

Gn → G, (g1, . . . , gn)→ g1 · · · gn

is continuous. Hence there exists for each 1-neighborhood U a 1-neighborhood V with
V n ⊆ U . Now W := V ∩ V −1 is a symmetric 1-neighborhood with Wn ⊆ U .
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(iii) In view of Lemma 1.1.6, the sets mU ⊆ G are open, and MU is the union of
these sets, hence open. Likewise UM is open.

(iv) Since A and B are arcwise connected, the same holds for their topological
product A×B. Now the continuity of the multiplication map mG : G×G→ G implies
that AB = mG(A×B) is arcwise connected (Lemma A.5.3).

(v) In view of Lemma 1.1.6, s ∈ S0 is equivalent to s−1S ∈ UG(1). This immedi-
ately implies the description of S0.

For the description of the closure S, we note that for x ∈ G the condition x ∈ S is
equivalent to V ∩ S 6= ∅ for each V ∈ UG(x) = xUG(1). This means that xU ∩ S 6= ∅
for each 1-neighborhood U , which in turn is x ∈ SU−1. Since ηG is a homeomorphism,
for each 1-neighborhood U , the set U−1 also is a 1-neighborhood. Therefore

S =
⋂
{SU−1 : U ∈ UG(1)} =

⋂
{SW : W ∈ UG(1)}.

Closed subgroups

A subset S of a topological space X is called locally closed if for each s ∈ S there exists
a neighborhood U ∈ UX(s) for which U ∩ S is a closed subset of U .

Lemma 1.2.2. Let H be a subgroup of the topological group G.

(i) H is a subgroup of G.

(ii) If H is locally closed, then it is closed.

(iii) If H is open, then it is closed.

(iv) For each symmetric 1-neighborhood U ∈ UG(1) the set 〈U〉 :=
⋃
n∈N U

n is an
open subgroup of G.

Proof. (i) Since the map ϕ : G×G→ G, (x, y) 7→ xy−1 is continuous, we obtain

H ·H−1
= ϕ(H ×H) = ϕ(H ×H) ⊆ ϕ(H ×H) ⊆ H.

This implies that H
−1 ⊆ H and hence that H is a subgroup of G.

(ii) Let U ∈ UG(1) be open such that U ∩H is a closed subset of U . Further let
x ∈ H. Then x ∈ HU−1, so that there exists a u ∈ U with y := xu ∈ H. Then
u = x−1y ∈ U and u ∈ H ·H = H, so that

u ∈ H ∩ U = U ∩H ∩ U = U ∩H

implies x = yu−1 ∈ H.
(iii) The complement of H is the union of the cosets gH, g 6∈ H. Since all the

cosets gH are open (Lemma 1.1.6(ii)), the subgroup H is closed.
(iv) From the symmetry of U we derive (Un)−1 = (U−1)n = Un, showing that 〈U〉

is invariant under inversion. Therefore UnUm ⊆ Un+m implies that 〈U〉 is a subgroup
of G. Since 〈U〉 contains an open 1-neighborhood V , we have 〈U〉 = V 〈U〉, and this
set is open by Lemma 1.2.1(iii).
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Remark 1.2.3. A subgroup Γ of a topological group G said to be discrete if it is
discrete as a topological subspace. It is easy to see that this is equivalent to the
existence of a 1-neighborhood U ⊆ G with U ∩ Γ = {1}. In particular, Γ is locally
closed, hence closed by the preceding lemma.

Example 1.2.4. We consider the topological group G = (R,+). Suppose that {0} 6=
Γ ⊆ R is a subgroup. Then two cases occur:

Case 1: inf(R×+ ∩ Γ) = 0, i.e., there exists a sequence 0 < xn ∈ Γ with xn → 0.
Then Zxn ⊆ Γ holds for each n. For each open interval ]a, b[⊆ R and xn < b − a we
then obtain

∅ 6= Zxn∩]a, b[⊆ Γ∩]a, b[,

so that Γ is dense, i.e., Γ = R.
Case 2: d := inf(R×+ ∩ Γ) > 0. Then ] − d, d[∩Γ = {0} implies that Γ is discrete

and therefore closed. If d 6∈ Γ, then there exists a d′ ∈]d, 2d[∩Γ and likewise a d′′ ∈
]d, d′[∩Γ. Then 0 < d′ − d′′ < d contradicts the definition of d. This implies that
d ∈ Γ, and hence that Zd ⊆ Γ. To see that we actually have equality, let γ ∈ Γ and
k := max{n ∈ Z : nd ≤ γ}. Then γ−nd ∈ [0, d[∩Γ = {0} implies γ = nd. We conclude
that Γ = Zd is a cyclic group.

In particular, we have shown that all non-trivial closed subgroups of R are cyclic
and isomorphic to Z.

Lemma 1.2.5. Let θ ∈ R. Then Z + Zθ is dense in R if and only if θ is irrational.

Proof. Suppose first that Z+Zθ is not dense in R. Then it is discrete by Example 1.2.4,
hence of the form Zxo for some xo > 0. Then there exist k,m ∈ Z with

1 = kxo and θ = mxo.

We then obtain θ = m
k ∈ Q. If, conversely, θ = m

k ∈ Q, then Z + Zθ ⊆ 1
kZ is not dense

in R.

The dense wind

In this short subsection we discuss an important example of a subgroup of the 2-torus
T2 which is not closed. It is the simplest example of a non-closed, arcwise connected
subgroup.

Let

A =
{(

eit
√

2 0
0 eit

)
: t ∈ R

}
⊆ T2 :=

{(eir 0
0 eis

)
: r , s ∈ R

}
,

where T2 is the two-dimensional torus. We endow T2 with the subspace topology
inherited from M2(C).

Lemma 1.2.6. A is a dense subgroup of the 2-torus T2.
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Proof. We consider the map

Φ: R2 → T2, (r, s) 7→
(
e2πir 0

0 e2πis

)
which is a surjective continuous group homomorphism with kernel Z2. For L :=
R(
√

2, 1) and V = R(1, 0) we have R2 ∼= V ⊕ L. In view of

A = Φ(L) = Φ(L+ Z2),

it suffices to show that L+Z2 is dense in R2. From the direct decomposition R2 ∼= V ⊕L
and L ⊆ L+ Z2 we derive

L+ Z2 = L+ ((L+ Z2) ∩ V ),

and if p : R2 → V denote the projection map with kernel L, then

(L+ Z2) ∩ V = p(L+ Z2) = p(Z2).

It therefore suffices to show that p(Z2) is dense in V . From p(1, 0) = (1, 0) and
p(0, 1) = p((0, 1) − (

√
2, 1)) = −(

√
2, 0) we obtain p(Z2) = Z +

√
2Z, so that the

density of p(Z2) is a consequence of Lemma 1.2.5.

Arc components

Let G be a topological group. We write Ga for the arc component of the identity
element 1.

Lemma 1.2.7. Ga is a normal subgroup of G.

Proof. With Lemma 1.2.1(iv) we see that the product set GaGa ⊆ G is arcwise con-
nected. Since it contains 1 = 11, it follows that GaGa ⊆ Ga. Moreover, the continuous
inversion map η : G→ G, g 7→ g−1 maps Ga into an arcwise connected set G−1

a which
also contains 1 = 1−1 (Lemma A.5.3). Therefore G−1

a ⊆ Ga. Hence Ga is a subgroup
of G.

For each g ∈ G the conjugation automorphism cg : x 7→ gxg−1 is continuous and
fixes 1. So it maps Ga onto an arcwise connected set containing 1. We conclude that
cg(Ga) ⊆ Ga. This implies that Ga is a normal subgroup of G.

Definition 1.2.8. Since Ga is a normal subgroup of G, the set G/Ga of cosets of Ga
has a natural group structure. The group

π0(G) := G/Ga

is called the component group of G or the 0-th homotopy group of G.
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Connected components

Let G be a topological group. We write Go for the connected component of the identity
element 1.

Lemma 1.2.9. (i) Go is a closed normal subgroup of G.

(ii) Ga ⊆ Go.

Proof. (i) Similar arguments as in the proof of Lemma 1.2.7, using that continuous
maps map connected sets into connected sets (Lemma A.5.3), imply thatGo is a normal
subgroup of G. The closedness of Go follows from the closedness of all connected
components of a topological space (Definition A.5.5).

(ii) Finally the connectedness of Ga (Lemma A.5.3(b)) implies that Ga ⊆ Go.

In all the groups we shall be dealing with, the arc-component Ga will coincide with
Go because Ga is open.

Lemma 1.2.10. If Ga is open, then Ga = G0.

Proof. We have already seen that Ga ⊆ Go. Since all cosets gGa, g ∈ G0, are open
subsets of Go, the connectedness of Go implies that this partition is trivial. This means
that Ga = Go.

Exercises for Section 1.2

Exercise 1.2.1. (a) Let A = A−1 be a symmetric (arcwise) connected subset of the
topological group G containing 1. Then

H := 〈A〉 =
⋃
n∈N

An

is an (arcwise) connected subgroup of G.

(b) Show that the assumption 1 ∈ A in (a) necessary for the arcwise connectedness
of H. Consider the subset A := {g ∈ O2(R) : det(g) = −1} ⊆ G = O2(R).

Exercise 1.2.2. If G is a connected topological group and H ⊆ G an open subgroup,
then G = H.

Exercise 1.2.3. Let α : G→ H be a morphism of locally compact groups and assume
that there exists a relatively compact identity neighborhood U in G for which α(U)
is an identity neighborhood in H. Then α(G) is an open subgroup of H and the
corestriction map α : G→ α(G) is a homeomorphism.

Exercise 1.2.4. If G is a locally compact group, Go its identity component and the
group G/Go is countable, then G is the union of countably many compact subsets
(this property is called σ-compactness).

Exercise 1.2.5. A subset S of the topological space X is locally closed if and only if
there exists a closed subset C and an open subset O with S = C ∩O.
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Exercise 1.2.6. A morphism ϕ : G → H of topological groups is called an epimor-
phism if for any pair of morphisms f1, f2 : H → H ′ of topological groups the condition
f1 ◦ ϕ = f2 ◦ ϕ implies f1 = f2.

(1) Show that if ϕ has dense range in H, then ϕ is an epimorphism.

(2) Find an example of an epimorphism which is not surjective.

Exercise 1.2.7. Let D ⊆ Rn be a discrete subgroup. Then there exist linearly
independent elements v1, . . . , vk ∈ Rn with D =

∑k
i=1 Zvi. Hint: Use induction on

dim spanD. If n > 1, and D spans Rn, then pick linearly independent elements
f1, . . . , fn−1 ∈ D and apply induction on F ∩ D for F := span{f1, . . . , fn−1}, where
F is a hyperplane in Rn. Now choose fn ∈ D with D = Zfn + D ∩ F . This can be
done by assuming that F = Rn−1 and then choosing fn with minimal positive nth
component (Verify the existence!).

Exercise 1.2.8. Let G be a connected topological group and Γ E G a discrete normal
subgroup. Then Γ is central.

1.3 Some Concrete Examples

Definition 1.3.1. We introduce the following notation for some important subgroups
of GLn(K), K ∈ {R,C}:

(1) The special linear group : SLn(K) := {g ∈ GLn(K) : det g = 1}.

(2) The orthogonal group : On(K) := {g ∈ GLn(K) : g> = g−1}.

(3) The special orthogonal group : SOn(K) := SLn(K) ∩On(K).

(4) The unitary group : Un(K) := {g ∈ GLn(K) : g∗ = g−1}. Note that Un(R) =
On(R), but On(C) 6= Un(C).

(5) The special unitary group : SUn(K) := SLn(K) ∩Un(K).

To see that these sets are indeed subgroups, one simply has to use that (ab)> =
b>a>, ab = ab and that

det : GLn(K)→ (K×, ·)

is a group homomorphism.

Lemma 1.3.2. (a) The groups Un(C),SUn(C),On(R) and SOn(R) are compact.
(b) The groups SLn(K) and On(C) are non-compact for n ≥ 2.

Proof. (a) Since all these groups are subsets of Mn(C) ∼= Cn2
, we have to show that

they are closed and bounded.
Bounded: In view of

SOn(R) ⊆ On(R) ⊆ Un(C) and SUn(C) ⊆ Un(C),
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it suffices to see that Un(C) is bounded. Let g1, . . . , gn denote the rows of the matrix
g ∈Mn(C). Then g∗ = g−1 is equivalent to gg∗ = 1, which means that g1, . . . , gn form
an orthonormal basis for Cn with respect to the scalar product 〈z, w〉 =

∑n
j=1 zjwj

which induces the norm ‖z‖ =
√
〈z, z〉. Therefore g ∈ Un(C) implies ‖gj‖ = 1 for

each j, so that Un(C) is bounded.
Closed: The functions

f, h : Mn(K)→Mn(K), f(A) := AA∗ − 1 and h(A) := AA> − 1

are continuous. Therefore the groups

Un(K) := f−1(0) and On(K) := h−1(0)

are closed. Likewise SLn(K) is closed, and therefore the groups SUn(C) and SOn(R)
are also closed because they are intersections of closed subsets.

(b) Since SL2(R) ⊆ SL2(K) ⊆ SLn(K) and O2(C) ⊆ On(C), we may assume that
n = 2 and show that SL2(R) and O2(C) are unbounded.

For SL2(R) this follows from(
1 x
0 1

)
∈ SL2(R), for x ∈ R,

and for O2(C) this follows from(
cosh(t) −i sinh(t)
i sinh(t) cosh(t)

)
∈ O2(C) for t ∈ R.

.

Proposition 1.3.3. (a) The group Un(C) is arcwise connected.
(b) The group On(R) has the two arc components

SOn(R) and On(R)− := {g ∈ On(R) : det g = −1}.

Proof. (a) First we consider Un(C). To see that this group is arcwise connected, let
g ∈ Un(C). Then there exists an orthonormal basis v1, . . . , vn of eigenvectors of g. Let
λ1, . . . , λn denote the corresponding eigenvalues. We write u := (v1, . . . , vn) ∈ Un(C)
for the matrix whose columns are v1, . . . , vn. Then u−1gu = diag(λ1, . . . , λn) and the
unitarity of g implies that |λj | = 1, so that we find θj ∈ R with λj = eθji. Now we
define a continuous curve

γ : [0, 1]→ Un(C), γ(t) := udiag(eitθ1i, . . . , eitθn)u−1.

We then have γ(0) = 1, γ(1) = g, and each γ(t) is unitary.
(b) For g ∈ On(R) we have gg> = 1 and therefore 1 = det(gg>) = (det g)2. This

shows that
On(R) = SOn(R)∪̇On(R)−

and both sets are closed in On(R) because det is continuous. Therefore On(R) is
not connected and hence not arcwise connected. If we show that SOn(R) is arcwise
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connected and x, y ∈ On(R)−, then 1, x−1y ∈ SOn(R) can be connected by an arc
γ : [0, 1] → SOn(R), and then t 7→ xγ(t) defines an arc [0, 1] → On(R)− connecting x
to y. So it remains to show that SOn(R) is arcwise connected.

Let g ∈ SOn(R). From Linear Algebra we know that there exists an orthogonal
matrix u such that ugu−1 has the form

cosα1 − sinα1

sinα1 cosα1

. . .
cosαm − sinαm
sinαm cosαm

−1
. . .

−1
1

. . .
1



.

The determinant of each two-dimensional block is 1, so that the determinant is the
product of all −1-eigenvalues. Hence their number is even, and we can write each
consecutive pair as a block(

−1 0
0 −1

)
=
(

cosπ − sinπ
sinπ cosπ

)
.

This shows that

ugu−1 =



cosα1 − sinα1

sinα1 cosα1

. . .
cosαm − sinαm
sinαm cosαm

1
. . .

1


.

Now we obtain an arc γ : [0, 1]→ SOn(R) with γ(0) = 1 and γ(1) = g by

γ(t) := u−1



cos tα1 − sin tα1

sin tα1 cos tα1

. . .
cos tαm − sin tαm
sin tαm cos tαm

1
. . .

1


u.
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1.4 From Local Data to Group Topologies

Lemma 1.2.1(v) implies in particular that a subset O ⊆ G is open if and only if for
each g ∈ O the set g−1O is a neighborhood of the identity element e. Let U := UG(1)
denote the set of all neighborhoods of 1. Then the considerations from above imply
that the topology τ on G is defined by

O ⊆ G open ⇐⇒ (∀g ∈ O)(∃U ∈ U(1)) gU ⊆ O. (1.1)

This means that the topology on G is completely determined by the set U. In this
sense we think of a topological group as a structure consisting of a group G and an
additional structure encoded in the system U of 1-neighborhoods. Our next step is to
make it more precise which systems of subsets occur as U for a group topology on G.

The following lemma describes how to construct a group topology on a group G,
i.e., a Hausdorff topology for which the group multiplication and the inversion are
continuous, from a filter basis of subsets which then becomes a filter basis of identity
neighborhoods for the group topology.

Definition 1.4.1. Let X be a set. A set F ⊆ P(X) of subsets of X is called a filter
basis if the following conditions are satisfied:

(F1) F 6= ∅.

(F2) Each set F ∈ F is nonempty.

(F3) A,B ∈ F⇒ (∃C ∈ F) C ⊆ A ∩B.

Example 1.4.2. (a) If (X, τ) is a topological space and x ∈ X, then the set UX(x) =
U(x) of all neighborhoods of x is a filter, called the neighborhood filter of x.

Any non-empty system B of neighborhoods of x with the property

(∀U ∈ U(x)) (∃B ∈ B) B ⊆ U

is called a basis of neighborhoods of x. This implies that B is a filter basis generating
the filter U(x).

Lemma 1.4.3. Let G be a topological group and F be a filter basis of UG(e). Then

(U0)
⋂

F = {1}.

(U1) (∀U ∈ F)(∃V ∈ F) V V ⊆ U.

(U2) (∀U ∈ F)(∃V ∈ F) V −1 ⊆ U.

(U3) (∀U ∈ F)(∀g ∈ G)(∃V ∈ F) gV g−1 ⊆ U.

Proof. (U0) follows from the fact that G is separated.
(U1) follows from the continuity of the multiplication map in (1,1).
(U2) follows from the continuity of the inversion map in 1.
(U3) follows from the continuity of the conjugation map cg in 1.
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Lemma 1.4.4. Let G be a group and F a filter basis of subsets of G satisfying

(U0)
⋂
F = {1}.

(U1) (∀U ∈ F)(∃V ∈ F) V V ⊆ U.

(U2) (∀U ∈ F)(∃V ∈ F) V −1 ⊆ U.

(U3) (∀U ∈ F)(∀g ∈ G)(∃V ∈ F) gV g−1 ⊆ U.

Then there exists a unique group topology τ on G such that F is a basis of 1-neighborhoods
in G. This topology is given by

τ = {O ⊆ G : (∀g ∈ O)(∃V ∈ F) gV ⊆ O}.

Proof. First we show that τ is a topology. Clearly ∅, G ∈ τ . Let (Uj)j∈J be a family
of elements of τ and U :=

⋃
j∈J Uj . For each g ∈ U , there exists a j0 ∈ J with g ∈ Uj0

and a V ∈ F with gV ⊆ Uj0 ⊆ U . Thus U ∈ τ and we see that τ is stable under
arbitrary unions.

If U1, U2 ∈ τ and g ∈ U1 ∩ U2, there exist V1, V2 ∈ F with gVi ⊆ Ui. Since F is
a filter basis, there exists V3 ∈ F with V3 ⊆ V1 ∩ V2, and then gV3 ⊆ U1 ∩ U2. We
conclude that U1 ∩ U2 ∈ τ , and hence that τ is a topology on G.

We claim that the interior U◦ of a subset U ⊆ G is given by

U1 := {u ∈ U : (∃V ∈ F) uV ⊆ U}.

In fact, if there exists a V ∈ F with uV ⊆ U , then we pick a W ∈ F with WW ⊆ V
and obtain uWW ⊆ U , so that uW ⊆ U1. Hence U1 ∈ τ , i.e., U1 is open, and it clearly
is the largest open subset contained in U , i.e., U1 = U◦. It follows in particular that
U is a neighborhood of g if and only if g ∈ U◦, and we see in particular that F is a
neighborhood basis at 1. The property

⋂
F = {1} implies that for x 6= y there exists

U ∈ F with y−1x 6∈ U . For V ∈ F with V V ⊆ U and W ∈ F with W−1 ⊆ V we then
obtain y−1x 6∈ VW−1, i.e., xW ∩ yV = ∅. Thus (G, τ) is a Hausdorff space.

To see that G is a topological group, we have to verify that the map

f : G×G→ G, (x, y) 7→ xy−1

is continuous. So let x, y ∈ G, U ∈ F and pick V ∈ F with yV y−1 ⊆ U and W ∈ F
with WW−1 ⊆ V (cf. (U2/3)). Then

f(xW, yW ) = xWW−1y−1 = xy−1y(WW−1)y−1 ⊆ xy−1yV y−1 ⊆ xy−1U

implies that f is continuous in (x, y).
The preceding arguments show that τ is a group topology on G for which F is a

basis of 1-neighborhoods. That τ is uniquely determined by this property follows from
(1.1).

Lemma 1.4.5. Let G be a group and U = U−1 a symmetric subset containing 1. We
further assume that U carries a Hausdorff topology for which
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(T1) D := {(x, y) ∈ U × U : xy ∈ U} is an open subset of U × U and the group
multiplication mU : D → U, (x, y) 7→ xy is continuous,

(T2) the inversion map ιU : U → U, u 7→ u−1 is continuous, and

(T3) for each g ∈ G, there exists an open 1-neighborhood Ug in U with cg(Ug) ⊆ U ,
such that the conjugation map cg : Ug → U, x 7→ gxg−1 is continuous.

Then there exists a unique group topology on G for which the inclusion map U ↪→ G
is a homeomorphism onto an open subset of G.

If, in addition, U generates G, then (T1/2) imply (T3).

Proof. First we consider the filter basis F of 1-neighborhoods in U . Then (T1) implies
(U1), (T2) implies (U2), and (T3) implies (U3). Moreover, the assumption that U
is Hausdorff implies that

⋂
F = {1}. Therefore Lemma 1.4.4 implies that G carries

a unique structure of a (Hausdorff) topological group for which F is a basis of 1-
neighborhoods.

We claim that the inclusion map U → G is an open embedding. So let x ∈ U .
Then

Ux := U ∩ x−1U = {y ∈ U : (x, y) ∈ D}

is open in U and λx restricts to a continuous map Ux → U with image Ux−1 . Its inverse
is also continuous. Hence λUx : Ux → Ux−1 is a homeomorphism. We conclude that the
sets of the form xV , where V a neighborhood of 1, form a basis of neighborhoods of
x in the topological space U . Hence the inclusion map U ↪→ G is an open embedding.

Suppose, in addition, that G is generated by U . For each g ∈ U , there exists an
open 1-neighborhood Ug with gUg×{g−1} ⊆ D. Then cg(Ug) ⊆ U , and the continuity
of mU implies that cg|Ug : Ug → U is continuous.

Hence, for each g ∈ U , the conjugation cg is continuous in a neighborhood of 1.
Since the set of all these g is a submonoid of G containing U , it contains Un for each
n ∈ N, hence all of G because G is generated by U = U−1. Therefore (T3) follows
from (T1) and (T2).

Quotient groups

Proposition 1.4.6. Let G be a topological group and H E G a closed normal sub-
group. Then the quotient topology turns G/H into a topological group. The quotient
homomorphism q : G→ G/H, g 7→ gH is continuous and open.

Proof. On G/H we consider the filter basis

F := {UH : U ∈ UG(1)}

and verify the conditions (U0)-(U3) from Lemma 1.4.4.
(U0):

⋂
F =

⋂
U∈UG(1) UH = H = H follows from Lemma 1.2.1.

(U1) follows from (V H)(V H) = V 2H ⊆ UH for V 2 ⊆ U .
(U2) follows from (UH)−1 = HU−1 = U−1H.
(U3) follows from (gH)(UH)(gH)−1 = (gUg−1)H for g ∈ G.
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Now Lemma 1.4.4 implies the existence of a unique group topology on G/H for
which F is a basis of UG/H(1).

We consider the quotient homomorphism q : G → G/H. Then q−1(UH) contains
U for each U ∈ UG(1), and therefore q is continuous in 1, hence continuous (Exer-
cise 1.1.3). Moreover, for each open e-neighborhood U ⊆ G the set

q(U) = UH

is an identity neighborhood in G/H, showing that q is open (Exercise 1.1.3).
If O ⊆ G/H is an open subset, then q−1(O) is open because q is continuous.

If, conversely, q−1(O) is open for a subset O ⊆ G/H, then O = q(q−1(O)) and the
openness of q entail that O is open. Therefore the topology on G/H coincides with the
quotient topology with respect to the equivalence relation x ∼ y :⇔ xH = yH.

Homomorphisms of topological groups

In the following we call a continuous homomorphism ϕ : G→ H of topological groups
simply a morphism of topological groups. These are the mappings between topological
groups which are compatible with the topological structure and the group structure.
In the same spirit an isomorphism of topological groups is a morphism ϕ : G→ H for
which there exists a morphism ψ : H → G with ϕ ◦ ψ = idH and ψ ◦ ϕ = idG. This is
equivalent to ϕ being bijective, continuous, and open.

We recall that for each morphism ϕ : G → H of topological groups, the kernel
ker(ϕ) = ϕ−1(1) is a closed normal subgroup, so that the quotient group G/ kerϕ
inherits a natural Hausdorff group topology. Let π : G→ G/ kerϕ, g 7→ g ·kerϕ denote
the quotient map. Then π is open and continuous (Proposition 1.4.6), and ϕ induces
an injective group homomorphism

ϕ : G/ kerϕ→ H, g · kerϕ 7→ ϕ(g) satisfying ϕ = ϕ ◦ π.

This is called the canonical factorization of ϕ, because it expresses ϕ as a composition
of a surjective open morphism and an injective morphism (Verify the continuity of ϕ!).

Lemma 1.4.7. For a surjective morphism ϕ : G→ H of topological groups the follow-
ing are equivalent:

(i) ϕ is open.

(ii) The induced injective morphism ϕ : G/ kerϕ → H, g kerϕ 7→ ϕ(g) is an isomor-
phism of topological groups.

Proof. Let π : G→ G/ kerϕ denote the quotient map and recall from Proposition 1.4.6
that π is an open morphism of topological groups satisfying ϕ ◦π = ϕ. The continuity
of the group homomorphism ϕ follows from the universal property of the quotient
topology on G/ kerϕ and the continuity of ϕ = ϕ ◦ π.

(i)⇒ (ii): Since ϕ is a bijective morphism of topological groups, it suffices to show
that ϕ is an open map. So let O ⊆ G/ kerϕ be an open set. Then

ϕ(O) = ϕ(π−1(O))
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is an open subset of H because ϕ is open and π is continuous.
(ii)⇒ (i): Since ϕ = ϕ◦π is a composition of two open maps, it is an open map.

Example 1.4.8. (The torus groups) We consider the n-torus

Tn := {z ∈ Cn : (∀j)|zj | = 1},

which is a compact abelian group. We have a surjective continuous homomorphism

q : Rn → Tn, x 7→ (e2πix1 , . . . , e2πixn)

whose kernel is Zn. We claim that the induced homomorphism

q : Rn/Zn → Tn, x = x+ Zn 7→ q(x)

is a homeomorphism, hence an isomorphism of topological groups. We have already
seen above that q is continuous. By definition, it is bijective.

Finally we observe that Rn/Zn = q([0, 1]n), and since the cube [0, 1]n is compact,
the quotient group Rn/Zn is compact. Now our claim follows from the fact that con-
tinuous bijections between compact spaces are homeomorphisms (Proposition A.4.4).

Exercises for Section 1.4

Exercise 1.4.1. Let H be a closed subgroup of the topological group G. We endow
the coset space G/H with the quotient topology and consider the left multiplication
action σ : G×G/H → G/H, (g, xH) 7→ gxH. Show that:

(1) The quotient map q : G→ G/H, g 7→ gH is an open continuous map.

(2) The action σ : G×G/H → G/H is continuous.

Exercise 1.4.2. Let
Sn := {x ∈ Rn+1 : ‖x‖2 = 1}

denote the n-sphere. Show that

(i) σ(g, x) := gx defines a continuous action of G := On+1(R) on Sn.

(ii) This action is transitive.

(iii) The stabilizer Ge1 of the first basis vector e1 is isomorphic to On(R).

(iv) The orbit map On+1(R)→ Sn, g 7→ ge1 factors through a homeomorphism

On+1(R)/On(R)→ Sn.



Chapter 2

The Exponential Function of a
Banach Algebra

In this chapter we study one of the central tools in Lie theory: the exponential function
of a Banach algebra, the natural generalization of the matrix exponential function. It
has various applications in the structure theory of Lie groups. First of all, it is naturally
linked to one-parameter subgroups, and it turns out that the local group structure of
A× for a unital Banach algebra A in a neighborhood of the identity is determined by
its one-parameter subgroups via the Hausdorff series.

In Section 2.1, we discuss some basic properties of the exponential function of A
and in Section 2.2 we then turn to the logarithm function.

Throughout we shall use the concept of a smooth function on a domain in a Banach
space for which we refer to Appendix B.

2.1 Elementary Properties of the Exponential Func-
tion

Let A be a unital Banach algebra. For x ∈ A we define

ex : =
∞∑
k=0

1
k!
xk. (2.1)

The absolute convergence of the series on the right follows directly from the estimate

∞∑
k=0

1
k!
‖xk‖ ≤

∞∑
k=0

1
k!
‖x‖k = e‖x‖

and the Comparison Test for absolute convergence of a series in a Banach space. We
define the exponential function of A by

exp: A → A, exp(x) := ex.

19
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Lemma 2.1.1. Let x, y ∈ A.

(i) If xy = yx, then exp(x+ y) = expx exp y.

(ii) exp(A) ⊆ A×, exp(0) = 1, and (expx)−1 = exp(−x).

(iii) For g ∈ A× we have gexg−1 = egxg
−1

.

(iv) exp is smooth.

(v) d exp(0) = idA, and for xy = yx we have

d exp(x)y = exp(x)y = y exp(x). (2.2)

Proof. (i) Using the general form of the Cauchy Product Formula (Exercise 2.1.2), we
obtain

exp(x+ y) =
∞∑
k=0

(x+ y)k

k!
=
∞∑
k=0

1
k!

k∑
`=0

(
k

`

)
x`yk−`

=
∞∑
k=0

k∑
`=0

x`

`!
yk−`

(k − `)!
=
( ∞∑
p=0

xp

p!

)( ∞∑
`=0

y`

`!

)
.

(ii) From (i) we derive in particular expx exp(−x) = exp 0 = 1, which implies (ii).
(iii) is a consequence of gxng−1 = (gxg−1)n and the continuity of the conjugation

map cg(x) := gxg−1 on A.
(iv) For this point we shall use the tools from Appendix B. We write the exponential

function as exp(x) =
∑∞
n=0 cn(x, . . . , x) for

cn(x1, . . . , xn) :=
1
n!
x1 · · ·xn.

Then each cn : An → A is a continuous n-linear function with ‖cn‖ ≤ 1/n!. In
particular,

∑
n ‖cn‖rn converges for every r > 0, so that Theorem B.3.7 implies that

exp is smooth with

d exp(0) =
∑
n

dcn(0).

As cn is n-linear, we have dcn(0) = 0 for n > 1 (cf. Lemma B.2.3), so that the only
contribution comes from c1(x) = x with dc1(0) = c1 = idA.

(v) We have just seen that d exp(0) = idA. Assume that x and y commute. For
t ∈ R, the relation

exp(x+ ty) = exp(x) exp(ty)

now leads to
d exp(x)y = exp(x)d exp(0)y = exp(x)y = y exp(x).
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Remark 2.1.2. (a) For n = 1, the exponential function

exp: R ∼= Mn(R)→ R× ∼= GLn(R), x 7→ ex

is injective, but this is not the case for n > 1. In fact,

exp
(

0 −2π
2π 0

)
= 1

follows from

exp
(

0 −t
t 0

)
=
(

cos t − sin t
sin t cos t

)
, t ∈ R.

This example is the real picture of the relation e2πi = 1.

Product and commutator formula

Definition 2.1.3. A one-parameter (sub)group of a group G is a group homomor-
phism γ : (R,+)→ G. The following result describes the differentiable one-parameter
subgroups of A×.

Remark 2.1.4. In the proof of the following theorem, we shall need Banach space
valued Riemann integrals. The existence of the Riemann integral∫ b

a

α(t) dt

of a continuous curve α : [a, b] → E with values in a Banach space E is proved with
exactly the same arguments as for real-valued integrals. If α is a step function, i.e.,
constant on the intervals ]xi, xi+1[ for some partition

a = x0 < x1 < . . . < xn = b

and ξ ∈]xi, xi+1[, then the integral is simply given by∫ b

a

α(t) dt =
n−1∑
i=0

(ti+1 − ti)α(ξi).

In this case the relation∥∥∥∫ b

a

α(t) dt
∥∥∥ ≤ n−1∑

i=0

(ti+1 − ti)‖α(ξi)‖ =
∫ b

a

‖α(t)‖ dt

follows from the triangle inequality. For general continuous curves, this relation is
obtained by passing to the limit on both sides:∥∥∥∫ b

a

α(t) dt
∥∥∥ ≤ ∫ b

a

‖α(t)‖ dt. (2.3)
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Theorem 2.1.5. (Automatic smoothness of one-parameter groups) For each x ∈ A,
the map

γx : (R,+)→ A, t 7→ exp(tx)

is a smooth group homomorphism solving the initial value problem

γx(0) = 1 and γ′x(t) = γx(t)x for t ∈ R.

Conversely, every continuous one-parameter group γ : R→ A× is of this form.

Proof. In view of Lemma 2.1.1(i) and the differentiability of exp in 0, we have

lim
h→0

1
h

(
γx(t+ h)− γx(t)

)
= lim
h→0

1
h

(
γx(t)γx(h)− γx(t)

)
= γx(t) lim

h→0

1
h

(
ehx − 1

)
= γx(t)x.

Hence γx is differentiable with γ′x(t) = xγx(t) = γx(t)x. From that it immediately
follows that γx is smooth with γ

(n)
x (t) = xnγx(t) for each n ∈ N.

We first show that each one-parameter group γ : R → A× which is differentiable
in 0 has the required form. For x := γ′(0), the calculation

γ′(t) = lim
s→0

γ(t+ s)− γ(t)
s

= lim
s→0

γ(t)
γ(s)− γ(0)

s
= γ(t)γ′(0) = γ(t)x

implies that γ is continuously differentiable. Therefore

d

dt
(e−txγ(t)) = −e−txxγ(t) + e−txγ′(t) = 0

implies that e−txγ(t) = γ(0) = 1 for each t ∈ R, so that γ(t) = etx.
Eventually we consider the general case, where γ : R → A× is only assumed to

be continuous. The idea is to construct a differentiable function γ̃ by applying a
smoothing procedure to γ and to show that the smoothness of γ̃ implies that of γ. So
let f : R→ R+ be a twice continuously differentiable function with f(t) = 0 for |t| > ε
and

∫
R f(t) dt = 1, where ε is chosen such that ‖γ(t)− 1‖ < 1

2 holds for |t| ≤ ε.
We define

γ̃(t) :=
∫

R
f(s)γ(t− s) ds = γ(t)

∫
R
f(s)γ(−s) ds = γ(t)

∫ ε

−ε
f(s)γ(−s) ds.

Here we use the existence of Riemann integrals of continuous curves with values in
Banach spaces (Remark 2.1.4). Change of Variables leads to

γ̃(t) =
∫

R
f(t− s)γ(s) ds,

which is differentiable because

γ̃(t+ h)− γ̃(t)
h

=
∫

R

f(t+ h− s)− f(t− s)
h

γ(s) ds



2.1. THE EXPONENTIAL FUNCTION 23

and the functions fh(t) := f(t+h)−f(t)
h converge uniformly for h → 0 to f ′ (this is a

consequence of the Mean Value Theorem). We further have∥∥∥∥∫ ε

−ε
f(s)γ(−s) ds− 1

∥∥∥∥ =
∥∥∥∥∫ ε

−ε
f(s)

(
γ(−s)− 1

)
ds

∥∥∥∥
≤
∫ ε

−ε
f(s)‖γ(−s)− 1‖ ds ≤ 1

2

∫ ε

−ε
f(s) ds = 1

2 ,

because of the inequality ‖
∫
h(s) ds‖ ≤

∫
‖h(s)‖ ds (cf. (2.3) in Remark 2.1.4).

Let g :=
∫ ε
−ε f(s)γ(−s) ds. In view of ‖g−1‖ ≤ 1

2 we have g ∈ A× (see the proof of
Proposition 1.1.9) and therefore γ(t) = γ̃(t)g−1. Now the differentiability of γ̃ implies
that γ is differentiable, and one can argue as above.

The local inverse

Proposition 2.1.6. There exists an open 0-neighborhood U in A, for which he map

exp |U : U → A×

is a diffeomorphism onto an open neighborhood of 1 in A×.

Proof. We have already seen that exp is a smooth map, and that d exp(0) = idA
(Lemma 2.1.1). Therefore the assertion follows from the Inverse Function Theorem.

If U is as in Proposition 2.1.6 and V = exp(U), we define

logV : = (exp |U )−1 : V → U ⊆ A.

We shall see below why this function deserves to be called a logarithm function.

Theorem 2.1.7. (No Small Subgroup Theorem) There exists an open neighborhood
V of 1 in A× such that {1} is the only subgroup of A× contained in V .

Proof. Let U be as in Proposition 2.1.6 and assume further that U is convex and
bounded. We set U1 := 1

2U and observe that V := expU1 is an open 1-neighborhood
in A. Let G ⊆ V be a subgroup of A× and g ∈ G. Then we write g = expx with
x ∈ U1 and assume that x 6= 0. Let k ∈ N be maximal with kx ∈ U1 (the existence of
k follows from the boundedness of U). Then

exp(k + 1)x = gk+1 ∈ G ⊆ V

implies the existence of y ∈ U1 with exp(k + 1)x = exp y. Since (k + 1)x ∈ 2U1 = U
follows from k+1

2 x ∈ [0, k]x ⊆ U1, and exp |U is injective, we obtain (k+ 1)x = y ∈ U1,
contradicting the maximality of k. Therefore g = 1.
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Exercises for Section 2.1

Exercise 2.1.1. Let Y be a Banach space and an,m, n,m ∈ N, elements in Y with∑
n,m

‖an,m‖ := sup
N∈N

∑
n,m≤N

‖an,m‖ <∞.

(a) Show that

A :=
∞∑
n=1

∞∑
m=1

an,m =
∞∑
m=1

∞∑
n=1

an,m

and that both iterated sums exist.

(b) Show that for each sequence (Sn)n∈N of finite subsets Sn ⊆ N× N, n ∈ N, with
Sn ⊆ Sn+1 and

⋃
n Sn = N× N we have

A = lim
n→∞

∑
(j,k)∈Sn

aj,k.

Exercise 2.1.2. (Cauchy Product Formula) Let X,Y, Z be Banach spaces and
β : X×Y → Z a continuous bilinear map. Suppose that if x :=

∑∞
n=0 xn is absolutely

convergent in X and if y :=
∑∞
n=0 yn is absolutely convergent in Y , then

β(x, y) =
∞∑
n=0

n∑
k=0

β(xk, yn−k).

Hint: Use Exercise 2.1.1(b).

Exercise 2.1.3. The function

Φ : R→ R, t 7→

{
e−

1
t , for t > 0

0, for t ≤ 0

is smooth. Hint: The higher derivatives of e−
1
t are of the form P (t−1)e−

1
t , where P

is a polynomial.
(b) For λ > 0 the function Ψ(t) := Φ(t)Φ(λ− t) is a non-negative smooth function

with supp(Ψ) = [0, λ].

Exercise 2.1.4. (A smoothing procedure) Let f ∈ C1
c (R) be a C1-function with

compact support and γ ∈ C(R, E), where E is a Banach space. Then the convolution

h := f ∗ γ : R→ E, t 7→
∫

R
f(s)γ(t− s) ds =

∫
R
f(t− s)γ(s) ds

of f and γ is continuously differentiable with h′ = f ′ ∗ γ. Hint:∫
R
f(t− s)γ(s) ds =

∫
t−supp(f)

f(t− s)γ(s) ds.
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Exercise 2.1.5. Show that for A := C(S1,C) the exponential function

exp : A → A× = C(S1,C×), a 7→ ea

is not surjective. It requires some covering theory to determine which elements f ∈
C(S1,C×) lie in its image. Hint: Use the winding number with respect to 0.

Exercise 2.1.6. Show that for the Banach algebra A := L∞([0, 1],C), the exponential
function

exp : A → A×, a 7→ ea

is surjective.

Exercise 2.1.7. (a) Calculate etN for t ∈ K and the matrix

N =


0 1 0 . . . 0
· 0 1 0 ·
· · · ·
· · 1
0 . . . 0

 ∈Mn(K).

(b) If A is a block diagonal matrix diag(A1, . . . , Ak), then eA is the block diagonal
matrix diag(eA1 , . . . , eAk).

(c) Calculate etA for a matrix A ∈Mn(C) given in Jordan normal form. Hint: Use
(a) and (b).

Exercise 2.1.8. For A ∈ Mn(C) we have eA = 1 if and only if A is diagonalizable
with all eigenvalues contained in 2πiZ.

Exercise 2.1.9. Let V ⊆ Mn(C) be a commutative subspace, i.e., an abelian Lie
subalgebra. Then A := eV is an abelian subgroup of GLn(C) and

exp : (V,+)→ (A, ·)

is a group homomorphism whose kernel consists of diagonalizable elements whose eigen-
values are contained in 2πiZ.

Exercise 2.1.10. Let D ∈Mn(K) be a diagonal matrix. Calculate its operator norm
with respect to the euclidean norm on Kn.

Exercise 2.1.11. Let A ∈Mn(C). Show that the set eRA = {etA : t ∈ R} is bounded
in Mn(C) if and only if A is diagonalizable with purely imaginary eigenvalues.

Exercise 2.1.12. Let U ∈Mn(C). Then the set {Un : n ∈ Z} is bounded if and only
if U is diagonalizable and Spec(U) ⊆ {z ∈ C : |z| = 1}.
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2.2 The Logarithm Function

To deal with the logarithm function of a Banach algebra, we need some tools to verify
identities such as exp(log(x)) = x. The following proposition provides a natural tool.
It shows in particular that inserting elements of a Banach algebra in power series is
compatible with composition.

In the following we write K[[z]] for the space of all formal power series

f(z) :=
∞∑
n=0

anz
n, an ∈ K

in the variable z. For r ∈ [0,∞[ we define

‖f‖r :=
∞∑
n=0

|an|rn ∈ [0,∞].

We write K[[z]]r for the subset of all power series with ‖f‖r < ∞. Note that this
implies that f converges uniformly to a function on the closed disc of radius r in K.

Proposition 2.2.1. Let A be a unital Banach algebra.

(1) If x ∈ A and f ∈ K[[z]]r for some r ≥ ‖x‖, then f(x) :=
∑∞
n=0 anx

n converges
absolutely with

‖f(x)‖ ≤ ‖f‖r.

For two power series f(z) =
∑
n anz

n and g(z) =
∑
n bnz

n with ‖f‖r, ‖g‖r <∞,
we also have the product formula

(f · g)(x) = f(x)g(x), where (f · g)(z) :=
∞∑
n=0

( n∑
k=0

akbn−k

)
zn (2.4)

is the power series defined by the Cauchy product of f and g.

(2) Suppose that f(z) =
∑∞
n=0 anz

n ∈ K[[z]]r and g(z) =
∑∞
n=1 bnz

n ∈ zK[[z]] satis-
fies ‖g‖s < r. We define the power series f ◦ g by formal composition:

(f ◦ g)(z) :=
∑
n

cnz
n, cn =

n∑
k=0

ak
∑

i1+···+ik=n

bi1 · · · bik .

Then ‖f ◦ g‖s ≤ ‖f‖r, and for any x ∈ A with ‖x‖ ≤ s the element g(x) exists
with ‖g(x)‖ < r, and we have the Composition Formula:

f(g(x)) = (f ◦ g)(x). (2.5)

Proof. (1) The convergence of f(x) follows immediately from∑
n

‖anxn‖ ≤
∑
n

|an|‖x‖n ≤
∑
n

|an|rn = ‖f‖r
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and the Domination Test for absolutely converging series in a Banach space. We also
obtain immediately the estimate ‖f(x)‖ ≤ ‖f‖r.

If ‖f‖r, ‖g‖r < ∞, then (2.4) follows from the Cauchy Product Formula (Exer-
cise 2.1.2) because the series f(x) and g(x) converge absolutely.

(2) To see that ‖f ◦ g‖s <∞, we calculate

∑
n

|cn|sn ≤
∑
n

n∑
k=0

|ak|
∑

i1+···+ik=n

|bi1 | · · · |bik |sn

≤
∞∑
k=0

|ak|
∑
n

∑
i1+···+ik=n

|bi1 | · · · |bik |sn =
∞∑
k=0

|ak|‖g‖ns

≤
∞∑
k=0

|ak|rn = ‖f‖r.

For ‖x‖ ≤ s we obtain from (1) the relation ‖g(x)‖ ≤ ‖g‖s, so that

f(g(x)) =
∞∑
n=0

ang(x)n

is defined. Applying the Product Formula to the powers of g, we further obtain
g(x)n = (gn)(x), so that the polynomials fN (z) :=

∑N
n=0 anz

n satisfy

fN (g(x)) =
N∑
n=0

ang(x)n = (fN ◦ g)(x).

Next we observe that

‖f ◦ g − fN ◦ g‖s = ‖(f − fN ) ◦ g‖s ≤ ‖f − fN‖r → 0,

so that
fN (g(x)) = (fN ◦ g)(x)→ (f ◦ g)(x).

Since we also have fN (g(x)) → f(g(x)) by definition, the Composition Formula is
proved.

Next we apply the preceding results to the logarithm series. Since this series has
the radius of convergence 1, it defines a smooth function A× ⊇ B1(1) → A, and we
shall see that it provides an inverse of the exponential function.

Lemma 2.2.2. The series log(1 + x) :=
∑∞
k=1(−1)k+1 xk

k converges for x ∈ A with
‖x‖ < 1 and defines a smooth function

log : B1(1)→ A.

For ‖x‖ < 1 and y ∈ A with xy = yx we have

(d log)(1 + x)y = (1 + x)−1y.
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Proof. The convergence follows from
∞∑
k=1

(−1)k+1 r
k

k
= log(1 + r) <∞

for |r| < 1, so that the smoothness follows from Theorem B.3.7.
If x and y commute, then the formula for the derivative in Theorem B.3.7 leads to

(d log)(1 + x)y =
∞∑
k=1

(−1)k+1xk−1y = (1 + x)−1y

(see the proof of Proposition 1.1.9).

Proposition 2.2.3. (a) For x ∈ A with ‖x‖ < log 2 we have

log(expx) = x.

(b) For a ∈ A× with ‖a− 1‖ < 1 we have exp(log a) = a.

Proof. (a) We apply Proposition 2.2.1 with g(z) = exp(z) − 1 ∈
⋂
s>0 K[[z]]s and

log(1 + z) ∈ K[[z]]r for any r < 1. For s < log 2 we then have ‖g‖s ≤ es − 1 < 1.
We thus obtain log(expx) = log(1 + (expx − 1)) = x for ‖x‖ < log 2 from the
formal relation (log ◦ exp)(z) = z, which follows from the corresponding relation for
the associated function on the real interval ]− log 2, log 2[.

(b) Next we apply Proposition 2.2.1 with f(z) = exp(z) and g(z) = log(1 + z) to
obtain exp(log a) = a for ‖a− 1| < 1.

Product and Commutator Formula

We have seen in Lemma 2.1.1 that the exponential image of a sum x + y can be
computed easily if x and y commute. In this case we also have for the commutator
[x, y] := xy − yx = 0 the formula exp[x, y] = 1. The following proposition gives a
formula for exp(x + y) and exp([x, y]) in the general case. The most natural way to
obtain this formula, is by deriving it from the following lemma.

Lemma 2.2.4. Let ε > 0 and γ : [0, ε] → A be a continuous curve with γ(0) = 1. If
γ′(0) exists, then

lim
n→∞

γ
( 1
n

)n
= eγ

′(0).

If, in addition, γ′(0) = 0, γ is C1, and γ′′(0) exists, then

lim
n→∞

γ
( 1
n

)n2

= e
γ′′(0)

2 .

Proof. Since exp maps a neighborhood of 0 diffeomorphically onto a neighborhood
of 1 and d exp(0) = idA, we can, after possibly shrinking ε, write γ(t) = eβ(t) with
β(0) = 0 and β′(0) = γ′(0). Then

lim
n→∞

γ
( 1
n

)n = lim
n→∞

enβ( 1
n ) → eγ

′(0)
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follows from β( 1
n )n→ β′(0) and the continuity of exp.

If, in addition, γ′(0) = 0, γ is C1 and y := γ′′(0) exists, then we put δ(t) := γ(
√
t).

Then the Fundamental Theorem of Calculus implies that

δ(t) =
∫ √t

0

γ′(τ) dτ =
∫ t

0

1
2
√
s
γ′(
√
s) ds,

and since the continuous integrand converges to y/2 for s→ 0, we obtain for its mean
value limt→0 δ(t)/t = y/2. This shows that δ′(0) = y/2 exists. From above we now
obtain

lim
n→∞

γ
( 1
n

)n2

= lim
n→∞

δ
( 1
n2

)n2

= ey/2.

Example 2.2.5. Applying the preceding lemma to the smooth curve γ(t) := 1 + tx,
we obtain the well-known formula

lim
n→∞

(
1 +

x

n

)n
= ex

for the exponential function.

If g, h are elements of a group G, then (g, h) := ghg−1h−1 is called their commu-
tator. On the other hand, we call for two element a, b ∈ A the expression

[a, b] := ab− ba

their commutator bracket.

Proposition 2.2.6. For x, y ∈ A, the following assertions hold:

(i) limk→∞
(
e

1
kxe

1
k y
)k = ex+y (Trotter Product Formula).

(ii) limk→∞
(
e

1
kxe

1
k ye−

1
kxe−

1
k y
)k2

= exy−yx (Commutator Formula).

Proof. To obtain the product formula, we consider the smooth curve γ(t) := etxety

with γ(0) = 1 and γ′(0) = x + y (Product Rule). The assertion now follows from
Lemma 2.2.4.

For the commutator formula, we consider the smooth curve γ(t) := etxetye−txe−ty.
Then etx = 1 + tx+ t2

2 x
2 +O(t3) leads to

γ(t) =
(
1 + tx+

t2

2
x2 +O(t3)

)(
1 + ty +

t2

2
y2 +O(t3)

)
·
(
1− tx+

t2

2
x2 +O(t3)

)(
1− ty +

t2

2
y2 +O(t3)

)
= 1 + t(x+ y − x− y) + t2(x2 + y2 + xy − x2 − xy − yx− y2 + xy) +O(t3)

= 1 + t2(xy − yx) +O(t3).

This implies that γ′(0) = 0 and γ′′(0) = 2(xy − yx). Therefore the Commutator
Formula follows from the second part of Lemma 2.2.4.
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2.3 The Baker–Campbell–Dynkin–Hausdorff Formula

In this section we derive a formula which expresses the product expx exp y of two suffi-
ciently small elements as the exponential image exp(x∗y) of an element x∗y which can
be described in terms of iterated commutator brackets. This implies in particular that
the group multiplication in a small 1-neighborhood of A× is completely determined
by the commutator bracket. To obtain these results, we express log(expx exp y) as a
power series x ∗ y in two variables. The (local) multiplication ∗ is called the Baker–
Campbell–Dynkin–Hausdorff multiplication and the identity

log(expx exp y) = x ∗ y

the Baker–Campbell–Dynkin–Hausdorff formula (BCDH). To make x∗y more explicit,
we need some preparation. We start with the adjoint representation of A×. This is
the group homomorphism

Ad: A× → Aut(A), Ad(g)x = gxg−1,

where Aut(A) stands for the group of algebra automorphisms of A. For x ∈ A, we
further define a linear map representation

ad(x) : A → A, adx(y) := [x, y] = xy − yx.

Lemma 2.3.1. For each x ∈ A,

Ad(expx) = exp(adx). (2.6)

Proof. We define the linear maps

λx : A → A, y 7→ xy, ρx : A → A, y 7→ yx.

Then λxρx = ρxλx and adx = λx − ρx, so that Lemma 2.1.1(ii) leads to

Ad(expx)y = exye−x = eλxe−ρxy = eλx−ρxy = ead xy.

This proves (2.6).

Proposition 2.3.2. Let x ∈ A and λexp x(y) := (expx)y be the left multiplication by
expx. Then

d exp(x) = λexp x ◦
1− e− ad x

adx
: A → A,

where the fraction on the right means Φ(adx) for the entire function

Φ(z) :=
1− e−z

z
=
∞∑
k=0

(−z)k

(k + 1)!
.
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Proof. Let α : [0, 1]→ A be a smooth curve. Then the map

γ : [0, 1]2 → A, γ(t, s) := exp(−sα(t))
d

dt
exp(sα(t))

is C1 in each argument and satisfies γ(t, 0) = 0 for each t. We calculate

∂γ

∂s
(t, s) = exp(−sα(t)) · (−α(t))

d

dt
exp(sα(t))

+ exp(−sα(t)) · d
dt

(
α(t) exp(sα(t))

)
= exp(−sα(t)) · (−α(t))

d

dt
exp(sα(t))

+ exp(−sα(t)) ·
(
α′(t) exp(sα(t)) + α(t)

d

dt
exp(sα(t))

)
= Ad(exp(−sα(t)))α′(t) = e−s adα(t)α′(t).

Integration over [0, 1] with respect to s now leads to

γ(t, 1) = γ(t, 0) +
∫ 1

0

e−s adα(t)α′(t) ds =
∫ 1

0

e−s adα(t) ds · α′(t).

Next we note that, for x ∈ A,∫ 1

0

e−s ad x ds =
∫ 1

0

∞∑
k=0

(− adx)k

k!
sk ds =

∞∑
k=0

(− adx)k
∫ 1

0

sk

k!
ds

=
∞∑
k=0

(− adx)k

(k + 1)!
= Φ(adx).

We thus obtain for α(t) = x+ ty with α(0) = x and α′(0) = y the relation

exp(−x)d exp(x)y = γ(0, 1) =
∫ 1

0

e−s ad xy ds = Φ(adx)y.

Remark 2.3.3. The explicit formula for the derivative of the exponential function can
be written in many different ways. Here is another one which is sometimes convenient:

d exp(x)y = ex
1− e− ad x

adx
y = ex

∞∑
k=0

(−1)k

(k + 1)!
(adx)ky

= ex
∫ 1

0

e−s ad xy ds = ex
∫ 1

0

e−sxyesx ds =
∫ 1

0

e(1−s)xyesx ds.

Lemma 2.3.4. For

Φ(z) =
1− e−z

z
:=

∞∑
k=1

(−1)k−1 z
k−1

k!
, z ∈ C
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and

Ψ(z) =
z log z
z − 1

:= z

∞∑
k=0

(−1)k

k + 1
(z − 1)k for |z − 1| < 1,

we have
Ψ(ez)Φ(z) = 1 for z ∈ C, |z| < log 2.

Proof. If |z| < log 2, then |ez − 1| < 1 and we obtain from log(ez) = z:

Ψ(ez)Φ(z) =
ezz

ez − 1
1− e−z

z
= 1.

In view of the Composition Formula (2.5) (Proposition 2.2.1), the same identity as
in Lemma 2.3.4 holds if we insert matrices L ∈ L(A) with ‖L‖ < log 2 into the power
series Φ and Ψ:

Ψ(expL)Φ(L) = (Ψ ◦ exp)(L)Φ(L) = ((Ψ ◦ exp) · Φ)(L) = idA . (2.7)

Here we use that ‖L‖ < log 2 implies that all expressions are defined and in particular
that ‖ expL− 1‖ < 1, as a consequence of the estimate

‖ expL− 1‖ ≤ e‖L‖ − 1. (2.8)

The derivation of the BCDH formula follows a similar scheme as the proof of
Proposition 2.3.2. Here we consider x, y ∈ A with ‖x‖, ‖y‖ < log

√
2. For ‖x‖, ‖y‖ < r,

the estimate (2.8) leads to

‖ expx exp y − 1‖ = ‖(expx− 1)(exp y − 1) + (exp y − 1) + (expx− 1)‖
≤ ‖ expx− 1‖ · ‖ exp y − 1‖+ ‖ exp y − 1‖+ ‖ expx− 1‖
< (er − 1)2 + 2(er − 1) = e2r − 1.

For r < log
√

2 = 1
2 log 2 and |t| ≤ 1, we obtain in particular

‖ expx exp ty − 1‖ < elog 2 − 1 = 1.

Therefore expx exp ty lies for |t| ≤ 1 in the domain of the logarithm function (Lemma 2.2.2).
We therefore define for t ∈ [−1, 1]:

F (t) = log(expx exp ty).

To estimate the norm of F (t), we note that for g := expx exp ty, |t| ≤ 1, and
‖x‖, ‖y‖ < r we have

‖ log g‖ ≤
∞∑
k=1

‖g − 1‖k

k
= − log(1− ‖g − 1‖)

< − log(1− (e2r − 1)) = − log(2− e2r).
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For r := 1
2 log(2−

√
2

2 ) < log 2
2 = log

√
2 and ‖x‖, ‖y‖ < r, this leads to

‖F (t)‖ < − log(2− e2r) = log( 2√
2
) = log(

√
2). (2.9)

Next we calculate F ′(t) with the goal to obtain the BCDH formula as F (1) =
F (0) +

∫ 1

0
F ′(t) dt. For the derivative of the curve t 7→ expF (t), we get

(d exp)
(
F (t)

)
F ′(t) =

d

dt
exp(F (t)) =

d

dt
expx exp ty

= (expx exp ty)y = (expF (t))y.

Using Proposition 2.3.2, we obtain

y =
(

expF (t)
)−1(d exp)

(
F (t)

)
F ′(t)

=
1− e− adF (t)

adF (t)
F ′(t) = Φ(adF (t))F ′(t). (2.10)

We claim that ‖ ad(F (t))‖ < log 2. From ‖ab− ba‖ ≤ 2‖a‖ ‖b‖ we derive

‖ ad a‖ ≤ 2‖a‖ for a ∈ A.

Therefore, by (2.9),

‖ adF (t)‖ ≤ 2‖F (t)‖ < 2 log(
√

2) = log 2,

so that (2.10) and (2.7) lead to

F ′(t) = Φ(adF (t))−1y = Ψ
(

exp(adF (t))
)
y. (2.11)

Proposition 2.3.5. For x, y ∈ A with ‖x‖, ‖y‖ < 1
2 log(2−

√
2

2 ), we have

log(expx exp y) = x+
∫ 1

0

Ψ
(

exp(adx) exp(t ad y)
)
y dt ∈ A,

for Ψ(z) = z log z
z−1 as in Lemma 2.3.4.

Proof. Lemma 2.3.1 and the preceding remarks lead to

exp(adF (t)) = Ad(expF (t)) = Ad(expx exp ty) = Ad(expx) Ad(exp ty)
= exp(adx) exp(ad ty).

With (2.11), this leads to

F ′(t) = Ψ
(

exp(adF (t))
)
y = Ψ

(
exp(adx) exp(ad ty)

)
y.

Moreover, we have F (0) = log(expx) = x. By integration we therefore obtain

log(expx exp y) = x+
∫ 1

0

Ψ
(

exp(adx) exp(t ad y)
)
y dt.
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Proposition 2.3.6. For x, y ∈ A and ‖x‖, ‖y‖ < 1
2 log(2−

√
2

2 ),

x ∗ y := log(expx exp y)
= x+∑
k,m≥0
pi+qi>0

(−1)k

(k + 1)(q1 + . . .+ qk + 1)
(adx)p1(ad y)q1 . . . (adx)pk(ad y)qk(adx)m

p1!q1! . . . pk!qk!m!
y.

Proof. We only have to rewrite the expression in Proposition 2.3.5:∫ 1

0

Ψ
(

exp(adx) exp(ad ty)
)
y dt

=
∫ 1

0

∞∑
k=0

(−1)k
(

exp(adx) exp(ad ty)− id
)k

(k + 1)
(

exp(adx) exp(ad ty)
)
y dt

=
∫ 1

0

∑
k≥0

pi+qi>0

(−1)k

(k + 1)
(adx)p1(ad ty)q1 . . . (adx)pk(ad ty)qk

p1!q1! . . . pk!qk!
exp(adx)y dt

=
∑
k,m≥0
pi+qi>0

(−1)k

(k + 1)
(adx)p1(ad y)q1 . . . (adx)pk(ad y)qk(adx)m

p1!q1! . . . pk!qk!m!
y

∫ 1

0

tq1+...+qk dt

=
∑
k,m≥0
pi+qi>0

(−1)k(adx)p1(ad y)q1 . . . (adx)pk(ad y)qk(adx)my
(k + 1)(q1 + . . .+ qk + 1)p1!q1! . . . pk!qk!m!

.

The series in Proposition 2.3.6 is called the Hausdorff Series. For practical purposes
it often suffices to know the first terms of the Hausdorff Series:

Corollary 2.3.7. For x, y ∈ A and ‖x‖, ‖y‖ < 1
2 log(2−

√
2

2 ),

x ∗ y = x+ y +
1
2

[x, y] +
1
12

[x, [x, y]] +
1
12

[y, [y, x]] + . . .

Proof. One has to collect the summands in Proposition 2.3.6 corresponding to
p1 + q1 + . . .+ pk + qk +m ≤ 2.



Chapter 3

Linear Lie Groups

In Section 3.1 we use the exponential function to associate to each closed subgroup
G ⊆ A× a Banach–Lie algebra L(G), called the Lie algebra of G. We then show that
the elements of L(G) are in one-to-one correspondence with the one-parameter groups
of G and study some functorial properties of the assignment L : G 7→ L(G). Section 3.2
is devoted to some tools to calculate the Lie algebras of closed subgroups of A.

3.1 Closed Subgroups of Banach Algebras

We call a subgroup G ⊆ A× of a unital Banach algebra A a linear group. In this
section we shall use the exponential function to assign to each closed linear group G a
vector space

L(G) := {x ∈ A : exp(Rx) ⊆ G},
called the Lie algebra of G. This subspace carries a rich algebraic structure because
for x, y ∈ L(G) the commutator [x, y] = xy − yx is contained in L(G), so that [·, ·]
defines a skew-symmetric bilinear operation on L(G). As a first step, we shall see
how to calculate L(G) for concrete groups. Since the algebra A = Mn(R) of real
(n×n)-matrices also is a Banach algebra, all these results apply in particular to closed
subgroups of GLn(R).

The Lie Algebra of a Closed Linear Group

We start with the introduction of the concept of a Lie algebra.

Definition 3.1.1. (a) Let K be a field and L a K-vector space. A bilinear map
[·, ·] : L× L→ L is called a Lie bracket if

(L1) [x, x] = 0 for x ∈ L and

(L2)
[
x, [y, z]

]
=
[
[x, y], z

]
+
[
y, [x, z]

]
for x, y, z ∈ L (Jacobi identity).1

1Carl Gustav Jacob Jacobi (1804–1851), mathematician in Berlin and Königsberg (Kaliningrad).
He found his famous identity about 1830 in the context of Poisson brackets, which are related to
Hamiltonian Mechanics and Symplectic Geometry.

35
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A Lie algebra 2 (over K) is a K-vector space L endowed with a Lie bracket. A
subspace E ⊆ L of a Lie algebra is called a subalgebra if [E,E] ⊆ E. A homomorphism
ϕ : L1 → L2 of Lie algebras is a linear map with ϕ([x, y]) = [ϕ(x), ϕ(y)] for x, y ∈ L1.
A Lie algebra is said to be abelian if [x, y] = 0 holds for all x, y ∈ L.

A Banach–Lie algebra is a Banach space L, endowed with a Lie algebra structure
for which the bracket [·, ·] is continuous, i.e., there exists a C > 0 with

‖[x, y]‖ ≤ C‖x‖ · ‖y‖ for x, y ∈ L.

The following lemma shows that each associative algebra also carries a natural Lie
algebra structure.

Lemma 3.1.2. Each associative algebra A is a Lie algebra AL with respect to the
commutator bracket

[a, b] := ab− ba.

If A is Banach algebra, then AL is a Banach–Lie algebra with

‖[a, b]‖ ≤ 2‖a‖‖b‖ for a, b ∈ A.

Proof. (L1) is obvious. For (L2) we calculate

[a, bc] = abc− bca = (ab− ba)c+ b(ac− ca) = [a, b]c+ b[a, c],

and this implies

[a, [b, c]] = [a, b]c+ b[a, c]− [a, c]b− c[a, b] = [[a, b], c] + [b, [a, c]].

If, in addition, A is a Banach algebra, then the norm on A is submultiplicative,
and this leads to

‖[x, y]‖ = ‖xy − yx‖ ≤ ‖x‖‖y‖+ ‖y‖‖x‖ = 2‖x‖‖y‖.

Definition 3.1.3. Let A be a unital Banach algebra. A subgroup G ⊆ A× is called
a linear group. For each subgroup G ⊆ A, we define the set

L(G) := {x ∈ A : exp(Rx) ⊆ G}

and observe that R L(G) ⊆ L(G) follows immediately from the definition.

The next proposition assigns a Lie algebra to each closed linear group.

Proposition 3.1.4. If G ⊆ A× is a closed subgroup, then L(G) is a closed real Lie
subalgebra of AL.

Proof. Let x, y ∈ L(G). For k ∈ N and t ∈ R we have exp t
kx, exp t

ky ∈ G and with
the Trotter Formula (Proposition 2.2.6), we get for all t ∈ R:

exp(t(x+ y)) = lim
k→∞

(
exp

tx

k
exp

ty

k

)k
∈ G

2The notion of a Lie algebra was coined in the 1920s by Hermann Weyl.
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because G is closed. Therefore x+ y ∈ L(G).
Similarly we use the Commutator Formula to get

exp t[x, y] = lim
k→∞

(
exp

tx

k
exp

y

k
exp− tx

k
exp−y

k

)k2

∈ G,

hence [x, y] ∈ L(G).
That L(G) is closed follows from L(G) =

⋂
t∈R f

−1
t (G), for the continuous maps

ft : A → A×, x 7→ etx.

Definition 3.1.5. In view of the preceding proposition, we obtain for each closed
linear group G a map

expG : L(G)→ G, x 7→ ex,

which is called the exponential function of G.
The Banach–Lie algebra L(G) is called the Lie algebra of G. In particular,

L(A×) = AL.

Remark 3.1.6. If G is an abelian subgroup of A×, then L(G) is also abelian.

Proposition 3.1.7. Let G ⊆ A× be a subgroup. If Hom(R, G), denotes the set of all
continuous group homomorphisms (R,+)→ G, then the map

Γ: L(G)→ Hom(R, G), x 7→ γx, γx(t) = exp(tx)

is a bijection.

Proof. For each x ∈ L(G), the map γx is a continuous group homomorphism (Theo-
rem 2.1.5), and since x = γ′x(0), the map Γ is injective. To see that it is surjective,
let γ : R → G be a continuous group homomorphism and ι : G → A× the natural
embedding. Then ι ◦ γ : R→ A× is a continuous group homomorphism, so that there
exists an x ∈ A with γ(t) = ι(γ(t)) = etx for all t ∈ R (Theorem 2.1.5). This implies
that x ∈ L(G), and therefore that γx = γ.

Examples 3.1.8. Let X be a Banach space.
(a) Then L(X) is a unital Banach algebra. We write GL(X) := L(X)× for its unit

group and gl(X) := (L(X), [·, ·]) = L(X)L of its Lie algebra.
(b) Let X̃ := X × R. We consider the group homomorphism

Φ: X → GL(X̃), x 7→
(

1 x
0 1

)
and observe that Φ is an isomorphism of the topological group (X,+) onto the closed
linear group Φ(X).

The continuous one-parameter groups γ : R → X are easily determined because
γ(nt) = nγ(t) for all n ∈ Z, t ∈ R, implies further γ(q) = qγ(1) for all q ∈ Q and
hence, by continuity, γ(t) = tγ(1) for all t ∈ R. Since (X,+) is abelian, the Lie bracket
on the Lie algebra

L(Φ(X)) =
{(0 x

0 0

)
: x ∈ X

}
vanishes.
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Definition 3.1.9. A linear Lie group is a closed subgroup G of the unit group A× of
a unital Banach algebra A for which the exponential function

expG : L(G)→ G

is a local homeomorphism in 0, i.e., it maps some open 0-neighborhood U in L(G)
homeomorphically onto an open 1-neighborhood in G.

Functorial Properties of the Lie Algebra

So far we have assigned to each closed linear group G its Lie algebra L(G). We
shall also see that this assignment can be “extended” to continuous homomorphisms
between closed linear groups in the sense that we assign to each such homomorphism

ϕ : G1 → G2

a homomorphism L(ϕ) : L(G1)→ L(G2) of Lie algebras, and this assignment satisfies

L(idG) = idL(G) and L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1)

for a composition ϕ1 ◦ ϕ2 of two continuous homomorphisms ϕ1 : G2 → G1 and
ϕ2 : G3 → G2. In the language of category theory, this means that L defines a functor
from the category of linear Lie groups (where the morphisms are the continuous group
homomorphisms) to the category of real Banach–Lie algebras.

Proposition 3.1.10. Let ϕ : G1 → G2 be a continuous group homomorphism of closed
linear groups. Then the derivative

L(ϕ)(x) :=
d

dt t=0
ϕ(expG1

(tx))

exists for each x ∈ L(G1) and defines a homomorphism of Lie algebras
L(ϕ) : L(G1)→ L(G2) with

expG2
◦L(ϕ) = ϕ ◦ expG1

, (3.1)

i.e., the following diagram commutes

G1
ϕ−−−−−−−−−→ G2xexpG1

xexpG2

L(G1)
L(ϕ)−−−−−−−−−→ L(G2).

Then L(ϕ) is the uniquely determined linear map satisfying (3.1).
If, in addition, G2 is a linear Lie group, then L(ϕ) is continuous.

Proof. For x ∈ L(G1) we consider the homomorphism γx ∈ Hom(R, G1) given by
γx(t) = etx. According to Proposition 3.1.7, we have

ϕ ◦ γx(t) = expG2
(ty)
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for some y ∈ L(G2), because ϕ ◦ γx : R → G2 is a continuous group homomorphism.
Then clearly y = (ϕ ◦ γx)′(0) = L(ϕ)x. For t = 1 we obtain in particular

expG2
(L(ϕ)x) = ϕ(expG1

(x)),

which is (3.1).
Conversely, every linear map ψ : L(G1)→ L(G2) with

expG2
◦ ψ = ϕ ◦ expG1

satisfies
ϕ ◦ expG1

(tx) = expG2
(ψ(tx)) = expG2

(tψ(x)),

and therefore
L(ϕ)x =

d

dt t=0
expG2

(tψ(x)) = ψ(x).

Next we show that L(ϕ) is a homomorphism of Lie algebras. From the definition
of L(ϕ) we immediately get for x ∈ L(G1):

expG2
(sL(ϕ)(tx)) = ϕ(expG1

(stx)) = expG2
(tsL(ϕ)(x)), s, t ∈ R,

which leads to L(ϕ)(tx) = tL(ϕ)(x).
Since ϕ is continuous, the Trotter Formula implies that

expG2
(L(ϕ)(x+ y)) = ϕ

(
expG1

(x+ y)
)

= lim
k→∞

ϕ
(

expG1

1
k
x expG1

1
k
y
)k

= lim
k→∞

(
ϕ
(

expG1

1
k
x
)
ϕ
(

expG1

1
k
y
))k

= lim
k→∞

(
expG2

1
k

L(ϕ)(x) expG2

1
k

L(ϕ)(y)
)k

= expG2

(
L(ϕ)(x) + L(ϕ)(y)

)
for all x, y ∈ L(G1). Therefore L(ϕ)(x + y) = L(ϕ)(x) + L(ϕ)(y) because the same
formula holds with tx and ty instead of x and y. Hence L(ϕ) is additive and therefore
linear.

We likewise obtain with the Commutator Formula

ϕ(expG1
[x, y]) = expG2

[L(ϕ)(x),L(ϕ)(y)]

and thus L(ϕ)([x, y]) = [L(ϕ)(x),L(ϕ)(y)].
If, in addition, H is a linear Lie group, then expH is a local homeomorphism in 0,

so that the relation ϕ ◦ expG = expH ◦L(ϕ) implies that L(ϕ) is continuous on some
0-neighborhood, and since it is a linear map, it is continuous (cf. Exercise 1.1.3).

Corollary 3.1.11. If ϕ1 : G1 → G2 and ϕ2 : G2 → G3 are continuous homomor-
phisms of linear Lie groups, then

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1).

Moreover, L(idG) = idL(G) .
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Proof. We have the relations

ϕ1 ◦ expG1
= expG2

◦L(ϕ1) and ϕ2 ◦ expG2
= expG3

◦L(ϕ2),

which immediately lead to

(ϕ2 ◦ ϕ1) ◦ expG1
= ϕ2 ◦ expG2

◦L(ϕ1) = expG3
◦(L(ϕ2) ◦ L(ϕ1)),

and the uniqueness assertion of Proposition 3.1.10 implies that

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1).

Clearly idL(G) is a linear map satisfying expG ◦ idL(G) = idG ◦ expG, so that the
uniqueness assertion of Proposition 3.1.10 implies L(idG) = idL(G).

Corollary 3.1.12. If ϕ : G1 → G2 is an isomorphism of linear Lie groups, then L(ϕ)
is an isomorphism of Banach–Lie algebras.

Proof. Since ϕ is an isomorphism of linear Lie groups, it is bijective and ψ := ϕ−1 also
is a continuous homomorphism. We then obtain with Corollary 3.1.11 the relations
idL(G2) = L(idG2) = L(ϕ◦ψ) = L(ϕ)◦L(ψ) and likewise idL(G1) = L(ψ)◦L(ϕ). Hence
L(ϕ) is an isomorphism with L(ϕ)−1 = L(ψ).

Definition 3.1.13. If V is a vector space and G a group, then a homomorphism
π : G → GL(V ) is called a representation of G on V . If g is a Lie algebra, then a
homomorphism of Lie algebras π : g→ gl(V ) is called a representation of g on V .

As a consequence of Proposition 3.1.10, we obtain

Corollary 3.1.14. If π : G → GL(V ) is a continuous representation of the closed
linear group G on the Banach space V , then L(π) : L(G)→ gl(V ) is a representation
of the Lie algebra L(G).

Definition 3.1.15. The representation L(π) obtained in Corollary 3.1.14 from the
group representation π is called the derived representation. This is motivated by the
fact that for each x ∈ L(G) we have

L(π)x =
d

dt t=0
etL(π)x =

d

dt t=0
π(exp tx).

The Adjoint Representation

Let G ⊆ A× be a linear Lie group and L(G) ⊆ A the corresponding Lie algebra. For
g ∈ G we define the conjugation automorphism cg ∈ Aut(G) by cg(x) := gxg−1. Then

L(cg)(x) =
d

dt t=0
cg(exp tx) =

d

dt t=0
g(exp tx)g−1

=
d

dt t=0
exp(tgxg−1) = gxg−1
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(Lemma 2.1.1), and therefore L(cg) = cg|L(G). We define the adjoint representation of
G on L(G) by

Ad: G→ Aut(L(G)), Ad(g)(x) := L(cg)x = gxg−1.

(That this is a representation follows immediately from the explicit formula).
For each x ∈ L(G), the map G → L(G), g 7→ Ad(g)(x) = gxg−1 is continuous

and each Ad(g) is an automorphism of the Lie algebra L(G). Therefore Ad is a
continuous homomorphism from the closed linear group G to the closed linear group
Aut(L(G)) ⊆ GL(L(G)). The derived representation

L(Ad): L(G)→ gl(L(G))

is a representation of L(G) on L(G). We further define for x ∈ L(G) a linear map

ad(x) : L(G)→ L(G), adx(y) := [x, y].

Lemma 3.1.16. L(Ad) = ad.

Proof. In view of Proposition 3.1.10, this is an immediate consequence of the relation
Ad(expx) = ead x (Lemma 2.3.1).

Exercises for Section 3.1

Exercise 3.1.1. If (Gj)j∈J is a family of subgroups of A×, then

L
( ⋂
j∈J

Gj

)
=
⋂
j∈J

L(Gj).

Exercise 3.1.2. Let G := GLn(K) and V := Pk(Kn) be the space of homogeneous
polynomials of degree k in x1, . . . , xn, considered as functions Kn → K. Show that:

(1) dimV =
(
k+n−1
n−1

)
.

(2) We obtain a continuous representation ρ : G→ GL(V ) ofG on V by (ρ(g)f)(x) :=
f(g−1x).

(3) For the elementary matrix Eij = (δij) we have L(ρ)(Eij) = −xj ∂
∂xi

.

Hint: (1 + tEij)−1 = 1− tEij .

Exercise 3.1.3. If X ∈ End(V ) is nilpotent, then adX ∈ End(End(V )) is also nilpo-
tent. Hint: adX = LX −RX and both summands commute.

Exercise 3.1.4. If (V, ·) is an associative algebra, then we have Aut(V, ·) ⊆ Aut(V, [·, ·]).

Exercise 3.1.5. Let V and W be vector spaces and q : V ×V →W a skew-symmetric
bilinear map. Then

[(v, w), (v′, w′)] :=
(
0, q(v, v′)

)
is a Lie bracket on g := V ×W . For x, y, z ∈ g we have

[
x, [y, z]

]
= 0.
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Exercise 3.1.6. Let g be a Lie algebra with
[
x, [y, z]

]
= 0 for x, y, z ∈ g. Then

x ∗ y := x+ y +
1
2

[x, y]

defines a group structure on g. An example for such a Lie algebra is the three-
dimensional Heisenberg algebra

g =


0 p z

0 0 q
0 0 0

 : p, q, z ∈ K

 .

Exercise 3.1.7. Show that every Banach–Lie algebra L carries a norm ‖ · ‖ defining
the topology for which

‖[x, y]‖ ≤ ‖x‖‖y‖ for x, y ∈ L.

Exercise 3.1.8. Let G ⊆ A× be a closed subgroup. We call v ∈ A a tangent vector
of G in g if there exists a curve γ : [0, 1]→ G with γ(0) = g for which γ′(0) = v exists.
We write Tg(G) for the set of tangent vectors of G in g. Show that

(i) The set T1(G) of tangent vectors of G in 1 coincides with the Lie algebra L(G).
In particular it is a closed subspace.

(ii) Tg(G) = gL(G) for every g ∈ G.

Exercise 3.1.9. If A is a unital Banach algebra, then we endow the vector space
TA := A⊕A with the norm ‖(a, b)‖ := ‖a‖+ ‖b‖ and the multiplication

(a, b)(a′, b′) := (aa′, ab′ + ba′).

Show that

(1) TA is a unital Banach algebra with identity (1, 0). It is called the tangent algebra
of A.

(2) For ε := (0, 1), each element of TA can be written in a unique fashion as (a, b) =
a+ bε and the multiplication satisfies

(a+ bε)(a′ + b′ε) = aa′ + (ab′ + ba′)ε.

In particular, ε2 = 0.

(3) (TA)× = A× ×A.

(4) If G ⊆ A× is a closed subgroup, then its tangent group TG := G · (1 + εL(G)) is
a closed subgroup of (TA)× and

L(G) = {x ∈ A : 1 + εx ∈ T (G)}.

Exercise 3.1.10. (a) For each closed subgroup G ⊆ A×, the map
Ad : G → Aut(L(G)) is a group homomorphism (called the adjoint representation
of G).

(b) For each Lie algebra g, the map ad: g → gl(g) is a homomorphism of Lie
algebras (called the adjoint representation of g).
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3.2 Calculating Lie Algebras of Linear Groups

In this section we shall see various techniques to determine the Lie algebra of a linear
Lie group.

Example 3.2.1. Let K ∈ {R,C}. Then the group G := SLn(K) = det−1(1) = ker det
is a closed linear group. To determine its Lie algebra, we first claim that

det(ex) = etr x (3.2)

holds for x ∈Mn(K). To verify this claim, we consider

det : Mn(K) ∼= (Kn)n → K

as an n-linear map, where each matrix x is considered as an n-tuple of its column
vectors x1, . . . , xn. Then Lemma B.2.2 implies that

(d det)(1)(x) = (d det)(e1, . . . , en)(x1, . . . , xn)
= det(x1, e2, . . . , en) + . . .+ det(e1, . . . , en−1, xn) = x11 + . . .+ xnn = trx.

For the continuous group homomorphism det : GLn(K)→ K× = GL1(K) we therefore
obtain

L(det) = tr : gln(K)→ gl1(K) ∼= K,

so that (3.2) follows from det(ex) = eL(det)x = etr x. We conclude that

sln(K) := L(SLn(K)) = {x ∈Mn(K) : (∀t ∈ R) 1 = det(etx) = et tr x}
= {x ∈Mn(K) : trx = 0}.

Lemma 3.2.2. Let V and W be Banach spaces and β : V × V → W a continuous
bilinear map. For (x, y) ∈ gl(V )× gl(W ), the following are equivalent:

(a) etyβ(v, v′) = β(etxv, etxv′) for all t ∈ R and all v, v′ ∈ V .

(b) yβ(v, v′) = β(xv, v′) + β(v, xv′) for all v, v′ ∈ V .

Proof. (a) ⇒ (b): Taking the derivative in t = 0, the relation (a) leads to

yβ(v, v′) = β(xv, v′) + β(v, xv′),

where we use the Product and the Chain Rule.
(b) ⇒ (a): If (b) holds, then we obtain inductively

ynβ(v, v′) =
n∑
k=0

(
n

k

)
β(xkv, xn−kv′).
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For the exponential series this leads with the general Cauchy Product Formula (Exer-
cise 2.1.2) to

eyβ(v, v′) =
∞∑
n=0

1
n!
ynβ(v, v′) =

∞∑
n=0

1
n!

( n∑
k=0

(
n

k

)
β(xkv, xn−kv)

)
=
∞∑
n=0

n∑
k=0

β

(
1
k!
xkv,

1
(n− k)!

xn−kv′
)

= β

( ∞∑
k=0

1
k!
xkv,

∞∑
m=0

1
m!
xmv′

)
= β (exv, exv′) .

Since (b) also holds for the pair (tx, ty) for all t ∈ R, this completes the proof.

Proposition 3.2.3. Let V and W be Banach space and β : V ×V →W a continuous
bilinear map. For the group

Aut(V, β) = {g ∈ GL(V ) : (∀v, v′ ∈ V ) β(gv, gv′) = β(v, v′)},

we then have

aut(V, β) := L(Aut(V, β)) = {x ∈ gl(V ) : (∀v, v′ ∈ V ) β(xv, v′) + β(v, xv′) = 0}.

Proof. We only have to observe that X ∈ L(Aut(V, β)) is equivalent to the pair (X, 0)
satisfying condition (a) in Lemma 3.2.2.

Example 3.2.4. (a) Let B ∈Mn(K), β(v, w) = v>Bw, and

Aut(Kn, β) := {g ∈ GLn(K) : g>Bg = B}.

Then Proposition 3.2.3 implies that

aut(Kn, β) := L(Aut(Kn, β)) = {x ∈ gln(K) : (∀v, v′ ∈ V ) β(xv, v′) + β(v, xv′) = 0}
= {x ∈ gln(K) : (∀v, v′ ∈ V ) v>x>Bv′ + v>Bxv′ = 0}
= {x ∈ gln(K) : x>B +Bx = 0}.

In particular, we obtain for the orthogonal group

On(K) := {g ∈ GLn(K) : g> = g−1}

the Lie algebra

on(K) := L(On(K)) = {x ∈ gln(K) : x> = −x} =: Skewn(K).

Let q := n− p and let Ip,q denote the corresponding matrix

Ip,q =
(

1p 0
0 −1q

)
∈Mp+q(R).
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Then we obtain for the indefinite orthogonal group

Op,q(R) := {g ∈ GLn(R) : g>Ip,qg = Ip,q},

the Lie algebra

op,q(K) := L(Op,q(K)) = {x ∈ glp+q(K) : x>Ip,q + Ip,qx = 0},

and for the symplectic group

Sp2n(K) := {g ∈ GL2n(K) : g>Bg = B}, B =
(

0 −1n
1n 0

)
,

we find
sp2n(K) := L(Sp2n(K)) := {x ∈ gl2n(K) : x>B +Bx = 0}.

(b) Applying Proposition 3.2.3 with V = Cn and W = C, considered as real vector
spaces, we also obtain for a hermitian form

β : Cn × Cn → C, (z, w) 7→ w∗Ip,qz

and the corresponding automorphism group

Up,q(C) := Aut(Cn, β)

the Lie algebra

up,q(C) := L(Up,q(C)) = {x ∈ gln(C) : (∀z, w ∈ Cn)w∗Ip,qxz + w∗x∗Ip,qz = 0}
= {x ∈ gln(C) : Ip,qx+ x∗Ip,q = 0}.

In particular, we get

un(C) := L(Un(C)) = {x ∈ gln(C) : x∗ = −x}.

(c) If H is a complex Hilbert space, then U(H) is a closed subgroup of GL(H), and
we obtain for its Lie algebra

u(H) := L(U(H)) = {x ∈ gl(H) : x∗ = −x}.

To see that U(H) actually is a linear Lie group, let U = −U = U∗ ⊆ B(H) be an
open symmetric ∗-invariant 0-neighborhood mapped by exp diffeomorphically onto an
open subset of GL(H) (Proposition 2.1.6). Then, for x ∈ U , the relations

(ex)∗ = ex
∗

and (ex)−1 = e−x

imply that
exp(U) ∩U(H) = {ex : x∗ = −x} = exp(U ∩ u(H)).

Therefore U(H) is a linear Lie group.
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Example 3.2.5. Let g be a Banach Lie algebra and

Aut(g) := {g ∈ GL(g) : (∀x, y ∈ g) g[x, y] = [gx, gy]}.

Then Aut(g) is a closed subgroup of GL(g), in particular a linear group. To calculate
the Lie algebra of G, we use Lemma 3.2.2 with V = W = g and β(x, y) = [x, y]. Then
we see that D ∈ aut(g) := L(Aut(g)) is equivalent to (D,D) satisfying the conditions
in Lemma 3.2.2, and this leads to

aut(g) := L(Aut(g)) = {D ∈ gl(g) : (∀x, y ∈ g)D[x, y] = [Dx, y] + [x,Dy]}

The elements of this Lie algebra are called derivations of g, and aut(g) is also denoted
der(g). Note that the condition on an endomorphism of g to be a derivation resembles
the Leibniz Rule (Product Rule).

Remark 3.2.6. If A is a complex unital Banach algebra, we call a closed linear group
G ⊆ A× a complex linear group if L(G) ⊆ A is a complex subspace, i.e., iL(G) ⊆ L(G).
Since Proposition 3.1.4 only ensures that L(G) is a real subspace, this requirement is
not automatically satisfied.

If H is a complex Hilbert space, then the closed linear group U(H) ⊆ GL(H) is not
a complex linear group because

iu(H) = Herm(H) 6⊆ u(H).

This is due to the fact that the scalar product on H whose automorphism group is
U(H), is not complex bilinear. For any complex bilinear form β : V × V → C, the
corresponding group Aut(V, β) is a complex linear group because

aut(V, β) = {X ∈ gl(V ) : (∀v, w ∈ V )β(Xv,w) + β(v,Xw) = 0}

is a complex subspace of gl(V ).

Exercises for Section 3.2

Exercise 3.2.1. Show that for X = −X∗ ∈Mn(C) the matrix eX is unitary and that
the exponential function

exp : Ahermn(C) := {X ∈Mn(C) : X∗ = −X} → Un(C), X 7→ eX

is surjective.

Exercise 3.2.2. Show that for X> = −X ∈Mn(R) the matrix eX is orthogonal and
that the exponential function

exp : Skewn(R) := {X ∈Mn(R) : X> = −X} → On(R)

is not surjective. Can you determine which orthogonal matrices are contained in the
image? Can you interprete the result geometrically in terns of the geometry of the
flow R× Rn → Rn, (t, v) 7→ etXv.
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Exercise 3.2.3. Show that a closed subgroup G ⊆ A× is a linear Lie group if and only
if there exists an open 0-neighborhood U ⊆ L(G) for which exp(U) is a 1-neighborhood
of G. Hint: Proposition 2.1.6.

Exercise 3.2.4. Let ϕ : G→ H be a continuous homomorphism of linear Lie groups.
Show that kerϕ is a linear Lie group with Lie algebra

L(kerϕ) = ker L(ϕ).

Exercise 3.2.5. Let B ∈ GLn(K) and consider the bilinear form β on Kn defined
by β(v, w) := v>Bw. Show that Aut(Kn, β) is a linear Lie group. Hint: Show that
eX ∈ Aut(Kn, β) is equivalent to BeXB−1 = e−X

>
.
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Chapter 4

General Lie Groups

4.1 Manifolds and Lie Groups

We have already encountered linear Lie groups, which are certain closed subgroups of
the unit group A× of a Banach algebra A. In this section, we define Lie groups in the
context of Banach manifolds. We explain how the Lie algebra and the corresponding
Lie functor are defined and describe some basic properties.

Smooth manifolds

Contrary to submanifolds of some vector space, a differentiable manifold is described
without specifying any surrounding space. In spite of the fact that one can show that
each finite dimensional smooth manifold can be realized as a closed submanifold of
some Rn (Whitney’s Embedding Theorem), these embeddings are not canonical, and
it is therefore much more natural to think of differentiable manifolds as spaces for
which no embedding is specified. The concept of a differentiable manifold permits us
to define a Lie group as a differentiable manifold for which the group operations are
smooth maps. We shall verify below that this approach is compatible with what we
have learned previously on linear Lie groups.

Definition 4.1.1. Let M be a Hausdorff space and E be a Banach space.
An E-chart of M is a pair (ϕ,U), where U ⊆M is an open subset and ϕ : U → E

is a homeomorphism onto an open subset of E. If E = Rn, then an E-chart is simply
called an n-dimensional chart and we think of ϕ(x) ∈ Rn as an n-tuple of coordinates
of the element x ∈M .

Two E-charts (ϕ,U) and (ψ, V ) are compatible if the map

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )

and its inverse is smooth, i.e., if it is a diffeomorphism.
An E-atlas on M is a family (ϕα, Uα)α∈I of E-charts with the following properties:

(M1) M =
⋃
α∈I Uα.

49
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(M2) For α, β ∈ I, the charts (ϕα, Uα) and (ϕβ , Uβ) are compatible.

We call an E-atlas A on M maximal if it contains all charts (ψ, V ) compatible
with all charts of U . A maximal atlas on M is called a differentiable structure, and
the pair (M,U) is called a differentiable/smooth manifold modelled on E or a smooth
E-manifold. Then dimM := dimE is called the dimension of M . In the following we
simply write M for (M,U) and call the charts in the atlas U simply the charts of M .

Remark 4.1.2. (a) A given topological space M may carry different differentiable
structures. Examples are the exotic differentiable structures on R4 (the only Rn car-
rying exotic differentiable structures) and the 7-sphere S7.

(b) Each atlas U on a Hausdorff space M is contained in a maximal atlas. One
simply has to enlarge U by all the charts compatible with the charts in U . It is easy
to verify that one thus obtains an atlas. To specify the structure of a differentiable
manifold on M , it therefore suffices to specify an atlas.

Example 4.1.3. (a) Each Banach space M = E is a smooth manifold, where the
differentiable structure is given by the atlas (E, idE).

(b) Each open subset N of a smooth E-manifold M inherits a canonical E-manifold
structure. Its charts are obtained by restricting a chart (ϕ,U) of M to (ϕ|U∩N , U∩N).
In particular, all open subsets of Banach spaces carry natural manifold structures.

(c) If M ⊆ Rn is a k-dimensional submanifold, then M is a Hausdorff space with
respect to the topology inherited from Rn. To obtain an atlas on M , we consider for
each x ∈ M an open neighborhood Vx of x in Rn and a diffeomorphism ψ : Vx → W
onto an open neighborhood W of 0 in Rn such that

ψ(Vx ∩M) = W ∩ Rk.

We define Ux := M ∩ Vx and ϕx := ψ|Ux∩M : Ux ∩M → Rk. Then U := (ϕx, Ux)x∈M
is an atlas of M . This requires some verification! (see Analysis II).

(d) An important example of a smooth manifold is the sphere

Sn := {x ∈ Rn+1 : ‖x‖2 = 1}.

For each i ∈ {1, . . . , n+ 1} we consider the open subsets

Ui,± := {x ∈ Sn : ± xi > 0}.

It is clear that the open sets Ui,± cover Sn. On each Ui,± we define a chart

ϕi : Ui,± → Rn, (x0, . . . , xn) 7→ (x0, . . . , xi−1, xi+1, . . . , xn).

Then each ϕi is a homeomorphism of Ui,± onto the open unit ball B in Rn, and

ϕ−1
i : B → Ui,±, y 7→

(
y0, . . . , yi−1,±

(
1−

∑
j 6=i

y2
j )

1
2 , yi+1, . . . , yn+1

)
.

It is easy to verify that the charts (ϕi, Ui,±) form a smooth atlas on Sn.
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Definition 4.1.4. (a) Let M and N be differentiable manifolds. We call a continuous
map f : M → N smooth in p ∈M if, for some chart (ϕ,U) of M with p ∈ U and some
chart (ψ, V ) of N with f(p) ∈ V , the map

ψ ◦ f ◦ ϕ−1 : ϕ(f−1(V ))→ ψ(V ), ϕ(x) 7→ ψ(f(x)) (4.1)

between open subsets of a Banach space is smooth in a neighborhood of ϕ(p). Note
that the assumption that f is continuous implies that f−1(U) is open in M , so that the
set ψ(f−1(U)) is open. We call a continuous map f : M → N smooth if it is smooth
in each point of M .

(b) A smooth map f : M → N is called a differentiable isomorphism or a diffeo-
morphism if there exists a smooth map g : N →M with g ◦ f = idM and f ◦ g = idN .

Remark 4.1.5. (a) If f : M → N and g : N → Q are continuous maps and p ∈ M
is such that f is smooth in p and g is smooth in f(p), then the composition g ◦ f is
smooth in p. In fact, for charts (ϕ,U), (ψ, V ), resp., (η,W ) of M , N , resp., Q, we
have

η ◦ (g ◦ f) ◦ ϕ−1 = (η ◦ g ◦ ψ−1) ◦ (ψ ◦ f ◦ ϕ−1),

on its natural domain, which contains a neighborhood of ϕ(p).
(b) From (a) it follows in particular that, if f : M → N is smooth in p and (ϕ̃, Ũ)

is any chart of M with p ∈ Ũ , then, for any chart (ψ̃, Ṽ ) of N with f(p) ∈ Ṽ , the map

ψ̃ ◦ f ◦ ϕ̃−1 : ϕ̃(f−1(Ṽ ))→ ψ̃(Ṽ )

is smooth.
(c) The map f : R → R, x 7→ x3 is smooth and invertible, but it is not a smooth

isomorphism because f−1(x) = x1/3 is not differentiable in 0.

Definition 4.1.6. (Product manifolds) Let M , resp., N be differentiable manifolds
with an E-atlas
(Uα, ϕα)α∈A, resp., and F -atlas (Vβ , ψβ)β∈B . Then the topological product M × N
is a Hausdorff space and we obtain the structure of a smooth (E × F )-manifold on
M ×N by the atlas (Uα × Vβ , ϕα × ψβ)(α,β)∈A×B , where

(ϕα × ψβ) : Uα × Vβ → ϕα(Uα)× ψβ(Vβ), (x, y) 7→ (ϕα(x), ψβ(y)).

Remark 4.1.7. If M and N are differentiable manifolds, then the product manifold
M ×N has the following properties:

(a) The projection maps pM : M ×N →M and pN : M ×N → N are smooth.
(b) For x ∈M , the embedding

ix : N →M ×N, y 7→ (x, y)

is smooth and, for y ∈ N , the embedding

iy : M →M ×N, x 7→ (x, y)

is smooth.
(c) The diagonal embedding

∆M : M →M ×M, x 7→ (x, x)

is smooth.
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The definition of a Lie group

There are two types of additional structures on groups. The first level consists of a
topological structure compatible with the group structure, which leads to the concept
of a topological group, and the second level is a differentiable structure, which leads
to the concept of a Lie group.

Definition 4.1.8. (a) A Lie group G is a smooth manifold endowed with a group
structure such that the multiplication and inversion map

mG : G×G→ G and ηG : G→ G

are smooth. Since smooth maps are continuous, every Lie group is in particular a
topological group.

(b) If G and H are topological (Lie) groups, then a group homomorphism
ϕ : G→ H is called a morphism of topological (Lie) groups if ϕ is continuous (smooth).

Remark 4.1.9. As for topological groups, it is easy to see that the smoothness re-
quirements in the definition of a Lie group are equivalent to the requirement that the
map

G×G→ G, (x, y) 7→ xy−1

is smooth.

Lemma 4.1.10. Let G be a Lie group and g ∈ G. Then the following maps are
diffeomorphisms of G:

(1) λg : G→ G, x 7→ gx (left translations).

(2) ρg : G→ G, x 7→ xg (right translations).

(3) cg : G→ G, x 7→ gxg−1 (conjugations).

Proof. The smoothness of all these maps follows from the smoothness of the group
operations. That they are diffeomorphisms is a consequence of their bijectivity and
λ−1
g = λg−1 , ρ−1

g = ρg−1 and c−1
g = cg−1 .

Example 4.1.11. (Vector groups) Each Banach space E is an abelian Lie group with
respect to addition and the obvious manifold structure (Example 4.1.3(a)).

Vector groups (E,+) form the most elementary Lie groups. The next natural class
are unit groups of Banach algebras.

Example 4.1.12. (Unit groups as Lie groups) Let A be a unital Banach algebra
over K and A× be its unit group. As an open subset of A, the group A× carries a
natural manifold structure. The multiplication on A is bilinear and continuous, hence
a smooth map (cf. Lemma B.2.3). Therefore the multiplication of A× is smooth and
it remains to see that the inversion η : A× → A× is smooth. We know already from
Proposition 1.1.9 that η is continuous.

For a, b ∈ A×, we have b−1 − a−1 = a−1(a− b)b−1, which implies that

η(a+ h)− η(a) = (a+ h)−1 − a−1 = a−1(−h)(a+ h)−1 = −a−1h(a+ h)−1.
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This implies that the directional derivative

dη(a)(h) =
d

dt t=0
η(a+ th) = lim

t→0
−a−1h(a+ th)−1 = −a−1ha−1 (4.2)

exists. Moreover,

1
‖h‖

∥∥η(a+ h)− η(a) + a−1ha−1
∥∥

=
1
‖h‖

∥∥a−1h
(
(a+ h)−1 − a−1

)∥∥ ≤ ‖a−1‖‖(a+ h)−1 − a−1‖ → 0

for h → 0 follows from the continuity of η on A×. Therefore η is differentiable in a
with

dη(a)(h) = −a−1ha−1. (4.3)

The continuity of η implies that dη(a) = −λa−1ρa−1 = −λη(a)ρη(a) : A× → L(A) is
continuous, hence that η is a C1-map. From (4.3) and the smoothness of the continuous
bilinear map

A2 → L(A), (x, y) 7→ λxρy,

we further derive that, if η is Ck, then dη is also Ck, so that η is Ck+1. Inductively,
it follows that η is smooth.

Exercises for Section 4.1

Exercise 4.1.1. Let G and H be Lie groups and ϕ : G → H be a group homomor-
phism. Show that ϕ is smooth if there exists an open identity neighborhood U ⊆ G
on which ϕ is smooth.

Exercise 4.1.2. Let G and H be Lie groups and ϕ : G→ H be a bijective group ho-
momorphism. Show that ϕ is a diffeomorphism if there exists an open 1-neighborhood
U ⊆ G such that ϕ|U is a diffeomorphism onto an open 1-neighborhood in H.

4.2 Constructing Lie Group Structures on Groups

In this subsection we describe some methods to construct Lie group structures on
groups, starting from a manifold structure on some “identity neighborhood” for which
the group operations are smooth close to 1.

Lie groups from local data

The following theorem is the smooth version of Lemma 1.4.5 from the topological
context. It is our main tool to construct Lie group structures on groups.

Theorem 4.2.1. Let G be a group and U = U−1 a symmetric subset containing 1.
We further assume that U is a smooth manifold and that
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(L1) D := {(x, y) ∈ U × U : xy ∈ U} is an open subset and the multiplication
mU : D → U, (x, y) 7→ xy is smooth,

(L2) the inversion map ηU : U → U, u 7→ u−1 is smooth, and,

(L3) for each g ∈ G, there exists an open 1-neighborhood Ug ⊆ U with cg(Ug) ⊆ U
and such that the conjugation map

cg : Ug → U, x 7→ gxg−1

is smooth.

Then there exists a unique structure of a Lie group on G such that the inclusion map
U ↪→ G is a diffeomorphism onto an open subset of G.

If, in addition, U generates G, then (L1/2) imply (L3).

Proof. From Lemma 1.4.5, we obtain a unique group topology on G for which the
inclusion map U ↪→ G is an open embedding.

Now we turn to the manifold structure. Let V = V −1 ⊆ U be an open 1-
neighborhood with V V × V V ⊆ D, for which there exists a Banach space E and
an E-chart (ϕ, V ) of U . For g ∈ G we consider the map

ϕg : gV → E, ϕg(x) = ϕ(g−1x)

which is a homeomorphisms of the open subset gV ofG onto the open subset ϕ(V ) ⊆ E.
We claim that (ϕg, gV )g∈G is a smooth atlas of G.

Let g1, g2 ∈ G and put W := g1V ∩ g2V . If W 6= ∅, then g−1
2 g1 ∈ V V −1 = V V .

The smoothness of the map

ψ := ϕg2 ◦ ϕ−1
g1 |ϕg1 (W ) : ϕg1(W )→ ϕg2(W )

given by
ψ(x) = ϕg2(ϕ−1

g1 (x)) = ϕg2(g1ϕ
−1(x)) = ϕ(g−1

2 g1ϕ
−1(x))

follows from the smoothness of the multiplication V V × V V → U . This proves that
the charts (ϕg, gU)g∈G form a smooth atlas of G. Moreover, the construction implies
that all left translations of G are smooth maps because ϕg ◦ λh = ϕg−1h for g, h ∈ G.

The construction also shows that, for g ∈ G, the conjugation cg : G→ G is smooth
in a neighborhood of 1. Since all left translations are smooth, and

cg ◦ λx = λcg(x) ◦ cg

is smooth in an identity neighborhood, the smoothness of cg in a neighborhood of
x ∈ G follows. Therefore all conjugations and hence also all right multiplications are
smooth. The smoothness of the inversion follows from its smoothness on V and the
fact that left and right multiplications are smooth because

ηG ◦ λg = ρ−1
g ◦ ηG
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is smooth in a neighborhood of 1. Finally, the smoothness of the multiplication follows
from the smoothness in a neighborhood of (1,1) because it implies that

mG = λg ◦ ρh ◦mG ◦ (λg−1 × ρh−1)

is smooth in a neighborhood of (g, h). We conclude that G is a Lie group.
Next we show that the inclusion U ↪→ G of U is a diffeomorphism. So let x ∈

U and recall the open set Ux = U ∩ x−1U . Then λx restricts to a smooth map
Ux → U with image Ux−1 . Its inverse is also smooth. Hence λUx : Ux → Ux−1 is
a diffeomorphism. Since λx : G → G also is a diffeomorphism, it follows that the
inclusion λx ◦ λUx−1 : Ux−1 → G is a diffeomorphism. As x was arbitrary, the inclusion
of U in G is a diffeomorphic embedding.

The uniqueness of the Lie group structure is clear because each locally diffeo-
morphic bijective homomorphism between Lie groups is a diffeomorphism (cf. Exer-
cise 4.1.2).

Finally, we assume that G is generated by U . We show that in this case (L3) is a
consequence of (L1) and (L2). For each g ∈ U , there exists an open 1-neighborhood
Ug with gUg × {g−1} ⊆ D. Then cg(Ug) ⊆ U , and the smoothness of mU implies that
cg|Ug : Ug → U is smooth. Hence, for each g ∈ U , the conjugation cg is smooth in
a neighborhood of 1. Since the set of all these g is a submonoid of G containing U ,
it contains Un for each n ∈ N, hence all of G because G is generated by U = U−1.
Therefore (L3) is satisfied.

Remark 4.2.2. Suppose that G is a Lie group. Let (U,ϕ) be a chart with 1 ∈ U =
U−1. Then ϕ : U → ϕ(U) is a homeomorphism onto an open subset of some Banach
space E. Let V ⊆ U be a symmetric 1-neighborhood with V V ⊆ U . Then the map

ϕ(V )× ϕ(V )→ ϕ(U), (x, y) 7→ ϕ(ϕ−1(x)ϕ−1(y))

is smooth. This is the kind of situation one has in mind in the preceding theorem.
The main point in the local approach is that it emphasizes that the whole differ-

entiable structure is determined by the manifold structure on a suitable neighborhood
of the identity, which is very convenient to construct Lie group structures.

Corollary 4.2.3. Let G be a group and N E G be a normal subgroup of G that carries
a Lie group structure. Then there exists a Lie group structure on G for which N is
an open subgroup if and only if, for each g ∈ G, the restriction cg|N is a smooth
automorphism of N .

Proof. If N is an open normal subgroup of the Lie group G, then clearly all inner
automorphisms of G restrict to smooth automorphisms of N .

Suppose, conversely, that N is a normal subgroup of the group G which is a Lie
group and that all inner automorphisms of G restrict to smooth automorphisms of N .
Then we can apply Theorem 4.2.1 with U = N and obtain a Lie group structure on G
for which the inclusion N → G is a diffeomorphism onto an open subgroup of G.
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Linear groups as Lie groups

Before we turn to linear Lie groups, we explain how any closed Lie subalgebra g can
be used to construct a Lie group modeled on g.

Theorem 4.2.4. (Integral Subgroup Theorem; linear version) Let A be a unital Ba-
nach algebra and g ⊆ A be a closed Lie subalgebra. Then the subgroup G := 〈exp g〉 of
A× generated by exp(g) carries a Lie group structure for which there exists an open
0-neighborhood V ⊆ g on which the Dynkin series converges and

exp: g→ G, x 7→ expx

is smooth and maps V diffeomorphism onto its open image in G and satisfies

exp(x ∗ y) = exp(x) exp(y) for x, y ∈ V.

Proof. Let

V :=
{
x ∈ g : ‖x‖ < 1

2 log
(

2−
√

2
2

)}
,

so that the Dynkin series for x ∗ y converges for x, y ∈ V and satisfies

exp(x ∗ y) = exp(x) exp(y)

(Proposition 2.3.6). Since x ∗ y is a series whose summands are obtained by iterated
Lie brackets, the closedness of g implies that x ∗ y ∈ g for x, y ∈ V . The function
V × V → g, (x, y) 7→ x ∗ y is smooth because it is the restriction of a smooth function
on an open 0-neighborhood of A.

We consider the subset U := exp(V ) ⊆ G. From V = −V we derive U = U−1, and
since ‖x‖ < log 2 for x ∈ V , Proposition 2.2.3 implies that ϕ := exp |V is injective. We
may thus endow U with the manifold structure turning ϕ into a diffeomorphism.

Then
DV := {(x, y) ∈ V × V : x ∗ y ∈ V }

is an open subset of V × V on which the BCDH multiplication is smooth, so that the
multiplication

DU := {(g, h) ∈ U × U : gh ∈ U} = {(expx, exp y) : (x, y) ∈ DV } → U

is also smooth. We further observe that

exp(−x) = exp(x)−1,

from which it follows that the inversion on U is smooth.
To verify (L3), we first note that, for each x ∈ g, we have Ad(expx)g = ead xg ⊆ g,

from which it follows that Ad(g)g = g for each g ∈ G. Hence Ad(g) induces a
topological linear automorphism of g, so that there exists an open 0-neighborhood
Vg ⊆ g with Ad(g)Vg ⊆ V . Now Ad(g) restrict to a smooth map

Ad(g) : Vg → V, x 7→ gxg−1
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with ϕ(Ad(g)x) = gϕ(x)g−1.
Therefore U satisfies all assumptions of Theorem 4.2.1, so that we obtain a Lie

group structure on G for which ϕ, resp., exp induces a local diffeomorphism in 0.
Finally, the smoothness of the exponential function follows from its smoothness on

V ,
⋃
m∈N mV = g, and expG(mx) = expG(x)m.

Remark 4.2.5. The example of the dense wind shows that we cannot expect that the
group G = 〈exp g〉 is closed in A× or that the inclusion map G→ A× is a topological
embedding. However, the smoothness of the exponential map g → A× and the fact
that exp |g : g → G is a local diffeomorphism imply that the inclusion G → A× is
smooth, i.e., a morphism of Lie groups (Exercise 4.1.2).

Theorem 4.2.6. (Linear Lie Group Theorem) Every linear Lie group carries a unique
Lie group structure for which the exponential function expG : L(G)→ G is smooth and
there exists an open 0-neighborhood V ⊆ L(G) on which the Dynkin series converges
and expG |V is a diffeomorphism onto an open subset of G with

expG(x ∗ y) = expG(x) expG(y) for x, y ∈ V.

Proof. Let A be a unital Banach algebra and G ⊆ A× be a linear Lie group. By
definition, there exists an open 0-neighborhood W ⊆ L(G) for which ϕ := expG |W is
a homeomorphism onto an open 1-neighborhood in G. In particular, exp(L(G)) ⊆ G is
a connected 0-neighborhood, so that 〈exp L(G)〉 is an open connected subgroup of G,
hence coincides with the identity component G0 of G (cf. Lemmas 1.2.2(iv) and 1.2.10).
We endow G0 with the Lie group structure from Theorem 4.2.4. Since exp maps a
0-neighborhood of L(G) homeomorphically onto a 1-neighborhood of G0 and likewise
onto a 1-neighborhood of G, it follows that the Lie group structure on G0 is compatible
with the group topology on G because both have the same 1-neighborhoods.

To see that the Lie group structure on G0 extends to G, we have to verify that
all conjugation maps cg, g ∈ G, restrict to smooth maps on G0 (Corllary 4.2.3). This
follows from

cg(expx) = exp(Ad(g)x) for x ∈ L(G)

and Exercise 4.1.1 because the linear maps Ad(g) : L(G)→ L(G) are continuous, hence
smooth. The uniqueness of this Lie group structure now follows from Exercise 4.1.2.

Remark 4.2.7. If G ⊆ A× is a closed subgroup, not necessarily Lie, then its Lie alge-
bra L(G) is a closed Lie subalgebra of AL and Theorem 4.2.4 yields a Lie group struc-
ture on the subgroup G1 := 〈exp L(G)〉 of G which the exponential map exp: L(G)→
G1 is a local homeomorphism. The relation cg(expx) = exp(Ad(g)x) implies that
G1 E G is a normal subgroup and that the conjugation maps cg : G1 → G1, g ∈ G, are
smooth automorphisms of G1. Therefore Corollary 4.2.3 further implies that G carries
a unique Lie group structure for which G1 is an open subgroup. The so obtained Lie
group structure is compatible with the subspace topology on G inherited from A× if
and only if G is a linear Lie group.



58 CHAPTER 4. GENERAL LIE GROUPS

4.3 Coverings of Lie groups

In the preceding section we have seen how to construct Lie group structures on groups
from local data. This construction applies in particular to those quotient morphisms
q : G→ G/N , where G is a Lie group and q is a local homeomorphism, i.e., maps some
open identity neighborhood homeomorphically to an open identity neighborhood in
N . This means that N is a discrete subgroup of G, such as Z in R (cf. Exercise 4.3.2).

To deal properly with such maps, we recall the concept of a covering map from
Definition C.2.1. This concept is particularly important in the theory of Lie groups
because it can be used to understand how different connected Lie groups with the
same Lie algebra can be.

The following lemma shows that covering morphism of topological groups coincide
with quotient maps modulo discrete normal subgroups.

Lemma 4.3.1. (a) If ϕ : G → H is a covering morphism of topological groups, then
its kernel Γ := kerϕ is a discrete normal subgroup and the induced homomorphism
ϕ : G/Γ→ H is an isomorphism of topological groups.
(b) Conversely, for every discrete normal subgroup Γ of a topological group G, the
quotient map q : G→ G/Γ is a covering morphism.

Proof. (a) Since ϕ is a covering, there exists an open 1-neighborhood U ⊆ G which is
mapped homeomorphically onto ϕ(U). Then

Γ ∩ U = {u ∈ U : ϕ(u) = 1} = {1}

implies that Γ is discrete (cf. Remark 1.2.3).
The induced map ϕ : G/Γ → H is a bijective continuous homomorphism of topo-

logical groups, and since ϕ is an open map, the same holds for ϕ (cf. Lemma 1.4.7).
Therefore ϕ is a homeomorphism.

(b) Let U ⊆ G be an open symmetric 1-neighborhood with U2 ∩ Γ = {1}. Then,
for each g ∈ G, gUΓ =

⋃
γ∈Γ gUγ is a disjoint union and an open subset of G. Since

gu1Γ = gu2Γ for uj ∈ U implies that u−1
2 u1 ∈ U2 ∩ Γ = {1}, the restriction of q to

each set gUγ is injective, hence a homeomorphism onto the open subset q(gU) of G/Γ.
In view of gUΓ = q−1(q(gU)), it follows that q is a covering.

Proposition 4.3.2. Let ϕ : G→ H be a covering of topological groups. If G or H is
a Lie group, then the other group has a unique Lie group structure for which ϕ is a
morphism of Lie groups which is a local diffeomorphism.

Proof. Let UG ⊆ G be an open symmetric 1-neighborhood for which ϕ|UG is a home-
omorphism onto an open subset UH of H and which satisfies U3

G ∩ kerϕ = {1}.
Suppose first that G is a Lie group. Then we apply Theorem 4.2.1 to UH , endowed

with the manifold structure for which ϕ|UG is a diffeomorphism. Then (L2) follows
from ϕ(x)−1 = ϕ(x−1). To verify the smoothness of the multiplication map

mUH : DH := {(a, b) ∈ UH × UH : ab ∈ UH} → UH ,
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we first observe that, if x, y ∈ UG satisfy (ϕ(x), ϕ(y)) ∈ DH , i.e., ϕ(xy) ∈ UH , then
there exists a z ∈ UG with ϕ(xy) = ϕ(z), and xyz−1 ∈ UG

3 ∩ ker(ϕ) = {1} yields
xy = z ∈ UG. We thus have DH = (ϕ× ϕ)(DG) for

DG := {(x, y) ∈ UG × UG : xy ∈ UG}

and the smoothness of mH follows from the smoothness of the multiplication
mUG : DG → UG and

mUH ◦ (ϕ× ϕ) = ϕ ◦mUG .

To verify (L3), we note that the surjectivity of ϕ implies that for each h ∈ H there is
an element g ∈ G with ϕ(g) = h. Now we choose an open 1-neighborhood Ug ⊆ UG
with cg(Ug) ⊆ UG and put Uh := ϕ(Ug).

If, conversely, H is a Lie group, then we apply Theorem 4.2.1 to UG, endowed
with the manifold structure for which ϕ|UG is a diffeomorphism onto UH . Again, (L2)
follows right away, and (L1) follows from (ϕ× ϕ)(DG) ⊆ DH and the smoothness of

mUH ◦ (ϕ× ϕ) = ϕ ◦mUG .

For (L3), we choose Ug as any open 1-neighborhood in UG with cg(Ug) ⊆ U . Then the
smoothness of cg|Ug follows from the smoothness the maps of ϕ ◦ cg = cϕ(g) ◦ ϕ.

Theorem 4.3.3. (Universal Covering Theorem) If G is a connected Lie group, then
there exists a covering map qG : G̃→ G, where G̃ is a simply connected Lie group.

Proof. Since every g ∈ G has a neighborhood U homeomorphic to a ball in a Ba-
nach space and balls are simply connected, G is locally arcwise connected and semilo-
cally simply connected. Therefore Theorem C.2.13 implies the existence of a covering
qG : G̃→ G by a simply connected space G̃.

Next we construct a (topological) group structure on G̃. Pick an element 1̃ ∈
q−1
G (1). Then the multiplication map mG : G×G→ G resp. the map mG ◦ (qG × qG)

lifts uniquely to a continuous map m̃G : G̃ × G̃ → G̃ with m̃G(1̃, 1̃) = 1̃ (The Lifting
Theorem C.2.9). To see that the multiplication map m̃G is associative, we observe
that

qG ◦ m̃G ◦ (id eG×m̃G) = mG ◦ (qG × qG) ◦ (id eG×m̃G)
= mG ◦ (idG×mG) ◦ (qG × qG × qG) = mG ◦ (mG × idG) ◦ (qG × qG × qG)
= qG ◦ m̃G ◦ (m̃G × id eG),

so that the two continuous maps

m̃G ◦ (id eG×m̃G), m̃G ◦ (m̃G × id eG) : G̃3 → G,

are lifts of the same map G3 → G and both map (1̃, 1̃, 1̃) to 1̃. Hence the uniqueness of
lifts implies that m̃G is associative. We likewise obtain that the unique lift η̃G : G̃→ G̃
of the inversion map ηG : G→ G with η̃G(1̃) = 1̃ satisfies

m̃G ◦ (ηG × id eG) = 1̃ = m̃G ◦ (id eG×ηG).
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Therefore m̃G defines on G̃ a topological group structure such that
qG : G̃ → G is a covering morphism of topological groups. Now Proposition 4.3.2
applies.

Theorem 4.3.4. (Lifting Theorem for Groups) Let q : G→ H be a covering morphism
of Lie groups. If f : L→ H is a morphism of Lie groups, where L is simply connected,
then there exists a unique morphism of Lie groups f̃ : L→ G with q ◦ f̃ = f .

Proof. Since Lie groups are locally arcwise connected, the Lifting Theorem C.2.9 im-
plies the existence of a unique lift f̃ : L→ G with f̃(1L) = 1G. Then

mG ◦ (f̃ × f̃) : L× L→ G

is the unique lift of mH ◦ (f × f) : L× L→ H mapping (1L,1L) to 1G. We also have

q ◦ f̃ ◦mL = f ◦mL = mH ◦ (f × f),

so that f̃ ◦mL is another lift of mH ◦ (f × f), mapping (1L,1L) to 1G. Therefore

f̃ ◦mL = mG ◦ (f̃ × f̃),

which means that f̃ is a group homomorphism.
Since q is a local diffeomorphism and f̃ is a continuous lift of f , it is also smooth in

an identity neighborhood of L, hence smooth (Exercise 4.1.1; see also Exercise 4.3.3).

Theorem 4.3.5. Let G be a connected Lie group and qG : G̃ → G be a universal
covering homomorphism. Then ker qG ∼= π1(G) is a discrete central subgroup and
G ∼= G̃/ ker qG.

Moreover, for any discrete central subgroup Γ ⊆ G̃, the group G̃/Γ is a connected
Lie group with the same universal covering group as G. We thus obtain a bijection
from the set of all Aut(G̃)-orbits in the set of discrete central subgroups of G̃ onto
the set of isomorphy classes of connected Lie groups whose universal covering group is
isomorphic to G̃.

Proof. First we note that ker qG is a discrete normal subgroup of the connected Lie
group G̃, hence central by Exercise 1.2.8. Left multiplications by elements of ker qG lead
to deck transformations of the covering G̃→ G, and this group of deck transformations
acts transitively on the fiber ker qG of 1. Proposition C.2.17 now yields a group
isomorphism

π1(G) ∼= ker qG (4.4)

Since qG : G̃ → G is a covering which is a local diffeomorphism, the induced map
G̃/ ker qG → G also is a local diffeomorphism if G̃/ ker qG carries the canonical Lie
group structure (Proposition 4.3.2). Since it also is bijective, it is an isomorphism of
Lie groups (Exercise 4.1.2).

If, conversely, Γ ⊆ G̃ is a discrete central subgroup, then G̃/Γ is a Lie group whose
universal covering group is G̃ (Proposition 4.3.2). Two such groups G̃/Γ1 and G̃/Γ2
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are isomorphic if and only if there exists a Lie group automorphism ϕ ∈ Aut(G̃) with
ϕ(Γ1) = Γ2 (Theorem 4.3.4). Therefore the isomorphism classes of Lie groups with the
same universal covering group G are parameterized by the orbits of the group Aut(G̃)
in the set of discrete central subgroups of G̃.

Examples 4.3.6. Let E be a Banach space, so that (E,+) is a Lie group. Then,
for each discrete subgroup Γ ⊆ E, the quotient group E/Γ carries a natural Lie
group structure (Proposition 4.3.2; Exercise 4.3.2). Since E is simply connected by
Remark C.1.7, E is the universal covering group of E/Γ and π1(E/Γ) ∼= Γ (The-
orem 4.3.5). We shall see in Corollary 6.2.19 below that all connected abelian Lie
groups are of this form. As special cases we obtain in particular the finite-dimensional
tori

Td ∼= Rd/Zd

(cf. Example 1.4.8).
To classify all connected abelian Lie groups A with Ã ∼= Rn, we can now proceed as

follows. Since all automorphisms of the topological group Rn are automatically linear
(Exercise 4.3.5), we have an isomorphism Aut(Ã) ∼= GLn(R). Further, Exercise 1.2.7
implies that the discrete subgroup ker qA ∼= π1(A) of Ã ∼= Rn can be mapped by some
ϕ ∈ GLn(R) onto

Zk ∼= Zk × {0} ⊆ Rk × Rn−k ∼= Rn.

Therefore
A ∼= Rn/Zk ∼= Tk × Rn−k,

and it is clear that the number k is an isomorphy invariant of the Lie group A, namely,
the rank of its fundamental subgroup.

Since we shall see below that every connected abelian Lie groups A of dimension n
satisfies Ã ∼= Rn, it follows that A is determined up to isomorphism by the pair (n, k),
where n = dimA and k = rankπ1(A). The case n = k leads to the compact connected
abelian Lie groups.

Examples 4.3.7. (a) The group T ∼= R/Z is homeomorphic to the one-dimensional
sphere S1, which is not simply connected.

The group

SU2(C) ∼=
{(

a −b
b a

)
∈ GL2(C) : |a|2 + |b|2 = 1

}
is homeomorphic to the 3-sphere

{(a, b) ∈ C2 : ‖(a, b)‖ = 1} ∼= S3

which is simply connected (Exercise C.1.3). One can show that the sphere Sn carries
a Lie group structure if and only if n = 0, 1, 3.

(b) With some more advanced tools from homotopy theory, one can show that the
groups SUn(C) are always simply connected. However, this is never the case for the
groups Un(C).
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To see this, consider the group homomorphism

γ : T→ Un(C), z 7→ diag(z, 1, . . . , 1)

and note that det ◦γ = idT. From that one easily derives that the multiplication map

µ : SUn(C)× T→ Un(C), (g, z) 7→ gγ(z)

is a homeomorphism, so that

π1(Un(C)) ∼= π(SUn(C))× π1(T) ∼= π1(T) ∼= Z.

We further derive that the universal covering group is given by

Ũn(C) ∼= SUn(C) oβ R where β(t)g := γ(eit)gγ(e−it).

Example 4.3.8. We show that

π1(SO3(R)) ∼= C2 = {±1}

by constructing a surjective homomorphism

ϕ : SU2(C)→ SO3(R)

with kerϕ = {±1}, so that

SO3(R) ∼= SU2(C)/{±1}.

Since SU2(C) is homeomorphic to S3, it is simply connected (Exercise C.1.3), so that
we obtain π1(SO3(R)) ∼= C2 (Theorem 4.3.5).

We consider

su2(C) = {x ∈ gl2(C) : x∗ = −x, trx = 0} =
{( ai b

−b −ai

)
: b ∈ C, a ∈ R

}
and observe that this is a three-dimensional real subspace of gl2(C). We obtain on
E := su2(C) the structure of a euclidean vector space by the scalar product

β(x, y) := tr(xy∗) = − tr(xy).

Now we consider the adjoint representation

Ad: SU2(C)→ GL(E), Ad(g)(x) = gxg−1.

Then we have for x, y ∈ E and g ∈ SU2(C) the relation

β
(

Ad(g)x,Ad(g)y
)

= tr(gxg−1(gyg−1)∗) = tr(gxg−1(g−1)∗y∗g∗)
= tr(gxg−1gy∗g−1) = tr(xy∗) = β(x, y).

This means that
Ad(SU2(C)) ⊆ O(E, β) ∼= O3(R).
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Since SU2(C) is connected, we further obtain Ad(SU2(C)) ⊆ SO(E, β) ∼= SO3(R), the
identity component of O(E, β).

The derived representation is given by

L(Ad) = ad: su2(C)→ so(E, β) ∼= so3(R), ad(x)(y) = [x, y].

If adx = 0, then adx(i1) = 0 implies that adx(u2(C)) = {0}, so that adx(gl2(C)) =
{0} follows from gl2(C) = u2(C)+iu2(C). This implies that x ∈ C1 (Exercise 4.3.6), so
that trx = 0 leads to x = 0. Hence ad is injective, and we conclude with dim so(E, β) =
dim so3(R) = 3 that

ad(su2(C)) = so(E, β)

(cf. Exercise 4.3.7). Therefore the connectedness of SU2(C) implies that

Ad(SU2(C)) = 〈Ad(exp su2(C))〉 = 〈ead su2(C)〉 = 〈eso(E,β)〉 = SO(E, β)0 = SO(E, β)

(cf. Exercise 4.3.8). We thus obtain a surjective homomorphism

ϕ : SU2(C)→ SO3(R).

Since SU2(C) is compact, the quotient group SU2(C)/ kerϕ is also compact, and the
induced bijective morphism SU2(C)/ kerϕ → SO3(R) is a homeomorphism, hence an
isomorphism of topological groups.

We further have

kerϕ = Z(SU2(C)) = SU2(C) ∩ C×1 = {±1}

(Exercise 1.1.9), so that

S̃O3(R) ∼= SU2(C) and π1(SO3(R)) ∼= C2.

Exercises for Section 4.3

Exercise 4.3.1. Let G be an abelian group and N ≤ G a subgroup carrying a Lie
group structure. Then there exists a unique Lie group structure on G for which N is
an open subgroup.

Exercise 4.3.2. Let G be a Lie group and N E G a discrete normal subgroup. Show
thatG/N carries a unique Lie group structure for which the quotient map q : G→ G/N
is a local diffeomorphism.

Exercise 4.3.3. Let M , N and X be smooth manifolds, q : M → N be a smooth
covering map and F : X → M a continuous map. Show that F is smooth if and only
if q ◦ F is smooth.

Exercise 4.3.4. Let qG : G̃→ G be a simply connected covering of the connected Lie
group G.

(1) Show that each automorphism ϕ ∈ Aut(G) has a unique lift ϕ̃ ∈ Aut(G̃).
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(2) Derive from (1) that Aut(G) ∼= {ϕ̃ ∈ Aut(G̃) : ϕ̃(π1(G)) = π1(G)}.

(3) Show that, in general, {ϕ̃ ∈ Aut(G̃) : ϕ̃(π1(G)) ⊆ π1(G)} is not a subgroup of
Aut(G̃).

Exercise 4.3.5. Let (E,+) be the additive group of a real Banach space, considered
as a Lie group. Show that Aut(E,+) = GL(E), i.e., every automorphism of (E,+) is
linear.

Exercise 4.3.6. Show that the center of GLn(K) is given by

Z(GLn(K)) := {g ∈ GLn(K) : (∀h ∈ GLn(K))hg = gh} = K×1

and that the center of its Lie algebra is

z(gln(K)) := {x ∈ gln(K) : (∀x ∈ gln(K)) [x, y] = 0} = K1.

Hint: Consider the elementary matrices Eij := (δikδjl)k,l and note that Tij := 1+Eij ∈
GLn(K).

Exercise 4.3.7. Let (E, β) be an n-dimensional euclidean space, i.e., β is a positive
definite symmetric bilinear form on E. Show that there exists an isometric isomor-
phism Φ: Rn → E, and that

Ψ: On(R)→ O(E, β), g 7→ Φ ◦ g ◦ Φ−1

is an isomorphism of topological groups.

Exercise 4.3.8. Show that for every linear Lie group G ⊆ A×, the identity component
is generated by the image of expG:

G0 = 〈expG(L(G))〉.

Exercise 4.3.9. On the four-dimensional real vector space V := Herm2(C) we con-
sider the symmetric bilinear form β given by

β(A,B) := tr(AB)− trA trB.

Show that:

(1) The corresponding quadratic form is given by q(A) := β(A,A) = −2 detA.

(2) Show that (V, β) ∼= R3,1 by finding a basis E1, . . . , E4 of Herm2(C) with

q(a1E1 + . . .+ a4E4) = a2
1 + a2

2 + a2
3 − a2

4.

(3) For g ∈ GL2(C) and A ∈ Herm2(C) the matrix gAg∗ is hermitian and satisfies

q(gAg∗) = |det(g)|2q(A).
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(4) For g ∈ SL2(C) we define a linear map ρ(g) ∈ GL(Herm2(C)) by
ρ(g)(A) := gAg∗. Then we obtain a homomorphism

ρ : SL2(C)→ O(V, β) ∼= O3,1(R).

(5) Show that ker ρ = {±1}.

Exercise 4.3.10. Let ϕ : G → H be a surjective morphism of topological groups.
Show that the following conditions are equivalent:

(1) ϕ is open with discrete kernel.

(2) ϕ is a covering in the topological sense, i.e., each h ∈ H has an open neighborhood
U such that ϕ−1(U) =

⋃
i∈I Ui is a disjoint union of open subsets Ui for which

all restrictions ϕ|Ui : Ui → U are homeomorphisms.
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Chapter 5

Vector Fields and their
Lie-Algebra Structure

At this point we have seen several constructions producing new Lie groups from given
ones. In particular, we have seen that linear Lie groups are Lie groups and that
coverings of Lie groups, resp., quotients by discrete normal subgroups are Lie groups.
What is still missing is a definition of the Lie algebra of a general Lie group, i.e., the
corresponding infinitesimal object.

The idea to define L(G) is the following. For linear Lie groups G ⊆ A×, we have
defined L(G) as those elements of A for which eRx ⊆ G, and it is easy to see that,
geometrically, L(G) is the tangent space of G in 1 (Exercise 3.1.8). Therefore each
x ∈ L(G) defines by X(g) = gx a “vector field” on G. For general Lie groups, this
is a natural way to obtain the Lie algebra as the set of vector fields on G which are
invariant under left translations. In this chapter we provide the concepts needed to
follow this path. First we define tangent vectors of abstract manifolds (Section 5.1).
Then we define vector fields and show that the space of vector fields carries a natural
Lie bracket (Section 5.2), and finally we explain how vector fields are related to flows,
resp., ordinary differential equations on manifolds (Section 5.3).

5.1 Tangent vectors of manifolds

The real strength of the theory of smooth manifolds is due to the fact that it per-
mits to analyze differentiable structures in terms of their derivatives. To model these
derivatives appropriately, we introduce the tangent bundle TM of a smooth manifold,
tangent maps of smooth maps and smooth vector fields.

Remark 5.1.1. To understand the idea behind tangent vectors and the tangent bundle
of a manifold, we first take a closer look at the special case of an open subset U of a
Banach space E. We think of a tangent vector in p ∈ U as a vector v ∈ E attached
to the point p. In particular, we distinguish tangent vectors attached to different
points. A good way to visualize this is to think of v as an arrow starting in p or as v

67
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corresponding to the translation map τv : E → E, x 7→ x+ v. In this sense we write

Tp(U) := {p} × E

for the set of all tangent vectors in p, the tangent space in p. It carries a natural real
vector space structure, given by

(p, v) + (p, w) := (p, v + w) and λ(p, v) := (p, λv)

for v, w ∈ E and λ ∈ R.
The collection of all tangent vectors, the tangent bundle, is denoted

T (U) :=
⋃
p∈U

Tp(U) = {(p, v) : p ∈ U, v ∈ E} ∼= U × E.

(b) Let E and F be Banach spaces. If f : U → V is a C1-map between open subsets
U ⊆ E and V ⊆ F , then the directional derivatives permit us to “extend” f to tangent
vectors by its tangent map

T (f) : T (U) ∼= U × E → TV ∼= V × F, (p, v) 7→ (f(p), df(p)v).

For each p ∈ U , the map Tf restricts to a linear map

Tp(f) : Tp(U)→ Tf(p)(V ), (p, v) 7→ (f(p), df(p)v). (5.1)

The main difference to the map df is the book keeping; here we keep track of what
happens to the point p and the tangent vector v.

If U ⊆ E, V ⊆ F , resp., W ⊆ G are open subsets, where E, F and G are Banach
spaces, and f : U → V and g : V →W are C1-maps, then the Chain Rule implies that

T (g ◦ f)(p, v) = (g(f(p)), d(g ◦ f)(p)v) = (g(f(p)), dg(f(p))df(p)v)
= Tf(p)(g) ◦ Tp(f)v,

so that, in terms of tangent maps, the Chain Rule takes the simple form

T (g ◦ f) = T (g) ◦ T (f). (5.2)

We clearly have T (idU ) = idT (U) and, for a diffeomorphism f , we thus obtain from
the Chain Rule T (f−1) = T (f)−1.

(c) As the terminology suggests, tangent vectors arise as tangent vectors of curves.
If γ : ]a, b[→ U is a C1-curve, then its tangent map satisfies

T (γ)(t, v) = (γ(t), dγ(t)v) = (γ(t), v · γ′(t)) on T (]a, b[) ∼=]a, b[×R,

and in particular
T (γ)(t, 1) = (γ(t), γ′(t))

is the tangent vector in γ(t) to the curve γ.



5.1. TANGENT VECTORS OF MANIFOLDS 69

Definition 5.1.2. Let M be a smooth E-manifold and A := (ϕi, Ui)i∈I be an E-atlas
of M . On the disjoint union of the set ϕ(Ui)×E, we define an equivalence relation by

(ϕi(p), v) ∼
(
ϕj(p), d(ϕj ◦ ϕ−1

i )(ϕi(p))(v)
)

= T (ϕj ◦ ϕ−1
i )(ϕi(p), v),

for p ∈ Ui ∩Uj and v ∈ E.1 We write [ϕi(p), v] for the equivalence class of (ϕi(p), v).
Then the equivalence classes of the form [ϕi(p), v], v ∈ E, are called tangent vectors
in p and we write Tp(M) for the set of all these equivalence classes, the tangent space
of M in p. Since the differentials d(ϕj ◦ϕ−1

i )(ϕi(p)) are invertible linear maps, Tp(M)
inherits the well-defined structure of a vector space by

[ϕi(p), v] + [ϕi(p), w] := [ϕi(p), v + w] and λ[ϕi(p), v] := [ϕi(p), λv],

so that the map E → Tp(M), v 7→ [ϕi(p), v] is a linear isomorphism for any fixed i ∈ I
(Exercise).

Remark 5.1.3. If (ϕ,U) is a chart of M compatible with the E-atlas A and p ∈ U ,
v ∈ E, then the equivalence class [ϕ(p), v] is defined, regardless of whether (ϕ,U) was
contained in the atlas A or not. In fact, we can always enlarge A by the chart (ϕ,U)
and observe that, for any i ∈ I with p ∈ Ui, we have

[ϕ(p), v] = [ϕi(p), d(ϕi ◦ ϕ−1)(ϕ(p))v],

expressing [ϕ(p), v] in terms of the equivalence classes specified by the atlas A in
Definition 5.1.2.

Definition 5.1.4. (The tangent bundle TM) As a set, the tangent bundle of the
E-manifold M is defined as the disjoint union

TM :=
⋃
p∈M

Tp(M)

of all tangent vectors. To define a topology, resp., a manifold structure on M , we first
recall that any E-chart (ϕ,U) of M leads to a bijection

Tϕ : TU =
⋃
p∈U

Tp(M)→ T (ϕ(U)) = ϕ(U)× E, [ϕ(p), v] 7→ (ϕ(p), v).

Let τ ⊆ P(TM) be the set of all subsets O ⊆ TM with the property that (Tϕ)(O)
is open in ϕ(U)×E for every E-chart (ϕ,U) of M . It is easy to see that τ is a topology
TM . Since for every open subset O′ ⊆ ϕ(U)×E for some chart (ϕ,U) of M , the sets
T (ψ ◦ϕ−1)(O′) are open in ψ(V )×E for every other chart (ψ, V ) of M , it follows that
(Tϕ)−1(O′) ∈ τ , and therefore Tϕ : TU → ϕ(U) × E is a homeomorphism, hence an
(E × E)-chart of TM .

Let
πTM : TM →M, Tp(M) 3 v 7→ p

1That this defines an equivalence relation follows easily from the fact that the maps ϕj ◦ ϕ−1
i are

diffeomorphisms and the Chain Rule.
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denote the projection map sending a tangent vector v ∈ Tp(M) to its base point p.
Then, for every open subset O ⊆M its inverse image π−1

TM (O) ⊆ TM is open because
for every chart (ϕ,U), the set ϕ(O ∩ U) × E is open in E × E. To see that TM is
Hausdorff, we now observe that, for two tangent vectors v ∈ Tp(M) and w ∈ Tq(M),
we obtain disjoint open neighborhoods from the continuity of πTM if p 6= q. If p = q,
we pick any chart (ϕ,U) with p ∈ U and note that the open subset TU ∼= ϕ(U) × E
of TM is Hausdorff, so that v, w ∈ TU possess disjoint open neighborhoods.

Finally we observe that, for every E-atlas A = (ϕi, Ui)i∈I , we obtain an (E × E)-
atlas TA := (Tϕi, TUi)i∈I (Exercise 5.1.1).

Remark 5.1.5. For each open subset U of a Banach space E, we have TU ∼= U × E
(as smooth manifolds).

Definition 5.1.6. (The tangent map) Let M and N be smooth manifolds and
f : M → N be a smooth map.

(a) For p ∈M we pick charts (ϕ,U) of M and (ψ, V ) of N with p ∈ U and f(p) ∈ V .
We now define the tangent map

Tp(f) := df(p) : Tp(M)→ Tf(p)(N), [ϕ(p), v] 7→ [ψ(f(p)), d(ψ ◦ f ◦ ϕ−1)(ϕ(p))v].

The Chain Rule implies that the right hand side does not depend on the choice of the
charts of M , resp., N . We thus obtain a well-defined linear map Tp(f) between the
tangent spaces.

Putting all these tangent maps together, we obtain a map

Tf : TM → TN, Tf(v) := Tp(f)v, v ∈ Tp(M).

For charts (ϕ,U) on M and (ψ, V ) as above, we have

Tψ ◦Tf ◦ (Tϕ)−1(ϕ(p), v) = (ψ(f(p)), d(ψ ◦f ◦ϕ−1)(ϕ(p))v) = T (ψ ◦f ◦ϕ−1)(ϕ(p), v),

so that Tf is smooth on the open subset T (f−1(V )) of TM . This implies that Tf is
a smooth map.

(b) If N = E is a Banach space, then TE ∼= E×E and the map Tf can accordingly
be written as Tf = (f, df), where df is a map TM → E.

(c) If M ⊆ R is an open interval, then f is a curve in M and we put

f ′(t) := (Ttf)(1) ∈ Tf(t)(N).

Remark 5.1.7. (a) Note that

T (idM ) = idTM and T (f1 ◦ f2) = Tf1 ◦ Tf2

for smooth maps f2 : M1 →M2 and f2 : M2 →M3.
(b) For smooth manifolds M1, . . . ,Mn, the projection maps

πi : M1 × · · · ×Mn →Mi, (p1, . . . , pn) 7→ pi

induce a diffeomorphism

(Tπ1, . . . , Tπn) : T (M1 × · · · ×Mn)→ TM1 × · · · × TMn.
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Remark 5.1.8. We record some rules that are useful when dealing with tangent maps.
(1) From the local Chain Rule ((5.2) in Remark 5.1.1) we immediately derive its

general form: For smooth maps g : M1 →M2 and f : M2 →M3, we have

T (f ◦ g) = T (f) ◦ T (g). (5.3)

We also note that T (idM ) = idTM . 2

(2) If f1 : M → N1 and f2 : M → N2 are smooth maps, then we combine them to
the smooth map

f := (f1, f2) : M → N1 ×N2, m 7→ (f1(m), f2(m)).

Identifying T (N1 ×N2) with TN1 × TN2, we then have

Tf = (Tf1, T f2).

(3) If f1 : M1 → N1 and f2 : M2 → N2 are smooth maps, then we combine them to
the smooth map

f := f1 × f2 : M1 ×M2 → N1 ×N2, (m1,m2) 7→ (f1(m1), f2(m2)).

Identifying T (M1×M2) with TM1×TM2 and T (N1×N2) with TN1×TN2, we obtain

T (f1 × f2) = Tf1 × Tf2.

Exercises for Section 5.1

Exercise 5.1.1. Let (ϕi, Ui)i∈I be an E-chart of the smooth manifold M and

ψi : TUi :=
⋃
p∈Ui

Tp(M)→ ϕ(Ui)× E, [ϕi(x), v] 7→ (ϕi(x), v).

Show that

(i) We call O ⊆ TM open if, for each i ∈ I, the subset ψi(O ∩ TUi) ⊆ ϕi(Ui) × E is
open. Show that the open sets define a topology on TM .

(ii) The subset TUi ⊆ TM is open and ψi : TUi → ϕ(Ui)× E is a homeomorphism.

(iii) TM is a Hausdorff space.

(iv) The family (ψi)i∈I defines a smooth E × E-atlas on TM .

Exercise 5.1.2. Let M be an E-manifold. Show that, for every E-chart (ϕ,U) of M ,
the tangent map

Tϕ : TU → T (ϕ(U)) ∼= ϕ(U)× E

is a diffeomorphism.
2Both observations combine to the insight that the assignments M 7→ TM and f 7→ Tf define a

functor from the category of smooth manifolds into itself.
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Exercise 5.1.3. [Inverse Function Theorem for manifolds] Let f : M → N be a
smooth map between manifold and p ∈ M such that Tp(f) : Tp(M) → Tp(N) is a
linear isomorphism. Show that there exists an open neighborhood U of p in M such
that the restriction f |U : U → f(U) is a diffeomorphism onto an open subset of N .

Exercise 5.1.4. If f : M → N is a smooth map and πTM : TM →M is the projection
map of the tangent bundle, then

πTN ◦ Tf = f ◦ πTM .

5.2 The Lie algebra of vector fields

Definition 5.2.1. We define a (smooth) vector field X on M as a smooth map
X : M → TM with πTM ◦ X = idM , where πTM : TM → M denotes the projec-
tion map mapping Tp(M) to p. Alternatively, we can say that X(p) ∈ Tp(M) for every
p ∈M . We write V(M) for the space of all vector fields on M .

If f ∈ C∞(M,F ) is a smooth function on M with values in some Banach space F
and X ∈ V(M), then we obtain a smooth function on M via

Xf := df ◦X : M → TM → F.

In each point p ∈M , we then have

(Xf)(p) = df(p)X(p),

so that (Xf)(p) is a directional derivative of the function f in the direction of the
tangent vector X(p).

Remark 5.2.2. If M = U is an open subset of the Banach space E, then TU = U×E,
with the projection πTU : U × E → U, (x, v) 7→ x. Therefore each smooth vector field
is of the form X(x) = (x, X̃(x)) for some smooth function X̃ : U → E. In this sense
we may thus identify V(U) with the space C∞(U,E).

Definition 5.2.3. If ϕ : M → N is a smooth map, then we say that X ∈ V(M) and
Y ∈ V(N) are ϕ-related if

Tϕ ◦X = Y ◦ ϕ : M → TN. (5.4)

If, in addition, ϕ is a diffeomorphism, then this implies that

Y = Tϕ ◦X ◦ ϕ−1 =: ϕ∗X.

For a vector field X ∈ V(M), we call ϕ∗X ∈ V(N) the corresponding ϕ-transformed
vector field on N . It is the unique vector field on N which is ϕ-related to X.

Remark 5.2.4. Suppose that ϕ : M → N is a smooth map and f : N → F is a smooth
map with values in the Banach space F . If X ∈ V(M) and Y ∈ V(N) are ϕ-related,
then

X(f ◦ ϕ) = (Y f) ◦ ϕ (5.5)

follows from

X(f ◦ ϕ) = d(f ◦ ϕ) ◦X = df ◦ Tϕ ◦X = df ◦ Y ◦ ϕ = (Y f) ◦ ϕ.
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Lemma 5.2.5. Let U ⊆ E be an open subset of the Banach space E and identify
vector fields on U with smooth E-valued functions. Then we obtain a Lie bracket on
C∞(U,E) by

[X,Y ](p) := dY (p)X(p)− dX(p)Y (p) for p ∈ U. (5.6)

With respect to this Lie bracket, the map

L : V(U) ∼= C∞(U,E)→ End(C∞(U,E)), X 7→ LX , LX(f)(p) := df(p)X(p)

is an injective homomorphism of Lie algebras, in particular,

L[X,Y ] = [LX ,LY ]. (5.7)

Proof. Let V := C∞(U,E) and consider LX as a linear endomorphism of V . If LX = 0,
then 0 = LX idU = X, so that L is injective. For f ∈ V we obtain

LXLY (f)(p) = d(LY f)(p)X(p) = (d2f)(p)(X(p), Y (p)) + df(p)dY (p)X(p),

so that the Schwarz Lemma, i.e., the symmetry of the second differential,3 implies

LXLY f − LY LXf = L[X,Y ]f,

which is (5.7).
Clearly, the bracket on V(U) is skew-symmetric. That it also satisfies the Jacobi

identity follows from the injectivity of L and the Jacobi identity in End(V ):

L[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y ]] = [LX , [LY ,LZ ]] + [LY , [LZ ,LX ]] + [LZ , [LX ,LY ]].

Having dealt with the local version of the Lie bracket on vector fields, we now turn
to its global form.

Lemma 5.2.6. If X,Y ∈ V(M), then there exists a vector field [X,Y ] ∈ V(M) which
is uniquely determined by the property that, for each Banach space F and each open
subset U ⊆M , we have

[X,Y ]f = X(Y f)− Y (Xf) for f ∈ C∞(U,F ). (5.8)

3To formulate the Schwarz Lemma for a C2-map f : U → F from the open subset U of the Banach
space E to the Banach space F , we define the second differential of f as the map d2f : U → L2(E2, F )
by

d2f(p)(h1, h2) =
d

dt t=0
df(p+ th2)(h1).

Then the Schwarz Lemma asserts that all the bilinear maps d2f(p) are symmetric. It follows from
the special case E = R2, applied to the map (t1, t2) 7→ f(p + t1h1 + t2h2). One should also observe
that it follows from the formula

d2f(p)(h1, h2) = lim
n→∞

1

n2

“
f
“
p+

1

n
h1 +

1

n
h2

”
− f

“
p+

1

n
h1

”
− f

“
p+

1

n
h2

”
+ f(p)

”
.
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Proof. Uniqueness: First we show that [X,Y ] is uniquely determined by (5.8). If
(ϕ,U) is an E-chart of M , then

[X,Y ]ϕ = dϕ ◦ [X,Y ] : U → E

determines [X,Y ] because the linear maps dϕ(p), p ∈ U , are injective.
Existence: Let (ϕ,U) be an E-chart of M . Then A := ϕ∗X := Tϕ ◦X ◦ϕ−1 and

B := ϕ∗Y := Tϕ ◦ Y ◦ ϕ−1 are smooth vector fields on the open subset ϕ(U) ⊆ E.
For a smooth function f : U ′ → F on an open subset U ′ ⊆ U we obtain a smooth

function h := f ◦ ϕ−1 : ϕ(U ′)→ F , and

Xf ◦ ϕ−1 = df ◦X ◦ ϕ−1 = df ◦ T (ϕ−1) ◦ T (ϕ) ◦X ◦ ϕ−1 = dh ◦A = Ah.

Representing the vector fields A and B by smooth functions

A(p) =
(
p, Ã(p)

)
, B(p) =

(
p, B̃(p)

)
,

we have
Ah(p) = dh(p)Ã(p) and Bh(p) = dh(p)B̃(p),

so that Lemma 5.2.5 implies that

ABh−BAh = Ch

holds for the vector field C(p) = (p, C̃(p)) with

C̃(p) := dB̃(p)
(
Ã(p)

)
− dÃ(p)

(
B̃(p)

)
. (5.9)

The smoothness of the right hand side follows from the chain rule. For the smooth
vector field

DU := (ϕ−1)∗C = Tϕ−1 ◦ C ◦ ϕ ∈ V(U),

we obtain with (5.5)

DUf = DU (h ◦ ϕ) = Ch = A(Bh)−B(Ah)

= X(Bh ◦ ϕ−1)−B(Ah ◦ ϕ−1) = X(Y f)− Y (Xf).

This implies the existence of a vector field [X,Y ]U := DU satisfying (5.8) on the open
subset U .

From the uniqueness that we have already verified, we obtain

[X,Y ]U∩U ′ = [X,Y ]U |U∩U ′ = [X,Y ]U ′ |U∩U ′

for two open subsets U,U ′ ⊆ M . Therefore [X,Y ](p) := [X,Y ]U (p) for p ∈ U , yields
a well-defined vector field [X,Y ] ∈ V(M), satisfying (5.8) on M .

Proposition 5.2.7. (V(M), [·, ·]) is a Lie algebra.
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Proof. Since the Lie bracket is obviously skew symmetric, we have to verify the Jacobi
identity, i.e., the vanishing of all vector fields of the form

J(X,Y, Z) := [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]].

It suffices to show for every chart (ϕ,U) of M that J(X,Y, Z)|U = 0. This follows
from the fact that the construction of the bracket on V(M) shows that

Φ: V(U)→ V(ϕ(U)), X 7→ ϕ∗X

is compatible with the bracket in the sense that Φ([X,Y ]) = [Φ(X),Φ(Y )] (see the
proof of Lemma 5.2.6). Therefore the Jacobi identity in V(U) follows from the Jacobi
identity on V(ϕ(U)) (Lemma 5.2.5).

For the applications to Lie groups we will need the following lemma.

Lemma 5.2.8. (Related Vector Field Lemma) Let M and N be smooth manifolds,
ϕ : M → N be a smooth map, and XM , YM ∈ V(M), XN , YN ∈ V(N) such that the
pairs (XM , XN ) and (YM , YN ) are ϕ-related. Then their Lie brackets [XM , YM ] and
[XN , YN ] are also ϕ-related.

Proof. For every chart (ψ, V ) of N we obtain with (5.5)

([XN , YN ]ψ) ◦ ϕ = XN (YNψ) ◦ ϕ− YN (XNψ) ◦ ϕ = XM (YNψ ◦ ϕ)− YM (XNψ ◦ ϕ)
= XM (YM (ψ ◦ ϕ))− YM (XN (ψ ◦ ϕ)) = [XM , YM ](ψ ◦ ϕ)

For every p ∈M , this implies that

dψ(ϕ(p))[XN , YN ](ϕ(p)) = dψ(ϕ(p))Tp(ϕ)[XM , YM ](p),

and since dψ(p) is injective, we see that

[XN , YN ] ◦ ϕ = Tϕ ◦ [XM , YM ],

which completes the proof.

Exercises for Section 5.2

Exercise 5.2.1. Let A be a K-algebra (not necessarily associative). Show that

(i) der(A) := {D ∈ End(A) : (∀a, b ∈ A)D(ab) = Da · b + a ·Db} is a Lie subalgebra
of gl(A) = End(A)L.

(ii) If, in addition, A is commutative, then for D ∈ der(A) and a ∈ A, the map
aD : A → A, x 7→ aDx also is a derivation.

Exercise 5.2.2. Let U be an open subset of R2n and P = C∞(U,R) be the set of
smooth functions on U and write q1, . . . , qm, p1, . . . , pm for the coordinates with respect
to a basis. Then g is a Lie algebra with respect to the Poisson bracket

{f, g} :=
n∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.
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Exercise 5.2.3. Let U be an open subset of Rn, A = C∞(U,R), and
V = C∞(U,Rn). For f ∈ A and X = (X1, . . . , Xn) ∈ V, we define

LXf := Xf :=
n∑
i=1

Xi
∂f

∂xi
.

(i) The maps LX are derivations of the algebra A.

(ii) If LX = 0, then X = 0.

(iii) The commutator of two such operators has the form [LX ,LY ] = L[X,Y ], where
the bracket on V is defined by

[X,Y ](p) := dY (p)X(p)− dX(p)Y (p),

resp.,

[X,Y ]i =
n∑
j=1

Xj
∂Yi
∂xj
− Yj

∂Xi

∂xj
.

(iv) (V, [·, ·]) is a Lie algebra.

(v) To each A ∈ gln(R), we associate the linear vector field XA(x) := Ax. Show that,
for A,B ∈Mn(R), we have X[A,B] = −[XA, XB ].

5.3 Flows and vector fields

In this section we turn to the geometric nature of vector fields as infinitesimal gen-
erators of flows on manifolds. This provides a natural global perspective on ordinary
differential equations.

Throughout this section, M denotes an E-manifold for some Banach space E.

Definition 5.3.1. Let X ∈ V(M) and I ⊆ R be an open interval containing 0. A
differentiable map γ : I →M is called an integral curve of X if

γ′(t) = X(γ(t)) for each t ∈ I.

Note that the preceding equation implies that γ′ is continuous and further that if γ is
Ck, then γ′ is also Ck. Therefore integral curves are automatically smooth.

If J ⊇ I is an interval containing I, then an integral curve η : J → M is called an
extension of γ if η|I = γ. An integral curve γ is said to be maximal if it has no proper
extension.

Remark 5.3.2. (a) If U ⊆ E is an open subset of the Banach space E, then we write
a vector field X ∈ V(U) as X(x) = (x, F (x)), where F : U → E is a smooth function.
A curve γ : I → U is an integral curve of X if and only if it satisfies the ordinary
differential equation

γ′(t) = F (γ(t)) for all t ∈ I.
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(b) If (ϕ,U) is a chart of the manifold M and X ∈ V(M), then a curve γ : I →M
is an integral curve of X if and only if the curve η := ϕ ◦ γ is an integral curve of the
vector field Xϕ := ϕ∗X = T (ϕ) ◦X ◦ ϕ−1 ∈ V(ϕ(U)) because

Xϕ(η(t)) = Tγ(t)(ϕ)X(γ(t)) and η′(t) = Tγ(t)(ϕ)γ′(t).

Remark 5.3.3. A curve γ : I →M is an integral curve ofX if and only if γ̃(t) := γ(−t)
is an integral curve of the vector field −X.

More generally, for a, b ∈ R, the curve η(t) := γ(at+ b) is an integral curve of the
vector field aX.

For the proof of the following theorem we refer to [La99, Thm. 4.2.1].

Theorem 5.3.4. (Existence and Uniqueness of Integral Curves) Let X ∈ V(M) and
p ∈M . Then there exists a unique maximal integral curve γp : Ip →M with γp(0) = p.

If q = γp(t) is a point on the unique maximal integral curve of X through p ∈M ,
then Iq = Ip − t and

γq(s) := γp(t+ s)

is the unique maximal integral curve through q. Here Ip denotes the domain of defi-
nition of the maximal integral curve through p and Iq is the domain of the maximal
integral curve through q.

Example 5.3.5. (a) On M = R we consider the vector field X given by the function
F (s) = 1 + s2, i.e., X(s) = (s, 1 + s2). The corresponding ODE is

γ′(s) = X(γ(s)) = 1 + γ(s)2.

For γ(0) = 0, the function γ(s) := tan(s) on I := ] − π
2 ,

π
2 [ is the unique maximal

solution because

lim
t→π

2

tan(t) =∞ and lim
t→−π2

tan(t) = −∞.

(b) Let M := ]−1, 1[ and X(s) = (s, 1), so that the corresponding ODE is γ′(s) = 1.
Then the unique maximal solution is

γ(s) = s, I = ]− 1, 1[.

For M = R the same vector field has the maximal integral curve

γ(s) = s, I = R.

The preceding example shows in particular that the global existence of integral curves
can be destroyed by deleting parts of the manifold M , i.e., by considering M ′ := M \K
for some closed subset K ⊆M .

(c) (Linear vector fields) Let E be a Banach space. Then a vector field X ∈ V(E)
is said to be linear if it is represented by a linear function, i.e., X(v) = (v,Av) for
some A ∈ L(E). The corresponding ODE is

γ′(t) = Aγ(t).
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We know already that the unique solutions of this ODE with the initial value p ∈ E
is of the form

γ(t) = etAp.

Definition 5.3.6. A vector field X ∈ V(M) is said to be complete if all its maximal
integral curves are defined on all of R. We write V(M)c ⊆ V(M) for the subset of
complete vector fields.

Definition 5.3.7. Let M be a smooth manifold. A flow on M is a smooth map

Φ: R×M →M, (t,m) 7→ Φt(m)

such that
Φ0 = idM and Φt ◦ Φs = Φt+s for t, s ∈ R.

Writing Diff(M) for the group of diffeomorphisms of M , the latter conditions mean
that

Φ̂ : R→ Diff(M), t 7→ Φt

is a group homomorphism, i.e., a one-parameter group. A flow is the same as a smooth
action of the Lie group R on M (cf. Definition 6.1.7).

Lemma 5.3.8. If Φ is a flow, then

XΦ(m) :=
d

dt t=0
Φ(t,m) = T(t,m)Φ(1, 0)

defines a smooth vector field.

It is called the velocity field of the flow Φ.

Lemma 5.3.9. If Φ is a flow on M , then the curves γm(t) := Φ(t,m) are integral
curves of the vector field XΦ. In particular, the flow Φ is uniquely determined by the
vector field XΦ.

Proof. For s, t ∈ R we have

γx(s+ t) = Φ(s+ t, x) = Φ
(
t,Φ(s, x)

)
= Φ

(
t, γx(s)

)
,

so that taking derivatives in t = 0 leads to γ′x(s) = XΦ(γx(s)).
That Φ is uniquely determined by the vector field XΦ follows from the uniqueness

of integral curves (Theorem 5.3.4).

For the proof of the following theorem we also refer to [La99, Thm. 4.2.6]. It is a
special case of a more general result on the existence of “flows” for any smooth vector
field.

Theorem 5.3.10. Each complete vector field X is the velocity field of a unique flow
ΦX on M .

Since the flow ΦX is determined by the vector field X, we also call X the infinites-
imal generator of Φ. In this sense the smooth R-actions on a manifold M (=flows) are
in one-to-one correspondence with the complete vector fields on M .
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Proposition 5.3.11. (Smooth Dependence Theorem) Let M and N be smooth man-
ifolds and Ψ: N → V(M)c be a map for which the map

Ψ̂ : N ×M → T (M), (n, p) 7→ Ψ(n)(p)

is smooth (the vector field Ψ(n) depends smoothly on the parameter n). Then the map

N × R×M →M, (n, t,m) 7→ ΦΨ(n)(t,m)

is smooth.

Proof. The parameters do not cause any additional problems, as can be seen by the
following trick: On the product manifold N ×M we consider the smooth vector field
Y , given by

Y (n, p) := (0n,Ψ(n)(p)) ∈ Tn(N)× Tp(M) ∼= T(n,p)(N ×M).

Then the integral curves of Y are of the form

γ(t) = (n, γn(t)),

where γn is an integral curve of the smooth vector field Ψ(n) on M . Therefore the
assertion is an immediate consequence on the smoothness of the flow of Y on N ×M
(Theorem 5.3.10).

Lie Derivatives

We take a closer look at the interaction of flows and vector fields. Let X ∈ V(M)c and
Y ∈ V(M). Then we define the Lie derivative of Y along the flow of X by

LXY := lim
t→0

1
t
((ΦX−t)∗Y − Y ) =

d

dt t=0
(ΦX−t)∗Y.

Theorem 5.3.12. LXY = [X,Y ] for X,Y ∈ V(M).

Proof. It suffices to show that LXY and [X,Y ] coincide in each p ∈ M . We may
therefore work in some E-chart of M .

Identifying vector fields with smooth E-valued functions, we have

[X,Y ](x) = dY (x)X(x)− dX(x)Y (x), x ∈ U

(Lemma 5.2.5). On the other hand,

((ΦX−t)∗Y )(x) = T (ΦX−t) ◦ Y ◦ ΦXt (x)

= d(ΦX−t)(Φ
X
t (x))Y (ΦXt (x)) =

(
d(ΦXt )(x)

)−1
Y (ΦXt (x)).

To calculate the derivative of this expression with respect to t, we first observe that it
does not matter if we first take derivatives with respect to t and then with respect to
x or vice versa. This leads to

d

dt t=0
d(ΦXt )(x) = d

( d
dt t=0

ΦXt
)

(x) = dX(x).
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Next we note that, for any smooth curve α : [−ε, ε]→ GL(E) with α(0) = 1, we have

(α−1)′(t) = −α(t)−1α′(t)α(t)−1,

and in particular (α−1)′(0) = −α′(0) (cf. Example 4.1.12). Combining all this, we
obtain with the Product Rule

LX(Y )(x) = −dX(x)Y (x) + dY (x)X(x) = [X,Y ](x).

Corollary 5.3.13. If X,Y ∈ V(M) are complete vector fields, then their flows
ΦX ,ΦY : R→ Diff(M) commute, i.e.,

ΦX(t) ◦ ΦY (s) = ΦY (s) ◦ ΦX(t) for t, s ∈ R,

if and only if X and Y commute, i.e., [X,Y ] = 0.

Proof. (1) Suppose first that ΦX and ΦY commute. Let p ∈ M and γp(s) := ΦYs (p)
be the integral curve of Y through p. We then have

γp(s) = ΦYs (p) = ΦXt ◦ ΦYs ◦ ΦX−t(p),

and passing to the derivative in s = 0 yields

Y (p) = γ′p(0) = T (ΦXt )Y (ΦX−t(p)) =
(
(ΦXt )∗Y

)
(p).

Passing now to the derivative in t = 0, we arrive with Theorem 5.3.12 at [X,Y ] =
LX(Y ) = 0.

(2) Now we assume [X,Y ] = 0. First we show that (ΦXt )∗Y = Y holds for all
t ∈ R. For t, s ∈ R we have

(ΦXt+s)∗Y = (ΦXt )∗(ΦXs )∗Y,

so that
d

dt
(ΦXt )∗Y = −(ΦXt )∗LX(Y ) = 0

for each t ∈ R. Since, for each p ∈M , the curve

R→ Tp(M), t 7→
(
(ΦXt )∗Y

)
(p)

is smooth, and its derivative vanishes, it is constant equal to Y (p). This shows that
(ΦXt )∗Y = Y for each t ∈ R.

For γ(s) := ΦXt ΦYs (p) we now have γ(0) = ΦXt (p) and

γ′(s) = T (ΦXt ) ◦ Y (ΦYs (p)) = Y (ΦXt ΦYs (p)) = Y (γ(s)),

so that γ is an integral curve of Y . We conclude that γ(s) = ΦYs (ΦXt (p)), and this
means that the flows of X and Y commute.
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Remark 5.3.14. Let X,Y ∈ V(M) be two complete vector fields and ΦX , resp., ΦY

their flows. We then consider the commutator map

F : R2 → Diff(M), (t, s) 7→ ΦXt ◦ ΦYs ◦ ΦX−t ◦ ΦY−s.

We know from Corollary 5.3.13 that it vanishes if and only if [X,Y ] = 0, but there is
also a more direct way from F to the Lie bracket. We first observe that the relation
ΦXt ◦ ΦYs ◦ ΦX−t = Φ(ΦXt )∗Y

s (Exercise 5.3.3) leads to

∂F

∂s
(t, 0) = (ΦXt )∗Y − Y for t ∈ R, 4

and hence with Theorem 5.3.12 to

∂2F

∂t∂s
(0, 0) = [Y,X].

Exercises for Section 5.3

Exercise 5.3.1. Let ϕ : M → N be a smooth map and X ∈ V(M), Y ∈ V(N) be
ϕ-related vector fields. Show that for any integral curve γ : I → M of X, the curve
ϕ ◦ γ : I → N is an integral curve of Y .

Exercise 5.3.2. Let X ∈ V(M) be a vector field and write XR ∈ V(R) for the vector
field on R, given by XR(t) = (t, 1). Show that, for an open interval I ⊆ R, a smooth
curve γ : I →M is an integral curve of X if and only if XR and X are γ-related.

Exercise 5.3.3. Let X ∈ V(M)c be a complete vector field and ϕ ∈ Diff(M). Then
ϕ∗X is also complete and

Φϕ∗Xt = ϕ ◦ ΦXt ◦ ϕ−1 for t ∈ R.

Exercise 5.3.4. Let M be a smooth manifold, ϕ ∈ Diff(M) and X ∈ V(M)c be a
complete vector field. Show that the following are equivalent:

(1) ϕ commutes with the flow maps ΦXt .

(2) For each integral curve γ : I → M of X, the curve ϕ ◦ γ also is an integral curve
of X.

(3) X = ϕ∗X = T (ϕ) ◦X ◦ ϕ−1, i.e., X is ϕ-invariant.

Exercise 5.3.5. Let X,Y ∈ V(M) be two commuting complete vector fields, i.e.,
[X,Y ] = 0. Show that the vector field X + Y is complete and that its flow is given by

ΦX+Y
t = ΦXt ◦ ΦYt for all t ∈ R.

4Here we use that if I ⊆ R is an interval and α : I → Diff(M), β : I → Diff(M) are maps for whichbα : I ×M →M, (t, x) 7→ α(t)(x) and bβ : I ×M →M, (t, x) 7→ β(t)(x)

are smooth, then the curve γ(t) := α(t) ◦ β(t) also has this property (by the Chain Rule), and if
α(0) = β(0) = idM , then γ satisfies

γ′(0) = α′(0) ◦ β(0) + T (α(0)) ◦ β′(0) = α′(0) + β′(0).
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Chapter 6

Lie Algebra and Exponential
Function of a Lie Group

In this chapter we introduce the Lie algebra and the exponential function of a general
Lie group (modeled on a Banach space). The Lie algebra is obtained from the space
of left invariant vector fields. Since all these vector fields are complete, one obtains
the exponential function from their flows. The Lie functor L : G 7→ L(G) assigns a
Banach–Lie algebra to each Lie group and a Lie algebra homomorphism L(ϕ) to each
morphism ϕ of Lie groups. It is the key tool to translate Lie group problems into
problems in linear algebra.

6.1 The Lie Algebra of a Lie group

Before we turn to the definition of the Lie algebra of a Lie group, we show that the
group structure on a Lie group G induced a natural Lie group structure on its tangent
bundle TG.

In the following we always identify the tangent bundle T (G×G) with the product
space TG× TG (Remark 5.1.7).

Lemma 6.1.1. (a) The tangent map

T (mG) : T (G×G) ∼= T (G)× T (G)→ T (G), (v, w) 7→ v · w := TmG(v, w)

defines a Lie group structure on T (G) with identity element 01 ∈ T1(G) and inversion
T (ηG). For v ∈ Tg(G) and w ∈ Th(G), we have

v · w = Tg(ρh)v + Th(λg)w = v · 0h + 0g · w. (6.1)

(b) The canonical projection πT (G) : T (G) → G is a morphism of Lie groups with
kernel (T1(G),+) and the zero section σ : G → T (G), g 7→ 0g ∈ Tg(G) is a homomor-
phism of Lie groups with πT (G) ◦ σ = idG.

83
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(c) The map

Φ: G× T1(G)→ T (G), (g, x) 7→ g.x := 0g · x = T (λg)x

is a diffeomorphism.

Proof. (a) Since the multiplication map mG : G × G → G is smooth, the same holds
for its tangent map

TmG : T (G×G) ∼= T (G)× T (G)→ T (G).

Let εG : G→ G, g 7→ 1 be the constant homomorphism. Then the group axioms for G
are encoded in the relations

(1) mG ◦ (mG × idG) = mG ◦ (idG×mG) (associativity),

(2) mG ◦ (ηG, idG) = mG ◦ (idG, ηG) = εG (inversion), and

(3) mG ◦ (εG, idG) = mG ◦ (idG, εG) = idG (unit element).

Using the functoriality of T and its compatibility with products (cf. Remark 5.1.8),
we see that these properties carry over to the corresponding maps on T (G):

(1) T (mG) ◦ T (mG × idG) = T (mG) ◦ (T (mG)× idT (G))
= T (mG) ◦ (idT (G)×T (mG)) (associativity),

(2) T (mG) ◦ (T (ηG), idT (G)) = T (mG) ◦ (idT (G), T (ηG)) = T (εG) (inversion), and

(3) T (mG) ◦ (T (εG), idT (G)) = T (mG) ◦ (idT (G), T (εG)) = idT (G) (unit element).

Here we only have to observe that the tangent map T (εG) maps each v ∈ T (G) to
01 ∈ T1(G), which is the neutral element of T (G). We conclude that T (G) is a Lie
group with multiplication T (mG), inversion T (ηG), and unit element 01 ∈ T1(G).

For v ∈ Tg(G) and w ∈ Th(G), the linearity of T(g,h)(mG) implies that

TmG(v, w) = T(g,h)(mG)(v, w) = T(g,h)(mG)(v, 0) + T(g,h)(mG)(0, w)
= Tg(ρh)v + Th(λg)w,

(b) The definition of the tangent map implies that the zero section
σ : G→ T (G) satisfies

TmG ◦ (σ × σ) = σ ◦mG and TmG(0g, 0h) = 0mG(g,h) = 0gh,

which means that it is a morphism of Lie groups. That πT (G) also is a morphism of
Lie groups follows likewise from the relation

πT (G) ◦ TmG = mG ◦ (πT (G) × πT (G)),

which also is an immediate consequence of the definition of the tangent map
TmG : it maps Tg(G) × Th(G) into Tgh(G) (cf. Exercise 5.1.4). From (6.1), we ob-
tain in particular that the multiplication on the normal subgroup kerπT (G) = T1(G)
is simply given by addition.
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(c) The smoothness of Φ follows from the smoothness of the multiplication of
T (G) and the smoothness of the zero section σ : G → T (G), g 7→ 0g. That Φ is a
diffeomorphism follows from the following explicit formula for its inverse: Φ−1(v) =
(πT (G)(v), πT (G)(v)−1v), so that its smoothness follows from the smoothness of πT (G)

(its first component), and the smoothness of the multiplication on T (G).

Definition 6.1.2. In the following we shall mostly use the simplified notation

g.v := 0g · v for g ∈ G, v ∈ TG.

We likewise write
v.g := v · 0g for g ∈ G, v ∈ TG.

Definition 6.1.3. (The Lie algebra of G) A vector field X ∈ V(G) is called left
invariant if

X = (λg)∗X := T (λg) ◦X ◦ λ−1
g for g ∈ G.

We write V(G)l for the set of left invariant vector fields in V(G). Clearly V(G)l is a
linear subspace of V(G). The left invariance of X means that X is λg-related to itself
for every g ∈ G. Therefore the Related Vector Field Lemma 5.2.8 implies that, if X
and Y are left-invariant, then their Lie bracket [X,Y ] is also λg-related to itself for
each g ∈ G, hence left invariant. We conclude that the vector space V(G)l is a Lie
subalgebra of (V(G), [·, ·]).

Next we observe that the left invariance of a vector field X implies that for each
g ∈ G we have X(g) = g.X(1) (Lemma 6.1.1(b)), so that X is completely determined
by its value X(1) ∈ T1(G). Conversely, for each x ∈ T1(G), we obtain a left invariant
vector field xl ∈ V(G)l with xl(1) = x by xl(g) := g.x. That this vector field is indeed
left invariant follows from

xl ◦ λh(g) = xl(hg) = (hg).x = h.(g.x) = T (λh)xl(g)

for all h, g ∈ G. Hence
T1(G)→ V(G)l, x 7→ xl

is a linear bijection. We thus obtain a Lie bracket [·, ·] on T1(G) satisfying

[x, y] = [xl, yl](1) and [x, y]l = [xl, yl] for all x, y ∈ T1(G). (6.2)

To show that the Lie bracket on the Banach space T1(G) is continuous, let E :=
T1(G) and choose a local E-chart (ϕ,U) of G with ϕ(1) = 0 and T1(ϕ) = idE . For
x ∈ T1(G) we then obtain a smooth vector field

x̃l := ϕ∗xl = T (ϕ) ◦ xl ◦ ϕ−1 (6.3)

on V := ϕ(U). We identify T (V ) ∼= V ×E and vector fields on V with smooth E-valued
functions. Then the Related Vector Field Lemma 5.2.8 implies

[x, y] = [xl, yl](1) = [x̃l, ỹl](0) = dỹl(0)x̃l(0)− dx̃l(0)ỹl(0)
= dỹl(0)x− dx̃l(0)y. (6.4)
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Clearly, the function

ψ : E × V → E, (x, z) 7→ x̃l(z) = T (ϕ)xl(ϕ−1(z)) = T (ϕ)T (mG)(0ϕ−1(z), x)

is smooth, so that (x, y) 7→ dx̃l(0)y is continuous bilinear, and hence the bracket on
E ∼= T1(G) is continuous.

The Banach–Lie algebra

L(G) := (T1(G), [·, ·]) ∼= V(G)l

is called the Lie algebra of G.

Proposition 6.1.4. (Functoriality of the Lie algebra) If ϕ : G → H is a morphism
of Lie groups, then the tangent map

L(ϕ) := T1(ϕ) : L(G)→ L(H)

is a continuous homomorphism of Banach–Lie algebras.

Proof. Let x, y ∈ L(G) and xl, yl be the corresponding left invariant vector fields.
Then ϕ ◦ λg = λϕ(g) ◦ ϕ for each g ∈ G implies that

T (ϕ) ◦ T (λg) = T (λϕ(g)) ◦ T (ϕ),

and applying this relation to x, y ∈ T1(G), we get

Tϕ ◦ xl =
(
L(ϕ)x

)
l
◦ ϕ and Tϕ ◦ yl =

(
L(ϕ)y

)
l
◦ ϕ, (6.5)

i.e., xl is ϕ-related to
(
L(ϕ)x

)
l

and yl is ϕ-related to
(
L(ϕ)y

)
l
. Therefore the Related

Vector Field Lemma 5.2.8 implies that

Tϕ ◦ [xl, yl] = [
(
L(ϕ)x

)
l
,
(
L(ϕ)y

)
l
] ◦ ϕ.

Evaluating at 1, we obtain L(ϕ)[x, y] = [L(ϕ)(x),L(ϕ)(y)], showing that L(ϕ) is a
homomorphism of Lie algebras. That it is continuous follows from the smoothness
of Tϕ.

Remark 6.1.5. We obviously have L(idG) = idL(G), and for two morphisms
ϕ1 : G1 → G2 and ϕ2 : G2 → G3 of Lie groups, we obtain

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1),

from the Chain Rule:

T1(ϕ2 ◦ ϕ1) = Tϕ1(1)(ϕ2) ◦ T1(ϕ1) = T1(ϕ2) ◦ T1(ϕ1).

The preceding lemma implies that the assignments G 7→ L(G) and ϕ 7→ L(ϕ) define a
functor, called the Lie functor,

L : LieGrp→ LieAlg

from the category LieGrp of Lie groups to the category BLieAlg of Banach–Lie alge-
bras.
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Corollary 6.1.6. For each isomorphism of Lie groups ϕ : G→ H, the map L(ϕ) is an
isomorphism of Banach–Lie algebras, and for each x ∈ L(G), the following equation
holds

ϕ∗xl := T (ϕ) ◦ xl ◦ ϕ−1 =
(
L(ϕ)x

)
l
. (6.6)

Proof. Let ψ : H → G be the inverse of ϕ. Then ϕ ◦ψ = idH and ψ ◦ϕ = idG leads to
L(ϕ) ◦ L(ψ) = idL(H) and L(ψ) ◦ L(ϕ) = idL(G) (Remark 6.1.5). Further (6.6) follows
from (6.5) in the proof of Proposition 6.1.4.

Smooth Actions of Lie Groups

We already encountered smooth flows on manifolds in Section 5.3. These can be viewed
as actions of the one-dimensional Lie group (R,+). In particular, we have seen that
these actions are in one-to-one correspondence with complete vector fields, which is
the corresponding Lie algebra picture. Now we describe the corresponding concept for
general Lie groups.

Definition 6.1.7. Let M be a smooth manifold and G a Lie group. A (smooth) action
of G on M is a smooth map

σ : G×M →M

with the following properties:

(A1) σ(1,m) = m for all m ∈M .

(A2) σ(g1, σ(g2,m)) = σ(g1g2,m) for g1, g2 ∈ G and m ∈M .

We also write

g.m := σ(g,m), σg(m) := σ(g,m) and σm(g) := σ(g,m) = g.m.

The map σm is called the orbit map.

For each smooth action σ, the map

σ̂ : G→ Diff(M), g 7→ σg

is a group homomorphism. Conversely, any homomorphism γ : G→ Diff(M) for which
the map

σγ : G×M →M, (g,m) 7→ γ(g)(m)

is smooth defines a smooth action of G on M .

Remark 6.1.8. What we call an action is sometimes called a left action. Likewise
one defines a right action as a smooth map σR : M ×G→M with

σR(m,1) = m, σR(σR(m, g1), g2) = σR(m, g1g2).

For m.g := σR(m, g), this takes the form

m.(g1g2) = (m.g1).g2
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of an associativity condition.
If σR is a smooth right action of G on M , then

σL(g,m) := σR(m, g−1)

defines a smooth left action of G on M . Conversely, if σL is a smooth left action, then

σR(m, g) := σL(g−1,m)

defines a smooth left action. This translation is one-to-one, so that we may freely pass
from one type of action to the other.

Examples 6.1.9. (a) If X ∈ V(M) is a complete vector field (cf. Definition 5.3.6)
and Φ: R×M →M its flow, then Φ defines a smooth action of G = (R,+) on M .
(b) If G is a Lie group, then the multiplication map σ := mG : G × G → G defines a
smooth left action of G on itself. In this case the (mG)g = λg are the left multiplica-
tions.

The multiplication map also defines a smooth right action of G on itself. The
corresponding left action is

σ : G×G→ G, (g, h) 7→ hg−1 with σg = ρ−1
g .

There is a third action of G on itself, the conjugation action:

σ : G×G→ G, (g, h) 7→ ghg−1 with σg = cg.

(c) For every Banach space E, we have a natural smooth action of the Lie group GL(E)
on E:

σ : GL(E)× E → E, σ(g, x) := gx.

We further have a smooth action of GL(E) on L(E):

σ : GL(E)× L(E)→ L(E), σ(g,A) = gAg−1.

Note that this example specializes to E = Rn, where we obtain actions of GLn(R)
on Rn and Mn(R) ∼= L(Rn).
(d) For two Banach spaces E and F , we obtain on the Banach space L(E,F ) a smooth
action of the product Lie group GL(F )×GL(E) by σ((g, h), A) := gAh−1.

For E = Rq and F = Rp, the space L(E,F ) can be identified with the space
Mp,q(R) of (p×q)-matrices, on which the Lie group GLp(R)×GLq(R) acts by σ((g, h), A) :=
gAh−1.

The following proposition generalizes the passage from flows of vector fields to
actions of general Lie groups. Specializing it to a smmoth flow σ = Φ: R×M → M ,
the vector field −σ̇(1) = XΦ is the infinitesimal generator of the flow.

Proposition 6.1.10. Let G be a Lie group and σ : G ×M → M be a smooth action
of G on M . Then the assignment

σ̇ : L(G)→ V(M), σ̇(x)(m) := L(σ)(x)(m) := −T1(σm)(x)

is a homomorphism of Lie algebras.
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Proof. First we observe that, for each x ∈ L(G), the map σ̇(x) defines a smooth map
M → T (M), and since σ̇(x)(m) ∈ Tσ(1,m)(M) = Tm(M), it is a smooth vector field
on M .

To see that σ̇ is a homomorphism of Lie algebras, we pick m ∈M and write

ϕm := σm ◦ ηG : G→M, g 7→ g−1.m

for the reversed orbit map. Then

ϕm(gh) = (gh)−1.m = h−1.(g−1.m) = ϕg
−1.m(h),

which can be written as
ϕm ◦ λg = ϕg

−1.m.

Taking the differential in 1 ∈ G, we obtain for each x ∈ L(G) = T1(G):

Tg(ϕm)xl(g) = Tg(ϕm)T1(λg)x = T1(ϕm ◦ λg)x = T1(ϕg
−1.m)x

= T1(σg
−1.m)T1(ηG)x = −T1(σϕ

m(g))x = σ̇(x)(ϕm(g)).

This means that the left invariant vector field xl on G is ϕm-related to the vector
field σ̇(x) on M . Therefore the Related Vector Field Lemma 5.2.8 implies that for
x, y ∈ L(G) the vector field [xl, yl] is ϕm-related to [σ̇(x), σ̇(y)], which leads for each
m ∈M to

L(σ)([x, y])(m) = T1(ϕm)[x, y]l(1) = T1(ϕm)[xl, yl](1)
= [σ̇(x), σ̇(y)](ϕm(1)) = [σ̇(x), σ̇(y)](m).

Exercises for Section 6.1

Exercise 6.1.1. Show that the natural group structure on T ∼= S1 ⊆ C× turns it into
a Lie group.

Exercise 6.1.2. Let G1, . . . , Gn be Lie groups and G := G1× . . .×Gn, endowed with
the direct product group structure

(g1, . . . , gn)(g′1, . . . , g
′
n) := (g1g

′
1, . . . , gng

′
n)

and the product manifold structure. Show that G is a Lie group with

L(G) ∼= L(G1)× . . .× L(Gn).

Exercise 6.1.3. Let V and W be Banach spaces and β : V × V → W be a bilinear
map. Show that G := W × V is a Lie group with respect to

(w, v)(w′, v′) := (w + w′ + β(v, v′), v + v′).

For (w, v) ∈ L(G) ∼= T(0,0)(G), find a formula for the corresponding left invariant
vector field (w, v)l, considered as a smooth function G→W × V .
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Exercise 6.1.4. (Automatic smoothness of the inversion) Let G be a manifold, en-
dowed with a group structure for which the multiplication map mG is smooth. Show
that:

(1) T(g,h)(mG) = Tg(ρh) + Th(λg) for λg(x) = gx and ρh(x) = xh.

(2) T(1,1)(mG)(v, w) = v + w.

(3) The inverse map ηG : G→ G, g 7→ g−1 is smooth if it is smooth in a neighborhood
of 1. Hint: Consider the smooth map

F : G×G→ G×G, uad(x, y) 7→ (xy, y)

and apply the Inverse Function Theorem in (1,1) (cf. Exercise 5.1.3).

(4) The inverse map ηG is smooth.

Conclude that G is a Lie group.

Exercise 6.1.5. Let A be a unital Banach algebra. Show that, identifying vector
fields on the open subset A× with smooth A-valued functions, a vector field X ∈
V(A×) ∼= C∞(A×,A) is left invariant if and only if there exists an element x ∈ A with
X(g) = gx for g ∈ A×.

Exercise 6.1.6. Let G be a Lie group and X a vector field on G. Endowing TG with
its natural Lie group structure, show that X is left invariant if and only if

X(gh) = g.X(h) for g, h ∈ G.

Exercise 6.1.7. Let G = E be a Banach space. Show that a vector fields X ∈ V(E) ∼=
C∞(E,E) is left invariant if and only if it corresponds to a constant function.

Exercise 6.1.8. Consider the three-dimensional Heisenberg group

G =


1 x y

0 1 z
0 0 1

 ∈ GL3(R) : x, y, z ∈ R


Determine the space of (left) invariant vector fields in the coordinates (x, y, z).

Exercise 6.1.9. Let f1, f2 : G → H be two group homomorphisms. Show that the
pointwise product

f1f2 : G→ H, g 7→ f1(g)f2(g)

is a homomorphism if and only if f1(G) commutes with f2(G).

Exercise 6.1.10. Let M be a manifold and V a finite-dimensional vector space with
a basis (b1, . . . , bn). Let f : M → GL(V ) be a map. Show that the following are
equivalent:

(1) f is smooth.
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(2) For each v ∈ V , the map fv : M → V,m 7→ f(m)v is smooth.

(3) For each i, the map f : M → V,m 7→ f(m)bi is smooth.

Exercise 6.1.11. Let G be a Lie group. Show that any map ϕ : G → G commuting
with all left multiplications λg, g ∈ G, is a right multiplication.

Exercise 6.1.12. Let V be a Banach space and µt(v) := tv for t ∈ R×. Show that:

(1) A vector field X ∈ V(V ) is linear if and only if (µt)∗X = X holds for all t ∈ R×.

(2) A diffeomorphism ϕ ∈ Diff(V ) is linear if and only if it commutes with all the
maps µt, t ∈ R×.

6.2 The Exponential Function of a Lie Group

In the preceding section we have introduced the Lie functor which assigns to a Lie
group G its Lie algebra L(G) and to a morphism ϕ of Lie groups its tangent morphism
L(ϕ) of Lie algebras. In this section, we introduce a key tool of Lie theory which will
allow us to also go in the opposite direction: the exponential function

expG : L(G)→ G.

It is a natural generalization of the exponential map exp: A → A× of a unital Banach
algebra A. We conclude this section with a discussion of the naturality of the expo-
nential function (Proposition 6.2.9) and the Lie group versions of the Trotter Product
Formula and the Commutator Formula.

Basic Properties of the Exponential Function

Proposition 6.2.1. Each left invariant vector field X on G is complete.

Proof. Let g ∈ G and γ : I → G be the unique maximal integral curve of X ∈ V(G)l

with γ(0) = g (cf. Theorem 5.3.4).
For each h ∈ G we have (λh)∗X = X, which implies that η := λh ◦ γ also is an

integral curve of X (Exercise 5.3.1). Put h = γ(s)g−1 for some s > 0. Then

η(0) = (λh ◦ γ)(0) = hγ(0) = hg = γ(s),

and the uniqueness of integral curves implies that γ(t+s) = η(t) for all t in the interval
I ∩ (I − s) which is nonempty because it contains 0. In view of the maximality of I,
it now follows that I − s ⊆ I, and hence that I − ns ⊆ I for each n ∈ N, so that
the interval I is unbounded from below. Applying the same argument to some s < 0,
we see that I is also unbounded from above. Hence I = R, which means that X is
complete.

Definition 6.2.2. We now define the exponential function

expG : L(G)→ G, expG(x) := γx(1) = Φxl(1,1),
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where γx : R→ G is the unique maximal integral curve of the left invariant vector field
xl, satisfying γx(0) = 1. This means that γx is the unique solution of the initial value
problem

γ(0) = 1, γ′(t) = xl(γ(t)) = γ(t).x for t ∈ R.

Example 6.2.3. (a) Let G := (E,+) be the additive group of the Banach space E.
The left invariant vector fields on E are given by

xl(w) :=
d

dt t=0
w + tx = x,

so that they are simply the constant vector fields. Hence (cf. Lemma 5.2.5)

[xl, yl](0) = dyl(xl(0))− dxl(yl(0)) = dyl(x)− dxl(y) = 0.

Therefore L(E) is an abelian Lie algebra.
For each x ∈ E, the flow of xl is given by Φxl(t, v) = v + tx, so that

expE(x) = Φxl(1, 0) = x, i.e., expE = idE .

(b) Now let G := A× be the unit group of a unital Banach algebra A. The left
invariant vector field Al corresponding to an element A ∈ A is given by

Al(g) = T1(λg)A = gA

because λg(h) = gh extends to a linear endomorphism of A. The unique solution
γA : R→ A× of the initial value problem

γ(0) = 1, γ′(t) = Al(γ(t)) = γ(t)A

is the curve

γA(t) = etA =
∞∑
k=0

1
k!
tkAk.

It follows that expG(A) = γA(1) = eA is the exponential function of A.
The Lie algebra L(G) of G is determined from

[A,B] = [Al, Bl](1) = dBl(1)Al(1)− dAl(1)Bl(1)
= dBl(1)A− dAl(1)B = AB −BA.

Therefore the Lie bracket on L(G) = T1(G) ∼= A is given by the commutator bracket,
i.e., L(A×) = AL.

We now return to general Lie groups.

Lemma 6.2.4. Let G be a Lie group.
(a) For each x ∈ L(G), the curve γx : R → G, γx(t) = expG(tx) is a smooth

homomorphism of Lie groups with γ′x(0) = x.
(b) The flow of the left invariant vector field xl is given by

Φ(t, g) = gγx(t) = g expG(tx).
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(c) If γ : R → G is a smooth homomorphism of Lie groups and x := γ′(0), then
γ = γx. In particular, the map

Hom(R, G)→ L(G), γ 7→ γ′(0)

is a bijection, where Hom(R, G) stands for the set of smooth homomorphisms of Lie
groups R→ G.

Proof. (a), (b) Since γx is an integral curve of the smooth vector field xl, it is a smooth
curve. Hence the smoothness of the multiplication in G implies that Φ(t, g) := gγx(t)
defines a smooth map R × G → G. In view of the left invariance of xl, we have for
each g ∈ G and Φg(t) := Φ(t, g) the relation

(Φg)′(t) = T (λg)γ′x(t) = T (λg)xl(γx(t)) = xl(gγx(t)) = xl(Φg(t)).

Therefore Φg is an integral curve of xl with Φg(0) = g, and this proves that Φ is the
unique maximal flow of the complete vector field xl.

In particular, we obtain for t, s ∈ R:

γx(t+ s) = Φ(t+ s,1) = Φ(t,Φ(s,1)) = Φ(s,1)γx(t) = γx(s)γx(t). (6.7)

Hence γx is a group homomorphism (R,+)→ G.
(c) If γ : (R,+)→ G is a smooth group homomorphism, then

Φ(t, g) := gγ(t)

defines a flow on G whose infinitesimal generator is the vector field given by

X(g) =
d

dt t=0
Φ(t, g) = T (λg)γ′(0).

We conclude that X = xl for x = γ′(0), so that X is a left invariant vector field. Since
γ is its unique integral curve through 0, it follows that γ = γx. In view of (a), this
proves (c).

Proposition 6.2.5. For a Lie group G, the exponential function

expG : L(G)→ G

is smooth and satisfies
T0(expG) = idL(G) .

In particular, expG is a local diffeomorphism in 0 in the sense that it maps some
0-neighborhood in L(G) diffeomorphically onto some open 1-neighborhood in G.

Proof. The map Ψ: L(G) → V(G), x 7→ xl satisfies the assumptions of Proposi-
tion 5.3.11 because the map

L(G)×G→ T (G), (x, g) 7→ xl(g) = g.x
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is smooth (Lemma 6.1.1). In the terminology of Proposition 5.3.11, it now follows that
the map

Φ: R× L(G)×G→ G, (t, x, g) 7→ gγx(t) = g expG(tx)

is smooth. Therefore expG(x) = Φ(1, x,1) is also smooth.
Finally, we observe that

T0(expG)(x) =
d

dt t=0
expG(tx) = γ′x(0) = x,

so that T0(expG) = idL(G), so that the remaining assertions follow from the Inverse
Function Theorem (Exercise 5.1.3).

Lemma 6.2.6. If σ : G ×M → M, (g,m) 7→ g.m is a smooth action and x ∈ L(G),
then the flow of the vector field σ̇(x) is given by Φx(t,m) = expG(−tx).m. In particu-
lar,

σ̇(x)(m) =
d

dt t=0
expG(−tx).m.

Proof. In the proof of Proposition 6.1.10, we have seen that

Tg(ϕm)xl(g) = σ̇(x)(ϕm(g))

holds for the map ϕm(g) = g−1.m. In view of Proposition 6.2.5, this leads to

d

dt t=0
expG(−tx).m = T1(ϕm)T0(expG)x = T1(ϕm)x = σ̇(x)(m),

and hence proves the lemma.

Corollary 6.2.7. If x, y ∈ L(G) commute, i.e., [x, y] = 0, then

expG(x+ y) = expG(x) expG(y).

Proof. If x and y commute, then the corresponding left invariant vector fields commute,
and Corollary 5.3.13 implies that their flows commute. We conclude that, for all
t, s ∈ R, we have

expG(tx) expG(sy) = expG(sy) expG(tx). (6.8)

Therefore
γ(t) := expG(tx) expG(ty)

is a smooth group homomorphism. In view of

γ′(0) = T(1,1)(mG)(x, y) = x+ y

(Lemma 6.1.1), Lemma 6.2.4(c) leads to γ(t) = expG(t(x+y)), and for t = 1 we obtain
the lemma.

Lemma 6.2.8. The subgroup 〈expG(L(G))〉 of G generated by expG(L(G)) coincides
with the identity component G0 of G, i.e., the connected component containing 1.
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Proof. Since expG is a local diffeomorphism in 0 (Proposition 6.2.5), expG(L(G)) is a
neighborhood of 1. We conclude that the subgroup H := 〈expG(L(G))〉 generated by
the exponential image is a 1-neighborhood, hence contains G0 (cf. Lemma 1.2.2(iv)).
On the other hand, expG is continuous, so that it maps the connected space L(G) into
the identity component G0 of G, which leads to H ⊆ G0, and hence to equality.

Naturality of the Exponential Function

In this subsection we study how the exponential function is related to the Lie functor.

Proposition 6.2.9. Let ϕ : G1 → G2 be a morphism of Lie groups and L(ϕ) : L(G1)→
L(G2) its differential in 1. Then

expG2
◦L(ϕ) = ϕ ◦ expG1

, (6.9)

i.e., the following diagram commutes

G1
ϕ−−−−−−−−−→ G2xexpG1

xexpG2

L(G1)
L(ϕ)−−−−−−−−−→ L(G2).

Proof. For x ∈ L(G1), we consider the smooth homomorphism

γx ∈ Hom(R, G1), γx(t) = expG1
(tx).

According to Lemma 6.2.4, we have

ϕ ◦ γx(t) = expG2
(ty)

for y = (ϕ◦γx)′(0) = L(ϕ)x, because ϕ◦γx : R→ G2 is a smooth group homomorphism.
For t = 1 we obtain in particular expG2

(L(ϕ)x) = ϕ(expG1
(x)), which we had to

show.

Corollary 6.2.10. Let G1 and G2 be Lie groups and ϕ : G1 → G2 be a group homo-
morphism. Then the following are equivalent:

(a) ϕ is smooth in an identity neighborhood of G1.

(b) ϕ is smooth.

(c) There exists a continuous linear map ψ : L(G1)→ L(G2) satisfying

expG2
◦ψ = ϕ ◦ expG1

. (6.10)

Proof. (a) ⇒ (b): Let U be an open 1-neighborhood of G1 such that ϕ|U is smooth.
Since each left translation λg is a diffeomorphism, λg(U) = gU is an open neighborhood
of g, and we have

ϕ(gx) = ϕ(g)ϕ(x), i.e., ϕ ◦ λg = λϕ(g) ◦ ϕ.
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Hence the smoothness of ϕ on U implies the smoothness of ϕ on gU , and therefore
that ϕ is smooth.

(b) ⇒ (c): If ϕ is smooth, then ψ := L(ϕ) satisfies (6.10).
(c) ⇒ (a): If ψ is a continuous linear map satisfying (6.10), then the fact that the

exponential functions expG1
and expG2

are local diffeomorphisms, (Proposition 6.2.5)
the smoothness of the linear map ψ implies (a).

Corollary 6.2.11. If ϕ1, ϕ2 : G1 → G2 are morphisms of Lie groups with L(ϕ1) =
L(ϕ2), then ϕ1 and ϕ2 coincide on the identity component of G1.

Proof. In view of Proposition 6.2.9, we have for x ∈ L(G1):

ϕ1(expG1
(x)) = expG2

(L(ϕ1)x) = expG2
(L(ϕ2)x) = ϕ2(expG1

(x)),

so that ϕ1 and ϕ2 coincide on the image of expG1
, hence on the subgroup generated

by this set. Now the assertion follows from Lemma 6.2.8.

Proposition 6.2.12. For a morphism ϕ : G1 → G2 of Lie groups, the following as-
sertions hold:

(1) ker L(ϕ) = {x ∈ L(G1) : expG1
(Rx) ⊆ kerϕ}.

(2) ϕ is an open map if and only if L(ϕ) is surjective.

(3) If L(ϕ) and ϕ are bijective, then ϕ is an isomorphism of Lie groups.

Proof. (1) The condition x ∈ ker L(ϕ) is equivalent to

{1} = expG2
(R L(ϕ)x) = ϕ(expG1

(Rx)).

(2) Suppose first that ϕ is an open map. Since expGi , i = 1, 2, are local diffeomor-
phisms,

expG2
◦L(ϕ) = ϕ ◦ expG1

(6.11)

implies that there exists some 0-neighborhood in L(G1) on which L(ϕ) is an open map,
hence that L(ϕ) is surjective.

If, conversely, L(ϕ) is surjective, the Open Mapping Theorem for linear operators
between Banach spaces ([Ru73]) implies that L(ϕ) is open. Now relation (6.11) implies
that there exists an open 1-neighborhood U1 in G1 such that ϕ|U1 is an open map.
We claim that this implies that ϕ is an open map. In fact, suppose that O ⊆ G1 is
open and g ∈ O. Then there exists an open 1-neighborhood U2 of G1 with gU2 ⊆ O
and U2 ⊆ U1. Then

ϕ(O) ⊇ ϕ(gU2) = ϕ(g)ϕ(U2),

and since ϕ(U2) is open in G2, we see that ϕ(O) is a neighborhood of ϕ(g), hence that
ϕ(O) is open because g ∈ O was arbitrary.

(3) From the relation expG2
◦L(ϕ) = ϕ ◦ expG1

and the bijectivity of ϕ we derive
that the group homomorphism ϕ−1 satisfies

ϕ−1 ◦ expG2
= expG1

◦L(ϕ)−1,

so that Corollary 6.2.10 implies that ϕ−1 is also smooth.
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The Adjoint Representation

The Lie functor associates linear automorphisms of the Lie algebra with conjugations
on the Lie group. The resulting representation of the Lie group is called the adjoint
representation. Its interplay with the exponential function will be important in the
entire theory.

Definition 6.2.13. (a) We know that, for each Banach space V , the group GL(V )
carries a natural Lie group structure (Example 4.1.12). For a Lie group G, a smooth
homomorphism π : G → GL(V ) is a called a representation of G on V (cf. Defini-
tion 3.1.13).

Any representation defines a smooth action of G on V via

σ(g, v) := π(g)(v).

In this sense, representations are the same as linear actions, i.e., actions on vector
spaces for which the maps σg are linear.

As a consequence of Proposition 6.1.4, we obtain

Proposition 6.2.14. If π : G → GL(V ) is a representation of G, then
L(π) : L(G)→ gl(V ) is a representation of its Lie algebra L(G).

The representation L(π) obtained in Proposition 6.2.14 from the group representa-
tion π is called the derived representation. This is motivated by the fact that for each
x ∈ L(G) we have

L(π)(x) =
d

dt t=0
etL(π)x =

d

dt t=0
π(expG tx).

Let G be a Lie group and L(G) its Lie algebra. For g ∈ G, we recall the conjugation
automorphism cg ∈ Aut(G), cg(x) = gxg−1, and define

Ad(g) := L(cg) ∈ Aut(L(G)).

Then
Ad(g1g2) = L(cg1g2) = L(cg1) ◦ L(cg2) = Ad(g1) Ad(g2)

shows that Ad: G → Aut(L(G)) is a group homomorphism. It is called the adjoint
representation. To see that it is smooth, we observe that, for each x ∈ L(G), we have

Ad(g)x = T1(cg)x = T1(λg ◦ ρg−1)x = Tg−1(λg)T1(ρg−1)x = 0g · x · 0g−1

in the Lie group T (G) (Lemma 6.1.1). Since the multiplication in T (G) is smooth,
the representation Ad of G on L(G) is smooth (cf. Exercise 6.1.10), and

L(Ad): L(G)→ gl(L(G))

is a representation of L(G) on L(G). The following lemma gives a formula for this
representation.
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Lemma 6.2.15. L(Ad) = ad, i.e., L(Ad)(x)(y) = [x, y].

Proof. Let x, y ∈ L(G) and xl, yl ∈ V(G) be the corresponding left invariant vector
fields. Corollary 6.1.6 implies for g ∈ G the relation

(cg)∗yl =
(
L(cg)y)l =

(
Ad(g)y

)
l
.

On the other hand, the left invariance of yl leads to

(cg)∗yl = (ρ−1
g ◦ λg)∗yl = (ρ−1

g )∗(λg)∗yl = (ρ−1
g )∗yl.

Next we observe that Φxlt = ρexpG(tx) is the flow of the vector field xl
(Lemma 6.2.4), so that Theorem 5.3.12 implies that

[xl, yl] = Lxlyl =
d

dt t=0
(Φxl−t)∗yl =

d

dt t=0
(cexpG(tx))∗yl =

d

dt t=0

(
Ad(expG(tx))y

)
l
.

Evaluating in 1, we get

[x, y] = [xl, yl](1) =
d

dt t=0
Ad(expG(tx))y = L(Ad)(x)(y).

Combining Proposition 6.2.9 with Lemma 6.2.15, we obtain the important formula

Ad ◦ expG = expAut(L(G)) ◦ ad,

i.e.,
Ad(expG(x)) = ead x for x ∈ L(G). (6.12)

Lemma 6.2.16. For a Lie group G, the kernel of the adjoint representation Ad: G→
Aut(L(G)), is given by the centralizer

ZG(G0) := {g ∈ G : (∀x ∈ G0) gx = xg},

of the identity component G0. If, in addition, G is connected, then

ker Ad = Z(G).

Proof. Since G0 is connected, the automorphism cg|G0 of G0 is trivial if and only if
L(cg) = Ad(g) is trivial (Corollary 6.2.11). This implies the lemma.

One-parameter groups of Lie groups

With the same proof as for A×, we obtain:

Lemma 6.2.17. Let G be a Lie group, ε > 0 and γ : [0, ε]→ G be a continuous curve
with γ(0) = 1. If γ′(0) exists, then

lim
n→∞

γ
( 1
n

)n
= exp(γ′(0)).
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Proposition 6.2.18. If G is a Lie group and x, y ∈ L(G), then we have the Trotter
Product Formula

lim
k→∞

(
expG

x

k
expG

y

k

)k
= expG(x+ y)

and the Commutator Formula

lim
k→∞

(
expG

x

k
expG

y

k
expG−

x

k
expG−

y

k

)k2

= expG([x, y]).

Proof. To obtain the product formula, we consider the smooth curve

γ(t) := expG(tx) expG(ty)

with γ(0) = 1 and

γ′(0) = T(1,1)(mG)(x, y) = x+ y.

The product formula now follows from Lemma 6.2.17.
For the commutator formula, we consider the smooth curve

β(t) := expG(tx) expG(ty) expG(−tx) expG(−ty) = expG(tAd(expG(tx)y) expG(−ty)

= expG(tet ad xy) expG(−ty)

with β(0) = 1.
Let U ⊆ L(G) be an open 0-neighborhood on which expU := expG |U is a diffeo-

morphism onto an open subset of G (Proposition 6.2.5) and define

a ∗ b := exp−1
U (expU a expU b) for expU a expU b ∈ expG(U).

For sufficiently small t, we then have β(t) = expG(α(t)) with

α(t) = tet ad xy ∗ −ty

Using T(1,1)(mG)(a, b) = a+ b twice, we obtain with the preceding paragraph

β′(0) = (x+ y) + (−x− y) = 0,

resp., α′(0) = 0. We then put γ(t) := β(
√
t) = expG(α(

√
t)). In the proof of

Lemma 2.2.4, we have seen that γ′(0) = 1
2α
′′(0) exists. Therefore Lemma 6.2.17

implies that

β
(1
k

)k2

= γ
( 1
k2

)k2

→ expG(γ′(0)) = expG
(1

2
α′′(0)

)
,

so that it remains to show that α′′(0) = 2[x, y].
The smooth function

F (t, s) := set ad xy ∗ −sy

satisfies F (t, 0) = F (0, s) = 0 and

∂F

∂s
(t, 0) = et ad xy − y,
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so that
∂2F

∂t∂s
(0, 0) = [x, y].

We now derive from α(t) = F (t, t)

α′(t) =
∂F

∂t
(t, t) +

∂F

∂s
(t, t),

and thus

α′′(t) =
∂2F

∂t2
(t, t) + 2

∂2F

∂t∂s
(t, t) +

∂2F

∂s2
(t, t).

Since F (t, 0) = F (0, s) = 0 implies ∂2F
∂t2 (0, 0) = ∂2F

∂s2 (0, 0) = 0, we finally obtain

α′′(0) = 2
∂2F

∂t∂s
(0, 0) = 2[x, y].

Corollary 6.2.19. If G is an abelian Lie group, then

expG(x+ y) = expG(x) expG(y) for x, y ∈ L(G)

and
expG : (L(G),+)→ G

is a covering morphism of Lie groups. In particular,

G0
∼= L(G)/ ker expG .

Proof. The first assertion follows from the Trotter Product Formula. It implies that
expG is a morphism of Lie groups from the Banach space L(G) to G. It factors through
a bijective morphism of Lie groups L(G)/ ker expG → G0, which is an isomorphism of
Lie groups by Proposition 6.2.12(3).

Remark 6.2.20. For finite dimensional abelian Lie groups, the preceding corollary is
the key to their classification. Then L(G) ∼= Rn for some n and ker expG is a discrete
subgroup, hence isomorphic to Zk, which leads to G0

∼= Tk×Rn−k (cf. Example 4.3.6).

Theorem 6.2.21. (One-parameter Group Theorem) Let G be a Lie group. For each
x ∈ L(G), the map γx : (R,+) → G, t 7→ expG(tx) is a smooth group homomorphism.
Conversely, every continuous one-parameter group γ : R→ G is of this form.

Proof. The first assertion is an immediate consequence of Lemma 6.2.4(c). It therefore
remains to show that each continuous one-parameter group γ of G is a γx for some
x ∈ L(G). Let U = −U be a convex 0-neighborhood in L(G) for which expG |U is a
diffeomorphism onto an open subset of G and put U1 := 1

2U . Since γ is continuous in 0,
there exists an ε > 0 such that γ([−ε, ε]) ⊆ expG(U1). Then α(t) := (expG |U )−1(γ(t))
defines a continuous curve α : [−ε, ε]→ U1 with exp(α(t)) = γ(t) for |t| ≤ ε.

For any such t we then have

expG
(
2α( t2 )

)
= expG(α( t2 )

)2 = γ( t2 )2 = γ(t) = expG(α(t)),
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so that the injectivity of expG on U yields

α( t2 ) = 1
2α(t) for |t| ≤ ε.

Inductively we thus obtain

α( t
2k

) = 1
2k
α(t) for |t| ≤ ε, k ∈ N. (6.13)

In particular, we obtain

α(t) ∈ 1
2k
U1 for |t| ≤ ε

2k
.

For n ∈ Z with |n| ≤ 2k and |t| ≤ ε
2k

we now have |nt| ≤ ε, nα(t) ∈ n
2k
U1 ⊆ U1, and

expG(nα(t)) = γ(t)n = γ(nt) = expG(α(nt)).

Therefore the injectivity of expG on U1 yields

α(nt) = nα(t) for n ≤ 2k, |t| ≤ ε

2k
. (6.14)

Combining (6.13) and (6.14), leads to

α( n
2k
t) = n

2k
α(t) for |t| ≤ ε, k ∈ N, |n| ≤ 2k.

Since the set of all numbers nt
2k

, n ∈ Z, k ∈ N, |n| ≤ 2k, is dense in the interval [−t, t],
the continuity of α implies that

α(t) =
t

ε
α(ε) for |t| ≤ ε.

In particular, α is smooth and of the form α(t) = tx for x = ε−1α(ε). Hence γ(t) =
expG(tx) for |t| ≤ ε, but then γ(nt) = expG(ntx) for n ∈ N leads to γ(t) = expG(tx)
for each t ∈ R.

Theorem 6.2.22. (Automatic Smoothness Theorem) Each continuous homomor-
phism ϕ : G→ H of Lie groups is smooth.

Proof. From Theorem 6.2.21 we know that, for every Lie group G, the map

L(G)→ Homc(R, G), x 7→ γx, γx(t) := expG(tx)

is a bijection, where Homc(R, G) denotes the set of all continuous one-parameter groups
of G. For x ∈ L(G1), we consider the continuous homomorphism ϕ◦γx ∈ Homc(R, G2).
Since this one-parameter group is smooth (Theorem 6.2.21), it is of the form

ϕ ◦ γx(t) = expG2
(ty)

for y = (ϕ ◦ γx)′(0) ∈ L(G2). We define a map L(ϕ) : L(G1) → L(G2) by L(ϕ)x :=
(ϕ ◦ γx)′(0). For t = 1 we then obtain

expG2
◦L(ϕ) = ϕ ◦ expG1

: L(G1)→ G2. (6.15)
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Next we show that L(ϕ) is a linear map. Our definition immediately shows that
L(ϕ)λx = λL(ϕ)x for each x ∈ L(G1). Further, the Product Formula (Proposi-
tion 6.2.18) yields for x, y ∈ L(G):

expG2
(L(ϕ)(x+ y)) = ϕ

(
expG1

(x+ y)
)

= lim
k→∞

ϕ
(

expG1

(
1
kx
)

expG1

(
1
ky
))k

= lim
k→∞

(
expG2

(
1
k L(ϕ)x

)
expG2

(
1
k L(ϕ)y

))k
= expG2

(
L(ϕ)x+ L(ϕ)y

)
.

This proves that L(ϕ)(x + y) = L(ϕ)x + L(ϕ)y, so that L(ϕ) is indeed a linear map.
Since expG2

is a local diffeomorphism in 0, (6.15) and the continuity of ϕ implies
that L(ϕ) is continuous on some 0-neighborhood, and since it is a linear map, it is
continuous (cf. Exercise 1.1.3), hence in particular smooth. Since expG1

is a local
diffeomorphism in 0, (6.15) now implies that ϕ is smooth in an identity neighborhood
of G1, hence smooth by Corollary 6.2.10.

Corollary 6.2.23. A topological group G carries at most one Lie group structure.

Proof. If G1 and G2 are two Lie groups which are isomorphic as topological groups,
then the Automatic Smoothness Theorem applies to each topological isomorphism
ϕ : G1 → G2 and shows that ϕ is smooth. It likewise applies to ϕ−1, so that ϕ is an
isomorphism of Lie groups.

The Baker–Campbell–Dynkin–Hausdorff Formula

In this subsection we show that the formula

expG(x ∗ y) = expG x expG y,

where x ∗ y, for sufficiently small elements x, y ∈ g = L(G), is given by the Hausdorff
series (cf. Proposition 2.3.6), also holds for the exponential function of a general Lie
group G with Lie algebra g.

Definition 6.2.24. For a smooth function f : M → G of a smooth manifold M with
values in the Lie group G, we define its (left) logarithmic derivative as the function

δ(f) : TM → g, δ(f)(v) := f(m)−1.Tm(f)v for v ∈ Tm(M).

This map is a convenient way to describe the derivative of f in terms of a less
complex structure than the tangent map Tf : TM → TG.

Lemma 6.2.25. For two smooth maps f, h : M → G, the logarithmic derivative of the
pointwise products fh and fh−1 is given by the

(1) Product Rule: δ(fh) = δ(h) + Ad(h−1)δ(f), and the

(2) Quotient Rule: δ(fh−1) = Ad(h)(δ(f)− δ(h)).
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Proof. Writing fg = mG ◦ (f, g), we obtain from

T(a,b)(mG)(v, w) = v · b+ a · w

for a, b ∈ G and v, w ∈ L(G) ⊆ TG (Lemma 6.1.1), the relation

T (fh) = T (mG) ◦ (T (f), T (h)) = T (f) · h+ f · T (h) : T (M)→ T (G),

where f · T (h), resp., T (f) · h refers to the pointwise product in the group T (G),
containing G as the zero section (Lemma 6.1.1). This immediately leads to the Product
Rule

δ(fh) = (fh)−1 · (T (f) · h+ f · T (h)) = h−1 · (δ(f) · h) + δ(h) = Ad(h)−1δ(f) + δ(h).

For h = f−1, we then obtain

0 = δ(ff−1) = Ad(f)δ(f) + δ(f−1),

hence δ(f−1) = −Ad(f)δ(f). This in turn leads to

δ(fh−1) = Ad(h)δ(f) + δ(h−1) = Ad(h)δ(f)−Ad(h)δ(h),

which is the Quotient Rule.

Remark 6.2.26. For any g ∈ G and a smooth function f : M → G, the function
g · f = λg ◦ f has the same logarithmic derivative as f because

δ(g · f) = δ(f) + Ad(f)−1δ(g) = δ(f)

is a consequence of the Product Rule and the fact that δ(g) = 0 for the constant map
with value g.

Proposition 6.2.27. The logarithmic derivative of expG is given by

δ(expG)(x) = Φ(adx) ∈ L(g), where Φ(z) :=
1− e−z

z
=
∞∑
k=1

(−z)k−1

k!
.

Proof. Fix t, s ∈ R. Then the smooth functions f, ft, fs : L(G)→ G, given by

f(x) := expG((t+ s)x), ft(x) := expG(tx) and fs(x) := expG(sx),

satisfy f = ftfs pointwise on L(G). The Product Rule (Lemma 6.2.25) therefore
implies that

δ(f) = δ(fs) + Ad(fs)−1δ(ft).

For the smooth curve ψ : R→ L(G), ψ(t) := δ(expG)tx(ty), we now obtain

ψ(t+ s) = δ(f)x(y) = δ(fs)x(y) + Ad(fs)−1δ(ft)x(y)
= ψ(s) + Ad(expG(−sx))ψ(t).



104 CHAPTER 6. LIE ALGEBRA AND EXPONENTIAL FUNCTION

We have ψ(0) = 0 and

ψ′(0) = lim
t→0

δ(expG)tx(y) = δ(expG)0(y) = y,

so that taking derivatives with respect to t in 0, leads with (6.12) to

ψ′(s) = Ad(expG(−sx))y = e− ad(sx)y.

Now the assertion follows by integration from

δ(expG)x(y) = ψ(1) =
∫ 1

0

ψ′(s) ds

and
∫ 1

0
e−s ad x ds =

∑∞
k=0

(− ad x)k

(k+1)! = Φ(adx), which we saw already in the proof of
Proposition 2.3.2.

Let U ⊆ g be a convex 0-neighborhood for which expG |U is a diffeomorphism
onto an open subset of G and V ⊆ U a smaller convex open 0-neighborhood with
expG V expG V ⊆ expG U . Put logU := (expG |U )−1 and define

x ∗ y := logU (expG x expG y) for x, y ∈ V.

This defines a smooth map V × V → U . Fix x, y ∈ V . Then the smooth curve
F (t) := x ∗ ty ∈ U satisfies expG F (t) = expG(x) expG(ty), so that the logarithmic
derivative of this curve is

y = δ(expG)F (t)F
′(t) = Φ(adF (t))F ′(t).

We now choose U so small that the power series Ψ(z) = z log z
z−1 from Lemma 2.3.4

satisfies
Ψ(ead z)Φ(ad z) = idg for z ∈ U

(Lemma 2.3.4). For z = F (t), we then arrive with Proposition 6.2.27 at

F ′(t) = Ψ(eadF (t))y.

Now the same arguments as in Propositions 2.3.5 and 2.3.6 imply that

x ∗ y = F (1) = x+ y +
1
2

[x, y] + · · ·

is given by the convergent Hausdorff series:

Proposition 6.2.28. If G is a Lie group, then there exists a convex 0-neighborhood
V ⊆ g such that for x, y ∈ V the Hausdorff series

x ∗ y := x+∑
k,m≥0
pi+qi>0

(−1)k

(k + 1)(q1 + . . .+ qk + 1)
(adx)p1(ad y)q1 . . . (adx)pk(ad y)qk(adx)m

p1!q1! . . . pk!qk!m!
y.

converges and satisfies

expG(x ∗ y) = expG(x) expG(y).
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Exercises for Section 6.2

Exercise 6.2.1. Let G be a connected Lie group and x ∈ g = L(G). Show that the
corresponding left invariant vector field xl ∈ V(G) is biinvariant, i.e., also invariant
under all right multiplications, if and only if x ∈ z(g) := {z ∈ g : ad z = 0}.

Exercise 6.2.2. A vector field X on a Lie group G is called right invariant if for each
g ∈ G, the vector field (ρg)∗X = T (ρg) ◦X ◦ ρ−1

g coincides with X. We write V(G)r

for the set of right invariant vector fields on G. Show that:

(1) The evaluation map ev1 : V(G)r → T1(G) is a linear isomorphism.

(2) If X is right invariant, then there exists a unique x ∈ T1(G) such that X(g) =
xr(g) := T1(ρg)x = x · 0g (w.r.t. the multiplication in T (G)).

(3) If X is right invariant, then X̃ := (ηG)∗X := T (ηG) ◦X ◦ η−1
G is left invariant and

vice versa.

(4) Show that (ηG)∗xr = −xl and [xr, yr] = −[x, y]r for x, y ∈ T1(G).

(5) Show that each right invariant vector field is complete and determine its flow.

Exercise 6.2.3. No one-parameter group γ : R → SU2(C) is injective, in particular,
the image of γ(R) is a circle group.

Exercise 6.2.4. (i) Let A be a diagonalizable endomorphism of the finite dimen-
sional complex vector space V and let h(z) :=

∑∞
n=0 anz

n be a complex power
series converging on C. We define h(A) :=

∑∞
n=0 anA

n Then

kerh(A) =
⊕

z∈h−1(0)∩Spec(A)

ker(A− z1).

(ii) Let A be an endomorphism of the real vector space V for which the complex
linear extension AC : VC → VC is diagonalizable. Then Spec(A) := Spec(AC)
decomposes into the subsets

Sre := Spec(A) ∩ R and Sim := Spec(A) \ Sre.

Let h be as above and assume, in addition, that h(z) = h(z). Then h(A)V ⊆ V
and

kerh(A)

=
⊕

z∈h−1(0)∩Sre

ker(A− z1)⊕
⊕

x+iy∈h−1(0)∩Sim,y>0

ker
(
A2 − 2xA+ (x2 + y2)

)
.

Exercise 6.2.5. Let A ∈ End(V ), where V is a finite dimensional real vector space
and

Φ(z) :=
1− e−z

z
=
∞∑
k=0

(−1)kzk

(k + 1)!
.

Show that Φ(A) is invertible if and only if

Spec(A) ∩ 2πiZ ⊆ {0}.
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Exercise 6.2.6. (Divisible groups) An abelian group D is called divisible if for each
d ∈ D and n ∈ N there exists an a ∈ D with an = d. Show that:

(1)∗ If G is an abelian group, H a subgroup and f : H → D a homomorphism into an
abelian divisible group D, then there exists an extension of f to a homomorphism
f̃ : G→ D.

(2) If G is an abelian group and D a divisible subgroup, then G ∼= D × H for some
subgroup H of G.

Exercise 6.2.7. (Non-connected abelian Lie groups) Let A be an abelian Lie group.
Show that:

(1) If dimA < ∞, then the identity component of A0 is isomorphic to Rk × Tm for
some k,m ∈ N0.

(2) A0 is divisible (cf. Corollary 6.2.19).

(3) A ∼= A0 × π0(A), where π0(A) := A/A0 (Exercise 6.2.6).

(4) There exists a discrete abelian group D with A ∼= A0 ×D.



Chapter 7

Subgroups of Lie Groups

We have seen in Corollary 6.2.23 that a topological group carries at most one Lie
group structure. Therefore we call a subgroup H of a Lie group G a Lie subgroup if it
carries a Lie group structure compatible with the subspace topology. In this chapter
we take a closer look at this concept. In particular, we show that Lie subgroups are
always closed and that, for finite dimensional Lie groups, the converse is also true.
This makes it easy to find Lie group structures on all closed matrix groups.

7.1 Lie Subgroups

Definition 7.1.1. Let H be a subgroup of a Lie group G. It is a topological group
with respect to the subspace topology. We call H a Lie subgroup if it carries a Lie
group structure compatible with this topology. According to Corollary 6.2.23, this Lie
group structure is unique if it exists.

Remark 7.1.2. If H ⊆ G is a Lie subgroup and iH : H → G the inclusion map,
then iH is a continuous homomorphism of Lie groups, hence smooth by the Automatic
Smoothness Theorem and therefore a morphism of Lie groups.

Definition 7.1.3. Let G be a Lie group and H ≤ G be a ubgroup. We define the set

Le(H) := {x ∈ L(G) : expG(Rx) ⊆ H}

and observe that R Le(H) ⊆ Le(H) follows immediately from the definition.

Proposition 7.1.4. If H ≤ G is a closed subgroup of the Lie group G, then Le(H) is
a closed real subalgebra of L(G).

Proof. With the Product and Commutator Formula for general Lie groups (Proposi-
tion 6.2.18), the arguments are the same as for linear groups (Proposition 3.1.4).

Lemma 7.1.5. Every Lie subgroup H of a Lie group G is closed.
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Proof. Let iH : H → G be the embedding map, which is a morphism of Lie groups. In
view of

iH ◦ expH = expG ◦L(iH) (7.1)

and the fact that expH and expG are local homeomorphisms, the bijective continu-
ous linear map L(iH) : L(H) → L(iH) L(H) also is a local homeomorphism, hence a
homeomorphism by (cf. Exercise 4.1.2). In particular, im(L(iH)) is a complete sub-
space of L(G), hence closed. That it coincides with Le(H) follows immediately from
the correspondence of one-parameter subgroups of H with elements of Le(H), resp.,
elements of L(H) (Lemma 6.2.4). We may therefore identify the Lie algebra L(H) of
the Lie group H with the subset Le(H) of L(G). In this sense we then have

expH = expG |L(H).

Let VG ⊆ L(G) be a 0-neighborhood for which expG |VG is a diffeomorphism onto
an open subset of G and VH ⊆ L(H) ∩ VG be a 0-neighborhood for which expH |VH
is a diffeomorphism onto an open subset of H. Since expG |VG is a homeomorphism,
there exists an open 0-neighborhood W ⊆ VG ⊆ L(G) with

expG(W ) ∩H = expH(VH) = expG(VH).

Now expG(W ∩ L(H)) ⊆ H and VH ⊆ W ∩ L(H) lead to W ∩ L(H) = VH . In
particular VH is closed inW because L(H) is closed in L(G), and therefore expH(VH) =
H∩expG(W ) is closed in expG(W ). We conclude that H is locally closed, and therefore
closed (Lemma 1.2.2(ii)).

Theorem 7.1.6. (Integral Subgroup Theorem; general version) Let G be a Lie group
and h ⊆ L(G) be a closed Lie subalgebra. Then the subgroup H := 〈exp h〉 of G
generated by exp(h) carries a Lie group structure for which there exists an open 0-
neighborhood V ⊆ h on which the Dynkin series converges,

exp: h→ H, x 7→ expx

is smooth and maps V diffeomorphically onto an open subset of H and satisfies

exp(x ∗ y) = exp(x) exp(y) for x, y ∈ V.

Proof. Let U = −U ⊆ L(G) be an open convex 0-neighborhood such that the Dynkin
series x ∗ y converges for x, y ∈ U , defines a smooth map U ×U → L(G), and satisfies

expG(x ∗ y) = expG(x) expG(y).

(Proposition 6.2.28). We may further assume that expG |U is a diffeomorphism onto
an open subset of G. Now the remaining arguments are the same as in the linear case
(Theorem 4.2.4).

The following proposition is a generalization of the Linear Lie Group Theorem to
general Lie groups.
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Proposition 7.1.7. For a closed subgroup H of a Lie group G, the following are
equivalent:

(i) H is a Lie subgroup.

(ii) There exists an open 0-neighborhood W ⊆ Le(H) for which expG |W is a homeo-
morphism onto an open 1-neighborhood in H.

(iii) There exists an open 0-neighborhood V ⊆ L(G) with exp−1
G (H) ∩ V ⊆ Le(H).

Proof. (i) ⇒ (ii): Take U := VH in the proof of Lemma 7.1.5.
(ii) ⇒ (iii): Let V0 ⊆ L(G) be an open 0-neighborhood for which expG |V0 is

a diffeomorphism onto an open subset of G. Then (ii) still holds for the smaller
0-neighborhood W0 := W ∩ V0 in Le(H). Since expG(W0) is open in H, resp.,
H ∩expG(V0), and expG |V0 is a homeomorphism, there exists an open 0-neighborhood
V1 ⊆ V0 with expG(V1) ∩H = expG(W0). Then the injectivity of expG |V1 implies

exp−1
G (H) ∩ V1 = (expG |V1)−1(H) = W0 ⊆ Le(H).

(iii) ⇒ (i): Shrinking V , we may w.l.o.g. assume that expG |V is a diffeomorphism
onto an open subset of G. For W := V ∩ Le(H) we then obtain expG(V ) ∩ H =
expG(W ), so that ϕ := expG |W is a homeomorphism onto an open 1-neighborhood
in H. Then exp(Le(H)) ⊆ H is a connected 1-neighborhood, so that 〈exp Le(H)〉 is
an open connected subgroup of H, hence coincides with the identity component H0

of H (cf. Lemmas 1.2.2(iv) and 1.2.10). We endow H0 with the Lie group structure
from Theorem 7.1.6, and the remaining arguments are the same as in the proof of the
Linear Lie Group Theorem 4.2.6.

Proposition 7.1.8. If ϕ : G1 → G2 is a morphism of Lie groups and H2 ⊆ G2 is a
Lie subgroup, then H1 := ϕ−1(H2) is a Lie subgroup with Lie algebra

Le(H1) = L(ϕ)−1
(
Le(H2)

)
.

In particular, kerϕ is a Lie subgroup of G1 with Lie algebra ker L(ϕ).

Proof. Let V2 ⊆ L(G2) be an open 0-neighborhood with exp−1
G2

(H2) ∩ V2 ⊆ Le(H2)
(Proposition 7.1.7) and note that V1 := L(ϕ)−1(V2) is an open 0-neighborhood in
L(G1).

For x ∈ V1 with expG1
x ∈ H1, we then have expG2

(L(ϕ)x) = ϕ(expG1
x) ∈

ϕ(H1) ⊆ H2, so that L(ϕ)x ∈ V2 implies L(ϕ)x ∈ Le(H2), hence x ∈ L(ϕ)−1(Le(H2)) =
Le(H1) (Exercise!). We conclude that

exp−1
G1

(H1) ∩ V1 ⊆ Le(H1),

so that Proposition 7.1.7 implies that H1 is a Lie subgroup of G1.
Since {1} is a Lie subgroup of G2, we see in particular that kerϕ is a Lie subgroup

of G1.

Applying the preceding proposition to the adjoint representation Ad: G→ Aut(g)
of a connected Lie group G, we obtain in particular for Z(G) = ker Ad:

Corollary 7.1.9. For every connected Lie group G, the center Z(G) is a Lie subgroup.
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7.2 The Closed Subgroup Theorem

We now address more detailed information on closed subgroups of finite dimensional
Lie groups. We start with three key lemmas providing the main information for the
proof of the Closed Subgroup Theorem.

Lemma 7.2.1. Let W ⊆ L(G) be an open 0-neighborhood for which expG |W is a
diffeomorphism. Further, let H ⊆ G be a closed subgroup and (yk)k∈N be a sequence
in W such that yk → 0 and gk := expG yk ∈ H \ {1} for all k ∈ N. Fix a norm ‖ · ‖ on
L(G). Then every cluster point of the sequence

{
yk
‖yk‖ : k ∈ N

}
is contained in Le(H).

Proof. Let x be such a cluster point. Replacing the original sequence by a subsequence,
we may assume that we have in L(G):

xk :=
yk
‖yk‖

→ x.

Note that this implies ‖x‖ = 1. Let t ∈ R and put pk := t
‖yk‖ . Then txk = pkyk, so

that yk → 0 leads to

expG(tx) = lim
k→∞

expG(txk) = lim
k→∞

expG(pkyk)

and
expG(pkyk) = expG(yk)[pk] expG

(
(pk − [pk])yk

)
,

where [pk] = max{` ∈ Z : ` ≤ pk} is the Gauß function. We then have

‖(pk − [pk])yk‖ ≤ ‖yk‖ → 0

and
expG(tx) = lim

k→∞
(expG yk)[pk] = lim

k→∞
g

[pk]
k ∈ H,

because H is closed. This implies x ∈ Le(H).

Lemma 7.2.2. Let H ⊆ G be a closed subgroup and E ⊆ L(G) be a finite dimensional
vector subspace complementing L(H). Then there exists a 0-neighborhood UE ⊆ E with

H ∩ expG(UE) = {1}.

Proof. We argue by contradiction. If a neighborhood UE with the required properties
does not exist, then for each compact convex 0-neighborhood VE ⊆ E, we have for
each k ∈ N:

(expG
1
kVE) ∩H 6= {1}.

For each k ∈ N we therefore find yk ∈ VE with 1 6= gk := expG(ykk ) ∈ H. Now the
compactness of VE implies that the sequence (yk)k∈N is bounded, so that yk

k → 0, which
implies gk → 1. Now let x ∈ E be a cluster point of the sequence yk

‖yk‖ which lies in
the compact subset SE := {z ∈ E : ‖z‖ = 1} of the finite dimensional normed space E.
According to Lemma 7.2.1, we have x ∈ Le(H) ∩ E = {0} because gk ∈ H ∩W for k
sufficiently large. We arrive at a contradiction to ‖x‖ = 1. This proves the lemma.
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Lemma 7.2.3. Suppose that dimG < ∞ and that E,F ⊆ L(G) are subspaces with
E ⊕ F = L(G). Then the map

Φ: E × F → G, (x, y) 7→ expG(x) expG(y),

restricts to a diffeomorphism of a neighborhood of (0, 0) to an open 1-neighborhood
in G.

Proof. The Chain Rule implies that

T(0,0)(Φ)(x, y) = T(1,1)(mG) ◦ (T0(expG)x, T0(expG)y)
= T(1,1)(mG)(x, y) = x+ y,

Since the addition map E × F → L(G) ∼= T1(G) is bijective, the Inverse Function
Theorem implies that Φ restricts to a diffeomorphism of an open neighborhood of
(0, 0) in E × F onto an open neighborhood of 1 in G.

Theorem 7.2.4. (Closed Subgroup Theorem) Every closed subgroup of a finite di-
mensional Lie group G is a Lie subgroup.

Proof. Let H ⊆ G be a closed subgroup and E ⊆ L(G) be a vector space complement
of the subspace Le(H) of L(G). We define

Φ: E × Le(H)→ G, (x, y) 7→ expG x expG y.

According to Lemma 7.2.3, there exist open 0-neighborhoods UE ⊆ E and UH ⊆ Le(H)
such that

Φ1 := Φ|UE×UH : UE × UH → expG(UE) expG(UH)

is a diffeomorphism onto an open 1-neighborhood in G. In view of Lemma 7.2.2, we
may even choose UE so small that expG(UE) ∩H = {1}.

Since expG(UH) ⊆ H, the condition

g = expG x expG y ∈ H ∩ (expG(UE) expG(UH))

implies expG x = g(expG y)−1 ∈ H ∩ expG UE = {1}. Therefore

H ⊇ expG(UH) = H ∩ (expG(UE) expG(UH))

is an open 1-neighborhood in H. In view of Proposition 7.1.7, this completes the
proof.

Example 7.2.5. We take a closer look at closed subgroups of the Lie group (V,+),
where V is a finite-dimensional vector space. From Example 6.2.3 we know that
expV = idV . Let H ⊆ V be a closed subgroup. Then

Le(H) = {x ∈ V : Rx ⊆ H} ⊆ H

is the largest vector subspace contained in H. Let E ⊆ V be a vector space complement
for Le(H). Then V ∼= Le(H)× E, and we derive from Le(H) ⊆ H that

H ∼= Le(H)× (E ∩H).
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Lemma 7.2.2 implies the existence of some 0-neighborhood UE ⊆ E with UE∩H =
{0}, hence that H ∩ E is discrete because 0 is an isolated point of H ∩ E. Now
Exercise 1.2.7 implies the existence of linearly independent elements f1, . . . , fk ∈ E
with

E ∩H = Zf1 + . . .+ Zfk.

We conclude that

H ∼= Le(H)× Zk ∼= Rd × Zk for d = dim Le(H).

Note that Le(H) coincides with the identity component H0 of H.

Example 7.2.6. How bad closed subgroups can be is illustrated by the following ex-
ample due to K. H. Hofmann: We consider the real Hilbert space G := L2([0, 1],R) as a
Banach–Lie group. Then the subgroup H := L2([0, 1],Z) of all those functions which
almost everywhere take values in Z is a closed subgroup. Since the one-parameter
subgroups of G are of the form Rf , f ∈ G, we have Le(H) = {0}. On the other
hand, the group H is arcwise connected and even contractible because the map
F : [0, 1]×H → H given by

F (t, f)(x) :=
{
f(x) for 0 ≤ x ≤ t

0 for t < x ≤ 1

is continuous with F (1, f) = f and F (0, f) = 0. We conclude that the closed subgroup
H of G is NOT a Lie subgroup.

This pathology can be avoided by the assumption that the subgroup is connected
by C1 arcs.

Example 7.2.7. (Closed Subgroups of T) Let H ⊆ T ⊆ (C×, ·) be a closed proper
(=different from T) subgroup. Since dim T = 1, it follows that Le(H) = {0}, so that
the Identity Neighborhood Theorem implies that H is discrete, hence finite because T
is compact.

If q : R → T is the covering projection, q−1(H) is a closed proper subgroup of R,
hence cyclic, which implies that H = q(q−1(H)) is also cyclic. Therefore H is one of
the groups

Cn = {z ∈ T : zn = 1}

of n-th roots of unity.

Example 7.2.8. (Subgroups of T2) (a) Let H ⊆ T2 be a closed proper subgroup.
Then Le(H) 6= L(T2) implies dimH < dim T2 = 2. Further, H is compact, so that
the group π0(H) of connected components of H is finite.

If dimH = 0, then H is finite, and for n := |H| it is contained in a subgroup of the
form Cn×Cn, where Cn ⊆ T is the subgroup of n-th roots of unity (cf. Example 7.2.7).

If dimH = 1, then H0 is a compact connected 1-dimensional Lie group, hence
isomorphic to T (cf. Examples 4.3.6). Therefore H0 = expT2(Rx) for some x ∈ Le(H)
with expT2(x) = (e2πix1 , e2πix2) = (1, 1), which is equivalent to x ∈ Z2. We conclude
that the Lie algebras of the closed subgroups are of the form Le(H) = Rx for some
x ∈ Z2.
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(b) For each θ ∈ R \Q the image of the 1-parameter group

γ : R→ T2, t 7→ (eiθt, eit)

is not closed because γ is injective. Hence the closure of γ(R) is a closed subgroup
of dimension at least 2, which shows that γ(R) is dense in T2. The subgroup γ(R) is
called a dense wind.

Exercises for Section 7.2

Exercise 7.2.1. Show that a linear subspace E ⊆ Rd ∼= L(Td) is the Lie algebra
Le(H) of a closed subgroup H ⊆ Td if and only if it is rational, i.e., spanned by
E ∩Qd, resp., E ∩ Zd.

Exercise 7.2.2. (Torus complements) Show that, for every subgroup H ∼= Tk of
G := Td there exists another subgroup C ∼= Td−k with G ∼= H × C. Hint: Put
Γ := ker expG ∼= Zd. Verify that ΓH := Γ ∩ Le(H) ∼= Zk and argue that there is a
subgroup Zd−k ∼= ΓC ⊆ Γ with Γ ∼= ΓH ⊕ ΓC . Then consider C := expG(spanΓC).

Exercise 7.2.3. (Closed subgroups of Td) Show that every closed subgroup H ⊆ Td
is isomorphic to a product Tk × F for a finite subgroup F .

Exercise 7.2.4. Let x ∈ Rn = L(Tn). Show that the one-parameter group exp(Rx)
is dense in Tn if and only if x1 6= 0 and the real numbers (1, x2/x1, . . . , xn/x1) are
linearly independent over Q. Hint: Use Exercise 7.2.1.
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Chapter 8

Integration of Lie Algebra
Homomorphisms

To round off the picture of Lie groups and their Lie algebras presented in this lecture,
we still have to provide the link between Lie algebras and covering groups. The main
point is that, in general, one cannot integrate morphisms of Lie algebras L(G)→ L(H)
to morphisms of connected Lie groups G→ H if G is not simply connected.

8.1 The Monodromy Principle and its Applications

Proposition 8.1.1. (Monodromy Principle) Let G be a simply connected Lie group
and H a group. Let V be an open symmetric connected identity neighborhood in G and
f : V → H a function with

f(xy) = f(x)f(y) for x, y, xy ∈ V.

Then there exists a unique group homomorphism extending f . If, in addition, H is a
Lie group and f is smooth, then its extension is also smooth.

Proof. We consider the group G × H and the subgroup S ⊆ G × H generated by
the subset U := {(x, f(x)) : x ∈ V }. We endow U with the topology for which
x 7→ (x, f(x)), V → U is a homeomorphism. Then U is connected because V is
connected. Note that f(1)2 = f(12) = f(1) implies f(1) = 1, which further leads to
1 = f(xx−1) = f(x)f(x−1), so that f(x−1) = f(x)−1. Hence U = U−1.

To obtain a group topology on S, we now apply Lemma 1.4.5, and observe that S
is generated by U , and that (T1/2) directly follow from the corresponding properties
of V and (x, f(x))(y, f(y)) = (xy, f(xy)) for x, y, xy ∈ V . This leads to a group
topology on S, for which S is a connected topological group. Indeed, its connectedness
follows from S =

⋃
n∈N U

n and the connectedness of all sets Un (Exercise 1.2.1). The
projection pG : G ×H → G induces a covering homomorphism q : S → G because its
restriction to the open 1-neighborhood U is a homeomorphism (Exercise C.2.2(c)),
and the connectedness of S and the simple connectedness of G imply that q is a

115
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homeomorphism (Corollary C.2.8). Now F := pH ◦ q−1 : G→ H provides the required
extension of f . In fact, for x ∈ U we have q−1(x) = (x, f(x)), and therefore F (x) =
f(x).

If, in addition, H is Lie and f is smooth, then the smoothness of the extension
follows directly from Corollary 6.2.10.

Theorem 8.1.2. (Integrability Theorem for Lie Algebra Homomorphisms) Let G
be a connected simply connected Lie group, H a Lie group and ψ : L(G) → L(H) a
continuous Lie algebra morphism. Then there exists a unique morphism ϕ : G → H
with L(ϕ) = ψ.

Proof. Let U ⊆ L(G) be an open connected symmetric 0-neighborhood on which the
BCDH-product is defined and satisfies expG(x ∗ y) = expG(x) expG(y) and

expH(ψ(x) ∗ ψ(y)) = expH(ψ(x)) expH(ψ(y)) for x, y ∈ U

(Proposition 6.2.28). Assume further that V is an open 0-neighborhood with U∗U ⊆ V
for which expG |V is a homeomorphism onto an open subset of G (cf. Proposition 6.2.5)
(this can always achieved by shrinking U if necessary).

The continuity of ψ and the fact that ψ is a Lie algebra homomorphism imply
that for x, y ∈ U the element ψ(x ∗ y) coincides with the convergent Hausdorff series
ψ(x) ∗ ψ(y) (cf. Proposition 6.2.28). We define

f : expG(U)→ H, f(expG(x)) := expH(ψ(x)).

For x, y ∈ U with expG x expG y ∈ expG(U) we then find some z ∈ U with expG z =
expG x expG y = expG(x ∗ y), so that the injectivity of expG on V ⊇ U ∗ U leads to
x ∗ y = z ∈ U . We now obtain

f(expG(x) expG(y)) = f(expG(x ∗ y)) = expH(ψ(x ∗ y))
= expH(ψ(x) ∗ ψ(y)) = expH(ψ(x)) expH(ψ(y)) = f(expG(x))f(expG(y)).

Then f : exp(U) → H satisfies the assumptions of Proposition 8.1.1, and we see
that f extends uniquely to a group homomorphism ϕ : G → H. Since expG is a local
diffeomorphism, f is smooth in a 1-neighborhood, and therefore ϕ is smooth. We
finally observe that ϕ is uniquely determined by L(ϕ) = ψ because G is connected
(Corollary 6.2.11).

The following corollary can be viewed as an integrability condition for ψ.

Corollary 8.1.3. If G is a connected Lie group and H is a Lie group, then, for a
Lie algebra morphism ψ : L(G) → L(H), there exists a morphism ϕ : G → H with
L(ϕ) = ψ if and only if π1(G) ∼= ker qG ⊆ ker ϕ̃, where qG : G̃ → G is the universal
covering map and ϕ̃ : G̃→ H is the unique morphism with L(ϕ̃) = ψ ◦ L(qG).

Proof. If ϕ exists, then

(ϕ ◦ qG) ◦ exp eG = ϕ ◦ expG ◦L(qG) = expH ◦ψ ◦ L(qG)
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and the uniqueness of ϕ̃ imply that ϕ̃ = ϕ ◦ qG and hence that ker qG ⊆ ker ϕ̃.
If, conversely, ker qG ⊆ ker ϕ̃, then ϕ(qG(g)) := ϕ̃(g) defines a continuous morphism

G ∼= G̃/ ker qG → H with ϕ ◦ qG = ϕ̃ (Exercise 1.1.9) and

ϕ ◦ expG ◦L(qG) = ϕ ◦ qG ◦ exp eG = ϕ̃ ◦ exp eG = expH ◦ψ ◦ L(qG).

The following corollary is a partial converse to Corollary 6.1.6, which asserts that
isomorphic Lie groups have isomorphic Lie algebras.

Corollary 8.1.4. If G and H are simply connected Lie groups with isomorphic Lie
algebras, then G and H are isomorphic.

Proof. Let α : L(G) → L(H) be an isomorphism and use Theorem 8.1.2 to find a
morphism ϕ : G → H of Lie groups with L(ϕ) = α. We likewise find a morphism of
Lie groups ψ : H → G with L(ψ) = α−1, and then the relations

L(ϕ ◦ ψ) = idL(H) and L(ψ ◦ ϕ) = idL(G)

imply that ϕ ◦ ψ = idH and ψ ◦ ϕ = idG (Corollary 6.2.11). Therefore ϕ is an
isomorphism of Lie groups.

Corollary 8.1.5. If G is a simply connected Lie group with Lie algebra g, then the
map

L : Aut(G)→ Aut(g)

is an isomorphism of groups.

Proof. First, we recall from Corollary 6.1.6 that for each automorphism ϕ ∈ Aut(G)
the endomorphism L(ϕ) of g also is an automorphism. That L is injective follows from
the connectedness of G (Corollary 6.2.11) and that L is surjective from the Integrability
Theorem 8.1.2.

8.2 Classification of Lie Groups with given Lie Al-
gebra

Let G and H be linear Lie groups. If ϕ : G→ H is an isomorphism, then the functorial-
ity of L directly implies that L(ϕ) : L(G)→ L(H) is an isomorphism (Corollary 6.1.6).
In this subsection we ask to which extent a Lie group G is determined by its Lie algebra
L(G).

Proposition 8.2.1. A surjective morphism ϕ : G→ H of Lie groups is a covering if
and only if L(ϕ) : L(G)→ L(H) is a linear isomorphism.

Proof. In view of Exercise 4.3.10, ϕ is a covering if and only if ϕ is open with discrete
kernel.

In Proposition 6.2.12 we have seen that ϕ is open if and only if L(ϕ) is surjective.
Since kerϕ is a Lie subgroup by Proposition 7.1.8, it is discrete if and only if L(kerϕ) =
ker L(ϕ) = {0}, which means that L(ϕ) is injective. Combining these observations,
we see that L(ϕ) is bijective if and only if ϕ is open with discrete kernel, i.e., a
covering.
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Proposition 8.2.2. For a covering q : G1 → G2 of connected Lie groups, the following
equalities hold

q
(
Z(G1)

)
= Z(G2) and Z(G1) = q−1(Z(G2)).

Proof. Since q is a covering, L(q) : L(G1)→ L(G2) is an isomorphism of Lie algebras,
and the adjoint representations satisfy

AdG2(q(g1)) ◦ L(q) = L(q) ◦AdG1(g1).

Hence
Z(G1) = ker AdG1 = q−1 ker AdG2 = q−1(Z(G2)).

Now the claim follows from the surjectivity of q.

Theorem 8.2.3. Two connected Lie groups G and H have isomorphic Lie algebras if
and only if their universal covering groups G̃ and H̃ are isomorphic.

Proof. If G̃ and H̃ are isomorphic, then we clearly have

L(G) ∼= L(G̃) ∼= L(H̃) ∼= L(H)

(Proposition 8.2.1 and Corollary 6.1.6).
Conversely, Corollary 8.1.4 shows that any isomorphism ψ : L(G) → L(H) leads

to an isomorphism G̃→ H̃.

Combining the preceding theorem with Theorem 4.3.5, we obtain:

Corollary 8.2.4. Let G be a connected Lie group and qG : G̃ → G be the universal
covering morphism of connected Lie groups. Then, for each discrete central subgroup
Γ ⊆ G̃, the group G̃/Γ is a connected Lie group with L(G̃/Γ) ∼= L(G) and, conversely,
each Lie group with the same Lie algebra as G is isomorphic to some quotient G̃/Γ.

Example 8.2.5. We now describe a pair of nonisomorphic Lie groups with isomor-
phism Lie algebras and isomorphic fundamental groups.

Let
G̃ := SU2(C)× SU2(C)

whose center is C2 × C2,

G := G̃/(C2 × {1}) ∼= SO3(R)× SU2(C)

and
H := G̃/{(1,1), (−1,−1)} ∼= SO4(R),

where the latter isomorphy can be obtained by considered SO4(R) as a group acting
on the skew field H of quaternions. Then π1(G) ∼= π1(H) ∼= C2 (Theorem 4.3.5), but
there is no automorphism of G̃ mapping π1(G) to π1(H).

Indeed, one can show that the two direct factors are the only nontrivial connected
normal subgroups of G̃, so that each automorphism of G̃ either preserves both or
exchanges them. Since π1(H) is not contained in any of them, it cannot be mapped
to π1(G) by an automorphism of G̃.
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Examples 8.2.6. Here are some examples of pairs of linear Lie groups with isomorphic
Lie algebras:

(1) G = SO3(R) and G̃ ∼= SU2(C) (Example 4.3.8).
(2) G = SO2,1(R)0 and H = SL2(R): In this case we actually have a covering

morphism ϕ : H → G coming from the adjoint representation

Ad: SL2(R)→ GL(L(H)) ∼= GL3(R).

On L(H) = sl2(R) we consider the symmetric bilinear form given by β(x, y) := 1
2 tr(xy)

and the basis

e1 :=
(

1 0
0 −1

)
, e2 :=

(
0 1
1 0

)
, e3 :=

(
0 1
−1 0

)
.

Then the matrix B of β with respect to this basis is

B :=

1 0 0
0 1 0
0 0 −1

 .

One easily verifies that

Im Ad ⊆ O(L(H), β) ∼= O2,1(R),

and since ad: L(H) → o2,1(R) is injective between spaces of the same dimension 3
(Exercise), it is bijective. Therefore im Ad = 〈exp o2,1(R)〉 = SO2,1(R)0 and Proposi-
tion 8.2.1 imply that

Ad: SL2(R)→ SO2,1(R)0

is a covering morphism. Its kernel is given by Z(SL2(R)) = {±1} (Lemma 6.2.16).
One can show that both groups are homeomorphic to T × R2, and topologically

the map Ad is like (z, x, y) 7→ (z2, x, y), a two-fold covering.

Example 8.2.7. Let G = SL2(R) and H = SO2,1(R)0 and recall that G̃ ∼= H̃ follows
from sl2(R) ∼= so2,1(R) (cf. Example 8.2.6).

We further have qG(Z(G̃)) ⊆ Z(G) = {±1} and π1(G) = ker qG ⊆ Z(G̃) (cf.
Proposition 8.2.2). Likewise qH(Z(G̃)) ⊆ Z(H) = {1} implies

Z(G̃) ∼= π1(H) ∼= π1(O2(R)×O1(R)) ∼= Z,

where the latter is a consequence of the polar decomposition. This implies that Z(G̃) ∼=
Z, where

π1(G) ∼= 2Z and π1(H) ∼= Z = Z(G̃).

Therefore G and H are not isomorphic, but they have isomorphic Lie algebras and
isomorphic fundamental groups.

Exercises for Section 8.2

Exercise 8.2.1. Let G be a connected linear Lie group. Show that

L(Z(G)) = z(L(G)) := {x ∈ L(G) : (∀y ∈ L(G)) [x, y] = 0}.
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Appendix A

Basic Topological Concepts

In this appendix we collect some basic notions concerning topological spaces.

A.1 Topological Spaces

Definition A.1.1. Let X be a set. We write P(X) for the power set of X, i.e., the
set of all subsets of X. A subset τ ⊆ P(X), whose elements are called open sets, is
called a topology on X if the following axioms are satisfied:

(T1) ∅, X are open sets.

(T2) Finite intersections of open sets are open.

(T3) Arbitrary unions of open sets are open.
If τ is a topology on X, then the pair (X, τ) is called a topological space.1 To

simplify notation we often write X instead of (X, τ) for a topological space whose
underlying set is X.

Example A.1.2. (a) If (X, d) is a metric space, then we call a subset O ⊆ X open if
for each x ∈ O there exists an ε > 0 with

Bε(x) := {y ∈ X : d(x, y) < ε} ⊆ O.

Then the system τd of open subsets of X is a topology and the triangle inequality
immediately implies that the balls Bε(x) are open. We call it the topology defined (or
induced) by the metric d on X.

(b) τ = {X, ∅} is a topology on X, called the chaotic topology.
(c) τ = P(X) is a topology on X, called the discrete topology. In this case (X, τ)

is called a discrete space.

1Metric spaces were first studied by Maurice Fréchet in 1906 and topological spaces were introduced
later in 1914 by Felix Hausdorff (1868–1942). It is interesting to observe that the more abstract notion
of a topological spaces was conceived later.
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Definition A.1.3. Let (X, τ) be a topological space.
(a) A subset C ⊆ X is called closed if its complement X \ C is open.
(b) For x ∈ X we call a subset U ⊆ X a neighborhood of x if there exists an

open subset O ⊆ X with x ∈ O ⊆ U . We write U(x), or UX(x), for the set of all
neighborhoods of x.

Lemma A.1.4. If (X, τ) is a topological space, then the set of all closed subsets of X
has the following properties:

(C1) ∅, X are closed.

(C2) Finite unions of closed sets are closed.

(C3) Arbitrary intersections of closed sets are closed.

Proof. This follows immediately from (O1)-(O3) by taking complements and using de
Morgan’s Rules: (

⋃
i∈I Oi)

c =
⋂
i∈I O

c
i and (

⋂
i∈I Oi)

c =
⋃
i∈I O

c
i .

Definition A.1.5. Let (X, τ) be a topological space and E ⊆ X a subset.
(a) E :=

⋂
{F ⊆ X : E ⊆ F, F closed} is called the closure of E. This is the

smallest closed subset of X containing E.
(b) E0 :=

⋃
{U ⊆ X : U ⊆ E,U open} is called the interior of E. This is the

largest open subset contained in E.
(c) ∂E := E \ E0 is called the boundary of E.

Lemma A.1.6. Let (X, τ) be a topological space, E ⊆ X and x ∈ X. Then the
following assertions hold:

(1) x ∈ E0 ⇔ (∃U ∈ U(x)) U ⊆ E ⇔ E ∈ U(x).

(2) x ∈ E ⇔ (∀U ∈ U(x)) U ∩ E 6= ∅.

(3) x ∈ ∂E ⇔ (∀U ∈ U(x)) U ∩ E 6= ∅ and U 6⊆ E.

Definition A.1.7. A topological space (X, τ) is called a Hausdorff space or separated
if for each pair (x, y) of different points in X there exist disjoint neighborhoods of x
and y.

Remark A.1.8. (a) Metric spaces are Hausdorff spaces because for x 6= y and 2r <
d(x, y) the open balls Br(x) and Br(y) are disjoint.

(b) Let X be a Hausdorff space and x ∈ X. Then

{x} =
⋂

UX(x).

Moreover, the one point set {x} is closed because its complement {x}c =
⋃
y 6=xBd(x,y)(y)

is open.
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A.2 Continuous maps

After introducing the concept of a topological space as a pair (X, τ) of a set X with a
distinguished collection of subsets called open, we now explain what the corresponding
structure preserving maps are. They are called continuous maps, resp., functions.

Definition A.2.1. Let (X, τX) and (Y, τY ) be topological spaces.
(a) A map f : X → Y is called continuous if for each open subset O ⊆ Y the inverse

image f−1(O) is an open subset of X. Then f is also called a morphism of topological
space.

We write C(X,Y ) for the set of continuous maps f : X → Y .
(b) A continuous map f : X → Y is called a homeomorphism or topological isomor-

phism if there exists a continuous map g : Y → X with

f ◦ g = idY and g ◦ f = idX .

(c) A map f : X → Y is said to be open if for each open subset O ⊆ X, the image
f(O) is an open subset of Y . We similarly define closed maps f : X → Y as those
mapping closed subsets of X to closed subsets of Y .

Proposition A.2.2. If f : X → Y and g : Y → Z are continuous maps, then their
composition g ◦ f : X → Z is continuous.

Proof. For any open subset O ⊆ Z, the set (g ◦ f)−1(O) = f−1(g−1(O)) is open in X
because g−1(O) is open in Y .

Lemma A.2.3. (a) If f : X → Z is a continuous map and Y ⊆ X a subset, then
f |Y : Y → Z is continuous with respect to the subspace topology on Y .

(b) If f : X → Z is a map and Y ⊆ Z is a subset containing f(X), then f is
continuous if and only if the corestriction f |Y : X → Y is continuous with respect to
the subspace topology on Y .

Proof. (a) If O ⊆ Z is open, then (f |Y )−1(O) = f−1(O) ∩ Y is open in the subspace
topology. Therefore f |Y is continuous.

(b) For a subset O ⊆ Z, we have

f−1(O) = f−1(O ∩ Y ) = (f |Y )−1(O ∩ Y ).

This implies that f is continuous if and only if the corestriction f |Y is continuous.

Presently, we only have a global concept of continuity. To define also what it means
that a function is continuous in a point, we use the concept of a neighborhood.

Definition A.2.4. Let X and Y be topological spaces and x ∈ X. A function
f : X → Y is said to be continuous in x if for each neighborhood V of f(x) there
exists a neighborhood U of x with f(U) ⊆ V . Note that this condition is equivalent
to f−1(V ) being a neighborhood of x.
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Remark A.2.5. If (X, dX) and (Y, dY ) are metric spaces, then a map
f : X → Y is continuous in x ∈ X if and only if

(∀ε > 0)(∃δ > 0) f
(
Bδ(x)

)
⊆ Bε

(
f(x)

)
.

This follows easily from the observation that V ⊆ Y is a neighborhood of f(x) if and
only if it contains some ball Bε(f(x)) and U ⊆ X is a neighborhood of x if and only
if it contains some ball Bδ(x).

Lemma A.2.6. Let f : X → Y and g : Y → Z be maps between topological spaces.
If f is continuous in x and g is continuous in f(x), then the composition g ◦ f is
continuous in x.

Proof. Let V be a neighborhood of g(f(x)) in Z. Then the continuity of g in f(x)
implies the existence of a neighborhood V ′ of f(x) with g(V ′) ⊆ V . Further, the
continuity of f in x implies the existence of a neighborhood U of x inX with f(U) ⊆ V ′,
and then (g ◦ f)(U) ⊆ g(V ′) ⊆ V . Therefore g ◦ f is continuous in x.

Proposition A.2.7. For a map f : X → Y between topological spaces, the following
are equivalent:

(1) f is continuous.

(2) f is continuous in each x ∈ X.

(3) Inverse images of closed subsets of Y under f are closed.

(4) For each subset M ⊆ X, we have f(M) ⊆ f(M).

Proof. (1) ⇒ (2): Let V ⊆ Y be a neighborhood of f(x). Then the continuity of f
implies that U := f−1(V 0) is an open subset of X containing x, hence a neighborhood
of x with f(U) ⊆ V .

(2)⇒ (1): Let O ⊆ Y be open and x ∈ f−1(O). Since f is continuous in x, f−1(O)
is a neighborhood of x, and since x is arbitrary, the set f−1(O) is open.

(1) ⇔ (3): If A ⊆ Y is closed, then f−1(A) = f−1(Ac)c implies that all these
subsets of X are closed if and only if all sets f−1(Ac) are open, which is equivalent to
the continuity of f .

(3) ⇒ (4): The inverse image f−1( f(M) ) is a closed subset of X containing M ,
hence also M .

(4) ⇒ (3): If A ⊆ Y is closed and M := f−1(A), then f(M) ⊆ f(M) ⊆ A implies
that M ⊆M , i.e., M is closed.

Proposition A.2.8. For a continuous map f : X → Y , the following are equivalent:

(1) f is a homeomorphism.

(2) f is bijective and f−1 : Y → X is continuous.

(3) f is bijective and open.

(4) f is bijective and closed.
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Proof. (1) ⇔ (2): Let g : Y → X be continuous with f ◦ g = idY and g ◦ f = idX .
Then f is bijective, and f−1 = g is continuous.

If, conversely, f is bijective and f−1 is continuous, then we see with g := f−1 that
f is a homeomorphism.

(2) ⇔ (3): For O ⊆ X we have f(O) = (f−1)−1(O). That this set if open for each
open subset O ⊆ X is equivalent to f being open and to f−1 being continuous.

(2) ⇔ (4): For A ⊆ X we have f(A) = (f−1)−1(A). That this set if closed for
each closed subset A ⊆ X is equivalent to f being closed and to f−1 being continuous
(Proposition A.2.7).

A.3 Creating new topologies

Definition A.3.1. For a subset A ⊆ P(X) the set

τ := 〈A〉top :=
⋂
{σ : A ⊆ σ, σ topology }

is a topology on X; the coarsest topology on X for which all sets in A are open.
Therefore τ is called the topology generated by A and A is called a subbasis of the
topology τ . The set A is called as basis of the topology τ if every set in τ is a union of
sets in A.

Definition A.3.2. (a) Let ∼ be an equivalence relation on the topological space
(X, τ), Y := X/ ∼= {[x] : x ∈ X} the set of equivalence classes, and q : X → Y, x 7→ [x]
the quotient map. Then

σ := {U ⊆ Y : q−1(U) ∈ τ}
is a topology on Y called the quotient topology.

The quotient topology has the property that a map f : Y → Z into a topological
space Z is continuous if and only if the map f ◦ q : X → Z is continuous (Exercise).
In particular, q : X → Y is continuous.

(b) Let (X1, τ1), . . . , (Xn, τn) be topological spaces and X := X1 × . . . × Xn the
Cartesian product set. Then the system of all subsets U ⊆ X of the form

U = U1 × . . .× Un, Uj ∈ τj ,

is a basis for a topology on X called the product topology.
The product topology has the property that a map

f : Z → X, z 7→ f(z) = (f1(z), . . . , fn(z))

is continuous if and only if all maps fj : Z → Xj are continuous. In particular, the
projections pj : X → Xj are continuous maps.

(c) If (X, τ) is a topological space and Y ⊆ X a subset, then

τY := {U ∩ Y : U ∈ τ}

is a topology on Y called the subspace topology.
The subspace topology has the property that a map f : Z → Y is continuous if and

only if the corresponding map fX : Z → X, z 7→ f(z) is continuous. In particular, the
inclusion map ιY : Y → X is continuous.
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A.4 Compactness

Definition A.4.1. A topological space (X, τ) is said to be compact if it is separated
and each open cover, i.e., each collection (Uj)j∈J of open subsets of X with

⋃
j∈J Uj =

X, contains a finite subcover. This means that there exist j1, . . . , jn ∈ J with

X = Uj1 ∪ . . . ∪ Ujn .

Lemma A.4.2. (Compactness of subspaces) (a) If (X, τ) is a separated space and
Y ⊆ X, then Y is compact with respect to the subspace topology if and only if each
open cover of Y by open subsets of X contains a finite subcover.

(b) If X is separated and Y ⊆ X is compact, then Y is closed in X. If, conversely,
X is compact and Y ⊆ X closed, then Y is compact.

Proof. (b) Suppose first that Y is a compact subspace of the separated space X. Let
(Ui)i∈I be an open covering of Y and pick open subsets Oi ⊆ X with Oi ∩ Y = Ui.
Then the open subset Y c, together with the Oi, i ∈ I, form an open covering in X.
Hence there exists a finite subcovering, and this implies the existence of a finite subset
F ⊆ I with Y ⊆

⋃
i∈F Ui.

Now suppose that Y is a closed subspace of the compact space X. Let x ∈ Y c.
For each y ∈ Y we then have y 6= x, and since X is separated, there exists an open
subset Uy of X and an open subset Vc of X with y ∈ Uy, x ∈ Vy and Uy ∩ Vy = ∅.
Then we obtain an open covering (Uy ∩ Y )y∈Y of Y . Let Uy1 ∩ Y, . . . , Uyn ∩ Y be a
finite subcovering and V :=

⋂n
i=1 Vyi . Then V intersects

⋃n
i=1 Uyi ⊇ Y trivially, and

therefore x 6∈ Y . This proves that Y is closed.

Proposition A.4.3. (a) If X is compact, Y separated and f : X → Y continuous,
then f(X) is a compact subset of Y .

(b) If f : X → R is continuous and X compact, then f is bounded and takes a
minimal and a maximal value.

Proof. (a) Let (Ui)i∈I be a covering of f(X) by open subsets of Y . Then (f−1(Ui))i∈I
is an open covering of X, so that there exists a finite subset F ⊆ I with X ⊆⋃
i∈F f

−1(Ui). Then

f(X) ⊆
⋃
i∈F

f(f−1(Ui)) ⊆
⋃
i∈F

Ui.

Since f(X) is separated, it follows that f(X) is compact.
(b) follows from (a).

Proposition A.4.4. If f : X → Y is bijective, Y separated and X compact, then f is
a homeomorphism.

Proof. Let A ⊆ X be a closed subset. Then A is compact by Lemma A.4.2. Therefore
f(A) ⊆ Y is compact, hence closed by Lemma A.4.2. Since f is continuous, A ⊆ X is
closed if and only if f(A) ⊆ Y is closed, so that f is a homeomorphism.
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Corollary A.4.5. Let f : X → Y be a surjective continuous map, X compact and Y
separated. We define an equivalence relation ∼ on X by x ∼ y if f(x) = f(y) and
endow the space X/ ∼ with the quotient topology. Then the map

f : X/ ∼→ Y, [x] 7→ f(x)

is a homeomorphism.

Proof. Let q : X → X/ ∼ denote the quotient map. For [x1] 6= [x2] we have f(x1) 6=
f(x2). Let Uj ∈ U(f(xj)) be disjoint open neighborhoods. Then f−1(Uj), j = 1, 2,
are disjoint open subsets of X. Moreover, the set Vj := q(f−1(Uj)) ⊆ X/ ∼ satisfy
q−1(Vj) = f−1(Uj). Therefore the sets Vj are disjoint open neighborhoods of the [xj ].
Hence X/ ∼ is separated. Now Proposition A.4.3(a) implies that X/ ∼ is compact,
and Proposition A.4.4 applies to f .

Lemma A.4.6. Let X and Y be topological spaces, KX ⊆ X and KY ⊆ Y compact,
and Oj ⊆ X × Y , j ∈ J , open sets with KX ×KY ⊆

⋃
j∈J Oj. Then there exist open

subsets UX ⊆ X, UY ⊆ Y and j1, . . . , jn ∈ J with

KX ×KY ⊆ UX × UY ⊆ Oj1 ∪ . . . ∪Ojn .

Proof. For each pair (x, y) ∈ KX ×KY there exists a j(x, y) ∈ J with (x, y) ∈ Oj(x,y),
so that the definition of the product topology implies the existence of open neighbor-
hoods Ux,y of x and Vx,y of y with Ux,y × Vx,y ⊆ Oj(x,y). Fix x ∈ KX . Then the sets
(Vx,y)y∈KY , form an open cover of KY , hence have a finite subcover Vx,y1 , . . . , Vx,yn .
Let

Ux :=
n⋂
j=1

Ux,yj and Vx :=
n⋃
j=1

Vx,yj .

Then Ux and Vx are open with

Ux × Vx ⊆ U and KY ⊆ Vx.

Now the sets (Ux)x∈KX form an open cover of KX , and we find x1, . . . , xm ∈ KX with

KX ⊆ Ux1 ∪ . . . ∪ Uxm .

Now we set

U := Ux1 ∪ . . . ∪ Uxm ⊇ KX and V := Vx1 ∩ . . . ∩ Vxm ⊇ KY

and obtain KX ×KY ⊆ U ×V , where the set U ×V is contained in finitely many sets
of the form Ux×Vx, which in turn is contained in the union of the sets Ux,yi ×Vx,yi ⊆
Oj(x,yi). We conclude that U × V is contained in a union of finitely many of the
sets Oj .

Corollary A.4.7. Let X and Y be topological spaces, KX ⊆ X and KY ⊆ Y compact,
and O ⊆ X ×Y open with KX ×KY ⊆ O. Then there exist open subsets UX ⊆ X and
UY ⊆ Y with

KX ×KY ⊆ UX × UY ⊆ O.
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Proposition A.4.8. If X1, . . . , Xn are compact spaces, then their product

X1 × . . .×Xn

is compact.

Proof. It suffices to prove the assertion for n = 2 and then apply induction. We apply
Lemma A.4.6 with X = KX = X1, Y = KY = Y1 and an open covering Oj , j ∈ J , of
X × Y . Then Lemma A.4.6 implies the existence of a finite subcovering.

A.5 Connectedness and arc connectedness

Definition A.5.1. Let X be a topological space. An arc in X is a continuous map
γ : [a, b]→ X, where [a, b] ⊆ R is a compact interval. We also say that γ is an arc from
γ(a) to γ(b).

For p, q ∈ X we define x ∼a y if there exists an arc from p to q. We claim that ∼a
defines an equivalence relation. The constant arc connects x to x, so that x ∼a x for
each x ∈ X. If x ∼a y and γ : [a, b]→ X connects x to y, then

γ̃ : [0, 1]→ X, t 7→ γ(b+ t(a− b))

connects y to x, and we get y ∼a x. For the transitivity, assume that γ : [a, b] → X
connects x to y and that η : [c, d]→ X connects y to z. Then

ξ : [0, 2]→ X, ξ(t) :=

{
γ(a+ t(b− a)) for t ∈ [0, 1]
η(c+ (t− 1)(d− c)) fort ∈ [1, 2]

is an arc connecting x to z. Therefore x ∼a z.
The equivalence classes of ∼a are denoted Ca(x) and called arc components of the

topological space X. The space X is said to be arcwise connected if any two points of
X can be connected by an arc.

Definition A.5.2. Let X be a topological space. We say that X is connected if ∅ and
X are the only subsets of X which are closed and open. This is equivalent to saying
that if A,B ⊆ X are two disjoint open subsets with X = A ∪ B, then one of them is
empty.

Lemma A.5.3. (a) Each interval in R is connected.
(b) If X is arcwise connected, then X is connected.
(c) If f : X → Y is continuous and X is connected, resp., arcwise connected, then

the same holds for f(X).

Proof. (a) Let I ⊆ R be an interval and suppose that it is not connected. Then there
exist two disjoint proper open subsets A,B ⊆ I with I = A∪B. Let a ∈ A and b ∈ B.
Then the compact interval C := [a, b] is contained in I and C ∩ A is an open subset
of C not containing b. Therefore s := sup(A ∩ C) < b. Since A ∩ C = C \B is closed
in C, we have s ∈ A. On the other hand A ∩ C is open in C, so that it contains a
neighborhood of s, contradicting the definition of s.
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(b) Let A,B ⊆ X be two disjoint open subsets with X = A ∪ B. If both are
non-empty, we pick a ∈ A and b ∈ B. Let γ : [0, 1] → X be an arc from a to b. Then
[0, 1] = γ−1(A)∪̇γ−1(B) is a decomposition into two proper open disjoint subsets. This
contradicts the connectedness of [0, 1].

(c) Suppose first that X is connected. If f(X) is not connected, then there exist
two open subsets A,B ⊆ Y such that f(X) = (f(X) ∩ A)∪̇(f(X) ∩ B), where both
are proper subsets. Then X = f−1(A) ∪ f−1(B) is a decomposition into two disjoint
proper open subsets, contradicting the connectedness of X.

If X is arcwise connected and γ : [0, 1]→ X is an arc from x to y, then

f ◦ γ : [0, 1]→ Y

is an arc from f(x)→ f(y). Therefore f(X) is arcwise connected.

Lemma A.5.4. Let X be a topological space.

(i) If (Aj)j∈J are connected subspaces of X with
⋂
j∈J Aj 6= ∅, then the subset A :=⋃

j∈J Aj of X is connected.

(ii) For each connected subspace A ⊆ X its closure A is also connected.

Proof. (i) Since the subspace topologies on Aj inherited from X and A are the same,
we may w.l.o.g. assume that A = X. Suppose that X = U1∪̇U2, where U1 and U2 are
open subsets. Pick a ∈

⋂
j∈J Aj and let k ∈ {1, 2} with a ∈ Uk. Then for each j ∈ J

we have a disjoint decomposition

Aj = (Aj ∩ U1)∪̇(Aj ∩ U2)

into two open subsets of Aj . Since Aj is connected and a ∈ Aj ∩ Uk, it follows that
Aj = Aj ∩ Uk, and therefore Aj ⊆ Uk. Thus X =

⋃
j∈J Aj = Uk.

(ii) As above, we may w.l.o.g. assume that X = A. Suppose that U1 and U2 are
open subsets of X with X = U1∪̇U2. Then we obtain the disjoint decomposition

A = (A ∩ U1)∪̇(A ∩ U2),

and since A is connected, there exists a k ∈ {1, 2} with A ⊆ Uk. Since the complement
of Uk is open, the set Uk is closed, so that X = A ⊆ Uk.

Definition A.5.5. Let X be a topological space. Then each one element subset
{x} ⊆ X is connected. Therefore

C(x) :=
⋃
{A ⊆ X : x ∈ A,A connected}

is a connected subset by Lemma A.5.4(i), and by Lemma A.5.4(ii) it is closed. It is
called the connected component of x. It is the largest connected subset of X containing
x. It follows directly from Lemma A.5.4 that the connected components are pairwise
disjoint closed subsets of X.

The space X is connected if and only if C(x) = X for each x ∈ X. It is called
totally disconnected if C(x) = {x} for each x ∈ X.
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We say that X is locally connected if each x ∈ X has a connected neighborhood.
This implies in particular that, for each x ∈ X, the connected component C(x) is a
neighborhood of x. Hence the connected components of X are open subsets.

Examples A.5.6. (a) The set [0, 1] ∪ [2, 3] is locally connected but not connected.
(b) For two elements x, y in the euclidean plane R2 we write [x, y] for the line

segment {λx+ (1− λ)y : 0 ≤ λ ≤ 1} between x and y. Then the set

X := [(0, 0), (0, 1)] ∪
⋃
n∈N

[( 1
n , 0), (0, 1)]

is arcwise connected but not locally connected (in the points (0, x), 0 ≤ x < 1).
(c) The set

X := ({0} × [−1, 1]) ∪ {(x, sin 1
x : 0 < x < 1} ⊆ R2

is connected but not arcwise connected.

Exercises for Appendix A

Exercise A.5.1. (a) For every system A of subsets of a set X with
⋃
A = X the

system Ã of all finite intersections of sets in A is a basis for the topology generated
by A.

(b) A system A of subsets of X is the basis of a topology if and only if

(B1)
⋃
A = X and

(B2) for each x ∈ A ∩B, A,B ∈ A, there exists a C ∈ A with x ∈ C ⊆ A ∩B.

Exercise A.5.2. (a) If f : X → Z is a continuous map and Y ⊆ X a subset endowed
with the subspace topology, then the restriction f |Y : Y → Z is continuous.

(b) Let X1, . . . , Xn be topological spaces and Aj ⊆ Xj subsets. Show that

A1 × . . .×An = A1 × . . .×An

holds in X := X1 × . . .×Xn with respect to the product topology and likewise

(A1 × . . .×An)0 = A0
1 × . . .×A0

n.

(c) Let X and Y be topological spaces. Then for each x ∈ X the map

jx : Y → X × Y, y 7→ (x, y)

is continuous and the corestriction

j |Y×{x}x : Y → Y × {x}

is a homeomorphism.

Exercise A.5.3. (a) If (Xi, di), i = 1, . . . , n, are metric spaces, then the product
topology on X = X1 × . . .×Xn is induced by the following metrics:
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(1) d(x, y) :=
∑n
i=1 di(xi, yi).

(2) d(x, y) := max(d1(x1, y1), . . . , dn(xn, yn)).

(b) A sequence (x(m))m∈N in X converges to x = (x1, . . . , xn) if and only if all
component sequences (x(m)

j )m∈N converge to xj .

Exercise A.5.4. Let X and Y be topological spaces and X × Y their topological
product. Then the connected components and the arc components in X×Y are given
by

C(x, y) = C(x)× C(y) and Ca(x, y) = Ca(x)× Ca(y)

for (x, y) ∈ X×Y . In particular, the product space X×Y is connected, resp., arcwise
connected if and only if X and Y are connected, resp., arcwise connected.

Exercise A.5.5. In R2 we consider the set

X = ([0, 1]× {1}) ∪
({ 1

n
: n ∈ N

}
× [0, 1]

)
∪ ({0} × [0, 1]).

Show that X is arcwise connected but not locally arcwise connected.
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Appendix B

Analytic functions

In this appendix we recall the concept of differentiability, formulated in the context of
Banach spaces. In particular, we discuss the concept of an analytic function, which pro-
vides a very direct tool to verify the smoothness of functions given by non-commutative
power series, such as the exponential function of a Banach algebra.

B.1 Differentiable functions

We briefly recall the concept of a differentiable function between open subsets of Ba-
nach spaces. For two normed spaces we write L(X,Y ) for the vector space of contin-
uous linear mas A : X → Y endowed with the operator norm

‖A‖ := sup{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1}.

Definition B.1.1. Let X and Y be Banach spaces and U ⊆ X an open subset. We
say that a map f : U → X is differentiable in x ∈ U if there exists a continuous linear
map df(x) ∈ L(X,Y ) with

lim
h→0

‖f(x+ h)− f(x)− df(x)(h)‖
‖h‖

= 0. (B.1)

This implies in particular, for each v ∈ X, the relation

df(x)(v) = lim
t→0

f(x+ tv)− f(x)
t

which shows that we can interprete the value df(x)(v) as the derivative of f in x in the
direction of v, and moreover, that df(x) is uniquely determined as a continuous linear
map satisfying (2.1): Whenever there exists a continuous linear map A ∈ L(X,Y )
with

lim
h→0

‖f(x+ h)− f(x)−A(h)‖
‖h‖

= 0,

then f is differentiable in x and df(x) = A.

133
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We call f differentiable if f is differentiable in every point x ∈ U . Then we obtain
a map df : U → L(X,Y ), and we call f a C1-map if df is a continuous map. By
iteration, we define Ck-maps for k ∈ N as C1-maps for which df is Ck−1. We call a
map smooth or a C∞-map if it is Ck for every k ∈ N.

Remark B.1.2. (a) If f : U → Y is differentiable in x ∈ U , then (B.1) implies that
there exists a δ > 0 with Bδ(x) ⊆ U and

‖f(x+ h)− f(x)− df(x)(h)‖ ≤ ‖h‖

for ‖h‖ < δ. This implies that

‖f(x+ h)− f(x)‖ ≤ ‖df(x)‖‖h‖+ ‖h‖,

and therefore f is continuous in x. Hence differentiable functions are continuous.
(b) If f : X → Y is a continuous linear map, then f is differentiable with df(x) = f

for each x ∈ X. We therefore observe that the differential of a linear map is constant.
If f is constant, then its differential obviously vanishes. In the next subsection we
shall study bilinear maps, which have the property that their differential, viewed as a
map df : U → L(X,Y ) is linear.

Theorem B.1.3. (Chain Rule) Let X,Y, Z be Banach spaces, U ⊆ X and V ⊆ Z
open and f : V → Z, g : U → V maps such that g is differentiable in x and f is
differentiable in g(x). Then f ◦ g is differentiable in x with

d(f ◦ g)(x) = df(g(x)) ◦ dg(x).

Proof. For y := g(x) we write

g(x+ h) = g(x) = dg(x)h+ rg(h) and f(y + h) = f(y) = df(y)h+ rf (h)

with ‖rf (h)‖
‖h‖ → 0 and ‖rg(h)‖

‖h‖ → 0 for h→ 0. For x+ h ∈ U we then obtain

f(g(x+ h))− f(g(x)) = f(y + dg(x)h+ rg(h))− f(y)
= df(y)dg(x)h+ df(y)rg(h) + rf (dg(x)h+ rg(h)).

Since df(y) is a continuous linear map, we obtain

‖df(y)rg(h)‖
‖h‖

≤ ‖df(y)‖‖rg(h)‖
‖h‖

→ 0

for h→ 0. To see that

lim
h→0

‖rf (dg(x)h+ rg(h))‖
‖h‖

= 0, (B.2)

let ε > 0. Then there exists a δ > 0 such that ‖rf (z)‖ < ε‖z‖ for ‖z‖ ≤ δ. Since
limh→0 dg(x)h+ rg(h) = 0, there exists an η > 0 such that the norm of this expression
is < δ for ‖h‖ < η. For ‖h‖ < η we then have

‖rf (dg(x)h+ rg(h))‖
‖h‖

≤ ε‖dg(x)h+ rg(h)‖
‖h‖

≤ ε‖dg(x)‖+ ε
‖rg(h)‖
‖h‖

.

This implies (B.2).
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B.2 Multilinear maps

Definition B.2.1. Let X1, . . . , Xn and Y be normed spaces. A function

β : X1 × · · · ×Xn → Y

is called multilinear or n-linear if for each j and fixed elements xi ∈ Xi for i 6= j the
map

Xj → Y, x 7→ β(x1, . . . , xj−1, x, xj+1, . . . , xn)

is linear.
We define the norm of a multilinear map by

‖β‖ := sup{‖β(x1, . . . , xn)‖ : ‖xj‖ ≤ 1, j = 1, . . . , n} ∈ [0,∞].

Lemma B.2.2. For a multilinear map β : X1 × · · · × Xn → Y the following are
equivalent:

(i) β is continuous.

(ii) β is continuous in (0, . . . , 0).

(iii) ‖β‖ <∞.

If these conditions are satisfied, then we have

‖β(x1, . . . , xn)‖ ≤ ‖β‖ · ‖x1‖ · · · ‖xn‖ for xj ∈ Xj , j = 1, . . . , n.

Proof. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii): The continuity of β in (0, . . . , 0) implies in particular that there exists

a neighborhood U of (0, . . . , 0) in the product space X1 × . . .×Xn such that

‖β(x1, . . . , xn)‖ ≤ 1

for (x1, . . . , xn) ∈ U . On the other hand there exists a δ > 0 with

(∀j) ‖xj‖ ≤ δ ⇒ (x1, . . . , xn) ∈ U.

This implies that ‖β‖ ≤ δ−n.
(iii) ⇒ (i): In view of

β(x1, x2, . . . , xn)− β(x′1, x
′
2, . . . , x

′
n)

=
(
β(x1, x2, . . . , xn)− β(x′1, x2, . . . , xn)

)
+
(
β(x′1, x2, . . . , xn)− β(x′1, x

′
2, . . . , xn)

)
+ . . .+

(
β(x′1, x

′
2, . . . , x

′
n−1, xn)− β(x′1, x

′
2, . . . , x

′
n−1, x

′
n)
)

=β(x1 − x′1, x2, . . . , xn) + β(x′1, x2 − x′2, . . . , xn) + · · ·+ β(x′1, x
′
2, . . . , xn − x′n)

=
n∑
j=1

β(x′1, . . . , x
′
j−1, xj − x′j , xj+1, . . . , xn),
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we have

‖β(x)− β(x′)‖ ≤ ‖β‖
n∑
j=1

‖x1‖ · · · ‖xj−1‖‖xj − x′j‖‖x′j+1‖ · · · ‖x′n‖.

This implies the continuity of β.

One easily verifies that ‖ · ‖ defines a norm on the space L(X1, . . . , Xn;Y ) of
continuous multilinear maps from X1× . . .×Xn to Y . If X1 = . . . = Xn = X, then we
write Ln(X;Y ) := L(X, . . . ,X;Y ) for the space of continuous n-linear maps Xn → Y .
For n = 0 we put L0(X;Y ) := Y and note that L1(X;Y ) = L(X,Y ) is the space of
continuous linear maps, endowed with the operator norm.

We conclude this subsection with a discussion of the differentiability properties of
multilinear maps. The following lemma gives the formula for the derivative, which is
an important tool to calculate derivatives of complicated matrix-valued or operator-
valued maps.

Lemma B.2.3. Each continuous multilinear map β : X1 × · · · ×Xn → Y is differen-
tiable with

dβ(x1, . . . , xn)(h1, . . . , hn) = β(h1, x2, . . . , xn) + . . .+ β(x1, x2, . . . , hn). (B.3)

Proof. Fix x = (x1, . . . , xn) and define A := dβ(x1, . . . , xn) by (B.3). On the product
space X := X1 × . . .×Xn we consider the norm ‖x‖ := maxj ‖xj‖. Then A : X → Y
is a continuous linear map with

‖A‖ ≤ ‖β‖(‖x2‖ · · · ‖xn‖+ · · ·+ ‖x1‖ · · · ‖xn−1‖) ≤ n‖β‖‖x‖n−1.

Moreover, the additive expansion of β(x + h) yields for j = 2, . . . , n summands γjhj

where each γj is j-linear with

‖γj‖ ≤
(
n

j

)
‖β‖‖x‖n−j .

Therefore

‖β(x+ h)− β(x)−A(h)‖ ≤
n∑
j=2

(
n

j

)
‖β‖‖x‖n−j‖h‖j ,

which implies that

lim
‖h‖→0

‖β(x+ h)− β(x)−A(h)‖
‖h‖

= 0.

Example B.2.4. (a) If β : X1 ×X2 → Y is a continuous bilinear map, then we have

dβ(x1, x2)(h1, h2) = β(h1, x2) + β(x1, h2).

In particular, we observe that for X := X1 ×X2 the map

dβ : X → L(X,Y )
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is a continuous linear map.
Now let β : X×X → Y be a continuous bilinear map and consider the correspond-

ing quadratic map q : X → Y, q(x) := β(x, x). Then we write q = β ◦ ∆, where
∆: X → X ×X is the diagonal embedding. Since ∆ is linear, its differential is simply
given by

d∆(x)(h) = ∆(h) = (h, h).

Therefore the chain rule leads to

dq(x)(h) = dβ(∆(x))d∆(x)(h) = dβ(x, x)(h, h) = β(h, x) + β(x, h).

If, in addition, β is symmetric, then this formula simplifies to

dq(x)(h) = 2β(x, h).

(b) If β : Xn → Y is a continuous multilinear map and q(x) := β(x, . . . , x), then
similar arguments as in (a) lead to

dq(x)(h) = dβ(x, . . . , x)(h, . . . , h) = β(h, x, . . . , x) + · · ·+ β(x, . . . , x, h).

We call β symmetric if for every permutation σ ∈ Sn we have

β(xσ(1), . . . , xσ(n)) = β(x1, . . . , xn), x1, . . . , xn ∈ X.

If β is symmetric, then we immediately get the simpler formula

dq(x)(h) = nβ(x, . . . , x, h).

(c) If (A, ‖ · ‖) is a Banach algebra, then we consider the power maps

pn : A → A, pn(a) = an.

Since the n-fold multiplication map

βn : An → A, (a1, . . . , an) 7→ a1 · · · an

is multilinear and continuous with ‖βn‖ ≤ 1, we can use (b) to calculate the derivative
of pn as

dpn(a)(h) = β(h, a, . . . , a) + · · ·+ β(a, . . . , a, h) = han−1 + ahan−2 + · · ·+ an−1h.

If, in addition, the multiplication is commutative, then we obtain the simpler formula

dpn(a)(h) = nan−1h

which more reassembles the formula one learns in calculus courses for the derivative
of the power functions on the algebras A = R,C.
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B.3 Analytic functions

Definition B.3.1. Let X and Y be Banach spaces and U ⊆ X an open subset. For
cn ∈ Ln(X;Y ) and x ∈ X we define cnxn := cn(x, . . . , x). A map f : U → Y is called
analytic if for each point x0 ∈ X there exist cn ∈ Ln(X;Y ) such that for some r > 0
we have

(A1)
∑∞
n=1 ‖cn‖rn <∞, and

(A2) f(x0 + h) = f(x0) +
∑∞
n=1 cnh

n for ‖h‖ < r and x0 + h ∈ U .

Remark B.3.2. (a) For X = K ∈ {R,C} and Y a K-Banach space each multilinear
map cn : Xn → Y satisfies

cn(z1, . . . , zn) = z1 · · · zn · cn(1, . . . , 1),

so that cn(z, . . . , z) = zncn(1, . . . , 1) and ‖cn‖ = |cn(1, . . . , 1)|. Therefore analytic
functions are those which can be represented locally by power series of the type∑n
n=0 z

nan with an ∈ Y .
(b) For X = Km an n-linear map cn : Xn → Y is a sum of terms of the type

z1, . . . , zn 7→ z1,j1 . . . zn,jnaj1,...,jn ,

where aj1,...,jn ∈ Y and j1, . . . , jn ∈ {1, . . . ,m} denote the components of zj ∈ Km.
We therefore find expressions which are familiar from the Taylor expansion in several
variables.

Lemma B.3.3. Analytic functions f : U → Y are differentiable in each point of U .

Proof. Let f : U → Y be analytic and x0 ∈ U . For ‖h‖ < r as (A2) above, we then
obtain

‖f(x0 + h)− f(x0)‖ ≤
∞∑
n=1

‖cn‖‖h‖n = ‖h‖
∞∑
n=0

‖cn+1‖‖h‖n,

and therefore the continuity of f in x0. Moreover, we have

‖f(x0 + h)− f(x0)− c1(h)‖ ≤
∞∑
n=2

‖cn‖‖h‖n = ‖h‖2
∞∑
n=0

‖cn+2‖‖h‖n,

so that

lim
h→0

‖f(x0 + h)− f(x0)− c1(h)‖
‖h‖

= 0.

This implies the differentiability of f in x0 with df(x0) = c1.

Now the natural question is whether the derivatives of analytic functions are again
analytic, and furthermore, how we can see whether a concretely given function is
analytic or not. Obviously it would not be reasonable to verify the condition in Defi-
nition B.3.1 in every point of U . The following proposition is the crucial observation.
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Proposition B.3.4. Let X and Y be Banach spaces and cn ∈ Ln(X;Y ), n ∈ N0,
with

∑∞
n=0 ‖cn‖rn <∞. Then

f : Br(0)→ Y, f(x) :=
∞∑
n=0

cnx
n

defines an analytic function.

Proof. By expanding multilinearly, we get for n = 3:

c3(x+ y)3 = c3(x, x, x) +
(
c3(y, x, x) + c3(x, y, x) + c3(x, x, y)

)
+
(
c3(y, y, x) + c3(y, x, y) + c3(x, y, y)

)
+ c3(y, y, y),

and more generally

cn(x+ y)n = dn,0(x) + dn,1(x)y + dn,2(x)y2 + . . .+ dn,n(x)yn,

with dn,j(x) ∈ Lj(X;Y ) and

‖dn,j(x)‖ ≤ ‖cn‖‖x‖n−j
(
n

j

)
.

Suppose that ‖x‖ < r and s < r − ‖x‖. Then we have

n∑
j=0

‖x‖n−j
(
n

j

)
sj = (‖x‖+ s)n < rn,

and therefore ∑
j≤n

‖cn‖‖x‖n−j
(
n

j

)
sj ≤

∑
n

‖cn‖rn <∞.

We conclude in particular that for ‖x‖ < r the series

cxj :=
∑
n≥j

dn,j(x)

converges in Lj(X;Y ) with

‖cxj ‖ ≤
∑
n≥j

‖dn,j(x)‖ ≤
∑
n≥j

(
n

j

)
‖cn‖‖x‖n−j ,

so that ∑
j

‖cxj ‖sj ≤
∑
n≥j

(
n

j

)
‖cn‖‖x‖n−jsj <∞.

This implies that for ‖y‖ < s the series

h(y) :=
∞∑
j=0

cxj y
n
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converges. On the other hand, absolute convergence of the series under consideration
implies that we may rearrange the summation to obtain

f(x+ y) =
∑
n

cn(x+ y)n =
∑
n

∑
j≤n

dxn,jy
j =

∑
j

(∑
n≥j

dxn,j
)
yj =

∑
j

cxj y
j = h(y)

(Exercise 2.1.1) Therefore f can be represented on Bs(x) by a power series as in (A2),
and therefore f is analytic.

Remark B.3.5. The proof of Proposition B.3.4 further shows that for each x ∈ Br(0)
we have

df(x)(y) = cx1(y) =
∞∑
n=1

dn,1(x)(y).

Viewing dn,1 as an element in Ln−1(X;L(X,Y )), we have

‖dn,1‖ ≤ ‖cn‖n,

and therefore ∑
n

‖dn,1‖rn <∞.

This implies that the derivative df : U → L(X,Y ) of an analytic function on U is also
analytic and that its local power series expansion can be obtained from the expansion
of f by taking the derivative c1n of each summand cn.

This discussion leads immediately to the following corollary:

Corollary B.3.6. Analytic functions are smooth.

Combining Proposition B.3.4 with Corollary B.3.6, we obtain:

Theorem B.3.7. Let X and Y be Banach spaces and cn ∈ Ln(X;Y ), n ∈ N0, with∑∞
n=0 ‖cn‖rn <∞. Then

f : Br(0)→ Y, f(x) :=
∞∑
n=0

cnx
n =

∞∑
n=0

cn(x, . . . , x)

defines a smooth function whose derivative is given by

df(x) =
∞∑
n=0

dcn(x).

The following theorem is a central result on analytic functions. It is false for smooth
functions, and in this sense it describes a property which is characteristic for analytic
functions.

Theorem B.3.8. (Identity Theorem for Analytic Functions) Let X and Y be Banach
spaces, U ⊆ X open and connected, and f, g : U → Y analytic functions. If f = g
holds on an open subset V ⊆ U , then f = g holds on U .
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Proof. Replacing f by f − g, we may assume that g = 0. We consider the open set
V := f−1(0)0. Then our assumption implies that V 6= ∅.

We claim that V is closed. So let x0 ∈ V , and suppose that B2r(x0) ⊆ U and that
for ‖h‖ < 2r we have the power series expansion f(x0 + h) =

∑∞
n=0 cnh

n. As in the
proof of Proposition B.3.4, we then obtain for for ‖x−x0‖ and ‖h‖ < r the expansion

f(x+ h) =
∞∑
j=0

cxjh
j ,

where the functions
cj : Br(x0)→ Lj(X;Y ), x 7→ cxj

are analytic, hence in particular continuous, with cx0
j = cj .

For |t| < 1 we have

f(x+ th) =
∞∑
j=0

cxj (h, . . . , h)tj .

In view of x ∈ V , this real analytic function vanishes in a neighborhood of 0. Hence
all its derivatives vanish, and we obtain

cxj (h, . . . , h) =
1
j!
dnf(x+ th)

dtn
(0) = 0.

Since x0 is the limit of a sequence xn ∈ V , we obtain

cx0
j (h, . . . , h) = 0,

and therefore
f(x0 + h) =

∑
j

cx0
j h

j = 0

for ‖h‖ < r. This means that x0 ∈ V , and hence that V is closed.
Therefore V is a non-empty open closed subset of U , hence coincides with U because

U is connected, and this means that f = 0 on U .

For the applications of analytic functions it is important that the composition of
two analytic functions is again analytic.

Theorem B.3.9. Let X,Y, Z be Banach spaces, U ⊆ X and V ⊆ Z open and
g : V → Z, f : U → V analytic maps. Then the map g ◦ f : U → Z is analytic.

Proof. Let x ∈ U , y := f(x) ∈ V and r > 0 such that

f(x+ h) =
∑
n

cnh
n and g(y + h) =

∑
n

dnh
n

for ‖h‖ < r with
∑
n ‖cn‖rn <∞ and

∑
n ‖dn‖rn <∞.
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First we consider the compositions dm◦(f−f(x)) : U → Z. Since dm is a continuous
m-linear function, dm(

∑∞
n=1 cnh

n) is defined for ‖h‖ < r. Moreover, it can be written
as a series

dm(
∞∑
n=1

cnh
n) =

∞∑
j=m

djmh
j ,

where dmm = dm ◦ c1 and the other terms are obtained by collecting all terms of the
same degree in h. We thus obtain djm ∈ Lj(X;Z) with

‖djm‖ ≤ ‖dm‖
∑

j1+...+jm=j

‖cj1‖ · · · ‖cjm‖.

For s > 0 this further leads to

∞∑
j=m

‖djm‖sj ≤ ‖dm‖
∑

j1+...+jm≥m

‖cj1‖ · · · ‖cjm‖sj1+...+jm

≤ ‖dm‖
∑

j1+...+jm≥m

‖cj1‖sj1 · · · ‖cjm‖sjm

≤ ‖dm‖
( ∞∑
j=1

‖cj‖sj
)m

.

Summing also over m, we eventually get

∑
m

∞∑
j=m

‖djm‖sj ≤
∑
m

‖dm‖
( ∞∑
j=1

‖cj‖sj
)m

<∞

for
∑∞
j=1 ‖cj‖sj < r, which is the case if s > 0 is small enough. Therefore

f(g(x+ h)) =
∑
n

enh
n with en :=

∑
m≤n

dnm and
∑
n

‖en‖sn <∞.

This proves that f ◦ g is an analytic function.

Exercises for Appendix B

Exercise B.3.1. If X1, . . . , Xn are finite-dimensional normed spaces, then each mul-
tilinear map β : X1 × . . .×Xn → Y is continuous. Hint: Choose a basis in each space
Xj and expand β accordingly.
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Covering Theory

In this appendix we provide the main results on coverings of topological spaces needed
in particular to calculate fundamental groups and to prove the existence of simply
connected covering spaces.

C.1 The Fundamental Group

To define the notion of a simply connected space, we first have to define its fundamental
group. The elements of this group are homotopy classes of loops. The present section
develops this concept and provides some of its basic properties.

Definition C.1.1. Let X be a topological space, I := [0, 1], and x0, x1 ∈ X. We write

P (X,x0) := {γ ∈ C(I,X) : γ(0) = x0}

and
P (X,x0, x1) := {γ ∈ P (X,x0) : γ(1) = x1}.

We call two paths α0, α1 ∈ P (X,x0, x1) homotopic, written α0 ∼ α1, if there exists a
continuous map

H : I × I → X with H0 = α0, H1 = α1

(for Ht(s) := H(t, s)) and

(∀t ∈ I) H(t, 0) = x0, H(t, 1) = x1.

It is easy to show that ∼ is an equivalence relation (Exercise C.1.2), called homotopy.
The homotopy class of α is denoted by [α].

We write Ω(X,x0) := P (X,x0, x0), for the set of loops based at x0. For
α ∈ P (X,x0, x1) and β ∈ P (X,x1, x2) we define a product α ∗ β in P (X,x0, x2)
by

(α ∗ β)(t) :=
{

α(2t) for 0 ≤ t ≤ 1
2

β(2t− 1) for 1
2 ≤ t ≤ 1.

143
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Lemma C.1.2. If ϕ : [0, 1]→ [0, 1] is a continuous map with ϕ(0) = 0 and ϕ(1) = 1,
then for each α ∈ P (X,x0, x1) we have α ∼ α ◦ ϕ.

Proof. Use H(t, s) := α(ts+ (1− t)ϕ(s)).

Proposition C.1.3. The following assertions hold:

(1) α1 ∼ α2 and β1 ∼ β2 implies α1 ∗ β1 ∼ α2 ∗ β2, so that we obtain a well-defined
product

[α] ∗ [β] := [α ∗ β]

of homotopy classes.

(2) If x also denotes the constant map I → {x} ⊆ X, then

[x0] ∗ [α] = [α] = [α] ∗ [x1] for α ∈ P (X,x0, x1).

(3) (Associativity) [α ∗ β] ∗ [γ] = [α] ∗ [β ∗ γ] for α ∈ P (X,x0, x1),
β ∈ P (X,x1, x2) and γ ∈ P (X,x2, x3).

(4) (Inverse) For α ∈ P (X,x0, x1) and α(t) := α(1− t) we have

[α] ∗ [α] = [x0].

(5) (Functoriality) For any continuous map ϕ : X → Y and α ∈ P (X,x0, x1), β ∈
P (X,x1, x2), we have

(ϕ ◦ α) ∗ (ϕ ◦ β) = ϕ ◦ (α ∗ β),

and α ∼ β implies ϕ ◦ α ∼ ϕ ◦ β.

Proof. (1) If Hα is a homotopy from α1 to α2 and Hβ a homotopy from β1 to β2, then
we put

H(t, s) :=
{

Hα(t, 2s) for 0 ≤ s ≤ 1
2

Hβ(t, 2s− 1) for 1
2 ≤ s ≤ 1

(cf. Exercise C.1.1).
(2) For the first assertion we use Lemma C.1.2 and

x0 ∗ α = α ◦ ϕ for ϕ(t) :=
{

0 for 0 ≤ t ≤ 1
2

2t− 1 for 1
2 ≤ t ≤ 1.

For the second, we have

α ∗ x1 = α ◦ ϕ for ϕ(t) :=
{

2t for 0 ≤ t ≤ 1
2

1 for 1
2 ≤ t ≤ 1.

(3) We have (α ∗ β) ∗ γ = (α ∗ (β ∗ γ)) ◦ ϕ for

ϕ(t) :=


2t for 0 ≤ t ≤ 1

4
1
4 + t for 1

4 ≤ t ≤
1
2

t+1
2 for 1

2 ≤ t ≤ 1.
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(4)

H(t, s) :=


α(2s) for s ≤ 1−t

2

α(1− t) for 1−t
2 ≤ s ≤

1+t
2

α(2s− 1) for s ≥ 1+t
2 .

(5) is trivial.

Definition C.1.4. From the preceding definition, we derive in particular that the set

π1(X,x0) := Ω(X,x0)/ ∼

of homotopy classes of loops in x0 carries a natural group structure, given by

[α][β] := [α ∗ β]

(Exercise). This group is called the fundamental group of X with respect to x0.
A pathwise connected space X is called simply connected if π1(X,x0) vanishes for

some x0 ∈ X (which implies that is trivial for each x0 ∈ X; Exercise C.1.4).

Lemma C.1.5. (Functoriality of the fundamental group) If f : X → Y is a continuous
map with f(x0) = y0, then

π1(f, x0) : π1(X,x0)→ π1(Y, y0), [γ] 7→ [f ◦ γ]

is a group homomorphism. Moreover, we have

π1(idX , x0) = idπ1(X,x0) and π1(f ◦ g, x0) = π1(f, g(x0)) ◦ π1(g, x0).

Proof. This follows directly from Proposition C.1.3(5).

Remark C.1.6. The map

σ : π1(X,x0)×
(
P (X,x0)/ ∼

)
→ P (X,x0)/ ∼, ([α], [β]) 7→ [α ∗ β] = [α] ∗ [β]

defines an action of the group π1(X,x0) on the set P (X,x0)/ ∼ of homotopy classes
of paths starting in x0 (Proposition C.1.3).

Remark C.1.7. (a) Suppose that the topological space X is contractible, i.e., there
exists a continuous map H : I×X → X and x0 ∈ X with H(0, x) = x and H(1, x) = x0

for x ∈ X. Then π1(X,x0) = {[x0]} is trivial (Exercise).
(b) π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0) (Exercise).
(c) π1(Rn, 0) = {0} because Rn is contractible.

More generally, if the open subset Ω ⊆ E of the Banach space E is starlike with
respect to x0, then H(t, x) := x+ t(x−x0) yields a contraction to x0, and we conclude
that π1(Ω, x0) is trivial.

The following lemma implies in particular, that fundamental groups of topological
groups are always abelian.
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Lemma C.1.8. Let G be a topological group and consider the identity element 1 as
a base point. Then the path space P (G,1) also carries a natural group structure given
by the pointwise product (α · β)(t) := α(t)β(t) and we have

(1) α ∼ α′, β ∼ β′ implies α · β ∼ α′ · β′, so that we obtain a well-defined product

[α] · [β] := [α · β]

of homotopy classes, defining a group structure on P (G,1)/ ∼.

(2) α ∼ β ⇐⇒ α · β−1 ∼ 1, the constant map.

(3) (Commutativity) [α] · [β] = [β] · [α] for α, β ∈ Ω(G,1).

(4) (Consistency) [α] · [β] = [α] ∗ [β] for α ∈ Ω(G,1), β ∈ P (G,1).

Proof. (1) follows by composing homotopies with the multiplication map mG.
(2) follows from (1) by multiplication with β−1.
(3)

[α][β] = [α ∗ 1][1 ∗ β] = [(α ∗ 1)(1 ∗ β)] = [(1 ∗ β)(α ∗ 1)] = [1 ∗ β][α ∗ 1] = [β][α].

(4) [α][β] = [(α ∗ 1)(1 ∗ β)] = [α ∗ β] = [α] ∗ [β].

As a consequence of (4), we can calculate the product of homotopy classes as a
pointwise product of representatives and obtain:

Proposition C.1.9. (Hilton’s Lemma) For each topological group G, the fundamental
group π1(G) := π1(G,1) is abelian.

Proof. We only have to combine (3) and (4) in Lemma C.1.8 for loops α, β ∈ Ω(G,1).

Exercises for Section C.1

Exercise C.1.1. If f : X → Y is a map between topological spaces and

X = X1 ∪ . . . ∪Xn

holds with closed subsets X1, . . . , Xn, then f is continuous if and only if all restrictions
f |Xi are continuous.

Exercise C.1.2. Show that the homotopy relation on P (X,x0, x1) is an equivalence
relation. Hint: Exercise C.1.1 helps to glue homotopies.

Exercise C.1.3. Show that, for n > 1, the sphere Sn is simply connected. For the
proof, proceed along the following steps:

(a) Let γ : [0, 1] → Sn be continuous. Then there exists an m ∈ N such that
‖γ(t)− γ(t′)‖ < 1

2 for |t− t′| < 1
m .

(b) Define α̃ : [0, 1] → Rn+1 as the piecewise affine curve with α̃( km ) = γ( km ) for
k = 0, . . . ,m. Then α(t) := 1

‖eα(t)‖ α̃(t) defines a continuous curve α : [0, 1]→ Sn.
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(c) α ∼ γ. Hint: Consider H(t, s) := (1−s)γ(t)+sα(t)
‖(1−s)γ(t)+sα(t)‖ .

(d) α is not surjective. The image of α is the central projection of a polygonal arc
on the sphere.

(e) If β ∈ Ω(Sn, y0) is not surjective, then β ∼ y0 (it is homotopic to a constant
map). Hint: Let p ∈ Sn \ imβ. Using stereographic projection, where p corresponds
to the point at infinity, show that Sn \{p} is homeomorphic to Rn, hence contractible.

(f) π1(Sn, y0) = {[y0]} for n ≥ 2 and y0 ∈ Sn.

Exercise C.1.4. Let X be a topological space, x0, x1 ∈ X and α ∈ P (X,x0, x1) a
path from x0 to x1. Show that the map

C : π1(X,x1)→ π1(X,x0), [γ] 7→ [α ∗ γ ∗ α]

is an isomorphism of groups. In this sense the fundamental group does not depend on
the base point if X is arcwise connected.

Exercise C.1.5. Let σ : G×X → X be a continuous action of the topological group G
on the topological space X and x0 ∈ X. Then the orbit map σx0 : G→ X, g 7→ σ(g, x0)
defines a group homomorphism

π1(σx0) : π1(G)→ π1(X,x0).

Show that the image of this homomorphism is central, i.e., lies in the center of
π1(X,x0). Hint: Mimic the argument in the proof of Lemma C.1.8.

C.2 Coverings

In this section we discuss the concept of a covering map. One of its main applications is
that it provides a means to calculate fundamental groups in terms of suitable coverings.

Definition C.2.1. Let X and Y be topological spaces. A continuous map q : X → Y
is called a covering if each y ∈ Y has an open neighborhood U such that q−1(U)
is a non-empty disjoint union of open subsets (Vi)i∈I , such that for each i ∈ I the
restriction q|Vi : Vi → U is a homeomorphism. We call any such U an elementary open
subset of X.

Note that this condition implies in particular that q is surjective and that the fibers
of q are discrete subsets of X.

Examples C.2.2.

(a) The exponential function exp: C→ C×, z 7→ ez is a covering map.

(b) The map q : R→ T, x 7→ eix is a covering.

(c) The power maps pk : C× → C×, z 7→ zk are coverings.

(d) If q : G→ H is a surjective continuous open homomorphism of topological groups
with discrete kernel, then q is a covering (Exercise C.2.2). All the examples (a)-
(c) are of this type.
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Lemma C.2.3. (Lebesgue number) 1 Let (X, d) be a compact metric space and
(Ui)i∈I an open cover. Then there exists a positive number λ > 0, called a Lebesgue
number of the covering, such that any subset S ⊆ X with diameter ≤ λ is contained
in some Ui.

Proof. Let us assume that such a number λ does not exist. Then there exists for
each n ∈ N a subset Sn of diameter ≤ 1

n which is not contained in some Ui. Pick
a point sn ∈ Sn. Then the sequence (sn) has a subsequence converging to some
s ∈ X. Then s is contained in some Ui, and since Ui is open, there exists an ε > 0
with Uε(s) ⊆ Ui. If n ∈ N is such that 1

n < ε
2 and d(sn, s) < ε

2 , we arrive at the
contradiction Sn ⊆ Uε/2(sn) ⊆ Uε(s) ⊆ Ui.

Remark C.2.4. (1) If (Ui)i∈I is an open cover of the unit interval [0, 1], then there ex-
ists an n > 0 such that all subsets of the form

[
k
n ,

k+1
n

]
,

k = 0, . . . , n− 1, are contained in some Ui.
(2) If (Ui)i∈I is an open cover of the unit square [0, 1]2, then there exists an n > 0

such that all subsets of the form[k
n
,
k + 1
n

]
×
[ j
n
,
j + 1
n

]
, k, j = 0, . . . , n− 1,

are contained in some Ui.

Theorem C.2.5. (The Path Lifting Property) Let q : X → Y be a covering map and
γ : [0, 1]→ Y a path. Let x0 ∈ X be such that q(x0) = γ(0). Then there exists a unique
path γ̃ : [0, 1]→ X such that

q ◦ γ̃ = γ and γ̃(0) = x0.

Proof. Cover Y by elementary open set Ui, i ∈ I. By Remark C.2.4, applied to the
open covering of I by the sets γ−1(Ui), there exists an n ∈ N such that all sets
γ(
[
k
n ,

k+1
n

]
), k = 0, . . . , n − 1, are contained in some Ui. We now use induction to

construct γ̃. Let V0 ⊆ q−1(U0) be an open subset containing x0 for which q|V0 is a
homeomorphism onto U0 and define γ̃ on

[
0, 1

n

]
by

γ̃(t) := (q|V0)−1 ◦ γ(t).

Assume that we have already constructed a continuous lift γ̃ of γ on the interval
[
0, kn

]
and that k < n. Then we pick an elementary open subset Ui containing γ([ kn ,

k+1
n ])

and an open subset Vk ⊆ X containing γ̃( kn ) for which q|Vk is a homeomorphism onto
Ui. We then define γ̃ for t ∈

[
k
n ,

k+1
n

]
by

γ̃(t) := (q|Vk)−1 ◦ γ(t).

We thus obtain the required lift γ̃ of γ on [0, k
n+1 ].

If γ̂ : [0, 1] → X is any continuous lift of γ with γ̂(0) = x0, then γ̂(
[
0, 1

n

]
) is a

connected subset of q−1(U0) containing x0, hence contained in V0, showing that γ̃
coincides with γ̂ on

[
0, 1

n

]
. Applying the same argument at each step of the induction,

we obtain γ̂ = γ̃, so that the lift γ̃ is unique.
1Lebesgue, Henri (1875–1941)
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Theorem C.2.6. (The Covering Homotopy Theorem) Let I := [0, 1] and
q : X → Y be a covering map and H : I2 → Y be a homotopy with fixed endpoints
of the paths γ := H0 and η := H1. For any lift γ̃ of γ there exists a unique lift
G : I2 → X of H with G0 = γ̃. Then η̃ := G1 is the unique lift of η starting in the
same point as γ̃ and G is a homotopy from γ̃ to η̃. In particular, lifts of homotopic
curves in Y starting in the same point are homotopic in X.

Proof. Using the Path Lifting Property (Theorem C.2.5), we find for each t ∈ I a
unique continuous lift I → X, s 7→ G(s, t), starting in γ̃(t) with q(G(s, t)) = H(s, t).
It remains to show that the map G : I2 → X obtained in this way is continuous.

So let s ∈ I. Using Remark C.2.4, we find a natural number n such that for
each connected neighborhood Ws of s of diameter ≤ 1

n and each i = 0, . . . , n, the set
H
(
Ws ×

[
k
n ,

k+1
n

])
is contained in some elementary subset Uk of Y . Assuming that

G is continuous in Ws × { kn}, G maps this set into a connected subset of q−1(Uk),
hence into some open subset Vk for which q|Vk is a homeomorphism onto Uk. But
then the lift G on Ws ×

[
k
n ,

k+1
n

]
must be contained in Vk, so that it is of the form

(q|Vk)−1 ◦H, hence continuous. This means that G is continuous on Ws ×
[
k
n ,

k+1
n

]
.

Now an inductive argument shows that G is continuous on Ws × I and hence on the
whole square I2.

Since the fibers of q are discrete and the curves s 7→ H(s, 0) and s 7→ H(s, 1) are
constant, the curves G(s, 0) and G(s, 1) are also constant. Therefore η̃ is the unique
lift of η starting in γ̃(0) = G(0, 0) = G(1, 0) and G is a homotopy with fixed endpoints
from γ̃ to η̃.

Corollary C.2.7. If q : X → Y is a covering with q(x0) = y0, then the corresponding
group homomorphism

π1(q, x0) : π1(X,x0)→ π1(Y, y0), [γ] 7→ [q ◦ γ]

is injective.

Proof. If γ, η are loops in x0 with [q◦γ] = [q◦η], then the Covering Homotopy Theorem
C.2.6 implies that γ and η are homotopic. Therefore [γ] = [η] shows that π1(q, x0) is
injective.

Corollary C.2.8. If Y is simply connected and X is arcwise connected, then each
covering map q : X → Y is a homeomorphism.

Proof. Since q is an open continuous map, it remains to show that q is injective. So
pick x0 ∈ X and y0 ∈ Y with q(x0) = y0. If x ∈ X also satisfies q(x) = y0, then there
exists a path α ∈ P (X,x0, x) from x0 to x. Now q◦α is a loop in Y , hence contractible
because Y is simply connected. Now the Covering Homotopy Theorem implies that
the unique lift α of q ◦ α starting in x0 is a loop, and therefore that x0 = x. This
proves that q is injective.

The following theorem provides a more powerful tool, from which the preceding
corollary easily follows. We recall that a topological space X is called locally arcwise
connected if each neighborhood U of a point x ∈ X contains some arcwise connected
neighborhood V of x (cf. Exercise A.5.5).
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Theorem C.2.9. (The Lifting Theorem) Assume that q : X → Y is a covering map
with q(x0) = y0, that W is arcwise connected and locally arcwise connected, and that
f : W → Y is a given map with f(w0) = y0. Then a continuous map g : W → X with

g(w0) = x0 and q ◦ g = f (C.1)

exists if and only if

π1(f, w0)(π1(W,w0)) ⊆ π1(q, x0)(π1(X,x0)), i.e. im(π1(f, w0)) ⊆ im(π1(q, x0)).
(C.2)

If g exists, which is always the case if W is simply connected, then it is uniquely de-
termined by (C.1). Condition (C.2) is in particular satisfied if W is simply connected.

Proof. If g exists, then f = q ◦ g implies that the image of the homomorphism
π1(f, w0) = π1(q, x0) ◦ π1(g, w0) is contained in the image of π1(q, x0).

Let us, conversely, assume that this condition is satisfied. To define g, let w ∈ W
and αw : I → W be a path from w0 to w. Then f ◦ αw : I → Y is a path which has
a continuous lift βw : I → X starting in x0. We claim that βw(1) does not depend on
the choice of the path αw. Indeed, if α′w is another path from w0 to w, then αw ∗α′w is
a loop in w0, so that (f ◦αw)∗ (f ◦α′w) is a loop in y0. In view of (C.2), the homotopy
class of this loop is contained in the image of π1(q, x0), so that it has a lift η : I → X
which is a loop in x0. Since the reverse of the second half η|[ 12 ,1] of η is a lift of f ◦α′w,
starting in x0, it is β′w, or, more precisely

β′w(t) = η
(

1− t

2

)
for 0 ≤ t ≤ 1.

We thus obtain
β′w(1) = η

(1
2

)
= βw(1).

We now put g(w) := βw(1), and it remains to see that g is continuous. This is
where we shall use the assumption that W is locally arcwise connected. Let w ∈ W
and put y := f(w). Further, let U ⊆ Y be an elementary neighborhood of y and V be
an arcwise connected neighborhood of w in W such that f(V ) ⊆ U . Fix a path αw
from w0 to w as before. For any point w′ ∈ W we choose a path γw′ from w to w′ in
V , so that αw ∗ γw′ is a path from w0 to w′. Let Ũ ⊆ X be an open subset of X for
which q|eU is a homeomorphism onto U and g(w) ∈ Ũ . Then the uniqueness of lifts
implies that

βw′ = βw ∗
(
(q|eU )−1 ◦ (f ◦ γw′)

)
.

We conclude that
g(w′) = (q|eU )−1(f(w′)) ∈ Ũ ,

hence that g|V is continuous.
We finally show that g is unique. In fact, if h : W → X is another lift of f satisfying

h(w0) = x0, then the set S := {w ∈ W : g(w) = h(w)} is non-empty and closed. We
claim that it is also open. In fact, let w1 ∈ S and U be a connected open elementary
neighborhood of f(w1) and V an arcwise connected neighborhood of w1 with f(V ) ⊆
U . If Ũ ⊆ q−1(U) is the open subset on which q is a homeomorphism containing
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g(w1) = h(w1), then the arcwise connectedness of V implies that g(V ), h(V ) ⊆ Ũ ,
and hence that V ⊆ S. Therefore S is open, closed and non-empty, so that the
connectedness of W yields S = W , i.e., g = h.

Corollary C.2.10. (Uniqueness of Simply Connected Coverings) Suppose that Y is
locally arcwise connected. If q1 : X1 → Y and q2 : X2 → Y are two simply connected
arcwise connected coverings, then there exists a homeomorphism ϕ : X1 → X2 with
q2 ◦ ϕ = q1.

Proof. Since Y is locally arcwise connected, both covering spaces X1 and X2 also have
this property. Pick points x1 ∈ X1, x2 ∈ X2 with y := q1(x1) = q2(x2). According to
the Lifting Theorem C.2.9, there exists a unique lift
ϕ : X1 → X2 of q1 with ϕ(x1) = x2. We likewise obtain a unique lift
ψ : X2 → X1 of q2 with ψ(x2) = x1. Then ϕ ◦ ψ : X1 → X1 is a lift of idY fixing
x1, so that the uniqueness of lifts implies that ϕ ◦ ψ = idX1 . The same argument
yields ψ ◦ ϕ = idX2 , so that ϕ is a homeomorphism with the required properties.

Definition C.2.11. A topological space X is called semilocally simply connected if
each point x0 ∈ X has a neighborhood U such that each loop α ∈ Ω(U, x0) is homotopic
to [x0] in X, i.e., the natural homomorphism

π(iU ) : π1(U, x0)→ π1(X,x0), [γ] 7→ [iU ◦ γ]

induced by the inclusion map iU : U → X is trivial.

Example C.2.12. Every manifold M is locally arcwise connected and semilocally
simply connected. In fact, every neighborhood U of a point m ∈M contains an open
neighborhood V homeomorphic to an open ball B in a Banach space E. Since B is
convex, it is arcwise connected and simply connected.

Theorem C.2.13. Let Y be arcwise connected and locally arcwise connected. Then Y
has a simply connected covering space if and only if Y is semilocally simply connected.

Proof. If q : X → Y is a simply connected covering space and U ⊆ Y is a pathwise
connected elementary open subset. Then each loop γ in U lifts to a loop γ̃ in X, and
since γ̃ is homotopic to a constant map in X, the same holds for the loop γ = q ◦ γ̃ in
Y .

Conversely, let us assume that Y is semilocally simply connected. We choose a
base point y0 ∈ Y and let

Ỹ := P (Y, y0)/ ∼

be the set of homotopy classes of paths starting in y0. We shall topologize Ỹ in such
a way that the map

q : Ỹ → Y, [γ] 7→ γ(1)

defines a simply connected covering of Y .
Let B denote the set of all arcwise connected open subsets U ⊆ Y for which each

loop in U is contractible in Y and note that our assumptions on Y imply that B is
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a basis for the topology of Y , i.e., each open subset is a union of elements of B. If
γ ∈ P (Y, y0) satisfies γ(1) ∈ U ∈ B, let

U[γ] := {[η] ∈ q−1(U) : (∃β ∈ C(I, U)) η ∼ γ ∗ β}.

We shall now verify several properties of these definitions, culminating in the proof of
the theorem.
(1) [η] ∈ U[γ] ⇒ U[η] = U[γ].

To prove this, let [ζ] ∈ U[η]. Then ζ ∼ η∗β for some path β in U . Further η ∼ γ∗β′
for some path β′ in U . Now ζ ∼ γ ∗β′ ∗β, and β′ ∗β is a path in U , so that [ζ] ∈ U[γ].
This proves U[η] ⊆ U[γ]. We also have γ ∼ η ∗ β′, so that [γ] ∈ U[η], and the first part
implies that U[γ] ⊆ U[η].
(2) q maps U[γ] injectively onto U .

That q(U[γ]) = U is clear since U and Y are arcwise connected. To show that that
it is one-to-one, let [η], [η′] ∈ U[γ], which we know from (1) is the same as U[η]. Suppose
η(1) = η′(1). Since [η′] ∈ U[η], we have η′ ∼ η ∗ α for some loop α in U . But then α is
contractible in Y , so that η′ ∼ η, i.e., [η′] = [η].
(3) U, V ∈ B, γ(1) ∈ U ⊆ V , implies U[γ] ⊆ V[γ].

This is trivial.
(4) The sets U[γ] for U ∈ B and [γ] ∈ Ỹ form a basis of a topology on Ỹ .

Suppose [γ] ∈ U[η] ∩ V[η′]. Let W ⊆ U ∩ V be in B with γ(1) ∈ W . Then
[γ] ∈W[γ] ⊆ U[γ] ∩ V[γ] = U[η] ∩ V[η′].
(5) q is open and continuous.

We have already seen in (2) that q(U[γ]) = U , and these sets form a basis of the
topology on Ỹ , resp., Y . Therefore q is an open map. We also have for U ∈ B the
relation

q−1(U) =
⋃

γ(1)∈U

U[γ],

which is open. Hence q is continuous.
(6) q|U[γ] is a homeomorphism.

This is because it is bijective, continuous and open.
At this point we have shown that q : Ỹ → Y is a covering map. It remains to see

that Ỹ is arcwise connected and simply connected.
(7) Let H : I × I → Y be a continuous map with H(t, 0) = y0. Then
ht(s) := H(t, s) defines a path in Y starting in y0. Let h̃(t) := [ht] ∈ Ỹ . Then h̃

is a path in Ỹ covering the path t 7→ ht(1) = H(t, 1) in Y . We claim that h̃ is con-
tinuous. Let t0 ∈ I. We shall prove continuity at t0. Let U ∈ B be a neighborhood
of ht0(1). Then there exists an interval I0 ⊆ I which is a neighborhood of t0 with
ht(1) ∈ U for t ∈ I0. Then α(s) := H(t0 + s(t − t0), 1) is a continuous curve in U
with α(0) = ht0(1) and α(1) = ht(1), so that ht0 ∗ α is curve with the same endpoint
as ht. Applying Exercise C.2.1 to the restriction of H to the interval between t0 and
t, we see that ht ∼ ht0 ∗ α, so that h̃(t) = [ht] ∈ U[ht0 ] for t ∈ I0. Since q|U[ht0 ] is a

homeomorphism, h̃ is continuous in t0.



C.2. COVERINGS 153

(8) Ỹ is arcwise connected.
For [γ] ∈ Ỹ put ht(s) := γ(st). By (7), this yields a path γ̃(t) = [ht] in Ỹ from

ỹ0 := [y0] (the class of the constant path) to the point [γ].

(9) Ỹ is simply connected.
Let α̃ ∈ Ω(Ỹ , ỹ0) be a loop in Ỹ and α := q ◦ α̃ its image in Y . Let ht(s) := α(st).

Then we have the path h̃(t) = [ht] in Ỹ from (7). This path covers α since ht(1) = α(t).
Further, h̃(0) = ỹ0 is the constant path. Also, by definition, h̃(1) = [α]. From the
uniqueness of lifts we derive that h̃ = α̃ is closed, so that [α] = [y0]. Therefore the
homomorphism

π1(q, y0) : π1(Ỹ , ỹ0)→ π1(Y, y0)

vanishes. Since it is also injective (Corollary C.2.7), π1(Ỹ , ỹ0) is trivial, i.e., Ỹ is
simply connected.

Definition C.2.14. Let q : X → Y be a covering. A homeomorphism
ϕ : X → X is called a deck transformation of the covering if q ◦ ϕ = q. This means
that ϕ permutes the elements in the fibers of q. We write Deck(X, q) for the group of
deck transformations.

Example C.2.15. For the covering map exp: C → C×, the deck transformations
have the form

ϕ(z) = z + 2πin, n ∈ Z.

Remark C.2.16. Suppose that X is connected and ϕ,ψ : X → X are deck trans-
formations with ϕ(x0) = ψ(x0) for some x0 ∈ X. Then q ◦ ϕ = q = q ◦ ψ and the
uniqueness assertion of the Lifting Theorem C.2.9 imply that ϕ = ψ. This means that
deck transformations are determined by the image of x0, resp., the map

evx0 : Deck(X, q)→ X, ϕ 7→ ϕ(x0)

is injective. If, in addition, X is simply connected, the Lifting Theorem C.2.9 further
implies that im(evx0) = q−1(q(x0)).

Proposition C.2.17. Let q : Ỹ → Y be a simply connected covering of the connected
locally arcwise connected space Y . Pick ỹ0 ∈ Ỹ and put y0 := q(ỹ0). For each [γ] ∈
π1(Y, y0) we write ϕ[γ] ∈ Deck(Ỹ , q) for the unique lift of idX mapping ỹ0 to the
endpoint γ̃(1) of the lift γ̃ of γ starting in ỹ0. Then the map

Φ: π1(Y, y0)→ Deck(Ỹ , q), Φ([γ]) = ϕ[γ]

is an isomorphism of groups.

Proof. For γ, η ∈ Ω(Y, y0), the composition ϕ[γ]◦ϕ[η] is a deck transformation mapping
ỹ0 to the endpoint of ϕ[γ] ◦ η̃ which coincides with the endpoint of the lift of η starting
in γ̃(1). Hence it also is the endpoint of the lift of the loop γ ∗ η. This leads to
ϕ[γ] ◦ ϕ[η] = ϕ[γ∗η], so that Φ is a group homomorphism.

To see that Φ is injective, we note that ϕ[γ] = ideY implies that γ̃(1) = ỹ0, so that
γ̃ is a loop, and hence that [γ] = [y0].
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For the surjectivity, let ϕ be a deck transformation and y := ϕ(ỹ0). If α is a path
from ỹ0 to y, then γ := q ◦ α is a loop in y0 with α = γ̃, so that ϕ[γ](ỹ0) = y, and the
uniqueness of lifts (Theorem C.2.9) implies that ϕ = ϕ[γ].

Example C.2.18. With Example C.2.15 and the simple connectedness of C we derive
that

π1(C×, 1) ∼= Deck(C, exp) ∼= Z.

Exercises for Section C.2

Exercise C.2.1. Let F : I2 → X be a continuous map with F (0, s) = x0 for s ∈ I
and define

γ(t) := F (t, 0), η(t) := F (t, 1), α(t) := F (1, t), t ∈ I.

Show that γ ∗ α ∼ η. Hint: Consider the map

G : I2 → I2, G(t, s) :=

 (2t, s) for 0 ≤ t ≤ 1
2 , s ≤ 1− 2t,

(1, 2t− 1) for 1
2 ≤ t ≤ 1, s ≤ 2t− 1,

(t+ 1−s
2 , s) else

and show that it is continuous. Take a look at the boundary values of F ◦G.

Exercise C.2.2. Let q : G → H be an morphism of topological groups with discrete
kernel Γ. Show that:

(1) If V ⊆ G is an open 1-neighborhood with (V −1V ) ∩ Γ = {1} and q is open, then
q|V : V → q(V ) is a homeomorphism.

(2) If q is open and surjective, then q is a covering.

(3) If q is open and H is connected, then q is surjective, hence a covering.

Exercise C.2.3. A map f : X → Y between topological spaces is called a local home-
omorphism if each point x ∈ X has an open neighborhood U such that f |U : U → f(U)
is a homeomorphism onto an open subset of Y .

(1) Show that each covering map is a local homeomorphism.

(2) Find a surjective local homeomorphism which is not a covering. Can you also find
an example where X is connected?

Exercise C.2.4. In the euclidean plane R2, we write

Cr(m) := {x ∈ R2 : ‖x−m‖2 = r}

for the circle of radius r and center m. Consider the union

X :=
⋃
n∈N

C1/n

( 1
n
, 0
)
.

Show that X is arcwise connected but not semilocally simply connected. Hint: Con-
sider the point (0, 0) ∈ X.
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Exercise C.2.5. Let T ⊆ C be the unit circle. Show that:

(i) For every continuous map f : T → T, there exists a continuous map β : R → R
with f(eit) = eiβ(t) for t ∈ R.

(ii) Show that for every map β as in (i),

deg(f) :=
β(t+ 2π)− β(t)

2π
∈ Z

is constant. It is called the winding number or mapping degree of f . Verify that
this number does not depend on the choice of β for a given function f .

(iii) Two maps f1, f2 : T → T are homotopic if and only if deg(f1) = deg(f2). Hint:
Use the Covering Homotopy Theorem to see that this condition is necessary. To
see that it is sufficient, proceed with the ansatz βs := (1− s)β0 + sβ1 and show
that this defines a homotopy by fs(eit) = eiβs(t).

(iv) Show that the same arguments are equally valid for maps f : C× → C×.
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