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Introduction 1

Manifolds and Transformation Groups

Introduction

In the basic calculus courses one mostly deals with (differentiable) functions
on open subsets of R™, but as soon as one wants to solve equations of the form
f(z) =y, where f:U — R™ is a differentiable function and U is open in R™, one
observes that the set f~!(y) of solutions behaves in a much more complicated
manner than one is used to from Linear Algebra, where f is linear and f~1(y) is
the intersection of U with an affine subspace. One way to approach differentiable
manifolds is to think of them as the natural objects arising as solutions of non-
linear equations as above (under some non-degeneracy condition on f, made
precise by the Implicit Function Theorem). For submanifolds of R™, this is
a quite natural approach, which immediately leads to the method of Lagrange
multipliers to deal with extrema of differentiable functions under differentiable
constraints. This is the external perspective on differentiable manifolds, which

has the serious disadvantage that it depends very much on the surrounding space
R™.

It is much more natural to adopt a more intrinsic perspective: an n-
dimensional manifold is a topological space which locally looks like R™. More
precisely, it arises by gluing open subsets of R™ in a smooth (differentiable) way.
Below we shall make this more precise.

The theory of smooth manifolds has three levels:

(1) The infinitesimal level, where one deals with tangent spaces, tangent
vectors and differentials of maps,

(2) the local level, which is analysis on open subsets of R™, and

(3) the global level, where one studies the global behavior of manifolds and
other related structures.

These three levels are already visible in one-variable calculus: Suppose we
are interested in the global maximum of a differentiable function f:R — R which
is a question about the global behavior of this function. The necessary condition
f'(zo) = 0 belongs to the infinitesimal level because it says something about the
behavior of f infinitesimally close to the point xy. The sufficient criterion for a
local maximum: f’(xg) =0, f”(x9) < 0 provides information on the local level.
Everyone knows that this is far from being the whole story and that one really
has to study global properties of f, such as lim, .1~ f(z) =0, to guarantee the
existence of global maxima.
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I. Smooth manifolds

In this chapter we first recall the central definitions and results from calcu-
lus in several variables. Then we turn to the definition of a differentiable manifold
and discuss several aspects of this concept.

I.1. Smooth maps in several variables

First we recall some facts and definitions from calculus in several variables,
formulated in a way that will be convenient for us in the following.

Definition 1.1.1.  (Differentiable maps)

(a) Let n,m € N and U C R"™ be an open subset. A function f:U — R™
is called differentiable at x € U if there exists a linear map L € Hom(R", R™)
such that for one (and hence for all norms on R™) we have

=0.

 Jle4h) — f@) - L(h)
1) A Tl

If f is differentiable in z, then for each h € R™ we have

lim %(f(:z: +th) — f(z)) = lim 1L(th) = L(h),

t—0 t—0 ¢

so that L(h) is the directional derivative of f in x in the direction h. It follows
in particular that condition (1.1) determines the linear map L uniquely. We
therefore write

4 (x) () = i (F(ar+ 1h) — f(x) = L(h)

and call the linear map df (x) the differential of f in x.
(b) Let eq,...,e, denote the canonical basis vectors in R™. Then

Of (o) ot e
5-(a) = (@) e)

is called the i-th partial derivative of f in x. If f is differentiable in each z € U,
then the partial derivatives are functions

of
8331'

:U — R™,
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and we say that f is continuously differentiable, or a C'-map, if all its partial
derivatives are continuous. For k > 2, the map f is said to be a C* -map if it is
C! and all its partial derivatives are C*~1'-maps. We say that f is smooth or a
C*® -map if it is C* for each k € N.

(c) If I CR is an interval and v: I — R"™ is a differentiable curve, we also

write
At +h) = (t)

3(t) =+/(t) = lim

This is related to the notation from above by

Y (t) = dy(t)(er),
where e; = 1 € R is the canonical basis vector. m

Definition 1.1.2. Let U C R™ and V C R"™ be open subsets. A map
f:U — V is called C* if it is C¥ as a map U — R™.

For n > 1 a C*-map f:U — V is called a C*-diffeomorphism if there
exists a C*-map ¢:V — U with

fog:idv and gOfZIdU

Obviously, this is equivalent to f being bijective and f~! being a C*-map.
Whenever such a diffeomorphism exists, we say that the domains U and V' are
C* -diffeomorphic. For k = 0 we thus obtain the notion of a homeomorphism. m

Theorem 1.1.3.  (Chain Rule) Let U C R™ and V C R™ be open subsets.
Further let f:U —V be a C*-map and g:V — R% a C*¥-map. Then go f is a
C* -map, and for each x € U we have in Hom(R"™, R%):

d(g o f)(x) = dg(f(x)) o df (). m

The Chain Rule is an important tool which permits to “linearize” non-linear
information. The following proposition is an example.

Proposition 1.1.4. (Invariance of the dimension) If the non-empty open
subsets U CR™ and V C R™ are C' -diffeomorphic, then m =n.

Proof. Let f:U — V be a (C!-diffeomorphism and ¢:V — U its inverse.
Pick z € U. Then the Chain Rule implies that

idg» = d(g o f)(x) = dg(f(x)) o df ()

and

idgm = d(f o g)(f(x)) = df (x) o dg(f(2)),

so that df(z):R™ — R™ is a linear isomorphism. This implies that m=n. =
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Theorem I.1.5.  (Inverse Function Theorem) Let U C R"™ be an open subset,
rg €U, k € NU{ox}, and f:U — R™ a C¥-map for which the linear map
df (z) is invertible. Then there exists an open neighborhood V' of xo in U for
which fly:V — f(V) is a C*-diffeomorphism onto an open subset of R*. =

Corollary I.1.6. Let U C R"™ be an open subset and f:U — R™ be an
injective C* -map (k > 1) for which df (x) is invertible for each x € U. Then
f(U) is open and f:U — f(U) is a C* -diffeomorphism.

Proof. First we use the Inverse Function Theorem to see that for each x € U
the image f(U) contains a neighborhood of f(z), so that f(U) is an open subset
of R™. Since f is injective, the inverse function g = f~1: f(U) — U exists. Now
we apply the Inverse Function Theorem again to see that for each x € U there
exists a neighborhood of f(x) in f(U) on which g is C*¥. Therefore g is a
C*-map, and this means that f is a C*-diffeomorphism. [ ]

Example 1.1.7. That the injectivity assumption in Corollary I.1.6 is crucial
is shown by the following example, which is a real description of the complex
exponential function. We consider the smooth map

fiR? = R?  f(xy,20) = (e cosxa, € sinxy).

Then the matrix of df(z) with respect to the canonical basis is

el cosry —e*lsinas
ldf ()] = (e“l sinzy  e*! coszy ) '
Its determinant is e2*1 # 0, so that df (x) is invertible for each x € R2.

Polar coordinates immediately show that f(R?) = R?\ {(0,0)}, which is
an open subset of R?, but the map f is not injective because it is 2w-periodic
in xs:

f(x1, 22 +2m) = f(x1, 22).
Therefore the Inverse Function Theorem applies to each = € R?, but f is not a
global diffeomorphism. [

Remark 1.1.8. The best way to understand the Implicit Function Theorem is
to consider the linear case first. Let g: R™ x R®™ — R™ be a linear map. We are
interested in conditions under which the equation g(z,y) = 0 can be solved for
x, i.e., there is a function f:R™ — R™ such that g(x,y) = 0 is equivalent to
z=f(y).

Since we are dealing with linear maps, there are matrices A € M,,,(R) and
B € M, »(R) with

g(z,y) = Az + By for xze€R™ yeR"

The unique solvability of the equation g(z,y) = 0 for x is equivalent to the
unique solvability of the equation Ax = — By, which is equivalent to the invert-
ibility of the matrix A. If A € GL,,(R), we thus obtain the linear function

fiR" = R™ f(y)=-A"'By
for which x = f(y) is equivalent to g(x,y) = 0. n
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Theorem 1.1.9.  (Implicit Function Theorem) Let U C R™ x R™ be an open
subset and g:U — R™ be a CF -function, k € NU{oo}. Further let (zg,y0) € U
with g(xo,yo) = 0 such that the linear map

dig(xo,y0):R" = R", v — dg(zo,y0)(v,0)

is invertible. Then there exist open neighborhoods Vi of xo in R™ and Va of yo
in R™ with Vi x Vo C U, and a C*-function f:Vy — Vi with f(yo) = zo such
that

{(z,y) € Vi x Va:g(z,y) = 0} = {(f(y),y):y € Va}. m

Definition 1.1.10.  (Higher derivatives) For k > 2, a C*-map f:U — R™
and U C R"™ open, higher derivatives are defined inductively by
dkf(x)(h'la ) hk)

= lim %(d’“_lf(a: + thi) (b, .. he—1) — " f(@) (ha, .o hi—1)).

We thus obtain continuous maps
d*f:U x (R")* — R™.

In terms of concrete coordinates and the canonical basis eq,...,e, of R",
we then have

ok f

d*f(z)(eiy, ... €)= W(I)c

Let V and W be vector spaces. We recall that a map 3: V¥ — W is called
k -linear if all the maps

V=W, v B(vr,...,05-1,0,Vj41,. .., Vk)
are linear. It is said to be symmetric if

BVo(1), -+ Vo)) = B(v1, ..., V%)
holds for all permutations o € Sj.

Proposition 1.1.11. If f € CF(UR™) and k > 2, then the functions
(hi,...,hg) — d*f(x)(hy,...,ht), © € U, are symmetric k-linear maps.
Proof.  From the definition it follows inductively that (d*f)(z) is linear in
each argument h;, because if all other arguments are fixed, it is the differential
of a C'-function.

To verify the symmetry of (d*f)(x), we may also proceed by induction.
Therefore it suffices to show that for hq,...,hi_o fixed, the map

B(v,w) := (dkf(:c))(hl, coyhg—2,v,w)
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is symmetric. This map is the second derivative d?F(z) of the function
F(x):= (d* 2 f)(x)(h1,. .., hy_o2).

We may therefore assume that k = 2.
In view of the bilinearity, it suffices to observe that the Schwarz Lemma
implies

@) )6 e0 = (50 F) @) = (5 F) @) = @F)()(ere). m

a$¢$j 81']‘1'1'
Theorem 1.1.12.  (Taylor’s Theorem) Let U C R™ be open and f:U — R™
of class C**1. If x +[0,1]h C U, then we have the Taylor Formula

Fx+h) = f(z) +df(z)(B) + ...+ %dkf(x)(h, R

! 1(1 —t)F(@" f(z + th)) (h,..., h)dt.

5
Proof. For each i € {1,...,m} we consider the C**!-maps
F:[0,1] = R, F(t):= fi(z +th) with F® () =d"fi(x+th)(h,..., h)
and apply the Taylor Formula for functions [0.1] — R to get

(k) 1
20 + l/ (1 —t)FF*EFD (1) dt. n
k! k!

F(1)=F0)+...+

I1.2. The definition of a smooth manifold

Throughout this course we assume some familiarity with basic topological
constructions and concepts, such as the quotient topology.

Before we turn to the concept of a smooth manifold, we recall the concept
of a Hausdorff space. A topological space (X,7) is called a Hausdorff space if
for two different points z,y € X there exist disjoint open subsets O, O, with
xz € Oy and y € O,. Recall that each metric space (X,d) is Hausdorff. In this
case we may take O, := B.(z) and O, := B.(y) for any ¢ < 1d(z,y).

Definition 1.2.1. Let M be a topological space.

(a) A pair (¢,U), consisting on an open subset U C M and a homeo-
morphism ¢:U — o(U) € R™ of U onto an open subset of R™ is called an
n-dimensional chart of M .

(b) Two n-dimensional charts (p,U) and (i,V) of M are said to be
C* -compatible (k € NU {oo}) if UNV = @ or the map

Yo Hownv)ye(UNV) = p(UNV)
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is a C*-diffeomorphism. Note that ¢:U — ¢(U) is a homeomorphism onto an
open subset of R™, so that ¢(UNV) is an open subset of ¢(U) and hence of R™.
(c) An n-dimensional C* -atlas of M is a family A := (v;,U;)icr of n-
dimensional charts of M with the following properties:
(A1) ;e Ui = M, ie., (Us)ier is an open covering of M.
(A2) All charts (¢;,U;), i € I, are pairwise C*-compatible. For Uy =U;NU;,
this means that all maps

pji =050 0; puwiy): iUis) — 0;(Uij)

are C*-maps because goj_il = ©ij.

(d) A chart (p,U) is called compatible with a C*-atlas (¢;, U;)ier if it is
C*-compatible with all charts of the atlas A. A C*-atlas A is called mazimal
if it contains all charts compatible with it. A maximal C*-atlas is also called a
C* -differentiable structure on M. For k = co we call it a smooth structure. =

Remark 1.2.2. (a) In Definition 1.2.1(b) we required that the map
Yoo owrvye(UNV) = p(UNV)

is a C*-diffeomorphism. Since ¢ and 1 are diffeomorphisms, this map always
is a homeomorphism between open subsets of R™. The differentiability is an
additional requirement.

(b) For M = R the maps (M, ) and (M, ) with p(x) = x and ¥(x) = 23
are 1-dimensional charts. These charts are not C'-compatible: the map

¢ogp_1:]R—>R, z—

is smooth, but not a diffeomorphism, since its inverse ¢o1~! is not differentiable.

(c) Any atlas A is contained in a unique maximal atlas: We simply add all
charts compatible with A, and thus obtain a maximal atlas. This atlas is unique
(Exercise 1.2). n

Definition I.2.3. An n-dimensional C*-manifold is a pair (M, A) of
Hausdorff space M and a maximal n-dimensional C*-atlas on M. For k =
we call it a smooth manifold.

RN

To specify a manifold structure, it suffices to specify a C*-atlas A because
this atlas is contained in a unique maximal one (Exercise 1.2). In the following
we shall never describe a maximal atlas. We shall always try to keep the number
of charts as small as possible. For simplicity, we always assume in the following
that k£ = 0.

Example 1.2.4. (Open subsets of R") Let U C R™ be an open subset. Then
U is a Hausdorff space with respect to the induced topology. The inclusion map
p:U — R™ defines a chart (¢,U) which already defines a smooth atlas of U,
turning U into an n-dimensional smooth manifold. ]
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Example I.2.5. (The n-dimensional sphere) We consider the unit sphere
S" = {(zg,...,Tn) ER*"hxd + 27 +.. . + 22 =1}

in R", endowed with the subspace topology, turning it into a compact space.
(a) To specify a smooth manifold structure on S™, we consider the open

subsets
U ={xeS"ex; >0}, i=0,...,n, ee{£l}.

These 2(n + 1) subsets form a covering of S™. We have homeomorphisms
0;:US — B:={z e R":||z|2 < 1}
onto the open unit ball in R", given by

0i () = (2o, @1,y Tie1, Tig 1y vy Tp)

and with continuous inverse map

(y17"'7yn) = (917---;yi,€\/ 1— HyH%7yZ+1;7yn>

This leads to charts (¢f,Uf) of S™.
It is easy to see that these charts are pairwise compatible. We have
s o (95 )71 =idp, and for i < j, we have

Spf © (ng )_1(y) = (y17 e Yis Yiv2, - 7yja€/ \V/ 1- ||y||%7yj+17 s ayn)a

which is a smooth map
@5 (UF NU5) — 5 (UF NUY).

(b) There is another atlas of S™ consisting only of two charts, where the
maps are slightly more complicated.

We call the unit vector e := (1,0,...,0) the north pole of the sphere and
—ep the south pole. We then have the corresponding stereographic projection
maps

1
or:Up :=S"\{eo} = R", (y0,y) — 1_y0y

and 1
_:U_=8§" —€ Rn? ) :
@ \{—eo} — (vo y).—>1+y0y

Both maps are bijective with inverse maps
[z -1 2= )

—1
P+ (CC) = <:t )
=[5+ 171+ [|lz[|3

(Exercise 1.10). This implies that (¢4,U) and (p_,U_) are charts of S™. That
both are smoothly compatible, hence a smooth atlas, follows from

(g1 0 p=N)(@) = (p_ 0 ") (w) = W z € R™\ {0},

which is the inversion in the unit sphere. u
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Example 1.2.6. Let V be an n-dimensional real vector space. We know from
Linear Algebra that V is isomorphic to R™, and that for each ordered basis
B :=(b,...,b,) of V, the linear map

n
ep:R" =V, x=(x1,...,2,) — ijbj
j=1

is a linear isomorphism. Using such a linear isomorphism g, we define a topo-
logy on V in such a way that ¢p is a homeomorphism, i.e., O C V is open if
and only if ¢ (O) is open in R”.

For any other choice of a basis C' = (¢1,...,¢p) in V' we recall from Linear
Algebra that m = n and that the map

9061 opp: R" — R™

is a linear isomorphism, hence a homeomorphism. This implies that for a
subset O C V the condition that ¢5'(0O) is open is equivalent to ¢;'(O)
= 9061 oppo gogl(O) being open. We conclude that the topology introduced on
V by ¢p does not depend on the choice of a basis.

We thus obtain on V' a natural topology for which it is homeomorphic to
R"™, hence in particular a Hausdorff space. From each coordinate map kg := gpgl
we obtain a chart (kp, V) which already defines an atlas of V. We thus obtain
on V the structure of an n-dimensional smooth manifold. That all these charts

are compatible follows from the smoothness of the linear maps k¢ o /@51 =
¢510¢B:R”—>R”. ]

Example 1.2.7. (Submanifolds of R™) A subset M C R”" is called a d-
dimensional submanifold if for each p € M there exists an open neighborhood
U of p in R and a diffeomorphism

o:U — ¢(U) CR"
onto an open subset ¢(U) with
(SM) p(UNM) = (U)N (R x {0}).

Whenever this condition is satisfied, we call (p,U) a submanifold chart.

A submanifold of codimension 1, i.e., dim M = n — 1, is called a smooth
hyper-surface.

We claim that M carries a natural d-dimensional manifold structure when
endowed with the topology inherited from R™, which obviously turns it into a
Hausdorff space.

In fact, for each submanifold chart (¢, U), we obtain a d-dimensional chart

(elunar, UNM).
For two such charts coming from (¢,U) and (¢, V'), we have
Yo 80_1 ’gp(UﬂVﬂM) = (w |VmM) © (90 ’UHM)_l |¢(UmeM),

which is a smooth map onto an open subset of R?. We thus obtain a smooth
atlas of M. m
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The following proposition provides a particularly handy criterion to verify
that the set of solutions of a non-linear equation is a submanifold. Let f: U — R™
be a C'-map. We call y € R™ a reqular value of f if for each x € U with
f(z) = y the differential df(z) is surjective. Otherwise y is called a singular

value of f.

Proposition 1.2.8. Let U C R™ be an open subset, f:U — R™ a smooth
map and y € f(U) such that df(x) is surjective for each x € f~Y(y). Then
M = f=1(y) is an (n —m)-dimensional submanifold of R™, hence in particular
a smooth manifold.

Proof. Let d :=n —m and observe that d > 0 because df(x):R™ — R™ is
surjective for each x € M. We have to show that for each x¢y € M there exists
an open neighborhood V' of xy in R™ and a diffeomorphism

:V — (V) CR"

with
(VM) = (V)N (R x {0}).

After a permutation of the coordinates, we may w.l.o.g. assume that the
vectors

df (zo)(€dt1), - - -, df (zo)(en)

form a basis of R™. Then we consider the map

gD:U_’Rna x:(xl,.__,xn)l—)(l’l,...,xd,fl(m)_ylv"'afm(x)_ym)'
In view of f d
N €; OI‘j <
dp(z0)(ej) = {df(wo)(ej) for j > d,

it follows that the linear map dp(z¢): R™ — R™ is invertible. Hence the Inverse

Function Theorem implies the existence of an open neighborhood V C U of zq

for which ¢|y:V — (V) is a diffeomorphism onto an open subset of R™.
Since

M ={peUp(p) = (p1(p):---,9alp).0,...,0)} = o~ (R x {0}),

it follows that
e(MNV) =eV)N (R x {0}). =

Examples 1.2.9. The preceding proposition is particularly easy to apply for
hypersurfaces, i.e., to the case m = 1. Then f:U — R is a smooth function and
the condition that df(z) is surjective simply means that df(z) # 0, i.e., that
there exists some j with 887];(56) #0.

(a) Let A= AT € M,(R) be a symmetric matrix and

f(z) =2 Az = Z ;%

4,j=1
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the corresponding quadratic form.
We want to show that the corresponding quadric

Q :={zeR" f(x) =1}

is a submanifold of R™. To verify the criterion from Proposition 1.2.8, we assume
that f(z) =1 and note that

df(x)v =v" Az + 2" Av = 20" Az

(Exercise; use Exercise 1.13). Therefore df(z) = 0 is equivalent to Az = 0,
which is never the case if 7 Az = 1. We conclude that all level surfaces of f
are smooth hypersurfaces of R".

For A = E, (the identity matrix), we obtain in particular the (n — 1)-
dimensional unit sphere Q = S*~!.

For A = diag()A1,...,A,) and nonzero \; we obtain the hyperboloids

Q= {x € R”:Zn:)\ix? = 1}
i=1

which degenerate to hyperbolic cyclinders if some \; vanish.
(b) For singular values the level sets may or may not be submanifolds: For

the quadratic form
fR? SR, flxy,2) =120

the value 0 is singular because f(0,0) =0 and df(0,0) = 0. The inverse image
is

F7H0) = (R x {0}) U ({0} x R),

which is not a submanifold of R? (Exercise).
For the quadratic form

fR? >R, f(z1,22) = 27 + 23

the value 0 is singular because f(0,0) =0 and df(0,0) = 0. The inverse image

F7H0) ={(0,0)},

which is a zero-dimensional submanifold of R2.
For the quadratic form

fR—R, f(z)=2a"
the value 0 is singular because f(0) =0 and f/(0) = 0. The inverse image is
F7H0) = {0},

which is a submanifold of R.
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(¢c) On M, (R) = R"™ we consider the quadratic function
f:M,(R) — Sym, (R) :={A € M,(R): AT = A}, X+ XX'.

Then
f711)=0,(R) :={g € GL,(R):g" =g}

is the orthogonal group.
To see that this is a submanifold of M, (R), we note that
dFX)YV)=XYT +vXx"

(Exercise 1.13). If f(X) =1, we have X" = X! so that for any Z € Sym,, (R)
the matrix Y := %ZX satisfies

1
XY"+vXx'" = 5(XXTZ +ZXX") =2

Therefore df (X) is surjective in each orthogonal matrix X, and Proposition 1.2.8
implies that O, (R) is a submanifold of M, (R) of dimension

d =n® — dim (Sym,, (R)) =n* — n(n;— D = n(nZ— 1). n

Examples 1.2.10. (Gramannians and Stiefel manifolds) We write Grg(R™) =
Gry,, for the set of all k£-dimensional linear subspaces of R™. We want to endow
this set with a manifold structure.

First we consider the set

Sk = {(v1,...,0) € (R™)*: 01, ..., v lin. indep.}.

This is a subset of (R™)* = R"®. The linear independence of a k-tuple of
vectors (v1,...,v) is equivalent to the matrix V := (vi,...,v;) € M, x(R)
having maximal rank k. This in turn means that there exists a k-element subset
I C{1,...,n} such that the matrix

7

(obtained from erasing the rows of V' corresponding to numbers i ¢ I) is
invertible. We conclude that

Sem = J{V € My, 1 (R): det(V7) # 0}

is a union of open subsets, hence an open subset of M, ,(R). Here we use that
the map V + det(V) is continuous, which is clear from the fact that it is a
polynomial in entries of V. As an open subset, Sj, carries a natural manifold
structure of dimension kn. It is called the Stiefel manifold of rank k in R™.
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We have a surjective map
S:Skn — Grip, (v1,...,05) — span(vy,...,vx),

and two matrices X,Y € Sy, satisfy S(X) = S(Y) if and only if their columns
span the same subspace of R™, which means that there exists some g € GLg(R)
with ¥ = Xg (Exercise 1.19(a)). We now endow Gry, with the quotient
topology, turning S into a topological quotient map. This means that a subset
O C Gry, is open if and only if S71(O) is open in Sk, .

From this construction it is not so easy to see directly that the topology on
Gry,p, is Hausdorff. To see this, we recall the Gram—-Schmidt process converting
a linearly independent k-tuple (vi,...,v;) € Sk, into an orthonormal k-tuple
(w1,...,wg). It is defined inductively by solving the equations

%
V; = Z(’UZ‘, wj>wj
j=1

inductively for wy, ws,...,w. Let T,F(R) C GL,(R) denote the group of upper
triangular matrices with positive diagonals and Fj, C Sk, the subset of all
orthonormal k-tuples (the set of k-frames). Then the Gram—Schmidt argument
shows that the multiplication map

Fin x TH(R) — Sk,  (W,b) — Wb
is a homeomorphism. This implies that
Grk,n = Sk,n/ ~ = (Fk,n X B)/ ~ = sz,n/ ~

where W ~ W' in Fj, holds if and only if there is an orthogonal matrix
g € Ox(R) with W’ = Wyqg (Exercise 1.19(b)). Next we observe that the
metric on Fy,, inherited from the Euclidean metric on the row space (RF)" is
invariant under right multiplication with orthogonal matrices. For two elements
W, W' € Fy,, with S(W) # S(W') we therefore have

g = dist(W - Ox(R), W' - Ox(R)) = inf{d(Wg,W'g'): 9,4 € Ox(R)} >0

(Exercise 1.21) because the sets W - Og(R) and W’ - Of(R) are compact and
disjoint. Now the &/2-neighborhoods of these sets are open disjoint ~-saturated
sets, so that their images in Gry, are disjoint open subsets separating S(W)
and S(W'). This proves that Gry,, is a Hausdorff space.

For each k-element subset I C {1,...,n} we observe that
Ur = {S(X) S Grkm:det(XI) 75 0}

is open because S~'(U) is open in Sk,. We write I’ := {1,...,n}\ I and
define a map
or:Ur — My x(R), S(X)— XpX; 1.
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Since X; € GLg(R) is invertible and X/ can be any k x (n — k)-matrix, the
map ¢y is surjective. It is also injective because X I/Xfl = Yprl implies
that Y, = XpX;'Yr, but we also have Y7 = X;X;'Y;, which leads to
Y = XX; Y7, and hence to S(X) = S(Y). This shows that ¢; is bijective. It
is continuous because ;o S is continuous (as a consequence of the definition of
the quotient topology; Exercise 1.22). We have

vr'(Z2) =8(2),

where Z € M, (R) is the unique matrix with Z; = Ej (the identity matrix)
and Zp = Z. Since S is continuous, it follows that gol_l is also continuous.
For two k-element subsets I, J we have

w007 HZ) = 9s(S(2)) = ZpZ7Y,

which defines a smooth map on ¢;(U;y NUy). Therefore the charts (5, Ur)
form a smooth atlas on Gry, ,, turning it into a smooth manifold of dimension
k(n — k), called the Graffmannian or Grafimann manifold of k-dimensional
subspaces of R™. [

Examples 1.2.11. (Projective space) As an important special case of the
preceding example, we obtain the real projective space

P(R") := Gr; (R")

of all 1-dimensional subspaces of R™. It is a smooth manifold of dimension n—1.
For n = 2, this space is called the projective line and for n = 3 it is called the
projective plane (it is a 2-dimensional manifold, thus also called a surface).

Let us write [z] := [z1,...,2,] := Rz for elements of P, (R). We use the
terminology from Example 1.2.10. Then

and the chart ¢;:U; — M,,_11 = R™~! is given by

QOZ([I]) = (:L‘l/l‘i, e ,Iifl/xi,l‘zqu/l‘i, e 7xn/$7,)

These charts are called homogeneous coordinates. They play a fundamental role
in projective geometry.

In this case S1, = R™\ {0} and S(z) = Rz. The set F}, of orthonormal
bases of 1-dimensional subspaces of R™ can be identified with S™, and we have
O1(R) = {£1}. This leads to the quotient map

¢:S" =Fy, — Gry, =PR"), ¢(z)=Rz

with the fibers {+x}. Therefore P(R™) is obtained from the sphere by identifying
antipodal points. [ ]
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Remark 1.2.12. (The gluing picture) Let M be an n-dimensional manifold
with an atlas A = (¢;,U;)ica and V; := ¢;(U;) the corresponding open subsets
of R™.

Note that we have used the topology of M to define the notion of a chart.
We now explain how the topological space M can be reconstructed from the
atlas A. We first consider the set

S:= | J{i} x Vi,
icl
which we consider as the disjoint union of the open subset V; C R™. We endow
S with the topology of the disjoint sum, i.e., a subset O C S is open if and only
if all its intersections with the subsets {i} x V; =2 V; are open.
We now consider the surjective map

®:8 — M, (i,2)— @; ' (x).

On each subset {i} x V; this map is a homeomorphism onto U;. Hence & is
continuous, surjective and open, which means that it is a quotient map, i.e., that
the topology on M coincides with the quotient topology on S/ ~, where

(i,z) ~ (y) <=  wile;'(y) ==

In this sense we can think of M as obtained by gluing of the patches U; =
Vi, where z; € ;(U;;) CV; is identified with the point z; = gpj(goi_l(:vi)) cV;m

Example 1.2.13. (a) We discuss an example of a “non-Hausdorff manifold”.
We endow the set S := ({1} x R)U ({2} x R) with the disjoint sum topology and
define an equivalence relation on S by

(Lx) ~(2,y) <= x=y#0,

so that all classes except [1,0] and [2,0] contain 2 points. The topological
quotient space

M:=8/ ~={[1,z):z € RYU{[2,0]} = {[2,2]:2 € R} U {[L,0]}

is the union of a real line with an extra point, but the two points [1,0] and [2,0]
have no disjoint open neighborhoods.
The subsets U; := {[j,z]:x € R}, j =1,2, of M are open, and the maps

QOjZ UJ — R, [],ZIZ'] = T,

are homeomorphism defining a smooth atlas on M (Exercise 1.16).

(b) We discuss an example of a 1-dimensional smooth manifold whose
underlying set is R?. Let M := R? and for y € R we put U, := R x {y}
(the horizontal lines). Then M is a disjoint union of the subsets U, , and we
define a topology on M by declaring O C M to be open if and only if all
intersections O NU, are open, when considered as subsets of R. Then the map
vy Uy — R, (x,y) — = form a smooth 1-dimensional atlas of M .

Since all subsets U, are open and connected, these sets form the connected
components of M. As there are uncountably many, the topology of M does not
have a countable basis. ]
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Example 1.2.14. We discuss an example of a manifold which is not separable.
We define a new topology on R? by defining O C R? to be open if and only if
for each y € R the set

OV :={x € R:(x,y) € O}

is open in R. This defines a topology on R? for which all sets U, := R x {y}
are open and the maps

Soy:Uy_)Ru (IE,y)f—)l’

are homeomorphisms. We this obtain a smooth 1-dimensional manifold structure
on R? for which is has unbountably many connected components, namely the
subsets U, , y € R. [ ]

Remark 1.2.15. (Coordinates versus parameterizations)

(a) Let (¢,U) be an n-dimensional chart of the smooth manifold M.
Then ¢:U — R™ has n components ¢, ..., ¢, which we consider as coordinate
functions on U. Sometimes it is convenient to write x; := @;(p) for p € U, so
that (z1(p),...,xn(p)) are the coordinates of p € U w.r.t. the chart (p,U).

If we have another chart (¢, V) of M with UNV # @, then any p € UNV
has a second tuple of coordinates, x}(p) := 1;(p), given by the components of
1. Now the change of coordinates is given by

?(@) = (e~ (@) and (') = o (@).
In this sense the maps 1) o ¢~ ! and @ 01 ~! describe how we translate between
the x-coordinates and the x’-coordinates.

(b) Instead of putting the focus on coordinates, which are functions on open
subsets of the manifold, one can also parameterize open subset of M . This is done
by maps ¢:V — M, where V is an open subset of some R™ and (¢!, (V)
is a chart of M. Then the point p € M corresponding to the parameter values
(1,...,2,) €V is p= p(z). In this picture the lines

t— 90('1’117'"7xi—17t7xi+17"'7xn)

are curves on M , called the parameter lines. ]

New manifolds from old ones

Definition I.2.16.  (Open subsets are manifolds) Let M be a smooth manifold
and N C M an open subset. Then N carries a natural smooth manifold
structure.

Let A= (¢;,U;)icr be an atlas of M. Then V; := U;NN and ¢; := ¢; |y,
define a smooth atlas B := (¢, V;)ier of N (Exercise). n
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Definition 1.2.17.  (Products of manifolds) Let M and N be smooth mani-
folds of dimensions d, resp., k and

M x N ={(m,n):m e M,ne N}

the product set, which we endow with the product topology.

We show that M x N carries a natural structure of a smooth
(d + k)-dimensional manifold. Let A = (¢;,U;)ier be an atlas of M and
B = (¢,V;)jes an atlas of N. Then the product sets W;; := U; x V; are
open in M x N and the maps

Yij =i X YU x Vy = R RF 2 R (2, 9) = (pi(), 95 (y))

are homeomorphisms onto open subsets of R4t*. On ~;/ i (Wi; N Wijr) we have

Yig 0 vy = (wio@it) x (Wi 0 b5,

which is a smooth map. Therefore (@i, Wi;)@ jyerxs is a smooth atlas on
M x N. |

1.3. Smooth maps

Definition I.3.1. Let M and N be smooth manifolds.

(a) A continuous map f: M — N is called smooth, if for each chart (p,U)
of M and each chart (¢, V) of N the map

Yo fop lip(fTHV)NU) — (V)

is smooth. Note that o(f~1(V)NU) is open because f is continuous.

We write C*°(M, N) for the set of smooth maps M — N.

(b) Amap f: M — N is called a diffeomorphism, or a smooth isomorphism,
if there exists a smooth map ¢g: N — M with

fog=idy and gof=idy.

This condition obviously is equivalent to f being bijective and its inverse f—!
being a smooth map.
We write Diff(M) for the set of all diffeomorphisms of M. n

Lemma 1.3.2. Compositions of smooth maps are smooth. In particular, the
set Diff (M) is a group (with respect to composition) for each smooth manifold
M .*

*  For each manifold M the identity idy;:M—M is a smooth map, so that this lemma leads
to the “category of smooth manifolds”. The objects of this category are smooth manifolds
and the morphisms are the smooth maps. In the following we shall use consistently category

theoretical language, but we won’t go into the formal details of category theory.
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Proof. Let f:M — N and g:N — L be smooth maps. Pick charts (¢, U)
of M and (v,W) of L. To see that the map yo (go f)o¢~! is smooth on
o((go f)~1(W)), we have to show that each element z = ¢(p) in this set has
a neighborhood on which it is smooth. Let ¢ := f(p) and note that g(q) € W.
We choose a chart (¢,V) of N with ¢ € V. We then have

vyo(goflop t=(yogoy ") o(ofop )

on the open neighborhood go(f_l(V) N(go f)_l(W)) of x. Since compositions
of smooth maps on open domains in R™ are smooth by the Chain Rule (The-
orem 1.1.3), yo (go f) o™t is smooth on ¢((go f)~1(W)). This proves that
go f: M — L is a smooth map. [ |

Remark 1.3.3. (a) If I C R is an open interval, then a smooth map ~: I — M
is called a smooth curve.

For a not necessarily open interval I C R, a map ~:I — R" is called
smooth if all derivatives (*) exist in all points of I and define continuous
functions I — R"™. Based on this generalization of smoothness for curves, a
curve v: I — M is said to be smooth, if for each chart (¢,U) of M the curves

poyiy '(U)—R"

are smooth.

A curve v:[a,b] — M is called piecewise smooth if ~ is continuous and
there exists a subdivision 29 = a < 21 < ...,< oy = b such that v|j, ;,,,] is
smooth for ¢ =0,..., N — 1.

(b) Smoothness of maps f: M — R™ can be checked more easily. Since the
identity is a chart of R™, the smoothness condition simply means that for each
chart (¢,U) of M the map

foe hip(fTH(V)NU) —R"

is smooth.

(c) If U is an open subset of R™, then a map f:U — M to a smooth
m-dimensional manifold M is smooth if and only if for each chart (¢, V) of M
the map

pofif '(V)—R"
is smooth.

(d) Any chart (¢,U) of a smooth n-dimensional manifold M defines a
diffecomorphism U — ¢(U) C R"™, when U is endowed with the canonical
manifold structure as an open subset of M .

In fact, by definition, we may use (¢,U) as an atlas of U. Then the
smoothness of ¢ is equivalent to the smoothness of the map po ! = id, ),

which is trivial. Likewise, the smoothness of ¢ ~1: p(U) — U is equivalent to the
smoothness of ¢ o @™ =id,. n
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Lie groups

In the context of smooth manifolds, the natural class of groups are those
endowed with a manifold structure compatible with the group structure.

Definition 1.3.4. A Lie group is a group G, endowed with the structure of a
smooth manifold, such that the group operations

mg:GxG—G, (r,y)—2zy and ng:G—G, x>z *

are smooth. ]

We shall see later that the requirement of 7ng being smooth is redundant
(Exercise 11.12).

Examples 1.3.5. (a) We consider the additive group G := (R",+), endowed
with the natural n-dimensional manifold structure. A corresponding chart is
given by (idg~,RR"™), which shows that the corresponding product manifold struc-
ture on R™ xR™ is given by the chart (idg» X idgn, R"” xR"™) = (idgzn, R?"), hence
coincides with the natural manifold structure on R?™. Therefore the smoothness
of addition and inversion in G follows from the smoothness of the maps

R - R" (2,y)+—2x+y and R"™ -R" oz —z.

(b) Next we consider the group G := GL,,(R) of invertible (nxn)-matrices.
If det: M,,(R) — R denotes the determinant function

A = (a;j) — det(A) = Z sgn(0)a1,o(1) " An,o(n)s
oES,

then det is a polynomial, hence in particular continuous, and therefore GL,, (R) =
det"}(R*) is an open subset of M,(R) = R™ . Hence G carries a natural
manifold structure.

We claim that G is a Lie group. The smoothness of the multiplication map
follows directly from the smoothness of the bilinear multiplication map

My (R) x Mn(R) — Mp(R), (A, B) — (Z aikbkj> | ,

1,7=1,...,n
k=1 J

which is given in each component by a polynomial function in the 2n? variables
a;; and b;; (cf. Exercise 1.13).
The smoothness of the inversion map follows from Cramer’s Rule

L1

= ——(bij i = (—1)"" ji )
detg(bj)’ bJ (-1) det(Ga)
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where G;; € M,,_1(R) is the matrix obtained by erasing the i-th row and the
7-th column in g.
(¢) The circle group: We have already seen how to endow the circle

Sti={(z,y) e R%:z? +4? =1}
with a manifold structure (Example 1.2.4). Identifying it with the unit circle
T:={ze€C:|z| =1}

in C = R?, it also inherits a group structure, given by

1

(z,y) - (2", y) = (za’ —yy' 2y +2'y) and (z,y)7" = (2, —y).

With these explicit formulas, it is easy to verify that T is a Lie group (Exer-
cise 1.6).

(d) (The n-dimensional torus) We have already seen how to endow spheres
with a manifold structure. Therefore we do already have a natural manifold
structure on the n-dimensional torus

T := (SY)".
The corresponding direct product group structure

(th . 7tn)(51; ce ,Sn) = (tlSl, ce ,tnSn)

turns T" into a Lie group (Exercise 1.9). u

Notes on Chapter 1

The notion of a smooth manifold is more subtle than one may think on
the surface. One of these subtleties arises from the fact that a topological space
may carry different smooth manifold structures which are not diffeomorphic.
Important examples of low dimension are the 7-sphere S” and R*. Actually
4 is the only dimension n for which R™ carries two non-diffeomorphic smooth
structures. At this point it is instructive to observe that two smooth structures
might be diffeomorphic without having the same maximal atlas: The charts
(p,R) and (1,R) on R given by

ox)=2 and (z)=2>

define two different smooth manifold structures R, and R, but the map

v:Ry = Ry, -z
is a diffeomorphism.

Later we shall see that there are also purely topological subtleties due to
the fact that the topology might be “too large”. The regularity assumption which
is needed in many situations is the paracompactness of the underlying Hausdorff
space.
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Exercises for Chapter 1

Exercise 1.1. Let M := R, endowed with its standard topology. Show that
C* -compatibility of 1-dimensional charts is not an equivalence relation. Hint:
Consider the two charts from Remark 1.2.2(b) and the chart ({, W) with {(z) = =
and W =|1,2[. n

Exercise I.2. Show that each n-dimensional C*-atlas is contained in a unique
maximal one. Hint: Add all n-dimensional charts which are C*-compatible with

the atlas. [ ]
Exercise 1.3. Let If M;, « =1,...,n, be smooth manifolds of dimension d;.
Show that the product space M := M; x ... x M, carries the structure of a
(dy + ...+ d,)-dimensional manifold. ]

Exercise I.4. (Relaxation of the smoothness definition) Let M and N be
smooth manifolds. Show that a map f: M — N is smooth if and only if for each
point x € M there exists a chart (p,U) of M with x € U and a chart (¢, V)
of N with f(x) € V' such that the map

Yo fop lip(f~HV)) = (V)
is smooth. [ |

Exercise 1.5. Show that the set A := C°°(M,R) of smooth real-valued func-
tions on M is a real algebra. If g € A is non-zero and U := g~ }(R*), then
5 € O=(U,R). »

Exercise 1.6. Show that the natural group structure on T = S! turns it into
a Lie group. [ ]

Exercise 1.7. Let fi: M; — N; and fo: Ms — Ny be smooth maps. Show
that the map

J1 X fa: My x My — Ny x No,  (x,y) — (fi(z), f2(y))

is smooth. ]

Exercise 1.8. Let fi: M — Ny and fo: M — N5 be smooth maps. Show that
the map

(f1,f2): M — N1 x Na,  z— (f1(), fa(2))

is smooth. ]



22 I. Smooth manifolds June 2, 2010

Exercise 1.9. Let G1,...,G, be Lie groups and
G:=G1 x...xGy,

endowed with the direct product group structure

91y 90)(915 -, Gn) == (91915 - -, GnGn,)

and the product manifold structure. Show that G is a Lie group. |

Exercise 1.10. (a) Verify the details in Example 1.5, where we describe an
atlas of S™ by stereographic projections.

(b) Show that the two atlasses of S™ constructed in Example 1.5 and the
atlas obtained from the realization of S™ as a quadric in R™*! define the same
differentiable structure. ]

Exercise 1.11. Let N be an open subset of the smooth manifold M. Show
that if A = (p;,U;)icr is a smooth atlas of M, V; ;= U; NN and ; := ¢; |v;,
then B := (15, V;)ics is a smooth atlas of N. ]

Exercise 1.12. Smoothness is a local property: Show that a map f: M — N
between smooth manifolds is smooth if and only if for each p € M there is an
open neighborhood U such that f|y is smooth. [ ]

Exercise 1.13. Let dy,...,d; € N and
B:R% x ... x R* — RY

be a k-linear map. Show that (3 is smooth with

k
dﬂ(l‘l, . ,.CCk,)(hl, ceey hk) = Zﬁ(.ﬁﬂl, ey Ti—1, hj,.fl?j+1, ... ,:L‘k). u
j=1
Exercise 1.14. Let Vi,..., Vi and V be finite-dimensional real vector space

and
B:Vix...xV,—=V

be a k-linear map. Show that 3 is smooth with

k
dﬁ(l’l, Ce ,:Ek)(hl, .. ,hk) = Zﬁ(wl, . ,xj_l,hj,:ij, . ,:L'k). | |

j=1

Exercise 1.15. Let V and W be finite-dimensional real vector spaces and
B:V xV — W a bilinear map. Show that G := W x V is a Lie group with
respect to

(w,v)(w',v") == (w+w + B(v,v"),v + ). L
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Exercise 1.16. Show that the space M defined in Example 1.2.13 is not Haus-
dorff, but that the two maps ¢;([j,z]) :== =, j = 1,2, define a smooth atlas of
M. ]

Exercise I.17. A map f: X — Y between topological spaces is called a quo-
tient map if a subset O C Y is open if and only if f~1(O) is open. Show
that:

(1) If f1: X7 — Y7 and fo: Xo — Y5 are open quotient maps, then the cartesian
product

J1 X fa: Xi x Xo = Y1 xYa, (21,72) = (fi(z1), f2(z2)

is a quotient map.

(2) If f: X —Y isa quotient map and we define on X an equivalence relation
by x ~y if f(z) = f(y), then the map f: X/ ~ — Y is a homeomorphism
if X/ ~ is endowed with the qotient topology.

(3) The map ¢:R™ —T", z+ (e*™),;_1 ., is a quotient map.

(4) The map ¢:R"/Z" — T", [z]+— (eQ’Tixj)j:L_n’n is a homeomorphism. =

Exercise 1.18. Let M be a compact smooth manifold containing at least two
points. Then each atlas of M contains at least two charts. In particular the
atlas of S obtained from stereographic projections is minimal. |

Exercise 1.19. (a) Let K be a field and V = (vq,...,v), W = (w1, ..., wg) €
(K™)* 22 M,, »(K) be two linearly independent k-tuples of elements of the vector
space K™. Show that

span(vy, ..., vx) = span(wy, . .., W)

is equivalent to the existence of some g € GLi(K) with W = Vg in M, x(K).
(b) If K=R and V and W are orthonormal k-tuples, then

span(vy, ..., v;) = span(wy, ..., W)
is equivalent to the existence of some g € Ox(R) with W = Vg in M, x(R). =
Exercise 1.20. (The Iwasawa decomposition of GL,(R)) Let
T (R) € GLy(R)

denote the subgroup of upper triangular matrices with positive diagonal entries.
Show that the multiplication map

p: 0 (R) x TiF (R) — GL,(R), (a,b) — ab

is a homeomorphism. Hint: Interprete invertible (n x n)-matrices as bases of
R™. Use the Gram—Schmidt algorithm to see that pu is surjective and that is has
a continuous inverse map. [ ]
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Exercise 1.21. Let (M,d) be a metric space.
(a) For each non-empty subset X C M the function

dx:M — R, zw— inf{d(z,z):z € X}

is a continuous function satisfying X = {z € M:dx(z) = 0}. The function dx
measures the distance from the subset X .
(b) For two subsets X,Y C M we define their distance by

dist(X,Y) :=inf{d(z,y):z € X,y € Y} =inf{dx(y):y € Y}.
Show that if Y is compact and X closed with XNY = @, then dist(X,Y) > 0.m

Exercise 1.22. Let X and Y be topological spaces and ¢: X — Y a quotient
map, i.e., ¢ is surjective and O CY is open if and only if ¢71(O) is open in X .
Show that a map f:Y — Z (Z a topological space) is continuous if and only if
the map foq: X — Z is continuous. [ ]

Exercise 1.23. Let M and B be smooth manifolds. A smooth map 7: M — B
is said to defined a (locally trivial) fiber bundle with typical fiber F' over the base
manifold B if each by € B has an open neighborhood U for which there exists
a diffeomorphism

o:7 (U) = U x F,
satisfying pry op = 7, where pr;;: U X F' — U, (u, f) — w is the projection onto
the first factor. Then the pair (¢, U) is called a bundle chart.

Show that:
(1) If (p,U), (1, V) are bundle charts, then

p oy, f) = (b, gou (b)(f))

holds for a function gey: U NV — Diff(F).
(2) If (v,W) is another bundle chart, then

9op =1idp and  goygyy =9gpy on UNVNW.

Exercise I.24. Show that a function f:R — R is a diffeomorphism if and only
if either

(1) f'>0 and lim, 4 f(x)
(2) f' <0 and lim, 4 f(z)

+oo.
Foo. ]

Exercise 1.25. Let B € GL,,(R) be an invertible matrix which is symmetric
or skew-symmetric. Show that:

(1) G:={g€GL,(R):g" Bg = B} is a subgroup of GL, (R).
(2) If B= BT, then B is a regular value of the smooth function

f:M,(R) — Sym, (R), s 2'Bz.
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Hint: df(z)y = y' Bz + 2" By = z can be solved with the Ansatz y :=
1.,.p-1

stB™ 2.

5T

If B=—-B",then B is a regular value of the smooth function
f: M, (R) — Skew,(R) := {A € M,(R): AT = —A}, z+ z' Bz,

G is a submanifold of M, (R).
For B =1, ,:=diag(1l,...,1,—1,...,—1) the indefinite orthogonal group
—— ————

p q
0p,4R) :={g € GLn(R)3gTIp,qg =Ipq}

is a submanifold on M,,(R) of dimension "("2_1) .

For J = (_OI é) € My (M, (R)) = My, (R) the symplectic group

Sy, (R) :={g € GL2,(R): g Jg = J}

is a submanifold on My, (R) of dimension n(2n + 1). u
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II. Tangent vectors and tangent maps

The real strength of the theory of smooth manifolds is due to the fact that
it permits to analyze differentiable structures in terms of their derivatives. To
model these derivatives appropriately, we introduce the tangent bundle T'M of
a smooth manifold, tangent maps of smooth maps and smooth vector fields.

I1.1. Tangent vectors and tangent bundle of a manifold

To understand the idea behind tangent vectors and the tangent bundle of a
manifold, we first take a closer look at the special case of an open subset U C R".

Remark I1.1.1. (a) We think of a tangent vector in p € U as a vector v € R"
attached to the point p. In particular, we distinguish tangent vectors attached
to different points. A good way to visualize this is to think of v as an arrow
starting in p. In this sense we write

T,(U) := {p} x R"

for the set of all tangent vectors in p, the tangent space in p. It carries a natural
real vector space structure, given by

(p,v) + (p,w) := (p,v+w) and A(p,v) := (p, \v)

for v,w € R™ and A\ € R.
The collection of all tangent vectors, the tangent bundle, is denoted

TU):= U T,(U) ={(p,v):peU,veR"} 2U x R".
peU

(b) If f:U — V is a C'-map between open subsets U C R™ and V C R™,
then the directional derivatives permit us to “extend” f to tangent vectors by
its tangent map

T(f):T(U)=UxR" > TV =V xR™, (p,v)— (f(p),df (p)v).
For each p € U the map T'f restricts to a linear map

(2.1.1) T, (f):To(U) = Tr(V),  (p,v) = (f(p), df (p)v)-

The main difference to the map df is the book keeping; here we keep track of
what happens to the point p and the tangent vector v.
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If U CR™, VCR™ and W C R? are open subsets and f:U — V and
g:V — W are C'-maps, then the Chain Rule implies that

T(go f)(p,v) = (g(f(p))d(go f)(p)v) = (9(f(p)),dg(f(p))df (p)v)
= Ty (9) o Tp(f)v,

so that, in terms of tangent maps, the Chain Rule takes the simple form
(2.1.2) T(go f)=T(g)oT(f).

We clearly have T'(idy) = idpy and for a diffeomorphism f we thus
obtain from the Chain Rule T'(f~1) = T(f)~!.

(c) As the terminology suggests, tangent vectors arise as tangent vectors
of curves. If 4:]a,b[— U is a Cl-curve, then its tangent map satisfies

T(y)(t,v) = (v(#), dy(t)v) = (v(t),v-'(¢)) on  T(la,b]) =a,b[xR,

and in particular
T(y)(¢1) = (v(#),7' ()

is the tangent vector in ~(t) to the curve ~. u

We now turn to the definition of a tangent vector of a smooth manifold.
The subtle point of this definition is that tangent vectors can only be defined
indirectly. The most direct way is to describe them in terms of tangent vector
in local charts and then identify those tangent vectors in the charts which define
the same tangent vector of M .

Definition II.1.2. Let M be an n-dimensional C!-manifold.

For each chart (p,U) of M, we write elements of the tangent bundle
T(p(U)) as pairs (z,v),,v) to keep track of the chart, so that two tangent
vectors corresponding to different charts can never be equal.

We now introduce an equivalence relation on the disjoint union of all
tangent bundles corresponding to charts by

(mv U)(cp,U) ~ (yv w)(w,V) = Y= w(@_l(w))a w = d(w © (p_l)(m)v
& (yuw)=THop ) (z,0).

That this is indeed an equivalence relation follows from the Chain Rule for
Tangent maps. In fact, the symmetry follows from

(2, 0) (o) ~ W W)y < (Yw)=T(Yop ') (z,v)

& (z,0)=TWop ") y,w)

& (z,0) =T(eoy ") (y,w)
(

S (yw) vy ~ (2,0) o0
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and the transitivity from

(,) o0y ~ (W)@ v)y,  (YW) vy ~ (2,8),w)
= (y,w) =T(Wop ") (z,v), (z,u)=T(yop"")(y,w)
= (z,u) =T(yoyp ™ NT(pop ) (z,v) =T(yop™ oo™ t)(x,v)
=T(yop ) (z,v)
= (2,0) (p,0) ~ (2,1) ()

An equivalence class [(z,v)(,,y] is called a tangent vector in p € M if
o(p) = x. We write T,,(M) for the set of all tangent vectors in p, called the
tangent space of M in p.

Fix a point p € M. To get a better picture of the tangent space in p, we
fix a chart (p,U) with p € U and put x := ¢(p). Then each element of T, (M)
can be written in a unique fashion as [(z,v)(, )] for some v € R™.

For vy,ve, w1, wy € R™, A € R and any other chart (¢,V) of M with

Y(p) =y we have

(@, v1)(p,0) ~ (Y w1) vy, (T,02)(p,u) ~ (Y w2)(p,v)
= (2,01 + M) (p0) ~ (Y w1 + Mwg) (p vy

We thus obtain on T,(M) a well-defined vector space structure by

[(mvvl)(cp,U)] + [(xav2)(<p,U)] = [(x7'Ul + U2)(<p,U)]

and
A[(xv v)(«p,U)] = [(xv )‘U)(cp,U)]

(Exercise I1.4). It is immediately clear from this definition, that the map
R™ = Tp(M), v = [(2,0)0)]

is an isomorphism of real vector spaces.

The disjoint union T'M := {J,c5,Tp(M) is called the tangent bundle of M
and the map mp: TM — M mapping each element of T),(M) to p is called the
canonical projection of the tangent bundle. [ ]

Remark I1.1.3. If U is an open subset of R” and (yy: U — R" is the inclusion
map, then we can use the chart (vy,U) to describe tangent vectors to U. The
map

T(U) — U X an [(:L’,’U)(LU’U)] - (iL',U)

is bijective, and we recover the picture from Remark II.1.1. In the following we
shall always identify TU with U x R™, which means that we simply write (x,v)
instead of [(z,v)q, )] u

We shall see later how to introduce a manifold structure on T'(M). First
we extend the concept of a tangent map to the manifold level.
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Definition 11.1.4.  (Tangent maps) Let M and N be smooth manifolds and
f:M — N asmooth map. We want to define a tangent map T'f: TM — TN in
such a way that it restricts for each p € M to a linear map

Tp(f): Tp(M) — Ty () (N)

which in the special case of open subsets of R™ coincides with the map in (2.1.1).

This is done as follows. For p € M we choose a chart (p,U) of M
with p € U and a chart (¢,V) of N with f(p) € V. For [(z,v),1)] =
[(y,v")(pr,un)] € Tp(M) we then have

T(ofop ) (z,v)=T(Wofol(e) ")y v)
because
(y,0') = T(¢" 0 p™H)(z,0).
We therefore obtain a well-defined linear map

To(f): Tp(M) = Ty (N), (@, 0) 0] = [(T@ o foe™)(@,0)) 4]

This map is called the tangent map of f in p. We also combine all these tangent
maps T,(f) to a map

T(f):T(M)—T(N) with  T(f)|r,m) =Tp(f), peM. .
Remark I1.1.5. (a) For the special case where f = p:U — ¢o(U) C R" is a
chart of M, the definition of the tangent map leads to

Tp (o) (@, ) (p,n] = [(#, V) (1), 1)] = (2, V),
where the last equality is our identification of T'(U) with U xR™ (Remark I1.1.3).
In particular, we see that the maps
Tp(p): Tp(M) = R", pel,

are linear isomorphisms. From now on we shall never need the clumsy notation
[(z,v)(p,0r)] for tangent vectors because we can use the maps T,(¢) instead.

We may use this observation to write for a smooth map f: M — N the
tangent map T}, (f): T,,(M) — Tf(,)(M) in the form

(2.1.3) Tp(f) = Ty ()~ 0 Ty (o fop™) o Ty(e),

which is a direct reformulation of the definition.

(b) Suppose that M and N are finite-dimensional real vector spaces of
dimensions m and n, and kg: M — R™, kg: N — R™ are the corresponding
coordinate maps obtained from choosing bases B in M and C' in N. Then any
linear map f: M — N is a smooth map, and

licOfOlQEliRn%Rm, z—[f]G =

is the linear map given by the matrix [f]§ describing f with respect to the bases
B and C'. The formula

f=r5'o(kcoforp')okp

reconstructs the map f from the corresponding matrix (compare with (2.1.3).m
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Definition I1.1.6. If V is a finite-dimensional vector space, then we identify
its tangent bundle TV with the product set V x V', where the canonical projec-
tion 7y : TV — V corresponds to the projection onto the first factor.” For each
smooth V -valued map f: M — V', the tangent map

TfHTM TV =V xV

now has two components.

For the special case where M is an open subset of R", we have T f(x,v) =
(f(z),df (z)v), which motivates the notation df for the second component of
Tf. In this sense we have

Tf(v)=(f(x),df(x)v) for wve&T,(M). u

Lemma II.1.7. (Chain Rule for tangent maps) For smooth maps f: M — N
and g: N — L we have
T(go f)=T(g)oT(f)-

Proof.  We recall from Lemma 1.3.2 that go f: M — L is a smooth map, so
that T'(g o f) is defined.

Let p € M and pick charts (p,U) of M with p € U, (¢,V) of N with
f(p) € V and (v,W) of L with g(f(p)) € W. We then obtain with Remarks
I1.1.1 and II.1.5

Tp(go f) = Tyson (V) Tpy(yogo foe )TL()

(2.1.2) _ _ _
=" Totron () Turn (Yo g o™ )Ty (o fo o™ )TH()

P2 T (T () T (DT ()T () T (2)

=Ty (9)Tp(f)-

Since p was arbitrary, this implies the lemma. [ ]

So far we only considered the tangent bundle T'(M) of a smooth manifold
M as a set, but this set also carries a natural topology and a smooth manifold
structure.

Definition II.1.8. (Manifold structure on T'(M)) Let M be a smooth
manifold. First we introduce a topology on T'(M).
For each chart (p,U) of M we have a tangent map

T(p):T(U) = T(p(U)) = ¢U) x R",

where we consider T(U) = |J, .y Tp(M) as a subset of T(M). We define a

peU =P
topology on T (M) by declaring a subset O C T(M) to be open if for each

* Infact, if p:V—R" is a linear isomorphism, then its tangent map T:TV —T(R™)=R" xR"

also is a linear isomorphism.
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chart (¢,U) of M the set T(p)(ONT(U)) is an open subset of T(p(U)). It is
easy to see that this defines indeed a Hausdorff topology on T'(M) for which all
the subsets T'(U) are open and the maps T'(¢) are homeomorphisms onto open
subsets of R?" (Exercise IL.1).

Since for two charts (¢, U), (¢,V) of M the map
T(poy™) =T(p) o T(¥) T ((V)) — T((V))
is smooth, for each atlas A of M the collection (T'(v),T(U))(,,v)ec.4 is a smooth
atlas of T (M) defining on T'(M) the structure of a smooth manifold. n

Lemma I1.1.9. If f: M — N is a smooth map, then its tangent map T(f) is
smooth.

Proof. Let p € M and choose charts (¢,U) and (¢, V) of M, resp., N with
p €U and f(p) € V. Then the map

TW)oT(f)oT(p) " =T(o fop™ ):T(p(fH(V)NU)) — T(V)

is smooth, and this implies that T'(f) is a smooth map. [

Remark I1.1.10. For smooth manifolds My, ..., M, , the projection maps
i My X oo X My, — My, (p1y...,0n) & Di
induce a diffeomorphism
(T(m1), ..., T(mn)): T(My X -+ X M) = TMy x -+ xTM,

(Exercise IL.5). u

I1.2. Submanifolds

Definition II.2.1.  (Submanifolds) (a) Let M be a smooth n-dimensional
manifold. A subset S C M is called a d-dimensional submanifold if for each
p € M there exists a chart (¢,U) of M with p € U such that

(SM) p(UNS) = U)N (R x {0}).

A submanifold of codimension 1, i.e., dim.S = n — 1, is called a smooth hyper-
surface.

(b) As we shall see in the following lemma, the concept of an initial
submanifold is weaker: An initial submanifold of M is a subset S C M, endowed
with a smooth manifold structure, such that the inclusion map ¢5: S — M is
smooth, and, moreover, for each other smooth manifold N a map f: N — S is
smooth if and only if igo f: N — M is smooth. The latter condition means that
a map into S is smooth if and only if it is smooth, when considered as a map
into M . [ ]
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Remark I1.2.2. (a) Any discrete subset S of M is a 0-dimensional subman-
ifold.

(b) If n = dim M, any open subset S C M is an n-dimensional submani-
fold. If, conversely, S C M is an n-dimensional submanifold, then the definition
immediately shows that S is open. [

Lemma I1.2.3. Any submanifold S of a manifold M has a natural manifold
structure, turning it into an initial submanifold.

Proof. (a) We endow S with the subspace topology inherited from M , which
turns it into a Hausdorff space. For each chart (¢, U) satisfying (SM), we obtain
a d-dimensional chart

(S0|Uﬁ57UmS)

of S. For two such charts coming from (¢,U) and (¢, V'), we have

Yoo Hownvns) = (Wlvns) o (0luns) " le@nvas),

which is a smooth map onto an open subset of R?. We thus obtain a smooth
atlas on §'.

(b) To see that ig is smooth, let p € S and (¢, U) a chart satisfying (SM).
Then

poiso(plsnu)e(U) N (R x {0}) — ¢(U) CR"

is the inclusion map, hence smooth. This implies that ig is smooth.

(¢) If f: N — S is smooth, then the composition ig o f is smooth
(Lemma 1.3.2). Suppose, conversely, that ig o f is smooth. Let p € N and
choose a chart (¢,U) of M satisfying (SM) with f(p) € U. Then the map

poisofl-rw: [ (U) = (U) CR"
is smooth, but its values lie in
(U N S) = p(U) N (RY x {0}).
Therefore @ oig o f|r-1(y) is also smooth as a map into R?, which means that
eluns o fli-1@n: f7HU) = o(UNS) C R
is smooth, and hence that f is smooth as a map N — §. [ ]

Remark I1.2.4. (Tangent spaces of submanifolds) From the construction of the
manifold structure on S, it follows that for each p € S and each chart (¢, U)
satisfying (SM), we may identify the tangent space T,(S) with the subspace
T,(»)"1(R?) mapped by T,(¢) onto the subspace R? of R". n
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Lemma I1.2.5. A subset S of a smooth manifold M carries at most one initial
submanifold structure, i.e., for any two smooth manifolds structures Sy, Sa on
the same set S the map :S1 — S is a diffeomorphism.

Proof. Since ig, o ¢ = 15,:51 — M 1is smooth, the map ¢ is smooth.
Likewise, we see that the inverse map ¢~ ': Sy — S; is smooth, showing that ¢
is a diffeomorphism S; — Ss. [ ]

We are now ready to prove a manifold version of the fact that inverse images
of regular values are submanifolds.

Theorem II1.2.6.  (Regular Value Theorem) Let M and N be smooth mani-
folds of dimension n, resp., m, f:M — N a smooth map, and y € f(M) such
that the linear map T, (f) is surjective for each x € f~1(y). Then S := f~1(y)
is an (n —m)-dimensional submanifold of M .

In the preceding situation, y is called a regular value of the function f,
otherwise it is called a singular value.

Proof.  We note that d :=n —m > 0 because T,(f):T,(M) = R" — R™ =
Tf(z)(N) is surjective for some z € M.

Let p € S and choose charts (p,U) of M with p € U and (¢,V) of N
with f(p) € V. Then the map

Fi=vofop lipUnf (V) —R"
is a smooth map, and for each & € F~1(¢(y)) = ¢(SNU) the linear map
Tx(F) = Tf(ac)(¢) © Tx(f) © Tcp(m)(gp_l):Rn — R™

is surjective. Therefore Proposition 1.2.8 implies the existence of an open subset
U' CoUnf~1(V)) containing ¢(p) and a diffeomorphism ~: U’ — ~v(U’) with

YU NeUNS)) = R x {0}) Ny (U").
Then (yo ¢, 1(U")) is a chart of M with
(Vo) (SN HU) =1(p(SNU)NT’) = (R? x {0}) Ny (U").

This shows that S is a d-dimensional submanifold of M . ]

Remark I1.2.7. If S C M is a submanifold, then we may identify the tangent
spaces T, (S) with the subspaces im(7),(is)) of T,,(M), where ig: S — M is the
smooth inclusion map (cf. Remark I1.2.4). If, in addition, S = f~!(y) for some
regular value y of the smooth map f: M — N, then we have

T,(S) =kerT,(f) for pes.

To verify this relation, we recall that we know already that dimS =n—m =
dim 7;,(S). On the other hand, fois =y:S — N is the constant map, so that
T,(fois) =Ty(f)oTp(is) = 0, which leads to T,,(S) C ker T},(f). Since T,(f)
is surjective by assumption, equalitiy follows by comparing dimensions. ]
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I1.3. Vector fields

Definition I1.3.1.  (a) A (smooth) vector field X on M is a smooth section
of the tangent bundle mp;: TM — M, i.e., a smooth map X: M — TM with
a0 X =idys. We write V(M) for the space of all vector fields on M .

(b) If f € C°°(M,V) is a smooth function on M with values in some
finite-dimensional vector space V and X € V(M), then we obtain a smooth
function on M via

X.fi=dfoX:M —-TM — V.
(cf. Definition I1.1.6). u

Remark I1.3.2. (a) If U is an open subset of R, then TU = U x R" with
the bundle projection

7 UXR" = U, (z,v)— x.

Therefore each smooth vector field is of the form X(z) = (z, X(z)) for some

smooth function X:U — R™, and we may thus identify V(U) with the space
C>(U,R™) of smooth R™-valued functions on U.
(b) The space V(M) carries a natural vector space structure given by

(X +Y)(p):==X(p)+Y(p), AX)(p):=IX(p)

(Exercise 11.2).
More generally, we can multiply vector fields with smooth functions

(fX)(p) == f(p)X(p), [feC(MR),X eV(M). u

The Lie bracket of vector fields

Before we turn to the Lie bracket on the space V(M) of smooth vector
fields on a manifold M , we take a closer look at the underlying concepts.

Definition I1.3.3. Let L be a real vector space L. A map [,-]: L X L — L
is called a Lie bracket if

(L1) [-,-] is bilinear, i.e., linear in each argument separately.
(L2) [z,z] =0 for = € L (the bracket is alternating).
(L3) [z, [y, z]] + [y, [z, z]] + [z, [z, y]] = O for z,y,z € L (Jacobi identity).
A vector space L, endowed with a Lie bracket [-, -], is called a Lie algebra.m
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Lemma 11.3.4. Let U CR"™ be an open subset. Then we obtain a Lie bracket
on the space C*°(U,R™) by

If,gl(x) :=dg(x)f(z) — df (x)g(z) for ze€U.

Proof. (L1) and (L2) are obvious from the definition.
To verify the Jacobi identity, we first observe that for a function of the
form F(x) := df(x)g(z), we have

(2.2.1) dF (z)v = (d*f)(2)(g(x),v) + df (z)dg(z)(v)

(cf. Definition 1.1.10 for d?f). In fact, to derive (2.2.1), we write the map F as
the composition F' = o (df,g), where

B:End(R"™) x R® = R", (p,v) — ¢(v)
is the evaluation map which is bilinear, hence smooth with

B (e, v) (¢, w) = p(w) + ¥ (v)
(Exercise 1.14). We further have

_d
= dt| =0

(d(df))(@)w = (d*f)(@)(w, ) df (z + tw, -),

so that the Chain Rule leads to

dF(z)v = dB(df (x), g(x))(d(df ) (x)v, dg(x)v)
= B(df (x),dg(x)v) + B((d* f)(z)(v, ), g())
= df (z)dg(z)v + (d*f)(2)(v, g(2)) = (d* f) () (g(x),v) + df (x)dg(z)v.

We write (2.2.1) symbolically as

dF = (d*f)(g,-) + df .dg.
We now calculate
= d(dh.g — dg.h).f — df.(dh.g — dg.h)
= d*h.(g, f) + dh.dg.f — d*qg.(h, f) — dg.dh.f
— df.dh.g + df.dg.h
= d*h.(g, f) — d?g.(h, f) + dh.dg.f — dg.dh.f
— df.dh.g + df.dg.h.

Summing all cyclic permutations and using the symmetry of second derivatives,
which implies d?f.(g, h) = d*>f.(h, g), we see that all terms cancel. n
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Remark I1.3.5. For any open subset U C R™, the map
V(U) — C®(U,R"), X —X

with X () = (2, X(z)) is a linear isomorphism. We use this map to transfer the
Lie bracket on C*°(U,R"™), defined in Lemma I1.3.4, to a Lie bracket on V(U),
determined by

(X, YT(z) = [X,Y](z) = dY ()X (z) — dX (2)Y (2). =

Our goal is to use the Lie brackets on the space V(U) and local charts to
define a Lie bracket on V(M). The following lemma will be needed to ensure
consistency in this process:

Lemma 11.3.6. Let M C R™ and N C R™ be open subsets. Further let
w: M — N be a smooth map. Suppose that the function Xn,Yn € C°(N,R™)
and Xy, Yy € C°(M,R™) are p-related in the sense that Xy o @ = dp. X
and Yn o =dp.Yyr. Then the Lie brackets are also ¢ -related:

[XN,YN] o= dgo.[XM,YM].

Proof. Taking derivatives of Yy o ¢ = dp.Y)s in the direction of Xp;(p), we
obtain with the Chain Rule and (2.2.1):

dYn (¢(p))de(p)Xa(p) = (d°¢) () (Yar (p), X1 (p)) + deo(p)dY s (p) X a1 (p),
which leads to

dYn ((p)) Xn (¢(p)) = dYn (¢(p))de(p) X (p)
= (d*0)(p) Yar (p), Xa1 (p)) + dp(p)dYas (p) X s (p),

and hence, with the symmetry of the second derivatives, to

(XN, Yn)(e(p)) = dYn (o(p)) Xn (¢(p)) — dXn (0(p)) Y (¢(p))
= (d®9)(p) Yar(p), Xar(p)) — (9) () (Xas(p), Yar(p))
+ do(p)dYn (p) X (p) — de(p)dXn (p) Y (p)
= dp(p)dYu (p) X (p) — dp(p)dXar(p)Yar (p)
= do(p)[Xar, Yar](p)-

Proposition I1.3.7.  For a vector field X € V(M) and a chart (o,U) of M,
we write X, 1= TypoXop™! for the corresponding vector field on the open subset
p(U) CR™.
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For XY € V(M), there exists a vector field [X,Y] € V(M) which is
uniquely determined by the property that for each chart (¢,U) of M we have

(2.2.2) X, Y], = [X,, Y.

Proof. If (p,U) and (¢, V) are charts of M, the vector fields X, on ¢(U)
and X, on (V) are related by

Top™)oX,=Xyopop !,
which is equivalent to
dpop™)oX,=Xyopop™,

for the corresponding R"™-valued smooth functions. Therefore Lemma I1.3.6
implies that for X,Y € V(M) we have

T(oy™)o[Xy, Yyl = [Xy, Yylotpop™,
but this relation is equivalent to
T(p)™! o[Xp, Yyl o =T(¥) ™! o[Xy, Yyl o ¥,

which is an identity of vector fields on the open subset U NV'.
Hence there exists a unique vector field [X,Y] € V(M), satisfying

[X7 Y] |U = T(gp)_l © [XL,O?YgD] "2
for each chart (p,U), ie., [X,Y], =[X,,Y,] on ¢(U). n

Proposition I1.3.8.  (V(M),[-,:]) is a Lie algebra.

Proof. Clearly (L1) and (L2) are satisfied. To verify the Jacobi identity, let
X,Y,Z € V(M) and (¢,U) be a chart of M. For the vector field J(X,Y, Z) :=
> eye [ XG 1Y, Z]] € V(M) we then obtain from the definition of the bracket and
Remark II.3.5:

J(X,Y,Z)y = J(Xp, Y, Z,) =0

because [, ] is a Lie bracket on V(¢(U)). This means that J(X,Y, Z) vanishes
on U, but since the chart (¢, U) was arbitrary, J(X,Y,Z) =0. [

We shall see later in this course that the following lemma is an extremely
important tool. If f: M — N is a smooth map, then we call two vector fields
Xy € V(M) and Xy € V(N) f-related if

(2.2.3) Xyof=TfoXn:M— TN.

Lemma II1.3.9. (Related Vector Field Lemma) Let M and N be smooth
manifolds, f: M — N a smooth map, Xn,Yn € V(N) and Xy, Yy € V(M).
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If Xy s f-related to Xy and Yy is f-related to Yy, then the Lie bracket
[Xnr, Yar] is f-related to [Xn,Yn].

Proof. @ We have to show that for each p € M we have

(X, YNI(F(P) = Tp(f)[Xar, Yarl(p)-

Let (p,U) be a chart of M with p € U and (¢,V) a chart of N with f(p) €
V. Then the vectors fields (Xa), and (Xn)y are ¢ o f o ¢~ t-related on

e(f~HV)NU):

T($ofop™ ) (Xn)e

T(pofop NT(p)oXpyop !
T(¢)oT(f) o Xnprop™!
T(p)oXnofop ' =(Xn)po(ofop ),

and the same holds for the vector fields (Yar), and (Yn )y, hence for their Lie
brackets.
Now the definition of the Lie bracket on V(N) and V(M) implies that

Ty ()T () [ X, Y] (p) = Tp(¥ o f)[ X, Yar](p)
= Tu(p) (¥ 0 f oo™ )Tp(9) [ Xas, Yu(p)
=T, (W o foo NI Xnm)e (Yar)el(e(p))
1136

XN )y (YN)p](¥(f(p)))
=Tt (V) [ XN, YN(f(p)),

and since the linear map T, (1) is injective, the assertion follows. n

Notes on Chapter I1

Vector fields and their zeros play an important role in the topology of
manifolds. To each manifold M we assoicate the maximal number a(M) =
k for which there exists smooth vector fields Xi,..., X, € V(M) which are
linearly independent in each point of M. A manifold is called parallelizable if
a(M) = dim M (which is the maximal value). Clearly a(R"™) = n, so that
R™ is parallelizable, but it is a deep theorem that the the n-sphere S™ is only
parallelizable if n =0,1,3 or 7. This in turn has important applications on the
existence of real division algebras, namely that they only exist in dimensions 1,
2, 4 or 8 (This is the famous 1 —2 —4—8 Theorem). Another important result
in topology is a(S?) = 0, i.e., each vector field on the 2-sphere has a zero (Hairy
Ball Theorem).

There is another approach to the Lie bracket of vector fields, based on the
identification of V(M) with the space of derivations of the algebra C*>°(M,R).
This requires localization arguments which in turn rest on the assumption that
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the underlying manifold is paracompact. Althought it requires less work, once
the localization machinery is available, we think that it is more natural to see
that the Lie bracket can be obtained on this early stage of the theory. Another
advantage of the direct approach is that it also works for very general infinite-
dimensional manifolds without any change.

We shall see later that the Lie bracket on the space V(M) on vector fields
is closely related to the commutator in the group Diff (M) of diffeomorphisms of
M . This fact is part of a more general correspondence in the theory of Lie groups
which associates to each Lie group G a Lie algebra L(G) given by a suitable
bracket on the tangent space T7(G) which is defined in terms of the Lie bracket
of vector fields.

Exercises for Chapter 11

Exercise II.1. Let M be a smooth manifold. We call a subset O C T'(M)
open if for each chart (p,U) of M the set T'(¢)(ONT(U)) is an open subset of
T(e(U)). Show that:

(1) This defines a topology on T'(M).

2) All subsets T'(U) are open.

3) The maps T(¢) are homeomorphisms onto open subsets of R?" = T'(R").
4)

5)

The projection my: T(M) — M is continuous.
T(M) is Hausdorff. Hint: Use (4) to separate points in different tangent
spaces by disjoint open sets. [ ]

~ I~/

Exercise I1.2. Let M be a smooth manifold. Show that
(X+Y)(p):=X({p) +Y() AX)p) :=rX({p), AeR,

defines on V(M) the structure of a real vector space.
Show also that the multiplication with smooth functions defined by

(fX)(p) == f(p)X(p)

satisfies for X, Y € V(M) and f,g € C°(M,R):

1) f(X+Y)=fX+fY.

2) FOX) =\ f(X) = (Af)X for X €R.

B) (f+9X =fX+gX.

4) f(gX) = (f9)(X). u

Exercise II.3. Let M be a smooth manifold, X,Y € V(M) and f,g €
C>°(M,R). Show that

1) X(f-9)=X(f)-9g+f X(g),ie., the map f+— X(f) is a derivation.

2 (fX)(g) =71 X(9)-

(3) [X,Y](f) = X(Y(f)) - Y(X([))- m
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Exercise I1.4. Let M be a smooth n-dimensional manifold and p € M. Show
that the operations

(2, v1) (p,0n] + [(T,02) (o,0)] = [(T,01 +v2) (p,07)]

and
)‘[('Ta U)(cp,U)] = [(I‘, )‘U)(cp,U)]

on T, (M) are well-defined and define a vector space structure for which 7,(M) =
R™. |
Exercise I1.5. For smooth manifolds My, ..., M, , the projection maps

Wi:MIX"'XMn_)MZH (plw"apn)'_)pi
induce a diffeomorphism
(T'(m1), ..., T(mp)): T(My X -+ X My) — TMy X -+ x TM,. L

Exercise I1.6. Let N and My,..., M, be a smooth manifolds. Show that a
map
fiN — My x---x M,

is smooth if and only if all its component functions f;: N — M; are smooth. =

Exercise I1.7. Let (A,-) be an associative algebra. Show that the commutator
bracket
la,b] :== ab — ba

is a Lie bracket on A. n

Exercise I1.8. Let (A,-) be a, not necessarily associative, algebra, i.e., A is
a vector space endowed with a bilinear map A x A — A, (a,b) — ab. We call a
map D € End(A) a derivation if

D(ab) = D(a)b+aD(b) forall a,be A.

Show that the set der(A) of derivations of A is a Lie subalgebra of End(A),
where the latter is endowed with the commutator bracket (cf. Exercise I1.7). m

Exercise I1.9. Let f:M — N be a smooth map between manifolds,
mry: M — M the tangent bundle projection and op: M — TM the zero
section. Show that for each smooth map f: M — N we have

WTNOTf:fOﬂ'TM and O'NOf:TfOO'M. |

Exercise I1.10. Let M be a smooth manifold. Show that:

(a) For each vector field, the map C*°(M,K) — C*(M,K),f — Lxf = X.f
is a derivation.

(b) The map V(M) — der(C*>(M,K)),X — Lx from (a) is a homomorphism
of Lie algebras.

(¢) If M is an open subset of some R", then the map X — Lx is injective. m
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Exercise I1.11. (Inverse Function Theorem for manifolds) Let f:M — N
be a smooth map and p € M such that T,(f):T,(M) — T,(N) is a linear
isomorphism. Show that there exists an open neighborhood U of p in M such

that the restriction f |y:U — f(U) is a diffeomorphism onto an open subset
of N. [ ]

Exercise I1.12. (Automatic smoothness of the inversion) Let G be an n-

dimensional smooth manifold, endowed with a group structure for which the

multiplication map mg is smooth. Show that:

(1) Tig.ny(ma) =Ty(pn) + Th(Ny) for A\y(z) = gz and py(x) = xh.

2) Ta(mg)(v,w) =v+w.

(3) The inverse map ng:G — G,g — g~
neighborhood of 1.

(4) The inverse map 7qg is smooth. Hint: Apply the Inverse Function Theorem
to the map

1 is smooth if it is smooth in a

O:GxG—GExG, (x,y)— (x,zy). n



42 ITI. Some Multilinear Algebra June 2, 2010

III. Some Multilinear Algebra

In this chapter we lay the algebraic foundation for differential forms on
open subsets on R” and on smooth manifolds.

Throughout this section, we write K for a field. All vector spaces are vector
spaces over K.

IT1.1. Alternating maps

Identifying the space M,,(K) of (n x n)-matrices with entries in K with
the space (K™)™ of n-tuples of (column) vectors, the determinant function
det: M,,(K) — K can also be viewed as a map

det: (K™)" — K.

This is the prototype of an alternating n-linear map. In this section we deal with
more general alternating maps, but we shall also see how general alternating maps
can be expressed in terms of determinants.

Definition IT11.1.1. Let V and W be K-vector spaces. A map w:V* — W
is called alternating if
(A1) (Multilinearity) w is linear in each argument

!/
u)(’Ul,..-,'Ui_l,)\'Ui+[//UZ',UZ'_|_1,---,U]€)
/
:Aw(vlv'"Jvi—lavhvi—l—l;"'avk)+Mw(vl7"'7Ui—17viavi+17"'7vk)'
(A2) w(v1,...,vx) =0 if v; = v; for some pair of indices i # j.

We write Alt®(V, W) for the set of alternating k-linear maps V¥ — W .
Clearly, sums and scalar multiples of alternating maps are alternating, so that
Altk(V, W) carries a natural vector space structure. For k = 0 we shall follow
the convention that Alt®(V,W) := W is the set of constant maps, which are
considered to be 0-linear. [ ]

Example ITI1.1.2. (a) From Linear Algebra we know the k-linear map
w: (KN S K, w(vr,..., o) =det(vy, ... v) = Z SEN(0)V1,6(1) " * Vo ()
o€Sk

(b) If L is a K-vector space, then any Lie bracket [-,-] on L is an alter-
nating bilinear map.

(c) If V =K?", then

n
ﬁ(l‘, y) = Z ZilYi+n — Li+nli
=1

is an alternating bilinear map V x V — K. |
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Remark III.1.3. Any alternating bilinear map [:V x V. — W is skew-
symmetric, i.e.,

ﬁ(vv w) = _5(“}7 v)'

In fact,
B(v,w) + B(w,v) = B(v,v) + B(v,w) + B(w,v) + B(w,w) = B(v+ w,v+w) = 0.

If, conversely, ( is skew-symmetric, then we obtain [(v,v) = —fp(v,v),
and therefore 23(v,v) = 0. If charK # 2, this implies that g is alternating,
but for char K = 2 there are skew-symmetric (=symmetric) maps which are not
alternating.

In fact, if K =F; = {0,1} is the two element field, then the multiplication
map 0:K x K — K, (z,y) — zy is (skew-)symmetric but not alternating. |

Below we shall see how general alternating maps can be expressed in terms
of determinants.

Proposition II1.1.4.  For any w € Alt*(V, W) we have:

(1) w(We@ys---sVo(r)) = sgn(o)w(vy, ..., vx) for each permutation o € Sk, and
if char K # 2, then any k-linear map with this property is alternating.
(2) For by,...,by €V and linear combinations v; = Zle a;;b; we have

w(vy,...,v;) =det(A)w(by, ..., bg),

where A := (a;;) € Mp(K).
(3) w(viy...,vk) =0 if v1,...,v, are linearly dependent.
(4) For by,...,b, €V and linear combinations v; =y ., a;;b; we have

wvr, ..., op) =Y det(Ap)w(bs, ..., bi,),
I

where A = (a;ij) € My p(K), I = {i1,...,ix} is a k-element subset of

{1,...,n}, 1<d1 <...<irp <n, and Ap = (a4)icr j=1,..k € Mp(K).
Proof. (1) Let ¢ := 7 = (i j) be the transposition of i and j. Fix
v1,...,0, € V. Then we obtain an alternating bilinear map

/
w(a,b) :=w(v1,. .., Vi—1,8,Vit1,- -, Vj—1,0,Vj41,...,Vk).

Then o’ is skew-symmetric (Remark I11.1.3), and this implies that (1) holds for
o=T.

We know from Linear Algebra that any permutation o € Sy is a product
71 -7, of transpositions, where sgn(o) = (—1)*. We now argue by induction.
We have already verified the case kK = 1. We may thus assume that the assertion
holds for ¢’ := 15 ---7;,. We then obtain

(.U('Ua(l), e ,'Uo-(k.)) = w(leo"(l)a e 7UT10"(]€)) = —W(’l)o./(l), e ,'Uo-/(k))

= — sgn(a')w(vl, ooy vg) = sgn(o)w(vy, ..., k).
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Suppose, conversely, that w:V* — W is a k-linear map satisfying (1). If
v; =wv; for i < j and 7 = (i j), then (1) leads to

W1, Vk) = —wW(Vr(1), - Vr)) = —w(V1, .0, VR)

and hence to 2w(vy,...,v;) =0. If 2 € K*, ie., charK # 2, w satisfies (A2).

(2) For the following calculation we note that if o: {1,...,k} — {1,...,k}
is a map which is not bijective, then (A2) implies that w(ve(1),- .., Ve(k)) = 0.
We therefore get with (1)

k k
w(vy,...,v) = w( E a;1bi, ..., E aikbi>

k

= Z i1 Gik - wW(biy, ., byy)

= Z Ao(1)1 " Go(kyk * W (0o (1)s - - Do (k)

oESk

= Z sgn(0)ag )1 - Aok - W (b1, ..., by)

oESk

= det(A) - w(br,. .., by).

(3) follows immediately from (2) because the linear dependence of vy, ..., vy
implies that det A = 0.
(4) First we expand

n n

w(vi, ..., V%) :w< E ai1bi, . .., E az’kbz’>
i—1 =1
n

= Z aill---aikk-w(bil,...,bik).

If [{i1,...,ix}| < k, then (A2) implies that w(b;,,...,b;,) = 0 because two
entries coincide. If |{i1,...,ix}| = k, there exists a permutation o € Sy with
(1) < --- < lgk)- We therefore get

w(vr, ..., 0) = E E : Qigyl " Qig(gyk 'w(b’ia(l)’""biam)

1<i1<...<ix<n o€ESk

@
= Z Z sgn(a)aid(l)l tee aig(k)k . w(bil, e ,bzk)

1<i1<...<ix<n o€ESk

= Zdet(AI)wa)zla s 7bik)7
I

where the sum is to be extended over all k-element subsets I = {iy,...,ix} of
{1,...,n}, where i; < ... <. n
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Corollary IIL.1.5. (1) If dimV < k, then Alt*(V,W) = {0}.
(2) Let dimV =n and by,...,b, be a basis of V. Then the map

o APV, W) — WE), W) = (wbiy, ... 0i))ise...<i

s a linear isomorphism. We obtain in particular dim (Altk(V7 K)) = (Z)
(3) If dimV =k and by,...,b; is a basis of V', then the map

O:ARF(V, W) = W, D(w) =w(by,...,b)

18 a linear isomorphism.

Proof. (1) In Proposition I11.1.4(2) we may choose by = 0.

(2) First we show that ® is injective. Solet w € Alt*(V, W) with ®(w) = 0.
We now write any k elements vq,...,vr € V with respect to the basis elements
as v; = y_ ., a;;b; and obtain with Proposition III.1.4(4):

w(vl,...,vk) = Z det(A[)W(bilw-'abik) = 0.

1<i1<...<ix<n

To see that @& is surjective, we pick for each k-element subset I =

{i1,...,ix} € {l,...,n} with 1 < i; < ... < i, < n an element w; € W.
Then the tuple (wy) is a typical element of w().

Expressing k elements vq,...,v; in terms of the basis elements bq,...,b,
via v; = >, a;jb;, we obtain an (n x k)-matrix A. We now define an

alternating k-linear map w € Altk(V, W) by

wvy,...,vE) == Zdet(AI)wJ.
T

The k-linearity of w follows directly from the k-linearity of the maps
(’Ul, . ,Uk) — det(A[).

For i1 < ... < iy we further have w(b;,,...,b;, ) = wy because in this case A; €
M, (K) is the identity matrix and all other matrices A; have some vanishing
columns. This implies that ®(w) = (wy), and hence that ® is surjective.

(3) is a special case of (2). u

II1.2. The exterior product

In this subsection we assume that char(K) = 0.
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Definition III.2.1.  (The alternator) Let V' and W be vector spaces. For a
k-linear map w:V* — W we define a new k-linear map by

1
Alt(w)(vy, ..., vE) = i Z sgn(0)wW (Vo (1), - - > Vo (k) )-
) oESk
Writing
w"(vl, c. ,Uk> = w(’UU(l), .. ,Ua(k)),

we then have

Alt(w) = % Z sgn(o)w?.

) oESk

The map Alt(-) is called the alternator. We claim that it turns any k-linear map
into an alternating k-linear map. To see this, we first note that for o, 7 € S we

have
(w")’r(vl, . ,?}k) = (u}a)(vﬂ(l), . ,Uﬁ(k)) (3,2,1)
= W(Vro(1)s -1 Vno@k)) = W (V1,0 ., Vk).

This implies that

1 — o
Alt(w)™ = k_ Z sgn(o =7 Z sgn(o =7 Z sgn(nto)w
€Sy o€S ’ oc€SE
1
=1 Z 7)sgn(o)w? = sgn(m) Alt(w)
€S,
1
w2 5 2 senlo
€Sk o€Sk

= % Z sgn(o)(w™)? = Alt(w™).

) oESk

Applying this argument to a transposition 7, it follows that Alt(w) is skew-
symmetric in any pair of arguments (v;,v;), and since char K # 2, this implies
that Alt(w) is alternating (Proposition II1.1.4(i)). n

Remark IT1.2.2. (a) We observe that if w is alternating, then w? = sgn(o)w
for each permutation o (Proposition I11.1.4), and therefore

Alt(w =1 Z sgn(o) sgn(o)w ;' Z w=w.

oc€Sk oESE
(b) For k =2 we have

1
Alt(w)(v1,v2) = §(w(v1,vg) — w(ve,v1))
and for k = 3:

1
Alt(w)(v1,v2,v3) = E(W(UMUQ;U?)) — w(vg,v1,v3) + w(ve,v3,v1)

— w(v3,v2,v1) + w(vs, v1,V2) — w(vl,v?,,vz))-
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Definition II1.2.3. Let p,q € Ny. For two multilinear maps
wiVix.o..xV, =K, waV,px...xVy,—K
we define the tensor product
wi Quwo: Vi X x Vg — K
by

(W1 @ w2)(V1, ..., Vpyq) =wi(V1,. .., Up)w2(Vpt1,s .., Vpiq)-

It is clear that w; ® we is a (p + ¢)-linear map.
For A € K (the set of 0-linear maps) and a p-linear map w as above, we
obtain in particular
AQw :=w® A= Iw.

For two alternating maps a € Alt?(V,K) and § € AltY(V,K) we define
their exterior product:

(p+9q)! 1 o
alAf:= il Alt(oz@ﬁ):m Z sgn(o)(a® B)7.

" 0€Sptq

We have seen in Definition II1.2.1 that o A § is alternating, so that we obtain a
bilinear map

A AP (V,K) x AltY(V,K) — AItPTY(V,K), (o, ) — a A B.
On the direct sum

Alt(V,K) := € Alt?(V,K)

pENp

we now obtain a bilinear product by putting

(o) () = Sennie

p P,
As before, we identify Alt®(V,K) with K and obtain
Aa=ANa=aA)

for A € Alt°(V,K) =K and a € Alt?(V,K).
The so obtained algebra (Alt(V,K), A) is called the exterior algebra or the
Grafimann algebra of the vector space V . [ |

We now take a closer look at the structure of the exterior algebra.
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Lemma II1.2.4. The exterior algebra is associative, i.e., for a € Alt?(V,K),
g€ AltY(V,K) and v € Alt"(V,K) we have

(@AB) Ny =an(BAy).
Proof. First we recall from Definition III.2.1 that for any n-linear map
w: V™" — W and 7 € S,, we have

Alt(w™) = sgn(m) Alt(w).
We identify S,4, in the natural way with the subgroup of S,i44, fixing the
numbers p+q+1,...,p+ g+ r. We thus obtain

+q+7)!
(aAﬁ)Ayz%Alt((a/\ﬂ)@)v)

_ (ptq+r)
plg!(p + ¢)'r!

_ (pF+gqg+n)
plg(p + q)'r!

S sen(o) Alt((a @ §)° @)

TESptq

> sgn(o) Alt((a® B®7)7)
0ESptq
111.2.1 (p+q+m)!

plg!(p + q)!r! 2 Alle®pe)

TESptq

| |
:%Au(a@ﬁm):%Au(m(ﬁ@y))
(p+q+7)!
| |

From the associativity asserted in the preceding lemma, it follows that the
multiplication in Alt(V,K) is associative, We may therefore suppress brackets
and define

WA AWy = (e (W Awe) Aws) - Awy).

Remark IT1.2.5. (a) From the calculation in the preceding proof we know that
for three elements «; € Alt?*(V,K) the triple product in the associative algebra
Alt(V,K) satisfies

+ p2 + p3)!
(pl i pg) Alt(Oél X g ® 043).

Oél/\leg/\Oégz

p1!p2!ps!
Inductively this leads for n elements «; € Alt?*(V,K) to
|
A ANy, = (p1+”'+pn)'Alt(a1®~-®an)
il pal

(Exercise 111.2).
(b) For a; € Alt'(V,K) = V*, we obtain in particular

(1 Ao Aag) (V1,0 0p) =LAl (g @ -+ @ ) (V1 -+ -, Up)

= ) sgn(0)ar(veq)) -+ an (Vo)) = det(ai(v;)).

ocES,
| |
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Proposition III.2.6. The exterior algebra is graded commutative, i.e., for
a € AltP(V,K) and g € Alt?Y(V,K) we have

aNfB=(-1PIBAa.
Proof. Let o € Sp4, denote the permutation defined by

o (i) = i+p forl1<i<g
" li—q forgq+1<i<p+gq
which moves the first ¢ elements to the last ¢ positions. Then we have

(BRa)?(v1,...,Vprq) = (B ) (Vo(1), -+ Vo(ptq))

= B(Upt1,- - Vptrqg)(v1,...,0p) = (@ ® B)(v1,. .., Upiq)-
This leads to
| |
anf= (pqu?). Alt(a ® 8) = (pqu!q). Al((B® )%
(r+9)!

= sgn(o) il Alt(S ® a) = sgn(o)(B A a).

On the other hand sgn(o) = (1), where
Fo=|{(,75) €{l,....p+q}i <j,o(j) <o(i)}
=[{(i,5) €{1,....,p+a}:i<q,j > q}[ =pg
is the number of inversions of o. Putting everything together, the lemma follows.

|
Corollary I11.2.7. If a € AIt?(V,K) and p is odd, then
aNa=0.
Proof. In view of Proposition II1.2.6, we have
aNa= (—l)pzoz/\a: —a A a,
which leads to a A @ = 0 because charK # 2. |

Corollary IT1.2.8.  If ay,...,a; € V* = ANV, K) and 8; = 325 | aija,
then

BiNA... AP =det(A) - a1 A... Ny, for A= (a;;) € M(K).
Proof. We consider the k-fold multiplication map
O: (V)F = AP (V,K), (31, %) = 1A A

Since the exterior product is bilinear, this map is k-linear. It is also alternating,
because repeated application of Proposition I11.2.6 and Corollary II1.2.7 leads
for v, = ~; to

06 IANPINVANGS 3ANNVANe 7 TVANMINY e »
= (17T M A LAY A Ao A (A A A
= (—1)]‘77;71’}/1 A A 7| /\’}/i+1... /\’)/jfl ANV NYe N oo A Vg =0.
——
=0
Since ® is alternating, the assertion follows from Proposition I11.1.4. ]
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Corollary II1.2.9. If dimV =mn, by,...,b, is a basis of V, and b],..., b}
the dual basis of V*, then the products

by ==0b;, N...AD] I=(i1,...,ig), 1<ip<...<ip<m,

1k

form a basis of Altk(V, K).

Proof. For J = (j1,...,Jk) with j; < ... < jr we then get with Re-
mark I11.2.5(b)

" " 1 forlI=J
by (b by ) = det(B (by, Vimett) = {

0 for I #J.

If follows in particular that the elements b; are linearly independent, and since
dim Alt"(V,K) = (%) (Corollary IIL.1.5), the assertion follows. n

Remark IT1.2.10. (a) From Corollary III.1.5 it follows in particular that

dim ¥ dimV
dim ALt (V,K) = ) ( . )zzdimv
k=0

if V' is finite-dimensional.

(b) If V' is infinite-dimensional, then it has an infinite basis (b;);c; (this
requires Zorn’s Lemma). In addition, the set I carries a linear order < (this
requires the Well Ordering Theorem), and for each k-element subset J =
{j1,---,Jr} € J with j; < ... < jr we thus obtain an element

ko Pk *
J._bjl/\---/\bjk-

Applying the b% to k-tuples of basis elements shows that they are linearly

independent, so that for each k > 0 the space Alt"(V, K) is infinite-dimensional.
[

Definition II1.2.11. Let ¢:V; — V5 be a linear map and W a vector space.
For each p-linear map a: VY — W we define its pull-back by ¢:

(P a)(vr, ..y 0p) = alp(vr), - p(vp))

for v,...,v, € V1.
It is clear that p*a is a p-linear map V¥ — W and that p*« is alternating
if o has this property. (]

Remark I11.2.12. If ©:V; — V5 and ¢: Vo — V3 are linear maps and a: Vi —
W is p-linear, then

(Yop)a=e (Y a),
so that we formally have

(Yop) =¢*oy”

(Exercise). u
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Proposition 111.2.13.  Let p: V3 — Vo be a linear map. Then the pull-back
map
©* Al (Vo, K) — Alt(Vh, K)
18 a homomorphism of algebras with unit.
Proof. For a € Alt?(V5,K) and g € Alt?(V5,K) we have

* fa)l fal
eand) = Lo e ) = L a0 o 9)
(p+q

Remark I11.2.14. The results in this section remain valid for alternating forms
with values in any commutative algebra A. Then Alt(V, A) = Py, A" (V, A)
also carries an associative, graded commutative algebra structure defined by

(p+q)!

aAfB= il Alt(a ® B),
where
(@ B)(v1,. . Uptq) == (V1,...,Up) - B(Vpt1, .-, Uptq)
for a € AItP(V, A), p € Alt?Y(V, A).
This applies in particular to the 2-dimensional real algebra A = C. ]

II1.3. Orientations on vector spaces
Throughout this section, all vector spaces are real and finite-dimensional.

Definition I11.3.1. (a) Let V be an n-dimensional real vector space. Then
space Alt"(V,R) is one-dimensional. Any non-zero element p of this space is
called a volume form on V.

(b) We define an equivalence relation on the set Alt"(V,R)\ {0} of volume
forms by p1 ~ po if there exists a A > 0 with uy = Apy and write [u] for the
equivalence class of . These equivalence classes are called orientations of V. If
O = [u] is an orientation, then we write —O := [—p] for the opposite orientation.

An oriented vector space is a pair (V,0), where V is a finite-dimensional
real vector space and O = [u]| an orientation on V.

(¢) An ordered basis (by,...,b,) of (V,[u]) is said to be positively oriented
if pu(by,...,b,) > 0, and negatively oriented otherwise.

(d) An invertible linear map ¢: (V, [uy]) — (W, [uw]) between oriented
vector spaces is called orientation preserving if [p*pw| = [py]. Otherwise ¢ is
called orientation reversing.

(e) We endow R™ with the canonical orientation defined by the determinant
form

,u(xl, Ce ,%n) = det(ml, Ce ,In) = det(acij)w:l,m’n. |
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Remark IT1.3.2. (a) If B := (by,...,b,) is a basis of V', then Corollary I11.2.9
implies that we obtain a volume form by

pp :=b] A...ADb,

and since pp(bi,...,b,) = det(b}(b;)) = det(1) = 1, the basis B is positively
oriented with respect to the orientation [ug]. We call [up] the orientation
defined by the basis B.

e terminology “volume form” corresponds to the interpretation o
b) The terminology “volume form” ds to the interpretation of
p(vy,...,v,) as an “oriented” volume of the flat

[0, 1]v1 + ... 4+ [0, 1]vn
generated by the n-tuple (vi,...,v,). Note that pug(vi,...,v,) = det(b;(v;)) m
Lemma II1.3.3. If py is a volume form on V and ¢ € End(V), then

@ py = det(p)pv.

In particular, ¢ is orientation preserving if and only if det(p) > 0.

Proof. Let B = (b1,...,b,) be a positively oriented basis of V and A = [p|p
the matrix of ¢ with respect to B, i.e., ¢(b;) = . a;;b;. Then

(@ py) (b1, ... by) = pv(p(br), ..., 0(by)) = det(A)uy (b1, ..., by)
= det(@)pv (b1, ..., bn)

follows from Proposition II1.1.4(2), and this implies the assertion. n

Example I11.3.4. (a) If V = R? and ¢ € GL(V) is the reflection in a line,
then det(¢) < 0 implies that ¢ is orientation reversing. The same holds for the
reflection in a hyperplane in R™.

(b) Rotations of R3 around an axis are orientation preserving.

(¢c) In V = C, considered as a real vector space, we have the natural basis
B = (1,i). A corresponding volume form is given by

w(z,w) :=Im(Zw) = RezImw — Im z Rew

because p(1,i) =Im(i) =1 > 0.
Each complex linear map ¢:C — C is given by multiplication with some
complex number z + iy, and the corresponding matrix with respect to B is

_(* Y
[QO]B - <y T ) )
so that det(¢) = 22 + y? > 0 whenever ¢ # 0. We conclude that each non-zero
complex linear map V' — V is orientation preserving. ]
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Proposition 111.3.5.  Let V be a complex vector space, viewed as a real one,
and ©:V — V a complex linear map. Then detgr(p) = | detc(p)|?. In particular,
each invertible complex linear map s orientation preserving.

Proof. Let Bc = (b1,...,b,) be a complex basis of V', so that B =
(b1, bp,ib1, ..., ib,) is a real basis of V. Further let b7 € Homc(V,C),

j = 1,...,n, denote the complex dual basis. In Alt*"(V,C) = C we then
consider the element

pi=bi A ADEADT AL ADE.

That p is non-zero follows from

. . I il 1oi\"
u(bl,...,bn,zbl,...,zbn)—det(I _U>—det(1 —i)

If A= |p]p. € M,(C) is the matrix of ¢ with respect to B¢, then we
have

© b = Zajkbz and go*b_; = Z@@
k=1 k=1

As in the proof of Lemma II1.3.3, we now see that

e (b A...AD) =detc(A) - b AL AD
and o S o

O (b A .. ADE) =detc(A) - b AL ADE,
which leads with Proposition I11.2.13 and Lemma II1.3.3 to

detr (p)p = " p = dete(A)detc (A)p = [dete (A)]*p = [dete (o). =

Exercises for Chapter II1

Exercise III.1. Fix n € N. Show that:
(1) For each matrix A € M, (K) we obtain a bilinear map

BaK"x K" > K, Ba(z,y):= Y aiziy;.

ij=1

(2) A can be recovered from (4 via a;; = Ba(e;, e;).

(3) Each bilinear map [:K” x K® — K is of the form g = (4 for a unique
matrix A € M, (R).

(4) Bar(z,y) = Baly,z).

(5) (B4 is skew-symmetric if and only if A is so.

(6) (4 is alternating if and only if A is skew-symmetric and all its diagonal
entries a;; vanish. For char K # 2 the second condition is redundant. [
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Exercise II1.2. Show that for ay,...,a, € Alt?*(V,K)x the exterior product

satisfies

|
(p1+"'+p”)’Alt(a1®~--®an) .

ar N...Nay, =
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IV. Differential forms on open subsets of r"
In this chapter we introduce differential form on open subsets U C R".
In the next chapter we shall extend this theory to differential forms on smooth
manifolds.

IV.1. Basic definitions

Definition IV.1.1. Let p € Ny, U C R" an open subset and F a finite-
dimensional real vector space. An E -valued p-form, or differential form of degree
p,on U is a function
w:U — AItP(R™, E).

This means that we assign to each x € U an alternating p-linear map w, :=
w(x): (R")P — E. A p-form w is said to be smooth if the map w is smooth.
Recall that dim Alt?(R", E) = dim E - (’;) is finite, so that smoothness is well-
defined in this context.

We write QP(U, E) for the vector space of smooth FE-valued p-forms on
U . Here the vector space structure is the obvious one given by

(WH+n)y i =we +1m, and (Aw);:=Iw, for xeU.

We also form the direct sum of all these spaces

O(U,E) := éQP(U, E). -
p=0

Example IV.1.2. (a) For p = 0 we have Alt"(R”, E) = F, so that smooth
E-valued 0-forms are simply smooth functions f:U — FE. In this sense we
identify
C=(U,E)=Q°U,E).
(b) For p = 1 we obtain the so-called Pfaffian forms, which are smooth
maps
w:U — Hom(R", E).
For each smooth function f:U — FE its differential df is a smooth FE-
valued 1-form:

(df )z (v) := df () (v).
(c) Constant p-forms correspond to elements of Alt?(R™, F), so that we
obtain a natural embedding

AltP(R™, E) — QP (U, E)
as the subspace of constant forms. [ ]

Now we turn to algebraic operations on differential forms. We have already
observed the vector space structure of QP(U,R).
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Definition IV.1.3. (a) For f € C>°(U,R) and w € QP(U, E) we define the
product fw € QP(U, E) by

(fw)e := f(@)w(z).

Since the scalar multiplication map S:R x Alt?(R™, E) — Alt?(R™, E) is bilin-
ear, hence smooth, the p-form fw = S o (f,w) is smooth. We thus obtain a
multiplication map

C=(U,R) x QP(U, E) — Q(U, E), (f,w) — fw.

This map turns QP(U, E) into a module of the algebra C°°(U,R), i.e., it is
bilinear and associative in the sense that f(gw) = (fg)w for f,g € C*(U,R),
we QP (U, E) (Exercise).

(b) We further have the exterior product

OP(U,R) x QI(U,R) — QPTYU,R), (w,n)—wAn, (WAN)z:=ws AN,
(Definition II1.2.3). Here we also use the smoothness of the bilinear map
m : Alt?(R",R) x AltY(R",R) — AltPT¢(R" R)

(Exercise 1.14) to see that w A =mo (w,n) is a smooth map.
For p = 0 we have Q°(U,R) =2 C>°(U, R), which leads to

fAan=fn, feC®UR),necQUR). n
From Lemma II1.2.4 and Proposition I11.2.6 we immediately obtain:

Proposition IV.1.4.  The space Q(U,R) is a graded commutative associative
algebra with respect to the exterior product.

Proof. The associativity follows immediately from the associativity of the
exterior algebra Alt(R™,R) because for each = € U we have

((a/\ﬁ)/\'y)x:(aw/\ﬁw)/\%zaw/\(ﬁx/\%): (a/\(ﬂ/\”y))x.

We likewise get for o € QP(U,R) and g € Q4(U,R) with Prop. II1.2.6:
(@A B)z =ay ABe = (=1)"Bs Ny = (=1)P(BA ). .

Definition IV.1.5.  (Basic forms) For each j € {1,...,n} we define the basic
differential 1-forms dz; € Q'(U,R) by

(dzj)e(v) =vj, resp., (dzj). = ej,

*

where e7,...,e; is the dual basis of the standard basis ej,...,e,. Then each

dx; is a constant 1-form, hence in particular smooth.
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We have seen in Corollary II1.2.9 that the products
epi=e; N...Nef , T={i1,...,ix}, 1<ip<...<ip<n,
form a basis of Alt"(R™,R). We define the k-form dz; € QF(U,R) by
(dxp)y == (dziy N...Ndxy, ), =€7  for xeU.
If we QF(U,R) is an arbitrary smooth k-form and I as above, then
wr(x) == wg(ei,...,ei)

defines a smooth function on U (Exercise), and for each z € U we have

Wy = Zwm(eil, cey €5 )€ = ij(ac)(dacj)x.
T i

In this sense we have

(4.1) w:ZwI~d:1;1
I

in QF(U,R). This is called the basic representation of w, and the forms dx; €
OP(U,R) are called basic forms. u

Example IV.1.6. (a) For p =1 we have the basic 1-forms dzq,...,dz,, and
each smooth 1-form w € Q'(U,R) can be written in a unique fashion as

w= Zwidxi, w; € C*(U,R).
i=1

For each smooth function f:U — R, the differential df has the basic
representation

because

(b) For p = n we have only one basic n-form dzqy A ... A dx,, and each
smooth n-form w € Q"(U,R) can be written in a unique fashion as

w=f-de; N...Ndx, with feC*U,R).

In particular, we have

QO"(U,R) = C=(U,R). -
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IV.2. Pullbacks of differential forms

Definition IV.2.1. Let U C R™ and V C RF be open and ¢:V — U a
smooth map. For w € QP (U, E) we then obtain a smooth p-form

P'we WP (VE), (p'w)y:= (d(p(x))*w@(m),

called the pullback of w by ¢. This means that

(P W)z (v, ..., Vp) = Wy(a) (dp(x)v1, .. ., dp(x)Vp).
From this formula it is clear that ¢*w is smooth if w is smooth. |

Proposition 1V.2.2. The pullback of differential forms has the following
properties:

(1) The map ¢*:QP(U, E) — QP(V, E) is linear.

(2) e (aNnp)=¢*aNp*B for a € QP(U,R), [ € QIU,R).

(3) ¢*f=fop and *(df) = d(p*[) for f € C*(U,E)=Q°(U,E).
(4) If ¢¥:U — W is another smooth map and W C R? is open, then

(Yop)w=pP*w for weQ(W,E).

Proof. (1) is a trivial consequence of the definitions.
(2) For each z € V' we have

(* (@A B))e = (dp(x)) (A B) i) = (dp(2))* (o) A Boa))
M2 (dp(2))* g A (do(2)) By = (0 Q)u A (0% 8)a
= (go*a N@*B)g.

(3) The relation ¢*f = f o ¢ holds by definition. Now the Chain Rule
leads to

A" f) (@) = d(f o ) () = df (p(x))dp(x) = (dep())"(df ) p(a) = (¢7df )a-

(4) In view of Remark I11.2.13 and the Chain Rule, we have for each = € V:

(Wop)w)e = (d(¥) o @) (7)) Wy(pa)) = (dY((x))de(T)) Wy (o))
= dp(z)"d(p(7)) Wy (p(a)) = dp(®)" (P W) p(z) = (" (YP*W))z-
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Remark IV.2.3. It is instructive to take a closer look at the basic representa-
tion of pullbacks. Let ¢:V — U be a smooth map (V C R™ and U C R™ open)
and

w = ZWIdx] = Z Wiy igdxiy Ao Ndxg, € Qk(U,R), wr € C*°(U,R).

.....
11 <...<ig

Then Proposition 1V.2.2(1/2) implies that

prw=> (Pwn)e (der) = Y (Wi, 09)e (dzi,) AL A" (dy,)

I 11 <...<ig
= D Wirip 09O i) A A (9,
11 <...<lg
= Z (Wiy,...ip 0 @)dpi, N ... ANdp;, .
i1<...<ik

In view of Example IV.1.6, we have

0p;

4.2 dp; = d

( ) 90] Zz: axz Li.

For I = {iy,...,ix} with 1 <i; < ... < i, < n we write ¢r:V — R* for the
function whose components are given by ¢;,, ..., ¢;, . For amatrix A € M, ,,,(R)

and J = {j1,...,Jk}t with 1 <j; <...<jr < m we write
Al = (aij)ierjes € Mi(R)

for the submatrix of size k x k, defined by erasing all rows not corresponding
to elements in I and all columns not corresponding to elements of J. Then
Proposition 111.1.4(4) and (4.2) lead to

dpi, A ... Ndpg, = det([dps]”)dzj, A ... Adaj, = Zdet ([de)})da ;.
J

Combining all this, we obtain

(4.3) gp*w:Zonw Zdet [de]/ de:Z(Z wr o @) det([dp]; ))d:l:J.
I J T

Examples IV.2.4. (1) Pullbacks of 1-forms: For any smooth 1-form w =
>; widx; on the open subset U C R™ and any smooth map ¢:V — U, V C R™

open, we have
prw = E ( E (wi o @)%)dmj.

j=1 i=1



60 IV. Differential forms on open subsets of R" June 2, 2010

(2) Pullbacks of 2-forms: For any smooth 2-form

w = E wi],igdxil A diCiQ

11 <tz
we have
8%‘1 %
o= ( > (Wirin 09) gZZ gzz >dxj1 A dzj,.
J1<ja  i1<ia or;, 0w,

(3) For the special case k =m (4.3) reduces to

(4.4) Yrw = (Z(w[ o) det([dgp];)) dry A ... Ndxy,.
T

If p:R™ — R™ is a linear map with ¢(V) C U and A € M, ,,(R) the
corresponding matrix, then ¢(z) = Az and [dp(z)] = A, so that we obtain for
each w € Q™(U,R):

Yrw = (Z(w; o) det(A1)>dx1 Ao ANdTy,.
1

(4) For the special case k =m =n and w = fdzi; A...Adz,, (4.4) further
simplifies to

(4.5) ©*w = (foy)- det([dy]) dey A ... Ndx,.

Example IV.2.5. We consider the smooth map

cos 6
©:V :=]0,00[x]0, 27[— R*,  (r,0) = | sind
r

Then V is open in R?, so that m = 2 and n = 3. Direct caculation yields the
Jacobi matrix

0 —sind
[do(r,0)] =10 cosf
1 0

(a) Let w := —wadxy + 21dz2 € QH(R3,R), ie., w = widr] + wodwy With
w1(x) = —z9 and wy(z) = 1. Then

* = _ ) Jip1 0o 0o
(W) (r0) = —p2der + prdps = —pa 5 4t 5 do) + o1 ( 5 4+ 20 do)

= (—sinf(—sinf) + cosf cos #)df = db.

(b) For w = dx3 we have

o 'w = dps = dr. [
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k-dimensional volumes in R"

In this subsection we discuss some interesting applications of the calculus
of differential forms to k-dimensional volumina of subsets of R"™. We start with
a generalization of the Product Theorem for determinants of square matrices to
rectangular ones.

Proposition IV.2.6.  (Cauchy-Binet Formula) For matrices A € My, ,(R)
and B € M, 1(R), k <n, we have

det(AB) Zdet (A7) det(By),

where the sum is extended over all k-element subsets J = {j1,...,jk} of
{1,...,n}, A7 is the matriz consisting of the columns in positions ji,...,Jjk,
and By s the matriz consisting of the rows in positions ji, ..., Jjk -

Proof. We consider the linear maps
s R" - RF, z— Az and ¢p:RF - R", y+— By.
Then @45 € End(RF) satisfies
Yapldry A . Ndxyg) = det(AB) - dxy A ... Adxy
(Example 1V.2.4(4)). On the other hand,
apldry Ao o Ndxg) = e (dey A ... Adxy)

and (4.3) imply that

o5 (dzy A A dry) = Zdet [dpal’ )de—ZdetAJde

We further obtain with (4.4)
ppdry = det([degls)dzy A ... ANdzy = det(By)dzy A ... A dxg.

Combining these formulas, we get
Opea(dry AL Ndxyg) = Z det(A7)phdr

- <Zdet ) det( BJ)>d:E1 A Adzy.

This implies the lemma. ]
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Corollary IV.2.7.  For two matrices A, B € M, 1(R) we have

det(ATB) =) det(A,)det(B,),

and in particular

det(ATA) = Zdet (Ag)?

Proof. This follows from Proposition IV.2.6 because

det ((AT)7) =det ((As)") = det(A,). n
Remark IV.2.8. For k vectors vy, ..., v, forming the columns of the matrix
A e M, (R), we define the k-dimensional volume of the flat

k
= Z[O, llv; by  volg(S) :=/det(ATA).
j=1
(a) Here are some justifying arguments for this interpretation. The first

requirement is that if vy,...,v, € R¥, considered as the subspace R¥ x {0} of
R"™ = R* x R % then we should have

voly <§:[07 l]vj> = vol (Zﬁ:[O, l]vj> = |det(Z)|,

where A is the matrix obtained from A by erasing the rows k£ +1,...,n. In
fact, if all these rows vanish, we have AT A = ATA which leads to

\Jdet(AT 4) = \/det(AT A) = 1/det(A)2 = | det(4)|.

The next requirement is that the k-dimensional volume of S should not
change under isometries of R™. This means in particular that for each orthogonal
matrix @ € O, (R) we should have

VO]k (S) = VOlk; (QS)

For any k-tuple of vectors wvy,...,v; there exists an orthogonal matrix
Q € 0,(R) with Qu; € R* for each j (Exercise), i.e., the rows k + 1,...,n of
QA € M, (R) vanish. With the preceding arguments, we thus arrive at

voli(S) = vol(@S) = | det((QA| = 1/det((QA)TQA)
= /det((ATQTQA) = \/det(AT A).
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(b) For any k-element subset J = {j1,...,jk} C {1,...,n}, let
prR* =R e (z,...,75,)

denote the corresponding projection onto R*. Then each set ps(S) is a flat
spanned by the vectors pj(v1),...,ps(vg) which are the columns of the matrix
Ayj. Therefore Corollary IV.2.7 implies that

VOlk(S) = det ATA Zdet (Ay)? Zvolk ps(S
For k=1 and S = [0,1]v we have A = (v) € M,,1(R), so that
vol;(8)? = det(AT A) = ||v? = ZU
(Pythagoras’” Theorem).

For k = 2, n = 3 and the parallelogram S = [0,1]v + [0, 1]w in R?® we
then have

voly(9)? = Zvolg(pij(S))2, where  p;;:R® — R? 2 — (2, 7).

i<j
With
U1 w1
A= V2 W2 3
U3 w3
this leads to
2 2 2
2 2 U1 w1 V1 w1 V2 W2 2
vola (5)* = E det(A;;)* = + = [jv x wl|*,
— V2 W2 U3 W3 U3  ws
1<
where
VW3 — V3W2
vxXw= [ —(vyws —vzw)
V1W2 — V2W1
is the vector product in R3. [ |

Definition IV.2.9. If V C R* is open and ¢:V — R” is an injective C'-
map, then we define the k-dimensional volume of p(K), K C V a compact

subset, by
volg (p(K)) := /K V() de,
where g(z) := det([do(z)] " [de(z)]). u

Example IV.2.10. If V = R* and ¢(z) = 2?21 xjvj, then A = [dy(x)] €
M,, 1 (R) is the matrix whose columns are v1,...,v;. If C C R¥ is the closed
unit cube, then S := p(C) = 2521[07 1]v; is a k-dimensional flat, and we get

volk(S):/C\/det(ATA)dx:\/det(ATA)/C du = 1 [det(AT A).

In this sense Definition IV.2.9 is consistent with Remark IV.2.8. ]
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IV.3. The exterior differential

In this section we discuss the exterior differential for forms on open subsets
of R™. For each p the exterior differential maps p-forms to (p + 1)-forms and
generalizes the map f +— df, assigning to each smooth function a 1-form. We
shall also see that on domains in R?, the exterior differential provides a unified
treatment of the operators grad, rot and div from 3-dimensional vector analysis.

Definition IV.3.1.  (a) For p € Ny, U C R" open, and w € QP(U, E) we

defined the exterior differential dw € QPTH(U, E) as follows. In terms of the
basic representation
w = Z wrdxy,
I

we define

" Ow
dw ::Zdwj/\dxlzz 6xjd:vi/\da:1.
I I =1

Note that for I = {iy,...,i,} with i; < ... <14, we have

. P 0 ifieel
T Ndxrp = (=Dkdzpogy i iy <1 <igg

because
do; Ndxy = (—l)kcl:m1 Ao Ndxg, Ndxg Ndxg, N N dxg, = (—1)kdxju{i}.

We define sgn(I,4) := (—1)* if iy < i < ixr1. Then we may rewrite the formula
for dw as
dw = Z Z segn(1, i)%daqu{i}.
1 il 0z;

For J = {jo,...,jp} with 1 < jo < ... < j, < n, this means that dw =
> (dw) jdx 5 with

(4.6) (dw); = i(—wm.

(b) We call w closed if dw = 0 and ezact if there exists some n € QPT1(U, E)
with dn =w. [ ]

To get a better feeling for the meaning of the exterior differential, we take
a closer look at some examples.
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Examples IV.3.2. (1) p=0: For f € C®(U, R) = Q°(U, E) we have

which is consistent with the previous definition of the differential df, interpreted
as a 1-form.

(2) p=1: For w =), widx; we obtain with (4.6):

Ow;  Ow;
dsz(a—:‘Z— 8;) dz; \dz;.

i<j

If w=df, then w; = %, so that the Schwarz Lemma implies that

&ui B 8w]~ . 82f 82f

= — =0.
8.’1?]' 8.’1?1 8.%]8%1 833183;]

Therefore d(df) = 0.
B)p=n—1, we Q" HU,R): Then we write

w = Z(—l)i_lFidml A c/l\:z:l A...Ndx,,

=1

where ciccz indicates that the factor dx; is omitted. In terms of the basic
representation, this means that

We then have

n ‘ F; ~
dw = Z(—l)l_l%daﬁi ANdxy AN...Ndx; A\ ... Ndx,,

=1

= <§:g?>dm1/\.../\dxn.
< Oz;

1=

Interpreting the functions F; as the components of a smooth vector field
F:U — R", this means that

dw = (divF) -dzq A ... Ndzy,

where

is the divergence of F'.

(4) For k =n we have w = fdzq A ... Adzx,, and therefore dw = 0. Note
that this follows already from Q"+ (U, E) = {0}. n
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Remark IV.3.3. (Vector analysis in R3) Let U C R3 be an open subset.
We associate to a smooth vector field F' € C*°(U,R3) the 1-form

WEg = Z Fidx;

and the 2-form
nr = Fidzs N\ dxs — Fodxy N\ dxs + Fsdxy N dxs.
We have already seen that this identification implies that
dnp = (div F)dzy A dzo A dxs.
It is also clear that for each smooth function f:U — R
df = Werad f
is the 1-form associated to the gradient of f.
Moreover, we have
dwr = Mot F,
where the rotation of F' is defined by

OFs _ 0F;

=

._ F, _ OF3
rot F' := ors — 0z
0F,  0F

8$1 81‘2

In this sense we obtain uniform interpretations of the three operations grad,
rot and div from vector analysis in R? in terms of the exterior differential. These
are the historical roots of the concept of a differential form.

In the physics literature one also finds the following interpretations. The

R3-valued 1-form
dx 1

ds:= | dxy | € QY (U, R?),
de‘g
called the vectorial line element, the R3-valued 2-form

B dxg A d$3
dF := | dxs Adzy | € Q*(U,R?),
dfl)l A dSlJQ
called the vectorial surface element, and
dV = dzy A dxa Adrs € Q*(U,R)
is called the volume element.

We then have
df = grad f -ds

(where - stands for the scalar product on R?),
d(F - d3) = rot(F) - dF,

and .
d(G - dF) =div(G) - dV.

We shall see later how these interpretations can be nicely justified in the
context of integration of p-forms. [ |
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We now turn to further properties of the exterior differential:
Proposition IV.3.4.  The exterior differential
d:QP (U, E) — QP (U, E)

has the following properties:
(a) It s a linear map.
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(b) For a € QP(U,R), B8 € QI(U,R) we have d(aAfB) =daAB+ (—1)PandS.

() d(dw) =0 for any w € QP(U,R).
(d) If p:V — U is smooth, where V.C RF is open, then

d(p*w) = " (dw), we Q’(U,E).

Proof. (a) is a trivial consequence of the definition.
(b) We write @ and (3 in terms of their basic representation

a:Zqux] and Q:ZBdeJ.
I J

We then have

Oé/\ﬁzzajﬁjdl‘[/\dwj = Z arBydxr Ndxy,
1,J INJ=0

and if I and J are disjoint, we have
dry ANdzy = 5[7dejuj,

where €77 € {£1}. Hence (a) implies that
dlanB) = dlorBs) Adry Adxy
1,7

:Zda[/\ﬁj/\diC[/\d&?J-FOé[dﬂJ/\dl’[/\dI‘J

I1,J
= (day Adzp) A (Bsdzy) + (—1)Pardey A (B A da )
I,J

=daNp+ (—1)Pandp.

Here we have used that dz; A dBy; = (—1)Pdf3; A dx; (Proposition IV.1.4).

(c¢) In view of (a), we may assume that w = fdz; for some p-element
subset I and a smooth function f:U — E. For p = 0 we have already seen in

Example IV.2.3 that d(dw) = d(df) = 0.

We may therefore assume that p > 0. Then dw = df Adzy, and (b) implies

that
d(dw) = d(df) Ndx; — df Nd(dxy) =0,
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since d(dzy) =0 by definition.
(d) In view of (a) and the linearity of the pullback map ¢*, we may assume
that w = fdzy, as in (c). Then dw = df A dz leads to

o (dw) 2R (df) A " (dagy A A da,)
Iv.2.2. " N .
=T d("f) ANt (dwi ) A AT (day)

1V.2.2. .
=T d(e" f) Ndpi, AL N dp;,.

In view of
Yw=@ f-odrr =@ f-dpi, N Ndp;,
and (b), we have
d(p*w) = d(@" f) Ndps, Ao Ndps, +@* f-d(dpi, A... Ndp;,),
but (c) and iterated application of (b) lead to
d(dpi, N...Ndp;,) = 0.
This proves (d). n

Definition IV.3.5. (de Rham cohomology) Let U C R™ be an open subset
and F a finite-dimensional vector space. We write

ZIRWUE) :={w e Q°(U,E):dw = 0}
for the space of closed forms and
BE (UL E) i= {w € (U, B): (3n € 01U, E)) dy = w}
for the space of exact forms. In view of dod = 0, all exact forms are closed, i.e.,
BiR(U,E) C Zi, (U, E),
and we can form the quotient vector space
Hir (U, E) == Zir (U, E)/ Bir (U, E).

It is called the p-th E -valued de Rham cohomology space of U . [ ]

The important point in the definition of the de Rham cohomology spaces
is that they are topological invariants, i.e., if two domains U and U’ are homeo-
morphic, then their cohomology spaces are isomorphic. One can show that for
each starlike domain U and, more generally, for each contractible domain, all
cohomology spaces HYy (U, E) vanish (Poincaré Lemma). This means that each
closed p-form is exact. We shall come back to this point later. It is the first step
to the application of differential forms in algebraic topology.
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IV.4. Fiber integration

In this section we describe the technique of fiber integration. It leads in
particular to a proof of the Poincaré Lemma, which ensures that for smoothly
contractible domains U C R™, the de Rham cohomology groups HZ, (U, E)
vanish for p > 0.

First we slightly generalize the domain of smooth functions, resp., differ-
ential forms on subsets of R™.

Definition IV.4.1. Let U C R™ be a subset with dense interior U° and F
a finite-dimensional vector space.

(a) A function f:U — E is called a C*-function, k € N U {c}, if
f | vo is a CP-function and all partial derivatives of order < k extend to
continuous functions on all of U. We write C*(U, E) for the space of C*-
functions f:U — FE.

(b) An E -valued p-form on U of class C* is a C*-map

w:U — AltP(R™, E).
This means that w has a basic representation of the form

w:ZwId:EI with wIGCk(U,E). m
I

Definition IV.4.2.  (Fiber integration) Let U C R™ be open and I := [0, 1]
the unit interval. We write elements of I x U as pairs (¢,z) and, accordingly,

dt = dxg, dxq,...,dx,

for the basic 1-forms on R x R™ D I x U. We further write (eo,...,e,) for the
canonical basis of R x R™. Note that I x U has dense interior ]0,1[xU, so that

the notion of a smooth function and a smooth differential form on I x U are
defined (Definition IV.4.1).

For w € QPT(I x U, E) we define F(w) € QP(U, E) by

1
F(w)$<vlu---avp):/ Wt,z) (€0, V1, ..., Vp) dt.
0

Since integrals of smooth functions of (n + 1)-variable are smooth functions of
n-variables (differentiation under the integral), F(w) defines indeed a smooth E'-
valued p-form on U. For smooth functions f € C*>°(I x U, E) we put F(f) = 0.
We thus obtain a series of linear maps

F: QY I x U, E) — QP(U, E),

called fiber integrals.
Note that if w is a (p + 1)-form of class C*, then F(w) is also of class
Cck. m
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Remark IV.4.3. Let us evaluate the fiber integrals of some basic forms.
For w = fdt A dx; with a p-element subset J C {1,...,n} we have

(dt Ndzy)(eg,v1,...,vp) =dxy(vi,...,0p)

for v; € R™ because dt(v;) =0 for i =1,...,p. Hence
1
F(@)a(0rs- -, 0p) :/ £t 2)(de A day)(eo,vrs s 0y) dt
0

B </01 fit.a) dt) dxg(vy,...,0p),

so that

F(w)y = </01 f(t,x) dt) ~dxy.

For w = fdz; with a (p 4+ 1)-element subset J C {1,...,n} we have
wz(eg, -..) =0, and therefore F(w) = 0. u

Theorem IV.4.4. (The Homotopy Formula) For each w € QP(I x U, E) we
have
Fldw) + dF(w) = jiw — jow,

where jy:U — I x U,z — (t,x).

Proof. Since fiber integration and the exterior differential are linear, it
suffices to verify the formula for differential forms of the type w = fdx;,
feC>*1IxUE).

Case 1: 0 € J,ie, w= fdt Ndeg, K C{l,...,n} a (p— 1)-element
subset. Then

of
(9172'

af
83:@-

dw =df Ndt Ndxg = =do Adt Adeg ==Y dt Adz; Adak.
1=0 =1

Therefore Remark IV.4.3 implies that

F(dw) = — Zj; (/01 %ZI) dt>dmi Adrk.

On the other hand,

Flw) = ( /0 1 f(t,z) dt)de,

so that differentiation under the integral sign leads to

dF (w) = Zn: ( /0 1 %ix) dt) dw; A dzg = —F(dw).
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Finally, we observe that j;(dt) = 0 for each ¢t because the t-component of
the maps j;:U — I x U is constant (Exercise IV.2). Therefore

F(dw) + dF(w) =0 = jiw — jjw

in this case.
Case 2: 0¢ J,ie., w= fdxy, JC{l,...,n} a p-element subset. Then

of of = Of
(%idaci/\dxj = Edt/\dxj—i—za—xidxi/\dmj,

do=df Ndx; =
=0

=1

and therefore

1
Fldw), = ( /0 of g£ ?) dt> cdry = f(1,2)dzy — £(0,2)dzy = (iw)e — (iw)e.

Since F(w) =0 (Remark IV.4.3), the assertion also follows in this case. m

The Homotopy Formula has many applications. Below we only discuss
some.

Corollary IV.4.5. Let U C R"™ and V C R™ be open and w € QP(V, E) a
closed p-form. Further let o: 1 x U — V' be a smooth map and pi(x) = o(t,x).
Then the p-forms

piw — pow € (U, E)

are exact, so that the induced maps
(IOT: HgR<V7 E) - HgR(Uu E)a [W] = [SOTW]

and
03¢ Hi (V. E) — HE(U,E), (] = [gf]

coincide.
Two such maps g, p1:U — V are called (smoothly homotopic).

Proof. In view of ¢, = poj;, ji(x) = (t,z), we have

P1w — pow = Jip'w — Jop w = Fld(p'w)) + dF(p'w)
= F(e"dw) + dF(¢*w) = dF (¢ w).

Definition IV.4.6.  An open subset U C R"” is called smoothly contractible if
there exists a smooth map ¢: I x U — U with ¢; = idy and ¢y constant. [ ]
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Examples IV.4.7. (a) If U C R" is starlike with respect to xg, then U is
smoothly contractible. We simply take

o(t,x) :=tx + (1 — t)xo.

(b) If U C R™ is smoothly contractible and f:U — V C R" a dif-
feomorphism, then the domain f(U) is also smoothly contractible. In fact, if
@:I x U — U as in Definition 1V.4.6, then

Dt x) = f(e(t, ()

defines a smooth map I x V — V with

Yr=fopiof t=idy and o= foppof?
is constant. ]

Theorem IV.4.8. (Poincaré Lemma) Let U C R™ be smoothly contractible.
Then

H§R<U7 E) =F

(the space of constant functions), and
HIR(U,E)=0 for p>0.

In other words, each locally constant function on U 1is constant, and each
closed p-form, p >0, on U is exact.

Proof. Let ¢p:I x U — U be a smooth map with ¢; = idy and ¢y = z¢
constant.

For the case p = 0 we observe thay the curve I — U, t — (¢, z) links x to
xg, so that U is arcwise connected. Hence each closed 0-form, i.e., each locally
constant function, is constant.

Now we assume that p > 0. Then Corollary IV.4.5 implies for each closed
p-form w on U, that pjw — ¢pjw is exact. As ¢; = idy, we have pjw = w,
and since ¢q is constant and w is of positive degree, pjw = 0 (Exercise IV.2).
Hence each closed form w on U is exact with w = dF(¢*w). u

Corollary IV.4.9. HJ;(R",E) =2 E and H{z(R",E) =0 for p> 0. |

Corollary IV.4.10. If U C R" is open, x € U and w € QP(U, E) a closed
p-form, p > 0, then there exists a neighborhood V' of = such that wly is exact.

Proof. Choose a convex neighborhood V' of x and apply the Poincaré Lemma.
[ |
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IV.5. Integration of differential forms on R”

In this short section we define integrals of n-form on open subsets of R™
and prove the corresponding transformation formula by reducing it to the well-
known formula for Lebesgue, resp., Riemann integrals.

Definition IV.5.1. Let U C R™ be open.

(a) For any continuous n-form w = fdxy A ... Adz,, f € C(U,R), and
each compact subset K C U, we define

/Kw::/dexl/\.../\dxn::/Kf(x)d:c,

where the integral on the right is interpreted as a Lebesgue integral. At this
point one can also work with the n-dimensional Riemann integral, but then one
has to assume that K is a Riemann measurable subset, i.e., its boundary has
measure zero.

(b) For a function f:U — R we define its support by

supp(f) := {z € U: f(z) # 0},

which is the smallest closed subset for which f vanishes on its complement.
For any compactly supported continuous function f:U — R we define

/ fdxy Ao N dxy, ::/ f(x)dx.
U supp(f)

Note that the compact subset supp(f) € U can be covered by finitely
many non-overlapping small cubes of the form C, := [[\_,[x;,x; + €[, so that
the integral on the right makes always sense as a Riemann integral. [ ]

Definition IV.5.2. Let U,V C R" be open subsets. A C'-map p:U — V
is said to be orientation preserving if

det(dp(z)) >0 forall xzeU
and orientation resersing if
det(dp(x)) <0 forall zeU.

Note that, if U is connected and de(x) is invertible for each x € U, then ¢ is
either orientation preserving or reversing (Exercise IV.4).
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Proposition IV.5.3.  (Oriented Transformation Formula) Let U,V C R" be
open subsets and ©:U — V a C'-diffeomorphism. Futher let w be a continuous
n-form on V. and A CU compact. Then

/ w = 6/ Yrw,
©(A) A

where ¢ = 1 if ¢ is orientation preserving and ¢ = —1 if ¢ s orientation
TEVersing.

Proof. We write w = fdx; A ... Adx, for some f € C(V,R). We then have

©'w = (fop)dpr A...Ndp, = (fop)det(dp(x))dry A...A\dz,

(Example 1V.2.4(4)), which leads to

/A*”*“ - /A(f © ¢)(x) det(dip(x))da.

On the other hand, the Transformation Formula for Lebesgue (Riemann) inte-
grals leads to

L<A>”:/(A> D)z = [ Flpta))|det(dg (@) da
_E/f ) - det(dp(z)) dz.

The following definition shows how the path integrals showing up in Anal-
ysis IT or Complex Analysis can be viewed as integrals of 1-forms.

Definition IV.5.4. Let U C R™ be an open subset and w a continuous
E-valued 1-form on U. Then for each smooth path v:[a,b] — U we define

/w ::/ Y*w.
il [a,b]

We have (y*w): = f(t) dt with

F(£) = (dy () wy)) (1) = wae) (dy (1) (1)) = wyry (V' (1)),

which leads to )
[o=[ wwerma
0% a

More explicitly, we obtain for w =), w;dz; the relation

L o= (o (0) dt = g / L)
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If v:[a,b] — U is piecewise smooth in the sense that v is continuous and
there exist

to=a<t; <...<tp,=20

such that the restrictions v; := v \[tj are smooth, then we put

stit1]
k—1

/ wi=Y / W

vy Vi

=0

and observe that the right hand side does not depend on the subdivision of the
interval [a, b]. n

Lemma IV.5.5. If f € CY(U,R) and v:[a,b] — U a piecewise smooth path,
then

/ df = F(4(b)) - F(+(a)).

In particular, the integral vanishes if v is closed, i.e., y(a) = v(b).

Proof.  The function f o~:[a,b] — R is continuous and piecewise C! with
(foy)'(t) =df(~v(t))(+'(t)). Hence the Fundamental Theorem of Calculus implies
that

F6O) - £6@) = [ (Fer)wdi= [ & .

Remark IV.5.6. If U C C = R” is open and f:U — C is a holomorphic
function, then we associate to f the holomorphic 1-form

w= fdz € Q(U,C).

Here dz € QY(U,C) is the 1-form with the basic representation dz = dx + idy,
where we write z = x + 1y for elements of U. For f = u + iv this means that

fdz = (u+iv)(dz + idy) = (udx — vdy) + i(vdx + udy).
For any piecewise smooth path v =~ + i72: [a,b] — U we then have

(d2)yy (Y (1)) = 1 (t) +iva(t) = (1),

so that
b b
/ o= / w0y (7' (1)) dt = / FOv() -+ (8) dt,

which is the formula usually used for path integrals in Complex Analysis. ]
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Exercises for Chapter IV

Exercise IV.1. Let w e QP(U, E), where U is an open subset of R” and E a
finite-dimensional vector space. Show that for any p-tuple (v1,...,v,) € (R™)P
the function

= wy(v1,...,0p), U—FE

is smooth. Hint: If f:U — V is smooth and a:V — W a linear map, then
ao f:U — W is smooth. [ ]

Exercise IV.2. Let U C R"™ and V C R™ be open subsets. Show that if
¢:U — V is a constant map and w € QP(V, E) with p > 0, then ¢*w=0. =

Exercise IV.3. (Explicit Poincaré Lemma) Let U C R™ be star-like with
respect to xg and w € QP (U, E) a closed p-form, p > 0. Show that:
(1) w = dn holds for the (p — 1)-form 1 defined by

1
Ne(V1, ..., Up—1) ::/ tpflwmr(l_t)mo(x—a:o,vl,...,vp,l)dt.
0

Hint: Have a look at the proof of the Poincaré Lemma to see that n =
F(p*w) for a suitable map ¢: I x U — U.
(2) For j &I and |I| =p— 1, we have

(dwg, Ao .odag, Ndzy ANdxg, N Ndxp 1) (2, e, .54, ) = sgn(l, j)xj,

where sgn(I,7) := (=1)F if i) < j < ipy1. Hint: Remark II1.2.5(b).
(3) Suppose that w = > ;wydr; is the basic representation of w. Assume
zo = 0 and show that the basic representation n =), nrdx; satisfies

nr(x) = /01(—1)7”_1(ngn(l,j)ww{j}(tx)xj> dt.

I

(4) Specialize in (3) to the case p =1 and compare with the formula you know
from Analysis II. [

Exercise IV.4. Let U,V C R" be open subsets and o:U — V a Cl-map
with de(x) invertible for each x € U. Show that if U is connected, then then
@ is either orientation preserving or reversing. ]
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Exercise IV.5. (Lie brackets of vector fields; revisited) Let U C R™ be open.

(a) Let X,Y € V(U) be smooth vector fields on U and f,g € C°(U,R).
Show that

[fX,9Y] = f(X.9)Y —g(Y.f/)X + fg[X,Y].

(b) Let €;(z) = (z,e;) denote the basic vector field. Show that each vector
field X € V(U) has a unique representation of the form X =" | f;€;, fi €
C>(U,R).

(c) Show that

n

. . " g OfN
(S5 0] =3 (25 -ni)e -

j=1 =1

Exercise IV.6. (Vector fields and differential forms) For w € QP(U,R) and
Xi1,...,X, € V({U) we define a smooth function w(Xy,...,X,) by

WX, ..., Xp) (@) == we (X (2),..., Xp(x)),z € U.
Show that for p =1 we have
dw(Xth) = Xl.w(Xg) — Xg.w(Xl) — w([Xl,Xg]).

Proceed along the following steps:
(1) Both sides are C*°(U,R)-linear in X; and Xs. Hint: Ex. IV.5.
(2) Verify the formula for the basic vector fields X; = ¢€; and X5 = €j.
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V. Differential forms on manifolds
In this chapter we eventually turn to differential forms on smooth manifolds
and how they can be integrated. This requires several new concepts which are
developed along the way. One is the concept of a smooth partition of unity, and
another one of central importance is the notion of an oriented manifold.

V.1. Basic operations on differential forms

Throughout this section M denotes a smooth n-dimensional manifold.

Definition V.1.1. (a) Let k¥ € Ny and E a finite-dimensional real vector
space. An FE -valued k-form, or differential form of degree k, on M is a function

w: M — Uperr At*(T, (M), E)  with  w(p) € Alt"(T,(M), E),p € M.

This means that we assign to each p € M an alternating k-linear map w,, :=
w(p): T,(M)* — E.
(b) If f: M — N is a smooth map and w an E-valued k-form on N, then

(ffw)p = Tp(f)*wf(P)

defines an E-valued k-form on M.
If g: L — M is another smooth map, then we have

(5.1.1) (fog)'w=g"(f'w)

because the Chain Rule and Remark II1.2.12 imply that

((fog)w), =Tp(f 0 9 witow) = (Totm) (f) © Tp(9)) Wi (otm)

() Typ) () Wrgw)) = Tp(9)" (f W)y = (6" (fw))p-

(c) We call a k-form w on M smooth if for all charts (¢, U) the pullbacks
(o~ 1)*w are smooth k-forms on U. It actually suffices that for each point
p € M there exists a chart (p,U) with p € M and such that (¢~!)*w is smooth
(Exercise V.1).

We write QF(M, E) for the set of smooth E-valued k-forms on M and

=T,
=T,

put
OM, E) = P "M, E). n
k‘ENo
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Example V.1.2. (a) For k = 0 we have Alt"(T},(M), F) = E, so that smooth
E-valued 0-forms are simply smooth functions f: M — FE. In this sense we
identify

C>®(M,E) = Q°M,E).

(b) For p = 1 we obtain the so-called Pfaffian forms, or 1-forms. Each
smooth 1-form w € Q'(M, E) can be viewed as a function

wT(M)—E, veTy,(M)w— wy(v)

which is linear on each space T}, (M).

For each diffeomorphism ¢:V CR™ — (V) C M the map T'(¢): T(V) =
V xR™ — T(¢(V)) C T(M) is a diffecomorphism which is linear on each space
T, (V). The function T(V) — E associated to the pullback *w is then given
by

(#,0) = (P w)2(v) = Wy (@) (T (P)v) = (w o T(Y))(x,v).

Therefore w is a smooth 1-form if and only if the corresponding function
T(M) — E is smooth.

For each smooth function f: M — FE its differential df is a smooth 1-form:

(df)e(v) := df () (v).

The corresponding smooth function df: T (M) — E is simply the second compo-
nent of the smooth function T'(f): T(M) — T(E) =2 E x E (cf. Definition I1.1.6).
]

Now we turn to algebraic operations on differential forms on manifolds.

Definition V.1.3. Let E be a finite-dimensional vector space and M a
smooth mn-dimensional manifold.

(a) For each k € Ny the set QF(M,E) carries a natural vector space
structure defined by

(WH+n)pi=wp+1mp, (Aw)p = Awy

for w,n € Q¥(M,E),A€R, pc M.
(b) For f € C*°(M,R) and w € QF(M, E) we define the product fw €
QOF(M, E) by
(fw)p = f(p)wp-

For each diffeomorphism :V — (V) C M we then have
(W (fw)e = T ()" (fw)y@) = F (@) Te() wy@) = ((f o 9) - (P7w)),,

e, v*(fw) = (f o) - Y*w. Therefore Definition IV.1.3 implies that fw is a
smooth k-form on M. We thus obtain on Q¥(M, E) the structure of a module
of the algebra C>°(M,R) (Exercise).
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(c) More generally, we have the exterior product
QP(M,R) x (M, R) — QPH(MR), (w,1) > wAn,  (@AD)s = we A

(Definition II1.2.3).
To verify that the exterior product of smooth forms is smooth, we observe
that for each diffeomorphism ¢:V — (V) C M we have

W (W AN = Te() (@ Ay = To(¥)* (Wyia) A M)
= (T (V) wy@) N (Te(¥) Np@) = (W w)e A (WN)e = (W w AY™n)s.

Since exterior products of smooth forms on V' are smooth, we obtain the corre-
sponding assertion for smooth forms on M .
For p = 0 we have Q°(M,R) = C°°(M,R), which leads to

fAw=fw, feC®MR),weQ’(MR). [

From Lemma II1.2.4 and Proposition 1I1.2.6 we obtain as in the proof of
Proposition 1V.1.4:

Proposition V.1.4.  The space Q(M,R) is a graded commutative associative
algebra with respect to the exterior product. [ ]

Proposition V.1.5. Let f: M — N be a smooth map between manifolds and

E a finite-dimensional real vector space. Then the pullback operation has the

following properties:

(1) f*QF(N,E) C Q¥(M, E), i.e., the pullback of a smooth form is smooth.
Moreover, the map f*:QF(N,E) — QF(N, E) is linear.

2) fY(anB)=f"anf*B for a € QP(M,R),3 € QI(M,R).

(3) frg=gof and f*(dg) =d(f*g) for g€ C*(N,E) = Q°(N,E).

Proof. (1) The main point is the smoothness of f*w. The linearity of f* is

clear.

(a) First we consider the special case where M is an open subset of some
R™. If (¢,U) is a chart of N, then we have on f~1(U) the identity

fro=f et op)w= e ((¢7")w) =(po ) ((¢ ) w),

so that the smoothness of f*w follows from Definition IV.2.1, the smoothness of
@ o f and the smoothness of the k-form (p~=1)*w on (U).

(b) Now we consider the general case. Let (p,U) be an n-dimensional
chart of M. Then we have on ¢(U) C R":

(™) (frw)=(fop ) w,

and since f o l:p(U) — N is smooth, the assertion follows from (a).
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(2) For each = € M we have

(f*(a A ﬁ))w = T:c(f)*(a A ﬁ)f(a:) - Tm(f>*(af(x) A ﬁf(a:))
T T () ) AT () By = (FF ) A (FB)a
= (ffa N f*B)a-
(3) The relation f*g = go f holds by definition. In view of

T(go f)=T(g)oT(f),
the second component d(go f) of T(go f) coincides with dgo T(f) = f*dg. =

Definition V.1.6. Let M be a smooth manifold, F a finite-dimensional
vector space and w € QF(M, E) a smooth E-valued k-form.

Let p € M and (¢,U),(¢,V) be two n-dimensional charts of M with
p € UNV. On the open subset (U NV) CR™ we then have

Wop™ ) (W™ H)'w) = (™)WY (W Hw=(p1)w,
so that Proposition IV.3.4 implies that

d((™)'w) =d((oe ™) (W) w) = (Yo ) d((¥™)w)
= (") P d((™ ) w).
We conclude that
prd((¢7)"w) =vd((v1) w)
holds on UNV . We may therefore define a smooth (k+1)-form dw € Q¥ (M, E)
by
dw |y = go*d((go_l)*w)

for any chart (p,U) of M. The preceding arguments imply that we thus obtain
a well-defined FE'-valued differential form on M. |

We now turn to further properties of the exterior differential:
Proposition V.1.7.  The exterior differential
d: QP (M, E) — QPTY(M, E)

has the following properties:

(a) It s a linear map.

(b) For a € QP(M,R), B € QI(M,R) we have d(aAfB) =daNf+(—1)PaAdS.
(c) d(dw) =0 for any we QP(M,FE).

(d) If f: M — N s smooth and w € QP(N, E), then d(f*w) = f*(dw).

Proof. (a) is a trivial consequence of the definition.
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(b) Let (¢,U) be a chart of M. In view of Definition V.1.6, Proposi-
tion V.1.5, and Proposition IV.3.4, we then have

dlanp)=¢"d((e™ ") (anp)) = d((¢™") an(p™)B)
=" (d((go*)*a) AT B+ (=17 a nd((¢7)B))

—go*d( *a) NGB+ (— poz/\cp*d((go_l)*ﬁ)
=daNf+ (—1)Pandp.

(c) For any chart (¢,U) of M we have on U:

d(dw) = " (d((¢™")"(dw))) = " (d(d[(¢™")"w])) =0

because d? vanishes on Q*(o(U), E) (Proposition 1V.3.4).

(d) Let p € M, (p,U) be a chart of M with p € U and (¢, V) a chart
of N with f(p) € V. Then f~}(V)NU is an open neighborhood of p, and it
suffices to verify the identity d(f*w) = f*(dw) on this open set.

With Proposition 1V.3.4 we obtain

d(f*w) = " (d[(e™") frw]) = o (dl(e™ ") " (1) w])
=@ (dl(Yo for™ ) (W) W) = ¢ (o fop ) dl(y ") W]
=Wo f) (W) dw= f¢* (") dw = frdw.

This proves (d). n

Definition V.1.8.  (de Rham cohomology) Let M be a smooth n-dimensional
manifold and E a finite-dimensional vector space. We write

ZIR(M,E) == {w € QP(M, E): dw = 0}
for the space of closed p-forms and
By (M, E) == {w e Q*(M,E):(3n € O*"Y(M, E)) dn = w}
for the space of exact p-forms. In view of dod = 0, all exact forms are closed,

ie.,

BgR(M’ E) g deR(Mv E)?
so that we can form the quotient vector space
Hig (M, E) == Zgg (M, E)/Bir (M, E).

It is called the p-th E -valued de Rham cohomology space of M . Its elements
la] :== a+ BIR (M, E) are called cohomology classes. ]
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Lemma V.1.9. The space Har(M,R) := @;OIO HEL (M, R) carries the struc-
ture of an associative, graded commutative algebra, defined by

] A8 = [aNp], acZig(M,R), (e Ziz(M,R).
Proof. If « is a closed p-form and [ is a closed ¢-form, then
dlaNpf)=daNB+ (-1)PandG=0
shows that a A 3 is closed. Therefore the subspace

Zar(M,R) @ZgR (M,R) C Q(M,R)
p=0
of closed forms is a subalgebra with respect to the exterior multiplication.
Moreover, the subspace

Bar(M,R) : @B (M,R) C Zqr(M,R)

is an ideal because if « is a closed p—form and 3 = dv is an exact g-form, then
aNf=aNdy=(—1)PdlaNny)
is exact. We conclude that

[a] A[6] == [a A f]
yields a well-defined multiplication on Hgr(M,R). From the subalgebra
Zar(M,R) it inherits the associativity and the graded commutativity. |

An important point of the de Rham cohomology spaces is that they are
topological invariants, i.e., if two smooth manifolds M and N are homeomorphic,
then their cohomology spaces Hip (M, FE) and HYy (N, E) are isomorphic for
each finite-dimensional vector space E. The following statement is weaker in the
sense that ¢ and its inverse are assumed to be smooth.

Proposition V.1.10. If o: M — N s a smooth map, then the pullback
defines an algebra homomorphism
gO*: HdR(N, R) — HdR(M, R)

*

If, in addition, ¢ is a diffeomorphism, then ¢* induces an isomorphism of

algebras.
Proof. It clearly suffices to verify the first part, because the second statement
then follows by applying the first one to ¢ and ¢~ 1.

Proposition V.1.5 implies that ¢* preserves the exterior product and that it
commutes with the exterior differential, hence maps closed forms to closed forms
and exact forms to exact forms. In particular, we obtain well-defined maps

©*:HIL (N,R) — HIR (M,R), [o] — [¢*al,
and combining them to a linear map ¢*: Hyr(N,R) — Hgr(M,R), we obtain
an algebra homomorphism because

e ([ AN [B]) = @™ ([aAB]) = [p*(a A B)] = [ a A ™[]
= [p"a] A [p"B] = " [a] A @™ [3].
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Using a manifold version of fiber integration, one can show that for each
(smoothly) contractible smooth manifold M, all cohomology spaces HY, (M, E)
vanish (Poincaré Lemma). This means that each closed p-form is exact. We shall
come back to this point later. It is the first step to the application of differential
forms in algebraic topology.

V.2. Partitions of unity

In this section we shall introduce a central tool for the analysis on manifolds:
smooth partitions of unity. They are used in various situations to localize
problems, i.e., to turn them into problems on open subsets of R™, which are
usually easier to solve.

To obtain sufficiently fine smooth partitions of unity on a manifold, we
have to impose a condition on the underlying topological space.

Definition V.2.1. (a) A topological space X is said to be o -compact if there
exists a sequence (K, ),en of compact subsets of X such that X = J,, o Xn -
(b) If (U;)ier and (V;) e are open covers of the topological space X , then
we call (V})jecs a refinement of (U;)icr if for each j € J there exists some i; € I
A family (.5;);er of subsets of X is called locally finite if each point p € X
has a neighborhood V' intersecting only finitely many of the sets .5;.
A topological space X is said to be paracompact if each open cover has a
locally finite refinement. [ ]

Lemma V.2.2. If X is a o-compact locally compact topological space, then
there exists an exhaustion of X by compact subsets, i.e., a sequence (Kp)nen
with U, ey Kn =X and K,, C K}, for each n € N.

Proof. Since X is o-compact, there exists a sequence of compact subsets
(Qn)nen with (J,, @n = X . We shall construct the new sequence K,, inductively.
We put K; := Q1 and assume that K, ..., K, are already constructed such that
K; QKZQH fori=1,....n—1and Q1 U...UQ, C K,.

Put K/ == K, U U;L;Lll Q;. For each point z € K] we pick a compact
neighborhood U, of z. Then the sets U? form an open cover of the compact
set K/ . Hence there exist finitely many points x1, ..., 2, € K| with

K, CU) U...uU, .

Then K, 41 :=U,, U...UU,, isa compact subset of X with K, C K|, C K2+1
and Q; C K41 for j <n+1. We thus obtain a sequence (K, )nen of compact
subsets of X with {J, K, 2 U, @» =X and K,, CK)_, foreachneN. =
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Theorem V.2.3. For a finite-dimensional (topological) manifold M, the
following are equivalent:

(1) M s paracompact.

(2) FEach connected component of M is o-compact.

Proof. (1) = (2): Since M is a manifold, any point p € M has a compact
neighborhood V,,, and the open sets (Vpo)pe M form an open cover of M. As M
is paracompact, this cover has a locally finite refinement (U;),c.s. Since the sets
V), are compact, the U; have compact closures.

Let z € M. We show that the connected component of M containing =
is o-compact. Put K; := U_jz7 where j, € J is chosen such that x € U;, . Next
we use Exercise V.9 to see that only finitely many U; intersect K;. We define
K, as the union of the closures of all the U; intersecting K;. We then proceed
inductively and define K,,;1 as the union of the closures of the U; intersecting
K, . We thus obtain a sequence (K, )nen of compact subsets of M. As the U;
intersecting K, cover this set, we further have

Ky, © U Uj C K?L'i‘l?
UjﬂKTL?é@

and

K:=|JK,=]JK)

neN neN

is an open subset of M containing x. Its complement is the union of all U; not
intersecting any K, , hence an open subset of M. Therefore K is closed and
open, which implies that it contains the connected component M, of z, and we
conclude that
M, = (M, nK,)
neN

is o-compact.

(2) = (1): Let U := (U;)ies be an open cover of M. Since M is a manifold,
hence locally connected, its connected components are open subsets. Therefore
it suffices to construct for each connected component a refinement of the open
cover induced on it by . Therefore we may assume that M is connected, and,
in view of (2), that M is o-compact.

As M is locally compact, we find with Lemma V.2.3 a sequence of compact
subsets of M with K,, C K9, and |J, K, = M. We put K_; := K, := Q.
For each p € K,, \ KJ_, we choose some open neighborhood V,, contained in
some covering set U; and in K, \ K,_2. Then finitely many

| Vpﬁ%
of these sets cover the compact set K, \ K2 ;. Hence the collection of all the
sets (V;;)neN,jgmn is an open cover of M which is locally finite. In fact, K, is

not intersected by any set V;f]n with m > n 4+ 1. We have thus found a locally
finite refinement V' of the open cover U . [ ]
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Definition V.2.4. A smooth partition of unity on a smooth manifold M is a
family (v;);e; of smooth functions 1; € C*°(M,R) such that
(P1) 0 < 9); for each 7 € I.
(P2) Local finiteness: each point p € M has a neighborhood U such that
{i € I:¢; |y # 0} is finite.
(P3) 2 i =1.
Note that (P2) implies that in each p € M

> i) = > ilp)

iel i (p)#0

is a finite-sum, so that it is well-defined, even if [ is an infinite set.
If U = (Uj)jes is an open cover, then a partition of unity (1;);cs is said
to be associated to U if supp(v;) C U; holds for each j € J. [

Lemma V.2.5. (Existence of bump functions) Let M be a smooth manifold,
p € M and U C M an open neighborhood of p. Then there exists a smooth
function f: M — R with
(1) 0<f<1.
2) flp)=1.
(3) supp(f) CU.
Proof. Let (p,V) be an n-dimensional chart of M with p € V C U. Then
©(V) C R™ is an open subset and x := ¢(p) € (V). Let r > 0 be such that
the closed ball B,.(z) :={y € R": ||x — y||> < r} is contained in p(V).

From Exercise V.6(c) we obtain a smooth function h: R — R with h(0) =1,
0 < h <1 and supp(h) =] — 0o, 7]. Then the function

gR" =R,y h(llz —yl3)

is smooth with g(z) =1, 0< g <1 and g(y) =0 for ||z —y| > r.
We define

' g(o(z)) forxeV
JiM =R, :1;|—>{0 forx ¢ V.

Then f = g o ¢ is smooth on the open set V, and f = 0 is smooth on
M\ ¢~} (B,(z)), which is also open. Hence f is smooth, f(p) =1, 0< f <1
and supp(f) = ¢~ (B(z)) C V. m

The main result of this section is the following theorem:

Theorem V.2.6. If M is paracompact and (Uj)jcs is a locally finite open
cover of M , then there exists an associated smooth partition of unity on M .

Proof.  Since M is a manifold, hence locally connected, its connected com-
ponents are open subsets. Therefore it suffices to construct on each connected
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component a smooth partition of unity associated to the corresponding open
cover. Hence we may w.l.o.g. assume that M is connected and o-compact.

Let (K;)ien be a sequence of compact subsets of M with J,, oy K = M
and put Ko := @. For p € M let i, be the largest integer with p € M \ K; .
We then have p € K; 11 C K?p+2. Choose a j, € J with p € U;, and let

p, € C°(M,R) as in Lemma V.2.5 with
supp(ihp) C Uj, N (K 1o\ Ki).

Then W, := 1, *(]0,00]) is an open neighborhood of p. For each i > 1, choose
a finite set of points p in M whose corresponding neighborhoods W, cover the
compact set K; \ K¢ ;. We order the corresponding functions 1), in a sequence
(1i)ien. Their supports form a locally finite family of subsets of M because for
only finitely many of them, the supports intersect a given set K;. Moreover, the
sets 5 1(]0, 00[) cover M. Therefore

b= 1
J

is a smooth function which is everywhere positive (Exercise V.5). Therefore we
obtain smooth functions y
_ i

V; 0’ 1 € N.
Then the functions ¢; form a smooth partition of unity on M.
We now define another partition of unity, associated to the open cover
(Uj)jes as follows. For each i € N we pick a j; € J with supp(y;) C U;, and

define
Oéj = Z (Yo

Ji=J
As the sum on the right hand side is locally finite, the functions o; are smooth
and
supp(a;) C ] supp(pi) € U;
Ji=J

(Exercise V.8). We further observe that only countably many of the a; are non-
zero, that 0 < o, > o =1, and that the supports form a locally finite family
because the cover (Uj);es is locally finite. [

Corollary V.2.7. Let M be a paracompact smooth manifold, K C M a
closed subset and U C M an open neighborhood of K. Then there exists a
smooth function f: M — R with

(1) 0<f<1.

2) flxk=1.

(3) supp(f) CU.

Proof. In view of Theorem V.2.6, there exists a smooth partition of unity

associated to the open cover {U,M \ K}. This is a pair of smooth functions
(f,g) with supp(f) C U, supp(g) C M\ K, 0< f,g, and f+g=1. We thus
have (1) and (3), and (2) follows from g|x = 0. u
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V.3. Direct limit spaces and the smooth long line

In this section we discuss an example of a strange one-dimensional manifold,
the smooth long line. To construct this long line, we first have to take a closer
look at direct limit constructions.

Direct limit spaces

Definition V.3.1. (a) (Direct limit sets) Let (I, <) be a directed set, i.e., <
is a partial order on I (i.e., a reflexive, transitive and antisymmetric relation)
and for ¢,j € I there exists a k € [ with i,57 <k.

Now suppose we are given sets (X;);c; and maps

wij: Xj — Xy, J <,
satisfying
(5.3.1) i = idx,, @ijowik =Yk, k<j<i.

We then call (X;,ij)j<icr a directed system of maps and the maps ¢;; the
connecting maps.

Then we obtain on the disjoint union X := Use;({i} x X;) an equivalence
relation by

(i, ) ~ (Jyz;) = (Fk>14,7) ori(zi) = orj(x)).

Reflexivity and symmetry of this relation are obvious. To see that this relation
is transitive, suppose that (i,x;) ~ (j,x;) ~ (r,z,), and that i,j < k, j,r < /¥
with

ori(wi) = i (x;),  @ej(x;) = por(@r).

For s > k,/, we then obtain

©si(T:) = PskPri(Ti) = Qskrj(T5) = Psre;(T5) = Pseer(Tr) = Qor(T7),

which implies the transitivity of ~.
We write X := {[z]:2 € X} for the set of equivalence classes in X. We
then obtain maps
vir X; = X, x—[(i,2)]

satisfying
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The set X, together with the maps ¢;, ¢ € I, is called the direct limit of
the family (X, i;) and it is denoted by

X =lim Xj;.

This set is the directed union of the subsets ¢;(X;), ¢ € I. It has the universal
property that for each collection of maps f;: X; — Y satisfying

(5.3.3) fiocpji=fi for i<y

there exists a unique map f: X — Y with foy; = f; for each j € J (Exer-
cise V.12).

(b) Now assume, in addition, that each X; is a topological space and that
all maps ¢;;: X; — X, are continuous. We then define a topology on X by
defining O C X to be open if and only if for each i the set ¢; '(O) is open in
X;. It is easy to see that we thus obtain a topology on X (Exercise V.10). We
call X the topological direct limit space of the family (X;,¢;;).

It has the universal property that for each collection of continuous maps
fi: X; — Y into some topological space Y, satisfying (5.3.3), there exists a
unique continuous map f: X — Y with fo¢; = f; for each j € J (Exercises
V.10/12). |

Lemma V.3.2. (a) If all the maps ¢;;: X; — X, are injective, then all the
maps p;: X; — X are injective.

(b) If all the maps yj;: X; — X; are open embeddings, then all the maps
wi: X; — X are open embeddings. If, in addition, all spaces X; are Hausdorff,
then X is Hausdorff.

(¢) If all space X; are n-dimensional smooth manifolds and the maps
vji: X; — X; are diffeomorphic embeddings, then X carries the structure of
a smooth n-dimensional manifold for which all the maps p;: X; — X are diffeo-
morphic embeddings.

Proof. (a) Suppose that ¢;(z) = ¢;(y) for z,y € X;. Then [(i,2)] = [(4,y)]
implies the existence of some j > i with ¢;;(x) = ¢;;(y), and this leads to x =y
since (;; is injective.

(b) From (a) it follows that each ¢; is injective. Let U C X, be an open
subset. We have to show that ¢;(U) is an open subset of X, which in turn
means that for each 7 € J the set

i (pi(0) = {z; € X;:[(4,25)] € i(U)}
= {2 € X;: Gk 2 i, )en () € ora(U)} = | o1} (pmi0))

k>i,j

is open. This is the case because the sets ¢y;(U) are open and the maps ¢y, are
continuous.

If, in addition, all X; are Hausdorff, then X is also Hausdorff. In fact,
take x,y € X. Then there exists some ¢(X;) containing both x and y, and
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in p(X;) & X; we find disjoint neighborhoods of z and y, but these are also
disjoint neighborhoods in X .
(c) Now we assume that all X, are n-dimensional smooth manifolds. From

(b) we now that X is a Hausdorff space and that each ¢; is an open embedding.
Therefore each chart (¢;,V;) of X, yields a chart (¢; o gpj_l, ©;(V;)) of X.

Two such charts (1,005 ', ¢;(V;)) and (wjowj_l, ©;(V;)) of X are smoothly
compatible because we may choose k > i,j to see that

@ioh; ' = ppopr ot
leads to
(iow; ) o(hjop; )™ =0y ot oproprjop;!
=i 0 (o © rj) oy

which is smooth because it is a composition of smooth maps.
Therefore the family of all charts (1, V;) yields a smooth n-dimensional
atlas of X. m

The long line

Definition V.3.3. A linearly ordered set (X, <) is called well-ordered if each
non-empty subset S C X has a minimal element.

An isomorphy class of well-ordered sets is called an ordinal number. ]

Examples V.3.4. The set w := (N, <) is well-ordered, but there are more
complicated well-ordered sets:

w4+1: 1,2,... w,

w+2: 1,2,...,0,w+1,
2w: 1,2, w,w+1liw+2,...
3w+1: 1,2, ,w,w+1lw+2,...,2w,2w+ 1,20+ 2,...,3w

etc.

Another example of a countable well-ordered set is w? := (N x N, <),
endowed with the lexicographic ordering;:

(n,m)<(n,m') <= n<n o n=n m<m. n

In the following construction we shall need:
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Lemma V.3.5. Let ¢c < a <b< oo in R and f:] — co,a[— R a smooth
function with f' > 0. Then there exists a smooth function g:] — 0o, b— R with
g >0 and g=f on]—o0,c|.

Proof. Let a:R — R be a smooth function with 0 < o < 1, a(z) =1 for
z < cand afz) =0 for z > 25¢ (Exercise V.6). The function

] =00, b= R, B(z) = a(z)f(x) + (1 - a(z))

is smooth because «(z) = 0 for z > 43¢,

coincides with f’ for z < ¢ and satisfies =1 on x >

It is everywhere positive and S

C‘TJ“C . Therefore

o) = 1(0) + / " Bty de

is a smooth function on | —o0, b[ which coincides with f on | —o0, ¢] and satisfies
g (x) = p(x) >0 for all z <b. -

Lemma V.3.6. There exists an uncountable well-ordered set (2, <) with the
property that for each B € w the set | := {a € Q:a < [} is countable. Any
such well-ordered set (2, <) has the property that each countable subset of € is
bounded.

Proof. First we use the Well-Ordering Theorem, which ensures the existence
of a well-ordering < on R. If the orderet set (R, <) does already have the
property required above, we are done. Otherwise there exists an o € R for
which |« is uncountable. Since < is a well-ordering, there is a minimal such
a, and then we may put Q := {# € R: 3 < a}. By construction, this set is
uncountable and has all required properties.

Now let (€2, <) be an uncountable well-ordered set in which all set |5 are
countable. To see that each countable subset M C 2 bounded, let us assume
that M is countable and unbounded. Then there exists for each g € Q an
element v € M with 3 € |v. This means that () = UweM 17, a countable union
of countable sets, contradicting the uncountability of €. ]

We shall use €2 to construct the long line as a direct limit manifold of a
system (X, ¥ga)a<peq, with X, =R for each a (Lemma V.3.2(c)).

Theorem V.3.7.  There exists a directed family (Ra, 9o’ .a)a<areq of smooth
maps Qo o R — R such that for a < o’ we have
(1) ¢ o >0.
(2) ¢a,a(R) =] — o0,z for some x € R.
Proof. Our first major step of the proof is to show that for each § € ) there
exists such a directed system over the well-ordered index set (|3, <).

Step 1: If 3 is the minimal element, then we simply put (g s := idgr, and
we are done.

Step 2: Suppose that 3 is the successor of some v € (), and that a directed
system with the required properties exists on (]vy,<). Let f(x) := —e™® and
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note that this function defines a diffeomorphism f:R —] — 0o, 0[. For a < 3 we
also have a < v, so that we can define

f for a =~

ppp=idp and - ppa = { fopya fora<n.

Now each map . o with o < o/ < 3 is smooth with 90/0/,04 > 0, hence defines
a smooth embedding R — R as an open interval bounded from above, but not
from below. Moreover, for a < o/ < 3 we have o/ <+, and therefore

.0’ ©Para = f 0 Pyar 0 Para = f O Pya = Ppa-

Step 3: Suppose that [ is not the successor of any v € (), and that a
directed system with the required properties exists on the countable well-ordered
set Ip:={aeQ:a<f}.

Let

X = ll_I)Il (Ravgpa’,a)aga’<ﬁ

be the corresponding direct limit space. In view of Lemma V.3.2(c), it carries
the structure of a smooth 1-dimensional manifold. We want to construct maps
vp,a for o < B by putting g = f oy, for a smooth function f: X — R
satisfying (f o ¢q) > 0 for each a < 3.

To find the function f, we first recall that Ig is countable, so that the
elements of this set can be written as a sequence (ay,)nen. We then define a new
sequence

Vn = max{aq,...,an}

and observe that this sequence is increasing with § = sup{7y,:n € N}. Passing
to a subsequence, if necessary, we may w.l.o.g. assume that the sequence (7, )nen
is strictly increasing.

Since X =, 5 Xa, where X, 1= g (R) is an open subset diffeomorphic
to R and X, C X3 for o < 3, the subsets X,, := X, = R satisfy X, C X1
with J,, X, = X.

On X, =im(p,,) we define

f2r Xy =R,z —e 2 @)

and observe that (f2 0 ,,)" > 0 and im(f2) =] —00,0[. On X3 = im(p,,) we
have

P (X2) = 03, (945 (R)) = Pyy,7, (R) =] = 00, 22
and gp;sl(Xl) is a proper subinterval, unbounded from below. We now use
Lemma V.3.5 to find a smooth function f3: X3 — R with (f3 0 ¢4,) > 0
and fs3 = fo on X;. We proceed inductively to obtain f,: X,, — R with
(fnopy,) >0 and f, = frn_1 on X,,_o for n > 3.

We now put
flx) = fo(x) for ze€ X, o
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and note that this does not depend on the choice of n, so that we obtain a
smooth function f: X — R with f = f,12 on X,,, satisfying (f o ¢,, )" >0 for
each n. For other elements o < 3 there exists an n with 7, > «, which leads
to

(fopa) = (fo 3 0 0ra) = ((FoPr) 0 (Pr0)) 70 > 0.

We now put
P80 = fop, for a<p

and obtain, as in Step 2, a directed system on |3 with the required properties.

Step 4: We now consider the collection P of all directed systems P =
(Ra,s Yara)a<a’cap, where Qp C Q is a subset with [Qp = Qp, ie., 8 < ',
B € Qp implies § € Qp. We define P, < P, if Qp, C Qp, and P; is a
subsystem of P,. Then the union of any chain in (P, <) yields another element
of P, i.e., (P,<) isinductively ordered. Now Zorn’s Lemma implies the existence
of a maximal element P = P, ... We claim that Qp = Q, and this completes
our proof. If this is not the case, then Qp # €, hence Q2p = |[Q2p implies that
Q) p is bounded, and since 2 is well-ordered, it follows that it either is of the
form |y or I, for v = supQp. In the first case Qp = |y, we apply Step 2
with the successor g of v to obtain a contradiction ot the maximality of P, and
in the second case we apply Step 2/3 with # = 7 to obtain a contradiction to
the maximality of P. Hence Qp # ) leads to a contradiction, and the proof is
complete. [ |

Definition V.3.8. Using a system of smooth maps as in Theorem V.3.7, we
define the long line L as the direct limit of the system ((R)qeq,¥sq), which is
a smooth one-dimensional manifold (Lemma V.3.2(c)). u

Proposition V.3.9.  The long line L has the following properties:
(1) L s arcwise connected.
(2) L s not o-compact, hence not paracompact.

Proof. (1) Let z,y € L. Since L is the union of the subsets L, := ¢, (R) = R
and L, C Lg for a < 3, we find an o € Q with z,y € L,. Since L, = R is
arcwise connected, the two points x and y lie in the same arc-component of L.
Hence L is arcwise connected.

(2) Let K C L be a compact subset. Then the sets (Ly)aco form an
open cover of K for which there exists a finite subcover. As this cover is totally
ordered, K is contained in some L.

If (K,)nen is a sequence of compact subsets of L, there exists for each
n an element «, € Q with K,, C L, . Then the subset S := {a,:n € N}
is bounded in Q (Lemma V.3.6). Hence 7 := sup(S) exists, and we obtain
U,, Kn € Ly # L, which implies that L is not o-compact. ]



94 V. Differential forms on manifolds June 2, 2010

V.4. Oriented manifolds

As we shall see below, integration of differential forms over a manifold
requires an orientation. In Section II1.3 we have already seen the concept of an
orientation of a vector space and how such orientations can be specified. The
idea behind an orientation of a smooth manifold is that we want each tangent
space to be endowed with an orientation which does not change locally.

Definition V.4.1. An oriented manifold is a pair (M,0O), where M is a
smooth n-dimensional manifold and O is a collection of orientations O, of the
tangent spaces T,,(M) such that there exists an atlas A = (¢;, U;)ier, for which
all maps T),(y;):T,(M) — R",p € U;, are orientation preserving.

If O is an orientation on M , we write —O for the opposite orientation, i.e.,
a basis in T),(M) is positively oriented for (—O), if and only if it is negatively
oriented for O, . [ ]

Examples V.4.2. Each open subset U C R" is orientable. We simply endow
each tangent space T,(U) = R" with the canonical orientation of R". u

We are now looking for a criterion to decide for a given manifold whether
it possesses some orientation. We call such manifolds orientable.

Definition V.4.3. Let (M,0M) and (N,O") be oriented smooth manifolds
of the same dimension. A smooth map ¢: M — N is called orientation preserving
if all the maps T, (¢): T(M) — Ty (V) are orientation preserving. L

Remark V.4.4. Let U,V C R"” be open subsets. A diffeomorphism ¢:U — V
is orientation preserving if and only if all the tangent maps

Tm(@) = dgp(l’) € GLn(R)
are orientation preserving, i.e.,
det (dp(z)) >0 forall zeU

(cf. Lemma II1.3.5). u

Proposition V.4.5. A smooth manifold M is orientable if and only if it
possesses an atlas A = (¢;,U;)icr for which all transition maps

are orientation preserving.

Proof. (1) We first assume that M is orientable and that O is an orientation
on M. Let A = (¢;,U;)ier be a smooth atlas for M for which all maps
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Tp(pi): Tp,(M) — R™ are orientation preserving. Then for p € U; N U; the
linear maps
Tplpi): Tp(M) — R™, Ty(p): T, (M) — R™

are both orientation preserving, which implies that

T«Pj(p)(@ij) = T%‘(p)(%’ o ‘Pj_l) = Tp(%’) © Tp(@j)_l € GL,(R)

is orientation preserving.
(2) Conversely, let A = (v;,U;)ier be an atlas with orientation preserving
transition maps. Then for each p € U; N U; the map

Ty(pi) ™" o Ty(p;) € GL(T,(M))
has positive determinant because it is conjugate to
Ty(pj) o Tp(wi) ™" € GLu(R).

We may therefore define consistently an orientation O, on T, (M) for which
all maps Tp,(p;):T,(M) — R", p € U, are orientation preserving. We thus
obtain an orientation on M . |

Lemma V.4.6. Let f: (M,0M) — (N,0V) be a smooth map between oriented
manifolds of the same dimension such that all tangent maps Tp(f): Tp(M) —
Tty (N) are invertible. If Ty, (f) is orientation preserving for some xq € M,
then the same holds for each x in the connected component of M containing xg .

Proof. Let (¢,U) be an orientation preserving chart for O™ with xo € U and
likewise (1, V) with f(x¢) € V for O . We consider the connected component
W of f~1(V)NU containing zg. Then (W) is an open connected subset of
R™ and
Fi=tofop (W) —y(f(W)) CR"
is a smooth map whose differentials are invertible. In ¢(xg) our assumption
implies that
det(dF(¢(x0))) > 0

because Tio(@), Tzo(f), and Ty, () are orientation preserving. As W is
connected, F' is orientation preserving (Exercise IV.4), which implies that f is
orientation preserving on the open neighborhood W of xg.

We conclude that the set My C M of those points = € M for which T,(f)
is orientation preserving is an open subset of M. It likewise follows that Ms,
the set of all points x for which T,.(f) is orientation reversing, resp., orientation
preserving w.r.t. —OY , is open. We now have zy € M; and M = M;UM,, so
that the connected component of x( lies in M;. ]

Proposition V.4.7. If M is connected and orientable, then it carries exactly
two orientations.

Proof. If O and O’ are orientations on M, then we apply the preceding
Lemma to f = idp:(M,0) — (M,0’) to see that f either is orientation
preserving or reversing on all of M. Hence O' = O or O’ = —0O. |
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Example V.4.8. (The Mobius strip) We consider the open rectangle
X :={(z,y) eR*: -1 <y<1,0< <3}
We define an equivalence relation on X by the equivalence classes

_J{@myhl<e <2}
(wy)] = { {(%z% (24 z,—y):0<x<1}.

We endow the set M := X/ ~ of equivalence classes with the quotient topology.
The equivalence relation models a certain gluing of the subset |2, 3[x]—1, 1] with
the subset ]0,1[x] —1,1[. The space M is called the open Mdébius strip.

We claim that M is a Hausdorff space and that it carries the structure of
a smooth 2-dimensional manifold which is not orientable.

To verify the Hausdorff property, we note that the map

B COS T cos mr sin( 5 x)
FiX =B, F(ay) = [ sinmz | +y | sinrasin(3o)
0 cos(5x)

factors through a smooth injective map F: M — R3. It follows in particular that
M is Hausdorff.

The smooth manifold structure on M can be obtained by observing that
the two subsets

X :=]0,2[x] —1,1] and X5 :=]1,3[x]—1,1]

cover X , and that the quotient map ¢: X — M restricts to diffeomorphisms on
X1 and X2.

To see that M is not orientable, we argue by contradiction. If this were the
case, then the map ¢: X — M satisfies the assumption of Lemma V.4.6, which
then implies that ¢: X — M is either orientation preserving or reversing. For
x < 1 we have ¢q(z,y) = q(z +2, —y), which equals ¢(7(x,y)) for the orientation
reversing map 7(z,y) = (zr + 2,—y) (a glide reflection). As 7 is orientation
reversing, the differentials dq(z,y) and dq(7(x,y)) cannot be both orientation
preserving (Exercise V.15). [

Definition V.4.9. Let M be an n-dimensional smooth manifold. Each
element p € Q"(M,R) satisfying p, # 0 for each p € M is called a volume
form. [ ]

Lemma V.4.10. If there exists a volume form on M, then M is orientable.

Proof. Let p be a volume form on M. Then each p, is a volume form on
T,(M), hence defines an orientation O, on this space (Definition II1.3.1).

To see that this defines an orientation on M, we have to find for each p € M
a chart (p,U) with p € U such that for each ¢ € U the map Ty (p): (M) — R
is orientation preserving.
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Let (¢,U) be any chart of M with p € U for which U is connected (this
can always be achieved by shrinking the chart domain). Then ¢(U) is an open
connected subset of R and p, := (¢~ !)*u is a volume form on ¢(U), hence of
the form

po = f-dri AN... ANdxy,

where f:p(U) — R is a nowhere vanishing smooth function. Since ¢(U) is
connected, we either have f >0 or f < 0.

If f >0, then all maps T,(¢) are orientation preserving and we are done.
If f <0, they are orientation reversing. In the latter case we define a new chart
(p,U) of M by

©:=(—p1,02,. .., Pn)-

Then @ o @~ t:p(U) — R™ is the linear map whose matrix is diag(—1,1,...,1).
Then @op~! is orientation reversing, and therefore all maps T;,(9): T,(M) — R"
are orientation preserving. [ ]

Example V.4.11. Each Lie group G is orientable: In fact, let p7 be a volume
form on the tangent space T7(G). We now define a smooth n-form p on G by

Mg(Tl(Ag)-xla s 7T1(/\g)~xn) = /Jll(m17 s 77371)7 Tiy...,Tp € T1<G)

The smoothness of this n-form follows from the smoothness of the left invariant
vector fields z;(g) :=Th(A\g)x, © € T1(G) (cf. Exercise V.13). n

Proposition V.4.12. A smooth paracompact manifold M is orientable if and
only if it possesses a volume form.

Proof. In view of the preceding lemma, we only have to show that the
orientability of M implies the existence of a volume form. This requires smooth
partitions of unity.

Let A = {(p;,U;):i € I} be a locally finite smooth atlas of M for which
all transition maps

pi; = piop; (Ui NU;) — @i(U; N Uj)
are orientation preserving (Proposition V.4.5). Further let (v;);c; be a associ-
ated smooth partition of unity.

Let n; := dxy A ... A dz, denote the canonical volume form on ¢;(U;).
Then w; = ¥;;n; is a smooth n-form on U; whose support is a closed subset
of M contained in U;. We may therefore consider w; as a smooth n-form on
M.

Now we put w := ) . w;. Since this sum is locally finite in the sense that
each point p € M has a neighborhood intersecting the support of only finitely
many w;, w is a smooth n-form on M.

For each p € M there exists an i with ¢;(p) > 0. Then p € U;, and we
have w;(p) # 0. If we also have w;(p) # 0, then

eini = (pij 0 ©3) 0 = p;pimi = @ (det(dpij)n;) = @) (det(dpiz)) - win;
implies that w;(p) € Rtw;(p), and therefore w(p) # 0. This implies that w is a
volume form on M . |
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Exercises for Section V

Exercise V.1. Show that an E-valued k-form w on the smooth manifold M
is smooth if and only if for each point p € M there exists a chart (p,U) with
p € M such that (¢~ 1)*w is smooth (cf. Definition V.1.1.). m

Exercise V.2. Let M be asmooth manifold and E a finite-dimensional vector
space. Show that the multiplication map

C™(M,R) x Q(M, E), (f,w)— fu, (fw)p:= f(p)wp
defines on QF(M, E) the structure of a C*°(M, R)-module. u

Exercise V.3. Let r > 0. Show that there exists a diffeomorphism a:R —
| — r,r[ satisying a(z) = x for all = in some 0-neighborhood. m

Exercise V.4. Show that for each open ball B C R" there exists a diffeomor-
phism ¢:R™ — B. Hint: Let » > 0 be the radius of B and consider a function
of the form ¢(z) = oz(||x|]2)m with « as in Exercise VI.1. u
Exercise V.5. Let E be a finite-dimensional vector space. A family (f;);c.s
of smooth FE-valued functions on M is called locally finite if each point p € M
has a neighborhood U for which the set {j € J: f; |z # 0} is finite. Show that
this implies that f:=)_ jeg /i defines a smooth E-valued function on M.

Exercise V.6. (a) The function

0 for x <0

‘R — R, { .
J:R = T ez forxz>0

is smooth and strictly increasing on [0, 00[. Hint: Show that for each n € N we
have for z > 0: f("(z) = P,(2)f(z) for a polynomial P, .
(b) For a < b the function g(x) := f(x — a)f(b — x) is a non-negative
. . . . . a+b
smooth function with supp(g) = [a,b] and a unique maximum in z = %32,
(¢) The function

b
L 9(t)dt
hab(x) = be
fa g(t)dt
is smooth with
1 forz < a
hap(x) =< 0 for x > b

€]0,1[ fora < x <b.
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Exercise V.7. Let X be a topological space and (K,),eny a sequence of
compact subsets of X with (J,cyKn = X and K, C K], for each n € N.
Show that for each compact subset C' C X there exists an n € N with C C K,, m

Exercise V.8. A family (5;);c; of subsets of a topological space X is said to
be locally finite if each point p € X has a neighborhood intersecting only finitely
many S;. Show that if (5;);cs is a locally finite family of closed subsets of X,
then (J,; S: is closed. u

Exercise V.9. Let (5;);cr be alocally finite family of subsets of the topological
space X . Show that each compact subset K C X intersects only finitely many
of the sets S;. n

Exercise V.10. (Final topologies) Let X be a set and f;: X; — X be maps,
where each X is a topological space. The final topology on X with respect to the
maps (fi)icr is the finest topology for which all maps f; are continuous. Show
that:

(1) 7:={0 C X:(Vi € I)f; *(O) open} defines a topology on X .

(2) Show that 7 is the finest topology on X for which all maps f; are continuous.

(3) Amap ¢g: X — Y, Y a topological space, is continuous if and only if all
maps g o f; are continuous. [ ]

Exercise V.11. (Initial topologies) Let X be a set and f;: X — X; be maps,

where each X, is a topological space. The initial topology on X with respect to

the maps (f;)icr is the coarsest topology for which all maps f; are continuous.

Show that:

(1) The topology on X generated by the sets of the form f;*(0), O C X;
open, has the property required above.

(2) A map ¢g:Y — X is continuous if and only if all maps f;og are continuous.m

Exercise V.12. Suppose that the set X is the direct limit of the system
(Xi,¥ji)i<jer. Show that if we are given maps f;: X; — Y satisfying

fj (e} (sz = f’b fOI' 'L S j,
then there exists a unique map f: X — Y with foy; = f; foreach jc€J. =
Exercise V.13. (Vector fields on a Lie group) Let G be a Lie group with
neutral element 1, multiplication map m¢, and T(G) its tangent bundle. We

write A\;(y) := a2y and py(x) := xy for the left and right multiplications on G.
Show that:

(1) We obtain for each z € T1(G) a smooth vector field on G by

z1(g) = T1(Ag)(2).

Hint: (Exercise IV.5 shows that z;(g) = T{41)(ma)(0,7)).
(2) Each Lie group is parallelizable. ]
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Exercise V.14. Let G be a Lie group. Show that:

(1) All connected components of G are diffecomorphic. Hint: The maps
Ag:G — G, x +— gx are diffeomorphisms.

(2) If U C G is an open set and V' C G arbitrary, then

V.U :={vuwveVuelU}

is open in G'.

(3) If U,V C G are compact, then U -V is compact.

(4) If H C G is an open subgroup, then it is also closed. Hint: Consider the
cosets of H in G.

(5) If 1 €U =U"! C @ is an open subset, then each set U™ := U"~1.U defines
an ascending sequence of open subsets of G and | J,, .y U" is an open closed
subgroup.

(6) If 1€ U =U"!C G is a compact identity neighborhood, then each set U"
is compact and J,, U™ contains the identity component of G.

(7) Each finite-dimensional Lie group G is paracompact. ]

Exercise V.15. Let (M,O) be an oriented manifold, U C R™ open and
f:U — M asmooth orientation preserving map. Show that f(x) = f(y) implies
that

det(T, (/)" o Ty(f)) > 0. .

Exercise V.16. Let M be a smooth manifold. A subgroup I' C Diff (M) is

called admussible if for each p € M there exists a neighborhood U such that the

sets 7.U, v € I', do not overlap. Show that:

(a) For any admissible group I', we endow the set X := M/I' of I'-orbits in
M with the quotient topology. Show that the canonical map ¢: M — X is
a local homeomorphism, i.e., each point p € M has a neighborhood U for
which ¢|y:U — ¢(U) is a diffeomorphism.

(b) The space X carries a unique structure of a smooth manifold for which ¢
is a local diffeomorphism. [ ]

Exercise V.17. Show that the following subgroups I' of the group Moty (R) C

Diff (R?) of motions of the euclidean plane are admissible in the sense of Exer-

cise V.16 and verify the following statements:

(1) ' = (m,m2), where 7y (z,y) = (z+ 1,y) and 7o(z,y) = (z,y + 1). In this
case I' & Z? and R?/T" = T?.

(2) T = (r), where 7(x,y) = (z + 1,y). In this case I' & Z and R?/T is
diffeomorphic to the infinite cylinder S! x R.

(3) T = (r), where 7(z,y) = (z +1,—y). In this case I' & Z and R?/T" is
diffeomorphic to the Mdobius strip.

(4) T = (7, m2), where 7 (z,y) = (x+ 1,y) and m»(z,y) = (—z,y + 1). In this
case I' is not abelian, R?/T" is compact and called the Klein bottle. ]
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V.5. Manifolds with boundary

We have defined differentiable manifolds by charts consisting of homeomor-
phisms onto an open subset of R™. Manifolds with boundary are more general
objects defined by charts which are homeomorphisms onto an open subset of
closed half spaces of R"™.

Definition V.5.1. Let M be a Hausdorff space and
H, ={zxeR"z <0}
the closed left half space in R™. Then
OH, = {x e R": 21 =0}

is a hyperplane.

Note that the interior of H,, is dense and that this property is inherited
by each open subset V' C H,, (Exercise V.18).

(a) A pair (¢,U), consisting of an open subset U C M and a homeomor-
phism ¢: U — ¢(U) C H,, of U onto an open subset of H,, is called an H,, -chart
of M.

(b) Two H,,-charts (¢,U) and (v,V) of M are said to be C* -compatible
(ke NU{oo})if UNV = or the map

Yoo owrvye(UNV) = p(UNV)

is a CF-diffeomorphism, i.e., 1 o ¢~ and its inverse are smooth, as maps on

subsets of R™ with dense interior (Definition IV.4.1).

(c) An H, -atlas of M of order C* is a family A = (¢;,U;)ies of H,-
charts of M with (J;.; Us = M and all charts in A are pairwise C* -compatible.

(d) An H,-atlas of order C* is called mazimal if it contains all charts
which are C*-compatible with it.

(e) An n-dimensional C*-manifold with boundary is a pair (M, A) of a
Hausdorff space M and a maximal H,,-atlas of order C* on M. For k = co we
call it a smooth manifold with boundary. [ ]

Lemma V.5.2. Let U C H, be open, E a finite-dimensional vector space, and
:U — E a CF-map. Then the restriction

VYo = Y|unon,:UNOH, — E

is a C* -map.
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Proof. By definition, 1y is continuous. Pick p € UNOH,, and let Uy C U be
an open convex neighborhood of p in H,,. For each ¢ € U; N H? we then have
for € €]0,1[:

$(@) = ¥+ (- p)) = b+ (g - p)) + / B(p + (g — p))(q — p) dt

—>¢(p)+/0 dy(p+t(q—p))(q—p)dt

for ¢ — 0. By continuity of both sides, we get

1
() = $(p) + / d(p + t(q — p))(q — p) dt

for each ¢ € Uy N OH,,. This implies that for each v € {0} x R~ = T,,(0H,,),
we have

lim b+ ) = 6(p)) = Jimy [ 0+ tho)(0) dt = di(p) o)

We conclude that 1y is a C'-map with dig(q)(v) = dip(q)(v). Iterating this
argument in the sense that we apply it again to the partial derivatives of v,
implies that 15 is C* and that all its partial derivatives of order < k coincide
with the continuous extensions of the partial derivatives of ¥ to U NOH,,. ®

Lemma V.5.3. Let UV C H, be open subsets and :U — V a CF-
diffeomorphism. Then the following assertions hold:

1) PWU% =V and y(0H,NU) =0H,NV.

(2) The restriction ¥y = V¥ |unom, 1S a C* -diffeomorphism onto V N OH,, .

(3) If 1 is orientation preserving, then the same holds for g .

Proof. (1) The existence of a smooth map ¢:V — U with ¢ ot =idy and
1 o @ =idy implies that di(z) is invertible for each z € U. Hence the Inverse
Function Theorem implies that 1 (U°) is an open subset of V', hence contained

in V?. As the same argument applies to ¢, we also have (V") C U°, which
leads to VO = ¢(p(V?)) C (U°). This proves that (U°) = V°, and now

YU NOH,) =p(U\U") =V \V'=VNoH,.
(2) In view of Lemma V.5.2, 1y is smooth. Since the same argument
applies to @y, Yy is a diffeomorphism onto its image.

(3) Assume that 1 is orientation preserving. The Jacobi matrix of ¥ in
r € 0H,, is of the form

991 (2) 0

= [ 971

et = (g0

As 1 maps U into H,,, we have g—q’ﬁ;(m) > 0 for each x € 0H,, NU (Exer-
cise V.19). Hence

0 < det(di(z)) = %@) - det (dipo(x))

implies det (dl/}a(l‘)) > 0, so that 15 is orientation preserving. [ ]
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Definition V.5.4. (Boundary points) Let M be an n-dimensional manifold
with boundary. The preceding lemma shows that if (¢,U) is a H,-chart of M
and p € M with ¢(p) € 0H,,, then ¥ (p) € OH,, holds for all H, -charts (¢, V)
of M . Points with this property are called boundary points of M. We write OM
for the set of all boundary points and MY := M \ OM for the interior of M. m

Lemma V.5.5. The boundary OM of a smooth n-dimensional manifold M
with boundary is a smooth (n — 1)-dimensional manifold and M° is a smooth
n-dimensional manifold without boundary.

Proof. As a subset of the Hausdorff space M, OM is a Hausdorff space. For
each H,-chart (p,U) of M, the restriction ¢’ := ¢|ynsr is a homeomorphism
UNoM — o(U)NOH,, hence an (n — 1)-dimensional chart of OM . Further
Lemma V.5.3(2) shows that all these charts are smoothly compatible, hence
define a smooth (n — 1)-dimensional manifold structure on M .

That M° is a smooth n-dimensional manifold without boundary follows
easily from the definition. To obtain charts of M?, we pick for each point p € M?
an H,-chart (p,U) with p € U. Then ¢(p) € HY, so that U’ := ¢~ 1(H?) also
is an open neighborhood of p, and (¢ |/, U’) is a chart of MY. The compatibility
of all these charts follows from the compatibility of the chart of M . |

Examples V.5.6. (a) H, is an n-dimensional manifold with boundary and
OH, = {0} x R*~! is its topological boundary.

More generally, for each non-zero linear functional f:V — R (V' a finite-
dimensional vector space) and ¢ € R theset M := {x € V: f(z) < ¢} is a smooth
manifold with boundary. In fact, let ¢, := f and extend to a basis ¥1,...,1,
of V*. Then

o:=(f—c,a,....;0,):V —=R"
is an affine isomorphism mapping M to H, .

(b) Let M be a smooth n-dimensional manifold, f: M — R a smooth
function and ¢ € R a regular value of £, i.e., df (z) # 0 foreach z € S := f~!(c).
Then

N:={zxe M: f(z) <c}
carries the structure of a smooth n-dimensional manifold with boundary
ON = S (Exercise).

We know from the Regular Value Theorem II.2.6 that S is an (n — 1)-
dimensional smooth submanifold of M. In view of the proof of Proposition 1.2.8,
there exists for each p € S a chart (p,U) of M with p € U such that

e(UNS)=pU)N ({0} xR and ¢ =f—c
Then
e(UNN) =pU)N H,.
(c) B" := {x € R™: ||z||]2 < 1} is a smooth submanifold with boundary. We
simply apply (b) to the function f(z) := ||z||3.
(d) If M is an n-dimensional smooth manifold without boundary and

I := [0,1], then N := I x M is a smooth manifold with boundary ON =
({0} x M)U ({1} x M) (Exercise V.23). [
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Definition V.5.7. (Tangent vectors) We define the tangent bundle of H,, by
T(H,) := H, x R™, considered as a subset of T(R™) = R™ x R™. Accordingly,
we put T,(H,) = R™ for each z € H,. For a boundary point x € 90H, a
vector v € T, (H,) is called inward (pointing) if v1 < 0 and outward (pointing)
if v1 > 0.

For a smooth manifold M with boundary, we now define tangent vectors
and the tangent bundle T'(M) = (J ¢ s Tp(M) in the same way as for manifolds
without boundary in such a way that for each H,-chart (p,U) the tangent
map T(p): T(U) — T(e(U)) = p(U) x R™ is a diffeomorphism. We then have
T,(M) = R™ for each p € M, and in particular for all boundary points. This
means that for p € OM the subspace T,(0M) is a hyperplane in T,(M). If
p € OM, then a tangent vector v € T,(M) is said to be inward pointing if for
all charts (p,U) with p € U the vector Tj,(¢)v € T,y (H,) is inward pointing.
Likewise we call v outward pointing if for all charts (¢, U) with p € U the vector
Tp(p)v € Typ)(Hy) is outward pointing. [

Definition V.5.8.  (Differential forms) Let M be an n-dimensional smooth
manifold with boundary, k£ € Ny and E a finite-dimensional real vector space.
An E -valued k-form on M is a function

w: M — Upenr At*(T, (M), E)  with  w(p) € Alt"(T,(M), E),p € M.

It is said to be smooth if for each H, -chart (p,U) the differential form (¢=1)*w
is smooth on ¢(U), in the sense of Definition IV.4.1. We write Q¥(M, E) for
the set of smooth E-valued k-forms on M. |

Definition V.5.9. An oriented manifold with boundary is a pair (M,O),
where M is a smooth n-dimensional manifold and O is a collection of ori-
entations O, of the tangent spaces T,(M) such that there exists an atlas
A = (¢i,U;)icr consisting of H,-charts and (—H,)-charts, for which all maps
T,(pi): Tp,(M) — R™, p € U, are orientation preserving. n

Remark V.5.10. If dim M > 1, then we can avoid (—H,,)-charts because if
(¢, U) is an orientation preserving (—H,,)-chart of M, then

P = (_9017 —©2,P3,. .., Son)

defines an orientation preserving H,, -chart (¢,U).

For dim M =1 we might not have enough H,,-charts to provide an atlas.
The simplest example is —H; = [0, 00[, endowed with the induced orientation
from R. Then there exists no orientation preserving Hj-chart (¢,U) with
0 € U. In fact, that ¢ is orientation preserving means that ¢’ > 0. [ ]

Definition V.5.11.  We define an orientation of a 0-dimensional manifold
M as a function assigning to each p € M asign O, € {£1}. n
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Proposition V.5.12. If (M, 0O) is an oriented manifold of dimension n > 1
with boundary, then OM carries a unique orientation Oy determined by the
property that for each p € OM and each outward pointing tangent vector vy €
T,(M) a basis (va,...,v,) of T,(OM) is positively oriented if and only if the
basis (v1,...,vy) of T,(M) is positively oriented. If dim M =1, then we define
an orientation of OM by O, =1 if there exists an orientation preserving H; -
chart (p,U) with p € U and O, = —1 otherwise.

Proof.  First we observe that if vj € T,(M) is another outward pointing
tangent vector, then v] € Av; + span{vs,...,v,} for some A > 0, so that
(v],va,...,v,) is positively oriented if and only if (vq,ve,...,v,) is. We thus

obtain an orientation on each tangent space of OM .

If (¢, U) is an orientation preserving chart of (M, O), then the correspond-
ing chart (@9, U NIM) is orientation preserving with respect to the orientation
of OH,, = R"! for which (wy,...,w,) € OH, is positively oriented if and only
if (e1,ws,...,w,) is positively oriented in R™. This implies that the orientation
Oy on OM is compatible with the atlas of OM obtained from the orientation
preserving charts of (M,O) (cf. Lemma V.5.5). n

V.6. Integration of differential forms

In this section we shall see how to integrate smooth n-forms over oriented
manifolds (with boundary) and prove Stokes’ Integral Theorem.

Definition V.6.1. Let (M,O) be an n-dimensional oriented paracompact
smooth manifold (with boundary), w € Q"(M, E) a continuous E-valued differ-
ential form on M and A C M a compact subset. We want to define the integral
f(A,O) w of w over A with respect to the orientation O.

First we consider the case n = 0 (cf. Definition V.5.10). Then A C M is
a finite subset and w = f: M — FE is a function. We then define

/(A,O)f = ZOp'f(p)-

peEA

Now we turn to the case n > 0. We distinguish two cases.
Case 1: There exists a positively oriented chart (¢,U) with A C U. Then we

define
/ W= / (90_1)*w,
(4,0) w(A)

where the right hand side is an integral of the continuous n-form (¢~1')*w on
©(U) over the compact subset p(A4) C p(U) (cf. Definition IV.5.1).

To see that this integral is well-defined, assume that (i,V) is another
positively oriented chart with A C V. Then A CU NV, and the map

ni=pop p(UNV)—UNV)
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is an orientation preserving diffeomorphism. In view of the Oriented Transfor-
mation Formula (Prop. IV.5.3), we obtain

-1 *w = o -1 *o = —1\x/, . —1 ) — 1 “
L(A)(w ) /p(A)((n v /77(¢(A))(77 ) /WUW )

Case 2: (General case) Let (¢;,U;);er be a positively oriented atlas of M.
Since M is paracompact, the open cover (U;);c; has a locally finite refinement,
and Theorem V.2.6 guarantees the existence of an associated partition of unity
(¢j)jes. Then for each j the n-form v ;w has compact support contained in
some Uj, , so that | (Ansupp(15),0) Yjw is defined as in Case 1. The local finiteness

implies that A Nsupp(v;) # @ for only finitely many j, so that we may define

W= / Yijw.
/(VA7O) Z (Aﬂsupp(’l/’y)»o)

JjeJ

Again, we have to verify that the right hand side does not depend on the
choice of the partition of unity. So let (nx)kecx be another partition of unity for
which supp(ng) is contained in a chart domain of some positively oriented chart
of M. We then have

> oy =2, et
Ansupp(;) ANsupp(¥;) keK

JjeJ
S w3 [ e
JEJ keK Ansupp(p;) jeJ keK ANsupp(nx)
=2/ Smip=3 |
keK Ansupp(nk) jed keK ﬂSUPP(Wk)

Remark V.6.2. Let (M,O) be an oriented n-dimensional manifold. If —O is
the opposite orientation on M, then

[ e
(A,—0O) (A,0)

If dim M = 0, this is immediate from the definition. To verify this, we may
w.l.o.g. assume that dimM > 0 and A C U for some positively oriented chart
(p,U) of (M,0). Let 7 € End(R"™) be defined by

T(z) = (21,22, ..., Tyn).

Then (70 ¢,U) is positively oriented for (M, —0O), and we have

/ o= / (ro0) ) w= / (o) w
(A,-0O) T(p(A)) T(w(A))
—— [ o= w
w(A) (A,0)

by the Oriented Transformation Formula (Prop. IV.5.3). n
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Theorem V.6.3. (Stokes’ Theorem) Let (M,O) be an oriented n-dimensio-
nal manifold with boundary, n > 0, and endow OM with the induced orientation
Oy . For each compactly supported (n — 1)-form w of class C*, we then have

(SF) / dw = / w.
(M,0) (0M,05p)

Proof. Let (¢i,U;)icr be a positively oriented atlas of M. Since M is
paracompact, the open cover (U;);c; has a locally finite refinement, and Theo-
rem V.2.6 guarantees the existence of an associated partition of unity (;);e.
Then for each j the n-form w; := ;w has compact support contained in
some U;, . Since both sides of (SF) are linear in w, it suffices to assume that
supp(w) C U; for some 1.

If dim M > 1, then we may assume that all charts of M are H,,-charts,
but for n =1 we also have to admit —H;-charts (cf. Proposition V.5.12).

By definition, we then have for any H,-chart (¢;,U;):

/(Mp) dw = /H () () = /H (o)

[ = witre
(8M,0p) oH,,

which reduces the assertion to the case M = H,,, resp., to H; or —H; for n =1.
As in Example IV.3.2, we write the (n — 1)-form w as

and

n

w = Z(—l)i_lfidxl /\.../\c/l\aci/\.../\da:n

=1

and recall that

dw = <Zn:afi)d:c1/\.../\d.rn.

i=1 O
Next we observe that the restriction of dxi A ... A c?.rz A...Ndx, to 0H,

vanishes for i > 1 because dx; vanishes on each tangent vector of 0H,,. As the
support of w is compact,

supp(w) C [-R,0] X [-R, R]”*l
for some R > 0. We thus obtain

/ w= f1(0,z9, ... zy)dxa A ... Ndzy,
O0H,, O0H,,

:/ f1(0,z9, ..., z,)dxs . .. dx,,.
[7R,R}’n—1
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On the other hand, we have

_ — 0f;
/Hn dw = /[R7O]X[R7R]n_l (; 8xi)dm1...d9&n.

K3

For 7 > 1 we have
R af
7 0 0 0
/_R ami(xl,xz,...,xi,...,mn)dxi

0.0 0 0 .0 0
= fi(xy,z5,..., R, ..., z,) — fi(x],29,...,—R,...,x,) =0,

so that Fubini’s Theorem implies that

Ofi
/ fdazl...dxnzo.
[—R,0]x[~R,R]»—1 O%;

This leaves only the first summand:

/ dw:/ %dxl...dxn
H, [~ R,0]x[~R,R]»—1 OT1

= / f1(0,29,...,2,) — fi(—R,za,...,2,)dxs ...dx,
[~ R,R]n—1

:/ 1fl(O,ZCQ,...,.I‘n)d.’ljg...di(}n.
[_R7R]n7

Since this coincides with | o W, the proof is complete. [ ]

Corollary V.6.4. If (M,0) is a compact oriented smooth n-dimensional
manifold without boundary and w an (n —1)-form on M, then

/dw:O. ]
M

Remark V.6.5. Let (M,O) be a compact oriented manifold. The preceding
corollary shows that the integral of each exact n-form w over M vanishes.

If p is a volume form on M compatible with the orientation (Proposi-
tion V.4.12), then we have for each orientation preserving chart (¢,U) that
(0™HY*u = fdxy A ... Adx, for some positive function f. This implies that
1) 4w > 0 for each compact subset A C M with non-empty interior. In par-
ticular, we obtain [, u > 0. Therefore [u] € H}y(M,R) is non-zero, and the
map

I: Hiz (M,R) — R, [w]»—>/ w
M

is surjective. As a particular consequence of de Rham’s Theorem (which we won’t
prove here), this map is also injective: an n-form w € Q"(M,R) is exact if and
only if [,, w = 0. It follows in particular that

Hio (M,R) & R. n
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Example V.6.6. (The 1-dim. case) For a < b € R the interval M := [a,b] is
a 1-dimensional compact manifold with boundary. For any smooth function f
on M, considered as a 0-form, we therefore obtain

b
/ F(t) dt = / af = f=F0) - fa)
a (M,0) (0M,0p)

because the orientation on 0la,b] induces by the standard orientation of R
assigns 1 to b and —1 to a (Proposition V.5.12). [ ]

Example V.6.7. Let M CR" be a compact n-dimensional submanifold with
smooth boundary and

n

w = Z(—l)i_lxidazl A LA L/i\iljl A...ANdx,,.
i=1

Then dw = ndxy A ... A dx,, so that Stokes” Theorem leads to

nvoln(M):/ dw:/ w.
M (8M,05)

We can thus express the volume of M by a surface integral:

1
L, (M) = — .
vol, (M) ”/(aM,Oa)w

For n = 2 we obtain in particular

1

VOlQ(M) = 5/(8]\/[0 )Qﬁldl'z — CL'QdCIZl. |
,Vo

Gauf3’ Theorem

Theorem V.6.8. Let M C R™ be a compact subset with smooth boundary
and F: M — R"™ a Cl-function (a vector field). Then

(6.2) / div(F)dzy - - - dx, = / (F,v)(z)dS(z),

M oM
where dS stands for the surface measure of OM (cf. Definition V.2.9) and
v(z) € T,(OM)> is the exterior unit normal vector. [

We now explain how Gauf3’ Theorem can be derived from Stokes’ Theorem.
For the proof we shall need the following lemma.
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Lemma V.6.9. If B € M, ,—1(R) has rank n —1 and B; € M,_1(R) is
obtained by erasing the i-th row of B, then

1 .
vi= ——————((=1)""det B;)i=1...n
det(BT B)
is a unit vector in im(B)* with det(v, Bey,...,Be,_1) > 0.

Proof. For each i we put b; := Be;. Then the matrix (b;, B) € M,(R) is
singular. Expanding the determinant det(b;, B) = 0 with respect to the first
column, it follows that v_Lb;, hence that vl im(B).

We further have

(Corollary IV.2.7) and

n

det(v, Bey, ..., Bep_1) = det(v|B) = Y (=1)""'v; det(B;)

=1

det(B
\/det BTB Z ¢

This completes the proof. [ ]

Proof. (Gaufl’ Theorem) To see how (6.2) follows from Stokes’ Theorem, we
consider the (n — 1)-form

=Y (-1 Fidwy A Adrg AL A da,

so that dw = (div F)dxy A ... A dx, implies that

/ div(F)dxl---dxn:/ dw:/ w
M M (0M,05)

If U CR"! is an open subset and ¢: U — OM is a parametrization, i.e.,
Y is a C'-map with rk(d(z)) =n — 1 for each z € U, then

=/ g(z) dz,
where g(x) := det([dy(x)] " [dip(z)]).

For any parametrization ¢:U — OM the preceding lemma implies that
the exterior unit normal vector v(i(z)) is given by

v((z)) = ———=((=1)"" det[d)(z)];)i=1,....n,
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which leads to
(Fiv)(P(x)vg(x) = Z(_l)H_lFi(dJ(x)) det[di(z)];.
On the other hand

(1) E () dpy A .. Adipy A ... Adey,

I
-Mﬁ

N
I
-

(V*w) (2, ..., Tn)

(=) E;(y(x)) det([dp(2))i)dxa A ... A dy,.

I
.M:

@
I
-

We conclude that for each compact subset K C U we have

/w(K)w:/Kw*w:/}((Fa’/)(@b(x))\/deg---da:n:/K<F,y>(qp(g;))ds($)‘

Remark V.6.10. Originally, Stokes’ Theorem was concerned with integrals
over regions on surfaces in R3, surrounded by (piecewise) smooth curves: Let
M C R3 be an oriented hypersurface and A C M a compact subset with smooth
boundary. Let F: A — R3 be a C'-vector field and v: M — R? a unit normal
vector field defined by the property that for each positively oriented basis (b1, b2)
of T,(M), the basis (v(p),b1,bs) of R? is positively oriented. Then we have

3

rot(F),v)dS = Fidx;.
[ trot(P).) o

To see how this assertion follows from Stokes’ Theorem, observe that w :=
23:1 F;dz; defines a C'-1-Form on the 2-dimensional oriented manifold A with
boundary. Therefore Stokes’ Theorem asserts that

3
/ ZFz’d%’ :/ w (35) / dw
(aA,Oa) =1 (8A703) (A,OA)

= / (I‘Ot F)ld(EQ A dl‘g — (I‘Ot F)Qd!lfl VAN dlL‘g + (I‘Ot F)gd.fl,‘l VAN dlL’Q
(A,04)

(Remark 1V.3.3). Now we argue as in the proof of Gaul’ Theorem to see that
this equals the surface integral | (A.04) (rot F,v)dS. [ |

Remark V.6.11. We briefly discuss an application to electrodynamics. Let
U C R? be open and I C R an interval. In electrodynamics the magnetic and
the electrical field are modeled by time-dependent vector fields, hence functions

E,B:U x I — R3,
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One of Maxwell’s equations asserts that

(ME) rotE:—aa—f.

Let M C R3 be a compact oriented surface with boundary. Then the integral
o) = [ (Bla0)v(@)dS(a)
(M,0)

is the magnetic flux through M at time t. Differentiation under the integral sign
leads to

/ — 8B_(ac,t) vix T (M:E) — ro x vix x
= [ (@) ase "~ [ ot B, ) as)

3
= —/ ZEzdl'@ = —f Eds.
(aMaOB) =1 oM

The physical interpretation of this equation is that any change of the magnetic
flux through a surface M bounded by a wire (an electric conductor) induces an
electric current through the boundary wire. |

More Exercises for Chapter V

Exercise V.18. Show that each subset U C R™, which is an open subset of a
subset V' with dense interior, has dense interior. [ ]

Exercise V.19. Let U C H, be an open subset and ¢: U — H,, be a smooth
map. Show that for each x € U N 0H,, with ¢(z) € 0H, we have

% 5,

ox 1
If, in addition, ¢ is a diffeomorphism onto an open subset of H,,, then

Oy
a—x1>0

for each x € U N 0H,,. ]

Exercise V.20. Let S* C R"*! be the n-dimensional sphere.

(1) Show that S™ is orientable. Hint: It is the boundary of an orientable
manifold with boundary.

(2) The map 7:S™ — S™, x — —x is orientation preserving if and only if n is
odd. ]
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Exercise V.21. Let T" = (S!)" be the n-dimensional torus, realized as
R™/Z™. Show that:

(1) T™ is orientable.

(2) Each g € GL,(Z) induces a diffeomorphism ¢, of T" by [z] — [gz].

(3) g4 is orientation preserving if and only if det(g) =1. [

Exercise V.22. Show that the real projective space P, (R) := P(R"*?) is not
orientable if n is odd. Hint: Consider the quotient map ¢:S™ — P, (R) whose
fibers are the sets {+x}, = € S", and use Exercise V.20. u

Exercise V.23. Show that:

(1) If M is an n-dimensional smooth manifold without boundary and M’ is
a smooth k-dimensional manifold with boundary, then N := M x M’ is a
smooth (n + k)-dimensional manifold with boundary ON = M x oM’ .

(2) If M is an n-dimensional smooth manifold without boundary and I = [0, 1],
then N := 1 x M is a smooth manifold with boundary N = {0} x M U
{1} x M. n

Exercise V.23. Let V =V; x V5 be a direct product of two finite-dimensional

vector spaces. Show that:

(1) (Product orientation) If Oy, , resp., Oy, are orientations of Vi, resp., Vs,
then we obtain a unique orientation Oy on V for which any basis of the
form (by,...,by,c1,...,Cm), where (by,...,b,) is a positively oriented basis
of (V1,0v,) and (c1,...,¢n) is a positively oriented basis of (Va,Oy,), is
positively oriented.

(2) (Induced orientation) If Oy, , resp., Oy are orientations of Vi, resp., V,
then we obtain a unique orientation Oy, on V, for which a basis of the

form (c1,...,¢n) is positively oriented if for each positively oriented basis
(b1,...,by) of (V1,0y,) the basis (by,...,bn,c1,...,¢n) is positively ori-
ented in (V,0y). u

Exercise V.24. Let M C R? be a compact subset with smooth boundary.
(a) Let E a finite-dimensional vector space and f,g € C*(M, E). Prove Green’s
Integral Theorem:

g Of
dz + gd :/ - — = |dx A\ dy.
/(8M,Oa) f g4y M (833 6y) y

(b) Show that if f: M — C is holomorphic on M (in the sense of differentiable
functions on sets with dense interior), then

/ fdz =0. [ ]
(OM,0p)

Exercise V.25. We realize S' = T as R/Z and write w € QY(T,R) as
w = f(t)dt for a smooth 1-periodic function f. Show that

(1) w is exact if and only if fol f(t)dt = [Lw=0.

(2) Derive that dim Hjg (S',R) = 1. u
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Exercise V.26. We realize T" as R"/Z" and write w € Q"(T,R) as w =
f(t1,..., fn)dty A ... Adt, for a smooth function f:R™ — R, periodic in each
variable.

(1) Expand the function f in a Fourier series

f(t) — Z amem(t), em(t) _ 627Ti<m,t> _ 627ri(m1t1+...+mntn)

and show that f = % for a periodic function ¢ if and only if a,, vanishes
for all m with m; = 0.

(2) w is exact if and only if f[0,1]n f(t)dt = [, w=0. Hint: The exactness of
w means that f = div G for a periodic vector field G.

(3) Derive that dim HJ (T",R) = 1. u
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V1. Vector fields and local flows

In this section we turn to the geometric nature of vector fields as infinite-
simal generators of local flows on manifolds. This provides a natural perspective
on (autonomous) ordinary differential equations.

VI.1. Integral curves of vector fields

Throughout this section M denotes an n-dimensional smooth manifold.

Definition VI.1.1. Let X € V(M) and I C R an open interval containing 0.
A differentiable map ~: I — M is called an integral curve of X if

v (t) = X(y(t)) for each te 1.

Note that the preceding equation implies that 4/ is continuous and further that if

v is C%, then ' is also C*. Therefore integral curves are automatically smooth.

If J D I is an interval containing I, then an integral curve n: J — M is
called an extension of v if n|; = ~. An integral curve 7 is said to be mazimal
if it has no proper extension. [ ]

Remark VI.1.2. (a) If U C R" is an open subset of R™, then we write a
vector field X € V(U) as X(z) = (z,F(x)), where F: M — R"™ is a smooth
function. A curve «:1 — U is an integral curve of X if and only if it satisfies
the ordinary differential equation

Y (t)=F(y(t)) forall tel.
(b) If (,U) is a chart of the manifold M and X € V(M), then a curve

~v:I — M 1is an integral curve of X if and only if the curve n := p o~ is an
integral curve of the vector field X, :=T(p) o X o o=t € V(¢(U)) because
Xo((t) =Ty ()X (v(t))  and  0'(t) = Ty (@)Y (1). m

Remark VI.1.3. A curve 7:I — M is an integral curve of X if and only if
~(t) := v(—t) is an integral curve of the vector field —X .

More generally, for a,b € R, the curve n(t) := vy(at+b) is an integral curve
of the vector field a X . |

Definition VI.1.4. Let a <b € [—00,00]. For a continuous curve v:|a, b[—
M we say that

li t) =

lim (t) = oo
if for each compact subset K C M there exists a ¢ < b with y(t) € K for t > c.

We likewise define
lim () = oo. u

t—a
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Theorem VI.1.5. (Existence and Uniqueness Theorem for integral curves)
Let X € V(M) and p € M. Then there ezists a unique mazimal integral curve
Yp:lp — M with v,(0) = p. If a :=inf I > —o0, then lim;_,, v, (t) = 0o and if
b:=supl < oo, then lim;_p,(t) = co.

Proof. @ We have seen in Remark VI.1.2 that in local charts, integral curves
are solutions of an ordinary differential equation with a smooth right hand side.
We now reduce the proof to the Local Existence- and Uniqueness Theorem for
ODE’s.

Uniqueness: Let v,1n:I — M be two integral curves of X with (0) =
n(0) = p. The continuity of the curves implies that that J := {t € I:v(t) = n(t)}
is a closed subset of I, and it is clear that 0 € J. In view of the Local Uniqueness
Theorem for ODE’s, there exists for each to € J an € > 0 with [tg,to +¢] C J,
and likewise [tg — ¢,t9] € J (Remark VI.1.3). Therefore J is also open. Now
the connectedness of I implies I = J, so that v =17.

Existence: The Local Existence Theorem implies the existence of some
integral curve v:I — M on some open interval containing 0. For any other
integral curve n: J — M, the intersection I N J is an interval containing 0, so
that the Uniqueness assertion implies that n =~ on I'NJ.

Let I C R be the union of all open intervals I; on which there exists an
integral curve v;:I; — M of X with 7;(0) = p. Then the preceding argument
shows that

v(t) :=7,(t) for tel;

defines an integral curve of X on I, which is maximal by definition. The
uniqueness of the maximal integral curve also follows from its definition.

Limit condition: Suppose that b :=supl < oo. If lim;_;, y(f) = co does
not hold, then there exists a compact subset K C M and a sequence t,, € [
with t,, — b and ~(t,,) € K. As K can be covered with finitely many closed
subsets homeomorphic to a closed subsets of a ball in R™, after passing to a
suitable subsequence, we may w.l.o.g. assume that K itself is homeomorphic to
a compact subset of R™. Then a subsequence of (v(t,,))men converges, and
we may replace the original sequence by this subsequence, hence assume that
q = lim,, o0 ¥(tm) exists.

The Local Existence Theorem for ODE’s implies the existence of a compact
neighborhood V' C M of ¢ and € > 0 such that the initial value problem

n0)=z, n'=Xon

has a solution on [—¢,¢] for each z € V. Pick m € N with ¢,, > b—¢ and
Y(tm) € V. Further let n: [—e,e] — M be an integral curve with 7(0) = v(t,,).
Then

y(@) ==t —tn) for te€ [ty —etnm+el,

defines an extension of v to the interval IUlt,,,t,, + €[ strictly containing |a, b[,
hence contradicting the maximality of I. This proves that lim;_;,y(t) = oo.
Replacing X by —X, we also obtain lim;_,, y(t) = c0. [ |
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If ¢ =7,(t) is a point on the unique integral curve of X through p € M,
then I, = I, —t and

q(8) 7= p(t + )

is the unique maximal integral curve through q.

Example VI.1.6. (a) On M = R we consider the vector field X given by the
function F(s) = (1 + s?), i.e., X(s) = (s,1+ s?). The corresponding ODE is

V' (s) = X(v(s)) = 1+~(s)*.

For v(0) = 0 the function (s) := tan(s) on I :=]— 7, 5[ is the unique maximal
solution because

tlin}r tan(t) = co  and . lim tan(t) = —oo.
(b) Let M :=] —1,1] and X(s) = (s,1), so that the corresponding ODE

is 7/(s) = 1. Then the unique maximal solution is
v(s)=s, I=]—-1,1].
Note that we also have in this case

Jig, (o) =

if we consider v as a curve in the non-compact manifold M .
For M = R the same vector field has the maximal integral curve

(¢) For M = R and X(s) = (s,—s), the differential equation is +/(t) =
—~(t), so that we obtain the maximal integral curves (t) = ye~*. For vy =
0 this curve is constant, and for 79 # 0 we have lim; .., v(t) = 0, hence
lim;_, o y(t) # oo. This shows that maximal integral curves do not always leave
every compact subset of M if they are define on an interval unbounded from

above. ]

The preceding example shows in particular that the global existence of
integral curves can also be destroyed by deleting parts of the manifold M, i.e.,
by considering M’ := M \ K for some closed subset K C M.

Definition VI.1.7. A vector field X € V(M) is said to be complete if all its
maximal integral curves are defined on all of R. ]

Corollary VI.1.8.  All vector fields on a compact manifold M are complete.m
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VI1.2. Local flows

Definition VI.2.1. Let M be a smooth manifold. A local flow on M is a
smooth map
¢:U — M,

where U C R x M is an open subset containing {0} x M, such that for each
x € M the intersection I, := U N (R x {z}) is an interval and

®(0,z) =2 and @(t,P(s,z)) = P(t + s5,2)
hold for all ¢, s,z for which both sides are defined. The maps
gl — M, t— ®(t,x)
are called the flow lines. The flow ® is said to be global if U =R x M . [ |

Lemma VI.2.2. [If &:U — M 1is a local flow, then

XP(z) = 2

_ _
=l O(t,x) = o, (0)

defines a smooth vector field.

It is called the welocity field or the infinitesimal generator of the local
flow ®. [ ]

Lemma VI1.2.3.. If ®:U — M is a local flow on M, then the flow lines are
integral curves of the vector field X® . In particular, the local flow ® is uniquely
determined by the vector field X® .

Proof. Let a,:1, — M be aflow line and s € I,. For sufficiently small ¢ € R
we then have

az(s+1t)=D(s+t,2) =2t P(s,2)) = (¢, u(s)),

so that taking derivatives in ¢ = 0 leads to o (s) = X (a,(s)).

That ® is uniquely determined by the vector field X?® follows from the
uniqueness of integral curves (Theorem VI.1.5). u

Theorem V1.2.4.  FEach smooth vector field X 1is the velocity field of a unique
mazimal local flow defined by

Dx = U I, x{z} and ®(t,x):=~,(t) for (t,x)€ Dx,
zeM

where ~,: I, — M 1is the unique mazximal integral curve through x € M .
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Proof. If (s,z), (t,®(s,z)) and (s +¢,z) € Dx, the relation
O(s+t,x)= q)(t, @(s,x)) and  Jg(s0) = Ly, (s) = Iz — 5
follow from the fact that both curves
to ®(t+s,2) =7(t+s) and t— @t P(s, 7)) = Yo (t)

are integral curves of X with the initial value ®(s,z), hence coincide. That
the flow @ is maximal is a direct consequence of the maximality of its integral
curves.

We claim that all maps ®;: M, := {z € M:(t,z) € Dx} — M,z > ®(t,x)
are injective. In fact, if p := ®(x) = P+(y), then ~,(t) = v,(¢), and on [0,¢]
the curves s — 7,(t — s),7,(t — s) are integral curves of —X, starting in p.
Hence the Uniqueness Theorem VI.1.5 implies that they coincide in s = ¢, which
mans that © = 7,(0) = 7,(0) = y. From this argument it further follows that
O (M) =M_; and ;' =d_,.

It remains to show that Dx is open and ® smooth. The local Existence
Theorem provides for each x € M an open neighborhood U, diffeomorphic to a
cube and some €, > 0, as well as a smooth map

9090:] - 5m75:r[XUx — M, @x(tay) = '7y<t) = @(t,y),

Hence | — e,,e,[xU, C Dx, and the restriction of ® to this set is smooth.
Therefore ® is smooth on a neighborhood of {0} x M in Dx.

Now let J,, be the set of all ¢ € [0, 00], for which Dx contains a neighbor-
hood of [0,¢]x{z} on which ® is smooth. The interval J, is open in R := [0, 00|
by definition. We claim that J, = I, NRT. This entails that Dx is open because
the same argument applies to I,N] — 00, 0].

We assume the contrary and find a minimal 7 € I, "R™ \ J,., because this
interval is closed. Put p := ®(7,z) and pick a product set I x W C Dx, where
W is a neighborhood of p and I =] —2¢,2¢[ a 0-neighborhood, such that 2e < 7
and ® : I x W — M is smooth. By assumption, there exists a neighborhood V'
of x such that ® is smooth on [0,7 —¢| X V C Dx. Then ®,_. is smooth on
V. We now define

V=@l (o7 (W))NV =@ ' (W)NV.
Then [0,7 + €] x V’ is a neighborhood of [0,7 + ¢] x {z} in Dx on which ® is
smooth, because it is a composition of smooth maps:

7 — 2,7+ 2e[xV' = M, (t,y) — CI)(t — 7, (e, P(7 — e,y))).

We thus arrive at the contradiction 7 € J,.

This completes the proof of the openness of Dx and the smoothness of ®.
The uniqueness of the flow follows from the uniqueness of the integral curves. m
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Remark VI.2.5. Let X € V(M) be a complete vector field and ®: RxM — M
the corresponding global flow. The maps ®;:z +— ®(¢,z) then satisfy
(A1) ®p = idyy -
(A2) ®yys = P o Py for t,s € R.

It follows in particular that ®, € Diff(M) with ®;' = ®_,, so that we
obtain a group homomorphism

vx:R — Diff (M), t+— Dy

With respect to the terminology introduced below, (Al) and (A2) mean
that ® defines a smooth action of R on M. As ® is determined by the vector
field X, we call it the infinitesimal generator of this action. In this sense the
smooth R-actions on a manifold M are in one-to-one correspondence with the
complete vector fields on M . [ ]

Remark VI.2.6. Let ®X:Dy — M be the maximal local flow of a vector
field X on M. Let M; := {x € M:(t,z) € Dx}, and observe that this is an
open subset of M. We have already seen in the proof of Theorem VI1.2.2 above,
that all the smooth maps ®;: M; — M are injective with ®X(M;) = M_; and
(@)~ = ®¥, on the image. It follows in particular, that ®X(M;) = M_; is
open, and that

O M, — M_,

is a diffeomorphism whose inverse is ®%,. [ ]

The Lie derivative of vector fields

Before we turn to actions of higher dimensional groups, we take a closer
look at the interaction of local flows and vector fields.

Let X € V(M) and ®X:Dx — M its maximal local flow. For a second
vector field Y € V(M), we define a smooth vector field on the open subset
M_y € M by

(®),Y :=T(® )oY 0 X, = T(®;*) o Y o (&) !
(cf. Remark VI.2.6) and define the Lie derivative by

oLy _d X
£xv o= lim L(@X)y )= 4 @X.y,

which is defined on all of M since for each p € M the vector ((®X).Y)(p) is
defined for sufficiently small ¢ and depends smoothly on ¢.
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Theorem VI.2.7. LxY =[X,Y] for X, Y € V(M).

Proof. Fix p € M. It suffices to show that LxY and [X,Y] coincide in p.
We may therefore work in a local chart, hence assume that M = U is an open
subset of R™.

Identifying vector fields with smooth R™-valued functions, we then have
(X, Y](z) =dY ()X (z) —dX(z)Y (z), ze€U.
On the other hand,
(2%)).Y)(2) = T(X,) o YV 0 & (2)
= d(@%)(® (2))Y (B (x)) = (d({)(x)) Y (D ().

To calculate the derivative of this expression with respect to ¢, we first observe
that it does not matter if we first take derivatives with respect to ¢ and then
with respect to = or vice versa. This leads to

d X d

4 oo - af

_oF )(a:) = dX (z).

Next we note that for any smooth curve a:[—¢,¢] — GL,(R) with «(0) =1 we

have
(@' (t) = —a) " o' (H)a(t) ™,

and in particular (a=!)(0) = —a/(0). Combining all this, we obtain with the
Product Rule

Lx(Y)(z)=—-dX(2)Y(z)+dY(z)X(z) = [X,Y](z). n
Corollary VI.2.8. If X,Y € V(M) are complete vector fields, then their

global flows ®X, ®Y:R — Diff(M) commute if and only if X and Y commute,
i.e., [X,Y]=0.

Proof. (1) Suppose first that ®*X and ®¥ commute, i.e.,
DX (t) o ®Y (s) = ®Y(s) 0 ®*(t) fort,s €R.
Let p € M and 7,(s) := ®Y (p) the Y -integral curve through p. We then have
T(5) = @7 (p) = D7 0 @7 0 &%, (p),
and passing to the derivative in s = 0 yields
Y(p) = 7,(0) = T(27)Y (22,(p)) = ((2).Y) (p)-

Passing now to the derivative in ¢ = 0, we arrive at [X,Y] = Lx(Y) =0.
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(2) Now we assume [X,Y] = 0. First we show that (®;),Y =Y holds for
all t € R. For t,s € R we have

so that y
(@)Y = (@)L (¥) =0

for each t € R. Since for each p € M the curve
R — T,(M), t~ ((2)).Y)(p)

is smooth, and its derivative vanishes, it is constant Y (p). This shows that
(@)Y =Y for each t € R.
For v(s) := ®;X®Y (p) we now have v(0) = ®;*(p) and

7' (s) = T(27) o Y (2 (p) = Y (27 @ (p) = Y (7(s)),

so that 7 is an integral curve of Y. We conclude that v(s) = ®Y (®X(p)), and
this means that the flows of X and Y commute. |

Remark VI.2.9. Let X,Y € V(M) be two complete vector fields and X,
resp., ®¥ their local flows. We then consider the commutator map

F:R? — Diff(M), (t,s) — & o ®Y 0 &%, 0 ®Y .

We know from Corollary VI.2.8 that it vanishes if and only if [X,Y] = 0, but
there is also a more direct way from F' to the Lie bracket.

In fact, we first observe that

oF X
So(1,0) = (@)Y -V,
and hence that 92
=Y, X].
(0,0) = [V X)

Here we use that if I C R is an interval and a: I — Diff(M) and §: 1 —
Diff (M) are maps for which

a:lxM— M, (t,z)— a(t)(z) and B:IxM— M, (t,x) — B(t)(x)

are smooth, then the curve ~(t) := a(t) o B(t) also has this property (by the
Chain Rule), and if «(0) = (0) = ids, then ~ satisfies

7'(0) = o/ (0) 0 5(0) + T((0)) 0 5'(0) = &/ (0) + 5(0). u
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Exercises for Chapter VI

Exercise VI.1. Let M := R™. For a matrix A € M,(R) we consider the
linear vector field
Xa(z) := Ax.

Calculate the maximal flow ®X:R x R® — R"” of this vector field. [ |

Exercise VI.2. Let M := R". For a matrix A € M,(R) and b € R" we
consider the affine vector field

Xap(x):= Az + 0.

(1) Calculate the maximal flow ®:R x R™ — R"™ of this vector field. Hint: For
each ¢t € R the map ®, is affine and the translation part is #flb.
(2) Let

o @)= (M ) o)

be the affine Lie algebra on R™, realized as a Lie subalgebra of M, 1(R),
endowed with the commutator bracket. Show that the map

pralfu(®) - VR, () X

is a homomorphism of Lie algebras. [ ]
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VII. Lie group actions on manifolds

In the preceding chapter we discussed local flows on manifolds and how
they are related to smooth vector fields. In particular, we have seen that global
flows are in one-to-one correspondence with complete vector fields. Global flows
can also be viewed as smooth actions of the one-dimensional Lie group (R, +)
on a manifold.

In this chapter we now turn to actions of more general Lie groups on
manifolds. This requires some preparation. First we define the Lie algebra L(G)
of a Lie group G, which is obtained as the space of left invariant vector fields
on G. From the global flows of these vector fields, we obtain the exponential
function

exps: L(G) — G.

It translates between the group G and its Lie algebra L(G), which can be viewed
as a “first order approximation” of the group. We then turn to actions of Lie
groups on manifolds and discuss how they are related to finite-dimensional Lie
algebras of vector fields.

VII.1. Lie groups and their Lie algebras

Throughout this section, G denotes a Lie group with multiplication map
ma:G x G — G,(x,y) — zy, inversion map ng:G — G, — x~ !, and
neutral element 1. For g € G we write A\j:G — G,z +— gx for the left
multiplication map, py:G — G,z +— xg for the right multiplication map, and
cg: G — G,z +— gxg~! for the conjugation with g.

A morphism of Lie groups is a smooth homomorphism of Lie groups
p:G1 — Gs.

Remark VII.1.1. All maps )y, p; and ¢, are smooth. Moreover, they are
bijective with Ag-x = A1, p,or = p;! and ¢,-» = ¢!, so that they are
diffeomorphisms of G onto itself.

In addition, the maps ¢, are automorphisms of G, so that we obtain a

group homomorphism

C:G — Aut(G), g cy,

where Aut(G) stands for the group of automorphisms of the Lie group G, i.e.,
the group automorphisms which are diffeomorphisms. ]

Lemma VII.1.2. (a) As usual, we identify T(GxG) with T(G)xT(G). Then
the tangent map

T(mg):T(GxG)=2T(G)xT(G)—-T(G), (v,w)r—uv -w:=Tmag(v,w)
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defines a Lie group structure on T(G) with identity element 01 € T1(G) and
inversion T'(ng). The canonical projection npq):T(G) — G is a morphism of
Lie groups with kernel (T1(G),+) and the zero section 0:G — T(G),g — 04 €
Ty(G) is a homomorphism of Lie groups with mpq) oo =idg.

(b) The map

O:GxTh(G) = T(G), (g9,x)— g.x:=042=Tmg(0g4,z)=T(\g)x

18 a diffeomorphism.

Proof. (a) Since the multiplication map mag: G x G — G is smooth, the same
holds for its tangent map

Tme:T(G x G) = T(G) x T(G) — T(G).

Let eg: G — G, g — 1 be the constant homomorphism. Then the group axioms
for G are encoded in the relations
(1) mg o (mg x idg) = mg o (idg xmg) (associativity),
(2) mg o (ng,idg) = mg o (idg,ng) = ¢ (inversion), and
(3) mg o (eg,idg) = mg o (idg,e¢) = idg (unit element).
Using the functoriality of T' and its compatibility with products, we see that
these properties carry over to the corresponding maps on T'(G):
(1)
T(mg) o T(mG X idg) = T(mg) o (T(mg) X idT(G))

=T (mg) o (idT(G) xT(mg))

(associativity),
2) T(mg) o (T(ng),idr)) = T(me) o (idrq), T(ne)) = T(eg) (inversion),
and
(3) T(mg) O(T(ég), idT(G)) = T(mg) o (idT(G)a T(gg)) = idT(G) (unit element).
Here we only have to observe that the tangent map T'(eg) maps each
v € T(G) to 01 € T1(G), which is the neutral element of T'(G). We conclude
that T'(G) is a Lie group with multiplication T (m¢), inversion T'(n¢g), and unit
element 07 € T1(G).
The definition of the tangent map implies that the zero section o:G —
T(G),g — 0,4 satisfies

TmG o (0 X U) =0omg, ng(og,oh) = Omc(g,h) = Ogh,

which means that it is a morphism of Lie groups. That 77 also is a morphism
of Lie groups follows likewise from the relation

o) © Tma = mg o (Tr@) X Tr@))

which also is an immediate consequence of the definition of the tangent map: it
maps 14(G) x Ty(G) into Tyn(G).
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For v € Ty(G) and w € Tj,(G) the linearity of T{, »)(mg) implies that

ng(v, IU) = T(g,h) (m(;)(v, w) = T(g,h) (mg)(v, O) -+ T(g,h) (m(;)(O, w)
= Ty(pn)v + Th(Ag)w,

and in particular T(q 1)(mg)(v,w) = v + w, so that the multiplication on the
normal subgroup ker mp(gy = T1(G) is simply given by addition.

(b) The smoothness of ® follows from the smoothness of the multiplica-
tion of T'(G) and the smoothness of the zero section o:G — T(G),g — 0,.
That @ is a diffeomorphism follows from the following explicit formula for its
inverse: 1 (v) = (m7(e) (v), Tr(G)(v)"t.v), so that its smoothness follows from
the smoothness of mp(g) (its first component), and the smoothness of the mul-
tiplication on T'(G). u

Definition VII.1.3.  (The Lie algebra of G) A vector field X € V(G) is
called left invariant if
Xodg=T(N\g) 0o X

holds for each g € G, ie., (A\,):X = X. We write V(G)! for the set of left
invariant vector fields in V(G). Clearly V(G)! is a linear subspace of V(G).

Writing the left invariance as X = T'(A\g) o X o AJ'', we see that it means
that X is Ag-related to itself. Therefore Lemma II.3.9 implies that if X and
Y are left-invariant, their Lie bracket [X,Y] is also A,-related to itself for each
g € G, hence left invariant. We conclude that the vector space V(G)! is a Lie
subalgebra of (V(G),[,"]).

Next we observe that the left invariance of a vector field X implies that
for each ¢ € G we have X(g) = ¢g.X(1) (cf. Lemma VIL.1.2(b)), so that X
is completely determined by its value X (1) € T1(G). Conversely, for each
x € T1(G), we obtain a left invariant vector field ; € V(G)! with x;(1) = = by
x1(g) := g.x. That this vector field is indeed left invariant follows from

210 An(g) = wi(hg) = (hg).x = h.(g.x) = T(An)z1(g)
for all h,g € G. Hence
T (G) = V(G), x>
is a linear bijection. We thus obtain a Lie bracket [-,-] on T3 (G) satisfying
(7.1.1) [z, yl; = [z, ] forall z,y € T1(G).

The Lie algebra

is called the Lie algebra of G. ]
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Proposition VII.1.4.  (Functoriality of the Lie algebra) If ¢o:G — H is a
homomorphism of Lie groups, then the tangent map

L(p) := T1(v): L(G) — L(H)

is a homomorphism of Lie algebras.

Proof. Let z,y € L(G), and x;,y; be the corresponding left invariant vector

fields. Then @ o Ay = A, (4) 0 ¢ for each g € G implies that

T(p) o T(Ag) = T(Ap(g)) 0 T(¥),
and applying this relation to z,y € T1(G), we get
(7.1.2) Tyox, = (L(go):c)l op and Typoy = (L(gp)y)l o,

ie., x; is ¢-related to (L(go)a:)l and y; is p-related to (L(go)y)l. Therefore
Lemma I1.3.8 implies that

Teo [z, y] = [(Llg)z),, (L(p)y),]o ¢

Evaluating at 1, we obtain L(p)[z,y] = [L(v)(z), L(¢)(y)], showing that L(p)
is a homomorphism of Lie algebras. [ ]

Remark VII.1.5. We obviously have L(idg) = idy,(g), and for two morphisms
p1:G1 — G2 and py: Gy — G5 of Lie groups, we have

L(p2 0 1) = L(p2) o L(p1),
as a consequence of the Chain Rule:
Ti(p2 0 ¢1) =Ty, 1)(92) 0 T (1) = Ti(p2) o T1 (1)

In this sense the preceding lemma implies that the assignments G — L(G)
and ¢ — L(y) define a functor

L: LieGrp — LieAlg

from the category LieGrp of Lie groups to the category LieAlg of (finite-
dimensional) Lie algebras. |

Corollary VII.1.6.  For each isomorphism of Lie groups ¢:G — H the map
L(p) is an isomorphism of Lie algebras, and for each x € L(G) we have

(7.1.3) puzy :=T(p) om0t = (L(p)z),.

Proof. Let ¢y: H — G be the inverse of ¢. Then po1) =idy and Yoy = idg
leads to L(y) o L(+) = idymy and L(¢) o L(¢) = idy(e) (Remark VIL.1.5).

The relation (7.1.3) follows from (7.1.2) in the proof of Proposition VII.1.4.
]
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The exponential function of a Lie group

Proposition VII.1.7.  FEach left invariant vector field X on G is complete.
Proof. Let g € G and 7:I — G be the unique maximal integral curve of
X € V(G with (0) =g.

For each h € G we have (Ay).X = X, which implies that n := A\, o~y
also is an integral curve of X (see the argument in Remark VI.1.2(b)). Put
h =~(s)g~! for some s > 0. Then

n(0) = (An 09)(0) = hy(0) = hg = ~(s),

and the uniqueness of integral curves implies that v(t+ s) = n(t) for all ¢ in the
interval IN(I—s). In view of the maximality of I, it now follows that I —s C I,
and hence that I — ns C I for each n € N, so that the interval I is unbounded
from below. Applying the same argument to some s < 0, we see that I is also
unbounded from above. Hence I = R, which means that X is complete. |

Definition VII.1.8. We now define the exponential function
v L(G) = G, expg(®) = (1),

where 7,:R — G is the unique maximal integral curve of the left invariant vector
field z;, satisfying 7,(0) = 1. This means that 7, is the unique solution of the
initial value problem

v(0)=1, () =x(y(t)) =~({).x foral teR, n

Examples VIL.1.9. (a) Let G := (V,+) be the additive group of a finite-
dimensional vector space. The left invariant vector fields on V' are given by

x(w) :

':E tzow—f—tx:x,

so that they are simply the constant vector fields. Hence

[21,%1](0) = dz1(y1(0)) — dx1(11(0)) = dy(y) — dyi(w) = 0.

Therefore L(V') is an abelian Lie algebra.
For each x € V' the flow of z; is given by ®7'(t,v) = v + tz, so that

expy (z) = ®*(1,0) =z, ie., expy =Iidy.

(b) Now let G := GL,(R) be the Lie group of invertible (n x n)-matrices,
which inherits its manifold structure from the embedding as an open subset of
the vector space M, (R).
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The left invariant vector field A; corresponding to a matrix A is given by
Ai(g) = Th(Ag)A=gA

because \;(h) = gh extends to a linear endomorphism of M, (R). Therefore the
unique solution
va:R — GLy,(R)

of the initial value problem

v(0) =1, +'(t)=A(v(t) =~(t)A

is nothing but the curve describing the fundamental system of the linear differ-
ential equation defined by the matrix A:

1
ya(t) = et = Z ytkAk.
k=0

It follows that

expg(4) = e

is the matrix exponential function.
The Lie algebra L(G) of G is determined from

[A, B] = [A;, B](1) = dBy(1)Ay(1) — dA;(1)By(1)
= dB,(1)A — dA,(1)B = AB — BA.

Therefore the Lie bracket on L(G) = T1(G) = M, (R) is given by the commutator
bracket. This Lie algebra is denoted gl,,(R), to express that it is the Lie algebra
of GL,,(R).

(c) If V is a finite-dimensional real vector space, then V' = R™  so that
we can immediately use (b) to see that GL(V') is a Lie group with Lie algebra
gl(V) := (End(V), [-,+]) and exponential function

eXpGL(V) (A) = ﬁ |
k=0
Lemma VII.1.10. (a) For each z € L(G) the curve
Yo R — G

is a smooth homomorphism of Lie groups with ~,(0) = x.
(b) The global flow of the left invariant vector field x; is given by

(t,9) = g7:(t) = gexpg(tz).
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(¢) If v:R — G is a smooth homomorphism of Lie groups and x :=~'(0),
then v =7, . In particular, the map

Hom(R,G) — L(G), v+ 7'(0)
is a bijection, where Hom(R, G) stands for the set of morphisms, i.e., smooth
homomorphisms, of Lie groups R — G.

Proof. (a), (b) Since 7, is an integral curve of the smooth vector field z;,
it is a smooth curve. Hence the smoothness of the multiplication in G implies
that ®(t,g) := g7.(t) defines a smooth map R x G — G. In view of the left
invariance of x;, we have for each g € G and ®9(t) := ®(¢,g) the relation

(@9)(t) = T(Ag)V,(t) = T(Ag)w1(72(t)) = 21(972 (1)) = 21 (D9 (2)).

Therefore ®9 is an integral curve of x; with ®9(0) = g, and this proves that @
is the unique maximal flows of the complete vector field x;.
In particular, we obtain for t,s € R:

Vot +5) = Q(t +5,1) = (£, 2(s,1)) = (s, 1)72(t) = 712(5)72(t).
Hence 7, is a group homomorphism (R, +) — G.
(c) If v:(R,4+) — G is a smooth group homomorphism, then
®(t,g) := g7(t)
defines a global flow on G whose infinitesimal generator is the vector field given
by
_ _ /
X(9) = | ,_, 2(t.9) = T(A)7'(0).
We conclude that X = x; for z = 4/(0), so that X is a left invariant vector

field. Since ~ is its unique integral curve through 0, it follows that v =~,. In
view of (a), this proves (c). u

Lemma VIL.1.11. If x,y € L(G) commute, i.e., [x,y] =0, then
expg (T +y) = expg (@) expe ().

Proof. If z and y commute, then the corresponding left invariant vector fields
commute, and Corollary VI.2.8 implies that their flows commute. We conclude
that for all ¢, s € R we have

(7.1.4) expg (tx) expg(sy) = expg(sy) expg (tz).
Therefore
v(t) := expg(tz) expg(ty)

is a smooth map R — G, and (7.1.4) implies that it is a group homomorphism.
In view of

7'(0) = dmg(1,1)(z,y) =2 +y

(Lemma VII.1.2), Lemma VII.1.10(c) leads to v(t) = expg(t(x + y)), and for
t =1 we obtain the lemma. n
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Proposition VII.1.12.  (Smooth dependence on parameters and initial condi-
tions) Let M be a smooth manifold, V a finite-dimensional vector space, V3 CV
an open subset, and ¥:Vy — V(M) a map for which the map

U: Vs x M — T(M), (v,p) — ¥(v)(p)

is smooth (the vector field W(v) depends smoothly on v ). Then there exists for
each (po,vo) € M x Vi an open neighborhood U of py in M, an open interval
I C R containing 0, an open neighborhood W of vy in Vi, and a smooth map

O: I xUxW—=M
such that for each (p,v) € U x W the curve
QI — M, tw— O(t,p,v)

is an integral curve of the vector field W(v) with ®,(0) = p.

Proof. The parameters do not cause any additional problems, which can be
seen by the following trick: On the product manifold N :=V; x M we consider
the smooth vector field Y, given by

Y (v,p) == (0,¥(v)(p))-

Then the integral curves of Y are of the form

(1) = (v,7(1)),

where 7, is an integral curve of the smooth vector field U(v) on M. Therefore

the assertion is an immediate consequence on the smoothness of the local flow of
Y on Vi x M (Theorem VI.2.4). n

Proposition VII.1.13.  The exponential function
expa: L(G) — G

18 smooth and satisfies
To (expG) = idL(G) .

In particular, expq s a local diffeomorphism in O in the sense that it maps some
0-neighborhood in L(G) diffeomorphically onto some 1-neighborhood in G .

Proof. Let n € N. In view of Lemma VII.1.11, we have

n

(7.1.5) expg(nx) = vz(n) = 7:(1)" = expg(x)

for each x € L(G). Since the n-fold multiplication map

G" =G, (91,--19n) = 91" 9n
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is smooth, the n-th power map G — G, g — ¢" is smooth. Therefore it suffices
to verify the smoothness of exps in some 0-neighborhood W. Then (7.1.5)
immediately implies smoothness in nW for each n, and hence on all of L(G).

The map V:L(G) — V(G),x — x; satisfies the assumptions of Proposi-
tion VII.1.12 because the map

L(G)xG—T(G), (x,9)— zi(9) =gz

is smooth (Lemma VII.1.2). In the terminology of Proposition VII.1.12, it now
follows that the map

O RXL(G)xG— G, (t,x,g)+— gv:(t) = gexpg(tz)
is smooth on a neighborhood of (0,0,1). In particular, for some ¢ > 0, the map
x +— expq(tx)

is smooth on a 0-neighborhood of L(G), and this proves that exps is smooth
in some 0-neighborhood.
Finally, we observe that

Ty (expg) () expg(tz) = 7,(0) = o,

= dt| t=0
so that Ty(expg) = idr(q) - [

Lemma VIIL.1.14. The subgroup (exp(L(G))) of G generated by expa(L(G))
coincides with the connected component Gy of 1.

Proof. Since expg is a local diffecomorphism in 0 (Proposition VII.1.13), the
Inverse Function Theorem implies that exps(L(G)) is a neighborhood of 1. We
conclude that the subgroup H := (exps(L(G))) generated by the exponential
image is a 1-neighborhood.

Then HY is a non-empty open subset of H, satisfying

H=H'H= ] Hh= ] pn(H").
heH heH

Since all sets py, (H°) are open subsets of G, their union is open, and we conclude
that H is an open subgroup of H. This implies that all cosets of H are open,
and hence that
H=G\ | JgH
g¢H

is closed. Now H is open and closed, hence contains Gj.

On the other hand, exp, is continuous, so that it maps the connected
space L(G) into the identity component Gy of G, which leads to H C Gy, and
hence to equality. |
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Proposition VII.1.15.  Let p:G; — G2 be a morphism of Lie groups and
L(v):L(G1) — L(G2) its differential in 1. Then

expg, © L(p)=¢po expg, ;

i.e., the following diagram commutes

Gl d G2
Texpc1 TGXPGQ
L(G)) Liw) L(Go).

Proof. For z € L(G;) we consider the smooth homomorphism
Vo € Hom(R, G1),  72(t) = expg, (tx).

According to Lemma VII.1.10, we have

@ 07 (t) = expg, (ty)

for y = (¢ 07:)'(0) = L(p)z, because ¢ o v,:R — Gy is a smooth group
homomorphism. For t =1 we obtain in particular

expg, (L(p)z) = (expg, (2)),

which we had to show. [ |

Corollary VII.1.16. If ¢1,92:G1 — G2 are morphisms of Lie groups with
L(p1) = L(p2), then ¢ and o coincide on the identity component of G .

Proof. In view of Proposition VII.1.15, we have for z € L(G;):

p1(expg, (7)) = expg, (L(p1)7) = expg, (L(p2)z) = w2(expg, (7)),

so that ¢; and @2 coincide on the image of expg,, hence on the subgroup
generated by this set. Now the assertion follows from Lemma VII.1.14. [ ]

Proposition VIL.1.17.  Let G be a Lie group with Lie algebra L(G). Then

we have for x,y € L(G) the following formulas:
k

(1) (Product Formula) expgs(z + y) = limg— o0 (expG(%x) eXpG(%y)) .
(2) (Commutator Formula)

) 1 1 1 1 k2
expg (7, y]) = kli)n;o (eXPG(Ex) eXpG(Ey) eXPG(—El’) eXpG(_Ey)) .

Proof. Let U C L(G) be an open 0-neighborhood for which

expy 1= expg |v: U — expg (U)
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is a diffeomorphisms onto an open subset of G. Put

U':={(z,y) € U x U:expg(z) expg(y) € expg(U)}

and observe that this is an open subset of U x U containing (0,0) because
expa(U) is open and exp is continuous.

For (x,y) € U; we then define
%y = expy (expg() expa(y))
and thus obtain a smooth map
m:U' — L(GQ), (z,y)— z*y.
(1) In view of m(0,z) = m(z,0) = =, we have
dm(0,0)(x,y) = dm(0,0)(x,0) + dm(0,0)(0,y) = = + y.
This implies that

lim k- (%x * %y) = lim k- (m(%x, %y) - m(0,0)) =dm(0,0)(z,y) =z +v.

k—o0 k—o0
Applying exp, it follows that

1 1 1 1 \*
expa(z+y) = klirgo exXpe <k : (Ea: * Ey)) = kh_)r{)lo exXpa (Ea: * Ey)

= tim (expa(ra)expa(;v))
= lim { expg(zz)expa(y)) -
(2) Now let x} := T(expy) ! oz, 0 expy be the smooth vector field on U

corresponding to the left invariant vector field x; on expgy(U). Then z} and x;
are expy -related, so that Lemma II.3.8 on related vector fields leads to

27, 471(0) = To(expy) a7, 971(0) = a1, yil(expe(0) = [21, 4](1) = [z, y].

The local flow of z; through a point exp; (y) is given by the curve ¢t —
expg (y) expg (tx), which implies that the integral curve of z} through y € U is

given for ¢ close to 0 by ®}' (y) = y*tz. We therefore obtain with Remark VI.2.9:

02 0?2
950t t—s—0 te x sy x (—tx) * (—sy) = 550t| rso

= [=27, =y1(0) = [27, 47](0) = [z, y].

Note that F(t,s) := tx x sy x (—tx) * (—sy) vanishes for t =0 and s =0.
For f(t):= F(t,t) we have

Q)?il*s o CIDfl*t o @gl* o q)fl* (O)

oF OF

f/(t) = E(tt) + %(ti)
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and 62 82 82
vy OF F OF
f (t) - atg (tat) +28t88 (t7t) + 882 (t7t)7
and o2 o2
F F

W(O’O) =0= w(O,O),
so that

1 O*F

e = — =
S17(0) = 52-(0,0) = [2,5),
which leads to

lim kQ(%x * %y * (—%x) * (—%y)) = lim k2f<%> = %f”(O) = [z,y].

k—o0 k—o0

Applying the exponential function, this leads to the Commutator Formula. =

Exercises for Chapter VII

Exercise VII.1. Let fi1, fo: G — H be two group homomorphisms. Show that
the pointwise product

fife:G— H, g~ fi(g)f2(9)

is a homomorphism if f;(G) commutes with f>(G). n

Exercise VII.2. Let M be a manifold and and V a finite-dimensional vector
space with a basis (by,...,b,). Let f: M — GL(V) be a map. Show that the
following are equivalent:

(1) f is smooth.

(2) For each v € V the map f,: M — V,m + f(m)v is smooth.

(3) For each i the map f: M — V,m — f(m)b; is smooth. [

Exercise VII.3. A vector field X on a Lie group G is called right invariant

if for each g € G' the vector field (pg).X = T(pg) 0 X 0 p;! coincides with X .

We write V(G)" for the set of right invariant vector fields on G. Show that:

(1) The evaluation map evy: V(G)" — T1(G) is a linear isomorphism.

(2) If X is right invariant, then there exists a unique x € T;(G) such that
X(g9) = xr(9) :=T1(pg)xr =z -0, (w.r.t. multiplication in T'(GQ)).

(3) If X is right invariant, then X := (g),X = T(ng)oXong' is left invariant
and vice versa.

(4) Show that (ng)«zx, = —x; and [x,,y,] = —[z,y|, for z,y € T1(G).

(5) Show that each right invariant vector field is complete and determine its
flow. n
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Exercise VII.4. Let M be a smooth manifold, ¢ € Diff(M) and X € V(M).

Show that the following are equivalent:

(1) ¢ commutes with the flow maps ®X: M; — M of X, i.e., each set M; is
@-invariant and ®X o o = p o ® holds on M;.

(2) For each integral curve v:I — M of X the curve ¢ o~y also is an integral
curve of X.

B) X=p.X=T(p)oX oyt ie, X is p-invariant. m

Exercise VIL.5. Let G be a Lie group. Show that any map ¢p:G — G
commuting with all left multiplications A\;, g € G, is a right multiplication. =

Exercise VII.6. Let X,Y € V(M) be two commuting complete vector fields,
i.e.,, [X,Y] =0. Show that the vector field X 4+ Y is complete and that its flow
is given by

XY =9  0® forall tecR. n

Exercise VII.7. Let V be a finite-dimensional vector space and pu:(v) := tv
for t € R*. Show that:
(1) A vector field X € V(V) is linear if and only if (u).X = X holds for all

teRX.
(2) A diffeomorphism ¢ € Diff(V) is linear if and only if it commutes with all
the maps py, t € R*. u

VII.2. Closed subgroups of Lie groups and their Lie algebras

In this section we shall see that closed subgroups of Lie groups are always
Lie groups and that for a closed subgroup H of G its Lie algebra can be computed
as
L(H) ={z € L(G):exps(Rzx) C H}.

This makes it particularly easy to verify that concrete groups of matrices are Lie
groups and to determine their algebras.

Definition VII.2.1. Let G be a Lie group and H < G a subgroup. We
define the set
L(H) :={x € L(G):exps(Rz) C H}

and observe that RL(H) C L(H) follows immediately from the definition. m

Note that for each = € L(G) the set
{t € Riexpg(tr) € HY = ~v, ' (H)

is a closed subgroup of R, hence either discrete cyclic or equal to R.
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Example VII.2.2. We consider the Lie group G := R x T (the cylinder) with
Lie algebra L(G) = R? and the exponential function
€XPg (.CL’, y) = (.CL’, 62my)'
For the closed subgroup H := R x {1} we then see that (z,y) € L(H) is
equivalent to y = 0, but
expg' (H) =R x Z.
u

Proposition VII.2.3. If H < G is a closed subgroup, then L(H) is a real
Lie subalgebra of L(G).

Proof. Let z,y € L(H). For k € N we then have expg %x,expG %y € H,
and with the Product Formula (Proposition VII.1.17), we get
k
expa(z +y) = klim (eXpG % eXPq %) €eH

because H is closed. Therefore exps(z +vy) € H, and RL(H) = L(H) now
implies exp(R(z +y)) € H, hence z +y € L(H).
Similarly, we use the Commutator Formula to get

2
expale,y] = k‘ILn;)lo (expG . ¥Pc 3 XPa — 1 XPa _E> € H,

hence expg([z,y]) € H, and RL(H) = L(H) yields [z,y] € L(H). [

One can show that L(H) is a Lie algebra for any subgroup, but this requires
Yamabe’s Theorem on analytic subgroups of matrix groups, which we won’t prove
here.

| THE IDENTITY NEIGHBORHOOD THEOREM |

Theorem VII.2.4. Let H be a closed subgroup of the Lie group G. Then
each 0-neighborhood in L(H) contains an open 0-neighborhood V  such that
expe [v:V — expa (V)N H is a homeomorphism onto an open subset of H .

Proof. First we use Proposition VII.1.13 to find an open 0-neighborhood
V, C L(G) such that
expy, = expg |v,: Vo — Wo 1= expg(Vs)

is a diffeomorphism between open sets. In the following we write logy, =
(expvo)*1 for the inverse function. Then the following assertions hold:

e V,NL(H) is a 0-neighborhood in L(H).

e W,NH is a 1-neighborhood in H.

o exp(Vo,NL(H)) CW,NH

® exply,nr(m) is injective.
If H is not closed, then it need not be true that

exp(Vo,NL(H)) =W,NH

because it might be the case that W,NH is much larger than exp(V,NL(H)) (cf.
“the dense wind” in the 2-torus). We do not even know whether exp(V, NL(H))
is open in H. Before we can complete the proof, we need three lemmas.
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Lemma VIIL.2.5. Let (gx)ken be a sequence in H N W, with g # 1 for all
ke N and g — 1. We put yp := logy. gr and fix a norm on L(G). Then

every cluster point of the sequence {”z—:” ke N} is contained in L(H).

Proof. Let x be such a cluster point. By replacing the original sequence by a
subsequence, the Bolzano-Weierstral Theorem implies that we may assume that

zpi= * Lre L(G).

Y|

Note that this implies ||z|| = 1. Let ¢ € R and put py, := ”ytk” . Then txy = pryx,

yr — logy, 1 =0 by assumption,

expg (tx) lim expg(tzy) = klirgo expe (Pryk),

- k— o0

and
expe (Pryr) = expe (k) P expg (05 — [pr])yr),

where [pr] = max{l € Z:1 < py} is the Gaufs function. We therefore have

| (px — [PeD)yrll < llykll — 0

and eventually

expg(tr) = lim (expg yi) Pl = lim g™ e m,
because H is closed. This implies x € L(H). .

Lemma VII.2.6. Let E C L(G) be a vector subspace complementing the
L(H). Then there exists a 0-neighborhood Ug C E with

H Nexpg(Ug) = {1}.

Proof. @ We argue by contradiction. If a neighborhood Ug with the required
properties does not exist, then for each compact convex 0-neighborhood Vg C E
we have for each k € N:

(expg V) N H # {1).

For each k € N we therefore find y, € Vg with 1 # gi := expg (%) € H. Now
the compactness of Vg implies that the sequence (yi)ren is bounded, so that
% — 0, which implies g — 1. Now let 2 € E be a cluster point of the sequence
”z—:” which lies in the compact set Sg := {z € E:||z|| = 1}, so that at least one
cluster point exists. According to Lemma VII.2.5, we have x € L(H) N E = {0}
because gr € H N'W, for k sufficiently large, so that Lemma VII.2.5 applies.
We arrive at a contradiction to ||z| = 1. This proves the lemma. n



VII.2. Closed subgroups of Lie groups and their Lie algebras 139

Lemma VIIL.2.7. Let E,F C L(G) be vector subspaces with E & F = L(G).
Then the map

P:ExF—G, (xy)— expg(z)expa(y),

restricts to a diffeomorphism of a neighborhood of (0,0) to an open 1-neighbor-
hood in G .

Proof. The Chain Rule implies that
T0,0)(®)(z,y) = T1,1)(mc) o (To(expe) |e; To(expe) ) (2, v)
=Ta,1)(me)(z,y) =2 +y,

Since the addition map Ex F — L(G) = Ty (G) is bijective, the Inverse Function
Theorem implies that & restricts to a diffeomorphism of an open neighborhood
of (0,0) in E x F onto an open neighborhood of 1 in G. u

Now we are ready to complete the proof of Theorem VII.2.4. We choose E
as above, a vector space complement to L(H), and define

O:ExL(H)— G, (x,y)— expgrexpay.

According to Lemma VII.2.7, there exist open 0-neighborhoods Ur C E and
Up C L(H) such that

@’UEXUH: UE X UH — eXpG(UE) eXpG(UH)

is a diffeomorphism onto an open 1-neighborhood in G'. Moreover, in view of
Lemma VII.2.6, we may choose Ug so small that exp-(Ug) N H = {1}.
Since exps(Un) € H, the condition

g=expgrexpay € HN(expn(Ug) expe(Un))
implies expg z = g(expg y) ™' € HNexps Ug = {1}. Therefore
H Dexpa(Ug) = HN (expa(Ug) expa(Un))

is an open 1-neighborhood in H. This completes the proof of Theorem VII.2.4.m

The Identity Neighborhood Theorem has important consequences for the
structure of closed subgroups.

Proposition VII.2.8. Every closed subgroup H of a Lie group G is a
submanifold, and my = mg |gxg induces a Lie group structure on H such
that the inclusion map tg:H — G is a morphism of Lie groups for which
L(tg):L(H) — L(Q) is the inclusion of L(H) in L(G).

Proof. We recall the diffeomorphism

O:Up x Uy — expe(Ug) exp(Un)
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from the proof of Theorem VII.2.4, where Uy C L(H) and Ug C E are open
0-neighborhoods and L(G) = E @ L(H). We also recall that

®(Up x Un) N H = expg(Un) = ({0} x Ug).

For h € H, the set Uy := Ap(im(®)) = him(®P) is an open neighborhood
of h in G. Moreover, the map

on:Uy - EQLH)=L(G), z+— & Y(h12)
is a diffeomorphism onto the open subset Ug x Uy of L(G), and we have

on(Un N H) = @p(him(®) N H) = pp(h(im(P) N H))
= goh(heXpG(UH)) = {0} x Uy = (UE X UH) N ({0} X L(H))

Therefore the family (¢n,Up)nen provides a submanifold atlas for H in G.
This defines a manifold structure on H for which exps |y, is a local chart
(Lemma I1.2.3).

The map mpy: H x H — H is a restriction of the multiplication map mg
of G, hence smooth as a map H x H — (G, and since H is an initial submanifold
of G, Lemma I1.2.3 implies that mpy is smooth. With a similar argument we
see that the inversion ngy of H is smooth. Therefore H is a Lie group and the
inclusion map tg: H — G a smooth homomorphism. ]

Examples VII.2.9. We take a closer look at closed subgroups of the Lie group
(V,+), where V is a finite-dimensional vector space. From Example VII.1.9 we
know that expy =idy. Let H C V' be a closed subgroup. Then

L(H)={zeV:Re CHYCH

is the largest vector subspace contained in H. Let E C V be a vector space
complement for L(H). Then V = L(H) x E, and we derive from L(H) C H
that

H>=L(H)x (ENH).

Lemma VII.2.6 implies the existence of some 0-neighborhood Ugp C FE
with Ug N H = {0}, and this implies that H N E is discrete because 0 is an
isolated point of H N E. Now Exercise VII.18 implies the existence of linearly
independent elements fi,..., fr € E with

ENH=7f +...4+ Zfs.
We conclude that
H=LH)x2zZ'=R*x7ZF for d=dimL(H).

Note that L(H) coincides with the connected component Hy of 0 in H. n
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Calculating Lie algebras of subgroups

Lemma VII.2.10. Let V and W be finite-dimensional vector spaces and
B:VxV — W a bilinear map. For (x,y) € End(V) x End(W) the following are
equivalent:

(1) tyﬁ( ') = B(et* ., e® ') for all t € R and all v,v' € V.

(2) y.B(v,v") = B(z.v, )+B(U:vv)f0rallvv'€‘/.

Proof. (1) = (2): Taking the derivative in ¢ = 0, (1) leads to

y-B(v,v") = Blz.v,0") + Blv,2.0'),

where we use the Product and the Chain Rule.
(2) = (1): If (2) holds, then the smooth curve «a(t) := e ¥ j3(e".v, e!*v’)
satisfies a(0) = ((v,v") and

o (t) =e (- y.plev, ™) + B(zev, ') + B v, ze"™v")) = 0.
Hence « is constant, so that
Bv,v") = a(0) = a(t) = e"B(e" v, ")
holds for v,v" € V and t € R. =

Proposition VII.2.11. Let V and W be finite-dimensional vector spaces
and B:V xV — W a bilinear map. For the closed subgroup

O(V, ) := {g € GL(V): (Yv,v" € V) B(g.v,g.v") = B(v,v")}

we then have
o(V,8) :=L(O(V,3)) = {z € gl(V): (Vv,v" € V) B(z.v,v") + B(v,z.0") = 0}.

Proof.  We only have to observe that x € L(O(V, 3)) is equivalent to the pair
(x,0) satisfying condition (1) in Lemma VII.2.10. m

Example VIL.2.12. Let B € M, (R), B(v,w) =v' Bw, and
G :=O(R", ) := {g € GL,(R):g" Bg = B}.
Then Proposition VIIL.2.11 implies that

L(G) = {z € gl,(R): (Vv,v" € V) B(z.v,v") + B(v,z.0") =0}
={z cgl,(R):(Vv,o' € V) v 2" Bv 4+ v Bxv' =0}
= {z cgl,(R):2" B+ Bz =0}.
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For B =1 we obtain the orthogonal group
0,(R) = {g € GL,(R):g" =g},
so that its Lie algebra is the set
0n(R) i= L(O(R)) = {x € g, (R):2T = —a}
of skew symmetric matrices. We further get for Sp,,(R) = O(R?*",B), B =
(5
1, O
53, (R) := L(Spy, (R)) := {2 € gly,(R): 2" B+ Bx = 0},
(cf. Exercise 1.25). u

Example VII.2.13. Let g be a finite-dimensional real Lie algebra and

Aut(g) := {g € GL(g): (Va,y € 9) g.[z,y] = [9.2, 9.9},

which is a closed subgroup of GL(g) (Exercise!). To calculate the Lie algebra
of G,put V=W =g and f(x,y) = [z,y]. Then we see that D € aut(g) :=
L(Aut(g)) is equivalent to (D, D) satisfying the conditions in Lemma VII.2.10,
and this leads to

aut(g) = L(Aut(g)) = {D € gl(g): (Va,y € g) D.[z,y] = [D.z,y] + [z, Dy} .

The elements of this Lie algebra are called derivations of g, and aut(g) is also
denoted der(g). Note that the condition on an endomorphism of g to be a
derivation resembles the Leibniz Rule (Product Rule). ]

VII.3. Smooth actions of Lie groups

In Chapter VI we already encountered smooth actions of the one-dimen-
sional Lie group (R,+) on manifolds, and we have seen that these actions are in
one-to-one correspondence to complete vector fields, which is the corresponding
Lie algebra picture. Now we turn to smooth actions of general Lie groups.

Definition VII.3.1. Let M be a smooth manifold and G a Lie group. A
(smooth) (left) action of G on M is a smooth map

oG@xM—-M

with the following properties:
(A1) o(1,m)=m forall me M.
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(A2) o(g1,0(g2,m)) = 0(g192,m) for g1,92 € G and m € M.
We also write

gm:=o(g,m), o4(m):=oc(g,m), o™"(g):=o0c(g,m)=g.m. m
Note that for each smooth action o the map
0:G— Diff(M), g~ o,

is a homomorphism, and that any homomorphism ~: G — Diff (M) for which the
map

0y G XM — M, (g,m)— (g)(m)
is smooth defines a smooth action of G on M .

Remark VII.3.2. What we call an action is sometimes called a left action.
Likewise one defines a right action as a smooth map or: M x G — M with

O-R(m7 1) =m, O-R(O-R(mmql)?gZ) = UR(maglg2)'

For m.g := or(m,g), this takes the form

m.(g192) = (m.g1)-92

of an associativity condition.
If o is a smooth right action of G on M, then

or(g,m) :=ogr(m,g™ ")

defines a smooth left action of G on M. Conversely, if o7 is a smooth left
action, then
—1

UR(m7g) = O-L(g 7m)

defines a smooth left action. This translation is one-to-one, so that we may freely
pass from one type of action to the other. [ ]

Example VIL.3.3. (a)If X € V(M) is a complete vector field and ®: Rx M —
M its global flow, then ® defines a smooth action of G = (R,+) on M.

(b) If G is a Lie group, then the multiplication map o :=mg:Gx G — G
defines a smooth left action of G on itself. In this case (mg)y = A, are the left
multiplications.

The multiplication map also defines a defines a smooth right action on it
self. The corresponding left action is

c:GxG—G, (g9,h)—hg" with o,=p,".
We have a third action of G on itself: the conjugation action

0:GxG— G, (g,h)—ghg™t with 04 = Cq.
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(c) We have a natural smooth action of the Lie group GL,,(R) on R":
0:GL,(R) x R" - R", o(g,x) := gz.
We further have an action of GL,(R) on M,(R):
0:GL,(R) x M,(R) — M, (R), o(g,A)=gAg~'.
(d) On the set M, ,(R) of (p x ¢)-matrices we have an action of the direct
product Lie group G := GL,(R) x GL,(R) by
o((g,h),A) == gAh™ ", u

Definition VIL.3.4. Let 0:G x M — M, (g, m) — g.m be a group action.
For m € M the set

O :i=Gm:={gm:g € G} ={o(g,m):g € G}
is called the orbit of m.
The action is said to be transitive if there exists only one orbit, i.e., for

x,y € M there exists a g € G with y = g.x.
We write M/G := {O,,:m € M} for the set of G-orbits on M. n

Remark VII.3.5. If 0:G x X — X is an action of G on X, then the orbits
forma a partition of X (Exercise).

A subset R C X is called a set of representatives for the action if each
G-orbit in X meets R exactly once:

(Vxe X) |[RNO,| =1. n
Example VIL.3.6. (1) We consider the action of the circle group
T={zeC*:|z| =1}

on C by
o:TxC—-C, tz=tz.

The orbits of this action are concentric circles:

O, ={tz:t € T} = {w € C: |w| = |z]}.
A set of representatives is given by

R :=10,00[={r € Rir > 0}.
(2) For K € {R,C} and the action

0:GL,(K) x K* - K", (g,z)+— gz

there are only two orbits:
Oo={0} and O, =K"\{0} for z#0.

Each non-zero vector z € K™ can be complemented to a basis of K", hence
arises as a first column of an invertible matrix g. Then ge; = x implies that

O, = O, . We conclude that K™\ {0} = O, .
(3) For the conjugation action

GL,(K) x My (K) — My (K), (g,A4) — gAg™"
the orbits are the similarity classes of matrices 04 = {gAg~':g € GL(K)}. =
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The derived action

The following proposition generalizes the passage from flows to vector fields
to actions of general Lie groups.

Proposition VIL.3.7.  Let G be a Lie group and o: GXM — M, (g, m) — g.m
a smooth action of G on M . Then the assignment

o:L(G) = V(M), with o&(z)(m):=-T1(c")(z) = —(T(1,m)0)(x,0)

is a homomorphism of Lie algebras.

Proof.  First we observe that for each z € L(G) the map d(x) defines a
smooth map M — T(M), and since 7(x)(m) € Ty,m) (M) = Trn(M), it is a
smooth vector field on M.

To see that ¢ is a homomorphism of Lie algebras, we pick m € M and

write

" i=0"ong:G— M, g~ g tm

for the reversed orbit map. Then

" (gh) = (gh)""m =h"" (g7 ".m) = ¢ "(h),

which can be written as
-1

g0”’7’1/ o )\g — SOg .m'
Taking the differential in 1 € G, we obtain for each z € L(G) = T1(G):

1

Ty(e™)i(g) = Ty(e™)T1(Ng)x = Ta (™ 0 Ag)x = Ty (¢? ™)z
=Ti(0? "™ Ti(ng)z = —Ti(c? D)z = &(x)(¢™(9)).

This means that the left invariant vector field x; on G is ¢™-related to the
vector field 6(z) on M. Therefore Lemma I1.3.9 implies that for z,y € L(G)
the vector field [z}, y;] is ¢ -related to [o(x),d(y)], which leads for each m € M

to
& ([z, y])(m) = Ta(e") [z, yl:(1) = T1 (™) [ze, i) (1)
= [o(2), 6(y)](¢™ (1)) = [6(x),5(y)](m).

Lemma VII.3.8. If 0:G x M — M is a smooth action and x € L(G), then
the global flow of the vector field &(x) is given by ®*(t,m) = expa(—tx).m. In
particular,

d

~ dt] =0

& (z)(m)

expqa(—tz).m.
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Proof. In the proof of the preceding proposition, we have seen that

Ty(e™)ai(g) = o(x)(¢™(9))

holds for the map ©™(g) = g~'.m. Therefore

d

Tl 1y P (—tw).m = Ta(¢™)To(expg)w = Ta(p™)z = () (m).

This proves the lemma. ]

Representations of Lie groups

Definition VII.3.9. (a) We have already seen that for each finite-dimensional
vector space V', the group GL(V') carries a natural Lie group structure. Let G
be a Lie group. A smooth homomorphism

m: G — GL(V)

is a called a representation of G on V (cf. Exercise VII.2).
Any representations defines a smooth action of G on V' via

o(g,v) = m(g)(v).

In this sense representations are nothing but linear actions on vector spaces.
(b) If g is a Lie algebra, then a homomorphism of Lie algebras ¢: g — gl(V)
is called a representation of g on V. [ ]

As a consequence of Proposition VII.1.4, we obtain

Proposition VII.3.10. If v:G — GL(V) is a smooth representation of G,
then L(p):L(G) — gl(V) is a representation of its Lie algebra L(G). n

Remark VII.3.11. If 0:G xV — V is a linear action and m: G — GL(V) the
corresponding representation, then

is a linear vector field. ]

The representation L(y) obtained in Proposition VII.2.3 from the group
representation ¢ is called the derived representation. This is motivated by the
fact that for each = € L(G) we have

_d _d tL(p) (x)
= Tl im0 p(expgtx) = i o € -

L(p)(z)
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The adjoint representation

Let G be a Lie group and L(G) its Lie algebra. For g € G we recall the
conjugation automorphism ¢, € Aut(G), c,(z) = grg~! and define

Ad(g) := L(c,) € Aut(L(G)).

Then
Ad(glg2) = L(69192) = L(Cgl) L(ng) = Ad(gl) Ad(g2)

shows that Ad:G — Aut(L(G)) is a group homomorphism. To see that it is
smooth, we observe that for each = € L(G) we have

Ad(g)r = L(cg)x = Th(cg)x = Th(Agopg-1)x = Ty-1(Ag)T1(pg-1)x = 0g-2-0g-1

in the Lie group T(G) (Lemma VII.1.2). Since the multiplication in T'(G) is
smooth, the representation Ad of G on L(G) is smooth (Exercise VII.2).
We know already that the derived representation

L(Ad):L(G) — gl(L(G))

is a representation of L(G) on L(G). The following lemma gives a formula for
this representation.
For z € L(G) we define

ad(z):L(G) — L(G), adz(y):= [z,y].

Lemma VII.3.12. L(Ad)=ad.

Proof. Let z,y € L(G) and x;,y; the corresponding left invariant vector
fields. Corollary VII.1.6 implies for g € G the relation

(cg)eyt = (Licg)y) = (Ad(g)y),.

On the other hand, the left invariance of y; leads to

(c)syt = (pg ' 0 Ag)wu
= (pg ) Ng)st = (pg )wt-

Next we observe that @' = pexp.(te) is the flow of the vector field z;
(Lemma VII.1.10), so that Theorem VI.2.7 implies that

d i d
[xlvyl] = Emlyl = % +=0 ((I)_lt)*yl = % +=0 (CexpG(t:z))*yl
d
ey P (Ad(expg(tx))y),-
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Evaluating in 1, we get

d

= 2| _, Adlexpg(tr))y = L(Ad)(z)(y)- u

[z,y] = [z, w](1)

Combining Proposition VII.1.15 with Lemma VII.3.12, we obtain the im-
portant formula

Adoexpg = exppyyr(a)) ©ad,

ie.,

(7.3.1) Ad(expg(z)) = e*1®  for 2 € L(G).

Stabilizers and orbits

Definition VII.3.13. Let 0:G x M — M, (g, m) — g.m be an action of the
group G on M. For m € M the subset

Gp:={g € G:gm =m}

is called the stabilizer of m.
For g € G we write

Fix(g) := M9 :={m € M:g.m = m}
for the set of fixed points of g in M. We then have
me M <— geG,.
For a subset S C M we write

Gs:= () Gm={g€G:(Ym € S) gm =m}

meS

and for H C G we write
MY .= {m € M:(Vh € H) h.m = m}

for the set of points in M fixed by H. ]
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Lemma VII1.3.14. For each smooth action o:G x M — M the following
assertions hold:
(1) For each m € M the stabilizer is a closed subgroup of G'.

(2) For me M and g € G we have

Gygm = gGmg_l.

(3) If S C M s a G-invariant subset, then Gg I G s a normal subgroup.
Proof. (1) That G,, is a subgroup is a trivial consequence of the action
axioms. Its closedness follows from the continuity of the orbit map ¢™:G —

M, g — g.m and the closedness of the points of M .
(2) If h € Gy, then

ghg™t.(g.m) = ghg”'g.m = gh.m = g.m,
hence ghg™! € Gy.;m, and thus ¢G,,g " C Gy, . Similarly we get ¢~ 'G.mg C

Gg-1.(g.m) = Gm and therefore 9Gmg ' =Gy
(3) follows directly from (2). u

The normal subgroup Gj; consisting of all elements of G which do not
move any element of M is called the effectivity kernel of the action. It is the
kernel of the corresponding homomorphism G — Diff(M).

Proposition VI1.3.15. Let 0:G x M — M be a smooth action of G on M .

Then the following assertions hold:

(1) mée MY = &(z)(m) =0 for each x € L(G). The converse holds if G is
connected.

(2) If 6(L(G))(m) =T, (M), then the orbit O,, of m is open.

Proof. (1) Suppose first that m is a fixed point and let = € L(G). Then

o(x)(m) = &

T dt] =0

(Lemma VII.3.8).

If, conversely, all vector fields &(z) vanish in m, then m is a fixed point
for all flows generated by these vector fields, which leads to expgs(z).m = m
for each © € L(G). This means that G,, 2 (exps L(G)), which in turn is the
identity component of G (Lemma VII.1.14). If G is connected, we get G = G, .

(2) By assumption, the linear map ¢:L(G) — T,,(M),z — &(x)(m) is
surjective. Let E C L(G) be a subspace for which ¢|g: E — T,,(M) is bijective.
For the smooth map

expg(—tz).m =0

= dtl =0 "

O FE— M, ®(z):=expg(x).m
we then have

To(®) () = T(1,m)(0)(2,0) = —o(z)(m) = —p(z).
Therefore the Inverse Function Theorem implies that there exists a 0-neighbor-
hood Ug C FE for which @ |y, is a diffeomorphism onto an open subset of M .
It follows in particular that G.m is a neighborhood of m.
Since all maps o, are diffeomorphisms of M, it follows that o,(G.m) =
gG.m = G.m also is a neighborhood of g.m, hence that G.m is open. |
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Corollary VII.3.16.  For each m € M we have
L(G.,) ={z € L(G):6(x)(m) = 0}. u

The preceding proposition shows in particular that the orbit O,, is a
submanifold if m is fixed point (zero-dimensional case) and if O,, is open. Our
next goal is to show that orbits of smooth actions always carry a natural manifold
structure. This leads us to the geometry of homogeneous spaces in the next
section.

More exercises for Section VII.

Exercise VIL.8. If (Hj);c s is a family of subgroups of the Lie group G, then

L(ﬂjeJ Hj) = ﬂjeJ L(Hj). u
Exercise VIL.9. Let G := GL,(R) and V := P,(R™) the space of homoge-
neous polynomials of degree k in x1,...,z,, considered as functions R" — R.
Show that:

1) dimV = (*7"71).

(2) We obtain a smooth representation p: G — GL(V) of G on V by
(p(g)-)(x) = fg~ ).

(3) For the elementary matrix E;; = (6;;) we have L(p)(E;;) = —xja%i.
Hint: (1 + tEZ‘j)_l =1- tEij . [ |

Exercise VII.10. If X € gl(V) is a nilpotent linear map, then ad X €
End(gl(V)) is also nilpotent. Hint: ad X = Lx — Rx holds for Lx(Y) = XY
and Rx(Y) =YX, and both summands commute. n

Exercise VII.11. Let ¢:G — H be a morphism of Lie groups. Show that
L(ker ¢) = ker L(¢y). u
Exercise VII.12. We consider the homomorphism
det: GL,(R) — (R*, ).

Show that:
(1) Ti(det) = d(det)(1) = tr. Hint: Product rule for n-linear maps.
(2) Show that the Lie algebra of the special linear group

SL,(R) :={g € GL,,(R): det(g) = 1}

coincides with
sl,(R) = {z € gl,,(R): trz = 0}.

Hint: Exercise VII.11. ]
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Exercise VII.13. Show that the orbits of a group action o: G x M — M form
a partition of M . (]

Exercise VII.14. Show that the following maps define group actions and
determine their orbits by naming a representative for each orbit (K =R, C).
(a) GL,(K) x K" - K", (g,v)+ gv.

(b) O,(R) xR" = R™, (g,v)+— gv.

(c) GLn(C) x Mn(C) — Myn(C), (g,2) — gzg™".

(d) U,(K) x Herm,,(K) — Herm,,(K), (g,z)+ grg~!.

(e) GL,(K) x Herm,,(K) — Herm,,(K), (g,z) — gzg*.

(f) On(R) x (R" xR™") = R" xR", (g, (,y)) — (92, 9Y). u

Exercise VII.15. For a complex number A € C consider the smooth action
o:RxC —C, ot z):=ez

(1) Sketch the orbits of this action in dependence of .
(2) Under which conditions are there compact orbits?
(3) Describe the corresponding vector field. [ ]

Exercise VII.16. For complex numbers A\, Ay € C, consider the smooth
action
o:Rx C? = C?  o(t,(21,2)) = (P21, e™22).

(1) For which pairs (A1, A2) are there bounded orbits?

(2) For which pairs (A1, A2) are there compact orbits?

(3) Describe a situation where the closure of some orbit is compact, but the
orbit itself is not. |

Exercise VII.17. (a)Show that each submanifold S of a manifold M is locally
closed, i.e., for each point s € S there exists an open neighborhood U of s in
M such that U NS is closed.

(b) Show that any locally closed subgroup H of a Lie group G is closed.
Hint: Let ¢ € H and U an open 1-neighborhood in G for which U N H is
closed. Show that:
(1) g€ HU ', ie.,, g=hu™! with he H, ucU.
(2) H is a subgroup of G.
B vwe HNU=HNU=HNU.
(4) ge H. |

Exercise VII.18. Let D C R"™ be a discrete subgroup. Then there exist
linearly independent elements vq,...,v;x € R® with D = Zle Zv;. Hint: Use
induction on dimspan D.

(1) Show that D is closed.

(2) Reduce to span D = R".
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(3) Every compact subset C' C R"™ intersects D in a finite subset.

(4) Assume that span D = R™ and assume that there exists a basis fi,..., f
of R™, contained in D, such that the hyper-plane F':= span{fi,..., fn—1}
satisfies FND =Zf  + ...+ Zf,_1. Show that

§ :=inf{\, > 0:(3N1,..., A1 ER) D Nifi € D} > 0.
=1

Hint: It suffices to assume 0 < \; <1 for ¢ = 1,...,n and to observe (4).
(5) Apply induction on n to find fi,..., f, asin (4) and pick f, ==Y 1 Nifi €
D with \,, = 0. Show that D =Zf1 + ...+ Zf,—1 + Zf] . ]

Exercise VII.19. (The structure of connected abelian Lie groups) Let A be

a connected abelian Lie group. Show that

(1) expy:(L(A),+) — A is a morphism of Lie groups.

(2) expy is surjective.

(3) T'4:=kerexp, is a discrete subgroup of (L(A),+).

(4) L(A)/T4 = R* x T™ for some k,m > 0.In particular, it is a Lie group and
the quotient map ga:L(A) — L(A)/T' 4 is a smooth map (cf. Exercise IX.5).

(5) expy factors through a diffeomorphism ¢:L(A)/T'4 — A.

(6) A=RF xT™ as Lie groups. |

Exercise VII.20. (Divisible groups) An abelian group D is called divisible if

for each d € D and n € N there exists an a € D with a™ = d. Show that:

(1)* If G is an abelian group, H a subgroup and f: H — D a homomorphism into
a divisible group D, then there exists an extension of f to a homomorphism
f:G — D. Hint: Use Zorn’s Lemma to reduce the situation to the case
where G is generated by H and one additional element.

(2) If G is an abelian group and D a divisible subgroup, then G = D x H for
some subgroup H of G. Hint: Extend idp: D — D to a homomorphism
f:G — D and define H :=ker f. [

Exercise VII.21. (General abelian Lie groups) Let A be an abelian Lie group.
Show that:

(1) The identity component of Ag is isomorphic to R* x T™ for some k,m € Ny.
(2) Ap is divisible.

(3) AgAO X7T0(A), where 7T0(A) = A/Ao

(4) There exists a discrete abelian group D with A 2 R*¥ x T™ x D. u
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VII.4. Transitive actions and homogeneous spaces

The main result of this section is that for any smooth action of a Lie group
G on a smooth manifold M, all orbits carry a natural manifold structure. First
we take a closer look at transitive actions, i.e., actions with a single orbit.

Definition VII.4.1. (a) Let G be a group and H a subgroup. We write
G/H :={gH:g € G}
for the set of left cosets of H in G. Then
0:GxG/H—G/H, (g9,xH)— gzH

defines a transitive action of G on the set G/H (easy exercise).
(b) Let G be a group and 01: G X M7 — My and 09: G X My — My two
actions of the group G on sets. A map f: M7 — Ms is called G -equivariant if

f(gom)=g.f(m) holds for all g€ G,m € M. [

Remark VII.4.2. Let 0:Gx M — M be an action of the group G on the set
M. Fix m € M. Then the orbit map

c":G— 0, CM, g gm
factors through a bijective map
" G/Gp — Oy  gGpm — g.m

which is equivariant with respect to the G-actions on G/G,, and M (Exercise).m

The preceding remark shows that if we want to obtain a manifold structure
on orbits of smooth actions, it is natural to try to define a manifold structure on
the coset spaces G/H for closed subgroups H of a Lie group G. To understand
this manifold structure, we need the concept of a submersion of manifolds.

Submersions

Definition VII.4.3. Let f: M; — Ms> be a smooth map and m € M;. The
map f is called submersive in m if the differential T,,,(f) is surjective. Otherwise
m is called a critical point of f.

The map f is said to be a submersion if T,,(f) is surjective for each
m e M. n
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Lemma VII.4.4. If f: My — My is a surjective submersion, then there exists
for each point p € My an open neighborhood U C My and a smooth map
o:U — My with foo=idy.

Proof. Our assumption implies in particular that p is a regular value of f,
so that S := f~1(p) is a smooth submanifold of M; of dimension k := d; — da,
where d; := dim M; (Theorem I1.2.6). Let s € S and (¢,V) be a submanifold
chart of M7 with

e(VNS) =R x {0})Ne(V) and ¢(s)=(0,0).

Consider the open 0-neighborhood W := {z € R%:(0,2) € ¢(V)}. Then
the map
aW — M,z f(p~}(0,2))

is smooth with
To(ar) = To(£)Ts(0) ™" |10y sas -

As Ty(p)~! maps {0} x R% to a subspace of Ts(M;) complementary to Ts(S) =
ker Ts(f) =2 R”, it follows that Ty(«) is bijective. Hence the Inverse Function
Theorem implies the existence of an open 0-neighborhood W; C W such that
alw,: Wi — U = a(W7) is a diffeomorphism onto an open subset of M;. Now

o:=p to(alw,) U — M,
is smooth, and we have for each x € U:

flo(x)) = flp~ a" (z)) =aca™l(z) = . .

Proposition VII.4.5. (Universal property of submersions) Let f: My — M,
be a surjective submersion and g: My — N a smooth map which is constant on
all fibers of f. Then there exists a unique map g: Mo — N with go f =g, and
this map is smooth.

Proof. Let p € M, U C M5 open containing p, and o:U — M; a smooth
map with f oo = idy (Lemma VII.4.4). Then we have g |y = g o o, which
is smooth. Hence g is smooth on a neighborhood of p, and since p € My was
arbitrary, the assertion follows. [ ]

Corollary VII.4.6. If f: My, — Ms s a bijective submersion, then f is a
diffeomorphism.

Proof. Apply the preceding proposition with N := M; and g = idyy, . ]

Remark VIL.4.7. The smooth map f:M; := R — My, = R,z — 23 is
submersive in all points x # 0. The map g = idg: M; = R — N := R is smooth
and bijective, hence constant on the fibers of f, but the map g: My — N, x — T3
is not smooth in 0. This shows that the assumption in Proposition VII.4.5 that
f is submersive is really needed. ]

The following theorem, which we cite here without proof, implies in par-
ticular the existence of submersive points for surjective smooth maps.
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Theorem VII.4.8. (Sard) Let My be a smooth o -compact manifold, f: M; —
My a smooth map and MY the set of critical points of f. Then f(Mf) is a set
of measure zero in Ms, i.e., for each chart (p,U) of My the set o(U N f(MY))
1s of Lebesque measure zero. [ ]

Homogeneous spaces

Lemma VII1.4.9. Let H < G be a closed subgroup of the Lie group G and
E C L(G) be a vector space complement of L(H). Then there exists an open
0-neighborhood Vi C E such that

e:Ve x H— eXpG(VE)H7 (ma h) = eXpG(JJ)h

s a diffeomorphism onto an open subset of G.

Proof. We recall that H is a submanifold of G and a Lie group with respect
to this manifold structure (Proposition VII.2.8). Consider the map

O:FExH—G, (x,h)— expg(x)h.
We then have
T(O,l)((I))(’U, w) = T(l,l) (mg)(To(eXpG)U, ’LU) =v+ w,

so that T(o,1)(®) is a bijective linear map. Hence there exists a 0-neighborhood
Up C F and a 1-neighborhood Uy C H such that

Q1 := Py, xvy: U x Uy — expg(Ug)Un

is a diffeomorphism onto an open subset of G. We further recall from
Lemma VII.2.6, that we may assume, in addition, that

(7.4.1) expe(Up) N H = {1}.

We now pick a small symmetric 0-neighborhood Vy = —Vg C Ug such
that exps(Ve)expa(Ve) C expa(Ug)Ug . Its existence follows from the conti-
nuity of the multiplication in G. We claim that the map

0: Vg x H — expg(Ve)H
is a diffeomorphism onto an open subset of G'. To this end, we first observe that
po (idy, xpn) =proe foreach heH,
ie., p(x,h'h) = p(x,h')h, so that

Tw,ny () o (idg XT1(pn)) = Typz,1)(Pn) © Tiz,1) ()
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Since T3 1)(¢) = T(5,1)(®) is invertible for each x € Vg, T(; 1)(p) is invertible
for each (z,h) € Vg x H. This implies that ¢ is a local diffeomorphism in each
point (x,h). To see that ¢ is injective, we observe that

/

expg(z)h = ¢(x, h) = p(a', h') = expg (')A
implies that
expe(z) Fexpa(z’) = h(W) ! € expe(Ve)2 N H C (expe(Up)Uy) NH = Uy,
where we have used (7.4.1). We thus obtain

expg(z') € expy(z)Up,

so that the injectivity of ®; yields x = z’, which in turn leads to h = h’. This
prove that ¢ is injective and a local diffeomorphism, hence a diffeomorphism. m

Theorem VII.4.10. Let G be a Lie group and H < G a closed subgroup.
Then the coset space G/H , endowed with the quotient topology, carries a natural
manifold structure for which the quotient map ¢:G — G/H,g — gH 1is a
submersion.

Moreover, 0:G x G/H — G/H,(g,xH) — gxH defines a smooth action
of G on G/H .

Proof. Let E C L(G) be a vector space complement of the subspace L(H)
and Vg be as in Lemma VII.4.9.

Step 1 (The topology on G/H): We endow M := G/H with the
quotient topology. Since for each open subset O C G the product OH is open
(Exercise VII.22), the openness of OH = ¢~ !(q(O)) shows that ¢ is an open
map, i.e., maps open subsets to open subsets.

To see that G/H is a Hausdorff space, let g1,90 € G with g1H # ¢go.H,
i.e.,, g1 € goH. Since H is closed, there exists a 1-neighborhood U; in G with
Uyg1NgoH = @, and further a symmetric 1-neighborhood Us with U2_1U2 CcU;.
Then Usg1H and Usgo H are disjoint g-saturated open subset of GG, so that

q(Uz91H) = q(Uzg1) and q(Uzg2H) = q(U2g2)

are disjoint open subsets of G/H, separating g1 H and goH. This shows that
G/H is a Hausdorff space.
We also observe that the action map o is continuous because

idg x¢:G x G — G x G/H is a quotient map since ¢ is open (cf. Exercise
[.17) and
oo (idg xq) =qomag:GxG— G/H, (g,x)+— gzH

is continuous.
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Step 2 (The atlas of G/H): Let W := q(exps(VEg)) with Vg as in
Lemma VII.4.9 and define a smooth map

peiq (W) =expg(Ve)H — Vg by ¢ "(w) = (pe(w),*)

Since q~'(W) is open in G, W is open in G/H. Moreover, a subset
O C W is open if and only if ¢71(0O) C ¢ (W) is open. Since ¢~}(0) =
exps(pe(¢~t(0))H and ¢~ (W) = Vi x H, this is equivalent to pg(q¢~1(0))
being open in Vg. Therefore the map ¢: W — Vg,q(g9) — pr(g) is a homeo-
morphism and (¢, W) is a chart of G/H .

For ¢ € G we put W, = ¢gW and v¢,(x) = (¢ '.xz). Since all
maps o,:G/H — G/H are homeomorphisms (by Step 1), we thus get charts
(g, Wy)gea, and it is clear that UgeG Wy,=G/H.

We claim that this collection of homeomorphisms is a smooth atlas of G/H .
Let g1,92 € G and assume that W, N W,, # @. We then have

Vg, 0 (@) = (g1 g2 () = (g1 g2.q(expg ()
= ¢(q(g1 g2 exp(x)) = pulg1™ ' g2 expg ().

Since pg is smooth, this map is smooth on its open domain, which shows that
(g, Wg)geq is a smooth atlas of G/H .

Step 3 (Smoothness of the maps o,): For gi,90 € G we have
09y (Wy,) = Wyig, and g, 4, 0 04, = tg,, which immediately implies that
Ogy Wy, Wy, — Wy,g, is smooth. Since go was arbitrary, all maps oy, g € G,
are smooth. From oy 00,1 = idy; we further derive that they are diffeomor-
phisms.

Step 4 (¢ is a submersion): The smoothness of ¢ on ¢~ (W) follows
from (q(z)) = pr(z) and the smoothness of pr on ¢ '(W). Moreover,
Tig(Y)T1(q) = T1(pe): L(G) — E is the linear projection onto E with kernel
L(H), hence surjective. This proves that T3(q) is surjective.

For each g € G we have go Ay = 040 ¢, so that Step 3 implies that ¢ is
smooth on all of G. Taking derivatives, we obtain

Tg(Q) © Tl()‘g) = TlH(Ug> o T1(q),

and since all o, are diffeomorphisms, this implies that all differentials T,(q) are
surjective, hence that ¢ is a submersion.

Step 5 (Smoothness of the action of G/H ): Since ¢ is a submersion,
the product map idg x¢:G x G — G x G/H also is a submersion. In view of
Proposition VII.4.5, it therefore suffices to show that

oo (idg xq):GxG— G/H
is a smooth map, which is follows from o o (idg xXq) = gomg. [

The following corollary shows that for each smooth group action, all orbits
carry natural manifold structures. Not all these manifold structures turn these
orbits into submanifolds, as the dense wind (discussed below) shows.
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Corollary VII.4.11. Let 0:Gx M — M be a smooth action of the Lie group
G on M. Then for each m € M the orbit map ¢™:G — M,g — g.m factors
through a smooth bijective equivariant map

Mm:G/Gm — M,  gG,, — g.m,

whose image is the set O, .

Proof.  The existence of the map 7,, is clear (Remark VII.4.2). Since the
quotient map ¢: G — G/G,, is a submersion, the smoothness of 7,, follows from
the smoothness of the map 7, o ¢ = ¢ (Proposition VII.4.5). n

The preceding corollary provides on each orbit O,, of a smooth group
action the structure of a smooth manifold. Its dimension is given by

dim(G/Gyn) = dim G — dim Gy, = dim L(G) — dim L(G,y) = dim 6 (L(G))(m),
because L(G,,) is the kernel of the linear map
L(G) = Tn(M), z— &(x)(m)

(Corollary VII.3.16). In this sense we may identify the subspace ¢(L(G))(m) C
T, (M) with the tangent space of the orbit O,,.

In some case the orbit O,, may already have another manifold structure,
f.i., if it is a submanifold of M . In this case the following proposition says that
this manifold structure coincides with the one induced by identifying it with

G/Gp,.
Proposition VIIL.4.12. If O,, is a submanifold of M, then the map
Nm: G/Gm — O

18 a diffeomorphism.

Proof. We recall from Lemma I1.2.3 that O,,, is an initial submanifold of M
(Lemma I1.2.3), so that the map 7, is also smooth as a map 7,,: G/Gp, — Oy, .
The equivariance of this map means that

NMm © fbg = T4 0N, for  pg(xGr,) = 9g2Gry,  04(y) = g.y.

For the differential in the base point G,, € G/G,,, this implies that

Tya,, (Mm) o Ta,, (Ng) = Tm(Ug) oTa,, (Mm)-

Since the maps p, and o, are diffeomorphisms, it follows that the rank of
all tangent maps Tyq,, (m) is the same. As n,, is surjective, Sard’s Theorem
implies the existence of some submersive point, but since all ranks are equal, it
follows that 7,,: G/G,, — O, is a bijective submersion, hence a diffeomorphism
(Corollary VII.4.6). u
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Corollary VII1.4.13. Ifo:GXM — M 1is a transitive smooth action of the Lie
group G on the manifold M and m € M , then the orbit map 1y,:G/Gp — M
is a G -equivariant diffeomorphism. [ ]

Definition VII.4.14.  The manifolds of the form M = G/H, where H is
a closed subgroup of a Lie group G, are called homogeneous spaces. We know
already that the canonical action of G on G/H is smooth and transitive, and
Corollary VII.4.13 shows the converse, i.e., that each transitive action is equiva-
lent to the action on some G/H because there exists an equivariant diffeomor-
phism. [ ]

Example VII.4.15. (Grafimannians) Let M := Gri(R"™) denote the set of all
k-dimensional subspaces of R™, the Grafimann manifold of degree k. We know
from linear algebra that the natural action

0:GL, (R) x Grg(R™) — Gri(R™), (g,F) — g(F)

is transitive (Exercise). Let F' := span{es,...,ex}. Writing elements of M, (R)
as 2 x 2-block matrices, according to

M, (R Mk R
M, (R) = ( Mn_,f,k()ne) Mn_ké&%)» ’

the stabilizer of F' in GL,(R) is

GL(n,R) = { (8 Z) ra € GLy(R),b € My n_x(R),d € GLn_k(R)},

which is a closed subgroup. Then the homogeneous space GL,(R)/GL,(R)g
carries a natural manifold structure, and since the orbit map of F' induces a
bijection

nr: GLn(R)/ GLn(R)Fp — Gri(R™), g GLn(R)F — g(F),
we obtain a manifold structure on Grg(R™) for which the natural action of

GL,(R) is smooth.
The dimension of Gry(R™) is given by

dim GL,,(R) — dim GL,,(R)r = n* — (k* + (n — k)* + k(n — k)) = k(n — k).

(Exercise: Show that this manifold structure coincides with the one from Exam-
ple 1.2.10).

Note that for £k = 1 we obtain the manifold structure on the projective
space P(R™). u
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Example VII.4.15. (Flag manifolds) A flag in R" is a tuple
F: (Fl,...,Fm)

of subspaces of R"” with
FiCF,C...CF,.

Let k; := dim F; and call (ki,...,k,) the signature of the flag. We write
Fl(kq, ..., kn) for the set of all flags of signature (kq,...,k,) in R™. Clearly,

Fl(ky, ... kn) C Grg, (R") X ... x Gy, (R).

We also have a natural action of GL,(R) on the product of the Gramann
manifolds by

g‘(F17 oo 7Fm) = (g(Fl)’ s JQ(Fm))
To describe a base point, let
F? :=span{ey,...,ex,}

and note that
f‘O = (Flo,,F,,gl) S Fl(k17k17"'7km)'

From basic Linear Algebra, it follows that the action of GL,,(R) on the subset
Fl(ki,...,kn,) is transitive, which is shown by choosing for each flag F of the
given signature a basis (b;)1<i<n, of R™ such that

F; .= span{by,...,by,} for i=1,...,m.

Writing elements of M, (R) as (m x m)-block matrices according to the
partition

n:k’l—|—(k2—k1)+(k3—k2)+...+(km—km_1)+(n—km),
the stabilizer of F° is given by
GL(n,R) o = {(94)i,j=1,...m: (i > j = gij = 0); g € GLg,—,_, (R)},

which is a closed subgroup of GL,(R). We now proceed as above to get a man-
ifold structure on the set Fl(kq,...,k,,), turning it into a homogeneous space,
called a flag manifold (Exercise: Calculate the dimension of FI(1,2,3,4)(R%).)m

Example VII.4.16. The orthogonal group O,(R) = {g € GL,(R):g" =g~ '}
acts smoothly on R™, and its orbits are the spheres

S(r):={xeR"|z||=r}, r>0.

We know already that all these spheres carry natural manifold structures. There-
fore Corollary VII.4.14 implies that for each » > 0 we have

S(r) = S"™1 = 04(R)/ On(R)e,,

where

On(R)e, = { (g 2) ca€{+1},de On_l(R)} ~ (7/2Z) x Op_1(R). =
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The dense wind in the 2-torus

Example VII.4.17. (Closed subgroups of T) Let H C T C (C*,-) be a closed
proper (=different from T) subgroup. Since expy is surjective and dimT = 1,
it follows that L(H) = {0}, so that the Identity Neighborhood Theorem implies
that H is discrete, hence finite because T is compact.

On the other hand, ¢~1(H) is a closed proper subgroup of R, hence cyclic
(this is a very simple case of Exercise VII.18), which implies that H = q(q¢~!(H))
is also cyclic. Therefore H is one of the groups

Cp:={z€T:2"=1}

of n-th roots of unity. [ |

Example VII.4.18. (Subgroups of T?) (a) Let H C T? be a closed proper
subgroup. Then L(H) # L(T?) implies dim H < dimT? = 2. Further, H is
compact, so that the group mo(H) of connected components of H is finite.

If dimH = 0, then H is finite, and for n := |H| it is contained in a
subgroup of the form C,, x C,,, where C},, C T is the subgroup of n-th roots of
unity (cf. Example VI1.4.17).

If dimH =1, then Hy is a compact connected 1-dimensional Lie group,
hence isomorphic to T (Exercise VII.19). Therefore Hy = expp:(Rz) for some
v € L(H) with exppe(z) = (e2™®1 e?™®2) = (1,1), which is equivalent to
x € Z?. We conclude that the Lie algebras of the closed subgroups are of the
form L(H) = Rz for some = € Z?.

(b) For each 6 € R\ Q the image of the 1-parameter group

7R = T?, ts (e e)
is not closed because 7 is injective. Hence the closure of «(R) is a closed subgroup
of dimension at least 2, which shows that v(R) is dense in T2. n

VII.5. Quotients of Lie groups

Theorem VII.5.1. If N is a closed normal subgroup of the Lie group G,
then the quotient group G/N carries a unique Lie group structure for which the
quotient homomorphism q:G — G/N,g — gN is a submersion.

Proof.  Theorem VII.4.7 provides the manifold structure on G/N and that
q is a submersion. Let m¢,n denote the multiplication map on G/N. Since
qxq¢GxG — G/N xG/N also is a submersion, the smoothness of mg/n
follows from the smoothness of

mea/n o (g xq) =qomg:Gx G — G/N

(Proposition VII.4.5). Likewise, the smoothness of the inversion 7g,y follows
from the smoothness of ng,y 0 q¢=qong. [ ]
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Corollary VIIL.5.2. Let ¢o:G — H be a morphism of Lie groups and endow
G/ ker ¢ with its natural Lie group structure. Then ¢ factors through a smooth
injective morphism of Lie groups @: G/ ker o — H, gker ¢ — ¢(g).

If, in addition, L(p) is surjective, then @ is a diffeomorphism onto an
open subgroup of H .
Proof. The existence of the map @ is clear. It is also easy to see that it is a
group homomorphism. Since the quotient map ¢: G — G/ ker ¢ is a submersion,
the smoothness of p follows from the smoothness of po g = ¢.

If, in addition, L(¢y) is surjective, then @ is a morphism of Lie groups whose
differential is an isomorphism. Since it is also injective, the Inverse Function
Theorem implies that it is a diffeomorphism onto an open subgroup of H. ]

Even more exercises on Section VII.
Exercise VILI.22. Let G be a topological group (multiplication and inversion

are continuous). Then for each open subset O C G and for each subset S C G
to product sets

0S={gh:ge O,he S} and SO ={hg:geO,heS}

are open (Hint: proof of Lemma VII.1.14). n



VIL5. Quotients of Lie groups 163

VIII. From infinitesimal to global structures
In this brief concluding chapter we formulate the assumptions required to
integrate homomorphisms of Lie algebras to group homomorphisms and likewise,
to integrate homomorphisms L(G) — V(M) to smooth group actions. The
condition showing up in this context is a requirement on the topology of the
group G: If it is simply connected, then everything works, otherwise there are
obstructions which vanish sometimes but not always.

The fundamental group

Definition VIII.1. Let X be a topological space, I := [0,1], and zp € X .
We write
P(X,x9):={y€ C(I,X):v(0) =0}

and
P(X,zp,21) :={y € P(X,20):v(1) = z1}.

We call two paths ag,a1 € P(X,x9,21) homotopic, written oy ~ aq, if there
exists a continuous map

HIxI—X with H():(l/o, H1:Oé1

and
(VteI) H(t,0)=x, H(t,1)=z.

One easily verifies that we thus obtain an equivalence relation whose classes, the
homotopy classes, are denoted [«].

We write Q(X,x9) := P(X,xo,x9) for the set of loops in zy. For a €
P(X,xg,21) and B € P(X,x1,22) we define a product a x5 € P(X,zg) by

e a(2t) f0r0<t§%
(o B)(t) {5(%_1) for L <t <1. -

Lemma VIIL.2. If ¢:[0,1] — [0,1] is a continuous map with ¢(0) = 0 and
v(1) =1, then for each o € P(X,xo,x1) we have o ~ a0 p.

Proof. H(t,s) :=a(t+ (1 —1t)p(s)). u

Proposition VIII.3.  The following assertions hold:
(1) a1 ~ as and (1 ~ Po implies oy * B1 ~ ag x B2, so that we obtain a
well-defined product

o] *[6] := [ x 3]
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of homotopy classes.
(2) If xo € Q(X,z¢) denotes the constant map I — X,t — x, then

[zo] % [a] = [a] = [a] x [x1]  for «a € P(X,xo,21).

(3) (Associativity) o+ 6]+ ] = [o] + [B % 4] for a € P(X,z0,21),8 €
P<X7w17w2)7 0AS P(X7x2;x3)'

(4) (Inverse) For a € P(X,z¢) and a(t) :== a(l —t) we have
[a] * [a] = [xq].
(5) (Functoriality) For any continuous map ¢: X — Y with ¢(x¢) = yo we have

(poa)x(pof)=po(axpf)

Proof. (1) If H* is a homotopy from «; to as and H” a homotopy from 3,
to (2, then we put

H(t,2s) for 0 <s <
HA(t,2s —1) for i <s<

Ht,s) = {

(2) For the first assertion we use Lemma VIII.2 and
Top*xx =Q0Y
for

0 for0<t<i
‘p(t)'_{Zt—l for L <t <.

For the second we have a *x xqg = a o ¢ for

2t for 0<t< 3
SD(t)'_{l for L <t<1.
(3) We have (ax3)*v = (ax(Bx%7)) o for
2t for()gtgz—l1
p(t):=¢q 2+t forl<t<i
Bl for3<t<1
(4)
a(2s) for s < 15t
H(t,s) =< a(l—t) for 15t <s<
a(2s —1) for s > 1t

w|

(5) is trivial. u
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Definition VIII.4. From the preceding definition we derive in particular that
the set
T (X, x0) := QUX,x0)/ ~

of homotopy classes of loops in x( carries a natural group structure. This group
is called the fundamental group of X with respect to xg.

A pathwise connected space X 1is called simply connected if 71 (X, x¢)
vanishes for some xy € X (which implies that it vanishes for each zy € X;
Exercise). u

Remark VIII.5. The map
o:m (X, 20) X P(X, 20)/ ~— P(X,x0)/ ~, ([a], [6]) = [a* 5] = [a] * [{]
defines an action of the group m(X,zo) on the set P(X,xg)/ ~ of homotopy

classes of paths starting in zy (Lemma VIIL.3). n

At this point we can formulate the “integration part” of the Lie functor:

Theorem VIIL.6. Let G be a connected, simply connected Lie group. Then
the following assertions hold:

(1) If H is a Lie group and :L(G) — L(H) is a homomorphism of Lie alge-
bras, then there exists a unique homomorphism of Lie groups with L(p) = .
(2) If M is a smooth manifold and :L(G) — V(M) is a homomorphism of
Lie algebras, then there exists a unique smooth action o:G x M — M with
o=1. [
The usefulness of the preceding theorem in concrete situations depends on
whether one can check that a given Lie group G is simply connected.
Here are some tools:

Lemma VIIL7. (a) If X is contractible, then 7 (X, z¢) = {[xo]} is trivial.
(b) 7T1(X X Y7 (30073/0)) = 7T1(X7 '1:0) X 7T1(Y7 ?Jo) . n

Examples VIIL.8. Here is a list of fundamental groups of concrete groups:

(1) m(R™) = {0} because R™ is contractible.

(2) w1 (T™) =2 Z™ because 71(T™) = 71 (T)™ and 1 (T) = Z.

(3) m1(SL,(C)) = m1(SU,(C)) = {1} because

SL,(C) 2 SU,(C) x {x € Herm,,(C):trx = 0}

(Polar decomposition).

(4) m(GL,(C)) 2 7 (U,(C)) = Z because

GL,(C) 2 U,(C) x Herm,(C), GL,(C) = SL,(C) x C*

(topologically).

(5)

m1(SLn(R)) = m1(GL, (R)) = m1(0n(R)) = m1(SO,(R))

Z forn =2
7/27 forn>2

112
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The following lemma implies in particular, that fundamental groups of
topological groups are always abelian.

Lemma VIIL.8. Let G be a topological group and consider the identity element

1 as a base point. Then the set P(G,1) also carries a natural group structure

given by the pointwise product (- 3)(t) := a(t)B(t) and we have

(1) a~ao, g~ implies a-B~ o' -3, so that we obtain another well-defined
product

of homotopy classes, defining a group structure on P(G,1)/ ~.
(2) a~pf < afB !t ~1, the constant map.
(3) (Commutativity) [a] - [B] = [B] - [a] for a, B € Q(G,1).
(4) (Consistency) [a] - [B] = [a] * [0] for a € Q(G,1), € P(G,1).

Proof. (1) follows by composing homotopies with the product map mg .
(2) follows from (1).

(3)
(8] = [ax 1[1# 5] = [(x 1) (1 + f)] = [(1  F)(ex 1)] = [L+ flax 1] = [f][a].
(4) [o][8] = [ 1)(1 % B)] = [ f] = [o] x [B]. m

As a consequence of (4), we can calculate the product of homotopy classes
as a pointwise product of representatives.

Definition VIII.9. Let X and Y be topological spaces. A continuous map
q: X — Y is called a covering if each y € Y has an open neighborhood U such
that ¢~ 1(U) is a non-empty disjoint union of subsets (V;);cr, such that for each
i € I the restriction qly,:V; — U is a homeomorphism.

Note that this condition implies in particular that ¢ is surjective. ]

Proposition VIIL.10. If¢:X — Y is a covering and xo € X, yg € Y satisfy
q(yo) = xo, then the map

¢«: P(X,20) = P(Y,50), v—qovy
is bijective (Path Lifting Property) and induces a bijection
7. P(X,20)/ ~— P(Y,y0)/ ~, [ la0]
(Homotopy Lifting Property). [

Corollary VIIL.11. If Y 1is arcwise connected and simply connected, then
each covering map q: X — Y, where X is arcwise connected, is a homeomor-
phism.

Proof. By assumption, the evaluation maps

evx: P(X,x9)/ ~— X, |a]— a(l)
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and
evy: P(Y,y0)/ ~— Y, o] — a(l)

are surjective. It is clear that they are well-defined, because homotopic paths
have the same endpoints.

On the other hand, the simple connectedness of Y implies that the map
evy is also injective because «(1) = (1) implies that a ~ (. In fact, the path
axfe Q(Y,yo) is a loop in yp, hence contractible. Therefore

ﬂw(a*B)*Bwa*(B*ﬁ)Na*ﬂ(l):a*a(l)wa

(Lemma VIIL.3).
Now goevy = evy og, implies that ¢ is injective, hence a homeomorphism
because it is surjective, continuous and open (Exercise). n

The preceding proof even suggests how to find for a given space X a simply
connected covering space X . To formulate its assumption, we need:

Definition VIII.12. A topological space X is called semilocally simply
connected if each point zg € X has a neighborhood U such that each loop
a € P(U,x) is homotopic to [zg] in X, i.e., the homomorphism

7.‘-1(177 .CUO) — 1 (X7 xO)
is trivial. m

Theorem VIIIL.13. If X is arcwise connected, locally arcwise connected and
semilocally simply connected, then the set X := P(X,xg)/ ~ carries a topology
for which the evaluation map

evx: P(X,20)/ ~— X, [y]—~(1)

18 an arcwise connected covering by a simply connected space. [ ]

Conclusion

The problem to integrate homomorphisms of Lie algebras to homomor-
phisms of Lie groups and Lie algebras of vector fields to smooth group actions
leads us to the question whether a given Lie group is simply connected. This
question can naturally be dealt with in the context of covering theory, a branch
of (algebraic) topology. The results mentioned above barely scratch the surface
of this rich and interesting theory.

One of the outcomes of this theory is that for each conncted Lie group G
there exists a simply connected Lie group G and a morphism gg: G — G of Lie
groups which is a covering map with ker s = m1(G). Moreover, L(G) = L(G)
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and all Lie groups with the same Lie algebra are of the form G /D for some
discrete central subgroup of G.

For any Lie algebra homomorphism :L(G) — L(H) one now has a Lie
group homomorphism G:é — H with L(p) = ¢ and ¢ factors through a
homomorphism ¢: G — H if and only if ker g C ©. This is how one deals with
the integration problem in practical situations.

The End
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